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CHAPTER 1

INTRODUCTION

Modern physics categorizes all physical interaction into four fundamental forces: the

strong force among the quarks and gluons; the weak force among the quarks, leptons,

and weak gauge bosons; electromagnetism; and gravitation. All of these forces except

gravitation have been gathered together into a theory known as the Standard Model

of particle physics, and it has been remarkably successful.

1.1 Review of the Standard Model

The Standard Model (SM) is a local gauge theory that uses representations and

interactions of fields allowed by the direct product group

SU(3)C × SU(2)L × U(1)Y . (1.1)

The group SU(3)C describes the quantum chromodynamics of the strong force. The

direct product group SU(2)L×U(1)Y describes the electroweak force, a unification of

electromagnetism and the weak force. The electric charge Qem of each field is related

by

Qem = I3 +
1
2
Y, (1.2)

where I3 the third isospin generator from SU(2)L, and Y is the hypercharge of the

field under U(1)Y .

As a gauge invariant theory, the SM requires the Lagrangian to be unchanged

when a gauge transformation occurs. The transformation under a gauge group can

1



Table 1.1: Charge assignments of the SM fields, grouped according to spin. The

superscript i is the generation index for the fermions. Indices over the gauge groups

are suppressed.

Spin 1
2

SU(3)C SU(2)L U(1)Y Spin 1 SU(3)C SU(2)L U(1)Y

qiL 3 2 1
3

Gµ 8 1 0

ui
R 3 1 4

3
Wµ 1 3 0

diR 3 1 −2
3

Bµ 1 1 0

liL 1 2 −1 Spin 0

eiR 1 1 −2 H 1 2 1

be described by the unitary matrix V = exp(−iθaTa), where each θa is a spacetime

dependent parameter, and each Ta is a hermitian generator of the gauge group. The

generators also depend on the representation of the field being transformed; thus V

is also representation dependent. In general, the transformation rules for fermions ψ

and scalar bosons φ belonging to the fundamental representation of a group, and the

vector bosons Aµ belonging to the adjoint representation of a group are

ψ 7→ V ψ, φ 7→ V φ, Aµ 7→ V AµV
† − i

g
(∂µV )V †. (1.3)

where Aµ = TaA
a
µ and g is the gauge coupling of the group. The transformation

matrix is equivalent to the identity, V = I, for the fields belonging to the singlet

representation of a group. The Lagrangian contains products of these fields, along

with the covariant derivative

Dµ = ∂µ − igAµ, (1.4)

such that after a transformation, none of the transformation matrices remain, and

the result is the same as the original Lagrangian.

The representations of the elementary fields of the SM shown in Table 1.1. Their
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allowed interactions are determined by these representations. A very important (and

surprising) feature is that the left and right chiral components of the fermions belong

to different representations of the weak group SU(2)L. The left chiral fields are

doublets under SU(2)L,

qiL =



ui
L

diL


 , liL =



νi
L

eiL


 , (1.5)

while the right chiral fields are singlets.

One important aspect of this distinction between left and right components is the

prevention of the Lagrangian from containing an explicit mass term for the fermions.

A generic mass term for a fermion ψ would be

mψψ = m(ψLψR + ψRψL). (1.6)

However, when a gauge transformation is applied:

m(ψLψR + ψRψL) 7→ m(ψLV
†
LVRψR + ψRV

†
RVLψL). (1.7)

In any model where the left and right components are in different representations,

V †
LVR 6= I. Thus the Lagrangian cannot contain any of these explicit fermion mass

terms if it is to be gauge invariant.

Mass terms for gauge bosons also have problems appearing in the Lagrangian. An

explicit mass term for the gauge bosons would appear and transform as

m2

2
AµAµ 7→ m2

2

(
V AµV † − i

g
(∂µV )V †

)(
V AµV

† − i

g
(∂µV )V †

)

=
m2

2

(
V AµAµV

† − i

g
(∂µV )AµV

† +
i

g
V Aµ(∂µV

†) +
1

g2
(∂µV )(∂µV

†)
)
.

(1.8)

The form of the transformed term is not the same as the original, thus the gauge

bosons also cannot have explicit mass terms in the Lagrangian. This isn’t a problem

for the massless photon and gluons, but the massive W± and Z need mass terms

3



to come from somewhere (historically, the prediction of massive gauge bosons came

before their discovery, and is a consequence of the material covered in the next several

paragraphs).

To get around this apparent lack of mass in the theory, the SM takes advantage of

spontaneous symmetry breaking with the Higgs mechanism. By introducing a com-

plex spin zero field, the Higgs boson H, the Lagrangian can now contain a potential

described by1

V(H) = −µ2H†H + λ(H†H)2. (1.9)

Although the Higgs boson has transformation properties similar to the fermions

(Eq. 1.3), it’s not plagued by the problem of left and right chiral fields.

−µ2H†H + λ(H†H)2 7→ −µ2H†V †V H + λ(H†V †V H)2

= −µ2H†H + λ(H†H)2.

(1.10)

The potential must be bounded from below (λ > 0). When µ2 < 0, then it has a

minimum at the origin. However, if µ2 > 0, then it has minima at

〈H〉 = ±
√

µ2

2λ
= ± v√

2
, (1.11)

where v is called the vacuum expectation value (vev).

The Higgs field can then be shifted to a minimum of the potential. In the unitary

gauge, this is expressed in terms of the real field h0.

H =



H+

H0


 7→ 1√

2




0

h0 + v


 . (1.12)

The shifted Higgs field can then be used in the kinetic terms of the Higgs field.

|DµH|2 =
∣∣∣∣(∂µ − igWµ − ig′

1

2
Bµ)H

∣∣∣∣
2

. (1.13)

1Many texts reverse the sign on the quadratic term so V(H) = µ2H†H + λ(H†H)2. This will

reverse the inequalities for µ2 for determining the minima of the potential.

4



Expanding this out, mass terms for the W±, Z, and photon yield

mW =
gv

2
, mZ =

v
√

g2 + g′2

2
=

mW

cos θW
, mA = 0, (1.14)

where Zµ and Aµ are the mass eigenstates of W 3
µ and Bµ, and the mixing angle be-

tween them is related to the gauge couplings by tan θW = g′/g. The symmetry under

which all the gauge bosons are massless has been broken by the Higgs mechanism. In

terms of the symmetry groups,

SU(2)L × U(1)Y
broken to−−−−−→ U(1)em. (1.15)

The photon is the gauge boson of the leftover electromagnetic symmetry U(1)em.

Although explicit mass terms for fermions cannot be written down, interactions

between fermions and a Higgs boson can be written down. Since the Higgs boson

and the left-chiral fermions of the SM are all doublets under SU(2)L, they have the

same transformation properties. In contrast, the right-chiral singlets have an identity

transformation. The gauge invariance for these types of fields under SU(2)L can

easily be shown by

fψLHψR 7→ fψLV
†
LVLHψR = fψLHψR, (1.16)

where f is the dimensionless Yukawa coupling. The product of the doublets should be

worked out and the vev of the Higgs boson taken into account. For the Higgs-lepton

couplings in the SM, it is

f e
ijl

i
LHejR = f e

ij

(
νi
L eiL

)



0

1√
2
(h0 + v)


 ejR =

f e
ij√
2
eiL (h0 + v) ejR

=
f e
ij√
2
eiLe

j
Rh0 +

f e
ijv√
2
eiLe

j
R,

(1.17)

where i, j are the generation indices. The first term describes the coupling of the

Higgs boson with the charged leptons. The last term has the form of a mass term,

with a mass f e
ijv/

√
2.
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Specifically, the SM Yukawa terms in the Lagrangian are

fu
ijq

i
LH̃uj

R + fd
ijq

i
LHdjR + f e

ijl
i
LHejR + h.c., (1.18)

where H̃ = iσ2H
∗, and σ2 = ( 0 −i

i 0 ), the second Pauli matrix. From this, the mass

matrices spanning the generations of the SM are

Mu
ij = fu

ij

v√
2
, Md

ij = fd
ij

v√
2
, M e

ij = f e
ij

v√
2
. (1.19)

Noticeably, Eq. 1.19 does not have a mass matrix for the neutrinos. In the SM,

the neutrinos don’t have right-handed components νi
R. Consequently, the neutrinos

don’t acquire masses from the Higgs Mechanism in the SM, and they remain massless.

1.2 Problems with fermion mass predictions

The mass relations from Eq. 1.14 were first published in late 1960s [1, 2]. More than

a decade later, the W and Z bosons were discovered, and the relationships held.

Once the gauge couplings and gauge boson masses are known, it is easy to determine

v/
√
2 ' 174 GeV. This is conveniently the same factor that relates the Yukawa

matrices to the mass matrices in the SM.

This means in the diagonalized mass eigenbasis, the top quark (with a mass of

171.3 GeV) has a Yukawa coupling close to one. However, the up quark (2.33× 10−3

GeV) has a Yukawa coupling five orders of magnitude smaller. In fd
ij and f e

ij, the

range of orders of magnitudes is only marginally smaller. When all three matrices

are taken as a whole, the Yukawa couplings span over five orders of magnitude.

Experimentally, the values of each Yukawa matrix (fu
ij, f

d
ij, f

e
ij) can be found in the

diagonalized mass basis. However, the three generations of fermions are not regulated

by any known symmetry, so three mass eigenvalues are not enough to determine the

nine Yukawa couplings within each matrix. With three matrices, this means there

are 27 undetermined Yukawa couplings spanning five orders of magnitude. This wide

range of so many parameters has no explanation in the SM.
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In contrast to the seemingly arbitrary and unpredictable masses of the charged

fermions, the SM requires all the neutrinos to be massless. However, experiments

show evidence of neutrino flavor oscillations. These oscillations directly imply the

neutrinos have tiny non-zero masses, contradicting the SM.

These issues are just a few among the list of shortcomings in the SM. Many

models have been put forward in an attempt to explain, circumvent, or eliminate

these problems. Some researchers have embedded the fields into larger symmetry

groups that break down to the SM. Others have imposed additional symmetries onto

the SM. In almost all cases, there are new and exotic fields. And they bring along

new interactions that can yield physics that has the potential to be observed.

This dissertation will address the issues described above by using symmetries

in addition to the SM. Even though the symmetry groups will be small, U(1) and

Z2, these symmetries can easily be found in the literature and where they are used

in a variety of ways. Frequently these symmetries, especially U(1), are not imposed

uniformly on the existing fields. Chapters 2–5 will examine the use of U(1) symmetries

and additional fields to address the issue of the quark mass hierarchy and Yukawa

couplings in the SM. This will be contrasted in Chapters 6 and 7 where the effects

of one of the additional fields will be examined. The issue of neutrino masses will

be treated in Chapter 8 with a departure from the mechanism used for the charged

fermion masses. A discrete Z2 symmetry will be used instead of a U(1) symmetry.

1.3 Note on the inclusion of published material

The contents of this dissertation were done as works of collaboration with other

authors. These works have been published in a couple different journals.

Material from Chapters 3–5 was done in collaboration with Z. Murdock and

S. Nandi and is expected to be submitted for publication in the near future [3].

The contents of Chapters 6 and 7 were done in collaboration with B. McElrath,

7



S. Nandi, and S. K. Rai and appears in Physical Review D [4].

Chapter 2 is material common to both of these works and has been expanded.

Chapter 8 covers material done in collaboration with Z. Murdock and S. Nandi

and appears in Physics Letters B [5].

The publishers of both journals (APS for Physical Review D and Elsevier for

Physics Letters B) hold the respective copyrights for the published articles. However,

both journals state that a journal author retains the right to include his/her own

articles, in whole or in part, within a thesis or dissertation without obtaining specific

permission from the journal.

8



CHAPTER 2

THE HIGGS AND GAUGE BOSONS

2.1 The use of extra symmetries

The SM has withstood remarkable testing. No experiment has produced a result

directly negating the SM. However, there still remains a number of shortcomings and

curiosities. It is generally believed not to be a final and complete theory. There are

many varied models proposed to extend the SM to solve and explain these noticeable

features.

Attempts are made to incorporate gravity into a model of particle physics by con-

sidering compact extra dimensions in addition to the usual four spacetime dimensions

[6, 7], or more recently by a gauge/gravity duality [8]. The three gauge couplings are

similar when run up to a high energy scale (∼ 1016 GeV), so Grand Unified Theories

(GUTs) try to unify them into one coupling of a single group. The gauge hierarchy

problem can be addressed by using Supersymmetry (SUSY) to extend the SM. Some

SUSY models also provide candidates for the enigmatic dark matter, although there

are contenders that rely on other mechanisms, such as adding an electroweak singlet

Higgs boson with a Z2 symmetry to the SM [9]. Even combining methods has been

used, such as SUSY with extra dimensions to unify Higgs and gauge bosons to relate

Yukawa couplings with the gauge couplings [10]. This is just a very short list of dif-

ferent approaches to extending the SM, but many extensions include extra particles

and extra interactions related to a new symmetry group.

Many models with only an additional U(1) symmetry have been considered. These

include leptophobic models, hadrophobic models, a symmetry group only coupling

9



with third generation fermions, and extra symmetries to address the issue of anoma-

lous magnetic moments [11]. Other models attempt to embed the SM into larger

symmetry groups and lead to an extra U(1) when they are broken down to the SM.

Some of these attempts have lead to using SO(10) or E6 GUTs, superstring E6

[12, 13], top-flavor models [14, 15, 16], and Left-Right symmetry models [17], and

string-inspired supersymmetric models [18].

By whichever means a U(1) symmetry enters these models, some care has to be

taken so the new fields don’t push theoretical predictions of the known fields outside

the bounds of established experimental certainty. Two methods of doing this are

relatively straightforward. If the new fields are charged under the SM, then they

should be more massive than the SM fields. Otherwise, the new fields need to be

neutral under the SM gauge symmetry, and the SM fields need to be neutral under

the new symmetry group. In either case there would necessarily need to be new

“intermediate” fields in this model to communicate to the SM fields the presence of

this hidden U(1) sector.

A hidden symmetry sector can provide some tools to explain the smallness and

hierarchy of the Yukawa couplings in the SM.

One possible approach, using radiative corrections, uses scalar leptoquarks at

the TeV mass scale and has them couple with the top quark and the SM leptons.

A hierarchy of fermion masses are then related to powers of a loop factor when

calculating radiative corrections [19, 20, 21, 22].

Another approach is to use higher dimensional operators of Higgs bosons that yield

the effective four dimensional couplings of the SM [23, 24, 25]. In turn, these higher

dimensional operators can themselves be effective operators from a symmetry sector

at a high energy scale by using a Froggatt-Nielsen [26] type mechanism. This can be

done whether the higher dimensional operators are built from the Higgs doublet of

the SM, or if new Higgs bosons are added to the model.

10



The work done in Ref. [25] can be expanded and generalized to an entire class of

models that also encompasses the work done in Refs. [23, 24]. The different models

all have similarities, yet can be grouped by some distinguishing differences. Although

the generalization is only performed on the quark sector, the charged lepton sector

can be treated in a similar fashion.

The generalization of Ref. [25] continues to use a new SM single Higgs boson S

and an accompanying local extra symmetry. The new local gauge symmetry is

SU(3)C × SU(2)L × U(1)Y × U(1)S. (2.1)

The new Higgs boson S is completely neutral under the SM; it is a colorless elec-

troweak singlet. However, it is charged under the new local symmetry U(1)S. The

SM particles are all neutral under this new symmetry. Before exploring the fermion

sector under this new symmetry, the interactions of this new Higgs boson with the

SM Higgs field is examined.

2.2 The Higgs potential

As a Higgs boson, the S can contribute to the Higgs potential. The potential already

has two terms coming from the Higgs doublet H. As a singlet, S cannot directly have

a scalar product with the doublet. However, a quartic field coupling with a product

of scalar products is allowed. The Higgs potential with H and S is

V(H,S) = −µ2
H(H

†H) + λH(H
†H)2

− µ2
S(S

†S) + λS(S
†S)2

+ λHS(H
†H)(S†S).

(2.2)

The parameters in the potential are assumed to have values such that both H and S

have vevs in the electroweak (EW) scale. The complex fields H and S can be written
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in terms of real fields h0 and s0 in the unitary gauge as

H 7→ 1√
2




0

vH + h0


 , S 7→ 1√

2
(vS + s0) , (2.3)

where vH is the vev of H, and vS is the vev of S. From the minimization of the Higgs

potential, the parameters µ2
H and µ2

S can easily be expressible in terms of the vevs

and the λ-parameters:

µ2
H = v2HλH +

1

2
v2SλHS, µ2

S = v2SλS +
1

2
v2HλHS. (2.4)

If so inclined, expressions for the vevs can be obtained in terms of the parameters of

the potential:

v2H =
µ2
H − λHS

2λS
µ2
S

λH − λ2
HS

4λS

, v2S =
µ2
S − λHS

2λH
µ2
H

λS − λ2
HS

4λH

. (2.5)

After applying the unitary gauge of the Higgs fields and substituting the expres-

sions for the µ2 parameters, the potential can then be written into a manageable

form, and separated by the powers of the Higgs fields with

V = V(0) + V(1) + V(2) + V(3) + V(4). (2.6)

In the (h0, s0) basis, the terms of the potential are

V(0)(h0, s0) = −1

4

(
λHv

4
H + λSv

4
S + λHSv

2
Hv

2
S

)
, (2.7a)

V(1)(h0, s0) = 0, (2.7b)

V(2)(h0, s0) = λHv
2
Hh

2
0 + λHSvHvSh0s0 + λSv

2
Ss

2
0, (2.7c)

V(3)(h0, s0) = λHvHh
3
0 +

1

2
λHS(vSh

2
0s0 + vHh0s

2
0) + λSvSs

3
0, (2.7d)

V(4)(h0, s0) =
1

4
(λHh

4
0 + λHSh

2
0s

2
0 + λSs

4
0). (2.7e)

From V (2)(h0, s0), the mass-squared matrix of the Higgs fields in the (h0, s0) basis

is found to be

M2
h0,s0

=




2λH v2H λHS vH vS

λHS vH vS 2λS v
2
S


 . (2.8)
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Since the matrix is not diagonal, the fields h0 and s0 cannot be mass eigenstates. To

find the mass eigenstates, an orthogonal rotation can be performed. The fields in the

mass eigenbasis are φH and φS and are related to the fields in the unitary gauge by

h0 = φH cosϑ+ φS sinϑ,

s0 = −φH sinϑ+ φS cosϑ.

(2.9)

The rotation angle ϑ is given by

tan 2ϑ =
λHSvHvS

λSv2S − λHv2H
, (2.10a)

or, without the double angle, as

tanϑ =
λHSvHvS

(λSv2S − λHv2H) +
√

(λSv2S − λHv2H)
2 + λ2

HSv
2
Hv

2
S

. (2.10b)

The physical squared masses at the tree level are

m2
φH ,φS

=
(
λSv

2
S + λHv

2
H

)∓
√

(λSv2S − λHv2H)
2 + λ2

HSv
2
Hv

2
S . (2.11)

where φH is taken to be the lighter mass eigenstate, and φS is the heavier state. All

these relationships can be used to rewrite the potential in terms of the physical Higgs

fields. The terms that change are given by

V(2)(φH , φS) = m2
φH

φ2
H +m2

φS
φ2
S, (2.12a)

V(3)(φH , φS) =
1

8
φ3
H (vH(6λH + λHS) cosϑ+ vH(2λH − λHS) cos 3ϑ

−vS(λHS + 6λS) sinϑ− vS(λHS − 2λS) sin 3ϑ)

+
1

8
φ2
HφS (vS(λHS + 6λS) cosϑ+ vS(3λHS − 6λS) cos 3ϑ

+vH(6λH + λHS) sinϑ+ vH(6λH − 3λHS) sin 3ϑ)

+
1

8
φHφ

2
S (vH(6λH + λHS) cosϑ− vH(6λH − 3λHS) cos 3ϑ

−vS(λHS + 6λS) sinϑ+ vS(3λHS − 6λS) sin 3ϑ)

+
1

8
φ3
S (vS(λHS + 6λS) cosϑ− vS(λHS − 2λS) cos 3ϑ

+vH(6λH + λHS) sinϑ− vH(2λH − λHS) sin 3ϑ) ,

(2.12b)
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V(4)(φH , φS) =
1

4
φ4
H

(
λH cos4 ϑ+ λHS cos

2 ϑ sin2 ϑ+ λS sin
4 ϑ

)

+
1

4
φ3
HφS (λH − λS + (λH − λHS + λS) cos 2ϑ) sin 2ϑ

+
1

16
φ2
Hφ

2
S (3λH + λHS + 3λS − 3(λH − λHS + λS) cos 4ϑ)

+
1

4
φHφ

3
S (λH − λS − (λH − λHS + λS) cos 2ϑ) sin 2ϑ

+
1

4
φ4
S

(
λS cos

4 ϑ+ λHS cos
2 ϑ sin2 ϑ+ λH sin4 ϑ

)
.

(2.12c)

In these equations, the interaction of the two physical Higgs fields occurs in the cubic

and quartic terms of the potential. The degree of interaction is regulated by λHS and

ϑ (which is also regulated by λHS). If mixing is zero, then φH is exactly the same as

in the SM.

2.3 Kinetic terms and gauge bosons

The Higgs fields also have kinetic terms. These terms provide mass to some of the

gauge bosons when the electroweak symmetry is broken. The Higgs doublet H has

the same terms as in the SM,

|DµH|2 =
∣∣∣∣(∂µ − igWµ − ig′

1

2
Bµ)H

∣∣∣∣
2

7→ 1

2
|∂µh0|2 +

(
1

8

∣∣g′Bµ − gW 3
µ

∣∣2 + 1

4
g2W−µ

W+
µ

)
(vH + h0)

2.

(2.13)

The mixing of the Bµ and W 3
µ follows the standard procedure:

W 3
µ = Zµ cos θW + Aµ sin θW ,

Bµ = −Zµ sin θW + Aµ cos θW ,

(2.14)

where the Weinberg angle θW is related to the gauge couplings by

cos θW =
g√

g2 + g′2
, sin θW =

g′√
g2 + g′2

. (2.15)

The squared masses of the W±, Z, and the photon are

m2
W± =

g2v2H
4

, m2
Z =

v2H
4
(g2 + g′2), m2

A = 0. (2.16)
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This will effectively reduce Eq. (2.13) to

|DµH|2 7→ 1

2
|∂µh0|2 + m2

Z

2
ZµZµ +m2

W±W−µ
W+

µ

+

(
m2

Z

vH
ZµZµ + 2

m2
W±

vH
W−µ

W+
µ

)
h0

+

(
m2

Z

2v2H
ZµZµ +

m2
W±

v2H
W−µ

W+
µ

)
h2
0.

(2.17)

The new Higgs singlet S can be treated similarly. The S is charged under the

extra U(1)S symmetry with a charge YS, so its covariant derivative contains the real

field Z ′
µ, the gauge field of the U(1)S symmetry. However, since S is a neutral singlet

under the SM, it does not have any other gauge fields in its covariant derivative, thus

|DµS|2 =
∣∣∣∣(∂µ − igS

1

2
YSZ

′
µ)S

∣∣∣∣
2

7→ 1

2
|∂µs0|2 + g2SY

2
S

8
Z ′µZ ′

µ(v
2
S + 2vSs0 + s20). (2.18)

The Z ′ gauge boson gets its mass from the pseudoscalar component of S when the

U(1)S symmetry is broken. The mass of the Z ′ at tree level is

m2
Z′ =

g2SY
2
S v

2
S

4
. (2.19)

The vev vS is assumed to be on the order of the EW scale, similar to vH . At this

point, S is the only field charged under U(1)S, so its charge can be normalized so

that YS = 1 (effectively absorbing any deviation from 1 into gS). If gS ∼ O(1), then

the mass of the Z ′ should also be expected to be near the EW scale. However, since

gS isn’t determined, the mass may be dramatically different.

In terms of the Z ′ mass, the kinetic term of the S is

|DµS|2 7→ 1

2
|∂µs0|2 + m2

Z′

2
Z ′µZ ′

µ +
m2

Z′

vS
Z ′µZ ′

µs0 +
m2

Z′

2v2S
Z ′µZ ′

µs
2
0. (2.20)

The kinetic terms in Eqs. (2.17) and (2.20) are in the gauge basis of the Higgs.
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Rotating their sum into the mass physical basis yields

|DµH|2 + |DµS|2 7→ 1

2
|∂µφH |2 + 1

2
|∂µφS|2

+
m2

Z

2
ZµZµ +m2

W±W−µ
W+

µ +
m2

Z′

2
Z ′µZ ′

µ

+

(
m2

Z

vH
ZµZµ + 2

m2
W±

vH
W−µ

W+
µ

)
(φH cosϑ+ φS sinϑ)

+
m2

Z′

vS
Z ′µZ ′

µ(−φH sinϑ+ φS cosϑ)

+

(
m2

Z

2v2H
ZµZµ +

m2
W±

v2H
W−µ

W+
µ

)
(φH cosϑ+ φS sinϑ)

2

+
m2

Z′

2v2S
Z ′µZ ′

µ(−φH sinϑ+ φS cosϑ)
2.

(2.21)

From this expression, the interactions of the φS with the SM gauge bosons can be

picked out. The interactions, however, are suppressed by sinϑ. Similarly, the φH has

interactions with the Z ′ suppressed by sinϑ. If the Higgs boson of the SM is found in

the near future, but not a singlet Higgs or Z ′, this is suggestive of ϑ being very small

or that S and Z ′ are very heavy. This is especially true for the Z ′ of this model.

Since the Z ′ does not couple to SM fields directly, its presence can only be de-

termined from interactions with new fields and kinetic mixing with the Z. Kinetic

mixing can occur through the term

χ

2g′gS
F µνF ′

µν =
χ

2g′gS
(∂µBν − ∂νBµ) (∂µZ

′
ν − ∂νZ

′
µ) . (2.22)

This is allowed because the gauge field Bµ, like the Z
′, is neutral under all the gauge

groups of the SM, including the group it mediates, U(1)Y . However, the coefficient

χ can be small to suppress this effect. Mixing can also occur from higher order loop

effects. Measurements of the Z properties at LEP1 constrain the mixing to be . 10−3

[27, 28]. For the purposes of this dissertation, the kinetic mixing is assumed to be

insignificant (i.e. χ = 0).
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CHAPTER 3

YUKAWA COUPLINGS OF THE CHARGED FERMIONS

The most massive elementary fermion in the SM is the top quark. In the SM, the top

mass comes from the diagonalization of

Mu = fu v√
2
. (3.1)

Using the values of the top mass and the vev of the Higgs, a quick estimate of fu
33

can be done:

mt ∼ fu
33

v√
2
,

(171 GeV) ∼ fu
33(174 GeV).

(3.2)

This shows fu
33 ∼ O(1). Näıvely, all the other Yukawa couplings would be expected

to be of similar magnitude. However, they are orders of magnitude smaller. The

mechanism presented here will explain their smallness as effective Yukawa couplings.

First, the use of higher dimensional operators will be examined as a mechanism

for generating the effective Yukawa coupling. Then in Chapter 4, the origins of these

operators will be explored as extra symmetries are used to extend the SM to include

exotic fields and interaction.

3.1 Operators with Higgs doublets: the H†H model

The higher dimensional operators in the Yukawa couplings make the terms non-

renormalizable. However, this is only an effective theory below a scale M , the mass

scale where new vector-like quarks exist, and will be described in Chapter 4. The
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operators in [23] rely on the SM Higgs doublet H, and are of the form

(
H†H
M2

)n

yuijq
i
Lu

j
RH̃,

(
H†H
M2

)n

ydijq
i
Ld

j
RH, (3.3)

where H̃ = iσ2H
∗. The exponent n is a non-negative integer that may have a different

value for each pair of generation indices i, j (i.e. n is flavor dependent). The values

of the coupling coefficients yu, yd are taken to be ∼ O(1). The quark doublet qiL and

quark singlets uj
R, d

j
R are the SM quarks.

Since the Yukawa coupling fu
33 ∼ O(1) in the SM, the exponent n is set to zero

and the relevant term from Eq.(3.3) is

yu33q
3
Lu

3
RH̃, (3.4)

which corresponds directly with the SM. Thus the identification fu
33 = yu33 can be

made right away. The remaining Yukawa couplings can be determined after the

Higgs doublet H acquires a vev. The parametrization is the same as in Eq. (2.3).

Substitution into the higher dimensional operators is straight forward, thus

(vH + h0)
2n

2nM2n
yuiju

i
Lu

j
R

(vH + h0)√
2

. (3.5)

The mass terms and Yukawa terms can be picked out after performing a binomial

expansion. The mass terms will have no Higgs field h0, and the Yukawa terms will

be linear in h0. Examining only the binomials,

(vH + h0)
2n(vH + h0) = (v2nH + 2nv2n−1

H h0 + · · · )(vH + h0)

= v2n+1
H + (2n+ 1)v2nH h0 + 2nv2n−1

H h2
0 + · · · .

(3.6)

The fieldless term from the expansion provides the mass terms of the form

Mu
iju

i
Lu

j
R =

(
v2nH

2nM2n
yuij

vH√
2

)
ui
Lu

j
R, (3.7)

and the term linear in the field h0 yields the Yukawa couplings of the form

fu
iju

i
Lu

j
R

h0√
2
=

(
(2n+ 1)

v2nH
2nM2n

yuij

)
ui
Lu

j
R

h0√
2
. (3.8)
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These can be reduced to a less cumbersome expression by introducing a dimen-

sionless parameter ε so that

ε =
vH

M
√
2
, (3.9)

Mu
ij = ε2nyuij

vH√
2
, Md

ij = ε2nydij
vH√
2
, (3.10)

fu
ij = (2n+ 1)ε2nyuij, fd

ij = (2n+ 1)ε2nydij. (3.11)

Again, n may have a different value for each pair of indices i, j. This is important to

keep in mind. In the SM, the mass and Yukawa matrices are proportional,

Mu = fu vH√
2
. (Standard Model) (3.12)

However, in this model the (2n+ 1) factor is potentially different for each element of

the effective Yukawa matrix. This extra factor means the mass and Yukawa matrices

are not proportional.

So far, two parameters ε, M have been introduced whose values are completely

unknown. The value of M was assumed to be at a higher scale than the electroweak

scale. However, knowing vH/
√
2 ' 174 GeV, its scale can be shown by examining

Mu
ij.

Since yu, yd ∼ O(1), the power of ε required for each matrix element must reduce

that matrix element by an appropriate order of magnitude below the top mass (the

largest matrix element). By comparing masses of the top and bottom quarks with

the smallest allowed non-zero choice for the exponent (n = 1) of the bottom quark,

an estimate on the value of ε can be established:

mb

mt

∼ Md
33

Mu
33

=
ε2yd33vH/

√
2

yu33vH/
√
2
,

O(10−2) ∼ ε2,

(3.13)

and consequently M is around the range of 1 to 2 TeV [23, 24].
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Knowing the experimentally determined quark masses, and the order of magnitude

of ε2, the mass matrices can be written down by choosing appropriate values for n.

Assuming the powers of ε within the mass matrices are symmetric, then

Mu =




yu11ε
6 yu12ε

4 yu13ε
4

yu21ε
4 yu22ε

2 yu23ε
2

yu31ε
4 yu32ε

2 yu33




vH√
2
, Md =




yd11ε
6 yd12ε

6 yd13ε
6

yd21ε
6 yd22ε

4 yd23ε
4

yd31ε
6 yd32ε

4 yd33ε
2




vH√
2
. (3.14)

The magnitudes of the off-diagonal elements were also chosen to be of similar mag-

nitudes of the relevant diagonal elements. This appears to be reasonable since the

quark mixing angles are of the order of the respective masses.

Once the powers of ε have been determined for the mass matrices, the (2n + 1)

factor of the Yukawa matrices can be easily determined.

fu =




7yu11ε
6 5yu12ε

4 5yu13ε
4

5yu21ε
4 3yu22ε

2 3yu23ε
2

5yu31ε
4 3yu32ε

2 yu33




, fd =




7yd11ε
6 7yd12ε

6 7yd13ε
6

7yd21ε
6 5yd22ε

4 5yd23ε
4

7yd31ε
6 5yd32ε

4 3yd33ε
2




. (3.15)

3.2 Operators with Higgs singlets: the S†S model

In contrast to the preceding model, the higher dimensional operators in Ref. [25] were

made by replacing the doublet operator H†H with the singlet operator S†S, so terms

are of the form

(
S†S
M2

)n

yuijq
i
Lu

j
RH̃,

(
S†S
M2

)n

ydijq
i
Ld

j
RH. (3.16)

As before, the parametrization of the Higgs fields will be in the unitary gauge

shown in Eq. (2.3). The doublet H and the singlet S are written in terms of the real

fields h0 and s0. Again, a substitution shows the binomials to be expanded:

(vS + s0)
2n

2nM2n
yuiju

i
Lu

j
R

(vH + h0)√
2

. (3.17)
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The difference from before is now there are two vevs and two fields that contribute.

Examining the binomials,

(vS + s0)
2n(vH + h0) = (v2nS + 2nv2n−1

S s0 + · · · )(vH + h0)

= v2nS vH + 2nv2n−1
S vHs0 + v2nS h0 + 2nv2n−1

S s0h0 + · · · .
(3.18)

Mass terms are of the form

Mu
iju

i
Lu

j
R =

(
v2nS

2nM2n
yuij

vH√
2

)
ui
Lu

j
R, (3.19)

Now, there are two types of Yukawa couplings. The couplings with h0 and couplings

with s0 are

fhu
ij ui

Lu
j
R

h0√
2
=

(
v2nS

2nM2n
yuij

)
ui
Lu

j
R

h0√
2
, (3.20)

f su
ij u

i
Lu

j
R

s0√
2
=

(
2n

v2n−1
S vH
2nM2n

yuij

)
ui
Lu

j
R

s0√
2
. (3.21)

The same dimensionless parameter ε can be used to create more manageable ex-

pressions. However, because vS is new to the terms, a second dimensionless parameter

α can also be introduced to assist in simplifying the expressions, so that

ε =
vH

M
√
2
, α =

vS
vH

, αε =
vS

M
√
2
. (3.22)

Thus the mass matrices and Yukawa couplings are

Mu
ij = (αε)2nyuij

vH√
2
, Md

ij = (αε)2nydij
vH√
2
, (3.23)

fhu
ij = (αε)2nyuij, fhd

ij = (αε)2nydij, (3.24)

f su
ij = 2n(αε)2nα−1yuij, f sd

ij = 2n(αε)2nα−1ydij. (3.25)

The full mass matrices can be written out. Simply make the replacement ε2n 7→ (αε)2n
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for each element of Eq. (3.14), and the mass matrices are

Mu =




yu11(αε)
6 yu12(αε)

4 yu13(αε)
4

yu21(αε)
4 yu22(αε)

2 yu23(αε)
2

yu31(αε)
4 yu32(αε)

2 yu33




vH√
2
,

Md =




yd11(αε)
6 yd12(αε)

6 yd13(αε)
6

yd21(αε)
6 yd22(αε)

4 yd23(αε)
4

yd31(αε)
6 yd32(αε)

4 yd33(αε)
2




vH√
2
.

(3.26)

With this specific model, the mass matrices and the Yukawa-h matrices are pro-

portional in both the up and down sectors, the same as in the SM. The Yukawa-h

matrices are

fhu =




yu11(αε)
6 yu12(αε)

4 yu13(αε)
4

yu21(αε)
4 yu22(αε)

2 yu23(αε)
2

yu31(αε)
4 yu32(αε)

2 yu33




,

fhd =




yd11(αε)
6 yd12(αε)

6 yd13(αε)
6

yd21(αε)
6 yd22(αε)

4 yd23(αε)
4

yd31(αε)
6 yd32(αε)

4 yd33(αε)
2




.

(3.27)

However, the Yukawa-s matrices are not proportional to the mass matrices, as it has

the extra factor 2n associated with each element. These matrices are

f su =




6yu11α
5ε6 4yu12α

3ε4 4yu13α
3ε4

4yu21α
3ε4 2yu22αε

2 2yu23αε
2

4yu31α
3ε4 2yu32αε

2 0




,

f sd =




6yd11α
5ε6 6yd12α

5ε6 6yd13α
5ε6

6yd21α
5ε6 4yd22α

3ε4 4yd23α
3ε4

6yd31α
5ε6 4yd32α

3ε4 2yd33αε
2




.

(3.28)
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3.3 Operators with Higgs doublets and singlets

The preceding two models take the higher dimensional operators to be purely com-

posed of only Higgs doublets or only Higgs singlets. But now consider the possibility

of operators built from products of the doublet operator and singlet operator such as
(
H†H
M2

)nH
(
S†S
M2

)nS

yuijq
i
Lu

j
RH̃, (3.29)

where nH and nS are non-negative integers that may have different values for each

pair of generation indices i, j, just like n from the previous sections.

Again, a substitution reveals binomials in need of expansion with

(vH + h0)
2nH (vS + s0)

2nS

2nH+nSM2nH+2nS
yuiju

i
Lu

j
R

(vH + h0)√
2

. (3.30)

Focusing on the relevant terms, the expansion proceeds by

(vH + h0)
2nH (vS + s0)

2nS(vH + h0)

= (v2nH
H + 2nHv

2nH−1
H h0 + · · · )(v2nS

S + 2nSv
2nS−1
S s0 + · · · )(vH + h0)

= (v2nH
H v2nS

S + 2nHv
2nH−1
H v2nS

S h0 + 2nSv
2nH
H v2nS−1

S s0 + · · · )(vH + h0)

= v2nH+1
H v2nS

S + (2nH + 1)v2nH
H v2nS

S h0 + 2nSv
2nH+1
H v2nS−1

S s0 + · · · .
(3.31)

Mass terms are of the form

Mu
iju

i
Lu

j
R =

(
v2nH
H v2nS

S

2nH+nSM2nH+2nS
yuij

vH√
2

)
ui
Lu

j
R. (3.32)

The Yukawa terms are of the form

fhu
ij ui

Lu
j
R

h0√
2
=

(
(2nH + 1)

v2nH
H v2nS

S

2nH+nSM2nH+2nS
yuij

)
ui
Lu

j
R

h0√
2
, (3.33)

f su
ij u

i
Lu

j
R

s0√
2
=

(
2nS

v2nH+1
H v2nS−1

S

2nH+nSM2nH+2nS
yuij

)
ui
Lu

j
R

s0√
2
. (3.34)

Again, the dimensionless parameters α and ε can be used to simplify the expressions.

Also, an additional relation for the operator exponents can be added so that

ε =
vH

M
√
2
, α =

vS
vH

, αε =
vS

M
√
2
, nH = n− nS. (3.35)

23



The mass and Yukawa matrices are then given by

Mu
ij = α2nSε2nyuij

vH√
2
, Md

ij = α2nSε2nydij
vH√
2
, (3.36)

fhu
ij = (2(n− nS) + 1)α2nSε2nyuij, fhd

ij = (2(n− nS) + 1)α2nSε2nydij, (3.37)

f su
ij = 2nSα

2nS−1ε2nyuij, f sd
ij = 2nSα

2nS−1ε2nydij. (3.38)

Since ε regulates the order of magnitude for the mass matrices, it is reasonable

to keep the same ε-texture as in Eq. (3.14). This fixes the value of n that will be

used for each matrix element. However, this does not restrict the value of nS. Within

the mass matrices Mu and Md, there are 17 matrix elements that may have varying

values for the integer nS, only restricted by 0 ≤ nS ≤ n.

For a mass term with a factor of ε2n, the allowed powers of α are the even numbers

ranging from zero to 2n. Inspection of the mass matrices shows there are four mass

terms with ε2 (two allowed powers of α), seven with ε4 (three allowed powers of α),

and six with ε6 (four allowed powers of α). Allowing powers of α to be independent for

matrix elements with the same power of ε means there can be 243746 = 143 327 232

possible Lagrangians.

To simplify the situation, all matrix elements that have the same power of ε are

restricted to have a common power of α. For example, the mass terms Mu
22 and

Mu
23 are both proportional to ε2. They are restricted to be both proportional to α0

or both be proportional to α2. They are not allowed to have different powers of α.

This restriction reduces the possible Lagrangians down to 2 · 3 · 4 = 24, a much more

manageable number.

With this restriction, the effective Yukawa Lagrangian can be written down with
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common higher dimensional operators factored as leading coefficients, yielding

LYuk
quark = yu33q

3
Lu

3
RH̃

+

(
H†H
M2

)1−n1
(
S†S
M2

)n1(
yd33q

3
Ld

3
RH + yu22q

2
Lu

2
RH̃ + yu23q

2
Lu

3
RH̃ + yu32q

3
Lu

2
RH̃

)

+

(
H†H
M2

)2−n2
(
S†S
M2

)n2(
yd22q

2
Ld

2
RH + yd23q

2
Ld

3
RH + yd32q

3
Ld

2
RH + yu12q

1
Lu

2
RH̃

+yu21q
2
Lu

1
RH̃ + yu13q

1
Lu

3
RH̃ + yu31q

3
Lu

1
RH̃

)

+

(
H†H
M2

)3−n3
(
S†S
M2

)n3(
yd11q

1
Ld

1
RH + yd12q

1
Ld

2
RH + yd21q

2
Ld

1
RH

+yd13q
1
Ld

3
RH + yd31q

3
Ld

1
RH + yu11q

1
Lu

1
RH̃

)
+ h.c.

(3.39)

The operator exponents from Eq. (3.29) have been specified. Since n takes a fixed

value according to the flavors of each coupling, it can be directly set (n = 1, 2, 3).

Also, since 0 ≤ nS ≤ n, the exponent nS can be specified as nk such that 0 ≤ nk ≤ k

where k ∈ {1, 2, 3}.
One of the consequences of these higher dimensional operators is flavor changing

neutral currents in the Higgs sector. This occurs because the effective Yukawa ma-

trices and the effective mass matrices will not be proportional. The effective mass

matrices will all be similar to Eq. (3.14) with extra factors of α. However, the effective

Yukawa matrices will have extra numerical factors corresponding to the coefficients

resulting from the binomial expansions of the operators after they acquire vevs. In

Eqs. (3.36)–(3.38), factors with n or nS will generally be different for each matrix

element.

Generalized expressions for the quark masses can be found in terms of n1, n2, n3,

α, and ε using a biunitary transformation Mψ′
= V ψ

L

†
MψV ψ

R , where ψ ∈ {u, d} so

that Mψ is either mass matrix from Eq. (3.36). The prime indicates the mass basis,

so that the matrix Mψ′
is the diagonal mass matrix.

The effective Yukawa matrices can also be found by fhψ′
= V ψ

L

†
fhψV ψ

R , where
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V ψ
L , V ψ

R are the unitary matrices that diagonalize Mψ. Since the Yukawa matrices

fhψ, f sψ are not proportional to the mass matrices Mψ, the Yukawa matrices in the

mass basis fhψ′
, f sψ′

will not be diagonal.

Expansions of the mass and Yukawa matrices were made in powers of ε. The

masses and Yukawa couplings have been expanded to ε6. The CKM matrix is also

given up to ε4. Calculations were made assuming coupling coefficients are real and

symmetric (yψij = yψji). The Yukawa couplings and CKM matrix are in Appendix A.

The masses are

Mu′
11 ≈

(
α2n3yu11 − α2(2n2−n1)

yu12
2

yu22

)
ε6, (3.40a)

Mu′
22 ≈ α2n1yu22 ε2 − α4n1

yu23
2

yu33
ε4 +

(
α2(2n2−n1)

yu12
2

yu22
+ α6n1

yu22y
u
23

2

yu33
2

)
ε6, (3.40b)

Mu′
33 ≈ yu33 + α4n1

yu23
2

yu33
ε4 + α6n1

yu22y
u
23

2

yu33
2 ε6, (3.40c)

Md′
11 ≈ α2n3yd11 ε6, (3.40d)

Md′
22 ≈ α2n2yd22 ε4 − α2(2n2−n1)

yd23
2

yd33
ε6, (3.40e)

Md′
33 ≈ α2n1yd33 ε2 +

(
α2(2n2−n1)

yd23
2

yd23
− α2(6n2−3n1−2n3)

yd22
2
yd23

4

yd13
2
yd33

3

)
ε6. (3.40f)

The Yukawa couplings fhψ, f sψ are couplings of the quarks to the Higgs fields

with both field types in the gauge basis. The Yukawa couplings fhψ′
, f sψ′

are with

the quarks in the mass basis; however, the Higgs fields are still in the gauge basis. To

get the Yukawa couplings in the mass basis of both the quarks and the Higgs fields,

the rotation of the Higgs fields still needs to be applied. Doing so yields the Yukawa

couplings fφHψ′
, fφSψ

′
from the expressions

1√
2
fφHψ′
ij ψ′i

Lψ
′j
RφH =

1√
2

(
fhψ′
ij cosϑ− f sψ′

ij sinϑ
)
ψ′i
Lψ

′j
RφH , (3.41a)

1√
2
fφSψ

′
ij ψ′i

Lψ
′j
RφS =

1√
2

(
fhψ′
ij sinϑ+ f sψ′

ij cosϑ
)
ψ′i
Lψ

′j
RφS. (3.41b)
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CHAPTER 4

MASS GENERATING MECHANISM

So far, the gauge symmetries of the SM have been extended by an additional U(1)S

local symmetry. To explain the origin of the operators H†H and S†S in the Yukawa

couplings, some additional U(1)Fi
global symmetries will also be employed in the

use of a Froggatt-Nielsen type mechanism. In the one model where none of the

effective low energy interactions in the Lagrangian have a coefficient of (S†S)nS , the

U(1)S symmetry is not included; it essentially decouples from the model and can be

ignored.

Each U(1)Fi
global symmetry has a flavor scalar boson Fi (called a flavon) that is

charged only under its corresponding symmetry, and neutral with respect to all other

symmetries. Because the U(1)Fi
are global symmetries, there are no gauge bosons

associated with them. It should be noted that even though there is no restriction

being placed on the number of U(1)Fi
symmetries, it is not necessary to have more

than two.

The effective Yukawa couplings are created by interactions with new heavy exotic

vector-like quarks, the new flavons Fi, and the Higgs bosons H and S. The new quark

doublets will be denoted by Q, and the singlets by U and D. They have the same

hypercharges as their SM counterparts q, u, and d.

It should be noted that unlike the SM quarks, which only come in right-handed

singlets and left-handed doublets, the new heavy quarks occur in left-right pairs

and behave vector-like with respect to the gauge groups of the SM and U(1)S. The

quantum numbers of a left-right pair will be identical except for the quantum number
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of one U(1)Fi
symmetry. This quantum number will differ by a value of one. When

this symmetry breaks, the vev of the Fi gives mass to the new heavy quarks. The

vev of each Fi is assumed to be around the TeV scale.

These extra fields are necessary in a Froggatt-Nielsen mechanism as each field

occupies a unique position in the charge space of U(1)Y ×U(1)S×U(1)F1×U(1)F2×· · · .
The flavons and the Higgs fields provide the interactions that link the quark fields to

their neighbors in the charge space. A sequence of interactions is required to move

between non-neighboring fields, such as the SM quarks.

Within a given model, the sequence of field interactions beginning and ending with

SM particles was chosen so that there is only one sequence connecting any two SM

quarks (assuming backward steps are not taken within the sequence). Although this

is not strictly necessary, if distinctly different sequences of particle interactions were

allowed into a model, then some models may have explicit terms in the Lagrangian

with higher powers of (H†H)n−nS(S†S)nS than are written down in Eq. (3.39).

In order to make different interaction sequences non-interacting with each other,

it is necessary to space the non-interacting quark fields at least two quantum numbers

away from each other in the charge space. This leads to a large number of quark fields

being used as each interaction sequence path through this space must be long enough

to go around many other fields and avoid unwanted interactions with other paths.

4.1 Couplings in the Lagrangian

The couplings of these heavy quarks in the Lagrangian take on a generalized form.

Specifically, the couplings each particle has will depend on their charge assignments

within a given model. The hermitian conjugate of each coupling will also be included

in the Lagrangian. For the terms listed in Eqs. (4.1a)–(4.1c), no summation over the

indices is implied. All of the coupling coefficients (fFQ, fFU , fFD, fSQ, fSU , fSD,
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fHU , fHD) are taken to be O(1) and occur in the following terms:

fFQ
ab Qa

LQ
b
RFi fFU

ab Ua
LU

b
RFi fFD

ab Da
LD

b
RFi

fFQ
ab Qa

LQ
b
RF

†
i fFU

ab Ua
LU

b
RF

†
i fFD

ab Da
LD

b
RF

†
i





Flavon Couplings, (4.1a)

fSQ
ab Qa

LQ
b
RS fSU

ab Ua
LU

b
RS fSD

ab Da
LD

b
RS

fSQ
ab Qa

LQ
b
RS

† fSU
ab Ua

LU
b
RS

† fSD
ab Da

LD
b
RS

†





Higgs Singlet Couplings, (4.1b)

fHU
ab Qa

LU
b
RH̃ fHD

ab Qa
LD

b
RH

fHU
ab Qa

RU
b
LH̃ fHD

ab Qa
RD

b
LH





Higgs Doublet Couplings. (4.1c)

Every heavy quark will have one coupling from Eq. (4.1a) where a = b, as this

will be a massive left-right pair when the flavon F breaks the flavor symmetry. Every

heavy quark must also have at least one coupling from Eqs. (4.1a)–(4.1b) where a 6= b,

or from Eq. (4.1c) where a and b are indexed over different quark types. For the few

heavy quarks that directly couple to the SM quarks, the appropriate replacement

should be made to the terms coming from Eqs. (4.1a)–(4.1c) (e.g. Qa
LQ

b
R 7→ qaLQ

b
R).

4.1.1 The effective Lagrangian

In all model variations, the Yukawa coupling yu33q
3
Lu

3
RH̃ is the only one that involves

only SM particles. All the other model variations have coefficients of (H†H)n−nS(S†S)nS

on terms which would otherwise be SM Yukawa couplings. These terms have di-

mension larger than four and come from a process of integrating out the heavy

fermions from the tree level diagrams, which correspond with terms of the forms

from Eqs. (4.1a)–(4.1c).

For example, consider the term (H†H/M2)yu23q
2
Lu

3
RH̃. This terms exists in 12 of

the 24 variations of the effective Lagrangian. One possible heavy quark model has

thirteen terms associated with this process. This process can be represented by the
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6 6 6 6 6 6 6 6 6 6 6 6 6- - - - - - - - - - - - - -

H̃ F1 F1 F1 H F1 F1 F1 H̃ F1 F1 F1 F1

q2L U4
R U4

L U5
R U5

L Q6
R Q6

L Q7
R Q7

L U8
R U8

L U9
R U9

L u3
R

Figure 4.1: Feynman diagram linking q2L to u3
R in an H†H model.

Feynman diagram in Fig. 4.1. The necessary terms are

fHU
2,4 q2LU

4
RH̃ + fFU

4,4 U
4
RU

4
LF1 + fFU

4,5 U
4
LU

5
RF1 + fFU

5,5 U
5
RU

5
LF1 + fHU

5,6 U5
LQ

6
RH

+ fFQ
6,6 Q

6
RQ

6
LF1 + fFQ

6,7 Q
6
LQ

7
RF1 + fFQ

7,7 Q
7
RQ

7
LF1 + fHU

7,8 Q7
LU

8
RH̃

+ fFU
8,8 U

8
RU

8
LF1 + fFU

8,9 U
8
LU

9
RF1 + fFU

9,9 U
9
RU

9
LF1 + fFU

9,3 U
9
Lu

3
RF1 + h.c.

(4.2)

This particular model choice exhibits only a single extra symmetry U(1)F1 in the

given terms. The flavon symmetry breaks, and the flavons acquire a vev 〈Fi〉. The

heavy fermions can be integrated out and an effective expression below the TeV scale

is proportional to

fHU
2,4 fFU

4,4 f
FU
4,5 f

FU
5,5 f

HU
5,6 fFQ

6,6 f
FQ
6,7 f

FQ
7,7 f

HU
7,8 fFU

8,8 f
FU
8,9 f

FU
9,9 f

FU
9,3

(〈F1〉
M

)10
H†H
M2

q2Lu
3
RH̃ + h.c.

(4.3)

Thus for this particular model choice, the effective coupling parameter in the low

energy Lagrangian is

yu23 ∼ fHU
2,4 fFU

4,4 f
FU
4,5 f

FU
5,5 f

HU
5,6 fFQ

6,6 f
FQ
6,7 f

FQ
7,7 f

HU
7,8 fFU

8,8 f
FU
8,9 f

FU
9,9 f

FU
9,3

(〈F1〉
M

)10

. (4.4)

The couplings f are O(1). The vev of the flavons is the same order as the vector-

like quark masses, 〈F1〉 ∼ M . This means yu can also be O(1), consistent with the

assumption in the effective Lagrangian.

For a comparison, consider the 12 effective Lagrangians that have the same term,

except with H†H 7→ S†S. Some possible model choices may again have thirteen in-

teraction terms. The Feynman diagram in Fig. 4.2 is similar, but there are noticeable
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R

Figure 4.2: Feynman diagram linking q2L to u3
R in an S†S model.

differences in the first five interactions. The terms are

fSQ
2,4 q

2
LQ

4
RS + fFQ

4,4 Q
4
RQ

4
LF1 + fFQ

4,5 Q
4
LQ

5
RF1 + fFQ

5,5 Q
5
RQ

5
LF1 + fSQ

5,6 Q
5
LQ

6
RS

†

+ fFQ
6,5 Q

6
RQ

6
LF1 + fFQ

6,7 Q
6
LQ

7
RF1 + fFQ

7,7 Q
7
RQ

7
LF1 + fHU

7,8 Q7
LU

8
RH̃

+ fFU
8,8 U

8
RU

8
LF1 + fFU

8,9 U
8
LU

9
RF1 + fFU

9,9 U
9
RU

9
LF1 + fFU

9,3 U
9
Lu

3
RF1 + h.c.

(4.5)

This expression is similar to the previous case, and likewise when the heavy fermions

are integrated out, the effective expression below the TeV scale looks similar, with

fSQ
2,4 f

FQ
4,4 f

FQ
4,5 f

FQ
5,5 f

SQ
5,6 f

FQ
6,5 f

FQ
6,7 f

FQ
7,7 f

HU
7,8 fFU

8,8 f
FU
8,9 f

FU
9,9 f

FU
9,3

(〈F1〉
M

)10
S†S
M2

q2Lu
3
RH̃ + h.c.

(4.6)

As before, the effective coupling parameter in the low energy Lagrangian can be pulled

out, and yields

yu23 ∼ fSQ
2,4 f

FQ
4,4 f

FQ
4,5 f

FQ
5,5 f

SQ
5,6 f

FQ
6,5 f

FQ
6,7 f

FQ
7,7 f

HU
7,8 fFU

8,8 f
FU
8,9 f

FU
9,9 f

FU
9,3

(〈F1〉
M

)10

. (4.7)

And once again, yu23 can be O(1).

4.2 Charge assignments for specific models

4.2.1 Effective Lagrangian with only powers of S†S

In the effective Lagrangian where all the interactions of dimension greater than four

only have powers of S†S, the U(1)S symmetry only needs to be accompanied by a

single U(1)F symmetry. With only these two extra symmetries, one possible model

has a set of 166 heavy quarks (18 Ua
L, 18 Ua

R, 29 Da
L, 29 Da

R, 36 Qa
L, 36 Qa

R). The

quantum numbers of the SM quarks, Higgs doublet, Higgs singlet, and the vector
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Table 4.1: Charge assignments of the SM quarks, Higgs doublet, Higgs singlet, and

new vector boson for an effective Lagrangian with powers of S†S.

Fields U(1)S U(1)F Fields U(1)S U(1)F Fields U(1)S U(1)F

q3L 0 0 u3
R 0 0 d3R 0 4

q2L 0 16 u2
R 0 4 d2R 0 10

q1L 0 24 u1
R 0 10 d1R 0 32

H 0 0 F 0 1

S 1 0

boson are in Table 4.1. The quantum numbers of the heavy quarks can be found in

Table B.1.

4.2.2 Effective Lagrangian with only powers of H†H

In the effective Lagrangian where there are no interactions with the S, the U(1)S

symmetry is effectively eliminated. Some possible choices of fields for a model use

only two U(1)Fi
symmetries. As indicated previously, this means there will be two

new flavon scalars F1 and F2. An explicit choice can be made that consists of 124

heavy quarks (17 Ua
L, 17 Ua

R, 20 Da
L, 20 Da

R, 20 Qa
L, 20 Qa

R). The quantum numbers

of the SM quarks, Higgs doublet, and the vector bosons are in Table 4.2. The heavy

quarks have their quantum numbers listed in Table B.3.

4.2.3 Generalized model

The two previous models were constructed independently from each other. Each of

the other 22 models can also be constructed independently from each other. However,

constructing a model and assigning appropriate charges to the heavy quarks for each

effective Lagrangian doesn’t need to be done 24 times. It is possible to construct a

generalized model that will match any of the effective Lagrangians by simply changing
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Table 4.2: Charge assignments of the SM quarks, Higgs doublet, and new vector

bosons for an effective Lagrangian with powers of H†H.

Fields U(1)F1 U(1)F2 Fields U(1)F1 U(1)F2 Fields U(1)F1 U(1)F2

q3L 0 0 u3
R 0 0 d3R 5 −5

q2L −2 0 u2
R 2 6 d2R 5 3

q1L −4 −2 u1
R 5 3 d1R −6 4

H 0 0 F1 1 0

F2 0 1

specific groups of particles.

An example of this change was already done in Eqns. (4.2) and (4.5). In those

expressions, the fields U4
R, U

4
L, U

5
R, and U5

L were replaced with Q4
R, Q

4
L, Q

5
R, and Q5

L;

and the corresponding interactions with H were replaced by interactions with S. In

terms of their quantum numbers, the change in hypercharge of the U(1)Y symmetry

at either end of this four step sequence was replaced by a change in the charge of the

U(1)S symmetry.

The generalized model presented here uses two U(1)Fi
symmetries and has 282

heavy quarks. The charge assignments of the fields under these symmetries can be

found in Tables 4.3 and B.4–B.6.

As presented, Tables B.4–B.6 are for the effective Lagrangian with only powers of

H†H. To adjust the Table to fit any of the other variations of the Lagrangian, replace

an appropriate set of fields with a different set of fields. The choice of replacements is

also, in most cases, not unique. A particular choice of replacements is given in Tables

B.7–B.12.

It should be noted, in the replacement tables the numbering superscript is changed

to avoid possible duplication of names. For example, the replacement U20
L 7→ Q90

L is

made instead of U20
L 7→ Q20

L because there already exists a quark with the name Q20
L .
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Table 4.3: Charge assignments of the SM quarks, Higgs doublet, Higgs singlet, and

the new vector bosons, for a generalized model.

Fields U(1)S U(1)F1 U(1)F2 Fields U(1)S U(1)F1 U(1)F2

q3L 0 5 12 d3R 0 7 18

q2L 0 5 2 d2R 0 13 20

q1L 0 6 29 d1R 0 0 17

u3
R 0 5 12 H 0 0 0

u2
R 0 11 14 S 1 0 0

u1
R 0 13 20 F1 0 1 0

F2 0 0 1

4.3 Charged leptons

So far, the mass hierarchy of the quarks has been addressed, but the hierarchy of

the leptons has not been mentioned. Fortunately, the same approach of using vector-

like fermions—heavy exotic leptons—can be used. A mass matrix like those from

Eqn. (3.14) can be constructed for the charged leptons.

It turns out, the matrix M e can have the same ε texture as Md. Thus generally,

the mass matrix and the Yukawa couplings have the form

M e
ij = α2nSε2nyeij

vH√
2
, (4.8)

fhe
ij = (2(n− nS) + 1)α2nSε2nyeij, (4.9)

f se
ij = 2nSα

2nS−1ε2nyeij. (4.10)

Again, the values of n and nS may vary between matrix elements.

Because it has the same powers of ε as the down-type quark sector, it is not always

necessary to find a set of vector-like leptons from scratch. If a set of vector-like quarks
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is known, then some simple replacements can be made with

D 7→ E, Q 7→ L, U 7→ N, (4.11)

where E and N are vector-like singlet counterparts to e and ν, and L is the vector-like

lepton doublet. Then remove the vector-like leptons that are unnecessary in order to

eliminate the unwanted interactions with the light neutrinos.

4.4 Chapter summary

Presented here is a scheme under which the charged fermion mass hierarchy of the

SM can be understood with couplings with massive vector-like fermions. The effective

Yukawa couplings are generated by the breaking of global flavor symmetries U(1)Fi

at the TeV scale. It should be noted, as an effective model, it may not be valid above

the breaking scale. At that point, another mechanism may take over, or the theory

may be embedded in a larger symmetry group.
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CHAPTER 5

GENERAL PHENOMENOLOGY

The specific phenomenology of each of the 24 models is shared by differing subgroups

of the 24 models. They can be distinguished by looking at two different types of

signals: Higgs decay signatures and flavor changing neutral current (FCNC) processes.

5.1 Higgs decays

In the low Higgs mass range of the SM (114–125 Gev) the dominant mode of Higgs

decay is to two bottom quarks φH → bb. The branching ratio for this decay is almost

100%. This is undesirable from an experimental point of view because these signals

are difficult to disentangle from a large QCD background. In 12 of the 24 models,

the branching ratio of this decay can be altered significantly. These 12 models are

distinguished by the φH → bb coupling coming from S†S in the Lagrangian. For all

of these models, the coupling is

yd33(α cosϑ− 2 sinϑ)ε2α/
√
2. (5.1)

Taking α ∼ 1 and ϑ ∼ 26◦, this coupling can be reduced significantly. As a result

there is an enhancement of signals in other modes that are easier to see. For example

the φH → γγ signal can be enhanced by a factor of 10 as seen in [25, 29, 30]. Varying

the angle ϑ drastically alters the branching ratio of the Higgs. If there is no mixing,

ϑ ∼ 0◦, the structure of Higgs decays is virtually indistinguishable from the SM.

In the other 12 models, φH → bb is controlled by H†H in the Lagrangian. In

these models the coupling of φH → bb is 3ε2yd33 cosϑ. This causes an enhancement
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of 9 cos2 ϑ. The φH → γγ signal is largely unchanged. The dominant diagrams for

this process have W± and top quarks running in the loop. Because the singlet Higgs

does not couple directly to these particles, the φH → γγ signal will only change by a

factor of cos2 ϑ. Because φH → bb is enhanced by a factor of 9, while φH → γγ stays

the same, the γγ signal is effectively reduced by a factor of 9 [23].

5.2 Meson decay: B0
s → µ+µ−

In all 24 models this process is mediated by φS and φH exchange. Amongst the

24 models there are 3 different categories of amplitudes for this process, controlled

dominantly by the second power operators (H†H)2, (S†S)2, and (H†H)(S†S). The

first power operators H†H and S†S have a less significant influence. The amplitudes

for φH and φS exchange, arranged by first and second power operators, are:

H†H, (H†H)2 : AφH
∼ −5ε8ye22y

d
23 cos

2 ϑ/m2
φH

(5.2a)

AφS
∼ −5ε8ye22y

e
23 sin

2 ϑ/m2
φS

(5.2b)

H†H, (H†H)(S†S) : AφH
∼ α2ε8ye22y

d
23 sinϑ(3α cosϑ− 2 sinϑ)/m2

φH
(5.2c)

AφS
∼ −α2ε8ye22y

d
23 cosϑ(3α sinϑ+ 2 cosϑ)/m2

φS
(5.2d)

H†H, (S†S)2 : AφH
∼ α6ε8ye22y

d
23(α

2 cos2 ϑ− 8 sin2 ϑ− α sin 2ϑ)/m2
φH

(5.2e)

AφS
∼ α6ε8ye22y

d
23(α

2 sin2 ϑ− 8 cos2 ϑ+ α sin 2ϑ)/m2
φS

(5.2f)

S†S, (H†H)2 : AφH
∼ −5ε8ye22y

d
23 cosϑ(2α cosϑ+ sinϑ)/αm2

φH
(5.2g)

AφS
∼ −5ε8ye22y

d
23 sinϑ(2α sinϑ− cosϑ)/αm2

φS
(5.2h)

S†S, (H†H)(S†S) : AφH
∼ α3ε8ye22y

d
23 cosϑ(2 sinϑ− 3α cosϑ)/m2

φH
(5.2i)

AφS
∼ −α3ε8ye22y

d
23 sinϑ(2 cosϑ+ 3α sinϑ)/m2

φS
(5.2j)

S†S, (S†S)2 : AφH
∼ α6ε8ye22y

d
23 sinϑ(α cosϑ− 4 sinϑ)/m2

φH
(5.2k)

AφS
∼ −α6ε8ye22y

d
23 cosϑ(α sinϑ+ 4 cosϑ)/m2

φS
(5.2l)
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While there are differences in the form of each amplitude, they are all proportional

to ε8. This means the branching ratio of ∼ 10−9 is still within < 4.7 × 10−8, the

experimental limit [25].

5.3 Top quark decay: t → cφH

Similar to φH → bb, the decay t → cφH is controlled by either S†S or H†H. In the

12 H†H models, the coupling of t → cφH is yu23
√
2ε2 cosϑ. The coupling of t → cφS

is yu23
√
2ε2 sinϑ.

In the S†S models the coupling of t → cφH is yu23
√
2αε2 sinϑ. The coupling of

t → cφS is yu23
√
2αε2 cosϑ. These two diagrams add to produce the generic FCNC

process t → cX, which will be the same for both categories of models.

In all 24 models the coupling is proportional to
√
2ε2 which means that the branch-

ing ratio will be ∼ 8× 10−4. In the SM the branching ratio is ∼ 10−14 [31]. The LHC

should be able to probe this range.

5.4 Double Higgs production

It is possible to pair produce the vector-like quarks of this model. The dominant

decay mode (95%) is to a SM quark and a Higgs (e.g. QL → uh). The Higgs will

then decay to bb. The signal for this process will be 4 b-jets and 2 hard jets. Taking

the mass of the vector-like quarks to be 1 TeV, the production cross section for pair

production at the LHC at 14 TeV is ∼ 60 fb for each new quark [32]. Because there

are more than 50 new quarks in each model, the total production cross section for all

new quarks will be ∼ 30 pb. We place kinematic cuts on the signal and background

as follows: the invariant mass of the b-jets, mbb > 100 GeV, the pjetsT > 100 GeV and

for the b-jets, pbT > 30 GeV. Using CalcHEP we find that imposing these cuts will

reduce the branching ratio of the new quarks, such that BR(QL → uh) ∼ 0.9. If we

take the b-tagging efficiency to be 50%, the signal is reduced by a factor of 1
16

. With
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these cuts and 10 fb−1 of luminosity we would expect to see ∼ 30 events for each

additional quark in the model.

The SM background for a six-b final state is calculated in Chapter 7. With the

cuts imposed, the background is 60 fb. With a 100 GeV cut on each of the final

state non-b-jets, we expect that the background for 4b + 2 jets in the SM will be of

similar order. With a few extra vector-like quarks from one of the models the signal

should be much larger than the background and observable at the LHC with enough

luminosity.

5.5 Chapter summary

The variations of the effective models have decays and exchange amplitudes that are

different, based upon the interactions with Higgs doublet operatorH†H and the Higgs

singlet operator S†S. Phenomena that distinguish between variations of the effective

model have branching ratios that should fall within the observable limits of the LHC.
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CHAPTER 6

MODEL WITH AN EXOTIC D-TYPE QUARK

Much of the previous chapters dealt with the impact the inclusion of an extra U(1)S

symmetry can have on the SM and how it can be used to explain the variation

in the Yukawa coupling magnitudes. The mechanism used to give the SM charged

fermions their mass required the inclusion of heavy exotic quarks. However, the use

of additional fields leads to the possibility of their detection at a collider with high

enough energy.

Since the possible choices of which exotic quarks to include in the model is rather

large, only one such exotic quark left-right pair will be considered, and will be referred

to as DL and DR. They are color triplets and have the same hypercharge as the

down-type quarks of the SM. However, they are both weak singlets, thus forming a

vector-like pair, and the combination DL+DR can be referred to as D. Under U(1)S,

the D has the opposite charge of the Higgs singlet S. Since the S has its charge

normalized to 1, the D has a charge of −1.

The kinetic term of the Lagrangian for the D quark is given with the usual form

of the covariant derivative, allowing for gauge interactions. The only type of gauge

interactions it cannot directly have is through the SU(2)L group. Explicitly, it is

Di/DD = Diγµ

(
∂µ − igCGµ + ig′

1

3
Bµ + igS

1

2
Z ′

µ

)
D. (6.1)

Below the breaking scale of any global U(1)Fi
flavon symmetries, mass terms for

DL and DR can be written down. Recalling Eq. (1.7), this is allowed because both

are singlets under SU(2)L and have the same transformation properties (V †
LVR = 1).
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The mass terms are

Lextra
mass = MDDLDR +MDDRDL. (6.2)

Note that the new exotic vector-like quark D is like a new flavor, and it has color,

hypercharge, and a U(1)S interaction. Without any other interaction, it will be stable.

As none of the SM particles are charged under U(1)S, the new symmetry will remain

hidden from the SM, provided the gauge-kinetic-mixing terms are strongly suppressed.

However, its gauge quantum numbers allow flavor changing Yukawa interactions with

the down-type quarks and the singlet Higgs boson S with

Lextra
Yukawa = fDdjDLd

j
RS + h.c. (6.3)

where DL and DR have the same hypercharge as dR. Such a term in the Lagrangian

leads to mixing between the SM down-type quarks with the new exotic vector-like

quark D, giving rise to new decay modes for the heavy quark.

To understand the signatures of such an exotic quark at experiments, various

mixings need to be considered which lead to the effective interaction of these exotics

to SM particles and are responsible for their decays. We have already considered the

mixing in the scalar sector of the model, which has interesting consequences for Higgs

searches. We also find that by allowing the Yukawa interaction given in Eq. (6.3),

there will be mixing between the down-type quarks with the new exotic quark D once

the scalar S gets a vev. The mixing between the down-type quarks with the exotic

D quark gives rise to additional EW decay modes for the heavy quark. The Z ′ also

has additional interactions which lead to interesting decay modes.

For simplicity, we assume that only fDb (the coupling between the D and the bot-

tom quark) is non-zero in Eq. (6.3) while the other Yukawa coefficients are negligibly

small. In the context of the charge space of the U(1)Fi
symmetries, this is easily

accommodated by a large enough separation between SM quark fields. This would
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imply that the exotic quark mixes with the bottom quark. Thus when the EW sym-

metry breaks, it indirectly affects the top-bottom vertex (Vtb in the CKM matrix),

as well as inducing a coupling between the exotic D quark with the top quark. The

mixing can be parameterized in terms of two mixing angles θL and θR which repre-

sent the mixing angles of the bL and bR with DL and DR respectively. Expressing the

gauge eigenstates for the mixing quarks as b0 and D0, the mass matrix in the (b0, D0)

basis is given by

M =




fb vH/
√
2 0

fDb vS/
√
2 MD


 . (6.4)

This matrix can be diagonalized with a bi-unitary transformation Mdiag = RLMR†
R,

where RL and RR are unitary matrices which rotate the left-chiral and right-chiral

gauge eigenstates to the mass eigenstates respectively. The interaction of the physical

mass eigenstates (b,D) can then be obtained by writing the gauge basis states as

b0i = bi cos θi +Di sin θi,

D0
i = −bi sin θi +Di cos θi,

where i = L,R. (6.5)

The corresponding mixing angles for the left- and right-handed fields follow from the

matrix MM† and M†M respectively and are given by

tan 2θL =
−2 fDb fb vS vH

2M2
D + f 2

Dbv
2
S − f 2

b v
2
H

, tan 2θR =
−2

√
2 fDb vS MD

2M2
D − f 2

Dbv
2
S − f 2

b v
2
H

. (6.6)
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CHAPTER 7

PHENOMENOLOGY WITH AN EXOTIC D-TYPE QUARK

In hadronic colliders such as the LHC and Tevatron, the dominant signals arise from

the pair productions of the exotic colored quarks, D and D, and their subsequent

decays (because D has hypercharge, the LEP2 bound of ∼ 100 GeV on its mass

applies [33]). The other important production process is the pair productions of the

exotic quark in association with the new U(1)S gauge boson, DDZ ′. It turns out that

this is the only way the new gauge boson Z ′ can be produced on-shell at LHC because

of its very suppressed or vanishing couplings to the SM particles in this model. In

the following subsections we discuss the signals from the DD production. We also

discuss the couplings of the extra gauge boson Z ′ with the SM particles.

7.1 Signals from DD productions

The heavy exotic quarks being colored particles will be produced copiously at the

LHC through strong interactions. The major contribution, as in the case of top

quarks, would come from the gluon induced subprocess (∼ 80%). In Fig. 7.1 we plot

the pair production cross section for the process

pp −→ DD (7.1)

at LHC for two different center-of-mass energies (7 TeV and 14 TeV).

The figure clearly shows that one can have quite large production cross section

for such an exotic quark at the LHC and its signals should be observable through

its decay products. We also include the most updated Tevatron bounds obtained by
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CDF using 4.8 fb−1 data which rules out such exotic quarks with mass mD < 385

GeV at 95% C.L. [35]. However, this bound assumes that the exotic bottom-type

quark decays to tW with 100% probability. The bound gets diluted as the branching

probability goes down, and in our case turns out to be ∼ 300 GeV for our choice of

model parameters. We have implemented the model into CalcHEP [36] to calculate

the production cross sections as well as the two-body decays of the new particles in

the model.

The heavy quark in the gauge eigenbasis couples directly to the Z ′ gauge boson
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ECM = 14 TeV

ECM = 7 TeV

Figure 7.1: Pair production cross section for the exotic quarks at LHC as a function

of its mass (mD). We use the CTEQ6L1 parton distribution functions (PDF) [34] for

the protons. We have set the scale Q2 = m2
D. We also include the cross section at

the Tevatron experiment along with the observed data by CDF [35], excluding such

an exotic quark of mass ≤ 385 GeV at 95% C.L.
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through the U(1)S charge, with the gauge coupling strength gS. However, its decay is

more dependent on the mixing parameters resulting from its mixing with the b quark,

leading to a much richer phenomenology. The heavy exotic itself is a mixed mass

eigenstate and we list its couplings to the other particles of the model in Tables C.1–

C.2.

The two body decay width for D of mass mD in its rest frame is

Γ(D → X2X3) =
1

16πmD

λ1/2

(
1,

m2
X2

m2
D

,
m2

X3

m2
D

)
|M|2, (7.2)

where the function λ(x, y, z) = x2 + y2 + z2 − 2(xy + yz + zx). Using the effective

couplings given in Tables C.1–C.2, one can write down the explicit decay amplitudes

for the exotic quarks decaying into vector (V ) modes as

|M|2(D → ψV ) = K2

[
3

(
m2

D +m2
ψ − 2m2

V +
(m2

D −m2
ψ)

2

m2
V

)
(c2V + c2A)

−18mDmψ(c
2
V − c2A)

]
,

(7.3a)

and scalar (Φ) modes as

|M|2(D → ψΦ) = K2
[
3
(
m2

D +m2
ψ −m2

Φ

)
(c2S + c2P ) + 6mDmψ(c

2
S − c2P )

]
. (7.3b)

The parameters cV , cA, cS, and cP respectively refer to vector, axial, scalar, and

pseudoscalar interactions. The parameter K is an overall factor common to all the

interaction types in each equation.

We can now estimate the decay probabilities of the heavy exotic D quark. To

highlight distinct scenarios, we choose two different sets of input values for the free

parameters as representative points in the model listed in Table 7.1. Note that the

input parameters for the model also affect some EW observables, e.g. the Z boson

decay width or the mass limits for Higgs boson and other heavy exotics that appear

in our model. We have checked that the input parameters given in Table 7.1 are

allowed and do not contradict any existing experimental bounds [33]. In Fig. 7.2 we
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Table 7.1: Representative points in the model parameter space and the relevant mass

spectrum used in the analysis.

Parameters Set I Set II

(λH , λS, λHS) (0.11, 0.16, 0.005) (0.2, 0.05, 0.1)

vS 1000 GeV 800 GeV

fDb 0.15 0.05

mφH
115 GeV 127 GeV

mφS
566 GeV 268 GeV

mZ′ 1000 GeV 800 GeV

present the decay branching ratios of the heavy quark D as a function of its mass mD

for the representative points I & II given in Table 7.1.

The curves in Fig. 7.2(a) represent Point-I from Table 7.1. When D is lighter than

mt + mW then it always decays to Z b through mixing if its coupling to the lighter

Higgs boson is very suppressed. This would happen when the lighter scalar state

is dominantly an SU(2)L doublet. The tW− mode starts picking up and becomes

comparable to the Z b mode for heavier D. The decay mode tW− is common in

4th-generation models and theories with top or bottom partners [37, 38, 39, 40] and

results in multi-lepton signals.

The curves in Fig. 7.2(b) represent Point-II, where the choice of parameters give

a very suppressed mixing angle θL. The couplings of Z b and tW to the exotic quark

are proportional to sin θL and hence also get suppressed. As soon as the scalar modes

become kinematically accessible, they completely dominate the decay properties of

the exotic quark.

We find if the Z ′ boson is light, then as soon as the D → Z ′b mode opens up,

the remaining modes drop out very quickly for Point-I while for Point-II it becomes

comparable to the scalar mode for very large mass mD. It is worth pointing out
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Figure 7.2: Illustrating the decay probabilities of D as a function of its mass mD.
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Figure 7.3: Illustrating the decay probabilities of Z ′ as a function of its mass mZ′ .

here that the dominant decay mode for the Z ′ when mZ′ < mD is to bb with 100%

branching probability. However for Z ′ heavier than D, the dominant decay of Z ′ is to

Db and Db as shown in Fig. 7.3; and as soon as mZ′ > 2 mD it decays dominantly to
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Table 7.2: Branching Ratios for various Higgs decay modes for parameter sets I and

II.

Branching Ratios Branching Ratios

Decays I II Decays I II

φH → bb̄ 0.672 0.510 φS → φHφH 0.25 0.27

φH → cc̄ 0.031 0.024 φS → W+W− 0.42 0.51

φH → τ+τ− 0.093 0.072 φS → ZZ 0.20 0.22

φH → gg 0.104 0.096 φS → tt̄ 0.13 –

φH → WW ∗ 0.088 0.266

DD with maximum probability. We should also point out that the Z ′ phenomenology

in our model is quite different from other models with U(1) extension of the SM. As

there exists no coupling between any SM fermion pair (other than b quark) or with

the EW gauge bosons (no kinetic mixing), it is not possible to produce this particle

directly through exchange of SM particles at LEP or Tevatron and so the strong

constraints that exist on the mass of similar Z ′ exotics through the effective four-

fermion operators [41] do not apply in our case and neither do the search limits from

the Tevatron experiments [42]. Thus the Z ′ in our model can be light but remains

invisible in the existing experimental data. We will however not discuss the Z ′ signals

any further and only focus on the signals arising from the production of the exotic D

quarks in the model. To understand the full decay chain of the D quark to final state

particles we also list the decay probabilities of the scalars φH and φS in Table 7.2 for

the two representative points I & II.

Thus the above decay patterns suggest that one can have the following interesting
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final states from the decay of the exotic quarks:

pp → DD →





→ bb̄+ 2Z

→ tt̄+W+W−

→ tb̄+ ZW−

→ bb̄+ 2φH → bb̄+ 2(W+W−)

→ bb̄+ 2φH → 3(bb̄)

→ bb̄+ φHφS → bb̄+ 3φH → 4(bb̄)

→ bb̄+ 2φS → bb̄+ 4φH → 5(bb̄)

(7.4)

where the first four suggest multi-lepton and multi-jet final states with two or more

b-jets, while the remaining give more exotic signatures like N b-jet final states where

N can be as large as 10. Note that the above decays only illustrate some of the

possible decay chains and we have not listed other possible combinations of the D

decays which can also lead to similar final states.

In Table 7.3 we list the probabilities for the decay modes for a few specific values

of the D quark mass. We also show the corresponding cross sections for the pair

production of these exotics at LHC for the center of mass energies of
√
s = 7 TeV

and
√
s = 14 TeV. The decays suggest a large multiplicity of b quarks in the final

state. It turns out that six-b final states for the signal are very promising. However,

there exists no estimate for this final state in the literature, arising from the SM.

We present below a leading-order (LO) estimate of the cross section for the six-b SM

background from QCD for LHC energies.

7.2 Calculation of six-b final states from QCD

The six-b final state is interesting, independent of our particular model. The presence

of six b-jets allow the jets to be tagged. All other six-jet final states involve mixtures

of light quarks and gluons, and one cannot separate light jets from gluon jets. There-
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Table 7.3: Cross sections and branching probabilities for specific mass values of D

quark for the representative points I and II.

Branching Ratios

mD

σ(DD̄)(pb) D → tW D → bZ D → bφH D → bφS

7 TeV 14 TeV I II I II I II I II

250 12.15 87.760 0 0 0.603 0.055 0.397 0.945 0 0

300 4.265 34.368 0.251 0.014 0.438 0.024 0.311 0.715 0 0.247

400 0.791 7.692 0.381 0.005 0.351 0.005 0.268 0.308 0 0.681

500 0.194 2.270 0.434 0.003 0.316 0.002 0.250 0.225 0 0.770

600 0.059 0.820 0.121 0.002 0.078 0.001 0.063 0.194 0.738 0.803

fore the six-b final state itself presents an interesting test of QCD. Furthermore by

computing the full matrix element, we can test the validity of the differential cross

section by looking at differential observables. While we only use the six-b cross section

as a background to our signal, this is the first time such a six-b cross section in QCD

has been estimated, and this also is an important result of this paper.

Any six-final state process is a challenge to compute. The phase space is 14

dimensional (excluding the two additional integrations over the initial parton fluxes).

There are thousands of diagrams, and thousands of distinct color configurations.

While six-jet final states are produced every day by Monte Carlo generators such as

Pythia [43] and Herwig [44], the mechanism they use creates additional jets from

an initial 2 → 2 or 2 → 3 process via a showering procedure that resums leading

logarithms, splitting an extra gluon from the hard final state partons.

As is well known, the showering procedure cannot produce the correct correlations

among three or more hard jets, nor can it compute the total cross section for three or

more hard jets. It assumes that each parton is independent of all the others. For a

single radiation it is strictly correct in the limit that the extra radiation is soft and/or
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collinear with the initial parton. However, for multiple radiations it ignores the QCD

connection among the radiations, assuming that each radiation factorizes from the

others. There is also quantum mechanical interference in different radiations which

result in the same final state that is ignored.

This means that one should not examine in detail observables such as the angles

between jets, invariant masses of jet pairs, or the thrust, when one hard jet came from

the showering procedure. This showering technique is however extremely useful as

long as one is not sensitive to the details of correlations in the differential cross section,

as this method is computationally simpler than a full matrix element calculation.

Therefore, to have an accurate Monte Carlo with six jets in the final state, one

must compute the full matrix element, which automatically includes all color flows

and interference. This is accurate to approximately the 10% level, at which point

NLO loop corrections become important. Note that due to the b quark mass, there

is no soft radiation which benefits significantly from the usual Sudakov logarithm

resummation. The b mass acts as a regulator, relegating this cross section strictly

into the “hard” regime, in which the matrix element is valid. Even if all six b quarks

are at rest, the energy in the final state is 30 GeV, and any virtual gluon must have

a virtuality q2 ∼ m2
b .

For this calculation we have chosen the tool MadEvent, which is an event gen-

erator built upon the matrix element generator MadGraph [45]. We have modified

these tools to be able to cope with thousands of diagrams and thousands of color con-

figurations. Computing five-final state and six-final state QCD processes has a num-

ber of challenges, all of which are technical rather than physics-based. MadEvent

is in principle capable of computing any process with any number of final state parti-

cles, however several internal restrictions1 caused previous versions to fail on processes

1MadGraph internally writes several arrays of size ND ×ND and NCf ×NCf into the Fortran

matrix element output, where ND (NCf ) is the number of diagrams (color configurations). For
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such as a six-b final state. Although the program is equipped to handle the large color

configurations, some input/output statements restrict this computation to a smaller

number of color flow configurations which makes it incapable of calculating the six-b

final states at a hadron machine like the LHC. These input/output statements have

been repaired to permit larger color flow configurations so that the six-b cross section

in the SM from QCD can be calculated for the LHC.

7.3 Signal and background analysis

A simple minded estimate of the cross section using σ × BR shows that the final

states which would be of interest at the LHC would involve at least two b-jets in the

final state. Besides the two hard b-jets, one expects charged leptons in the final state

coming from the decays of the weak gauge bosons. It is also worth noting that when

the D quark decays to the Higgs bosons, one would get a large multiplicity of b-jets

in the final states as the Higgs with mφH
< 2mW dominantly decays to b-jets. To

select our events for the final states given in Table 7.4, we have imposed the following

kinematic cuts:

• All b-jets must have a pbT > 20 GeV and lie within the rapidity gap of |ηb| < 3.0.

• All charged leptons (` = e, µ) must have a p`T > 20 GeV and lie within the

rapidity gap of |η`| < 2.5.

NCf ∼ ND ∼ 1000, this results in 1 MB fortran files that cause optimizing compilers (even with

optimizations turned off) to use approximately 1000 times the size of the array in compiling it. Thus,

the compiler uses O(1 GB) of memory just to compile the process. As modern 32-bit computers

can address at most 4 GB of memory, a process with ND ∼ 1000 and/or NCf ∼ 1000 is at the

limit of being able to be compiled at all. These arrays contain many zeroes, and their presence at

compile-time drastically improves performance since optimizing compilers can pre-compute many

results, and prevent the computation of irrelevant results. However, for extremely large processes,

one can simply read in these arrays. A 1 MB array is not very large after all. This enables the

computation of even larger processes, at the expense of increased run-time.
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• The final states also must satisfy ∆Rbb > 0.7, ∆Rb` > 0.4, and ∆R`` > 0.2

where ∆Rij =
√

(∆ηij)2 + (∆φij)2.

• All b-jet pairs must have a minimum invariant mass Mbb > 10 GeV.

In Table 7.4 we present the cross-sections for the signal for two different mass values

of the exotic D quark after passing through the above mentioned kinematic cuts. As

expected, the favored final states are dependent on the high b-jet multiplicity. At the

hadron collider such as LHC, one favors final states with leptons. However b-jets can

also be triggered upon and identified and thus can prove to be useful in isolating new

physics signals such as ours which involve at least two or more b-jets. Looking at

Table 7.4 we find that we get a good signal rate for the inclusive 6b +X final state.

The SM background for multi-b final state is quite large [46]. However no estimate of a

six-b final state exists in the literature, which we find relevant for our signal. We have

used the MadGraph+MadEvent package to estimate the leading order partonic

cross section for the six-b final state at LHC. With the above mentioned kinematic

cuts, we find that for LHC energy of
√
s = 14 TeV, the SM background for six-b final

state is ∼ 70 fb and falls to less than 10 fb for the
√
s = 7 TeV option. This implies

that the signal in our model is much larger than the SM background even for larger

mass values of the exotic D quark. The other signals which are worth looking for in

this model is one or two charged leptons with varying b-jet multiplicities. We have

listed the interesting ones in Table 7.4. The final state with 2`+4b+X also stands out

against the SM background, where one gets the SM cross sections to be quite small

as it is already αEW/αstrong suppressed compared to the six-b cross section. The SM

background is much larger for the final states `+nb+X where n = 2 and 2`+2b+X,

where the significant SM background results from the tt̄ production. For the final

states ` + nb + X one can get rid of the huge tt background by demanding n ≥ 3.

This helps in improving the significance of the signal, even though we also lose a large

fraction of the signal events in the process. For the other final state, we find that at
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Table 7.4: Illustrating the final state cross sections after the decay of D quarks. All

cross sections are in units of femtobarn (fb).

mD = 300 GeV mD = 500 GeV

Final
√
s = 7 TeV

√
s = 14 TeV

√
s = 7 TeV

√
s = 14 TeV

States I II I II I II I II

6b+X 181.92 718.79 1394.32 5521.23 4.94 10.79 531.10 115.02

4b+ 2`+X 51.07 24.36 384.24 183.73 1.85 2.06 20.33 22.20

2b+ 2`+X 146.53 14.95 1127.15 117.08 8.71 6.61 11.77 75.56

nb+ `+X

(n ≥ 2)
452.50 188.22 3559.94 1465.42 32.17 27.88 43.37 313.96

leading order, at LHC with pp collision energy of
√
s = 7 TeV, the 2` + 2b +X SM

background is ∼ 3.3 pb. As the leading two b-jets in our signal come from the decays

of the heavy exotic D quark, we put a stronger pT cut of 100 GeV. This reduces the

signal by two-thirds. However the SM background is reduced by more than an order of

magnitude, and becomes ∼ 232 fb for
√
s = 7 TeV collisions while it is ∼ 1.63 pb for

√
s = 14 TeV which does look promising for the signal with large enough luminosities

at the LHC. We must point out that we have not incorporated any efficiency factors

for our final state particles. Most notably, all numerical estimates involving b-jets

for signal as well as the SM background will have to be scaled with the b-tagging

efficiency of around 50 to 60% expected at the LHC [47].

7.4 Chapter summary

In this work, we have proposed a new extension of the SM, by introducing a hidden

U(1) symmetry. The difference with the previously studied U(1) symmetries is that

all the SM particles are singlets under our proposed new U(1)S, and hence hidden.
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Such a symmetry may be present at the TeV scale, and may manifest at the LHC

giving new signals observable at the LHC. The model incorporates a new EW singlet

Higgs, as well as new vector-like charge −1/3 quarks.

The new massive vector boson Z ′ resulting from the broken hidden U(1)S symme-

try does not couple to the SM fields directly and may be hidden in all experimental

data due to the very small mixing parameters making its production cross section too

small to observe. However, if once produced it can be observed through its decays.

We leave its detailed phenomenological study for future work and have focused on

the exotic colored fermion in the model.

We have studied the pair productions of these new quarks and their subsequent

decays. The dominant final states include multiple b-jets with high pT or b-jets plus

charged leptons with high pT and missing energy, and stands out beyond the SM

background. The most distinctive final state signal is six-b with high pT and no

missing energy. A lot of effort has been put in both for the ATLAS and CMS detectors

to improve the b-tagging efficiency. So the calculation for this six-b final state is also

of great importance in the SM, and has not yet been calculated. We have calculated

this six-b signal in our model, and have also estimated the SM expectation using

MadGraph and MadEvent. We found that the signal in our model stands well

above that expected from the SM.
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CHAPTER 8

NEUTRINO MASSES FROM FINE-TUNING

In the SM, there are no right-handed neutrinos νR. This prevents a Yukawa term

from being written down (i.e. lLf
ννRH̃ is not allowed in SM). Consequently, the

neutrinos are predicted to be massless. However, experiments over the past decade

have established the existence of tiny neutrino masses [48, 49, 50, 51, 52, 53, 54]. It has

been shown that the mixing angles between the neutrinos are relatively large when

compared to the quark mixing angles. And because the neutrinos are electrically

neutral, there exists the possibility the neutrinos may be Majorana spinors, unlike

all the other fundamental fermions which are Dirac spinors. And it still cannot be

determined if they have a normal mass hierarchy or an inverted hierarchy.

The most popular idea proposed so far for understanding the tiny neutrino mass

is the famous see-saw mechanism [55, 56, 57, 58, 59]. One postulates the existence of

a very massive SM singlet right-handed neutrino with Majorana mass MR of order

of ∼ 1014 GeV. The Yukawa coupling of the left-handed (LH) neutrino to this heavy

right-handed (RH) neutrino then gives a Dirac mass of the order of the charged lepton

masses ml, which comes from the first term of the effective mass terms

mlνLNR +
MR

2
NT

RC
−1NR + h.c. (8.1)

As a result, the LH neutrino obtains a mass of the order of m2
l /MR, as can be seen

by an expansion of the mass eigenvalues:




0 ml

ml MR


 → 1

2

(
MR ±

√
M2

R + 4m2
l

)
≈





− m2
l

MR
+O(m4

l /M
3
R)

MR +O(m2
l /MR)

. (8.2)
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The see-saw mechanism does not naturally lead to small values of the experimentally

observed neutrino masses, but it does accommodate them with appropriately large

values of MR. Although there are several indirect benefits for the existence of massive

RH neutrinos, there is no direct experimental evidence for such heavy particles. The

mass scale is so high that no connection can be made with the physics to be explored

at the high energy colliders such as the Tevatron and the LHC. It is important to

explore other possibilities to explain the tiny neutrino masses.

Recent astrophysical observation requires a tiny but non-zero value of the cosmo-

logical constant (Λ1/4 ' 10−4 eV). This value is surprisingly close to the value of the

light neutrino masses required from the neutrino oscillation experiments (' 10−2 to

10−1 eV). It has been exceedingly difficult to derive such a tiny value for the cosmo-

logical constant, and there is some acceptance that it may be fine-tuned. The idea

of the Higgs mass also being fine-tuned has been explored, leading to the so-called

“Split Supersymmetry” [60] with interesting implications at the TeV scale that can

be explored at the LHC. With neutrino masses being in the same ballpark as the

cosmological constant, it is not unreasonable to assume that their values are also

fine-tuned. The objective in this project is to adopt this philosophy, build a con-

crete model realizing this scenario, and explore its phenomenological implications,

especially for the LHC.

In this work, we present a model in which the light neutrinos get their masses

from the usual see-saw mechanism, except the RH neutrino masses are at the EW

scale. The neutrino Dirac masses get contributions from two different Higgs doublets

with their vevs at the EW scale. The neutrino masses are small, but not because of

tiny Yukawa couplings or tiny vevs of the new Higgs doublets [61, 62]. In fact, we

take the Yukawa couplings to be of order one. The smallness of the light neutrino

masses are due to a cancelation in the Dirac neutrino mass matrix, making mDirac ∼
O(10−4) GeV and giving rise to light neutrino masses mν ∼ m2

Dirac/M where M is
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the RH Majorana neutrino mass. Thus with M in the EW scale, we get the light

neutrino masses in the correct range of 10−2 to 10−1 eV.

This chapter explores a combination of the see-saw mechanism with fine-tuning to

produce tiny masses for the LH neutrinos. It also yields massive RH neutrinos, but

their masses are in the TeV scale. Unlike the previous chapters, a U(1) symmetry is

not employed. Instead a discrete Z2 symmetry is used.

8.1 Model

8.1.1 The fields under a Z2 symmetry

The model is based on the SM gauge symmetry, SU(3)C × SU(2)L × U(1)Y , supple-

mented by a discrete Z2 symmetry. In addition to the SM fermions and the Higgs

doublet H, we introduce three RH neutrinos NRi (i = 1, 2, 3) and two additional

Higgs doublets H1, H2 with vevs at the EW scale. All the SM particles are even un-

der the Z2 symmetry, while the three RH neutrinos and the two new Higgs doublets

are odd under Z2. The Z2 symmetry is softly broken by the bilinear Higgs terms

in the potential. With this symmetry, the Yukawa interactions from the SM remain

unchanged:

LYuk
SM = qLf

uuRH̃ + qLf
ddRH + lLf

eeRH + h.c. (8.3)

Here the fermion fields span the three generations (indices are suppressed), and fu,

fd, and f e are the three Yukawa coupling matrices of the SM. New terms in the

Lagrangian allowed by the odd fields include

LYuk
new = lLf

1νNRH̃1 + lLf
2νNRH̃2 + h.c., (8.4)

LMaj =
1

2
MMajN

T
RC

−1NR, (8.5)

where f 1ν and f 2ν are new Yukawa coupling matrices and MMaj is the Majorana mass

matrix (again, generation indices are suppressed).
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When the new Higgs fields H1, H2 acquire vevs v1, v2, the resulting 3 × 3 Dirac

mass matrix is

mDirac =
1√
2

(
f 1νv1 + f 2νv2

)
. (8.6)

Arranging the three LH and the three RH neutrinos in a six component vector, the

full 6× 6 neutrino mass matrix is

MFull =




0 mDirac

(mDirac)
T MMaj


 . (8.7)

For the mass scales in which mDirac ¿ MMaj, the 3× 3 light neutrino mass matrix is

given by

mlight
ν = −mDiracM

−1
Maj(mDirac)

T. (8.8)

Note that experimentally, masses of the light neutrinos are in the 10−1 eV range.

Thus with MMaj in the TeV scale, the matrix mDirac needs to be in the scale of

10−4 GeV. With the vevs v1, v2 in the EW scale, we can get mDirac in the 10−4 GeV

scale by assuming the Yukawa couplings to be very tiny, of order 10−6. Such a choice,

similar to the usual see-saw, will not have any interesting implications for neutrino

physics in the TeV scale. Instead, we assume that the Yukawa couplings f 1ν , f 2ν

are of order one, and these Yukawa couplings and vevs v1, v1 are fined-tuned to get

mDirac on the order of 10−4 GeV. As we will see, this gives interesting implications

for neutrino physics at the TeV scale, and can be explored at the LHC.

8.1.2 Higgs potential

In addition to the usual SM Higgs H, two other Higgs doublets H1, H2 are required

in this model. The only fermions these two new Higgs doublets couple to are the

neutrinos, and this is imposed using the Z2 symmetry. It is the cancelation of contri-

butions to the Dirac neutrino mass from these two new doublets that enable the use

of fine-tuning.
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We assume that the Z2 symmetry is softly broken by the bilinear terms in the

Higgs Potential. This will allow these two new Higgs doublets to mix with the SM

Higgs doublet, and as we will see, this will produce entirely new signals for the SM

Higgs boson decays. The Higgs potential is given by

V = V(2)even + V(2)odd + V(4)even, (8.9a)

V(2)even = µ2
HH

†H + µ2
1H

†
1H1 + µ2

2H
†
2H2 + µ2

12(H
†
1H2 +H†

2H1), (8.9b)

V(2)odd = µ2
H1(H

†H1 +H†
1H) + µ2

H2(H
†H2 +H†

2H), (8.9c)

V(4)even = λ(H†H)2 + λ1(H
†
1H1)

2 + λ2(H
†
2H2)

2

+ λ1122(H
†
1H1)(H

†
2H2) + λHH12(H

†H)
(
H†

1H2 +H†
2H1

)

+ λHH22(H
†H)(H†

2H2) + λ1112(H
†
1H1)

(
H†

1H2 +H†
2H1

)

+ λHH11(H
†H)(H†

1H1) + λ2212(H
†
2H2)

(
H†

1H2 +H†
2H1

)

+ λ12(H
†
1H2)

2 + λH1(H
†H1)

2 + λH2(H
†H2)

2

+ λH1H2

(
H†H1 +H†

1H
)(

H†H2 +H†
2H

)
.

(8.9d)

Note that the odd part of the potential breaks the Z2 symmetry softly, and as a

result, SM Higgs bosons can mix with the two new Higgs doublets. This will have

interesting implications for the SM Higgs boson decays.

Since there are three Higgs doublets, after EW symmetry breaking, there will re-

main a pair of charged Higgs (H±, H ′±), three neutral scalar Higgses (h′, H ′
1, H

′
2), and

two neutral pseudoscalar Higgses (A′
1, A

′
2). Due to the breaking of the Z2 symmetry,

there is mixing within each of these three groups of Higgses (but not between groups).

We denote the mass eigenstates of the three neutral Higgses by h, H10, and H20.

8.1.3 Mixing between the light and heavy neutrinos

In our model, we are considering a scenario in which the three RH handed neutrinos

have masses in the EW scale having order one Yukawa couplings with the light LH

neutrinos. They mix with the light neutrinos, and thus will participate in the gauge

60



interactions. The LEP experiment has searched for such RH neutrinos. Before we

discuss these constraints, let us first consider the mixing between the light neutrinos

and the RH neutrinos. Using the observed values of the light neutrino masses and

mixings, we can make a reasonable estimate of the mixing between the LH and RH

neutrinos. We use the normal hierarchy for the light neutrino masses with the values

mlight
νEigenvalues = Diag(mν1 ,mν2 ,mν3) = Diag(0, 8.71, 49.3)× 10−12 GeV. (8.10)

The mixing matrix Rνν follows the standard parametrization. The angles θ12 and

θ23 are the central values from experiment, and θ13 is the maximal value allowed by

current experiment. Thus we have

(θ12, θ23, θ13) = (0.601, 0.642, 0.226), (8.11)

Rνν =




0.804 0.551 0.223

−0.563 0.585 0.584

0.190 −0.595 0.781




. (8.12)

The three possible CP-violating phases are assumed to be zero. From the above mass

eigenvalues and the mixing matrix, we can calculate the light neutrino mass matrix

using

(Rνν)
Tmlight

ν Rνν = mlight
νEigenvalues. (8.13)

For simplicity, we assume that the 3 × 3 Majorana mass matrix MMaj to be propor-

tional to the unit matrix,

MMaj = Diag(M,M,M). (8.14)

As a consequence of this choice for MMaj and having a symmetric mDirac, the mixing

matrix among only the generations of heavy neutrinos is equivalent to the mixing

matrix among only the generations of light neutrinos (i.e. RNN = Rνν). Using the
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Table 8.1: Solution values for the matrix mDirac.

(GeV) Set 1 Set 2

m11 −1.25× 10−5 −5.43× 10−6

m12 −1.87× 10−5 −2.80× 10−7

m13 −2.67× 10−6 2.20× 10−5

m22 −3.42× 10−5 1.40× 10−5

m23 −2.20× 10−5 4.25× 10−5

m33 −5.36× 10−5 3.27× 10−5

values from Eq. (8.12) and choosing M = 100 GeV, we can now calculate numerically

the 3× 3 Dirac neutrino mass matrix from the equation

mlight
ν = −mDiracM

−1
Majm

T
Dirac. (8.15)

There are four sets of real solutions formDirac. Only two sets of solutions are presented

in Table 8.1. The other two are just the negatives of these two sets. Using the solutions

for mDirac and MMaj, we can now use the full 6 × 6 neutrino mass matrix MFull and

calculate the full mixing matrix Q and the mixing angles between the heavy and light

neutrinos. They are given by

MFull =




03×3 mDirac

(mDirac)
T MMaj


 , Q−1MFullQ = MFull

Eigenvalues. (8.16)

The parametrization of Q is

Q =



Cνν CνN

CNν CNN






13×3 0

0 RNN






Rνν 0

0 13×3


 =



CννRνν CνNRNN

CNνRνν CNNRNN


 . (8.17)

The rotation matrices Cij between light and heavy neutrinos are arranged as


Cνν CνN

CNν CNN


 = (C36C35C34)(C26C25C24)(C16C15C14), (8.18)
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and each Cij depends on the mixing angle θij. The values i = 1, 2, 3 are for the three

generations of LH neutrinos, and the values j = 4, 5, 6 are for the three generations

of RH neutrinos.

For solution set 1, the full rotation matrix is

Q ≈




0.80 0.55 0.22

−0.56 0.59 0.58

0.19 −0.60 0.78




3.1× 10−3 1.6 1.6

3.513× 10−3 1.7 4.1

−2.5× 10−3 −1.8 5.5




× 10−7




1.1× 10−4 −1.6 −1.6

1.3× 10−4 −1.7 −4.1

−8.8× 10−5 1.8 −5.5




× 10−7

0.81 0.55 0.22

−0.56 0.59 0.58

0.19 −0.60 0.78




.

(8.19)

For solution set 2, the full rotation matrix is

Q ≈




0.80 0.55 0.22

−0.56 0.59 0.58

0.19 −0.60 0.78




4.1× 10−3 1.6 −1.6

3.9× 10−3 1.7 −4.1

−5.7× 10−3 −1.8 −5.5




× 10−7




−8.9× 10−4 −1.6 1.6

−7.9× 10−4 −1.7 4.1

1.4× 10−3 1.8 5.5




× 10−7

0.80 0.55 0.22

−0.56 0.590 0.58

0.19 −0.60 0.78




.

(8.20)

As can be seen on Table 8.2, the mixing between the heavy and light neutrinos is

extremely small.

8.2 Phenomenological implications

In this section, we discuss the phenomenological implications of our model. We are

considering RH neutrinos at the EW scale. Their mass can be below the W boson

mass. Thus they can be searched for at LEP, Tevatron, and the LHC. First we discuss

the constraints that already exist from the search at LEP.
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Table 8.2: Mixing angles between the light neutrinos (subscripts 1, 2, 3) and the heavy

neutrinos (subscripts 4, 5, 6).

(×10−7) θ14 θ15 θ16 θ24 θ25 θ26 θ34 θ35 θ36

Set 1 1.2 1.9 0.26 1.9 3.4 2.2 0.26 2.2 5.3

Set 2 0.55 0.36 −2.2 0.034 −1.4 −4.2 −2.2 −4.2 −3.2

8.2.1 LEP constraints

Searches for NR have been conducted at LEP in the channel e+e− → Z → NRνL,

with NR subsequently decaying to W+e− or Zν. This experiment puts limits on the

mixing angle θ between the heavy and the light neutrinos [63] with

sin2 θ < 10−4 for 3 GeV < MN < 80 GeV, (8.21)

sin2 θ < 0.1 for MN > 80 GeV. (8.22)

As we discussed in the previous section, the mixing angles θ between the light and

heavy neutrinos are extremely small, ranging between ∼ 10−6 to 10−8. Thus in our

model, LEP constraints allow small masses for the heavy Majorana neutrinos.

8.2.2 Higgs decays and Higgs signals

In our model, the Yukawa couplings between the LH neutrinos, the RH neutrinos,

and the new Higgs fields H1, H2 are of order one. The SM Higgs H mixes with the

new Higgses, and these mixings are naturally large. Thus for MN < Mh, the SM

Higgs will dominantly decay to a ν and NR as soon as this decay mode becomes

kinematically allowed, because the coupling for this decay mode is much larger than

the usually dominant bb mode or even the WW mode. The branching ratios for the

various Higgs decay modes are shown in Fig. 8.1 for MN = 80 GeV for the Yukawa

couplings f 1ν + f 2ν = 1. As can be seen from the plot, as soon as the decay mode

h → νNR becomes kinematically allowed, this mode dominates over the usual bb
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Figure 8.1: Branching ratios of h → 2x with f 1ν + f 2ν = 1.
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Figure 8.2: Branching ratios of h → 2x with f 1ν + f 2ν = 1
14

mode, and is larger than the usually dominant WW mode, even beyond the WW

threshold. Thus in this model, the SM Higgs decay mode is greatly altered. A second

plot is shown for Yukawa couplings summing to 1/14 in Fig. 8.2.

At Hadron colliders, the SM model Higgs is dominantly produced via gluon fusion
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Figure 8.3: Two of the allow decay modes of NR

with a top quark in the loop. In this model, because of the mixing of H with H1

and H2, the lightest mass neutral scalar Higgs decays dominantly as h → νNR. The

final state signal will depend on the decay modes of NR. Two of the allowed decay

modes of NR are shown in Fig. 8.3. The 3-body decay mode NR → νbb is completely

dominant over the 2-body decay mode lW or νZ. This is because the 2-body decay is

suppressed by the tiny mixing angle θ ∼ 10−6 or smaller. Thus the final state signals

for the Higgs bosons at the LHC are ννbb. Collider signals will include large missing

energy and 2 hard b-jets.

Using MadGraph, we generated events for pp → ννbb in the SM for LHC (at

7 TeV and 14 TeV) and Tevatron. Using the cuts /ET > 30 GeV and pbT > 20 GeV

for each b-jet, we find the cross section to be ∼ 13 pb for the LHC at 14 TeV. This

provides a reasonable estimate of the background. The cross section for Higgs pro-

duction at the LHC at 14 TeV is ∼ 50 pb for a 120 GeV Higgs. The branching

ratios for a large mass range of the Higgs boson in our model are dominated by

BR(h → νNR) ∼ 100%. Thus prior to any cuts on the signal, this mode is observ-

able at the LHC, and stands out over the SM background. A summary for different

energies is given in Table 8.3. The Higgs production at the Tevatron is taken from
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Table 8.3: Collider Searches for mh = 120 GeV.

Collider
√
s Background Signal

LHC 14 TeV 13 pb 50 pb

LHC 7 TeV 2.4 pb 30 pb

Tevatron 2 TeV 240 pb 1 pb

Ref. [64], and the LHC from Ref. [65].

8.2.3 ZH → νν̄bb̄ search at Tevatron

The D0 Collaboration at the Tevatron has searched for the SM Higgs boson in the

ZH → νν̄bb̄ channel using 5.2 fb−1 of data [66]. With both b’s being tagged and a

/ET > 40 GeV and pT > 20 GeV for the b-jets, they expect about 5 events for the ZH

mode. However there is a large SM background arising mainly from W+jets, Z+jets,

and tt̄. The estimated background with these cuts is about 538 ± 93 events, while

they observe 514 events. Thus the SM signal from ZH production for this νν̄bb̄ mode

is not observable with the current Tevatron data. However in our model, depending

on BR(h → νNR), this signal is much larger and may be observable, especially as

luminosity accumulates in the coming year. Other possibilities for our model are that

the RH neutrinos could decay via a charged Higgs.

8.2.4 NR decays via charged Higgs

For a sufficiently light mH± < 250 GeV, the decay NR → νττ
+τ− via a charged Higgs

becomes important (see Fig. 8.4). Taking the Yukawa couplings to be order one, and

the mixing to be maximal between the three Higgs doublets, the decay rates for the

NR decays are shown in Table 8.4. Taking the tau pT > 20 GeV and /ET > 30 GeV,

the cross section for pp̄ → νν̄τ+τ− at the Tevatron is 45 fb (123 pb at the LHC for

7 TeV collisions). This background is much smaller than the pp → b̄bνν̄ background,

67



NR

H
∓

s̄

c

l
±

NRNR

l
±

H
∓

l
∓

νl

Figure 8.4: Decay modes of NR through a charged Higgs H±.

Table 8.4: Decay Rates of NR for MN = 80 GeV, Mh = 120 GeV.

Decay Mode Γ(NR → 3x) (GeV) mH± (GeV) BR

NR → νbb̄ 1.56× 10−9 200 43.8%

NR → νττ
+τ− 1.32× 10−9 200 37.0%

NR → τcs̄ (or c̄s) 5.80× 10−10 200 16.3%

NR → νcc̄ 6.60× 10−11 200 1.85%

NR → νµµ
+µ− 4.00× 10−11 200 1.12%

NR → νbb̄ 1.56× 10−9 250 63.6%

NR → νττ
+τ− 5.62× 10−10 250 22.9%

NR → τ−cs̄ (or τ+c̄s) 2.26× 10−10 250 9.21%

NR → νcc̄ 6.60× 10−11 250 2.69%

NR → νµµ
+µ− 2.45× 10−11 250 1.65%

as it is a leptonic (not QCD) process. This signature, two high pT taus plus missing

energy, may be easier to see.

8.3 Chapter summary

We have proposed a new approach for understanding of the tininess of the light

neutrino masses. We extend the SM gauge symmetry by a discrete Z2 symmetry, and
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the particle content by adding three right handed neutrinos and two additional Higgs

doublets. These new Higgs doublets couple only to the neutrinos. The tiny neutrino

masses are generated via the see-saw mechanism with the right handed neutrino mass

matrix at the EW scale, and the Dirac neutrino mass matrix at the 10−4 GeV scale.

The Dirac neutrino mass matrix gets contributions from the two new EW Higgs

doublets with vevs at the EW scale. The Yukawa couplings are of order one, and

the two EW contributions are fine-tuned to create the Dirac neutrino mass matrix at

the 10−4 GeV level. The model links neutrino physics to collider physics at the TeV

scale. The SM Higgs decays are drastically altered. For a wide range of the Higgs

mass, it decays dominantly to νLNR giving rise to the final state ν̄νb̄b, or ν̄ντ+τ−.

This can be tested at the LHC and possibly at the Tevatron.
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APPENDIX A

MATRIX ELEMENT EXPANSIONS

All the expansions in this were done assuming the couplings yuij, y
d
ij are symmetric

and real positive numbers.

The uuh-Yukawa couplings in the u-mass eigenbasis are fhu′
= V u

L
†fhuV u

R .

fhu′
11 ≈

(
(4n2 − 2n1 − 7)α2(2n2−n1)

yu12
2

yu22
+ (7− 2n3)α

2n3yu11

)
ε6 (A.1a)

fhu′
12 ≈ 2(n2 − n1 − 1)α2n2yu12 ε4 + 2α2(n1+n2)yu23

(
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+ (n1 − 1)
yu12y

u
23

yu22y
u
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fhu′
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yu12y
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23
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)
ε4
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u
23
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+ (n1 − 1)
yu12y

u
23
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ε6
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The uus-Yukawa couplings in the u-mass eigenbasis are f su′
= V u

L
†f suV u

R .

f su′
11 ≈ 2
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(n1 − 2n2)α

2(2n2−n1)−1y
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+ n3α
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The ddh-Yukawa couplings in the d-mass eigenbasis are fhd′ = V d
L
†
fhdV d

R .
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The dds-Yukawa couplings in the d-mass eigenbasis are f sd′ = V d
L
†
f sdV d

R .
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The Cabbio-Kobayashi-Maskawa matrix is V CKM = V u
L

†V d
L .
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APPENDIX B

TABLES OF CHARGE ASSIGNMENTS

Table B.1: Charge assignments of the heavy Q quarks for a model having an effective

Lagrangian with only powers of S†S.

Fields U(1)S U(1)F Fields U(1)S U(1)F Fields U(1)S U(1)F

Q1
L,R 3 29, 28 Q13

L,R 1 23, 24 Q25
L,R −2 4, 3

Q2
L,R 2 6, 7 Q14

L,R 1 27, 26 Q26
L,R −2 18, 17

Q3
L,R 2 16, 17 Q15

L,R 0 4, 3 Q27
L,R −2 20, 19

Q4
L,R 2 18, 19 Q16

L,R 0 26, 25 Q28
L,R −2 24, 23

Q5
L,R 2 20, 21 Q17

L,R 0 30, 29 Q29
L,R −2 26, 25

Q6
L,R 2 22, 23 Q18

L,R 0 32, 31 Q30
L,R −2 28, 27

Q7
L,R 2 28, 27 Q19

L,R −1 1, 0 Q31
L,R −3 5, 4

Q8
L,R 1 7, 8 Q20

L,R −1 3, 2 Q32
L,R −3 7, 6

Q9
L,R 1 9, 10 Q21

L,R −1 17, 16 Q33
L,R −3 9, 8

Q10
L,R 1 11, 12 Q22

L,R −1 21, 20 Q34
L,R −3 11, 10

Q11
L,R 1 13, 14 Q23

L,R −1 23, 22 Q35
L,R −3 13, 12

Q12
L,R 1 15, 16 Q24

L,R −1 29, 28 Q36
L,R −3 15, 14
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Table B.2: Charge assignments of the heavy U and D quarks for a model having an

effective Lagrangian with only powers of S†S.

Fields U(1)S U(1)F Fields U(1)S U(1)F Fields U(1)S U(1)F

U1
L,R 1 1, 0 U7

L,R 0 8, 9 U13
L,R −1 11, 10

U2
L,R 1 3, 2 U8

L,R 0 16, 15 U14
L,R −1 15, 14

U3
L,R 1 5, 4 U9

L,R 0 18, 17 U15
L,R −2 4, 5

U4
L,R 1 7, 6 U10

L,R 0 22, 21 U16
L,R −2 6, 7

U5
L,R 1 19, 18 U11

L,R 0 24, 23 U17
L,R −2 12, 11

U6
L,R 1 21, 20 U12

L,R −1 7, 8 U18
L,R −2 14, 13

D1
L,R 3 29, 30 D11

L,R 0 22, 21 D21
L,R −2 30, 31

D2
L,R 2 6, 5 D12

L,R 0 24, 23 D22
L,R −3 15, 16

D3
L,R 2 30, 31 D13

L,R −1 7, 8 D23
L,R −3 17, 18

D4
L,R 1 5, 4 D14

L,R −1 11, 10 D24
L,R −3 19, 20

D5
L,R 1 19, 18 D15

L,R −1 15, 14 D25
L,R −3 21, 22

D6
L,R 1 21, 20 D16

L,R −1 31, 32 D26
L,R −3 23, 24

D7
L,R 1 31, 32 D17

L,R −2 4, 5 D27
L,R −3 25, 26

D8
L,R 0 8, 9 D18

L,R −2 6, 7 D28
L,R −3 27, 28

D9
L,R 0 16, 15 D19

L,R −2 12, 11 D29
L,R −3 29, 30

D10
L,R 0 18, 17 D20

L,R −2 14, 13
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Table B.3: Charge assignments of the heavy Q, U , and D quarks for a model having

an effective Lagrangian with only powers of H†H.

Fields U(1)F1 U(1)F2 Fields U(1)F1 U(1)F2 Fields U(1)F1 U(1)F2

Q1
L,R 5, 4 −5,−5 Q8

L,R 1, 0 −3,−3 Q15
L,R −3,−4 −1,−1

Q2
L,R 5, 4 3, 3 Q9

L,R 0, 1 4, 4 Q16
L,R −3,−3 1, 0

Q3
L,R 3, 2 −5,−5 Q10

L,R 0,−1 6, 6 Q17
L,R −4,−3 6, 6

Q4
L,R 3, 3 −1, 0 Q11

L,R −1,−1 −1,−2 Q18
L,R −4, −4 −4,−3

Q5
L,R 3, 3 3, 4 Q12

L,R −1,−2 −5,−5 Q19
L,R −5,−5 1, 0

Q6
L,R 2, 1 6, 6 Q13

L,R −1,−1 1, 0 Q20
L,R −6,−5 4, 4

Q7
L,R 1, 1 1, 0 Q14

4L,R −2, −3 4, 4

U1
L,R 2, 3 −1,−1 U7

L,R −1,−1 2, 1 U13
L,R −3,−3 4, 3

U2
L,R 0, 1 −1,−1 U8

L,R −1,−1 4, 3 U14
L,R −5,−4 −2,−2

U3
L,R 1, 1 2, 1 U9

L,R −1,−1 6, 5 U15
L,R −5,−4 6, 6

U4
L,R 1, 1 4, 3 U10

L,R −2,−2 −3,−2 U16
L,R −5,−5 0,−1

U5
L,R −1,−1 −4,−5 U11

L,R −2,−2 −1, 0 U17
L,R −5,−5 4, 5

U6
L,R 0,−1 −3,−3 U12

L,R −3,−3 2, 1

D1
L,R 3, 3 0, 1 D8

L,R 0, 0 −1, 0 D15
L,R −3,−2 6, 6

D2
L,R 3, 3 4, 5 D9

L,R 1, 0 2, 0 D16
L,R −2,−3 −5,−5

D3
L,R 3, 2 2, 2 D10

L,R −1, 0 4, 4 D17
L,R −4,−4 −5,−4

D4
L,R 3, 2 6, 6 D11

L,R −1,−2 −2,−2 D18
L,R −3,−4 −2,−2

D5
L,R 2, 1 −5,−5 D12

L,R −2,−2 1, 0 D19
L,R −3,−4 2, 2

D6
L,R 1, 1 −4,−3 D13

L,R −1,−2 2, 2 D20
L,R −5,−5 2, 1

D7
L,R 1, 1 −2,−1 D14

L,R −2,−2 5, 4
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Table B.4: Charge assignments for the heavy quark doublets Q to be used in a

generalized model. The given values are for the case where all coefficients are of the

form (H†H)n. See Tables B.7–B.12 to make the necessary changes for the different

Lagrangians.

Fields U(1)F1 U(1)F2 Fields U(1)F1 U(1)F2 Fields U(1)F1 U(1)F2

Q1
L,R 0, 0 3, 2 Q22

L,R 2, 3 29, 29 Q41
L,R 7, 7 18, 17

Q2
L,R 0, 0 5, 4 Q23

L,R 3, 4 2, 2 Q42
L,R 7, 6 2, 2

Q3
L,R 0, 0 9, 8 Q24

L,R 3, 4 12, 12 Q43
L,R 7, 6 12, 12

Q4
L,R 0, 0 11, 10 Q25

L,R 4, 5 29, 29 Q44
L,R 8, 7 3, 3

Q5
L,R 0, 0 15, 14 Q26

L,R 5, 5 0, 1 Q45
L,R 7, 7 4, 5

Q6
L,R 0, 0 17, 16 Q27

L,R 7, 6 0, 0 Q46
L,R 7, 7 6, 7

Q7
L,R 2, 2 1, 2 Q28

L,R 9, 8 0, 0 Q47
L,R 7, 7 8, 9

Q8
L,R 2, 2 3, 4 Q29

L,R 11, 10 0, 0 Q48
L,R 7, 7 10, 11

Q9
L,R 2, 2 5, 6 Q20

L,R 13, 12 0, 0 Q49
L,R 10, 9 3, 3

Q10
L,R 2, 2 7, 8 Q30

L,R 15, 14 0, 0 Q50
L,R 11, 11 4, 4

Q11
L,R 2, 2 9, 10 Q31

L,R 15, 15 2, 1 Q51
L,R 11, 11 6, 5

Q12
L,R 2, 2 11, 12 Q32

L,R 15, 15 4, 3 Q52
L,R 13, 12 4, 4

Q13
L,R 2, 2 13, 14 Q33

L,R 15, 15 6, 5 Q53
L,R 13, 13 6, 5

Q14
L,R 2, 2 15, 16 Q34

L,R 5, 5 5, 6 Q54
L,R 6, 6 31, 30

Q15
L,R 2, 2 17, 18 Q35

L,R 5, 5 8, 7 Q55
L,R 7, 7 22, 23

Q16
L,R 2, 2 19, 20 Q36

L,R 5, 5 14, 15 Q56
L,R 7, 8 24, 24

Q17
L,R 2, 2 21, 22 Q37

L,R 5, 5 16, 17 Q57
L,R 7, 7 26, 27

Q18
L,R 2, 2 23, 24 Q38

L,R 5, 5 20, 21 Q58
L,R 8, 9 26, 26

Q19
L,R 2, 2 25, 26 Q39

L,R 5, 5 22, 23 Q59
L,R 8, 7 29, 29

Q20
L,R 2, 2 27, 28 Q40

L,R 7, 7 16, 15 Cont. on Table B.5
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Table B.5: Charge assignments for the heavy quark doublets Q to be used in a

generalized model. The given values are for the case where all coefficients are of the

form (H†H)n. See Tables B.7–B.12 to make the necessary changes for the different

Lagrangians.

Fields U(1)F1 U(1)F2 Fields U(1)F1 U(1)F2 Fields U(1)F1 U(1)F2

Cont. from Table B.4 Q67
L,R 9, 9 16, 15 Q75

L,R 13, 13 12, 11

Q60
L,R 10, 9 29, 29 Q68

L,R 9, 9 18, 17 Q76
L,R 13, 13 14, 13

Q61
L,R 8, 7 33, 33 Q69

L,R 11, 11 12, 11 Q77
L,R 13, 13 18, 17

Q62
L,R 10, 9 33, 33 Q70

L,R 11, 11 14, 13 Q78
L,R 13, 13 20, 19

Q63
L,R 7, 8 20, 20 Q71

L,R 11, 11 18, 19 Q79
L,R 13, 13 24, 25

Q64
L,R 9, 9 20, 21 Q72

L,R 11, 11 20, 21 Q80
L,R 13, 13 26, 27

Q65
L,R 9, 9 10, 9 Q73

L,R 11, 11 24, 25 Q81
L,R 13, 13 30, 31

Q66
L,R 9, 9 12, 11 Q74

L,R 11, 11 26, 27 Q82
L,R 13, 13 32, 33
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Table B.6: Charge assignments for the heavy quark singlets U , D to be used in a

generalized model. The given values are for the case where all coefficients are of the

form (H†H)n. See Tables B.7–B.12 to make the necessary changes for the different

Lagrangians.

Fields U(1)F1 U(1)F2 Fields U(1)F1 U(1)F2 Fields U(1)F1 U(1)F2

U1
L,R 0, 0 2,1 U12

L,R 5, 5 17, 18 U23
L,R 11, 10 33, 33

U2
L,R 1, 2 1, 1 U13

L,R 5, 5 19, 20 U24
L,R 13, 12 33, 33

U3
L,R 0, 0 6, 5 U14

L,R 5, 5 23, 24 U25
L,R 13, 13 7, 6

U4
L,R 0, 0 8, 7 U15

L,R 5, 5 25, 26 U26
L,R 13, 13 9, 8

U5
L,R 0, 0 12, 11 U16

L,R 5, 6 27, 27 U27
L,R 13, 13 11, 10

U6
L,R 0, 0 14, 13 U17

L,R 6, 6 28, 29 U28
L,R 13, 13 27, 28

U7
L,R 5, 5 3, 2 U18

L,R 11, 11 7, 6 U29
L,R 13, 13 29, 30

U8
L,R 5, 5 5, 4 U19

L,R 11, 11 9, 8 U30
L,R 13, 13 21, 22

U9
L,R 5, 5 9, 8 U20

L,R 11, 11 11, 10 U31
L,R 13, 13 23, 24

U10
L,R 5, 5 11, 10 U21

L,R 11, 11 15, 16

U11
L,R 5, 5 13, 14 U22

L,R 11, 11 17, 18

D1
L,R 5, 5 12, 13 D11

L,R 9, 9 21, 22 D21
L,R 11, 11 21, 22

D2
L,R 6, 7 13, 13 D12

L,R 8, 9 24, 24 D22
L,R 11, 11 23, 24

D3
L,R 7, 7 14, 15 D13

L,R 9, 9 25, 26 D23
L,R 11, 10 29, 29

D4
L,R 6, 6 32, 31 D14

L,R 9, 9 13, 12 D24
L,R 11, 11 27, 28

D5
L,R 7, 6 33, 33 D15

L,R 9, 9 15, 14 D25
L,R 13, 13 15, 14

D6
L,R 7, 7 19, 20 D16

L,R 9, 9 9, 8 D26
L,R 13, 13 17, 16

D7
L,R 7, 6 27, 27 D17

L,R 10, 11 8, 8 D27
L,R 13, 13 21, 22

D8
L,R 6, 6 28, 29 D18

L,R 12, 13 8, 8 D28
L,R 13, 13 23, 34

D9
L,R 8, 9 18, 18 D19

L,R 14, 15 8, 8

D10
L,R 8, 7 22, 22 D20

L,R 15, 15 7, 6
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Table B.7: Replacements made to Tables B.4–B.6 when changing the single power

coefficient (H†H) to (S†S). The quantum numbers for the U(1)F1 and U(1)F2 sym-

metries do not change.

Fields U(1)S Fields U(1)S

D1
L,R 0 → Q83

L,R 1

D2
L,R 0 → Q84

L,R 1

D3
L,R 0 → Q85

L,R 1

U7
L,R 0 → Q86

L,R 1

U8
L,R 0 → Q87

L,R 1

U18
L,R 0 → Q88

L,R 1

U19
L,R 0 → Q89

L,R 1

U20
L,R 0 → Q90

L,R 1
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Table B.8: Replacements made to Tables B.4–B.6 when changing the second power

coefficient (H†H)2 to (H†H)(S†S). The quantum numbers for the U(1)F1 and U(1)F2

symmetries do not change.

Fields U(1)S Fields U(1)S

U25
L,R 0 → Q91

L,R 1

U26
L,R 0 → Q92

L,R 1

U27
L,R 0 → Q93

L,R 1

U14
L,R 0 → Q94

L,R 1

U15
L,R 0 → Q95

L,R 1

U16
L,R 0 → Q96

L,R 1

U17
L,R 0 → Q97

L,R 1

D21
L,R 0 → Q98

L,R 1

D22
L,R 0 → Q99

L,R 1

Q65
L,R 0 → D29

L,R 1

Q66
L,R 0 → D30

L,R 1
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Table B.9: Replacements made to Tables B.4–B.6 when changing the second power

coefficient (H†H)2 to (S†S)2. The replacements from Table B.8 must also be made

with these replacements. The quantum numbers for the U(1)F1 and U(1)F2 symme-

tries do not change.

Fields U(1)S Fields U(1)S

D25
L,R 0 → Q100

L,R 1

D26
L,R 0 → Q101

L,R 1

U12
L,R 0 → Q102

L,R 1

U13
L,R 0 → Q103

L,R 1

D23
L,R 0 → Q104

L,R 1

D24
L,R 0 → Q105

L,R 1

Q67
L,R 0 → D31

L,R 1

Q68
L,R 0 → D32

L,R 1

Table B.10: Replacements made to Tables B.4–B.6 when changing the third power

coefficient (H†H)3 to (H†H)2(S†S). The quantum numbers for the U(1)F1 and U(1)F2

symmetries do not change.

Fields U(1)S Fields U(1)S

U1
L,R 0 → Q106

L,R 1

U2
L,R 0 → Q107

L,R 1

D4
L,R 0 → Q108

L,R 1

D5
L,R 0 → Q109

L,R 1

Q57
L,R 0 → D33

L,R 1

Q58
L,R 0 → D34

L,R 1

88



Table B.11: Replacements made to Tables B.4–B.6 when changing the third power

coefficient (H†H)3 to (H†H)(S†S)2. The replacements from Table B.10 must also

be made with these replacements. The quantum numbers for the U(1)F1 and U(1)F2

symmetries do not change.

Fields U(1)S Fields U(1)S

U3
L,R 0 → Q110

L,R 1

U4
L,R 0 → Q111

L,R 1

U23
L,R 0 → Q112

L,R 1

U24
L,R 0 → Q113

L,R 1

Q55
L,R 0 → D35

L,R 1

Q56
L,R 0 → D36

L,R 1

Table B.12: Replacements made to Tables B.4–B.6 when changing the third power

coefficient (H†H)3 to (S†S)3. The replacements from Tables B.10 and B.11 must also

be made with these replacements. The quantum numbers for the U(1)F1 and U(1)F2

symmetries do not change.

Fields U(1)S Fields U(1)S

U5
L,R 0 → Q114

L,R 1

U6
L,R 0 → Q115

L,R 1

U28
L,R 0 → Q116

L,R 1

U29
L,R 0 → Q117

L,R 1

Q63
L,R 0 → D37

L,R 1

Q64
L,R 0 → D38

L,R 1
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APPENDIX C

TABLES OF EFFECTIVE COUPLINGS

In Tables C.1–C.2, the fields are all in the mass eigenstate. The electric charge is

e = g sin θW = g′ cos θW . The charge under U(1)S for the vector-like D quark is YS,

and the value used in calculations is YS = −1.

Table C.1: The effective coupling of the exotic D quark with the other particles in

the model. The electromagnetic coupling with photon and the strong coupling with

gluon is the same as any down-type quark in the SM. Couplings are of the form

Kγµ(cV − cAγ
5).

K cV cA

bbZµ
e

12 sin 2θW
4 cos 2θW + 3 cos 2θL − 1 3(1 + cos 2θL)

DDZµ
e

12 sin 2θW
4 cos 2θW − 3 cos 2θL − 1 3(1− cos 2θL)

bDZµ
−e

4

sin 2θL
sin 2θW

1 1

bbZ ′
µ

gSYS

4
cos 2θL + cos 2θR − 2 cos 2θL − cos 2θR

DDZ ′
µ

−gSYS

4
cos 2θL + cos 2θR + 2 cos 2θL − cos 2θR

bDZ ′
µ

−gSYS

4
sin 2θL + sin 2θR sin 2θL − sin 2θR

tb W+
µ

−e cos θL

2
√
2 sin θW

1 1

tD W+
µ

e sin θL

2
√
2 sin θW

1 1
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Table C.2: The effective coupling of the exotic D quark with the other particles in

the model. The electromagnetic coupling with photon and the strong coupling with

gluon is the same as any down-type quark in the SM. Couplings are of the form

K(cS − cPγ
5).

K cS cP

bbφH
cos θR√

2
fb cosϑ cos θL + fDb sinϑ sin θL 0

DDφH
sin θR√

2
fb cosϑ sin θL − fDb sinϑ cos θL 0

bbφS
− cos θR√

2
fb sinϑ cos θL − fDb cosϑ sin θL 0

DDφS
− sin θR√

2
fb sinϑ sin θL + fDb cosϑ cos θL 0

bDφH
1

2
√
2

fDb sinϑ cos(θL + θR)

− fb cosϑ sin(θL + θR)

fDb sinϑ cos(θL − θR)

− fb cosϑ sin(θL − θR)

bDφS
1

2
√
2

fDb cosϑ cos(θL + θR)

+ fb sinϑ sin(θL + θR)

fDb cosϑ cos(θL − θR)

+ fb sinϑ sin(θL − θR)
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