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CHAPTER 1

INTRODUCTION

1.1 Overview

Nanotechnology deals with structures between 1 nanometer and 100 nanometer

in size. The materials at this scale can display properties very different from their

bulk counterparts. These unique nanoscale properties originate from size effects such

as the enhanced surface-to-volume ratio that causes surface atoms to experience po-

tentials different from those in the bulk. In recent years the rapid development of

fabricating and manipulating materials at nanometer scale has opened up a great deal

of opportunities in a variety of scientific research efforts and practical applications.

We can consider different numbers of spatial dimensions at nanometer scale. De-

pending on how many dimensions are confined, the nanomaterials are termed as

quantum well, quantum wire, and quantum dot for constraints on one, two, and

three dimensions, respectively. Of these different systems, the quantum wire of one-

dimensional extension represents the simplest transport path and is of especially great

significance in electronic applications. Two types of one-dimensional nanostructures

were investigated in this dissertation: graphene nanoribbons and silicon nanowires.

Our study on graphene nanoribbons was motivated by the discovery of new exper-

imental methods for graphene, a single sheet of graphite. Novoselov, et al.,[1, 2] using

a micro-mechanical cleavage method to extract a single sheet from three-dimensional

graphite, obtained the two-dimensional form of carbon, i.e., graphene, which is stable

under ambient conditions. The quality of the samples prepared were good enough so

that the ballistic transport[1] and quantum Hall effect[3] were observed easily. The
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ballistic transport makes this new material a promising candidate for future electronic

applications such as ballistic field-effect transistors (FETs). Although experimental

work on graphene systems is recent, the theoretical study of graphene started long

ago, with Wallace’s tight-binding study in 1947 as an early work. [4] After that many

properties of graphite and nanotubes were derived using graphene as starting point.

The experimental achievement of graphene in 2004 attracted great attention immedi-

ately. Two-dimensional graphene has a zero band gap with linear energy dispersion

near the Fermi level and crossing at the Dirac point between valence and conduc-

tion bands. For practical electronic application in semiconductor industry a band

gap could be induced by fabricating graphene nanoribbons. The ribbon structures

have already been successfully obtained with various techniques such as lithographic

patterning,[5] chemical vapor deposition,[6] Joule heating,[7] and unzipping the car-

bon nanotubes (CNTs).[8, 9]

The other one-dimensional structures investigated, silicon nanowires, have a wide

variety of applications from use in batteries to use in energy conversion. Because of the

geometry of silicon nanowire arrays, they are capable of inflating 4 times their normal

size when absorbing lithium ions, which enables the new kind of battery to hold 10

times the charge of existing lithium-ion batteries.[10] The one-dimensional structure

of silicon nanowires can allow p-i-n coaxial solar cells consisting of a p-type silicon

nanowire core surrounded by i- and n-type silicon shells.[11] An advantage of this

core/shell architecture is that carrier separation takes place in the radial rather than

the axial direction, with a carrier collection distance smaller or comparable to the mi-

nority carrier diffusion length. Si nanowire arrays show promise as high-performance,

scalable thermoelectric materials because of the high electron conductivity and low

phonon conductivity in silicon nanowires with rough surface.[12, 13]

The promising applications of these nanostructures require a better theoretical

understanding of their electronic properties. Our computational simulations of elec-
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tronic properties of graphene nanoribbons and silicon nanowires are of great signifi-

cance from both fundamental and practical points of view.
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1.2 Organization of the Dissertation

Chapter 2 presents a brief introduction of the theoretical background and com-

putational approaches utilized throughout this work. We briefly review the theo-

retical formalism of density functional theory, helical band structure methods, and

the transport conductance approach with Landauer formula implemented by using

non-equilibrium Green’s function method.

Chapter 3 is dedicated to the simulation results from a study carried out on

graphene nanoribbons. This theoretical study was primarily motivated by the exper-

imental implementation of isolated graphene sheets which are a single layers of carbon

atoms connected with hexagonal patterns. In this work, we investigated two kinds of

graphene nanoribbons, namely zigzag and armchair graphene nanoribbons according

to the edge shape. For zigzag nanoribbons, the calculations on energetic analysis

and corresponding band structures were carried out. For armchair nanoribbons, we

studied the electronic structure dependence on the ribbon width and on the torsional

deformation. We have four papers related to the ribbon studies. [14–17]

Chapter 4 is devoted to the investigation carried out involving surface passivation

effect in silicon nanowires. Because of the enhanced surface-to-volume ratio in silicon

nanowires compared to bulk silicon, the electronic properties of the nanowires are

strongly dependent on the surface substituents. We studied three kinds of passivating

functional groups such as hydrogen, hydroxyl, and methyl. We also investigated the

hydroxyl surface defects effect on transport property of pure hydrogen-passivated

silicon nanowires. We have two papers based on the simulations presented in this

chapter.[18, 19]

Chapter 5 summarizes this dissertation, focusing on the simulation findings and

the possible further investigation based on the present calculations.
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CHAPTER 2

THEORETICAL BACKGROUND AND APPROACHES

2.1 Overview

All band structure calculations reported in this work were carried out by us-

ing the Helical Nanostructures (HENS) parallax code developed by Dr. Mintmire

at Oklahoma State University. Different from regular band structure codes that

use translational symmetry, this approach takes advantage of the helical symme-

try in one-dimensional nanostructures such as polymers, nanoribbons, nanotubes,

and nanowires. Taking account of the helical symmetry can greatly reduce the

unit cell size, and therefore can achieve major computational savings. Fujita and

Imamura[20, 21] first proposed this idea of utilizing helical symmetry when studying

the electronic structures of polymers with tight binding model. And this approach was

developed for first-principles methods by Dr. Mintmire while at the Naval Research

Laboratory. Mintmire, et al.,[22] using this helical band structure code, successfully

predicted that the armchair single-walled carbon nanotubes would be metallic four

years prior to the experimental verification. Now we apply this code in the study of

graphene nanoribbons and silicon nanowires.

The zero-bias conductance was calculated within a Landauer approach.[23, 24]

The transport code was developed by using the non-equilibrium Green’s function

(NEGF) formalism within a linear response regime. The approach is capable of

taking any general Hamiltonian that can be described with a localized orbital basis,

such as orthogonal, non-orthogonal tight-binding models, and first-principles results

by making use of Gaussian orbitals as in the study of surface defects effect in silicon
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nanowires. The effective Hamiltonian matrix elements and orbital overlap matrix

elements used in the investigation of silicon nanowires were generated by the HENS

parallax self-consistent field (SCF) calculations.

In this chapter, we will briefly describe the background on which the codes are

based, including the density functional theory (DFT), the helical band structure

method and the NEGF approach. Before that the Hartree-Fock method is reviewed

in order to gain some idea on the exchange interaction and the advantage of DFT

when dealing with many-electron system. The discussion in this chapter is mainly

adapted from Refs. [25–27].
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2.2 Hartree-Fock Approximation

For an isolated N -electron atomic or molecular system, in the Born-Oppenheimer

approximation the time-independent non-relativistic Schrödinger equation is given by

ĤΨ = EΨ, (2.1)

where E is the electronic energy, Ψ = Ψ(x1,x2, ...,xN) is the N -electron wavefunction,

and Ĥ is the Hamiltonian operator composed of three terms,

Ĥ = T̂ + V̂ext + V̂ee, (2.2)

where

T̂ =
N∑
i=1

−1

2
∇2
i (2.3)

is the kinetic energy operator,

V̂ext =
N∑
i=1

M∑
α=1

− Zi
|r−Rα|

(2.4)

is the electron-nucleus attraction energy operator, and

V̂ee =
N∑
i 6=j

1

|ri − rj|
(2.5)

is the electron-electron repulsion energy operator. When additional fields are present,

T̂ and V̂ee remain unchanged and extra terms appear in V̂ext.

The total energy ETOT of the system is composed of the electronic energy E and

the nucleus-nucleus repulsion energy

Vnn =
M∑
α<β

ZαZβ
Rαβ

. (2.6)

So we may have

ETOT = E + Vnn. (2.7)
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The coordinate xi of electron i comprises spatial coordinates ri and spin freedom

si. Atomic units are employed here and throughout this dissertation (unless otherwise

specified): the length unit is the Bohr radius, a0 = 0.5292 Å, the charge unit is the

charge of the electron, e, and the mass unit is the mass of the electron, me.

The T̂ and V̂ext in Eq. (2.2) are single-particle operators and the V̂ee is a two-

particle operator from which the complications of many-body problem arises. We

need to make approximation on the many-body wavefunction Ψ(x1,x2, ...,xN). The

simplest way to approximate the wavefunction is through the Hartree approximation,

where the many-body wavefunction Ψ is replaced by a product of single-particle

orbitals, ψi(xi),

Ψ(x1,x2, ...,xN) =
1√
N
ψ1(x1)ψ2(x2) · · ·ψN(xN), (2.8)

where ψi(xi) is a combination of spatial function φi(ri), and spin function σ(si), such

that

ψi(xi) = φi(ri)σ(si), (2.9)

where σ = α, β indicate spin-up and spin-down, respectively. However, the electrons

are Fermions and should obey the Pauli exclusion principle which states that one

quantum state only can be occupied by at most one electron. The wavefunction Ψ

should be anti-symmetric with respect to the interchange of any two electron coordi-

nates xi and xj. Eq. (2.8), however, does not satisfy

Ψ(x1, ...,xi, ...,xj, ...,xN) = −Ψ(x1, ...,xj, ...,xi, ...,xN). (2.10)

To account for Pauli principle the Hartree-Fock approximation was proposed by

writing the wavefunction Ψ as an antisymmetrized product of orbitals explicitly. The

Hartree-Fock wavefunction ΨHF amounts to a linear combination of the terms in Eq.

(2.8) including all permutations of the electron coordinates with the corresponding

8



weights ±1, which can be expressed as a Slater determinant,

ΨHF =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(x1) ψ1(x2) · · · ψ1(xN)

ψ2(x1) ψ2(x2) · · · ψ2(xN)

...
...

...
...

ψN(x1) ψN(x2) · · · ψN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.11)

The Hartree-Fock energy can be evaluated by taking the expectation value of the

Hamiltonian with respect to the Slater determinant Eq. (2.11). This yields

EHF = 〈ΨHF |Ĥ|ΨHF 〉

=
N∑
i=1

∫
ψ∗i (r)

(
−1

2
∇2 + vext(r)

)
ψi(r) dr

+
1

2

N∑
i=1

N∑
j=1

∫ ∫
|ψi(r1)|2|ψj(r2)|2

|r1 − r2|
dr1dr2

− 1

2

N∑
i=1

N∑
j=1

∫ ∫
ψ∗i (r1)ψi(r2)ψ

∗
j (r2)ψj(r1)

|r1 − r2|
δsi,sj

dr1dr2. (2.12)

The last term is of significant interest since it arises from the anti-symmetric nature

of the Hartree-Fock wavefunction. It vanishes when si 6= sj, which is a result of the

Pauli exclusion principle. Therefore it is termed as exchange energy. In order to

obtain the total energy of the system an extra term coming from repulsion energy

between the nucleus must be added to Eq. (2.12).

In most cases, we are more concerned with the ground state of a system. Even

from the ground state property of system, we could get a great deal of information

on the property of excited states in room temperature since the system deviates not

too much from the ground states.

To obtain the Hartree-Fock ground state energy EHF
0 we could minimize Eq.

(2.12) with respect to the orbitals, subject to the constraint that the orbitals remain

orthonormal (〈ψi|ψj〉 = δij). The minimization procedure carried out with the Euler-
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Lagrange method yields the corresponding stationary condition given by

δ

(
EHF

0 −
N∑
i=1

N∑
j=1

εi (〈ψi|ψj〉 − 1)

)
= 0, (2.13)

where εi is the Lagrange multiplier. The corresponding Euler equations are written

as(
−1

2
∇2 + vext(r) +

N∑
j=1

∫
|ψj(r′)|2

|r− r′|
dr′

)
ψi(r)

−
N∑
j=1

∫
ψi(r

′)ψ∗j (r
′)ψj(r)

|r− r′|
δsi,sj

dr′ = εiψi(r),

(2.14)

which is called Hartree-Fock equations.

In general the Hartree-Fock equations can not be solved analytically. One excep-

tion is for the homogeneous electron gas, where the solutions are plane wave functions

because of the constant external potential everywhere. Otherwise, the Hartree-Fock

equations are solved using an iterative method. Because the desired orbitals are re-

quired to construct the one-electron effective potential, this process is known as the

self-consistent field procedure. The self-consistent procedure starts with an initial

guess for the orbitals, and successive iterations are performed with new orbitals gen-

erating the new potentials until the convergence is achieved. The converged orbitals

are the ground state orbitals for that system within the Hartree-Fock approximation.

Hartree-Fock theory is not an exact theory because it only considers a single

determinant for the electron wavefunction. The only case where a single determinant

is the exact solution is for a non-interacting system of electrons.

In real systems the motions of electrons are more correlated than the mean-field

description provided by Hartree-Fock approximation. The interaction energy missed

in Hartree-Fock approximation is termed as the correlation energy EC ,

EC = E0 − EHF , (2.15)
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where E0 is the exact ground state energy. Since Hartree-Fock is a variational ap-

proach, EHF ≥ E0 always holds and the correlation energy takes non-positive value.

A natural way to include correlation effects beyond the Hartree-Fock approxima-

tion is to represent the many-electron wavefunction as a linear combination of Slater

determinants corresponding to ground state and excited states. These post Hartree-

Fock methods, such as configuration interaction, coupled-cluster and Møller-Plesset

theory have been extensively developed in quantum chemistry. Although the pre-

cision may be systematically improved by including more and more excited Slater

determinants, the computational cost increases dramatically with the number of ex-

citation levels. Consequently, these post Hartree-Fock approaches are limited to small

systems such as atoms and small molecules.
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2.3 DFT Methods

2.3.1 Overview

The main idea of density functional theory (DFT) is to describe a system composed

of N interacting electrons via the electron density rather than the many-electron

wavefunction like the Slater determinant used in Hartree-Fock approximation. This

means that the basic variable of the system depends only on 3 spatial coordinates

(x, y, and z) rather than 3N degrees of freedom as in Hartree-Fock approximation.

Additionally, the computational costs are relatively low compared to those methods

based on the complicated many-electron wavefunction such as Hartree-Fock theory

and its descendants.

In 1927 Thomas and Fermi first proposed a model expressing the electronic energy

as a functional of electron density.[28, 29] In the original idea they derived a differential

equation for the electron density without resorting to one-electron orbitals. The

DFT has its conceptual roots in the Thomas-Fermi model, but the firm theoretical

foundation was set up by two Hohenberg-Kohn theorems 37 years after the proposal

of Thomas-Fermi method.

2.3.2 Thomas-Fermi Model

Thomas and Fermi proposed that the electronic energy of a system can be ex-

pressed as the functional of electron density. In this idea the kinetic, exchange, and

correlation contributions can be constructed from the model study on the homoge-

neous electron gas but should be dependent on the position. The electron density

ρ(r) is the central variable, given by

ρ(r) = N

∫
· · ·
∫

dr2 · · · drNΨ∗(r, r2, ..., rN)Ψ(r, r2, ..., rN). (2.16)
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The total energy of a system is expressed as a functional ETF [ρ(r)], which is given by

ETF [ρ(r)] = CF

∫
ρ(r)5/3 dr +

∫
ρ(r)vext(r) dr +

1

2

∫ ∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2. (2.17)

The first term in Eq. (2.17) is the electronic kinetic energy associated with non-

interacting homogeneous electron gas. This form could be obtained by integrating

the kinetic energy density of a homogeneous electron gas t0[ρ(r)],

T TF [ρ(r)] =

∫
t0[ρ(r)] dr, (2.18)

where t0[ρ(r)] is obtained by summing all of the free electron energy states εk = k2

2
,

up to the Fermi wave vector kF = [3π2ρ(r)]1/3,

t0[ρ(r)] =
2

8π3

∫
k2

2
nk dk =

1

2π

∫ kF

0

k4 dk (2.19)

with nk is the density of states in reciprocal space. This leads to the form given in Eq.

(2.17) with coefficient CF = 3
10

(3π2)2/3. The second term is the classical electrostatic

energy of attraction between the nucleus and the electrons, where vext(r) is the static

Coulomb potential arising from the nucleus

vext(r) = −
M∑
α=1

Zα
|r−Rα|

. (2.20)

Finally, the third term in Eq. (2.17) represents the electron-electron interactions of the

system. In the Thomas-Fermi model this term contains only the classical Coulomb

repulsion energy between electrons, known as the Hartree energy.

In order to obtain the ground state density and energy of a system, we may min-

imize the Thomas-Fermi energy functional of Eq. (2.17) with constraint of conserved

total number of electrons N . Applying the Euler-Lagrange method to Eq. (2.17) leads

to the stationary condition

δ

{
ETF [ρ(r)]− µ

(∫
ρ(r) dr−N

)}
= 0, (2.21)

which yields the so-called Thomas-Fermi equations

5

3
CFρ(r)2/3 + vext(r) +

∫
ρ(r′)

|r− r′|
dr′ − µ = 0, (2.22)
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which can be solved directly to obtain the ground state density.

Thomas-Fermi theory suffers from many difficulties. One of them is that it does

not predict bonding between atoms, so molecules and solids can not exist in this

theory. The main source of error is a crude approximation for the kinetic energy.

The kinetic energy represents a substantial portion of the total energy of a system

and so even small errors prove disastrous. Another shortcoming is the oversimplified

description of the electron-electron interactions, which are treated classically and so

do not take into account quantum mechanical effects such as the exchange interaction.

Shortly after the introduction of Thomas-Fermi theory, Dirac[30] developed an

approximation for the exchange interaction based on the homogeneous electron gas.

The resulting formula is simple, and is also a local functional of the density,

EX [ρ(r)] = −CX
∫
ρ(r)4/3 dr (2.23)

with CX = 3
4

(
3
π

)1/3
. When exchange interaction is treated like Eq. (2.23), the theory

is called Thomas-Fermi-Dirac Model. Correlation can also be easily included by using

any local approximation derived from homogeneous electron gas. One commonly used

was proposed by Wigner[31],

EC [ρ(r)] = −0.056

∫
ρ(r)4/3

0.079 + ρ(r)1/3
dr. (2.24)

The Thomas-Fermi model was actually too crude, mainly because the approxima-

tion used for the kinetic energy of the electrons was unable to sustain bound states.

However, it set up the basis for the later development of density functional theory.
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2.3.3 Hohenberg-Kohn Theorems

The Thomas-Fermi approach was developed in the hopes that the energy can

be expressed exclusively in terms of the electron density. This idea, however, was

intuitive at the time. Until 1964, Hohenberg and Kohn[32] proved two theorems that

put the Thomas-Fermi model on solid mathematical grounds.

Theorem 1. The external potential vext(r) is determined, within a trivial additive

constant, by the electron density ρ(r).

Let us suppose there are two different external potentials, vext,1(r) and vext,2(r)

such that they correspond to same ground state electron density ρ(r). Let Ψ1 and

E1 = 〈Ψ1|Ĥ1|Ψ1〉 be the ground state wavefunction and ground state energy of the

Hamiltonian Ĥ1 = T̂ + V̂ext,1 + V̂ee. Let Ψ2 and E2 = 〈Ψ2|Ĥ2|Ψ2〉 be the ground state

wave function and ground state energy of the Hamiltonian Ĥ2 = T̂ + V̂ext,2 + V̂ee.

We assumed that different Hamiltonians correspond to different ground state wave

functions, i.e., Ψ1 6= Ψ2. Applying the variational principle we may have:

E1 < 〈Ψ2|Ĥ1|Ψ2〉 = 〈Ψ2|Ĥ2|Ψ2〉+ 〈Ψ2|Ĥ1 − Ĥ2|Ψ2〉 (2.25)

= E2 +

∫
ρ(r)[vext,1(r)− vext,2(r)] dr (2.26)

Similarly, we have

E2 < 〈Ψ1|Ĥ2|Ψ1〉 = 〈Ψ1|Ĥ1|Ψ1〉 − 〈Ψ1|Ĥ1 − Ĥ2|Ψ1〉 (2.27)

= E1 −
∫
ρ(r)[vext,1(r)− vext,2(r)] dr (2.28)

Therefore adding the two inequalities leads to the result,

E1 + E2 < E2 + E1, (2.29)

which is a contradiction, and as a result there can not be two different external

potentials that correspond to the same electron density for the ground state, unless

they differ by a trivial additive constant.
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Theorem 2. The ground state energy can be obtained variationally : the density that

minimizes the total energy is the exact ground state density.

As just shown, ρ(r) determines vext(r), N and vext(r) determine Ĥ and therefore

Ψ. This ultimately means Ψ is a functional of ρ(r), and so the expectation value of

any operator Ô is also a functional of ρ(r), i.e.,

O[ρ(r)] = 〈Ψ[ρ(r)]|Ô|Ψ[ρ(r)]〉. (2.30)

Assume we have ρ′(r), which determines its own v′ext(r) and wavefunction Ψ′.

Then Ψ′ could be taken as a trial function for the system of interest having external

potential vext and corresponding ρ(r). Thus,

〈Ψ′|Ĥ|Ψ′〉 = 〈Ψ′|T̂ |Ψ′〉+ 〈Ψ′|V̂ee|Ψ′〉+ 〈Ψ′|V̂ext|Ψ′〉 = E[ρ′(r)] ≥ E[ρ(r)] (2.31)

based on the variational argument.
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2.3.4 Kohn-Sham Formulation

Although the Hohenberg-Kohn theorems are extremely powerful, they do not

offer a way to calculate the ground state density of a system in practice. About

one year after the seminal DFT paper by Hohenberg and Kohn, Kohn and Sham

(KS)[33] devised a simple method for carrying out DFT calculations, that retains

the exact nature of DFT. Since the electron density is the central variable rather

than the wavefunction, we could construct our electron density from orbitals which

are obtained from easily solved system such as the non-interacting system. The

Kohn-Sham formulation centers on mapping the full interacting system with the real

potential, onto a fictitious non-interacting system where the electrons are moving in

an effective single-particle KS potential vKS(r). The Kohn-Sham method is still exact

since it yields the same ground state electron density as the real system, but greatly

facilitates the calculation.

First consider the variational problem presented in the second Hohenberg-Kohn

theorem. The ground state energy of a many electron system can be obtained by min-

imizing the energy functional, subject to the constraint that the number of electrons

N is conserved, which leads to

δ

[
F [ρ(r)] +

∫
vext(r)ρ(r) dr− µ

(∫
ρ(r) dr−N

)]
= 0, (2.32)

where F [ρ(r)] = T [ρ(r)] + Vee[ρ(r)] is called universal functional since they do not

depend on the external potentials. The Euler equation is given by

µ =
δF [ρ(r)]

δρ(r)
+ vext(r), (2.33)

where µ is the Lagrange multiplier associated with the constraint of conserved N .

The idea of Kohn and Sham was to set up a system where the kinetic energy could

be determined exactly, since this was a major problem in Thomas-Fermi theory. This
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was achieved by resorting to a non-interacting system of electrons. The correspond-

ing ground state wavefunction ΨKS for this type of system is given exactly by a

determinant of single-particle orbitals ψi(ri),

ΨKS =
1√
N !

det[ψ1(r1)ψ2(r2)...ψN(rN)]. (2.34)

The universal functional F [ρ(r)] was then partitioned into three terms, the first two

of which are known exactly and constitute the majority of the energy, the third being

a small unknown quantity,

F [ρ(r)] = TS[ρ(r)] + EH [ρ(r)] + EXC [ρ(r)]. (2.35)

TS[ρ(r)] is the kinetic energy of a non-interacting electron gas of density ρ(r), EH [ρ(r)]

is the Hartree energy of the electrons

EH [ρ(r)] =
1

2

∫ ∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2, (2.36)

and EXC [ρ(r)] is the exchange correlation energy, which contains the difference be-

tween the exact and non-interacting kinetic energies and also the non-classical contri-

bution to the electron-electron interactions, of which the exchange energy is a part.

In the Kohn-Sham prescription the Euler equation now becomes

µ =
δTS[ρ(r)]

δρ(r)
+ vKS(r) (2.37)

where the effective KS potential vKS(r) is given by

vKS(r) = vext(r) + vH(r) + vXC(r) (2.38)

with the Hartree potential vH(r),

vH(r) =
δEH [ρ(r)]

δρ(r)
=

∫
ρ(r′)

|r− r′|
dr′, (2.39)

and the exchange correlation potential vXC(r),

vXC(r) =
δEXC [ρ(r)]

δρ(r)
. (2.40)
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In Kohn-Sham theory the several potential terms were just rearranged to make up

vKS. So the density obtained when solving the fictitious non-interacting Kohn-Sham

system is the same as the exact ground state density. The ground state density is

obtained in turn by solving the N one-electron Schrödinger equations,[
−1

2
∇2 + vKS(r)

]
ψi(r) = εiψi(r), (2.41)

where εi are Lagrange multiplier corresponding to the orthonormality of the N single-

particle states ψi(r), and the density is constructed from

ρ(r) =
N∑
i=1

|ψi(r)|2. (2.42)

The non-interacting kinetic energy TS[ρ(r)] is therefore given by

TS[ρ(r)] = −1

2

N∑
i=1

∫
ψ∗i (r)∇2ψi(r) dr. (2.43)

Since vKS(r) depends on the density through the exchange correlation and Hartree

potentials, the Kohn-Sham equations must be solved self-consistently as in the Hartree-

Fock method. In order to handle the kinetic energy in an exact manner, N equations

have to be solved in Kohn-Sham theory to obtain the set of Lagrange multiplier εi, as

opposed to one equation that determines µ when solving for the density directly, as

in the Thomas-Fermi approach. However an advantage of the Kohn-Sham method is

that as the complexity of a system increases, with N increasing, the problem becomes

no more difficult, only the number of single-particle equations to be solved increases.

Although exact in principle, Kohn-Sham theory is approximate in practice because

of the unknown exchange correlation functional EXC [ρ(r)]. An implicit definition of

EXC [ρ(r)] can be given by,

EXC [ρ(r)] = T [ρ(r)]− TS[ρ(r)] + Eee[ρ(r)]− EH [ρ(r)] (2.44)

where T [ρ(r)] and Eee[ρ(r)] are the exact kinetic and electron-electron interaction

energies respectively. The intention of Kohn and Sham was to make the unknown
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contribution to the total energy of the non-interacting system as small as possible,

and this is indeed the case with the exchange correlation energy, however it is still an

important contribution since the binding energy of many systems is about the same

size as EXC [ρ(r)], so an accurate description of exchange and correlation is crucial

for the prediction of binding properties.
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2.4 Exchange Correlation Approximations

2.4.1 Overview

While DFT is an exact theory of ground state properties, practical applications

of DFT must be based on approximations for the unknown exchange correlation po-

tential which describes the effects of Pauli exclusion principle and Coulomb potential

beyond the pure electrostatic interaction between electrons in an average sense. If

the exact exchange correlation potential is obtained, the many-body problem can be

solved exactly.

All exchange correlation functionals can be written in a general form

EXC [ρ(r)] =

∫
ρ(r)εXC(r) dr, (2.45)

where εXC(r) is the exchange correlation energy density.

In DFT, the exchange correlation functionals can be approximated in different

levels by the number and kind of their local ingredients.[34] The simplest one is the

local density approximation in which only the local electron density is considered.

In the high level approximation such as generalized gradient approximation (GGA),

the gradient of electron density ∇ρ(r) is also included. We will discuss local density

approximation (LDA) and GGA especially PBE with more details because these two

kinds of functionals are extensively used in our simulations.

2.4.2 Local Density Approximation

In 1951, Slater[35] suggested a model in which the kinetic energy would be treated

as in the Hartree-Fock model, but where the exchange term was replaced by a func-

tional of electron density vX [ρ(r)]. This work lead to what is known as the Xα-SCF

method. In the derivation of Slater’s one-electron exchange potential, we follow the

21



procedure of Kohn and Sham.[33]

We may begin by writing the Hartree-Fock exchange operator in the form of an

equivalent potential acting on the kth wave function,

vxk(x) = −
N∑
k′=1

∫
ψ∗k(x)ψ∗k′(x′)ψk′(x)ψk(x

′)

|r− r′|
dx′ψ∗k(x)ψk(x). (2.46)

Next we make an approximation and simplification assuming the wave functions can

be approximated by plane waves as in free electron gas. This leads to

vxk(r) = −kF (r)

π

[
1 +

k2
F (r)− k2

2kkF (r)

]
ln

∣∣∣∣k + kF (r)

k − kF (r)

∣∣∣∣ (2.47)

with kF (r) = (3π2ρ(r))
1/3

. Then, we average vxk over the occupied state k, which

results in

vX [ρ(r)] = − 3

2π
(3π2)1/3ρ(r)1/3, (2.48)

which is the original Slater’s exchange potential.

Since electron density adjustments are mainly affected by redistribution of the

electrons near the Fermi level, it is reasonable to take k = kF (r) in Eq. (2.47), which

is equivalent to taking the effective exchange potential for a state at the top of the

Fermi distributions. This leads to

vX [ρ(r)] = − 1

π
(3π2)1/3ρ(r)1/3, (2.49)

which is the expression for exchange potential that Kohn and Sham derived in 1965.

Eq. (2.49) is different from Slater’s by a factor of 2
3
. The paper published by Kohn

and Sham in 1965 is not the first addressing this difference of two-thirds. Actually in

1954, Gáspár already obtained the same kind of dependence of the exchange energy

on the electron density as that of Kohn and Sham.

The model, in which vX [ρ(r)] is proportional to ρ(r)1/3, became known as the Xα

method, where the exchange term is written in the form,

− 3

2π
α(3π2)1/3ρ(r)1/3 (2.50)
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with α = 1 for Slater’s model and α = 2/3 for that of Gáspár, Kohn, and Sham.

In Eq. (2.50), we only include the exchange effect. Together with this exchange

potential, a commonly used correlation formula is that of Perdew and Zunger[36]

which makes use of accurate quantum Monte Carlo data for the homogeneous electron

gas generated by Ceperley and Alder[37] to fix the coefficients in the interpolation

formula.

Our local density functional (LDF) approach employs the Gáspár-Kohn-Sham

exchange potential and neglects the correlation effect. This approach is also commonly

referred to as the local density approximation (LDA).

2.4.3 PBE Generalized Gradient Approximation

For exchange correlation energy the LDA makes use of the result obtained from

homogeneous electron gas at each point irrespective of the non-homogeneity of the

real electron density and is the simplest approximation for exchange and correla-

tion functionals. For real system of non-homogeneous electron density the exchange

correlation energy can be significantly different from that of homogeneous electron

gas. The gradient and higher spatial derivatives of the electron density are needed to

account for this deviation.

Perdew and colleges made great contributions on the development of GGA func-

tionals. [34, 36, 38–42] They introduced an analytic function known as the enhance-

ment factor, FXC [ρ(r),∇ρ(r)], that accounts for the non-homogeneity of electron

density and modifies the LDA energy density through

EGGA
XC [ρ(r)] =

∫
ρ(r)εhomXC [ρ(r)]FXC [ρ(r),∇ρ(r)] dr. (2.51)

Usually the GGA enhancement factor is written in terms of the Seitz radius, rs, which

is related to the electron density ρ(r) by

rs =

(
3

4πρ(r)

)1/3

, (2.52)
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and the dimensionless reduced density gradient s(r),

s(r) =
|∇ρ(r)|

2kF (r)ρ(r)
(2.53)

with kF being the Fermi wave vector,

kF (r) =
(
3π2ρ(r)

)1/3
. (2.54)

At present the most popular GGA functional in physics community is PBE.[38]

The PBE functional EPBE
XC is composed of two parts : PBE exchange EPBE

X and

PBE correlation EPBE
C functionals. The exchange PBE functional is written in the

following form,

EPBE
X [ρ(r)] =

∫
d3rρ(r)εhomX (ρ)FX(s) (2.55)

with

FX(s) = 1 + k − k

1 + µs2/k
(2.56)

where k = 0.804, µ = 0.21951. This exchange energy obeys the spin-scaling relation-

ship,[43]

EPBE
X [ρα, ρβ] =

1

2
EPBE
X [2ρα] +

1

2
EPBE
X [2ρβ]. (2.57)

And the PBE correlation energy functional is given by

EPBE
C [ρα, ρβ] =

∫
d3rρ(r)[εhomC (rs, ζ) +H(rs, ζ, t)], (2.58)

where the non-local part H(rs, ζ, t) depends on the parameter t including the density

gradient via

H = γφ3 ln

{
1 +

β

γ
t2
[

1 + At2

1 + At2 + A2t4

]}
(2.59)

where β = 0.066725, γ = 0.03191, and

ζ = (ρα − ρβ)/ρ(r)

t = (π/4)1/2(9π/4)1/6 2

φ(ζ)r
1/4
s

φ(ζ) =
1

2

[
(1 + ζ)2/3 + (1− ζ)2/3

]
A =

(β/γ)

e−εC(rs,ζ)/γφ3 − 1
.
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The GGA takes account of the gradient of the electron density. For systems of

slowly varying electron density, the GGA has proved to be an improvement over

LDA. For example, GGAs lead to improvement on total energies,[44] atomization

energies,[44, 45] energy barriers, and structural energy differences.[46, 47]
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2.5 Gaussian Basis Sets

When molecular calculations are performed, basis functions are employed to con-

struct the molecular orbitals, which are expanded as a linear combination of such

functions with the coefficients to be determined in the self consistent procedure.

A natural choice for basis functions would be Slater-type atomic orbitals decaying

exponentially with distance from the nuclei. Boys[48] pointed out that these Slater-

type orbitals could be approximated as linear combinations of Gaussian-type orbitals

(GTOs) instead. Because it is easier to calculate overlap and other integrals involved

in the construction of Hamiltonian matrix with Gaussian basis functions, this led to

significant computational savings.

In Cartesian coordinate system, Gaussian primitive basis functions are defined as

products of the integer powers of Cartesian coordinates and a Gaussian function:

χ(r, α, n̂) = xnxynyznze−αr
2

(2.60)

and the corresponding normalization constant is given by

N(α, n̂) =

(
2α

π

)3/4
(4α)n/2√

(2nx − 1)!!(2ny − 1)!!(2nz − 1)!!
(2.61)

with n = nx + ny + nz.

At present, there are various basis sets composed of Gaussian-type orbitals. The

smallest one are called minimal basis sets typically composed of a minimum number

of basis functions required to represent all of the electrons on each atom. The most

common minimal basis set is STO-nG, where n is an integer. The value of n represents

the number of Gaussian primitive functions comprising a single basis function. In

these basis sets, the same number of Gaussian primitives are used to construct core

and valence orbitals. Minimal basis sets are usually used in testing calculations to

get the rough idea.
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Other more complicated basis sets are proposed to improve the quality of the

minimal basis set. Based on the observation that the valence orbitals have greater

effects on chemical properties, a split-valence basis set was proposed such that the

number of functions used to describe the valence electrons is doubled but a single

function is used for the inner shells. The notation for the split-valence basis sets is

typically X-YZG. In this convention, X represents the number of primitive Gaussians

comprising each core atomic orbital basis function. The Y and Z indicate that the

valence orbitals are composed of two basis functions each, the first one composed of a

linear combination of Y primitive Gaussian functions, the other composed of a linear

combination of Z primitive Gaussian functions. For example, in the 3-21G basis set,

three Gaussian functions describe the core orbitals and the valence electrons are also

represented by three Gaussians of which two are used for the contracted part and one

for the diffuse part.

Other improvement is the addition of polarization functions, indicated by an as-

terisk, ∗. Two asterisks, ∗∗, indicate that polarization functions are also added to

light atoms (hydrogen and helium). These polarization functions have one more node.

For example, the only basis function located on a hydrogen atom in a minimal basis

set would be a function approximating the 1s atomic orbital. When polarization is

added to this basis set, a p-function is also added to the basis set. This adds some

extra flexibility within the basis set, effectively allowing molecular orbitals involving

the hydrogen atoms to be more asymmetric about the hydrogen nucleus.

Throughout this work, we use 6-31G* split valence basis sets to model the twisted

armchair graphene nanoribbons in Chapter 3. The 3-21G split valence set is used

in the simulations of silicon nanowires discussed in Chapter 4. And we also use

uncontracted basis sets[49] such as 7s3p for C atoms and 3s for H atoms in the study

of planar graphene nanoribbons presented in Chapter 3.
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2.6 Helical Band Structure Methods

For a one-dimensional system with helical symmetry such as carbon nanotubes, we

can define a screw operation in terms of a translation l down the z axis in conjunction

with a right-handed rotation φ about the z axis. That is,

S r = S(a, φ) r =


x cosφ− y sinφ

x sinφ+ y cosφ

z + l

 . (2.62)

Because the symmetry group generated by the screw operation S is isomorphic with

the one-dimensional translation group, we may have a generalized Bloch’s theorem

in which the one-electron wavefunctions will transform according to

Smψi(r;κ) = eiκm ψi(r;κ). (2.63)

The quantity κ is a dimensionless quantity which is conventionally restricted to

−π < κ ≤ π. For the case of pure translation, i.e., φ = 0, κ corresponds to a

normalized quasi-momentum in terms of κ = kl, where k is the traditional reciprocal

wavevector.

The one-electron wavefunctions ψi are constructed from a linear combination

of Bloch functions ϕj, which are in turn constructed from a linear combination of

nuclear-centered Gaussian-type orbitals χj(r) in forms of

ψi(r;κ) =
∑
j

cji(κ)ϕj(r;κ) (2.64)

ϕj(r;κ) =
∑
m

e−iκm Sm χj(r). (2.65)

The detailed description and formulism derivation of this helical method can be

found in Ref. [50].
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2.7 Landauer Approach for Quantum Conductance Calculation

The conductance calculations have been extensively discussed in literature. This

section is mainly adapted from Refs. [51, 52] with more details carried out.

The transport calculations are based on phase-coherent transport of electrons

through the device region from the left semi-infinite lead to the right semi-infinite lead

of a linear system. In Landauer approach,[23, 24] the conductance is proportional to

the transmission function as follows

Gcon =
2e2

h
T , (2.66)

where both the conductance Gcon and the transmission function T are functions of

energy E. T represents the probability that an electron injected at one end of the

conductor will emit at the other end. The transmission function T of the device can

be expressed in terms of the Green’s functions of the conductor and the coupling of

the conductor to the leads,

T = Tr[ΓLG
RΓRG

A], (2.67)

where the advanced Green’s function GA is the Hermitian conjugate of the retarded

Green’s function GR of the conductor describing the dynamics of the electrons inside

the conductor, and the Γ{L,R} accounts for the coupling of the conductor to the leads.

To compute the Green’s function of the conductor we could start with the retarded

Green’s function of the whole system including the conductor and two semi-infinite

leads,

(ε−H)G = I, (2.68)

where ε = E+ iη (η is an arbitrarily small positive real number) is a complex energy,

I is the identity matrix, and we neglect the superscript in G for simplicity. Since the

whole system can be conceptually divided into three distinct regions : a conductor
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region, a left-hand lead, and a right-hand lead, Eq. (2.68) can be expressed in terms

of sub-matrices that correspond to different subsystems,
(ε−HL) hLC 0

h†LC (ε−HC) hCR

0 h†CR (ε−HR)




GL GLC GLCR

GCL GC GCR

GLRC GRC GR

 = I. (2.69)

Since we are more concerned with the Green’s function of conductor, the equations

involving the GC can be written explicitly as follows :

(ε−HL)GLC + hLCGC + 0 = 0 (2.70)

h†LCGLC + (ε−HC)GC + hCRGRC = I (2.71)

0 + h†CRGC + (ε−HR)GRC = 0 (2.72)

From Eq. (2.72) we have

GRC = −(ε−HR)−1h†CRGC . (2.73)

From Eq. (2.71) we get

GLC = −(ε−HL)−1hLCGC . (2.74)

Substituting the expressions for GRC and GLC into Eq. (2.72) leads to

−h†LC(ε−HL)−1hLCGC + (ε−HC)GC − hCR(ε−HR)−1h†CRGC = I, (2.75)

which suggests

GC =
[
(ε−HC)− h†LC(ε−HL)−1hLC − hCR(ε−HR)−1h†CR

]−1

. (2.76)

Then we can write the expression of the retarded Green’s function of a system as

GR = [(ε−HC)− ΣR
L − ΣR

R]−1 (2.77)

where ΣR
{L,R} is the retarded self-energy terms describing the coupling between the

conductor and semi-infinite leads, and is given by

ΣR
L = h†LCg

R
LhLC ,Σ

R
R = hCRg

R
Rh
†
CR (2.78)
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with gRL and gRR are the Green’s functions of the semi-infinite leads (ε−HL)−1 and (ε−

HR)−1, respectively. The self-energy term can be viewed as an effective Hamiltonian

term coming from the interaction of the conductor with leads. The coupling matrices

Γ{L,R} can be easily obtained as

Γ{L,R} = i[ΣR
{L,R} − ΣA

{L,R}], (2.79)

where the advanced self-energy ΣA
{L,R} is the Hermitian conjugate of the retarded

self-energy ΣR
{L,R}.

The core of the problem lies in the calculation of the Green’s functions of the semi-

infinite leads. The lead Green’s function in an orthogonal localized-orbital Hamil-

tonian can be computed with an efficient principal layer method and we take the

right-hand side lead as an example.

With increasing the distance between two localized orbitals, the overlap and in-

teraction matrix elements are smaller and smaller. Beyond some length, the elements

could be considered as zero. So the semi-infinite lead can be viewed as an infinite stack

of principal layers with only nonzero nearest-neighbor interactions. This corresponds

to transforming the original system into a linear chain of principal layers. Within this

approach, the Green’s function equation for right-hand lead can be expressed as

ε−H00 H01 0 0 · · ·

H†01 ε−H11 H12 0 · · ·

0 H†12 ε−H22 H23 · · ·

0 0 H†32 ε−H33 · · ·
...

...
...

... · · ·





G00 G01 G02 G03 · · ·

G10 G11 G12 G13 · · ·

G20 G21 G22 G23 · · ·

G30 G31 G32 G33 · · ·
...

...
...

... · · ·


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=



I 0 0 0 · · ·

0 I 0 0 · · ·

0 0 I 0 · · ·

0 0 0 I · · ·
...

...
...

...
...


(2.80)

which can be expanded explicitly as follows

(ε−H00)G00 = I +H01G10

(ε−H00)G10 = H†01G00 +H01G20

· · ·

(ε−H00)Gn0 = H†01Gn−1,0 +H01Gn+1,0

(2.81)

where Hnm and Gnm are the matrix elements of the Hamiltonian and Green’s function

between the layer orbitals, and we assume that in a bulk system H00 = H11 = · · · and

H01 = H12 = · · · . In the iterative method proposed by Lopez-Sancho et al.,[53, 54]

this chain can be transformed such than the Green’s function of an individual layer

can be expressed in terms of Green’s function of the preceding (or following) one. This

is achieved by introducing transfer matrices T and T̄ , defined such that G10 = TG00

and G00 = T̄G10. The transfer matrix can be easily computed from the Hamiltonian

matrix elements via an iterative procedure. T and T̄ can be written as

T = t0 + t̃0t1 + t̃0t̃1t2 + · · ·+ t̃0t̃1t̃2 · · · tn

T̄ = t̃0 + t0 + t0t1t̃2 + · · ·+ t0t1t2 · · · t̃n

where ti and t̃i are defined via the recursion formulas

ti = (I − ti−1t̃i−1 − t̃i−1ti−1)
−1t2i−1

t̃i = (I − ti−1t̃i−1 − t̃i−1ti−1)
−1t̃2i−1
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with initial values

t0 = (ε−H00)
−1H†01

t̃0 = (ε−H00)
−1H01

The process is repeated until tn, t̃n ≤ δ with δ arbitrarily small. In our calculations,

we fixed δ at 10−6.

We always order the basis function from left to right in the matrix. Since there

is only non-negligible interaction between the conductor and the surface layer close

to the conductor, only the top-left block G00 in Eq. (2.80) is needed. So the nonzero

part of surface Green’s function of right lead can be written as

gR,00 = G00 = [ε−H00 −H01T ]−1 . (2.82)

and similarly the nonzero part of the surface Green’s function of left lead can be

written as

gL,00 =
[
ε−H00 −H†01T̄

]−1

(2.83)

In the case of general non-orthogonal orbitals, the above derivations still apply except

the following substitutions

ε−H00 −→ εS00 −H00

H01 −→ −(εS01 −H01)

where the matrix S represents the overlap between the localized orbitals.
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CHAPTER 3

GRAPHENE NANORIBBONS

3.1 Introduction

Graphene has attracted a great deal of research interest since its isolation via me-

chanical exfoliation[1, 2] because graphene exhibits many unusual properties such as

massless fermions, minimum quantum conductance, and anomalous integer quantum

Hall effect occurring at half-integer filling factors.[55] In addition graphene sheets

show promise for future nanoelectronic applications, such as ultrafast transistors[56]

because of the high carrier mobility.[3] Graphene materials are expected to play an

important role in future electronic applications and even replace silicon some day.

Two-dimensional graphene, however, has a zero band gap with linear energy disper-

sion near the Fermi level. For practical application in the semiconductor industry a

band gap could be induced by making graphene nanoribbons (GNRs) via a variety

of methods such as lithographic patterning,[5] chemical vapor deposition,[6] Joule

heating,[7] and unzipping the carbon nanotubes (CNTs).[8, 9]

Graphene has two major types of high symmetry structures, namely those with

edges that have either armchair or zigzag configurations. Fujita, et al., [57–59] carried

out tight-binding studies of these systems using them as model structures to study

edge defects in CNTs. It was predicted that in zigzag GNRs there were strongly

localized edge states near the Fermi level, suggesting electronic structure and low-

bias transport very sensitive to different edge passivations. The localized edge states

were not expected in the armchair GNRs. The electronic energy gaps of armchair

GNRs were calculated to have strong dependence on the ribbon widths. When we
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started the project on GNRs in summer 2006, there were very few simulations done

with density functional theory.[60, 61]

Most studies were focused on the planar GNRs so far. there were only several

investigations addressing the torsional deformation in GNRs. Bets and Yakobson,[62]

using Molecular Dynamics Simulations, found that the narrow bare GNRs prefer the

twisted structure rather than the planar geometry. Hod and Scuseria[63] reported

the density functional theory calculations on twisted nanoribbons of finite length and

found the gap between the highest occupied molecular orbital (HOMO) and the lowest

unoccupied molecular orbital (LUMO) is tunable by torsional deformation.

In this chapter, we studied the electronic structures of planar zigzag and arm-

chair graphene nanoribbons. In addition, we investigated how the armchair graphene

nanoribbons respond under applied twist about the ribbon axis.
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3.2 Planar Zigzag Graphene Nanoribbons

3.2.1 Overview

Figure 3.1 depicts the model structure of a zigzag graphene nanoribbon with

ribbon width N = 6. Here the width N refers to the number of zigzag chains along

the transverse direction. In each unit cell there are 2N C atoms and 2 H atoms. The

infinite ribbon could be obtained by repeating the unit cell framed by dashed line

in Figure 3.1 periodically along two sides with translation length l = 2.46 Å. In our

calculations we fixed the C-C bond length at 1.42 Å and C-H bond length at 1.08 Å.

We define the ribbon extension direction as the z axis perpendicular to the transverse

direction. The right-handed rotation φ of screw operation about the z axis is zero in

this case. We investigated ribbons with even values of N from 6 - 20. We used a 7s3p

Gaussian basis for C, a 3s basis for H,[49] and 32 κ points were evenly sampled over

the central Brillouin zone.

For the zigzag graphene nanoribbons we carried out the non-spin-polarized (NSP),

ferromagnetic (FM), and antiferromagnetic (AFM) calculations. The energetic trend

on these states corresponding to different spin configurations was analyzed. We found

the antiferromagnetic states are energetically favorable. The zigzag ribbons exhibited

strongly localized edge states near the Fermi level. Our results with Gaussian basis

sets are consistent with others’ results obtained by using tight-binding model and

density functional theory simulations with numerical atomic orbital methods. [60,

64, 65]
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Figure 3.1: Sample zigzag GNRs with ribbon width N = 6. The numbering of the

unit cells is shown at the left side of the ribbon with only the unit cell labeled 0

shown in their entirety. Each unit cell is composed of 2N C atoms and 2 H atoms.

The 2N C atoms in unit cell 0 are numbered as shown. The index of zigzag chains is

indicated at bottom from left to right.
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3.2.2 Energetic Results

Figure 3.2 depicts the total energies divided by 2N and energy differences between

different spin configurations as a function of ribbon width N . The corresponding

numerical values are presented in Table 3.1. For the ribbon of same width, the

antiferromagnetic state has the lowest energy and is energetically favorable. For

example, for ribbon of N = 6, the energy of non-spin-polarized state is 0.20 meV

higher than that of ferromagnetic state, which is further stabilized by about 0.032

meV in antiferromagnetic ribbon. As the ribbon width increases, the edges play a

less important role and the total energies have more contributions from the bulk C

atoms in the middle. So the energy difference is decreasing with increasing ribbon

width. When ribbon width N approaches 20, the energy difference between FM

and AFM states has already reduced to 0.00016 meV, suggesting for even bigger

ribbons the preference to one of these two states is eliminated. In order to observe

the AFM ground state, low temperature is needed since the thermal energy at room

temperature is KBT = 26 meV with KB = 8.617343 × 10−5 eV/K and T = 300K,

which will be able to excite the system and mix the various spin configurations.
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(a) (b)

Figure 3.2: (a) Total energy differences divided by 2N between non-spin-polarized

and ferromagnetic states in zigzag GNRs as a function of ribbon width N . (b) Total

energy differences divided by 2N between ferromagnetic and antiferromagnetic states

in zigzag GNRs as a function of ribbon width N .

Table 3.1: Total energies divided by 2N and energy differences between different spin

configurations of zigzag GNRs with various ribbon widths

width N NSP (eV) FM (eV) AFM (eV) NSP-FM (meV) FM-AFM (meV)

6 -37.4358823900 -37.4360743104 -37.4361059109 0.191920458334 0.0316004916669

8 -37.4147775171 -37.4149432678 -37.4149598679 0.165750693746 0.0166001437520

10 -37.4021060503 -37.4022471735 -37.4022567277 0.141123230001 0.0095541400071

12 -37.3936847190 -37.3938081844 -37.3938136308 0.123465429169 0.0054464166652

14 -37.3876676725 -37.3877772624 -37.3877815346 0.109589875002 0.0042721500009

16 -37.3831570254 -37.3832537549 -37.3832574688 0.096729465625 0.0037139687521

18 -37.3796450210 -37.3797317062 -37.3797335467 0.086685177777 0.0018405499986

20 -37.3768360202 -37.3769151528 -37.3769153107 0.079132679993 0.0001578675040
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3.2.3 Non-spin-polarized LDF Band Structures

In the non-spin-polarized calculations, we assumed the spin-up and spin-down

states are degenerate. The typical calculated band structures are presented in Fig-

ures 3.3, 3.4, and 3.5, corresponding to the ribbon of widths N = 6, 8, and 10,

respectively. They all exhibited nearly flat bands crossing the Fermi level. The flat

region in Brillouin zone is ranging from about κ = 2π/3 to the zone edge, consis-

tent with the tight-binding calculations.[57] Because the density of states is inversely

proportional to the slope of the energy dispersion, the flatness in lower-lying bands

generates high density of states around the Fermi level. We will show these states are

localized on the ribbon edges by plotting the orbital density in real space.
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Figure 3.3: Calculated non-spin-polarized band structure and density of states of

zigzag GNRs of width N = 6. Γ (X) corresponds to the center (edge) of the first

Brillouin zone.
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Figure 3.4: Calculated non-spin-polarized band structure and density of states of

zigzag GNRs of width N = 8. Γ (X) corresponds to the center (edge) of the first

Brillouin zone.
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Figure 3.5: Calculated non-spin-polarized band structure and density of states of

zigzag GNRs of width N = 10. Γ (X) corresponds to the center (edge) of the first

Brillouin zone.
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Figure 3.6 depicts the orbital density of zigzag GNRs of width N = 6. The

wavevectors are sampled at 0.625π, 0.75π, 0.875π, and π in the Brillouin zone. For

state at the zone edge with κ = π, the wavefunctions are completely localized at the

edge C sites. When κ is moving away from the zone edge, the orbital density extends

and decays towards the ribbon center. If κ = 0.625π, the states become extended

across the transverse direction. Our simulation results are consistent with the previous

tight-binding prediction in which the near-gap state is completely localized at the edge

sites when κ = π, and starts to gradually penetrate into the inner sites as κ deviates

from π, reaching the extended state at κ = 2π/3.[57]

Figure 3.6: Calculated HOMO band orbital densities of zigzag GNRs of width N =

6, calculated at wavevectors (a) π, (b) 0.875π, (c) 0.75π, and (d) 0.625π, respectively.

Calculated orbital densities for the LUMO band are given for wavevectors (e) π, (f)

0.875π, (g) 0.75π, and (h) 0.625π, respectively. The isovalue is taken to be 0.008 for

all plots.
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3.2.4 Ferromagnetic LDF Band Structures

If we do not apply constrains of spin degeneracy, spin-polarized calculations gave

us ferromagnetic states. The typical band structures are shown in Figures 3.7, 3.8,

and 3.9, corresponding to the ribbon of widths N = 6, 8, and 10, respectively. In

this case the spin degeneracy was lifted. Compared to the non-spin-polarized results,

the flat bands and the corresponding high density of states around Fermi level were

not observed. Instead two peaks in density of states appeared with centers at energy

points 0.3 eV above and below the Fermi level. For electron excitation, the spin-

down states dominate the density of states. For hole excitation, the spin-up states

contribute more.
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Figure 3.7: Calculated ferromagnetic band structure and density of states of zigzag

GNRs of width N = 6. Γ (X) corresponds to the center (edge) of the first Brillouin

zone.
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Figure 3.8: Calculated ferromagnetic band structure and density of states of zigzag

GNRs of width N = 8. Γ (X) corresponds to the center (edge) of the first Brillouin

zone.
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Figure 3.9: Calculated ferromagnetic band structure and density of states of zigzag

GNRs of width N = 10. Γ (X) corresponds to the center (edge) of the first Brillouin

zone.
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3.2.5 Antiferromagnetic LDF Band Structures

We also carried out the calculations with constraint of applying inversion sym-

metry about the z axis in the exchange correlation potential. From this, we got the

antiferromagnetic ground states. The typical band structures are depicted in Fig-

ures 3.10, 3.11, and 3.12, corresponding to the ribbon of widths N = 6, 8, and 10,

respectively. In Figure 3.13 we depicts the energy gaps as a function of ribbon width

N . The corresponding numerical values of gaps are listed in Table 3.2. The ribbons

exhibited direct gap nature. However the gaps open up at 0.70π rather than the

zone center or edge. When increasing ribbon width, the band gaps are decreasing

monotonically. Our results are consistent with that of Son, et al.[64] In their studies,

the effect of electric field was also addressed. When an electric field is applied along

the transverse direction, spin-up and spin-down electrons respond in different way.

The spin-up electrons are moving toward the Fermi level, leading to smaller gap even

gap closure for big enough field. The spin-down electrons are moving away from the

Fermi level and will not play a role in the electron transport within some voltages.

The response of electrons under applied electric field renders the antiferromagnetic

graphene nanoribbons a half metal.
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Figure 3.10: Calculated antiferromagnetic band structure and density of states of

zigzag GNRs of width N = 6. Γ (X) corresponds to the center (edge) of the first

Brillouin zone.
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Figure 3.11: Calculated antiferromagnetic band structure and density of states of

zigzag GNRs of width N = 8. Γ (X) corresponds to the center (edge) of the first

Brillouin zone.
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Figure 3.12: Calculated antiferromagnetic band structure and density of states of

zigzag GNRs of width N = 10. Γ (X) corresponds to the center (edge) of the first

Brillouin zone.
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Figure 3.13: Magnitude of the HOMO-LUMO antiferromagnetic gap of the zigzag

GNRs as a function of ribbon width N .

Table 3.2: Energy gaps of zigzag GNRs with various ribbon widths

Ribbon width N Energy gap (eV) Ribbon width N Energy gap (eV)

4 0.5732 14 0.3008

6 0.4972 16 0.2790

8 0.4341 18 0.2618

10 0.3901 20 0.2539

12 0.3404
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3.2.6 Summary

We calculated the electronic structures of zigzag graphene nanoribbons for dif-

ferent spin configurations. It was found that there were localized edge states, which

make the electronic properties of zigzag GNRs tunable by edge chemistry. [16, 66, 67]

The zigzag GNRs exhibited ground states with two ferromagnetic edges antiferomag-

netically coupled. With transverse electric field applied, the zigzag GNRs were found

to be half metals,[64] which provides a suitable platform for the spintronics. This

half-metallicity is further enhanced by edge-oxidization[68] and edge modifications

with NO2 and CH3 terminations on opposite sides.[69]
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3.3 Planar Armchair Graphene Nanoribbons

3.3.1 Overview

Nakada et al.,[58] with nearest-neighbor tight-binding model, predicted that the

energy gaps of armchair GNRs are strongly dependent on the ribbon width N . If the

ribbon width satisfies N = 3m + 2 with m being an integer, the ribbon is metallic

of zero gap. Otherwise, the semiconducting energy gaps monotonically decrease with

increasing ribbon widths. Our first principles results with local density functional

(LDF) do not agree with the TBM prediction. Especially in our simulations, there

is no metallic ribbon. In order to elucidate the discrepancy between TBM and LDF

results, we introduced the third-nearest-neighbor interaction as perturbation correc-

tion to the nearest-neighbor TBM and show that the longer range interactions play

an important role in describing the band gaps of armchair graphene nanoribbons.
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3.3.2 Model Structure

Figure 3.14 depicts the model structure of armchair graphene nanoribbons with

ribbon width N = 7 and 8. Here the width N is referred to as the number of dimer

lines along the transverse direction. Depending on the way of constructing the whole

infinite ribbon from the basic helical cell as framed by dashed line, the armchair

graphene nanoribbons are classified into two categories : symmetric and staggered

ribbons. For symmetric ribbons as shown in Figure 3.14 (a), the translation length l

and rotation angle φ is 4.26 Å and 0 degree, respectively, and in each unit cell there

are 2N C atoms and 4 H atoms. For staggered ribbons as shown in Figure 3.14 (b),

the translation length l and rotation angle φ is 2.13 Å and 180 degrees, respectively,

and each unit cell contains N C atoms and 2 H atoms. In our calculations the C-C

bond length and C-H bond length are fixed at 1.42 Å and 1.08 Å, respectively.
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(a) (b)

Figure 3.14: (a) Symmetric armchair GNRs with ribbon width N = 7. Each unit

cell is composed of 2N C atoms and 4 H atoms. (b) Staggered armchair GNRs with

ribbon width N = 8. Each unit cell is composed of N C atoms and 2 H atoms. For

(a) and (b) the numbering of the unit cells is shown at the left edge of each figure

with only the unit cells labeled 0 shown in their entirety. The C atoms in unit cell 0

are numbered as shown. The index of dimer lines is indicated at bottom from left to

right.
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3.3.3 Local Density Functional Results

We carried out the local density functional calculations on armchair graphene

nanoribbons with various widths ranging from 4 to 24. We used a 7s3p Gaussian

basis for C, a 3s basis for H, and 32 κ points were evenly sampled over the central

Brillouin zone.

Figure 3.15 depicts the band structures for armchair GNRs of widths N = 7,

8, and 9. and in Figure 3.16 we present the energy gap as a function of ribbon

width N using the gap values listed in Table 3.3. In the calculations of staggered

armchair GNRs, we were making use of the helical symmetry of π rotation. The

presented band structures, however, have already been folded to be within the regular

Brillouin zone corresponding to the translational operation. First, all ribbons are

semiconductors and exhibit direct band gap with HOMO and LUMO occurring at

Γ point, irrespective of the ribbon width in our study. On the other hand, the gap

decreases with increasing ribbon widths. However, the variations in energy gaps have

alternating pattern rather than monotonic decrease. We have relative relation of

Egap, 3m+1 > Egap, 3m > Egap, 3m+2 with m being integer.
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Figure 3.15: Calculated band structures of armchair GNRs of various widths. (a),

(b), and (c) correspond to ribbon with N = 7, 8, and 9, respectively. Γ (X) indicates

the center (edge) of the first Brillouin zone.

59



6 9 12 15 18 21 24
N

0

0.5

1

1.5

2

2.5

E
ga

p (
eV

)

LDF mod (N + 1, 3) = 2
LDF mod (N + 1, 3) = 1
LDF mod (N + 1, 3) = 0

Figure 3.16: LDF energy gaps of the armchair GNRs as a function of width N .

Table 3.3: Band gaps Egap of armchair GNRs with ribbon width N

N Egap(eV) N Egap(eV ) N Egap(eV) N Egap(eV)

4 2.4106 10 1.0734 16 0.6874 22 0.5055

5 0.2982 11 0.1512 17 0.1006 23 0.0752

6 1.0158 12 0.5692 18 0.3953 24 0.3030

7 1.4872 13 0.8375 19 0.5821

8 0.2012 14 0.1210 20 0.0868

9 0.7298 15 0.4669 21 0.3437
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3.3.4 Consideration of Longer Range Interactions

Tight-binding models were frequently used to analyze the electronic properties

of semiconductors. With only nearest-neighbor interactions considered tight-binding

models have been very successful in describing many properties of single-wall carbon

nanotubes (SWCNTs).[22, 70–83] The geometries of SWCNTs and GNRs have great

similarity because both of them can be obtained from graphene by rolling over a

chiral vector or cutting along specific edges. This similarity, along with the success

of TBM in SWCNTs, allow us to expect the applicability of TBM in studying GNRs.

However, the LDF results are quite different from the previous predictions based on

nearest-neighbor tight-binding model. In the tight-binding model, if the ribbon width

N satisfies N = 3m + 2, then the ribbon is metallic with zero gap at Γ point where

π and π∗ bands crossing occurs. In addition, the band gaps of other ribbons are

decreasing monotonically with increasing ribbon width.

The discrepancy motivated us to think over the validity of nearest-neighbor tight-

binding model in describing the electronic property of armchair GNRs. In the previous

calculations, only nearest-neighbor interactions are included. The gap openings in

armchair GNRs of width N = 3m+ 2 from our first-principles calculations, however,

indicated that there were some interactions which are important but ignored in the

tight-binding description.

Since the armchair GNRs can be obtained by cutting graphene along specific

direction, we could apply proper boundary condition on the energy dispersion for

2D graphene, discretize the wavevector along the transverse direction, and find the

energy dependence on the 1D wavevector in armchair GNRs. However, we are more

concerned with the band gap instead of the energy values in whole Brillouin zone and

will take a different method. The underlying procedure is described below.
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The ribbons are direct band gap materials with HOMO and LUMO states occur-

ring at k = 0 (see Figure 3.15). Therefore, to study the gap dependence on ribbon

width we need only to consider the eigenstates of nearest-neighbor Hamiltonian Ĥ0

at k = 0. In the following discussion, we make use of the regular Bloch theorem to

construct the wavefunctions based on the translational symmetry down the ribbon

axis. So each unit cell contains two zigzag chains for symmetric and staggered arm-

chair GNRs. We can apply the the boundary condition with vanishing nodes at the

ends of zigzag chains. Then the eigenstates of Ĥ0 for the armchair GNRs with ribbon

width N are given by

|Ψ±p >=
1√
Ncell

1√
N + 1

∑
l

N∑
n=1

sin(
pnπ

N + 1
)(|n, l > +s|n+N, l >), (3.1)

where 1 ≤ p ≤ N , |n, l > denotes the |pz > orbital associated with the nth C atom in

the unit cell labeled by l in the notation of Figure 3.14, and the s = 1 (-1) indicates

the bonding (anti-bonding) state between the wavefunctions belonging to neighboring

zigzag chains. The calculated energy gap with nearest-neighbor interaction V1 only is

Egap = 2V1[2 cos(
pπ

N + 1
) + s] (3.2)

where we have : if mod(N+1,3) = 0, then p = (N +1)/3 and s = −1; if mod(N+1,3)

= 1, then p = (2N + 3)/3, and s = 1; and, if mod(N+1,3) = 2, then p = (N + 2)/3,

and s = −1. Then the band gap strongly depends on the ribbon width. The system

is metallic if N = 3q − 1, and is semiconducting otherwise, see Figure 3.17 in which

V1 = −2.6 eV is assumed.

Except the nearest-neighbor interaction, longer range interactions between C

atoms are neglected and may modify the band structure results of TBM. These

longer range interactions can be incorporated into the TBM by adding ÛV2 and ÛV3 to

Ĥ0, the Hamiltonian in TBM, where ÛV2 (ÛV3) includes all second-nearest-neighbor

(third-nearest-neighbor) interactions V2 (V3) between C atoms in the armchair GNRs.

Because V2 and V3 are small in magnitude compared to V1, Û = ÛV2 + ÛV3 can be
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Figure 3.17: Magnitude of the HOMO-LUMO gap of the N armchair GNRs from the

TBM calculations.

treated as perturbation to Ĥ0. Also, because Û does not break the translational

symmetry of the ribbon, it couples only states with the same k, which allows us to

consider the states at k = 0 only.

We carried out the time-independent perturbation calculations to first order with

the V2 and V3 as perturbation terms to V1 and found the new expression for Egap

given by

Egap = 2V1[2 cos(
pπ

N + 1
) + s] + s

2V3

N + 1
[3 +N + 2N cos(

2pπ

N + 1
)] (3.3)

where we have : if mod(N+1,3) = 0, then p = (N +1)/3 and s = −1; if mod(N+1,3)

= 1, then p = (2N + 3)/3, and s = 1; and, if mod(N+1,3) = 2, then p = (N + 2)/3,

and s = −1.

The first term on the right-hand side of Eq. (3.3) is the gap arising from Ĥ0. The

second term gives the lowest order correction because of Û . Although ÛV2 contributes

to Û , V2 does not appear in Eq. (3.3) because to first order it shifts the HOMO and

LUMO levels by the same amount −3NV2/(N + 1).

If N + 1 = 3m, the first term on the right-hand side of Eq. (3.3) vanishes leaving
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only the second term which reduces to

Egap = − 6V3

N + 1
. (3.4)

Eq. (3.4) can be used to least-squares fit to the LDF data for N+1 = 3q to determine

V3 and then with V3 fixed at this value V1 can be determined by using Eq. (3.3) to

least-squares fit to the LDF data for N + 1 6= 3q. Implementing this procedure yields

the physically reasonable results: V1 = −3.2 eV and V3 = −0.3 eV, which provide an

excellent fit to the LDF results for all N as shown in Figure 3.18.
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Figure 3.18: LDF results for Egap compared to the corresponding tight-binding model

(TBM) results obtained from Eq. (3.3) with V1 = −3.2 eV and V3 = −0.3 eV.

64



3.3.5 Summary

In our LDF simulations we fixed all C-C bond lengths at 1.42 Å and found that

the armchair GNRs can be separated into three families according to the band gap

dependence on ribbon width. Then we proposed an explanation by using TBM with

perturbation correction from the second- and third-nearest-neighbor interactions. The

non-zero semiconducting gaps in GNRs of width N = 3q + 2 and three families of

armchair GNRs were also observed by Son, et al.[84] In their calculations, they carried

out geometry optimization and found that the C-C distances on edges decrease leading

to 12% increase of the hopping integrals between pz orbitals of edge C atoms. After

taking matrix elements change into account, they also got a TBM results which agree

with their LDA calculations. Gunlycke, et al.[85] found that both edge contraction

and third-nearest-neighbor interactions play an important role in producing good

tight-binding band structures which fit the first-principles results of optimized GNRs.

Experimentally, great progress has been made in preparing GNRs with widths less

than 10 nm,[86, 87] which makes our theoretical calculation of more fundamental and

practical significance.
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3.4 Twist Effect in Electronic Properties of Armchair Graphene

Nanoribbons

3.4.1 Overview

In the study of planar armchair GNRs, we show that the band gap could be

engineered by controlling the ribbon width. The band gaps of nanostructures also

could be tuned by other ways such as edge passivation, doping, and strain.

Strain is a powerful approach to modify the electronic structure of nanomate-

rial to improve device performance. The carrier mobility of silicon nanowires could

be significantly enhanced by applied strain.[88] First-principles calculations have

shown that for smaller diameters the band structures and gaps can be significantly

modified.[89, 90]

The strain effect in graphene also attracted much attention. Ni, et al.[91] predicted

a band-gap opening of 300 meV for graphene under 1% uniaxial tensile strain. Teague,

et al.[92] found that the strain could modulate the local conductance of graphene.

Lu and Guo,[93] using a tight-binding model, investigated armchair GNRs and found

uniaxial weak strain changes the band gap in a linear fashion and large strain results in

periodic oscillation of the band gap. Sun, et al.,[94] using GGA exchange correlation

potentials, predicted that the similar oscillating behavior with linear change in each

period.

For the out-of-plane strain, Hod and Scuseria[63] studied the torsional deformation

effect in graphene nanoribbons of finite length. With traditional band structure codes

using translational symmetry, it is hard even almost impossible to study the torsional

deformation for infinite-long ribbon structure because of the huge unit cell and hence

the Hamiltonian matrix of enormous size. Our HENS parallax code takes advantage

of the helical symmetry and is well suited to the calculation of electronic structures
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of the twisted quasi-one-dimensional structures.

In this section we investigated the band gaps of armchair GNRs as a function of

twist angle. We found that the electronic properties of armchair GNRs are highly

sensitive to the applied twist, indicating the potential application of armchair GNRs

as building blocks in nanoelectromechanical devices.
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3.4.2 Computational Approach

We investigated the armchair GNRs of widths N = 8, 10, 12, ..., 18 in this study.

The representative structure of the armchair GNRs is shown in Figure 3.19. The

whole ribbon can be constructed with a unit cell consisting of one zigzag chain as

framed by dashed lines in Figure 3.19(a) and a screw operation acting on that unit

cell, where the screw operation combines a translation l down the ribbon axis with a

right-handed rotation φ about that same axis. In our calculations we fixed l at 2.13Å.

For the planar structure, the φ is 180 ◦. For the twisted armchair GNRs as shown in

Figure 3.19(b), the torsional deformation of armchair GNRs can be represented by the

relative rotation angle θ, defined as θ = φ−180 ◦. The planar ribbons have symmetry

operations corresponding to a reflection perpendicular to the ribbon axis and passing

through the center of C-C bonds parallel to the ribbon axis. When applying the twist,

the reflection symmetry of armchair GNRs is broken and only C2 symmetry is left.

All edge C atoms are passivated by H atoms to remove the dangling bands near the

Fermi level. Following conventional notation, the ribbon width of armchair GNRs is

defined as the number of dimer lines along the ribbon forming the width as in the

preceeding section. For example, the ribbon width in Figure 3.19 is 8.

The LDF band structures were obtained by using 32 discrete points evenly sampled

in the central Brillouin zone and a 6-31G* basis set. [95] Although the LDF is well-

known to underestimate the band gap, we are primarily concerned with the relative

change of the energy gaps under different twists.
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(a)

(b)

Figure 3.19: (a) Armchair GNR with width N = 8. Each helical unit cell is composed

of one zigzag chain terminated by H atoms. The N C atoms in a helical cell are

numbered as shown. The bonds are labeled as a1-a11. (b) Axial view of 10 ◦-twisted

armchair GNR with width N = 8.
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3.4.3 Band Structures and Near-gap Wavefunctions

We depict the electronic structures for armchair GNRs with width N = 8 under a

series of twist angles in Figure 3.20, in which (a), (b), (c), and (d) correspond to twist

angle θ equal to 0 ◦, 8.5 ◦, 9.0 ◦, and 10 ◦, respectively. In this ribbon, the top of the

valence band and the bottom of the conduction band occur at the center of the one-

dimensional Brillouin zone, resulting in a direct band gap at the zone center Γ point.

The band gap for ribbon of width N = 8 is 0.40 eV for θ = 0. When we apply on the

ribbon torsional strain about the ribbon axis, the HOMO is raised while the LUMO

is lowered if θ < 9.0 ◦. therefore the band gap is reduced in this stage. In general two

π bands cannot cross because they belong to the same irreducible representation for

wave vectors not at the center or edge of the Brillouin zone. However, gap closure

(accidental degeneracy) might take place at a point of high symmetry in the Brillouin

zone such as the zone center or end. After the critical twist angle, the HOMO and

LUMO do the inverse way, opening the band gap.

In addition to the band gap change, we also observed the twist effect on the

characteristics of the bonding or antibonding states in HOMO and LUMO. Figure 3.21

depicts the wave functions of HOMO and LUMO under four different twist angles

corresponding to that of Figure 3.20. According to the bonding states between the

pz orbitals of neighboring zigzag chains, there are two kinds of bonds: bonding states

(BS) and antibonding states (AS). When the twist angle is smaller than 9.0 ◦, the

HOMO is BS state while LUMO is AS state. When the twist angle gets bigger, the

characteristics of HOMO and LUMO exchanged. The energy of BS and AS states

respond differently to the geometry change. Increasing bond length will lower the

energy of AS state and raise the energy of BS state.
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Figure 3.20: Electronic band structure of armchair GNRs (width N = 8) twisted by

(a) 0 ◦, (b) 8.5 ◦, (c) 9.0 ◦, and (d) 10.0 ◦.
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Figure 3.21: The LUMO and HOMO wave function of armchair GNRs (width N =

8) twisted by (a) 0 ◦, (b) 8.5 ◦, (c) 9.0 ◦, and (d) 10.0 ◦. The ribbons are vertically

oriented.
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3.4.4 Structure Parameters

In our simulations we carried out geometry optimization for all structures. Fig-

ure 3.22 depicts the variation of bond lengths in armchair GNRs of width N = 8 as a

function of the twist angle. Because of symmetry in this ribbon, there are only eight

nonequivalent bonds labeled by a1, a4, a7, a10 along the ribbon extension direction

and by a2, a3, a5, a6 along the transverse direction. By symmetry the bonds a8, a9,

and a11 are equivalent to a5, a3, and a2, respectively. Depending on the position,

different bonds in a different way respond to the torsional deformation. The bonds

along the transverse direction change a little bit with maximum change about 0.01

Å. The bonds connecting neighboring zigzag chains exhibit bigger change. Generally

the change is increasing as bonds location move towards the ribbon edges. But the

biggest bond length change of 0.045 Å occurs on a10 instead of a1 which is furthest

from the ribbon center. As the twist angle approaches 9 ◦, some bonds exhibit abrupt

change, which corresponds to the transition between the antibonding and bonding

HOMOs.

In other ribbons of different widths, we observed similar bond length change as a

function of twist angle and the bond equivalent to a10 has the biggest change. The

bonds underlying bigger change play more important role in determining the shift of

one electron energy of HOMO and LUMO. So only from the bonding (anti-bonding)

states between inter-chain bonds we could acquire some idea about how the twist

affects the electronic band gap of armchair GNRs. Tight-binding model could be

used to carry out this analysis.
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(a)

(b)

Figure 3.22: C-C bond lengths of the twisted armchair GNRs with width N = 8 as

a function of twist angle θ.
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3.4.5 Tight-binding Model

We start with the wavefunction as introduced in previous section,

1√
Ncell(N + 1)

∑
l

N∑
n=1

[
sin

(
npπ

N + 1

)]
(|n, l〉+ s|n+N, l〉)

where 1 ≤ p ≤ N , and |n, l〉 denotes the pz orbital associated with nth C atom in the

unit cell labeled by l in the notation of Figure 3.19. And the eigen energy at Γ can

be expressed as follows:

E(s, p) = 2V1[cos(
pπ

N + 1
) + s],

where s = 1 indicates the BS and s = −1 indicates the AS. In this nearest-neighbor

tight-binding model, the ribbon of N = 3m + 2 is metallic with HOMO and LUMO

touching each other. We cannot distinguish the HOMO and LUMO. In this case, we

introduced the third-nearest-neighbor interactions as perturbation. The perturbation

shifted the energy by −3/(N + 1)V3 upward for LUMO and the same amount down-

ward for HOMO. The third nearest-neighbor interactions are required to open the

gap to give results consistent with our LDA results. After introducing these interac-

tions, we determine that LUMO is at p = (N + 1)/3 and anti-bonding, HOMO is at

2(N + 1)/3 and bonding. Because in some ribbons, the second HOMO (HOMO-1)

and second LUMO (LUMO+1) are moving towards the Fermi level under twist and

will play a role in determining the band gap beyond certain twist angle. We also

analyzed the HOMO-1 and LUMO+1 states and present the results in Table 3.4.
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Family HOMO LUMO HOMO-1 LUMO+1

N = 3m -↓ +↑ +↑ -↓

N = 3m+ 1 +↑ -↓ -↓ +↑

N = 3m+ 2 +↑ -↓ -↓ +↑

Table 3.4: Binding states of edge C pz orbitals HOMO and LUMO. ↑ (↓) indicates the

energy point shifts upward (downward) with increasing twist angle. + (−) indicates

the bonding (anti-bonding) states.
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3.4.6 Band Gap Change Under Twist

In Figure 3.23 and Table 3.5 we present the local density functional results for the

variations of energy gaps of three family structures with different widths (N = 3m,

3m+ 1, 3m+ 2, where m = 2, 3, 4) as a function of the twist angle θ. In combination

with the tight-binding model in previous section, we will discuss in details how the

twist affects the energy gaps in armchair graphene nanoribbons.

Depending on the bonding (anti-bonding) states of near Fermi level bands, the

response of the armchair GNRs to the twist can be classified into two categories. One

is of width N = 3m, and the other two belong to the second family.

For N = 3m, the energy gap will go through three stages with increasing twist.

In the first stage, the bonding LUMO goes up and anti-bonding HOMO goes down,

resulting in the raising of band gap. The HOMO-1 is raising and LUMO+1 is lowering.

After certain twist angle, HOMO-1 and LUMO+1 will take over to determine the band

gap. This begins the second stage, in which the band gap is reduced with increasing

twist angle. When the twist is increased further, the HOMO-1 and LUMO+1 may

touch and exchange bonding characteristics and then follow their previous way. This

will start the third stage, in which the band gap is increased again. For N = 12 we

only observed the first stage. For N = 18, we observed all these three stages because

the reduced quantum confinement and bigger change in length of bonds parallel to

the ribbon axis resulted from the bigger ribbon width.

For N = 3m+ 1 and N = 3m+ 2, the HOMO-1 and LUMO+1 are moving away

from the Fermi level and will not play a role in determining the band gap. Within the

twist angle studied, we only have to consider the HOMO and LUMO orbitals. Just

as we have seen in armchair GNRs with width N = 8, the band gap will have two

stages. The first stage is decreasing the band gap and the second would be increasing
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the gap. In N = 10, we only have the first stage because of the relatively bigger band

gap and not big enough ribbon width. Generally the turning point is moving toward

smaller twist angle with increasing ribbon width for same family.

At each turning point corresponding to the minimum band gap, the gap closure

may occur because of the additional symmetry at the zone center or edge. We can

not have real band crossing because the eigen vectors of π bands belong to the same

irreducible representation group.

Our bonding and anti-bonding analysis applies for other strain effect in the arm-

chair GNRs as well. Our tight binding analysis are qualitatively consistent with the

previous calculations on uniaxial strain effect on armchair GNRs by others. But the

linear relation by TB model[93] or density functional theory calculations[94] is not

observed in our calculations. This may be due to the hybridization between the s,

px, py, pz orbitals coming from the twist between neighboring zigzag chains.
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Figure 3.23: Variation of energy gaps of armchair GNRs as a function of twist angle

θ. (a), (b), and (c) represent the armchair GNRs of width N = 3m, 3m + 1, and

3m+ 2, respectively.
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Table 3.5: Band gaps (eV) as a function of twist angle (Deg) in armchair graphene

nanoribbons with various widths N

Twist angle N=8 N=10 N=12 N=14 N=16 N=18

0.0 0.3958 1.2364 0.4648 0.2830 0.8166 0.2795

0.5 0.3904 1.2382 0.4677 0.2800 0.8170 0.2850

1.0 0.3842 1.2281 0.4732 0.2717 0.8159 0.2949

1.5 0.3860 1.2202 0.4816 0.2613 0.7983 0.3147

2.0 0.3727 1.2125 0.4951 0.2406 0.7764 0.3415

2.5 0.3632 1.1979 0.5109 0.2268 0.7486 0.3744

3.0 0.3579 1.1869 0.5276 0.1972 0.7125 0.4146

3.5 0.3456 1.1658 0.5498 0.1651 0.6714 0.4619

4.0 0.3313 1.1440 0.5738 0.1276 0.6239 0.5165

4.5 0.3116 1.1226 0.6051 0.0868 0.5839 0.5737

5.0 0.2909 1.0954 0.6329 0.0217 0.5215 0.6404

5.5 0.2739 1.0688 0.6642 0.0697 0.4568 0.7115

6.0 0.2541 1.0399 0.7004 0.1190 0.3907 0.7197

6.5 0.2309 1.0085 0.7374 0.1732 0.3200 0.6293

7.0 0.2062 0.9763 0.7749 0.2302 0.2435 0.5341

7.5 0.1821 0.9423 0.8180 0.2885 0.1625 0.4341

8.0 0.1541 0.9063 0.8610 0.3533 0.0780 0.3273

8.5 0.1274 0.8689 0.9070 0.4214 0.0761 0.2141

9.0 0.1990 0.8293 0.9532 0.4891 0.1746 0.0994

9.5 0.0505 0.7895 1.0027 0.5673 0.2764 0.0702

10.0 0.0815 0.7492 1.0560 0.6476 0.3847 0.1582
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3.5 Summary and Conclusions

In this chapter we studied two kinds of GNRs: zigzag and armchair GNRs. We

found that the zigzag GNRs have magnetically ordered insulating ground states that

are ferromagnetically coupled along each edge and anti-ferromagnetically coupled

across the edges. And the AFM band gap decreases with increasing ribbon width. The

electronic states near Fermi level are localized at edge carbon sites, suggesting the edge

sensitivity to passivating functional groups and therefore zigzag GNRs could be used

in chemical sensor applications. Our LDF results with Gaussian basis sets agree with

previous calculation by using plane wave basis, numerical atomic orbitals, and also are

consistent with the tight-binding calculations on the zigzag GNRs. armchair GNRs

do not have spin-polarized ground state and localized edge states. The band gaps of

armchair GNRs are strongly dependent on the ribbon width. The complex alternating

relation between gaps and ribbon width is different from the nearest-neighbor tight-

binding prediction. The introduction of third-nearest-neighbor interaction across the

hexagons resolved this discrepancy. Besides the planar GNRs, we investigated the

twisted armchair GNRs and found the response to the applied torsional deformation

could be classified into two categories. The tunable band gap upon applied twist is

very useful in nano-mechanical devices.

It is well-known that the LDF underestimated the band gaps. Yang, et al.[96] pre-

sented calculations of the quasi-particle energies and band gaps of planar graphene

nanoribbons carried out using a first-principles many-electron Green’s function ap-

proach within the GW [97–100] approximation. The self-energy corrections are differ-

ent for ribbons of different widths because of the screening effect of various magni-

tudes. However, the characteristics of three families in band gaps remain the same in

armchair graphene nanoribbons.
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CHAPTER 4

SURFACE PASSIVATION EFFECTS IN SILICON NANOWIRES

4.1 Overview

In recent years Si nanowires (SiNWs) have attracted much attention because of

their potential applications in electronic, thermoelectric, and optoelectronic devices.

They can be used as building blocks of nanoscale electrical devices such as field-

effect transistors (FETs).[101–104] They are capable of inflating 4 times their normal

size when absorbing lithium ions, which enables the new battery to hold 10 times

the charge of existing lithium-ion batteries.[10] SiNWs can be used as thermoelectric

materials because of their low thermal but high electrical conductivity.[12, 13] SiNWs

also have potential application as solar cells to convert light into electricity. [11, 105–

110]

The broad range of potential applications of SiNWs makes it critically important

to understand how to tailor their electronic properties. The electronic properties of

SiNWs can be modified by varying a range of structural properties such as surface

passivation,[101] doping,[102] and how the nanowires are mechanically processed.[111]

Because of the enhanced surface-to-volume ratio of the SiNWs compared to bulk

silicon, the surface of the SiNWs is of special status and the electronic properties of

the SiNWs are strongly dependent on the characteristics of the SiNW surfaces. Cui,

et al.[101] showed that exposure to 4-nitrophenyloctadecanoate or tetraethylammo-

nium bromide can improve the conductance and on-off ratios in oxidized SiNW-based

FETs. Haick, et al.[112] achieved the methyl passivation on SiNWs via a two-step

chlorination/alkylation method and showed that the SiNWs have enhanced air sta-
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bility and high hole mobility.

Although the question of how the dangling bonds are passivated at the silicon

nanowire surface is of great importance, most of the theoretical studies have been

carried out on H-terminated[99, 113–119] and bare SiNWs,[120–122] focusing on quan-

tum confinement effects, orientation, and cross-section dependence of the electronic

properties of SiNWs, doping effects, and surface reconstructions. There are very few

investigations focusing on the surface effects. For examples, Blase, et al.[123] calcu-

lated the effects of a single alkyl chain on the zero-bias conductance of SiNWs and

found that the Landauer conductance near Fermi level is almost not affected. Nolan,

et al.,[124] using a combination of plane wave basis sets and pseudopotentials, ob-

served that passivation with OH or NH2 reduces the band gap of 〈100〉 SiNWs. Aradi,

et al.[125] reported that the OH passivation also can induce the band gap reduction of

〈110〉 SiNWs. Leu, et al.[126] calculated the band structure of SiNWs with halogens

surface substituents passivating the SiNW surfaces, and found that passivation with

more weakly interacting surface species appears to lead to more marked reductions

in the SiNW band gaps. The band gap reduction comes from the weakly interacting

surface species which can not pull surface states of bare SiNWs out of mid-gap.

In our studies we choose the silicon nanowires along 〈110〉 and 〈100〉 as objects of

study based on the experimental observation on the relations between the wire diam-

eter and orientations. When synthesizing silicon nanowires using gold nanocluster-

catalyzed 1D growth method, Wu, et al.,[127] found that the nanowires of diameter

less than 10 nm prefer the 〈110〉 directions. Most bigger nanowires were 〈112〉- and

〈111〉-oriented. Schmidt, et al.,[128] using epitaxial vapor-liquid-solid (VLS) growth

method, observed similar orientation dependence on the diameter. To my knowl-

edge, no 〈100〉 SiNWs were obtained with the non-templated methods. Because only

small silicon nanowires can be treated with the density functional theory, most com-

putational simulations are focused on 〈110〉 SiNWs such that the calculation results
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could be compared with experimental measurements. The 〈100〉-oriented nanowires

are highly desirable since the conventional CMOS microelectronics are built on (100)

silicon wafer. The 〈100〉 SiNWs can be used to fabricate the vertical field effect tran-

sistors on the (100) wafer. Researchers, with anodic alumina membranes template-

directed growth technique, have obtained 〈100〉 silicon nanowires of diameter ranging

from 60 nm to 200 nm.[129–131]

In this chapter we first present the first-principles study of the electronic band

structures of SiNWs oriented along 〈100〉 and 〈110〉 directions with the surfaces pas-

sivated by hydrogen, hydroxyl, and methyl substituent groups. For convenience,

sometimes we simply refer to the SiNWs of these three different surface passivations

as H-SiNWs, OH-SiNWs, and CH3-SiNWs, respectively. We observed the reduced

band gaps with increasing wire diameter irrespective of passivating groups, mani-

festing the quantum confinement effects. Band gap reductions in OH-SiNWs with

reference to H-SiNWs are also observed in our simulations, in agreement with others’

results.[124, 125] CH3 not only reduces the band gap but also leads to indirect band

gaps for all 〈100〉 SiNWs studied. The passivations on surface not only can change the

band gap nature and gap value, but also have effect on the effective mass of carriers in

SiNWs. Our simulations suggest that passivation with CH3 surface substituents sub-

stantially increases the electron effective mass for the 〈100〉 wires, while 〈110〉 SiNWs

have small electron and hole effective masses for all three passivations studied.

The change on electronic band structures by surface passivations motivated us to

study their effect on the transport conductance in SiNWs. As a preliminary study,

we investigated the electron conductance of a 〈110〉 SiNW having a defect region with

hydroxyl passivation rather than hydrogen passivation.
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4.2 Computational Approaches

The Si nanowires studied herein were initially constructed from silicon in the di-

amond structure using the bulk lattice constant, a = 5.43 Å. All 〈100〉 nanowires

were constructed with square cross-sections and {110} faces, and all 〈110〉 nanowires

were constructed with diamond cross-sections and {111} faces. We carried out geom-

etry optimization for all structures. The optimized structure for the 〈100〉 and 〈110〉

SiNWs are depicted in Figure 4.1. The 〈100〉 wires calculated have a 4-fold screw

symmetry about the wire axis with translation l = a/4 and screw angle φ = π/2, and

the 〈110〉 wires have a 2-fold screw symmetry about the wire axis with translation

l =
√

2a/4 and screw angle φ = π. The different cross-sections of the 〈100〉 and 〈110〉

oriented SiNWs make a direct comparison of the radial scale of the wires somewhat

arbitrary. We have chosen to define an effective nanowire diameter, d, given by the

expression d =
√
a3N/2πl, where a is the lattice constant of bulk crystalline silicon,

N is the number of Si atoms in the unit cell, and l is the length of the unit cell along

the nanowire axis. This produces an effective diameter that scales as the square root

of the cross-sectional area.

In the local-density functional (LDF) calculations, we evenly sampled 64 discrete

points over the central Brillouin zone and used the 3-21G basis set. [132–134] Since

our code takes advantage of the helical symmetry, the calculated band structures

look quit different from those obtained by using other codes, such as VASP, SIESTA,

GAUSSIAN, although they are essentially the same. To be able to compare with

results reported by others using translational symmetry, all band structures shown

in this chapter have been folded to be within the traditional translational Brillouin

zone.

Although the LDF is well-known to underestimate the band gap, we are primarily
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concerned with the relative change of the energy gaps here. We also carried out some

testing calculations with PBE functional on the silicon nanowires of small diameter.

We numerically calculated the effective mass of charge carriers in silicon nanowires

using the standard expression from solid-state theory m∗ = ~2/(d2E/dk2), which is

equal to ~2/(l2d2E/dκ2) if we use helical symmetry, where l is the translation length

along wire axis and ~ is the reduced Planck’s constant.
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Figure 4.1: Cross-section views of the studied H-SiNWs. 〈100〉 SiNWs of diameter

(a) 0.43 nm, (b) 0.87 nm, (c) 1.3 nm, and (d) 1.73 nm, respectively. 〈110〉 SiNWs

of diameter (e) 0.73 nm, (f) 1.09 nm, and (g) 1.46 nm, respectively. The golden-

yellow and silver balls represent Si and H atoms, respectively. In OH-SiNWs and

CH3-SiNWs, all H atoms are replaced with OH and CH3 groups, respectively.
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Figure 4.2: Band gaps as a function of diameter with hydrogen passivation for silicon

nanowires along 〈100〉. The square and blue line indicate the LDF results and the

uptriangle and red line indicate the PBE results.

For H-terminated 〈100〉 SiNWs, we compared the calculated band gaps with LDF

and PBE functionals. Figure 4.2 depicts the band gaps as a function of diameter.

The consideration of electron density gradient in PBE functional shifted up the LDF

band gaps. The variation in the shifted amount, however, is small with maximum

0.05 eV. The LDF functional is sufficient to capture the quantum confinement in this

nanomaterial and also have advantage of computional cost with comparison to PBE.

The LDF was utilized for the study of silicon nanowires in the following discussions.
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4.3 Structure Parameters

The surface passivating groups can affect the structure parameters of silicon

nanowires. The calculated Si-Si bond lengths as a function of the distance from

the bond center to the wire axis with different passivations are depicted in Figure 4.3.

After geometry optimization the H-terminated 〈100〉 SiNWs exhibited small varia-

tions in Si-Si bond length from 2.37 Å to 2.39 Å, compared to the equilibrium value

of 2.35 Å in the bulk silicon. In the OH-passivated 〈100〉 wire of diameter d = 1.73

nm, the Si-Si distances have larger variations from 2.36 Å to 2.49 Å. The Si-Si dis-

tances are ranging from 2.34 Å to 2.41 Å in the CH3-terminated 〈100〉 wire of same

diameter. The variations of Si-Si bond length in the core part are smaller than those

near the surface.

In the 〈110〉 SiNWs, we found that the Si-Si bond lengths of H-SiNWs are similar

to those of 〈100〉 H-SiNWs. The passivation with with OH or CH3 induces smaller

variations in Si-Si distances because the distances between surface-passivating groups

on {111} faces of 〈110〉 wires are larger than those on {110} faces of 〈100〉 wires.

The CH3 groups even give rise to bond length variations comparable to that of the

H-passivated wires along 〈110〉 direction.
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Figure 4.3: Si-Si bond length as a function of the distance from bond center to wire

axis. (a), (b), (c) correspond to 〈100〉 SiNWs of diameter d = 1.73 nm passivated

by H, OH, and CH3, respectively. (d), (e), and (f) correspond to 〈110〉 SiNWs of

diameter d = 1.46 nm passivated by H, OH, and CH3, respectively.
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4.4 Mulliken Population Analysis

We also did a Mulliken population analysis to see how the functional groups affect

the charge distribution in the silicon nanowires. The calculated net charge of atoms

as a function of the distance from atom to wire axis are presented in Figure 4.4.

For elements Si, H, C, and O, the electronegativity (EN) is 1.9, 2.1, 2.5, and 3.5,

respectively.[135] So C and O could pull more electrons away from the neighboring

Si atoms than H and weaken the bond length of Si-Si. Although the EN of C is

smaller than that of O, there are three H atoms attached to each C atom such that

C atoms have more places to get charges. This results in that the charge is about

-0.9 for C and is about -0.55 for O in the 〈100〉 wires of diameter d = 1.73 nm. The

similar values were observed in the 〈110〉 wires of diameter d = 1.46 nm. The net

charge of C and O are almost independent of the position and the wire orientation.

The independence of position makes the corner Si atoms donate more charges to C

or O and leave itself more positively charged because there are two groups attached

to the corner Si. We found that the surface Si atoms are positive and the innermost

Si atoms are nearly neutral. In the middle part, the net charge of Si atoms exhibited

oscillations instead of gradual transition.
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Figure 4.4: Net charge as a function of distance from the atom to the wire axis. (a),

(b), (c) correspond to 〈100〉 SiNWs of diameter d = 1.73 nm passivated by H, OH,

and CH3, respectively. (d), (e), and (f) correspond to 〈110〉 SiNWs of diameter d =

1.46 nm passivated by H, OH, and CH3, respectively. Si, H, O, and C are indicated

by +, ×, �, and �, respectively.
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4.5 Band Gap Change

All of the passivations (H, OH, CH3) studied in the present paper give indirect

band gap for the 〈100〉 nanowire of diameter d = 0.43 nm. CH3 even gives indirect

band gap for all 〈100〉 nanowires investigated. Figure 4.5(a) shows the 〈100〉 Si

nanowire band gaps as a function of diameter. With increasing diameter the band

gap is decreasing because of the reduced quantum confinement. Because surface atoms

have smaller and smaller percentage when increasing diameter from 0.43 nm to 1.73

nm, surface effect becomes weak and energy gap difference of different passivations is

reduced from 2.75 eV to 0.64 eV for OH-SiNWs and from 1.72 eV to 0.54 eV for CH3-

SiNWs with H-SiNWs as the reference. We observed similar trend in band gap change

of 〈110〉 SiNWs as shown in Figure 4.5(b). But different from the 〈100〉 SiNWs, the

〈110〉 wires have direct band gaps independent of the surface substituents. The band

gap values corresponding to Figures 4.5(a) and 4.5(b) are listed in Tables 4.1 and 4.2.
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(a)

(b)

Figure 4.5: Band gaps as a function of diameter with various surface passivations for

silicon nanowires along (a) 〈100〉, (b) 〈110〉.
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Table 4.1: Band gaps (eV) as a function of diameter for 〈100〉 silicon nanowires with

various passivations. X represents H, OH, or CH3.

Stoichiometry Diameter (nm) H OH CH3

Si2X2 0.43 5.61 2.86 3.89

Si4X4 0.87 3.38 1.75 2.42

Si9X6 1.30 2.38 1.48 1.91

Si16X8 1.73 1.89 1.25 1.35

Table 4.2: Band gaps (eV) as a function of diameter for 〈110〉 silicon nanowires with

various passivations. X represents H, OH, or CH3.

Stoichiometry Diameter (nm) H OH CH3

Si4X4 0.73 2.38 1.01 2.07

Si9X6 1.09 1.79 0.37 1.65

Si16X8 1.46 1.49 0.30 1.39
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4.6 Electronic Structures

We show the band structures of 〈100〉 silicon nanowires of diameter d = 1.73 nm

with different surface passivations in Figure 4.6 and in Figure 4.7 we present the

band structures of 〈110〉 silicon nanowires of diameter d = 1.46 nm. The Fermi levels

in H-SiNWs are used as the reference and taken to be zero. Both OH and CH3

change the band structure a lot and OH gives rise to more reduction of band gap.

In addition to the band gap change, the Fermi levels also vary with the passivations.

The CH3 groups shift up the Fermi levels in 〈100〉 and 〈110〉 wires compared to H-

SiNWs. The OH groups induce lower Fermi level in 〈100〉 SiNWs and higher Fermi

level in 〈110〉 SiNWs. It is known that the Fermi levels will be aligned via charge

redistribution when systems of different Fermi levels are put together. If the silicon

nanowires are selectively passivated such that one segment is covered with H atoms

and neighboring segment is passivated by CH3 groups. Then the electron in CH3-

terminated part will move to H-terminated part and hole will move in the inverse

way to align the Fermi levels and lower the total energy of the system. The ability

of separating charge carriers in selectively passivated SiNWs could find potential

application in photovoltaic devices.

Growth techniques for semiconductor nanowires have developed rapidly in recent

years. Not only can the diameter and direction be controlled during growth, but

nanowires can also be selectively functionalized. This has been achieved by vari-

ous efforts such as electrochemical methods,[136] localized nanoscale Joule heating,

[137] and adsorption and removal of self-assembled monolayers of the polymer (3-

mercaptopropyl)-trimethoxysilane.[138]
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Figure 4.6: Electronic band structures of 〈100〉 SiNWs (diameter d = 1.73 nm) pas-

sivated by (a) H, (b) OH, and (c) CH3. The Fermi level in H-SiNW is shifted to zero

eV and taken as the reference.
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Figure 4.7: Electronic band structures of 〈110〉 SiNWs (diameter d = 1.46 nm) pas-

sivated by (a) H, (b) OH, and (c) CH3. The Fermi level in H-SiNW is shifted to zero

eV and taken as the reference.
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4.7 Near-gap States

The near-gap states are mostly responsible for the transport and optical properties

of the system. In order to see how the surface passivations will affect those proper-

ties in detail, we plot the orbital density of the highest occupied molecular orbital

(HOMO) and lowest unoccupied molecular orbital (LUMO) for the 〈100〉 SiNWs of

diameter d = 1.73 nm in Figure 4.8 and for the 〈110〉 SiNWs of diameter d = 1.46

nm in Figure 4.9 with sub-figures (a), (b), and (c) corresponding to the passivating

substituents H, OH, and CH3, respectively.

First look at the 〈100〉 SiNWs. For the H-SiNWs, both HOMO and LUMO are

concentrated in the interior of the nanowire. Upon OH passivation HOMO goes to

the corner O atoms while LUMO leaves the central region and corners blank. In the

CH3-SiNWs HOMO and LUMO spread out over the whole wire.

In the 〈110〉 SiNWs, the LUMO orbitals of H-SiNWs and CH3-SiNWs have similar

distribution with more contribution from the central region while the OH groups make

the LUMO concentrated in a rectangular region. For the HOMO orbitals of 〈110〉

SiNWs, CH3 groups make the orbitals more on the interior atoms compared to the

H-SiNWs. The OH groups change it dramatically and the HOMO moves to the top

and bottom Si and O atoms. And more importantly, the HOMO and LUMO have

considerable concentration on O atoms in both 〈100〉 and 〈110〉 SiNWs, indicating

that the OH-SiNWs are more sensitive to the external environment than the other

two kinds of passivations.
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Figure 4.8: The HOMO and LUMO orbital density of the 〈100〉 SiNWs. (a), (b), and

(c) correspond to SiNWs passivated by H, OH, and CH3, respectively. Here red and

blue represent HOMO and LUMO density, respectively. The contour is at 10% of the

maximum value.
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Figure 4.9: The HOMO and LUMO orbital density of the 〈110〉 SiNWs. (a), (b), and

(c) correspond to SiNWs passivated by H, OH, and CH3, respectively. Here red and

blue represent HOMO and LUMO density, respectively. The contour is at 10% of the

maximum value.
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Usually the surface substituents such as hydroxyl, halogens[126, 139] and methyl

in 〈100〉 SiNWs from our simulations will induce big change in the spatial distribution

of near-gap orbitals. However, it is interesting to note that the CH3 substituents do

not have significant effect on the HOMO and LUMO orbitals in 〈110〉 SiNWs.

In Figures 4.10 and 4.11 we depict the isosurface of the HOMO and LUMO wave

functions in 〈110〉 H-SiNWs, respectively. We can see that the wave functions have

alternating positive and negative values along the wire axis and hence nodal surfaces

perpendicular to the wire axis. When applying uniaxial tensile (compressive) strain,

the energy values of the HOMO and LUMO will shift downward (upward) because

the increase (decrease) of the distance between nodal planes results in the raising

(lowering) of kinetic energy. So the conduction band minimum (CBM) and valence

band maximum (VBM) will decrease or increase simultaneously. Similar effect was

predicted to be useful in separating electrons and holes when partial strain is applied

in 〈110〉 SiNWs.[89, 140] Under 2% tension, LUMO is located in strained region

while HOMO is in the regular part in a partially strained Silicon nanorod, suggesting

photovoltaic application in terms of type-II homojunction solar cells.

In our simulations, the CH3 passivation retains the HOMO and LUMO structures

of alternating positive and negative values along the wire axis as shown in Figures 4.12

and 4.13. So the 〈110〉 CH3-SiNWs are supposed to have similar capability of separat-

ing the positive and negative charge carriers under partial strain as in 〈110〉 H-SiNWs.

In addition to the charge carrier separation, the CH3-SiNWs have better air stability

and provide higher hole mobility and on-off ratio than the H-SiNWs [112] and do

not affect the conductance of the near-gap channels, offering quasi-ballistic transport

within several sub-bands near the SiNWs band gap. [123]
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Figure 4.10: The HOMO orbital isosurface of the 〈110〉 H-SiNWs (diameter d = 1.46

nm). Here red and blue represent positive and negative values, respectively. The

contour is at 10% of the maximum value.
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Figure 4.11: The LUMO orbital isosurface of the 〈110〉 H-SiNWs (diameter d = 1.46

nm). Here red and blue represent positive and negative values, respectively. The

contour is at 10% of the maximum value.
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Figure 4.12: The HOMO orbital isosurface of the 〈110〉 CH3-SiNWs (diameter d =

1.46 nm). Here red and blue represent positive and negative values, respectively. The

contour is at 10% of the maximum value.
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Figure 4.13: The LUMO orbital isosurface of the 〈110〉 CH3-SiNWs (diameter d =

1.46 nm). Here red and blue represent positive and negative values, respectively. The

contour is at 10% of the maximum value.
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4.8 Effective Mass of Charge Carriers

The effective mass of carriers was calculated from the band dispersions and sum-

marized in Table 4.3. The hole effective mass mh of 〈100〉 H-SiNWs studied is decreas-

ing with diameter in agreement with results of similar diameters reported by Yan, et

al. [114] And in their calculations mh is much bigger than me for 〈100〉 H-SiNWs.

Although heavy hole is also observed in our simulations, the mh is greatly reduced

with increased diameter and has comparable magnitude with me especially for the

〈100〉 wire of diameter d = 1.73 nm. The OH passivation has effect on mh and me and

this effect is also dependent on the diameter in a complex manner. CH3 passivation

reduces mh for smaller wires and increases mh for the biggest 〈100〉 wire investigated.

me is greatly increased by CH3 passivation. With CH3 passivation, 〈100〉 wires except

the one of diameter d = 0.43 nm have me independent of diameter.

Light electron and hole masses were observed in our simulations for 〈110〉 SiNWs.

The electron and hole effective masses of 〈110〉 H-SiNWs show comparable values,

which are independent of diameter. The low-mass carriers in the 〈110〉 nanowire

compared to those of the 〈100〉 nanowire are very important for electronic device

materials because the carrier mobility is inversely proportional to the effective mass.

Passivation with OH or CH3 has little effect on the carrier effective masses of 〈110〉

SiNWs.
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Table 4.3: Effective mass of silicon nanowires along 〈100〉 and 〈110〉 directions with

various passivations

direction diameter (nm) effective mass (m0) H OH CH3

me 0.56 0.39 2.51
〈100〉 0.43

mh 5.21 0.96 1.92

me 0.30 0.40 1.12
0.87

mh 1.03 1.30 0.94

me 0.22 0.29 1.13
1.30

mh 0.64 0.79 0.59

me 0.30 0.31 1.13
1.73

mh 0.38 0.32 0.85

me 0.13 0.09 0.09
〈110〉 0.73

mh 0.13 0.11 0.13

me 0.14 0.19 0.10
1.09

mh 0.13 0.10 0.13

me 0.11 0.18 0.15
1.46

mh 0.12 0.18 0.14
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4.9 Surface Defects Effect on Transport

4.9.1 Computational Approach

As a preliminary study on the transport in silicon nanowires, the smallest 〈110〉

silicon nanowires of diameter d = 0.73 nm was chosen as the object of study based

on the consideration of computational cost. Figure 4.14 depicts our model system

of transport study, which can be conceptually divided into three distinct regions:

a conductor region, a left-hand lead, and a right-hand lead. The left-hand lead

is a hydrogen-passivated SiNW extending infinitely to the left, and the right-hand

lead is a hydrogen-passivated SiNW extending infinitely to the right. The central

conductor region is functionalized with hydrogen except for one helical cell passivated

by hydroxyl groups.

The Green’s function of the left and right leads are calculated using an effective

principal layer (PL) approach.[53, 54] It is required to set up the Hamiltonian matrices

for the principal layers for the leads and also the Hamiltonian matrix for the conductor

region. Each principal layer of the leads contains 7 helical cells. The conductor part

contains 15 layers of helical cells, which includes 7 H-passivated helical cells on two

ends and 1 helical cell passivated by OH group in the middle. The inclusion of one

principal layer on both ends in the conductor makes the coupling matrices between

device and leads easier to set up. Because of the usage of non-orthogonal Gaussian

basis set, the overlap matrices have been set up similar to the Hamiltonian matrices.

Each transport calculation requires two HENS parallax SCF calculations. One

is to set up the matrices of Hamiltonian and overlap for the leads. The other one

is to calculate the matrices of Hamiltonian and overlap for the conductor and the

interaction matrix between the leads and conductor.
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Figure 4.14: Model system for the conductance calculation. The system is composed

of three regions: left-hand lead region, central conductor region, and right-hand lead

region.
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4.9.2 Transport Conductance

Figure 4.15 shows the results of the transport calculations. The solid line shows

the calculated transport conductance in the pure H-passivated silicon nanowire while

the dashed line shows the transport conductance in the model system shown in Fig-

ure 4.14 with OH passivating the surface Si atoms for one helical cell. Because of the

scattering-free transport in bulk system the pure H-passivated SiNW exhibits stair-

case pattern with the calculated conductance G(E) corresponding to integer multiples

of the conductance quantum G0 = 2e2/h. The width of zero conductance region is

consistent with the band gap of 2.38 eV in pure H-terminated SiNW oriented along

〈110〉 direction with diameter d = 0.73 nm. The introduction of the OH groups leads

to scattering for the charge carriers from the left lead and gives rise to a significant

reduction in the conductance. At energy points corresponding to the second mini-

mum of conduction band and the second maximum of valence band, the conductance

values almost drop to zero.
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Figure 4.15: The transport conductance through the OH-passivated region: The solid

line is the conductance of the pure H-SiNWs. The dashed line shows the conductance

of the H-SiNWs with OH defects on one helical cell.
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4.10 Summary and Conclusions

In summary, we have carried out the first-principles simulations on electronic band

structures of silicon nanowires along 〈100〉 and 〈110〉 directions with surface passi-

vated by H, OH, and CH3. Passivation with OH groups was found to reduce the band

gaps of 〈100〉 and 〈110〉 wires. Passivation with CH3 groups gives rise to reduced in-

direct band gaps for 〈100〉 SiNWs. 〈110〉 SiNWs have direct band gaps independent

of the diameter and surface passivation. Different from other substituents, the CH3

groups do not have significant effect on the near-gap orbitals in 〈110〉 SiNWs, sug-

gesting charge carrier separation under partial strain originally predicted for 〈110〉

H-SiNWs. We found that passivation with CH3 increases the electron effective mass

substantially. The 〈110〉 SiNWs were found to have similar electron and hole effective

masses independent of the diameter and passivation.

We have carried out a preliminary study of the transport properties of a 〈110〉 sili-

con nanowire having a small defect region with hydroxyl-group passivation rather than

hydrogen passivation. Using the Landauer approach, we have found that the hydroxyl

defects greatly reduce the ballistic conductance of H-passivated silicon nanowires.
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CHAPTER 5

CONCLUSIONS

With the rapid development of the fabrication and measurement of nanomaterials,

researchers are doing various efforts to find application out of the nanostructures. So

the theoretical understanding of electronic properties in nano size is of great signifi-

cance both from fundamental and practical viewpoints. Utilizing the first-principles

local density functional approach tailored for helical symmetry, we carried out com-

putational simulations on graphene nanoribbon and silicon nanowires.

The study on graphene nanoribbons presented in Chapter 3 was motivated by the

experimental isolation of single sheets of graphite, namely graphene. We investigated

two kinds of graphene nanoribbons: zigzag and armchair nanoribbons. We found

that the zigzag ribbons have magnetically ordered insulating ground states that are

ferromagnetically coupled along each edge and anti-ferromagnetically coupled across

the edges. And the band gap decreases with increasing ribbon width. The electronic

states near Fermi level are localized at edge C sites, suggesting the edge sensitivity to

passivating functional groups and therefore could be used in chemical sensor appli-

cations. Our local density functional results agree with previous calculation by using

plane wave basis and also are consistent with the tight-binding predictions. Armchair

ribbons do not have spin-polarized ground states or edge states. The band gaps of

armchair ribbons are strongly dependent on the ribbon width. The complex alter-

nating relation between gaps and ribbon width in our density functional calculations

is different from the nearest-neighbor tight-binding prediction. The introduction of

third-nearest-neighbor interactions across the hexagons resolved this puzzling differ-
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ence. Besides the planar graphene nanoribbons, we investigated the twisted armchair

GNRs and found the response to the applied torsional deformation could be classified

into two categories according to the bonding characteristics.

In chapter 4, we mainly presented the first-principles simulation results on elec-

tronic band structure of SiNWs along 〈100〉 and 〈110〉 directions with surface pas-

sivated by H, OH, and CH3. Passivation with OH and CH3 groups was found to

reduce the band gaps of 〈100〉 and 〈110〉 wires. The 〈110〉 CH3-SiNWs and H-SiNWs

have alternating positive and negative wavefunctions along the wire axis direction for

HOMO and LUMO orbitals, suggesting the ability of separating charge carriers under

strain. Passivation with CH3 greatly increases the electron effective mass. Electron

and hole effective masses in 〈110〉 SiNWs are not sensitive to the wire diameter and

passivation.

We studied the pure silicon nanowires with full coverage of H, OH, and CH3. The

mixed coverage of H, OH, and CH3 may lead to different band structures, which

deserve further investigation. Nonetheless, the surface passivations are shown to be

able to chemically tune the band structure and carrier mobility and provide more

options together with others such as the diameter, orientation, and cross-sections

when different kinds of properties of SiNWs are needed.

Besides the band structure studies on SiNWs, we have carried out a preliminary

study of the transport properties of a 〈110〉 SiNW having a small defect region with

hydroxyl-group passivation rather than hydrogen passivation. We have found that

the hydroxyl defects greatly reduce the ballistic conductance of H-passivated SiNWs.

It is worthwhile to carry out further studies on the transport property of SiNWs to

see the conductance change by other factors such as the defect type and percentage,

the wire size and orientations, etc.
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