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CHAPTER 1

INTRODUCTION

1.1 The Standard Model

The Standard Model of particle physics has proven to be a very successful model of

the subatomic world. It is labeled by the symmetry group SU(3)C ×SU(2)L×U(1)Y .

So much information is packed into that short expression, yet it is difficult to truly

understand what it means without quite a bit of explanation. In order to understand

it, let us look first at the particle structure of the Standard Model.

1.2 Particle Content

The Standard Model includes within it a total of six flavors of quarks, six leptons,

twelve force carrying particles, and the yet to be discovered missing piece: the Higgs

boon. The quarks make up most of the matter that we see around us in our daily

lives. The bound state of two up quarks and one down quark makes a proton, while

two down quarks and an up quark make a neutron. Protons and neutrons form the

nucleus of atoms with electrons orbiting in various patterns. The electron is a lepton

and provides us with the electricity we need to power all the fantastic devices of this

technological age in which we live. The electron, up quark, and down quark, along

with the electron neutrino make up the first generation of particles in the standard

model. This first generation is replicated at least two times with searches for a possible

fourth generation still in progress at the Tevatron at Fermilab, and the Large Hadron

Collider (LHC) at CERN. This replication is very curious. Why is it that there is a
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muon and tau lepton that have the same quantum numbers as the electron, but are

much heavier (mτ ∼ 3500me)? Why are there two extra generations of quarks that

do not compose any of the visible matter in the universe? The Standard Model does

not answer these questions, and we will try to address them later in this document

by proposing extensions to the current theory.

While the quarks and leptons make up the visible matter content of the universe,

the way in which they interact is dictated by the four known fundamental forces.

These forces have associated particles that act as the carriers of the forces. The

simplest and most well-known is the photon which governs the electromagnetic inter-

action. The W and Z bosons discovered at CERN in the early 1980s are the force

carriers of the weak interaction that governs radioactive decay processes. Together

these interactions are unified to make the electroweak interaction represented by the

symmetry SU(2)L × U(1)Y . This symmetry was discovered by Glashow, Weinberg

and Salam and correctly predicted the discovery of the W and Z bosons. Electroweak

symmetry is the core of what we now call the Standard Model. It is a symmetry that

is broken spontaneously giving us the U(1)em symmetry of electromagnetism con-

taining the familiar positive and negative charges of static electricity. Electroweak

symmetry is broken via the Higgs mechanism that will be discussed below.

The third interaction is the strong force represented by the symmetry group

SU(3)C . This interaction holds together the quarks inside of the proton and neu-

tron. The C stands for color as the charges of this interaction are named red, green,

and blue. The carriers of this force are the gluons. While there is only one photon,

a W+, a W− and one Z, there are 8 different flavors of gluons characterized by their

different colors. The strong force has not been unified with the electroweak force, but

there are attempts to do so in Grand Unified Theories (GUTs).

The fourth interaction is gravity. The graviton would be the carrier of the grav-

itational force, but we have not yet found it because the gravitational force is so

2



much weaker than the other three forces. Finding such a particle would allow us to

construct a quantum theory of gravity and thus complete our picture of the known

forces in the universe. Gravity is not included as part of the Standard Model, but

the goal is to unify it with the other forces someday.

1.3 Electroweak Symmetry Breaking

The Standard Model combines the electromagnetic and weak interaction in the gauge

symmetry, SU(2)L ×U(1)Y where U(1)Y is called hypercharge symmetry. The Higgs

Mechanism breaks this symmetry to U(1)em and generates mass for the W and Z

bosons which are the carriers of the weak force. This explains why the photon is

massless while the mediators of the weak force are massive. The breaking of this

symmetry generates a new massive particle called the Higgs boson. It has yet to

be discovered, but limits have been put on its mass by experiments at the Tevatron

and LEP. We know that if it in fact exists, mh > 114 GeV from LEP, and from the

Tevatron the mass range, 155 − 172 GeV is excluded. In order to understand the

Higgs mechanism we will first discuss gauge invariance.

1.3.1 Gauge Invariance

Demanding gauge invariance is similar to demanding that the laws of physics should

remain unchanged under a coordinate transformation. Take for example the Dirac

Lagrangian for a fermino ψ:

L = iψγµ∂µψ −mψψ. (1.1)

Consider now the U(1) symmetry transformation,

ψ → eiqαψ,

where q is the charge of the fermion under this symmetry and α is an arbitrary

parameter. If α and q are unchanged under the derivative ∂µ, then the Lagrangian

3



remains unchanged, therefore the physics should remain the same. This is referred

to as a global gauge transformation as it is the same everywhere in space and time.

If instead α were a function of the space-time coordinate xµ, then the Lagrangian

would no longer be invariant. Such a transformation is referred to as a local gauge

transformation as the function α(xµ) varies in space and time. If we now demand

that the Lagrangian remain invariant under such a local transformation, interesting

things happen. Applying the transformation ψ → eiqα(xµ)ψ to the Lagrangian above

causes us to pick up an extra unwanted term:

L → L− q[∂µα(xµ)]ψγµψ. (1.2)

If we want our Lagrangian to be invariant under such a local gauge transformation,

we will need to add something to cancel out the extra term that appears. In order to

do this, let us introduce a new field Aµ that transforms as

Aµ → Aµ + ∂µα(xµ). (1.3)

With this field we can add a new term to equation 1.1 so that it becomes:

L = iψγµ∂µψ −mψψ + qψγµψAµ. (1.4)

The additional term will cancel out the unwanted term of Eq. 1.2.This Lagrangian

is now invariant under a local gauge transformation. Now there is a new field Aµ,

and we must write all terms in the Lagrangian that are allowed by this local gauge

transformation. It is immediately evident that we cannot write a mass term such as

m2AµA
µ as it would not be invariant under the transformation rule of equation 1.3.

This means that the new field must be massless. We can however write a term like

F µν = ∂µAν −∂νAµ that is invariant under equation 1.3. Now if we put all the pieces

together for our final Lagrangian we have:

L = iψγµ∂µψ −mψψ + qψγµψAµ − 1

4
F µνFµν . (1.5)
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In this equation Fµν is the familiar field strength tensor of electrodynamics. The

second to last term describes how the field Aµ interacts with the field ψ, with the

charge strength q. It should be clear now that the field Aµ is the photon. It is

quite remarkable that by requiring local gauge invariance in the Dirac Lagrangian we

have generated the photon and the interactions that make up electrodynamics. This

process works very well for electrodynamics because the photon is massless. However

as seen above with the transformation rule of equation 1.3 we cannot write a mass

term. This creates problems for the weak theory where the W and Z bosons are

both massive particles. The solution to this comes from the Higgs mechanism and

spontaneous symmetry breaking.

It is important to note that the local gauge transformation we have considered in

this section involves a U(1) symmetry as the function eiqα(xµ) is a 1 dimensional “ma-

trix”. This is how we have generated electrodynamics whose interactions are governed

by a U(1)em symmetry. When considering the weak interaction, our transformation

will involve the 2 dimensional Pauli matrices as the weak interaction is associated

with an SU(2) symmetry.

In this section we have discussed a pedagogical way to understand local gauge

invariance, but for later sections it is important to note that we could have done the

same thing by promoting the derivative in equation 1.1 to the covariant derivative as:

Dµ = ∂µ + iqAµ, (1.6)

keeping in mind how ψ and Aµ transform as described above.

1.3.2 Spontaneous Symmetry Breaking

Spontaneous symmetry breaking happens when a symmetric theory collapses to a

particular assymmetric state. A very simple example is if we can imagine a perfectly

cylindrical pencil that is sharpened and made to stand on its point. While the initial
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state is symmetric, at some point the pencil will fall choosing a particular direction

thus becoming assymetric.

In quantum field theory the Goldstone model is a simple example of spontaneous

symmetry breaking. The Lagrangian for the Goldstone model is:

L = ∂µφ∗∂µφ− µ2|φ|2 − λ|φ|4. (1.7)

The field φ is a complex scalar field that is invariant under the global gauge

transformation φ→ eiqαφ. As above this is a U(1) symmetry. In classical Lagrangian

mechanics, the Lagrangian is written as L = T−V , where T represents all the kinetic

energy terms and V represents the potential energy terms. Equation 1.7 has a similar

form with:

T = ∂µφ∗∂µφ

V = µ2|φ|2 + λ|φ|4,

where V represents the potential energy of the field φ. In order for V to be bounded

from below and have a ground state, λ must be positive. The sign of µ2 can be either

positive or negative. If µ2 > 0 we can plot V (φ) and we will have a paraboloid with

a minimum at zero. This means that the vacuum expectation value or ground state

of φ is zero, or < 0|φ|0 >= 0. This global minimum means that the theory cannot

exhibit spontaneous symmetry breaking.

The case of µ2 < 0 is much more interesting for the task at hand. If we plot V (φ)

we will get a surface that is commonly described as a mexican hat potential with an

unstable, local maximum at φ = 0. There will also be a circle of minimum where

φ =
√

−µ2

2λ
. This value can be easily found in the standard way by setting ∂V

∂φ
= 0.

Now the vacuum expectation value of φ is non-zero:

< 0|φ|0 >=

√
−µ2

2λ
=

v√
2
, (1.8)

where v will be referred to as the vacuum expectation value or VEV from now on.
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Now that we know the VEV, we can express φ:

φ(xµ) =
v + σ(xµ) + iη(xµ)√

2
, (1.9)

where σ and η are fields that simply express φ as a deviation from the ground state

v. If we now rewrite the Lagrangian of Eq. 1.7 some important terms cancel (notably

the mass term for the field η):

L =
1

2
∂µσ∂µσ+

1

2
∂µη∂µη−λv2σ2 +

λ

4
(v4 − η4 −σ4)− vλη2σ− λ

2
η2σ2 − vλσ3 (1.10)

Though we have not actually changed the field φ in any way, several important

things have happened. We have generated a mass term for the real component of the

field (σ) that is m2
σ = 2λv2. By contrast, we have no mass term for the imaginary

component (η), mη = 0. The massless field η is often referred to as a Goldstone boson.

We have generated several quartic and cubic interaction terms. While the original

Lagrangian was invariant under a global U(1) transformation, the field σ does not

obey the same transformation due to the cubic term in the Lagrangian. This means

that our original symmetry has been spontaneously broken by the vacuum. As a

result we have generated a massive boson σ and a massless Goldstone boson η. This

is only a basic idea of spontaneous symmetry breaking. When we now combine this

method of expanding the field about its VEV with the requirement of local gauge

invariance, we get the Higgs mechanism.

1.3.3 The Higgs Mechanism

In the last section we demanded that our Lagrangian be invariant under a global

transformation. Now we will demand that it be locally gauge invariant. We can

start from Eq. 1.7, promote the derivatives to the covariant derivative, and add the

interaction term F µνFµν giving us:

L = Dµφ∗Dµφ− µ2|φ|2 − λ|φ|4 − 1

4
F µνFµν . (1.11)
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The covariant derivative is defined above in Eq. 1.6. The field φ now transforms

under the local transformation:

φ(xµ) → eiqα(xµ), (1.12)

and the vector field Aµ transforms as in Eq. 1.3. If we now expand the covariant

derivative Dµ and use Eq. 1.9 to expand the scalar field φ about it’s VEV we get

(omitting the interaction terms for clarity):

L =
1

2
∂µσ∂µσ+

1

2
∂µη∂µη−λv2σ2−1

4
F µνFµν+

q2v2

2
AµAµ+qvA

µ∂µη+ interaction terms

(1.13)

The last term in this equation, qvAµ∂µη, is troublesome as it is not an interaction

term or a mass term. We would like to find a parameterization of the field φ that

avoids this spurious term. What we can do is to use our local gauge transformation

of Eq. 1.12 to pick a specific gauge (referred to as the unitary gauge) in which the

field φ is real. In this way we rotate away the imaginary component of the field φ

and we have

φ(xµ) =
v + σ(xµ)√

2
. (1.14)

Now if we use this particular choice of gauge in Eq. 1.11 we have:

L =
1

2
∂µσ∂µσ − λv2σ2 − 1

4
F µνFµν +

q2v2

2
AµAµ + interaction terms (1.15)

An interesting thing has happened. The field Aµ has now acquired a mass term, mA =

qv. What started out as a massless vector field has become a neutral massive vector

boson thanks to the combination of local gauge invariance and spontaneous symmetry

breaking. This combination is known as the Higgs mechanism. The Lagrangian

describes a massive neutral scalar boson, σ, which is now referred to as a Higgs

boson. The field η, the complex component of φ, has now been absorbed into Aµ to

give it mass.
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In this section we demanded that the complex field φ be invariant under a local

U(1) transformation. In the Standard model we start with SU(2) × U(1) symmetry

and generate mass for the W and Z bosons while leaving the photon massless.

1.3.4 SU(2) × U(1) Symmetry Breaking

The Standard Model Lagrangian combines the interaction of the fermions with the

gauge bosons and the interactions of the gauge bosons with one another. All of the

terms obey electroweak symmetry, SU(2) × U(1). Unfortunately if we were to write

explicit mass terms into the Lagrangian for the fermions and gauge bosons, they

would violate this symmetry. It is for this reason that we need the Higgs mechanism

to introduce a new field that is invariant under electroweak symmetry but also breaks

that symmetry thus giving mass to the vector bosons as shown in the last section.

As we will see this same field ends up creating mass terms for the fermions. In order

for this to work in the Standard Model, our choice of Higgs will be slighty different.

If we start with a field φ that is a doublet under weak isospin SU(2) we have:

Φ(xµ) =




φ1(xµ) + iφ2(xµ)

φ3(xµ) + iφ4(xµ)


 . (1.16)

The components of this field are complex. The upper component has isospin, I3 = 1/2

and the lower component, I3 = −1/2. This field will transform just as the fermions

do under SU(2):

Φ(xµ) → eigτ·λ(xµ)/2, (1.17)

where τ are the Pauli matrices which are the generators of the SU(2) group, g is the

coupling constant for SU(2)L weak isospin, and λ(xµ)) is an arbitrary function. The

transformation rule for φ under U(1)Y weak hypercharge is:

Φ(xµ) → eig′Y α(xµ), (1.18)
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where Y is the hypercharge of the Higgs field and g′ is the coupling strength for

U(1)Y . Weak hypercharge and weak isospin are related directly to electric charge as

Q = I3 + Y . Our Higgs Lagrangian will be similar to previous sections except that

because Φ is a matrix our notation will change slightly:

L = (DµΦ)†(DµΦ) − µ2Φ†Φ − λ(Φ†Φ)2. (1.19)

The covariant derivative for SU(2)×U(1) is more complicated than in Eq. 1.6 as the

symmetry group is larger and has more generators. The covariant derivative is:

Dµ = ∂µ + igτ · Wµ/2 + ig′Y Bµ, (1.20)

where W µ is a vector field for SU(2) with three components and Bµ is a vector field

for the U(1) hypercharge symmetry. Following from our methods of the previous

section we can use gauge invariance to transform the field Φ to the unitary gauge as:

Φ(x) =
1√
2




0

h(x) + v


 . (1.21)

Where v is the VEV of the field Φ. Because our Lagrangian has not changed in a

major way, the VEV is still v =
√
−µ2/λ. If we now choose the hypercharge of Φ to

be Y = 1/2, then the field h will be neutral.

Putting all these pieces together we can produce mass terms for the gauge bosons

and the Higgs boson, h. After this process the physical W and Z bosons and the

photon end up being linear combinations of the Wµ and Bµ fields:

Aµ = W 3
µ sin θW +Bµ cos θW

Zµ = W 3
µ cos θW −Bµ sin θW

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ).

The angle θW is the weak mixing angle, tan θW ≡ g′/g. Its value has been determined

experimentally from the measured couplings of the theory, g sin θW = e, where e is the
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electromagnetic coupling. After doing all transformations and using the expressions

above for A, Z and W± we obtain for the mass portion of the Lagrangian:

Lmass =
g2v2

4
W+

µ W
−µ +

g2v2

8 cos2 θW
ZµZ

µ + λv2h2 (1.22)

From this equation we can read off the masses of the W , Z, and Higgs bosons:

mW =
gv

2
, mZ = gv

2 cos θW
, mh =

√
2λv2 =

√
−2µ2. (1.23)

The imaginary parts of the field Φ have been “eaten” by the W and Z fields to

give them their mass. The photon is now massless which makes sense as the U(1)em

symmetry remains unbroken. By comparison, the gauge boson of SU(3)C , the gluon,

is also massless as that symmetry is unbroken as well.

We have now shown one role that the Higgs boson plays in the Standard Model.

Next we will show how it gives mass to the fermions via Yukawa interactions.

1.4 The Yukawa Sector

In the previous section we mentioned that the weak hypercharge of the Higgs boson

in the Standard Model is Yh = 1/2. The hypercharge of the quark doublet, qL =


ui

di




L

, is Yq = 1/6, where i runs from 1 to 3 for the 3 generations. The right

handed singlet, di
R has Yd = −1/3. For the leptons we have lL =




νi
e

ei




L

. There

is no νR. We can now construct SU(2)L × U(1)Y invariant interaction terms for the

fermions and the Higgs boson:

LYukawa = yij
d Φqi

Ld
j
R + yij

u Φ̃qi
Lu

j
R + yij

u Φl
i

Le
j
R. (1.24)

These interactions are referred to as Yukawa interactions. Neutrinos have a very tiny

mass, and we could write a Yukawa interaction for the neutrinos if νR was present,

however we have not seen right-handed neutrinos in the laboratory. Another issue
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is that we still do not know if the neutrino is a Dirac or Majorana particle. We

will discuss the problem of neutrino mass in more depth in chapter 5. The yij are

dimensionless coupling constants called Yukawa couplings. Here, i and j run from

1 to 3 for the three generations, and Φ̃ = iτ2Φ
∗, where τ2 =




0 −i

i 0


. In the

unitary gauge, Φ̃ = 1√
2




h+ v

0


. This pulls out the top component of the doublet

to produce the correct mass term as, v√
2
y11

u u
1
Lu

1
R, which would be the mass term for

the up quark. One thing to note here is that the size of the Yukawa couplings, yij
u ,

are not determined. This means that while the Higgs boson can give a mass term

to the fermions, it cannot predict the size of the mass. We will discuss how to give

values to these Yukawa couplings from a higher symmetry in chapter 3.

The Higgs boson serves several purposes in the Standard Model. It breaks elec-

troweak symmetry, gives mass to the gauge bosons, and gives mass to the fermions.

There is a little more to the story. The fermion fields as they are represented in Eq.

1.24 are written in the weak basis. In order to convert them to their correspond-

ing mass eigenstates we need to introduce the Cabibbo-Kobayashi-Maskawa (CKM)

matrix.

1.5 CKM Matrix

The components yij
d v/

√
2 = M ij

d make up a 3 × 3 mass matrix for the down type

quarks. There is of course a similar matrix Mu for the up type quarks. These

matrices are not diagonal. When we diagonalize the mass matrix we use a biunitary

transformation. These two transformation matrices also transform the quarks from

the weak interaction eigenstate into their mass eigenstates as in, u0
R = SuuR and u0

L =

TuuL where the superscript zero refers to the mass eigenstate and S†
uMuTu = Mdiag

u .

There are different matrices to diagonalize the down type quark mass matrix. In the
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charged currents involving the W± bosons we must make these same transformations.

Because the matrices that transform the up quarks into their mass eigenstates are

different from the ones for the down quarks, we get a new unitary mixing matrix

known as the CKM matrix, VCKM = T †
uTd. This matrix describes the strength of

the mixings in the weak sector. Through experiment physicists have measured the

central values of this matrix:



Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb




≈




0.97428 0.2253 0.00347

0.2252 0.97345 0.0410

0.00862 0.0403 0.9991




(1.25)

where Vus represents the mixing between the up quark and the strange quark. Just

as the Standard Model does not predict the strength of the Yukawa couplings, it does

not predict the elements of the CKM matrix. In chapter 3 below we will show a

model in which we derive these paramaters from a higher symmetry.

1.6 Extensions of the Standard Model

The Standard Model has done a great job of describing the vast majority of ex-

perimental results. There are phenomena that it does not explain however. While

neutrinos were previously thought to be massless, current experiments have shown

that they have very tiny masses. Their masses are much much smaller than even the

mass of the electron. Another phenomenon that the standard model fails to explain

is Dark Matter. About 20% of the matter in the universe is dark matter. Dark

because it is electrically neutral and interacts only very weakly with the matter of

the standard model. Another common problem is often referred to as the hierarchy

problem. The hierarchy problem refers to the fact that when we calculate quantum

corrections to the mass of the Higgs boson, we end up with a quadratic divergence. In

order to resolve these difficulties as well as some others people propose extensions to

the Standard Model. Common examples are Supersymmetry and Extra Dimensions.
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Supersymmetry proposes that for each fermion in the Standard Model there is a

heavier “superpartner” that is a boson. For every boson there is a superpartner that

is a fermion. For example the electron has spin 1/2, it’s superpartner, the selectron,

has spin 0. If supersymmetry were an exact symmetry of nature, the superpartners

would have the same mass as the Standard Model particles. Since we have not seen

them we predict that supersymmetry must be broken at some scale. Currently we

hope that the masses of the superpartners are in the TeV range so that we might

be able to see them at the LHC. Supersymmetry solves the hierarchy problem be-

cause the quantum corrections to the Higgs mass are cancelled between the particles

and their scalar superpartners. In addition most supersymmetric theories insitute

R-parity which forces the lightest supersymmetric particle (LSP) to be stable. In

the simplest supersymmetric extension of the Standard model the Minimal Super-

symmetric Standar Model (MSSM), this particle is the neutralino (a mixture of the

Higgsino, Wino, and Bino). Given the correct couplings and mass for this particle

it may be able to account for the dark matter content of the universe. In chapter

4 of this thesis we will discuss extending the MSSM to add a fourth generation of

fermions.

Another extension of the Standard model that we will discuss below is a Froggatt-

Nielsen mechanism. This is where there is some sort of more complicated interaction

involving many particles at a higher scale that we are able to probe with current

physics. These higher interactions reduce to the low energy effective theory of the

Standard Model. We will use this mechanism along with the introduction of a singlet

Higgs in order to generate the fermion masses and mixings of the CKM matrix in

chapter 3. In the development of this and above sections, several references were used

[1, 2, 3].
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1.7 Modifying the Yukawa Sector

Now that we have developed what the Higgs boson is and how it interacts with

the fermions, our focus will be to modify the existing Yukawa interactions to solve

problems of the standard model or simply to question them. We then show how these

modifications effect experimental results that may be tested at the LHC or Tevatron.

The Yukawa sector of the Standard Model is the least understood. We cannot directly

measure the Yukawa couplings, and we have not yet found the Higgs Boson. It is for

this reason that modifying the Yukawa sector will be the main focus of this thesis.

In chapter 2 we will discuss how the standard dimension 4 Yukawa interactions

of the Standard Model are not the only way to generate mass for the fermions. If for

some reason the dimension 4 terms are absent then the fermion masses will come from

dimension 6 operators. If this proposal is correct, the most interesting effect is that

the phenomenology of Higgs searches at the Tevatron and LHC would be changed.

Specifically broadening the exclusion range for the mass of the Higgs boson.

In chapter 3 we will use a Froggatt-Nielsen mechanism to generate the masses

and mixings of the quarks in the Standard Model. The Yukawa couplings in this

model are all of a similar order. The hierarchy of masses in the Standard Model

will be generated through higher order interactions involving vector-like quarks and

flavon scalars. The quarks of the standard model are chiral, as they have a left handed

doublet and right handed singlet. Our proposal leads to interesting results at colliders

if there is any truth to our model. In particular one version of our model allows the

h → γγ signal to be increased by a factor of 10. This is a very important mode for

Higgs discovery at the LHC if the Higgs is light.

In chapter 4 we will work in the framework of the MSSM and add a fourth gen-

eration. We will discuss limits on the masses of fourth generation particles based

on the perturbativity of their Yukawa couplings. We place very stringent limits on

the parameter tanβ and the masses for the 4th generation b′ and t′ quarks. In or-
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der to broaden these limits we construct a model in which the Yukawa couplings are

modified by the introduction of new heavy vector-like quarks.

In chapter 5 we discuss the problem of neutrino mass. We introduce a new way to

give masses to neutrinos by fine tuning the values of two different Yukawa matrices.

This allows us to have a right handed neutrino that has a mass of about 100 GeV.

This leads to some interesting physics signals at the LHC which we discuss.
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CHAPTER 2

NON-RENORMALIZABLE YUKAWA INTERACTIONS AND HIGGS

PHYSICS

2.1 Introduction

The Standard Model (SM) based on the gauge symmetry SU(3)C × SU(2)L ×U(1)Y

is in excellent agreement with all the current experimental results. However, there are

sectors of the SM which are still untested, such as the Higgs sector and the Yukawa

sector. In the SM, we have only one Higgs doublet, and we allow the Higgs self

interactions up to dimension four to maintain the renormalizability of the theory. In

this case, the cubic (h3) and the quartic (h4) interactions of the remaining neutral

scalar Higgs field, h is determined in terms of the Higgs mass, Mh and the known

vacuum expectation value (VEV), v. Although we know v experimentally to a very

good accuracy, the Higgs mass is still unknown. Hence its presence, as well as the

magnitude of its cubic and quartic self interactions are completely untested. The other

untested sector of the SM is the Yukawa sector. In the SM, we introduce dimension

four Yukawa interactions which give masses to the fermions, and also generate the

Yukawa interactions between the Higgs field h and the fermions. The strength of these

Yukawa interactions are completely determined in terms of the fermion masses and

v. However, we do not have any experimental evidence for these interactions being

the source of the fermion masses, and the presence of these dimension four Yukawa

interactions. Another point to emphasize is that we do not know whether the Higgs

boson is elementary or composite. Theories have been formulated in which the Higgs

boson is a fermion anti-fermion composite; or more specifically a condensate of the
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third family quark and anti-quark [4]. Other possibilities for composite Higgs have

also been advocated [5, 6]. Whether the Higgs boson is an elementary particle or

composite, the operators of dimension higher than four suppressed by some scale, M

are expected. It has also been pointed out that the presence of dimension six operator

in the Higgs potential allows us to have baryogenesis via sphaleron [7], still satisfying

the current LEP limit on the Higgs mass.

In this work, we propose an alternate scenario for the Yukawa sector, and explore

how to test our predictions experimentally at the Tevatron and LHC. The effects of

general dimension six operators in the Higgs sector have been considered and studied

before [8]. Also other dimension six operators may appear in SM and a complete

list of such operators is collected in Ref. [9]. We consider the case in which the

usual dimension four Yukawa interactions are either forbidden by a symmetry, or the

corresponding coupling happens to be too tiny to generate the observed values of the

fermion masses. In this case, the dominant contribution to the fermion masses, as

well as the interactions between the fermions and the Higgs boson will arise from the

dimension six effective Yukawa interactions of the form (f/M2)ψ̄LψRH(H†H), where

M is the mass scale for the new physics through which such effective interactions

are generated. As in the SM, fermion masses are still parameters in the theory, but

the Yukawa couplings of the fermions to the Higgs boson are a factor of three larger

than the SM. This enhances the production of the Higgs boson, as well as affect its

decay branching ratios to various final states. This will have interesting consequences

for Higgs signals at the Tevatron and LHC, as well as in the possible future lepton

collider.

2.2 Formalism

Our model is based on the SM gauge symmetry, SU(3)C × SU(2)L × U(1)Y . We

denote the left handed electroweak (EW) quark doublets by qLi ≡ (u, d)T
Li, and the
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right handed EW quark singlets by uRi and dRi, where the index i (i = 1, 2, 3)

represent three fermion families. Then the Yukawa interactions of the fermions with

the Higgs boson up to dimension six are given by

LYukawa = q̄LfuuRH̃ + q̄LfddRH + l̄LfLeRH

+
1

M2
(q̄LyuuRH̃ + q̄LyddRH + l̄LyLeRH)(H†H) + h.c., (2.1)

where the fermion fields represent three families, and fd, fu and fl represent three

corresponding Yukawa coupling matrices for the dimension four Yukawa interaction

while yd, yu and yl represent three corresponding Yukawa coupling matrices for the

dimension six Yukawa interactions. M is the mass scale for a new physics which

generates these dimension six interactions.

Our proposed scenario is the case in which the dimension four Yukawa couplings,

fd, fu and fl are either forbidden by a symmetry, or happen to be very tiny to gen-

erate the observed fermion masses, and this sector is dominated by dimension six

interactions given above. Thus, choosing the couplings f to be zero, for the fermion

mass and the Yukawa coupling matrices, we obtain

MNew =
1

2
√

2M2
yd(v

3),

YNew =
1

2
√

2M2
yd(3v

2), (2.2)

and similar expressions for the up quark and lepton sector. In contrast, in the usual

SM, where we do not include the effective dimension six interactions, we have

MSM =
1√
2
fd(v), YSM =

1√
2
fd. (2.3)

In our scenario, one can see from Eq. 2.2 that the mass matrices and the corresponding

Yukawa coupling matrices are proportional. Hence as in the usual SM, we do not have

any Higgs mediated flavor changing neutral current interactions. The important point

to note is that in our scenario (for simplicity, we call it the new model), the Yukawa
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couplings of the Higgs boson to the fermions are three times larger than those in the

SM, whereas the gauge interaction of the Higgs boson remains the same. This will

make important differences for Higgs production, and its decay branching ratios as

we discuss below.
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Figure 2.1: Illustrating the branching ratios for Higgs decays in (a) SM and (b) new

model as a function of its mass. We have used the package Hdecay [10] to calculate

the Higgs decay modes.

2.3 Phenomenological implications

2.3.1 Higgs decays

In the low Higgs mass range (Mh ≤ 125 GeV), the Higgs boson dominantly decays

to bb̄ in the SM. This mode is even more dominant in the new model, since the hbb̄

coupling is enhanced by a factor of three compared to the SM. In the SM, the bb̄ to

WW crossover takes place at Mh ∼ 135 GeV (see fig. 2.1a), while in our model, this

crossover happens at Mh ∼ 155 GeV, (see fig. 2.1b). Also, as can be seen from these

figures, the γγ branching fraction in our model is suppressed by about a factor of ten

compared to the SM. The reason is that in the h→ γγ decay, the contribution comes
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from the W loop and the top quark loop, and the two contributions are of opposite

sign. In our model, because the htt̄ coupling is enhanced by a factor of three, there

is a strong cancelation between the top loop and the W loop contributions, resulting

in the large suppression in the γγ mode. Note that in our model, Higgs couplings

to the gauge bosons WW and ZZ are unaltered, hence these branching ratios get

suppressed compared to the SM as long as hbb̄ is dominant. For heavy Higgs mass

range, Mh ≥ 155 GeV, the WW mode starts to dominate, and hence the branching

ratio to this mode is very similar to the SM. The same is true for the ZZ mode. The

branching ratio for the ZZ mode is also essentially the same as the SM for larger

mass ranges (Mh ≥ 185 GeV).

2.3.2 Higgs productions and signals: implications at the Tevatron

Now we discuss Higgs production and the ensuing final state signals in our model

and contrast those with the SM. First we consider the Higgs search at the Fermilab

Tevatron. For the SM Higgs boson, recent combined analysis by the CDF and D0

collaborations (using 6.7 fb−1 of data) has excluded the SM Higgs mass range from

158 to 175 GeV at 95% confidence level (C.L.) [11, 12]. The dominant production

mechanism for the Higgs boson is gluon gluon fusion via the top quark loop. Since in

our model, the coupling of the Higgs to the top quark is three times larger, the Higgs

production cross sections will be nine times larger than the SM. Higgs production

via the gauge interactions to Wh and Zh in our model remains the same as in the

SM. Combined Tevatron analysis includes the Higgs signals for all channels, and the

corresponding backgrounds. Their experimental curve for the observation of the Higgs

signals at 95% C.L. over the SM expectation curve as a function of the Higgs mass is

shown by the solid curve in fig. 2.2 [12]. The corresponding SM expectation is shown

by the horizontal dash-dotted line. As shown by the Tevatron analysis (solid curve),

the SM Higgs mass in the range of 158 − 175 GeV is excluded. The corresponding
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Figure 2.2: Illustrating how the Tevatron bound on SM Higgs applies on the Higgs

boson in our model.

exclusion in the low mass range is Mh ≥ 109 GeV which falls short of the LEP

exclusion of Mh ≥ 114.4 GeV [13]. To apply this combined CDF-D0 analysis to our

model, we have calculated the σpp̄→h × BR(h → all) included by the Tevatron, and

compared those with the SM. The dashed curve in fig. 2.2 shows our results for the

ratio of the σpp̄→h×BR(h→ all) in our model to the σpp̄→h×BR(h→ all) in the SM

as a function of the Higgs mass. The intersection of the dashed curve with the solid

curve indicates an estimate of the Higgs mass range (Mh & 142 GeV) that would be

excluded by the present Tevatron analysis in our model.

In the low Higgs mass range, the lower exclusion range increases slightly from Mh >

109 GeV in the SM to Mh > 112 GeV in our model. As the Tevatron luminosity

accumulates further, its increased sensitivity to our model will help it study a bigger

mass range of the Higgs boson than in the SM. Also, we note that for light Higgs

(Mh < 130 GeV), the width of the Higgs boson in our model is larger by a factor of 9

compared to the SM. This can be tested in a possible future muon or e+e− collider.
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2.3.3 Higgs productions and signals: implications for the LHC

At the LHC, in the SM for large Higgs mass, Mh > 150 GeV, the most promising

signals to observe the Higgs boson is via its dominant production through gluon gluon

fusion (or WW fusion), and then its subsequent decays to WW or ZZ. In our model,

since the dominant Higgs productions via gluon gluon fusion is nine times larger, the

Higgs signals will be much stronger. The expectation for the Higgs signals in few of

the relevant modes in our model is shown in fig. 2.3 (solid curve), and are compared

with the SM expectations (dash-dotted curves) at the LHC for
√
s = 7 TeV. Note that

the cross section times the branching ratio of h → WW in our model is larger than

the SM by a factor of ∼ 3− 9 for the Higgs mass range of 150− 200 GeV. The same

is true for the ZZ mode. For the low mass range of the Higgs boson, Mh ∼ 115−130

GeV, the γγ mode is the most promising in the SM. In our model though, as shown

in fig. 3, the signal for the γγ mode is reduced by a factor of ∼ 3 − 5 compared to

the SM. However, the signal in the ττ mode is enhanced almost by a factor of nine.

Thus in our model, signal in the ττ mode may be observable at the LHC for the low

Higgs mass range with good τ ID for the ATLAS and CMS detectors.
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Figure 2.3: Illustrating σ × BR for the SM Higgs and in our model for the decay

modes ττ, γγ and WW at LHC with a center-of-mass energy of 7 TeV.
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2.4 Other implications

Inclusion of dimension six operators in the Yukawa sector also leads to enhancement

in the other modes of Higgs production at colliders. The associated production of

a Higgs boson with a heavy quark pair (e.g. tt̄h) is enhanced by a factor of 9.

The increased event rate would help in improving the sensitivity for the top-Yukawa

coupling in this channel at LHC [14, 15].

Another important implication of our model is on double Higgs production at

the LHC which can probe the triple Higgs vertex in SM. In the SM, double Higgs

production at LHC proceeds through gluon gluon fusion at one-loop level through

the top quark dominated triangle and box diagrams [17, 16, 18]. Due to additional

contributions coming from the terms involving the dimension six operators, there is

an enhancement in all the vertices involving the Higgs boson in our model. The box

contribution is enhanced by a factor of 9 in its amplitude because of two Yukawa

vertices, while the triangle contribution is enhanced by a factor of 5, after combining

the new Yukawa and triple Higgs vertices (arising from the Higgs potential where we

neglect the dimension 4 operator). There is an additional contribution to the ampli-

tude through a new interaction term (f̄LfRh
2) with a coupling strength of (

6imf αEW

M2

W

)

where mf is the mass of the fermion which leads to a large enhancement of the double

Higgs production cross section at LHC. The analytical formula for the double Higgs

production in SM can be found in Ref.[17, 18]. To put our results in context we can

rewrite the contributions in our model as

ANP
4 = 5 × ASM

4 + 2 ×ASM
4

ŝ−M2
h

M2
h

ANP
� = 9 × ASM

� (2.4)

We plot the double Higgs production cross section1 as a function of the Higgs mass

in fig. 2.4 for both the SM as well as our model. Although Eq. 2.4 shows a large en-

1We use the public code available at http://people.web.psi.ch/spira/proglist.html
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hancement in the individual contributions, there still is large cancelation between the

box and triangle contributions and so the enhancement in the cross section compared

to the SM is only at the level of a factor of ∼ 10 for low Higgs masses as shown in fig.

2.4 which increases as we go higher in the Higgs mass. Nevertheless it is a substantial

increase for the light Higgs mass range and gives a cross section of around ∼ 300 fb

at LHC with
√
s = 14 TeV and ∼ 40 fb with

√
s = 7 TeV, respectively for Mh ≤ 220

GeV. This can give large enough event rates to study the double Higgs production at

LHC.

Finally, let us comment on the scale of new physics, M . Up to dimension six, we

can write the Higgs potential as

VNew = −µ2(H†H) + λ(H†H)2 +
1

M2
(H†H)3. (2.5)

Choosing λ to be zero, the condition for the global minima gives

MhM =
√

3v2. (2.6)

Using the LEP bound for the Higgs mass, Mh > 114 GeV, from Eq. 2.5, we obtain

M ≤ 1 TeV. Note the interesting see-saw type relation between the Mh and M in

Eq. 2.6. Thus if our point of view is correct, we expect the new physics to appear

below the TeV scale.
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Figure 2.4: Cross section for double Higgs production through gluon gluon fusion

for the SM Higgs (dashed) and for the Higgs in our model (solid) at LHC with a

center-of-mass energy of 7 and 14 TeV.
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CHAPTER 3

A LIGHT SCALAR AS THE MESSENGER OF ELECTROWEAK AND

FLAVOR SYMMETRY BREAKINGS

3.1 Introduction

Explaining the fermion mass hierarchy and mixing pattern is an outstanding chal-

lenge of particle physics [20][21][22]. The fermion masses are parameterized by the

standard model Yukawa interactions of chiral fermions with a single Higgs doublet.

It is technically natural for the dimensionless Yukawa couplings to take small val-

ues, since global chiral flavor symmetries are restored (at tree level) in the limit that

these couplings vanish, but it is a total mystery why these values are spread over

more than five orders of magnitude, in a suggestive pattern of inter-generational and

intra-generational hierarchies.

Although the gauge sector of the SM is well established, little is yet known about

the Higgs sector. Higgs physics may be much richer than the minimal SM formulation,

presenting new dynamics at the TeV scale that will be accessible to experiments at

the LHC. Most work on extended Higgs sectors has been motivated by frameworks

for understanding the naturalness and hierarchy problem of the SM Higgs boson, but

not by the hierarchy problems of the SM flavor sector. One reason is that models that

attempt to generate the flavor-breaking patterns of the SM Yukawas from new TeV

scale dynamics are strongly constrained by experimental searches for flavor-changing

neutral currents (FCNCs) and charged lepton flavor violation (CLFV).

The top quark Yukawa coupling has a value close to one, suggesting that a SM

Yukawa coupling is the correct explanation for the top mass. The smallness of the
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other Yukawas suggests that some or all of the other quarks and the charged leptons

do not couple directly to the electroweak symmetry breaking order parameter, which

in the SM is represented by the vacuum expectation value (vev) of the Higgs scalar.

Thus a good starting point to construct theories of flavor is to specify a field or

mechanism to act as the messenger of electroweak symmetry breaking to the other

quarks and leptons.

One simple choice for a messenger is a TeV mass scalar leptoquark, postulated to

have a renomalizable coupling between the top quark and the SM leptons [23, 24].

Radiative corrections can then generate a natural hierarchy of fermion masses related

to powers of a loop factor.

An even simpler choice for a messenger is an electroweak mass scalar that trans-

forms as a SM singlet and extends the Higgs sector of the SM. In this work, we

explore this idea of an extended Higgs sector related to the generation of the fermion

mass hierarchy. We present a simple framework where the Higgs doublet H couples

directly to a complex scalar S that is a SM singlet and is charged under a new local

U(1)S symmetry carried by a vector boson Z ′. All of the SM fermions are singlets

under this new U(1)S (apart from small effects from Z −Z ′ mixing), which is broken

spontaneously at the electroweak scale by the vacuum expectation value of S.

In our framework the singlet scalar S is the messenger to SM fermions of both

flavor breaking and electroweak symmetry breaking. All SM fermions apart from the

third generation quark doublet Q3L and right-handed top u3R are assumed to carry a

nonzero charge under a gauged chiral flavor symmetry forbidding all SM dimension 4

Yukawa couplings except that of the top quark. We assume that the flavor symmetry

is spontaneously broken at a scale > 1 TeV by the vacuum expectation of one or more

complex scalar “flavon” fields Fi. The flavor charges of the SM fermions forbid any

dimension 4 couplings to either Fi or to the Higgs field H .

We introduce new fermions that are vectorlike under both the SM gauge sym-
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metries and U(1)S; these fermions naturally acquire masses > 1 TeV that we will

generically denote as M , and have dimension 4 couplings to both Fi and to H . Inte-

grating out these heavy fermions gives higher dimension effective couplings of the SM

fermions to H that replace the role of Yukawa couplings in the SM. These couplings

contain explicit flavor breaking in the form of 〈Fi〉/M , which we take to be of order

1, as well as being suppressed by powers of S†S/M2, whose vev we take to be of order

1/50.

In our framework all of the observed SM fermion mass hierarchies are generated

from powers of 〈S〉/M ∼ 1/7, which is essentially the ratio of the electroweak scale

to the TeV scale, often called the “little hierarchy”. We can be agnostic about the

source of the little hierarchy itself, since many possibilities have been proposed. The

additional challenge of our framework is to achieve simultaneously the appropriate

flavon physics at the TeV scale.

Models in our framework have, in addition to the SM particle content, a light

singlet scalar s that mixes with the Higgs boson h. Exchanges of s between SM

fermions are a new source of FCNC. There is an extra Z ′ at the EW scale, but apart

from small Z − Z ′ mixing effects it does not couple to SM fermions. There may be

other Z ′s and one or more flavon scalars at the TeV scale. We predict a host of new

heavy fermions around the TeV scale; these are also a source of new FCNC and CLFV

effects. We show that flavon charge patterns that reproduce the observed SM fermion

masses and mixings also supply enough extra suppression of FCNC and CLFV effects

to satisfy current experimental bounds.

In addition to explaining the hierarchy of fermion masses and mixings, models in

our framework have many interesting phenomenological implications. Mixing of the

singlet s with the Higgs boson h can cause large deviations from the SM predictions

for the Higgs decay branching fractions, potentially observable at the Tevatron or

LHC. The s particle itself will also be produced at the LHC, and could be confused
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with h if it turns out to be the lightest mass eigenstate. While new FCNC effects

are suppressed, we predict contributions to D0−D0 mixing, Bs → µ+µ−, and CLFV

that are close to the current value or limit. The exotic top quark decays t→ ch and

t→ cs can have branching fractions on the order of 10−3.

Our paper is organized as follows. In section 2, we present the basic outline of our

framework. In section 3, we discuss the constraints on the model parameters from

the low energy phenomenology. Section 4 contains the phenomenological implications

and predictions of the model, especially for the new top decays and Higgs signals at

the Tevatron and LHC. In section 5, we outline a possible ultraviolet completion

realizing our proposal. Section 6 contains our conclusions and further discussion.

3.2 Model and formalism

We extend the gauge symmetry of the SM by a U(1)S local symmetry and an addi-

tional local flavon symmetry which in the simplest case would be a U(1)F . All of the

SM fermions are neutral with respect to U(1)S , while all of the SM fermions apart

from the third generation quark doublet q3L and right-handed top u3R are charged

under the chiral U(1)F . We introduce a complex scalar field S which has charge 1

under U(1)S, is neutral under the flavon symmetry, and is a SM singlet. We also

introduce one or more complex scalar fields Fi, the “flavon” scalars. In the simplest

case there would be a single flavon scalar F that has charge 1 under U(1)F , is neu-

tral under U(1)S, and is a SM singlet. The Higgs field H is taken as neutral under

U(1)S ×U(1)F . We assume that the flavon charges of the SM fermions are such that

only the top quark has an allowed dimension 4 Yukawa interaction.

The S field is assumed to develop a vev that spontaneously breaks the U(1)S

symmetry. In frameworks where the little hierarchy between the electroweak scale

and the TeV scale is generated, this could occur naturally by extending the Higgs

sector to include S, with a mixed potential. The pseudoscalar component of S is then

30



“eaten” to give mass to the U(1)S Z
′ gauge boson. Notice that the vev of S does not

in itself break any of the global flavor symmetries of the Yukawa-less SM; S is only

a messenger of flavor breaking, just as it is also a messenger of electroweak breaking.

This is the fundamental distinction that allows S to exist at the electroweak scale

without inducing unacceptably large flavor violating effects.

The flavon scalars Fi are assumed to develop vevs that spontaneously break the

local flavon symmetry at the TeV scale, with the pseudoscalar components of the Fi

eaten to give the flavon gauge bosons mass. To preserve the little hierarchy, we assume

that the direct mixing between the Fi and the extended Higgs sector is negligible.

In this framework the Yukawa interactions of the lighter quarks and leptons are

replaced by higher dimension operators that couple these fermions to H , S, and the

Fi. As we will show later in an explicit example, these can be generated as effective

couplings by integrating out new heavy fermions at the TeV scale. These effective

couplings should respect all of the SM gauge symmetries, as well as U(1)S and the

flavon symmetries. In particular, the U(1)S charged field S can only appear as powers

of S†S/M2, where M denotes a generic TeV scale parameter. Powers of Fi/M and

F †
i /M can also appear, but the exact form depends on the flavon charge assignments

of the SM fermions. Since we will assume that vevs of the Fi are of order M , we can

absorb the Fi/M dependence into the dimensionless complex couplings hij , where i,

j are generation labels; all these couplings we will then take to be of order 1.

The observed SM fermion mass hierachy is generated from the following low energy

effective interactions:
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LYuk = hu
33q3Lu3RH̄ +

(
S†S

M2

) (
hd

33q3Ld3RH + hu
22q2Lu2RH̄ + hu

23q2Lu3RH̄ + hu
32q3Lu2RH̄

)

+

(
S†S

M2

)2 (
hd

22q2Ld2RH + hd
23q2Ld3RH + hd

32q3Ld2RH + hu
12q1Lu2RH̄ + hu

21q2Lu1RH̄

+ hu
13q1Lu3RH̄ + hu

31q3Lu1RH̄
)

+

(
S†S

M2

)3 (
hu

11q1Lu1RH̄ + hd
11q1Ld1RH

+ hd
12q1Ld2RH + hd

21q2Ld1RH + hd
13q1Ld3RH + hd

31q3Ld1RH
)

+ h.c. (3.1)

Note that the above interactions are very similar to those proposed in refer-

ence [25], except our interactions involve suppression by powers of
(

S†S
M2

)
, instead

of
(

H†H
M2

)
. We will refer to this as the Babu-Nandi texture. The hierarchy among the

fermion masses and mixings are obtained from a single small dimensionless parameter,

ε ≡ vs

M
, (3.2)

where vs is the vev of S. As was shown in [25], a good fit to the observed fermion

masses and mixings is obtained with ε ∼ 0.15. The couplings hij are all of order

one; the largest coupling needed is hu
23 = 1.4, while the smallest coupling needed is

hu
22 = 0.14.

The Babu-Nandi texture is not unique, and it does not predict any precise fermion

mass relations, since there are slightly more unspecified order 1 parameters than there

are Yukawa parameters in the SM.

3.2.1 Fermion masses and CKM mixing

The gauge symmetry of our model is the usual SU(3)c × SU(2)L × U(1)Y of the

SM, plus two additional local symmetries: U(1)S and the flavon symmetry. The SM

symmetry is broken spontaneously by the usual Higgs doublet H at the electroweak

scale. We assume that the extra U(1)S symmetry is also broken spontaneously at the

electroweak scale by a SM singlet complex scalar field S. The flavon symmetry, U(1)F
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in the simplest case, is broken spontaneously above a TeV by a SM singlet scalar flavon

field F . The pseudoscalar part of the complex scalar field S is absorbed by the Z ′

gauge boson U(1)S to get its mass. Thus after symmetry breaking the remaining

scalars at the electroweak scale are neutral bosons h and s. Parameterizing the Higgs

doublet and singlet in the unitary gauge as

H =




0

h√
2

+ v


 S =

(
s√
2

+ vs

)
, (3.3)

with v ' 174 GeV, and defining an additional small parameter

β ≡ v

M
, (3.4)

we obtain, from eqs. (3.1-3.4) the following mass matrices for the up and down quark

sector:

Mu =




hu
11ε

6 hu
12ε

4 hu
13ε

4

hu
21ε

4 hu
22ε

2 hu
23ε

2

hu
31ε

4 hu
32ε

2 hu
33



v, Md =




hd
11ε

6 hd
12ε

6 hd
13ε

6

hd
21ε

6 hd
22ε

4 hd
23ε

4

hd
31ε

6 hd
32ε

4 hd
33ε

2



v . (3.5)

The charged lepton mass matrix is obtained from Md by replacing the couplings hij

appropriately. Note that these mass matrices are the same as in [25], and as was

shown there, good fits to the quark and charged lepton masses, as well as the CKM

mixing angles are obtained by choosing ε ∼ 0.15, and all the couplings hij of order

one. To leading order in ε, the fermion masses are given by

(mt, mc , mu) ' (|hu
33|, |hu

22|ε2, |hu
11 − hu

12h
u
21/h

u
22|ε6) v ,

(mb, ms, md) ' (|hd
33|ε2, |hd

22|ε4, |hd
11|ε6) v , (3.6)

(mτ , mµ, me) ' (|h`
33|ε2, |h`

22|ε4, |h`
11|ε6) v ,
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while the quark mixing angles are

|Vus| '
∣∣∣∣
hd

12

hd
22

− hu
12

hu
22

∣∣∣∣ ε
2 ,

|Vcb| '
∣∣∣∣
hd

23

hd
33

− hu
23

hu
33

∣∣∣∣ ε
2 , (3.7)

|Vub| '
∣∣∣∣
hd

13

hd
33

− hu
12h

d
23

hu
22h

d
33

− hu
13

hu
33

∣∣∣∣ ε
4 .

Generically all of the hij can be nonvanishing, but in a particular ultraviolet (UV)

completion flavon charge conservation may push some of them to higher order in ε

or to vanish altogether. However from (3.6) and (3.7) we see that the Babu-Nandi

texture is rather robust: the only flavor off-diagonal couplings needed to reproduce

the observed mixings are one or more of hd
12, h

u
12, one or more of hd

23, h
u
23, and one or

more of hd
13, h

u
13; the rest can either vanish or appear at higher order in ε.

3.2.2 Yukawa interactions and FCNC

Our model has flavor changing neutral current interactions in the Yukawa sector.

Using eqs.(1-4), the Yukawa interaction matrices Y h
u , Y h

d , Y s
u , Y s

d for the up and down

sector, for h0 and s0 fields are obtained to be

√
2Y h

u =




hu
11ε

6 hu
12ε

4 hu
13ε

4

hu
21ε

4 hu
22ε

2 hu
23ε

2

hu
31ε

4 hu
32ε

2 hu
33



,

√
2Y h

d =




hd
11ε

6 hd
12ε

6 hd
13ε

6

hd
21ε

6 hd
22ε

4 hd
23ε

4

hd
31ε

6 hd
32ε

4 hd
33ε

2



, (3.8)

with the charged lepton Yukawa coupling matrix Y` obtained from Yd by replaing

hd
ij → h`

ij .

√
2Y s

u =




6hu
11ε

5β 4hu
12ε

3β 4hu
13ε

3β

4hu
21ε

3β 2hu
22εβ 2hu

23εβ

4hu
31ε

3β 2hu
32εβ 0



,

√
2Y s

d =




6hd
11ε

5β 6hd
12ε

5β 6hd
13ε

5β

6hd
21ε

5β 4hd
22ε

3β 4hd
23ε

3β

6hd
31ε

5β 4hd
32ε

3β 2hd
33εβ



,(3.9)
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with the charged lepton Yukawa coupling matrix Y` obtained from Yd by replaing

hd
ij → h`

ij .

There are several important features that distinguish our model from the proposals

in [25, 26, 27]:

i) Note, from eqs.(3.5) and (3.8), in our model, the Yukawa couplings of h to the

SM fermions are exactly the same as in the SM. This is because the fermion mass

hierarchy in our model is arising from
(

S†S
M2

)
. This is a distinguishing feature of our

model from that proposed in [25, 26] where the Yukawa couplings of h are flavor

dependent, because the hierarchy there arises from
(

H†H
M2

)
.

ii) In our model, we have an additional singlet Higgs boson whose couplings to

the SM fermions are flavor dependent as given in eq. (3.9). Again, this is because

the hierarchy in our model arises from
(

S†S
M2

)
. In particular, s0 does not couple to

the top quark, and its dominant fermionic coupling is to the bottom quark. This will

have interesting phenomenological implications for the Higgs searches at the LHC.

iii) We note from eq. (3.5-3.8) that the mass matrices and the correspnding

Yukawa coupling matrices for h are proportional as in the SM. Thus there are no

flavor changing Yukawa interactions mediated by h. However, this is not true for the

Yukawa interactions of the singlet Higgs as can be seen from eqs. (3.5) and (3.9).

Thus s exchange will lead to flavor violation in the neutral Higgs interactions.

3.2.3 Higgs sector and the Z ′

The Higgs potential of our model, consistent with the SM and the extra U(1)S sym-

metry, can be written as

V (H,S) = −µ2
H(H†H) − µ2

S(S†S) + λH(H†H)2 + λS(S†S)2 + λHS(H†H)(S†S).(3.10)

Note that after absorbing the three components of H in W± and Z, and the

pseudoscalar component of S in Z ′, we are left with only two scalar Higgs, h0 and s0.

35



The squared mass matrix in the (h0, s0) basis is given by

M2 = 2v2




2λH λHSα

λHSα 2λSα
2


 , (3.11)

where α = vs/v.

The mass eigenstates h and s can be written as

h0 = h cos θ + s sin θ,

s0 = −h sin θ + s cos θ, (3.12)

where θ is the mixing angle in the Higgs sector.

In the Yukawa interactions discussed above, as well as in the gauge interactions in-

volving the Higgs fields, the fields appearing are h0 and s0, and these can be expressed

in terms of h and s using eq. (3.12).

The mass of the Z ′ gauge boson is given by

m2
Z′ = 2g2

Ev
2
s (3.13)

Note that the Z ′ does not couple to any SM particles directly. Its coupling with

the neutral scalar Higgs s also vanishes. The Z ′ coupling to the SM particles will be

only via dimension six or higher operators. Such couplings will be generated by the

vectorlike fermions in the model to be discussed in section 5.

3.3 Phenomenological Implications: Constraints from existing data

In this section, we discuss the constraints on our model from the existing experimental

results. As can be seen from eq. (3.9), the exchange of s gives rise to tree level FCNC

processes. This will cause K0−K̄0 mass splitting, D0−D̄0 mixing, KL → µ+µ−,

B0
s → µ+µ−, as well as contributions to the electric dipole moment (EDM) of neutron

and electron, and other rare processes that we discuss below.
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3.3.1 K0 − K̄0 mixing

In our model, this arises from the tree level s exchange between ds̄ and s̄d, and is

proportional to β2ε10. Taking β ∼ ε ∼ 0.15, and the values of the couplings hd
12

and hd
21 to be of order 1, the contribution to ∆mHiggs

K ' 10−16to10−17 GeV, for an s

mass of 100 GeV. The experimental value of ∆mK is 3.5 × 10−15 GeV [36]. Thus,

since the contribution goes like m−4
s , s can be much lighter than 100 GeV. Note

that ε = vs/M is fixed to be ∼ 0.15 to explain fermion mass hierarchy and the

CKM mixing. However, β = v/M is a parameter in our model. Although the ∆mK

constraint allows a somewhat larger value of β, we shall see that D0 − D̄0 mixing

constrains β ∼ ε.

3.3.2 D0 − D̄0 mixing

This contribution is again due to the tree level s exchange between uc̄ and ūc, and

is proportional to β2ε6, and hence is enhanced compared to ∆mK . Again, taking

the couplings hu
12 and hu

21 to be of order one and β ∼ ε, we get ∆mD ∼ 10−14 GeV

for ms = 100 GeV. This is to be compared with the current experimental value of

1.6 × 10−14 GeV [36, 28]. Thus ∆mD gives a much stronger restriction on the model

parameters. β can not be much larger than ε, and s can not be much lighter than

100 GeV. If our proposal is correct, an electroweak singlet scalar should be observed

at the LHC.

3.3.3 Other rare processes

In our model, tree level s exchange between ds̄ and µ+µ− will contribute to KL →

µ+µ−. This contribution is proportional to β2ε10, and leads to a contribution to this

branching ratio ∼ 10−14 for β ∼ ε and ms ∼ 100 GeV. This is very small compared to

the current experimental value of ∼ 6.9×10−9 [36]. Similarly, the contribution to the

other rare processes such as KL → µe, K → πν̄ν, µ→ eγ, µ→ 3e, Bd − B̄d mixing,
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etc are several orders of magnitude below the corresponding experimental limits.

3.3.4 Constraint on the mass of s

Experiments at LEP2 have set a lower limit of 114.4 GeV for the mass of the SM

Higgs boson. This is due to the nonobservation of the Higgs signal from the associated

production e+e− → Zh. In our model, since the singlet Higgs can mix with the

doublet h, there will be a limit for ms depending on the value of the mixing angle,

θ. For sin2 θ ≥ 0.25, the bound of 114.4 applies also for ms [29]. However, s can be

lighter if the mixing is small.

3.3.5 Constraint on the mass of the Z ′

We have assumed that the extra U(1) symmetry in our model is spontaneously broken

at the EW scale. But the corresponding gauge coupling, gE is arbitrary and hence

the mass of Z ′ is not determined in our model. However, very accurately measured

Z properties at LEP1 put a constraint on the Z −Z ′ mixing to be ∼ 10−3 or smaller

[36, 30]. In our model, the Z ′ does not couple to any SM particle directly. Z − Z ′

mixing can take place at the one loop level with the new vectorlike fermions in the

loop. The mixing angle is

θZZ′ ∼ gZgE

16π2

(mZ

M

)2

, (3.14)

where M is the mass of the vectorlike fermions with masses in the TeV scale. Even

with gE ∼ 1, we get θZZ′ ∼ 10−4 or less. Thus there is no significant bound for the

mass of this Z ′ from the LEP1. This Z ′ can couple to the SM particles via dimension

six operators with the interaction of the form

L =
ψ̄Lσ

µνψRHZ
′µν

M2
(3.15)

As was shown in [31], no significant bound on mZ′ emerges from these interactions.
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3.4 Phenomenological Implications: New physics signals

Motivated to explain the observed mass hierarchy in the fermion sector, we have

constructed a model which has a complex singlet Higgs (in addition to the usual

doublet), a new U(1)S gauge symmetry at the EW scale, and a new set of vectorlike

fermions at the TeV scale. Thus our model has new particles such as a scalar Higgs

and a new Z ′ boson at the EW scale, and heavy vectorlike quarks and leptons. The

model has many phenomenological implications for the production and decays of the

Higgs bosons, top quark physics, a new scenario for Z ′ physics, and the production

and decays of the vectorlike fermions.

3.4.1 Higgs signals

Higgs coupling to the SM fermions

As can be seen from eq. (3.8), the couplings of the doublet Higgs h to the SM

fermions are identical to that in the SM, whereas the couplings of the singlet Higgs

have a different flavor dependence. In particular, the singlet Higgs s does not couple to

the top quark, whereas its coupling to (b, τ ; c, s, µ; u, d, e) involve the flavor dependent

factors 2, 2; 2, 4, 4; 6, 6, 6) respectively. This is, of course, in the limit of zero mixing

between h and s. Including the mixing, these factors will be modified. Thus our

model will be distinguished from the SM by the fact that the Higgs couplings to

fermions are predicted in terms of two model parameters: the ratio of vevs α and the

mixing angle θ.

Higgs decays

The couplings of the Higgs bosons h and s to the fermions and the gauge bosons can

be obtained from Eqs. (3.8) and (3.9), and are given in Table 3.1.
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Interaction Coupling Interaction Coupling

s→ uu mu

v
√

2

(
sin θ + 6 cos θ

α

)
h→ uu mu

v
√

2

(
cos θ − 6 sin θ

α

)

s→ dd md

v
√

2

(
sin θ + 6 cos θ

α

)
h→ dd md

v
√

2

(
cos θ − 6 sin θ

α

)

s→ µ+µ− mµ

v
√

2

(
sin θ + 4 cos θ

α

)
h→ µ+µ− mµ

v
√

2

(
cos θ − 4 sin θ

α

)

s→ ss ms

v
√

2

(
sin θ + 4 cos θ

α

)
h→ ss ms

v
√

2

(
cos θ − 4 sin θ

α

)

s→ τ+τ− mτ

v
√

2

(
sin θ + 2 cos θ

α

)
h→ τ+τ− mτ

v
√

2

(
cos θ − 2 sin θ

α

)

s→ cc mc

v
√

2

(
sin θ + 2 cos θ

α

)
h→ cc mc

v
√

2

(
cos θ − 2 sin θ

α

)

s→ bb mb

v
√

2

(
sin θ + 2 cos θ

α

)
h→ bb mb

v
√

2

(
cos θ − 2 sin θ

α

)

s→ tt mt

v
√

2
sin θ h→ tt mt

v
√

2
cos θ

s→ ZZ
2m2

Z

v
√

2
sin θ h→ ZZ

2m2

Z

v
√

2
cos θ

s→ Z ′Z ′ m2

Z′

vα
√

2
cos θ h→ Z ′Z ′ m2

Z′

vα
√

2
sin θ

s→ W+W− 2m2

W

v
√

2
sin θ h→W+W− 2m2

W

v
√

2
cos θ

h→ ss λhss

Table 3.1: Yukawa and gauge couplings of h and s.
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Figure 3.1: Branching ratio of h→ 2x, for θ=0 and α=1 [10].

The coupling of h to s given by:

λhss =
m2

h

4v

{
(1 − µ) sin 2θ

[
cos3 θ − α sin3 θ + sin 2θ(α cos θ − sin θ)

]
+

3 sin 2θ [sin θ (1 + µ− (1 − µ) cos 2θ) − cos θ (1 + µ− (1 − µ) cos 2θ) /α]}

where µ = m2
s/m

2
h.

Because of the flavor dependency of the couplings of s0 (and hence of s via mixing)

to the fermions, the branching ratios (BR) for h to various final states are altered

substantially from those in the SM. These branching ratios (BR) for h to the various

final states are shown in Figs. 3.1, 3.2, 3.3, and 3.4 for the values of the mixing angle,

θ = 0, 20◦, 26◦, and 40◦ respectively.

For θ = 0, i.e. no mixing, these BR’s are the same as for the SM Higgs. Note that

for both θ = 20◦ and 26◦, the gg and the γγ BR’s are enhanced substantially compared

to the SM. This is due to drastic reduction for the bb̄ mode from an approximate

cancellation in the corresponding coupling as can be seen from Table 1. In particular,

for θ = 26◦, the effect is quite dramatic. For a light Higgs (mh around 115 GeV), the

usually dominant bb̄ mode is highly suppressed and the γγ mode is enhanced by a

factor of almost 10 compared to the SM. This is to be contrasted with the proposal

of Refs. [25, 26] in which the h → γγ mode is reduced by about a factor of 10.
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Figure 3.2: Branching ratio of h→ 2x, for θ=20◦ and α=1.
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Figure 3.3: Branching ratio of h→ 2x, for θ=26◦ and α=1.
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Figure 3.4: Branching ratio of h→ 2x, for θ=40◦ and α=1.

Thus the Higgs signal in this mode for a Higgs mass of ∼ 114 − 140 GeV gets a big

enhancement making its potential discovery via this mode much more favorable at

the LHC. Such a signal may be observable at the Tevatron for a Higgs mass ∼ 114 as

the luminosity accumulates, but would require about 10 fb−1 or more of data [32].

Another interesting effect is the Higgs signal via the WW ∗ for the light Higgs.

In the SM, this mode becomes important for the Tevatron search for Higgs masses

greater than about 135 GeV, where the BR to WW ∗ is approximate equal to that

of bb̄. Currently Tevatron experiments have excluded a SM Higgs with mass around

170 GeV (where the BR to WW ∗ is around 100 percent) for this mode [33]. In our

framework, for θ = 20◦ for example, the crossover between the WW ∗ mode and the

bb̄ mode takes place sooner than 135 GeV. Thus the Tevatron experiments will be

more sensitive to the lower mass range than for a SM Higgs, and should be able to

exclude masses much smaller than 160 GeV.

For a heavy Higgs, mh > 200 GeV, the Higgs will be accessible via the golden mode

h → ZZ. However, in this case, both h and s decay via this mode with comparable

BR’s (see Figs. 3.2 and 3.4 for θ = 20◦ and 40◦). So initially it will be hard to tell

whether we are seeing h or s, a case of Higgs look-alikes. An accurate measurement
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of this cross section times the BR, and the mass of the observed Higgs, we will be able

to distinguish a heavy h from a heavy s, since the production cross sections depend

on the mixing angle.

3.4.2 Top quark physics

In the SM, t→ ch mode is severely suppressed with a BR ∼ 10−14 [34]. In our model,

as can be seen from eqs.(3.8) and (3.9), although t→ ch is zero at tree level, we have

a large coupling for t → cs ∼ 2εβ. This gives rise to significant BR for the t → cs

mode for a Higgs mass of up to about 150 GeV. If the mixing between the h and s is

substantial, both decay modes, t→ cs and t→ ch will have BR ∼ 10−3. With a very

large tt̄ cross section , σtt̄ ∼ 103 pb at the LHC, this could be a significant production

mode for Higgs bosons at the LHC. Observation of signals for two different Higgs

masses will also show clear evidence for new physics beyond the SM.

3.4.3 Z′ physics

Our model has a Z ′ boson in the EW scale from the spontaneous breaking of the extra

U(1) symmetry. As discussed before, since the Z − Z ′ mixing is very small ∼ 10−4

or less, its mass is not constrained by the very accurately measured Z properties at

LEP. Its mass can be as low as few GeV from the existing constraints. This Z ′ does

not couple to the SM particles with dimension 4 operators. It does couple to s at

tree level via the sZ ′Z ′ interaction. Thus it can be produced via the decay of s (or

h if there is a substantial mixing between h and s). This gives an interesting signal

for the Higgs decays, s → Z ′Z ′, h → Z ′Z ′ if allowed kinematically. In Figs. 3.5 and

3.6, we give the BR’s for the h and s decays for a Z ′ mass of 40 GeV. The Z ′ will

decay to the SM particles via the Z − Z ′ mixing with the same branching ratio as

the Z. Thus the clear final state signal will be l+l−l+l− pairs (l = e, µ) with each pair

having the invariant mass of the Z ′. Such a signal will be easily detectable at the
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Figure 3.5: Branching ratio of h → 2x including h → ss and h → Z ′Z ′ where

mZ′ = 40 GeV and ms = 100 GeV. Here α = 1.

LHC. If the Z ′ happens to be very light, (say a few GeV), and the mixing angle is

extremely tiny, there is a possibility that the Z ′s may produce displaced vertices at

the detector. Both of these will be very unconventional signals for Higgs bosons at

the LHC.

3.4.4 B0

s
→ µ+µ−

In our model this decay gets a contribution from an FCNC interaction mediated

by s-exchange. The amplitude for this decay is A ∼ 4hd
22h

`
22ε

6β2. Taking β ∼ ε,

A ∼ 4hd
22h

`
22ε

8, and with the couplings hd
22, h

`
22 ∼ 1, we obtain the branching ratio,

BR(B0
s → µ+µ−) ∼ 10−9. Current experimental limit for this BR is 4.7 × 10−8

[36], and thus this decay could be observed soon at the Tevatron as the luminosity

accumulates.
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Figure 3.6: Branching ratio of s → 2x including s → Z ′Z ′ where mZ′ = 40 GeV.

Here α = 1.

3.4.5 Vectorlike fermions, productions and decays

Our model requires vectorlike quarks and leptons, both SU(2) doublets, Pi and sin-

glets Ti, with masses at the TeV scale. These will be pair produced at high energy

hadron colliders via the strong interaction. For example, for a 1 TeV vectorlike quark,

the production cross section at the LHC is ∼ 60 fb [35]. We need several such vector-

like quarks for our model. So the total production cross section will be few hundred

fb. These will decay to the light quarks of the same electric charge and Higgs bosons

(h or s): P → qh, qs. Thus the signal will be two high pT jets together with the

final states arising from the Higgs decay. For a heavy Higgs, in the golden mode

(h → ZZ, s → ZZ, this will give rise to two high pT jets plus four Z bosons. In the

case of a light Z ′, the final state signal will be two high pT jets plus 8 charged leptons

in the final state (with each lepton pair having the invariant mass of the Z ′).
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3.5 UV Completion

We present two concrete examples of models from which an effective action like Eq.

(3.1) can be derived. The first example only reproduces the second and third gen-

eration quark couplings, but its simplicity serves to introduce the basic issues and

mechanisms. The second example is a complete three generation TeV scale model of

quark flavor. The correct lepton couplings can be obtained from a copy of the same

structure used for the down-type quarks. We assume that neutrino masses benefit

from some additional see-saw mechanism, although it is not obvious that we can’t

obtain them by refining the TeV scale flavon model.

3.5.1 Two generation model

For this pedagogical example we will employ two important simplifications:

• We only reproduce the second and third generation quark couplings. In the next

subsection we extend this to include the first generation, but the model-building

is more cumbersome.

• We will choose charge assignments such that the couplings hu
32, h

d
32, and hd

23 are

higher order in ε. As already mentioned nonzero values of these couplings are

not needed to reproduce the observed SM quark masses and mixings.

With these simplifications we postulate a TeV scale model with the field content

shown in Table 3.2, where the hypercharges are listed along with the charge assign-

ments under U(1)S and U(1)F . The Higgs doublet H is the only scalar that carries

hypercharge, while the SM singlet S is the only scalar carrying U(1)S charge. The

SM singlet flavon F is the only scalar carrying U(1)F charge. The SM quarks are

neutral under U(1)S. The third generation up-type quark fields also carry no U(1)F

charge, while the other quark fields have flavor-dependent nonzero U(1)F charges.
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Field U(1)Y U(1)S U(1)F Field U(1)Y U(1)S U(1)F

H 1/2 0 0 U1L 2/3 1 0

S 0 1 0 U1R 2/3 1 1

F 0 0 1 U2L 2/3 -1 3

q3L 1/6 0 0 U2R 2/3 -1 3

q2L 1/6 0 2 D1L -1/3 -1 -1

u3R 2/3 0 0 D1R -1/3 -1 -1

u2R 2/3 0 3 D2L -1/3 2 3

d3R -1/3 0 -1 D2R -1/3 2 2

d2R -1/3 0 3 D3L -1/3 1 3

Q1L 1/6 -1 -1 D3R -1/3 1 3

Q1R 1/6 -1 0

Q2L 1/6 1 1

Q2R 1/6 1 2

Q3L 1/6 -1 3

Q3R 1/6 -1 2

Q4L 1/6 2 2

Q4R 1/6 2 1

Table 3.2: Charge assignments in the two generation model for the scalar fields H , S,

F , and the SM quark fields q3L, q2L, u3R, u2R, d3R, and d2R. Also listed are the color

triplet weak doublet heavy quark pairs QiL, QiR and the color triplet weak singlet

heavy quark pairs UiL, UiR, DiL, DiR.
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We introduce four pairs of new color triplet weak doublet fermion fields QiL, QiR,

two pairs of color triplet up-type weak singlets UiL, UiR, and three pairs of color

triplet down-type weak singlets DiL, DiR. Each pair is vectorlike with respect to the

SM gauge group and U(1)S, thus no anomalies are introduced with repsect to these

gauge groups, and each vectorlike pair naturally acquires a Dirac mass of order M

(when they have the same U(1)F charge) or of order the vev of F (when their U(1)F

charges differ by one). We assume that both the vev of F and M are of order a TeV.

Any residual anomaly in U(1)F can be handled either by introducing more heavy

fermions or using the Green-Schwarz mechanism at the TeV scale.

With these charge assignments the only dimension 4 couplings involving the second

and third generation SM quarks are:

f1q3Lu3RH̄ + f2q3LQ1RS + f3D1Ld3RS
† + f4q2LQ2RS

†

+f5U 1Lu3RS + f6q2LQ3RS + f7U 2Lu2RS
† + f8D3Ld2RS + h.c. , (3.16)

where the fi are dimensionless coupling constants. Thus the top quark receives the

correct mass from electroweak symmetry breaking for |f1| ' 1. The other couplings

involve the S scalar, but not the Higgs H or the flavon F . Both electroweak symmetry

breaking and flavor symmetry breaking are communicated to the rest of the SM quark

sector via a Froggart-Nielsen type mechanism, integrating out the heavy TeV scale

fermions from tree level diagrams that connect SM quark left doublets to SM quark

right singlets and to H or H̄ .

The renormalizable couplings involving just the heavy fermions are:

f9Q1RQ1LF + f10Q1LD1RH +MD1RD1L

+f11Q2RQ2LF + f12Q2LU1RH̄ + f13U 1RU1LF (3.17)

+f14Q3RQ3LF
† + f15Q3LU2RH̄ +MU 2RU2L

+f16Q2LQ4RS
† + f17Q4LQ2RS + f18Q4RQ4LF

† + f19Q4LD2RH

+f20D2RD2LF
† + f21D2LD3RS +MD3LD3R + h.c. .
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Thus, integrating out the heavy fermions in the tree level diagram composed from

the couplings

f2q3LQ1RS + f9Q1RQ1LF + f10Q1LD1RH +MD1RD1L + f3D1Ld3RS
† (3.18)

produces an effective coupling below the TeV scale proportional to

f2f3f9f10
F

M

S†S

M2
q3Ld3RH + h.c. . (3.19)

Integrating out the heavy fermions in the tree level diagram composed from the

couplings

f4q2LQ2RS
† + f11Q2RQ2LF + f12Q2LU1RH̄ + f13U1RU1LF + f5U 1Lu3RS (3.20)

produces an effective coupling below the TeV scale proportional to

f4f5f11f12f13
F 2

M2

S†S

M2
q2Lu3RH̄ + h.c. . (3.21)

Integrating out the heavy fermions in the tree level diagram composed from the

couplings

f6q2LQ3RS + f14Q3RQ3LF
† + f15Q3LU2RH̄ +MU 2RU2L + f7U 2Lu2RS

† (3.22)

produces an effective coupling below the TeV scale proportional to

f6f7f14f15
F †

M

S†S

M2
q2Lu2RH̄ + h.c. . (3.23)

Finally, integrating out the heavy fermions in the tree level diagram composed

from the couplings

f4q2LQ2RS
† + f ∗

17Q2RQ4LS
† + f19Q4LD2RH

+f20D2RD2LF
† + f21D2LD3RS +MD3RD3L + f8D3Ld2RS (3.24)

produces an effective coupling below the TeV scale proportional to

f4f8f
∗
17f19f20f21

F †

M

(S†S)2

M4
q2Ld2RH + h.c. . (3.25)
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Figure 3.7: The Feynman diagram associated with Eq. (3.18)

P2R P2L T2R T2L u3R

f4 f11 f12 f13 f5

S† F H̃ F S

Q2L

Figure 3.8: The Feynman diagram associated with Eq. (3.20)

There is an additional very similar tree level diagram contributing to hd
22 composed

from the couplings

f4q2LQ2RS
† + f11Q2RQ2LF + f16Q2LQ4RS

† + f18Q4RQ4LF
† + f19Q4LD2RH

+f20D2RD2LF
† + f21D2LD3RS +MD3RD3L + f8D3Ld2RS (3.26)

which produces an effective coupling below the TeV scale proportional to

f4f8f11f16f18f19f20f21
F (F †)2

M3

(S†S)2

M4
q2Ld2RH + h.c. . (3.27)

3.5.2 Three generation model

Here we present an concrete example of a full three generation TeV scale model that

reproduces an effective action like Eq. (3.1) at the electroweak scale. This model uses

Q2L P3R P3L

f14 f15 f7

u2R

f6

S F † H̃ S†

T3LT3R

Figure 3.9: The Feynman diagram associated with Eq. (3.22)
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d2R

f19

H F † S S

T5LT5R

Figure 3.10: The Feynman diagram associated with Eq. (3.26)

a single electroweak messenger scalar S, but employs three TeV scale flavon scalars

F1, F2, and F3, each corresponding to a different broken U(1)Fi
flavon symmetry. As

before the SM quarks are neutral under U(1)S. The third generation up-type quark

fields also carry no U(1)Fi
charges, while the other quark fields have flavor-dependent

nonzero U(1)Fi
charges.

The model has a rather large number of new heavy fermions: seven pairs of new

color triplet weak doublet fermion fields QiL, QiR, six pairs of color triplet up-type

weak singlets UiL, UiR, and eight pairs of color triplet down-type weak singlets DiL,

DiR. Each pair is vectorlike with respect to the SM gauge group and U(1)S, thus no

anomalies are introduced with repsect to these gauge groups, and each vectorlike pair

naturally acquires a Dirac mass of order M (when they have the same U(1)Fi
charges)

or of order the vev of some Fi (when one of their U(1)Fi
charges differs by one). We

assume that both the Fi vevs and M are of order a TeV. Any residual anomaly in

the U(1)Fi
symmetries can be handled either by introducing more heavy fermions or

using the Green-Schwarz mechanism at the TeV scale.

We do not suggest that this model is the most efficient one implementing the

basic concepts of our proposal. We have made an explicit trade-off, in some sense, of
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maximizing the number of the new heavy fermions required in order to minimize the

complexity of the messenger sector and the charge assignments.

With the charge assignments listed in Table 3.3 the only dimension 4 couplings of

fermions to the Higgs scalar are

f1q3Lu3RH̄ + f2Q2LU2RH̄ + f3Q4RU4LH̄ + f4Q6LU3RH̄

+f5Q7LU6RH̄ + f6Q3LD3RH + f7Q4LD4RH + f8Q7LD7RH + h.c. . (3.28)

The only dimension 4 couplings of fermions to the the S messenger scalar are

f9q1LQ1RS
† + f10q2LQ2RS

† + f11q3LQ3RS
† + f12U 1Lu1RS

+f13U 2Lu2RS + f14D1Ld1RS + f15D2Ld2RS + f16D3Ld3RS

+f17Q2LQ4RS
† + f18Q1LQ5RS

† + f19Q7LQ5RS
† + f20Q5LQ7RS

†

+f21U 4LU2RS + f22U 5LU1RS + f23U 6LU5RS + f24D4LD3RS (3.29)

+f25D3LD4RS
† + f26D5LD2RS + f27D6LD1RS + f28D1LD6RS

†

+f29D7LD5RS + f30D8LD6RS + f31D6LD8RS
† + h.c. .

The direct fermion mass terms and mixings consistent with the flavon symmetries

and SM gauge symmetries generated by operators of dimension 4 or less are

f32Q1LQ1RF
†
3 + f33Q2LQ2RF1 + f34Q3LQ3RF1 + f35Q3LQ3RF

†
2

+f36Q4LQ4RF
†
2 + f37Q5LQ5RF1 + f38Q5LQ6RF2 + f39Q6LQ6RF

†
3

+f40Q7LQ7RF
†
1 + f41U 1LU1RF3 + f42U 2LU2RF

†
2 +MU 3LU3R + f43U 3LU4RF

†
3

+f44U 4LU4RF
†
1 + f45U5LU5RF

†
2 + f46U 6LU6RF

†
1 + f47D1LD1RF

†
3 (3.30)

+f48D2LD2RF
†
1 +MD3LD3R +MD4LD4R + f49D5LD5RF3

+f50D4LD5RF
†
2 + f51D6LD6RF3 + f52D7LD7RF

†
2 +MD8LD7R + f53D8LD8RF

†
3 + h.c. ,

where for simplicity of notation we have used M to denote all the TeV scale mass

parameters.
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Field U(1)Y U(1)S U(1)F1
U(1)F2

U(1)F3
Field Y S F1 F2 F3

q1L 1/6 0 1 2 1 U1L,R 2/3 1 0 1 1,0

q2L 1/6 0 0 1 0 U2L,R 2/3 1 1 0,1 0

q3L 1/6 0 0 0 0 U3L,R 2/3 2 2 1 -1

u1R 2/3 0 0 1 1 U4L,R 2/3 2 1,2 1 0

u2R 2/3 0 1 0 0 U5L,R 2/3 2 0 1,2 0

u3R 2/3 0 0 0 0 U6L,R 2/3 3 0,1 2 0

d1R -1/3 0 1 2 0 D1L,R -1/3 1 1 2 0,1

d2R -1/3 0 0 1 1 D2L,R -1/3 1 0,1 1 1

d3R -1/3 0 1 0 0 D3L,R -1/3 1 1 0 0

H 1/2 0 0 0 0 D4L,R -1/3 2 1 0 0

S 0 1 0 0 0 D5L,R -1/3 2 1 1 1,0

F1 0 0 1 0 0 D6L,R -1/3 2 1 2 1,0

F2 0 0 0 1 0 D7L,R -1/3 3 1 1,2 0

F3 0 0 0 0 1 D8L,R -1/3 3 1 2 0,1

Q1L,R 1/6 1 1 2 0,1 Q5L,R 1/6 2 2,1 2 0

Q2L,R 1/6 1 1,0 1 0 Q6L,R 1/6 2 2 1 -1,0

Q3L,R 1/6 1 1,0 1 0 Q7L,R 1/6 2 1 0 0

Q4L,R 1/6 2 1 0,1 0

Table 3.3: Charge assignments in the three generation model for the scalar fields H ,

S, Fi, the SM quark fields qiL, uiR, diR, and the heavy quark pairs QiL, QiR, UiL, UiR,

DiL, DiR.
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Thus, integrating out the heavy fermions in the tree level diagram composed from

the couplings

f11q3LQ3RS
† + f ∗

34Q3RQ3LF
†
1 + f10Q3LD3RH +MD3RD3L + f3D3Ld3RS (3.31)

produces an effective coupling below the TeV scale proportional to

f11f
∗
34f10f3

F †
1

M

S†S

M2
q3Ld3RH + h.c. . (3.32)

Integrating out the heavy fermions in the tree level diagram composed from the

couplings

f10q2LQ2RS
† + f ∗

33Q2RQ2LF
†
1 + f2Q2LU2RH̄ + f ∗

42U2RU2LF2 + f13U2Lu2RS (3.33)

produces an effective coupling below the TeV scale proportional to

f10f
∗
33f2f

∗
42f13

F †
1F2

M2

S†S

M2
q2Lu2RH̄ + h.c. . (3.34)

Integrating out the heavy fermions in the tree level diagram composed from the

couplings

f10q2LQ2RS
† + f ∗

33Q2RQ2LF
†
1 + f17Q2LQ4RS

† + f ∗
36Q4RQ4LF2 + f7Q4LD4RH

+MD4RD4L + f ∗
24D4LD3RS +MD3RD3L + f3D3Ld3RS (3.35)

produces an effective coupling below the TeV scale proportional to

f10f
∗
33f17f

∗
36f7f

∗
24f3

F †
1F2

M2

(S†S)2

M4
q2Ld3RH + h.c. . (3.36)

Integrating out the heavy fermions in the tree level diagram composed from the

couplings

f11q3LQ3RS
† + f ∗

34Q3RQ3LF
†
1 + f10Q3LD3RH + f ∗

24D3RD4LS
† + f50D4LD5RF

†
2

+f ∗
49D5RD5LF

†
3 + f26D5LD2RS + f ∗

48D2RD2LF1 + f15D2Ld2RS (3.37)
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produces an effective coupling below the TeV scale proportional to

f11f
∗
34f10f

∗
24f50f

∗
49f26f

∗
48f15

F †
1F1F

†
2F

†
3

M4

(S†S)2

M4
q3Ld2RH + h.c. . (3.38)

There is also another tree level contribution to hd
32, proportional to

f11f
∗
34f10f24f50f

∗
49f26f

∗
48f15

F †
1F1F

†
2F

†
3

M4

(S†S)2

M4
q3Ld2RH + h.c. . (3.39)

Integrating out the heavy fermions in the tree level diagram composed from the

couplings

f10q2LQ2RS
† + f ∗

33Q2RQ2LF
†
1 + f17Q2LQ4RS

† + f ∗
36Q4RQ4LF2 + f7Q4LD4RH +MD4RD4L

+f50D4LD5RF
†
2 + f ∗

49D5RD5LF
†
3 + f26D5LD2RS + f ∗

48D2RD2LF1 + f15D2Ld2RS (3.40)

produces an effective coupling below the TeV scale proportional to

f10f
∗
33f17f

∗
36f7f50f

∗
49f26f

∗
48f15

F †
1F1F

†
2F2F

†
3

M5

(S†S)2

M4
q3Ld2RH + h.c. . (3.41)

Integrating out the heavy fermions in the tree level diagram composed from the

couplings

f9q1LQ1RS
† + f ∗

32Q1RQ1LF3 + f ∗
18Q1LQ5RS

† + f ∗
19Q5RQ7LS

† + f8Q7LD7RH

+MD7RD8L + f30D8LD6RS + f28D6RD1LS + f14D1Ld1RS (3.42)

produces an effective coupling below the TeV scale proportional to

f9f
∗
32f

∗
18f

∗
19f8f30f28f14

F3

M

(S†S)3

M6
q1Ld1RH + h.c. . (3.43)

There are four other very similar tree level contributions to hd
11.

Integrating out the heavy fermions in the tree level diagram composed from the

couplings

f9q1LQ1RS
† + f ∗

32Q1RQ1LF3 + f ∗
18Q1LQ5RS

† + f ∗
19Q5RQ7LS

† + f5Q7LU6RH̄ + f ∗
46U6RU6LF1

+f23U 6LU5RS + f ∗
45U 5RU5LF2 + f22U 5LU1RS + f ∗

41U 1RU1LF
†
3 + f12U1Lu1RS (3.44)
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produces an effective coupling below the TeV scale proportional to

f9f
∗
32f

∗
18f

∗
19f5f

∗
46f23f

∗
45f22f

∗
41f12

F1F2F
†
3F3

M4

(S†S)3

M6
q1Lu1RH̄ + h.c. . (3.45)

Integrating out the heavy fermions in the tree level diagram composed from the

couplings

f9q1LQ1RS
† + f ∗

32Q1RQ1LF3 + f ∗
18Q1LQ5RS

† + f ∗
19Q5RQ7LS

† + f8Q7LD7RH + f ∗
52D7RD7LF2

+f29D7LD5RS + f ∗
49D5RD5LF

†
3 + f26D5LD2RS + f ∗

48D2RD2LF1 + f15D2Ld2RS (3.46)

produces an effective coupling below the TeV scale proportional to

f9f
∗
32f

∗
18f

∗
19f8f

∗
52f29f

∗
49f26f

∗
48f15

F1F2F
†
3F3

M4

(S†S)3

M6
q1Ld2RH + h.c. . (3.47)

Integrating out the heavy fermions in the tree level diagram composed from the

couplings

f9q1LQ1RS
† + f ∗

32Q1RQ1LF3 + f ∗
18Q1LQ5RS

† + f ∗
19Q5RQ7LS

† + f8Q7LD7RH + f ∗
52D7RD7LF2

+f29D7LD5RS + f ∗
50D5RD4LF2 + f ∗

24D4LD3RS +MD3RD3L + f3D3Ld3RS (3.48)

produces an effective coupling below the TeV scale proportional to

f9f
∗
32f

∗
18f

∗
19f8f

∗
52f29f

∗
50f

∗
24f3

(F2)
2F3

M3

(S†S)3

M6
q1Ld3RH + h.c. . (3.49)

There is one other very similar tree level contribution to hd
13.

Integrating out the heavy fermions in the tree level diagram composed from the

couplings

f11q3LQ3RS
† + f ∗

34Q3RQ3LF
†
1 + f10Q3LD3RH + f ∗

24D3RD4LS
† + f50D4LD5RF

†
2 + f ∗

29D5RD7LS
†

+f ∗
52D7LD7RF

†
2 +MD7RD8L + f30D8LD6RS + f28D6RD1LS + f14D1Ld1RS (3.50)

produces an effective coupling below the TeV scale proportional to

f11f
∗
34f10f

∗
24f50f

∗
29f

∗
52f30f28f14

F †
1 (F †

2 )2

M3

(S†S)3

M6
q3Ld1RH + h.c. . (3.51)
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The following effective couplings are not generated or are generated at higher

order in ε and/or β: hu
23, h

u
32, h

u
12, h

u
21, h

u
13, h

u
31, and hd

21. As already indicated these

couplings are not needed to reproduce the observed SM quark masses and mixings.

For illustration, hu
32 arises from the effective coupling

f11f
∗
34f6f25f

∗
7 f36f

∗
17f2f

∗
42f13

F †
1F2F

†
2

M3

(S†S)2

M4

H†H

M2
q3Lu2RH̄ + h.c. , (3.52)

so the extra suppression relative to Eq. (3.1) is by an additional factor of β as well

as an additional factor of ε.

Since hu
12 and hu

21 have extra suppression in this model, D0 −D0 mixing also has

extra suppression. This weakens the lower bound on ms derived in Section 3.3.2.

Similarly since hu
23 and hu

32 have extra suppression the relatively large BR for t→ cs

discussed in Section 3.4.2 will not occur for this particular realization.

3.6 Conclusion

We have presented a proposal in which only the top quark obtains its mass from the

Yukawa interaction with the SM Higgs boson via dimension four operators. All the

other quarks receive their masses from operators of dimension six or higher involving

a complex scalar Higgs S whose VEV is at the EW scale. The successive hierachy

of light quark masses is generated via the expansion parameter
(

S†S
M2

)
∼ ε2, where

ε ≡ vs

M
∼ 0.15. All the couplings of the higher dimensional operators are of order one.

We are able to generate the appropriate hierarchy of fermion masses with this small

parameter ε. Since vs is at the EW scale, the physics of the new scale, M is not far

above a TeV. Because of the new degree of freedom at the EW scale, we predict a

neutral scalar s, which gives rise to signals that could be detected at the LHC or at

the Tevatron. We make new predicitons for Higgs decays and for top quark physics.

The model has a light Z ′ that has very weak couplings to SM fermions, but could be

light enough to be produced via mixing in Higgs decays at the LHC; this could give
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rise to invisible Higgs decays, displaced vertices from the Z ′ decays, or multilepton

final states, depending on the mass and lifetime of the Z ′.

We have presented a model in which an effective interaction given in Eq. (3.1)

can be realized. This involves extending the SM gauge symmetry by an abelian gauge

symmetry U(1)S and a local flavon symmetry group U(1)F1
× U(1)F2

× U(1)F3
The

flavon symmetry is spontaneously broken at the TeV scale by a complex flavon scalars

F1, F2, F3, whereas the U(1)S symmetry is broken at the electroweak scale by the

complex scalar S, which is a SM singlet extension of the SM Higgs sector. S acts as

the messenger of both flavor and electroweak symmetry breaking. The model requires

the existence of vectorlike quarks and leptons, both EW doublets and singlets, at the

TeV scale. These can be probed at the LHC. Their decays will be a new source for

Higgs production and give rise to final states with 4 Z’s or 4 Z ′’s and other interesting

new physics signals at the LHC.

We have restricted ourselves to models where all of the hierarchies of the SM

quark and charged lepton masses and mixings arise from powers of the vev of a single

messenger field. In [25], a framework was suggested in which all of these hierarchies

arise from powers of β =
(

H†H
M2

)
. As we saw in the previous section, in explicit models

it is natural to generate powers of both ε and β. Thus the model presented here and

the framework of [25] are two extremes of a more general class of models. Obviously

one could also generalize by introducing a more complicated messenger sector, i.e.

further extending the Higgs sector.

A truely viable model should have fewer species of heavy fermions than were

required in our example, ameliorating what is otherwise a dramatic worsening of

the little hierarchy problem of the standard model. This could be achieved by a

more effcient construction of the messenger sector and its interplay with the flavon

sector. Another interesting direction is to attempt to generate some of the higher

order effective couplings from the top quark Yukawa, as was done successfully with
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leptoquark-generated loop diagrams in [23].

3.7 Extension of the Model

After this work was done we continued it in [19]. In this paper we explore models

in which we add a singlet scalar Higgs to the Standard Model. All of these models

explain the origin of the mass hierarchy amongst the fermion masses and mixing

angles. We discuss 24 different variations on this model, and explore the different

phenomenological possibilities. We find that the phenomenological implications of all

the models are very similar except in the Higgs sector. Higgs decays and signals can

be altered very significantly in all the models, but break up into two distinct classes.

We also describe a systematic method for generating these models from higher order

interactions involving vector-like quarks and flavon scalars.
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CHAPTER 4

PERTURBATIVITY AND A FOURTH GENERATION IN THE MSSM

4.1 Introduction

The repetition of the quark-lepton families is one of the great mysteries of particle

physics. Despite its great success in describing the nature of strong and electroweak

(EW) interactions, the Standard Model (SM) does not predict the number of families.

What is the principle limiting the number of chiral families? Why not have a fourth

generation or even more? The masses of the three observed families have a strong

hierarchical pattern. Only the top quark mass (mt ' 172.6 GeV) lies close to the EW

symmetry breaking scale. This, within the SM, suggests the Yukawa coupling of the

top quark should be, λt ' 1. All remaining Yukawa couplings are suppressed. Thus,

with only three observed families, λt and the three gauge couplings g1,2,3 would play

an essential role in dynamics upon performing renormalization group (RG) studies.

The situation may be modified within a two Higgs doublet SM and MSSM. In these

models, due to the parameter tan β = vu/vd (the ratio of the VEVs of the up type to

the down type Higgses) λb and λτ can also be large (∼ 1 for tan β ≈ 60). How would

the picture change if there were a fourth family?

Current lower limits on the masses of the 4th generation fermions at 95% C.L. are

[36]:

mt′ ≥ 220 GeV , mb′ ≥ 190 GeV , mτ ′ ≥ 100 GeV , mν′ ≥ 50 GeV . (4.1)

When these masses are translated to the values of their Yukawa couplings, we find

the possibilty of couplings larger than λt. Moreover, the bound on mν′ indicates the
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existence of at least one massive neutrino with mass near the EW scale.

Due to the possible existence of large new Yukawa couplings, a study should be

performed and the validity of the perturbative treatment must be examined. As we

will show, within the MSSM with a 4th family, there is no value of tan β that allows

the perturbativity of the couplings up to the GUT scale. This fact suggests a lower

cutoff scale. If there is such a cutoff scale, it should be related to new physics which

take care of the self consistent ultraviolet (UV) completion. Can such a completion

be constructed? A positive answer would be encouraging for model building as well

as for further investigations with various phenomenological implications.

Even without focusing on UV completion of the theory, any extension of the SM

or MSSM should be in accord with low energy observables. Some previous works [37]-

[40] have focused on the effect of a 4th generation on the EW precision parameters

S, T and U . These constrain the masses of t′ and b′ quarks.

Assuming that the mixings of the fourth family matter with the observed three

generations are minimal, most of the constraints come from the self energy diagrams

of W± and Z0 gauge bosons. In Ref. [40] it was found that with mt′ − mb′ '
(
1 + 1

5
ln Mh

115 GeV

)
× 50 GeV, the new contributions to the parameters S and T get

minimized. In particular, with Mh = 115 GeV one obtains mt′ − mb′ ' 50 GeV.

However, this study did not consider the 4th family’s effect on the parameter U . It is

useful to analyze the impact of a 4th generation on all three quantities S, T and U .

Using analytical expressions given in Ref. [39] and the experimentally allowed ranges

of S, T , U at 1σ [36]:

S = −0.13 ± 0.10 ,

T = −0.13 ± 0.11 ,

U = 0.20 ± 0.12 , (4.2)

we can derive further constraints on mt′ and mb′ . In Fig. 4.1 we show the allowed
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Figure 4.1: Plotting allowed quark masses using 3σ limits of S and T in green. Super-

imposed in red are constraints from all 3 parameters, S, T , and U , while more wide,

green, area corresponds to the analysis with ignoring U . Here, Mh = 115 GeV, mτ ′ =

150 GeV, and mν′ = 100 GeV. (∆S, ∆T, ∆U) for the leptons are (0.01, 0.045, 0.11).

regions for mt′ and mb′ . For these analysis we have allowed 3σ deviations in Eq. 4.2.

A fourth generation of chiral matter would also affect the Higgs sector. This

will give more interesting insights [41, 42] within a SUSY framework. As is well

known, in MSSM the value tanβ ≈ 1 is disfavored due to the LEP lower bound on

a lightest CP even Higgs boson mass Mh ≥ 114.4 GeV. In the MSSM, at tree level

M2
h = M2

Z cos2 2β. Taking tan β ' 1, the tree level mass vanishes. Loop corrections

are not sufficient to raise Mh. When a 4th generation is added, the situation is even

more drastic because in order to preserve perturbativity tanβ cannot be much greater

than 1. This is an additional motivation for new physics.

This leads us to believe that the MSSM with a 4th family should be extended

further. In this paper we suggest one such extension with vector like states having

masses at the TeV scale. As an outcome of the proposed model, we obtain perturba-

tivity of the couplings all the way up to the GUT scale with tanβ ∼ 2. This avoids

the difficulties discussed above, and is promising for the possibility of embedding the
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whole scenario in a grand unified theory.

The paper is organized as follows. In section 4.2 we discuss theoretical bounds:

problems arising from perturbativity considerations that limit tan β and implications

on Higgs physics. In section 4.3 we present our model which allows perturbativity of

all couplings up to the GUT scale and extends tanβ up to ∼ 2 such that the LEP

bound on Mh can easily be satisfied. The model has extra vector-like states which

can be detected at the LHC. The summary of our work and conclusions are presented

in section 4.4.

4.2 Theoretical Bounds and Some Implications

In this section we discuss bounds coming from theoretical considerations and discuss

some implications of theories with a new heavy chiral fermion family.

4.2.1 Bounds from Tree Level Unitarity

The upper bound on a heavy chiral fermion’s mass comes from the unitarity of scat-

tering amplitudes. We assume that fermion mass is generated through the Yukawa

coupling of the fermion with a fundamental Higgs doublet. In this case, for the

heavy quark doublet Q with mass mQ the QQ̄ → QQ̄ scattering J = 0 partial wave

amplitude at tree level (at energies
√
s� mQ) is given by [43]:

|a0| ≈
5

4
√

2π
GFm

2
Q , (4.3)

and the unitarity requirement |a0| < 1 gives the upper bound

m2
Q <

4
√

2π

5GF

' (552 GeV)2 , (4.4)

as was first obtained in [43]. The analogous bound for the leptonic doublet L

m2
L <

4
√

2π

GF
' (1.23 TeV)2 , (4.5)
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is higher. As we see, the current experimental direct bounds in Eq. (4.1) are not in

conflict with the theoretical upper bounds of (4.4) and (4.5) derived at tree level. As

we discuss below, the inclusion of loop corrections and the requirement of perturba-

tivity will imply stringent theoretical bounds on Yukawa couplings.

4.2.2 Bounds from Perturbative RGE

Here we focus on MSSM with a 4th generation. The reason for the SUSY framework

is twofold. First of all, low scale SUSY is the most appealing extension of SM in

order to solve the gauge hierarchy problem. Second, as it turns out, more stringent

bounds are obtained in the SUSY setup and for demonstrative purposes it is most

useful. The discussed mechanisms (presented in the next section) for solving various

problems could be also applied for SM and on two Higgs doublet SM.

The superpotential couplings involving 4th generation matter superfileds are

W4 = λt′q4u
c
4hu + λb′q4d

c
4hd + λτ ′ l4e

c
4hd + λντ ′

l4Nhu, (4.6)

where N is a right handed neutrino (complete singlet of MSSM) responsible for the

Dirac mass generation of ντ ′ . Yukawa couplings defined at corresponding mass scales

can be expressed as

λt′(mt′) =
mt′

|1 + δt′ |v sin β
, λb′(mb′) =

mb′

|1 + δb′ |v cosβ
,

λτ ′(mτ ′) =
mτ ′

|1 + δτ ′ |v cosβ
, λντ ′

(mντ ′
) =

mντ ′

|1 + δντ ′
|v sin β

, (4.7)

where δα (α = t′, b′, τ ′, ντ ′) exhibit the 1-loop finite corrections emerging after SUSY

breaking [44]. Since we are dealing with large Yukawa couplings(∼ 2), these correc-

tions can be as large as 25% and should be taken into account. For examining the

RG perturbativity, one should take the values for masses satisfying the bounds in

Eq. (4.1) and run each Yukawa coupling from the corresponding mass scales up to

higher scales. In Ref. [45] this analysis was done with the fourth generation fermion
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masses smaller than the top mass. This was in accord with the experimental bounds

that existed at that time. They found that if tanβ < 3 all Yukawa couplings could

be perturbative up to the GUT scale. Given the current lower bounds on quark and

lepton masses, we find this is no longer the case. When one uses the renormalization

group equations for evolving the Yukawa couplings from low scale up to higher en-

ergy scales, the couplings rapidly grow and blow up. For example for tan β = 2, λb′

becomes non-perturbative at about 1 TeV. As tanβ increases, it is more difficult to

tame the Yukawa coupling. This is shown in Fig. 4.2.
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Figure 4.2: Plotting tanβ vs. Λ, the scale at which yb′ becomes non-perturbative.

For masses we took the lowest allowed values from Eq. 4.1.

We have assumed the validity of the perturbative RG for Yukawa couplings < 2.5.

For this analysis we set δα = 0, keeping in mind that unknown soft breaking terms

allow more flexibility. The values δa ∼ 1/4 will allow slightly relaxed bounds, however

66



do not change the situation much.

It is clear from this figure that no value of tan β allows perturbative calculation

all the way up to the GUT scale. Perturbativity puts a strict upper bound on the

mass of the b′ quark. For tan β = 1.5 we calculate this limit to be about ≈ 100 GeV.

This value is below the experimental lower bound of 190 GeV. If a fourth generation

exists, this provides a strong reason to introduce new physics at the TeV scale. In

order for this to work, the cutoff scale of the theory should be near the TeV scale.

Without any UV completion we have a strongly coupled theory at the TeV scale.

What are the solutions to this problem? In section 4.3 we will introduce a specific

model with new physics at the TeV scale that will allow values of tan β up to ∼ 2

with perturbativity all the way up to the GUT scale ≈ 2 · 1016 GeV.

4.2.3 Implications for Higgs Physics

In the MSSM with large tan β the lightest Higgs boson mass has an upper bound

Mh
<∼ 125 GeV. Even if tan β is large, the mass at tree level can be no larger than

MZ . This is an even bigger problem when one introduces a fourth family. The new

quarks limit tanβ to small values, thus reducing the tree level contribution for the

lightest Higgs mass. Luckily at the same time they provide additional loop corrections

to the lightest Higgs mass. The one-loop top-stop radiative corrections to the Higgs

mass squared can be simplified as:

∆(M2
h) ' 3

4π2

m4
t

v2
ln
mt̃1

mt̃2

m2
t

. (4.8)

The new t′ and b′ quarks and their superpartners will also contribute to the Higgs

mass. These corrections can enhance the Higgs mass [47, 48]. When tan β > 1, the

correction from the b′ quark has a similar form, but it is negative. If mb′ > mt′

then there is a problem, as the overall correction will be negative. When mt′ > mb′ ,

with constrained mass splitting displayed in Fig. 4.1, there is still a sizable positive
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correction of about (60 GeV)2. With tanβ ∼ 2 this puts an upper bound, Mh
<∼

130 GeV, greater than the LEP lower bound of 114 GeV.

The existence of a 4th chiral family in the mass range of (200 − 300) GeV will

have a significant impact on the Higgs signals at the LHC [40]. The most dominant

production mechanism for the light Higgs boson is its production from gluon-gluon

fusion via a top quark loop [46]. With the 4th chiral family, there will be additional

contributions from the non-degenerate t′ and b′ loops. Thus the Higgs productions

will be significantly enhanced. Also, for the light Higgs with mass below 130 GeV, the

Higgs decaying to two photons is the most clean channel for detection at the LHC.

With the additional contributions from the t′ and b′ quarks in the loops, the two

photon branching ratio will also be enhanced. The other possible mode for the light

Higgs detection is the tth mode, and the subsequent decay of the Higgs to bb. This

mode has been downgraded by recent studies mainly due to low production rate and

large SM background. However, with the 4th family quarks, there will be additional

contributions to the Higgs production via the t′t′h and b′b′h modes. Thus the Higgs

detection via this channel may become viable.

4.3 The Model with Perturbative UV Completion

If the LHC discovers a fourth chiral family, it will be a great challenge for theorists

to build self consistent models. There are several reasons for this. First of all, from

existing experimental bounds it follows that the Yukawa couplings for t′ and b′ should

be large. Let us be more specific. If the theory is one Higgs doublet Standard Model

(SM), then the bounds mt′ ≥ 220 GeV and mb′ ≥ 190 GeV imply that near these

mass scales we have λt′ ≥ 1.26 and λb′ ≥ 1.1. The situation is more drastic within the

MSSM. The above bound for the mb′ gives λb′ ≥ 1.1
√

1 + tan2 β which for tanβ ' 3

gives λb′(mb′) ≥ 3.45, a non-perturbative value. Therefore, the (tree level) pertur-

bativity suggests the upper bound tanβ ≤ 2.5. However, as we saw in the previous
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section, after taking into account RGE effects, the requirement of perturbativity up

to higher scales prefers even lower (<∼ 1.5) values of tan β. This may lead to clash

with the LEP bound on the lightest Higgs boson mass Mh ≥ 114 GeV. For tanβ ∼ 1,

in MSSM with three families it is difficult to satisfy this bound. As RGE studies

discussed in section 4.2 show, no value of tan β allows perturbativity up to the GUT

scale for MGUT ' 2 · 1016 GeV. What are the possibilities to overcome these difficul-

ties? The solution is some reasonable extension which modifies RG running above

the TeV scale. Here we suggest one simple extension which allows perturbativity up

to the MGUT with less constraint on tan β.

Our proposal is the following. The couplings λt′ , λb′ and λτ ′ are derived quantities

in a low energy effective theory. They are generated after decoupling of additional

vector like states with mass Λ4 ∼ few·TeV. Above Λ4, new interactions appear in the

RGE and this makes the theory perturbative all the way up to MGUT. We discuss

the realization of this idea within the framework of the MSSM, however, non-SUSY

models can be constructed with equal success.

We introduce two additional vector like pairs (Hu + Hd), (Hu
′ + Hd

′) of Higgs

superfields, where Hu, Hu
′ and Hd, Hd

′ have the same quantum numbers under the

MSSM gauge group as the up type (hu) and the down type (hd) Higgs superfields.

These H-states are accompanied by two pairs of vector like quarks (Dc + D̄c), (D′c +

D̄
′c), where Dc has the quantum numbers of the down type quark dc. Introduction of

D-states are suggestive: they, together with H-states, effectively constitute complete

SU(5) multiplets and therefore gauge coupling unification can be maintained at 1-loop

approximation.

We will consider the following superpotential couplings

W4 = λ
(1)
t′ q4u

c
4hu + λUq4u

c
4Hu + λ

(1)
b′ q4d

c
4hd + λDq4d

c
4Hd + λ′Dq4D

chd + λ
(1)
τ ′ l4e

c
4hd

+λEl4e
c
4Hd −MHHuHd −MH′Hu

′Hd
′ +MHuhd +M ′Hd

′hu +MDD̄
cDc −M ′

DD̄
cdc .

69



For simplicity we do not couple D′c, D̄
′c states with chiral matter and assume that

they have mass 'MD. After integrating out the H and D-states one can easily verify

that the effective Yukawa interactions are

W eff
4 = λt′q4u

c
4hu + λb′q4d

c
4hd + λτ ′l4e

c
4hd ,

where:

λt′ = λ
(1)
t′ + λU cos γ′ (4.9)

λb′ = λ
(1)
b′ + λD cos γ + λ′D cos γD (4.10)

λτ ′ = λ
(1)
τ ′ + λE cos γ (4.11)

tan γ′ ' MH′

M ′ , tan γ ' MH

M
, tan γD ' MD

M ′
D
. (4.12)

The relevant diagrams are shown in Fig. 4.3. With all the mass scales of the same

order (' Λ4) the effective superpotential given above is valid below the scale Λ4.

With cos γ ≈ cos γD ≈ cos γ′ ≈ 1, we can see that the effective (derived) Yukawas can

be non-perturbative (≈ 3) while the original Yukawa couplings remain perurbative;

for example, λt′ ' 2.4 with λ
(1)
t′ ' λU ' 1.2. Above the scale Λ4 we are dealing

with the couplings λ
(1)
t′,b′,τ ′ and λU,D,E, λ

′
D. By making proper choice for the values of

these couplings at Λ4, we can have a perturbative regime up to the GUT scale. To

demonstrate this we take Λ4 = 1 TeV and set up all RG equations valid above this
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scale. At 1-loop they are given by

16π2 d

dt
λ

(1)
t′ = λ

(1)
t′

(
Sq + Suc + Shu

− cui g
2
i

)
(4.13)

16π2 d

dt
λ

(1)
b′ = λ

(1)
b′

(
Sq + Sdc + Shd

− cdi g
2
i

)
(4.14)

16π2 d

dt
λ

(1)
τ ′ = λ

(1)
τ ′

(
Sl + Shd

− ceig
2
i

)
(4.15)

16π2 d

dt
λt = λt

(
6λ2

t + 3
(
λ

(1)
t′

)2

− cui g
2
i

)
(4.16)

16π2 d

dt
λU = λU

(
Sq + Suc + 3λ2

U − cui g
2
i

)
(4.17)

16π2 d

dt
λD = λD

(
Sq + Sdc + 3λ2

D + λ2
E − cdi g

2
i

)
(4.18)

16π2 d

dt
λ′D = λ′D

(
Sq + Shd

+ 2λ′2D − cdi g
2
i

)
(4.19)

16π2 d

dt
λE = λE

(
Sl + 3λ2

D + λ2
E − ceig

2
i

)
(4.20)

where

Sq =
(
λ

(1)
t′

)2

+
(
λ

(1)
b′

)2

+ λ2
U + λ2

D + λ′2D (4.21)

Suc = 2
(
λ

(1)
t′

)2

+ 2λ2
U (4.22)

Sdc = 2
(
λ

(1)
b′

)2

+ 2λ2
D (4.23)

Sl = 3
(
λ

(1)
τ ′

)2

+ 3λ2
E (4.24)

Shu
= 3

(
λ

(1)
t′

)2

+ 3λ2
t (4.25)

Shd
= 3

(
λ

(1)
b′

)2

+
(
λ

(1)
τ ′

)2

+ 3λ′2D (4.26)

cui =

(
13

15
, 3,

16

3

)
, cdi =

(
7

15
, 3,

16

3

)
, cei =

(
9

5
, 3, 0

)
, (4.27)

and t = lnµ. We have ignored bottom and tau Yukawa couplings because we still

work in a low tanβ regime. Also the Dirac Yukawa coupling of the fourth left handed

neutrino with the ‘right handed’ singlet N is neglected, because assuming mν′ '

50 GeV we get λν′ ' 0.25 which is small.

At scale Λ4 = 1 TeV, for boundary conditions we take

at µ = Λ4 = 1 TeV : λ
(1)
t′ = λU = 0.62 ,
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λ
(1)
b′ = λD = λ′D = 0.813 , λ

(1)
τ ′ = 0.564 , λE = 0.632 , (4.28)

and run the couplings up to µ = MGUT. The numerical solutions are displayed in

Fig. 4.4. For completeness we have also included 2-loop contributions. As we see

from Fig. 4.4, all couplings remain perturbative. Note that the boundary values in

(4.28) with cos γ ≈ cos γ′ ≈ 1 for tan β ' 2 give values for mt′ , mb′ , mτ ′ (evaluated at

their own mass scales) satisfying current experimental bounds. Thus, our solution is

fully consistent.

We have demonstrated that with a simple extension one can make the MSSM

with four chiral generations perturbative all the way up to the GUT scale. This gives

firm ground for embedding the whole scenario in a Grand Unified Theory. Other

variations of the construction of the effective Yukawa sector are possible, however,

we have limited ourselves here with one example because it solves the problems in

a simple and efficient way. We hope that our studies will motivate others in further

investigations.
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Figure 4.3: Diagrams generating Yukawa couplings λt′ , λb′ and λτ ′ .
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4.4 Conclusions

We have investigated the implications of the presence of a 4th chiral family of fermions

in the MSSM as well as the SM. Previous work used the experimental values of the

precision EW parameters, S, T to set constraints on the masses of the 4th family and

their splitting between the up and down type quarks (t′ and b′). In our analysis, we

have included the parameter U and derived further constraints. This result is shown

in Fig. (4.1).

We also investigated the constraint on the 4th family from the perturbativity

condition on the corresponding Yukawa couplings, and found that in MSSM, there

is no allowed value of tan β for which the couplings remain perturbative all the way

up to the GUT scale. As a result, if a 4th family is discovered at the LHC, then for

the theory to make sense perturbatively, there must be additional new physics with

a suitable ultraviolet completion. We have presented such a model with additional

vector-like states, at the TeV scale. In our model, only the very narrow range of

tan β < 2 is allowed.

In addition to observing the 4th chiral family of fermions at the LHC, the model

has several predictions, such as the existence of vector-like down type quarks at the

TeV scale which can be pair produced by gluon-gluon fusion, enhanced decay of the

lightest Higgs boson to two photons, and enhanced Higgs production from gluon-

gluon fusion due to the t′ and b′ quarks. These predictions of the model can be tested

at the LHC.
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CHAPTER 5

NEUTRINO MASSES FROM FINE-TUNING

5.1 Introduction

In the past decade, the existence of tiny neutrino masses of the order of one hundredth

to one tenth of an electron volt has been firmly established through atmospheric,

solar and reactor neutrino experiments [50][49][51]. These masses are a million or

more times smaller than the corresponding charged lepton masses. While the quark

and charged lepton masses span many orders of magnitude, the neutrino masses are

do not. The square root of the neutrino mass square differences, as obtained from

the neutrino oscillation experiemts, lies within a factor of five. Also the quark mixing

angles are very small, whereas two of the neutrino mixing angles are large [36]. These

observations have led to several unanswered questions. Why are the neutrino masses

so small compared to the corresponding charged lepton or quark masses? Why is there

such a large hierarchy among the charged fermion masses, while there is practically

no hierarchy among the neutrino masses? Also, unlike the quark sector why are the

mixing angles in the neutrino sector large? Another related fundamental question is

whether neutrinos are Majorana or Dirac particles, and whether the light neutrino

spectrum exhibit a normal hierarchy or an inverted hierarchy.

The most popular idea proposed so far for understanding the tiny neutrino mass

is the famous see-saw mechanism [52]. One postulates the existence of a very massive

Standard Model (SM) singlet right handed neutrinos with Majorana masses of order

of M ∼ 1014GeV. The Yukawa coupling of the left-handed neutrino to this heavy

right-handed neutrino then gives a Dirac mass of the order of the charged lepton
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masses, ml. As a result, the left-handed neutrino obtains a tiny mass of the order of

m2
l /M . Although there are several indirect benefits for its existence, there is no direct

experimental evidence for such a heavy particle. The mass scale is so high that no

connection can be made with the physics to be explored at the high energy colliders

such as the Tevatron and the LHC. It is important to explore other possibilities to

explain the tiny neutrino masses. Also, the see-saw mechanism does not naturally

lead to lack of hierarchy among the light neutrino masses, though such an hierarchy

can be accommodated with the appropriate choice of the right handed Majorana

sector.

Recent astrophysical observation requires a tiny but non-zero value of the cos-

mological constant, Λ1/4 ' (10−4 eV). This value is surprisingly close to the value

of the light neutrino masses required from the neutrino oscillation experiments, '

10−2 − 10−1 eV. It has been exceedingly difficult to derive such a tiny value of the

cosmological constant, and there is some acceptance that it may be fine tuned. The

idea of Higgs mass also being fine tuned has been explored leading to the so called

“Split Supersymmetry” [53] with interesting implications at the TeV scale that can be

explored at the LHC. Neutrino masses being in the same ballpark as the cosmological

constant, it is not unreasonable to assume that their values are also fine tuned. The

objective in this project is to adopt this philosophy, build a concrete model realizing

this scenario, and explore its phenomenological implications, specially for the LHC.

In this work, we present a model in which the light neutrinos get their masses

from the usual see-saw mechanism, except the right handed neutrino masses are at

the TeV scale. The neutrino Dirac masses get contributions from two different Higgs

doublets with their vacuum expectation values (vevs) at the electroweak scale. The

neutrino masses are small not because of tiny Yukawa couplings, or not because of a

tiny vev of a new Higgs doublet [54]. In fact, we take the Yukawa couplings to be of

order one. The smallness of the light neutrino masses are due to the cancellation in
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the Dirac neutrino mass matrix, making it of the order of mD ∼ 10−4 GeV giving rise

to light neutrino masses mν ∼ m2
D/M where M is the RH Majorana neutrino mass.

Thus with M in the TeV scale, we get the light neutrino mass in the correct range of

10−2 − 10−1 eV range.

Our work is presented as follows: In section 2, we present the model and the

formalism. In section 3, we discuss the phenomenological implications of the model,

especially how it alters the usual Standard Model Higgs decay modes, and its impli-

cations for the Higgs search at the LHC. Section 4 contains our conclusions.

5.2 Model and the formalism

5.2.1 Our model

Our model is based on the SM gauge symmetry, SU(3)C × SU(2)L × U(1)Y , supple-

mented by a discrete Z2 symmetry. In addition to the SM fermions and the Higgs

doublet, H , we introduce three RH neutrinos, NRi where, i = 1, 2, 3, and two addi-

tional Higgs doublets, H1 and H2, with vevs at the EW scale. All the SM particles are

even under the Z2 symmetry, while the three RH neutrinos and the two new Higgs

doublets H1 and H2 are odd under Z2. The Z2 symmetry is softly broken by the

bilinear Higgs terms. With this symmetry, the Yukawa interactions are given by

LSM Yukawa = q̄LyuuRH̃ + q̄LyddRH + l̄LyLeRH + h.c., (5.1)

where the fermion fields represent three families, and yd, yu and yl represent three

corresponding Yukawa coupling matrices.

LNew Yukawa = l̄Lf1νNRH̃1 + l̄Lf2νNRH̃2 + h.c., (5.2)

LMaj =
1

2
MMajN

T
RC

−1NR. (5.3)
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Note that from the above equations, the 6×6 neutrino mass matrix is obtained to be

Mν =




0 mD

(mD)T MMaj


 (5.4)

The 3 × 3 Dirac mass matrix is given by

mD =
1√
2

(f1νv1 + f2νv2) (5.5)

Here v1 and v2 are the vevs of the new Higgs fields H1 and H2. For the mass scales

in which mD � MMaj, the 3 × 3 light neutrino mass matrix is given by

mlight
ν = −mDM

−1
Maj(mD)T (5.6)

Note that experimentally masses of the light neutrinos are in the 10−1 eV range.

Thus with MMaj in the EW scale, the matrix mD needs to be in the scale of 10−4

GeV. Since the vevs v1 and v2 are in the EW scale, we can get mD in the 10−4 GeV

scale by assuming the Yukawa couplings to be very tiny, of order 10−6. Such a path,

similar to the usual see-saw, will not lead to any interesting implications for neutrino

physics in the TeV scale. Instead we assume that the Yukawa couplings, f1ν and f2ν

are of ∼ O(1), and these Yukawa couplings and vevs v1 and v2 fined tuned to get mD

in the 10−4 GeV. This is our approach to the smallness of the light neutrino mass

scale. As we will see, this gives interesting implication for the neutrino physics at the

TeV scale, and can be explored at the LHC.

5.2.2 Higgs potential

Now we discuss the Higgs sector of the model. In addition to the usual SM Higgs H

two other Higgs doublets H1, H2 are required in this model. These two new Higgs

doublets couple only to the neutrinos, and this is imposed using the Z2 symmetry.

It is the cancelation of contributions to the Dirac neutrino mass from these two new

doublets that enable the use of fine tuning.
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We assume that the Z2 symmetry is softly broken by the bilinear terms in the

Higgs Potential. The two new doublets will mix with the SM Higgs doublet, and as

we will see, this will produce entirely new signals for the SM Higgs boson decays. The

Higgs potential is given by

VHiggs = V
(2)even
Higgs + V

(2)odd
Higgs + V

(4)even
Higgs (5.7)

V
(2)even
Higgs = µ2

HH
†H + µ2

1H
†
1H1 + µ2

2H
†
2H2 + µ2

12(H
†
1H2 +H†

2H1) (5.8)

V
(2)odd
Higgs = µ2

H1(H
†H1 +H†

1H) + µ2
H2(H

†H2 +H†
2H) (5.9)

Note that the odd part of the potential breaks the Z2 symmetry softly, and as a result,

SM Higgs bosons can mix with the with the two new Higgs doublets. This will have

interesting implications for the SM Higgs boson decays.

V
(4)even
Higgs = λ(H†H)2 + λ1(H

†
1H1)

2 + λ2(H
†
2H2)

2

+ λ1122(H
†
1H1)(H

†
2H2) + λHH12(H

†H)
(
H†

1H2 +H†
2H1

)

+ λHH22(H
†H)(H†

2H2) + λ1112(H
†
1H1)

(
H†

1H2 +H†
2H1

)

+ λHH11(H
†H)(H†

1H1) + λ2212(H
†
2H2)

(
H†

1H2 +H†
2H1

)

+ λ12(H
†
1H2)

2 + λH1(H
†H1)

2 + λH2(H
†H2)

2

+ λH1H2

(
H†H1 +H†

1H
)(

H†H2 +H†
2H

)

(5.10)

Since there are three Higgs doublets, after EW symmetry breaking, there will re-

main a pair of charged Higgs (H±, H ′±), five neutral scalar Higgses (h′, h′1, h
′
2, H

′
1, H

′
2),

and two neutral pseudoscalar Higgses (A′
1, A

′
2). Due to the breaking of the Z2 sym-

metry, there is mixing within each of these three groups of Higgses (but not between

groups). We denote the mass eigenstates of the five neutral Higgses by h, h10, H10,

h20, and H20.

5.2.3 Mixing between the light and heavy neutrinos

In our model, we are considering a scenario in which the three RH handed neutrinos

have masses in the EW scale with ∼ O(1) Yukawa couplings with the light left handed
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neutrinos. They will also mix with the light neutrinos, and thus will participate in

the gauge interactions. LEP has searched for such RH neutrinos. Before we discuss

these constraints, let us first consider the mixing between the light neutrinos and the

RH neutrinos. Using the observed values of the light neutrino masses and mixings,

we can make a reasonable estimate of the mixing between the LH and RH neutrino

as follows. We use the normal hierarchy for the light neutrino masses with the values

mlight
νEigenvalues = Diag(mν1

, mν2
, mν3

) = Diag(0, 8.71, 49.3)× 10−12 GeV (5.11)

The mixing matrix Rνν follows the standard parametrization. The angles θ12, θ23 are

the central values, and θ13 is the maximal value allowed by current experiment [Ref

Choze].

(θ12, θ23, θ13) = (0.601, 0.642, 0.226) (5.12)

Rνν =




0.804 0.551 0.223

−0.563 0.585 0.584

0.190 −0.595 0.781




(5.13)

The three possible CP-violating phases are assumed to be zero. From the above mass

eigenvalues and the mixing matrix, we can calculate the light neutrino mass matrix

using

(Rνν)
Tmlight

ν Rνν = mlight
νEigenvalues (5.14)

For simplicity, we assume that the 3 × 3 RH Majorana mass matrix MMaj to be

proportional to the unit matrix,

MMaj = Diag(M,M,M), (5.15)

and we use M = 100 GeV. As a consequence of this choice for MMaj and having a

symmetric mD, the mixing matrix among only the generations of heavy neutrinos

is equivalent to the mixing matrix among only the generations of light neutrinos
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RNN = Rνν . Using the above numbers, we can now calculate numerically the 3 × 3

Dirac neutrino mass matrix from the equation

mlight
ν = −mDM

−1
Majm

T
D (5.16)

There are four sets of real solutions for mD. Only two sets of solutions are presented

in Table 5.1. The other two are just the negatives of these two sets.

×10−5 GeV m11
D m12

D m13
D m22

D m23
D m33

D

Set 1 -1.25 -1.87 -0.267 -3.42 -2.20 -5.36

Set 2 -.543 -0.0280 2.20 1.40 4.25 3.27

Table 5.1: Solution values for the matrix mD.

Using the solutions for mD and MMaj, we can now use the full 6×6 neutrino mass

matrix and calculate the full mixing matrix Q and the mixing angles between the

heavy and light neutrinos.

MFull =




03×3 mD

mT
D MMaj


 , Q−1MFullQ = MFull

Eigenvalues. (5.17)

It turns out that

Q ≈



Rνν QνN

QNν RNN


 , QνN ≈ QNν . (5.18)
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×10−7 θ14 θ15 θ16 θ24 θ25 θ26 θ34 θ35 θ36

Set 1 1.2 1.9 0.26 1.9 3.4 2.2 0.26 2.2 5.3

Set 2 0.55 0.36 -2.2 0.034 -1.4 -4.2 -2.2 -4.2 -3.2

Table 5.2: Mixing angles between the light neutrinos (subscripts 1, 2, 3) and the heavy

neutrinos (subscripts 4, 5, 6).

For solution set 1, the full rotation matrix is

Q =




0.80 0.55 0.22

−0.56 0.59 0.58

0.19 −0.60 0.78




3.1 × 10−3 1.6 1.6

3.513 × 10−3 1.7 4.1

−2.5 × 10−3 −1.8 5.5




× 10−7




1.1 × 10−4 −1.6 −1.6

1.3 × 10−4 −1.7 −4.1

−8.8 × 10−5 1.8 −5.5




× 10−7

0.81 0.55 0.22

−0.56 0.59 0.58

0.19 −0.60 0.78




.

(5.19)

For solution set 2, the full rotation matrix is

Q =




0.80 0.55 0.22

−0.56 0.59 0.58

0.19 −0.60 0.78




4.1 × 10−3 1.6 −1.6

3.9 × 10−3 1.7 −4.1

−5.7 × 10−3 −1.8 −5.5




× 10−7




−8.9 × 10−4 −1.6 1.6

−7.9 × 10−4 −1.7 4.1

1.4 × 10−3 1.8 5.5




× 10−7

0.80 0.55 0.22

−0.56 0.590 0.58

0.19 −0.60 0.78




.

(5.20)

As can be seen on Table 5.2, the mixing between the heavy and light neutrinos is

extremely small.
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5.3 Phenomenological implications

In this section, we discuss the phenomenological implications of our model. We are

considering RH neutrinos at the EW scale. Their mass can be below the W boson

mass. Thus they can be searched for at LEP, Tevatron, and at the LHC. First we

discuss the constraints that already exist from the search at LEP.

5.3.1 LEP constraints

Searches for NR have been conducted at LEP in the channel e+e− → Z → NRνl, with

NR subsequently decaying to W+e− or Zν. This experiment puts limit on the mixing

angle, θ between the heavy and the light neutrinos sin2 θ < 10−4 for 3 GeV < MN < 80

GeV, and sin2 θ < 0.1 for MN > 80 GeV [55]. As we discussed in previous section, the

mixing angles, θ between the light and heavy neutrinos are extremely small, ranging

between ∼ 10−6 to 10−8. Thus, in our model, LEP constraints allows small masses

for the heavy Majorana neutrinos.

5.3.2 Higgs decays and Higgs signals

In our model, the Yukawa couplings between the light neutrinos, the heavy Majorana

neutrinos and the new Higgs fields H1 and H2 are of ∼ O(1). The Standard model

Higgs, H mixes with the new Higgses, and these mixings are naturally large. Thus,

for MN < Mh, the standard model Higgs will dominantly decay to a light ν and NR,

as soon as this decay mode becomes kinematically allowed, because the coupling for

this decay mode is much larger than the usually dominant b̄b mode, or even the WW

mode.The branching ratios for the various Higgs decay modes are shown in Fig.1 for

MN = 80 GeV. As can be seen from the plot, as soon as the decay mode h → νNR

becomes kinematically allowed, this mode totally dominates over the usual b̄b mode,

and larger than the usually dominant WW mode even beyond the WW threshold.

Thus in our model, the SM Higgs decay mode is greatly altered.
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Figure 5.1: Branching ratio of h→ 2x.

At hadron colliders, the SM Higgs boson is dominantly produced via gluon fusion

with the top quark in the loop. In our model, because of the mixing of H with H1

and H2, the lightest mass neutral scalar Higgs decays dominantly to h → νNR. The

final state signal will depend on the decay modes of NR. Two of the allowed decay

modes of NR are shown in Fig. 5.3. The 3-body decay mode NR → νb̄b is completely

dominant over the 2-body decay mode lW or νZ. This is because the 2-body decay is

suppressed by the tiny mixing angle, θ ∼ 10−6 or smaller. Thus the final state signals

for the Higgs bosons at the LHC, in our model, is ν̄νb̄b. Collider signals will include

large missing energy and 2 hard b-jets.

Using Madgraph, we generated events for pp → ν̄νb̄b in the SM for LHC at 14

TeV, 7 Tev, and Tevatron. Using the cuts /ET = 30 GeV, and the pT for each

b-jet to be greater than 20 GeV, we find the cross section to be ∼ 13 pb. The

cross section for Higgs production at the LHC at 14 TeV is ∼ 50 pb for a 120 GeV

Higgs. For a large mass range of the Higgs boson in our model, the branching ratio,
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BR(h → νNR) ∼ 100%. Thus this Higgs signal in our model is observable at the

LHC, and stands out over the SM background. A summary for different energies is

given in Table 5.3.

Collider
√
s Energy Background Signal

LHC 14 TeV 13 pb 50 pb

LHC 7 TeV 2.4 pb 30 pb

Tevatron 2 TeV 240 fb 1 pb

Table 5.3: Collider Searches for mh = 120GeV

The Higgs production at the Tevatron is taken from [56]. For the LHC we used

[57]

5.3.3 ZH → νν̄bb̄ Search at Tevatron

Searches for the standard model higgs in the channel ZH → νν̄bb̄ have been made

at the Tevatron [58]. With 5.2 fb−1 of data they see nothing and are able to place a

limit on this mode in the standard model. Since our final state and cuts are virtually

identical, this search places a limit on the branching ratios of h and NR in our model.

The number of events we expect to see is:

# of events = σ(pp→ h) × BR(h→ NRν) ×BR(NR → νbb̄) × ε2b−tag (5.21)

Where εb−tag is the b-tagging efficiency. One of these branching ratios needs to be

smaller to accomodate the results of ZH → νν̄bb̄ searches. Other possibilities for our

model are that the right handed neutrino’s could decay via a charged higgs.

5.3.4 NR Decays via Charged Higgs

For a sufficiently light, mH± < 250 GeV, the decay of NR → νττ
+τ− via a charged

Higgs becomes important. Taking the yukawa couplings to be order one, and the
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mixing to be maximal between the three higgs doublets, the decay rates for the NR

decays are shown in table 5.4. Taking the tau pT > 20GeV and missing ET > 30GeV

the cross section for pp→ νν̄τ+τ at the Tevatron is 45 fb (123 pb the LHC for 7 TeV

collisions). This background is much smaller than pp → b̄bνν̄ background, as it is a

leptonic (not QCD) process. This signature, two high pT tau’s plus missing energy,

may be easier to see.

Decay Mode Γ(NR → 3x) (GeV) mH± (GeV) BR

NR → νbb̄ 1.56 ∗ 10−9 200 43.8%

NR → νττ
+τ− 1.32 ∗ 10−9 200 37.0%

NR → τcs̄ (or c̄s) 5.80 ∗ 10−10 200 16.3%

NR → νcc̄ 6.60 ∗ 10−11 200 1.85%

NR → νµµ
+µ− 4.00 ∗ 10−11 200 1.12%

NR → νbb̄ 1.56 ∗ 10−9 250 63.6%

NR → νττ
+τ− 5.62 ∗ 10−10 250 22.9%

NR → τ−cs̄ (or τ+c̄s) 2.26 ∗ 10−10 250 9.21%

NR → νcc̄ 6.60 ∗ 10−11 250 2.69%

NR → νµµ
+µ− 2.45 ∗ 10−11 250 1.65%

Table 5.4: Decay Rates for NR, MN = 80 GeV, Mh = 120 GeV

5.4 Conclusions

We have proposed a new approach for the understanding of the tinyness of the light

neutrino masses. We extend the Standard Model gauge symmetry by a discrete Z2

symmetry, and the particle content by adding three right handed neutrinos and two
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additional Higgs doublets. These new Higgs doublets couple only to the neutrinos.

The tiny neutrino masses are generated via the see-saw mechanism with the right

handed neutrino mass matrix at the EW scale, and the Dirac neutrino mass matrix

at the 10−4 GeV scale. The Dirac neutrino mass matrix gets contribution from the

two new EW Higgs doublets with vevs at the EW scale. The Yukawa couplings are of

order one, and the two EW contributions are fine tuned to achieve the Dirac neutrino

mass matrix at the 10−4 level. The model links neutrino physics to collider physics at

the TeV scale. The SM Higgs decays are drastically altered. For a wide range of the

Higgs mass, it decays dominantly to νLNR mode giving rise to the final state ν̄νb̄b,

or ν̄ντ+τ−. This can be tested at the LHC and possibly at the Tevatron.
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CHAPTER 6

CONCLUSIONS

Modifying the Yukawa sector of the Standard model can lead to some interesting

physical results. We showed how the recent exclusion plot from the Tevatron can

be extended significantly if we change our fundamental assumption that the Yukawa

interactions of the Higgs with the fermions are dimension 4. This allows the use of

dimension 6 operators to give mass to the fermions.

The use of vector-like quarks, flavon symmetries, and an additional singlet Higgs

were used to generate the fermion mass hierarchy. This simultaneously alters the

phenomenology of Higgs decays substantially. In particular when the mixing between

the singlet Higgs and the Standard Model Higgs doublet is θ = 26◦, the commonly

dominant bb mode is heavily suppressed. This increases modes such as the two photon

mode. This is the so-called golden mode of the LHC as it has a very distinct signal

for a light Higgs.

Adding a fourth generation of fermions to the MSSM can produce some interesting

challenges. In the MSSM with a fourth generation only a very small range of values

of tan β are allowed by perturbativity. The main issue is that when the Yukawa

couplings are evolved via RGEs, they become non-perturbative very quickly. While

this is only a theoretical issue it hints that there is a problem with trying to add a

fourth generation. We showed that this problem can be resolved if we introduce some

new vector-like quarks that alter the Yukawa couplings by making them an effective

coupling coming from a higher order interaction.

Finally we addressed the problem of neutrino mass. The standard way to give
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neutrino mass is the seesaw mechanism. It predicts that there is a very heavy (MGUT )

right-handed neutrino that gives mass to the light neutrinos of the standard model

via a seesaw relationship that drives the light mass down to the eV scale. It is hard to

find any experimental evidence of these right-handed neutrinos because their mass is

so high. In this work we have described a model that produces right-handed neutrinos

that are able to be produced at colliders. The phenomenology of Higgs decays changes

because the dominant mode becomes h→ NRν → ννbb. This provides an interesting

way to see the neutrino mass mechanism at the LHC.
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