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CHAPTER 1

INTRODUCTION

1.1 Optomechanical System

1.1.1 Overview

Radiation pressure force, due to the momentum carried by light, has received con-
siderable attention since Kepler proposed that the tail of a comet was caused by the
force exerted by the sunlight in the 16th century. It was deduced theoretically by J.
C. Maxwell in 1871, and first observed experimentally [1, 2] in the early 1900s. With
the invention of lasers in the 1970s, it has been shown that radiation pressure force
can be used to manipulate atoms [3, 4, 5] i.e., to slow them, cool them, or trap them,
owing to the relatively large power of the laser fields. In 2004, it was first demon-
strated experimentally that radiation pressure force exerted by the light stored inside
an optical cavity can be use to cool the motion of a mechanical oscillator made of
roughly 10'® atoms in a cavity optomechanical system which parametrically couples
an optical cavity and a mechanical resonator through radiation pressure [6].

Due to rapid advances in micro- and nanofabrication techniques, various geome-
tries of the optomechanical system have been developed, such as a Fabry-Perot cavity
with mirrored microcantilevels [7], or with one movable end mirror [8, 9], or with a
movable semitransparent membrane in the middle of the cavity [10, 11, 12, 13], or
with a Bose-Einstein condensate [14], or with a trapped macroscopic ensemble of
ultracold atoms [15], radially vibrating microspheres [16], radially vibrating micro-

toroids [17, 18], GaAs nano-optomechanical disk resonator [19], and optomechanical



crystals [20]. Meanwhile, the optomechanical coupling idea has been extended to
nanoelectromechanical systems, formed by a nanomechanical resonator capacitively
coupled to a superconducting microwave cavity [21, 22, 23, 24]. The major challenge
in all of these setups is to achieve simultaneously a high optical finesse (currently
in the range from 103 to 10°) and a high mechanical quality factor (currently in the
range from 103 to 10°).

It has been shown theoretically and experimentally that such optomechanical sys-
tems at macroscopic scale can exhibit a very rich quantum effects, which usually
exist in the microscopic system. For example, squeezing of the light field [25, 26],
superposition state [27, 28], quantum non-demolition measurements of photon num-
bers [29, 30|, the preparation of a mechanical oscillator in a squeezed state of motion
[31, 32, 33], the creation of entangled photon pairs [34], the entanglement between the
light and mechanical mode [35, 36], entangling two mechanical oscillators [37, 38, 39],
and Fock state detection [10]. Moreover, the optomechanical coupling in such sys-
tems induces nonlinear behaviors, including an optical spring effect [40, 41], bistability
[41, 42], multistability [43], self-induced oscillations [44, 45, 46], optomechanical nor-
mal mode splitting [22, 47, 48, 49, 50], and optomechanically induced transparency
[51, 52, 53, 54, 55].

Due to unavoidable coupling of the mechanical oscillator to its surrounding ther-
mal environment, the random, thermal motion associated with mechanical dissipation
mask the quantum behaviors. To see quantum effects in large objects, they must be

cooled down to its quantum ground state. The ground state cooling requires that

hwm

the mechanical oscillator’s temperature 7" must be reduced so that T" < .

, where
h is Planck’s constant h divided by 27, kg is Boltzmann’s constant, w,, is the reso-
nance frequency of the mechanical oscillator, typically between a few kilohertz and

a few hundred megahertz. For a mechanical oscillator with a resonance frequency of

1kHz (100MHz), the ground state cooling requires hw,,/kp=50 nK (5 mK), which



are below those achievable with standard cryogenic cooling. So far, significant effort
has been devoted to developing alternative cooling techniques. In the past few years,
extraordinary progress has been made in cooling a mechanical resonator down to its
quantum ground state [6, 7, 8, 9, 10, 56]. In 2009, the minimum achievable phonon
number of the mechanical oscillator is 63 in a toroidal microresonator [57], 37 in a
microsphere resonator [58], and 35 in a Fabry-Perot cavity [59]. In 2010, the prepara-
tion of mechanical resonator with the final phonon number below 10 was reported in
Refs. [23, 60]. Recent work has shown experimentally that laser cooling can reduce
the average occupancy of the mechanical oscillator below unity [61, 62, 63]. However,

the ground state cooling has so far not been reached experimentally.

cavity axis

«—>
in
R >
caut
fixed mirror movable mirror

Figure 1.1: A Fabry-Perot cavity with one fixed partially transmitting mirror and

one movable totally reflecting mirror.

1.1.2 The Dispersive Optomechanical System

The canonical optomechanical system is a Fabry-Perot cavity with one heavy, fixed
partially transmitting mirror and one light, movable totally reflecting mirror of effec-
tive mass m (typically in the micro or nanogram range), as shown in Fig. 1.1. The
system is driven by an external laser at frequency w;, then the circulating photons in
the cavity will exert a radiation pressure force on the movable mirror due to momen-
tum transfer from the intracavity photons to the movable mirror. Here, the movable

mirror is modeled as a single mode quantum harmonic oscillator. Moreover, when the



mechanical frequency wy, is much smaller than the cavity free spectral range (c¢/2L),
where L is the initial cavity length, the input laser drives only one cavity mode w,
and scattering of photons from the driven mode into other cavity modes is negligible
[64].

During the cavity round-trip time ¢ = 2L /¢, there are n photons hitting on the
surfaces of the movable mirrors, the momentum transferred to the movable mirror
will be P = 2nhw,./c, hence the radiation pressure force acting on the movable mirror
would be F' = P/t = nh%. The force is proportional to the instantaneous photon
number in the cavity. Moreover, the movable mirror is in thermal equilibrium with
its environment at temperature 7. Thus the mirror can move under the influence
of the radiation pressure and in the same time undergoes Brownian motion as a
result of its interaction with the environment. In turn, the movable mirror’s small
oscillation changes the length of the cavity and shifts the cavity resonance frequency
so that the phase and amplitude of the cavity field are changed. This in turn changes
the radiation pressure force experienced by the mirror such that the optical and

mechanical dynamics are coupled. Thus the cavity resonance frequency depends on

nmc

Lt where n is

the displacement ¢ of the movable mirror, represented by w.(q) =
the mode number in the cavity, ¢ is the light speed in vacuum, L is the initial cavity
length. For small displacements of the mirror, ¢ << L, the frequency w.(q) can be

approximated to the first order of ¢

we(q) = we + 94, (1.1)

where w, = "¢, g = —w./L is the linear coupling constant between the cavity
field and the movable mirror, the minus sign in g implies that the cavity resonance
frequency decreases when increasing the displacement g of the mirror elongates the
cavity.

What we discussed previously is the linear optomechanical coupling case, i.e.,

the frequency shift of the cavity field depends linearly on the displacement of the



mechanical oscillator. However, in a Fabry Perot cavity with a vibrating membrane
in the middle of the optical cavity [10, 11, 12, 13], if the membrane is positioned at an
antinode of the intracavity standing wave, the optomechanical coupling is quadratic
i.e., the frequency shift of the cavity field depends quadratically on the displacement of
the mechanical oscillator. If we expand the cavity frequency w.(q) about the antinode

point ¢g, then

B Owe(q) 1 Puw.(q) 2
wrla) = welw) + =5 | o+ 555
laQaJC(q) 2
~ wc(qo)—i-i o ‘q:qoq’ (1.2)

since at the antinode a%l(‘l)‘qo = 0. Compared to the linear optomechanical coupling
system, the quadratic optomechanical system has the advantage in the quantum
nondemolition measurement of mechanical energy quantization [10, 11, 12].

Note that the cavity decay rate only depends on the transmission of the fixed
mirror, and is unrelated to the mechanical motion. Therefore, the optomechanical

coupling via radiation pressure is dispersive.

Z

x Ly

Figure 1.2: The optomechaical system that consists of a microdisk resonator coupled

to a waveguide (from Ref.[67]).

1.1.3 The Reactive Optomechanical System

In other optomechanical devices, the optomechanical coupling is induced by opti-

cal gradient force such as in silicon waveguide evanescently coupled to a microdisk



resonator [67], suspended silicon photonic waveguides [68, 69], SiN nanowire evanes-
cently coupled to a microtoroidal resonator [70], and in "zipper” cavities formed by
two adjacent photonic crystal wires [71]. In this thesis, we focus on the optomechani-
cal design proposed by [67], as shown in Fig. 1.2. The freestanding silicon waveguide
with 10 gm length, 300 nm height, and 300 nm width is supported by two single-sided
photonic crystal waveguide structures. The microdisk resonator with a radius of 40
pm is placed in close to the waveguide with a gap of 250 nm. A laser is injected
into the waveguide, then light is coupled into and out of the microdisk through the
evanescent fields from the waveguide and microdisk in the air gap, which decay expo-
nentially with the distance from their geometric boundaries. And the dipoles in the
waveguide induced by the evanescent field from the microdisk in turn interacts with
the evanescent field from the microdisk and generate a gradient optical force. Under
the action of this force, the waveguide is attracted toward the microdisk. Further
the displacement of the waveguide modifies the resonance frequency of the microdisk
resonator and the extrinsic photon decay rate of the microdisk resonator. Thus the
coupling between the waveguide and the microdisk resonator is dispersive and reac-

tive.

1.2 Sideband Cooling of the Nano Mechanical Mirror

Recent experiments have demonstrated that the mechanical mirror can be cooled by
the dynamical back-action of radiation pressure [7, 8, 9]. And it is possible to cool
the mechanical mirror to the quantum ground state by resolved sideband cooling
as first shown theoretically in Refs. [47, 66]. Sideband cooling was demonstrated
experimentally by Kippenberg [57] and by Wang [58]. Both these experiments started
the system at about 1.5K and showed cooling down to about 200 mK. The amount
of cooling depends on the system parameters and the laser power. Harris et. al. has

shown that the lowest temperature achieved is 6.82 mK in an optical cavity with a



vibrating membrane [10].

Before we give details of the theoretical discussion of sideband cooling, we discuss
the physics which shows why sideband cooling results in cooling. When the pump field
with frequency w; interacts with the mechanical mirror with frequency w,,, absorption
and emission of phonons create the Stokes field (w; + wy,) and the anti-Stokes field
(w; — wWi). During the Stokes process, the pump field extracts a quantum of energy
hw,, from the movable mirror, leading to the cooling of the movable mirror. While
during the anti-Stokes process, the pump field emits a quantum of energy hw,, to the
movable mirror, leading to the heating of the movable mirror. If the pump frequency
is detuned below the cavity resonance frequency by an amount w,,, the amplitude of
the Stokes field is resonantly enhanced, since the frequency of the Stokes field is close
to the cavity resonance frequency w,.; however, the anti-Stokes field is suppressed since
its frequency is far away from the cavity resonance frequency, thus the optomechanical
coupling causes the cooling of the mirror. Further in the resolved sideband limit, the
cavity amplitude decay rate x is much less than the mechanical oscillation frequency
wp,. In this case, the linewidth « of the cavity field is much smaller than the frequency
spacing 2w,, between the Stokes field and the anti-Stokes field, thus the amplitude of
the anti-Stokes field is close to zero, ground state cooling becomes possible.

We now develop the theoretical treatment of sideband cooling. The studied system
is a Fabry-Perot cavity with one fixed partially transmitting mirror and one movable
totally reflecting mirror of effective mass m and damping rate 7,,, as shown in Fig.
1.1. The Hamiltonian of the system in a rotating frame with respect to the laser

frequency wj is given by
hiwy,
H = h(we —w)cle — hwnxce@ + %(Q2 + P?) +ihe(c - ¢). (1.3)
In Eq. (1.3), the first term is the energy of the cavity field, ¢ and ¢! are the annihi-

lation and creation operators for the cavity field satisfying the commutation relation

[c,cf] = 1. The second term describes the interaction of the movable mirror with



the cavity field, the dimensionless parameter y = i% Qm’zm

is the optomechani-
cal coupling constant between the cavity and the movable mirror. The third term
gives the energy of the movable mirror, described by the dimensionless position and
momentum operators () and P, defined by @ = Wq and P = \/E p with
commutation relation [@), P] = 2i. The fourth term describes the cavity driven by a
laser with power o, and € = \/%.

The time evolution of the system operators can be derived by using the Heisenberg

equations of motion and adding the corresponding damping and noise terms. We find
a set of nonlinear quantum Langevin equations as follows,
Q = mea
P = QWmXCTC - wmQ - /YmP + 5,
(1.4)
¢ = —i(we — wp —wXQ)C + € — ke + V2KC,
¢t = i(we — wi — wxQ)c! + £ — kel + V2ke],,.

Here ¢;, is the input vacuum noise operator with zero mean value and nonzero corre-

lation function in the time domain

(Sein(t)och, (1)) = 6(t —t'). (1.5)
The force £ is the Brownian noise operator associated with the mechanical damping,

whose mean value is zero, and its correlation function reads

hw
2kpgT

EWEW)) = = I [ et [1 + coth(

d 1.6
LI )| @ (16)
where kg is the Boltzmann constant and 7' is the thermal bath temperature. The

steady-state solution to Eq. (1.4) can be obtained by setting all the time derivatives

in Eq. (1.4) to zero. They are

€
K+ iA’

P,=0,Q,= 2x|cs\2, Cs = (1.7)



where

A =w.—w — wWnxQs (1.8)

is the effective cavity detuning, in which the term —w,, Qs is the cavity resonance
frequency shift due to radiation pressure. The (), denotes the steady-state position
of the movable mirror. And c, represents the steady-state amplitude of the cavity
field.

In order to investigate cooling of the movable mirror, we need to calculate the
fluctuations of the system. We linearize the nonlinear equation (1.4) by writing
each operator of the system as the sum of its steady-state mean value and a small

fluctuation with zero mean value,
Q=Q;+0Q, P=P,+6P, c=c,+dc (1.9)

Inserting Eq. (1.9) into Eq. (1.4), then assuming |cy| > 1, the linearized quantum

Langevin equations for the fluctuation operators take the form
6Q = w0 P,

6P = 2w x(cidc + c0cT) — wdQ — VO P + &,
(1.10)

d¢ = —(k +iA)dc + iwmxcs0Q + V2Kd¢in,

0t = —(k — iA)de — iwn xc:6Q + V/2kdc] .
We transform Eq. (1.10) to the frequency domain by using f(t) = 5= /7% f(w)e ™ ™'dw
and f1(t) = & [T fT(—w)e “!dw, where fT(—w) = [f(—w)]!, and solve it, we obtain

the position fluctuations of the movable mirror
0Q(w) = — g5 12V 2kwmx{ [k — (A + w)]cidcin (W) + [k + (A — w)]esoel (—w)}

+[(k — iw)? + A%)E(w)],
(1.11)

where

d(w) = 4w3 2 Alcs|* + (W? — w2, + iymw)[(k — iw)? + A?]. (1.12)



In Eq. (1.11), the first term proportional to y is the contribution of radiation pressure,
while the second term involving &(w) is the contribution of the thermal noise. In the
absence of the cavity field, the movable mirror will make Brownian motion, 0Q(w) =
wWné(w)/ (w2 — w? — iyw), whose susceptibility has a Lorentzian shape centered at
frequency w,, with full width at half maximum ~,,.

The two-time correlation function of the fluctuations in position of the movable

mirror is given by

1 1 [pFeo .
S(OQWIQ( + 7)) + QU +7)0QW) = 5 [~ dwSo(@)e™,  (113)

™

in which Sg(w) is the spectrum of fluctuations in position of the movable mirror,

defined by

1
5 (0QW)IQ(Q)) + (0Q(2)Q(w))) = 215 (w)d(w + ). (1.14)
By aid of the correlation functions of the noise sources in the frequency domain,

(8¢im(w)del (=) = 210 (w + Q),
(1.15)

(EW)E(Q)) = 4m 22w [1 + coth(572:)| 6(w + Q).

we obtain the spectrum of fluctuations in position of the movable mirror

2

dw )|2{8wmx k(K? + w? —|—A2)|cs|2+2 W[(A% + K* — w?)?

hw
4k*w?] coth :
+4K“w?] cot (2k3T>}

So(w) =

(1.16)

In Eq. (1.16), the first term involving x arises from radiation pressure, while the sec-
ond term originates from the thermal noise. So the spectrum Sg(w) of the movable
mirror depends on radiation pressure and the thermal noise. Then Fourier transform-
ing 6Q = w,dP in Eq. (1.10), we obtain 6P(w) = —%6@@)), which leads to the

spectrum of fluctuations in momentum of the movable mirror

Splw) = 25 Sow). (1.17)

w2

10



The phonon number n in the movable mirror can be calculated from the total energy

of the movable mirror

hwn, 1
I (6Q%) + (3P*)) = T (n + 2) »n = [exp(hwom/(ksT) — 171, (1.18)
where the variances of position and momentum are (§Q%) = 5~ [T Sg(w)dw and

(6P?) = &= [7%° Sp(w)dw. Then the effective temperature 7.;; of the movable mirror
can be determined from the phonon number nin the movable mirror, which is

hwpm,

Ty (i ) (1.19)

Tepr =

The parameters used are from an experimental paper on optomechanical normal
mode splitting [50]: the wavelength of the laser A = 27¢/w; = 1064 nm, L = 25 mm,
m = 145 ng, wy, = 27 x 947 x 10° Hz, the mechanical quality factor Q" = wy,/Vm =
6700, k = 2 x 215 x 103 Hz, x/w,, ~ 0.23, thus the system is operating in resolved
sideband regime. And in the high temperature limit kg7 >> hw,,, the approximation
coth(hw/2kpT) ~ 2kgT /hw can be made. The laser is detuned below the cavity

resonance frequency by an amount A = w,,,. We work in the stable regime.
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Figure 1.3: The effective temperature T.;; (mK) of the movable mirror as a function

of the laser power p (uW). The initial temperature is taken to be 1 K.

Figure 1.3 shows the variation of the effective temperature 7.;¢ of the movable

mirror with the laser power @. It is clear to see that the effective temperature T¢ss of

11



the movable mirror decreases with increases the laser power . When p = 100 pW,
the movable mirror can be cooled to about 50 mK, a factor of 20 below the starting
temperature of 1 K [57, 58]. If the laser power is further increased to 1 mW, the
movable mirror can be cooled to about 6 mK. Therefore the movable mirror can be

effectively cooled in the resolved sideband limit.

1.3 Degenerate Parametric Amplification

Ws

Wp /
—— > Nonlinear Crystal \

Wi

Figure 1.4: Parametric amplifier.

In a parametric amplifier [72], a pump beam at higher frequency w, interacts
with a nonlinear crystal, a signal and idler modes at lower frequencies ws and w;
would be generated, as shown in Fig. 1.4. During the nonlinear optical process, the
energy is conserved w, = w, + w;. If the signal and the idler modes have identical
frequencies, such a parametric amplifier is called a degenerate parametric amplifier.
In the following, we will show that the degenerate parametric amplifier can be used
as a generator of a single-mode squeezed state.

The Hamiltonian for degenerate parametric amplification, in the interaction pic-
ture, is

Hine = hjs(a'®b + a®b1), (1.20)

where b and a are the annihilation operators for the pump and signal modes, re-
spectively, and p is a coupling strength between the pump field and the nonlinear

crystal, and it is related to the second-order nonlinear susceptibility. Assuming that

12



the pump field is a strong coherent classical field and pump depletion is neglected,
thus the operators b and b can be represented by Be~*® and e, where 8 and ¢
are the real amplitude and phase of the coherent pump field. Hence the Hamiltonian
(1.20) becomes

Hiny = hpuf(ae” + a?e'?), (1.21)

The time evolution of the signal mode can be derived by the Heisenberg equation of

motion, which yields
a = —iQale ™,
a = iQae™. (1.22)
Here Q2 = 2u/ is the effective Rabi frequency. The solution to Eq. (1.22) is
a(t) = agcosh(Q) — iaf sinh(Qt)e ™,

a'(t) = a cosh(Qt) + iag sinh(Qt)e'?, (1.23)

where ag = a(0). For ¢ = 7/2, when the signal initially is in a vacuum state, the

variances in the two quadratures X; = (a +a')/2 and X, = (a — a')/2i are given by

1
(AXl)? = 16—211,7
1
(AX,)? = 162“, (1.24)
where u = Qt is the effective squeezing parameter. Eq. (1.24) shows the output from

the degenerate parametric amplifier can be squeezed state, and the squeezing exists

in the X; quadrature.

1.4 Standard Quantum Limit

For a one-dimensional harmonic oscillator with mass m and frequency w,,, its Hamil-
2
. . . p 1 2 2 . . oy
tonian is Hy = 2-+ ;muw;,,q°, where p is the momentum operator and ¢ is the position

operator, satisfying the commutation relation [q,p] = ih. In the ground state, the
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fluctuations in the position and the momentum are not equal to zero due to the
zero-point energy. They are

h h
Sp = | m (1.25)

2Mmwy, 2

0q =

respectively, which are called the standard quantum limit. These fluctuations have
no classical analog. If we write the position operator ¢ and the momentum operator

p in terms of the dimensionless position operator () and momentum operator P,

q= ./sz mQ and p = 4/ mh;’mP, then the standard quantum limit would be

§Q = 6P =1, (1.26)

thus the fluctuations in the two dimensionless quadratures are identical, each of them
is equal to unity. For very high-precision interferometers, the standard quantum limit
limits their sensitivity. To improve their sensitivity, this limit need to be beaten, which
means that the fluctuations need to be reduced below the standard quantum limit.
According to the Heisenberg uncertainty principle AAAB > %\([A, B])|, where AA =
((A?) — (A)2)Y/2 and similarly for AB, the fluctuations in position and momentum
should satisfy the inequality

0QOP > 1, (1.27)

thus the fluctuations in the position and momentum could not be reduced below unity
simultaneously. If the fluctuations in position is less than unity, the fluctuations
in momentum should be larger than unity, or vice versa. Moreover, the harmonic
oscillator is said to be squeezed if either 6Q) < 1 or 0P < 1. Therefore, as the

standard quantum limit is beaten, the harmonic oscillator is quadrature squeezed.

1.5 Homodyne Detection

Homodyne detection is usually used to measure the amplitude and the phase quadra-
ture components of the light field. In this section, we describe balanced homodyne

detection [73].
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Figure 1.5: Balanced homodyne detection. PD:photodetector.

Figure 1.5 schematically shows a balanced homodyne detection setup. The signal
light and a strong local laser light, described by the annihilation operators a and b,
respectively, are mixed on a 50/50 beam splitter. The two output fields ¢ and d can

be obtained through the relation

(a+1ib),

Hg\H
[\

d = ﬁ(b—l—ia). (1.28)

The two output fields ¢ and d are detected individually by two photodetectors. Then
the two intensities I. = (cfc) and I; = (d'd) measured by the two photodetectors are

subtracted each other, the result is

I.—I; = (ng) = (cc—did),

= i{a'b — ab"). (1.29)

Assuming the b mode to be in the coherent state |fe™™!), and 8 = |B|e™™, the

operator b can be replaced by |8|e”"“*¥) | we obtain

(nea) = |Bl[ac™e=" + ale=ite?], (1.30)
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where 6 = 1+ 7/2. Assuming that the signal mode a has the same frequency as that

of the local oscillator b, thus a = age™*, Eq. (1.30) reduces to

(nea) = 2[BI(X(0)), (1.31)

where (X (0)) = 3(age™™ + age™) is the field quadrature operator at the angle 6. By
changing 6, which can be done by changing the phase 1 of the local oscillator, an
arbitrary quadrature component of the signal field can be measured.

Moreover, the balanced homodyne detection can be used to detect the squeezed

state. The variance of the output signal can be found to be
((Anea)®) = 4BP{(AX(0))?), (1.32)

The squeezing condition for the signal is ((AX(0))?) < 1, we have ((An.q)?) < |B]%

1.6 Electromagnetically Induced Transparency

Generally, if a laser light passes through a two-level atomic system whose atoms are all
in the ground state, the light will be strongly absorbed if the laser field is near resonant
with the atomic transition. However, for a three-level atomic system whose atoms are
all in the lowest-energy state, the atomic system becomes transparent for a weak probe
field tuned to an atomic transition resonance when a strong coupling field is applied to
the other atomic transition. This phenomenon is called as electromagnetically induced
transparency (EIT). The effect of EIT allows a weak signal field to propagate without
being absorbed by the atomic medium. It was theoretically proposed in 1989 [74] and
first experimentally demonstrated in 1991 [75]. Meanwhile, the phenomenon of EIT
[76] is accompanied by a sharp dispersion change in the transmitted probe field on
resonance, which leads to the generation of ultrafast light [77, 78] and ultraslow light
[79, 80, 81]. Accordingly considerable interest has been dedicated to EIT due to its

potential applications in an optical switch [82], optical storage [83, 84, 85, 86].
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2)

Figure 1.6: A three-level A-type atomic system, where the probe field at frequency v
couples levels |b) and |a), while the coupling field at frequency v, couples levels |c)

and |a).

We consider a three-level A-type atomic system [72], as shown in Fig. 1.6. The
atoms have one upper level |a) and two lower levels |b) and |c) with energies hw,,
fiwy, and hw,, where the transitions |b) — |a) and |¢) — |a) are dipole allowed, but
the transition |b) — |c) is dipole forbidden since |¢) is a metastable state. The levels
la) and |b) are coupled by a weak probe field of amplitude ¢ at frequency v, while the
levels |a) and |c) are coupled by a strong coupling field at frequency v,,. The coupling
strength of the probe field to the atomic transition [b) — |a) is described by the Rabi
frequency ue/h, where g is the electric-dipole transition matrix element, and it
is assumed to be real. The interaction strength between the coupling field and the
lc) — |a) transition is characterized by the complex Rabi frequency €2, exp(—i¢,),
and (2, is assumed to be real.

The state of the atom can be written as a linear combination of states |a), |b),
and |c), i.e., |U) = C,(t)|a) + Cp(t)[b) + C.(t)|c). Here, Cu(t), Cp(t), and C.(t) are
the probability amplitudes corresponding to the three atomic levels |a), |b), and |c),

respectively. The density matrix operator of the atom takes form

p = [U)¥|

= [Cu@)]a) + Co()|b) + Ce(t)])][Co(t){al + Cy () (b] + Ce(t)(cl]

17



= |Ca(®)l’|a){al + Ca(t)Cy (1)|a)(b] + Ca(t)CZ (t)|a)(c]
+Cy(t)Co (1) b) al + [Co() [} (b] + Co()CE (1) b) (c]

+Ce(t)Cq(t)le)(al + Ce(t)Cy ()] e)b] + [Ce(t) e} {cl. (1.33)
Taking the matrix elements, we get

paa = (alpla) = |Ca(®)],

par = (alplb) = Ca(t)Cy (1),

pac = (alple) = Ca(t)CL(D),

pra = (blpla) = Cy(t)Ca(t),

pw = (blplb) = [Cy(t)],

poe = (blple) = Co(t)CE (1),

pea = (clpla) = Ce(t)C5 (1),

per = (clplb) = Ce(t)Cy (1),

pec = (clple) =[Ce(t)]*. (1.34)

Hence, the three-level atom can be described by the 3 x 3 density matrix p,

Paa  Pab  Pac
P=1 Poa Pob Poc |- (1.35)

Pca  Pcb  Pcc

where the diagonal elements p; = (i|p|i) (i = a,b, ¢) describe the populations in the
three levels, respectively, and the off-diagonal elements p;; = (i|p|j) (1,7 = a,b,c
and i # j) represent the atomic coherence between levels. The density matrix is a
Hermitian operator satisfying p = p'.The off-diagonal decay rates for pu, pee, and
per are denoted by 71, 72, and 73, respectively. Since the level |c) is assumed to be a
metastable state, y3 << ;.

In the rotating-wave approximation, the Hamiltonian of the system is given by

H = hwala){a| + hiwy|b) (b] + Fwelc)(c]
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I, pave
+- 5%

: e~ a)(b| + Qe e " |a){c|) + H.C], (1.36)

where the first three terms are the free energies of the atomic three levels, and the
last four terms gives the interactions of the three-level atoms with the probe field and
the coupling field.

The time evolution for the density matrix elements pup, pep, and pg. can be derived
by using the Liouville equation p;; = —%[H . pi;] and considering the corresponding

damping term, which yields

. . i ab€ iy ‘ —% —i

pab =-%ww+%Mw—§%?€t@m—mw+§ﬂm¢% " peb

. . Z ab€ —iv Z 7 w

P = —(iWep +73)Peb — 5%6 "Pea + §Qu€ 2 o,

. . i —i —iy, U Pav€ —iv

Pac = _(lwac + 72)pac - §QM€ ¢“6 Ht(paa - pcc) + 5 A € tpbca (137)

where wyp, wep, and w,. are the Bohr frequencies, wqy, = w, — Wy, Wy = We — Wy, and

Wae = Wy — we. We assume all atoms are initially in the lowest-energy state |b),

Pb(0) = 1, paa(0) = pec(0) = pac(0) = 0. (1.38)

Since the probe field is very weak, most of the atoms keep staying in the lowest-energy
state |b) at any time so that the atomic population in level |b) is close to unity. Thus

we can adopt the approximation condition
pov(t) = 1, paa(t) = pec(t) = pac(t) = 0. (1.39)

Thus Eq. (1.37) reduces to

. ; ipabg —ivt i
ab — a a 5 —Q
Dab (zwb+'yl)pb+2 e +2

Py = —(iwep + ¥3)peb + §Que Pueivul . (1.40)

—1 —iv,t
n€ ¢H€ * Pebs

Then we convert the usual density-matrix elements p;; to slowly varying variables p;;

in order to remove the fast optical oscillation by using the following transformations
i

Pab = ﬁabei s

Pey = Pepe” Tt (1.41)
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thus the time evolution of the slowly varying density-matrix elements p,;, and pg, is

given by
. o 1P 1 Cid ~
Pab = _(’71 - ZA)pab + 5 5 + §QM€ ¢”Pcb,
- A~ ) it ~
Py = —(v3—1iA)pep + gihe P Db, (1.42)

where A = v —wy, is the detuning of the probe frequency v from the frequency wg;, of
the |b) — |a) transition, and we assume that the coupling field is resonant with the
|c) = |a) transition, i.e., v, = wg.

We write Eq. (1.42) in the matrix form as

R=—-MR+ A, (1.43)
where
~ . ; i ipabg
a — A —iQen
R=| " | = P T CA=| 20 | (144)
ﬁcb —%Q“€Z¢” Y3 — 1A 0

then integrating

= M A, (1.45)

we obtain

ipapce” (13 — iA)
2h[( — i) (s — i) + ]

Pab(t) (1.46)

The dielectric response of the atomic system to the probe field is determined by
the electric polarization P. The polarization of an ensemble of identical atoms will
be P = 2pupas(t)e”'N,, where N, is the atom number density for the three-level
atoms. In addition, the linear polarization is related to the amplitude € of the probe

field through P = egxe, where ¢ is the electric permittivity of free space and y is the
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electric susceptibility of the atomic system. Hence, the susceptibility of the A system

is given by
y = Na@?zb i(73 — iA)
ol (71 —il)(ys —iA) +
= X +iix", (1.47)

where x’ and x” are the real and imaginary parts of the complex susceptibility x of
the atomic system. The x’ and x” determine the dispersion and absorption of the

probe field, respectively. It is seen that from Eq. (1.47), on resonance, if there is a

2
Napgy, 3
Q25
M3+

v3. If the decay rate 73 is very small (or approaching zero), the imaginary part of

coupling field, ie., 2, # 0, X' =0 and x" = which is proportional to

the electric susceptibility would be negligibly small. We plot the real and imaginary

Nap?,

parts of the susceptibility in units of ok

as a function of the normalized detuning

A/~ without and with the coupling field, as shown in Figs. 1.7 and 1.8. In the

=
8
x|
]
S| 2
RN

2
Figure 1.7: The real part of the susceptibility in units of % as a function of the

normalized detuning A/~ in the absence (dotted) and in the presence (solid) of the

coupling field.

absence of the coupling field, ©, = 0, the curve x” has a Lorentzian lineshape, and

the curve x’ exhibits the anomalous dispersion since the slope of ¥’ at the line center
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Figure 1.8: The imaginary part of the susceptibility in units of % as a function of
the normalized detuning A/v; in the absence (dotted) and in the presence (solid) of

the coupling field.

is less than zero. In the presence of the coupling field, 2, = 27y, and 1 >> y3(y3 =
107%y;), when A = 0, wyy = v, the probe field is in resonance with the |[b) — |a)
atomic transition, we can see x” &~ 0, the medium becomes completely transparent
for the probe field, thus the probe field can propagate through the atoms without any
absorption even with most of the atoms in the lowest-energy state |b). It has been
calculated that the width of the transparency window depends on the Rabi frequency
€2, which is related to the power of the coupling field. And increasing the power of
the coupling field, the EIT dip becomes wider due to power broadening. We also note
X' =0 as A = 0, hence the refractive index of the medium is equal to unity since the
refractive index is related to the susceptibility by n(v) = [1+ x/(v) +ix"(v)]>®. Thus
the phase velocity of the probe field propagating through the medium is equal to that
in vacuum. Moreover, the slope of the curve x’ at the line center is larger than zero,
thus the curve ' exhibits the normal dispersion. And the steepness of the curve y’
where the absorption vanishes depends on the power of the coupling field, i.e., the

curve X' becomes steeper at the line center by decreasing the power of the coupling
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field, implying that the group velocity can be dramatically reduced, and even can
be reduced to zero such that the probe field can be completely stopped and stored
within the atomic medium.

In summary, when the coupling field resonant with the |¢) — |a) atomic transition
is applied, the interaction of a three-level A-type atomic system with a weak probe
field depends on the frequency of the probe field. If the frequency of the probe field
matches the frequency of the |b) — |a) transition, the EIT phenomenon occurs, the

effect of the atomic system on the probe field can be eliminated.

1.7 Organization

Chapter 2 shows that an optical parametric amplifier inside a cavity can consider-
ably improve the cooling of the micromechanical mirror by radiation pressure. The
micromechanical mirror can be cooled from room temperature 300 K to sub-Kelvin
temperatures, which is much lower than what is achievable in the absence of the para-
metric amplifier. This is further illustrated in case of a precooled mirror, where one
can reach millikelvin temperatures starting with about 1 K. Our work demonstrates
the fundamental dependence of radiation pressure effects on photon statistics.

Chapter 3 discusses how an optical parametric amplifier inside the cavity can
affect the normal-mode splitting behavior of the coupled movable mirror and the
cavity field. We work in the resolved sideband regime. The spectra exhibit a double-
peak structure as the parametric gain is increased. Moreover, for a fixed parametric
gain, the double-peak structure of the spectrum is more pronounced with increasing
the input laser power. We give results for mode splitting. The widths of the split
lines are sensitive to parametric gain.

Chapter 4 presents that squeezing of a nanomechanical mirror can be generated
by injecting broad band squeezed vacuum light and laser light into the cavity. We

work in the resolved sideband regime. We find that in order to obtain the maximum
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momentum squeezing of the movable mirror, the squeezing parameter of the input
light should be about 1. We can obtain more than 70% squeezing. Besides, for a fixed
squeezing parameter, decreasing the temperature of the environment or increasing the
laser power increases the momentum squeezing. We find very large squeezing with
respect to thermal fluctuations, for instance at 1 mK, the momentum fluctuations go
down by a factor more than one hundred.

Chapter 5 presents a scheme for entangling two separated nanomechanical oscil-
lators by injecting broad band squeezed vacuum light and laser light into the ring
cavity. We work in the resolved sideband regime. We find that in order to obtain the
maximum entanglement of the two oscillators, the squeezing parameter of the input
light should be about 1. We report significant entanglement over a very wide range
of power levels of the pump and temperatures of the environment.

Chapter 6 discusses Stokes and anti-Stokes processes in cavity optomechanics in
the regime of strong coupling. The Stokes and anti-Stokes signals exhibit prominently
the normal-mode splitting. We report gain for the Stokes signal. We also report life-
time splitting when the pump power is less than the critical power for normal-mode
splitting. The nonlinear Stokes processes provide a useful method for studying the
strong-coupling regime of cavity optomechanics. We also investigate the correlations
between the Stokes and the anti-Stokes photons produced spontaneously by the op-
tomechanical system. At zero temperature, our nanomechanical system leads to the
correlations between the spontaneously generated photons exhibiting photon anti-
bunching and those violating the Cauchy-Schwartz inequality.

Chapter 7 discusses the dynamical behavior of a nanomechanical mirror in a high-
quality cavity under the action of a coupling laser and a probe laser. We demonstrate
the existence of the analog of electromagnetically induced transparency (EIT) in the
output field at the probe frequency. Our calculations show explicitly the origin of

EIT-like dips as well as the characteristic changes in dispersion from anomalous to
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normal in the range where EIT dips occur. Remarkably the pump-probe response for
the optomechanical system shares all the features of the A system as discovered by
Harris and collaborators.

Chapter 8 studies the optomechanical design introduced by M. Li et. al. [Phys.
Rev. Lett. 103, 223901 (2009)], which is very effective for investigation of the effects
of reactive coupling. We show the normal mode splitting that is due solely to reactive
coupling rather than due to dispersive coupling. We suggest feeding the waveguide
with a pump field along with a probe field and scanning the output probe for evidence
of reactive-coupling-induced normal mode splitting.

Chapter 9 shows that dissipatively coupled nanosystems can be prepared in states
which beat the standard quantum limit of the mechanical motion. We show that the
reactive coupling between the waveguide and the microdisk resonator can generate the
squeezing of the waveguide by injecting a quantum field and laser into the resonator
through the waveguide. The waveguide can show about 70-75% of maximal squeezing
for temperature about 1-10 mK. The maximum squeezing can be achieved with an
incident pump power of only 12 yW for a temperature of about 1 mK. Even for
temperatures of 20 mK, achievable by dilution refrigerators, the maximum squeezing
is about 60%.

Chapter 10 describes how electromagnetically induced transparency can arise in
quadratically coupled optomechanical systems. Due to quadratic coupling, the under-
lying optical process involves a two-phonon process in an optomechanical system, and
this two-phonon process makes the mean displacement, which plays the role of atomic
coherence in traditional electromagnetically induced transparency (EIT), zero. We
show how the fluctuation in displacement can play a role similar to atomic coherence
and can lead to EIT-like effects in quadratically coupled optomechanical systems. We
show how such effects can be studied using the existing optomechanical systems.

Chapter 11 discusses electromagnetically induced transparency (EIT) using quan-
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tized fields in optomechanical systems. The weak probe field is a narrowband squeezed
field. We present a homodyne detection of EIT in the output quantum field. We find
that the EIT dip exists even though the photon number in the squeezed vacuum is at
the single-photon level. The EIT with quantized fields can be seen even at tempera-
tures on the order of 100 mK, thus paving the way for using optomechanical systems
as memory elements.

Chapter 12 demonstrate theoretically the possibility of using nano mechanical
systems as single photon routers. We show how EIT in cavity optomechanical systems
can be used to produce a switch for a probe field in a single photon Fock state
using very low pumping powers of few microwatt. We present estimates of vacuum
and thermal noise and show the optimal performance of the single photon switch is
deteriorated by only few percent even at temperatures of the order of 20 mK.

Chapter 13 gives the summary of what we have done in this thesis and the direction

of the future work.
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CHAPTER 2

ENHANCEMENT OF CAVITY COOLING OF A
MICROMECHANICAL MIRROR USING PARAMETRIC
INTERACTIONS

2.1 Overview

Recently there is considerable interest in micromechanical mirrors. These are macro-
scopic quantum mechanical systems and the important question is how to reach their
quantum characteristics [8, 87, 88, 89]. The thermal noise limits many highly sen-
sitive optical measurements [90, 91]. We also note that there has been considerable
interest in using micromirrors for producing superpositions of macroscopic quantum
states if such micromirrors can be cooled to their quantum ground states [27, 28].
Thus cooling of micromechanical resonators becomes a necessary prerequisite for all
such studies. So far two different ways to cool a mechanical resonator mode have
been proposed. One is the active feedback scheme [7, 92, 93, 116], where a viscous
force is fed back to the movable mirror to decrease its Brownian motion. The other
is the passive feedback scheme [6, 8, 9, 56, 95, 159], in which the Brownian motion of
the movable mirror is damped by the radiation pressure force exerted by photons in
an appropriately detuned optical cavity.

Clearly we need to think of methods which can cool the micromirror toward its
ground state. Since radiation pressure depends on the number of photons, one would
think that the cooling of the micromirror can be manipulated by using effects of
the photon statistics. In this chapter, we propose and analyze a method to achieve

cooling of a movable mirror to sub-Kelvin temperatures by using a type I optical
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parametric amplifier inside a cavity. We remind the reader of the great success of
cavities with parametric amplifiers in the production of nonclassical light [97, 98, 99].
The movable mirror can reach a minimum temperature of about a few hundred mK,
a factor of 500 below room temperature 300 K. The lowering of the temperature is
achieved by changes in photon statistics due to parametric interactions [100, 101, 102,
103, 104, 105]. Note that if the mirror is already precooled to say about 1 K, then we
show that by using an optical parametric amplifier we can cool to about millikelvin
temperatures or less.

The chapter is organized as follows. In Sec. I we describe the model and derive the
quantum Langevin equations. In Sec. III we obtain the stability conditions, calculate
the spectrum of fluctuations in position and momentum of the movable mirror, and
define the effective temperature of the movable mirror. In Sec. IV we show how the
movable mirror can be effectively cooled by using the parametric amplifier inside the

cavity.

2.2 Model

cavity axis

+—>
) OPA
mn
— > [— —>
«—| | ——| |——
cout
fixed mirror movable mirror

Figure 2.1: Sketch of the cavity used to cool a micromechanical mirror. The cavity
contains a nonlinear crystal which is pumped by a laser (not shown) to produce

parametric amplification and to change photon statistics in the cavity.

We consider a degenerate optical parametric amplifier (OPA) inside a Fabry-Perot
cavity with one fixed partially transmitting mirror and one movable totally reflecting

mirror in contact with a thermal bath in equilibrium at temperature 7', as shown
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in Fig. 2.1. The movable mirror is free to move along the cavity axis and is treated
as a quantum mechanical harmonic oscillator with effective mass m, frequency w,,,
and energy decay rate 7,,,. The effect of the thermal bath can be modeled by a
Langevin force. The cavity field is driven by an input laser field with frequency wy,
and positive amplitude related to the input laser power P by & = \/P/(hwy). When
photons in the cavity reflect off the surface of the movable mirror, the movable mirror
will receive the action of the radiation pressure force, which is proportional to the
instantaneous photon number inside the cavity. So the mirror can oscillate under the
effects of the thermal Langevin force and the radiation pressure force. Meanwhile, the
movable mirrors motion changes the length of the cavity; hence the movable mirror
displacement from its equilibrium position will induce a phase shift on the cavity
field.

Here we assume the system is in the adiabatic limit, which means w; < 7e/L;
c is the speed of light in vacuum and L is the cavity length in the absence of the
cavity field. We assume that the motion of the mirror is so slow that the scattering
of photons to other cavity modes can be ignored, thus we can consider one cavity
mode only [64, 106], say, w.. Moreover, in the adiabatic limit, the number of photons
generated by the Casimir effect [107], retardation, and Doppler effects is negligible
[26, 92, 108]. Under these conditions, the total Hamiltonian for the system in a frame
rotating at the laser frequency wy can be written as

2

1
H = h(we—wp)ne — hxneg + 5(% + mw? ¢?)

+ihe(c! — ¢) +ihG(e?c? — e c?). (2.1)

Here c and ¢! are the annihilation and creation operators for the field inside the cavity,
respectively; n. = cfc is the number of the photons inside the cavity; and ¢ and p
are the position and momentum operators for the movable mirror. The parameter

X = w¢/L is the coupling constant between the cavity and the movable mirror; and

29



€ = v/2ké. Note that k is the photon decay rate due to the photon leakage through
the fixed partially transmitting mirror. Further k = w¢/(2F L), where F' is the cavity
finesse. In Eq. (2.1), G is the nonlinear gain of the OPA, and 6 is the phase of
the field driving the OPA. The parameter G is proportional to the pump driving the
OPA.

In Eq. (2.1), the first term corresponds to the energy of the cavity field, the
second term arises from the coupling of the movable mirror to the cavity field via
radiation pressure, the third term gives the energy of the movable mirror, the fourth
term describes the coupling between the input laser field and the cavity field, and the
last term is the coupling between the OPA and the cavity field.

The motion of the system can be described by the Heisenberg equations of motion
and adding the corresponding damping and noise terms, which leads to the following

quantum Langevin equations:

y — P
q_a7

p = —mw2q + hxne — ymp + &,
(2.2)

¢ =i(wp — we + xq)c + € + 2Ge"cT — ke + V2kein,
¢t = —i(w — we + xq)cl + € + 2Ge e — kel + v/2kdl,.

Here ¢;, is the input vacuum noise operator with zero mean value; its correlation

function is [141]

(6cim()och (8)) = 6(t — 1),
(2.3)

(0Cin(t)dei(t) = <5c}n(t)5cm(t’)> = 0.
The force £ is the Brownian noise operator resulting from the coupling of the mov-

able mirror to the thermal bath, whose mean value is zero, and it has the following

correlation function at temperature 7' [108]:

hw
2%kpT

(EWEL)) = my [ emte=) [cotm

o )+ 1] dw, (2.4)
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where kp is the Boltzmann constant and 7' is the thermal bath temperature. In
order to analyze Eq. (2.2), we use standard methods from quantum optics [110]. A
detailed calculation of the temperature for G = 0 is given by Paternostro et al. [35].
By setting all the time derivatives in Eq. (2.2) to zero, we obtain the steady-state

mean values

Tix|es|? Kk —iA 4 2Ge®
pS:OJ qSZ mw%l y Cs — I{2+A2—4G2€7 (25)
where
hX2 Cs 2
Azwc—wL—quZAO—XQS:Ao—7|2| (2.6)
mw?,

is the effective cavity detuning, including the radiation pressure effects. The modifi-
cation of the detuning by the yq¢, term depends on the range of parameters. The g,
denotes the new equilibrium position of the movable mirror relative to that without
the driving field. Further ¢, represents the steady-state amplitude of the cavity field.
Note that ¢; and ¢, can display optical multistable behavior, which is a nonlinear
effect induced by the radiation-pressure coupling of the movable mirror to the cavity
field. Mathematically this is contained in the dependence of the detuning parame-
ter A on the mirrors amplitude g;. It is evident from Eqgs. (2.5) and (2.6) that A
satisfies a fifth-order equation and in principle can have five real solutions implying
multistability. Generally, in this case, at most three solutions would be stable. The

bistable behavior is reported in Refs. [41, 42].

2.3 Radiation Pressure and Quantum Fluctuations

In order to determine the cooling of the mirror, we need to find out the fluctuations in
the mirrors amplitude. Since the problem is nonlinear, we assume that the nonlinear-
ity is weak. We are thus interested in the dynamics of small fluctuations around the
steady state of the system. Such a linearized analysis is quite common in quantum

optics [110, 111]. So we write each operator of the system as the sum of its steady
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state mean value and a small fluctuation with zero mean value,
q=qs+0q, p=ps+0p, c=cs+dc (2.7)

Inserting Eq. (2.7) into Eq. (2.2), then assuming |cs| > 1, we get the linearized

quantum Langevin equations for the fluctuation operators

6g =22

m?

5p = —mw%é‘q + hX(Cs(SCT + C:(SC) - er(Sp + 57

(2.8)
6¢ = —iAdc + ixes6q + 2Ge?Sct — ke + /2kbcy,
dct = iAdet — ixerdq + 2Ge 8 — Kdct + v/2woc,.

Introducing the cavity field quadratures dx = dc' + dc and 6y = i(dc! — d¢), and
the input noise quadratures dx;, = (5c;-rn + 0¢;p, and Oy, = 2'(50;[“ —0¢n), Eq. (2.8) can

be written in the matrix form

f=Af() +n(t), (2.9)

where f(t) is the column vector of the fluctuations, and 7(t) is the column vector of

the noise sources. For the sake of simplicity, their transposes are

f&)" = (éq, 6p, oz, dy),

(2.10)
U(t)T = (07€a \% 2551’1’71,) \% 2"{5yln)7
and the matrix A is given by
0 - 0 0
—mw?,  —y,  hyets e
A= k re ra (2.11)

ix(cs—ct) 0 2Gcosf—rk  A+2Gsind

X(es+¢t) 0 2Gsinf — A —(k+2Gcos0)

The solutions to Eq. (2.9) are stable only if all the eigenvalues of the matrix A have

negative real parts. Applying the Routh-Hurwitz criterion [112, 113], we get the
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stability conditions

26(K% — 4G? + A% + 2K%) + Y (269m + w3,) > 0,

2 2 2(.2 *2 .
m m
) 2(,52 _ 42
+ thx (Cs ﬂfs )G CcOos 9] + 2I€/ym{(ﬁ2 e .\ A2)2
+(267m + ) (57— 4G% + A%) (2.12)

+w? [2(K? + 4G* — A?) + w2 + 267} > 0,

2% 2 < 2
W (k2 — 4G2 + A?) = 2Pl
m
2hx% (2 + B Gsinf 23 (2 — )G cos >0
m m '

Note that in the absence of coupling ¥, the conditions (2.12) become equivalent to
K —4G? 4+ A* >0 (2.13)

The condition for the threshold for parametric oscillations is k2 — 4G? + A% = 0. We
always would work under the condition that (2.13) is satisfied. Further for y # 0
we would do numerical simulations using parameters so that conditions (2.12) are
satisfied.

On Fourier transforming all operators and noise sources in Eq. (2.8) and solving

it in the frequency domain, the position fluctuations of the movable mirror are given
by
Sq(w) = — 5 (A2 + (1 — iw)? — 4G?)E (@)

—ih/26x{[(w + ik — A)e, + 2iGect]oet (w) (2.14)
+[(w + ik + A)ct + 2iGe P e )5cim(w)}),
where d(w) = 2ax2(Alcs|? +iGe 2 —iGe?cr?) +m(w? — w2, +iwym ) [AZ2 4 (k —iw)? —
4G?). In Eq. (2.14), the first term proportional to &(w) originates from the thermal

noise, while the second term proportional to y arises from radiation pressure. So the

position fluctuations of the movable mirror are now determined by the thermal noise
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and radiation pressure. Notice that if there is no radiation pressure, the movable
mirror will make Brownian motion, dq(w) = —&(w)/[m(w? — w2, + iwY,)], whose
susceptibility has a Lorentzian shape centered at frequency w,, with width ~,,.

The spectrum of fluctuations in position of the movable mirror is defined by
1 —i(w+Q)t
Slw) = 1= [ dQe D (5g(w)3g(Q) + Fa(@)da(w)) (2.15)

To calculate the spectrum, we need the correlation functions of the noise sources in

the frequency domain,

(8¢im(w)del () = 2m6(w + ),
(2.16)

(E(w)E(Q)) = 2mhymw [1 + coth(w?:T)} d(w + Q).

Substituting Eq. (2.14) and Eq. (2.16) into Eq. (2.15), we obtain the spectrum of

fluctuations in position of the movable mirror

S, (w) = W{?ﬁhﬁ[(ﬁ? + w? + A2 +4G?)|cs)?

+2Ge?c?(k —iA) + 2Ge 2 (k + iA)]
(2.17)
+mYmw[(A% + k2 — w? — 4G?)? + 4Kk%0W2)

x coth(5-)}.

2%pT
In Eq. (2.17), the first term is the radiation pressure contribution, whereas the second
term corresponds to the thermal noise contribution. Then Fourier transforming ¢ =
dp/m in Eq. (2.8), we obtain dp(w) = —imwdq(w), which leads to the spectrum of

fluctuations in momentum of the movable mirror
Sy(w) = m*w?S,(w). (2.18)

For a system in thermal equilibrium, we can use the equipartition theorem to define

temperature 1mw? (¢?) = % = 1kpT.sp, where (¢*) = 5= |72 Sy(w)dw, and (p?) =

L [728,(w)dw. However, here we are dealing with a driven system and 2mw?,(¢*) #
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%, hence the question is how to define temperature. We use an effective temperature

defined by the total energy of the movable mirror kgT.sr = %mw?n(qz) + %. We

also introduce the parameter r = m2w? (¢?)/(p?).This parameter gives us the relative

importance of fluctuations in position and momentum of the mirror. We mention that
one can calculate the quantum state of the oscillator and we find that the Wigner
function is Gaussian.

Equation (2.17) is our key result which tells how the temperature of the micromir-
ror would depend on the parameters of the cavity: x, gain of the OPA, external laser
power, etc. We specifically investigate the dependence of the temperature on the gain
G and the phase 0 associated with the parametric amplification process. In the limit

of G — 0, the result (2.17) reduces to the one derived by Paternostro et al.[35].

2.4 Cooling Mirror to About Sub-Kelvin Temperatures

In this section, we present the possibility of cooling the micromirror to temperatures of
about sub-Kelvin by using parametric amplifiers inside cavities. In all the numerical
calculations we choose the values of the parameters which are similar to those used
in recent experiments: A\;, = 2wc/w;, = 1064 nm, L = 25 mm, P =4 mW, m = 15
ng, wn/(2r) = 275 kHz, and the mechanical quality factor Q = wy,/7m = 2.1 X
10*. Further in the high-temperature limit kg7 > fiw, we have coth(hw/2kpT) ~

2kBT/hU)

2.4.1 From Room Temperature (T=300 K) to About Sub-Kelvin Tem-

peratures

If we choose Kk = 10% s7!, F' = 188.4, G = 0 to satisfy the stability conditions
(2.12), the detuning must satisfy Ay > 4 x 10%~!. Figure 2.2 gives the variations
of the xgs, the effective temperature T.s¢, and the parameter r with the detuning

Ayg. It should be borne in mind that for the range of the detuning shown in Fig. 2.2,
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Figure 2.2: The dotted curve indicates the xg, (105 s71) as a function of the detuning
Ay (107 s71) (rightmost vertical scale). The solid curve shows the effective tempera-
ture T,;;(K) as a function of the detuning Ag (107 s71) (leftmost vertical scale). The
dashed curve represents the parameter r as a function of the detuning Ay (107 s71)
(leftmost vertical scale). Parameters: cavity decay rate xk = 10® s™!, cavity finesse

F = 188.4, parametric gain G=0.

A = Ayp— xqs = Ay. We find the ygs is single valued, so the movable mirror is
monostable. Note that the parameter r is very close to unity, %mwi(qQ) ~ %;
the mirror is thus in nearly thermal equilibrium. Figure 2.2 shows the possibility of
cooling the mirror to a temperature of 15.23 K for Ay = 4.9 x 107 s~!, which is in
agreement with the previous calculation [35].

Now we keep the values of k and F' the same as in Fig. 2.2, and we choose

parametric gain G = 3.5 x 107 s7!

and parametric phase # = 0; the detuning must
satisfy Ay > 5.7 x 107 s7t. If Ay < 5.7 x 107 s7! and for fixed x and G, the
system will be unstable. The threshold for unstable behavior occurs when any of

the three conditions (2.12) is not satisfied. It may be noted that the threshold for

parametric oscillation has been of great importance in connection with the production
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Figure 2.3: The dotted curve indicates the xg, (107 s71) as a function of the detuning
Ag (107 s71) (rightmost vertical scale). The position that corresponds to the minimum
effective temperature reached is indicated by the arrow. The solid curve shows the
effective temperature T,;;(K) as a function of the detuning Ag (107 s71) (leftmost
vertical scale). The dashed curve represents the parameter r as a function of the
detuning Ag (107 s71) (leftmost vertical scale). Parameters: cavity decay rate x = 108

s71, cavity finesse F' = 188.4, parametric gain G = 3.5 x 10"s™!, parametric phase

6 = 0.

of nonclassical-squeezed light. Near the parametric thresholds but under (2.13), large
degrees of squeezing were produced [97, 98]. Thus it would be advantageous to work
near the threshold of instability but below the instability point. Figure 2.3 shows
the variations of the xg,, the effective temperature T¢ss, and the parameter r with
the detuning Ay. We find the xgs is still single valued, so the movable mirror is still
monostable. The minimum temperature reached is 0.65 K for Ag = 6.7 x 107 s7L.
Thus, with the parametric amplifier the minimum temperature is about a factor of
20 lower than the one without parametric interaction. Note that the parameter r

is always larger than 1, implying that momentum fluctuations are suppressed over
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Figure 2.4: The behavior of xg, (107 s71) shown as a function of the detuning A (107
s71). The position that corresponds to the minimum effective temperature reached

1

is indicated by the arrow. Parameters: cavity decay rate x = 107 s™!, cavity finesse

F = 1884, parametric gain G = 5 x 10557, parametric phase 0 = 37 /4.

position fluctuations. Note that as one moves away from the threshold for parametric
instability, the minimum temperature does not rise sharply which is in contrast to
the behavior in Fig. 2.2, and is advantageous in giving one flexibility about the choice
of the detuning parameter.

We next examine the case when the behavior of the system is multistable. For this
purpose, we choose the cavity to have the higher quality factor. We choose x = 107
s7l F=1884, G =5x10° s and 6 = 37 /4; then to satisfy the stability conditions
(2.12), the detuning must satisfy Ay > 1.847 x 107 s~!. Figure 2.4 gives the behavior

of xqs as a function of the detuning Ay. We find the ygs is multivalued, so the movable
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Figure 2.5: The solid curve shows the effective temperature T,¢¢(K) as a function
of the detuning Ay (107 s7!). The dashed curve represents the parameter r as a
function of the detuning Ay (107 s7!). Parameters: cavity decay rate k = 107 s71,

cavity finesse F' = 1884, parametric gain G = 5 x 107!, parametric phase § = 37 /4.

mirror is multistable. By use of the lowest curve of the yq,, we obtain the variations
of the effective temperature T, ¢, and the parameter r with the detuning A, as shown
in Fig. 2.5. We choose that the range of the detuning is 2.0 x 107 s7t — 3.0 x 107
s~!. The minimum temperature achieved is 0.265 K for Ag = 2.0 x 107 s'. Note
that r is close to unity but larger than unity. The general trend is clear. By playing
around with various parameters such as laser power, cavity finesse, and parametric
gain, one can achieve a variety of different temperatures. As another example, if we

choose k = 5 x 105 s71, FF = 3768, G = 10" s~! and § = 0.2467 + 7/2, then we find

that the minimum temperature is 0.092 K for Ay = 2.13 x 107571,

2.4.2 From 1 K to Millikelvin Temperatures

If the thermal bath is cryogenically cooled down to a temperature of 1 K and the

mirror is initially thermalized, then we can use radiation pressure effects and photon
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Figure 2.6: The solid curve shows the effective temperature 7,;7(K) as a function
of the detuning Ay (107 s71)(leftmost vertical scale). The dashed curve represents
the parameter r as a function of the detuning Ay (107 s71)(rightmost vertical scale).
Parameters: cavity decay rate xk = 10® s71, cavity finesse F' = 188.4, parametric gain

G =0.

statistics to reach millikelvin or even lower temperatures.

If we choose k = 10® s™!, F' = 188.4, G = 0, the effective temperature T,y with
the detuning A, is shown in Fig. 2.6. The minimum temperature reached is 0.051 K
for Ag = 4.9 x 10" s7!. Next we examine how the effective temperature changes by
the parametric interactions inside the cavity. We keep all other parameters as in Fig.
6 and choose parametric gain G = 3.5 x 107 s7! and phase § = 0. Then the effective
temperature 7,7y with the detuning A, exhibits behavior as shown in Fig. 2.7. The
minimum temperature achieved is 0.0044 K for Ay = 7.9 x 107 s7!, a factor of 12
lower than the one without parametric interaction.

Finally it should be borne in mind that the radiation pressure depends on the
number operator and then it is sensitive to the photon statistics of the field in the
cavity. The photon statistics can be calculated from the quantum Langevin equations

(2.8). It can be proved that the Wigner function W of the field in the cavity is

40



0.012 |

14,
0.010 |
: 13.
— 0.008
X i
. 0.006| l2. =
= :
0.004
: {1
0.002 -
0000F, . . . ., . . .. .0
6 7 8 9 10

Ao (107 571

Figure 2.7: The solid curve shows the effective temperature T,;¢(K) as a function
of the detuning Ay (107 s71)(leftmost vertical scale). The dashed curve represents
the parameter r as a function of the detuning Ay (107 s71)(rightmost vertical scale).
Parameters: cavity decay rate k = 10® s™!, cavity finesse I’ = 188.4, parametric gain

G = 3.5 x 107 s7!, parametric phase 6 = 0.

Gaussian of the form exp[u(a — ¢g)? + v(a* — ¢£)? + Ma — ¢5)(a* — )] with p, v, A
determined by &, A, G, 6, etc. The photon number distribution [103] associated with
such a Gaussian Wigner function depends in an important way on the parameter p
and the inequality of p and v. The latter depend on G # 0 or on the presence of

OPA in the cavity.

2.5 Conclusions

In conclusion, we have demonstrated how the addition of a parametric amplifier in a
cavity can lead to cooling of the micromirror to a temperature; which is much lower
than what is achieved in an identical experiment without the use of a parametric
amplifier. The parametric processes inside the cavity change the quantum statistics of

the field in the cavity. This change leads to lower cooling since the radiation pressure
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effects are dependent on the photon number. Thus photon statistics becomes central
to achieve lower cooling temperatures. The use of parametric processes could provide
us with a way to cool the mirror to its quantum ground state or even squeeze it.

The content of this chapter has been published in Phys. Rev. A 79, 013821
(2009).
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CHAPTER 3

NORMAL MODE SPLITTING IN A COUPLED SYSTEM OF A
NANOMECHANICAL OSCILLATOR AND A PARAMETRIC
AMPLIFIER CAVITY

3.1 Overview

Recently there has been a major effort in applying many of the well tested ideas
from quantum optics such as squeezing, quantum entanglement to optomechanical
systems which are macroscopic systems. Thus observation of entanglement [28, 35,
36, 38, 114, 115], squeezing [25, 26] etc in optomechanical systems would enable one
to study quantum behavior at macroscopic scale. This of course requires cooling such
systems to their ground state and significant advances have been made in cooling the
mechanical mirror to far below the temperature of the environment [7, 8,9, 116, 117,
118, 119]. Further it has been pointed out that using optical back action one can
possibly achieve the ground state cooling in the resolved sideband regime where the
frequency of the mechanical mirror is much larger than the cavity decay rate, that is
wm > K [47, 66, 120].

Another key idea from quantum optics is the vacuum Rabi splitting [121, 122]
which is due to strong interaction between the atoms and the cavity mode. The
experimentalists have worked hard over the years to produce stronger and stronger
couplings to produce larger and larger splittings [123, 124, 213]. Application of these
ideas to macroscopic systems is challenging as well. In a recent paper Kippenberg
et al. [48] proposed the possibility of normal mode splitting in the resolved sideband

regime using optomechanical oscillators. In this chapter, we propose placing a type
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I optical parametric amplifier inside the cavity to increase the coupling between the
movable mirror and the cavity field, and this should make the observation of the
normal mode splitting of the movable mirror and the output field more accessible.
The chapter is structured as follows. In Sec. II we present the model, derive the
quantum Langevin equations, and give the steady-state mean values. In Sec. III we
present solution to the linearized Langevin equations and give the spectrum of the
movable mirror. In Sec. IV we analyse and estimate the amount of the normal mode
splitting of the spectra. In Sec. V we calculate the spectra of the output field. In
Sec. VI we discuss the mode splitting of the spectra of the movable mirror and the

output field.

3.2 Model

The system under consideration, sketched in Fig. 3.1, is an optical parametric am-
plifier (OPA) placed within a Fabry-Perot cavity formed by one fixed partially trans-
mitting mirror and one movable perfectly reflecting mirror in equilibrium with its
environment at a low temperature. The movable mirror is treated as a quantum me-
chanical harmonic oscillator with effective mass m, frequency w,,, and energy decay
rate 7,,. An external laser enters the cavity through the fixed mirror, then the pho-
tons in the cavity will exert a radiation pressure force on the movable mirror due to
momentum transfer. This force is proportional to the instantaneous photon number
in the cavity.

In the adiabatic limit, the frequency w,, of the movable mirror is much smaller
than the free spectral range of the cavity 57 (c is the speed of light in vacuum and L
is the cavity length), the scattering of photons to other cavity modes can be ignored,
thus only one cavity mode w, is considered [64, 106]. The Hamiltonian for the system

in a frame rotating at the laser frequency w; can be written as

T,
H = hw.—wp)ne — hwpxn.Q + %(Q2 + P?)
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Figure 3.1: Sketch of the studied system. The cavity contains a nonlinear crystal
which is pumped by a laser (not shown) to produce parametric amplification and to

change photon statistics in the cavity.
+ihe(ch — ¢) + ihG(e?c? — e70c?), (3.1)

Here () and P are the dimensionless position and momentum operators for the mov-

able mirror, defined by @ = ,/Qm%q and P = ,/mrfwmp with [@, P] = 2i. In Eq.

(3.1), the first term is the energy of the cavity field, n, = c'c is the number of the

photons inside the cavity, ¢ and ¢ are the annihilation and creation operators for the
cavity field satisfying the commutation relation [c,c’] = 1. The second term comes

from the coupling of the movable mirror to the cavity field via radiation pressure, the

dimensionless parameter y = L%, /I
m m

is the optomechanical coupling constant
between the cavity and the movable mirror. The third term corresponds the energy
of the movable mirror. The fourth term describes the coupling between the input
laser field and the cavity field, € is related to the input laser power @ by ¢ = \/% ,
where k is the cavity decay rate. The last term is the coupling between the OPA and
the cavity field, G is the nonlinear gain of the OPA, and 6 is the phase of the field
driving the OPA. The parameter G is proportional to the pump driving the OPA.

Using the Heisenberg equations of motion and adding the corresponding damping
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and noise terms, we obtain the quantum Langevin equations as follows,

Q:wmpa

P =2w,xn. — wn@Q — ymP + &,
(3.2)

¢ = —i(we — wp — W XQ)c + € + 2Gec — ke + V2kcin,

¢t = i(we — wp, — wme)cJr +e+2Ge e — ket + 2&01-”.
Here we have introduced the input vacuum noise operator c¢;, with zero mean value,
which obeys the correlation function in the time domain [141]

(6em(t)och (8)) = 6(t — 1),
(3.3)

(0cin(t)dein(t)) = (5ck, (t)dem(t')) = 0.
The force £ is the Brownian noise operator resulting from the coupling of the mov-
able mirror to the thermal bath, whose mean value is zero, and it has the following

correlation function at temperature 7" [108]:

(ERER)) = il: / wewt=0) [1 + coth(2Z:T)] dw, (3.4)

where kg is the Boltzmann constant and 7' is the thermal bath temperature. Following
standard methods from quantum optics [110], we derive the steady-state solution to

Eq. (3.2) by setting all the time derivatives in Eq. (3.2) to zero. They are

_ B s k—iA+2Ge?
P5_07 Q5_2X|CS| ?CS_ /€2+A2—4G2€’ (35)
where
A =w,—wr, — wWnXQs (3.6)

is the effective cavity detuning, depending on ). The ), denotes the new equilibrium
position of the movable mirror relative to that without the driving field. Further ¢,
represents the steady-state amplitude of the cavity field. From Eq. (3.5) and Eq.

(3.6), we can see @), satisfies a fifth order equation, it can at most have five real
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solutions. Therefore, the movable mirror displays an optical multistable behavior [41,
42, 43], which is a nonlinear effect induced by the radiation-pressure coupling of the

movable mirror to the cavity field.

3.3 Radiation Pressure and Quantum Fluctuations

In order to investigate the normal mode splitting of the movable mirror and the
output field, we need to calculate the fluctuations of the system. Since the problem
is nonlinear, we assume that the nonlinearity is weak. Thus we can focus on the
dynamics of small fluctuations around the steady state of the system. Each operator
of the system can be written as the sum of its steady-state mean value and a small

fluctuation with zero mean value,
Q=0Qs+0Q, P=P,+P, c=cs+dc (3.7)

Inserting Eq. (3.7) into Eq. (3.2), then assuming |cy| > 1, the linearized quantum
Langevin equations for the fluctuation operators take the form
6Q = wydP,
P = 2w x(ctoe + coc’) — wndQ — Y0P + &,
(3.8)
6¢ = — (K + 1A)dc + iwn xcs0Q + 2G5t + /2k0cin,

5ét = —(k — iA)SC! — i Xci0Q + 2Ge™5e + \/2rdcl,

Introducing the cavity field quadratures 0z = dc + écf and dy = i(6ct — éc), and the
input noise quadratures dx;, = dc;, + (5cgn and y;, = i(écjn —d¢in), Eq. (3.8) can be

rewritten in the matrix form

f(t) =Af(@) +n(t), (3.9)
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in which f(¢) is the column vector of the fluctuations, 7(t) is the column vector of

the noise sources. Their transposes are

f)" = (6Q, 0P, dx,0y),

(3.10)
n(t)T = (O7§a \% 2K5$in7 \% 2/‘?5%71),
and the matrix A is given by
0 W, 0 0
—Wm —Tm WmX(Cs + C:) _ime(Cs - Cﬁ)
A= . (3.11)

iwmx(cs—ct) 0 2Gcos® —rk  2Gsinf + A

wmX(cs+¢) 0 2Gsinf— A —(2Gcosb + k)

The system is stable only if all the eigenvalues of the matrix A have negative real
parts. The stability conditions for the system can be derived by applying the Routh-

Hurwitz criterion [112, 113]. This gives
2k(K? — 4G? + A2 + 26%m) + Ym (269m + w2) > 0,

2w3 2 (2K 4+ m)?[|es|PA + iG(c2e — cr2ei)]

S

+Haym{(K* — 4G + A%)% + (269m +77)
(3.12)

X(k? — 4G* + A?) + w2 [2(k? + 4G? — A?)
+w?2, + 269} > 0,

K2 —4G? + A? — 4w, P|esPA + iG (e — ¢2ei)] > 0.

s

All the external parameters must be chosen to satisfy the stability conditions (3.12).

Taking Fourier transform of Eq. (3.8) by using f(t) = o= [T f(w)e ™“*dw and

2 J—00

i) = & 72 fi(—w)e “tdw, where fT(—w) = [f(—w)], then solving it, we obtain

2 J—00
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the position fluctuations of the movable mirror
0Q(w) = —%[Q\Hmwmx{[(/@ —i(A 4 w))ct + 2Ge P cy)dcin (w)
+H[(k + (A — w))e, + 2Ge?e]ocl, (—w)} (3.13)

+[(k —iw)? + A% — 4G?)¢(w)],
where

d(w) = 4w V2[Ales|? + iG (2™ — ¢*2¢™)]

S

(3.14)

+(w? — W2, + iYw)[(k — iw)? + A% — 4G?).
In Eq. (3.13), the first term proportional to y originates from radiation pressure,
while the second term involving {(w) is from the thermal noise. So the position
fluctuations of the movable mirror are now determined by radiation pressure and the
thermal noise. In the case of no coupling with the cavity field, the movable mirror

2 —w? —iy,w), whose susceptibility

will make Brownian motion, dQ(w) = w,&(w)/(w
has a Lorentzian shape centered at frequency w,, with width ~,,.

The spectrum of fluctuations in position of the movable mirror is defined by

;((562(00)5@(9)) +(0Q(2)0Q(w))) = 2mSq(w)d(w + Q). (3.15)

To calculate the spectrum, we require the correlation functions of the noise sources

in the frequency domain,

(6cim (W)l (—)) = 276 (w + Q),
(3.16)

(E(W)E(Q)) = dm2zw |1 + coth(577)| d(w + Q).
Substituting Eq. (3.13) and Eq. (3.16) into Eq. (3.15), we obtain the spectrum of

fluctuations in position of the movable mirror [126]
So(w) = %{8%%1)(2/@[(/{2 + w? + A% + 4G?) ¢ 2

+2Ge?c?(k —iA) + 2Ge 2 (k + iA)]
(3.17)
F22mw[(A? + K? — w? — 4G?)? + drPw?]

X coth(ZIZL;JT)}.
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In Eq. (3.17), the first term involving y arises from radiation pressure, while the
second term originates from the thermal noise. So the spectrum Sg(w) of the movable

mirror depends on radiation pressure and the thermal noise.

3.4 Normal Mode Splitting and the Eigenvalues of the Matrix A

The structure of all the spectra is determined by the eigenvalues of iA (Eq. (3.11))
or the complex zeroes of the function d(w) defined by Eq. (3.14). Clearly we need
the eigenvalues of iA as the solution of (Eq. (3.9)) in Fourier domain is f(w) =
i(w —iA)"In(w). Let us analyse the eigenvalues of Eq. (3.11). Note that in the

absence of the coupling xy=0, the eigenvalues of 1A are

tyfwz, — I — Ome 4 /A2 —AG? — k. (3.18)

Thus the positive frequencies of the normal modes are given by VA% —4G?, /w2, — %

(A > 2G,wy, > ). The case that we consider in this chapter corresponds to

Wi > A > 2G5 K> Y Wi > K. (3.19)

The coupling between the normal modes would be most efficient in the degenerate
case i.e. when w,, = /A2 —4G?2. Tt is known from cavity QED that the normal mode
splitting leads to symmetric (asymmetric) spectra in the degenerate (nondegenerate)
case, provided that the dampings of the individual modes are much smaller than the
coupling constant. Thus the mechanical oscillator is like the atomic oscillator, the
cavity mode in the rotating frame acquires the effective frequency v/A2 — 4G2 which
is dependent on the parametric coupling. All this applies provided that damping
terms do not mix the modes significantly. An estimate of the splitting can be made
by using the approximations given by Eq. (3.19) and the zeroes of d(w). We find that

the frequency splitting is given by [127]

Wl = w3n+A22—4G2 + \/ A2+4G2 2 4 42 g2, (3.20)
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where we have defined

* = wnX?esP[A + 2G sin(0 — 29)], €*¥ = 2/|c,|*. (3.21)

It should be borne in mind that c¢s is dependent on the parametric coupling GG. The
splitting is determined by the pump power, the couplings x and G.

The parameters used are the same as those in the recent successful experiment on
optomechanical normal mode splitting [50]: the wavelength of the laser A = 27c/wy, =
1064 nm, L = 25 mm, m = 145 ng, k = 27 x 215 x 103 Hz, w,, = 27 x 947 x 10° Hz,
T = 300 mK, the mechanical quality factor Q" = w,, /Ym = 6700, parametric phase
¢ = w/4. And in the high temperature limit kg7 > hw,,, we have coth(hw/2kpT) ~
2kpT [hw.

Figure 3.2 shows the roots of d(w) in the domain Re(w) > 0 for different values
of G. Figure 3.3 shows imaginary parts of the roots of d(w) for different values of
G. The parametric coupling affects the width of the lines and this for certain range
of parameters aids in producing well split lines. One root broadens and the other
root narrows. The root that broadens is the one that moves further away from the

position for G = 0.

3.5 The Spectra of the Output Field

In this section, we would like to calculate the spectra of the output field. The fluc-
tuations dc(w) of the cavity field can be obtained from Eq. (3.8). Further using the
input-output relation [128] ¢ (w) = vV2kc(w) —cin(w), the fluctuations of the output

field are given by

3Cout (W) = V(W)E(W) + B(w)dcin(w) + F(w)dch, (—w), (3.22)
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Figure 3.2: The roots of d(w) in the domain Re(w) > 0 as a function of parametric
gain. p = 6.9 mW (dotted line), p = 10.7 mW (dashed line). Parameters: the cavity

detuning A = w,,.
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Figure 3.3: The imaginary parts of the roots of d(w) as a function of parametric gain.
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52



where

V(w) = —%?xi{[li —i(w + A)]es — 2Ge¥er},

w3 12 . .
E(w) - (H—iw)Zi—EAQ—ZLGZ [_ 2dzz;>)< Z{[’% - Z(UJ + A)]Cs

—2Gec H [k —i(w + A)]ct + 2Ge ¢}

+r —i(w+ A)] -1, (3.23)
W3 A2 )
Flw) = (nfiw)QiHA274G2 [_dez,))( i{[x —i(w+ A)es

—2Ge? et [k —i(w — A)]es + 2Gect

+2Ge®).
In Eq. (3.22), the first term associated with {(w) stems from the thermal noise of the
mechanical oscillator, while the other two terms are from the input vacuum noise. So

the fluctuations of the output field are influenced by the thermal noise and the input

vacuum noise.

The spectra of the output field are defined as

(bt (=)0 Cout(w)) = 27 Sour (W) (w + ),

(00ut ()0 out (W) = 2T Sout (W) (w + Q), (3.24)

(0Yout () 0Yout (w)) = 27 Syout (w)d(w + €2).
where 024, (w) and Yy (w) are the Fourier transform of the fluctuations dxy, (t) and
OYout(t) of the output field , which are defined by d24u:(t) = dcoue(t) + (5clut(t) and
Mout(t) = i[éciut(t) — 0Cout(t)] [110]. Here Seout(w) denotes the spectral density of
the output field, Syou(w) means the spectrum of fluctuations in the x quadrature of

the output field, and Syeu(w) is the spectrum of fluctuations in the y quadrature of

the output field.

Combining Eq. (3.16), Eq. (3.22), and Eq. (3.24), we obtain the spectra of the
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output field

Seout(w) = V(@)V (@) X 22201 + coth(577)] + F*(w)F(w),

Srout(w) = [V(=w) + V*()][V(w) + V*(~w)] x 222w[~1 + coth(z:7)]
HB(~w) + F*()][F(w) + B*(—w)], (3.25)

Syout(w) = —[V*(w) = V(=w)][V*(-w) = V(w)] x 222w[-1 + coth(5:7)]

[P (@) — B(~w)][E*(~w) — F)].
From Eq. (3.25), it is seen that any spectrum of the output field includes two terms,
the first term is from the contribution of the thermal noise of the mechanical oscillator,
the second term is from the contribution of the input vacuum noise.
We note that the spectra Sg(w), Seout(w), Szout(w), and Syeu(w) are determined
by the detuning A, parametric gain GG, parametric phase 6, input laser power g, and
cavity length L. In the following we will concentrate on discussing the dependence of

the spectra on parametric gain and input laser power.

3.6 Numerical Results

In this section, we numerically evaluate the spectra Sg(w), Seout(w), Szout(w), and
Syout(w) given by Eq. (3.17) and Eq. (3.25) to show the effect of an OPA in the
cavity on the normal mode splitting of the movable mirror and the output field.

We typically imagine a setup like in the original squeezing experiment [97] where
the experiment is done, for different levels of the pumping of OPA i.e., we start with
G = 0 and then increase it to a value consistent with the stability requirements. We
consider the degenerate case A = w,, for G = 0, and choose p = 6.9 mW. In order to
satisfy the stability conditions (3.12), parametric gain must satisfy G < 1.62k. The
figures 3.4 — 3.7 show the spectra Sg(w), Scout(w), Szout(w), and Syeu:(w) as a function
of the normalized frequency w/w,, for various values of parametric gain. When the

OPA is absent (G = 0), the spectra barely show the normal mode splitting. As
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Figure 3.4: The scaled spectrum Sg(w) X 7, versus the normalized frequency w/wy,
for different parametric gain. G= 0 (solid curve), 1.3x (dotted curve), 1.45x (dashed

curve). Parameters: the cavity detuning A = w,,, the laser power p = 6.9 mW.
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Figure 3.5: The spectrum S, (w) versus the normalized frequency w/w,, for different
parametric gain. G= 0 (solid curve), 1.3x (dotted curve), 1.45x (dashed curve).

Parameters: the cavity detuning A = w,,, the laser power p = 6.9 mW.
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Figure 3.6: The spectrum S, (w) versus the normalized frequency w/w,, for different
parametric gain. G= 0 (solid curve), 1.3k (dotted curve), 1.45+ (dashed curve).

Parameters: the cavity detuning A = w,,, the laser power p = 6.9 mW.

parametric gain is increased, the normal mode splitting becomes observable. This is
due to significant changes in the line widths and position. When G' = 1.3k, two peaks
can be found in the spectra. According to the numerical calculations of Figs. 3.2 and
3.3, these roots in units of w, are at (A) G = 0: 0.885—0.1137, 1.091 — 0.113 for 6.9
mW pump power and 0.826 — 0.1137, 1.136 — 0.113¢ for 10.7 mW pump power. (B)
G = 1.3k: 0.596 — 0.1567, 1.129 — 0.070z for 6.9 mW pump power and 0.490 — 0.148:,
1.178 — 0.079: for 10.7 mW pump power. We see that the line width of the two peaks
is approximately same for G = 0 but for two different power levels. The line widths
change significantly for G # 0. Note that the separation between two peaks becomes
larger as parametric gain increases. The reason is that increasing the parametric gain
causes a stronger coupling between the movable mirror and the cavity field due to an
increase in the photon number in the cavity. The values of intracavity photon number

|cs|? are 2.68 x 10%, 4.30 x 10°, 5.65 x 10° for G = 0, 1.3k, and 1.45k respectively.
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Figure 3.7: The spectrum Sy, (w) versus the normalized frequency w/wy, for different
parametric gain. G= 0 (solid curve), 1.3k (dotted curve), 1.45+ (dashed curve).

Parameters: the cavity detuning A = w,,, the laser power p = 6.9 mW.

We have examined the contributions of various terms in Eq. (3.25) to the output
spectrum. The dominant contribution comes from the mechanical oscillator. Note
further the similarity [50] of the spectrum of the output quadrature y (Fig. 3.7) to
the spectrum of the mechanical oscillator (Fig. 3.4). It should be borne in mind that
the strong asymmetries in the spectra for G # 0 arise from the fact that by fixing
A at w,,, the frequencies of the cavity mode and the mechanical oscillator do not
coincide if G # 0; x = 0. Besides the damping term k, being not negligible compared
to A, also contributes to asymmetries.

Now we fix parametric gain G = 1.3k, and choose A = m, the input
laser power must satisfy © < 55 mW. The spectrum Sgp(w) as a function of the
normalized frequency w/w,, for increasing the input laser power is shown in Fig. 3.8.
As we increase the laser power from 0.6 mW to 10.7 mW, the spectrum exhibits

a doublet and the peak separation is proportional to the laser power, because the
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coupling between the movable mirror and the cavity field for a given parametric gain

(G is increased with increasing the input laser power due to an increase in photon

number.
1.2 0.03
0=06mW | 10025
$=6.9 MW 10.02
£
=
3 9=107mW | 19015
4
10.01
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Figure 3.8: The scaled spectrum Sg(w) X 7, versus the normalized frequency
w/wm, each curve corresponds to a different input laser power. = 0.6 mW (solid
curve, leftmost vertical scale), 6.9 mW (dotted curve, rightmost vertical scale), 10.7

mW (dashed curve, rightmost vertical scale). Parameters: the cavity detuning

A = /w2, + 4G?, parametric gain G = 1.3k.

For comparison, we also consider the case of the cavity without OPA (G = 0), the
spectrum Sp(w) as a function of the normalized frequency w/w,, for increasing the
input laser power at A = w,, is plotted in Fig. 3.9. We can see if the laser power is
increased from 0.6 mW to 10.7 mW, the spectrum also displays normal mode splitting.
However the normal mode with OPA (Fig. 3.8) are more pronounced than that in the

absence of OPA (Fig. 3.9).
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Figure 3.9: The scaled spectrum Sg(w) X v, versus the normalized frequency w/wy,,
each curve corresponds to a different input laser power. p= 0.6 mW (solid curve,
leftmost vertical scale), 6.9 mW (dotted curve, rightmost vertical scale), 10.7 mW
(dashed curve, rightmost vertical scale). Parameters: the cavity detuning A = w,,,

parametric gain G = 0.

3.7 Conclusions

In conclusion, we have shown how the normal mode splitting behavior of the movable
mirror and the output field is affected by the OPA in the cavity. We work in the
resolved sideband regime and operate under the stability conditions (3.12). We find
that increasing parametric gain can make the spectra Sg(w), Seout(W), Szout(w), and
Syout(w) evolve from a single peak to two peaks. Furthermore, for a given parametric
gain, increasing input laser power can increase the amount of normal mode splitting
of the movable mirror due to the stronger coupling between the movable mirror and
the cavity field.

The content of this chapter has been published in Phys. Rev. A 80, 033807
(2009).
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CHAPTER 4

SQUEEZING OF A NANOMECHANICAL OSCILLATOR

4.1 Overview

The optomechanical system has attracted much attention because of its potential
applications in high precision measurements and quantum information processing
[28, 35, 36, 37, 88, 90, 129, 130, 131]. Meanwhile, it provides a means of probing
quantum behavior of a macroscopic object if a nanomechanical oscillator can be cooled
down to near its quantum ground state [38, 115]. Many of these applications are
becoming possible due to advances in cooling the mirror [6, 7, 8, 9, 10, 56, 118].
Further as pointed out in Refs [47, 66, 120], the ground state cooling can be achieved
in the resolved sideband regime where the frequency of the mechanical mirror is much
larger than the cavity decay rate.

Squeezing of a nanomechanical oscillator plays a vital role in high-sensitive detec-
tion of position and force due to its less noise in one quadrature than the coherent
state. A number of different methods have been developed to generate and enhance
squeezing of a nanomechanical oscillator, such as coupling a nanomechanical oscilla-
tor to an atomic gas [132], a Cooper pair box [133], a SQUID device [215], using
three-wave mixing [135] or Circuit QED [136], or by means of quantum measurement
and feedback schemes [137, 138, 139, 140]. A recent paper [32] reports squeezed
state of a mechanical mirror can be created by transfer of squeezing from a squeezed
vacuum to a membrane within an optical cavity under the conditions of ground state
cooling. We previously considered the possibility of using an OPA inside the cavity

for changing the nature of the statistical fluctuations [126].
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In this chapter, we propose a scheme that is capable of generating squeezing of
the movable mirror by feeding broad band squeezed vacuum light along with the laser
light. The achieved squeezing of the mirror depends on the temperature of the mirror,
the laser power, and degree of squeezing of the input light. One can obtain squeezing
which could be more than 70%.

The chapter is structured as follows. In Sec. II we describe the model, give the
quantum Langevin equations, and obtain the steady-state mean values. In Sec. III
we derive the stability conditions, calculate the mean square fluctuations in position
and momentum of the movable mirror. In Sec. IV we analyze how the momentum
squeezing of the movable mirror is affected by the squeezing parameter, the temper-
ature of the environment, and the laser power. We also compare the momentum
fluctuations of the movable mirror in the presence of the coupling to the cavity field
with that in the absence of the coupling to cavity field. We find very large squeezing
with respect to thermal fluctuations, for instance at 1 mK, the momentum fluctua-
tions go down by a factor more than one hundred. Our predictions of squeezing are
based on the parameters used in a recent experiment on normal mode splitting in a

nanomechanical oscillator [50].

4.2 Model

The system to be considered, sketched in Fig. 4.1, is a Fabry-Perot cavity with one
fixed partially transmitting mirror and one movable perfectly reflecting mirror in
thermal equilibrium with its environment at a low temperature. The cavity with
length L is driven by a laser with frequency wy, then the photons in the cavity will
exert a radiation pressure force on the movable mirror due to momentum transfer.
This force is proportional to the instantaneous photon number in the cavity. The
mirror also undergoes thermal fluctuations due to environment. Under the effects of

the two forces, the movable mirror makes oscillation around its equilibrium position.
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Here we treat the movable mirror as a quantum mechanical harmonic oscillator with
effective mass m, frequency w,, and momentum decay rate ~,,. We further assume
that the cavity is fed with squeezed light at frequency ws.

cavity axis

4+—>
2)3
E—
—
D
fixed mirror movable mirror

Figure 4.1: Sketch of the studied system. A laser with frequency w; and squeezed
vacuum light with frequency wg enter the cavity through the partially transmitting

mirror.

In the adiabatic limit, w,, < 57 ( c is the speed of light in vacuum), we ignore
the scattering of photons to other cavity modes, thus only one cavity mode w,. is
considered [64, 106]. In a frame rotating at the laser frequency, the Hamiltonian for

the system can be written as

hwm
H = h(we—wr)ne—hgn.Q + %(Q2 + P?) +ihe(c! — ¢), (4.1)
we have used the normalized coordinates for the oscillator defined by Q) = Qm%q

and P = \/E p with [@, P] = 2i. This normalization implies that in the ground
state of the nanomechanical mirror (Q?) = (P?) = 1. Further in Eq. (4.1) the
first term is the energy of the cavity field, n. = cfc is the number of the photons
inside the cavity, ¢ and ¢! are the annihilation and creation operators for the cavity
field with [c,cf] = 1. The second term comes from the coupling of the movable

mirror to the cavity field via radiation pressure, the parameter g = %,/sz is the

optomechanical coupling constant between the cavity and the movable mirror. The

third term corresponds the energy of the movable mirror. The fourth term describes
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the coupling between the input laser field and the cavity field, ¢ is related to the
input laser power p by ¢ = \/% , where k is the cavity decay rate associated with
the transmission loss of the fixed mirror.

The equations of motion of the system can be derived by the Heisenberg equations
of motion and adding the corresponding noise terms, this gives the quantum Langevin

equations
Q = me )

P=2gn, — w,Q — vymP + &,
(4.2)

¢ =1i(wp —we+ gQ)c+ € — ke + V2Kc,

et = —i(wy, — we + 9Q)c + & — kel + v/2kdl,.
Here we have introduced the input squeezed vacuum noise operator c¢;, with fre-
quency wg = wr, + wy,. It has zero mean value, and nonzero time-domain correlation
functions [141]

(8el (£)0eim(t)) = No(t —t),

(Scin(t)dch, () = (N + 1)é(t — ),
(4.3)
(6cin(t)dcim(t)) = Me wmtH5(1 — '),
(3el, ()del, (t)) = Mrelm+5(t — ).
where N = sinh?(r), M = sinh(r) cosh(r)e™, r is the squeezing parameter of the
squeezed vacuum light, and ¢ is the phase of the squeezed vacuum light. For simplic-
ity, we choose ¢ = 0. The force £ is the thermal Langevin force resulting from the
coupling of the movable mirror to the environment, whose mean value is zero, and it

has the following correlation function at temperature 7" [108]:

(ER)ER)) = 72;’; / wem =) [1 + coth(QZ;UT)] dw, (4.4)

where kg is the Boltzmann constant and 7' is the temperature of the environment.

By using standard methods [110], setting all the time derivatives in Eq. (4.2) to
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zero, and solving it, we obtain the steady-state mean values

2g|cs|? £
PSIO, s — y Cs = A 4.5
@ Wyn ¢ K+ 1A (4.5)
where
20%|cq|?
A=w —wp —gQs = Ny — gQs = Ag — g°lcs| (4.6)

is the effective cavity detuning, depending on (). The ), denotes the new equilibrium
position of the movable mirror relative to that without the driving field. Further c;
represents the steady-state amplitude of the cavity field. From Eq. (4.5) and Eq.
(4.6), we can see )5 satisfies a third order equation. For a given detuning Ag, Qs will
at most have three real values. Therefore, (); and ¢, display an optical multistable
behavior [41, 42, 43|, which is a nonlinear effect induced by the radiation-pressure

coupling of the movable mirror to the cavity field.

4.3 Radiation Pressure and Quantum Fluctuations

To study squeezing of the movable mirror, we need to calculate the fluctuations in the
mirror’s amplitude. Assuming that the nonlinear coupling between the cavity field
and the movable mirror is weak, the fluctuation of each operator is much smaller than
the corresponding steady-state mean value, thus we can linearize the system around
the steady state. Writing each operator of the system as the sum of its steady-state

mean value and a small fluctuation with zero mean value,

Q=Q,+0Q, P=P,+0P, ¢c=c,+dc. (4.7)
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Inserting Eq. (4.7) into Eq. (4.2), then assuming |cs| > 1, the linearized quantum

Langevin equations for the fluctuation operators can be expressed as follows,
5Q = wndP,
6P = 2g(ctdc + cs6ct) — wndQ — Ymd P + &,
6é = —(k +iA)dc +iges6Q + V2K0¢q,,
6t = —(k — iA)dcT — igerdQ + v/2k0c! .

Introducing the cavity field quadratures dz = dc + dc! and dy = i(dc' — dc), and the
input noise quadratures 6z;, = d¢;, + ¢!, and dyi, = i(dcl, — d¢ip), Eq. (4.8) can be

rewritten in the matrix form

f(t) = Af(t) + (), (4.9)

in which f(¢) is the column vector of the fluctuations, 7(t) is the column vector of

the noise sources. Their transposes are

f)F = (6Q, 0P, dz,0y),

(4.10)
n(t)T = (07€a \% 255$in7 \4 255y1n>a
and the matrix A is given by
0 Wi 0 0
— W, —Ym cs+ci) —igles — ¢
A Ym 9 ) —ig( ) | (4.11)
iglcs—ct) 0 —K A
gles+ct) 0 —A —K

The system is stable only if the real parts of all the eigenvalues of the matrix A are

negative. The stability conditions for the system can be derived by applying the
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Routh-Hurwitz criterion [112, 113], we get
Kym(K2 + A%)? + (267 + 72, — 202) (K2 + A?)

g, (4R 4wy + 267m)] + 2w Ag?|cg|?
(4.12)

X (26 + ym)* > 0,
win (K% + A?) — 4Ag?%|cs|* > 0.
All the external parameters chosen in this paper satisfy the stability conditions (4.12)
to ensure the system to be stable.
Fourier transforming each operator in Eq. (4.8) and solving it in the frequency

domain, the position fluctuations of the movable mirror are given by
0Q(w) = @(2\/ 2kwmg{ [k — (A + w)]|ctdci, (w)
+r 4+ i(A = w)]edel, (—w)} (4.13)

Hwn[(r — iw)? + A%E (W),

where d(w) = —4w,Ag?|cs]? + (w2, — w? — iyw)[(k — iw)? + A?]. In Eq. (4.13), the
first term proportional to g originates from radiation pressure, while the second term
involving ¢ is from the thermal noise. So the position fluctuations of the movable
mirror are now determined by radiation pressure and the thermal noise. In the case
of no coupling with the cavity field, the movable mirror will make Brownian motion,
0Q(w) = wné(w)/(w? — w? — iy,w), whose susceptibility has a Lorentzian shape
centered at frequency w,, with width v,,.

Taking Fourier transform of 6Q = w,,6P in Eq. (4.8), we further obtain the
momentum fluctuations of the movable mirror, §P(w) = =i~ 0Q(w).

The mean square fluctuations in position and momentum of the movable mirror

are determined by

(0Q(1)%) = g0 [ JI% dwdQe™ "+ VH3Q(w)dQ(Q)),
(4.14)

(0P(1)?) = 1255 [ [ dwdQe " TDUSP(w)d P(RQ)).
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To calculate the mean square fluctuations, we require the correlation functions of the

noise sources in the frequency domain,
(8¢l (W)dein () = 20N (w + Q),
(cim(w)del (Q)) = 2n(N +1)d(w + Q),
(8¢ (w)0cin(Q)) = 2rM(w + Q — 2w,,), (4.15)
(6c) (w)del (Q)) = 20 M*6(w + Q + 2w,),

(E(W)E(Q)) = 4mym 2 [1 + coth(5127)| 6(w + Q).

Combining Eqgs. (4.13) — (4.15), after some calculations, the mean square fluctuations

of Eq. (4.14) are written as
<5Q(t)2> = % f;o wfn(A + Be Ziwmt 4 C€2iwmt)dw,

(OP(1)?) = & [TZ[w? A + w(w — 2w,,) Be~ 2wt (4.16)

tw(w + 2wy, ) Ce?mt]dw.

where
A= gmice Brgles LN + D[ + (A + w)’]

FN[E? + (A = w)*]} + 29 2= [(A% + K% — w?)?

+4r%w?)[1 + coth(Ql:‘;T)]), (4.17)

Kkg2ct2 M . .
B = g i Mok — i(A 4 w)][k — (A + 2wy — w)),

C = a0yl sy + (A = W]k (A o 2+ )

In Egs. (4.16) and (4.17), the term independent of ¢ is from the thermal noise contri-
bution; while those terms involving ¢ arise from the radiation pressure contribution,
including the influence of the squeezed vacuum light. Moreover, either (§Q(¢)?) or
(5P(t)?) contains three terms, the first term is independent of time, but the second
and third terms are time-dependent, which causes (§Q(t)?) and (§P(t)?) vary with

time. The complex exponential in Eq. (4.16) can be removed by working in the
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interaction picture. Let’s define b (b') and b (b') be the annihilation (creation) oper-
ators for the oscillator in the Schrodinger and interaction picture with [b,b'] = 1 and
[b,b1] = 1. The relations between them are b = be~*n* and bf = bfe®n!. Then using

Q=>b+0bl, P=i(bt —b), Q =b+bl, and P = i(b' — b), we get

(0% = = [*Z w2 (A+ B+ C)dw,

2w J—00
(4.18)
(0P?) = £ [T2[w?A + w(w — 2wy) B + w(w + 2wy,) Cldw.
According to the Heisenberg uncertainty principle,
. . 1 - -
(6Q*)(6P?) > |§[Q,P]|2. (4.19)

If either (5Q%) < 1 or (§P?) < 1, the movable mirror is said to be squeezed.

From Eqs. (4.17) and (4.18), we find (6Q?) or (§P?) is determined by the detuning
Ay, the squeezing parameter r, the laser power @, the cavity length L, the temperature
of the environment 7', and so on. Here we focus on the dependence of (§Q?) and (6 P?)

on the squeezing parameter, the temperature of the environment, and the laser power.

4.4 Squeezing of the Movable Mirror

In this section, we numerically evaluate the mean square fluctuations in position
and momentum of the movable mirror given by Eq. (4.18) to show squeezing of
the movable mirror produced by feeding the squeezed vacuum light at the input
mirror. We use the same parameters as those in the recent successful experiment
on normal mode splitting in a nanomechanical oscillator [50]: the wave length of
the laser A = iLLC = 1064 nm, L = 25 mm, m = 145 ng, k = 27 x 215 x 10® Hz,
Wy = 21 X 947 x 10% Hz, the mechanical quality factor Q' = ‘,‘;—: = 6700. In the case
of kgT > hw,,, we may approximate coth(hw/(2kgT)) ~ 2kgT/(hw). In the case of
T=0K,ifw <0, coth(hw/(2kgT)) ~ —1, if w > 0, coth(hw/(2kpT)) ~ 1. Through
numerical calculations, it is found that squeezing of <5Q2> doesn’t exist but squeezing

of (§P?) exists. In the following we therefore concentrate on discussing (5P2).
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Note that in the absence of the coupling to the cavity field, the movable mirror is

in free space, and is coupled to the environment. Then the fluctuations are given by

. _ )

2\ _ 2 o

(0Q%) = (0P") = 1+ g oy
1 for T =0K,

= {44 for T =1mkK, (4.20)

440 for T = 10 mK.

As well known no squeezing of the movable mirror occurs.

20~
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Figure 4.2: The mean square fluctuations (§P?) versus the detuning Ay (10% s71) for
different values of the squeezing of the input field. r» = 0 (red, big dashed line), r = 0.5
(green, small dashed line), r = 1 (black, solid curve), r = 1.5 (blue, dotdashed curve),
7 = 2 (brown, solid curve). The minimum values of (§P?) are 1.071 (r=0), 0.467
(r=0.5), 0.319 (r=1), 0.468 (r=1.5), 1.078 (r=2). The flat dotted line represents
the variance of the coherent light ((§P?)=1). Parameters: the temperature of the

environment 7' = 1 mK, the laser power o = 6.9 mW.

Now we consider fluctuations in the presence of the coupling to the cavity field.

If we choose T = 1 mK, and p = 6.9 mW, the mean square fluctuations (§P2) are
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plotted as a function of the detuning A, in Fig. 4.2. Different graphs correspond
to different values of the squeezing of the input light. In the case of no injection
of the squeezed vacuum light (r = 0), which means that the squeezed vacuum light
is replaced by an ordinary vacuum light, we find (§P2) is always larger than unity
(the coherent level), the minimum value of (§P?) is 1.071, thus there is no momentum
squeezing of the movable mirror. However, if we inject the squeezed vacuum light, it is
seen that the momentum squeezing of the movable mirror occurs, and the maximum
squeezing happens at about 7 = 1, the corresponding minimum value of (§P?) is
0.319, thus the maximum amount of squeezing is about 68%. So the injection of the
squeezed vacuum light greatly reduces the fluctuations in momentum, because using
the squeezed vacuum light increases the photon number in the cavity, which results in
a stronger radiation pressure acting on the movable mirror. Note that the minimum
value of (6152> in the presence of the coupling to the cavity field is much less than that
((6P?) = 44) in the absence of the coupling to the cavity field. So there is very large
squeezing with respect to thermal fluctuations. The momentum fluctuations can be
reduced by a factor more than one hundred.

Then we fix the squeezing parameter r = 1, the mean square fluctuations <(5]52> as
a function of the detuning A, for different temperature of the environment and laser
power are shown in Figs. 4.3 — 4.5. For a given lase power, we find that the minimum
value of (§P?) decreases with decrease of the temperature of the environment as
expected. The lower is the temperature, the less is the thermal noise. At T' = 0 K,
the minimum value of (§P?) is the smallest due to no thermal noise, which corresponds
to the maximum momentum squeezing of the movable mirror. For example, when
T =0K and p = 0.6 mW, the minimum value of (§P?) is 0.252, the corresponding
amount of squeezing is up to about 75%. Therefore, decreasing the temperature of
the environment can enhance the amount of the momentum squeezing of the movable

mirror. On the other hand, we note that when the temperature of the environment
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Figure 4.3: The mean square fluctuations (§P?) versus the detuning Ay (10% s71),
each curve corresponds to a different temperature of the environment. 7=0 K (blue,
solid curve), 1 mK (red, small dashed curve), 5 mK (brown, big dashed curve), 10
mK (green, dotdashed curve). The minimum values of (§P?) are 0.252 (T=0 K),
0.611 (T=1 mK), 2.082 (T'=5 mK), 3.919 (7'=10 mK). The flat dotted line represents
the variance of the coherent light ((§P?)=1). Parameters: the squeezing parameter

r =1, the laser power p = 0.6 mW.

is high, for example, for 7' = 10 mK, and laser power 0.6 mW, the minimum value
of (§P?) is 3.919. In this case, there is no momentum squeezing, but if we increase
the laser power to 6.9 mW, the minimum value of (§P?) is 0.731, the movable mirror
shows momentum squeezing, and the amount of squeezing will increase with increase
of laser power. Therefore, when the temperature of the environment is high, the
momentum squeezing of the movable mirror can be obtained by increasing the input
laser power. The reason is that increasing the laser power can increase the photon
number in the cavity. Moreover, for any specific temperature of the environment, the
minimum value of <5P2) in the presence of the radiation pressure coupling is always

much less than that in the absence of the radiation pressure coupling.
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Figure 4.4: The mean square fluctuations (§P?) versus the detuning Ay (106 s71),
each curve corresponds to a different temperature of the environment. 7=0 K (solid
curve), 1 mK (dashed curve), 10 mK (dotdashed curve). The minimum values of
(6P?) are 0.261 (T=0 K), 0.330 (T=1 mK), 0.968 (T=10 mK). The flat dotted line
represents the variance of the coherent light ((§P?)=1). Parameters: the squeezing

parameter » = 1, the laser power o = 3.8 mW.

4.5 Conclusions

In conclusion, we have found that squeezing of the movable mirror can be achieved by
the injection of squeezed vacuum light and a laser. The result shows the maximum
momentum squeezing of the movable mirror happens if squeezed vacuum light with
r about 1 is injected into the cavity. For a given squeezing parameter and laser
power, decreasing the temperature of the environment can enhance the maximum
momentum squeezing of the movable mirror. In addition, the momentum squeezing of
the movable mirror may be achieved by increasing the input laser power. Generation
of squeezing of the movable mirror provides a new way to detect a weak force. Further
the “feeding” of squeezed light can be used to squeeze collective degrees of freedom

for several mirrors inside the cavity.
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Figure 4.5: The mean square fluctuations (§P?) versus the detuning Ay (10% s71),
each curve corresponds to a different temperature of the environment. 7=0 K (solid
curve), 1 mK (dashed curve), 10 mK (dotdashed curve). The minimum values of
(6P?) are 0.275 (T=0 K), 0.319 (T=1 mK), 0.731 (T=10 mK). The flat dotted line
represents the variance of the coherent light ((§P?)=1). Parameters: the squeezing

parameter » = 1, the laser power p = 6.9 mW.
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CHAPTER 5

ENTANGLING NANOMECHANICAL OSCILLATORS IN A RING
CAVITY BY FEEDING SQUEEZED LIGHT

5.1 Overview

It is well known that entanglement is a key resource for quantum information process-
ing [142]. One now has fairly good understanding of how to produce entanglement
among microscopic entities. In recent times there has been considerable interest in
studying entanglement in mesoscopic and even microscopic systems [27, 143, 144,
145, 146]. Nanomechanical oscillators are beginning to be important candidates for
the study of quantum mechanical features at mesoscopic scales. In fact the possi-
bility of entangling two nanomechanical oscillators has been investigated from many
different angles: such as entangling two mirrors in a ring cavity [147], entangling
two mirrors of two independent optical cavities driven by a pair of entangled light
beams [177], entangling two mirrors by using a double-cavity set up by driving with
squeezed light [37], entangling two mirrors of a linear cavity driven by a classical laser
field [149], entangling two mirrors in a ring cavity by using a phase-sensitive feedback
loop [150], entangling two dielectric membranes suspended inside a cavity [38], and
entangling two oscillators by entanglement swapping [151, 152]. Other proposals do
not use cavity configurations but coupling to Cooper pair boxes [153]. Here we report
a conceptually simple method to produce entanglement between two mirrors. Our
proposal enables us to trace the physical origin of entanglement.

In this chapter, we propose a scheme for entangling two movable mirrors of a

ring cavity by feeding broad band squeezed vacuum light along with the laser light.
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The two movable mirrors are entangled based on their interaction with the cavity
field. The achieved entanglement of the two movable mirrors depends on the degree
of squeezing of the input light, the laser power, and the temperature of the movable
mirrors. The feeding of the squeezed light has been considered to produce squeezing
of a nanomechanical mirror [32, 33]. Further Pinard et al. [37] have considered
entanglement of two mirrors in a double cavity configuration which is fed by squeezed
light - one part of the cavity is fed by light squeezed in amplitude quadrature and the
other is fed by light squeezed in phase quadrature. In contrast we consider a single
mode ring cavity driven by a single component amplitude squeezed light. In our
scheme the entanglement can be managed by an externally controllable field which is
the squeezed light.

The chapter is organized as follows. In Sec. II we introduce the model, give
the quantum Langevin equations, and obtain the steady-state mean values. In Sec.
[T we derive the stability conditions, calculate the mean square fluctuations in the
relative momentum and the total displacement of the movable mirrors. In Sec. IV
we analyze how the entanglement of the movable mirrors can be modified by the
squeezing parameter, the laser power, and the temperature of the environment. The
parameters chosen in the chapter are from a recent experiment on optomechanical
normal mode splitting [50].

Before we present our calculations, we present a key idea behind our work. For a
bipartite system, a sufficient criterion for entanglement is that the sum of continuous

variables satisfies the inequality [154]

(Alg + @) + (Alpr = p2))*) <2, (5.1)

where ¢; and p; (j = 1,2) are the position and momentum operators for two particles,
respectively. They obey the commutation relation [g;, px] = 0 (j, k = 1,2).

Mancini et al. [26] have derived another sufficient condition for bipartite entan-
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glement, which requires the product of continuous variables satisfies the inequality

(Al +¢2))" ) {(Alpr — p2))*) < 1. (5.2)

In this chapter, we will use equation (5.2) to show the entanglement between the two
oscillating mirrors. Thus if we have a situation where the interaction occurs only via
the relative coordinates q; — ga,p1 — pa2, then we can hold ((A(q; + ¢2))?) at its value,
says ~ 1, before interaction and if the interaction can make ((A(p; —p2))?) < 1, then
the inequality (5.2) would imply that the mirrors 1 and 2 are entangled. In the next

section we discuss how this can be achieved by using a single mode ring cavity.

5.2 Model

The system under study, sketched in Fig. 5.1, is a ring cavity with one fixed partially
transmitting mirror and two movable perfectly reflecting mirrors, driven by a laser
with frequency wy. As the photons in the cavity with length 2L bounce off the
movable mirrors, they will exert a radiation pressure force on the surfaces of the
movable mirrors proportional to the instantaneous photon number in the cavity. The
motion of the movable mirrors induced by the radiation pressure changes the cavity’s
length, and alters the intensity of the cavity field, which in turn modifies the radiation
pressure force itself. Thus the interaction of the cavity field with the movable mirrors
through the radiation pressure is a nonlinear effect. In addition, each mirror undergoes
quantum Brownian motion due to its coupling to its own independent environment
at the same low temperature 7. The two movable mirrors are identical with the same
effective mass m, mechanical frequency w,, and momentum decay rate 7,,, and each
mirror is modeled as a quantum mechanical harmonic oscillator. We further assume
that the cavity is fed with squeezed light at frequency ws.

In the adiabatic limit, the cavity field is a single mode with frequency w, [64, 106,

and we can neglect the retardation effect [155], neglect the photon creation in the
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fixed mirror

movable mirror 1 movable mirror 2

Figure 5.1: Sketch of the studied system. A laser with frequency w; and a squeezed
vacuum light with frequency wg enter the ring cavity through the partially transmit-

ting mirror.

cavity with moving boundaries due to the Casimir effect [156], and neglect the Doppler
effect [157], thus the radiation pressure force does not depend on the velocity of
the movable mirrors. Assuming the collisions of the photons on the surfaces of the
movable mirrors are elastic, the momentum transferred to the mirrors per photon is
hk, — (—hk,) = 2hk, (see Fig. 5.1 for the direction of y), where k, = kcos(0/2), k
is the wave vector of the cavity field with & = w./c, and 6 is the angle between the
incident light and the reflected light at the surfaces of the movable mirrors. During
the cavity round-trip time ¢ = 2L /¢, there are n. photons hitting on the surfaces of the
movable mirrors, so the radiation pressure force is F' = 2n.hk,/t = n % cos(6/2).
In a reference frame rotating at the laser frequency, the Hamiltonian that describes

the system can be written as

H = B~ wnne+ hgnecos(0/2)(Qs — Qo) + "22(Q3 + PY)
+h°;m(Q§ + P2 +ihe(c" — ), (5.3)

we have defined dimensionless position and momentum operators for the oscillators
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Qj = m;;mqj‘ and p] = #wmp] (j:1,2) with [Qj,Pk] = Z(Sjk (],k = 1,2) Further

in equation (5.3), n. = cfc is the number of the photons inside the cavity, ¢ and cf

are the annihilation and creation operators for the cavity field with [c,c/] = 1. The

We h
L MWm

parameter g = is the optomechanical coupling constant between the cavity

. The different signs in front of Q; and

field and the movable mirrors in units of s~
(- are because the radiation pressure forces exerted on the two mirrors are opposite.
The parameter ¢ is the coupling strength of the laser to the cavity field, which is
related to the input laser power p by ¢ = \/% , where x is the photon decay rate by
leaking out of the cavity.

In the system, the cavity field is damped by photon losses via the cavity output
mirror at the rate x, and the movable mirrors are damped due to momentum losses at
the same rate 7,,. Meanwhile, there are two kinds of noises affecting on the system.
One is the input squeezed vacuum noise operator c¢;, with frequency ws = wr, + wyy,.

It has zero mean value, and nonzero time-domain correlation functions [141]

(6ch,()dcin(t)) = NS(t — 1),
(e (t)0ch (#)) = (N +1)8(t — '),
(6cin(t)dcin(t)) = Me mtH5(t — 1),

(dck, (£)ock, (1)) = Mretmt+)5(t — '),
where N = sinh®(r), M = sinh(r) cosh(r)e, r and ¢ are respectively the squeezing
parameter and phase of the squeezed vacuum light. For simplicity, we choose ¢ = 0.
The other is quantum Brownian noises &; and &, which are from the coupling of the
movable mirrors to their own environment. They are mutually independent with zero

mean values and have the following correlation functions at temperature 7" [108]:

(&) = 2E0m [werst=0 [1 + coth(2Z:T)] du, (5.5)

where kg is the Boltzmann constant and 7" is the temperature of the mirrors’ envi-

ronment, j, k=1, 2.
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The dynamics of the cavity field interacting with the movable mirrors can be
derived by the Heisenberg equations of motion and taking into account the effect of

damping and noises, which gives the quantum Langevin equations
Ql = wp P1,
QQ = wmn P,
Py = —gn.cos(0/2) — wmQ1 — YmP1 + &1,
Py = gn.cos(0/2) — wmQz — Ym Py + &2,
é= —ifw, — wr + gcos(0/2)(Q1 — Q2)]c + € — ke + V2K,

¢t = ifwe — wp + gcos(0/2)(Q1 — Qy)]ct + £ — kel + 2k,
From the second term of equation (5.3), we can see only the relative motion of
the two movable mirrors is coupled to the cavity field via radiation pressure. On

introducing the relative distance and the relative momentum of the movable mirrors

by Q- = Q1 — Q2 and P = P, — P,, we find that equation (5.6) reduces to
Q— = WmP—7

P_ = —2¢n, cos(0/2) — wmQ— — Y P- + &1 — &2,
(5.7)

¢ = —ilw. — wp + gcos(0/2)Q_]c + & — ke + V2KCin,

¢t = ifwe — wp + geos(0/2)Q_]ct + & — kel + V25
We would use standard methods of quantum optics [110] which have been adopted
for discussions of quantum noise of nanomechanical mirrors [35, 36, 95, 108, 149],
setting all the time derivatives in equation (5.7) to zero, and solving it, we obtain the

steady-state mean values

2g|c®|? cos(0/2) 5
P =0,Q —— s — 5.8
— ) Q_ Q_)m ) & /‘f + ZA’ ( )
where
A =w,—wp + gQ*® cos(6/2) (5.9)
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is the effective cavity detuning, depending on Q)°. The @)° denotes the new equi-
librium relative distance between the movable mirrors. Further ¢® represents the
complex amplitude of the cavity field in the steady state. For a given input laser
power, Q° and ¢’ can take three distinct values, respectively. Therefore, the system
displays an optical multistability [41, 42, 43], which is a nonlinear effect induced by

the radiation pressure.

5.3 Radiation Pressure and Quantum Fluctuations

To investigate entanglement of the two movable mirrors, we have to calculate the
fluctuations in the relative momentum of the movable mirrors. This fluctuations can
be calculated analytically by using the linearization approach of quantum optics [110],
provided that the nonlinear effect between the cavity field and the movable mirrors
is weak. We write each operator of the system as the sum of its steady-state mean

value and a small fluctuation with zero mean value,
Q-=Q> +0Q_, P.=P +6P_, c=c"+dc. (5.10)

Inserting equation (5.10) into equation (5.7), then assuming the cavity field has a very
large amplitude ¢® with |¢°| > 1, one can obtain a set of linear quantum Langevin
equations for the fluctuation operators,

6Q_ = wndP_,

OP_ = —2gcos(0/2)(c*dc + *ch) — wmdQ_ — Y0P + & — &,

(5.11)
d¢ = —(k +iA)oc —igcos(0/2)c*0Q_ + V2Kcip,
6t = —(k —iA)dcT + igcos(0/2)c*6Q_ + V/2rbc! .

Introducing the cavity field quadratures dz = dc + dc! and dy = i(dc' — dc), and the

input noise quadratures dx;, = dc;y, + 50},1 and dy;, = i(5CT d¢in), equation (5.11)

n
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can be rewritten in the matrix form

f@t) = Af(t) +n(), (5.12)

in which f(t) is the column vector of the fluctuations, n(t) is the column vector of

the noise sources. Their transposes are

fO) = (6Q-, 0P, bz, dy),

(5.13)
n(t)" = (0, — &, V2662, V 2Ky );
and the matrix A is given by
0 Wn 0 0
A —Whn —Ym  —gcos(8/2)(c® + ™) igcos(0/2)(c® — )
—igcos(0/2)(c® —c*) 0 —K A
—gcos(8/2)(c¢® +¢*) 0 —A —K
(5.14)

The solution of equation (5.12) is f(t) = M () f(0)+ fu M (t')n(t—t')dt', where M (t) =
e, The system is stable and reaches its steady state as t — oo only if the real parts
of all the eigenvalues of the matrix A are negative so that M (cc) = 0. The stability
conditions for the system can be found by employing the Routh-Hurwitz criterion

[113], we get
KYm[(K% + A?)% + (2679m + 72, — 2w2) (K2 + A?) 4+ W2, (4K + w2,
+2679m)] 4 2wmAg? cos?(0/2)c*[2(2k + ym )2 > 0, (5.15)
Wi (K2 + A?) — 4A g% cos?(0/2) |52 > 0.

All the parameters chosen in this chapter have been verified to satisfy the stability
conditions (5.15).
Fourier transforming each operator in equation (5.11) by f(t) = 5= [* f(w)e “dw

and solving it in the frequency domain, the relative momentum fluctuations of the
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movable mirrors are given by

5P (w) — dit:)(Q\/ﬂg cos(0/2){[1 — i(A + W)™ Sem(w) + [k + i(A — w)]
xc*dcl,(—w)} = [(k — iw)® + A% (w) — &(W))), (5.16)

where d(w) = —4w,, Ag?|c*|* cos?(0/2) + (w2, — w? — ivmw)|(k — iw)? + A?]. Equation
(5.16) shows 6 P_(w) has two contributions. The first term proportional to g originates
from their interaction with the cavity field, while the second term involving &; (w) and
& (w) is from their interaction with their own environment. So the relative momentum
fluctuations of the movable mirrors are now determined by radiation pressure and the
thermal noise. In the case of no coupling with the cavity field (g = 0), the movable

mirrors will make Brownian motion only, 6P_(w) = —iw[&; (w) — & (w)]/(w?, — w? —

2

i7mw), whose mechanical susceptibility y(w) = 1/(w?, — w? — iy,,w) has a Lorentzian

shape centered at the frequency w,, with ~,, as full width at half maximum (FWHM).
The mean square fluctuations in the relative momentum of the movable mirrors

are determined by
+o0o .
(6P (£)2) = 4; [ [ waoe e onsp w)sp (o) (5.17)

To calculate the mean square fluctuations, we require the correlation functions of
the noise sources in the frequency domain. Fourier transforming equations (5.4) and

(5.5) gives the frequency domain correlation functions
(8¢} (—w)deim () = 2rN(w + Q),
(Seim(w)dcl, (=) = 2r(N +1)d(w + Q)
(0¢in(w)0cin(Q)) = 2r M (w + Q — 2wy,), (5.18)

(Bl (—w)dch, (—92)) = 20M0(w + Q + 2w),

(&(@)€r(Q)) = 265 22w [1+ coth(522:)| 6w + Q).

82



Upon substituting equation (5.16) into equation (5.17) and taking into account equa-

tion (5.18), the mean square fluctuations of equation (5.17) are written as

+oo ) )
(6P_(t)?) = 21/ [W? A + w(w — 2wy ) Be 2t 4+ w(w + 2w, ) Ce*™ ™ dw.  (5.19)
T J—o0o

where

A= Jrics Brg? cos(0/2)[ PN + D[ + (A + w)?]

+N[K2 + (A — w)?]} + 292 [(A? + K% — w?)? + 4K%wW?]

Wm

x[1 + coth(zl’;‘;”T)]), (5.20)

B = g eos O M (1 — (A + w)][k — i(A + 2wy — w)],

C = SO s 4 i(A — w)] [+ (A + 2, + w)).

In equations (5.19) and (5.20), the term independent of g is the thermal noise con-
tribution; while all other terms involving g are the radiation pressure contribution,
including the influence of the squeezed vacuum light. Moreover, (§P_(t)?) is time-
dependent, the explicit time dependence in equation (5.19) can be eliminated by
working in the interaction picture. If we look the relative motion of the movable
mirrors as a harmonic oscillator and introduce the annihilation (creation) operators
b (b') and b (b') for the oscillator in the Schrédinger and interaction picture with
[b,b] = 1 and [b,b] = 1. They are related by b = be~*m* and bf = bfeim’. Then
using P_ = i(bT —b), and P_ = i(bl —b), we get

(GP?) = 17T /;W[WQA + w(w — 2wm) B + w(w + 2wm)Cldw. (5.21)

According to equation (5.2), the movable mirrors are said to be entangled if (§Q?2 )

and (6P2) satisfy the inequality
(0Q%)(6P?) < 1. (5.22)

where ()4 = ()1 + @2, the total displacement of the two movable mirrors, which is

not related to the radiation pressure, only determined by the thermal noise. At the
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temperature 7', the fluctuations (6Q%) are

(6Q%) = 0.5+ (5.23)

chom /(kT) _ |

Since [Q4, P_] = [Q1+ Q2, P — P;] =0, Q4 and P_ can be simultaneously measured
with infinite precision. Thus @, and P_ can also be simultaneously measured with
infinite precision.

From equations (5.20) and (5.21), we find (§P?) is affected by the detuning A, the
squeezing parameter r, the laser power g, the cavity length L, the temperature of the
environment 7', and so on. In the following, we confine ourselves to discussing the de-
pendence of (5}33) on the squeezing parameter, the laser power, and the temperature

of the environment.

5.4 Entanglement of the Two Movable Mirrors

In the section, we would like to numerically evaluate the mean square fluctuations
in the total displacement and the relative momentum of the movable mirrors given
by equations (5.23) and (5.21) to show the entanglement of the two movable mirrors
produced by feeding the squeezed vacuum light at the input mirror. To have fairly
good idea of entanglement, we use the parameters of a recent experiment [50] although
we are aware that the cavity geometry is different: the wavelength of the laser A =
iLLC = 1064 nm, L = 25 mm, m = 145 ng, k = 27 x 215 x 10® Hz, w,, = 27 x 947 x 103
Hz, the mechanical quality factor Q' = f;—z = 6700, 6 = /3.

First we illustrate the squeezed vacuum light’s effect on the entanglement between
the movable mirrors. We find as 7' = 41.4 pK, the mean square fluctuations (§Q2 ) ~
1, which implies that as long as the mean square fluctuations <5P3) < 1, there is an
entanglement between the movable mirrors. The behavior of (§P?) at p = 3.8 mW
is plotted as a function of the detuning A in Fig. 5.2. Different graphs correspond

to different values of the squeezing of the input light. In the case of no injection of
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Figure 5.2: The mean square fluctuations (§P2) versus the detuning A /w,, for dif-
ferent values of the squeezing of the input field. » = 0 (red, big dashed line), r = 0.5
(green, small dashed line), r = 1 (black, solid curve), r = 1.5 (blue, dotdashed
curve), r = 2 (brown, solid curve). The minimum values of (§P?) are 1.027 (r=0),
0.422 (r=0.5), 0.271(r=1), 0.412 (r=1.5), 0.999 (r=2). The flat dotted line represents
(6P2)=1. Parameters: the temperature of the environment 7' = 41.4 uK, the laser

power © = 3.8 mW.

the squeezed vacuum light (r = 0), which means that the squeezed vacuum light is
replaced by an ordinary vacuum light, we find ((5153> is always larger than unity, the
minimum value of (§P?) is 1.027, obviously there is no entanglement between the
movable mirrors. However, if we inject the squeezed vacuum light, it is seen that
entanglement between the movable mirrors occurs, meaning that there is a quantum
correlation between the movable mirrors, even through they are separated in space.
We also find the movable mirrors are maximally entangled as the squeezing parameter
is about r = 1, the corresponding minimum value of (§P?) is 0.271. So the injection
of the squeezed vacuum light leads to a significant reduction of the fluctuations in

the relative momentum between the movable mirrors. This is due to the fact that

85



using the squeezed vacuum light increases the photon number in the cavity, which
leads to a stronger radiation pressure acting on the movable mirrors and enhances
the entanglement between the movable mirrors.

Next we consider the influence of the laser power on the maximum entanglement
between the movable mirrors. We fix the squeezing parameter » = 1, and the temper-
ature of the environment 7' = 41.4 pK. We have already known at this temperature,
(6Q%) ~ 1. Thus, if the mean square fluctuations (§P?) < 1, the movable mirrors be-
come entangled. The mean square fluctuations (§P2) as a function of the detuning A
for different laser power are shown in Fig. 5.3. We find that significant entanglement

occurs for a range of pumping powers.
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Figure 5.3: The mean square fluctuations (6 P?) versus the detuning A /w,,, each curve
corresponds to a different laser power. p=0.6 mW (red, big dashed curve), 3.8 mW
(green, small dashed curve), 6.9 mW (black, solid curve), 10.7 mW (blue, dotdashed
curve). The minimum values of (§P?) are 0.257 (p=0.6 mW), 0.271 (p=3.8 mW),
0.291 (p=6.9 mW), 0.315 (p=10.7 mW). The flat dotted line represents (§P?)=1.
Parameters: the squeezing parameter r = 1, the temperature of the environment

T = 41.4 K.
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We now show the effect of the temperature of the environment on the entanglement
between the movable mirrors. We fix the squeezing parameter » = 1, the laser power
o = 3.8 mW, and the detuning A = 0.965w,,. The value of (§Q2)(JP?) as a function

of the temperature of the environment is presented in Fig. 5.4. As the temperature of

20
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Figure 5.4: The value of (3Q%)(5P?) versus the temperature of the environment T
(uK). The minimum value of (§Q2)(§P?) is 0.135 at T = 0 K. The flat dotted line
represents (§Q%)(6P?)=1. Parameters: the squeezing parameter r = 1, the laser

power o = 3.8 mW, the detuning A = 0.965w,,,.

the environment increases, the amount of entanglement monotonically decreases due
to the thermal fluctuations. This is as expected. What is remarkable is that we find
entanglement over a wide range of temperatures. As T' > 160 uK, (6Q%)(§P?) > 1,
the entanglement vanishes, the movable mirrors become completely separable. So
decreasing the temperature of the environment can make the entanglement between
the movable mirrors stronger. Note that substantial progress has been made in cooling
the nanomechanical oscillators [6, 7, 8, 9, 10, 18, 56, 116, 120, 158, 159]. Further the
ground state cooling using the resolved sideband regime might soon become feasible.

Clearly the entanglement depends on both the quality factor of the cavity and the
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temperature of the environment. The optical ring cavities are expected to yield much
higher quality factor: x ~ 27 x 10kHz, see for example [160], though for fixed mirrors
replaced by moving mirrors, the quality factor may be deteriorated. Metheods for
detection of entanglement are discussed in [26, 37]. We note here that in our case
we can deduce entanglement from the knowledge of <5153). It can be shown from
equation (5.11) that (§P?) can be obtained from the measurement of the fluctuations

in the quadrature of the output field.

fixed mirror 2 movable mirror 2

Axed mirror 1~ movable mirror 1

Figure 5.5: Sketch of 4-mirror ring cavity. A laser with frequency wy and squeezed
vacuum light with frequency wg = wr +w,, enter the ring cavity through the partially
transmitting fixed mirror 1. The fixed mirror 2 and the two identical movable mirrors

are perfectly reflecting.

If we use a different geometry of the ring cavity, as shown in Fig. 5.5, then we
have the possibility of entangling other quadratures of the mirrors. In this case, the
Hamiltonian of the system in the frame rotating at the laser frequency becomes

H = I(we — wr)ne — hignecos(8/2)(Q1 + Q2) + = (Q? + P?)
+hem (QF + PF) +ilie(ct — ¢,

We note the interaction between the two movable mirrors and the cavity field depends

(5.24)

only on the total displacement of the movable mirrors. The movable mirrors are said
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to be entangled if §Q? and §P? satisfy the inequality [26, 154]
(0Q*)(6P?) < 1. (5.25)

where Q) = Q1 — @2 and P, = P + P,. The @)_ is the relative displacement of the
two movable mirrors, which is not related to the radiation pressure, only determined
by the thermal noise. The P, is the total momentum of the two movable mirrors,
and depends on the radiation pressure and the thermal noise. The relation between
P, and P, is the same as the relation between P_ and P_ we defined above. Since
[Q_, P ] =1[Q1 — Qs P+ P, =0, Q_ and P, can be simultaneously measured with
infinite precision. Thus ¢)_ and E can also be simultaneously measured with infinite
precision. Through calculations, we find that (§Q%) and (§P?) in a 4-mirror ring cav-
ity have the same form as (6Q%) (equation (5.23)) and(0P?) (equation (5.21)) in a
3-mirror ring cavity, respectively. If we choose the same parameters, the same numer-
ical results will be obtained. Therefore, using a 4-mirror ring cavity, the entanglement

between two oscillators can also be obtained.

5.5 Conclusions

In conclusion, we have found that the injection of squeezed vacuum light and a laser
can entangle the two identical movable mirrors by the radiation pressure. The result
shows the maximum entanglement of the movable mirrors happens if the squeezed
vacuum light with r about 1 is injected into the cavity. We also find significant
entanglement over a very wide range of input laser power and temperatures of the
environment.

The content of this chapter has been published in New J. Phys. 11, 103044

(2009).
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CHAPTER 6

NORMAL-MODE SPLITTING AND ANTIBUNCHING IN STOKES
AND ANTI-STOKES PROCESSES IN CAVITY OPTOMECHANICS:
RADIATION-PRESSURE-INDUCED FOUR-WAVE-MIXING CAVITY
OPTOMECHANICS

6.1 Overview

The nonlinearities in a system can be studied using a number of optical methods.
Among these, Stokes and anti-Stokes processes, and more generally four-wave-mixing
processes are quite common tools used to understand the nonlinear nature of the sys-
tem [161]. With this in view we study the stimulated Stokes and anti-Stokes processes
in cavity optomechanics. As is well known, the nonlinearity in cavity optomechanics
arises from the radiation pressure [25, 41, 42, 130, 162, 163] on the moving mirror
of the cavity. Thus, if the cavity is driven by a pump field of frequency w; and
a Stokes field of frequency ws, then, due to radiation pressure, the output of the
cavity would consist of fields at the applied frequencies w; and w, and a generated
frequency 2w; — ws. While some previous works [17, 164, 165] have explored the
Stokes and anti-Stokes processes in the context of parametric oscillation instability,
here we show how such processes can be conveniently used to study the phenomena
of normal-mode splitting [48, 50, 121, 122, 123, 124, 213, 160, 166] arising from the
strong coupling between the cavity and the mechanical mirror. Further, the system
can act as an amplifier for the Stokes field. Needless to say, we work in a domain
which is below the instability threshold.

Moreover, very interesting photon correlations between the Stokes and the anti-

90



Stokes photons have been reported in atomic vapors under conditions of electromag-
netically induced transparency [212]. Here we also discuss the correlations between
the photons created spontaneously by the optomechanical system. The correlations
are found to be nonclassical.

The chapter is organized as follows. In Sec. II, we introduce the model, obtain
the equation of motion for the oscillator and the cavity field, and solve it. In Sec. III,
we calculate the output fields and thus obtain nonlinear susceptibilities for Stokes
and anti-Stokes processes. In Sec. IV, we show that the Stokes field is amplified,
and find very prominent normal-mode splittings in the output fields. Thus, stimu-
lated Stokes and anti-Stokes processes provide us with a new tool for studying the
strong coupling regime of optomechanics. We find that normal-mode splittings are
especially pronounced in the two quadratures of the output fields. In Sec. V, we
analyze the correlations between the spontaneously generated photons in the four-
wave-mixing processes in the optomechanical system. We show that such correlations

are intrinsically quantum.

6.2 Model: Stimulated Generation of Stokes and Anti-Stokes fields

We consider the system illustrated in Fig. 6.1, in which the cavity consists of two
mirrors separated from each other by a distance L. The front mirror is fixed and
partially transmitting; the end mirror is movable and perfectly reflecting. The cavity
is driven by a pump field and a Stokes field obtained with lasers. Their frequencies are
w; and wy, respectively. We would assume that the Stokes field is much weaker than
the pump field. A radiation pressure produced by momentum transfer will act on the
movable mirror, which is modeled as a harmonic oscillator with mass m, frequency
Wi, and momentum decay rate v,.

Considering a single-mode cavity w., the Hamiltonian of the system in a frame
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Figure 6.1: Sketch of the studied system. A pump field with frequency w; and a
Stokes field with frequency ws enter the cavity through the partially transmitting
mirror. The output fields ¢, have three components (wy, ws, 2w; — ws). No vacuum

fields are shown here because we are examining only the mean response.
rotating at the pump frequency w; is written as

H = h(wc — Wl)nc - hme”cQ + h(:m(Q2 + P2)
(6.1)

+ihe(ch — ¢) 4 ihfe,em Wt — greilws—wite],
Here () and P are the dimensionless operators representing the oscillator’s posi-
tion and momentum, defined by @) = q\/m and P = p\/m with
[Q, P] = 2i. In Eq. (6.1), the first term is the energy of the cavity field, n. = cfc
is the number of the photons inside the cavity and ¢ and ¢f are the annihilation and
creation operators, respectively, for the cavity field satisfying the commutation re-
lation [c,cf] = 1. The second term describes the nonlinear coupling of the movable
mirror to the cavity field via radiation pressure, where the dimensionless parameter
X = (1/wm)(we/L)y/h/(2mw,,) is the optomechanical coupling constant between the
cavity field and the movable mirror. The third term corresponds to the energy of the
movable mirror. The last two terms give the interactions of the cavity field with the
pump field and the Stokes field, ¢; and ¢, are, respectively, the amplitudes of the pump
field and the Stokes field inside the cavity. They are defined by ¢, = \/W and

les| = /2kps/ (hws), respectively, where @ is the pump power, @, is the power of the

92



Stokes field, and & is the cavity decay rate due to the fixed mirror.
Let (Q), (P), (c), and (c') be the expectation values of the operators Q, P, c,
and cf, respectively. The time evolution of these expectation values can be derived

by using the Heisenberg equations of motion and adding the damping terms:
(Q) = wm(P),

<P> = 2w X(Ne) — Wi (Q) — Ym(P),
(6.2)

(&) = —[k + i(we — Wi — Wi X{(Q)]{C) + & + g,e7wsmw)t,

(1) = [k — i(we — Wi — WX (Q))]{c!) + &) + eretlws—w)t,
The derivation of Eq. (6.2) uses the well-known mean-field assumption (Qc) = (Q)(c).
As the field e, at the Stokes frequency wy is much weaker than the pump field ¢;, we
derive the steady-state solution of Eq. (6.2) to first order in &, that is, we find t — oo

limit of the solutions:

(@) Qo Q+ Q-
P P P P
Py B +egemilmat [ 0T it : (6.3)
©) Co C+ -
(") g o Ci

Thus Eq. (6.3) shows the cavity field (c)e™™'* has three components, oscillating

at the input frequencies w; and w,, and a new anti-Stokes frequency 2w; — ws. By

*2
s

substituting Eq. (6.3) into Eq. (6.2), neglecting those terms containing %,

and |¢,]? and equating coefficients of terms proportional to e ®s=wt and ews=wi)t,

respectively, we find
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Qo = 2x|col?,

PO — O,
€l
cn = b
07 kA’
1
= G oy s A+ =)l — ) =l i — )] o4
_2Z‘W73nX2|00’2}’
21w x*c3
Ci = -
d*(ws — wy)
where
A = w, —w — wmXQo, (6.5)

is the effective detuning, and where
dlws —w;) = 4w X2 Alcol? + [(ws — wi + W) (Ws — Wi — W) + iYm(ws — wy)]
X[k +i(A —ws +wp)][rk — (A + ws — wp)]. (6.6)

For brevity we do not write explicit expressions for Q4+, P+, etc. because we do not

need these in the discussion that follows.

6.3 The Output Fields

To investigate normal-mode splitting of the output fields, we need to find the expec-
tation value of the output fields. Using input-output relation [110] (cou) +&1/V 2k +

gse” W)t /3 /2k = \/2K(c), we can obtain the expectation value of the output fields

(Cout) = V2K[co + ege™ @it 4 greilws—wte ]

(6.7)
—&1/V2k — ggeT st [\ 2.
If we write (cout) as
<Cout> =+ 6sefi(ws*wl)tcs + 6:€i(ws*wz)tcas’ (68)
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where ¢; is the response at the pump frequency w;, ¢, is the response at the Stokes
frequency w,, and c.s is the response at the four-wave-mixing frequency 2w; — wy

(anti-Stokes frequency). Then we have

vV 2/€€l €l

@ = f@—i—iA_\/Z/i’
V2
c = @%j@ﬁM—ﬂA+wfwmm%—wﬁ—wi+WM%—wm
1
—2iw3 X% co?} — —,
2% 3 .,2,.2
N it G (6.9)

d*(ws —wy)’

In the absence of the interaction between the cavity field and the movable mirror, one
would expect the output fields to contain only two input components (w; and wy);
no four-wave-mixing component appears. We can get this result from Eq. (6.9) by
setting x = 0, which gives

vV 2kKe; €

TTRTIAT VR

. = V2K _ (6.10)
E+i(A—ws+w) V2

Cas = 07

as expected. However, in the presence of the coupling with the oscillator (x # 0),
[from Eq. (6.9), we have ¢; # 0,¢5 # 0,c¢qs # 0], the output fields contain three
components. The generated signal would exhibit resonances whenever wy = w; + w,y,.
In addition, one would have the resonances produced by the cavity w, = w; + A.
These resonances are, of course, expected. The normal-mode splitting would arise
as a result of strong coupling x [48, 50, 166]. This is because the structure of the
denominator in Eq. (6.9) depends on x. We next present the roots of Eq. (6.6).

We use parameters which have been used in a recent experiment on the observation

of the normal-mode splitting in the fluctuation spectra [50]: the wavelength of the
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laser A = 2mc/w; = 1064 nm, L = 25 mm, m = 145 ng, x = 27 x 215 x 103
Hz, w,, = 27 x 947 x 10 Hz, the mechanical quality factor Q" = w,,/ym = 6700,
Ym = 27x141 Hz, A = w,,. In this range of parameters, no parametric instabilities
occur.

Figure 6.2 shows the dependence of the real parts of the roots of d(ws —w;) in the
domain Re(ws — w;) > 0 on the pump power. Figure 6.3 shows the dependence of
the imaginary parts of the roots of d(ws; — w;) on the pump power. For a small value
of the pump power, the real parts of the roots of d(ws — w;) have two equal values,
so there is no splitting. However, there is lifetime splitting [168] as seen in Fig. 6.3.
If we increase the pump power to a certain value, the real parts of d(ws; — w;) in the
domain Re(w;s —w;) > 0 begin to have two different values, and the difference between
two real parts of the roots of d(ws — w;) in the domain Re(ws — w;) > 0 is increased

with increasing pump power.

14, 14
13" 113
12; -___---------Ié 12
§ 1.1; '-‘-_------- ;1.1
P 10fammnnaas e 110

AN 1
¥ 09; .'...... *:09
08" L 108
07" "t o7
06w s
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Figure 6.2: The roots of d(ws — w;) in the domain Re(ws —w;) > 0 as a function of

the pump power p.

96



025 10.25
o ]
020 10.20
£ I s |
3 4
= o015/ \ lo1s
3 . ]
b [ s ]
3 NSNS S SN E S EEEEEEEEN i
£ 010+ ‘ 40.10
T N ]
- " 4
0.05" 2 1005
0.00 La*— R — —10,00
0 5 10 15 20
9 (MW)

Figure 6.3: The imaginary parts of the roots of d(ws — w;) as a function of the pump
power .

6.4 Normal-mode Splittings in the Output Fields

Before examining the normal-mode splitting in, say, the output anti-Stokes field, we
examine Eq. (6.9) in the traditional limit of nonlinear optics; that is, we find the

form of anti-Stokes field to lowest order in Y,

Cas = —2V2kiw3 X2 /{(k +iA)?[(ws — wi + W) (Ws — Wi — W) (6.11)
—1m(ws — W]k — (A —ws +w][k + (A +ws —w)]},
which has resonances as discussed after Eq. (6.10) and which is proportional to the
pump power.
We next discuss the normal-mode splitting in the generated Stokes and anti-
Stokes fields. It is useful to normalize all quantities to the input Stokes power p,. For

simplicity, we assume €5 to be real. For our plots we would give the output power at

the Stokes frequency w, in terms of the input Stokes power

h S S¥S 2
G, = hesleed | a2 (6.12)

S

and the two quadratures of the output fields at the Stokes frequency w, in terms of the

square root of the input Stokes power. Let us denote these normalized quadratures by
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vy and ¥5. These are defined as v, = \/ﬂ% and v, = \/ﬁ% The quantity Gy
is the gain of the cavity optomechanical four-wave mixer. In Figs. 6.4— 6.6, we have
plotted vs, 75, and Gg, respectively, versus the normalized frequency (ws — w;)/wm
for different pump powers. The quadrature v, (¥,) exhibits absorptive (dispersive)
behavior. As is known, there is a phase change on reflection and that is why the
quadrature v, shows absorptive behavior. The normal-mode splitting or the lifetime
splittings are clearly seen depending on the input pump power in the quadratures
vs and ¥5. The peak positions are in agreement with Fig. 6.2 for the case when the
input pump power is such that normal-mode splitting occurs. The behavior of net
gain as a function of wy is different due to the combination of absorptive and dispersive
characteristics of the quadratures vy and v,. The gain shows normal-mode splitting
for larger value of the pump power. Moreover, the maximum gain of the Stokes field

is about 1.15. It should be borne in mind that the quadratures vy, and v, can be

obtained by homodyne measurement.

15
10+

0.5}

L 00}

-05}

-1.0F+

_1_5:\ . . L I L L I L . L . L . \:
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Figure 6.4: The normalized quadrature v, plotted as a function of the normalized
frequency (ws — wy)/wy, for different pump power. p =1 mW (solid curve), 6.9 mW

(dotted curve), and 20 mW (dashed curve).
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Figure 6.5: The normalized quadrature v, plotted as a function of the normalized
frequency (ws — w;)/wy, for different pump power. p =1 mW (solid curve), 6.9 mW

(dotted curve), and 20 mW (dashed curve).
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Figure 6.6: The normalized output power G, plotted as a function of the normalized
frequency (ws — wy)/wy, for different pump power. p =1 mW (solid curve), 6.9 mW

(dotted curve), and 20 mW (dashed curve).

Likewise, the output power at the anti-Stokes frequency 2w; — w, in terms of the
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input Stokes power is given by

h(2w; — 2
Gas _ ( Wy ;s)|5sca$| :‘ /2I€Cas|2. (613)

For brevity, we only show in Fig. 6.7 the function GG,s against the normalized frequency
(ws — wy)/wy, for several values of the pump power. As can be seen in Fig. 6.7,
increasing the pump power can make the signal of four-wave mixing evolve from one
peak to double peaks. It is also seen that the maximum value of G is about 0.15 and
the output power at the anti-Stokes frequency (2w; —ws) is much less than the output
power of the Stokes field. However, for larger pump powers, the maximum gain for
Stokes and anti-Stokes fields are bigger. For example, for 40 mW pump power, the

maximum of G4 and G4 are about 1.5 and 0.5, respectively.
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Figure 6.7: The normalized output power GG, plotted as a function of the normalized
frequency (ws — wy)/wy, for different pump power. p =1 mW (solid curve), 6.9 mW

(dotted curve), and 20 mW (dashed curve).
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6.5 Spontaneous Generation of Stokes and Anti-stokes Photons:

Quantum Correlations

So far we have considered stimulated processes. The Stokes and anti-Stokes fields are
also generated spontaneously. In this case we have to include input vacuum fields.
These vacuum fields would be broad band. Thus the field at frequency wy in Fig. 6.1
is to be replaced by a broad band quantum field ¢;, with zero mean value and with
correlations (d¢;, (t)dch (t')) = §(t—t'). The calculations of the output quantum fields
are standard [26]. We have used these and introduced the Langevin force £(t) which
stems from the coupling of the movable mirror to the thermal environment having

zero mean value with correlations [108]

T Wy, 2kpT

)] duw, (6.14)

where kg is the Boltzmann constant and 7' is the temperature of the environment.

The fluctuations of the output fields are obtained as

0Cout(W) = V(W)E(W) + E(w)dcin(w) + F(w)deh, (—w), (6.15)

where £(w), d¢in(w), and dc) (—w) are the Fourier transform of the Langevin force

£(t) and the input vacuum fields 8¢y, (t) and d¢,, (t), respectively, and where

2KW2 X
_ VAR X A

V(w) 1) i[k — i(w + A)]co,
2

Bw) = gy 2eindileol + (@ —of, +in)ls — i@+ A =1 (6.16)
4rw3 x2ct

in which
d(w) = 4w3 x*Alco|* + (w? — W, + ivmw) X [(k —iw)? + AZ]. (6.17)

In Eq. (6.15), the first term containing &(w) is the contribution of the Langevin force

acting on the movable mirror, while the other two terms come from the input vacuum
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fields. So the fluctuations of the output fields depend on the Langevin force and the
input vacuum fields. Further, we define time dependent 6c;(¢) and 6¢%(t), where
(505,%(15) represents the positive-frequency part of the fluctuations of the output fields,

corresponding to Stokes component, and
(s) 1o it
5cout(t) = / 5Cout<w)€ dw7 (618)
21 Jo

whereas (505,‘;5;) (t) represents the negative-frequency part of the fluctuations of the

output fields, corresponding to anti-Stokes component, and
(as) _ i 0 —iwt
OCout () = 5 dCout(w)e ™ dw. (6.19)
™ J—o00

In the context of Stokes and anti-Stokes radiation generated by single atoms,
several authors [169, 170, 212, 203] found important quantum correlations between
the Stokes and anti-Stokes radiation. Such conclusions were drawn from the structure
of photon-photon correlations. Motivated by these studies and the fact that we are
dealing with a macroscopic system like a nanomechanical mirror; we examine photon-
photon correlations in the generated radiation.

In the following, like in the work of Kolchin et al. [212], we do not differentiate

between the Stokes and anti-Stokes photons. We calculate the coincidence probability

defined by
4 (r) = (010} e (£)0¢h s (t 4 T)8Cout (T + T)0Cou (£)]0) (6.20)
(0185t ()¢t (£)|0) (018 (¢ + T)3Cous (t + 7)|0)
in which 7 is a time delay, and
1 ptoo ,
dCout(t) = 2—/ Sout(w)e ™ dw. (6.21)
T J—00

Now we would evaluate the photon-photon correlations of the output fields numer-
ically. We choose the pump power =1 and 4 mW and the temperature of the envi-
ronment T' = 0 K; the other parameters are the same as those mentioned in Sec. III.

The correlation function ¢(® (1) between the spontaneously generated photons versus
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Figure 6.8: The normalized second-order correlation function ¢(®(7) as a function of
the time delay 7(us) for different pump powers at 7' = 0K. p=1 mW (solid curve),

and 4 mW (dotted curve).

the time delay 7 for different pump powers at a temperature of 7' = 0K is displayed
in Fig. 6.8. We find that ¢®(7) is symmetric. It is also seen that ¢® (1) > ¢®(0) as
7 # 0. This demonstrates the presence of photon antibunching, which is definitely of
quantum origin. Further, we note the Cauchy-Schwartz inequality ¢ (7) < ¢®(0) is
violated, and the degree of the violation of the Cauchy-Schwartz inequality becomes
smaller with increasing pump power. For pump power o = 1 mW, the peak value of
g (1) is about 17, and ¢g®(0) ~ 3; thus, ¢ (7)/¢®(0) ~5.6. However, for p = 4
mW, the peak value of g®(7) is about 11.5, and ¢®(0) ~ 3, so g®(7)/¢®(0) ~3.8.
Therefore, the spontaneously generated photons from the optomechanical system at
T = 0 K are correlated nonclassically, and the nonclassical correlation becomes weaker
with increasing pump power. This is reminiscent of the parametric downconversion

process which at low pumping powers produces significant quantum correlations.
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6.6 Conclusions

We have shown that an optomechanical system driven by a pump field and a Stokes
field can lead to generation of a four-wave-mixing signal. The Stokes field is amplified.
We also find that normal-mode splitting occurs in both the generated fields, that is,
in both Stokes and anti-Stokes fields. We also report lifetime splitting for pump
power less than a critical power. Further, we have discussed the correlations of the
photons generated from an optomechanical system by spontaneous processes. We find
the correlations between these photons manifest the antibunching effect, and violate
Cauchy-Schwartz inequality. Further, the violation of the Cauchy-Schwartz inequality
becomes weaker with increasing pump power. Hence, the optomechanical system can
be used to generate pairs of photons with quantum correlations. Thus the study of
both stimulated and spontaneous Stokes and anti-Stokes signals provides us with a
useful technique for studying the strong coupling regime of cavity optomechanics, as
well as quantum fluctuations at macroscopic level.

The content of this chapter has been published in Phys. Rev. A 81, 033830
(2010).
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CHAPTER 7

THE ELECTROMAGNETICALLY INDUCED TRANSPARENCY IN
MECHANICAL EFFECTS OF LIGHT

7.1 Overview

Since its original discovery in the context of atomic vapors, electromagnetically in-
duced transparency (EIT) [76, 172, 173] has been at the center of many important
developments in optical physics [174] and has led to many different applications, most
notably in the context of slow light [79, 80, 212] and the production of giant non-
linear effects. EIT is helping the progress towards studying nonlinear optics at the
single-photon level. EIT has been reported in many other systems [176]. More re-
cently, EIT has been discovered in meta materials [177, 178, 179, 180] where resonant
structures can be fabricated to correspond to dark and bright modes. Resonators pro-
vide certain advantages [181] because by design we can manipulate EIT to produce
desired transmission properties of a structure. It would thus be especially inter-
esting to study resonators coupled to other systems such as cavity optomechanical
systems. Such nanomechanical systems have attracted considerable interest recently
[38, 39, 48, 50, 117, 120, 182, 183]. In this chapter, we demonstrate the possibility of
EIT in the context of cavity optomechanics.

Before discussing our model and results, we set the stage for EIT in cavity op-
tomechanics. As in typical EIT experiments [76, 172, 173, 174], for example, in the
context of atomic vapors, we need to examine the pump-probe response of a nanome-
chanical oscillator of frequency w,, coupled to a high-quality cavity via radiation

pressure effects [164, 165] as schematically shown in Fig. 7.1. Thus, the cavity os-
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cillator of frequency wy and the nano-oscillator interact nonlinearly with each other.
The system is driven by a strong pump field of frequency w.. This is the coupling
field. The probe field has frequency w, and is much weaker than the pump field. The
mechanical oscillator’s damping is much smaller than that of the cavity oscillator.
This is very important for considerations of EIT. The decay rate of the mechanical
oscillator plays the same role as the decay rate of the ground-state coherence in EIT
experiments. The analog of the two-photon resonance condition where EIT occurs
would be w. + w,, = w,. We show how the absorptive and dispersive responses of the
probe change by the coupling field and how EIT emerges. We present a clear physical

origin of EIT in such a system.

7.2 Model

cavity axis

«—>
€p) Wp——»
EC' wC — ¥
Eout D
fixed movable

Figure 7.1: Sketch of the optomechanical system coupled to a high-quality cavity via

radiation pressure effects.

Let us denote the cavity annihilation (creation) operator by ¢ (cf) with the com-
mutation relation [c, ¢'] = 1. The momentum and position operators of the nanome-
chanical oscillator with mass m are represented by p and ¢q. We also introduce the

amplitudes of the pump field and the probe field inside the cavity . = \/2kp./(hw,)

and €, = \/2kp,/(hw,), where @, is the pump power, g, is the power of the probe
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field, and & is the cavity decay rate. Note that €. and €, have dimensions of frequency.
The optomechanical coupling between the cavity field and the movable mirror can be
described by the coupling constant xo = hwo/L, where L is the cavity length. The

Hamiltonian describing the whole system reads

2 1 , ,
H = hwocle + 24 —mw? q? | 4 iheo(cTe ™t — cetel)
2m 2 (7.1)

+ih(cle e ™t — ceretrt) — xocleq.
This chapter deals with the mean response of the system to the probe field in the
presence of the coupling field. Because we deal with the mean response of the system
we do not include quantum fluctuations. This is similar to what has been done in the
context of EIT work where one uses atomic mean value equations and all quantum
fluctuations (due to either spontaneous emission or collisions) are ignored. Thus,
we examine the mean value equations, which can be obtained from the Hamiltonian
and by addition of the damping terms. We use the factorization assumption (Qc) =
(@Q){c) and also transform the cavity field to a rotating frame at the frequency we,

(c(t)) = {¢(t))e <!, The mean value equations are then given by

(B) = —mw?2,(q) + x0(¢" (@) — ym (D), (7.2)

(3 = — [H i (wo - ’;;<q>>} (&) + eo 4 gy nwelt,

The output field can be obtained by using the input-output relations [110]

Eout(t) + epe " + 26" = 2k(c). (7.3)

We first note that in the absence of the coupling field, the output field is given by

— . 2K L
Eout(t) 4 epe Pt = epe et = i wo)gpe wpt (7.4)

The quadratures of the field ep, defined by er = v, + 0, show the absorptive and
dispersive behavior as a function of the detuning parameter (w, — wp). The field

quadratures, as is well known, can be measured by homodyne techniques [110].
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Next, we examine the effect of the coupling field. Equations (7.2) are nonlinear,
and therefore the steady-state response contains many Fourier components. We solve
in the limit of arbitrary strength of the coupling field; however, we take the probe field
to be weak. We specifically are interested in the response of the cavity optomechanical
system to the probe in the presence of the coupling field .. Thus, we find the
component of the output field oscillating at the probe frequency w,. The result of

such a calculation is that ep is now given by

2K

er= 15 {(62 — w2, + imd) [k — i(A + 8)] — 2iwmB}, (7.5)

where

QU
—~

(%)
~—

I

(62 — w2 + ivmd)[(k — i0)* + A%)] + 4Aw,, 3,

208X
A =wy—we — 22, (7.6)
Win
6: X3|60|2
2mhw,,
Gy = —=°
07 kLiA

The coupling field has modified the output field at the probe frequency. Note that ep
is nonperturbative in terms of the strength of the coupling field w.. We concentrate
on the output field. However, all the results for e7 also apply to the cavity field at
wp as the two quantities are proportional to each other.

In order to understand the coupling-field-induced modification of the probe re-
sponse 7, we make reasonable approximations. We work in the sideband resolved
limit w,, > k. This is the limit in which normal mode splitting [47, 48, 50] has been
discovered. Because it is known that the coupling between the nano-oscillator and
the cavity is strongest whenever 6 = +w,, or 6 = +£A, the case A ~ w,, is considered

here. After some simplifications, we can write the output field in an instructive form,

. 2K A+ A_
Er = Up + 10, = 3 =

/-f—izv%—wi.
i

I—x++x—x_’ (7.7)

108



where © = 0 — w,,,, which is the detuning from the line center. Further, it is seen that

the denominator has two roots, which are

—i(k+2) & /= (k — )2+ 48
Ty = )
2

(7.8)

whose nature depends on the power of the coupling laser. For coupling powers less

than the critical power

el + ) (s = )

e SrB : (7.9)

the two roots are purely imaginary. For @. > ., the roots are complex conjugates of
each other. The region p. > @. corresponds to the region where normal-mode splitting
[47, 48, 50] occurs and has been studied recently using a very different technique. In
the context of optical physics, this is the region where Autler-Townes splitting [184]
occurs, although sometimes the distinction between different kinds of splittings is

marred. However, for EIT, it is important to have ~,, < k.

7.3 EIT in the Out Field

In order to bring out prominently features like EIT [76, 172, 173], we specifically
examine the case when the coupling power is less than the critical power. Note that
vy — —i%, v — —ik as f — 0. Thus, the quadratures of the output field have
two distinct contributions in the limit of low values of the coupling laser strength.
One contribution is extremely narrow as v,, < x. This characteristic property leads
to the EIT dip. For numerical work, we use parameters from a recent experiment
on the observation of the normal-mode splitting [50]: the wavelength of the laser
A =2mc/w. = 1064 nm, L = 25 mm, m = 145 ng, k = 27 x 215 kHz, w,, = 27 x 947
kHz, 7,, = 2m x 141 Hz, the mechanical quality factor Q@ = w,,/vm = 6700. We
calculate the critical power @, to be 3.8 mW. In Figs. 7.2 and 7.3, we show each

contribution in Eq. (7.7) separately and also the total contribution. We observe that
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Figure 7.2: Quadrature of the output field v, (solid black curve) and the different

contributions to it: the real parts of af; (dotted red curve) and 2= (dashed green
+ T—x_
curve) as a function of the normalized frequency x/w,, for input coupling laser power

9. =1 mW. The dot-dashed blue curve is v, in the absence of the coupling laser.

the narrow contribution is inverted relative to the broad contribution, and this leads
to the typical EIT-like line shape for the quadrature v, of the output field. The value
at the dip is not exactly zero as v,, # 0, though the value is very small as v,, < k.
This is similar to what one has in the context of EIT in atomic systems where a strict
zero is obtained if the ground-state atomic coherence has an infinite lifetime. In the
absence of the coupling field, the narrow feature disappears (blue curve in Fig. 7.2).
The narrow feature’s width has a contribution which depends on the coupling laser
power. In leading order, the width is %* + % For the plot of Fig. 7.3, the power-
dependent contribution to the width in dimensionless units is 8/k* ~ 0.065. The
quadrature v, exhibits dispersive behavior, and the coupling field changes the nature
of dispersion from anomalous to normal in the region where quantum interferences
are prominent. This behavior of dispersion is similar to the one found by Harris and
collaborators in predictions of slow light [79, 80, 212] in atomic systems.

We next present the nature of interferences in the region when @, > @. in Figs.
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Figure 7.3: Quadrature of the output field ¥, (solid black curve) and the different

= (dotted red curve) and xi‘i (dashed

contributions to it: the imaginary parts of xfx
+

green curve) as a function of the normalized frequency x/w,, for input coupling laser

power . = 1 mW. The dot-dashed blue curve is U, in the absence of the coupling

laser.
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Figure 7.4: Same as in Fig. 7.2 except the input coupling laser power . = 6.9 mW

and p. = 0 case is not shown.

7.4 and 7.5. A typical behavior is shown in Fig. 7.4 which clearly shows how the

interference of the two contributions in Eq. (7.7) leads to the formation of the dip.
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Figure 7.5: Same as in Fig. 7.3 except the input coupling laser power p. = 6.9 mW

and @, = 0 case is not shown.

The two contributions in Eq. (7.7) lead to asymmetric profiles. In the region of EIT,
the tails from these contributions interfere. Unlike the case given by Fig. 7.2, the
two contributions have identical line widths. From Fig. 7.5, we also see how the
dispersive behavior is changed by the coupling field from anomalous to normal in
the region where quantum interferences are dominated. The inverted nature of the
contribution A, should be noted, and it is this which changes the nature of dispersion.

We now explain the origin of the structure (7.7) for the probe response. Let us
re-examine the Hamiltonian (7.1). Note that we drive the cavity with arbitrary pump
field €,. This effectively prepares the cavity in a coherent state with a value ¢y if all the
other interactions were zero. The trilinear interaction due to radiation pressure xoc'cq
can now be written as xoq|co|? + x0q(¢idc + odcT)+ higher order terms if we write
the cavity operator ¢ as ¢y + dc. The pump thus has resulted in a bilinear interaction
between the cavity oscillator and the mirror oscillator. The cavity oscillator is driven
by the probe field, whereas the matter oscillator has no external drive. The cavity
oscillator is damped at the rate s, whereas the mirror is damped at the rate v,, < k.

This situation typically results [177, 178, 179, 180, 181] in line shapes such as (7.7).
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7.4 Conclusions

In conclusion, we have shown how an exact analog of EIT can occur in cavity op-
tomechanics when such a system is driven by a weak probe in the presence of a strong
coupling field. We find that the response function for the cavity field at the probe
frequency as well as the output field has exactly the same features as the response
of a A system provided the damping of the nanomechanical mirror is much smaller
than the dissipation in the cavity. We further highlighted the interference effects in
two distinct regions of the coupling power.

The content of this chapter has been published in Phys. Rev. A 81, 041803(R)
(2010).
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CHAPTER 8

REACTIVE-COUPLING-INDUCED NORMAL MODE SPLITTINGS
IN MICRODISK RESONATORS COUPLED TO WAVEGUIDES

8.1 Overview

In a recent paper Li et al. [67] presented a new design for an optomechanical system
that consists of a microdisk resonator coupled to a waveguide. This design has sev-
eral attractive features. Besides its universality, it enables one to study the reactive
effects [67, 185] in optomechanical coupling. The origin of the reactive coupling is
well explained in Ref. [69]. Its origin lies in the mechanical motion dependence of
the extrinsic losses of the disk resonator. Further phase-dependent gradient forces
lead to reactive coupling. Li et al. have also argued that this design is more effective
in achieving cooling of the system to its ground state. While cooling is desirable for
studying quantum effects at the macroscopic scale [35, 36, 38, 39, 117, 186], we exam-
ine other possibilities, which do not depend on the cooling of the system, to investigate
the effects arising from strong reactive coupling. Since optomechanical coupling ef-
fects are intrinsically nonlinear, we examine the nonlinear response of the microdisk
resonator to pump probe fields. We report reactive-coupling-induced normal mode
splitting. Note that in previous works [47, 48, 50, 187] on normal mode splitting in
optomechanical devices, only dispersive coupling was used. In this chapter, we report
on normal mode splitting due to reactive effects.

The chapter is organized as follows. In Sec. II, the physical system is introduced
and the time evolutions of the expectation values of the system operators are given

and solved. In Sec. III, the expectation value of the output fields is calculated, and
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the nonlinear susceptibilities for Stokes and anti-Stokes processes are obtained. In
Sec. IV, we discuss normal mode splitting in output fields with or without reactive
coupling. We find that there is no normal mode splitting in output fields in the
absence of reactive coupling. However, normal mode splitting occurs in output fields

in the presence of reactive coupling.

8.2 Model

We consider the system shown in Fig. 8.1, in which a microdisk cavity is coupled to
a freestanding waveguide. A strong pump field with frequency w; and a weak Stokes
field with frequency ws enter the system through the waveguide. The waveguide
will move along the y direction under the action of the optical force exerted by the
photons from the cavity. Further, considering the dispersive coupling and reactive
coupling between the waveguide and the cavity, displacement ¢ of the waveguide from
its equilibrium position will change the resonant frequency of the cavity field and the

cavity decay rate, represented by w.(q) and k.(q), respectively.

i

out /4 (g, (o, 200y — g
i

Figure 8.1: Sketch of the studied system (from Ref.[67]). The microdisk cavity is
driven by a pump field and a Stokes field. The nonlinearity of the interaction also

generates anti-Stokes field.
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In a rotating frame at pump frequency w;, the Hamiltonian of the system is given

by [67]

1 L
Ly Sl g+ h;ﬁg(wlef + wsles]?)

H = _ T
h[wc(Q) wl]c c+ om 9

(8.1)
+iliy/2k0(q)ei (¢l — ¢) + il /2k.(q) (ese 0T — e¥ePlc).
The first term is the energy of the cavity field, whose annihilation (creation) operators
are denoted c(cf). The second and third terms are the energy of the waveguide
with mass m, frequency w,,, and momentum operator p. The fourth term gives the
interactions between the waveguide and the incident fields (the pump field and the
Stokes field), L is the length of the waveguide, c is the speed of light in vacuum, 7, is
the group index of the waveguide optical mode [188], ¢, and |e,| are the amplitudes
of the pump field and the Stokes field, respectively, and they are related to their

corresponding power ¢; and @g by g = Wlfgpil and |eg| = \/ hps . The latter two
wy Wg

terms describe the coupling of the cavity field to the pump field and the Stokes field,

respectively. And § = ws — w; is the detuning between the Stokes field and the pump
field. We would study the physical effects by scanning the Stokes laser.

For a small displacement ¢, w.(q) and k.(q) can be expanded to the first order of

q,

we(q) = we + qx,
(8.2)

Ke(q) & Ke + QRom,
thus the quantities y and k,,, describe the cavity-waveguide dispersive and reactive
coupling strength, respectively. Further, note that the photons in the cavity can leak
out of the cavity by an intrinsic damping rate «; of the cavity and by a rate of x.(q)
due to the reactive coupling between the waveguide and the cavity. In addition, the
velocity of the waveguide is damped at a rate of v,,. Applying the Heisenberg equation
of motion and adding the damping terms, the time evolutions of the expectation values

({q), (p), and (c)) for the system can be expressed as
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() = —maw? {g) — Tx(e) () — 2" Tm (e + €5e™)(e)] — v (p), (8.3)

/R

(&) = —[k + (@) Kom + i (we — wy + (@)x)]{c) + VK[l + <q>'%7m](5l Fegemiot),

where we have used the mean field assumption (gc) = (q)(c), expanded k.(q) to the
first order of ¢, and assumed k. ~ k; =~ r/2, where k is the half-linewidth of the
cavity field. It should be noted that the steady-state solution of Eq. (8.3) contains
an infinite number of frequencies. Since the Stokes field e, is much weaker than the
pump field g, the steady-state solution of Eq. (8.3) can be simplified to first order in

s only. We find that in the limit ¢ — oo, each (q),(p), and (c) has the form

(s) = s + spese” O + 5_greldt (8.4)

where s stands for any of the three quantities ¢, p, and c. Thus the expectation values
({(q), (p), and (c)) oscillate at three frequencies (w;, ws, and 2w; — wy). Substituting
Eq. (8.4) into Eq. (8.3), ignoring those terms containing the small quantities &2,
k

2 |es|?, and equating coefficients of terms with the same frequency, respectively, we

obtain the following results

Aél
Ch =
’ K+ qoKom + ZA’
h ."iom *
qo = _mw?n [x|co|* + ZWQ(CO — )],

1
. = ——|A(BE + FJ) — ih " c* BF*],

i i »
c. = d*(5)<_AJ+ iﬁ\/ECOV),

4 = Cf(D(—AJ* - i)

q- = (g+)7,

117



where

A = w. — w; + Xqo, (8.6)

d(6) = V*(BE + FJ) + BF*J*, (8.7)

and A = VR(L+ 2q0), B = K + qokiom — i(A + ), E = m(w2 — 8 — immd),
K

m

F = —c{(Kom — ix) + @517 J = xhey + iplom

vk VK

The approach used in this paper is similar to our earlier work [49] which dealt with

e, Vo= K+ qokom — (A = 9).

optomechanical systems with dispersive coupling only.

8.3 Output Fields

To investigate the normal mode splitting of the output fields, we need to calculate
their expectation value. It can be obtained by using the input-output relation [110]

(Cout) = \/2Re(q)(c). If we write (Cour) as

(Cout) = c1 + s P, + 5*€i6tcasa (8.8)

s

where ¢; is the response at the pump frequency w;, ¢, is the response at the Stokes
frequency ws, and c,; is the field generated at the new anti-Stokes frequency 2w; — ws.

Then we have
Hom
a=+vr(l+ TQO)C(L

/{om

Rom
Cs = ﬁquCO + \/E(l + TQQ)C_;,_, (89)

K

Cas = ,j?—,:qco + \/E<1 +

Furthermore, whether there is normal mode splitting in the output fields is determined

om
- do)C—.

by the roots of the denominator d(d) of ¢;. Here we examine the roots of d(d) given
by Eq. (8.7) numerically.

The response of the system is expected to be especially significant if we choose
wy corresponding to a sideband w; = w; + w,, or w, = w; = A, so we consider the

case A = w,,. The other parameters are chosen from a recent experiment focusing
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on the effect of the reactive force on the waveguide [67]: the wavelength of the laser
A = 2mc/w;, = 1564.25 nm, y = 27 x 2 MHz/nm, m = 2 pg (density of the silicon
waveguide, 2.33 g/cm?; length, 10 gm; width, 300 nm; height, 300 nm), x = 0.2w,,,
wm = 27 x 25.45 MHz, and the mechanical quality factor @ = wy,/vm = 5000. In the

following, we work in the stable regime of the system.
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Figure 8.2: The real roots of d(9) in the domain Re(d) > 0 as a function of the pump

power ¢ for Ko, = 0 (dotted curve) and Ko, = —27 x 26.6 MHz/nm (solid curve).

Figure 8.2 shows the variation of the real parts of the roots of d(J) in the domain
Re(d) > 0 with increasing pump power for no reactive coupling, ko, = 0, and for
Kom = —2m X 26.6 MHz/nm. For k,,, = 0, the interaction of the waveguide with the
cavity is purely dispersive; the cavity decay rate does not depend on the displacement
of the waveguide. In this case, the real parts of the roots of d(¢§) always have two equal
values with increasing pump power. Thus there is no splitting because the dispersive
coupling is not strong enough. However, for k., = —27 x 26.6 MHz/nm, the system
has both dispersive and reactive couplings, the cavity decay rate depends on the

displacement of the waveguide, and the real parts of the roots of d(d) will change

from two equal values to two different values with increasing pump power. And the
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Figure 8.3: Imaginary parts of the roots of d(d) as a function of the pump power g,

for kom = 0 (dotted curve) and Koy = —27 x 26.6 MHz/nm (solid curve).

difference between two real parts of the roots of d(d) in the domain Re(d) > 0 is
increased with increasing pump power. Therefore, the reactive coupling between the
waveguide and the cavity can result in normal mode splitting of the output fields, and
the peak separation becomes larger with increasing pump power. Figure 8.3 shows
the variation of the imaginary parts of the roots of d(d) with increasing pump power
for zero reactive coupling k., = 0 and nonzero reactive coupling k., = —2m7 x 26.6
MHz/nm. For k., = 0, the imaginary parts of the roots of d(d) do not change with
increasing pump power. However, for k,,, = —27 x 26.6 MHz, the imaginary parts
of the roots of d(J) change with increasing pump power. We thus conclude that for
the present microdisk resonator coupled to a waveguide the normal mode splitting is

solely due to the reactive coupling.

8.4 Normal Mode Splitting In Output Fields

We now discuss how the output fields depend on the behavior of the roots of d(J).

For convenience, we normalize all quantities to the input Stokes power p;. Assuming
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that e, is real, we express the output power at the Stokes frequency wy in terms of

the input Stokes power

Tiws|escq|?
G, = Pusleses lcs]?. (8.10)
s
Further, we introduce the two quadratures of the Stokes component of the output
cs + C; . Cs — Cy )
fields by vy = ——= and v, = — 5 2. One can measure either the quadratures of
i

the output by homodyne techniques or the intensity of the output. For brevity, we
only show v, and G, as a function of the normalized detuning between the Stokes
field and the pump field 6 /w,, for this model, without reactive coupling (K, =0) and

with it (Ko = —27 X 26.6 MHz/nm), for different pump powers in Figs. 8.4-8.5.
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Figure 8.4: The lower two curves show the normalized quadrature vy as a function
of the normalized detuning between the Stokes field and the pump field, §/w,, for
Kom = 0 (dotted curve) and ko, = —27 X 26.6 MHz/nm (solid curve) for pump power
¢ = 20 uW. The upper two curves give the normalized quadrature v,+1.5 for pump

power @ = 200 uW.

For k,,=0, it is found that v, has a Lorentzian lineshape corresponding to the
absorptive behavior. Note that v; and G exhibit no splitting when &,,,=0. However,

for Kom = —27 x 26.6 MHz/nm, it is clearly seen that normal mode splitting appears
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Figure 8.5: The lower two curves show the normalized output power G, as a function
of the normalized detuning between the Stokes field and the pump field, §/w,, for
Kom = 0 (dotted curve) and ko, = —27 x 26.6 MHz/nm (solid curve) for pump power
o = 20 pW. The upper two curves give the normalized output power G4+1.5 for

pump power ; = 200 pW.

in vy and G,. Therefore reactive coupling can lead to the appearance of normal mode
splitting in the output Stokes field. And the peak separation increases with increasing
pump power [189]. The dip at the line center exhibits power broadening. We also
find that the Stokes field can be amplified by the stimulated process. Obviously the
maximum gain G for the Stokes field depends on the system parameters. For a pump
power ; = 200 W, the maximum gain for the Stokes field is about 1.3.

Note that the nonlinear nature of the reactive coupling generates anti-Stokes ra-
diation. In a similar way, we define a normalized output power at the anti-Stokes
frequency 2w; — w, as

h(2w; — ws)lescas|®
s

Gas = 2. (8.11)

The plots of G, versus the normalized detuning between the Stokes field and the

pump field § /w,, for this model, without reactive coupling (£, =0) and with it (ke =
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—27 X 26.6 MHz/nm), for different pump powers are presented in Fig. 8.6. We can
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Figure 8.6: The lower two curves show the normalized output power G, as a function
of the normalized detuning between the Stokes field and the pump field, §/w,, for
Kom = 0 (dotted curve) and £, = —27 % 26.6 MHz/nm (solid curve) for pump power
o = 20 uW. The upper two curves give the normalized output power G,s+0.15 for

pump power g; = 200 pW.

see that G5 ~ 0 for k,,=0. The reason is that the dispersive coupling constant y
is too small. However, for k., = —27 x 26.6 MHz/nm, G, is not equal to zero.
This shows that the optomechanical system can generate an anti-Stokes field with
frequency (2w; —w;) due to the reactive coupling. For pump power g; = 200 pW, the
maximum gain defined with reference to the input Stokes power for the anti-Stokes

field is about 0.1.

8.5 Conclusions

In conclusion, we have observed normal mode splitting of output fields due to reactive
coupling between the waveguide and the cavity. Meanwhile, the separation of the

peaks increases for larger pump powers. Further, the reactive coupling can also
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cause four-wave mixing, which creates an anti-Stokes component generated by the
optomechanical system.

The content of this chapter has been published in Phys. Rev. A 81, 053810
(2010).
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CHAPTER 9

CAN REACTIVE COUPLING BEAT MOTIONAL QUANTUM LIMIT
OF NANO WAVEGUIDES COUPLED TO MICRODISK RESONATOR

9.1 Overview

Methods for beating the standard quantum limit of radiation fields have become fairly
standard. Most methods are based on nonlinear interactions of the field in a highly
nonlinear medium. The question of beating the quantum limit of the mechanical
motion which could range from kHz to GHz range is attracting increasing attention
[22, 26, 31, 117, 132, 215, 137, 138, 140, 182, 190, 191, 192]. Fortunately a nano
mechanical mirror [NMO] placed in an optical cavity interacts with the field in the
cavity in nonlinear fashion and this can be described by a nonlinear Hamiltonian. A
scheme to beat the standard quantum limit for mechanical motion is to drive the sys-
tem by a combination of a laser field and squeezed light such that the beat frequency
matches the frequency of the NMO [32]. More recently other designs of NMO have
been used [12, 67, 185, 193]. These have certain attractive features and appear quite
versatile; for example, in the design of Li et al. [67], the nano waveguide interacts
reactively with the microdisk resonator. In other words the fields leak from resonator
to the waveguide. Even though the coupling is of dissipative nature such a system
exhibits several novel features such as normal mode splitting which traditionally was
a feature of two strongly coupled oscillators described by the Hamiltonian framework
[47, 48, 50, 194].

In this chapter, we go one step further. We give first example of dissipative

nonlinear coupling produced quantum fluctuations of the mechanical motion of the
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waveguide which are below the standard quantum limit. This is rather counterintu-
itive, as dissipation is always thought to produce negative effects, i.e., is generally
thought to suppress the quantum nature of the system.

The chapter is organized as follows. In Sec. II, we introduce the model, present
the equation of motion for the system, and give the mean values of the system op-
erators in steady state. In Sec. III, we calculate the quantum fluctuations in the
mechanical motion of the waveguide and obtain the variance of momentum of the
waveguide. In Sec. IV, we present the numerical result and show that the reactive
coupling can reduce the momentum fluctuations of the waveguide below the standard
quantum limit. The numbers are rather attractive; for example, at a temperature of
20 mK, achievable by a dilution refrigerator, the maximum momentum squeezing of

the waveguide is about 60%.

9.2 Model

Let us consider a free-standing waveguide with length L interacting with a microdisk
resonator [67]. Suppose a laser with amplitude ; at frequency w; drives the resonator
mode ¢, and a quantum field ¢;, at frequency wy is sent into the resonator through
the waveguide with mass m and frequency w,,. For convenience, we adopt the nota-

tion Q) = ,/zm%q and P = ,/mhzwm p for the dimensionless position and momentum

quadratures of the waveguide with [@, P] = 2i. The waveguide vibrates along the y

direction due to the dispersive and reactive couplings with the resonator, which are
characterized by the position dependence of the resonator resonance frequency w.(Q)
and the photon decay rate k.(Q), respectively. Moreover, the waveguide is damped
at a rate of 7, due to its interaction with its environment at a low temperature 7'

In a frame rotating at the laser frequency w;, the Hamiltonian describing the whole
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system takes the form [67]

hw,, L _
H = hw(Q) — wcle + %(Q2 + P?) + h;ngwlgf

+ihy /260 (Q)[e(ct — ) + Tes — € d].

where the first two terms describe the free energies of the resonator and the waveguide,

(9.1)

respectively. The third term is the interaction between the waveguide and the laser,
c is the speed of light in vacuum, 74 is the group index of the waveguide optical mode

[188], and ¢; is related to the input power g, by ¢, = f;p—l The last term gives the

w
interactions of the resonator with the laser and the quanturrll field. The characteristics
of the quantum field would be specified later.
For a small displacement @), we can assume that both w.(Q) and x.(Q) are coupled
linearly to the displacement @),
we(Q) & we + 9Q,
(9.2)
Fe(Q) R Ke + Kom@ = k(1 +1Q),

where w, is the resonator resonance frequency for () = 0, k. is the photon decay rate

for Q = 0, and ¢ and k., are the dispersive and reactive coupling constants between

/iom

the waveguide and the resonator, respectively. We set 1 = . Since in the scheme

e

of Li et al. [67] the effects of reactive coupling are dominant, we will take g ~ 0.
For simplicity, we assume that there is no intrinsic photon losses. Employing
the Heisenberg equation of motion and adding the damping and noise terms, the

equations of motion for (), P, and ¢ can be expressed as
Q = me,
= —infa(c’ — ) + V2re(clem — chue)] — wnQ — P + ¢,

¢ = [k + Kom@Q + i(we — w))]e+ (1 + gQ)(él A 2reen), (9.3)

where &, = \/2k.£;, and we have introduced £ as the thermal noise force acting on the

waveguide with standard correlation [108]. We first examine the mean values of the
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physical variables in steady state. These can be obtained by using the factorization
ansatz i.e. mean value of the product of two operators is the same as the product of

the mean values. We find that these are given by

P, = 0,
2
Q. = —aImlel,
Wm
(1+ng)gl
o = (9.4)

Fe + FomQs + 1A’

where the resonator detuning A is defined by
A=w.—w. (9.5)

Note that the steady-state position (), of the waveguide and the steady-state complex
amplitude ¢4 of the resonator depend on 7. In obtaining results (9.4) we assumed that
the quantum field ¢;, had zero mean value. This would be the case generally unless
the quantum field is a coherent field. We already examined the case of a coherent

field in a previous publication [166].

9.3 Beating the Motional Quantum Limit for the Waveguide

In this section, we investigate whether the motional quantum limit for the waveg-
uide can be beaten even when the basic coupling is reactive. This would be quite
counterintuitive as the dissipation generally leads to the loss of decoherence and fluc-
tuations above the quantum limit. The fluctuations in ¢ and p are subject to the

Heisenberg uncertainty relation. For the mechanical oscillator in ground state one

has (6¢%) = 7-—(0Q?%) and (dp*) = ™= (5P?), in which (6Q?) = (0P?) = 1. Thus

2Mmwm,

the reduction of fluctuations below unity is an indication that the standard quantum
limit is broken. The question is if the fluctuations in either @) or P can go below the

value unity.
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Since we are interested in the squeezing of the waveguide, it is instructive to
calculate the fluctuations of the system’s operators around their steady state val-
ues. Provided that the steady-state amplitude of the resonator satisfies |cs| > 1,
we linearize Eq. (9.3) around its steady-state value by substituting @ = Qs + dQ,
P = P;+ 6P, and ¢ = ¢;+ dc into Eq. (9.3), where §Q), 6 P, and dc are the small fluc-
tuations with zero mean value. After linearization, the quantum Langevin equations

can be written in the form

f()=2Zf(t)+ F(t), (9.6)
where
0Q
oP
f(t) = : (9.7)
oc
oct

and Z is a 4 X 4 matrix, and the quantum noise F'(t) is given by

0

é - 7'7] Vv 256(C:Cin - Cchs)
Jcin

Jc!

m

in which J = /2k.(1 + 2Q,).
With the aid of the Fourier transform i.e., f(t) = 5= [T f(w)e ™'dw and fT(t) =

£ [T fH(—w)e “tdw, where fT(—w) = [f(—w)]!, we solve Eq. (9.6) in the frequency

2w J—00

domain, and obtain the solution of Eq. (9.6)
flw) =VF(w), (9-9)

where V = (—iw — Z)~!. From Eq. (9.9), we can obtain the fluctuations in the

momentum variable
IP(w) = Prw)é(w)+ Ps(w)cim(w) + P(—w)el,(—w), (9.10)
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in which

w

Pr(w) = TESAWA'(-w)
Psl) = g AW)] — VIR GPr) (9.11)
where
dw) = AW)A (~w)R — infuon[AWU = A'(—)U], (912)
and

Alw) = Ke+ Kom@s — (A + w),

R = W2 —w® —iyw,
U = —komCs + ggl. (9.13)

In Eq. (9.10), the first term results from the thermal environment of the waveguide,
the last two terms arise from the input quantum field. Thus the fluctuations in
the momentum variable in the time domain would be §P(t) = oL [FX §P(w)e ™ 'dw.
Further the variance of momentum ((5152> can be expressed as

(GP(H)?) = 4;2 /] :)O dud Qe DL P(W)TP(Q). (9.14)

Inserting Eq. (9.10) into Eq. (9.14), (6P (¢)?) can be written as

GPOY) = o [ [ dwdne o
{Pr(w) Pr(Q2)(€(w)€(2)) + 2Re[Ps(w) Ps(2){cin(w)cin(€2))]
+Ps(w) P§ (=) (in (W) el (—92)) + P5(—w) Ps(Q) (el (—w)em () }-
(9.15)

We assume that the quantum field is a squeezed field centered around the fre-

quency w, with a finite width,

(cn(0)ein(62)) = 2 ?ﬁ L 0+ 2 - 20,
(ein(w)el (=Q)) = 27 T (]::F_ FME + 1] 0(w+Q), (9.16)
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where N = sinh®(r) and M = sinh(r) cosh(r)e’? characterize the squeezed vacuum,
r is the squeezing parameter of the squeezed vacuum, ¢ is the phase of the squeezed
vacuum, and we set o = 0. We work in the sideband resolved limit i.e. we assume that
wWs — w; = Wy, The squeezed vacuum has a finite bandwidth I'" around w,,, which is
smaller than w,, but larger than the resonator width. The antinormally ordered term
has a broad band contribution coming from vacuum noise. Moreover, the thermal

noise £ owns the correlation function [108]:

(E(w)E(D)) = 47T7mi [1 + coth (

m

QKBTﬂ d(w+Q), (9.17)

where Kpg is the Boltzmann constant.

Substituting Eqgs. (9.16) and (9.17) into Eq. (9.15), the time independent variance

(5P?) will be

0Py = 217r/_:)o A Pr () Pr(—)2ym— l1+c0th< i )]

m 2KgT
1 [+ MT?
e lzﬁ | dvPsleon-+1)Pon = >r+]
1 +oo 2 NI_Q 1 oo 2
+2 [% /_OO dv|Ps(wpm, + V)| 2 1 V2] + %/_OO dw|Ps(w)|*.

(9.18)

The details of the calculations are given in Appendix A.

9.4 Numerical Results for Nano Waveguide Fluctuations below

Standard Quantum Limit

We use available experimental parameters [67]: the wavelength of the laser A =
27e/w; = 1564.25 nm, the mass of the waveguide m = 2 pg (the density of the silicon
waveguide 2.33 g/cm?, length 10 pm, width 300 nm, height 300 nm), the frequency of

the waveguide w,, = 27 x 25.45 MHz, the extrinsic photon decay rate k. = 0.05w,,,

the reactive coupling constant k,, = —27 x 26.6 MHz/nm X’/zmz —, the mechanical
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quality factor @ = wy,/vm = 5000, and the bandwidth of the squeezed vacuum
I' = 5ke.

<6P>

0.07\\\\\\\\\\\\\\\\\\\\\\\
23 24 25 26 27 28

A (2rx10PHz)

Figure 9.1: The variance of momentum (§P?) as a function of the detuning A (27 x
10°Hz) for different temperatures of the environment: 7'= 1 mK (red solid), T' = 10
mK (blue dotted), 7" = 50 mK (purple dashed), and 7" = 100 mK (green dotdashed).
The horizontal dotted line represents the standard quantum limit ((§P?)=1). The

parameters: the pump power @ = 20 uW, r = 1.

We start the investigation with the influence of the reactive coupling on the squeez-
ing of the waveguide. If the quantum field is the ordinary vacuum (r = 0), we cal-
culate the variances of position and momentum, and find that (§Q?) and (§P?) are
always larger than unity, there is no squeezing appearance. If the quantum field is
the squeezed vacuum, and r = 1, it has been found that there is no squeezing in the
variance of position (6Q?), but the variance of momentum (6P?) may be squeezed.
For pump power g; = 20 W, the variances of momentum (§P?) versus the detuning
A (27 x 10° Hz) for different temperatures of the environment are shown in Fig. 9.1.
For T = 1, 10, or 50 mK, we can see the variance of momentum (§P?) falls below

the standard quantum limit, so the momentum squeezing takes place. The minimum
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value of (§P?) is about 0.250 at T = 1 mK, this shows the maximum momentum
squeezing of the waveguide is about 75 %. Note that the maximum momentum
squeezing of the waveguide decreases with increasing the temperature due to large

thermal noise. Even at T'= 50 mK, the momentum squeezing is about 40%.
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Figure 9.2: The variance of momentum (§P?) as a function of the pump power (W)
for different temperatures of the environment: 7' = 1 mK (red solid) and 7" = 20 mK
(green dotdashed). The horizontal dotted line represents the standard quantum limit

((§P%)=1). The parameters: A = w,,, r = 1.

Next we consider the resonance case A = w,, in the presence of the reactive
coupling, and fix r = 1, the dependence of the variance of momentum (§P?) on the
pump power g (uW) for 7= 1 and 20 mK is shown in Fig. 9.2. It is seen that the
variance of momentum (§P?) clearly exhibits the squeezing effect over a large range
of pump power (p; = 0 ~ 290 xW). The minimum value of (§P?) is 0.243 at a very
low pump power (g, = 12 uW) for T = 1 mK, so the maximum momentum squeezing
of the waveguide is about 75 %. For T' = 20 mK, the maximum momentum squeezing
is about 60%. Note that temperatures like 20 mK are realizable by standard dilution

refrigerators [195].
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9.5 Conclusions

We have shown that quantum squeezing effects in the motion of the waveguide can be
generated solely due to the reactive coupling between the waveguide and the resonator
by use of a squeezed vacuum. The maximum momentum squeezing is about 75%,
which can be achieved at a very low pump power (p; = 12uW). We show in the
Appendix B the relation between the quantum fluctuations of the waveguide and the
output field. Thus the squeezing of nano waveguide can be studied by examining the
fluctuations of the output field of the waveguide.

The content of this chapter has been published in Phys. Rev. A 82, 033811
(2010).
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CHAPTER 10

ELECTROMAGNETICALLY INDUCED TRANSPARENCY FROM
TWO PHOTON PROCESSES IN QUADRATICALLY COUPLED
MEMBRANES

10.1 Overview

The radiation pressure coupling between the nano-mirror and the radiation field is
known to depend on the displacement of the mirror via the cavity frequency [196].
This coupling can depend linearly or quadratically on the displacement depending on
the location of the mirror with respect to nodes and antinodes of the cavity modes.
The case most extensively discussed in the literature corresponds to placing the mirror
at a node so that the coupling is linear in displacement [35, 38, 47, 50, 59, 193,
197, 198, 199]. Nanomechanical systems with linear reactive coupling have also been
studied [67, 185, 194]. The case of quadratic coupling has not been studied that
extensively as the coupling is generally small. However, recent works [10, 11, 12] have
shown a way to get much larger quadratic couplings, and therefore, one should study
the unique consequences of quadratic coupling in detail. The quadratic coupling in
a phonon picture implies two-phonon processes, as explained in detail in Sec. II,
and such couplings in analogy to well-known quantum optical Hamiltonians [110]
naturally lead to the possibility of squeezing the mechanical oscillator [66, 191, 200].
The question that we examine in this chapter is how to probe the effects of such two-
phonon processes by using pump and probe fields of respective frequencies w,. and
wy. We expect that the two-phonon processes should show up when the frequency

difference w, —w. is about 2w,,, where w, is the frequency of the mechanical oscillator
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and when w), is close to the cavity frequency. At the outset, we want to mention the
following: in case of single-phonon processes (linear coupling), the mean displacement
of the oscillator is nonzero, and it leads to the modulation of the output fields, whereas
for two-phonon processes the mean response of the oscillator is zero [41], and thus,
any modulation of the output fields has to come from mean values of the square of
the displacement, which is a temperature-dependent quantity. We further reveal the
possibility of an analog of electromagnetically induced transparency (EIT) arising
from a temperature-dependent oscillator’s mean potential energy. This is different
from the linear coupling case where the mean displacement of the oscillator determines
the EIT behavior [51, 53, 54]. For our case of two-phonon processes the role of atomic
coherence in traditional EIT is played by the mean of the square of the displacement,
which, in addition to temperature, also depends on the strength of the coupling field.

The chapter is organized as follows. In Sec. II, we describe the model under study.
We explain some key differences from the case of linearly coupled nanomechanical
mirrors, and we give the equation of motion for the system operators and obtain the
output field at the probe frequency. In Sec. III, we discuss the effect of the quadratic
optomechanical coupling on the output field at the probe frequency. We find that the

EIT-like dip appears in the output field at the probe frequency.

10.2 Model

Let us start with a sketch of the system as shown in Fig. 10.1 [10, 11]. A membrane
with finite reflectivity R is placed inside the cavity formed by two fixed mirrors
separated from each other by a distance L. A strong coupling field of amplitude e,
and a weak probe field of amplitude ¢, are sent into the cavity through the partially
transmitting left mirror, the right mirror is perfectly reflecting. To ensure that the
membrane locates at an antinode of the cavity modes, the cavity frequency must be

w(q) = wy,+ = — L[sin™! (VR cos 2k, q) +sin ' (VR)] so that there is an odd number of
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Figure 10.1: Sketch of the studied system. A strong coupling field at frequency w,
and a weak probe field at frequency w, are injected into the cavity through the left
mirror. A membrane with finite reflectivity is located at the middle position of the
cavity. After the interaction between the cavity field and the membrane, the output

field will contain three frequencies (w., w,, and 2w, — wy).

half wavelengths in the whole cavity, where w,, = 2an: is the resonant frequencies of the

two subcavities as R =1, ¢ =0, and k,, = w, /¢, 7 = L/c [41]. If the membrane with
mass m is located at an antinode of the frequency w(q) of the cavity field, the cavity
frequency can be approximated to the second order of ¢, w(q) = wo+ %%{ l4=0¢>. Thus

the cavity is quadratically coupled to the displacement of the membrane. We denote

the quadratic coupling constant by g, and g = %%;’]qzo = %\ZQLC\/% [201], where
c is the speed of light in a vacuum and A\ is the wavelength of the coupling field.
Moreover, the membrane is in contact with the environment in thermal equilibrium
at temperature 7. Hence the system’s Hamiltonian takes the form

2

1
H = hwocle+ hgeled® + g —mw? q*
2m 2

+ihe(cte™™e! — ce™et) + ih(gycte ™ rt — ercert), (10.1)

in which ¢ and ¢! denote the annihilation and creation operators of the cavity, while

q and p are the position and momentum operators of the membrane. €. and ¢, are
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defined by e. = \/2kp./(hw.) and €, = /2K hw,), where g, is the power of the
£ P ¥p P £,

coupling field, g, is the power of the probe field, and  is the cavity decay rate.
Before proceeding further we examine the interaction term in Eq. (10.1). The

cavity field c is expected to have the form

c— cpe 4 ceT 0 (10.2)
and the displacement of the membrane would have the form

q— qre "t pgemt 4. (10.3)

Here - - - denotes terms generated at other frequencies due to the nonlinear interaction

term in Eq. (10.1). Clearly, c'cq? would give rise to a contribution of the form
2 | —2iwmt+iwpt—iwet .t

qie C)Ce (10.4)

which physically corresponds to the conversion of the w, field into the w, field via

absorption of two phonons, as shown in Fig. 10.2. The conversion process would be

Figure 10.2: Sketch of two-phonon process. For a one-phonon case the corresponding

condition on frequencies will be w, + wy,, = w, = wy.

quite efficient if w, is near the cavity resonance frequency. This is to be contrasted to
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the linear coupling case cfcg, where a single phonon is involved in the up-conversion
process.

In the rotating frame at the frequency w. of the coupling field, c(t) = ¢&(t)e™“<!;
using the Heisenberg equation of motion and adding the corresponding noise and
damping terms, we can obtain the equation of motion for the mirror and the cavity

variables.

dq a
dt m’
dp
dt
de
dt
det
dt

= —muwlq— 2hge'éq — ymp + &,
= —[k+i(wo — we + 9¢°)]E + £c + gpe T+ V2kG,

= —[k —i(wo — we + gq°)JE" + e + e’ 4+ V2re]

mo

(10.5)

in which ~,, is the damping rate of the membrane, £ is the Langevin force arising
from the interaction with environment, and ¢;, is the input vacuum noise with zero
mean value.

We next examine if we can get an analog of EIT for the case of a quadratically
coupled membrane. We sketch the relation between the EIT in atomic systems and the
analog of the EIT in mechanical effects of light in Fig. 10.3. The EIT occurs in atomic
systems when (i) decay of the optical coherence described by the density matrix
element py3 is much faster than the decay of atomic coherence pos, (ii) wp = we + Wi,
(iii) atomic coherence p13 # 0. In mechanical effects of light, (a) (v,,)"" is like the
life-time of atomic coherence, (b) x~! is like the life time of optical coherence, (c) the
condition that atomic coherence decays much slower compared to optical coherence
is then 7, < &, (d) generally, w, and w. are well separated, and thus, we need
wm > K, which corresponds to the side-band-resolved limit, and (e) the nonvanishing
of atomic coherence would correspond to the nonvanishing of the displacement (g)
of the oscillator. All these conditions are well met, which leads us to predict EIT

[51] in mechanical effects of light, which has been clearly seen in a recent experiment
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Figure 10.3: Level diagram for the atomic EIT. For optocavity mechanics, |1) > |3)
would be the excitation at cavity frequency; |2) <> |3) would be the excitation of the
mechanical oscillator. For the quadratically coupled membrane, [2) — |3) would be

the two-phonon excitation which makes (g) = 0.

[53]. All the conditions listed above except one are met for quadratically coupled
membranes. Here (¢), i.e., the coherence term, is zero, as seen from Eq. (10.5). We
can find the expectation values of the system operators at the steady state. These

are

€c
K+ i(wy — we)’

qo =0,p0 =0,¢0 = (10.6)

where from here on we drop the tilde from ¢y. It is seen that at steady state, the
membrane’s displacement is zero, and the amplitude ¢, of the cavity field is unrelated
to the position of the membrane so that the output field is not modified by the mean
displacement of the membrane, which is different from that in the linear coupling
case. A further analysis shows that the value of (¢) to first order in the field ¢, is
also zero. This is because the nonlinear term ¢'éq in the equation for the momentum
leads to no driving term in first order in the probe field. This situation is different
from the case of one-phonon EIT, where (¢) to first order in the field ¢, is nonzero.
Hence, a key element for the occurrence of EIT for a quadratically coupled membrane

is zero. We propose here a way out of this difficulty. Since the mean value of ¢ is zero,
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its variance, which is proportional to potential energy %mwﬂ(q% of the membrane, is
expected to be nonzero. This is so even if the membrane is not interacting with any
fields. The thermal and zero-point fluctuations make (¢?) # 0. Thus, in our proposal
for EIT with quadratically coupled optomechanical systems the quantity (¢?) will be
central. This peculiarity is related to the fact that the underlying physical process is a
two-phonon process. Thus, in the following, we turn to calculate the evolutions of the
expectation values of ¢, p?, and ¢p + pq, which can be obtained with the help of Eq.
(10.5) and the factorization assumption (abc) = (a)(b)(c). Using the same method,
we also can obtain the evolution of the expectation values of ¢ and ¢f. Hence, the

complete set of underlying equations for our system would be

CZ@ = —[r+i(wo — we + g(a*)l(e) + &
—i—zEg,e*i(“’f'’“’C)t7
;5<CT> = —[k —i(wo — we + g(®)(c!) +ec + gpe’ ),
5t<q2> = ;(pq +ap),
cclit<p2> = —(mwy, +2hg{c") () (ap + pa) = 2m (p") + 29m(1 + 2n) mhgwm,
Claptpa) = %) — 2(mid + 2hg(eNE) (@) — lap + pa), (10.7)

in which the constant 27,,(1+2n)™%= is due to the coupling of the membrane to the

hwm

thermal environment and n = [e*s7 — 1|71

is the mean phonon occupation number
of energy hw,, at temperature 7', where kg is Boltzmann’s constant. Note that the
constant (1 + 2n)™%= jis the mean value of the square of the momentum of the
membrane.

We would solve Eq. (10.7) under the assumption that the coupling field is much

stronger than the probe field. The steady state solution of Eq. (10.7) then can be
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written as

(qp + pq)

XO 4 gpe—i(wp—wc)t

+ 8*ei(wp—wc)t
p

(10.8)

The solution contains three components, which in the original frame oscillate at w,,

wp, and 2w, —w,, respectively. Substituting Eq. (10.8) into Eq. (10.7), dropping those

terms that contain the product of more than one small quantity, and then equating

coefficients of terms with the same frequency, we obtain

Xo

Y,

Co

Ct

where

d(d)

Yo
m2w?, (1 + 2a)’

_Ee
AN
1

(29m + 6],

d(0)

“8au?) — il (2, — i)},
L giagut D

d*(5)[ 4zaﬂwm|co|2

hygleol® / (muwy, ),
gXO/w'rTw
Wo — We + 6wm7

Wp — We,

[k +i(A=9)][k —i(A+)](ym — i)

X (6% — 4w?, + 2,6 — 8aw?)) + 8AaBw? (2, — id).

—{[r = /(A4 8)] (Y — 10) (6 — 4w?, + 2iv,6

(10.9)

(10.10)

From Egs. (10.9) and (10.10), we find that the cavity field at the probe frequency w,

is related to the component X, of the mean-square displacement of the membrane,
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which depends on the pump power and the temperature of the environment. Also,
the coupling strength between the cavity field at the frequency w, and the membrane
is affected by the quadratic coupling constant g and the photon number |cg|? in the
cavity. Note that the parameter § is a measure of the frequency shift of the cavity
due to quadratic coupling. The parameter « is the ratio of the radiation pressure
energy to the potential energy of the membrane.

Further, the output field can be derived by using the input-output relation
Eout(t) +epe " + ¢, = 2k(E). (10.11)
If we write e,,(t) as
Eout(t) = Eouto + EoutrEpe " + 60ut_5;ei5t, (10.12)

where €., is the response at the frequency w. of the coupling field, €,,+ is the
response at the frequency w, of the probe field, and e, is the response at the new

frequency 2w, — w,. Combining Eqgs. (10.11) and (10.12), we obtain

Eoutt = 2KCo — Ec,
Eout+ = 2KCy — 1,
Eout— = 2KC_. (10.13)

We examine the total output field at the frequency w, defined as ep = pu++1 = 2kcy,
so e is also affected by the pump power and the temperature of the environment. In

the absence of the quadratic optomechanical coupling (g = 0), e7 is given by

2K
— S 10.14
Tk ti(A—0) (10.14)
10.3 EIT in the Output Field

In this section, we calculate numerically the output field at the frequency w, to bring

out the EIT-like phenomenon due to the interaction between the cavity field and the

143



membrane, which is quadratically dependent on the position of the membrane. For
convenience, we write e as

e = Uy + 10y, (10.15)

where v, and 0, give the in-phase and out-of-phase quadratures of the output field.
The quadratures can be measured via homodyne technique [110].

In order to explicitly demonstrate the possibility of EIT in quadratically coupled
optomechanical systems we use parameters that are similar to those in Ref. [10],
which discusses many different possible scenarios for quadratic couplings. A later pa-
per [12] gives an experimental demonstration of how to achieve much larger quadratic
couplings. We list the parameters used in numerical results. The wavelength of the
coupling field A = 2‘7”; = 532 nm, the total cavity length L = 6.7 cm, the frequency of
the membrane w,, = 27 x 10° Hz, the cavity decay rate k = 27 x 10* Hz, the decay rate
of the membrane v,, = 20 s~!, the mechanical quality factor ) = :—z = 3.14 x 10%, the
membrane’s reflectivity R = 0.45, the coupling constant ¢ = 27 x 1.8 x 10 Hz/m?,
the pump power . = 90 uW, and the temperature of the environment 7' = 90 K.
The mass of the membrane we use is m = 107%g, which is less than that in Ref.
[10]. In addition, we consider the two-phonon resonance case A = 2w,,. It is good to
compare the magnitude of the optomechanical coupling to the potential energy of the
membrane. The parameter hig|cy|? at A = 2wy, is 0.002 J/m?, whereas the parameter
mw2, is 0.4 J/m?.

Figure 10.4 shows the phase quadrature v, as a function of the normalized fre-
quency 0/wy,, in the absence (red dotted line) and presence (blue solid line) of the
optomechanical coupling. In the absence of the optomechanical coupling, it is seen
that v, has the standard Lorentzian absorption shape. However, in the presence of the
optomechanical coupling (blue solid line in Fig. 10.4), one can clearly see an EIT-like
dip in the quadrature v, when the two-phonon process dominates (0 ~ 2w,,). The

position of the EIT-like dip is not exactly at § = 2w,, due to the term 8aw?, in c,
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Figure 10.4: Quadrature of the output field v, as a function of the normalized fre-
quency 0/w,, in the absence (red dotted line) and presence (blue solid line) of the
quadratic coupling. Parameters are as follows: R = 0.45, p. = 90 uW, T' = 90 K.

The inset zooms the EIT-like dip.

and d(6), in which a &~ 0.005. Note that the linewidth of the dip is extremely narrow
due to 7,, < k. The linewidth is about 408 s~!, which is mostly due to the power of
the coupling field and the temperature.

However, for other set of parameters, the EIT window can become wider. For
membrane reflectivity B = 0.81, coupling constant g = 27 x 4.1 x 10 Hz/m?,
pump power p. = 20 uW, and temperature of the environment 7" = 90 K, the phase
quadratures v, and ¥, as a function of the normalized frequency 0 /w,, in the absence
(red dotted line) and presence (blue solid line) of the optomechanical coupling are
given in Figs. 10.5 and 10.6. From the blue solid line in Fig. 10.5, we can see
the linewidth of the EIT-like dip is about 471 s~. We also find the position of

the EIT-like dip is at 0 ~ 2.0058w,,, close to 0 = 2w,,, which is due to the small

2

-, where a = 0.003. Moreover, in the case without the

value of the parameter 8aw

optomechanical coupling, from the red dotted line in Fig. 10.6, it is seen that o,
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Figure 10.5: Quadrature of the output field v, as a function of the normalized fre-
quency 0/w,, in the absence (red dotted line) and presence (blue solid line) of the
quadratic coupling. Parameters are as follows: R = 0.81, p. = 20 uW, T' = 90 K.

The inset zooms the EIT-like dip.
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Figure 10.6: Quadrature of the output field v, as a function of the normalized fre-
quency 0/wy,, in the absence (red dotted line) and presence (blue solid line) of the
quadratic coupling. Parameters are as follows: R = 0.81, p. = 20 uW, T = 90 K.

The inset zooms the change in the dispersion produced by the coupling field.
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has a standard dispersion shape. But in the case with the optomechanical coupling,
from the blue solid line in Fig. 10.6, we can see the phase quadrature ¥, exhibits
abnormal dispersion. We have further carried out a detailed numerical study of the
temperature dependence of EIT. We find that, for example, for R = 0.81, p. = 50
uW, the width of the EIT dip increases linearly with temperature - the values being
628, 1256, and 2513 s~! for T'= 50, 100, and 200 K, respectively [202].

10.4 Conclusions

In conclusion we have shown how EIT-like effects can arise in two-phonon processes in
optomechanical systems. The EIT in quadratically coupled membranes is a different
from the usual paradigm because what plays the role of atomic coherence is zero for
quadratically coupled systems. The basic quantity leading to EIT in our system is the
fluctuation in the displacement of the membrane. Interestingly enough the EIT-like
behavior can occur at low-coupling powers, such as tens of microwatts, even though
the underlying process is a two-phonon process.

The content of this chapter has been published in Phys. Rev. A 83, 023823
(2011).
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CHAPTER 11

ELECTROMAGNETICALLY INDUCED TRANSPARENCY WITH
QUANTIZED FIELDS IN OPTOCAVITY MECHANICS

11.1 Overview

The interaction of a nano-mechanical system via radiation pressure [41, 163] is like
a three-wave interaction in nonlinear optics [161]. This interaction can lead to pro-
cesses like upconversion; for example, a photon of frequency w, can be converted into
a photon of frequency w, = w. + wy,, where w, is the frequency of the mechanical
oscillator. Such upconversion processes have been useful in cooling nano-mechanical
systems [8, 9, 58, 120]. In a previous article [51], we showed how such upconversion
processes can lead to electromagnetically induced transparency (EIT) in optomechan-
ical systems. The EIT in such systems turned out to share many of the features of EIT
in atomic vapors. The EIT in optomechanical systems has been seen experimentally
[53, 54, 55]. Traditionally, almost of all the EIT experiments in atomic systems and
other systems have been done with coherent pump and probe fields [172, 173, 203].
Akamatsu et al. [204] did the very first experiment on EIT using squeezed light in
atomic vapors. They essentially reported that squeezing of the probe is not degraded
much by the quantum noise of the medium under EIT conditions. Subsequently, a
number of other experiments [205, 206] on EIT using quantized fields were reported.
The EIT with quantized fields is very significant in the storage of fields at the single-
photon level [86, 219, 208, 209].

In this chapter, we examine EIT in optomechanical systems using quantized fields.

In optomechanical systems, noise is added by both the resonator and the mechanical
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system. We find the conditions when the perfect EIT of the quantized field results.
We study how the temperature of the mechanical system can degrade EIT. We present
detailed results for the designs of nano-mechanical systems as used in Refs. [50, 53].
We find that certain designs of nano-mechanical systems are good even at tempera-
tures on the order of 100 mK. Thus, such systems would be quite useful as optical
memories at the single-photon level. The results that we present can be extended to
the reactive case [67, 194, 210].

The organization of the chapter is as follows. In Sec. II, we describe the model,
derive the equations of motion for the system, and obtain the steady-state mean
values. In Sec. III, we show how to detect the EIT with quantized fields, and we
present a homodyne detection and obtain the relevant spectrum. In Sec. IV, we
discuss the impact of the coupling field on the homodyne spectrum of the output
field and show the existence of the EIT in the homodyne spectrum of the quantized

field at the output.

cavity axis
+—>
We —
Wp ———p
Cout €—
fixed mirror movable mirror

Figure 11.1: Sketch of the studied system. A coherent coupling field at frequency
w. and a squeezed vacuum at frequency w, enter the cavity through the partially

transmitting mirror.
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11.2 Model

The model that we are going to consider has been discussed in detail previously
[32, 33] and is sketched in Fig. 11.1. The cavity consists of a fixed mirror and a
movable mirror separated by a distance L. The fixed mirror is partially transmitting,
while the movable mirror is 100% reflecting. The cavity is driven by a strong coupling
field at frequency w.. A quantized weak probe field in a squeezed vacuum state at
frequency w,, is injected into the cavity through the fixed mirror. The movable mirror
interacts with the cavity field through radiation pressure. The movable mirror is
modeled as a harmonic oscillator with mass m, frequency w,,, and decay rate ~,,.
Moreover, the movable mirror and its environment are in thermal equilibrium at a
low temperature T

In such a system, the coupling between the movable mirror and the cavity field
is dispersive, so the frequency wy(q) of the cavity field depends on the displacement
q of the movable mirror: wy(q) = nme/(L + ¢), where ¢ is the light speed in vacuum
and n is the mode number in the cavity. For ¢ < L, we can expand wy(q) to the first
order of ¢; thus, we have wy(q) =~ wy(0) + a%q(q)q ~ wy — 42q, where we write wy(0) as
wo-

Let ¢ (c') be the annihilation (creation) operators for the cavity field and Q and P
be the dimensionless operators for the position and momentum of the movable mirror

with Q) = \/Qm%q and P = ./mffwm p. Note that the commutation relation for ) and

P is [@Q, P] = 2i. In a frame rotating at the frequency w,. of the coupling field, the

Hamiltonian for the system is
hw,
H = h(wy—we)cle —hgele@ + %(Q2 + P?) +ihe(ch — ¢), (11.1)

In the above equation, the parameter g = (w./L)y/h/(2mw,,) is the coupling strength

between the cavity field and the movable mirror, where we assume wy ~ w.. The

parameter ¢ is the real amplitude of the coupling field, depending on its power @ by
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€= w%’%i’, where £ is the photon loss rate due to the transmission of the fixed mirror.
The time evolution of the total system is obtained from the Hamiltonian Eq.
(11.1) by deriving the Heisenberg equations of motion and adding the damping and

noise terms. The basic equations are given by

Q:wmpa

P=2gn. — w,Q — v P +&,
(11.2)

¢ =i(we — wo + gQ)c + € — ke + V2KCi,

¢t = —i(we — wo + 9Q)cf + € — kel + V/2kcl,,.
Here, we have introduced the thermal Langevin force £ with a vanishing mean value,
resulting from the coupling of the movable mirror to the environment. The Langevin

force € has the correlation function in the frequency domain

(E@)E(Q) = 4 [1 + coth <2Z:T)] 5w+ ), (113)

where kg is the Boltzmann constant. Throughout this paper, the following Fourier

relations are used:

1 +oo .
0 = 5 [ e s,
o) = 5 [ e s, (11.4)

where fT(—w) = [f(—w)]!. ¢ represents the input quantum field, which is centered
around the frequency w, = w, + w,, with a finite bandwidth I". The quantized field

has the following nonvanishing correlation functions:

(cn(0)ein(62)) = 2 é‘j r a0+ 2 - 20,
<cm(w)c;rn(—ﬂ)> =27 i (]::F_Z E + 1] d(w + ), (11.5)

where N is the photon number in the squeezed vacuum and M = /N(N +1). The

antinormally ordered term has a broadband contribution coming from vacuum noise.
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Note that by setting M = 0 we would obtain a standard phase-independent quantum

field with a mean number of photons % around the frequency w = w,.
The mean values at steady state can be obtained from Eq. (11.2) by setting all of

the time derivatives to zero. These are found to be

2Q|Cs|2
Ps=0,Qs = , Cs = —, 11.6
¢ W, ¢ K+ 1A ( )

where

A =wy—we. — gQs (11.7)

is the effective cavity detuning.

11.3 The Output Field and its Measurement

PD

SA

Cout (£)

BS

A
Cro (t)

Figure 11.2: Sketch of the measurement of the output field. The output field é,,(%) is
mixed with a strong local field ¢;,(t) centered around the probe frequency w, at a beam
splitter, where Co(t) is defined as the sum of the output field ¢, (t) from the cavity
and the input quantized field ¢;,(¢). BS, 50:50 beam splitter; PD, photodetector; SA,

spectrum analyzer.

The output field is a quantum field; it contains many Fourier components. Since
the quantized input field is centered around w, = w. +wy,, the interesting component

of the output field is near the probe frequency w,, so we mix the output field (%)
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with a strong local field ¢;,(t) centered around the probe frequency w, at a 50:50
beam splitter, as shown in Fig. 11.2. In a frame rotating at the frequency w.,
co(t) = et where §y = wp — w,. The difference between the output signals from
the two photodetectors is sent to the spectrum analyzer, and the output signal from
the spectrum analyzer depends on the phase of ¢;,. If ¢, is real, then the homodyne

spectrum X (w) of the output field measured by the spectrum analyzer is given by

(1o (t)out (t) + c.c.]lef, () Cour(t) + c.c])
o

/ dwe™ ) X (w). (11.8)

Thus, in our investigations of EIT with quantized fields, X (w) is the quantity of
interest.

In order to study the EIT effect in the homodyne spectrum X (w) of the output
field, we will calculate the fluctuations of the output field. The steady-state part
would not contribute as it is at the frequency of the coupling field. We assume that
the photon number in the cavity is large enough so that each operator can be written

as a linear sum of the steady-state mean value and a small fluctuation, which yields
Q=Q,+0Q, P=P,+0P, c=cs+dc, (11.9)

where 0Q), 6P, and dc are the small fluctuations around the steady state. By sub-
stituting Eq. (11.9) into Eq. (11.2), one can arrive at the linearized equations for
the fluctuation operators. Further, we transform the linearized equations into the
frequency domain by Eq. (11.4) and solve it; we can obtain the fluctuations dc(w) of
the cavity field. Then, using the input-output relation ¢, (w) = v2kc(w) — cin(w),
we can find the fluctuations ¢y, (w) of the output field. For the purpose of Fig. 11.2,

we define the output field as ¢,y (w) = cour(W) + ¢in(w); then we find the result

0Cout(w) = V(w)E(w) + B(w)eim(w) + F(w)el (—w), (11.10)
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in which

V2KgCswmt

Vi) = VIR 4 )
Bw) = s {2igPled i+ (= = i)
X[k —i(w+ A},
Flw) = dzéz)wmg%gi, (11.11)
where
0() =~ APy + (2, — ? — i) (5 — i0)? + A (11.12)

The first term on the right-hand side of Eq. (11.10) refers to the contribution of
the thermal noise of the movable mirror, and the other two terms represent the
contribution of the squeezed vacuum. To illustrate the meaning of the last two terms,
let the squeezed vacuum be a single mode, i.e., ¢y, (t) = Ce @)t then ¢, (w) =
21C8(w — w, + w,) and ¢, (—w) = 27CT6(w + w, — w,). Thus, the fluctuations of the
output field 6¢uu(t) = 5= T2 V(w)é(w)e tdw + CE(w, — we)e @r=o)t + CTF(w, —

wp>€—i(wc—wp)t

. Therefore, E(w, — w.) is the component at the probe frequency w,,
which in the rotating frame is w, — w., and F(w, — wy) is the component at the new
frequency 2w, — wy, which in the rotating frame is w. — wy, due to the nonlinear
interaction between the movable mirror and the cavity field.

By the aid of the correlation functions of the noise operators ¢;,(w) and &(w)

and neglecting fast oscillating terms at frequency +2w,,, we obtain the homodyne

spectrum X (w) of the output field as measured by the setup of Fig. 11.2,

MT2 NT?

Xw) = Blwtwn)E(-wtwn) g +1Bw o)l ms
. . MT? o NI?

T (—w b wn) BT (Wt wn) 55 H Bt ) s

HE(w + wm)|? + [ F(—w + wm)|?

9n WA W h(w + wm)
+HV(w + wim)|*2Vm o {1 + coth [szT
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9n W — W hw — wp)
— 1 h|———= 11.1
+HV(—w 4+ wm)|2vm o { + cot [ T ]}, (11.13)

where the first four terms in Eq. (11.13) originate from the squeezed vacuum, the
next two terms not involving N and M are the contributions of the spontaneous
emission of the input vacuum noise, and the last two terms result from the thermal

noise of the movable mirror.

11.4 EIT in the Homodyne Spectrum of the Output Quantized Field

After having derived the homodyne spectrum of the output field, we next examine it
numerically to explore the EIT phenomenon in the homodyne spectrum of the output
field. Since the original Egs. (11.2) are nonlinear, these can have instabilities. Thus,
in the following, we work in the stable regime of the system. We first examine the

frequency at which we expect transparency. This is w = 0. For N ~ M,

X(O) = NBn) + B ()l + )+ [Pl + 41V o) P coth | 122

(11.14)

We use the parameters from the experimental paper [53] focusing on the EIT in
the optomechanical system: the wavelength of the coupling field A = 2wc/w, = 775
nm, the coupling constant g = 27w x 12 GHz/ nm\/m , the mass of the movable
mirror m = 20 ng, the frequency of the movable mirror w,, = 27 x 51.8 MHz, the
cavity decay rate k = 2m x 15 MHz, k/w,, = 0.289, the mechanical damping rate
Ym = 2m x 41 kHz, and the mechanical quality factor Q' = w,,/v, = 1263. In
addition, we choose the linewidth of the squeezed vacuum I' = 2k and consider the
resonant case A = w,,.

For N = 10 and M = /N(N+1) =~ 10, p = 20 mW, and T" = 20 mK, the
first term in Eq. (11.14), which is the contribution of the squeezed vacuum, is about

6.5 x 1074, the sum of the second and third terms in Eq. (11.14), which are the
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contributions of the input vacuum noise is about 0.16, and the last term arising from
the thermal noise of the movable mirror is about 0.14. The contribution of the input
quantum field in principle can be obtained by doing the experiment with and without
the quantized field and by subtracting the data, i.e., by studying X (0) — X (0)|n=o.
The squeezed field part in a sense exhibits perfect EIT. If M = 0, i.e., the input
quantized field is phase insensitive, then such a field leads to a term 2N|E(w,,)|?,
which is equal to 1.6 for the above-mentioned parameters, and hence there is no
perfect EIT. The squeezed field changes 2N |E(wy,)|? to N[E(wy,) + E*(w,,)]?, and for

the above parameters, the number changes from 1.6 to 6.5 x 10~%.

X(w)

— — ‘ o,
-04 -0.2 0.2 04

Figure 11.3: Homodyne spectrum X (w) as a function of w/w,, for N = 5 in the
absence (dotted curve) and the presence (solid, dot-dashed, and dashed curves) of
the coupling field for the temperature of the environment 7' = 20 mK. The solid
curve is for p = 10 mW and M = /N(N + 1), the dotdashed curve is for p = 20
mW and M = /N(N + 1), and the dashed curve is for p = 20 mW and M = 0.

For N =5 M = \/N(N+1) and 0, and T = 20 mK, we plot the homodyne
spectrum X (w) of the output field as a function of the normalized frequency w/wy,

in the absence (dotted curve) and presence (solid, dot-dashed, and dashed curves) of
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the coupling field in Fig. 11.3. First, let us look at the case that the input quantum
field is phase dependent [M = /N(N + 1)]. In the absence of the coupling field,
one can note that the homodyne spectrum of the output field has a Lorentzian line
shape. However, in the presence of the coupling field at different power levels, the
solid curve [p = 10 mW and M = /N(N + 1)] and the dot-dashed curve [p = 20
mW and M = /N(N + 1)] exhibit the EIT dip, which is the result of the destructive
interference between the squeezed vacuum and the scattering quantum field at the
probe frequency w, generated by the interaction of the coupling field with the movable
mirror. For o =20 mW and M = /N(N + 1), the minimum value of X (w) is about
0.22. Moreover, the linewidth of the dip for p = 20 mW is larger than that for p = 10
mW due to power broadening. Generally, the EIT dip has a contribution to its width
that is proportional to the power of the coupling field. We indeed find that the width
for p = 20 mW is 0.26w,,, which is about twice the width for p = 10 mW. If the
input quantum field is phase independent (M = 0) (the dashed curve), then we can
see that the maximum value of X (w) for p = 20 mW and M = 0 is about half that
forszOmWandM:\/m.

Next, we increase the temperature to 100 mK. Figure 11.4 displays the homodyne
spectrum X (w) of the output field against the normalized frequency w/w,, in the
absence (dotted curves) and presence (solid curves) of the coupling field for N =1
and 5 and M = /N(N + 1). In the presence of the coupling field (p = 10 mW), it
is seen that the EIT dip still appears in the homodyne spectrum of the output field
for N = 1 and 5. Note that the two dips almost have the same minimum values
(about 1.43) and the same linewidth (about 0.15w,,). Hence the temperature of the
environment is not detrimental to the EIT behavior.

The effects discussed above occur under a wide range of parameters. We demon-
strate this by using the experimental parameters [50] A\ = 27¢/w, = 1064 nm, L = 25
mm, g ~ 27 x 11.28 MHz/nm\/m, m = 145 ng, w,, = 27 x 947 kHz,
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Figure 11.4: Homodyne spectrum X (w) as a function of w/w,, for different values
of the parameter N and M = /N(N + 1) in the absence (dotted curves) and the
presence (solid curves) of a coupling field with power p = 10 mW and temperature
of the environment 7' = 100 mK. The upper two curves are for N = 5, and the lower

two curves are for N = 1.

Kk =2 x 215 kHz, k/w,, = 0.227, v, = 27 x 141 Hz, and Q' = w,,/ym = 6700. The
values for the parameters 7', p, N, M, I, and A are the same as those in Fig. 11.4.
Shown in Fig. 11.5 is the homodyne spectrum X (w) of the output field as the normal-
ized frequency w/w,, is varied for 7' = 100 mK and o = 0 and 10 mW. Note that the
EIT exists for N =1 and 5 in the presence of the coupling field. The linewidth of the
dip for N = 5 is about 0.2w,, and as expected gets broadened due to power. We have
further studied the effect of temperature, and we find that there is a rather weak
dependence of the EIT curves on temperature. Therefore, current optomechanical
designs can be used to realize quantum optical memory at the single-photon level.
This can be demonstrated using the numerical simulations and following the standard
procedure as in Refs. [86, 208, 209]. One has to modulate the squeezed vacuum field
cin SO that it is a pulse field and uses, say, a super-Gaussian for the coupling field.

The super-Gaussian enables one to conveniently switch on and off the coupling field
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[211].

Figure 11.5: As in Fig. 11.4 but now the parameters used are from Ref. [50].

11.5 Conclusions

In conclusion, we have demonstrated EIT using quantum fields in optomechanical
systems under a wide range of conditions. For squeezed quantum fields, we obtained
the perfect EIT. The EIT gets degraded in phase-insensitive quantum fields. We have
shown that even temperature is not critical for observations of EIT. The results can
be generalized to optomechanical systems working on the reactive coupling [69, 194,
210]. Our work suggests that optomechanical systems could be used as elements for
quantum memory, but explicit demonstration will be given elsewhere.

The content of this chapter has been published in Phys. Rev. A 83, 043826

(2011).
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CHAPTER 12

OPTOMECHANICAL SYSTEMS AS SINGLE PHOTON ROUTERS

12.1 Overview

It is well known that building up of all optical devices requires strong interactions
between radiation and matter as photons by themselves do not interact. One of
enabling technologies in the context of quantum control is the design of an optical
switch or a photon router operating at a single photon level. Several proposals have
been made for the realization of an optical switch—In an early work Harris and
Yamamoto [212] had suggested how quantum interference can be used to operate a
switch. More recently atomic EIT with cavity fields has been suggested to realize
optical switch. Single atom EIT in a cavity has been realized by using very strong
atom cavity interactions [213]. Further even the vacuum induced transparency has
been observed [214]. Other proposals on photon switch are based on using single atom
in a strongly coupled waveguide array [215, 216, 217, 218]; use of strongly coupled
atom via surface plasmons on a nanowire [219]. There are also reports of single
photon switch at telecom wavelengths using strong cross phase modulation [220], and
in microwave domain using a superconducting transmon qubit [221]. It was known
earlier that the optomechanical systems exhibit analog of electromagnetically induced
transparency [51, 222] which has been observed in several experiments [24, 53, 54, 55].
Here we show how nanomechanical mirrors in optical cavities can be used to build
single photon routers i.e. single photon switches. For this purpose we propose a
different configuration in which the nanomechanical mirror is in the middle of a

cavity which is bounded by two high quality mirrors [10]. A single photon would
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be transmitted; on the other hand if we appropriately drive the system by a strong
field then we show that the single photon is reflected. Thus the driving field switches
the route of the single photon. Even low driving fields like few microwatt are good.
We present exact conditions for this to happen. We further investigate the effects of
vacuum and thermal noise on the performance of this system as a single photon router.
We show that the effect of these noise sources is only few percent at temperatures of

the order of 20 mK.

12.2 Model

Consider first a Fabry-Perot cavity with both mirrors with equal reflectivity. It is
known that the transmission of a Fabry-Perot cavity goes to unity when the incident
field is on resonance with the cavity. This result also applies if a single photon is
incident on the cavity. In order to see this let us consider the input-output relations

[110] for the cavity as shown in Fig. 12.1.

Cout +—— — doyt

Figure 12.1: A double-ended cavity.

Here ¢;, and d;,, are the quantum fields incident on the cavity. If there are no photons
incident from the right, then d;, would be the vacuum field. Let 2k be the rate at
which photons leak out from each of the cavity mirrors. Let ¢(w) be the cavity field

operator, then

Cout(W) = V2kc(w) — cip(w),
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dout(W) = V2kc(w) — dip(w), (12.1)
and the equation of motion for the cavity field is
¢ = —2KC — iweC + V2K(Cip + di,). (12.2)

From (12.1) and (12.2) we find in steady state

i(w — wo)Cin(w) + 2kd; (w)
Cout(W) = 2% — (0 — w) : (12.3)

(
2kCim (W) + 1(w — wo)din(w)
( )

2k — i(w — wp)

dout (W) -

(12.4)

Here d;,(w) is the vacuum field and hence its normally ordered correlation is zero.

Defining the spectrum of the field via
(c"(—=Q)c(w)) = 278, (w)d(w + Q). (12.5)

Using (12.3)-(12.5), we obtain

(w — wp)?
= - 12.
Seout (W) ypy w0>2Scm(w), (12.6)
4r?

Sout () 5 Sein(). (12.7)

4K? 4+ (w — wy
For w = wo, Seout(wo) = 0, Sgout(wo) = Sein(wo). Therefore we have established that
a single photon at the cavity frequency is completely transmitted. We next establish
how a nanomechanical oscillator in the cavity acts as a single photon router i.e., it

would reflect the single photon i.e.,

Scout(w()) = Scin(UJO)y Sdout(w()) =0. (128)

Consider now the configuration shown in Fig. 12.2 where a partially transparent
nanomechanical mirror placed at the middle position of the Fabry-Perot cavity formed
by two fixed mirrors, which have finite identical transmission [10]. The whole cavity
length is L. The cavity field is driven by a strong coupling field at frequency w. from

the left-hand mirror. Further, a field in a single photon Fock state at frequency w,,
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Figure 12.2: A double-ended cavity with a moving nanomechanical mirror as a single

photon router.

is incident into the cavity through the left-hand mirror. The input field is centered
near the cavity frequency i.e. its spectrum is given by

L/m
(w—wp)?+T2’

Suim(w) = / S (w)des = 1. (12.9)

The correlation functions for the input field are therefore given by

(el (=Q)eim(w)) = 2m6(w + Q) Sen(w),

m

(eim(w)eh (=) = 2m6(w + Q)(1 4 Sein(w)). (12.10)

The photons in the cavity will exert a radiation pressure force on the movable mirror,
causing it to move. In turn, the displacement ¢ of the movable mirror shifts the
cavity resonance frequency. We assume that the movable mirror is located at the
node of the cavity mode, thus the cavity resonance frequency depends linearly on
the displacement ¢ of the movable mirror. Here, the movable mirror is treated as a
quantum harmonic oscillator with effective mass m, frequency w,,, and momentum
operator p. Let ¢ and ¢! be the annihilation and creation operators for the cavity
field. The Hamiltonian of the system in the rotating frame at the frequency w,. of the

coupling field is given by

2

1
H = h(wy — we)cle + hgcleq + 2]'; + §mwiq2 + ihe.(ch —¢), (12.11)
m
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in which ¢ is the optomechanical coupling strength between the movable mirror and
the cavity field, which also depends on the transmission of the movable mirror [10].
By choosing the transmission of the movable mirror 7' = 0.7, the optomechanical
coupling strength can be half of that for a perfectly reflecting movable mirror so
that g = —%¢ [118]. The ¢, is the driving strength, depends on the power g of the
coupling field by €. = \/% . Note that the movable mirror is coupled to the thermal
surrounding at the temperature 7', which results in the mechanical damping rate v,,

and thermal noise force ¢ with frequency-domain correlation function:

(E(@)E(Q) = 2mhryme [1 + coth ( i

ZkBTﬂ 5w+ Q), (12.12)

where kg is the Boltzmann constant. In addition the cavity field ¢ would be coupled
to the input quantum fields ¢;, and d;,. These couplings are included in the standard
way by writing quantum Langevin equations for the cavity field operators. The
incoming vacuum field d;, is characterized by (din(w)d!,(—Q)) = 276(w + Q) with
Sain(w) = 0. Putting together all the quantum fields, thermal fluctuations and the
Heisenberg equations that follow from the Hamiltonian (12.11), we obtain the working

quantum Langevin equations

. P .
¢ = -~ b= —hgcle — mwlq — Ymp + &,
c = _[2/1 + i(WO — Wwe + QQ)]C +ec+ v 2/€Cin + v 2/{din7
= =2k —i(wo — we + 99)]¢" + ec + V25cl, + V2kd], (12.13)

where mean values of noise terms &, ¢;,, and d;, are zero.

Using the Langevin equations (12.13) we want to calculate the spectrum of the
output fields ¢y and dy:. We adopt the standard quantum optical procedure [26].
We first find the steady state for the mean values of the observable and then linearize
the Langevin equations around the mean values to calculate quantum fluctuations.

We quote the result of such a calculation, we find that the spectrum of the output
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fields has the form
Seout(@) = Sen(w) - R(w) + SW(w) + 5D (w),

Saout(W) = Sein(w) - T(w) + S (w) + SD(w), (12.14)

where
Rw)=|Ew) -1, T(w)=I|EW)], (12.15)
and
SO(w) = 21X (W),

SD(w) = |V(w)Phymm(—w) [1+c0th (— o )]

2kgT
2K . . )
Ew) = m{m(ufn — w? — iyw) (26 — i(A + w)] + ihg®[e]?},
2K
X(w) = d(w>2h9203,

V2K

V(w) = @{—igcs[%i — (A +w)l},
dw) = mw? —w? — i7,w)[(2k — iw)?* + A?] — 2hg%|csPA,
g = _lgles e (12.16)

mw?, T kA
where A = wy — w, + ggs is the effective detuning, including the frequency shift due
to radiation pressure, |c,|? is the number of intracavity photons, and ¢, is the steady
state position of the movable mirror. The roots of d(w) determine essentially the
behavior of the output fields. These are complex and depend on the power of the
coupling field.

In Eq. (12.14), R(w) and T'(w) are the contributions arising from the presence
of the single photon in the input field. The S®)(w) is the contribution from the
incoming vacuum field. The nonlinear coupling of the cavity field with the mirror
converts the vacuum photon at frequency w. — €2 to w. + €2 via the mixing process

We +we — (we — ) = w4+ . Note that X (w) is at least of order two in the amplitude
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of the coupling field and this determines the nature of the vacuum contribution. The
ST (w) is the contribution from the fluctuations of the mirror. The equation (12.14)
shows that even if there were no incoming photon, the output signal is generated
via quantum and thermal noises. For the purpose of achieving single photon router,
the key quantities are R(w) and T'(w). Further the performance of the single photon
router should not be deteriorated by the quantum and thermal noise terms S™ (w)
and S™(w). We also note in passing that in a treatment where the probe field is
treated classically, then the output semiclassical fields would be (E(w) —1) and E(w)

on the left and right ports, respectively.

12.3 EIT in the Reflection Spectrum of the Single Photon

Now we present numerical results using our analytical results (12.14). We would work
in the sideband resolved limit i.e. w,, > k&, further we will take A = w,,. We use
the parameters from an experimental paper [10]. The wavelength of the coupling
field A = 1054 nm, L = 6.7 cm, m = 40 ng, w,, = 27 x 134 kHz, Q = 1.1 x 105,
Y = Wm/Q = 0.76 sec™!, and k = w,,/10. In the following, we work in the stable
regime of the system i.e. we use control power such that there are no instabilities.
We present the behavior of the reflection and transmission spectra R(w) and T'(w)
of the single photon as a function of the normalized frequency w/w,, in the absence and
the presence of the coupling field in Figs. 12.3 and 12.4. In the absence of the coupling
field, one observes an inverted Lorentzian and a standard Lorentzian in the reflection
and transmission spectra of the single photon. Note that R(w,,) ~ 0 and T'(w,,) ~ 1.
So the single photon is completely transmitted through the cavity to the right output
port. However, in the presence of the coupling field, the situation is completely
different. The reflection and transmission spectra of the single photon exhibit an
inverted dip and a dip at w = w,y,, and R(w,,) ~ 1 and T'(w,,) ~ 0. The single photon

is totally reflected to the left output port. In the presence of the coupling field, the
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R(w)

Figure 12.3: The reflection spectrum R(w) of the single photon as a function of the

normalized frequency w/w,, without and with the coupling field. p = 0 (solid), 5 uW
(dotted), 20 uW (dashed).
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Figure 12.4: The transmission spectrum T'(w) of the single photon as a function of

the normalized frequency w/w,, without and with the coupling field. o = 0 (solid), 5
uW (dotted), 20 uW (dashed).
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nano mirror participates in the transmission or reflection of the photon and we have
all the conditions for occurrence of EIT fulfilled (v, < k <K W, Wp = We + Wpy)-
Therefore the incident single photon is totally reflected. In an earlier work dealing
with coherent light it was shown that the reflected outgoing field would even have
a well defined phase. However for router action phase does not play a role. The
width of the reflection peak (transmission dip) depends on the power of the coupling
field—the width increases with increase in the coupling power, and thus we can also

treat the switching of a narrow width single photon pulse.
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Figure 12.5: The vacuum noise spectrum S®(w) as a function of the normalized

frequency w/w,, with the coupling field. p =5 uW (dotted), 20 W (dashed).

Next we discuss the effects of the quantum and thermal noises on the reflection
and transmission spectra of the single photon. We exhibit the behavior of the vacuum
noise S (w) for two different values of the coupling power in Fig. 12.5. The contri-
bution of the vacuum noise is about 2 % at w = w,, and is thus insignificant. Note
that for larger coupling powers, S*)(w) splits into two peaks—this is connected with
the normal mode splitting [50], arising from the two roots of d(w). The thermal noise
could be more critical in deteriorating the performance of the single photon router.

However if we work with mirror temperatures like 20 mK, then the thermal noise
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term is insignificant as shown in Fig. 12.6. Even at a relatively large temperature
like 50 mK, the maximum thermal noise is 15 %. In the light of rather small sources
of noise, we conclude that the nanomechanical mirror in an optical cavity as a single

photon router is an excellent device.
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Figure 12.6: The thermal noise spectrum S (w) as a function of the normalized
frequency w/w,, with the coupling field for 7' = 20 mK. p = 5 yW (dotted), 20 pW

(dashed).

12.4 Conclusions

In conclusion, we have shown how a cavity optomechanical system can be used as a
single photon router. The physical mechanism that enables this application is the EIT
behavior that such systems exhibit. We further showed that the effects of quantum
noise sources on such a single photon router are very minimal.

The content of this chapter has been accepted for publication.
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CHAPTER 13

SUMMARY AND FUTURE DIRECTIONS

13.1 Summary

In this thesis, several effects in the dispersive or dissipative optomechanical system
on a macroscopic scale were explored. These effects included cooling of the mechani-
cal resonator, normal mode splitting, the squeezed mechanical state, entangling two
mechanical oscillators, electromagnetically induced transparency, and so on.

First we have investigated an optical parametric amplifier inside a cavity could be
used to enhance the optical cooling of the micromechanical mirror. Our calculations
indicate that the temperature of the micromechanical mirror can be reduced to sub-
Kelvin temperature, which is much lower than what is achievable in the absence of the
parametric amplifier. Further, We show that the mirror can be cooled to millikelvin
temperatures if it is precooled to 1 K by cryogenic cooling method. The reason is
that the OPA inside the cavity increases the photon number in the cavity, enhances
the radiation pressure effects on the mirror, and leads to lower cooling of the mirror.

We have also demonstrated that an optical parametric amplifier inside the cavity
can affect the normal-mode splitting behavior of the coupled movable mirror and the
cavity field. We work in the resolved sideband regime. The spectra are found to
exhibit a double-peak structure as the parametric gain is increased. Moreover, for
a fixed parametric gain, increasing the input laser power can make the double-peak
structure of the spectrum more pronounced.

Then we have developed a scheme to generate the squeezing of a nanomechanical

mirror by injecting a broad band squeezed vacuum light and laser light into a Fabry-
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Perot cavity. We work in the resolved sideband regime. We find that the momentum
squeezing of the movable mirror reaches a maximal value when the squeezing param-
eter of the input light is about 1. We can obtain more than 70% squeezing. Besides,
for a fixed squeezing parameter, the momentum squeezing increases with decreasing
the temperature of the environment or increasing the laser power. We find very large
squeezing with respect to thermal fluctuations, for instance at 1 mK, the momentum
fluctuations go down by a factor more than one hundred.

We have also proposed a method to entangle two separated nanomechanical oscil-
lators in a ring cavity by injecting broad band squeezed vacuum light and laser light.
We work in the resolved sideband regime. The maximum entanglement of the two
oscillators can be reached when the squeezing parameter of the input light is about
1. We find that entanglement can survive over a very wide range of power levels of
the pump and temperatures of the environment.

Next we have studied the stimulated Stokes and anti-Stokes processes in cavity
optomechanics. We observe that the dispersive optomechanical coupling between the
cavity field and the movable mirror via radiation pressure force can induce normal-
mode splitting in both the output Stokes and anti-Stokes fields. We discover lifetime
splitting for pump power less than a critical power. We find that the Stokes field
is amplified. We also discuss the correlation between the Stokes and anti-Stokes
photons produced spontaneously by the optomechanical system. We find that the
correlation between these photons shows photon nonclassical antibunching feature,
and the nonclassical correlation becomes weaker with increasing pump power.

Then we have presented the theoretical results describing an exact analog of elec-
tromagnetically induced transparency in the linearly optomechanical system, in which
the cavity field is linearly coupled to the displacement of the mechanical oscillator.
Our calculations show explicitly the origin of EIT-like dips as well as the characteris-

tic changes in dispersion from anomalous to normal at the line center. We find that
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the linewidth of the EIT-like dip depends on the coupling laser power.

Further we have shown that the reactive optomechanical coupling between the
optical resonator and the waveguide via the optical gradient force also can induce
the normal mode splitting in the output fields. We find that the peak separation
increases with increasing pump power. We also find that the reactive coupling leads
to the generation of an anti-Stokes field.

In addition, we have demonstrated that the reactive coupling between the waveg-
uide and the microdisk resonator can generate the squeezing of the waveguide by
injecting a quantum field and laser into the resonator through the waveguide. The
results show that the maximal momentum squeezing of the waveguide is about 7075%
for temperature about 110 mK.

Moreover, we have presented a theoretical analysis of EIT-like effects in quadrat-
ically coupled optomechanical systems, in which the cavity field is coupled to the
square of the displacement of the mechanical oscillator. In such systems, the mean
displacement of the mechanical oscillator, which plays the role of atomic coherence in
traditional EIT, is zero. The quantity leading to EIT in such systems is mean values
of the square of the displacement of the mechanical oscillator.

Then we have demonstrated EIT using quantum fields in optomechanical systems.
We show how the EIT effect can be detected by probing the outgoing light. We find
that the EIT dip exists even though the photon number in the squeezed vacuum is
at the single-photon level. The EIT gets degraded if the quantum field is phase-
insensitive. We find that the temperature of the environment is not detrimental to
the EIT behavior. Our work suggests that optomechanical systems could be useful
in optical memory.

Finally we have presented a single-photon router by using the double-ended cavity
with a moving mirror. We find that the probe field can be sent to the right output

port or the left output port by switching the coupling field off or on, which is based
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on the effect of EIT. We further showed that the effects of quantum noise sources on

such a single photon router are very minimal.

13.2 Future Directions

The attractive and repulsive (bipolar) optical forces allow one to manipulate mechan-
ical components on the silicon chip in both directions. Thus they can be applied in
all-optical switching, tunable microphotonics devices and nanomechanical systems.
Presently, tunable bipolar optical force in neighboring waveguides has been demon-
strated theoretically [223] and experimentally [69, 224]. They showed the sign of the
force depends on the relative phase of the coupled lightwaves. Here, we suggest the
optomechanical system (Fig. 1.2) can generate a bipolar force by applying a weak
probe field and a strong coupling field. The optical force exerted by the photons from
the probe field on the waveguide is bipolar in the presence of the coupling field. And
the sign of the force is tunable by changing the detuning between the probe field and

the coupling field.
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APPENDIX A

THE VARIANCE OF MOMENTUM-DERIVATION OF EQUATION
EQ. (9.18)

With the aid of Eq. (9.17), the first term of Eq. (9.15) is

o [ dwdn e ) Pr@) E@)E)

= o [T aerroromn S Lo (e )] @

—0o0 Wm,

Then with the help of Eq. (9.16), the second term of Eq. (9.15) will be

417T2 I/ +: deo dQe™ "D Pe() P () (e (@) e ()

1 too A MT?
= / dv e=2mt Pg(w,, + v) Ps(wy, — v)

% —0o0 FQ + V2’ (A2>

and the third term of Eq. (9.15) becomes

4; / /+: du dSe™" U Py (w) Py (=) cin (W)l (— )

NT? 1 /+0°

[ AP + )P
= — v 2 —
27T —00 B F2+V2 27'['

dw|Ps(w)]?. (A.3)

—0o0

Therefore, the variance (§P(t)?) can be calculated by

Wm

(OP@)?) = 217T /_ :o o Pr(w) Pr(—w)2m— ll - coth (222T>]

1t . MT1?
+2Re [ZW /_ _ dvem M P + v) P (w — v) W}

1

+oo NT? 1 [t
2 2
+2 [%[m dl/|P5'(wm+l/)| F2+V2] ‘f‘%/_oo dw|PS(w)| .

(A4)

The variance has terms oscillating at twice the frequency of the nanomechanical oscil-

lator. These terms can be removed in the standard way by working in an interaction
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picture defined with respect to the frequency w,,. This is equivalent to setting e*2m?

as unity, hence (A4) leads to Eq. (9.18).
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APPENDIX B

RELATION BETWEEN THE QUANTUM FLUCTUATIONS OF
NANO WAVEGUIDE AND THE OUTPUT FIELD

In the following, we show the squeezing of the waveguide can be measured through
the y component of the output field. Using the input-output relation [110] ¢y (t) =

2k.(Q)c(t), the fluctuations of the output field can be written as

dout(w) = J&c(w)+g\/2_/<ecsc562(w)

= Joc(w) + g\/_Qnecsszm(SP(w). (B.1)

From Eq. (9.9), we find the fluctuations of the resonator field

Se(w) = A*(l_w)[ij”U5P<w)+Jcm(w)]. (B.2)

Combining Egs. (B.1) and (B.2), and defining the y component of the output field
as 0Your(t) = i[0¢) 1 (1) — 8o (t)] 50 that dypu(w) = i[0c),;(—w) — 0¢ou(w)], one can
write the fluctuations in the momentum variable of the waveguide in terms of the y

component of the output field

_w o AW)A (W) Your(w) — JA[A* (—w)ely(—w) — A(w)ein(W)]

Wiy gm(c; — ) A(w)A*(—w) + J[A*(—w)U* — A(w)U]
(B.3)

dP(w) =

It is seen that the fluctuations in the momentum variable of the waveguide is related

to the y component of the output field.
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