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CHAPTER 1

INTRODUCTION

1.1 Optomechanical System

1.1.1 Overview

Radiation pressure force, due to the momentum carried by light, has received con-

siderable attention since Kepler proposed that the tail of a comet was caused by the

force exerted by the sunlight in the 16th century. It was deduced theoretically by J.

C. Maxwell in 1871, and first observed experimentally [1, 2] in the early 1900s. With

the invention of lasers in the 1970s, it has been shown that radiation pressure force

can be used to manipulate atoms [3, 4, 5] i.e., to slow them, cool them, or trap them,

owing to the relatively large power of the laser fields. In 2004, it was first demon-

strated experimentally that radiation pressure force exerted by the light stored inside

an optical cavity can be use to cool the motion of a mechanical oscillator made of

roughly 1015 atoms in a cavity optomechanical system which parametrically couples

an optical cavity and a mechanical resonator through radiation pressure [6].

Due to rapid advances in micro- and nanofabrication techniques, various geome-

tries of the optomechanical system have been developed, such as a Fabry-Perot cavity

with mirrored microcantilevels [7], or with one movable end mirror [8, 9], or with a

movable semitransparent membrane in the middle of the cavity [10, 11, 12, 13], or

with a Bose-Einstein condensate [14], or with a trapped macroscopic ensemble of

ultracold atoms [15], radially vibrating microspheres [16], radially vibrating micro-

toroids [17, 18], GaAs nano-optomechanical disk resonator [19], and optomechanical
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crystals [20]. Meanwhile, the optomechanical coupling idea has been extended to

nanoelectromechanical systems, formed by a nanomechanical resonator capacitively

coupled to a superconducting microwave cavity [21, 22, 23, 24]. The major challenge

in all of these setups is to achieve simultaneously a high optical finesse (currently

in the range from 103 to 105) and a high mechanical quality factor (currently in the

range from 103 to 105).

It has been shown theoretically and experimentally that such optomechanical sys-

tems at macroscopic scale can exhibit a very rich quantum effects, which usually

exist in the microscopic system. For example, squeezing of the light field [25, 26],

superposition state [27, 28], quantum non-demolition measurements of photon num-

bers [29, 30], the preparation of a mechanical oscillator in a squeezed state of motion

[31, 32, 33], the creation of entangled photon pairs [34], the entanglement between the

light and mechanical mode [35, 36], entangling two mechanical oscillators [37, 38, 39],

and Fock state detection [10]. Moreover, the optomechanical coupling in such sys-

tems induces nonlinear behaviors, including an optical spring effect [40, 41], bistability

[41, 42], multistability [43], self-induced oscillations [44, 45, 46], optomechanical nor-

mal mode splitting [22, 47, 48, 49, 50], and optomechanically induced transparency

[51, 52, 53, 54, 55].

Due to unavoidable coupling of the mechanical oscillator to its surrounding ther-

mal environment, the random, thermal motion associated with mechanical dissipation

mask the quantum behaviors. To see quantum effects in large objects, they must be

cooled down to its quantum ground state. The ground state cooling requires that

the mechanical oscillator’s temperature T must be reduced so that T ≪ h̄ωm

kB
, where

h̄ is Planck’s constant h divided by 2π, kB is Boltzmann’s constant, ωm is the reso-

nance frequency of the mechanical oscillator, typically between a few kilohertz and

a few hundred megahertz. For a mechanical oscillator with a resonance frequency of

1kHz (100MHz), the ground state cooling requires h̄ωm/kB=50 nK (5 mK), which
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are below those achievable with standard cryogenic cooling. So far, significant effort

has been devoted to developing alternative cooling techniques. In the past few years,

extraordinary progress has been made in cooling a mechanical resonator down to its

quantum ground state [6, 7, 8, 9, 10, 56]. In 2009, the minimum achievable phonon

number of the mechanical oscillator is 63 in a toroidal microresonator [57], 37 in a

microsphere resonator [58], and 35 in a Fabry-Perot cavity [59]. In 2010, the prepara-

tion of mechanical resonator with the final phonon number below 10 was reported in

Refs. [23, 60]. Recent work has shown experimentally that laser cooling can reduce

the average occupancy of the mechanical oscillator below unity [61, 62, 63]. However,

the ground state cooling has so far not been reached experimentally.

in
c

out
c

movable mirror fixed mirror

cavity axis 

Figure 1.1: A Fabry-Perot cavity with one fixed partially transmitting mirror and

one movable totally reflecting mirror.

1.1.2 The Dispersive Optomechanical System

The canonical optomechanical system is a Fabry-Perot cavity with one heavy, fixed

partially transmitting mirror and one light, movable totally reflecting mirror of effec-

tive mass m (typically in the micro or nanogram range), as shown in Fig. 1.1. The

system is driven by an external laser at frequency ωl, then the circulating photons in

the cavity will exert a radiation pressure force on the movable mirror due to momen-

tum transfer from the intracavity photons to the movable mirror. Here, the movable

mirror is modeled as a single mode quantum harmonic oscillator. Moreover, when the
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mechanical frequency ωm is much smaller than the cavity free spectral range (c/2L),

where L is the initial cavity length, the input laser drives only one cavity mode ωc

and scattering of photons from the driven mode into other cavity modes is negligible

[64].

During the cavity round-trip time t = 2L/c, there are n photons hitting on the

surfaces of the movable mirrors, the momentum transferred to the movable mirror

will be P = 2nh̄ωc/c, hence the radiation pressure force acting on the movable mirror

would be F = P/t = nh̄ωc

L
. The force is proportional to the instantaneous photon

number in the cavity. Moreover, the movable mirror is in thermal equilibrium with

its environment at temperature T . Thus the mirror can move under the influence

of the radiation pressure and in the same time undergoes Brownian motion as a

result of its interaction with the environment. In turn, the movable mirror’s small

oscillation changes the length of the cavity and shifts the cavity resonance frequency

so that the phase and amplitude of the cavity field are changed. This in turn changes

the radiation pressure force experienced by the mirror such that the optical and

mechanical dynamics are coupled. Thus the cavity resonance frequency depends on

the displacement q of the movable mirror, represented by ωc(q) = nπc
L+q

, where n is

the mode number in the cavity, c is the light speed in vacuum, L is the initial cavity

length. For small displacements of the mirror, q << L, the frequency ωc(q) can be

approximated to the first order of q

ωc(q) ≈ ωc + gq, (1.1)

where ωc = nπc
L
, g = −ωc/L is the linear coupling constant between the cavity

field and the movable mirror, the minus sign in g implies that the cavity resonance

frequency decreases when increasing the displacement q of the mirror elongates the

cavity.

What we discussed previously is the linear optomechanical coupling case, i.e.,

the frequency shift of the cavity field depends linearly on the displacement of the
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mechanical oscillator. However, in a Fabry Perot cavity with a vibrating membrane

in the middle of the optical cavity [10, 11, 12, 13], if the membrane is positioned at an

antinode of the intracavity standing wave, the optomechanical coupling is quadratic

i.e., the frequency shift of the cavity field depends quadratically on the displacement of

the mechanical oscillator. If we expand the cavity frequency ωc(q) about the antinode

point q0, then

ωc(q) = ωc(q0) +
∂ωc(q)

∂q

∣∣∣
q=q0

q +
1

2

∂2ωc(q)

∂q2

∣∣∣
q=q0

q2 + · · ·

≈ ωc(q0) +
1

2

∂2ωc(q)

∂q2

∣∣∣
q=q0

q2, (1.2)

since at the antinode ∂ωc(q)
∂q

∣∣∣
q0

= 0. Compared to the linear optomechanical coupling

system, the quadratic optomechanical system has the advantage in the quantum

nondemolition measurement of mechanical energy quantization [10, 11, 12].

Note that the cavity decay rate only depends on the transmission of the fixed

mirror, and is unrelated to the mechanical motion. Therefore, the optomechanical

coupling via radiation pressure is dispersive.

 

 

Figure 1.2: The optomechaical system that consists of a microdisk resonator coupled

to a waveguide (from Ref.[67]).

1.1.3 The Reactive Optomechanical System

In other optomechanical devices, the optomechanical coupling is induced by opti-

cal gradient force such as in silicon waveguide evanescently coupled to a microdisk
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resonator [67], suspended silicon photonic waveguides [68, 69], SiN nanowire evanes-

cently coupled to a microtoroidal resonator [70], and in ”zipper” cavities formed by

two adjacent photonic crystal wires [71]. In this thesis, we focus on the optomechani-

cal design proposed by [67], as shown in Fig. 1.2. The freestanding silicon waveguide

with 10 µm length, 300 nm height, and 300 nm width is supported by two single-sided

photonic crystal waveguide structures. The microdisk resonator with a radius of 40

µm is placed in close to the waveguide with a gap of 250 nm. A laser is injected

into the waveguide, then light is coupled into and out of the microdisk through the

evanescent fields from the waveguide and microdisk in the air gap, which decay expo-

nentially with the distance from their geometric boundaries. And the dipoles in the

waveguide induced by the evanescent field from the microdisk in turn interacts with

the evanescent field from the microdisk and generate a gradient optical force. Under

the action of this force, the waveguide is attracted toward the microdisk. Further

the displacement of the waveguide modifies the resonance frequency of the microdisk

resonator and the extrinsic photon decay rate of the microdisk resonator. Thus the

coupling between the waveguide and the microdisk resonator is dispersive and reac-

tive.

1.2 Sideband Cooling of the Nano Mechanical Mirror

Recent experiments have demonstrated that the mechanical mirror can be cooled by

the dynamical back-action of radiation pressure [7, 8, 9]. And it is possible to cool

the mechanical mirror to the quantum ground state by resolved sideband cooling

as first shown theoretically in Refs. [47, 66]. Sideband cooling was demonstrated

experimentally by Kippenberg [57] and by Wang [58]. Both these experiments started

the system at about 1.5K and showed cooling down to about 200 mK. The amount

of cooling depends on the system parameters and the laser power. Harris et. al. has

shown that the lowest temperature achieved is 6.82 mK in an optical cavity with a
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vibrating membrane [10].

Before we give details of the theoretical discussion of sideband cooling, we discuss

the physics which shows why sideband cooling results in cooling. When the pump field

with frequency ωl interacts with the mechanical mirror with frequency ωm, absorption

and emission of phonons create the Stokes field (ωl + ωm) and the anti-Stokes field

(ωl − ωm). During the Stokes process, the pump field extracts a quantum of energy

h̄ωm from the movable mirror, leading to the cooling of the movable mirror. While

during the anti-Stokes process, the pump field emits a quantum of energy h̄ωm to the

movable mirror, leading to the heating of the movable mirror. If the pump frequency

is detuned below the cavity resonance frequency by an amount ωm, the amplitude of

the Stokes field is resonantly enhanced, since the frequency of the Stokes field is close

to the cavity resonance frequency ωc; however, the anti-Stokes field is suppressed since

its frequency is far away from the cavity resonance frequency, thus the optomechanical

coupling causes the cooling of the mirror. Further in the resolved sideband limit, the

cavity amplitude decay rate κ is much less than the mechanical oscillation frequency

ωm. In this case, the linewidth κ of the cavity field is much smaller than the frequency

spacing 2ωm between the Stokes field and the anti-Stokes field, thus the amplitude of

the anti-Stokes field is close to zero, ground state cooling becomes possible.

We now develop the theoretical treatment of sideband cooling. The studied system

is a Fabry-Perot cavity with one fixed partially transmitting mirror and one movable

totally reflecting mirror of effective mass m and damping rate γm, as shown in Fig.

1.1. The Hamiltonian of the system in a rotating frame with respect to the laser

frequency ωl is given by

H = h̄(ωc − ωl)c
†c− h̄ωmχc

†cQ+
h̄ωm
4

(Q2 + P 2) + ih̄ε(c† − c). (1.3)

In Eq. (1.3), the first term is the energy of the cavity field, c and c† are the annihi-

lation and creation operators for the cavity field satisfying the commutation relation

[c, c†] = 1. The second term describes the interaction of the movable mirror with
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the cavity field, the dimensionless parameter χ = 1
ωm

ωc

L

√
h̄

2mωm
is the optomechani-

cal coupling constant between the cavity and the movable mirror. The third term

gives the energy of the movable mirror, described by the dimensionless position and

momentum operators Q and P , defined by Q =
√

2mωm

h̄
q and P =

√
2

mh̄ωm
p with

commutation relation [Q,P ] = 2i. The fourth term describes the cavity driven by a

laser with power ℘, and ε =
√

2κ℘
h̄ωl

.

The time evolution of the system operators can be derived by using the Heisenberg

equations of motion and adding the corresponding damping and noise terms. We find

a set of nonlinear quantum Langevin equations as follows,

Q̇ = ωmP,

Ṗ = 2ωmχc
†c− ωmQ− γmP + ξ,

ċ = −i(ωc − ωl − ωmχQ)c+ ε− κc+
√
2κcin,

ċ† = i(ωc − ωl − ωmχQ)c
† + ε− κc† +

√
2κc†in.

(1.4)

Here cin is the input vacuum noise operator with zero mean value and nonzero corre-

lation function in the time domain

⟨δcin(t)δc†in(t′)⟩ = δ(t− t′). (1.5)

The force ξ is the Brownian noise operator associated with the mechanical damping,

whose mean value is zero, and its correlation function reads

⟨ξ(t)ξ(t′)⟩ = 1

π

γm
ωm

∫
ωe−iω(t−t

′
)

[
1 + coth(

h̄ω

2kBT
)

]
dω, (1.6)

where kB is the Boltzmann constant and T is the thermal bath temperature. The

steady-state solution to Eq. (1.4) can be obtained by setting all the time derivatives

in Eq. (1.4) to zero. They are

Ps = 0, Qs = 2χ|cs|2, cs =
ε

κ+ i∆
, (1.7)
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where

∆ = ωc − ωl − ωmχQs (1.8)

is the effective cavity detuning, in which the term −ωmχQs is the cavity resonance

frequency shift due to radiation pressure. The Qs denotes the steady-state position

of the movable mirror. And cs represents the steady-state amplitude of the cavity

field.

In order to investigate cooling of the movable mirror, we need to calculate the

fluctuations of the system. We linearize the nonlinear equation (1.4) by writing

each operator of the system as the sum of its steady-state mean value and a small

fluctuation with zero mean value,

Q = Qs + δQ, P = Ps + δP, c = cs + δc. (1.9)

Inserting Eq. (1.9) into Eq. (1.4), then assuming |cs| ≫ 1, the linearized quantum

Langevin equations for the fluctuation operators take the form

δQ̇ = ωmδP,

δṖ = 2ωmχ(c
∗
sδc+ csδc

†)− ωmδQ− γmδP + ξ,

δċ = −(κ+ i∆)δc+ iωmχcsδQ+
√
2κδcin,

δċ† = −(κ− i∆)δc† − iωmχc
∗
sδQ+

√
2κδc†in.

(1.10)

We transform Eq. (1.10) to the frequency domain by using f(t) = 1
2π

∫+∞
−∞ f(ω)e−iωtdω

and f †(t) = 1
2π

∫+∞
−∞ f †(−ω)e−iωtdω, where f †(−ω) = [f(−ω)]†, and solve it, we obtain

the position fluctuations of the movable mirror

δQ(ω) = − ωm

d(ω)
[2
√
2κωmχ{[κ− i(∆ + ω)]c∗sδcin(ω) + [κ+ i(∆− ω)]csδc

†
in(−ω)}

+[(κ− iω)2 +∆2]ξ(ω)],

(1.11)

where

d(ω) = 4ω3
mχ

2∆|cs|2 + (ω2 − ω2
m + iγmω)[(κ− iω)2 +∆2]. (1.12)
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In Eq. (1.11), the first term proportional to χ is the contribution of radiation pressure,

while the second term involving ξ(ω) is the contribution of the thermal noise. In the

absence of the cavity field, the movable mirror will make Brownian motion, δQ(ω) =

ωmξ(ω)/(ω
2
m − ω2 − iγmω), whose susceptibility has a Lorentzian shape centered at

frequency ωm with full width at half maximum γm.

The two-time correlation function of the fluctuations in position of the movable

mirror is given by

1

2
(⟨δQ(t)δQ(t+ τ)⟩+ ⟨δQ(t+ τ)δQ(t)⟩) = 1

2π

∫ +∞

−∞
dωSQ(ω)e

iωτ , (1.13)

in which SQ(ω) is the spectrum of fluctuations in position of the movable mirror,

defined by

1

2
(⟨δQ(ω)δQ(Ω)⟩+ ⟨δQ(Ω)δQ(ω)⟩) = 2πSQ(ω)δ(ω + Ω). (1.14)

By aid of the correlation functions of the noise sources in the frequency domain,

⟨δcin(ω)δc†in(−Ω)⟩ = 2πδ(ω + Ω),

⟨ξ(ω)ξ(Ω)⟩ = 4π γm
ωm
ω
[
1 + coth( h̄ω

2kBT
)
]
δ(ω + Ω).

(1.15)

we obtain the spectrum of fluctuations in position of the movable mirror

SQ(ω) =
ω2
m

|d(ω)|2
{8ω2

mχ
2κ(κ2 + ω2 +∆2)|cs|2 + 2

γm
ωm

ω[(∆2 + κ2 − ω2)2

+4κ2ω2] coth(
h̄ω

2kBT
)}. (1.16)

In Eq. (1.16), the first term involving χ arises from radiation pressure, while the sec-

ond term originates from the thermal noise. So the spectrum SQ(ω) of the movable

mirror depends on radiation pressure and the thermal noise. Then Fourier transform-

ing δQ̇ = ωmδP in Eq. (1.10), we obtain δP (ω) = − iω
ωm
δQ(ω), which leads to the

spectrum of fluctuations in momentum of the movable mirror

SP (ω) =
ω2

ω2
m

SQ(ω). (1.17)
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The phonon number n in the movable mirror can be calculated from the total energy

of the movable mirror

h̄ωm
4

(⟨δQ2⟩+ ⟨δP 2⟩) = h̄ωm

(
n+

1

2

)
, n = [exp(h̄ωm/(kBT ))− 1]−1, (1.18)

where the variances of position and momentum are ⟨δQ2⟩ = 1
2π

∫+∞
−∞ SQ(ω)dω and

⟨δP 2⟩ = 1
2π

∫+∞
−∞ SP (ω)dω. Then the effective temperature Teff of the movable mirror

can be determined from the phonon number nin the movable mirror, which is

Teff =
h̄ωm

kB ln(1 + 1
n
)
. (1.19)

The parameters used are from an experimental paper on optomechanical normal

mode splitting [50]: the wavelength of the laser λ = 2πc/ωl = 1064 nm, L = 25 mm,

m = 145 ng, ωm = 2π × 947× 103 Hz, the mechanical quality factor Q
′
= ωm/γm =

6700, κ = 2π × 215× 103 Hz, κ/ωm ≈ 0.23, thus the system is operating in resolved

sideband regime. And in the high temperature limit kBT ≫ h̄ωm, the approximation

coth(h̄ω/2kBT ) ≈ 2kBT/h̄ω can be made. The laser is detuned below the cavity

resonance frequency by an amount ∆ = ωm. We work in the stable regime.
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Figure 1.3: The effective temperature Teff (mK) of the movable mirror as a function

of the laser power ℘ (µW). The initial temperature is taken to be 1 K.

Figure 1.3 shows the variation of the effective temperature Teff of the movable

mirror with the laser power ℘. It is clear to see that the effective temperature Teff of

11



the movable mirror decreases with increases the laser power ℘. When ℘ = 100 µW,

the movable mirror can be cooled to about 50 mK, a factor of 20 below the starting

temperature of 1 K [57, 58]. If the laser power is further increased to 1 mW, the

movable mirror can be cooled to about 6 mK. Therefore the movable mirror can be

effectively cooled in the resolved sideband limit.

1.3 Degenerate Parametric Amplification

Nonlinear  Crystal 

 ! 

 "

 #

Figure 1.4: Parametric amplifier.

In a parametric amplifier [72], a pump beam at higher frequency ωp interacts

with a nonlinear crystal, a signal and idler modes at lower frequencies ωs and ωi

would be generated, as shown in Fig. 1.4. During the nonlinear optical process, the

energy is conserved ωp = ωs + ωi. If the signal and the idler modes have identical

frequencies, such a parametric amplifier is called a degenerate parametric amplifier.

In the following, we will show that the degenerate parametric amplifier can be used

as a generator of a single-mode squeezed state.

The Hamiltonian for degenerate parametric amplification, in the interaction pic-

ture, is

Hint = h̄µ(a†2b+ a2b†), (1.20)

where b and a are the annihilation operators for the pump and signal modes, re-

spectively, and µ is a coupling strength between the pump field and the nonlinear

crystal, and it is related to the second-order nonlinear susceptibility. Assuming that

12



the pump field is a strong coherent classical field and pump depletion is neglected,

thus the operators b and b† can be represented by βe−iϕ and βeiϕ, where β and ϕ

are the real amplitude and phase of the coherent pump field. Hence the Hamiltonian

(1.20) becomes

Hint = h̄µβ(a†2e−iϕ + a2eiϕ), (1.21)

The time evolution of the signal mode can be derived by the Heisenberg equation of

motion, which yields

ȧ = −iΩa†e−iϕ,

ȧ† = iΩaeiϕ. (1.22)

Here Ω = 2µβ is the effective Rabi frequency. The solution to Eq. (1.22) is

a(t) = a0 cosh(Ωt)− ia†0 sinh(Ωt)e
−iϕ,

a†(t) = a†0 cosh(Ωt) + ia0 sinh(Ωt)e
iϕ, (1.23)

where a0 = a(0). For ϕ = π/2, when the signal initially is in a vacuum state, the

variances in the two quadratures X1 = (a+ a†)/2 and X2 = (a− a†)/2i are given by

(∆X1)
2
t =

1

4
e−2u,

(∆X2)
2
t =

1

4
e2u, (1.24)

where u = Ωt is the effective squeezing parameter. Eq. (1.24) shows the output from

the degenerate parametric amplifier can be squeezed state, and the squeezing exists

in the X1 quadrature.

1.4 Standard Quantum Limit

For a one-dimensional harmonic oscillator with mass m and frequency ωm, its Hamil-

tonian is H0 =
p2

2m
+ 1

2
mω2

mq
2, where p is the momentum operator and q is the position

operator, satisfying the commutation relation [q, p] = ih̄. In the ground state, the

13



fluctuations in the position and the momentum are not equal to zero due to the

zero-point energy. They are

δq =

√
h̄

2mωm
, δp =

√
mh̄ωm

2
, (1.25)

respectively, which are called the standard quantum limit. These fluctuations have

no classical analog. If we write the position operator q and the momentum operator

p in terms of the dimensionless position operator Q and momentum operator P ,

q =
√

h̄
2mωm

Q and p =
√

mh̄ωm

2
P , then the standard quantum limit would be

δQ = δP = 1, (1.26)

thus the fluctuations in the two dimensionless quadratures are identical, each of them

is equal to unity. For very high-precision interferometers, the standard quantum limit

limits their sensitivity. To improve their sensitivity, this limit need to be beaten, which

means that the fluctuations need to be reduced below the standard quantum limit.

According to the Heisenberg uncertainty principle ∆A∆B ≥ 1
2
|⟨[A,B]⟩|, where ∆A =

(⟨A2⟩ − ⟨A⟩2)1/2 and similarly for ∆B, the fluctuations in position and momentum

should satisfy the inequality

δQδP ≥ 1, (1.27)

thus the fluctuations in the position and momentum could not be reduced below unity

simultaneously. If the fluctuations in position is less than unity, the fluctuations

in momentum should be larger than unity, or vice versa. Moreover, the harmonic

oscillator is said to be squeezed if either δQ < 1 or δP < 1. Therefore, as the

standard quantum limit is beaten, the harmonic oscillator is quadrature squeezed.

1.5 Homodyne Detection

Homodyne detection is usually used to measure the amplitude and the phase quadra-

ture components of the light field. In this section, we describe balanced homodyne

detection [73].
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Figure 1.5: Balanced homodyne detection. PD:photodetector.

Figure 1.5 schematically shows a balanced homodyne detection setup. The signal

light and a strong local laser light, described by the annihilation operators a and b,

respectively, are mixed on a 50/50 beam splitter. The two output fields c and d can

be obtained through the relation

c =
1√
2
(a+ ib),

d =
1√
2
(b+ ia). (1.28)

The two output fields c and d are detected individually by two photodetectors. Then

the two intensities Ic = ⟨c†c⟩ and Id = ⟨d†d⟩ measured by the two photodetectors are

subtracted each other, the result is

Ic − Id = ⟨ncd⟩ = ⟨c†c− d†d⟩,

= i⟨a†b− ab†⟩. (1.29)

Assuming the b mode to be in the coherent state |βe−iωt⟩, and β = |β|e−iψ, the

operator b can be replaced by |β|e−i(ωt+ψ), we obtain

⟨ncd⟩ = |β|[aeiωte−iθ + a†e−iωteiθ], (1.30)
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where θ = ψ+π/2. Assuming that the signal mode a has the same frequency as that

of the local oscillator b, thus a = a0e
−iωt, Eq. (1.30) reduces to

⟨ncd⟩ = 2|β|⟨X(θ)⟩, (1.31)

where ⟨X(θ)⟩ = 1
2
(a0e

−iθ + a0e
iθ) is the field quadrature operator at the angle θ. By

changing θ, which can be done by changing the phase ψ of the local oscillator, an

arbitrary quadrature component of the signal field can be measured.

Moreover, the balanced homodyne detection can be used to detect the squeezed

state. The variance of the output signal can be found to be

⟨(∆ncd)2⟩ = 4|β|2⟨(∆X(θ))2⟩, (1.32)

The squeezing condition for the signal is ⟨(∆X(θ))2⟩ < 1
4
, we have ⟨(∆ncd)2⟩ < |β|2.

1.6 Electromagnetically Induced Transparency

Generally, if a laser light passes through a two-level atomic system whose atoms are all

in the ground state, the light will be strongly absorbed if the laser field is near resonant

with the atomic transition. However, for a three-level atomic system whose atoms are

all in the lowest-energy state, the atomic system becomes transparent for a weak probe

field tuned to an atomic transition resonance when a strong coupling field is applied to

the other atomic transition. This phenomenon is called as electromagnetically induced

transparency (EIT). The effect of EIT allows a weak signal field to propagate without

being absorbed by the atomic medium. It was theoretically proposed in 1989 [74] and

first experimentally demonstrated in 1991 [75]. Meanwhile, the phenomenon of EIT

[76] is accompanied by a sharp dispersion change in the transmitted probe field on

resonance, which leads to the generation of ultrafast light [77, 78] and ultraslow light

[79, 80, 81]. Accordingly considerable interest has been dedicated to EIT due to its

potential applications in an optical switch [82], optical storage [83, 84, 85, 86].
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Figure 1.6: A three-level Λ-type atomic system, where the probe field at frequency ν

couples levels |b⟩ and |a⟩, while the coupling field at frequency νµ couples levels |c⟩

and |a⟩.

We consider a three-level Λ-type atomic system [72], as shown in Fig. 1.6. The

atoms have one upper level |a⟩ and two lower levels |b⟩ and |c⟩ with energies h̄ωa,

h̄ωb, and h̄ωc, where the transitions |b⟩ → |a⟩ and |c⟩ → |a⟩ are dipole allowed, but

the transition |b⟩ → |c⟩ is dipole forbidden since |c⟩ is a metastable state. The levels

|a⟩ and |b⟩ are coupled by a weak probe field of amplitude ε at frequency ν, while the

levels |a⟩ and |c⟩ are coupled by a strong coupling field at frequency νµ. The coupling

strength of the probe field to the atomic transition |b⟩ → |a⟩ is described by the Rabi

frequency ℘abε/h̄, where ℘ab is the electric-dipole transition matrix element, and it

is assumed to be real. The interaction strength between the coupling field and the

|c⟩ → |a⟩ transition is characterized by the complex Rabi frequency Ωµ exp(−iϕµ),

and Ωµ is assumed to be real.

The state of the atom can be written as a linear combination of states |a⟩, |b⟩,

and |c⟩, i.e., |Ψ⟩ = Ca(t)|a⟩ + Cb(t)|b⟩ + Cc(t)|c⟩. Here, Ca(t), Cb(t), and Cc(t) are

the probability amplitudes corresponding to the three atomic levels |a⟩, |b⟩, and |c⟩,

respectively. The density matrix operator of the atom takes form

ρ = |Ψ⟩⟨Ψ|

= [Ca(t)|a⟩+ Cb(t)|b⟩+ Cc(t)|c⟩][C∗
a(t)⟨a|+ C∗

b (t)⟨b|+ C∗
c (t)⟨c|]

17



= |Ca(t)|2|a⟩⟨a|+ Ca(t)C
∗
b (t)|a⟩⟨b|+ Ca(t)C

∗
c (t)|a⟩⟨c|

+Cb(t)C
∗
a(t)|b⟩⟨a|+ |Cb(t)|2|b⟩⟨b|+ Cb(t)C

∗
c (t)|b⟩⟨c|

+Cc(t)C
∗
a(t)|c⟩⟨a|+ Cc(t)C

∗
b (t)|c⟩⟨b|+ |Cc(t)|2|c⟩⟨c|. (1.33)

Taking the matrix elements, we get

ρaa = ⟨a|ρ|a⟩ = |Ca(t)|2,

ρab = ⟨a|ρ|b⟩ = Ca(t)C
∗
b (t),

ρac = ⟨a|ρ|c⟩ = Ca(t)C
∗
c (t),

ρba = ⟨b|ρ|a⟩ = Cb(t)C
∗
a(t),

ρbb = ⟨b|ρ|b⟩ = |Cb(t)|2,

ρbc = ⟨b|ρ|c⟩ = Cb(t)C
∗
c (t),

ρca = ⟨c|ρ|a⟩ = Cc(t)C
∗
a(t),

ρcb = ⟨c|ρ|b⟩ = Cc(t)C
∗
b (t),

ρcc = ⟨c|ρ|c⟩ = |Cc(t)|2. (1.34)

Hence, the three-level atom can be described by the 3× 3 density matrix ρ,

ρ =


ρaa ρab ρac

ρba ρbb ρbc

ρca ρcb ρcc

 , (1.35)

where the diagonal elements ρii = ⟨i|ρ|i⟩ (i = a, b, c) describe the populations in the

three levels, respectively, and the off-diagonal elements ρij = ⟨i|ρ|j⟩ (i, j = a, b, c

and i ̸= j) represent the atomic coherence between levels. The density matrix is a

Hermitian operator satisfying ρ = ρ†.The off-diagonal decay rates for ρab, ρac, and

ρcb are denoted by γ1, γ2, and γ3, respectively. Since the level |c⟩ is assumed to be a

metastable state, γ3 << γ1.

In the rotating-wave approximation, the Hamiltonian of the system is given by

H = h̄ωa|a⟩⟨a|+ h̄ωb|b⟩⟨b|+ h̄ωc|c⟩⟨c|
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+[− h̄

2
(
℘abε

h̄
e−iνt|a⟩⟨b|+ Ωµe

−iϕµe−iνµt|a⟩⟨c|) +H.C.], (1.36)

where the first three terms are the free energies of the atomic three levels, and the

last four terms gives the interactions of the three-level atoms with the probe field and

the coupling field.

The time evolution for the density matrix elements ρab, ρcb, and ρac can be derived

by using the Liouville equation ρ̇ij = − i
h̄
[H, ρij] and considering the corresponding

damping term, which yields

ρ̇ab = −(iωab + γ1)ρab −
i

2

℘abε

h̄
e−iνt(ρaa − ρbb) +

i

2
Ωµe

−iϕµe−iνµtρcb,

ρ̇cb = −(iωcb + γ3)ρcb −
i

2

℘abε

h̄
e−iνtρca +

i

2
Ωµe

iϕµeiνµtρab,

ρ̇ac = −(iωac + γ2)ρac −
i

2
Ωµe

−iϕµe−iνµt(ρaa − ρcc) +
i

2

℘abε

h̄
e−iνtρbc, (1.37)

where ωab, ωcb, and ωac are the Bohr frequencies, ωab = ωa − ωb, ωcb = ωc − ωb, and

ωac = ωa − ωc. We assume all atoms are initially in the lowest-energy state |b⟩,

ρbb(0) = 1, ρaa(0) = ρcc(0) = ρac(0) = 0. (1.38)

Since the probe field is very weak, most of the atoms keep staying in the lowest-energy

state |b⟩ at any time so that the atomic population in level |b⟩ is close to unity. Thus

we can adopt the approximation condition

ρbb(t) ≈ 1, ρaa(t) ≈ ρcc(t) ≈ ρac(t) ≈ 0. (1.39)

Thus Eq. (1.37) reduces to

ρ̇ab = −(iωab + γ1)ρab +
i

2

℘abε

h̄
e−iνt +

i

2
Ωµe

−iϕµe−iνµtρcb,

ρ̇cb = −(iωcb + γ3)ρcb +
i

2
Ωµe

iϕµeiνµtρab. (1.40)

Then we convert the usual density-matrix elements ρij to slowly varying variables ρ̃ij

in order to remove the fast optical oscillation by using the following transformations

ρab = ρ̃abe
−iνt,

ρcb = ρ̃cbe
−i(ν+ωca)t, (1.41)
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thus the time evolution of the slowly varying density-matrix elements ρ̃ab and ρ̃cb is

given by

˙̃ρab = −(γ1 − i∆)ρ̃ab +
i

2

℘abε

h̄
+
i

2
Ωµe

−iϕµ ρ̃cb,

˙̃ρcb = −(γ3 − i∆)ρ̃cb +
i

2
Ωµe

iϕµ ρ̃ab, (1.42)

where ∆ = ν−ωab is the detuning of the probe frequency ν from the frequency ωab of

the |b⟩ → |a⟩ transition, and we assume that the coupling field is resonant with the

|c⟩ → |a⟩ transition, i.e., νµ = ωac.

We write Eq. (1.42) in the matrix form as

Ṙ = −MR + A, (1.43)

where

R =

 ρ̃ab

ρ̃cb

 , M =

 γ1 − i∆ − i
2
Ωµe

−iϕµ

− i
2
Ωµe

iϕµ γ3 − i∆

 , A =


i℘abε

2h̄

0

 , (1.44)

then integrating

R(t) =
∫ t

−∞
e−M(t−t′)Adt′

= M−1A, (1.45)

we obtain

ρab(t) =
i℘abεe

−iνt(γ3 − i∆)

2h̄
[
(γ1 − i∆)(γ3 − i∆) +

Ω2
µ

4

] . (1.46)

The dielectric response of the atomic system to the probe field is determined by

the electric polarization P . The polarization of an ensemble of identical atoms will

be P = 2℘abρab(t)e
iνtNa, where Na is the atom number density for the three-level

atoms. In addition, the linear polarization is related to the amplitude ε of the probe

field through P = ϵ0χε, where ε0 is the electric permittivity of free space and χ is the
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electric susceptibility of the atomic system. Hence, the susceptibility of the Λ system

is given by

χ =
Na℘

2
ab

ϵ0h̄

i(γ3 − i∆)

(γ1 − i∆)(γ3 − i∆) +
Ω2

µ

4

,

= χ′ + iχ′′, (1.47)

where χ′ and χ′′ are the real and imaginary parts of the complex susceptibility χ of

the atomic system. The χ′ and χ′′ determine the dispersion and absorption of the

probe field, respectively. It is seen that from Eq. (1.47), on resonance, if there is a

coupling field, i.e., Ωµ ̸= 0, χ′ = 0 and χ′′ =
Na℘2

ab

ϵ0h̄
γ3

γ1γ3+
Ω2
µ
4

, which is proportional to

γ3. If the decay rate γ3 is very small (or approaching zero), the imaginary part of

the electric susceptibility would be negligibly small. We plot the real and imaginary

parts of the susceptibility in units of
Na℘2

ab

γ1ϵ0h̄
as a function of the normalized detuning

∆/γ1 without and with the coupling field, as shown in Figs. 1.7 and 1.8. In the
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Figure 1.7: The real part of the susceptibility in units of
Na℘2

ab

γ1ϵ0h̄
as a function of the

normalized detuning ∆/γ1 in the absence (dotted) and in the presence (solid) of the

coupling field.

absence of the coupling field, Ωµ = 0, the curve χ′′ has a Lorentzian lineshape, and

the curve χ′ exhibits the anomalous dispersion since the slope of χ′ at the line center
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Figure 1.8: The imaginary part of the susceptibility in units of
Na℘2

ab

γ1ϵ0h̄
as a function of

the normalized detuning ∆/γ1 in the absence (dotted) and in the presence (solid) of

the coupling field.

is less than zero. In the presence of the coupling field, Ωµ = 2γ1, and γ1 >> γ3(γ3 =

10−4γ1), when ∆ = 0, ωab = ν, the probe field is in resonance with the |b⟩ → |a⟩

atomic transition, we can see χ′′ ≈ 0, the medium becomes completely transparent

for the probe field, thus the probe field can propagate through the atoms without any

absorption even with most of the atoms in the lowest-energy state |b⟩. It has been

calculated that the width of the transparency window depends on the Rabi frequency

Ωµ, which is related to the power of the coupling field. And increasing the power of

the coupling field, the EIT dip becomes wider due to power broadening. We also note

χ′ = 0 as ∆ = 0, hence the refractive index of the medium is equal to unity since the

refractive index is related to the susceptibility by n(ν) = [1+χ′(ν)+ iχ′′(ν)]0.5. Thus

the phase velocity of the probe field propagating through the medium is equal to that

in vacuum. Moreover, the slope of the curve χ′ at the line center is larger than zero,

thus the curve χ′ exhibits the normal dispersion. And the steepness of the curve χ′

where the absorption vanishes depends on the power of the coupling field, i.e., the

curve χ′ becomes steeper at the line center by decreasing the power of the coupling
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field, implying that the group velocity can be dramatically reduced, and even can

be reduced to zero such that the probe field can be completely stopped and stored

within the atomic medium.

In summary, when the coupling field resonant with the |c⟩ → |a⟩ atomic transition

is applied, the interaction of a three-level Λ-type atomic system with a weak probe

field depends on the frequency of the probe field. If the frequency of the probe field

matches the frequency of the |b⟩ → |a⟩ transition, the EIT phenomenon occurs, the

effect of the atomic system on the probe field can be eliminated.

1.7 Organization

Chapter 2 shows that an optical parametric amplifier inside a cavity can consider-

ably improve the cooling of the micromechanical mirror by radiation pressure. The

micromechanical mirror can be cooled from room temperature 300 K to sub-Kelvin

temperatures, which is much lower than what is achievable in the absence of the para-

metric amplifier. This is further illustrated in case of a precooled mirror, where one

can reach millikelvin temperatures starting with about 1 K. Our work demonstrates

the fundamental dependence of radiation pressure effects on photon statistics.

Chapter 3 discusses how an optical parametric amplifier inside the cavity can

affect the normal-mode splitting behavior of the coupled movable mirror and the

cavity field. We work in the resolved sideband regime. The spectra exhibit a double-

peak structure as the parametric gain is increased. Moreover, for a fixed parametric

gain, the double-peak structure of the spectrum is more pronounced with increasing

the input laser power. We give results for mode splitting. The widths of the split

lines are sensitive to parametric gain.

Chapter 4 presents that squeezing of a nanomechanical mirror can be generated

by injecting broad band squeezed vacuum light and laser light into the cavity. We

work in the resolved sideband regime. We find that in order to obtain the maximum
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momentum squeezing of the movable mirror, the squeezing parameter of the input

light should be about 1. We can obtain more than 70% squeezing. Besides, for a fixed

squeezing parameter, decreasing the temperature of the environment or increasing the

laser power increases the momentum squeezing. We find very large squeezing with

respect to thermal fluctuations, for instance at 1 mK, the momentum fluctuations go

down by a factor more than one hundred.

Chapter 5 presents a scheme for entangling two separated nanomechanical oscil-

lators by injecting broad band squeezed vacuum light and laser light into the ring

cavity. We work in the resolved sideband regime. We find that in order to obtain the

maximum entanglement of the two oscillators, the squeezing parameter of the input

light should be about 1. We report significant entanglement over a very wide range

of power levels of the pump and temperatures of the environment.

Chapter 6 discusses Stokes and anti-Stokes processes in cavity optomechanics in

the regime of strong coupling. The Stokes and anti-Stokes signals exhibit prominently

the normal-mode splitting. We report gain for the Stokes signal. We also report life-

time splitting when the pump power is less than the critical power for normal-mode

splitting. The nonlinear Stokes processes provide a useful method for studying the

strong-coupling regime of cavity optomechanics. We also investigate the correlations

between the Stokes and the anti-Stokes photons produced spontaneously by the op-

tomechanical system. At zero temperature, our nanomechanical system leads to the

correlations between the spontaneously generated photons exhibiting photon anti-

bunching and those violating the Cauchy-Schwartz inequality.

Chapter 7 discusses the dynamical behavior of a nanomechanical mirror in a high-

quality cavity under the action of a coupling laser and a probe laser. We demonstrate

the existence of the analog of electromagnetically induced transparency (EIT) in the

output field at the probe frequency. Our calculations show explicitly the origin of

EIT-like dips as well as the characteristic changes in dispersion from anomalous to
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normal in the range where EIT dips occur. Remarkably the pump-probe response for

the optomechanical system shares all the features of the Λ system as discovered by

Harris and collaborators.

Chapter 8 studies the optomechanical design introduced by M. Li et. al. [Phys.

Rev. Lett. 103, 223901 (2009)], which is very effective for investigation of the effects

of reactive coupling. We show the normal mode splitting that is due solely to reactive

coupling rather than due to dispersive coupling. We suggest feeding the waveguide

with a pump field along with a probe field and scanning the output probe for evidence

of reactive-coupling-induced normal mode splitting.

Chapter 9 shows that dissipatively coupled nanosystems can be prepared in states

which beat the standard quantum limit of the mechanical motion. We show that the

reactive coupling between the waveguide and the microdisk resonator can generate the

squeezing of the waveguide by injecting a quantum field and laser into the resonator

through the waveguide. The waveguide can show about 70-75% of maximal squeezing

for temperature about 1-10 mK. The maximum squeezing can be achieved with an

incident pump power of only 12 µW for a temperature of about 1 mK. Even for

temperatures of 20 mK, achievable by dilution refrigerators, the maximum squeezing

is about 60%.

Chapter 10 describes how electromagnetically induced transparency can arise in

quadratically coupled optomechanical systems. Due to quadratic coupling, the under-

lying optical process involves a two-phonon process in an optomechanical system, and

this two-phonon process makes the mean displacement, which plays the role of atomic

coherence in traditional electromagnetically induced transparency (EIT), zero. We

show how the fluctuation in displacement can play a role similar to atomic coherence

and can lead to EIT-like effects in quadratically coupled optomechanical systems. We

show how such effects can be studied using the existing optomechanical systems.

Chapter 11 discusses electromagnetically induced transparency (EIT) using quan-
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tized fields in optomechanical systems. The weak probe field is a narrowband squeezed

field. We present a homodyne detection of EIT in the output quantum field. We find

that the EIT dip exists even though the photon number in the squeezed vacuum is at

the single-photon level. The EIT with quantized fields can be seen even at tempera-

tures on the order of 100 mK, thus paving the way for using optomechanical systems

as memory elements.

Chapter 12 demonstrate theoretically the possibility of using nano mechanical

systems as single photon routers. We show how EIT in cavity optomechanical systems

can be used to produce a switch for a probe field in a single photon Fock state

using very low pumping powers of few microwatt. We present estimates of vacuum

and thermal noise and show the optimal performance of the single photon switch is

deteriorated by only few percent even at temperatures of the order of 20 mK.

Chapter 13 gives the summary of what we have done in this thesis and the direction

of the future work.
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CHAPTER 2

ENHANCEMENT OF CAVITY COOLING OF A

MICROMECHANICAL MIRROR USING PARAMETRIC

INTERACTIONS

2.1 Overview

Recently there is considerable interest in micromechanical mirrors. These are macro-

scopic quantum mechanical systems and the important question is how to reach their

quantum characteristics [8, 87, 88, 89]. The thermal noise limits many highly sen-

sitive optical measurements [90, 91]. We also note that there has been considerable

interest in using micromirrors for producing superpositions of macroscopic quantum

states if such micromirrors can be cooled to their quantum ground states [27, 28].

Thus cooling of micromechanical resonators becomes a necessary prerequisite for all

such studies. So far two different ways to cool a mechanical resonator mode have

been proposed. One is the active feedback scheme [7, 92, 93, 116], where a viscous

force is fed back to the movable mirror to decrease its Brownian motion. The other

is the passive feedback scheme [6, 8, 9, 56, 95, 159], in which the Brownian motion of

the movable mirror is damped by the radiation pressure force exerted by photons in

an appropriately detuned optical cavity.

Clearly we need to think of methods which can cool the micromirror toward its

ground state. Since radiation pressure depends on the number of photons, one would

think that the cooling of the micromirror can be manipulated by using effects of

the photon statistics. In this chapter, we propose and analyze a method to achieve

cooling of a movable mirror to sub-Kelvin temperatures by using a type I optical
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parametric amplifier inside a cavity. We remind the reader of the great success of

cavities with parametric amplifiers in the production of nonclassical light [97, 98, 99].

The movable mirror can reach a minimum temperature of about a few hundred mK,

a factor of 500 below room temperature 300 K. The lowering of the temperature is

achieved by changes in photon statistics due to parametric interactions [100, 101, 102,

103, 104, 105]. Note that if the mirror is already precooled to say about 1 K, then we

show that by using an optical parametric amplifier we can cool to about millikelvin

temperatures or less.

The chapter is organized as follows. In Sec. II we describe the model and derive the

quantum Langevin equations. In Sec. III we obtain the stability conditions, calculate

the spectrum of fluctuations in position and momentum of the movable mirror, and

define the effective temperature of the movable mirror. In Sec. IV we show how the

movable mirror can be effectively cooled by using the parametric amplifier inside the

cavity.

2.2 Model

in
c

out
c

    movable mirror

OPA

cavity axis 

fixed mirror

Figure 2.1: Sketch of the cavity used to cool a micromechanical mirror. The cavity

contains a nonlinear crystal which is pumped by a laser (not shown) to produce

parametric amplification and to change photon statistics in the cavity.

We consider a degenerate optical parametric amplifier (OPA) inside a Fabry-Perot

cavity with one fixed partially transmitting mirror and one movable totally reflecting

mirror in contact with a thermal bath in equilibrium at temperature T , as shown
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in Fig. 2.1. The movable mirror is free to move along the cavity axis and is treated

as a quantum mechanical harmonic oscillator with effective mass m, frequency ωm,

and energy decay rate γm. The effect of the thermal bath can be modeled by a

Langevin force. The cavity field is driven by an input laser field with frequency ωL

and positive amplitude related to the input laser power P by ε̃ =
√
P/(h̄ωL). When

photons in the cavity reflect off the surface of the movable mirror, the movable mirror

will receive the action of the radiation pressure force, which is proportional to the

instantaneous photon number inside the cavity. So the mirror can oscillate under the

effects of the thermal Langevin force and the radiation pressure force. Meanwhile, the

movable mirrors motion changes the length of the cavity; hence the movable mirror

displacement from its equilibrium position will induce a phase shift on the cavity

field.

Here we assume the system is in the adiabatic limit, which means ωL ≪ πc/L;

c is the speed of light in vacuum and L is the cavity length in the absence of the

cavity field. We assume that the motion of the mirror is so slow that the scattering

of photons to other cavity modes can be ignored, thus we can consider one cavity

mode only [64, 106], say, ωc. Moreover, in the adiabatic limit, the number of photons

generated by the Casimir effect [107], retardation, and Doppler effects is negligible

[26, 92, 108]. Under these conditions, the total Hamiltonian for the system in a frame

rotating at the laser frequency ωL can be written as

H = h̄(ωc − ωL)nc − h̄χncq +
1

2
(
p2

m
+mω2

mq
2)

+ih̄ε(c† − c) + ih̄G(eiθc†2 − e−iθc2). (2.1)

Here c and c† are the annihilation and creation operators for the field inside the cavity,

respectively; nc = c†c is the number of the photons inside the cavity; and q and p

are the position and momentum operators for the movable mirror. The parameter

χ = ωc/L is the coupling constant between the cavity and the movable mirror; and
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ε =
√
2κε̃. Note that κ is the photon decay rate due to the photon leakage through

the fixed partially transmitting mirror. Further κ = πc/(2FL), where F is the cavity

finesse. In Eq. (2.1), G is the nonlinear gain of the OPA, and θ is the phase of

the field driving the OPA. The parameter G is proportional to the pump driving the

OPA.

In Eq. (2.1), the first term corresponds to the energy of the cavity field, the

second term arises from the coupling of the movable mirror to the cavity field via

radiation pressure, the third term gives the energy of the movable mirror, the fourth

term describes the coupling between the input laser field and the cavity field, and the

last term is the coupling between the OPA and the cavity field.

The motion of the system can be described by the Heisenberg equations of motion

and adding the corresponding damping and noise terms, which leads to the following

quantum Langevin equations:

q̇ = p
m
,

ṗ = −mω2
mq + h̄χnc − γmp+ ξ,

ċ = i(ωL − ωc + χq)c+ ε+ 2Geiθc† − κc+
√
2κcin,

ċ† = −i(ωL − ωc + χq)c† + ε+ 2Ge−iθc− κc† +
√
2κc†in.

(2.2)

Here cin is the input vacuum noise operator with zero mean value; its correlation

function is [141]

⟨δcin(t)δc†in(t′)⟩ = δ(t− t′),

⟨δcin(t)δcin(t′)⟩ = ⟨δc†in(t)δcin(t′)⟩ = 0.

(2.3)

The force ξ is the Brownian noise operator resulting from the coupling of the mov-

able mirror to the thermal bath, whose mean value is zero, and it has the following

correlation function at temperature T [108]:

⟨ξ(t)ξ(t′)⟩ = h̄γm
2π

m
∫
ωe−iω(t−t

′
)

[
coth(

h̄ω

2kBT
) + 1

]
dω, (2.4)
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where kB is the Boltzmann constant and T is the thermal bath temperature. In

order to analyze Eq. (2.2), we use standard methods from quantum optics [110]. A

detailed calculation of the temperature for G = 0 is given by Paternostro et al. [35].

By setting all the time derivatives in Eq. (2.2) to zero, we obtain the steady-state

mean values

ps = 0, qs =
h̄χ|cs|2

mω2
m

, cs =
κ− i∆+ 2Geiθ

κ2 +∆2 − 4G2
ε, (2.5)

where

∆ = ωc − ωL − χqs = ∆0 − χqs = ∆0 −
h̄χ2|cs|2

mω2
m

(2.6)

is the effective cavity detuning, including the radiation pressure effects. The modifi-

cation of the detuning by the χqs term depends on the range of parameters. The qs

denotes the new equilibrium position of the movable mirror relative to that without

the driving field. Further cs represents the steady-state amplitude of the cavity field.

Note that qs and cs can display optical multistable behavior, which is a nonlinear

effect induced by the radiation-pressure coupling of the movable mirror to the cavity

field. Mathematically this is contained in the dependence of the detuning parame-

ter ∆ on the mirrors amplitude qs. It is evident from Eqs. (2.5) and (2.6) that ∆

satisfies a fifth-order equation and in principle can have five real solutions implying

multistability. Generally, in this case, at most three solutions would be stable. The

bistable behavior is reported in Refs. [41, 42].

2.3 Radiation Pressure and Quantum Fluctuations

In order to determine the cooling of the mirror, we need to find out the fluctuations in

the mirrors amplitude. Since the problem is nonlinear, we assume that the nonlinear-

ity is weak. We are thus interested in the dynamics of small fluctuations around the

steady state of the system. Such a linearized analysis is quite common in quantum

optics [110, 111]. So we write each operator of the system as the sum of its steady
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state mean value and a small fluctuation with zero mean value,

q = qs + δq, p = ps + δp, c = cs + δc. (2.7)

Inserting Eq. (2.7) into Eq. (2.2), then assuming |cs| ≫ 1, we get the linearized

quantum Langevin equations for the fluctuation operators

δq̇ = δp
m
,

δṗ = −mω2
mδq + h̄χ(csδc

† + c∗sδc)− γmδp+ ξ,

δċ = −i∆δc+ iχcsδq + 2Geiθδc† − κδc+
√
2κδcin,

δċ† = i∆δc† − iχc∗sδq + 2Ge−iθδc− κδc† +
√
2κδc†in.

(2.8)

Introducing the cavity field quadratures δx = δc† + δc and δy = i(δc† − δc), and

the input noise quadratures δxin = δc†in+ δcin and δyin = i(δc†in− δcin), Eq. (2.8) can

be written in the matrix form

ḟ = Af(t) + η(t), (2.9)

where f(t) is the column vector of the fluctuations, and η(t) is the column vector of

the noise sources. For the sake of simplicity, their transposes are

f(t)T = (δq, δp, δx, δy),

η(t)T = (0, ξ,
√
2κδxin,

√
2κδyin);

(2.10)

and the matrix A is given by

A =



0 1
m

0 0

−mω2
m −γm h̄χ cs+c

∗
s

2
h̄χ cs−c

∗
s

2i

iχ(cs − c∗s) 0 2G cos θ − κ ∆+ 2G sin θ

χ(cs + c∗s) 0 2G sin θ −∆ −(κ+ 2G cos θ)


. (2.11)

The solutions to Eq. (2.9) are stable only if all the eigenvalues of the matrix A have

negative real parts. Applying the Routh-Hurwitz criterion [112, 113], we get the
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stability conditions

2κ(κ2 − 4G2 +∆2 + 2κγm) + γm(2κγm + ω2
m) > 0,

(2κ+ γm)
2[
2h̄χ2|cs|2

m
∆+

2h̄χ2(c2s + c∗2s )G sin θ

m

+
2ih̄χ2(c2s − c∗2s )G cos θ

m
] + 2κγm{(κ2 − 4G2 +∆2)2

+(2κγm + γ2m)(κ
2 − 4G2 +∆2)

+ω2
m[2(κ

2 + 4G2 −∆2) + ω2
m + 2κγm]} > 0,

ω2
m(κ

2 − 4G2 +∆2)− 2h̄χ2|cs|2

m
∆

−2h̄χ2(c2s + c∗2s )G sin θ

m
− 2ih̄χ2(c2s − c∗2s )G cos θ

m
> 0.

(2.12)

Note that in the absence of coupling χ, the conditions (2.12) become equivalent to

κ2 − 4G2 +∆2 > 0 (2.13)

The condition for the threshold for parametric oscillations is κ2 − 4G2 +∆2 = 0. We

always would work under the condition that (2.13) is satisfied. Further for χ ̸= 0

we would do numerical simulations using parameters so that conditions (2.12) are

satisfied.

On Fourier transforming all operators and noise sources in Eq. (2.8) and solving

it in the frequency domain, the position fluctuations of the movable mirror are given

by

δq(ω) = − 1
d(ω)

([∆2 + (κ− iω)2 − 4G2]ξ(ω)

−ih̄
√
2κχ{[(ω + iκ−∆)cs + 2iGeiθc∗s]δc

†
in(ω)

+[(ω + iκ+∆)c∗s + 2iGe−iθcs]δcin(ω)}),

(2.14)

where d(ω) = 2h̄χ2(∆|cs|2+iGe−iθc2s−iGeiθc∗2s )+m(ω2−ω2
m+iωγm)[∆

2+(κ−iω)2−

4G2]. In Eq. (2.14), the first term proportional to ξ(ω) originates from the thermal

noise, while the second term proportional to χ arises from radiation pressure. So the

position fluctuations of the movable mirror are now determined by the thermal noise
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and radiation pressure. Notice that if there is no radiation pressure, the movable

mirror will make Brownian motion, δq(ω) = −ξ(ω)/[m(ω2 − ω2
m + iωγm)], whose

susceptibility has a Lorentzian shape centered at frequency ωm with width γm.

The spectrum of fluctuations in position of the movable mirror is defined by

Sq(ω) =
1

4π

∫
dΩe−i(ω+Ω)t⟨δq(ω)δq(Ω) + δq(Ω)δq(ω)⟩. (2.15)

To calculate the spectrum, we need the correlation functions of the noise sources in

the frequency domain,

⟨δcin(ω)δc†in(Ω)⟩ = 2πδ(ω + Ω),

⟨ξ(ω)ξ(Ω)⟩ = 2πh̄γmmω
[
1 + coth( h̄ω

2kBT
)
]
δ(ω + Ω).

(2.16)

Substituting Eq. (2.14) and Eq. (2.16) into Eq. (2.15), we obtain the spectrum of

fluctuations in position of the movable mirror

Sq(ω) =
h̄

|d(ω)|2{2κh̄χ
2[(κ2 + ω2 +∆2 + 4G2)|cs|2

+2Geiθc∗2s (κ− i∆) + 2Ge−iθc2s(κ+ i∆)]

+mγmω[(∆
2 + κ2 − ω2 − 4G2)2 + 4κ2ω2]

× coth( h̄ω
2kBT

)}.

(2.17)

In Eq. (2.17), the first term is the radiation pressure contribution, whereas the second

term corresponds to the thermal noise contribution. Then Fourier transforming q̇ =

δp/m in Eq. (2.8), we obtain δp(ω) = −imωδq(ω), which leads to the spectrum of

fluctuations in momentum of the movable mirror

Sp(ω) = m2ω2Sq(ω). (2.18)

For a system in thermal equilibrium, we can use the equipartition theorem to define

temperature 1
2
mω2

m⟨q2⟩ =
⟨p2⟩
2m

= 1
2
kBTeff , where ⟨q2⟩ = 1

2π

∫+∞
−∞ Sq(ω)dω, and ⟨p2⟩ =

1
2π

∫+∞
−∞ Sp(ω)dω. However, here we are dealing with a driven system and 1

2
mω2

m⟨q2⟩ ̸=
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⟨p2⟩
2m

, hence the question is how to define temperature. We use an effective temperature

defined by the total energy of the movable mirror kBTeff = 1
2
mω2

m⟨q2⟩ +
⟨p2⟩
2m

. We

also introduce the parameter r = m2ω2
m⟨q2⟩/⟨p2⟩.This parameter gives us the relative

importance of fluctuations in position and momentum of the mirror. We mention that

one can calculate the quantum state of the oscillator and we find that the Wigner

function is Gaussian.

Equation (2.17) is our key result which tells how the temperature of the micromir-

ror would depend on the parameters of the cavity: κ, gain of the OPA, external laser

power, etc. We specifically investigate the dependence of the temperature on the gain

G and the phase θ associated with the parametric amplification process. In the limit

of G→ 0, the result (2.17) reduces to the one derived by Paternostro et al.[35].

2.4 Cooling Mirror to About Sub-Kelvin Temperatures

In this section, we present the possibility of cooling the micromirror to temperatures of

about sub-Kelvin by using parametric amplifiers inside cavities. In all the numerical

calculations we choose the values of the parameters which are similar to those used

in recent experiments: λL = 2πc/ωL = 1064 nm, L = 25 mm, P = 4 mW, m = 15

ng, ωm/(2π) = 275 kHz, and the mechanical quality factor Q = ωm/γm = 2.1 ×

104. Further in the high-temperature limit kBT ≫ h̄ω, we have coth(h̄ω/2kBT ) ≈

2kBT/h̄ω.

2.4.1 From Room Temperature (T=300 K) to About Sub-Kelvin Tem-

peratures

If we choose κ = 108 s−1, F = 188.4, G = 0 to satisfy the stability conditions

(2.12), the detuning must satisfy ∆0 ≥ 4 × 106s−1. Figure 2.2 gives the variations

of the χqs, the effective temperature Teff , and the parameter r with the detuning

∆0. It should be borne in mind that for the range of the detuning shown in Fig. 2.2,
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Figure 2.2: The dotted curve indicates the χqs (10
6 s−1) as a function of the detuning

∆0 (107 s−1) (rightmost vertical scale). The solid curve shows the effective tempera-

ture Teff (K) as a function of the detuning ∆0 (10
7 s−1) (leftmost vertical scale). The

dashed curve represents the parameter r as a function of the detuning ∆0 (107 s−1)

(leftmost vertical scale). Parameters: cavity decay rate κ = 108 s−1, cavity finesse

F = 188.4, parametric gain G=0.

∆ = ∆0 − χqs ≈ ∆0. We find the χqs is single valued, so the movable mirror is

monostable. Note that the parameter r is very close to unity, 1
2
mω2

m⟨q2⟩ ≈ ⟨p2⟩
2m

;

the mirror is thus in nearly thermal equilibrium. Figure 2.2 shows the possibility of

cooling the mirror to a temperature of 15.23 K for ∆0 = 4.9 × 107 s−1, which is in

agreement with the previous calculation [35].

Now we keep the values of κ and F the same as in Fig. 2.2, and we choose

parametric gain G = 3.5 × 107 s−1 and parametric phase θ = 0; the detuning must

satisfy ∆0 ≥ 5.7 × 107 s−1. If ∆0 < 5.7 × 107 s−1 and for fixed κ and G, the

system will be unstable. The threshold for unstable behavior occurs when any of

the three conditions (2.12) is not satisfied. It may be noted that the threshold for

parametric oscillation has been of great importance in connection with the production
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Figure 2.3: The dotted curve indicates the χqs (10
7 s−1) as a function of the detuning

∆0 (10
7 s−1) (rightmost vertical scale). The position that corresponds to the minimum

effective temperature reached is indicated by the arrow. The solid curve shows the

effective temperature Teff (K) as a function of the detuning ∆0 (107 s−1) (leftmost

vertical scale). The dashed curve represents the parameter r as a function of the

detuning ∆0 (10
7 s−1) (leftmost vertical scale). Parameters: cavity decay rate κ = 108

s−1, cavity finesse F = 188.4, parametric gain G = 3.5 × 107s−1, parametric phase

θ = 0.

of nonclassical-squeezed light. Near the parametric thresholds but under (2.13), large

degrees of squeezing were produced [97, 98]. Thus it would be advantageous to work

near the threshold of instability but below the instability point. Figure 2.3 shows

the variations of the χqs, the effective temperature Teff , and the parameter r with

the detuning ∆0. We find the χqs is still single valued, so the movable mirror is still

monostable. The minimum temperature reached is 0.65 K for ∆0 = 6.7 × 107 s−1.

Thus, with the parametric amplifier the minimum temperature is about a factor of

20 lower than the one without parametric interaction. Note that the parameter r

is always larger than 1, implying that momentum fluctuations are suppressed over
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Figure 2.4: The behavior of χqs (10
7 s−1) shown as a function of the detuning ∆0 (10

7

s−1). The position that corresponds to the minimum effective temperature reached

is indicated by the arrow. Parameters: cavity decay rate κ = 107 s−1, cavity finesse

F = 1884, parametric gain G = 5× 106s−1, parametric phase θ = 3π/4.

position fluctuations. Note that as one moves away from the threshold for parametric

instability, the minimum temperature does not rise sharply which is in contrast to

the behavior in Fig. 2.2, and is advantageous in giving one flexibility about the choice

of the detuning parameter.

We next examine the case when the behavior of the system is multistable. For this

purpose, we choose the cavity to have the higher quality factor. We choose κ = 107

s−1, F = 1884, G = 5× 106 s−1 and θ = 3π/4; then to satisfy the stability conditions

(2.12), the detuning must satisfy ∆0 ≥ 1.847× 107 s−1. Figure 2.4 gives the behavior

of χqs as a function of the detuning ∆0. We find the χqs is multivalued, so the movable
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Figure 2.5: The solid curve shows the effective temperature Teff (K) as a function

of the detuning ∆0 (107 s−1). The dashed curve represents the parameter r as a

function of the detuning ∆0 (107 s−1). Parameters: cavity decay rate κ = 107 s−1,

cavity finesse F = 1884, parametric gain G = 5×106s−1, parametric phase θ = 3π/4.

mirror is multistable. By use of the lowest curve of the χqs, we obtain the variations

of the effective temperature Teff and the parameter r with the detuning ∆0, as shown

in Fig. 2.5. We choose that the range of the detuning is 2.0 × 107 s−1 − 3.0 × 107

s−1. The minimum temperature achieved is 0.265 K for ∆0 = 2.0 × 107 s−1. Note

that r is close to unity but larger than unity. The general trend is clear. By playing

around with various parameters such as laser power, cavity finesse, and parametric

gain, one can achieve a variety of different temperatures. As another example, if we

choose κ = 5 × 106 s−1, F = 3768, G = 107 s−1 and θ = 0.2467 + π/2, then we find

that the minimum temperature is 0.092 K for ∆0 = 2.13× 107s−1.

2.4.2 From 1 K to Millikelvin Temperatures

If the thermal bath is cryogenically cooled down to a temperature of 1 K and the

mirror is initially thermalized, then we can use radiation pressure effects and photon
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Figure 2.6: The solid curve shows the effective temperature Teff (K) as a function

of the detuning ∆0 (107 s−1)(leftmost vertical scale). The dashed curve represents

the parameter r as a function of the detuning ∆0 (107 s−1)(rightmost vertical scale).

Parameters: cavity decay rate κ = 108 s−1, cavity finesse F = 188.4, parametric gain

G = 0.

statistics to reach millikelvin or even lower temperatures.

If we choose κ = 108 s−1, F = 188.4, G = 0, the effective temperature Teff with

the detuning ∆0 is shown in Fig. 2.6. The minimum temperature reached is 0.051 K

for ∆0 = 4.9 × 107 s−1. Next we examine how the effective temperature changes by

the parametric interactions inside the cavity. We keep all other parameters as in Fig.

6 and choose parametric gain G = 3.5× 107 s−1 and phase θ = 0. Then the effective

temperature Teff with the detuning ∆0 exhibits behavior as shown in Fig. 2.7. The

minimum temperature achieved is 0.0044 K for ∆0 = 7.9 × 107 s−1, a factor of 12

lower than the one without parametric interaction.

Finally it should be borne in mind that the radiation pressure depends on the

number operator and then it is sensitive to the photon statistics of the field in the

cavity. The photon statistics can be calculated from the quantum Langevin equations

(2.8). It can be proved that the Wigner function W of the field in the cavity is

40



6 7 8 9 10

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.

1.

2.

3.

4.

D0 H107
s
-1L

T
ef

f
H

K
L

r

Figure 2.7: The solid curve shows the effective temperature Teff (K) as a function

of the detuning ∆0 (107 s−1)(leftmost vertical scale). The dashed curve represents

the parameter r as a function of the detuning ∆0 (107 s−1)(rightmost vertical scale).

Parameters: cavity decay rate κ = 108 s−1, cavity finesse F = 188.4, parametric gain

G = 3.5× 107 s−1, parametric phase θ = 0.

Gaussian of the form exp[µ(α− cs)
2 + ν(α∗ − c∗s)

2 + λ(α− cs)(α
∗ − c∗s)] with µ, ν, λ

determined by κ, ∆, G, θ, etc. The photon number distribution [103] associated with

such a Gaussian Wigner function depends in an important way on the parameter µ

and the inequality of µ and ν. The latter depend on G ̸= 0 or on the presence of

OPA in the cavity.

2.5 Conclusions

In conclusion, we have demonstrated how the addition of a parametric amplifier in a

cavity can lead to cooling of the micromirror to a temperature; which is much lower

than what is achieved in an identical experiment without the use of a parametric

amplifier. The parametric processes inside the cavity change the quantum statistics of

the field in the cavity. This change leads to lower cooling since the radiation pressure

41



effects are dependent on the photon number. Thus photon statistics becomes central

to achieve lower cooling temperatures. The use of parametric processes could provide

us with a way to cool the mirror to its quantum ground state or even squeeze it.

The content of this chapter has been published in Phys. Rev. A 79, 013821

(2009).
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CHAPTER 3

NORMAL MODE SPLITTING IN A COUPLED SYSTEM OF A

NANOMECHANICAL OSCILLATOR AND A PARAMETRIC

AMPLIFIER CAVITY

3.1 Overview

Recently there has been a major effort in applying many of the well tested ideas

from quantum optics such as squeezing, quantum entanglement to optomechanical

systems which are macroscopic systems. Thus observation of entanglement [28, 35,

36, 38, 114, 115], squeezing [25, 26] etc in optomechanical systems would enable one

to study quantum behavior at macroscopic scale. This of course requires cooling such

systems to their ground state and significant advances have been made in cooling the

mechanical mirror to far below the temperature of the environment [7, 8, 9, 116, 117,

118, 119]. Further it has been pointed out that using optical back action one can

possibly achieve the ground state cooling in the resolved sideband regime where the

frequency of the mechanical mirror is much larger than the cavity decay rate, that is

ωm ≫ κ [47, 66, 120].

Another key idea from quantum optics is the vacuum Rabi splitting [121, 122]

which is due to strong interaction between the atoms and the cavity mode. The

experimentalists have worked hard over the years to produce stronger and stronger

couplings to produce larger and larger splittings [123, 124, 213]. Application of these

ideas to macroscopic systems is challenging as well. In a recent paper Kippenberg

et al. [48] proposed the possibility of normal mode splitting in the resolved sideband

regime using optomechanical oscillators. In this chapter, we propose placing a type
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I optical parametric amplifier inside the cavity to increase the coupling between the

movable mirror and the cavity field, and this should make the observation of the

normal mode splitting of the movable mirror and the output field more accessible.

The chapter is structured as follows. In Sec. II we present the model, derive the

quantum Langevin equations, and give the steady-state mean values. In Sec. III we

present solution to the linearized Langevin equations and give the spectrum of the

movable mirror. In Sec. IV we analyse and estimate the amount of the normal mode

splitting of the spectra. In Sec. V we calculate the spectra of the output field. In

Sec. VI we discuss the mode splitting of the spectra of the movable mirror and the

output field.

3.2 Model

The system under consideration, sketched in Fig. 3.1, is an optical parametric am-

plifier (OPA) placed within a Fabry-Perot cavity formed by one fixed partially trans-

mitting mirror and one movable perfectly reflecting mirror in equilibrium with its

environment at a low temperature. The movable mirror is treated as a quantum me-

chanical harmonic oscillator with effective mass m, frequency ωm, and energy decay

rate γm. An external laser enters the cavity through the fixed mirror, then the pho-

tons in the cavity will exert a radiation pressure force on the movable mirror due to

momentum transfer. This force is proportional to the instantaneous photon number

in the cavity.

In the adiabatic limit, the frequency ωm of the movable mirror is much smaller

than the free spectral range of the cavity c
2L

(c is the speed of light in vacuum and L

is the cavity length), the scattering of photons to other cavity modes can be ignored,

thus only one cavity mode ωc is considered [64, 106]. The Hamiltonian for the system

in a frame rotating at the laser frequency ωL can be written as

H = h̄(ωc − ωL)nc − h̄ωmχncQ+
h̄ωm
4

(Q2 + P 2)
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Figure 3.1: Sketch of the studied system. The cavity contains a nonlinear crystal

which is pumped by a laser (not shown) to produce parametric amplification and to

change photon statistics in the cavity.

+ih̄ε(c† − c) + ih̄G(eiθc†2 − e−iθc2). (3.1)

Here Q and P are the dimensionless position and momentum operators for the mov-

able mirror, defined by Q =
√

2mωm

h̄
q and P =

√
2

mh̄ωm
p with [Q,P ] = 2i. In Eq.

(3.1), the first term is the energy of the cavity field, nc = c†c is the number of the

photons inside the cavity, c and c† are the annihilation and creation operators for the

cavity field satisfying the commutation relation [c, c†] = 1. The second term comes

from the coupling of the movable mirror to the cavity field via radiation pressure, the

dimensionless parameter χ = 1
ωm

ωc

L

√
h̄

2mωm
is the optomechanical coupling constant

between the cavity and the movable mirror. The third term corresponds the energy

of the movable mirror. The fourth term describes the coupling between the input

laser field and the cavity field, ε is related to the input laser power ℘ by ε =
√

2κ℘
h̄ωL

,

where κ is the cavity decay rate. The last term is the coupling between the OPA and

the cavity field, G is the nonlinear gain of the OPA, and θ is the phase of the field

driving the OPA. The parameter G is proportional to the pump driving the OPA.

Using the Heisenberg equations of motion and adding the corresponding damping
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and noise terms, we obtain the quantum Langevin equations as follows,

Q̇ = ωmP,

Ṗ = 2ωmχnc − ωmQ− γmP + ξ,

ċ = −i(ωc − ωL − ωmχQ)c+ ε+ 2Geiθc† − κc+
√
2κcin,

ċ† = i(ωc − ωL − ωmχQ)c
† + ε+ 2Ge−iθc− κc† +

√
2κc†in.

(3.2)

Here we have introduced the input vacuum noise operator cin with zero mean value,

which obeys the correlation function in the time domain [141]

⟨δcin(t)δc†in(t′)⟩ = δ(t− t′),

⟨δcin(t)δcin(t′)⟩ = ⟨δc†in(t)δcin(t′)⟩ = 0.

(3.3)

The force ξ is the Brownian noise operator resulting from the coupling of the mov-

able mirror to the thermal bath, whose mean value is zero, and it has the following

correlation function at temperature T [108]:

⟨ξ(t)ξ(t′)⟩ = 1

π

γm
ωm

∫
ωe−iω(t−t

′
)

[
1 + coth(

h̄ω

2kBT
)

]
dω, (3.4)

where kB is the Boltzmann constant and T is the thermal bath temperature. Following

standard methods from quantum optics [110], we derive the steady-state solution to

Eq. (3.2) by setting all the time derivatives in Eq. (3.2) to zero. They are

Ps = 0, Qs = 2χ|cs|2, cs =
κ− i∆+ 2Geiθ

κ2 +∆2 − 4G2
ε, (3.5)

where

∆ = ωc − ωL − ωmχQs (3.6)

is the effective cavity detuning, depending on Qs. The Qs denotes the new equilibrium

position of the movable mirror relative to that without the driving field. Further cs

represents the steady-state amplitude of the cavity field. From Eq. (3.5) and Eq.

(3.6), we can see Qs satisfies a fifth order equation, it can at most have five real
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solutions. Therefore, the movable mirror displays an optical multistable behavior [41,

42, 43], which is a nonlinear effect induced by the radiation-pressure coupling of the

movable mirror to the cavity field.

3.3 Radiation Pressure and Quantum Fluctuations

In order to investigate the normal mode splitting of the movable mirror and the

output field, we need to calculate the fluctuations of the system. Since the problem

is nonlinear, we assume that the nonlinearity is weak. Thus we can focus on the

dynamics of small fluctuations around the steady state of the system. Each operator

of the system can be written as the sum of its steady-state mean value and a small

fluctuation with zero mean value,

Q = Qs + δQ, P = Ps + δP, c = cs + δc. (3.7)

Inserting Eq. (3.7) into Eq. (3.2), then assuming |cs| ≫ 1, the linearized quantum

Langevin equations for the fluctuation operators take the form

δQ̇ = ωmδP,

δṖ = 2ωmχ(c
∗
sδc+ csδc

†)− ωmδQ− γmδP + ξ,

δċ = −(κ+ i∆)δc+ iωmχcsδQ+ 2Geiθδc† +
√
2κδcin,

δċ† = −(κ− i∆)δc† − iωmχc
∗
sδQ+ 2Ge−iθδc+

√
2κδc†in.

(3.8)

Introducing the cavity field quadratures δx = δc + δc† and δy = i(δc† − δc), and the

input noise quadratures δxin = δcin + δc†in and δyin = i(δc†in − δcin), Eq. (3.8) can be

rewritten in the matrix form

ḟ(t) = Af(t) + η(t), (3.9)
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in which f(t) is the column vector of the fluctuations, η(t) is the column vector of

the noise sources. Their transposes are

f(t)T = (δQ, δP, δx, δy),

η(t)T = (0, ξ,
√
2κδxin,

√
2κδyin);

(3.10)

and the matrix A is given by

A =



0 ωm 0 0

−ωm −γm ωmχ(cs + c∗s) −iωmχ(cs − c∗s)

iωmχ(cs − c∗s) 0 2G cos θ − κ 2G sin θ +∆

ωmχ(cs + c∗s) 0 2G sin θ −∆ −(2G cos θ + κ)


. (3.11)

The system is stable only if all the eigenvalues of the matrix A have negative real

parts. The stability conditions for the system can be derived by applying the Routh-

Hurwitz criterion [112, 113]. This gives

2κ(κ2 − 4G2 +∆2 + 2κγm) + γm(2κγm + ω2
m) > 0,

2ω3
mχ

2(2κ+ γm)
2[|cs|2∆+ iG(c2se

−iθ − c∗2s e
iθ)]

+κγm{(κ2 − 4G2 +∆2)2 + (2κγm + γ2m)

×(κ2 − 4G2 +∆2) + ω2
m[2(κ

2 + 4G2 −∆2)

+ω2
m + 2κγm]} > 0,

κ2 − 4G2 +∆2 − 4ωmχ
2[|cs|2∆+ iG(c2se

−iθ − c∗2s e
iθ)] > 0.

(3.12)

All the external parameters must be chosen to satisfy the stability conditions (3.12).

Taking Fourier transform of Eq. (3.8) by using f(t) = 1
2π

∫+∞
−∞ f(ω)e−iωtdω and

f †(t) = 1
2π

∫+∞
−∞ f †(−ω)e−iωtdω, where f †(−ω) = [f(−ω)]†, then solving it, we obtain
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the position fluctuations of the movable mirror

δQ(ω) = − ωm

d(ω)
[2
√
2κωmχ{[(κ− i(∆ + ω))c∗s + 2Ge−iθcs]δcin(ω)

+[(κ+ i(∆− ω))cs + 2Geiθc∗s]δc
†
in(−ω)}

+[(κ− iω)2 +∆2 − 4G2]ξ(ω)],

(3.13)

where

d(ω) = 4ω3
mχ

2[∆|cs|2 + iG(c2se
−iθ − c∗2s e

iθ)]

+(ω2 − ω2
m + iγmω)[(κ− iω)2 +∆2 − 4G2].

(3.14)

In Eq. (3.13), the first term proportional to χ originates from radiation pressure,

while the second term involving ξ(ω) is from the thermal noise. So the position

fluctuations of the movable mirror are now determined by radiation pressure and the

thermal noise. In the case of no coupling with the cavity field, the movable mirror

will make Brownian motion, δQ(ω) = ωmξ(ω)/(ω
2
m−ω2− iγmω), whose susceptibility

has a Lorentzian shape centered at frequency ωm with width γm.

The spectrum of fluctuations in position of the movable mirror is defined by

1

2
(⟨δQ(ω)δQ(Ω)⟩+ ⟨δQ(Ω)δQ(ω)⟩) = 2πSQ(ω)δ(ω + Ω). (3.15)

To calculate the spectrum, we require the correlation functions of the noise sources

in the frequency domain,

⟨δcin(ω)δc†in(−Ω)⟩ = 2πδ(ω + Ω),

⟨ξ(ω)ξ(Ω)⟩ = 4π γm
ωm
ω
[
1 + coth( h̄ω

2kBT
)
]
δ(ω + Ω).

(3.16)

Substituting Eq. (3.13) and Eq. (3.16) into Eq. (3.15), we obtain the spectrum of

fluctuations in position of the movable mirror [126]

SQ(ω) =
ω2
m

|d(ω)|2{8ω
2
mχ

2κ[(κ2 + ω2 +∆2 + 4G2)|cs|2

+2Geiθc∗2s (κ− i∆) + 2Ge−iθc2s(κ+ i∆)]

+2 γm
ωm
ω[(∆2 + κ2 − ω2 − 4G2)2 + 4κ2ω2]

× coth( h̄ω
2kBT

)}.

(3.17)
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In Eq. (3.17), the first term involving χ arises from radiation pressure, while the

second term originates from the thermal noise. So the spectrum SQ(ω) of the movable

mirror depends on radiation pressure and the thermal noise.

3.4 Normal Mode Splitting and the Eigenvalues of the Matrix A

The structure of all the spectra is determined by the eigenvalues of iA (Eq. (3.11))

or the complex zeroes of the function d(ω) defined by Eq. (3.14). Clearly we need

the eigenvalues of iA as the solution of (Eq. (3.9)) in Fourier domain is f(ω) =

i(ω − iA)−1η(ω). Let us analyse the eigenvalues of Eq. (3.11). Note that in the

absence of the coupling χ=0, the eigenvalues of iA are

±
√
ω2
m − γ2m

4
− iγm

2
;±

√
∆2 − 4G2 − iκ. (3.18)

Thus the positive frequencies of the normal modes are given by
√
∆2 − 4G2,

√
ω2
m − γ2m

4

(∆ > 2G,ωm > γm
2
). The case that we consider in this chapter corresponds to

ωm ≫ γm
2
; ∆ > 2G;κ≫ γm;ωm > κ. (3.19)

The coupling between the normal modes would be most efficient in the degenerate

case i.e. when ωm =
√
∆2 − 4G2. It is known from cavity QED that the normal mode

splitting leads to symmetric (asymmetric) spectra in the degenerate (nondegenerate)

case, provided that the dampings of the individual modes are much smaller than the

coupling constant. Thus the mechanical oscillator is like the atomic oscillator, the

cavity mode in the rotating frame acquires the effective frequency
√
∆2 − 4G2 which

is dependent on the parametric coupling. All this applies provided that damping

terms do not mix the modes significantly. An estimate of the splitting can be made

by using the approximations given by Eq. (3.19) and the zeroes of d(ω). We find that

the frequency splitting is given by [127]

ω2
±
∼= ω2

m+∆2−4G2

2
±
√
(ω

2
m−∆2+4G2

2
)2 + 4ω2

mg
2, (3.20)

50



where we have defined

g2 = ωmχ
2|cs|2[∆ + 2G sin(θ − 2φ)], e2iφ = c2s/|cs|2. (3.21)

It should be borne in mind that cs is dependent on the parametric coupling G. The

splitting is determined by the pump power, the couplings χ and G.

The parameters used are the same as those in the recent successful experiment on

optomechanical normal mode splitting [50]: the wavelength of the laser λ = 2πc/ωL =

1064 nm, L = 25 mm, m = 145 ng, κ = 2π × 215× 103 Hz, ωm = 2π × 947× 103 Hz,

T = 300 mK, the mechanical quality factor Q
′
= ωm/γm = 6700, parametric phase

θ = π/4. And in the high temperature limit kBT ≫ h̄ωm, we have coth(h̄ω/2kBT ) ≈

2kBT/h̄ω.

Figure 3.2 shows the roots of d(ω) in the domain Re(ω) > 0 for different values

of G. Figure 3.3 shows imaginary parts of the roots of d(ω) for different values of

G. The parametric coupling affects the width of the lines and this for certain range

of parameters aids in producing well split lines. One root broadens and the other

root narrows. The root that broadens is the one that moves further away from the

position for G = 0.

3.5 The Spectra of the Output Field

In this section, we would like to calculate the spectra of the output field. The fluc-

tuations δc(ω) of the cavity field can be obtained from Eq. (3.8). Further using the

input-output relation [128] cout(ω) =
√
2κc(ω)−cin(ω), the fluctuations of the output

field are given by

δcout(ω) = V (ω)ξ(ω) + E(ω)δcin(ω) + F (ω)δc†in(−ω), (3.22)
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Figure 3.2: The roots of d(ω) in the domain Re(ω) > 0 as a function of parametric

gain. ℘ = 6.9 mW (dotted line), ℘ = 10.7 mW (dashed line). Parameters: the cavity

detuning ∆ = ωm.
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Figure 3.3: The imaginary parts of the roots of d(ω) as a function of parametric gain.

℘ = 6.9 mW ( dotted line), ℘ = 10.7 mW (dashed line). Parameters: the cavity

detuning ∆ = ωm.

52



where

V (ω) = −
√
2κω2

mχ
d(ω)

i{[κ− i(ω +∆)]cs − 2Geiθc∗s},

E(ω) = 2κ
(κ−iω)2+∆2−4G2 [−2ω3

mχ
2

d(ω)
i{[κ− i(ω +∆)]cs

−2Geiθc∗s}{[κ− i(ω +∆)]c∗s + 2Ge−iθcs}

+κ− i(ω +∆)]− 1,

F (ω) = 2κ
(κ−iω)2+∆2−4G2 [−2ω3

mχ
2

d(ω)
i{[κ− i(ω +∆)]cs

−2Geiθc∗s}{[κ− i(ω −∆)]cs + 2Geiθc∗s}

+2Geiθ].

(3.23)

In Eq. (3.22), the first term associated with ξ(ω) stems from the thermal noise of the

mechanical oscillator, while the other two terms are from the input vacuum noise. So

the fluctuations of the output field are influenced by the thermal noise and the input

vacuum noise.

The spectra of the output field are defined as

⟨δc†out(−Ω)δcout(ω)⟩ = 2πScout(ω)δ(ω + Ω),

⟨δxout(Ω)δxout(ω)⟩ = 2πSxout(ω)δ(ω + Ω),

⟨δyout(Ω)δyout(ω)⟩ = 2πSyout(ω)δ(ω + Ω).

(3.24)

where δxout(ω) and δyout(ω) are the Fourier transform of the fluctuations δxout(t) and

δyout(t) of the output field , which are defined by δxout(t) = δcout(t) + δc†out(t) and

δyout(t) = i[δc†out(t) − δcout(t)] [110]. Here Scout(ω) denotes the spectral density of

the output field, Sxout(ω) means the spectrum of fluctuations in the x quadrature of

the output field, and Syout(ω) is the spectrum of fluctuations in the y quadrature of

the output field.

Combining Eq. (3.16), Eq. (3.22), and Eq. (3.24), we obtain the spectra of the
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output field

Scout(ω) = V ∗(ω)V (ω)× 2 γm
ωm
ω[−1 + coth( h̄ω

2kBT
)] + F ∗(ω)F (ω),

Sxout(ω) = [V (−ω) + V ∗(ω)][V (ω) + V ∗(−ω)]× 2 γm
ωm
ω[−1 + coth( h̄ω

2kBT
)]

+[E(−ω) + F ∗(ω)][F (ω) + E∗(−ω)],

Syout(ω) = −[V ∗(ω)− V (−ω)][V ∗(−ω)− V (ω)]× 2 γm
ωm
ω[−1 + coth( h̄ω

2kBT
)]

−[F ∗(ω)− E(−ω)][E∗(−ω)− F (ω)].

(3.25)

From Eq. (3.25), it is seen that any spectrum of the output field includes two terms,

the first term is from the contribution of the thermal noise of the mechanical oscillator,

the second term is from the contribution of the input vacuum noise.

We note that the spectra SQ(ω), Scout(ω), Sxout(ω), and Syout(ω) are determined

by the detuning ∆, parametric gain G, parametric phase θ, input laser power ℘, and

cavity length L. In the following we will concentrate on discussing the dependence of

the spectra on parametric gain and input laser power.

3.6 Numerical Results

In this section, we numerically evaluate the spectra SQ(ω), Scout(ω), Sxout(ω), and

Syout(ω) given by Eq. (3.17) and Eq. (3.25) to show the effect of an OPA in the

cavity on the normal mode splitting of the movable mirror and the output field.

We typically imagine a setup like in the original squeezing experiment [97] where

the experiment is done, for different levels of the pumping of OPA i.e., we start with

G = 0 and then increase it to a value consistent with the stability requirements. We

consider the degenerate case ∆ = ωm for G = 0, and choose ℘ = 6.9 mW. In order to

satisfy the stability conditions (3.12), parametric gain must satisfy G ≤ 1.62κ. The

figures 3.4 – 3.7 show the spectra SQ(ω), Scout(ω), Sxout(ω), and Syout(ω) as a function

of the normalized frequency ω/ωm for various values of parametric gain. When the

OPA is absent (G = 0), the spectra barely show the normal mode splitting. As
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Figure 3.4: The scaled spectrum SQ(ω)× γm versus the normalized frequency ω/ωm

for different parametric gain. G= 0 (solid curve), 1.3κ (dotted curve), 1.45κ (dashed

curve). Parameters: the cavity detuning ∆ = ωm, the laser power ℘ = 6.9 mW.
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Figure 3.5: The spectrum Scout(ω) versus the normalized frequency ω/ωm for different

parametric gain. G= 0 (solid curve), 1.3κ (dotted curve), 1.45κ (dashed curve).

Parameters: the cavity detuning ∆ = ωm, the laser power ℘ = 6.9 mW.
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Figure 3.6: The spectrum Sxout(ω) versus the normalized frequency ω/ωm for different

parametric gain. G= 0 (solid curve), 1.3κ (dotted curve), 1.45κ (dashed curve).

Parameters: the cavity detuning ∆ = ωm, the laser power ℘ = 6.9 mW.

parametric gain is increased, the normal mode splitting becomes observable. This is

due to significant changes in the line widths and position. When G = 1.3κ, two peaks

can be found in the spectra. According to the numerical calculations of Figs. 3.2 and

3.3, these roots in units of ωm are at (A) G = 0: 0.885− 0.113i, 1.091− 0.113i for 6.9

mW pump power and 0.826 − 0.113i, 1.136 − 0.113i for 10.7 mW pump power. (B)

G = 1.3κ: 0.596− 0.156i, 1.129− 0.070i for 6.9 mW pump power and 0.490− 0.148i,

1.178−0.079i for 10.7 mW pump power. We see that the line width of the two peaks

is approximately same for G = 0 but for two different power levels. The line widths

change significantly for G ̸= 0. Note that the separation between two peaks becomes

larger as parametric gain increases. The reason is that increasing the parametric gain

causes a stronger coupling between the movable mirror and the cavity field due to an

increase in the photon number in the cavity. The values of intracavity photon number

|cs|2 are 2.68 × 109, 4.30 × 109, 5.65 × 109 for G = 0, 1.3κ, and 1.45κ respectively.
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Figure 3.7: The spectrum Syout(ω) versus the normalized frequency ω/ωm for different

parametric gain. G= 0 (solid curve), 1.3κ (dotted curve), 1.45κ (dashed curve).

Parameters: the cavity detuning ∆ = ωm, the laser power ℘ = 6.9 mW.

We have examined the contributions of various terms in Eq. (3.25) to the output

spectrum. The dominant contribution comes from the mechanical oscillator. Note

further the similarity [50] of the spectrum of the output quadrature y (Fig. 3.7) to

the spectrum of the mechanical oscillator (Fig. 3.4). It should be borne in mind that

the strong asymmetries in the spectra for G ̸= 0 arise from the fact that by fixing

∆ at ωm, the frequencies of the cavity mode and the mechanical oscillator do not

coincide if G ̸= 0; χ = 0. Besides the damping term κ, being not negligible compared

to ∆, also contributes to asymmetries.

Now we fix parametric gain G = 1.3κ, and choose ∆ =
√
ω2
m + 4G2, the input

laser power must satisfy ℘ ≤ 55 mW. The spectrum SQ(ω) as a function of the

normalized frequency ω/ωm for increasing the input laser power is shown in Fig. 3.8.

As we increase the laser power from 0.6 mW to 10.7 mW, the spectrum exhibits

a doublet and the peak separation is proportional to the laser power, because the
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coupling between the movable mirror and the cavity field for a given parametric gain

G is increased with increasing the input laser power due to an increase in photon

number.
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Figure 3.8: The scaled spectrum SQ(ω) × γm versus the normalized frequency

ω/ωm, each curve corresponds to a different input laser power. ℘= 0.6 mW (solid

curve, leftmost vertical scale), 6.9 mW (dotted curve, rightmost vertical scale), 10.7

mW (dashed curve, rightmost vertical scale). Parameters: the cavity detuning

∆ =
√
ω2
m + 4G2, parametric gain G = 1.3κ.

For comparison, we also consider the case of the cavity without OPA (G = 0), the

spectrum SQ(ω) as a function of the normalized frequency ω/ωm for increasing the

input laser power at ∆ = ωm is plotted in Fig. 3.9. We can see if the laser power is

increased from 0.6 mW to 10.7 mW, the spectrum also displays normal mode splitting.

However the normal mode with OPA (Fig. 3.8) are more pronounced than that in the

absence of OPA (Fig. 3.9).
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Figure 3.9: The scaled spectrum SQ(ω)× γm versus the normalized frequency ω/ωm,

each curve corresponds to a different input laser power. ℘= 0.6 mW (solid curve,

leftmost vertical scale), 6.9 mW (dotted curve, rightmost vertical scale), 10.7 mW

(dashed curve, rightmost vertical scale). Parameters: the cavity detuning ∆ = ωm,

parametric gain G = 0.

3.7 Conclusions

In conclusion, we have shown how the normal mode splitting behavior of the movable

mirror and the output field is affected by the OPA in the cavity. We work in the

resolved sideband regime and operate under the stability conditions (3.12). We find

that increasing parametric gain can make the spectra SQ(ω), Scout(ω), Sxout(ω), and

Syout(ω) evolve from a single peak to two peaks. Furthermore, for a given parametric

gain, increasing input laser power can increase the amount of normal mode splitting

of the movable mirror due to the stronger coupling between the movable mirror and

the cavity field.

The content of this chapter has been published in Phys. Rev. A 80, 033807

(2009).
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CHAPTER 4

SQUEEZING OF A NANOMECHANICAL OSCILLATOR

4.1 Overview

The optomechanical system has attracted much attention because of its potential

applications in high precision measurements and quantum information processing

[28, 35, 36, 37, 88, 90, 129, 130, 131]. Meanwhile, it provides a means of probing

quantum behavior of a macroscopic object if a nanomechanical oscillator can be cooled

down to near its quantum ground state [38, 115]. Many of these applications are

becoming possible due to advances in cooling the mirror [6, 7, 8, 9, 10, 56, 118].

Further as pointed out in Refs [47, 66, 120], the ground state cooling can be achieved

in the resolved sideband regime where the frequency of the mechanical mirror is much

larger than the cavity decay rate.

Squeezing of a nanomechanical oscillator plays a vital role in high-sensitive detec-

tion of position and force due to its less noise in one quadrature than the coherent

state. A number of different methods have been developed to generate and enhance

squeezing of a nanomechanical oscillator, such as coupling a nanomechanical oscilla-

tor to an atomic gas [132], a Cooper pair box [133], a SQUID device [215], using

three-wave mixing [135] or Circuit QED [136], or by means of quantum measurement

and feedback schemes [137, 138, 139, 140]. A recent paper [32] reports squeezed

state of a mechanical mirror can be created by transfer of squeezing from a squeezed

vacuum to a membrane within an optical cavity under the conditions of ground state

cooling. We previously considered the possibility of using an OPA inside the cavity

for changing the nature of the statistical fluctuations [126].
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In this chapter, we propose a scheme that is capable of generating squeezing of

the movable mirror by feeding broad band squeezed vacuum light along with the laser

light. The achieved squeezing of the mirror depends on the temperature of the mirror,

the laser power, and degree of squeezing of the input light. One can obtain squeezing

which could be more than 70%.

The chapter is structured as follows. In Sec. II we describe the model, give the

quantum Langevin equations, and obtain the steady-state mean values. In Sec. III

we derive the stability conditions, calculate the mean square fluctuations in position

and momentum of the movable mirror. In Sec. IV we analyze how the momentum

squeezing of the movable mirror is affected by the squeezing parameter, the temper-

ature of the environment, and the laser power. We also compare the momentum

fluctuations of the movable mirror in the presence of the coupling to the cavity field

with that in the absence of the coupling to cavity field. We find very large squeezing

with respect to thermal fluctuations, for instance at 1 mK, the momentum fluctua-

tions go down by a factor more than one hundred. Our predictions of squeezing are

based on the parameters used in a recent experiment on normal mode splitting in a

nanomechanical oscillator [50].

4.2 Model

The system to be considered, sketched in Fig. 4.1, is a Fabry-Perot cavity with one

fixed partially transmitting mirror and one movable perfectly reflecting mirror in

thermal equilibrium with its environment at a low temperature. The cavity with

length L is driven by a laser with frequency ωL, then the photons in the cavity will

exert a radiation pressure force on the movable mirror due to momentum transfer.

This force is proportional to the instantaneous photon number in the cavity. The

mirror also undergoes thermal fluctuations due to environment. Under the effects of

the two forces, the movable mirror makes oscillation around its equilibrium position.
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Here we treat the movable mirror as a quantum mechanical harmonic oscillator with

effective mass m, frequency ωm and momentum decay rate γm. We further assume

that the cavity is fed with squeezed light at frequency ωS.

Figure 4.1: Sketch of the studied system. A laser with frequency ωL and squeezed

vacuum light with frequency ωS enter the cavity through the partially transmitting

mirror.

In the adiabatic limit, ωm ≪ c
2L

( c is the speed of light in vacuum), we ignore

the scattering of photons to other cavity modes, thus only one cavity mode ωc is

considered [64, 106]. In a frame rotating at the laser frequency, the Hamiltonian for

the system can be written as

H = h̄(ωc − ωL)nc − h̄gncQ+
h̄ωm
4

(Q2 + P 2) + ih̄ε(c† − c), (4.1)

we have used the normalized coordinates for the oscillator defined by Q =
√

2mωm

h̄
q

and P =
√

2
mh̄ωm

p with [Q,P ] = 2i. This normalization implies that in the ground

state of the nanomechanical mirror ⟨Q2⟩ = ⟨P 2⟩ = 1. Further in Eq. (4.1) the

first term is the energy of the cavity field, nc = c†c is the number of the photons

inside the cavity, c and c† are the annihilation and creation operators for the cavity

field with [c, c†] = 1. The second term comes from the coupling of the movable

mirror to the cavity field via radiation pressure, the parameter g = ωc

L

√
h̄

2mωm
is the

optomechanical coupling constant between the cavity and the movable mirror. The

third term corresponds the energy of the movable mirror. The fourth term describes
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the coupling between the input laser field and the cavity field, ε is related to the

input laser power ℘ by ε =
√

2κ℘
h̄ωL

, where κ is the cavity decay rate associated with

the transmission loss of the fixed mirror.

The equations of motion of the system can be derived by the Heisenberg equations

of motion and adding the corresponding noise terms, this gives the quantum Langevin

equations

Q̇ = ωmP,

Ṗ = 2gnc − ωmQ− γmP + ξ,

ċ = i(ωL − ωc + gQ)c+ ε− κc+
√
2κcin,

ċ† = −i(ωL − ωc + gQ)c† + ε− κc† +
√
2κc†in.

(4.2)

Here we have introduced the input squeezed vacuum noise operator cin with fre-

quency ωS = ωL + ωm. It has zero mean value, and nonzero time-domain correlation

functions [141]

⟨δc†in(t)δcin(t′)⟩ = Nδ(t− t′),

⟨δcin(t)δc†in(t′)⟩ = (N + 1)δ(t− t′),

⟨δcin(t)δcin(t′)⟩ =Me−iωm(t+t′)δ(t− t′),

⟨δc†in(t)δc
†
in(t

′)⟩ =M∗eiωm(t+t′)δ(t− t′).

(4.3)

where N = sinh2(r), M = sinh(r) cosh(r)eiφ, r is the squeezing parameter of the

squeezed vacuum light, and φ is the phase of the squeezed vacuum light. For simplic-

ity, we choose φ = 0. The force ξ is the thermal Langevin force resulting from the

coupling of the movable mirror to the environment, whose mean value is zero, and it

has the following correlation function at temperature T [108]:

⟨ξ(t)ξ(t′)⟩ = γm
πωm

∫
ωe−iω(t−t

′
)

[
1 + coth(

h̄ω

2kBT
)

]
dω, (4.4)

where kB is the Boltzmann constant and T is the temperature of the environment.

By using standard methods [110], setting all the time derivatives in Eq. (4.2) to
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zero, and solving it, we obtain the steady-state mean values

Ps = 0, Qs =
2g|cs|2

ωm
, cs =

ε

κ+ i∆
, (4.5)

where

∆ = ωc − ωL − gQs = ∆0 − gQs = ∆0 −
2g2|cs|2

ωm
(4.6)

is the effective cavity detuning, depending on Qs. The Qs denotes the new equilibrium

position of the movable mirror relative to that without the driving field. Further cs

represents the steady-state amplitude of the cavity field. From Eq. (4.5) and Eq.

(4.6), we can see Qs satisfies a third order equation. For a given detuning ∆0, Qs will

at most have three real values. Therefore, Qs and cs display an optical multistable

behavior [41, 42, 43], which is a nonlinear effect induced by the radiation-pressure

coupling of the movable mirror to the cavity field.

4.3 Radiation Pressure and Quantum Fluctuations

To study squeezing of the movable mirror, we need to calculate the fluctuations in the

mirror’s amplitude. Assuming that the nonlinear coupling between the cavity field

and the movable mirror is weak, the fluctuation of each operator is much smaller than

the corresponding steady-state mean value, thus we can linearize the system around

the steady state. Writing each operator of the system as the sum of its steady-state

mean value and a small fluctuation with zero mean value,

Q = Qs + δQ, P = Ps + δP, c = cs + δc. (4.7)

64



Inserting Eq. (4.7) into Eq. (4.2), then assuming |cs| ≫ 1, the linearized quantum

Langevin equations for the fluctuation operators can be expressed as follows,

δQ̇ = ωmδP,

δṖ = 2g(c∗sδc+ csδc
†)− ωmδQ− γmδP + ξ,

δċ = −(κ+ i∆)δc+ igcsδQ+
√
2κδcin,

δċ† = −(κ− i∆)δc† − igc∗sδQ+
√
2κδc†in.

(4.8)

Introducing the cavity field quadratures δx = δc + δc† and δy = i(δc† − δc), and the

input noise quadratures δxin = δcin + δc†in and δyin = i(δc†in − δcin), Eq. (4.8) can be

rewritten in the matrix form

ḟ(t) = Af(t) + η(t), (4.9)

in which f(t) is the column vector of the fluctuations, η(t) is the column vector of

the noise sources. Their transposes are

f(t)T = (δQ, δP, δx, δy),

η(t)T = (0, ξ,
√
2κδxin,

√
2κδyin);

(4.10)

and the matrix A is given by

A =



0 ωm 0 0

−ωm −γm g(cs + c∗s) −ig(cs − c∗s)

ig(cs − c∗s) 0 −κ ∆

g(cs + c∗s) 0 −∆ −κ


. (4.11)

The system is stable only if the real parts of all the eigenvalues of the matrix A are

negative. The stability conditions for the system can be derived by applying the
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Routh-Hurwitz criterion [112, 113], we get

κγm[(κ
2 +∆2)2 + (2κγm + γ2m − 2ω2

m)(κ
2 +∆2)

+ω2
m(4κ

2 + ω2
m + 2κγm)] + 2ωm∆g

2|cs|2

×(2κ+ γm)
2 > 0,

ωm(κ
2 +∆2)− 4∆g2|cs|2 > 0.

(4.12)

All the external parameters chosen in this paper satisfy the stability conditions (4.12)

to ensure the system to be stable.

Fourier transforming each operator in Eq. (4.8) and solving it in the frequency

domain, the position fluctuations of the movable mirror are given by

δQ(ω) = 1
d(ω)

(2
√
2κωmg{[κ− i(∆ + ω)]c∗sδcin(ω)

+[κ+ i(∆− ω)]csδc
†
in(−ω)}

+ωm[(κ− iω)2 +∆2]ξ(ω)),

(4.13)

where d(ω) = −4ωm∆g
2|cs|2 + (ω2

m − ω2 − iγmω)[(κ− iω)2 +∆2]. In Eq. (4.13), the

first term proportional to g originates from radiation pressure, while the second term

involving ξ is from the thermal noise. So the position fluctuations of the movable

mirror are now determined by radiation pressure and the thermal noise. In the case

of no coupling with the cavity field, the movable mirror will make Brownian motion,

δQ(ω) = ωmξ(ω)/(ω
2
m − ω2 − iγmω), whose susceptibility has a Lorentzian shape

centered at frequency ωm with width γm.

Taking Fourier transform of δQ̇ = ωmδP in Eq. (4.8), we further obtain the

momentum fluctuations of the movable mirror, δP (ω) = −i ω
ωm
δQ(ω).

The mean square fluctuations in position and momentum of the movable mirror

are determined by

⟨δQ(t)2⟩ = 1
4π2

∫ ∫+∞
−∞ dωdΩe−i(ω+Ω)t⟨δQ(ω)δQ(Ω)⟩,

⟨δP (t)2⟩ = 1
4π2

∫ ∫+∞
−∞ dωdΩe−i(ω+Ω)t⟨δP (ω)δP (Ω)⟩.

(4.14)
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To calculate the mean square fluctuations, we require the correlation functions of the

noise sources in the frequency domain,

⟨δc†in(ω)δcin(Ω)⟩ = 2πNδ(ω + Ω),

⟨δcin(ω)δc†in(Ω)⟩ = 2π(N + 1)δ(ω + Ω),

⟨δcin(ω)δcin(Ω)⟩ = 2πMδ(ω + Ω− 2ωm),

⟨δc†in(ω)δc
†
in(Ω)⟩ = 2πM∗δ(ω + Ω+ 2ωm),

⟨ξ(ω)ξ(Ω)⟩ = 4πγm
ω
ωm

[
1 + coth( h̄ω

2kBT
)
]
δ(ω + Ω).

(4.15)

Combining Eqs. (4.13) – (4.15), after some calculations, the mean square fluctuations

of Eq. (4.14) are written as

⟨δQ(t)2⟩ = 1
2π

∫+∞
−∞ ω2

m(A+Be−2iωmt + Ce2iωmt)dω,

⟨δP (t)2⟩ = 1
2π

∫+∞
−∞ [ω2A+ ω(ω − 2ωm)Be

−2iωmt

+ω(ω + 2ωm)Ce
2iωmt]dω.

(4.16)

where

A = 1
d(ω)d(−ω)(8κg

2|cs|2{(N + 1)[κ2 + (∆ + ω)2]

+N [κ2 + (∆− ω)2]}+ 2γm
ω
ωm

[(∆2 + κ2 − ω2)2

+4κ2ω2][1 + coth( h̄ω
2kBT

)]),

B = 8κg2c∗2s M
d(ω)d(2ωm−ω) [κ− i(∆ + ω)][κ− i(∆ + 2ωm − ω)],

C = 8κg2c2sM
∗

d(ω)d(−2ωm−ω) [κ+ i(∆− ω)][κ+ i(∆ + 2ωm + ω)].

(4.17)

In Eqs. (4.16) and (4.17), the term independent of g is from the thermal noise contri-

bution; while those terms involving g arise from the radiation pressure contribution,

including the influence of the squeezed vacuum light. Moreover, either ⟨δQ(t)2⟩ or

⟨δP (t)2⟩ contains three terms, the first term is independent of time, but the second

and third terms are time-dependent, which causes ⟨δQ(t)2⟩ and ⟨δP (t)2⟩ vary with

time. The complex exponential in Eq. (4.16) can be removed by working in the
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interaction picture. Let’s define b (b†) and b̃ (b̃†) be the annihilation (creation) oper-

ators for the oscillator in the Schrödinger and interaction picture with [b, b†] = 1 and

[b̃, b̃†] = 1. The relations between them are b = b̃e−iωmt and b† = b̃†eiωmt. Then using

Q = b+ b†, P = i(b† − b), Q̃ = b̃+ b̃†, and P̃ = i(b̃† − b̃), we get

⟨δQ̃2⟩ = 1
2π

∫+∞
−∞ ω2

m(A+B + C)dω,

⟨δP̃ 2⟩ = 1
2π

∫+∞
−∞ [ω2A+ ω(ω − 2ωm)B + ω(ω + 2ωm)C]dω.

(4.18)

According to the Heisenberg uncertainty principle,

⟨δQ̃2⟩⟨δP̃ 2⟩ ≥ |1
2
[Q̃, P̃ ]|2. (4.19)

If either ⟨δQ̃2⟩ < 1 or ⟨δP̃ 2⟩ < 1, the movable mirror is said to be squeezed.

From Eqs. (4.17) and (4.18), we find ⟨δQ̃2⟩ or ⟨δP̃ 2⟩ is determined by the detuning

∆0, the squeezing parameter r, the laser power ℘, the cavity length L, the temperature

of the environment T , and so on. Here we focus on the dependence of ⟨δQ̃2⟩ and ⟨δP̃ 2⟩

on the squeezing parameter, the temperature of the environment, and the laser power.

4.4 Squeezing of the Movable Mirror

In this section, we numerically evaluate the mean square fluctuations in position

and momentum of the movable mirror given by Eq. (4.18) to show squeezing of

the movable mirror produced by feeding the squeezed vacuum light at the input

mirror. We use the same parameters as those in the recent successful experiment

on normal mode splitting in a nanomechanical oscillator [50]: the wave length of

the laser λ = 2πc
ωL

= 1064 nm, L = 25 mm, m = 145 ng, κ = 2π × 215 × 103 Hz,

ωm = 2π × 947× 103 Hz, the mechanical quality factor Q′ = ωm

γm
= 6700. In the case

of kBT ≫ h̄ωm, we may approximate coth(h̄ω/(2kBT )) ≃ 2kBT/(h̄ω). In the case of

T = 0 K, if ω < 0, coth(h̄ω/(2kBT )) ≃ −1, if ω > 0, coth(h̄ω/(2kBT )) ≃ 1. Through

numerical calculations, it is found that squeezing of ⟨δQ̃2⟩ doesn’t exist but squeezing

of ⟨δP̃ 2⟩ exists. In the following we therefore concentrate on discussing ⟨δP̃ 2⟩.
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Note that in the absence of the coupling to the cavity field, the movable mirror is

in free space, and is coupled to the environment. Then the fluctuations are given by

⟨δQ̃2⟩ = ⟨δP̃ 2⟩ = 1 +
2

eh̄ωm/(kBT ) − 1

=


1 for T = 0 K,

44 for T = 1 mK,

440 for T = 10 mK.

(4.20)

As well known no squeezing of the movable mirror occurs.
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Figure 4.2: The mean square fluctuations ⟨δP̃ 2⟩ versus the detuning ∆0 (10
6 s−1) for

different values of the squeezing of the input field. r = 0 (red, big dashed line), r = 0.5

(green, small dashed line), r = 1 (black, solid curve), r = 1.5 (blue, dotdashed curve),

r = 2 (brown, solid curve). The minimum values of ⟨δP̃ 2⟩ are 1.071 (r=0), 0.467

(r=0.5), 0.319 (r=1), 0.468 (r=1.5), 1.078 (r=2). The flat dotted line represents

the variance of the coherent light (⟨δP̃ 2⟩=1). Parameters: the temperature of the

environment T = 1 mK, the laser power ℘ = 6.9 mW.

Now we consider fluctuations in the presence of the coupling to the cavity field.

If we choose T = 1 mK, and ℘ = 6.9 mW, the mean square fluctuations ⟨δP̃ 2⟩ are
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plotted as a function of the detuning ∆0 in Fig. 4.2. Different graphs correspond

to different values of the squeezing of the input light. In the case of no injection

of the squeezed vacuum light (r = 0), which means that the squeezed vacuum light

is replaced by an ordinary vacuum light, we find ⟨δP̃ 2⟩ is always larger than unity

(the coherent level), the minimum value of ⟨δP̃ 2⟩ is 1.071, thus there is no momentum

squeezing of the movable mirror. However, if we inject the squeezed vacuum light, it is

seen that the momentum squeezing of the movable mirror occurs, and the maximum

squeezing happens at about r = 1, the corresponding minimum value of ⟨δP̃ 2⟩ is

0.319, thus the maximum amount of squeezing is about 68%. So the injection of the

squeezed vacuum light greatly reduces the fluctuations in momentum, because using

the squeezed vacuum light increases the photon number in the cavity, which results in

a stronger radiation pressure acting on the movable mirror. Note that the minimum

value of ⟨δP̃ 2⟩ in the presence of the coupling to the cavity field is much less than that

(⟨δP̃ 2⟩ = 44) in the absence of the coupling to the cavity field. So there is very large

squeezing with respect to thermal fluctuations. The momentum fluctuations can be

reduced by a factor more than one hundred.

Then we fix the squeezing parameter r = 1, the mean square fluctuations ⟨δP̃ 2⟩ as

a function of the detuning ∆0 for different temperature of the environment and laser

power are shown in Figs. 4.3 – 4.5. For a given lase power, we find that the minimum

value of ⟨δP̃ 2⟩ decreases with decrease of the temperature of the environment as

expected. The lower is the temperature, the less is the thermal noise. At T = 0 K,

the minimum value of ⟨δP̃ 2⟩ is the smallest due to no thermal noise, which corresponds

to the maximum momentum squeezing of the movable mirror. For example, when

T = 0 K and ℘ = 0.6 mW, the minimum value of ⟨δP̃ 2⟩ is 0.252, the corresponding

amount of squeezing is up to about 75%. Therefore, decreasing the temperature of

the environment can enhance the amount of the momentum squeezing of the movable

mirror. On the other hand, we note that when the temperature of the environment
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Figure 4.3: The mean square fluctuations ⟨δP̃ 2⟩ versus the detuning ∆0 (106 s−1),

each curve corresponds to a different temperature of the environment. T=0 K (blue,

solid curve), 1 mK (red, small dashed curve), 5 mK (brown, big dashed curve), 10

mK (green, dotdashed curve). The minimum values of ⟨δP̃ 2⟩ are 0.252 (T=0 K),

0.611 (T=1 mK), 2.082 (T=5 mK), 3.919 (T=10 mK). The flat dotted line represents

the variance of the coherent light (⟨δP̃ 2⟩=1). Parameters: the squeezing parameter

r = 1, the laser power ℘ = 0.6 mW.

is high, for example, for T = 10 mK, and laser power 0.6 mW, the minimum value

of ⟨δP̃ 2⟩ is 3.919. In this case, there is no momentum squeezing, but if we increase

the laser power to 6.9 mW, the minimum value of ⟨δP̃ 2⟩ is 0.731, the movable mirror

shows momentum squeezing, and the amount of squeezing will increase with increase

of laser power. Therefore, when the temperature of the environment is high, the

momentum squeezing of the movable mirror can be obtained by increasing the input

laser power. The reason is that increasing the laser power can increase the photon

number in the cavity. Moreover, for any specific temperature of the environment, the

minimum value of ⟨δP̃ 2⟩ in the presence of the radiation pressure coupling is always

much less than that in the absence of the radiation pressure coupling.
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Figure 4.4: The mean square fluctuations ⟨δP̃ 2⟩ versus the detuning ∆0 (106 s−1),

each curve corresponds to a different temperature of the environment. T=0 K (solid

curve), 1 mK (dashed curve), 10 mK (dotdashed curve). The minimum values of

⟨δP̃ 2⟩ are 0.261 (T=0 K), 0.330 (T=1 mK), 0.968 (T=10 mK). The flat dotted line

represents the variance of the coherent light (⟨δP̃ 2⟩=1). Parameters: the squeezing

parameter r = 1, the laser power ℘ = 3.8 mW.

4.5 Conclusions

In conclusion, we have found that squeezing of the movable mirror can be achieved by

the injection of squeezed vacuum light and a laser. The result shows the maximum

momentum squeezing of the movable mirror happens if squeezed vacuum light with

r about 1 is injected into the cavity. For a given squeezing parameter and laser

power, decreasing the temperature of the environment can enhance the maximum

momentum squeezing of the movable mirror. In addition, the momentum squeezing of

the movable mirror may be achieved by increasing the input laser power. Generation

of squeezing of the movable mirror provides a new way to detect a weak force. Further

the “feeding” of squeezed light can be used to squeeze collective degrees of freedom

for several mirrors inside the cavity.
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Figure 4.5: The mean square fluctuations ⟨δP̃ 2⟩ versus the detuning ∆0 (106 s−1),

each curve corresponds to a different temperature of the environment. T=0 K (solid

curve), 1 mK (dashed curve), 10 mK (dotdashed curve). The minimum values of

⟨δP̃ 2⟩ are 0.275 (T=0 K), 0.319 (T=1 mK), 0.731 (T=10 mK). The flat dotted line

represents the variance of the coherent light (⟨δP̃ 2⟩=1). Parameters: the squeezing

parameter r = 1, the laser power ℘ = 6.9 mW.
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CHAPTER 5

ENTANGLING NANOMECHANICAL OSCILLATORS IN A RING

CAVITY BY FEEDING SQUEEZED LIGHT

5.1 Overview

It is well known that entanglement is a key resource for quantum information process-

ing [142]. One now has fairly good understanding of how to produce entanglement

among microscopic entities. In recent times there has been considerable interest in

studying entanglement in mesoscopic and even microscopic systems [27, 143, 144,

145, 146]. Nanomechanical oscillators are beginning to be important candidates for

the study of quantum mechanical features at mesoscopic scales. In fact the possi-

bility of entangling two nanomechanical oscillators has been investigated from many

different angles: such as entangling two mirrors in a ring cavity [147], entangling

two mirrors of two independent optical cavities driven by a pair of entangled light

beams [177], entangling two mirrors by using a double-cavity set up by driving with

squeezed light [37], entangling two mirrors of a linear cavity driven by a classical laser

field [149], entangling two mirrors in a ring cavity by using a phase-sensitive feedback

loop [150], entangling two dielectric membranes suspended inside a cavity [38], and

entangling two oscillators by entanglement swapping [151, 152]. Other proposals do

not use cavity configurations but coupling to Cooper pair boxes [153]. Here we report

a conceptually simple method to produce entanglement between two mirrors. Our

proposal enables us to trace the physical origin of entanglement.

In this chapter, we propose a scheme for entangling two movable mirrors of a

ring cavity by feeding broad band squeezed vacuum light along with the laser light.
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The two movable mirrors are entangled based on their interaction with the cavity

field. The achieved entanglement of the two movable mirrors depends on the degree

of squeezing of the input light, the laser power, and the temperature of the movable

mirrors. The feeding of the squeezed light has been considered to produce squeezing

of a nanomechanical mirror [32, 33]. Further Pinard et al. [37] have considered

entanglement of two mirrors in a double cavity configuration which is fed by squeezed

light - one part of the cavity is fed by light squeezed in amplitude quadrature and the

other is fed by light squeezed in phase quadrature. In contrast we consider a single

mode ring cavity driven by a single component amplitude squeezed light. In our

scheme the entanglement can be managed by an externally controllable field which is

the squeezed light.

The chapter is organized as follows. In Sec. II we introduce the model, give

the quantum Langevin equations, and obtain the steady-state mean values. In Sec.

III we derive the stability conditions, calculate the mean square fluctuations in the

relative momentum and the total displacement of the movable mirrors. In Sec. IV

we analyze how the entanglement of the movable mirrors can be modified by the

squeezing parameter, the laser power, and the temperature of the environment. The

parameters chosen in the chapter are from a recent experiment on optomechanical

normal mode splitting [50].

Before we present our calculations, we present a key idea behind our work. For a

bipartite system, a sufficient criterion for entanglement is that the sum of continuous

variables satisfies the inequality [154]

⟨(∆(q1 + q2))
2⟩+ ⟨(∆(p1 − p2))

2⟩ < 2, (5.1)

where qj and pj (j = 1, 2) are the position and momentum operators for two particles,

respectively. They obey the commutation relation [qj, pk] = iδjk (j, k = 1, 2).

Mancini et al. [26] have derived another sufficient condition for bipartite entan-
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glement, which requires the product of continuous variables satisfies the inequality

⟨(∆(q1 + q2))
2⟩⟨(∆(p1 − p2))

2⟩ < 1. (5.2)

In this chapter, we will use equation (5.2) to show the entanglement between the two

oscillating mirrors. Thus if we have a situation where the interaction occurs only via

the relative coordinates q1 − q2,p1 − p2, then we can hold ⟨(∆(q1 + q2))
2⟩ at its value,

says ≃ 1, before interaction and if the interaction can make ⟨(∆(p1− p2))
2⟩ < 1, then

the inequality (5.2) would imply that the mirrors 1 and 2 are entangled. In the next

section we discuss how this can be achieved by using a single mode ring cavity.

5.2 Model

The system under study, sketched in Fig. 5.1, is a ring cavity with one fixed partially

transmitting mirror and two movable perfectly reflecting mirrors, driven by a laser

with frequency ωL. As the photons in the cavity with length 2L bounce off the

movable mirrors, they will exert a radiation pressure force on the surfaces of the

movable mirrors proportional to the instantaneous photon number in the cavity. The

motion of the movable mirrors induced by the radiation pressure changes the cavity’s

length, and alters the intensity of the cavity field, which in turn modifies the radiation

pressure force itself. Thus the interaction of the cavity field with the movable mirrors

through the radiation pressure is a nonlinear effect. In addition, each mirror undergoes

quantum Brownian motion due to its coupling to its own independent environment

at the same low temperature T . The two movable mirrors are identical with the same

effective mass m, mechanical frequency ωm and momentum decay rate γm, and each

mirror is modeled as a quantum mechanical harmonic oscillator. We further assume

that the cavity is fed with squeezed light at frequency ωS.

In the adiabatic limit, the cavity field is a single mode with frequency ωc [64, 106],

and we can neglect the retardation effect [155], neglect the photon creation in the
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Figure 5.1: Sketch of the studied system. A laser with frequency ωL and a squeezed

vacuum light with frequency ωS enter the ring cavity through the partially transmit-

ting mirror.

cavity with moving boundaries due to the Casimir effect [156], and neglect the Doppler

effect [157], thus the radiation pressure force does not depend on the velocity of

the movable mirrors. Assuming the collisions of the photons on the surfaces of the

movable mirrors are elastic, the momentum transferred to the mirrors per photon is

h̄ky − (−h̄ky) = 2h̄ky (see Fig. 5.1 for the direction of y), where ky = k cos(θ/2), k

is the wave vector of the cavity field with k = ωc/c, and θ is the angle between the

incident light and the reflected light at the surfaces of the movable mirrors. During

the cavity round-trip time t = 2L/c, there are nc photons hitting on the surfaces of the

movable mirrors, so the radiation pressure force is F = 2nch̄ky/t = nch̄
ωc

L
cos(θ/2).

In a reference frame rotating at the laser frequency, the Hamiltonian that describes

the system can be written as

H = h̄(ωc − ωL)nc + h̄gnc cos(θ/2)(Q1 −Q2) +
h̄ωm
2

(Q2
1 + P 2

1 )

+
h̄ωm
2

(Q2
2 + P 2

2 ) + ih̄ε(c† − c), (5.3)

we have defined dimensionless position and momentum operators for the oscillators
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Qj =
√

mωm

h̄
qj and Pj =

√
1

mh̄ωm
pj (j=1,2) with [Qj, Pk] = iδjk (j, k = 1, 2). Further

in equation (5.3), nc = c†c is the number of the photons inside the cavity, c and c†

are the annihilation and creation operators for the cavity field with [c, c†] = 1. The

parameter g = ωc

L

√
h̄

mωm
is the optomechanical coupling constant between the cavity

field and the movable mirrors in units of s−1. The different signs in front of Q1 and

Q2 are because the radiation pressure forces exerted on the two mirrors are opposite.

The parameter ε is the coupling strength of the laser to the cavity field, which is

related to the input laser power ℘ by ε =
√

2κ℘
h̄ωL

, where κ is the photon decay rate by

leaking out of the cavity.

In the system, the cavity field is damped by photon losses via the cavity output

mirror at the rate κ, and the movable mirrors are damped due to momentum losses at

the same rate γm. Meanwhile, there are two kinds of noises affecting on the system.

One is the input squeezed vacuum noise operator cin with frequency ωS = ωL + ωm.

It has zero mean value, and nonzero time-domain correlation functions [141]

⟨δc†in(t)δcin(t′)⟩ = Nδ(t− t′),

⟨δcin(t)δc†in(t′)⟩ = (N + 1)δ(t− t′),

⟨δcin(t)δcin(t′)⟩ =Me−iωm(t+t′)δ(t− t′),

⟨δc†in(t)δc
†
in(t

′)⟩ =M∗eiωm(t+t′)δ(t− t′).

(5.4)

where N = sinh2(r), M = sinh(r) cosh(r)eiφ, r and φ are respectively the squeezing

parameter and phase of the squeezed vacuum light. For simplicity, we choose φ = 0.

The other is quantum Brownian noises ξ1 and ξ2, which are from the coupling of the

movable mirrors to their own environment. They are mutually independent with zero

mean values and have the following correlation functions at temperature T [108]:

⟨ξj(t)ξk(t
′
)⟩ = δjk

2π

γm
ωm

∫
ωe−iω(t−t

′
)

[
1 + coth(

h̄ω

2kBT
)

]
dω, (5.5)

where kB is the Boltzmann constant and T is the temperature of the mirrors’ envi-

ronment, j, k = 1, 2.
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The dynamics of the cavity field interacting with the movable mirrors can be

derived by the Heisenberg equations of motion and taking into account the effect of

damping and noises, which gives the quantum Langevin equations

Q̇1 = ωmP1,

Q̇2 = ωmP2,

Ṗ1 = −gnc cos(θ/2)− ωmQ1 − γmP1 + ξ1,

Ṗ2 = gnc cos(θ/2)− ωmQ2 − γmP2 + ξ2,

ċ = −i[ωc − ωL + g cos(θ/2)(Q1 −Q2)]c+ ε− κc+
√
2κcin,

ċ† = i[ωc − ωL + g cos(θ/2)(Q1 −Q2)]c
† + ε− κc† +

√
2κc†in.

(5.6)

From the second term of equation (5.3), we can see only the relative motion of

the two movable mirrors is coupled to the cavity field via radiation pressure. On

introducing the relative distance and the relative momentum of the movable mirrors

by Q− = Q1 −Q2 and P− = P1 − P2, we find that equation (5.6) reduces to

Q̇− = ωmP−,

Ṗ− = −2gnc cos(θ/2)− ωmQ− − γmP− + ξ1 − ξ2,

ċ = −i[ωc − ωL + g cos(θ/2)Q−]c+ ε− κc+
√
2κcin,

ċ† = i[ωc − ωL + g cos(θ/2)Q−]c
† + ε− κc† +

√
2κc†in.

(5.7)

We would use standard methods of quantum optics [110] which have been adopted

for discussions of quantum noise of nanomechanical mirrors [35, 36, 95, 108, 149],

setting all the time derivatives in equation (5.7) to zero, and solving it, we obtain the

steady-state mean values

P s
− = 0, Qs

− = −2g|cs|2 cos(θ/2)
ωm

, cs =
ε

κ+ i∆
, (5.8)

where

∆ = ωc − ωL + gQs
− cos(θ/2) (5.9)
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is the effective cavity detuning, depending on Qs
−. The Qs

− denotes the new equi-

librium relative distance between the movable mirrors. Further cs represents the

complex amplitude of the cavity field in the steady state. For a given input laser

power, Qs
− and cs can take three distinct values, respectively. Therefore, the system

displays an optical multistability [41, 42, 43], which is a nonlinear effect induced by

the radiation pressure.

5.3 Radiation Pressure and Quantum Fluctuations

To investigate entanglement of the two movable mirrors, we have to calculate the

fluctuations in the relative momentum of the movable mirrors. This fluctuations can

be calculated analytically by using the linearization approach of quantum optics [110],

provided that the nonlinear effect between the cavity field and the movable mirrors

is weak. We write each operator of the system as the sum of its steady-state mean

value and a small fluctuation with zero mean value,

Q− = Qs
− + δQ−, P− = P s

− + δP−, c = cs + δc. (5.10)

Inserting equation (5.10) into equation (5.7), then assuming the cavity field has a very

large amplitude cs with |cs| ≫ 1, one can obtain a set of linear quantum Langevin

equations for the fluctuation operators,

δQ̇− = ωmδP−,

δṖ− = −2g cos(θ/2)(cs∗δc+ csδc†)− ωmδQ− − γmδP− + ξ1 − ξ2,

δċ = −(κ+ i∆)δc− ig cos(θ/2)csδQ− +
√
2κδcin,

δċ† = −(κ− i∆)δc† + ig cos(θ/2)cs∗δQ− +
√
2κδc†in.

(5.11)

Introducing the cavity field quadratures δx = δc + δc† and δy = i(δc† − δc), and the

input noise quadratures δxin = δcin + δc†in and δyin = i(δc†in − δcin), equation (5.11)
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can be rewritten in the matrix form

ḟ(t) = Af(t) + η(t), (5.12)

in which f(t) is the column vector of the fluctuations, η(t) is the column vector of

the noise sources. Their transposes are

f(t)T = (δQ−, δP−, δx, δy),

η(t)T = (0, ξ1 − ξ2,
√
2κδxin,

√
2κδyin);

(5.13)

and the matrix A is given by

A =



0 ωm 0 0

−ωm −γm −g cos(θ/2)(cs + cs∗) ig cos(θ/2)(cs − cs∗)

−ig cos(θ/2)(cs − cs∗) 0 −κ ∆

−g cos(θ/2)(cs + cs∗) 0 −∆ −κ


.

(5.14)

The solution of equation (5.12) is f(t) =M(t)f(0)+
∫ t
0 M(t′)η(t−t′)dt′, whereM(t) =

eAt. The system is stable and reaches its steady state as t→ ∞ only if the real parts

of all the eigenvalues of the matrix A are negative so that M(∞) = 0. The stability

conditions for the system can be found by employing the Routh-Hurwitz criterion

[113], we get

κγm[(κ
2 +∆2)2 + (2κγm + γ2m − 2ω2

m)(κ
2 +∆2) + ω2

m(4κ
2 + ω2

m

+2κγm)] + 2ωm∆g
2 cos2(θ/2)|cs|2(2κ+ γm)

2 > 0,

ωm(κ
2 +∆2)− 4∆g2 cos2(θ/2)|cs|2 > 0.

(5.15)

All the parameters chosen in this chapter have been verified to satisfy the stability

conditions (5.15).

Fourier transforming each operator in equation (5.11) by f(t) = 1
2π

∫+∞
−∞ f(ω)e−iωtdω

and solving it in the frequency domain, the relative momentum fluctuations of the
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movable mirrors are given by

δP−(ω) =
iω

d(ω)
(2
√
2κg cos(θ/2){[κ− i(∆ + ω)]cs∗δcin(ω) + [κ+ i(∆− ω)]

×csδc†in(−ω)} − [(κ− iω)2 +∆2][ξ1(ω)− ξ2(ω)]), (5.16)

where d(ω) = −4ωm∆g
2|cs|2 cos2(θ/2) + (ω2

m− ω2 − iγmω)[(κ− iω)2 +∆2]. Equation

(5.16) shows δP−(ω) has two contributions. The first term proportional to g originates

from their interaction with the cavity field, while the second term involving ξ1(ω) and

ξ2(ω) is from their interaction with their own environment. So the relative momentum

fluctuations of the movable mirrors are now determined by radiation pressure and the

thermal noise. In the case of no coupling with the cavity field (g = 0), the movable

mirrors will make Brownian motion only, δP−(ω) = −iω[ξ1(ω) − ξ2(ω)]/(ω
2
m − ω2 −

iγmω), whose mechanical susceptibility χ(ω) = 1/(ω2
m−ω2 − iγmω) has a Lorentzian

shape centered at the frequency ωm with γm as full width at half maximum (FWHM).

The mean square fluctuations in the relative momentum of the movable mirrors

are determined by

⟨δP−(t)
2⟩ = 1

4π2

∫ ∫ +∞

−∞
dωdΩe−i(ω+Ω)t⟨δP−(ω)δP−(Ω)⟩. (5.17)

To calculate the mean square fluctuations, we require the correlation functions of

the noise sources in the frequency domain. Fourier transforming equations (5.4) and

(5.5) gives the frequency domain correlation functions

⟨δc†in(−ω)δcin(Ω)⟩ = 2πNδ(ω + Ω),

⟨δcin(ω)δc†in(−Ω)⟩ = 2π(N + 1)δ(ω + Ω),

⟨δcin(ω)δcin(Ω)⟩ = 2πMδ(ω + Ω− 2ωm),

⟨δc†in(−ω)δc
†
in(−Ω)⟩ = 2πM∗δ(ω + Ω+ 2ωm),

⟨ξj(ω)ξk(Ω)⟩ = 2πδjk
γm
ωm
ω
[
1 + coth( h̄ω

2kBT
)
]
δ(ω + Ω).

(5.18)
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Upon substituting equation (5.16) into equation (5.17) and taking into account equa-

tion (5.18), the mean square fluctuations of equation (5.17) are written as

⟨δP−(t)
2⟩ = 1

2π

∫ +∞

−∞
[ω2A+ ω(ω − 2ωm)Be

−2iωmt + ω(ω + 2ωm)Ce
2iωmt]dω. (5.19)

where

A = 1
d(ω)d(−ω)(8κg

2 cos2(θ/2)|cs|2{(N + 1)[κ2 + (∆ + ω)2]

+N [κ2 + (∆− ω)2]}+ 2γm
ω
ωm

[(∆2 + κ2 − ω2)2 + 4κ2ω2]

×[1 + coth( h̄ω
2kBT

)]),

B = 8κg2 cos2(θ/2)cs∗2M
d(ω)d(2ωm−ω) [κ− i(∆ + ω)][κ− i(∆ + 2ωm − ω)],

C = 8κg2 cos2(θ/2)cs2M∗

d(ω)d(−2ωm−ω) [κ+ i(∆− ω)][κ+ i(∆ + 2ωm + ω)].

(5.20)

In equations (5.19) and (5.20), the term independent of g is the thermal noise con-

tribution; while all other terms involving g are the radiation pressure contribution,

including the influence of the squeezed vacuum light. Moreover, ⟨δP−(t)
2⟩ is time-

dependent, the explicit time dependence in equation (5.19) can be eliminated by

working in the interaction picture. If we look the relative motion of the movable

mirrors as a harmonic oscillator and introduce the annihilation (creation) operators

b (b†) and b̃ (b̃†) for the oscillator in the Schrödinger and interaction picture with

[b, b†] = 1 and [b̃, b̃†] = 1. They are related by b = b̃e−iωmt and b† = b̃†eiωmt. Then

using P− = i(b† − b), and P̃− = i(b̃† − b̃), we get

⟨δP̃ 2
−⟩ =

1

2π

∫ +∞

−∞
[ω2A+ ω(ω − 2ωm)B + ω(ω + 2ωm)C]dω. (5.21)

According to equation (5.2), the movable mirrors are said to be entangled if ⟨δQ2
+⟩

and ⟨δP̃ 2
−⟩ satisfy the inequality

⟨δQ2
+⟩⟨δP̃ 2

−⟩ < 1. (5.22)

where Q+ = Q1 + Q2, the total displacement of the two movable mirrors, which is

not related to the radiation pressure, only determined by the thermal noise. At the
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temperature T , the fluctuations ⟨δQ2
+⟩ are

⟨δQ2
+⟩ = 0.5 +

1

eh̄ωm/(kBT ) − 1
(5.23)

Since [Q+, P−] = [Q1+Q2, P1−P2] = 0, Q+ and P− can be simultaneously measured

with infinite precision. Thus Q+ and P̃− can also be simultaneously measured with

infinite precision.

From equations (5.20) and (5.21), we find ⟨δP̃ 2
−⟩ is affected by the detuning ∆, the

squeezing parameter r, the laser power ℘, the cavity length L, the temperature of the

environment T , and so on. In the following, we confine ourselves to discussing the de-

pendence of ⟨δP̃ 2
−⟩ on the squeezing parameter, the laser power, and the temperature

of the environment.

5.4 Entanglement of the Two Movable Mirrors

In the section, we would like to numerically evaluate the mean square fluctuations

in the total displacement and the relative momentum of the movable mirrors given

by equations (5.23) and (5.21) to show the entanglement of the two movable mirrors

produced by feeding the squeezed vacuum light at the input mirror. To have fairly

good idea of entanglement, we use the parameters of a recent experiment [50] although

we are aware that the cavity geometry is different: the wavelength of the laser λ =

2πc
ωL

= 1064 nm, L = 25 mm, m = 145 ng, κ = 2π×215×103 Hz, ωm = 2π×947×103

Hz, the mechanical quality factor Q′ = ωm

γm
= 6700, θ = π/3.

First we illustrate the squeezed vacuum light’s effect on the entanglement between

the movable mirrors. We find as T = 41.4 µK, the mean square fluctuations ⟨δQ2
+⟩ ≈

1, which implies that as long as the mean square fluctuations ⟨δP̃ 2
−⟩ < 1, there is an

entanglement between the movable mirrors. The behavior of ⟨δP̃ 2
−⟩ at ℘ = 3.8 mW

is plotted as a function of the detuning ∆ in Fig. 5.2. Different graphs correspond

to different values of the squeezing of the input light. In the case of no injection of
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Figure 5.2: The mean square fluctuations ⟨δP̃ 2
−⟩ versus the detuning ∆/ωm for dif-

ferent values of the squeezing of the input field. r = 0 (red, big dashed line), r = 0.5

(green, small dashed line), r = 1 (black, solid curve), r = 1.5 (blue, dotdashed

curve), r = 2 (brown, solid curve). The minimum values of ⟨δP̃ 2
−⟩ are 1.027 (r=0),

0.422 (r=0.5), 0.271(r=1), 0.412 (r=1.5), 0.999 (r=2). The flat dotted line represents

⟨δP̃ 2
−⟩=1. Parameters: the temperature of the environment T = 41.4 µK, the laser

power ℘ = 3.8 mW.

the squeezed vacuum light (r = 0), which means that the squeezed vacuum light is

replaced by an ordinary vacuum light, we find ⟨δP̃ 2
−⟩ is always larger than unity, the

minimum value of ⟨δP̃ 2
−⟩ is 1.027, obviously there is no entanglement between the

movable mirrors. However, if we inject the squeezed vacuum light, it is seen that

entanglement between the movable mirrors occurs, meaning that there is a quantum

correlation between the movable mirrors, even through they are separated in space.

We also find the movable mirrors are maximally entangled as the squeezing parameter

is about r = 1, the corresponding minimum value of ⟨δP̃ 2
−⟩ is 0.271. So the injection

of the squeezed vacuum light leads to a significant reduction of the fluctuations in

the relative momentum between the movable mirrors. This is due to the fact that

85



using the squeezed vacuum light increases the photon number in the cavity, which

leads to a stronger radiation pressure acting on the movable mirrors and enhances

the entanglement between the movable mirrors.

Next we consider the influence of the laser power on the maximum entanglement

between the movable mirrors. We fix the squeezing parameter r = 1, and the temper-

ature of the environment T = 41.4 µK. We have already known at this temperature,

⟨δQ2
+⟩ ≈ 1. Thus, if the mean square fluctuations ⟨δP̃ 2

−⟩ < 1, the movable mirrors be-

come entangled. The mean square fluctuations ⟨δP̃ 2
−⟩ as a function of the detuning ∆

for different laser power are shown in Fig. 5.3. We find that significant entanglement

occurs for a range of pumping powers.
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Figure 5.3: The mean square fluctuations ⟨δP̃ 2
−⟩ versus the detuning ∆/ωm, each curve

corresponds to a different laser power. ℘=0.6 mW (red, big dashed curve), 3.8 mW

(green, small dashed curve), 6.9 mW (black, solid curve), 10.7 mW (blue, dotdashed

curve). The minimum values of ⟨δP̃ 2
−⟩ are 0.257 (℘=0.6 mW), 0.271 (℘=3.8 mW),

0.291 (℘=6.9 mW), 0.315 (℘=10.7 mW). The flat dotted line represents ⟨δP̃ 2
−⟩=1.

Parameters: the squeezing parameter r = 1, the temperature of the environment

T = 41.4 µK.

86



We now show the effect of the temperature of the environment on the entanglement

between the movable mirrors. We fix the squeezing parameter r = 1, the laser power

℘ = 3.8 mW, and the detuning ∆ = 0.965ωm. The value of ⟨δQ2
+⟩⟨δP̃ 2

−⟩ as a function

of the temperature of the environment is presented in Fig. 5.4. As the temperature of

0 50 100 150 200 250
0.0

0.5

1.0

1.5

2.0

T HΜKL

<
∆

Q
+

2
>
<
∆
P�

2
>

Figure 5.4: The value of ⟨δQ2
+⟩⟨δP̃ 2

−⟩ versus the temperature of the environment T

(µK). The minimum value of ⟨δQ2
+⟩⟨δP̃ 2

−⟩ is 0.135 at T = 0 K. The flat dotted line

represents ⟨δQ2
+⟩⟨δP̃ 2

−⟩=1. Parameters: the squeezing parameter r = 1, the laser

power ℘ = 3.8 mW, the detuning ∆ = 0.965ωm.

the environment increases, the amount of entanglement monotonically decreases due

to the thermal fluctuations. This is as expected. What is remarkable is that we find

entanglement over a wide range of temperatures. As T ≥ 160 µK, ⟨δQ2
+⟩⟨δP̃ 2

−⟩ ≥ 1,

the entanglement vanishes, the movable mirrors become completely separable. So

decreasing the temperature of the environment can make the entanglement between

the movable mirrors stronger. Note that substantial progress has been made in cooling

the nanomechanical oscillators [6, 7, 8, 9, 10, 18, 56, 116, 120, 158, 159]. Further the

ground state cooling using the resolved sideband regime might soon become feasible.

Clearly the entanglement depends on both the quality factor of the cavity and the
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temperature of the environment. The optical ring cavities are expected to yield much

higher quality factor: κ ≈ 2π×10kHz, see for example [160], though for fixed mirrors

replaced by moving mirrors, the quality factor may be deteriorated. Metheods for

detection of entanglement are discussed in [26, 37]. We note here that in our case

we can deduce entanglement from the knowledge of ⟨δP̃ 2
−⟩. It can be shown from

equation (5.11) that ⟨δP̃ 2
−⟩ can be obtained from the measurement of the fluctuations

in the quadrature of the output field.

movable mirror 1

movable mirror 2

fixed mirror 1

fixed mirror 2

Figure 5.5: Sketch of 4-mirror ring cavity. A laser with frequency ωL and squeezed

vacuum light with frequency ωS = ωL+ωm enter the ring cavity through the partially

transmitting fixed mirror 1. The fixed mirror 2 and the two identical movable mirrors

are perfectly reflecting.

If we use a different geometry of the ring cavity, as shown in Fig. 5.5, then we

have the possibility of entangling other quadratures of the mirrors. In this case, the

Hamiltonian of the system in the frame rotating at the laser frequency becomes

H = h̄(ωc − ωL)nc − h̄gnc cos(θ/2)(Q1 +Q2) +
h̄ωm

2
(Q2

1 + P 2
1 )

+ h̄ωm

2
(Q2

2 + P 2
2 ) + ih̄ε(c† − c),

(5.24)

We note the interaction between the two movable mirrors and the cavity field depends

only on the total displacement of the movable mirrors. The movable mirrors are said
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to be entangled if δQ2
− and δP̃ 2

+ satisfy the inequality [26, 154]

⟨δQ2
−⟩⟨δP̃ 2

+⟩ < 1. (5.25)

where Q− = Q1 −Q2 and P+ = P1 + P2. The Q− is the relative displacement of the

two movable mirrors, which is not related to the radiation pressure, only determined

by the thermal noise. The P+ is the total momentum of the two movable mirrors,

and depends on the radiation pressure and the thermal noise. The relation between

P+ and P̃+ is the same as the relation between P− and P̃− we defined above. Since

[Q−, P+] = [Q1 −Q2, P1 + P2] = 0, Q− and P+ can be simultaneously measured with

infinite precision. Thus Q− and P̃+ can also be simultaneously measured with infinite

precision. Through calculations, we find that ⟨δQ2
−⟩ and ⟨δP̃ 2

+⟩ in a 4-mirror ring cav-

ity have the same form as ⟨δQ2
+⟩ (equation (5.23)) and⟨δP̃ 2

−⟩ (equation (5.21)) in a

3-mirror ring cavity, respectively. If we choose the same parameters, the same numer-

ical results will be obtained. Therefore, using a 4-mirror ring cavity, the entanglement

between two oscillators can also be obtained.

5.5 Conclusions

In conclusion, we have found that the injection of squeezed vacuum light and a laser

can entangle the two identical movable mirrors by the radiation pressure. The result

shows the maximum entanglement of the movable mirrors happens if the squeezed

vacuum light with r about 1 is injected into the cavity. We also find significant

entanglement over a very wide range of input laser power and temperatures of the

environment.

The content of this chapter has been published in New J. Phys. 11, 103044

(2009).
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CHAPTER 6

NORMAL-MODE SPLITTING AND ANTIBUNCHING IN STOKES

AND ANTI-STOKES PROCESSES IN CAVITY OPTOMECHANICS:

RADIATION-PRESSURE-INDUCED FOUR-WAVE-MIXING CAVITY

OPTOMECHANICS

6.1 Overview

The nonlinearities in a system can be studied using a number of optical methods.

Among these, Stokes and anti-Stokes processes, and more generally four-wave-mixing

processes are quite common tools used to understand the nonlinear nature of the sys-

tem [161]. With this in view we study the stimulated Stokes and anti-Stokes processes

in cavity optomechanics. As is well known, the nonlinearity in cavity optomechanics

arises from the radiation pressure [25, 41, 42, 130, 162, 163] on the moving mirror

of the cavity. Thus, if the cavity is driven by a pump field of frequency ωl and

a Stokes field of frequency ωs, then, due to radiation pressure, the output of the

cavity would consist of fields at the applied frequencies ωl and ωs and a generated

frequency 2ωl − ωs. While some previous works [17, 164, 165] have explored the

Stokes and anti-Stokes processes in the context of parametric oscillation instability,

here we show how such processes can be conveniently used to study the phenomena

of normal-mode splitting [48, 50, 121, 122, 123, 124, 213, 160, 166] arising from the

strong coupling between the cavity and the mechanical mirror. Further, the system

can act as an amplifier for the Stokes field. Needless to say, we work in a domain

which is below the instability threshold.

Moreover, very interesting photon correlations between the Stokes and the anti-
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Stokes photons have been reported in atomic vapors under conditions of electromag-

netically induced transparency [212]. Here we also discuss the correlations between

the photons created spontaneously by the optomechanical system. The correlations

are found to be nonclassical.

The chapter is organized as follows. In Sec. II, we introduce the model, obtain

the equation of motion for the oscillator and the cavity field, and solve it. In Sec. III,

we calculate the output fields and thus obtain nonlinear susceptibilities for Stokes

and anti-Stokes processes. In Sec. IV, we show that the Stokes field is amplified,

and find very prominent normal-mode splittings in the output fields. Thus, stimu-

lated Stokes and anti-Stokes processes provide us with a new tool for studying the

strong coupling regime of optomechanics. We find that normal-mode splittings are

especially pronounced in the two quadratures of the output fields. In Sec. V, we

analyze the correlations between the spontaneously generated photons in the four-

wave-mixing processes in the optomechanical system. We show that such correlations

are intrinsically quantum.

6.2 Model: Stimulated Generation of Stokes and Anti-Stokes fields

We consider the system illustrated in Fig. 6.1, in which the cavity consists of two

mirrors separated from each other by a distance L. The front mirror is fixed and

partially transmitting; the end mirror is movable and perfectly reflecting. The cavity

is driven by a pump field and a Stokes field obtained with lasers. Their frequencies are

ωl and ωs, respectively. We would assume that the Stokes field is much weaker than

the pump field. A radiation pressure produced by momentum transfer will act on the

movable mirror, which is modeled as a harmonic oscillator with mass m, frequency

ωm, and momentum decay rate γm.

Considering a single-mode cavity ωc, the Hamiltonian of the system in a frame
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cavity axis 

fixed movable

Figure 6.1: Sketch of the studied system. A pump field with frequency ωl and a

Stokes field with frequency ωs enter the cavity through the partially transmitting

mirror. The output fields cout have three components (ωl, ωs, 2ωl − ωs). No vacuum

fields are shown here because we are examining only the mean response.

rotating at the pump frequency ωl is written as

H = h̄(ωc − ωl)nc − h̄ωmχncQ+
h̄ωm
4

(Q2 + P 2)

+ih̄εl(c
† − c) + ih̄[εse

−i(ωs−ωl)tc† − ε∗se
i(ωs−ωl)tc].

(6.1)

Here Q and P are the dimensionless operators representing the oscillator’s posi-

tion and momentum, defined by Q = q
√
2mωm/h̄ and P = p

√
2/(mh̄ωm) with

[Q,P ] = 2i. In Eq. (6.1), the first term is the energy of the cavity field, nc = c†c

is the number of the photons inside the cavity and c and c† are the annihilation and

creation operators, respectively, for the cavity field satisfying the commutation re-

lation [c, c†] = 1. The second term describes the nonlinear coupling of the movable

mirror to the cavity field via radiation pressure, where the dimensionless parameter

χ = (1/ωm)(ωc/L)
√
h̄/(2mωm) is the optomechanical coupling constant between the

cavity field and the movable mirror. The third term corresponds to the energy of the

movable mirror. The last two terms give the interactions of the cavity field with the

pump field and the Stokes field, εl and εs are, respectively, the amplitudes of the pump

field and the Stokes field inside the cavity. They are defined by εl =
√
2κ℘/(h̄ωl) and

|εs| =
√
2κ℘s/(h̄ωs), respectively, where ℘ is the pump power, ℘s is the power of the
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Stokes field, and κ is the cavity decay rate due to the fixed mirror.

Let ⟨Q⟩, ⟨P ⟩, ⟨c⟩, and ⟨c†⟩ be the expectation values of the operators Q, P , c,

and c†, respectively. The time evolution of these expectation values can be derived

by using the Heisenberg equations of motion and adding the damping terms:

⟨Q̇⟩ = ωm⟨P ⟩,

⟨Ṗ ⟩ = 2ωmχ⟨nc⟩ − ωm⟨Q⟩ − γm⟨P ⟩,

⟨ċ⟩ = −[κ+ i(ωc − ωl − ωmχ⟨Q⟩)]⟨c⟩+ εl + εse
−i(ωs−ωl)t,

⟨ċ†⟩ = −[κ− i(ωc − ωl − ωmχ⟨Q⟩)]⟨c†⟩+ εl + ε∗se
i(ωs−ωl)t.

(6.2)

The derivation of Eq. (6.2) uses the well-known mean-field assumption ⟨Qc⟩ = ⟨Q⟩⟨c⟩.

As the field εs at the Stokes frequency ωs is much weaker than the pump field εl, we

derive the steady-state solution of Eq. (6.2) to first order in εs, that is, we find t→ ∞

limit of the solutions:

⟨Q⟩

⟨P ⟩

⟨c⟩

⟨c†⟩


=



Q0

P0

c0

c∗0


+ εse

−i(ωs−ωl)t



Q+

P+

c+

c∗−


+ ε∗se

i(ωs−ωl)t



Q−

P−

c−

c∗+


. (6.3)

Thus Eq. (6.3) shows the cavity field ⟨c⟩e−iωlt has three components, oscillating

at the input frequencies ωl and ωs, and a new anti-Stokes frequency 2ωl − ωs. By

substituting Eq. (6.3) into Eq. (6.2), neglecting those terms containing ε2s, ε
∗2
s ,

and |εs|2 and equating coefficients of terms proportional to e−i(ωs−ωl)t and ei(ωs−ωl)t,

respectively, we find
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Q0 = 2χ|c0|2,

P0 = 0,

c0 =
εl

κ+ i∆
,

c+ =
1

d(ωs − ωl)
{[κ− i(∆ + ωs − ωl)][(ωs − ωl)

2 − ω2
m + iγm(ωs − ωl)]

−2iω3
mχ

2|c0|2},

c− = − 2iω3
mχ

2c20
d∗(ωs − ωl)

.

(6.4)

where

∆ = ωc − ωl − ωmχQ0, (6.5)

is the effective detuning, and where

d(ωs − ωl) = 4ω3
mχ

2∆|c0|2 + [(ωs − ωl + ωm)(ωs − ωl − ωm) + iγm(ωs − ωl)]

×[κ+ i(∆− ωs + ωl)][κ− i(∆ + ωs − ωl)]. (6.6)

For brevity we do not write explicit expressions for Q±, P±, etc. because we do not

need these in the discussion that follows.

6.3 The Output Fields

To investigate normal-mode splitting of the output fields, we need to find the expec-

tation value of the output fields. Using input-output relation [110] ⟨cout⟩+ εl/
√
2κ+

εse
−i(ωs−ωl)t/

√
2κ =

√
2κ⟨c⟩, we can obtain the expectation value of the output fields

⟨cout⟩ =
√
2κ[c0 + εse

−i(ωs−ωl)tc+ + ε∗se
i(ωs−ωl)tc−]

−εl/
√
2κ− εse

−i(ωs−ωl)t/
√
2κ.

(6.7)

If we write ⟨cout⟩ as

⟨cout⟩ = cl + εse
−i(ωs−ωl)tcs + ε∗se

i(ωs−ωl)tcas, (6.8)
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where cl is the response at the pump frequency ωl, cs is the response at the Stokes

frequency ωs, and cas is the response at the four-wave-mixing frequency 2ωl − ωs

(anti-Stokes frequency). Then we have

cl =

√
2κεl

κ+ i∆
− εl√

2κ
,

cs =

√
2κ

d(ωs − ωl)
{[κ− i(∆ + ωs − ωl)][(ωs − ωl)

2 − ω2
m + iγm(ωs − ωl)]

−2iω3
mχ

2|c0|2} −
1√
2κ
,

cas = −
√
2κ

2iω3
mχ

2c20
d∗(ωs − ωl)

. (6.9)

In the absence of the interaction between the cavity field and the movable mirror, one

would expect the output fields to contain only two input components (ωl and ωs);

no four-wave-mixing component appears. We can get this result from Eq. (6.9) by

setting χ = 0, which gives

cl =

√
2κεl

κ+ i∆
− εl√

2κ
,

cs =

√
2κ

κ+ i(∆− ωs + ωl)
− 1√

2κ
,

cas = 0,

(6.10)

as expected. However, in the presence of the coupling with the oscillator (χ ̸= 0),

[from Eq. (6.9), we have cl ̸= 0, cs ̸= 0, cas ̸= 0], the output fields contain three

components. The generated signal would exhibit resonances whenever ωs = ωl ± ωm.

In addition, one would have the resonances produced by the cavity ωs = ωl ± ∆.

These resonances are, of course, expected. The normal-mode splitting would arise

as a result of strong coupling χ [48, 50, 166]. This is because the structure of the

denominator in Eq. (6.9) depends on χ. We next present the roots of Eq. (6.6).

We use parameters which have been used in a recent experiment on the observation

of the normal-mode splitting in the fluctuation spectra [50]: the wavelength of the
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laser λ = 2πc/ωl = 1064 nm, L = 25 mm, m = 145 ng, κ = 2π × 215 × 103

Hz, ωm = 2π × 947 × 103 Hz, the mechanical quality factor Q′ = ωm/γm = 6700,

γm = 2π×141 Hz, ∆ = ωm. In this range of parameters, no parametric instabilities

occur.

Figure 6.2 shows the dependence of the real parts of the roots of d(ωs−ωl) in the

domain Re(ωs − ωl) > 0 on the pump power. Figure 6.3 shows the dependence of

the imaginary parts of the roots of d(ωs − ωl) on the pump power. For a small value

of the pump power, the real parts of the roots of d(ωs − ωl) have two equal values,

so there is no splitting. However, there is lifetime splitting [168] as seen in Fig. 6.3.

If we increase the pump power to a certain value, the real parts of d(ωs − ωl) in the

domain Re(ωs−ωl) > 0 begin to have two different values, and the difference between

two real parts of the roots of d(ωs − ωl) in the domain Re(ωs − ωl) > 0 is increased

with increasing pump power.
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Figure 6.2: The roots of d(ωs − ωl) in the domain Re(ωs − ωl) > 0 as a function of

the pump power ℘.
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Figure 6.3: The imaginary parts of the roots of d(ωs − ωl) as a function of the pump

power ℘.

6.4 Normal-mode Splittings in the Output Fields

Before examining the normal-mode splitting in, say, the output anti-Stokes field, we

examine Eq. (6.9) in the traditional limit of nonlinear optics; that is, we find the

form of anti-Stokes field to lowest order in χ,

cas = −2
√
2κiω3

mχ
2ε2l /{(κ+ i∆)2[(ωs − ωl + ωm)(ωs − ωl − ωm)

−iγm(ωs − ωl)][κ− i(∆− ωs + ωl)][κ+ i(∆ + ωs − ωl)]},
(6.11)

which has resonances as discussed after Eq. (6.10) and which is proportional to the

pump power.

We next discuss the normal-mode splitting in the generated Stokes and anti-

Stokes fields. It is useful to normalize all quantities to the input Stokes power ℘s. For

simplicity, we assume εs to be real. For our plots we would give the output power at

the Stokes frequency ωs in terms of the input Stokes power

Gs =
h̄ωs|εscs|2

℘s
= |

√
2κcs|2, (6.12)

and the two quadratures of the output fields at the Stokes frequency ωs in terms of the

square root of the input Stokes power. Let us denote these normalized quadratures by
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vs and ṽs. These are defined as vs =
√
2κ cs+c

∗
s

2
and ṽs =

√
2κ cs−c

∗
s

2i
. The quantity Gs

is the gain of the cavity optomechanical four-wave mixer. In Figs. 6.4– 6.6, we have

plotted vs, ṽs, and Gs, respectively, versus the normalized frequency (ωs − ωl)/ωm

for different pump powers. The quadrature vs (ṽs) exhibits absorptive (dispersive)

behavior. As is known, there is a phase change on reflection and that is why the

quadrature vs shows absorptive behavior. The normal-mode splitting or the lifetime

splittings are clearly seen depending on the input pump power in the quadratures

vs and ṽs. The peak positions are in agreement with Fig. 6.2 for the case when the

input pump power is such that normal-mode splitting occurs. The behavior of net

gain as a function of ωs is different due to the combination of absorptive and dispersive

characteristics of the quadratures vs and ṽs. The gain shows normal-mode splitting

for larger value of the pump power. Moreover, the maximum gain of the Stokes field

is about 1.15. It should be borne in mind that the quadratures vs and ṽs can be

obtained by homodyne measurement.
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Figure 6.4: The normalized quadrature vs plotted as a function of the normalized

frequency (ωs − ωl)/ωm for different pump power. ℘ = 1 mW (solid curve), 6.9 mW

(dotted curve), and 20 mW (dashed curve).
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Figure 6.5: The normalized quadrature ṽs plotted as a function of the normalized

frequency (ωs − ωl)/ωm for different pump power. ℘ = 1 mW (solid curve), 6.9 mW

(dotted curve), and 20 mW (dashed curve).
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Figure 6.6: The normalized output power Gs plotted as a function of the normalized

frequency (ωs − ωl)/ωm for different pump power. ℘ = 1 mW (solid curve), 6.9 mW

(dotted curve), and 20 mW (dashed curve).

Likewise, the output power at the anti-Stokes frequency 2ωl − ωs in terms of the
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input Stokes power is given by

Gas =
h̄(2ωl − ωs)|εscas|2

℘s
= |

√
2κcas|2. (6.13)

For brevity, we only show in Fig. 6.7 the functionGas against the normalized frequency

(ωs − ωl)/ωm for several values of the pump power. As can be seen in Fig. 6.7,

increasing the pump power can make the signal of four-wave mixing evolve from one

peak to double peaks. It is also seen that the maximum value of Gas is about 0.15 and

the output power at the anti-Stokes frequency (2ωl−ωs) is much less than the output

power of the Stokes field. However, for larger pump powers, the maximum gain for

Stokes and anti-Stokes fields are bigger. For example, for 40 mW pump power, the

maximum of Gs and Gas are about 1.5 and 0.5, respectively.
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Figure 6.7: The normalized output power Gas plotted as a function of the normalized

frequency (ωs − ωl)/ωm for different pump power. ℘ = 1 mW (solid curve), 6.9 mW

(dotted curve), and 20 mW (dashed curve).
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6.5 Spontaneous Generation of Stokes and Anti-stokes Photons:

Quantum Correlations

So far we have considered stimulated processes. The Stokes and anti-Stokes fields are

also generated spontaneously. In this case we have to include input vacuum fields.

These vacuum fields would be broad band. Thus the field at frequency ωs in Fig. 6.1

is to be replaced by a broad band quantum field cin with zero mean value and with

correlations ⟨δcin(t)δc†in(t′)⟩ = δ(t−t′). The calculations of the output quantum fields

are standard [26]. We have used these and introduced the Langevin force ξ(t) which

stems from the coupling of the movable mirror to the thermal environment having

zero mean value with correlations [108]

⟨ξ(t)ξ(t′)⟩ = 1

π

γm
ωm

∫
ωe−iω(t−t

′
)

[
1 + coth

(
h̄ω

2kBT

)]
dω, (6.14)

where kB is the Boltzmann constant and T is the temperature of the environment.

The fluctuations of the output fields are obtained as

δcout(ω) = V (ω)ξ(ω) + E(ω)δcin(ω) + F (ω)δc†in(−ω), (6.15)

where ξ(ω), δcin(ω), and δc†in(−ω) are the Fourier transform of the Langevin force

ξ(t) and the input vacuum fields δcin(t) and δc
†
in(t), respectively, and where

V (ω) = −
√
2κω2

mχ

d(ω)
i[κ− i(ω +∆)]c0,

E(ω) =
2κ

d(ω)
{−2ω3

mχ
2i|c0|2 + (ω2 − ω2

m + iγmω)[κ− i(ω +∆)]} − 1,

F (ω) = −4κω3
mχ

2c20
d(ω)

i.

(6.16)

in which

d(ω) = 4ω3
mχ

2∆|c0|2 + (ω2 − ω2
m + iγmω)× [(κ− iω)2 +∆2]. (6.17)

In Eq. (6.15), the first term containing ξ(ω) is the contribution of the Langevin force

acting on the movable mirror, while the other two terms come from the input vacuum
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fields. So the fluctuations of the output fields depend on the Langevin force and the

input vacuum fields. Further, we define time dependent δc
(s)
out(t) and δc

(as)
out (t), where

δc
(s)
out(t) represents the positive-frequency part of the fluctuations of the output fields,

corresponding to Stokes component, and

δc
(s)
out(t) =

1

2π

∫ ∞

0
δcout(ω)e

−iωtdω, (6.18)

whereas δc
(as)
out (t) represents the negative-frequency part of the fluctuations of the

output fields, corresponding to anti-Stokes component, and

δc
(as)
out (t) =

1

2π

∫ 0

−∞
δcout(ω)e

−iωtdω. (6.19)

In the context of Stokes and anti-Stokes radiation generated by single atoms,

several authors [169, 170, 212, 203] found important quantum correlations between

the Stokes and anti-Stokes radiation. Such conclusions were drawn from the structure

of photon-photon correlations. Motivated by these studies and the fact that we are

dealing with a macroscopic system like a nanomechanical mirror; we examine photon-

photon correlations in the generated radiation.

In the following, like in the work of Kolchin et al. [212], we do not differentiate

between the Stokes and anti-Stokes photons. We calculate the coincidence probability

defined by

g(2)(τ) =
⟨0|δc†out(t)δc†out(t+ τ)δcout(t+ τ)δcout(t)|0⟩

⟨0|δc†out(t)δcout(t)|0⟩⟨0|δc†out(t+ τ)δcout(t+ τ)|0⟩
, (6.20)

in which τ is a time delay, and

δcout(t) =
1

2π

∫ +∞

−∞
δcout(ω)e

−iωtdω. (6.21)

Now we would evaluate the photon-photon correlations of the output fields numer-

ically. We choose the pump power ℘=1 and 4 mW and the temperature of the envi-

ronment T = 0 K; the other parameters are the same as those mentioned in Sec. III.

The correlation function g(2)(τ) between the spontaneously generated photons versus
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Figure 6.8: The normalized second-order correlation function g(2)(τ) as a function of

the time delay τ(µs) for different pump powers at T = 0K. ℘=1 mW (solid curve),

and 4 mW(dotted curve).

the time delay τ for different pump powers at a temperature of T = 0K is displayed

in Fig. 6.8. We find that g(2)(τ) is symmetric. It is also seen that g(2)(τ) > g(2)(0) as

τ ̸= 0. This demonstrates the presence of photon antibunching, which is definitely of

quantum origin. Further, we note the Cauchy-Schwartz inequality g(2)(τ) ≤ g(2)(0) is

violated, and the degree of the violation of the Cauchy-Schwartz inequality becomes

smaller with increasing pump power. For pump power ℘ = 1 mW, the peak value of

g(2)(τ) is about 17, and g(2)(0) ≈ 3; thus, g(2)(τ)/g(2)(0) ≈5.6. However, for ℘ = 4

mW, the peak value of g(2)(τ) is about 11.5, and g(2)(0) ≈ 3, so g(2)(τ)/g(2)(0) ≈3.8.

Therefore, the spontaneously generated photons from the optomechanical system at

T = 0 K are correlated nonclassically, and the nonclassical correlation becomes weaker

with increasing pump power. This is reminiscent of the parametric downconversion

process which at low pumping powers produces significant quantum correlations.
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6.6 Conclusions

We have shown that an optomechanical system driven by a pump field and a Stokes

field can lead to generation of a four-wave-mixing signal. The Stokes field is amplified.

We also find that normal-mode splitting occurs in both the generated fields, that is,

in both Stokes and anti-Stokes fields. We also report lifetime splitting for pump

power less than a critical power. Further, we have discussed the correlations of the

photons generated from an optomechanical system by spontaneous processes. We find

the correlations between these photons manifest the antibunching effect, and violate

Cauchy-Schwartz inequality. Further, the violation of the Cauchy-Schwartz inequality

becomes weaker with increasing pump power. Hence, the optomechanical system can

be used to generate pairs of photons with quantum correlations. Thus the study of

both stimulated and spontaneous Stokes and anti-Stokes signals provides us with a

useful technique for studying the strong coupling regime of cavity optomechanics, as

well as quantum fluctuations at macroscopic level.

The content of this chapter has been published in Phys. Rev. A 81, 033830

(2010).
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CHAPTER 7

THE ELECTROMAGNETICALLY INDUCED TRANSPARENCY IN

MECHANICAL EFFECTS OF LIGHT

7.1 Overview

Since its original discovery in the context of atomic vapors, electromagnetically in-

duced transparency (EIT) [76, 172, 173] has been at the center of many important

developments in optical physics [174] and has led to many different applications, most

notably in the context of slow light [79, 80, 212] and the production of giant non-

linear effects. EIT is helping the progress towards studying nonlinear optics at the

single-photon level. EIT has been reported in many other systems [176]. More re-

cently, EIT has been discovered in meta materials [177, 178, 179, 180] where resonant

structures can be fabricated to correspond to dark and bright modes. Resonators pro-

vide certain advantages [181] because by design we can manipulate EIT to produce

desired transmission properties of a structure. It would thus be especially inter-

esting to study resonators coupled to other systems such as cavity optomechanical

systems. Such nanomechanical systems have attracted considerable interest recently

[38, 39, 48, 50, 117, 120, 182, 183]. In this chapter, we demonstrate the possibility of

EIT in the context of cavity optomechanics.

Before discussing our model and results, we set the stage for EIT in cavity op-

tomechanics. As in typical EIT experiments [76, 172, 173, 174], for example, in the

context of atomic vapors, we need to examine the pump-probe response of a nanome-

chanical oscillator of frequency ωm coupled to a high-quality cavity via radiation

pressure effects [164, 165] as schematically shown in Fig. 7.1. Thus, the cavity os-
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cillator of frequency ω0 and the nano-oscillator interact nonlinearly with each other.

The system is driven by a strong pump field of frequency ωc. This is the coupling

field. The probe field has frequency ωp and is much weaker than the pump field. The

mechanical oscillator’s damping is much smaller than that of the cavity oscillator.

This is very important for considerations of EIT. The decay rate of the mechanical

oscillator plays the same role as the decay rate of the ground-state coherence in EIT

experiments. The analog of the two-photon resonance condition where EIT occurs

would be ωc+ωm = ωp. We show how the absorptive and dispersive responses of the

probe change by the coupling field and how EIT emerges. We present a clear physical

origin of EIT in such a system.

7.2 Model

         

cavity axis 

fixed movable

Figure 7.1: Sketch of the optomechanical system coupled to a high-quality cavity via

radiation pressure effects.

Let us denote the cavity annihilation (creation) operator by c (c†) with the com-

mutation relation [c, c†] = 1. The momentum and position operators of the nanome-

chanical oscillator with mass m are represented by p and q. We also introduce the

amplitudes of the pump field and the probe field inside the cavity εc =
√
2κ℘c/(h̄ωc)

and εp =
√
2κ℘p/(h̄ωp), where ℘c is the pump power, ℘p is the power of the probe
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field, and κ is the cavity decay rate. Note that εc and εp have dimensions of frequency.

The optomechanical coupling between the cavity field and the movable mirror can be

described by the coupling constant χ0 = h̄ω0/L, where L is the cavity length. The

Hamiltonian describing the whole system reads

H = h̄ω0c
†c+

(
p2

2m
+

1

2
mω2

mq
2

)
+ ih̄εc(c

†e−iωct − ceiωct)

+ih̄(c†εpe
−iωpt − cε∗pe

iωpt)− χ0c
†cq.

(7.1)

This chapter deals with the mean response of the system to the probe field in the

presence of the coupling field. Because we deal with the mean response of the system

we do not include quantum fluctuations. This is similar to what has been done in the

context of EIT work where one uses atomic mean value equations and all quantum

fluctuations (due to either spontaneous emission or collisions) are ignored. Thus,

we examine the mean value equations, which can be obtained from the Hamiltonian

and by addition of the damping terms. We use the factorization assumption ⟨Qc⟩ =

⟨Q⟩⟨c⟩ and also transform the cavity field to a rotating frame at the frequency ωc,

⟨c(t)⟩ = ⟨c̃(t)⟩e−iωct. The mean value equations are then given by

⟨q̇⟩ = ⟨p⟩
m
,

⟨ṗ⟩ = −mω2
m⟨q⟩+ χ0⟨c̃†⟩⟨c̃⟩ − γm⟨p⟩,

⟨ ˙̃c⟩ = −
[
κ+ i

(
ω0 − ωc −

χ0

h̄
⟨q⟩
)]

⟨c̃⟩+ εc + εpe
−i(ωp−ωc)t.

(7.2)

The output field can be obtained by using the input-output relations [110]

εout(t) + εpe
−iωpt + εce

−iωct = 2κ⟨c⟩. (7.3)

We first note that in the absence of the coupling field, the output field is given by

εout(t) + εpe
−iωpt = εT εpe

−iωpt =
2κ

κ− i(ωp − ω0)
εpe

−iωpt. (7.4)

The quadratures of the field εT , defined by εT = υp + iυ̃p, show the absorptive and

dispersive behavior as a function of the detuning parameter (ωp − ω0). The field

quadratures, as is well known, can be measured by homodyne techniques [110].
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Next, we examine the effect of the coupling field. Equations (7.2) are nonlinear,

and therefore the steady-state response contains many Fourier components. We solve

in the limit of arbitrary strength of the coupling field; however, we take the probe field

to be weak. We specifically are interested in the response of the cavity optomechanical

system to the probe in the presence of the coupling field εc. Thus, we find the

component of the output field oscillating at the probe frequency ωp. The result of

such a calculation is that εT is now given by

εT =
2κ

d(δ)
{(δ2 − ω2

m + iγmδ)[κ− i(∆ + δ)]− 2iωmβ}, (7.5)

where

d(δ) = (δ2 − ω2
m + iγmδ)[(κ− iδ)2 +∆2)] + 4∆ωmβ,

δ = ωp − ωc,

∆ = ω0 − ωc −
2βχ0

ωm
,

β =
χ2
0|c̃0|2

2mh̄ωm
,

c̃0 =
εc

κ+ i∆
.

(7.6)

The coupling field has modified the output field at the probe frequency. Note that εT

is nonperturbative in terms of the strength of the coupling field ωc. We concentrate

on the output field. However, all the results for εT also apply to the cavity field at

ωp as the two quantities are proportional to each other.

In order to understand the coupling-field-induced modification of the probe re-

sponse εT , we make reasonable approximations. We work in the sideband resolved

limit ωm ≫ κ. This is the limit in which normal mode splitting [47, 48, 50] has been

discovered. Because it is known that the coupling between the nano-oscillator and

the cavity is strongest whenever δ = ±ωm or δ = ±∆, the case ∆ ∼ ωm is considered

here. After some simplifications, we can write the output field in an instructive form,

εT = υp + iυ̃p =
2κ

κ− ix+
β

γm
2
− ix

=
A+

x− x+
+

A−

x− x−
,

(7.7)
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where x = δ−ωm, which is the detuning from the line center. Further, it is seen that

the denominator has two roots, which are

x± =
−i(κ+ γm

2
)±

√
−(κ− γm

2
)2 + 4β

2
, (7.8)

whose nature depends on the power of the coupling laser. For coupling powers less

than the critical power

℘̃c =
h̄ωc|c̃0|2(κ2 + ω2

m)(κ− γm
2
)2

8κβ
, (7.9)

the two roots are purely imaginary. For ℘c > ℘̃c, the roots are complex conjugates of

each other. The region ℘c > ℘̃c corresponds to the region where normal-mode splitting

[47, 48, 50] occurs and has been studied recently using a very different technique. In

the context of optical physics, this is the region where Autler-Townes splitting [184]

occurs, although sometimes the distinction between different kinds of splittings is

marred. However, for EIT, it is important to have γm ≪ κ.

7.3 EIT in the Out Field

In order to bring out prominently features like EIT [76, 172, 173], we specifically

examine the case when the coupling power is less than the critical power. Note that

x+ → −iγm
2
, x− → −iκ as β → 0. Thus, the quadratures of the output field have

two distinct contributions in the limit of low values of the coupling laser strength.

One contribution is extremely narrow as γm ≪ κ. This characteristic property leads

to the EIT dip. For numerical work, we use parameters from a recent experiment

on the observation of the normal-mode splitting [50]: the wavelength of the laser

λ = 2πc/ωc = 1064 nm, L = 25 mm, m = 145 ng, κ = 2π × 215 kHz, ωm = 2π × 947

kHz, γm = 2π × 141 Hz, the mechanical quality factor Q = ωm/γm = 6700. We

calculate the critical power ℘̃c to be 3.8 mW. In Figs. 7.2 and 7.3, we show each

contribution in Eq. (7.7) separately and also the total contribution. We observe that
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Figure 7.2: Quadrature of the output field υp (solid black curve) and the different

contributions to it: the real parts of A+

x−x+ (dotted red curve) and A−
x−x− (dashed green

curve) as a function of the normalized frequency x/ωm for input coupling laser power

℘c = 1 mW. The dot-dashed blue curve is υp in the absence of the coupling laser.

the narrow contribution is inverted relative to the broad contribution, and this leads

to the typical EIT-like line shape for the quadrature υp of the output field. The value

at the dip is not exactly zero as γm ̸= 0, though the value is very small as γm ≪ κ.

This is similar to what one has in the context of EIT in atomic systems where a strict

zero is obtained if the ground-state atomic coherence has an infinite lifetime. In the

absence of the coupling field, the narrow feature disappears (blue curve in Fig. 7.2).

The narrow feature’s width has a contribution which depends on the coupling laser

power. In leading order, the width is γm
2

+ β
κ
. For the plot of Fig. 7.3, the power-

dependent contribution to the width in dimensionless units is β/κ2 ∼ 0.065. The

quadrature υ̃p exhibits dispersive behavior, and the coupling field changes the nature

of dispersion from anomalous to normal in the region where quantum interferences

are prominent. This behavior of dispersion is similar to the one found by Harris and

collaborators in predictions of slow light [79, 80, 212] in atomic systems.

We next present the nature of interferences in the region when ℘c > ℘̃c in Figs.
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Figure 7.3: Quadrature of the output field υ̃p (solid black curve) and the different

contributions to it: the imaginary parts of A+

x−x+ (dotted red curve) and A−
x−x− (dashed

green curve) as a function of the normalized frequency x/ωm for input coupling laser

power ℘c = 1 mW. The dot-dashed blue curve is υ̃p in the absence of the coupling

laser.

-1.0 -0.5 0.0 0.5 1.0
-2

-1

0

1

2

3

x�Ωm

R
e@

A
+

x
-

x +
D,

R
e@

A
-

x
-

x -
D,
Υ

p

Figure 7.4: Same as in Fig. 7.2 except the input coupling laser power ℘c = 6.9 mW

and ℘c = 0 case is not shown.

7.4 and 7.5. A typical behavior is shown in Fig. 7.4 which clearly shows how the

interference of the two contributions in Eq. (7.7) leads to the formation of the dip.
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Figure 7.5: Same as in Fig. 7.3 except the input coupling laser power ℘c = 6.9 mW

and ℘c = 0 case is not shown.

The two contributions in Eq. (7.7) lead to asymmetric profiles. In the region of EIT,

the tails from these contributions interfere. Unlike the case given by Fig. 7.2, the

two contributions have identical line widths. From Fig. 7.5, we also see how the

dispersive behavior is changed by the coupling field from anomalous to normal in

the region where quantum interferences are dominated. The inverted nature of the

contribution A+ should be noted, and it is this which changes the nature of dispersion.

We now explain the origin of the structure (7.7) for the probe response. Let us

re-examine the Hamiltonian (7.1). Note that we drive the cavity with arbitrary pump

field εp. This effectively prepares the cavity in a coherent state with a value c̃0 if all the

other interactions were zero. The trilinear interaction due to radiation pressure χ0c
†cq

can now be written as χ0q|c̃0|2 + χ0q(c̃
∗
0δc + c̃0δc

†)+ higher order terms if we write

the cavity operator c as c̃0 + δc. The pump thus has resulted in a bilinear interaction

between the cavity oscillator and the mirror oscillator. The cavity oscillator is driven

by the probe field, whereas the matter oscillator has no external drive. The cavity

oscillator is damped at the rate κ, whereas the mirror is damped at the rate γm ≪ κ.

This situation typically results [177, 178, 179, 180, 181] in line shapes such as (7.7).
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7.4 Conclusions

In conclusion, we have shown how an exact analog of EIT can occur in cavity op-

tomechanics when such a system is driven by a weak probe in the presence of a strong

coupling field. We find that the response function for the cavity field at the probe

frequency as well as the output field has exactly the same features as the response

of a Λ system provided the damping of the nanomechanical mirror is much smaller

than the dissipation in the cavity. We further highlighted the interference effects in

two distinct regions of the coupling power.

The content of this chapter has been published in Phys. Rev. A 81, 041803(R)

(2010).
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CHAPTER 8

REACTIVE-COUPLING-INDUCED NORMAL MODE SPLITTINGS

IN MICRODISK RESONATORS COUPLED TO WAVEGUIDES

8.1 Overview

In a recent paper Li et al. [67] presented a new design for an optomechanical system

that consists of a microdisk resonator coupled to a waveguide. This design has sev-

eral attractive features. Besides its universality, it enables one to study the reactive

effects [67, 185] in optomechanical coupling. The origin of the reactive coupling is

well explained in Ref. [69]. Its origin lies in the mechanical motion dependence of

the extrinsic losses of the disk resonator. Further phase-dependent gradient forces

lead to reactive coupling. Li et al. have also argued that this design is more effective

in achieving cooling of the system to its ground state. While cooling is desirable for

studying quantum effects at the macroscopic scale [35, 36, 38, 39, 117, 186], we exam-

ine other possibilities, which do not depend on the cooling of the system, to investigate

the effects arising from strong reactive coupling. Since optomechanical coupling ef-

fects are intrinsically nonlinear, we examine the nonlinear response of the microdisk

resonator to pump probe fields. We report reactive-coupling-induced normal mode

splitting. Note that in previous works [47, 48, 50, 187] on normal mode splitting in

optomechanical devices, only dispersive coupling was used. In this chapter, we report

on normal mode splitting due to reactive effects.

The chapter is organized as follows. In Sec. II, the physical system is introduced

and the time evolutions of the expectation values of the system operators are given

and solved. In Sec. III, the expectation value of the output fields is calculated, and
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the nonlinear susceptibilities for Stokes and anti-Stokes processes are obtained. In

Sec. IV, we discuss normal mode splitting in output fields with or without reactive

coupling. We find that there is no normal mode splitting in output fields in the

absence of reactive coupling. However, normal mode splitting occurs in output fields

in the presence of reactive coupling.

8.2 Model

We consider the system shown in Fig. 8.1, in which a microdisk cavity is coupled to

a freestanding waveguide. A strong pump field with frequency ωl and a weak Stokes

field with frequency ωs enter the system through the waveguide. The waveguide

will move along the y direction under the action of the optical force exerted by the

photons from the cavity. Further, considering the dispersive coupling and reactive

coupling between the waveguide and the cavity, displacement q of the waveguide from

its equilibrium position will change the resonant frequency of the cavity field and the

cavity decay rate, represented by ωc(q) and κe(q), respectively.

Figure 8.1: Sketch of the studied system (from Ref.[67]). The microdisk cavity is

driven by a pump field and a Stokes field. The nonlinearity of the interaction also

generates anti-Stokes field.
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In a rotating frame at pump frequency ωl, the Hamiltonian of the system is given

by [67]

H = h̄[ωc(q)− ωl]c
†c+

p2

2m
+

1

2
mω2

mq
2 + h̄

L

c
ñg(ωlε

2
l + ωs|εs|2)

+ih̄
√
2κe(q)εl(c

† − c) + ih̄
√
2κe(q)(εse

−iδtc† − ε∗se
iδtc).

(8.1)

The first term is the energy of the cavity field, whose annihilation (creation) operators

are denoted c(c†). The second and third terms are the energy of the waveguide

with mass m, frequency ωm, and momentum operator p. The fourth term gives the

interactions between the waveguide and the incident fields (the pump field and the

Stokes field), L is the length of the waveguide, c is the speed of light in vacuum, ñg is

the group index of the waveguide optical mode [188], εl and |εs| are the amplitudes

of the pump field and the Stokes field, respectively, and they are related to their

corresponding power ℘l and ℘s by εl =

√
℘l
h̄ωl

and |εs| =

√
℘s
h̄ωs

. The latter two

terms describe the coupling of the cavity field to the pump field and the Stokes field,

respectively. And δ = ωs− ωl is the detuning between the Stokes field and the pump

field. We would study the physical effects by scanning the Stokes laser.

For a small displacement q, ωc(q) and κe(q) can be expanded to the first order of

q,

ωc(q) ≈ ωc + qχ,

κe(q) ≈ κe + qκom,

(8.2)

thus the quantities χ and κom describe the cavity-waveguide dispersive and reactive

coupling strength, respectively. Further, note that the photons in the cavity can leak

out of the cavity by an intrinsic damping rate κi of the cavity and by a rate of κe(q)

due to the reactive coupling between the waveguide and the cavity. In addition, the

velocity of the waveguide is damped at a rate of γm. Applying the Heisenberg equation

of motion and adding the damping terms, the time evolutions of the expectation values

(⟨q⟩, ⟨p⟩, and ⟨c⟩) for the system can be expressed as
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⟨q̇⟩ = ⟨p⟩
m
,

⟨ṗ⟩ = −mω2
m⟨q⟩ − h̄χ⟨c†⟩⟨c⟩ − 2h̄

κom√
κ
Im[(εl + ε∗se

iδt)⟨c⟩]− γm⟨p⟩,

⟨ċ⟩ = −[κ+ ⟨q⟩κom + i(ωc − ωl + ⟨q⟩χ)]⟨c⟩+
√
κ[1 + ⟨q⟩κom

κ
](εl + εse

−iδt),

(8.3)

where we have used the mean field assumption ⟨qc⟩ = ⟨q⟩⟨c⟩, expanded κe(q) to the

first order of q, and assumed κe ≈ κi ≈ κ/2, where κ is the half-linewidth of the

cavity field. It should be noted that the steady-state solution of Eq. (8.3) contains

an infinite number of frequencies. Since the Stokes field εs is much weaker than the

pump field εl, the steady-state solution of Eq. (8.3) can be simplified to first order in

εs only. We find that in the limit t→ ∞, each ⟨q⟩,⟨p⟩, and ⟨c⟩ has the form

⟨s⟩ = s0 + s+εse
−iδt + s−ε

∗
se
iδt, (8.4)

where s stands for any of the three quantities q, p, and c. Thus the expectation values

(⟨q⟩, ⟨p⟩, and ⟨c⟩) oscillate at three frequencies (ωl, ωs, and 2ωl − ωs). Substituting

Eq. (8.4) into Eq. (8.3), ignoring those terms containing the small quantities ε2s,

ε∗2s , |εs|2, and equating coefficients of terms with the same frequency, respectively, we

obtain the following results

c0 =
Aεl

κ+ q0κom + i∆
,

q0 = − h̄

mω2
m

[χ|c0|2 + i
κom√
κ
εl(c

∗
0 − c0)],

c+ =
1

d(δ)
[A(BE + FJ)− ih̄

κom√
κ
c∗0BF

∗],

c− =
F ∗

d∗(δ)
(−AJ + ih̄

κom√
κ
c0V ),

q+ =
B

d(δ)
(−AJ∗ − ih̄

κom√
κ
c∗0V

∗),

q− = (q+)
∗,

(8.5)
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where

∆ = ωc − ωl + χq0, (8.6)

d(δ) = V ∗(BE + FJ) + BF ∗J∗, (8.7)

and A =
√
κ(1 +

κom
κ
q0), B = κ + q0κom − i(∆ + δ), E = m(ω2

m − δ2 − iγmδ),

F = −c∗0(κom − iχ) +
κom√
κ
εl, J = χh̄c0 + ih̄

κom√
κ
εl, V = κ + q0κom − i(∆ − δ).

The approach used in this paper is similar to our earlier work [49] which dealt with

optomechanical systems with dispersive coupling only.

8.3 Output Fields

To investigate the normal mode splitting of the output fields, we need to calculate

their expectation value. It can be obtained by using the input-output relation [110]

⟨cout⟩ =
√
2κe(q)⟨c⟩. If we write ⟨cout⟩ as

⟨cout⟩ = cl + εse
−iδtcs + ε∗se

iδtcas, (8.8)

where cl is the response at the pump frequency ωl, cs is the response at the Stokes

frequency ωs, and cas is the field generated at the new anti-Stokes frequency 2ωl−ωs.

Then we have

cl =
√
κ(1 +

κom
κ
q0)c0,

cs =
κom√
κ
q+c0 +

√
κ(1 +

κom
κ
q0)c+,

cas =
κom√
κ
q−c0 +

√
κ(1 +

κom
κ
q0)c−.

(8.9)

Furthermore, whether there is normal mode splitting in the output fields is determined

by the roots of the denominator d(δ) of cs. Here we examine the roots of d(δ) given

by Eq. (8.7) numerically.

The response of the system is expected to be especially significant if we choose

ωs corresponding to a sideband ωs = ωl ± ωm or ωs = ωl ± ∆, so we consider the

case ∆ = ωm. The other parameters are chosen from a recent experiment focusing
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on the effect of the reactive force on the waveguide [67]: the wavelength of the laser

λ = 2πc/ωl = 1564.25 nm, χ = 2π × 2 MHz/nm, m = 2 pg (density of the silicon

waveguide, 2.33 g/cm3; length, 10 µm; width, 300 nm; height, 300 nm), κ = 0.2ωm,

ωm = 2π× 25.45 MHz, and the mechanical quality factor Q = ωm/γm = 5000. In the

following, we work in the stable regime of the system.
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Figure 8.2: The real roots of d(δ) in the domain Re(δ) > 0 as a function of the pump

power ℘l for κom = 0 (dotted curve) and κom = −2π × 26.6 MHz/nm (solid curve).

Figure 8.2 shows the variation of the real parts of the roots of d(δ) in the domain

Re(δ) > 0 with increasing pump power for no reactive coupling, κom = 0, and for

κom = −2π × 26.6 MHz/nm. For κom = 0, the interaction of the waveguide with the

cavity is purely dispersive; the cavity decay rate does not depend on the displacement

of the waveguide. In this case, the real parts of the roots of d(δ) always have two equal

values with increasing pump power. Thus there is no splitting because the dispersive

coupling is not strong enough. However, for κom = −2π × 26.6 MHz/nm, the system

has both dispersive and reactive couplings, the cavity decay rate depends on the

displacement of the waveguide, and the real parts of the roots of d(δ) will change

from two equal values to two different values with increasing pump power. And the
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Figure 8.3: Imaginary parts of the roots of d(δ) as a function of the pump power ℘l

for κom = 0 (dotted curve) and κom = −2π × 26.6 MHz/nm (solid curve).

difference between two real parts of the roots of d(δ) in the domain Re(δ) > 0 is

increased with increasing pump power. Therefore, the reactive coupling between the

waveguide and the cavity can result in normal mode splitting of the output fields, and

the peak separation becomes larger with increasing pump power. Figure 8.3 shows

the variation of the imaginary parts of the roots of d(δ) with increasing pump power

for zero reactive coupling κom = 0 and nonzero reactive coupling κom = −2π × 26.6

MHz/nm. For κom = 0, the imaginary parts of the roots of d(δ) do not change with

increasing pump power. However, for κom = −2π × 26.6 MHz, the imaginary parts

of the roots of d(δ) change with increasing pump power. We thus conclude that for

the present microdisk resonator coupled to a waveguide the normal mode splitting is

solely due to the reactive coupling.

8.4 Normal Mode Splitting In Output Fields

We now discuss how the output fields depend on the behavior of the roots of d(δ).

For convenience, we normalize all quantities to the input Stokes power ℘s. Assuming
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that εs is real, we express the output power at the Stokes frequency ωs in terms of

the input Stokes power

Gs =
h̄ωs|εscs|2

℘s
= |cs|2. (8.10)

Further, we introduce the two quadratures of the Stokes component of the output

fields by υs =
cs + c∗s

2
and υ̃s =

cs − c∗s
2i

. One can measure either the quadratures of

the output by homodyne techniques or the intensity of the output. For brevity, we

only show υs and Gs as a function of the normalized detuning between the Stokes

field and the pump field δ/ωm for this model, without reactive coupling (κom=0) and

with it (κom = −2π × 26.6 MHz/nm), for different pump powers in Figs. 8.4–8.5.
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Figure 8.4: The lower two curves show the normalized quadrature vs as a function

of the normalized detuning between the Stokes field and the pump field, δ/ωm for

κom = 0 (dotted curve) and κom = −2π×26.6 MHz/nm (solid curve) for pump power

℘l = 20 µW. The upper two curves give the normalized quadrature vs+1.5 for pump

power ℘l = 200 µW.

For κom=0, it is found that υs has a Lorentzian lineshape corresponding to the

absorptive behavior. Note that υs and Gs exhibit no splitting when κom=0. However,

for κom = −2π× 26.6 MHz/nm, it is clearly seen that normal mode splitting appears
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Figure 8.5: The lower two curves show the normalized output power Gs as a function

of the normalized detuning between the Stokes field and the pump field, δ/ωm for

κom = 0 (dotted curve) and κom = −2π×26.6 MHz/nm (solid curve) for pump power

℘l = 20 µW. The upper two curves give the normalized output power Gs+1.5 for

pump power ℘l = 200 µW.

in υs and Gs. Therefore reactive coupling can lead to the appearance of normal mode

splitting in the output Stokes field. And the peak separation increases with increasing

pump power [189]. The dip at the line center exhibits power broadening. We also

find that the Stokes field can be amplified by the stimulated process. Obviously the

maximum gain Gs for the Stokes field depends on the system parameters. For a pump

power ℘l = 200 µW, the maximum gain for the Stokes field is about 1.3.

Note that the nonlinear nature of the reactive coupling generates anti-Stokes ra-

diation. In a similar way, we define a normalized output power at the anti-Stokes

frequency 2ωl − ωs as

Gas =
h̄(2ωl − ωs)|εscas|2

℘s
= |cas|2. (8.11)

The plots of Gas versus the normalized detuning between the Stokes field and the

pump field δ/ωm for this model, without reactive coupling (κom=0) and with it (κom =
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−2π × 26.6 MHz/nm), for different pump powers are presented in Fig. 8.6. We can
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Figure 8.6: The lower two curves show the normalized output power Gas as a function

of the normalized detuning between the Stokes field and the pump field, δ/ωm for

κom = 0 (dotted curve) and κom = −2π×26.6 MHz/nm (solid curve) for pump power

℘l = 20 µW. The upper two curves give the normalized output power Gas+0.15 for

pump power ℘l = 200 µW.

see that Gas ≈ 0 for κom=0. The reason is that the dispersive coupling constant χ

is too small. However, for κom = −2π × 26.6 MHz/nm, Gas is not equal to zero.

This shows that the optomechanical system can generate an anti-Stokes field with

frequency (2ωl−ωs) due to the reactive coupling. For pump power ℘l = 200 µW, the

maximum gain defined with reference to the input Stokes power for the anti-Stokes

field is about 0.1.

8.5 Conclusions

In conclusion, we have observed normal mode splitting of output fields due to reactive

coupling between the waveguide and the cavity. Meanwhile, the separation of the

peaks increases for larger pump powers. Further, the reactive coupling can also
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cause four-wave mixing, which creates an anti-Stokes component generated by the

optomechanical system.

The content of this chapter has been published in Phys. Rev. A 81, 053810

(2010).
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CHAPTER 9

CAN REACTIVE COUPLING BEAT MOTIONAL QUANTUM LIMIT

OF NANO WAVEGUIDES COUPLED TO MICRODISK RESONATOR

9.1 Overview

Methods for beating the standard quantum limit of radiation fields have become fairly

standard. Most methods are based on nonlinear interactions of the field in a highly

nonlinear medium. The question of beating the quantum limit of the mechanical

motion which could range from kHz to GHz range is attracting increasing attention

[22, 26, 31, 117, 132, 215, 137, 138, 140, 182, 190, 191, 192]. Fortunately a nano

mechanical mirror [NMO] placed in an optical cavity interacts with the field in the

cavity in nonlinear fashion and this can be described by a nonlinear Hamiltonian. A

scheme to beat the standard quantum limit for mechanical motion is to drive the sys-

tem by a combination of a laser field and squeezed light such that the beat frequency

matches the frequency of the NMO [32]. More recently other designs of NMO have

been used [12, 67, 185, 193]. These have certain attractive features and appear quite

versatile; for example, in the design of Li et al. [67], the nano waveguide interacts

reactively with the microdisk resonator. In other words the fields leak from resonator

to the waveguide. Even though the coupling is of dissipative nature such a system

exhibits several novel features such as normal mode splitting which traditionally was

a feature of two strongly coupled oscillators described by the Hamiltonian framework

[47, 48, 50, 194].

In this chapter, we go one step further. We give first example of dissipative

nonlinear coupling produced quantum fluctuations of the mechanical motion of the
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waveguide which are below the standard quantum limit. This is rather counterintu-

itive, as dissipation is always thought to produce negative effects, i.e., is generally

thought to suppress the quantum nature of the system.

The chapter is organized as follows. In Sec. II, we introduce the model, present

the equation of motion for the system, and give the mean values of the system op-

erators in steady state. In Sec. III, we calculate the quantum fluctuations in the

mechanical motion of the waveguide and obtain the variance of momentum of the

waveguide. In Sec. IV, we present the numerical result and show that the reactive

coupling can reduce the momentum fluctuations of the waveguide below the standard

quantum limit. The numbers are rather attractive; for example, at a temperature of

20 mK, achievable by a dilution refrigerator, the maximum momentum squeezing of

the waveguide is about 60%.

9.2 Model

Let us consider a free-standing waveguide with length L interacting with a microdisk

resonator [67]. Suppose a laser with amplitude εl at frequency ωl drives the resonator

mode c, and a quantum field cin at frequency ωs is sent into the resonator through

the waveguide with mass m and frequency ωm. For convenience, we adopt the nota-

tion Q =
√

2mωm

h̄
q and P =

√
2

mh̄ωm
p for the dimensionless position and momentum

quadratures of the waveguide with [Q,P ] = 2i. The waveguide vibrates along the y

direction due to the dispersive and reactive couplings with the resonator, which are

characterized by the position dependence of the resonator resonance frequency ωc(Q)

and the photon decay rate κe(Q), respectively. Moreover, the waveguide is damped

at a rate of γm due to its interaction with its environment at a low temperature T .

In a frame rotating at the laser frequency ωl, the Hamiltonian describing the whole
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system takes the form [67]

H = h̄[ωc(Q)− ωl]c
†c+

h̄ωm
4

(Q2 + P 2) + h̄
L

c
ñgωlε

2
l

+ih̄
√
2κe(Q)[εl(c

† − c) + c†cin − c†inc].

(9.1)

where the first two terms describe the free energies of the resonator and the waveguide,

respectively. The third term is the interaction between the waveguide and the laser,

c is the speed of light in vacuum, ñg is the group index of the waveguide optical mode

[188], and εl is related to the input power ℘l by εl =

√
℘l
h̄ωl

. The last term gives the

interactions of the resonator with the laser and the quantum field. The characteristics

of the quantum field would be specified later.

For a small displacement Q, we can assume that both ωc(Q) and κe(Q) are coupled

linearly to the displacement Q,

ωc(Q) ≈ ωc + gQ,

κe(Q) ≈ κe + κomQ = κe(1 + ηQ),

(9.2)

where ωc is the resonator resonance frequency for Q = 0, κe is the photon decay rate

for Q = 0, and g and κom are the dispersive and reactive coupling constants between

the waveguide and the resonator, respectively. We set η =
κom
κe

. Since in the scheme

of Li et al. [67] the effects of reactive coupling are dominant, we will take g ∼ 0.

For simplicity, we assume that there is no intrinsic photon losses. Employing

the Heisenberg equation of motion and adding the damping and noise terms, the

equations of motion for Q, P , and c can be expressed as

Q̇ = ωmP,

Ṗ = −iη[ε̃l(c† − c) +
√
2κe(c

†cin − c†inc)]− ωmQ− γmP + ξ,

ċ = −[κe + κomQ+ i(ωc − ωl)]c+ (1 +
η

2
Q)(ε̃l +

√
2κecin), (9.3)

where ε̃l =
√
2κeεl, and we have introduced ξ as the thermal noise force acting on the

waveguide with standard correlation [108]. We first examine the mean values of the
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physical variables in steady state. These can be obtained by using the factorization

ansatz i.e. mean value of the product of two operators is the same as the product of

the mean values. We find that these are given by

Ps = 0,

Qs = − 2η

ωm
ε̃lIm[cs],

cs =
(1 +

η

2
Qs)ε̃l

κe + κomQs + i∆
, (9.4)

where the resonator detuning ∆ is defined by

∆ = ωc − ωl. (9.5)

Note that the steady-state position Qs of the waveguide and the steady-state complex

amplitude cs of the resonator depend on η. In obtaining results (9.4) we assumed that

the quantum field cin had zero mean value. This would be the case generally unless

the quantum field is a coherent field. We already examined the case of a coherent

field in a previous publication [166].

9.3 Beating the Motional Quantum Limit for the Waveguide

In this section, we investigate whether the motional quantum limit for the waveg-

uide can be beaten even when the basic coupling is reactive. This would be quite

counterintuitive as the dissipation generally leads to the loss of decoherence and fluc-

tuations above the quantum limit. The fluctuations in q and p are subject to the

Heisenberg uncertainty relation. For the mechanical oscillator in ground state one

has ⟨δq2⟩ = h̄
2mωm

⟨δQ2⟩ and ⟨δp2⟩ = mh̄ωm

2
⟨δP 2⟩, in which ⟨δQ2⟩ = ⟨δP 2⟩ = 1. Thus

the reduction of fluctuations below unity is an indication that the standard quantum

limit is broken. The question is if the fluctuations in either Q or P can go below the

value unity.
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Since we are interested in the squeezing of the waveguide, it is instructive to

calculate the fluctuations of the system’s operators around their steady state val-

ues. Provided that the steady-state amplitude of the resonator satisfies |cs| ≫ 1,

we linearize Eq. (9.3) around its steady-state value by substituting Q = Qs + δQ,

P = Ps+ δP , and c = cs+ δc into Eq. (9.3), where δQ, δP , and δc are the small fluc-

tuations with zero mean value. After linearization, the quantum Langevin equations

can be written in the form

ḟ(t) = Zf(t) + F (t), (9.6)

where

f(t) =



δQ

δP

δc

δc†


, (9.7)

and Z is a 4× 4 matrix, and the quantum noise F (t) is given by

F (t) =



0

ξ − iη
√
2κe(c

∗
scin − c†incs)

Jcin

Jc†in


, (9.8)

in which J =
√
2κe(1 +

η
2
Qs).

With the aid of the Fourier transform i.e., f(t) = 1
2π

∫+∞
−∞ f(ω)e−iωtdω and f †(t) =

1
2π

∫+∞
−∞ f †(−ω)e−iωtdω, where f †(−ω) = [f(−ω)]†, we solve Eq. (9.6) in the frequency

domain, and obtain the solution of Eq. (9.6)

f(ω) = V F (ω), (9.9)

where V = (−iω − Z)−1. From Eq. (9.9), we can obtain the fluctuations in the

momentum variable

δP (ω) = PT (ω)ξ(ω) + PS(ω)cin(ω) + P ∗
S(−ω)c

†
in(−ω), (9.10)
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in which

PT (ω) =
−iω
d(ω)

A(ω)A∗(−ω),

PS(ω) = η[
ωε̃l
d(ω)

A(ω)J − i
√
2κec

∗
sPT (ω)], (9.11)

where

d(ω) = A(ω)A∗(−ω)R− iηε̃lωm[A(ω)U − A∗(−ω)U∗], (9.12)

and

A(ω) = κe + κomQs − i(∆ + ω),

R = ω2
m − ω2 − iγmω,

U = −κomcs +
η

2
ε̃l. (9.13)

In Eq. (9.10), the first term results from the thermal environment of the waveguide,

the last two terms arise from the input quantum field. Thus the fluctuations in

the momentum variable in the time domain would be δP (t) = 1
2π

∫+∞
−∞ δP (ω)e−iωtdω.

Further the variance of momentum ⟨δP̃ 2⟩ can be expressed as

⟨δP (t)2⟩ = 1

4π2

∫ ∫ +∞

−∞
dωdΩe−i(ω+Ω)t⟨δP (ω)δP (Ω)⟩. (9.14)

Inserting Eq. (9.10) into Eq. (9.14), ⟨δP (t)2⟩ can be written as

⟨δP (t)2⟩ =
1

4π2

∫ ∫ +∞

−∞
dω dΩ e−i(ω+Ω)t

{PT (ω)PT (Ω)⟨ξ(ω)ξ(Ω)⟩+ 2Re[PS(ω)PS(Ω)⟨cin(ω)cin(Ω)⟩]

+PS(ω)P
∗
S(−Ω)⟨cin(ω)c†in(−Ω)⟩+ P ∗

S(−ω)PS(Ω)⟨c
†
in(−ω)cin(Ω)⟩}.

(9.15)

We assume that the quantum field is a squeezed field centered around the fre-

quency ωs with a finite width,

⟨cin(ω)cin(Ω)⟩ = 2π
MΓ2

Γ2 + (ω − ωm)2
δ(ω + Ω− 2ωm),

⟨cin(ω)c†in(−Ω)⟩ = 2π

[
NΓ2

Γ2 + (ω − ωm)2
+ 1

]
δ(ω + Ω), (9.16)
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where N = sinh2(r) and M = sinh(r) cosh(r)eiφ characterize the squeezed vacuum,

r is the squeezing parameter of the squeezed vacuum, φ is the phase of the squeezed

vacuum, and we set φ = 0. We work in the sideband resolved limit i.e. we assume that

ωs − ωl = ωm. The squeezed vacuum has a finite bandwidth Γ around ωm, which is

smaller than ωm but larger than the resonator width. The antinormally ordered term

has a broad band contribution coming from vacuum noise. Moreover, the thermal

noise ξ owns the correlation function [108]:

⟨ξ(ω)ξ(Ω)⟩ = 4πγm
ω

ωm

[
1 + coth

(
h̄ω

2KBT

)]
δ(ω + Ω), (9.17)

where KB is the Boltzmann constant.

Substituting Eqs. (9.16) and (9.17) into Eq. (9.15), the time independent variance

⟨δP 2⟩ will be

⟨δP 2⟩ =
1

2π

∫ +∞

−∞
dωPT (ω)PT (−ω)2γm

ω

ωm

[
1 + coth

(
h̄ω

2KBT

)]

+2Re

[
1

2π

∫ +∞

−∞
dνPS(ωm + ν)PS(ωm − ν)

MΓ2

Γ2 + ν2

]

+2

[
1

2π

∫ +∞

−∞
dν|PS(ωm + ν)|2 NΓ2

Γ2 + ν2

]
+

1

2π

∫ +∞

−∞
dω|PS(ω)|2.

(9.18)

The details of the calculations are given in Appendix A.

9.4 Numerical Results for Nano Waveguide Fluctuations below

Standard Quantum Limit

We use available experimental parameters [67]: the wavelength of the laser λ =

2πc/ωl = 1564.25 nm, the mass of the waveguide m = 2 pg (the density of the silicon

waveguide 2.33 g/cm3, length 10 µm, width 300 nm, height 300 nm), the frequency of

the waveguide ωm = 2π × 25.45 MHz, the extrinsic photon decay rate κe = 0.05ωm,

the reactive coupling constant κom = −2π× 26.6 MHz/nm ×
√

h̄
2mωm

, the mechanical
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quality factor Q = ωm/γm = 5000, and the bandwidth of the squeezed vacuum

Γ = 5κe.

23 24 25 26 27 28
0.0

0.5

1.0

1.5

2.0

D H2Π´106HzL

<
∆
P2
>

Figure 9.1: The variance of momentum ⟨δP 2⟩ as a function of the detuning ∆ (2π ×

106Hz) for different temperatures of the environment: T = 1 mK (red solid), T = 10

mK (blue dotted), T = 50 mK (purple dashed), and T = 100 mK (green dotdashed).

The horizontal dotted line represents the standard quantum limit (⟨δP 2⟩=1). The

parameters: the pump power ℘l = 20 µW, r = 1.

We start the investigation with the influence of the reactive coupling on the squeez-

ing of the waveguide. If the quantum field is the ordinary vacuum (r = 0), we cal-

culate the variances of position and momentum, and find that ⟨δQ2⟩ and ⟨δP 2⟩ are

always larger than unity, there is no squeezing appearance. If the quantum field is

the squeezed vacuum, and r = 1, it has been found that there is no squeezing in the

variance of position ⟨δQ2⟩, but the variance of momentum ⟨δP 2⟩ may be squeezed.

For pump power ℘l = 20 µW, the variances of momentum ⟨δP 2⟩ versus the detuning

∆ (2π× 106 Hz) for different temperatures of the environment are shown in Fig. 9.1.

For T = 1, 10, or 50 mK, we can see the variance of momentum ⟨δP 2⟩ falls below

the standard quantum limit, so the momentum squeezing takes place. The minimum
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value of ⟨δP 2⟩ is about 0.250 at T = 1 mK, this shows the maximum momentum

squeezing of the waveguide is about 75 %. Note that the maximum momentum

squeezing of the waveguide decreases with increasing the temperature due to large

thermal noise. Even at T = 50 mK, the momentum squeezing is about 40%.
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Figure 9.2: The variance of momentum ⟨δP 2⟩ as a function of the pump power (µW)

for different temperatures of the environment: T = 1 mK (red solid) and T = 20 mK

(green dotdashed). The horizontal dotted line represents the standard quantum limit

(⟨δP 2⟩=1). The parameters: ∆ = ωm, r = 1.

Next we consider the resonance case ∆ = ωm in the presence of the reactive

coupling, and fix r = 1, the dependence of the variance of momentum ⟨δP 2⟩ on the

pump power ℘l (µW) for T = 1 and 20 mK is shown in Fig. 9.2. It is seen that the

variance of momentum ⟨δP 2⟩ clearly exhibits the squeezing effect over a large range

of pump power (℘l = 0 ∼ 290 µW). The minimum value of ⟨δP 2⟩ is 0.243 at a very

low pump power (℘l = 12 µW) for T = 1 mK, so the maximum momentum squeezing

of the waveguide is about 75 %. For T = 20 mK, the maximum momentum squeezing

is about 60%. Note that temperatures like 20 mK are realizable by standard dilution

refrigerators [195].
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9.5 Conclusions

We have shown that quantum squeezing effects in the motion of the waveguide can be

generated solely due to the reactive coupling between the waveguide and the resonator

by use of a squeezed vacuum. The maximum momentum squeezing is about 75%,

which can be achieved at a very low pump power (℘l = 12µW). We show in the

Appendix B the relation between the quantum fluctuations of the waveguide and the

output field. Thus the squeezing of nano waveguide can be studied by examining the

fluctuations of the output field of the waveguide.

The content of this chapter has been published in Phys. Rev. A 82, 033811

(2010).
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CHAPTER 10

ELECTROMAGNETICALLY INDUCED TRANSPARENCY FROM

TWO PHOTON PROCESSES IN QUADRATICALLY COUPLED

MEMBRANES

10.1 Overview

The radiation pressure coupling between the nano-mirror and the radiation field is

known to depend on the displacement of the mirror via the cavity frequency [196].

This coupling can depend linearly or quadratically on the displacement depending on

the location of the mirror with respect to nodes and antinodes of the cavity modes.

The case most extensively discussed in the literature corresponds to placing the mirror

at a node so that the coupling is linear in displacement [35, 38, 47, 50, 59, 193,

197, 198, 199]. Nanomechanical systems with linear reactive coupling have also been

studied [67, 185, 194]. The case of quadratic coupling has not been studied that

extensively as the coupling is generally small. However, recent works [10, 11, 12] have

shown a way to get much larger quadratic couplings, and therefore, one should study

the unique consequences of quadratic coupling in detail. The quadratic coupling in

a phonon picture implies two-phonon processes, as explained in detail in Sec. II,

and such couplings in analogy to well-known quantum optical Hamiltonians [110]

naturally lead to the possibility of squeezing the mechanical oscillator [66, 191, 200].

The question that we examine in this chapter is how to probe the effects of such two-

phonon processes by using pump and probe fields of respective frequencies ωc and

ωp. We expect that the two-phonon processes should show up when the frequency

difference ωp−ωc is about 2ωm, where ωm is the frequency of the mechanical oscillator
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and when ωp is close to the cavity frequency. At the outset, we want to mention the

following: in case of single-phonon processes (linear coupling), the mean displacement

of the oscillator is nonzero, and it leads to the modulation of the output fields, whereas

for two-phonon processes the mean response of the oscillator is zero [41], and thus,

any modulation of the output fields has to come from mean values of the square of

the displacement, which is a temperature-dependent quantity. We further reveal the

possibility of an analog of electromagnetically induced transparency (EIT) arising

from a temperature-dependent oscillator’s mean potential energy. This is different

from the linear coupling case where the mean displacement of the oscillator determines

the EIT behavior [51, 53, 54]. For our case of two-phonon processes the role of atomic

coherence in traditional EIT is played by the mean of the square of the displacement,

which, in addition to temperature, also depends on the strength of the coupling field.

The chapter is organized as follows. In Sec. II, we describe the model under study.

We explain some key differences from the case of linearly coupled nanomechanical

mirrors, and we give the equation of motion for the system operators and obtain the

output field at the probe frequency. In Sec. III, we discuss the effect of the quadratic

optomechanical coupling on the output field at the probe frequency. We find that the

EIT-like dip appears in the output field at the probe frequency.

10.2 Model

Let us start with a sketch of the system as shown in Fig. 10.1 [10, 11]. A membrane

with finite reflectivity R is placed inside the cavity formed by two fixed mirrors

separated from each other by a distance L. A strong coupling field of amplitude εc

and a weak probe field of amplitude εp are sent into the cavity through the partially

transmitting left mirror, the right mirror is perfectly reflecting. To ensure that the

membrane locates at an antinode of the cavity modes, the cavity frequency must be

ω(q) = ωn+
π
τ
− 1

τ
[sin−1(

√
R cos 2knq)+sin−1(

√
R)] so that there is an odd number of
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                               -L/2                   0   q               L/2              q

Figure 10.1: Sketch of the studied system. A strong coupling field at frequency ωc

and a weak probe field at frequency ωp are injected into the cavity through the left

mirror. A membrane with finite reflectivity is located at the middle position of the

cavity. After the interaction between the cavity field and the membrane, the output

field will contain three frequencies (ωc, ωp, and 2ωc − ωp).

half wavelengths in the whole cavity, where ωn = 2nπc
L

is the resonant frequencies of the

two subcavities as R = 1, q = 0, and kn = ωn/c, τ = L/c [41]. If the membrane with

mass m is located at an antinode of the frequency ω(q) of the cavity field, the cavity

frequency can be approximated to the second order of q, ω(q) = ω0+
1
2
d2ω
dq2

|q=0q
2. Thus

the cavity is quadratically coupled to the displacement of the membrane. We denote

the quadratic coupling constant by g, and g = 1
2
d2ω
dq2

|q=0 = 8π2c
λ2L

√
R

1−R [201], where

c is the speed of light in a vacuum and λ is the wavelength of the coupling field.

Moreover, the membrane is in contact with the environment in thermal equilibrium

at temperature T . Hence the system’s Hamiltonian takes the form

H = h̄ω0c
†c+ h̄gc†cq2 +

p2

2m
+

1

2
mω2

mq
2

+ih̄εc(c
†e−iωct − ceiωct) + ih̄(εpc

†e−iωpt − ε∗pce
iωpt), (10.1)

in which c and c† denote the annihilation and creation operators of the cavity, while

q and p are the position and momentum operators of the membrane. εc and εp are
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defined by εc =
√
2κ℘c/(h̄ωc) and εp =

√
2κ℘p/(h̄ωp), where ℘c is the power of the

coupling field, ℘p is the power of the probe field, and κ is the cavity decay rate.

Before proceeding further we examine the interaction term in Eq. (10.1). The

cavity field c is expected to have the form

c→ cpe
−iωpt + cce

−iωct + · · · , (10.2)

and the displacement of the membrane would have the form

q → q+e
−iωmt + q−e

iωmt + · · · . (10.3)

Here · · · denotes terms generated at other frequencies due to the nonlinear interaction

term in Eq. (10.1). Clearly, c†cq2 would give rise to a contribution of the form

q2+e
−2iωmt+iωpt−iωctc†pcc, (10.4)

which physically corresponds to the conversion of the ωc field into the ωp field via

absorption of two phonons, as shown in Fig. 10.2. The conversion process would be

Figure 10.2: Sketch of two-phonon process. For a one-phonon case the corresponding

condition on frequencies will be ωc + ωm = ωp ≈ ω0.

quite efficient if ωp is near the cavity resonance frequency. This is to be contrasted to
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the linear coupling case c†cq, where a single phonon is involved in the up-conversion

process.

In the rotating frame at the frequency ωc of the coupling field, c(t) = c̃(t)e−iωct;

using the Heisenberg equation of motion and adding the corresponding noise and

damping terms, we can obtain the equation of motion for the mirror and the cavity

variables.

dq

dt
=

p

m
,

dp

dt
= −mω2

mq − 2h̄gc̃†c̃q − γmp+ ξ,

dc̃

dt
= −[κ+ i(ω0 − ωc + gq2)]c̃+ εc + εpe

−i(ωp−ωc)t +
√
2κc̃in,

dc̃†

dt
= −[κ− i(ω0 − ωc + gq2)]c̃† + εc + ε∗pe

i(ωp−ωc)t +
√
2κc̃†in, (10.5)

in which γm is the damping rate of the membrane, ξ is the Langevin force arising

from the interaction with environment, and c̃in is the input vacuum noise with zero

mean value.

We next examine if we can get an analog of EIT for the case of a quadratically

coupled membrane. We sketch the relation between the EIT in atomic systems and the

analog of the EIT in mechanical effects of light in Fig. 10.3. The EIT occurs in atomic

systems when (i) decay of the optical coherence described by the density matrix

element ρ13 is much faster than the decay of atomic coherence ρ23, (ii) ωp = ωc+ωm,

(iii) atomic coherence ρ13 ̸= 0. In mechanical effects of light, (a) (γm)
−1 is like the

life-time of atomic coherence, (b) κ−1 is like the life time of optical coherence, (c) the

condition that atomic coherence decays much slower compared to optical coherence

is then γm ≪ κ, (d) generally, ωp and ωc are well separated, and thus, we need

ωm ≫ κ, which corresponds to the side-band-resolved limit, and (e) the nonvanishing

of atomic coherence would correspond to the nonvanishing of the displacement ⟨q⟩

of the oscillator. All these conditions are well met, which leads us to predict EIT

[51] in mechanical effects of light, which has been clearly seen in a recent experiment
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probe field coupling field

Figure 10.3: Level diagram for the atomic EIT. For optocavity mechanics, |1⟩ ↔ |3⟩

would be the excitation at cavity frequency; |2⟩ ↔ |3⟩ would be the excitation of the

mechanical oscillator. For the quadratically coupled membrane, |2⟩ → |3⟩ would be

the two-phonon excitation which makes ⟨q⟩ = 0.

[53]. All the conditions listed above except one are met for quadratically coupled

membranes. Here ⟨q⟩, i.e., the coherence term, is zero, as seen from Eq. (10.5). We

can find the expectation values of the system operators at the steady state. These

are

q0 = 0, p0 = 0, c0 =
εc

κ+ i(ω0 − ωc)
, (10.6)

where from here on we drop the tilde from c̃0. It is seen that at steady state, the

membrane’s displacement is zero, and the amplitude c0 of the cavity field is unrelated

to the position of the membrane so that the output field is not modified by the mean

displacement of the membrane, which is different from that in the linear coupling

case. A further analysis shows that the value of ⟨q⟩ to first order in the field εp is

also zero. This is because the nonlinear term c̃†c̃q in the equation for the momentum

leads to no driving term in first order in the probe field. This situation is different

from the case of one-phonon EIT, where ⟨q⟩ to first order in the field εp is nonzero.

Hence, a key element for the occurrence of EIT for a quadratically coupled membrane

is zero. We propose here a way out of this difficulty. Since the mean value of q is zero,
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its variance, which is proportional to potential energy 1
2
mω2

m⟨q2⟩ of the membrane, is

expected to be nonzero. This is so even if the membrane is not interacting with any

fields. The thermal and zero-point fluctuations make ⟨q2⟩ ̸= 0. Thus, in our proposal

for EIT with quadratically coupled optomechanical systems the quantity ⟨q2⟩ will be

central. This peculiarity is related to the fact that the underlying physical process is a

two-phonon process. Thus, in the following, we turn to calculate the evolutions of the

expectation values of q2, p2, and qp+ pq, which can be obtained with the help of Eq.

(10.5) and the factorization assumption ⟨abc⟩ = ⟨a⟩⟨b⟩⟨c⟩. Using the same method,

we also can obtain the evolution of the expectation values of c and c†. Hence, the

complete set of underlying equations for our system would be

d

dt
⟨c⟩ = −[κ+ i(ω0 − ωc + g⟨q2⟩)]⟨c⟩+ εc

+εpe
−i(ωp−ωc)t,

d

dt
⟨c†⟩ = −[κ− i(ω0 − ωc + g⟨q2⟩)]⟨c†⟩+ εc + ε∗pe

i(ωp−ωc)t,

d

dt
⟨q2⟩ =

1

m
⟨pq + qp⟩,

d

dt
⟨p2⟩ = −(mω2

m + 2h̄g⟨c†⟩⟨c⟩)⟨qp+ pq⟩ − 2γm⟨p2⟩+ 2γm(1 + 2n)
mh̄ωm

2
,

d

dt
⟨qp+ pq⟩ =

2

m
⟨p2⟩ − 2(mω2

m + 2h̄g⟨c†⟩⟨c⟩)⟨q2⟩ − γm⟨qp+ pq⟩, (10.7)

in which the constant 2γm(1+2n)mh̄ωm

2
is due to the coupling of the membrane to the

thermal environment and n = [e
h̄ωm
kBT − 1]−1 is the mean phonon occupation number

of energy h̄ωm at temperature T , where kB is Boltzmann’s constant. Note that the

constant (1 + 2n)mh̄ωm

2
is the mean value of the square of the momentum of the

membrane.

We would solve Eq. (10.7) under the assumption that the coupling field is much

stronger than the probe field. The steady state solution of Eq. (10.7) then can be
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written as

⟨c⟩

⟨c†⟩

⟨q2⟩

⟨p2⟩

⟨qp+ pq⟩


=



c0

c∗0

X0

Y0

Z0


+ εpe

−i(ωp−ωc)t



c+

c∗−

X+

Y+

Z+


+ ε∗pe

i(ωp−ωc)t



c−

c∗+

X−

Y−

Z−


. (10.8)

The solution contains three components, which in the original frame oscillate at ωc,

ωp, and 2ωc−ωp, respectively. Substituting Eq. (10.8) into Eq. (10.7), dropping those

terms that contain the product of more than one small quantity, and then equating

coefficients of terms with the same frequency, we obtain

X0 =
Y0

m2ω2
m(1 + 2α)

,

Y0 = (1 + 2n)
mh̄ωm

2
,

c0 =
εc

κ+ i∆
,

c+ =
1

d(δ)
{[κ− i(∆ + δ)](γm − iδ)(δ2 − 4ω2

m + 2iγmδ

−8αω2
m)− 4iαβω3

m(2γm − iδ)},

c− =
1

d∗(δ)
[−4iαβω3

m

c20
|c0|2

(2γm + iδ)], (10.9)

where

α = h̄g|c0|2/(mω2
m),

β = gX0/ωm,

∆ = ω0 − ωc + βωm,

δ = ωp − ωc,

d(δ) = [κ+ i(∆− δ)][κ− i(∆ + δ)](γm − iδ)

×(δ2 − 4ω2
m + 2iγmδ − 8αω2

m) + 8∆αβω3
m(2γm − iδ). (10.10)

From Eqs. (10.9) and (10.10), we find that the cavity field at the probe frequency ωp

is related to the component X0 of the mean-square displacement of the membrane,
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which depends on the pump power and the temperature of the environment. Also,

the coupling strength between the cavity field at the frequency ωp and the membrane

is affected by the quadratic coupling constant g and the photon number |c0|2 in the

cavity. Note that the parameter β is a measure of the frequency shift of the cavity

due to quadratic coupling. The parameter α is the ratio of the radiation pressure

energy to the potential energy of the membrane.

Further, the output field can be derived by using the input-output relation

εout(t) + εpe
−iδt + εc = 2κ⟨c̃⟩. (10.11)

If we write εout(t) as

εout(t) = εout0 + εout+εpe
−iδt + εout−ε

∗
pe
iδt, (10.12)

where εout0 is the response at the frequency ωc of the coupling field, εout+ is the

response at the frequency ωp of the probe field, and εout− is the response at the new

frequency 2ωc − ωp. Combining Eqs. (10.11) and (10.12), we obtain

εout0 = 2κc0 − εc,

εout+ = 2κc+ − 1,

εout− = 2κc−. (10.13)

We examine the total output field at the frequency ωp defined as εT = εout++1 = 2κc+,

so εT is also affected by the pump power and the temperature of the environment. In

the absence of the quadratic optomechanical coupling (g = 0), εT is given by

εT =
2κ

κ+ i(∆− δ)
. (10.14)

10.3 EIT in the Output Field

In this section, we calculate numerically the output field at the frequency ωp to bring

out the EIT-like phenomenon due to the interaction between the cavity field and the

143



membrane, which is quadratically dependent on the position of the membrane. For

convenience, we write εT as

εT = υp + iυ̃p, (10.15)

where υp and υ̃p give the in-phase and out-of-phase quadratures of the output field.

The quadratures can be measured via homodyne technique [110].

In order to explicitly demonstrate the possibility of EIT in quadratically coupled

optomechanical systems we use parameters that are similar to those in Ref. [10],

which discusses many different possible scenarios for quadratic couplings. A later pa-

per [12] gives an experimental demonstration of how to achieve much larger quadratic

couplings. We list the parameters used in numerical results. The wavelength of the

coupling field λ = 2πc
ωc

= 532 nm, the total cavity length L = 6.7 cm, the frequency of

the membrane ωm = 2π×105 Hz, the cavity decay rate κ = 2π×104 Hz, the decay rate

of the membrane γm = 20 s−1, the mechanical quality factor Q = ωm

γm
= 3.14×104, the

membrane’s reflectivity R = 0.45, the coupling constant g = 2π × 1.8× 1023 Hz/m2,

the pump power ℘c = 90 µW, and the temperature of the environment T = 90 K.

The mass of the membrane we use is m = 10−9g, which is less than that in Ref.

[10]. In addition, we consider the two-phonon resonance case ∆ = 2ωm. It is good to

compare the magnitude of the optomechanical coupling to the potential energy of the

membrane. The parameter h̄g|c0|2 at ∆ = 2ωm is 0.002 J/m2, whereas the parameter

mω2
m is 0.4 J/m2.

Figure 10.4 shows the phase quadrature υp as a function of the normalized fre-

quency δ/ωm in the absence (red dotted line) and presence (blue solid line) of the

optomechanical coupling. In the absence of the optomechanical coupling, it is seen

that υp has the standard Lorentzian absorption shape. However, in the presence of the

optomechanical coupling (blue solid line in Fig. 10.4), one can clearly see an EIT-like

dip in the quadrature υp when the two-phonon process dominates (δ ≈ 2ωm). The

position of the EIT-like dip is not exactly at δ = 2ωm due to the term 8αω2
m in c+
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Figure 10.4: Quadrature of the output field υp as a function of the normalized fre-

quency δ/ωm in the absence (red dotted line) and presence (blue solid line) of the

quadratic coupling. Parameters are as follows: R = 0.45, ℘c = 90 µW, T = 90 K.

The inset zooms the EIT-like dip.

and d(δ), in which α ≈ 0.005. Note that the linewidth of the dip is extremely narrow

due to γm ≪ κ. The linewidth is about 408 s−1, which is mostly due to the power of

the coupling field and the temperature.

However, for other set of parameters, the EIT window can become wider. For

membrane reflectivity R = 0.81, coupling constant g = 2π × 4.1 × 1023 Hz/m2,

pump power ℘c = 20 µW, and temperature of the environment T = 90 K, the phase

quadratures υp and υ̃p as a function of the normalized frequency δ/ωm in the absence

(red dotted line) and presence (blue solid line) of the optomechanical coupling are

given in Figs. 10.5 and 10.6. From the blue solid line in Fig. 10.5, we can see

the linewidth of the EIT-like dip is about 471 s−1. We also find the position of

the EIT-like dip is at δ ≈ 2.0058ωm, close to δ = 2ωm, which is due to the small

value of the parameter 8αω2
m, where α ≈ 0.003. Moreover, in the case without the

optomechanical coupling, from the red dotted line in Fig. 10.6, it is seen that υ̃p
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Figure 10.5: Quadrature of the output field υp as a function of the normalized fre-

quency δ/ωm in the absence (red dotted line) and presence (blue solid line) of the

quadratic coupling. Parameters are as follows: R = 0.81, ℘c = 20 µW, T = 90 K.

The inset zooms the EIT-like dip.
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Figure 10.6: Quadrature of the output field υ̃p as a function of the normalized fre-

quency δ/ωm in the absence (red dotted line) and presence (blue solid line) of the

quadratic coupling. Parameters are as follows: R = 0.81, ℘c = 20 µW, T = 90 K.

The inset zooms the change in the dispersion produced by the coupling field.
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has a standard dispersion shape. But in the case with the optomechanical coupling,

from the blue solid line in Fig. 10.6, we can see the phase quadrature υ̃p exhibits

abnormal dispersion. We have further carried out a detailed numerical study of the

temperature dependence of EIT. We find that, for example, for R = 0.81, ℘c = 50

µW, the width of the EIT dip increases linearly with temperature - the values being

628, 1256, and 2513 s−1 for T = 50, 100, and 200 K, respectively [202].

10.4 Conclusions

In conclusion we have shown how EIT-like effects can arise in two-phonon processes in

optomechanical systems. The EIT in quadratically coupled membranes is a different

from the usual paradigm because what plays the role of atomic coherence is zero for

quadratically coupled systems. The basic quantity leading to EIT in our system is the

fluctuation in the displacement of the membrane. Interestingly enough the EIT-like

behavior can occur at low-coupling powers, such as tens of microwatts, even though

the underlying process is a two-phonon process.

The content of this chapter has been published in Phys. Rev. A 83, 023823

(2011).
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CHAPTER 11

ELECTROMAGNETICALLY INDUCED TRANSPARENCY WITH

QUANTIZED FIELDS IN OPTOCAVITY MECHANICS

11.1 Overview

The interaction of a nano-mechanical system via radiation pressure [41, 163] is like

a three-wave interaction in nonlinear optics [161]. This interaction can lead to pro-

cesses like upconversion; for example, a photon of frequency ωc can be converted into

a photon of frequency ωp = ωc + ωm, where ωm is the frequency of the mechanical

oscillator. Such upconversion processes have been useful in cooling nano-mechanical

systems [8, 9, 58, 120]. In a previous article [51], we showed how such upconversion

processes can lead to electromagnetically induced transparency (EIT) in optomechan-

ical systems. The EIT in such systems turned out to share many of the features of EIT

in atomic vapors. The EIT in optomechanical systems has been seen experimentally

[53, 54, 55]. Traditionally, almost of all the EIT experiments in atomic systems and

other systems have been done with coherent pump and probe fields [172, 173, 203].

Akamatsu et al. [204] did the very first experiment on EIT using squeezed light in

atomic vapors. They essentially reported that squeezing of the probe is not degraded

much by the quantum noise of the medium under EIT conditions. Subsequently, a

number of other experiments [205, 206] on EIT using quantized fields were reported.

The EIT with quantized fields is very significant in the storage of fields at the single-

photon level [86, 219, 208, 209].

In this chapter, we examine EIT in optomechanical systems using quantized fields.

In optomechanical systems, noise is added by both the resonator and the mechanical
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system. We find the conditions when the perfect EIT of the quantized field results.

We study how the temperature of the mechanical system can degrade EIT. We present

detailed results for the designs of nano-mechanical systems as used in Refs. [50, 53].

We find that certain designs of nano-mechanical systems are good even at tempera-

tures on the order of 100 mK. Thus, such systems would be quite useful as optical

memories at the single-photon level. The results that we present can be extended to

the reactive case [67, 194, 210].

The organization of the chapter is as follows. In Sec. II, we describe the model,

derive the equations of motion for the system, and obtain the steady-state mean

values. In Sec. III, we show how to detect the EIT with quantized fields, and we

present a homodyne detection and obtain the relevant spectrum. In Sec. IV, we

discuss the impact of the coupling field on the homodyne spectrum of the output

field and show the existence of the EIT in the homodyne spectrum of the quantized

field at the output.

 cavity axis 

movable mirrorfixed mirror

 ! 

 " 

#$%&  

Figure 11.1: Sketch of the studied system. A coherent coupling field at frequency

ωc and a squeezed vacuum at frequency ωp enter the cavity through the partially

transmitting mirror.
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11.2 Model

The model that we are going to consider has been discussed in detail previously

[32, 33] and is sketched in Fig. 11.1. The cavity consists of a fixed mirror and a

movable mirror separated by a distance L. The fixed mirror is partially transmitting,

while the movable mirror is 100% reflecting. The cavity is driven by a strong coupling

field at frequency ωc. A quantized weak probe field in a squeezed vacuum state at

frequency ωp is injected into the cavity through the fixed mirror. The movable mirror

interacts with the cavity field through radiation pressure. The movable mirror is

modeled as a harmonic oscillator with mass m, frequency ωm, and decay rate γm.

Moreover, the movable mirror and its environment are in thermal equilibrium at a

low temperature T .

In such a system, the coupling between the movable mirror and the cavity field

is dispersive, so the frequency ω0(q) of the cavity field depends on the displacement

q of the movable mirror: ω0(q) = nπc/(L + q), where c is the light speed in vacuum

and n is the mode number in the cavity. For q ≪ L, we can expand ω0(q) to the first

order of q; thus, we have ω0(q) ≈ ω0(0) +
∂ω0(q)
∂q

q ≈ ω0 − ω0

L
q, where we write ω0(0) as

ω0.

Let c (c†) be the annihilation (creation) operators for the cavity field and Q and P

be the dimensionless operators for the position and momentum of the movable mirror

with Q =
√

2mωm

h̄
q and P =

√
2

mh̄ωm
p. Note that the commutation relation for Q and

P is [Q,P ] = 2i. In a frame rotating at the frequency ωc of the coupling field, the

Hamiltonian for the system is

H = h̄(ω0 − ωc)c
†c− h̄gc†cQ+

h̄ωm
4

(Q2 + P 2) + ih̄ε(c† − c), (11.1)

In the above equation, the parameter g = (ωc/L)
√
h̄/(2mωm) is the coupling strength

between the cavity field and the movable mirror, where we assume ω0 ≃ ωc. The

parameter ε is the real amplitude of the coupling field, depending on its power ℘ by
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ε =
√

2κ℘
h̄ωc

, where κ is the photon loss rate due to the transmission of the fixed mirror.

The time evolution of the total system is obtained from the Hamiltonian Eq.

(11.1) by deriving the Heisenberg equations of motion and adding the damping and

noise terms. The basic equations are given by

Q̇ = ωmP,

Ṗ = 2gnc − ωmQ− γmP + ξ,

ċ = i(ωc − ω0 + gQ)c+ ε− κc+
√
2κcin,

ċ† = −i(ωc − ω0 + gQ)c† + ε− κc† +
√
2κc†in.

(11.2)

Here, we have introduced the thermal Langevin force ξ with a vanishing mean value,

resulting from the coupling of the movable mirror to the environment. The Langevin

force ξ has the correlation function in the frequency domain

⟨ξ(ω)ξ(Ω)⟩ = 4πγm
ω

ωm

[
1 + coth

(
h̄ω

2kBT

)]
δ(ω + Ω), (11.3)

where kB is the Boltzmann constant. Throughout this paper, the following Fourier

relations are used:

f(t) =
1

2π

∫ +∞

−∞
f(ω)e−iωtdω,

f †(t) =
1

2π

∫ +∞

−∞
f †(−ω)e−iωtdω, (11.4)

where f †(−ω) = [f(−ω)]†. cin represents the input quantum field, which is centered

around the frequency ωp = ωc + ωm with a finite bandwidth Γ. The quantized field

has the following nonvanishing correlation functions:

⟨cin(ω)cin(Ω)⟩ = 2π
MΓ2

Γ2 + (ω − ωm)2
δ(ω + Ω− 2ωm),

⟨cin(ω)c†in(−Ω)⟩ = 2π

[
NΓ2

Γ2 + (ω − ωm)2
+ 1

]
δ(ω + Ω), (11.5)

where N is the photon number in the squeezed vacuum and M =
√
N(N + 1). The

antinormally ordered term has a broadband contribution coming from vacuum noise.
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Note that by setting M = 0 we would obtain a standard phase-independent quantum

field with a mean number of photons NΓ2

Γ2+(ω−ωm)2
around the frequency ω = ωm.

The mean values at steady state can be obtained from Eq. (11.2) by setting all of

the time derivatives to zero. These are found to be

Ps = 0, Qs =
2g|cs|2

ωm
, cs =

ε

κ+ i∆
, (11.6)

where

∆ = ω0 − ωc − gQs (11.7)

is the effective cavity detuning.

11.3 The Output Field and its Measurement

PD 

BS 

SA

 !"#$% 

 &"'(#$% 

PD

Figure 11.2: Sketch of the measurement of the output field. The output field c̃out(t) is

mixed with a strong local field clo(t) centered around the probe frequency ωp at a beam

splitter, where c̃out(t) is defined as the sum of the output field cout(t) from the cavity

and the input quantized field cin(t). BS, 50:50 beam splitter; PD, photodetector; SA,

spectrum analyzer.

The output field is a quantum field; it contains many Fourier components. Since

the quantized input field is centered around ωp = ωc+ωm, the interesting component

of the output field is near the probe frequency ωp, so we mix the output field c̃out(t)
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with a strong local field clo(t) centered around the probe frequency ωp at a 50:50

beam splitter, as shown in Fig. 11.2. In a frame rotating at the frequency ωc,

clo(t) = cloe
−iδ0t, where δ0 = ωp−ωc. The difference between the output signals from

the two photodetectors is sent to the spectrum analyzer, and the output signal from

the spectrum analyzer depends on the phase of clo. If clo is real, then the homodyne

spectrum X(ω) of the output field measured by the spectrum analyzer is given by

⟨[c∗lo(t)c̃out(t) + c.c.][c∗lo(t
′)c̃out(t

′) + c.c.]⟩

=
c2lo
2π

∫
dωe−iω(t−t

′)X(ω). (11.8)

Thus, in our investigations of EIT with quantized fields, X(ω) is the quantity of

interest.

In order to study the EIT effect in the homodyne spectrum X(ω) of the output

field, we will calculate the fluctuations of the output field. The steady-state part

would not contribute as it is at the frequency of the coupling field. We assume that

the photon number in the cavity is large enough so that each operator can be written

as a linear sum of the steady-state mean value and a small fluctuation, which yields

Q = Qs + δQ, P = Ps + δP, c = cs + δc, (11.9)

where δQ, δP , and δc are the small fluctuations around the steady state. By sub-

stituting Eq. (11.9) into Eq. (11.2), one can arrive at the linearized equations for

the fluctuation operators. Further, we transform the linearized equations into the

frequency domain by Eq. (11.4) and solve it; we can obtain the fluctuations δc(ω) of

the cavity field. Then, using the input-output relation cout(ω) =
√
2κc(ω) − cin(ω),

we can find the fluctuations δcout(ω) of the output field. For the purpose of Fig. 11.2,

we define the output field as c̃out(ω) = cout(ω) + cin(ω); then we find the result

δc̃out(ω) = V (ω)ξ(ω) + E(ω)cin(ω) + F (ω)c†in(−ω), (11.10)
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in which

V (ω) =

√
2κgcsωmi

d(ω)
[κ− i(ω +∆)],

E(ω) =
2κ

d(ω)
{2ig2|cs|2ωm + (ω2

m − ω2 − iγmω)

×[κ− i(ω +∆)]},

F (ω) =
4κ

d(ω)
ωmg

2c2si, (11.11)

where

d(ω) = −4ωm∆g
2|cs|2 + (ω2

m − ω2 − iγmω)[(κ− iω)2 +∆2]. (11.12)

The first term on the right-hand side of Eq. (11.10) refers to the contribution of

the thermal noise of the movable mirror, and the other two terms represent the

contribution of the squeezed vacuum. To illustrate the meaning of the last two terms,

let the squeezed vacuum be a single mode, i.e., cin(t) = Ce−i(ωp−ωc)t; then cin(ω) =

2πCδ(ω− ωp + ωc) and c
†
in(−ω) = 2πC†δ(ω + ωp − ωc). Thus, the fluctuations of the

output field δc̃out(t) =
1
2π

∫+∞
−∞ V (ω)ξ(ω)e−iωtdω+CE(ωp−ωc)e

−i(ωp−ωc)t+C†F (ωc−

ωp)e
−i(ωc−ωp)t. Therefore, E(ωp − ωc) is the component at the probe frequency ωp,

which in the rotating frame is ωp − ωc, and F (ωc − ωp) is the component at the new

frequency 2ωc − ωp, which in the rotating frame is ωc − ωp, due to the nonlinear

interaction between the movable mirror and the cavity field.

By the aid of the correlation functions of the noise operators cin(ω) and ξ(ω)

and neglecting fast oscillating terms at frequency ±2ωm, we obtain the homodyne

spectrum X(ω) of the output field as measured by the setup of Fig. 11.2,

X(ω) = E(ω + ωm)E(−ω + ωm)
MΓ2

Γ2 + ω2
+ |E(ω + ωm)|2

NΓ2

Γ2 + ω2

+E∗(−ω + ωm)E
∗(ω + ωm)

MΓ2

Γ2 + ω2
+ |E(−ω + ωm)|2

NΓ2

Γ2 + ω2

+|E(ω + ωm)|2 + |F (−ω + ωm)|2

+|V (ω + ωm)|22γm
ω + ωm
ωm

{
1 + coth

[
h̄(ω + ωm)

2kBT

]}
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+|V (−ω + ωm)|22γm
ω − ωm
ωm

{
1 + coth

[
h̄(ω − ωm)

2kBT

]}
, (11.13)

where the first four terms in Eq. (11.13) originate from the squeezed vacuum, the

next two terms not involving N and M are the contributions of the spontaneous

emission of the input vacuum noise, and the last two terms result from the thermal

noise of the movable mirror.

11.4 EIT in the Homodyne Spectrum of the Output Quantized Field

After having derived the homodyne spectrum of the output field, we next examine it

numerically to explore the EIT phenomenon in the homodyne spectrum of the output

field. Since the original Eqs. (11.2) are nonlinear, these can have instabilities. Thus,

in the following, we work in the stable regime of the system. We first examine the

frequency at which we expect transparency. This is ω = 0. For N ≈M ,

X(0) = N [E(ωm) + E∗(ωm)]
2 + |E(ωm)|2 + |F (ωm)|2 + 4|V (ωm)|2γm coth

[
h̄ωm
2kBT

]
.

(11.14)

We use the parameters from the experimental paper [53] focusing on the EIT in

the optomechanical system: the wavelength of the coupling field λ = 2πc/ωc = 775

nm, the coupling constant g = 2π×12 GHz/nm
√
h̄/(2mωm), the mass of the movable

mirror m = 20 ng, the frequency of the movable mirror ωm = 2π × 51.8 MHz, the

cavity decay rate κ = 2π × 15 MHz, κ/ωm = 0.289, the mechanical damping rate

γm = 2π × 41 kHz, and the mechanical quality factor Q′ = ωm/γm = 1263. In

addition, we choose the linewidth of the squeezed vacuum Γ = 2κ and consider the

resonant case ∆ = ωm.

For N = 10 and M =
√
N(N + 1) ≈ 10, ℘ = 20 mW, and T = 20 mK, the

first term in Eq. (11.14), which is the contribution of the squeezed vacuum, is about

6.5 × 10−4, the sum of the second and third terms in Eq. (11.14), which are the
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contributions of the input vacuum noise is about 0.16, and the last term arising from

the thermal noise of the movable mirror is about 0.14. The contribution of the input

quantum field in principle can be obtained by doing the experiment with and without

the quantized field and by subtracting the data, i.e., by studying X(0) −X(0)|N=0.

The squeezed field part in a sense exhibits perfect EIT. If M = 0, i.e., the input

quantized field is phase insensitive, then such a field leads to a term 2N |E(ωm)|2,

which is equal to 1.6 for the above-mentioned parameters, and hence there is no

perfect EIT. The squeezed field changes 2N |E(ωm)|2 to N [E(ωm)+E
∗(ωm)]

2, and for

the above parameters, the number changes from 1.6 to 6.5× 10−4.
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Figure 11.3: Homodyne spectrum X(ω) as a function of ω/ωm for N = 5 in the

absence (dotted curve) and the presence (solid, dot-dashed, and dashed curves) of

the coupling field for the temperature of the environment T = 20 mK. The solid

curve is for ℘ = 10 mW and M =
√
N(N + 1), the dotdashed curve is for ℘ = 20

mW and M =
√
N(N + 1), and the dashed curve is for ℘ = 20 mW and M = 0.

For N = 5, M =
√
N(N + 1) and 0, and T = 20 mK, we plot the homodyne

spectrum X(ω) of the output field as a function of the normalized frequency ω/ωm

in the absence (dotted curve) and presence (solid, dot-dashed, and dashed curves) of
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the coupling field in Fig. 11.3. First, let us look at the case that the input quantum

field is phase dependent [M =
√
N(N + 1)]. In the absence of the coupling field,

one can note that the homodyne spectrum of the output field has a Lorentzian line

shape. However, in the presence of the coupling field at different power levels, the

solid curve [℘ = 10 mW and M =
√
N(N + 1)] and the dot-dashed curve [℘ = 20

mW andM =
√
N(N + 1)] exhibit the EIT dip, which is the result of the destructive

interference between the squeezed vacuum and the scattering quantum field at the

probe frequency ωp generated by the interaction of the coupling field with the movable

mirror. For ℘ = 20 mW and M =
√
N(N + 1), the minimum value of X(ω) is about

0.22. Moreover, the linewidth of the dip for ℘ = 20 mW is larger than that for ℘ = 10

mW due to power broadening. Generally, the EIT dip has a contribution to its width

that is proportional to the power of the coupling field. We indeed find that the width

for ℘ = 20 mW is 0.26ωm, which is about twice the width for ℘ = 10 mW. If the

input quantum field is phase independent (M = 0) (the dashed curve), then we can

see that the maximum value of X(ω) for ℘ = 20 mW and M = 0 is about half that

for ℘ = 20 mW and M =
√
N(N + 1).

Next, we increase the temperature to 100 mK. Figure 11.4 displays the homodyne

spectrum X(ω) of the output field against the normalized frequency ω/ωm in the

absence (dotted curves) and presence (solid curves) of the coupling field for N = 1

and 5 and M =
√
N(N + 1). In the presence of the coupling field (℘ = 10 mW), it

is seen that the EIT dip still appears in the homodyne spectrum of the output field

for N = 1 and 5. Note that the two dips almost have the same minimum values

(about 1.43) and the same linewidth (about 0.15ωm). Hence the temperature of the

environment is not detrimental to the EIT behavior.

The effects discussed above occur under a wide range of parameters. We demon-

strate this by using the experimental parameters [50] λ = 2πc/ωc = 1064 nm, L = 25

mm, g ≈ 2π × 11.28 MHz/nm
√
h̄/(2mωm), m = 145 ng, ωm = 2π × 947 kHz,
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Figure 11.4: Homodyne spectrum X(ω) as a function of ω/ωm for different values

of the parameter N and M =
√
N(N + 1) in the absence (dotted curves) and the

presence (solid curves) of a coupling field with power ℘ = 10 mW and temperature

of the environment T = 100 mK. The upper two curves are for N = 5, and the lower

two curves are for N = 1.

κ = 2π × 215 kHz, κ/ωm = 0.227, γm = 2π × 141 Hz, and Q′ = ωm/γm = 6700. The

values for the parameters T , ℘, N , M , Γ, and ∆ are the same as those in Fig. 11.4.

Shown in Fig. 11.5 is the homodyne spectrum X(ω) of the output field as the normal-

ized frequency ω/ωm is varied for T = 100 mK and ℘ = 0 and 10 mW. Note that the

EIT exists for N = 1 and 5 in the presence of the coupling field. The linewidth of the

dip for N = 5 is about 0.2ωm and as expected gets broadened due to power. We have

further studied the effect of temperature, and we find that there is a rather weak

dependence of the EIT curves on temperature. Therefore, current optomechanical

designs can be used to realize quantum optical memory at the single-photon level.

This can be demonstrated using the numerical simulations and following the standard

procedure as in Refs. [86, 208, 209]. One has to modulate the squeezed vacuum field

cin so that it is a pulse field and uses, say, a super-Gaussian for the coupling field.

The super-Gaussian enables one to conveniently switch on and off the coupling field
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[211].

-0.4 -0.2 0.2 0.4
Ω�Ωm

20

40

60

80

XHΩL

Figure 11.5: As in Fig. 11.4 but now the parameters used are from Ref. [50].

11.5 Conclusions

In conclusion, we have demonstrated EIT using quantum fields in optomechanical

systems under a wide range of conditions. For squeezed quantum fields, we obtained

the perfect EIT. The EIT gets degraded in phase-insensitive quantum fields. We have

shown that even temperature is not critical for observations of EIT. The results can

be generalized to optomechanical systems working on the reactive coupling [69, 194,

210]. Our work suggests that optomechanical systems could be used as elements for

quantum memory, but explicit demonstration will be given elsewhere.

The content of this chapter has been published in Phys. Rev. A 83, 043826

(2011).
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CHAPTER 12

OPTOMECHANICAL SYSTEMS AS SINGLE PHOTON ROUTERS

12.1 Overview

It is well known that building up of all optical devices requires strong interactions

between radiation and matter as photons by themselves do not interact. One of

enabling technologies in the context of quantum control is the design of an optical

switch or a photon router operating at a single photon level. Several proposals have

been made for the realization of an optical switch—In an early work Harris and

Yamamoto [212] had suggested how quantum interference can be used to operate a

switch. More recently atomic EIT with cavity fields has been suggested to realize

optical switch. Single atom EIT in a cavity has been realized by using very strong

atom cavity interactions [213]. Further even the vacuum induced transparency has

been observed [214]. Other proposals on photon switch are based on using single atom

in a strongly coupled waveguide array [215, 216, 217, 218]; use of strongly coupled

atom via surface plasmons on a nanowire [219]. There are also reports of single

photon switch at telecom wavelengths using strong cross phase modulation [220], and

in microwave domain using a superconducting transmon qubit [221]. It was known

earlier that the optomechanical systems exhibit analog of electromagnetically induced

transparency [51, 222] which has been observed in several experiments [24, 53, 54, 55].

Here we show how nanomechanical mirrors in optical cavities can be used to build

single photon routers i.e. single photon switches. For this purpose we propose a

different configuration in which the nanomechanical mirror is in the middle of a

cavity which is bounded by two high quality mirrors [10]. A single photon would

160



be transmitted; on the other hand if we appropriately drive the system by a strong

field then we show that the single photon is reflected. Thus the driving field switches

the route of the single photon. Even low driving fields like few microwatt are good.

We present exact conditions for this to happen. We further investigate the effects of

vacuum and thermal noise on the performance of this system as a single photon router.

We show that the effect of these noise sources is only few percent at temperatures of

the order of 20 mK.

12.2 Model

Consider first a Fabry-Perot cavity with both mirrors with equal reflectivity. It is

known that the transmission of a Fabry-Perot cavity goes to unity when the incident

field is on resonance with the cavity. This result also applies if a single photon is

incident on the cavity. In order to see this let us consider the input-output relations

[110] for the cavity as shown in Fig. 12.1.

  !"
# !"

#$%,$%

Figure 12.1: A double-ended cavity.

Here cin and din are the quantum fields incident on the cavity. If there are no photons

incident from the right, then din would be the vacuum field. Let 2κ be the rate at

which photons leak out from each of the cavity mirrors. Let c(ω) be the cavity field

operator, then

cout(ω) =
√
2κc(ω)− cin(ω),
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dout(ω) =
√
2κc(ω)− din(ω), (12.1)

and the equation of motion for the cavity field is

ċ = −2κc− iω0c+
√
2κ(cin + din). (12.2)

From (12.1) and (12.2) we find in steady state

cout(ω) =
i(ω − ω0)cin(ω) + 2κdin(ω)

2κ− i(ω − ω0)
, (12.3)

dout(ω) =
2κcin(ω) + i(ω − ω0)din(ω)

2κ− i(ω − ω0)
. (12.4)

Here din(ω) is the vacuum field and hence its normally ordered correlation is zero.

Defining the spectrum of the field via

⟨c†(−Ω)c(ω)⟩ = 2πSc(ω)δ(ω + Ω). (12.5)

Using (12.3)-(12.5), we obtain

Scout(ω) =
(ω − ω0)

2

4κ2 + (ω − ω0)2
Scin(ω), (12.6)

Sdout(ω) =
4κ2

4κ2 + (ω − ω0)2
Scin(ω). (12.7)

For ω = ω0, Scout(ω0) → 0, Sdout(ω0) = Scin(ω0). Therefore we have established that

a single photon at the cavity frequency is completely transmitted. We next establish

how a nanomechanical oscillator in the cavity acts as a single photon router i.e., it

would reflect the single photon i.e.,

Scout(ω0) = Scin(ω0), Sdout(ω0) = 0. (12.8)

Consider now the configuration shown in Fig. 12.2 where a partially transparent

nanomechanical mirror placed at the middle position of the Fabry-Perot cavity formed

by two fixed mirrors, which have finite identical transmission [10]. The whole cavity

length is L. The cavity field is driven by a strong coupling field at frequency ωc from

the left-hand mirror. Further, a field in a single photon Fock state at frequency ωp,
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Figure 12.2: A double-ended cavity with a moving nanomechanical mirror as a single

photon router.

is incident into the cavity through the left-hand mirror. The input field is centered

near the cavity frequency i.e. its spectrum is given by

Scin(ω) =
Γ/π

(ω − ω0)2 + Γ2
,
∫
Scin(ω)dω = 1. (12.9)

The correlation functions for the input field are therefore given by

⟨c†in(−Ω)cin(ω)⟩ = 2πδ(ω + Ω)Scin(ω),

⟨cin(ω)c†in(−Ω)⟩ = 2πδ(ω + Ω)(1 + Scin(ω)). (12.10)

The photons in the cavity will exert a radiation pressure force on the movable mirror,

causing it to move. In turn, the displacement q of the movable mirror shifts the

cavity resonance frequency. We assume that the movable mirror is located at the

node of the cavity mode, thus the cavity resonance frequency depends linearly on

the displacement q of the movable mirror. Here, the movable mirror is treated as a

quantum harmonic oscillator with effective mass m, frequency ωm, and momentum

operator p. Let c and c† be the annihilation and creation operators for the cavity

field. The Hamiltonian of the system in the rotating frame at the frequency ωc of the

coupling field is given by

H = h̄(ω0 − ωc)c
†c+ h̄gc†cq +

p2

2m
+

1

2
mω2

mq
2 + ih̄εc(c

† − c), (12.11)
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in which g is the optomechanical coupling strength between the movable mirror and

the cavity field, which also depends on the transmission of the movable mirror [10].

By choosing the transmission of the movable mirror T = 0.7, the optomechanical

coupling strength can be half of that for a perfectly reflecting movable mirror so

that g = −ωc

L
[118]. The εc is the driving strength, depends on the power ℘ of the

coupling field by εc =
√

2κ℘
h̄ωc

. Note that the movable mirror is coupled to the thermal

surrounding at the temperature T , which results in the mechanical damping rate γm

and thermal noise force ξ with frequency-domain correlation function:

⟨ξ(ω)ξ(Ω)⟩ = 2πh̄γmmω

[
1 + coth

(
h̄ω

2kBT

)]
δ(ω + Ω), (12.12)

where kB is the Boltzmann constant. In addition the cavity field c would be coupled

to the input quantum fields cin and din. These couplings are included in the standard

way by writing quantum Langevin equations for the cavity field operators. The

incoming vacuum field din is characterized by ⟨din(ω)d†in(−Ω)⟩ = 2πδ(ω + Ω) with

Sdin(ω) = 0. Putting together all the quantum fields, thermal fluctuations and the

Heisenberg equations that follow from the Hamiltonian (12.11), we obtain the working

quantum Langevin equations

q̇ =
p

m
, ṗ = −h̄gc†c−mω2

mq − γmp+ ξ,

ċ = −[2κ+ i(ω0 − ωc + gq)]c+ εc +
√
2κcin +

√
2κdin,

ċ† = −[2κ− i(ω0 − ωc + gq)]c† + εc +
√
2κc†in +

√
2κd†in, (12.13)

where mean values of noise terms ξ, cin, and din are zero.

Using the Langevin equations (12.13) we want to calculate the spectrum of the

output fields cout and dout. We adopt the standard quantum optical procedure [26].

We first find the steady state for the mean values of the observable and then linearize

the Langevin equations around the mean values to calculate quantum fluctuations.

We quote the result of such a calculation, we find that the spectrum of the output
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fields has the form

Scout(ω) = Scin(ω) ·R(ω) + S(v)(ω) + S(T )(ω),

Sdout(ω) = Scin(ω) · T (ω) + S(v)(ω) + S(T )(ω), (12.14)

where

R(ω) = |E(ω)− 1|2, T (ω) = |E(ω)|2, (12.15)

and

S(v)(ω) = 2|X(ω)|2,

S(T )(ω) = |V (ω)|2h̄γmm(−ω)
[
1 + coth

(
− h̄ω

2kBT

)]
,

E(ω) =
2κ

d(ω)
{m(ω2

m − ω2 − iγmω)[2κ− i(∆ + ω)] + ih̄g2|cs|2},

X(ω) =
2κ

d(ω)
ih̄g2c2s,

V (ω) =

√
2κ

d(ω)
{−igcs[2κ− i(∆ + ω)]},

d(ω) = m(ω2
m − ω2 − iγmω)[(2κ− iω)2 +∆2]− 2h̄g2|cs|2∆,

qs = − h̄g|cs|
2

mω2
m

, cs =
εc

2κ+ i∆
, (12.16)

where ∆ = ω0 − ωc + gqs is the effective detuning, including the frequency shift due

to radiation pressure, |cs|2 is the number of intracavity photons, and qs is the steady

state position of the movable mirror. The roots of d(ω) determine essentially the

behavior of the output fields. These are complex and depend on the power of the

coupling field.

In Eq. (12.14), R(ω) and T (ω) are the contributions arising from the presence

of the single photon in the input field. The S(v)(ω) is the contribution from the

incoming vacuum field. The nonlinear coupling of the cavity field with the mirror

converts the vacuum photon at frequency ωc − Ω to ωc + Ω via the mixing process

ωc+ωc− (ωc−Ω) → ωc+Ω. Note that X(ω) is at least of order two in the amplitude
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of the coupling field and this determines the nature of the vacuum contribution. The

S(T )(ω) is the contribution from the fluctuations of the mirror. The equation (12.14)

shows that even if there were no incoming photon, the output signal is generated

via quantum and thermal noises. For the purpose of achieving single photon router,

the key quantities are R(ω) and T (ω). Further the performance of the single photon

router should not be deteriorated by the quantum and thermal noise terms S(v)(ω)

and S(T )(ω). We also note in passing that in a treatment where the probe field is

treated classically, then the output semiclassical fields would be (E(ω)−1) and E(ω)

on the left and right ports, respectively.

12.3 EIT in the Reflection Spectrum of the Single Photon

Now we present numerical results using our analytical results (12.14). We would work

in the sideband resolved limit i.e. ωm ≫ κ, further we will take ∆ = ωm. We use

the parameters from an experimental paper [10]. The wavelength of the coupling

field λ = 1054 nm, L = 6.7 cm, m = 40 ng, ωm = 2π × 134 kHz, Q = 1.1 × 106,

γm = ωm/Q = 0.76 sec−1, and κ = ωm/10. In the following, we work in the stable

regime of the system i.e. we use control power such that there are no instabilities.

We present the behavior of the reflection and transmission spectra R(ω) and T (ω)

of the single photon as a function of the normalized frequency ω/ωm in the absence and

the presence of the coupling field in Figs. 12.3 and 12.4. In the absence of the coupling

field, one observes an inverted Lorentzian and a standard Lorentzian in the reflection

and transmission spectra of the single photon. Note that R(ωm) ≈ 0 and T (ωm) ≈ 1.

So the single photon is completely transmitted through the cavity to the right output

port. However, in the presence of the coupling field, the situation is completely

different. The reflection and transmission spectra of the single photon exhibit an

inverted dip and a dip at ω = ωm, and R(ωm) ≈ 1 and T (ωm) ≈ 0. The single photon

is totally reflected to the left output port. In the presence of the coupling field, the
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Figure 12.3: The reflection spectrum R(ω) of the single photon as a function of the

normalized frequency ω/ωm without and with the coupling field. ℘ = 0 (solid), 5 µW

(dotted), 20 µW (dashed).
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Figure 12.4: The transmission spectrum T (ω) of the single photon as a function of

the normalized frequency ω/ωm without and with the coupling field. ℘ = 0 (solid), 5

µW (dotted), 20 µW (dashed).
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nano mirror participates in the transmission or reflection of the photon and we have

all the conditions for occurrence of EIT fulfilled (γm ≪ κ ≪ ωm, ωp = ωc + ωm).

Therefore the incident single photon is totally reflected. In an earlier work dealing

with coherent light it was shown that the reflected outgoing field would even have

a well defined phase. However for router action phase does not play a role. The

width of the reflection peak (transmission dip) depends on the power of the coupling

field—the width increases with increase in the coupling power, and thus we can also

treat the switching of a narrow width single photon pulse.
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Figure 12.5: The vacuum noise spectrum S(v)(ω) as a function of the normalized

frequency ω/ωm with the coupling field. ℘ = 5 µW (dotted), 20 µW (dashed).

Next we discuss the effects of the quantum and thermal noises on the reflection

and transmission spectra of the single photon. We exhibit the behavior of the vacuum

noise S(v)(ω) for two different values of the coupling power in Fig. 12.5. The contri-

bution of the vacuum noise is about 2 % at ω = ωm and is thus insignificant. Note

that for larger coupling powers, S(v)(ω) splits into two peaks—this is connected with

the normal mode splitting [50], arising from the two roots of d(ω). The thermal noise

could be more critical in deteriorating the performance of the single photon router.

However if we work with mirror temperatures like 20 mK, then the thermal noise
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term is insignificant as shown in Fig. 12.6. Even at a relatively large temperature

like 50 mK, the maximum thermal noise is 15 %. In the light of rather small sources

of noise, we conclude that the nanomechanical mirror in an optical cavity as a single

photon router is an excellent device.
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Figure 12.6: The thermal noise spectrum S(T )(ω) as a function of the normalized

frequency ω/ωm with the coupling field for T = 20 mK. ℘ = 5 µW (dotted), 20 µW

(dashed).

12.4 Conclusions

In conclusion, we have shown how a cavity optomechanical system can be used as a

single photon router. The physical mechanism that enables this application is the EIT

behavior that such systems exhibit. We further showed that the effects of quantum

noise sources on such a single photon router are very minimal.

The content of this chapter has been accepted for publication.
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CHAPTER 13

SUMMARY AND FUTURE DIRECTIONS

13.1 Summary

In this thesis, several effects in the dispersive or dissipative optomechanical system

on a macroscopic scale were explored. These effects included cooling of the mechani-

cal resonator, normal mode splitting, the squeezed mechanical state, entangling two

mechanical oscillators, electromagnetically induced transparency, and so on.

First we have investigated an optical parametric amplifier inside a cavity could be

used to enhance the optical cooling of the micromechanical mirror. Our calculations

indicate that the temperature of the micromechanical mirror can be reduced to sub-

Kelvin temperature, which is much lower than what is achievable in the absence of the

parametric amplifier. Further, We show that the mirror can be cooled to millikelvin

temperatures if it is precooled to 1 K by cryogenic cooling method. The reason is

that the OPA inside the cavity increases the photon number in the cavity, enhances

the radiation pressure effects on the mirror, and leads to lower cooling of the mirror.

We have also demonstrated that an optical parametric amplifier inside the cavity

can affect the normal-mode splitting behavior of the coupled movable mirror and the

cavity field. We work in the resolved sideband regime. The spectra are found to

exhibit a double-peak structure as the parametric gain is increased. Moreover, for

a fixed parametric gain, increasing the input laser power can make the double-peak

structure of the spectrum more pronounced.

Then we have developed a scheme to generate the squeezing of a nanomechanical

mirror by injecting a broad band squeezed vacuum light and laser light into a Fabry-
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Perot cavity. We work in the resolved sideband regime. We find that the momentum

squeezing of the movable mirror reaches a maximal value when the squeezing param-

eter of the input light is about 1. We can obtain more than 70% squeezing. Besides,

for a fixed squeezing parameter, the momentum squeezing increases with decreasing

the temperature of the environment or increasing the laser power. We find very large

squeezing with respect to thermal fluctuations, for instance at 1 mK, the momentum

fluctuations go down by a factor more than one hundred.

We have also proposed a method to entangle two separated nanomechanical oscil-

lators in a ring cavity by injecting broad band squeezed vacuum light and laser light.

We work in the resolved sideband regime. The maximum entanglement of the two

oscillators can be reached when the squeezing parameter of the input light is about

1. We find that entanglement can survive over a very wide range of power levels of

the pump and temperatures of the environment.

Next we have studied the stimulated Stokes and anti-Stokes processes in cavity

optomechanics. We observe that the dispersive optomechanical coupling between the

cavity field and the movable mirror via radiation pressure force can induce normal-

mode splitting in both the output Stokes and anti-Stokes fields. We discover lifetime

splitting for pump power less than a critical power. We find that the Stokes field

is amplified. We also discuss the correlation between the Stokes and anti-Stokes

photons produced spontaneously by the optomechanical system. We find that the

correlation between these photons shows photon nonclassical antibunching feature,

and the nonclassical correlation becomes weaker with increasing pump power.

Then we have presented the theoretical results describing an exact analog of elec-

tromagnetically induced transparency in the linearly optomechanical system, in which

the cavity field is linearly coupled to the displacement of the mechanical oscillator.

Our calculations show explicitly the origin of EIT-like dips as well as the characteris-

tic changes in dispersion from anomalous to normal at the line center. We find that
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the linewidth of the EIT-like dip depends on the coupling laser power.

Further we have shown that the reactive optomechanical coupling between the

optical resonator and the waveguide via the optical gradient force also can induce

the normal mode splitting in the output fields. We find that the peak separation

increases with increasing pump power. We also find that the reactive coupling leads

to the generation of an anti-Stokes field.

In addition, we have demonstrated that the reactive coupling between the waveg-

uide and the microdisk resonator can generate the squeezing of the waveguide by

injecting a quantum field and laser into the resonator through the waveguide. The

results show that the maximal momentum squeezing of the waveguide is about 7075%

for temperature about 110 mK.

Moreover, we have presented a theoretical analysis of EIT-like effects in quadrat-

ically coupled optomechanical systems, in which the cavity field is coupled to the

square of the displacement of the mechanical oscillator. In such systems, the mean

displacement of the mechanical oscillator, which plays the role of atomic coherence in

traditional EIT, is zero. The quantity leading to EIT in such systems is mean values

of the square of the displacement of the mechanical oscillator.

Then we have demonstrated EIT using quantum fields in optomechanical systems.

We show how the EIT effect can be detected by probing the outgoing light. We find

that the EIT dip exists even though the photon number in the squeezed vacuum is

at the single-photon level. The EIT gets degraded if the quantum field is phase-

insensitive. We find that the temperature of the environment is not detrimental to

the EIT behavior. Our work suggests that optomechanical systems could be useful

in optical memory.

Finally we have presented a single-photon router by using the double-ended cavity

with a moving mirror. We find that the probe field can be sent to the right output

port or the left output port by switching the coupling field off or on, which is based
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on the effect of EIT. We further showed that the effects of quantum noise sources on

such a single photon router are very minimal.

13.2 Future Directions

The attractive and repulsive (bipolar) optical forces allow one to manipulate mechan-

ical components on the silicon chip in both directions. Thus they can be applied in

all-optical switching, tunable microphotonics devices and nanomechanical systems.

Presently, tunable bipolar optical force in neighboring waveguides has been demon-

strated theoretically [223] and experimentally [69, 224]. They showed the sign of the

force depends on the relative phase of the coupled lightwaves. Here, we suggest the

optomechanical system (Fig. 1.2) can generate a bipolar force by applying a weak

probe field and a strong coupling field. The optical force exerted by the photons from

the probe field on the waveguide is bipolar in the presence of the coupling field. And

the sign of the force is tunable by changing the detuning between the probe field and

the coupling field.
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APPENDIX A

THE VARIANCE OF MOMENTUM-DERIVATION OF EQUATION

EQ. (9.18)

With the aid of Eq. (9.17), the first term of Eq. (9.15) is

1

4π2

∫ ∫ +∞

−∞
dω dΩ e−i(ω+Ω)tPT (ω)PT (Ω)⟨ξ(ω)ξ(Ω)⟩

=
1

2π

∫ +∞

−∞
dωPT (ω)PT (−ω)2γm

ω

ωm

[
1 + coth

(
h̄ω

2KBT

)]
. (A.1)

Then with the help of Eq. (9.16), the second term of Eq. (9.15) will be

1

4π2

∫ ∫ +∞

−∞
dω dΩe−i(ω+Ω)tPS(ω)PS(Ω)⟨cin(ω)cin(Ω)⟩

=
1

2π

∫ +∞

−∞
dν e−2iωmtPS(ωm + ν)PS(ωm − ν)

MΓ2

Γ2 + ν2
, (A.2)

and the third term of Eq. (9.15) becomes

1

4π2

∫ ∫ +∞

−∞
dω dΩe−i(ω+Ω)tPS(ω)P

∗
S(−Ω)⟨cin(ω)c†in(−Ω)⟩

=
1

2π

∫ +∞

−∞
dν|PS(ωm + ν)|2 NΓ2

Γ2 + ν2
+

1

2π

∫ +∞

−∞
dω|PS(ω)|2. (A.3)

Therefore, the variance ⟨δP (t)2⟩ can be calculated by

⟨δP (t)2⟩ =
1

2π

∫ +∞

−∞
dωPT (ω)PT (−ω)2γm

ω

ωm

[
1 + coth

(
h̄ω

2KBT

)]

+2Re

[
1

2π

∫ +∞

−∞
dνe−2iωmtPS(ωm + ν)PS(ωm − ν)

MΓ2

Γ2 + ν2

]

+2

[
1

2π

∫ +∞

−∞
dν|PS(ωm + ν)|2 NΓ2

Γ2 + ν2

]
+

1

2π

∫ +∞

−∞
dω|PS(ω)|2.

(A.4)

The variance has terms oscillating at twice the frequency of the nanomechanical oscil-

lator. These terms can be removed in the standard way by working in an interaction
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picture defined with respect to the frequency ωm. This is equivalent to setting e±2iωmt

as unity, hence (A4) leads to Eq. (9.18).
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APPENDIX B

RELATION BETWEEN THE QUANTUM FLUCTUATIONS OF

NANO WAVEGUIDE AND THE OUTPUT FIELD

In the following, we show the squeezing of the waveguide can be measured through

the y component of the output field. Using the input-output relation [110] cout(t) =√
2κe(Q)c(t), the fluctuations of the output field can be written as

δcout(ω) = Jδc(ω) +
η

2

√
2κecsδQ(ω)

= Jδc(ω) +
η

2

√
2κecs

iωm
ω
δP (ω). (B.1)

From Eq. (9.9), we find the fluctuations of the resonator field

δc(ω) =
1

A∗(−ω)
[
iωm
ω
UδP (ω) + Jcin(ω)]. (B.2)

Combining Eqs. (B.1) and (B.2), and defining the y component of the output field

as δyout(t) = i[δc†out(t) − δcout(t)] so that δyout(ω) = i[δc†out(−ω) − δcout(ω)], one can

write the fluctuations in the momentum variable of the waveguide in terms of the y

component of the output field

δP (ω) = − ω

ωm
× A(ω)A∗(−ω)δyout(ω)− J2i[A∗(−ω)c†in(−ω)− A(ω)cin(ω)]

η

2

√
2κe(c

∗
s − cs)A(ω)A

∗(−ω) + J [A∗(−ω)U∗ − A(ω)U ]
.

(B.3)

It is seen that the fluctuations in the momentum variable of the waveguide is related

to the y component of the output field.
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