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NOMENCLATURE

Amn, C= constants o f polynomial solution

An, Bjn = constants in the Pickett solution

a, b = plate size along x,y co-ordinate directions respectively

Cl,C2 ,€ 3 , 0 4  = constants in the superposition method

D = flexural rigidity

Dim, D4m = constants

Fim = Fourier expansion term

h = plate thickness

k = aspect ratio = a/b

Nxx = normal stress resultant in the x-direction 

Nyy = normal stress resultant in the y-direction 

Nxy = shear stress resultant 

R = uniform x-direction normal stress 

r = multiplication factor 

t = time

w = transverse deflection

a = constant in the polynomial solution

tti, 0 2 , 0 3  = constants in the Timoshenko solution

cp= Airy stress function

9 1 ,9 2 ,9 3 , 9 4  = Airy stress functions o f the superposition method 

r\ = dimensionless y co-ordinate = y/b
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^ = dimensionless x co-ordinate = x/a 

p = plate density

0 x1, Oyi, Txyi = normal and shear stresses corresponding to stress function (pi

0 x2 , Oy2 , Txy2 “  normal and shear stresses corresponding to stress function cp2

0 x3 , Oy3 , Txy3 = normal and shear stresses corresponding to stress function cp3

0 x4 , Oy4 , Txy4 = normal and shear stresses corresponding to stress function cp4

oo = maximum applied edge stress in the x-direetion

Ox = in-plane normal stress in the x-direetion

Oy = in-plane normal stress in the y-direction

Xxy = in-plane shear stress

® = transverse vibration frequency

Q = dimensionless transverse vibration frequency

Qs = dimensionless fundamental natural vibration frequency
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ABSTRACT

The problem o f buckling o f tbin rectangular plates subjected to uniform and 

linearly varying in-plane load bas been solved quite some time back beginning with the 

work o f Bryan in 1890-91. Recently, Leissa and Kang obtained an exact solution in a 

series sense for the problem o f buckling o f rectangular plates subjected to linearly 

varying in-plane load. The case o f buckling o f rectangular plates subjected to nonlinearly 

varying in-plane load in the x direction received less attention, and the same problem was 

solved by van der Neut for the case o f balf-sinusoidal loading and by Benoy for the case 

o f parabolic in-plane load. However, in tbeir analyses, they considered an over-simplified 

in-plane solution by assuming the x-direction in-plane stress distribution to be the same at 

every plate section and the y-direction normal stress to be zero.

Based on the mecbanics o f the problem, one can expect that the x-direction in

plane stress distribution should exhibit the stress diffusion phenomenon as the plate 

aspect ratio is increased. The present work is threefold, wherein the first part deals with 

obtaining an in-plane elasticity solution for half sinusoidal edge loads on two opposite 

edges. Also present solution was compared with the in-plane solutions developed earlier 

in the literature as well as a numerical (finite element) solution. From the results thus 

obtained, it was concluded that the in-plane solutions were quite similar in terms o f x- 

direction normal stresses. The y-direetion normal stresses showed wide variations among 

the various methods and it was observed that some of the solutions produced some 

spurious stresses at the boundaries.
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The second part o f the present work investigates the buekling loads o f rectangular 

plates subjected to half-sinusoidal in-plane loads for various edge conditions involving 

simply supported and clamped edge conditions. Using the Galerkin method, buekling 

loads are estimated for various plate sizes, and the results are compared with finite 

element solutions.

In the third part, the natural fi-equencies and mode shapes o f rectangular plates 

subjected to the above mentioned edge loads on two opposite edges are obtained. Using 

the in-plane elasticity solution developed in part one, flexural vibration analysis is carried 

out and the results are compared with those from finite element analysis. Extensive 

results o f dimensionless frequencies are tabulated for reference. Further research is 

recommended.
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CHAPTER ONE 

INTRODUCTION

The problem o f buekling of a rectangular elastic plate subjected to in-plane 

compressive or shear loading is important in the shipbuilding, aircraft, and automotive 

industries. The first work in this area was due to Bryan (1890-1891); see Timoshenko and 

Gere (1961), page 351. Bryan considered the case o f uniformly distributed compressive 

loading with all four edges simply supported. Buckling o f rectangular plates when all the 

edges are clamped was first analyzed by Taylor (1933). Shuleshko (1956, 1957) obtained 

buekling loads o f  rectangular plates with combinations o f clamped, free, and simply 

supported edge conditions under uniaxial and biaxial edge loads.

El-Bayoumy (1971) obtained buckling loads for plates with all edges clamped using 

an extended Kantorovich method (which is an iterative version o f the Kantorovich 

method, ref. Kerr 1969) and showed that accurate results for all aspect ratios can be 

obtained in a relatively small number o f iterations. The cases o f  more complicated 

boundary conditions have been solved by innumerable investigators through the years 

and were summarized in books (Timoshenko and Gere 1961, Brush and Almroth 1975, 

Bazant and Cedolin 1991).

The case o f linearly varying edge loading was first considered independently in 1910 

by Timoshenko and in 1914 by Boobnov, using approximate methods; see Timoshenko 

and Gere (1961), page 373. This loading case was also analyzed, using approximate 

methods, by Way (1936), Favre (1948), Grossman (1949), Noel (1952), McKenzie 

(1964), and Dawe (1969).



For plate problems subjected to generalized in-plane load conditions, Bassily and 

Dickinson (1978) used the Ritz method for both an in-plane elasticity solution and an out- 

of-plane solution using beam functions. However, for the case o f free edges, the Ritz 

method places no restrictions on the trial functions, as all the boundary conditions are 

natural or stress type conditions. Consequently, one cannot be assured o f boundary 

condition satisfaction for the case o f free edges. In order to overcome this, degenerate 

beam functions were proposed by Bassily and Dickinson (1975), and Bhat (1985) 

proposed sets o f simple orthogonal polynomials.

For mixed boundary conditions, one can consider the superposition method instead o f 

approximate methods such as the energy method. The superposition method as given by 

Timoshenko (Timoshenko and Goodier 1970) and used extensively by Gorman (ed. 

Guran and Inman 1999, and Gorman 2000) involves subdividing the given problem into 

building blocks and superposing the resulting solutions. With reference to mixed 

boundary conditions, one can consider the building blocks in such a way that each 

problem considers a part o f the boundary conditions. Using such a superposition method, 

Gorman (2000) obtained buckling loads for rectangular plates having two opposite edges 

free and the other edges elastically supported.

Conventionally, variational methods such as the Rayleigh-Ritz and Galerkin methods 

are extensively used (Reddy 1999) for plate problems. Among other approximate 

methods used for buckling analysis are Bolotin’s method (Dickinson 1975), the 

complimentary energy method (Sundararajan 1980), and the extended Kantorovich 

method (Kerr 1969). Additionally, numerical methods such as the finite difference 

method and the finite element method are extensively used (Szilard 1974) for plate



analysis. Recently, Chen (1998) evaluated buekling loads using a finite difference 

teehnique wherein the governing differential equation is used for the finite differences. 

He showed that use o f finite differenees on the governing partial differential equation is 

simpler than the finite element method.

Grimm and Gerdeen (1975) simplified the extended Kantorovich method by using 

numerical integration for solving the iterative equations and obtained buekling loads for 

various edge conditions subjected to uniform and nonuniform edge loads. It is interesting 

to note that they considered a half cosine edge load distribution only on one edge as given 

in Massonnet (1962, see page 37-10). Using the half eosine edge load on one edge and a 

eombination o f uniform and linearly varying edge loads on the other two edges, they 

obtained buckling loads for various plate aspeet ratios. The accuracy o f the numerical 

results is established by comparing the solutions where classical solutions are available.

Experimental results on plate buckling were obtained simultaneously throughout the 

early 19*'’ century, and the results were summarized in Timoshenko and Gere (1961) and 

in a review article by Walker in 1984.

Among the distributed edge load buckling problems. Brown (1991) was the first one 

to have eonsidered tangential edge loads acting on the surface o f the plate. Using the 

conjugate-displaeement method, he obtained buckling loads for various edge conditions 

and tangential loads which were uniform and linearly varying along the plate length. In a 

related work, Wang et al. (2002) considered buckling o f rectangular plates subjected to 

intermediate and end uniaxial loads. By decomposing the plate problem into two sub 

problems they obtained buckling solutions for the total plate by using continuity 

conditions at the separated edges.



Recently, Leissa and Kang (2001) and Kang and Leissa (2001) considered the plate 

buckling problem subjected to linearly varying in-plane load and obtained exact solution 

in a series sense. By considering the transverse displacement as sinusoidal in one 

direction, the governing differential equation can be solved by assuming a power series 

solution. Extensive results were tabulated for linearly varying in-plane edge load 

conditions including moment loads. Much more complete results o f rectangular plate 

buckling under various boundary and load conditions were summarized in a handbook by 

Bloom and Coffin (2001).

There have been very few previous buckling solutions for the case o f nonlinearly 

distributed edge loadings. Perhaps this scarcity is due to the additional complexity o f 

having to first solve for the internal pre-stress distribution as a problem in plane stress 

elasticity. The first work in this area was due to Timoshenko (1924), who obtained an in

plane solution for the case o f  parabolic in-plane loading by assuming stress functions 

which satisfy all the required stress boundary conditions. As the solution thus presented 

cannot possibly satisfy the compatibility equations, one can conclude that it is an 

approximate solution. However, the present study indicated that the Timoshenko solution 

is exactly identical to the in-plane solution obtained by the Galerkin method using the 

same trial functions.

Later, Pickett (1944) proposed a solution by the superposition method which satisfied 

the governing differential equation and the compatibility equations, but some residual 

stresses remained at the boundaries. Apparently unaware of the in-plane stress solutions 

as developed by Timoshenko and Pickett, van der Neut (1958) considered uniaxial 

compressive loading with a half sine distribution. In bis analysis, be subdivided the



parabolic in-plane stress distribution into uniform and nonuniform components. By 

equating the additional work done due to the non-uniform component with the elastic 

energy due to uniform stresses, he estimated the buckling load. Moreover, no attempt has 

been made to solve the in-plane elasticity problem. Using parabolic in-plane stress 

distributions on two opposite edges, Benoy (1969) obtained buckling loads for plates 

having simply supported and clamped boundary conditions.

It should be pointed out that the works o f van der Neut (1958) and Benoy (1969) both 

suffered from these serious deficiencies:

• The x-direction in-plane normal stress distribution was tacitly assumed to depend 

only on the y-position coordinate. (In actuality, there is a stress-diffusion 

phenomenon which causes this stress distribution to vary with x as well as y.)

• The contributions o f the y-direction in-plane normal stress distribution and the in

plane shear stress distribution have been ignored.

Recently, Hu et al. (1999) obtained buckling loads for rectangular plates subjected to 

parabolically varying in-plane loads. Assuming a parabolic distribution, they successively 

integrated such that the in-plane stresses satisfied the governing differential equation in 

terms o f the Airy stress function. Although their solution contained y-direction normal 

stresses and shear stresses, they remained the same throughout the plate. Moreover, the x- 

direction stress distribution was only a function o f y, similar to the analysis o f Benoy.

It is to be noted that the in-plane stress solutions as proposed by Timoshenko and 

Pickett do exhibit the stress diffusion phenomenon and can be considered quite suitable 

for buckling analysis. The goal o f  the present work is three fold. The first objective is to 

obtain an in-plane stress solution which satisfies the governing differential equation in



terms o f an Airy stress function and simultaneously satisfies all o f the boundary 

conditions. Using the in-plane stress solutions thus developed, the second objective is to 

carry out more accurate buckling analysis and finally the flexural vibration analysis o f 

has to be carried out.

Free flexural vibration analysis o f thin rectangular plates has been studied extensively 

in the literature (Leissa 1969 and 1973). The vibration o f plates subjected to only uniform 

in-plane forces was studied by Weinstein and Chien (1943), Lurie(1952), and Kaul and 

Tewari (1958). The same problem under uniform in-plane normal stress as well as shear 

stress was considered by Dickinson (1971) using the Ritz method. Simons and Leissa 

(1971) considered arbitrary in-plane acceleration loads and used beam eigen functions in 

the Ritz method. Mei and Yang (1972) used the finite element method for plate vibrations 

under combinations o f in-plane loads including pure bending and linearly varying loads. 

Bassily and Dickinson (1973) used a perturbation technique for vibration problems 

involving arbitrary in-plane loads. Chan and Too (1979) used the finite strip method for 

uniformly loaded plates and compared results with the available solutions in the 

literature.

Kielb and Han (1980) considered uniform in-plane loads and obtained vibration 

frequencies for all possible combinations o f simply supported and clamped edge 

conditions.

Laura et al., (1977) considered rectangular plates subjected to parabolic tensile in

plane edge loading as proposed by Timoshenko and Goodier(1970). In their analysis, 

they considered transverse deflections in terms o f polynomial functions in terms o f  x and 

y coordinate functions. However, they failed to present the frequencies and the associated



mode shapes for this in-plane load condition. Recently, Leissa and Kang (2001) and 

Kang and Leissa (2001) obtained exact series solutions for buckling and natural 

frequencies o f rectangular plates subjected to linearly varying in-plane loads.



CHAPTER TWO 

IN-PLANE ELASTICITY SOLUTION

2.1 Problem Definition

In the present study, the rectangular plate buckling and vibration analysis 

problems subjected to nonlinear uniaxial in-plane loading are considered. Prior to 

analyzing the buckling and vibration characteristics o f the rectangular plate, one has to 

find a satisfactory in-plane elasticity solution for a nonlinearly distributed in-plane load. 

The nonlinear in-plane load applied along two parallel edges is considered to have either 

parabolic or half sinusoidal variation in the present analysis. With reference to Figure 2.1, 

a thin rectangular plate having sides 2a, 2b along the x,y-coordinates, respectively, is 

subjected to either half sinusoidal or parabolic in-plane loading along the x-type edges. 

The placement o f the origin o f the coordinate system at the plate center is for 

mathematical convenience and, therefore, any other point such as the lower left corner 

could be used as well. In the present nonlinear edge load distribution, the maximum 

magnitude o f the in-plane load occurs at the center o f the edge (i.e., x = ±a, y = 0) while 

the y = ± b edges are stress free. Also, one can notice that all the plate edges remain free 

o f in-plane shear stresses. Thus, the boundary conditions can be written as 

a tx = ± a
<jy. = f{ y ^ ] fo r  parabolic distribution

or cos
\2 b  j

fo r  half sinusoidal distribution (2.1)

a tx = ± a , T^y=0 (2.2)



a ty = ± b ,( jy  a n d = 0 (2.3)

Owing to the symmetry o f the loading and boundary conditions, the coordinate 

system located at the plate center has certain advantages over any other location. 

Mathematically, one has to consider only the symmetric functions o f x and y for the 

possible in-plane solution.

Based on the mechanics o f the problem at hand, one can visualize that the in

plane Ox stress distribution should vary along the x-axis and in particular it should show a 

stress diffusion phenomenon at higher plate aspect ratios. The aspect ratio is considered 

as the plate length (x-direction dimension) over plate width (y-direction dimension). In 

accordance with Saint-Venant's principle, for high aspect-ratio plates the in-plane o* 

stress distribution should become nearly uniform towards the plate center. One can 

expect that this stress diffusion to be greater as aspect ratio is increased. In a 

mathematical sense, the o* stress is a general function o f x ,y throughout the plate.

Among the various solution methods for in-plane analysis, a polynomial stress 

function solution and a superposition method are considered in the present analysis. It is 

to be noted that some approximate in-plane solutions for a parabolically loaded 

rectangular plate are available in the literature. The first work in this area was due to 

Timoshenko (1924), who obtained an in-plane solution for the case o f  parabolic in-plane 

loading by assuming stress functions which satisfy all the required stress boundary 

conditions. As the solution thus presented cannot possibly satisfy the compatibility 

equations, one can conclude that it is an approximate solution. Pickett (1944) proposed a 

solution which satisfied the stress equilibrium equation and the compatibility equations, 

but some residual stresses remained at the boundaries. It is to be noted that the in-plane



stress solutions as proposed by Timoshenko and Pickett do exhibit the stress diffusion 

phenomenon and can he considered quite suitable for the buckling analysis.

Apparently unaware o f the in-plane stress solutions as developed by Timoshenko and 

Pickett, van der Neut (1958) considered a uniaxial compressive loading with a half sine 

distribution. Benoy (1969) considered a uniaxial compressive loading with a parabolic 

distribution and obtained an approximate energy solution.

It should be pointed out that the works o f van der Neut (1958) and Benoy (1969) 

both suffered from the following deficiencies:

• The x-direction in-plane normal stress distribution was tacitly assumed to depend

only on the y-position coordinate. In other words, the stress diffusion

phenomenon is neglected.

• The contributions o f the y-direction in-plane normal stress distribution and the in

plane shear stress distribution on buckling have been ignored.

2.2 Polynomial Solution

The plane elasticity problem for thin isotropic plates consists o f obtaining

solutions to the biharmonic equation in terms o f the Airy stress function as shown in

Equation (2.4).

a* ^= 0  (2.4)

where (p is the Airy stress function.

The stresses are determined bv
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dy dx
d^0
dxdy

(2.5a,b,c)

(The notation for the second subscript for x,y -direction stress definitions can be 

ignored for simplicity as there are no out-of-plane stress components)

Thus, for the present problem one has to find a solution for Equation (2.4) 

simultaneously satisfying the boundary conditions as specified in Equations (2.1) -  (2.3). 

For continuous load conditions such as in the present problem, the polynomial method 

may give satisfactory results (Niedenfuhr 1957, Neou 1957). In essence the method 

consists o f assuming the stress function as

(2.6)
m=0 M=0

Equation (2.6) when substituted in Equation (2.4) yields a polynomial equation 

which can be simplified using a systematic procedure suggested by Neidenfuhr and by 

Neou. Thus, Equation (2.4) with the stress function expressed by Equation (2.6) becomes

^  J w ( w  - \){m -  2){m -  3)x'"~* y" +

m=2n-2

' ^ ' ^ n { n - \ ) { n - 2 ) { n - 3 ) x ’” y''^^ = 0

m=4 n=0

(2.7)
m~0 M=4

Collecting similar powers o f x and y, one can write Equation (2.7) as

S Z
m=2 n~ 2

{m + 2){m + l)m {m -  

+ 2 m { m - \ ) n { n - l ) A ^ ^
+ {n + 2){n + \)n(n-l)A^_^^„^,

(2.8)

Using Equation (2.8), one can obtain interrelations among constants Amn-
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With reference to the present problem, one has to consider terms up to order 4 so 

as to obtain stresses which are second order polynomials. It is to be noted that terms 

involving more than order 4 will result in higher order stresses in the plate. Balancing 

these higher order stresses in turn require additional terms. Thus one has to limit the order 

o f the polynomial funetions simultaneously balancing in such a way that the biharmonic 

equation (Equation 2.4) is satisfied. Following the polynomial method, one can obtain the 

stress function.

f  S ^
<!>=C (2.9a)

v3 y

where C is a constant to be determined from the boundary conditions.

The above stress function polynomial contains different orders o f x and y which 

may cause some problems when equating the boundary conditions. For example, the Oy 

stress is

^ = c (2 0 ; ; ^  -20y'" -60x^) (2.10a)

At y = ± b, Oy cannot be equated to zero due to the varying orders o f y in Equation 

(2.10a). In order to overcome this difficulty, one can multiply the lower order terms with 

plate dimension b without loss o f generality. With reference to Equation (2.10a), if the 

first and last terms are multiplied with b ,̂ then the boundary condition can be satisfied 

exactly. The terms which are multiplied by b  ̂ in turn require other terms o f the stress 

function cp to be multiplied as well. Thus, the modified stress fonction is

>=C ^ - 6 " /  + /  +106V /  +5% "/ -10% "/ - 5 6 V l  (2.96)
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Using dimensionless parameters x/a = y/b = r\, and k = a/b (aspect ratio o f the 

plate) the above equation can be written as

I"-;;" (2.9c)
V  J

with stresses

= 0 6 X2077  ̂+30;;'' + 20 ik ^ f -120A:^f 77̂ ) (2.11a)

=C6" (2077" + 6 0 A:"̂ "77" - 2O77" - )  (2.116)

= -  C 6" (4 0 1̂ 77 + 40A:' '̂77 -  80i^ 7̂7' ) (2.1 Ic)

Applying the 0 % boundary condition at the ^ = ± 1 edges,

=C6'"(2077  ̂+ 3077" +20A:" +10A:" -120^^77^) (2.12a)

Now Ox = 0 at the p = ± 1 edges implies an additional constant term which has to 

be subtracted. Thus,

L e ta  = 50+  lOk^-lOOk^

Then,

(T, =C6^(2077^ + 3077" +20A;"^^ +10A:^^  ̂-120A :^f 77̂  - (z) (2.13a)

At ^ = ±1, p = 0, Ox = -No (normalized stress resultant) implies

Now combining all these equations together one has

(1 2 OÂ:' - 5 0 )
- 77'* + 77*̂ +10A:^^^77^

\3  2 y

13
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- N ,
CT̂ —(1 2 0 ^ , ° + 3 O77" +20k^<^^ + I 0 k ^ 4 ^ - n O k ^ 4 ^ r j ^ - a )  (2.16a)

" (i 2QA:^-50)^^^^' + 6 0 - 2 0 / 7 ^  - )  (2.166)

p 2 ^ ! ^ ( 4 0 t 5 ^  + 40t=f;7-80t#77=) (2.16c)

Although the above equations satisfy the Ox and Oy boundary conditions exactly, the shear 

stresses remain non-zero at all edges. However, the integral boundary conditions as given 

below are satisfied.

At ^ = +1, ^  üfT/sO (2.17a)

A n d a tq  = ± l, ^  (2.17b)

Equations (2.16) contains a singularity at an aspect ratio o f = 5/12 or k =

0.64549. For practical purposes, one can neglect this singularity for the following reason. 

The singular aspect ratio has large decimal digit accuracy which means that even for the 

aspect ratio o f 0.64, a finite denominator can be obtained. However, mathematically one 

has to state that this solution is valid for every plate size except for the singular aspect 

ratio as given above.

2.2.1 Numerical Results

The in-plane stress resultants are shown in Figures 2.2 through 2.7. In Figure 2.2, 

the maximum stress resultant Nxx is shovm along the plate half length. The maximum 

normalized stress (i.e., 1 at the edge) is seemingly diffusing rapidly towards the plate 

center. This diffusion is higher at higher plate aspect ratios (k) and, for k = 3, the

14



diffusion resulted in unusually small values o f the Nxx stress resultant near the plate 

central region.

In order to visualize the stress diffusion more clearly, Figures 2.3a through 2.3c 

show the Nxx stress resultant variations along the plate half width at various x = constant 

sections. Although the Nxx stress resultant is diffusing towards the plate center, it is non- 

uniform at any x = constant cross section as evident from Figures 2.3a through 2.3c. Near 

the top and bottom edges, the magnitude o f the Nxx stress resultant is inereased, and this 

increase is more prominent near the plate center and for lower plate aspect ratios. For a 

square plate (aspect ratio = 1), the maximum Nxx value at ^ = 0 and q = 1 is more than the 

maximum applied edge load.

In similar fashion, one can also observe the Nyy stress resultant distribution. 

However, as the Nyy stresses satisfied the boundary conditions on the top and bottom 

edges identically, the Nyy distribution throughout the interior o f the plate does not matter 

much. The same reasoning applies to the shear stress distribution in the interior regions of 

the plate but, along the four edges, the shear stress distribution has to be studied closely. 

Figures 2.4 shows the shear stress distribution on x-type edges (left and right edges), 

whereas Figure 2.5 shows the same for the y-type edges (top and bottom edges).

In Figures 2.4 and 2.5, the maximum magnitude o f the shear stress is increasing 

for higher plate aspect ratios. One can see clearly that, for a plate aspect ratio o f 3, the 

maximum shear stress is o f the order o f the maximum normal stress applied at the left 

and right edges. Thus, the shear stresses are maximum at the plate corners for rectangular 

plates. However, this is not the case for a square plate where the maximum shear stress is 

occurring approximately at one fourth plate width from the top edge.
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The stress distributions resulting from the polynomial solution are not satisfactory 

owing to the fact that the magnitude o f the residual shear stresses are o f a considerable 

ratio o f the applied edge load. Moreover, these residual stresses are increasing for higher 

plate aspect ratios and, for an aspect ratio o f 3, the maximum residual shear stress is 

approximately the same as the maximum applied normal load. One can conclude that the 

polynomial solution thus developed is more valid at lower plate aspect ratios.

2.3 Superposition Method

2.3.1 Two-Stress-Function Method

The superposition method as proposed by Timoshenko and Goodier (1970) 

consists o f superposing two or more solutions o f the governing differential equation 

[Equation (2.4)] wherein each solution satisfies part o f the boundary conditions. In the 

present case, using the superposition method, one obtains residual stresses at various 

edges which can be removed by expanding these residual stresses in Fourier series and 

combining them with the other solutions. In the present case, the rectangular plate 

subjected to a half sinusoidal edge load is considered for the superposition method.

Considering the plate geometry as shown in Figure 2.1, it is convenient to 

consider dimensionless plate coordinates as ^ = x/a and r\ = y/b, where -1< (^,r|) < +1. 

Thus, the applied edge load can be written as

(7^= (To cos (2.18)

Considering the Airy stress function (pi given by
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(2.19)

and substituting in Equation (2.4) results in the following general solution for the 

function f(^)

/ ( ^ ) = Q  cosh +Cg sinh + Q  ^cosh — -  + Q  i^sinh (2.20)

where k = a/b (plate aspect ratio) and Ci through C4 are constants which are to be 

obtained from the boundary conditions. It is to be noted that the stress fimction solution 

as given by Equations (2.19) and (2.20) gives a zero normal stress at the q = ± 1 edges.

Substituting the zero shear stress boundary conditions as well as the normal stress 

distributions as defined in Equation (2.18) at the edges ^ = ± 1 yields a complete solution 

for the in-plane stresses:

/ ( ^ = C ,  cosh(f (2 .21)

where

C ,=

m
cosh + sinh

y A
M l

2b
-I-sinh

\26y
cosh

y 2 6 y

(2.22a)

C 4  - -

m
sinh

v26y (T.y-h
m
2b

4-sinh
^7m\ , ( 7m\ 7T̂

2b
cosh

(2 .2 2 b)

26

However, the above in-plane stress solution gives a residual shear stress 

distribution at the q = ± 1 edges which can be eliminated using a superposed Fourier

17



solution as discussed by Timoshenko and Goodier (1970) and by Gorman and Singhal 

(1993). In the present problem, a renormalized solution consisting o f two superposed 

stress functions is sufficient to satisfy the required boundary conditions accurately.

The stress function solution in Equation (2.19) produces a residual shear stress 

distribution on the top and bottom edges o f the plate in the x-direetion which can be 

easily expanded as a Fourier sine series. In order to eliminate these shear stresses, one 

can start with a second stress function solution, which produces sinusoidal shear stress 

distribution in the x-direction. After eliminating the unsymmetric components, this stress 

function is given by

: = S
m =\,2.

AmCOSh + Am ^  sinh
m/TT]'

cos {mK^) (2.23)
JJ

where Dim and D4m are constants to be determined from the boundary conditions and the 

residual stress balancing from the previous stress function solution (p%.

Imposing the zero normal stress boundary condition at the q = ± 1 edges, an 

interrelation between Dim and D4m can be obtained. Now, superposition o f the shear 

stress distribution at the q = ± 1 edges and equating the resultant to zero yields a complete 

solution. Let

9  —-
lab

C,
kn

+ C
vv

sinh +C,
kK

^cosh
kTt^

(2.24)

-1

A
Am

Im
m n
k tanh(m;r/A:)

sinh cosh{m7tIk)
k k  tanh {mTV / k)

(2.25a)
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an d D ,^ =  (2.25b)
^  ,m 7 t  tanh-----

It is to be observed that, whereas the initial stress-function solution ((|)|) is a one-term 

solution, the second stress-function solution (( 2̂) is a series solution. However, at the 

most, the first three or four series terms are sufficient to obtain a close approximation for 

the vanishing residual shear stress distribution due to (j)i.

Although the stress-function solution (j)2 has zero normal stresses at the T| = ± 1 edges 

and zero shear stresses at the ^ = ± 1 edges, it does produce a residual normal stress (0 %) 

at 4 = ±1. However, it is observed that this Ox stress distribution is once again sinusoidal 

with a very small magnitude. Consequently, a renormalization o f the superposed Ox 

distribution has to be carried out such that the resulting o% stresses are as specified by 

Equation (2.18). This renormalization is carried out using a small uniform stress and a 

multiplication factor. This methodology gives good results as shown in the next section.

Thus, the total solution is

(|) = ((j)i + <1)2 + R) r (2.26)

wherein (j>i and (j)2 are as given above, R is the uniform stress and r is the renormalization 

factor such that the maximum in-plane o% stress is one. The stress solution corresponding 

to 9 2  is given below.

Cl cosh _
V V V V yy

c o s :^  (2.27a)

c o s ^  (2.27b)
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'̂ xy\ -
K

lab Vv
sinh - + C .

2 ■■
^cosh kK^ sin

nrj (2.27c)

z A^ ^  rn^Tt^ _ ImTt^ cosh
mnr]^

V y
+D

rn^Tt^
Am //sinh

^ mKîi^
cos(m;r^)

(2.28a)

2^2Z ÏH 71
~ ~ J

m = \2 ,..  "

-COS Am cosh
^mTTT]^

+ Am ^  sinh

(2.28b)

Z ntTT . / g\
— sm[m7r^)

m=l,2,. aô A«
m/r

+ D,4m sinh
^mTTTJ^

+ D
mTT

4m //cosh
^mTcrj^

(2.28c)

In the above equations, subscripts 1,2 indicate the respective stress functions, a, b are 

the plate dimensions in x, y directions, k is the plate aspect ratio.

In using the two-stress-function solution, however, one can observe that it 

deviates from the superposition method as developed by Timoshenko and used 

extensively by Gorman (1976). For the present problem, the complete superposition 

method requires a four-stress-function solution wherein each stress function has to have 

enough terms to obtain satisfactory convergence. In the present analysis, the 

superposition method using four-stress-ftinction solution is also developed and the details 

are given subsequently.
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2.3.1.1 Numerical Results

Numerical results o f the two-stress-fonction solution are plotted in Figures 2.6 

through 2.9. In Figure 2.6, the Nxx stress resultant is shown along the plate half length for 

various plate aspect ratios. Similar to the polynomial solution, the magnitude o f  the Nxx 

stress resultant decreased towards the plate center. However, the important difference is 

that the rate o f decrease is less severe compared with the polynomial solution. Thus, with 

reference to Figure 2.2 and Figure 2.6, one can see clearly that for all aspect ratios 

considered (i.e., k = 1,2,3), the two-stress-function solution resulted in higher stresses 

throughout the plate. Although the rate o f decrease is more for higher plate aspect ratios, 

the lowest magnitude o f the Nxx stress resultant (at the plate center) is considerably higher 

(0.658 as opposed to 0.0388 for the polynomial solution) in case o f the two-stress- 

function solution.

Figure 2.7a,b,c shows the Nxx stress resultant distribution against the plate width 

at various plate sections. Once again, in comparison with the eorresponding results o f  the 

polynomial solution (Figures 2.3a,b,c), the two-stress-function results exhibit a smooth 

reduction which can be correlated with the aspect ratio. For smaller plate aspect ratios, 

the cross sectional stress distribution changed very little between the plate edges and the 

plate center (Figure 2.7a). As the aspeet ratio is increased (Figures 2.7b and 2.7c), the Nxx 

stress resultant is becoming more uniform in comparison with the nonlinear edge 

distribution. Similar correlation cannot be obtained for the case o f the polynomial 

solution (Figures 2.3a, b, c). In order to visualize the stress diffusion at higher aspect 

ratios, a three dimensional plot is shown in Figure 2.8 for the Nxx normal stress resultant
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distribution. The height o f the surface represents the numerical value o f the stress 

resultant and one can see clearly that, for most o f the plate region, the Nxx remained 

uniform (flat region). However, near the plate edges where the load is applied, the normal 

stress resultant rapidly becomes nonlinear in the y-direction.

Figure 2.9 shows the N%y shear stress resultant distribution along the plate half 

length at the r|(y/b) = ±1 edges. Due to the trigonometric terms in the Airy stress function 

solution, the shear stress distribution is also sinusoidal as shown in Figure 2.9. However, 

the magnitude o f the shear stress resultant is considerably smaller than the corresponding 

results from the polynomial solution (see Figure 2.5). At higher aspect ratios, the 

magnitude is increasing but even for the case o f aspect ratio 3, the maximum magnitude 

is four hundredth the value o f the maximum normal stress resultant. In comparison, the 

polynomial solution gave a shear stress resultant o f the same order as the maximum 

normal stress resultant. It is to be noted that, along the x/a = ±1 edges, the shear stress 

resultant is identically zero for the two-stress-function solution.

2.3.1.2 Convergence Studies

In case o f the two stress-function solution, convergence is studied in terms o f the 

residual shear stress distribution on the r| = ± 1 edges. This is due to the fact that the 

second stress function solution is primarily used to cancel the residual shear stresses due 

to the original stress function solution at the rj = ±1 edges. With reference to Equations 

(2.24) and (2.25a,b), the number o f terms required in the stress function solution 9 2
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depends on the accuracy requirements o f the residual shear stress distribution at the q = 

±1 edges. For plate aspect ratios up to three, it is observed that the residual shear stresses 

can be made sufficiently small for up to three series terms in the stress function solution 

92-

Figure 2.10 is a plot for the resultant shear stress distribution at the q = ±1 edges 

for the original stress function solution (one term solution) and using three Fourier 

expansion terms in the second stress function solution (four term solution) for a plate 

aspect ratio o f 3. It is clearly evident from this figure that the shear stresses are 

considerably reduced even for a three term Fourier expansion in the second stress 

function solution. However, each Fourier expansion term introduces additional residual 

normal stresses in the x-direction and, therefore, a balance is required between these two 

opposing effects. It is observed from this analysis that a three term expansion is sufficient 

for obtaining a maximum shear stress resultant value o f four hundredth the magnitude of 

the normal stress. It is to be noted that at lower aspect ratios the accuracy is much better 

with three term Fourier expansions.

2.3.2 Complete Stress Function Solution

Considering the stress function in terms o f trigonometric terms, a two-stress- 

function solution was proposed in the previous section. One can notice that each stress 

function introduces a residual stress at the boundary which needs to be cancelled by way 

of Fourier expansion. In the previous section, the residual stresses due to the second 

stress function are cancelled by renormalization. Alternately, instead o f renormalizing.
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one can proceed in a similar fashion and introduce additional stress functions in such a 

way that all the residual stresses at all the boundaries are balanced. This method as 

proposed by Timoshenko and widely used by Gorman yields a series solution, and the 

resulting solution is considerably more complicated. For the present problem, the two 

stress functions introduced in the previous section remain the same. In order to remove 

the residual stresses due to the second stress function, a third stress function is considered 

which is

3̂ = 'Y^{E^^coûi[kn7t^)+E^^ ^?,mh.{kn7t^) )cos{n7tîT) (2.29)
n = l ,2 . .

where Ei„ through E4n are constants and Ezn and E]» terms are discarded due to

symmetry conditions.

The stresses are

2 2

= X  — T2— [Ex„cos\i{knK^)+E^„^s\viLi{knK^)\cos{n7tri) (2.30a)
« = 1.2 ... o

<Jyŷ  = ^  k^n^n^ + 2 £'4„ kn7t)cos\i{knK^)+ k^n^Jt  ̂^smh{kn7t^^
n= \,2 ,. ^

cos {nTtjf)

(2.30b)

T̂ ŷ  = X  — ^E^^knn:+E^„)s\Y^{knK^)+E^^kn7ü^cosh{knK^^s{n{nKîT) 
«=1.2..

(2.30c)
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By expanding the residual 0 %% stresses (at the ^ = ±1 edges) due to the second 

stress function in the Fourier cosine series, one can equate to the above Oxx stresses and 

obtain an interrelation between Ei„ and Dim-

The above stress solution satisfies the zero shear stress boundary condition at the 

q = ±1 edges. Equating the shear stresses at the ^ = ±1 edges gives an interrelation 

between Ei„ and E4„.

Ein k n 71 sinh (knji) + E41, [sinh (knTi) + knTi cosh (knTi)] = 0 (2.31)

However, the above stress solution gives residual Oyy stresses at the q = ± 1 edges which 

can finally be removed by a fourth stress function.

A =  Z
P=l,2 ,.

Fjp cosh co&{p7t^)
V  A, y

(2.32)

The stresses are (2.33a,b,c)

<̂ xA= X
P = 1 .2 ,. V

cosh 4 p
V  A . y V  A, y

COS

(̂ y4 = -  X  ^ - ^ c o s { p ; r ^ )
p=\,2,.. ^

'^xy4= X sm{p7C^)
ab

\  k  ^ 
\

sinh

+ F4P //sinh

V

^ pTip^

J

^ p j t p ' 

pK
V  A, y

Imposing zero shear stress boundary conditions on the q = ± 1 edges.

Fip (p 71 /k )  sinh (p 7 i/k ) + F4p [sinh (p 7 i/k ) + (p 7r/k) cosh (p 7 t/k )] = 0 (2.34)

Also, in the present solution, the relations between Dim and D4m in terms o f Ci 

and C 4  as given in Equations (2.24) and (2.25) are valid. Additionally, by considering the 

following two boundary conditions, one obtains two sets o f equations involving Ei„, E4„,
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and F]p, p4p in terms of C% and Dxx- The resulting equations can easily be solved given 

any specified plate numerical parameters.

1 . Oyy = 0  at the q = ± 1  edges,

2 . Oxx -  0  at the ^ = ± 1  edges (this condition is only for residual stresses).

In each of the above boundary conditions, only one stress solution remains in 

either sine or cosine function of ̂  or q, and the remaining stresses have to be expanded in 

Fourier (corresponding sine or cosine) series. Moreover, each sine or cosine original 

stress function in one boundary condition needs to be expanded in Fourier series for the 

other boundary conditions. Thus, the number of terms in the cps and (p4 solutions is to be 

exactly the same in order to get the complete solution. The complete solution is

(p =  cpi + 9 2  + Cp3 + 9 4  (2.35)

2.3.2.1 Numerical Results

Numerical results are compared against the two-stress-function solution. It is to be 

noted that, in using the fbur-stress-tunction approach, some of the residual stresses have 

to be expanded in Fourier cosine series as well as sine series. The cosine series expansion 

contains a zero order term, resulting in a uniform stress value to be required in order to 

get a satisfactory solution. Among the various cosine expansions, it is observed that only 

the Oxx residual stress due to the 9 2  stress function solution requires this zero order term.

Figure 2.11 is a comparative plot of the Nxx stress resultant along the plate central 

line for various aspect ratios. The Nxx stress resultant closely agreed with the two-stress-
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ftinction solution near the plate edges but remained lower in most parts o f the plate. The 

rate o f reduetion in both cases is almost identical.

Figures 2.12a,b,c show the comparative Nxx stress resultant distribution at various 

plate sections. In all o f  these plots, the four-stress-function solution resulted in non-zero 

stresses at the plate corners. This can be explained due to a larger number o f Fourier 

expansion functions as opposed to the two-stress-function solution. Moreover, near the 

plate edges (and corners), the Fourier expansions did not match the corresponding 

functions (analogous to the Gibbs phenomenon) causing residual Nyy stresses on top and 

bottom edges o f the plate.

However, the Nxx stress resultants showed close agreement with the two-stress- 

function solution in the interior portion o f the plate irrespective o f the plate aspect ratio. 

Similarly, the N%y shear stress resultant showed close agreement with corresponding two- 

stress-function solution. On the top and bottom edges (y/b = 1), a residual shear stress 

distribution is observed (Figure 2.13) whose magnitude is increased with plate aspect 

ratio. In comparison with the applied edge normal load, the residual shear stresses are 

very small.

As mentioned before, due to the nature o f the Fourier cosine expansion, the four- 

stress-function solution did not satisfy the Oyy boundary conditions especially near the 

corners. This is shown in Figures 2.14 and 2.15. It is to be noted that increasing the 

number o f expansion terms does not improve the stress resultants at the corners. 

Moreover, the magnitudes o f these residual y-direction normal stresses are considerable 

at the plate corners even though they remained very small throughout the plate. Similar
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edge discrepancies were observed in the literature (Gorman and Singhal (1993)) for 

problems involving Fourier expansions.

1.3.2.2 Convergence Analysis

Also, in using the four-stress-function approach, the convergence o f the resulting 

in-plane solution generally depends on the number o f terms considered in the Fourier 

expansion. However, in the present analysis it was observed that the in-plane stress 

response is very sluggish with the number o f Fourier expansion terms. Thus, the stress 

solution consisting o f a four-term expansion was compared for a plate with an aspect 

ratio o f 3 with the corresponding solution using an eight-term Fourier expansion. As the 

resulting buckling solution showed a change o f only about 0 . 1  percent, the four-term 

expansion is considered to be sufficient. Figure 2.16 is a plot o f Nxx stress resultant using 

a four-term and an eight-term Fourier expansion. It is clearly evident from this figure that 

the magnitude o f the Nxx stress resultant changed very little even when the number of 

Fourier terms is doubled. As a result, the four-stress-function solution involving four- 

term Fourier expansion is used in the remainder o f this study.

2.4 Finite Element Analysis

The rectangular plate is modeled using an eight-node (MARC element number 72) 

quadrilateral shell element (Ref: MARC element library (1996)). Although this element
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formulation is a generalized one for shell analysis, plate analysis can be done with equal 

ease. This element has three degrees o f freedom at each comer node and an additional 

rotational degree o f freedom at each mid node on the four edges.

The plate model is analyzed using various different mesh sizes and the 

convergence o f the results is established. However, in using the finite element analysis, 

the minimum buckling load is considered to be the parameter to check the convergence, 

details o f which will be explained in Chapter 3. Based on the results, it was established 

that a mesh size consisting o f 1 2 0 0  elements (60 x 2 0  in the x,y directions respectively) is 

sufficient for a plate with an aspect ratio o f 3. Similar element densities (number o f 

elements in a given area) are used for other plate aspect ratios. Care is taken to ensure 

that the element shape remains as close to the square as possible. The X and Y (u,v 

correspondingly) displacements are restricted along the nodes on two mutually 

perpendicular lines intersecting the plate surface. At the left and right edges o f the plate, a 

uniform initial edge load (per unit length) is applied. This uniform edge load varies for 

each element such that the magnitude o f the edge load follows approximately a sinusoidal 

distribution. The edge load for each element is caleulated such that the total edge load o f 

the element is identieally equal to that o f total sinusoidal load eorresponding to the 

element edge coordinates. In other words, the sinusoidal load is modeled as a stepwise 

uniform edge load. (Figure 2.17 shows such a distribution for a plate aspect ratio o f 3). 

The edge load is applied so as to obtain a consistent load stiffness matrix formulation. A 

sample MARC input file is given in the Appendix III.
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2.4.1 Numerical Results

Numerical results are obtained for plate aspect ratios o f 1 and 3. Figure 2.18 

shows the comparative Nxx stress resultant distribution along the plate center where one 

can observe that the FE solution gives smaller stresses than the two-stress-function 

approach. Figures 2.19a and 2.19b show the same Nxx distribution at various plate 

sections. In all these figures, the numerical closeness o f FE solution and the two-stress- 

function solution can be easily observed. Thus the x-direction normal stress resultant 

agrees qualitatively and quantitatively with the two-stress-function solution. Due to the 

numerical nature o f the stress calculations in the finite element analysis, a small negative 

Nyy normal stress is seen in Figure 2.20. The Nyy stress resultant shows reasonably close 

agreement with the two-stress-function solution. It is to be noted that the N%y shear stress 

resultants are negligibly small along all the edges in the FE solutions.

2.5 Timoshenko Solution

Using stress functions which satisfy all the stress boundary conditions identically, 

Timoshenko (1924) proposed a solution for the case o f a parabolically loaded rectangular 

plate using the Rayleigh-Ritz method. It is to be noted that, although he omitted the 

contribution o f Poisson’s terms from the energy functional, the effect o f those terms 

turned out to be negligible by way o f identical results with the solution by the Galerkin 

method. The stress function is
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+ (x  ̂ (y^ (« 1  +a2X^ +...) (2.36)

where (2 a x 2 b) is the plate size, No = h oq, and ai, az, as are constants to be determined 

by minimizing the Rayleigh-Ritz energy functional (or using the Galerkin method). Using 

up to three terms, the stress solution is given by (in nondimensional coordinates p)

« 1  (1 2 7  ̂ -4 )+ a2  (1 2 7  ̂ -4 )-f

tZ3(3077"-2477"-k2)/t'
(2.36a)

(T, = - 1)' ^ ( 1 2 # '  - 4 ) + ^ ( 3 0 ^ '  - 2 4 ^ :  + 2 ) + ^ ( l 2 f  -4 ;? :)

(2.36b)

16 ATg ^ ^ 7 7  ( l - f  1)

-N o  Y (2 4 # ' -  32^ ' + S^)(t] -  TĴ  ) - N ,  - p - [ s ) ( 3 t 7 '  + 77 -  4 7 '  )]

(2.36c)

2.5.1 Numerical Results

Numerical results o f the in-plane solutions using the two-stress-function approach 

are compared against the Timoshenko (also Galerkin) solutions. Figure 2.21 is a plot o f 

Nxx at r\ (y/b) = 0, along the plate length, and Fig 2.22a,b shows the Nxx distribution at 

various plate sections. From these figures, one can see that the Nxx distributions o f both 

the two-stress-function and Timoshenko (Galerkin) solutions are very close throughout
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the plate. Thus, the Nxx stress resultant diffusion into the plate is qualitatively as well as 

quantitatively in elose agreement between the two methods.

Figure 2.23 shows the Nyy distribution aeross the plate width (rj) at the ^ = ± 1 

edges. Although the two-stress-funetion solution and Timoshenko (Galerkin) solution 

showed similar pattern for a square plate, they differ considerably for higher plate aspeet 

ratios.

2.6 Pickett Solution

Pickett (1944) considered a parabolically loaded rectangular plate and obtained a 

series solution for in-plane stresses which satisfy the equilibrium equations and the 

compatibility equation. The complete stress solution is reproduced below.

y !  [a ^sinh{a^)-{ l + acoth{a))cosh{a^)]
«=1,2,.. cosh(«rj

-  y  r] sinh(jg77)+ p  coth(yg))cosh(/?;7)] (2.37a)
cosh/?

= -  y  ^^^2-^^^iü^^[fl.^sinh(of^)-i-(l-c!fcothÉif)cosh(of^)] 
cosh a« = 1,2

+ y  ‘̂ ^^^^^^^Lg/7sinh(jg;7)-(l-fygcothyg)cosh(yg7)] (2.37b)
m=l,2,. COShp

TXT_ ^  [rzcoth6rsinh(<%^)-cosh(6K^)]
« = 1, 2 ,. cosh or
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+ V  [yg coth J3 sinh{Prj[)-firjcosh{j3î])]
cosh/g

(2.38b)

where a = n;rk and p = (mrr/k), A„, Bm are constants to be found from the boundary 

conditions, ^ = x/a, r\ = y/b are normalized plate coordinates, k = a/b is the plate aspect 

ratio, and S is the x-direction normal stress intensity at the ^ = ±1 and p =0 points. The 

in-plane boundary stress condition is

Gxx = (3 S/2) [1-n^]

The nature o f the above stress solution is quite similar to the four-stress-frmction 

approach as described earlier. At the boundaries, the stress boundary conditions are 

satisfied by expanding the stresses in Fourier series.

Thus,

-h
yi 7C m-1,2.

E  ( -1 )

A .  = -

4 m tanbyg

y n k j

2

1-h a  (cotb or -  tanb or)
(2.39a)

4 nk tanbor

« = 1, 2 ,. m7C m f

= -

1 +

2 «

1 -I- y^(cotb P  -  tanb )
(2.39b)

Similar to the four-stress-fimction solution, equal numbers o f terms for the n, m 

series have to be taken to obtain a solution.
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2.6.1 Numerical Results

Again, the in-plane stress results are compared with corresponding values using 

the two-stress-function approach as shown in Figures 2.24, 2.25a, and 2.25b. From these 

figures, one can observe that the Pickett solution stresses are in close agreement with the 

two-stress-funetion approach as far as the x-direction normal stresses (Oxx) are concerned.

Similar to the four-stress-fimction solution, the Oyy stresses are non zero near the 

plate corners, thus violating the Oyy boundary condition (refer to Figure 2.26). Moreover, 

the Pickett solution also exhibits higher y-direction normal stresses at the plate corners 

very similar to the four-stress-fimction method (refer to Figure 2.15). Thus, the Pickett 

solution, being a series solution involving trigonometric functions, showed similar results 

as the four-stress-fimction method.

2.7 Summary

The in-plane elasticity solution for thin rectangular plates subjected to half- 

sinusoidal edge loads on two opposite edges is solved analytically by two different 

methods and numerically by the finite element method. All the solutions are compared 

with solutions available in the literature. The two analytical methods are

1. Polynomial solution

2. Stress function solutions using two and four stress functions

Based on Saint-Venant’s principle, one can expect that the stress distribution 

should exhibit a diffusion phenomenon as the plate aspect ratio is increased. In simple
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terms, the stress diffusion causes the in-plane stresses to be uniform in the plate interior 

although the edge stresses are nonlinear.

Even though the polynomial solution shows this stress diffusion, the stresses 

reduce much more rapidly towards the plate center as compared to all other solutions. 

Moreover, the residual shear stresses along all the plate edges were o f  the same order as 

the applied edge load, thereby violating the shear stress boundary conditions.

The two-stress-function method and the four-stress-function method show close 

agreement with the finite element solution as far as the Nxx stress distribution is 

concerned. However, the four-stress-function method yields some residual y-direction 

normal stresses, which are o f considerable magnitude on the plate top and bottom edges. 

Also the Pickett solution shows similar residual edge normal stresses in the y-direction.

From the convergence studies o f both the two-stress-function and four-stress- 

function methods it is evident that different criteria are causing them to converge. In the 

two-stress-function method, convergence is achieved by a balance between additional 

terms which both smoothes the residual edge shear stresses as well as increases the x- 

direction normal stresses. It is observed that, for plate aspect ratios o f up to 3, three series 

terms yields sufficiently accurate results.

In case o f the four-stress-function method, convergence is very slow with 

additional terms. Moreover, each additional term while smoothening one residual stress 

at some edge, contributes toward residual stresses on other edges. Also, due to the 

additional Fourier expansions involved, the functions do not satisfy the y-direction 

normal stresses at the plate corners.
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Both, the Timoshenko solution and the Pickett solution show excellent agreement 

as far as x-direction in-plane stresses are concerned. It is to be noted that the 

Timoshenko, Pickett and the polynomial solutions are for the case o f parabolic loading 

whereas the two-stress-function solution, the four-stress-fimction solution, and the finite 

element solution are for half sinusoidal edge loadings. Extensive plots are shown for all 

the in-plane stress distributions.
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Figure 2.1: Geometry o f the plate
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Polynomial Solution results
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Figure 2.2: Nxx distribution at y/b=0 for various plate aspect ratios (k)
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Figure 2.3a: Nxx distribution along plate half width (aspect ratio k = 1)
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Two-stress-function results
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Figure 2.8: Nxx distribution as a 3-d plot for aspect ratio: 3 (height is the magnitude)
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Four-stress-function results
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Edge load p er unit length

Figure 2.17: Applied edge load at each element (for one half plate width)
(aspect ratio k = 3)

Finite element analysis results
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Timoshenko solution results
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Pickett solution results
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Figure 2.24: Comparative Nxx distributions at y/b=0 along plate half length 
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CHAPTER THREE 

BUCKLING AND VIBRATION ANALYSIS

3.1 Buckling Analysis

Using the in-plane elasticity solutions as developed in the previous chapter, 

buckling and vibration analyses o f thin rectangular plates subjected to uniaxial half- 

sinusoidal edge loads are considered in this chapter. Once again, analytical solutions and 

a numerical solution by finite element analysis are carried out and the results are 

compared.

The governing differential equation for thin isotropic plate buckling is

^4 AT _ a 'wV w -
D

+cr. =0 (3.1)
dx dxdy  ̂ dy

where D = flexural rigidity, 

h = plate thickness, 

w = transverse deflection

Ox, Oy, and Xxy are the in-plane normal and shear stresses

Owing to the complexity o f the resulting plate buckling equation when each of the 

in-plane stress components is a series sum, an exact analytical solution may not be 

possible. Therefore, the buckling solution is obtained by using the Galerkin method for 

the following four symmetric boundary conditions:

1. All edges simply supported

2. All edges clamped

3. Loaded edges simply supported and other edges clamped
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4. Loaded edges clamped and other edges simply supported

For simply supported rectangular plates with a central coordinate system, the trial 

functions in Equation (3.2a) below satisfy all the required boundary conditions. However, 

in order to obtain consecutive modes, trial functions involving sinusoidal terms have to 

be considered as shown in Equation (3.2b). The trial functions for clamped plates are 

shown in Equation (3.3a,b).

9 1.3.5 ... = cos (nmx/2a) cos (n7cy/2b), {m,n = 1,3,5,...} (3.2a)

9 2 .4.6.. = sin (jTTx/a) sin (bry/b), {j,k = 1,2,3,...} (3.2b)

^ ,3  5 -cos-^ ^ ^ + cos^^'*'^^^{m = 0,1,2..} (3.3a)
a a

s i n + s i n {« = 1,3,5..} (3.36)
y 2a 2a J

Numerical calculations were conducted using the symbolic math package 

Mathematiea (Version 4.0) as well as Matlab (Version 6.0).

3.1.1 Convergence Analysis

As the Galerkin method is an approximate method involving predetermined trial 

functions, one has to consider numerical convergence in terms o f number o f trial 

functions in arriving at the necessary parameters. However, in the present case, as the 

trial functions are trigonometric terms which represent the buckling modes very 

accurately, one can expect to obtain sufficiently accurate results for fewer terms. Table

3.1 shows dimensionless buckling loads obtained using four and six trial functions for the 

case o f all simply supported plates. Except for the aspect ratio o f 3, the buckling load 

essentially remained constant. Even for an aspect ratio o f 3, the buckling load changed by
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only about 1.2 percent. Due to the additional eomplexity o f the numerieal computations 

and based on the results from the six-term solution, the four-term Galerkin solution is 

considered sufficient in the subsequent analyses.

3.1.2 Finite Element Analysis

Using the previously obtained in-plane analysis results in time step one, buckling 

analysis is performed in time step two using the inverse power sweep method as well as 

the Lanezos method. It is observed that both methods show identical numerical buckling 

loads. Once again, mesh sizes consisting o f up to 1200 elements (depending on the plate 

aspect ratio) were used and the results are compared with the analytical solution. From 

the buckling loads, normalized buckling loads are calculated, and the results are tabulated 

for plate aspect ratios o f one, two and three.

3.1.3 Convergence Analysis of the Finite Element Method

Various mesh sizes from coarse to fine are considered for a plate involving all edges 

clamped and the buckling loads are plotted against the number o f elements. As the 

clamped edge condition is much more stringent, it is assumed that the numerieal 

convergency achieved is similar for the other boundary conditions as well. Figure 3.1 is a 

plot o f dimensionless buckling load for various mesh sizes o f  a plate with all edges 

clamped. It is to be noted that the number o f elements in the x-direction is proportionately 

equal to the aspect ratio times the number o f elements in the y-direetion. From this figure.
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it is evident that the dimensionless buckling load remained constant for a mesh size 

consisting o f about 15 elements in the y-direction. In comparison, the rate o f convergency 

is better at lower plate aspect ratio (k-2) than for a plate o f higher aspect ratio (k=3). In 

view o f these results, in the present work, the finite element analysis is carried out using 

20 elements in the y-direction with proportional number of elements in the x-direction.

3.1.4 Numerical Results of Buckling Analysis

In all the following results, the boundary condition type is indicated by grouping 

opposite x-type edges followed by y-type edges. With this convention the following four 

edge conditions are used:

SSSS -  All edges simply supported 

CCCC -  All edges clamped

SSCC -  loaded edges (x-type) simply supported and other edges clamped 

CCSS -  loaded edges (x-type) clamped and other edge simply supported.

Numerical computations are carried out using the first four consecutive modes in the 

x-direction while keeping the first mode in the y-direction. Numerical results are 

compared between the finite element analysis and the analytical solutions using all in

plane elasticity solutions. Some comparative results for dimensionless buckling loads 

using various in-plane solutions for various plate edge conditions are presented in Tables

3.2 through 3.5.
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Although the results obtained by Benoy (1969) are for the case o f a parabolic loading, 

one can compare the solutions due to the close similarity o f sinusoidal and parabolic 

stress distributions. Also, it is to be noted that the Timoshenko solution and the Pickett 

solution are for parabolic loading, whereas the two-stress-function solution, the FE 

solution, and the fbur-stress-function solution are for half-sinusoidal in-plane loading.

For the simply supported and clamped edge conditions, the Benoy solution 

underestimated the buckling loads considerably from the present solution. This difference 

is higher for higher plate aspect ratios and for clamped edge conditions. In case o f 

clamped edges (Table 3.3), the differences between the present solution and the Benoy 

solution is o f the order o f 20 percent even for a plate aspect ratio o f 1.

The reasons for the higher buckling loads can be explained by the following 

reasoning. In the present analysis, the in-plane stress solution contains both Oy normal 

stress and Xxy shear stresses which were neglected previously. Moreover, the stress 

distribution shows stress diffusion from the loaded edges towards the middle o f  the plate. 

As a result, the maximum stress is reduced (see Figure 2.6) and stresses near the edges 

y/b = + 1 are increased (see Figure 2.7a,b,e). As the plate edges are supported, this stress 

increase near the edges would cause the plate to sustain higher buckling loads. As the 

stress diffusion is higher at higher plate aspect ratios (Figure 2.7b,c) the buckling loads 

are progressively higher at higher plate aspect ratios. Also, the more stringent the 

boundary condition, the more buckling load the plate can withstand and, thus, the 

buckling loads are much higher for the case o f  clamped edges than o f simply supported 

edges. It is to be noted that, for SSCC and CCSS mixed edge conditions, no existing 

results are available in the literature.
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Figure 3.2 shows the comparative dimensionless buckling loads using the two-stress- 

function approach and the Benoy's results for clamped and simply supported edges. In 

both cases, the numerical difference is uniformly increased with the plate aspect ratio. 

Interestingly, the active buckling mode change occurred for a lower aspect ratio in case 

o f the two-stress-hmction solution. This implies that the difference between the two 

methods for any given buckling mode is very much higher at higher plate aspect ratios. In 

case o f simply supported edges, the buckling mode change occurred at similar plate 

aspect ratios. However, the Benoy’s results indicated an almost constant dimensionless 

buckling load for any active mode whereas the two-stress-function solution showed an 

increasing buckling load with increasing mode number.

Using the four-stress-function solution, the buckling loads are (ref; Tables 3.2 

through 3.5) always higher than from the two-stress-function solution for all plate edge 

conditions. This may be attributed to the presence o f additional terms in the in-plane 

solution as well as the presence o f some residual stresses at the boundaries as noted in the 

previous chapter.

Interestingly, the Timoshenko solution and the two-stress-function solution are in 

excellent agreement for all plate edge conditions and for all plate aspect ratios. Using the 

Timoshenko solution, higher buckling loads are obtained for lower plate aspect ratios and 

lower buckling loads are obtained for an aspect ratio o f 3 in comparison with the two- 

stress-function solution. Also one can notice that the Timoshenko solution resulted in 

buckling loads that are both higher and lower than the corresponding two-stress-function 

solution. Upon closer observation reveals that the Timoshenko solution estimated lower 

buckling loads for a plate with aspect ratio o f 3 irrespective o f the edge conditions.
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However the numerical difference between two methods is considerably small for all 

plate aspect ratios with all edge conditions.

The finite element solution also resulted in mostly higher buckling loads than the 

two-stress-function solution with the only exception in case o f SSCC plates. Although 

numerical values o f  the buckling loads are in close agreement with the corresponding 

two-stress-function results, one can see larger differences in certain instances. The 

maximum difference however is obtained for SSCC type edge conditions for a plate 

aspect ratio o f 3. It is to be noticed that, for this particular case, the FE solution is 

somewhat lower than all corresponding analytical solutions.

In view o f the scattered nature o f the buckling loads, it is thought to be helpful to 

tabulate the lowest buckling load for various plate edge conditions and is shown in Table 

3.6. Although the buckling loads as calculated by Benoy are lower than all the present 

values, they were omitted from this table due to the erroneous nature o f his calculations.

Figure 3.3 is a plot o f dimensionless buckling load against aspect ratio for various 

edge conditions using the two-stress-function solution. It is interesting to note that, for 

the case o f CCSS and SSSS boundary conditions, the minimum buckling load associated 

with any buckling mode is increased with plate aspect ratio whereas the reverse happens 

in the case o f CCCC and SSCC edge conditions.

3.2 Vibration Analysis

The governing differential equation for the transverse (out-of-plane) vibration o f thin 

isotropic plates subjected to compressive in-plane loading is

6 2



4 h (  d^w „ d^w d^wW +  — 
D

where D is the flexural rigidity, h is the plate thickness, w is the normal deflection, and p 

is the plate density. After considering

w{x,y,t)-=w{x,y)?mcot (3.5)

one can write the above equation as

d^w  _ d^w d^w  2’V i . ” '' '-

D
=0 (3.6)

As the in-plane stress solution is a series solution, exact analytical solutions may not 

be possible due to the complexity o f the resulting plate vibration equation. Therefore, 

approximate solutions using the Galerkin method are obtained for combinations o f 

simply supported and clamped rectangular plate edges. For simply supported and 

clamped rectangular plates with a central coordinate system, the trial functions in 

equations (3.2a,b) and equations (3.3a,b), respectively, satisfy the boundary conditions.

Free-vibration frequencies are obtained at various relative load (buckling load 

fraction) increments. Four trial functions involving (1,1), (2,1) (3,1), (4,1) vibration 

modes are considered in the present analysis.

3.2.1 Finite Element Analysis

As explained before, convergence o f the finite element model is established using 

the buckling loads. For vibration analysis, frequency analysis is specified instead o f 

buckling analysis in the second time step. Using the previously found buckling loads.
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various in-plane loads representing various load ratios are applied in the first time step 

and vibration frequencies are extracted. Frequencies up to first ten eonsecutive modes are 

extracted and the results are compared with the analytical results and tabulated.

3.2.2 Numerical Results of Vibration Analysis

Numerical computations are carried out using the first four consecutive modes in 

the x-direction while keeping the first mode in the y-direction, and the results are 

eompared with those from finite element analysis. Figures 3.4 through 3.7 show the 

dimensionless frequency ratio against dimensionless in-plane load (oo h b^/D)

for various combinations o f simply supported and clamped plate edges. The quantities Q 

and Q.S are nondimensionlized as shown in Equation (3.7). The dimensionless quantity Qs 

is the dimensionless fundamental frequency o f an unloaded square plate with the 

corresponding edge condition.

D

In all the edge conditions, the plate frequencies o f vibration using the two-stress- 

function and four-stress-function methods showed close agreement with the finite 

element results only at lower plate aspect ratios. As the aspect ratio increased, some 

differences were observed.

At higher aspect ratios, the two-stress-function method results appeared to be 

closer to the finite element results for the SSSS and CCCC plates. It is interesting to note
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that the finite element trequencies are lower than the analytical results in the case o f 

CCCC, SSCC plates, and vice versa for the case o f SSSS and CCSS plates.

Only in the case o f SSCC plates having an aspect ratio o f 3, the two-stress- 

function solution results and the fbur-stress-function results showed relatively close 

agreement compared with the finite element frequencies throughout the in-plane load 

range. In general, the differences in frequency ratios between the various methods 

increased uniformly as the in-plane load was increased towards the fundamental buckling 

load. Also, these differences are more pronounced at higher plate aspect ratios. Thus, one 

can see from these figures that larger differences in numerical values among the various 

methods o f solution occurred for higher loads and higher plate aspect ratios.

It is interesting to note that the use o f a nondimensional frequency, as defined in 

Equation (3.7), resulted in lower values o f the fundamental frequency for a plate aspect 

ratio o f 2 than that for a square plate for CCSS plates. All the remaining edge conditions 

gave higher frequencies than the fundamental frequency for the corresponding square 

plate.

Obviously, one can anticipate much closer agreement o f the numerical values if 

one considers the nondimensional frequency itself, rather than the square o f the 

frequency. Tables 3.7a through 3.10c show the numerical values o f the nondimensional 

frequency at various in-plane load ratios. From these tables, the excellent agreement 

between the two-stress-function and the fbur-stress-function results is easily evident. 

Although there are minor differences in buckling loads (Devarakonda and Bert) between 

these analytical methods, the vibration frequencies are almost identical for each relative 

load ratio.
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It is to be noted that, in all the tables, the numerical values for nondimensional 

frequency are given based on the definition o f Equation (3.7). Also, the mode number 

shown in brackets for the finite element results is applicable to the entire row (i.e., for 

both o f the analytical methods). The only exception is for the case o f the CCSS plate 

(Table 3.10a) with an aspect ratio o f 1.

As the Galerkin method is an assumed mode approximate method, one generally 

does not know beforehand whether or not the assumed modes yield consecutive modes. 

However, the finite element analysis arranges the modes consecutively based on the 

ascending order o f the numerical value o f the frequency. For comparison purposes, only 

those modes that are used for the analytical method are shown in all o f these tables. The 

only exception is the lowest frequency for any given relative load ratio where all o f  the 

methods considered in the present study gave identical modes. Thus, with the exception 

o f the lowest frequency, one can anticipate additional vibration modes active between the 

tabulated values. As a result o f these additional modes, the frequency corresponding to 

the vibration mode (4,1) in Table 3.10a is not shown for the finite element results.

Tables 3.11 through 3,13 list the vibration frequencies in ascending order for 

various plate edge conditions (aspect ratios: 1,2,3) subjected to a relative in-plane load o f 

0.5. It is to be noted that these values are listed based on the finite element analysis.

For most in-plane load cases, the vibration modes contain integer wave numbers 

in the x and y co-ordinate directions. However, using the finite element solution, one can 

find certain modes which do not have waves coinciding with the co-ordinate directions. 

Such mode rearrangement occurs at various in-plane load ratios. In reference to Tables 

3.11 through 3.13, one can see the mode rearrangement with increasing in-plane load

66



ratio for any given plate. Figures 3.8 through 3.13 show the first six vibration modes 

(using finite element analysis) for a CCSS plate o f aspeet ratio 1 and Figures 3.14 

through 3.19 are the first six vibration modes of a SSCC plate o f aspeet ratio 3. In both 

eases the in-plane load ratio is 0.9. In Figure 3.15, the mode number in the x-direction is 

not well defined due to the small positive deflection at the center followed by negative 

deflections in either direction. In Figure 3.16 such additional deflections can be found 

near the plate edges. It is to be noted that these modes appeared at this particular in-plane 

load ratio o f 0.9 only. In Figure 3.11, the modes seem to be aligned towards the plate 

corners, and Figure 3.13 shows deflections near the edges although the active mode looks 

like (3,1).

3.3 Summary

The thin rectangular plate buckling and transverse vibration problem subjected to 

a half sinusoidal in-plane load is solved using the various in-plane elasticity solutions 

obtained previously. The buckling results indicated higher loads than those available in 

the literature which can be explained by the stress diffusion phenomenon and the 

presence o f Oy and txy stresses throughout the plate. The buckling loads showed higher 

difference with the available results from the literature (incorrect) as the aspect ratio was 

increased and for the case o f  clamped edge conditions. A maximum difference o f about 

30 percent was obtained between the present analyses and Benoy’s (incorrect) results. In 

general, excellent agreement between the analytical methods and the finite element 

solution was observed. The analytical solution was obtained using two-stress-function.
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four-stress-function and Timoshenko in-plane elasticity solutions, and all methods 

showed close agreement. The four-stress-function solution showed higher buckling loads 

for all plate aspect ratios and all plate edge conditions. From the plot o f dimensionless 

buckling load against plate aspect ratios, the active buekling mode change occurred at 

lower plate aspect ratios in the present analysis than in Benoy’s solution.

Extensive flexural vibration results were obtained for various in-plane load ratios 

for all plate edge conditions. It is to be noted that no results are available in the literature 

for such nonlinear in-plane load eonditions. From the results obtained using the finite 

element analysis, it is observed that most o f the mode numbers had integer wave numbers 

and were aligned along the x, y co-ordinate axes with some exceptions. Also, with 

increasing in-plane load ratios, the modes were rearranged, and such rearrangement was 

different for each plate. Extensive flexural vibration results were tabulated for reference.
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Table 3.1: Comparative dimensionless (oo hb^&^D) buckling loads for simply supported

edges.

Aspect 
ratio k 
(a/b)

FEA Two-stress-function solution
4-term Galerkin 6-term Galerkin

1 5.41 5.14 5.14

2 5.73 5.43 5.43

3 5.83 5.74 5.67
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0 11.4
.Q
(0 11.21 ”
« 10.8 
<u
E 10.6 
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Number of elem ents in y-direction
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25

Figure 3.1: Convergence analysis o f the finite element method
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Table 3.2; Dimensionless (aohb^/îi^D) buekling loads for simply supported edges. 

(Terms in brackets are percentage differences to two-stress-function solution)

Aspect 
ratio k 
(a/b)

Four-
stress-

function
solution

FEA Two-
stress-

fiinction
solution^

Based on 
Timoshenko 

solution 
(Parabolic)

Based on 
Pickett 
solution 

(Parabolic)

Benoy
(Parabolic)^

1 5.42 5.41 5.14 5.24 5.24 4.59

(+5.44%) (+5.25%) (+1.94%) (+1.94%) (-10.7%)

2 5.75 5.73 5.43 5.54 5.54 4.59

(+5.89%) (+5.52%) (+2.02%) (+2.02%) (-15.4%)

3 6.04 5.83 5.74 5.66 5.72 4.59

(+5.22%) (+1.56%) (-1.39%) (-0.348%) (-20.0%)

Refer Bert and Devarakonda (2003), Refer Benoy (1963) 

Table 3.3: Dimensionless (oo hb^&^D) buckling loads for clamped edges.

Aspect 
ratio k 
(a/b)

Four-stress-
function
solution

FEA Two-
stress-

function
solution*

Based on 
Timoshenko 

solution 
(Parabolic)

Benoy
(Parabolic)^

1 14.74 14.16 13.92 14.21 11.06

(+5.89%) (+1.72%) (+2.08%) (-20.5%)

2 12.26 11.75 11.49 11.71 8.667

(+6.70%) (+2.26%) (+1.91%) (-24.5%)

3 12.02 11.54 11.52 11.39 8.021

(+4.34%) (+0.17%) (-1.12%) (-30.3%)

Refer Devarakonda and Bert (to appear), Refer Benoy (1963)
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Table 3.4: Dimensionless (aohb^&^D) buekling loads for loaded edges elamped and

other edges simply supported

Aspect 
ratio k 
(a/b)

Four-stress-
function
solution

FEA Two-stress-
function
solution

Based on 
Timoshenko 

solution 
(Parabolic)

Benoy
(Parabolic)

1 9.40

(+5.85%)

9.46

(+6.53%)

8.88 9.07

(+2.13%)

NA

2 7.47

(+7.02%)

7.46

(+6.87%)

6.98 7.16

(+2.57%)

NA

3 7.04

(+6.50%)

6.89

(+4.23%)

6.61 6.53

(-1.21%)

NA

NA -  Not Available

Table 3.5: Dimensionless (oohb^/Ti^D) buckling loads for loaded edges simply supported 

and other edges clamped

Aspect 
ratio k 
(a/b)

Four-stress-
function
solution

FEA Two-stress-
function
solution*

Based on 
Timoshenko 

solution 
(Parabolic)

Benoy
(Parabolic)

1 9.68

(+3.75%)

9.47

(+1.50)

9.33 9.45

(+1.28%)

NA

2 10.05

(+5.34%)

9.41

(-1.36%)

9.54 9.69

(+1.57%)

NA

3 10.79

(+3.55%)

9.65

(-7.38%)

10.42 10.23

(-1.82%)

NA

‘ Refer Devarakonda anc Bert (to appear)
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Table 3.6: Lowest buekling loads (dimensionless) for various edge conditions

Edge condition Aspect ratio Dimensionless 
buckling load

Mode In-plane elasticity solution 
method

SSSS

1 5.14 (1,1) Two-stress-hmction

2 5.43 (2,1) Two-stress-function

3 5.66 (3,1) Timoshenko solution

CCCC

1 13.92 (1,1) Two-stress-function

2 11.49 (3,1) Two-stress-function

3 11.39 (4,1) Timoshenko solution

SSCC

1 9.33 (1,1) Two-stress-function

2 9.41 (2,1) FEA

3 9.65 (3,1) FEA

CCSS

1 8.88 (2,1) Two-stress-function

2 6.98 (3,1) Two-stress-function

3 6.53 (4,1) Timoshenko solution
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Figure 3.2: Comparative buckling loads

73



25

20  -

s>

—  SSSS
 CCCC
■ ■ ■ A -  CCSS 
-■♦-■-SSCC

10 -

/ ' 6
A .

0.5 2.5

aspect ratio

Figure 3.3: Nondimensional buckling loads using two-stress-function approach
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/ phTable 3.7a: Dimensionless frequency Q .-c o a b A ^  , all edges simply supported (SSSS),

aspect ratio: 1 (modes are not consecutive)

a/b=l

ao/Ocr Two-stress- Four-stress- Finite element Mode

function function analysis

0.1 18.72 18.72 18.80 (1,1)

47.64 47.63 48.05 (2,1)

96.78 96.77 98.59 (3,1)

165.7 165.7 171.3 (4,1)

0.5 13.96 13.96 14.03 (1,1)

40.12 40.05 40.43 (2,1)

88.74 88.66 90.41 (3,1)

157.5 157.5 162.9 (4,1)

0.9 6.248 6.250 6.312(1,1) (1,1)

30.82 30.65 30.97(2,1) (2,1)

79.89 79.73 81.39 (3,1)

148.9 148.7 154.1 (4,1)

Ocrhb^/D 50.78 53.49 53.75 (1,1)
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I phTable 3.7b: Dimensionless frequency Q = a x ib J -^  , all edges simply supported (SSSS),

aspect ratio: 2

a/b=^2

Oo/Ü cr Two-stress-

funetion

Four-stress-

function

Finite element 

analysis

Mode

0.1 23.95 23.96 24.06 (1,1)

37.47 37.47 37.64 (2,1)

61.30 61.30 61.67 (3,1)

95.40 95.40 96.25 (4,1)

0.5 20.81 20.89 20.97 (1,1)

28.00 28.04 28.16 (2,1)

48.30 48.29 48.56 (3,1)

80.94 80.90 81.68 (4,1)

0.9 12.59 12.63 12.76 (2,1)

16.90 17.00 17.04 (1,1)

30.23 30.24 30.17 (3,1)

63.30 63.23 63.84 (4,1)

Ocrhb^/D 53.64 56.77 56.55 (2,1)

78



f phTable 3.7c: Dimensionless frequency Q -c o a b J -^  , all edges simply supported (SSSS),

aspect ratio: 3

a/b=3

Oq/CT cr Two-stress-

function

Four-stress-

function

Finite element 

analysis

Mode

0.1 32.36 32.33 32.53 (1,1)

40.98 40.99 41.20 (2,1)

56.17 56.17 56.51 (3,1)

78.31 78.29 78.96 (4,1)

0.5 30.12 29.96 30.31 (1,1)

32.83 32.89 33.20 (2,1)

41.88 41.87 42.35 (3,1)

60.05 59.94 60.91 (4,1)

0.9 18.70 18.72 19.36 (3,1)

21.17 21.12 21.73 (2,1)

27.75 27.40 27.99 (1,1)

33.32 33.09 34.53 (4,1)

rtcrhb^D 56.73 59.69 57.54 (3,1)
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I ph
Table 3.8a: Dimensionless frequency Q .= ax ibJ -^  , loaded edges simply supported and

other edges clamped, aspect ratio: 1

a/b=l

Oq/Oct Two-stress-

function

Four-stress-

funetion

Finite element 

analysis

Mode

0.1 28.40 28.42 27.86 (1,1)

52.97 52.97 52.25 (2,1)

100.2 100.2 100.5 (3,1)

168.3 168.3 172.1 (4,1)

0.5 22.96 23.07 22.42 (1,1)

39.49 39.50 38.99 (2,1)

84.93 84.92 85.69 (3,1)

152.7 152.6 157.1 (4,1)

0.9 15.65 15.90 15.12 (1,1)

17.67 17.68 17.58 (2,1)

66.26 66.24 67.67 (3,1)

135.2 135.2 140.1 (4,1)

Ocrhb^/D 92.10 95.56 93.50 (2,1)
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Table 3.8b: Dimensionless frequency Q = ( w h J ^ , loaded edges simply supported and

other edges clamped, aspect ratio: 2

a/b-2

ao/Ocr Two-stress-

function

Four-stress-

function

Finite element 

analysis

Mode

0.1 48.03 48.06 47.31 (1,1)

56.89 56.91 55.86 (2,1)

75.83 75.84 74.54 (3,1)

106.4 106.3 105.1 (4,1)

0.5 45.62 45.74 44.98 (1,1)

46.32 46.40 45.76 (2,1)

56.64 56.69 56.17 (3,1)

82.13 82.12 82.09 (4,1)

0.9 25.18 25.15 25.56 (3,1)

30.24 29.67 30.58 (2,1)

43.45 43.79 42.99 (1,1)

48.40 48.52 50.06 (4,1)

Ocrhb^/D 94.20 99.19 92.96 (3,1)
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I phTable 3.8c: Dimensionless frequency Q .-a x ih A ^  , loaded edges simply supported and

other edges clamped, aspect ratio: 3

a/b=3

ao/Ocr Two-stress-

function

Four-stress-

function

Finite element 

analysis

Mode

0.1 69.93 69.87 68.93 (1,1)

75.02 75.06 73.82 (2,1)

85.19 85.25 83.75 (3,1)

102.2 102.1 100.6 (4,1)

0.5 67.61 67.92 66.96 (2,1)

68.31 68.07 67.40 (1,1)

68.75 69.06 68.53 (3,1)

76.40 76.30 76.93 (4,1)

0.9 33.966 34.00 36.71 (4,1)

46.877 47.85 39.60 (3,1)

59.91 60.30 59.83 (2,1)

66.662 66.09 66.04 (1,1)

acrhb /̂D 102 8 106.5 95.31 (4,1)
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I phTable 3.9a: Dimensionless frequency Q =û)abJ—  , all edges clamped (CCCC), aspect

ratio: 1

a/b=l

CJq/G cr Two-stress-

function

Four-stress-

function

Finite element 

analysis

Mode

0.1 34^^ 34.97 34J8 (1,1)

71.27 71.21 70.44 (2 J )

132.19 132.1 130.0 (3,1)

212.74 212.6 213.2 (4,1)

0.5 2&54 26.54 2624 (1,1)

54.04 53.66 54.08 (2 J )

112.12 111.66 111.5 (3,1)

191.64 191.1 193.8 (4,1)

0.9 12.31 12J2 1235 (1,1)

27.17 25 jW 29.11 (22)

87.76 86.70 8920 (3,1)

167.9 166.9 172.4 OU)

Ccrhb^/D 137.3 145.5 139.8 (1,1)
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IphTable 3.9b: Dimensionless frequency Q.=oxibA—— , all edges clamped (CCCC), aspect

ratio: 2

a/b=2

O o / a  cr Two-stress- Four-stress- Finite element Mode

function function analysis

0.1 49.45 49.48 4&63 (1,1)

6Z51 6252 61.11 (2,1)

88.92 8&63 8529 (3,1)

126.0 126.0 121.9 (4,1)

0.5 46.00 46.17 45.28 (1,1)

49.44 4&55 48.50 (2,1)

66J9 6626 64.37 (3,1)

9&05 9824 96.15 (4J)

0.9 28.90 2&97 2827 (3,1)

3025 3026 2927 (2,1)

43.72 43.90 43.03 (1,1)

61.54 6027 6026 (4,1)

Ocrhb^/D 113.4 121.0 116.0 (3,1)
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I phTable 3.9c: Dimensionless frequency Q .= coabA ^  , all edges clamped (CCCC), aspect

ratio: 3

a/b=3

Oq/O cr Two-stress-

frmction

Four-stress-

frmction

Finite element 

analysis

Mode

0.1 70.50 70.42 6^42 (1,1)

77.45 77.50 7538 (2,1)

91.60 91.72 8838 (3,1)

113.0 113.0 109.0 (43)

0.5 67.91 67.44 6638 (1,1)

68J0 6&49 67.10 (2,1)

7252 7333 71.00 (3,1)

84.72 84.87 82.41 (4,1)

0.9 37.20 37TW 3638 (4,1)

44.44 46.31 40.90 (3,1)

5937 60.19 57.81 (23)

6639 65.83 6630 (1,1)

Ocrhb^/D 113.7 118.7 112.6 (4,1)
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I ph
Table 3.10a: Dimensionless frequency Q .- (o a b A ^  , loaded edges clamped and other

edges simply supported (CCSS), aspect ratio: 1

a/b-1

Oo/Ocr Two-stress- Four-stress- Finite element Mode

function frmetion analysis

0.1 27.65 27.65 27.61 (1,1)

67.48 67.46 6959 (23)

129J 129.69 128.9 (33 )

210.8 210.8
*

(4,1)

0.5 20.76 20.75 20.83 (1,1)

56.77 56.65 56j^ (23 )

117.5 117.4 117.1 (33)

198.0 197\9 _* (43 )

0.9 9382 9379 9537 (1,1)

43.41 43.12 43.62 (23)

104.0 103.7 104.4 (33)

184.4 184.1 186.9 (43 )

Ocrhb^/D 87.70 92.84 9336 (1,1)

See text, page 66
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I phTable 3.10b: Dimensionless frequency Q = a x ib J -^  , loaded edges clamped and other

edges simply supported (CCSS), aspect ratio: 2

a/b=2

CTq/cr cr Two-stress-

function

Four-stress-

function

Finite element 

analysis

Mode

0.1 2&52 26.54 26J2 (1,1)

45.30 45.30 45.10 (2J )

76.22 76.21 74.58 (3,1)

116.6 116.6 114.5 (4,1)

0.5 2203 22.11 2218 (1,1)

3190 33.88 3191 (2,1)

61 00 60.91 59J8 (3,1)

99.77 9&59 97.99 (4,1)

0.9 1127 15.25 15.44 (2,1)

15.57 15.82 15.70 (1,1)

40.70 40.45 3&89 (3,1)

79.45 79.02 77.94 (4,1)

Ocrhb^/D 6192 73.81 7172 (2,1)

87



I phTable 3.10c: Dimensionless frequency Ç l= œ a b J ^  , loaded edges clamped and other

edges simply supported (CCSS), aspect ratio: 3

a/b=3

Oq/O cr Two-stress-

fimction

Four-stress-

function

Finite element 

analysis

Mode

0.1 33^0 3639 33.54 (1,1)

4&02 4602 44.86 (2J)

6448 6602 63.61 (3,1)

91.47 9L36 89.61 (4,1)

0.5 30JW 29.73 3063 (1,1)

35J4 35.10 3526 (2J)

48J5 49.01 48.12 (3J)

71.64 71.01 70.41 (4,1)

0.9 2041 19.07 19.88 (2,1)

2fr52 19.98 2063 (3J )

28.89 2840 29.09 (1,1)

44.12 4266 43.60 (4J)

acrhb^/D 6628 6965 6845 (3J)
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I  phTable 3.11: Dimensionless frequency Q .= coabA ^  of a plate with an aspect ratio of 1

and relative in-plane load ratio of 0.5 (from FE analysis)

Mode sequence s s s s s s c c CCCC CCSS

1 14.03(1,1) 22.42(1,1) 26.24(,1,1) 20.82(1,1)

2 40.45(2,1) 38.99(2,1) 54.08(2,1) 52.85(1,2)

3 48.58(1,2) 68.68(1,2) 71.81(1,2) 56.97(2,1)

4 75.13(2,2) 85.69(3,1) 98.77(2,2) 87.97(2,2)

5 90.41(3,1) 88.26(2,2) 111.5(3,1) 103.4(1,3)

6 100.3(1,3) 130.7(3,2) 134.3(1,3) 117.1(3,1)

7 123.7(3,2) 131.7(1,3) 151.7(3,2) 137.3(2,3)

8 127.5(2,3) 153.0(2,3) 161.2(2,3) 146.9(3,2)

9 162.9(4,1) 157.1(4,1) 193.8(4,1) 176.0(1,4)

10 173.4(1,4) 194.9(3,3) 211.5(3,3) 194.7(3,3)
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Table 3.12: Dimensionless Frequency Q - a x i b ^ j - ^  o f  a plate with an aspect ratio of 2

and relative in-plane load ratio of 0.5 (from FE analysis)

Mode sequence SSSS SSCC CCCC CCSS

1 20.97(1,1) 44.98(1,1) 45.28(1,1) 22.18(1,1)

2 28.16(2,1) 45.76(2,1) 48.50(2,1) 33.91(2,1)

3 48.56(3,1) 56.17(3,1) 64.37(3,1) 59.78(3,1)

4 81.67(4,1) 82.08(4,1) 96.15(4,1) 85.36(1,2)

5 84.36(1,2) 122.5(5,1) 129.1(1,2) 97.99(4,1)

6 96.48(2,2) 128.42(1,2) 139.0(2,2) 99.98(2,2)

7 117.8(3,2) 136.5(2,2) 142.1(5,1) 125.1(3,2)

8 126.1(5,1) 151.7(3,2) 157.1(3,2) 147.5(5,1)

9 149.7(4,2) 175.7(6,1) 186.4(4,2) 161.6(4,2)

10 181.7(6,1) 177.0(4,2) 200.6(6,1) 187.4(1,3)
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I phTable 3.13: Dimensionless Frequency Q .= œ a b J ^  of a plate with an aspect ratio of 3

and relative in-plane load ratio of 0.5 (from FE analysis)

Mode sequence SSSS SSCC CCCC CCSS

1 30.31(1,1) 66.96(2,1) 66.88(1,1) 30.53(1,1)

2 33.20(2,1) 67.40(1,1) 67.10(2,1) 35.26(2,1)

3 42.35(3,1) 68.53(3,1) 71.00(3,1) 48.12(3,1)

4 60.91(4,1) 76.93(4,1) 82.41(4,1) 70.41(4,1)

5 88.38(5,1) 95.45(5,1) 104.7(5,1) 101.5(5,1)

6 122.7(1,2) 124.7(6,1) 137.8(6,1) 123.0(1,2)

7 124.1(6,1) 163.9(7,1) 181.0(7,1) 132.2(2,2)

8 130.8(2,2) 189.5(1,2) 189.7(1,2) 140.8(6,1)

9 144.2(3,2) 195.2(2,2) 196.0(2,2) 147.5(3,2)

10 163.9(4,2) 204.1(3,2) 206.1(3,2) 169.6(4,2)
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Figure 3.8: Mode 1 o f CCSS plate with relative in-plane load o f 0.9 (aspect ratio: 1)
Dimensionless frequency Q = 9.537

Figure 3.9: Mode 2 of CCSS plate with relative in-plane load of 0.9 (aspect ratio: 1)
Dimensionless frequency £2 = 43.62
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Figure 3.10: Mode 3 o f CCSS plate with relative in-plane load o f 0.9 (aspect ratio; 1)
Dimensionless frequency Q = 50.98

Figure 3.11: Mode 4 of CCSS plate with relative in-plane load of 0.9 (aspect ratio: 1)
Dimensionless frequency = 81.72
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Figure 3.12: Mode 5 o f CCSS plate with relative in-plane load o f 0.9 (aspect ratio: 1)
Dimensionless frequency Q = 102.6

Figure 3.13: Mode 6 of CCSS plate with relative in-plane load of 0.9 (aspect ratio: 1)
Dimensionless frequency Cl = 104.4
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Figure 3.14: Mode 1 o f SSCC plate with relative in-plane load o f 0.9 (aspect ratio: 3)
Dimensionless frequency f2 = 36.71

Figure 3.15: Mode 2 of SSCC plate with relative in-plane load of 0.9 (aspect ratio: 3)
Dimensionless frequency Q  = 39.60
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Figure 3.16: Mode 3 o f SSCC plate with relative in-plane load o f 0.9 (aspect ratio: 3)
Dimensionless frequency Q = 55.29

Figure 3.17: Mode 4 of SSCC plate with relative in-plane load of 0.9 (aspect ratio: 3)
Dimensionless frequency D = 59.84
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Figure 3.18: Mode 5 o f SSCC plate with relative in-plane load o f 0.9 (aspect ratio: 3)
Dimensionless frequency D = 66.05

Figure 3.19: Mode 6 of SSCC plate with relative in-plane load of 0.9 (aspect ratio: 3)
Dimensionless frequency fl = 77.74

97



CHAPTER FOUR 

CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusions

The present work proposed in-plane elasticity solutions for thin isotropic 

rectangular plates subjected to half-sinusoidal in-plane edge loads on two opposite edges. 

From the various in-plane elasticity solutions developed, it was evident that the 

polynomial method did not give a satisfactory solution due to the presence o f excessive 

edge stresses. Consequently, by considering a superposition method and Fourier 

expansions, two different in-plane elasticity solutions are obtained: where the first 

solution is a simplified two-stress-function solution and the second is the four-stress- 

function solution. The present elasticity solutions exhibit the stress diffusion phenomenon 

at higher plate aspect ratios, in accordance with Saint-Venant’s principle. As a result o f 

this phenomenon, the in-plane x-direction stresses become uniform for most part o f the 

plate at higher plate aspect ratios. Also the present solutions result in y-direction normal 

stresses as well as in-plane shear stresses which are o f considerable magnitude 

throughout the plate.

Although in-plane elasticity solutions for the case o f parabolically loaded 

rectangular plates are available in the literature, they were found to be either approximate 

or violate the boundary conditions at the plate corners. In the present analysis, only the 

four-stress-flmction superposition method showed similar boundary condition violations
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at the plate eorners. The in-plane elastieity solutions are compared with finite element 

analysis results and found to be in very good agreement for various plate aspect ratios.

In the second part o f the present analysis, buckling loads are estimated using the 

in-plane elasticity solutions, and the results are compared against each other and with 

those from finite element analysis. Owing to the complexity o f  the resulting governing 

differential equation, an approximate method o f solution using Galerkin’s method is used 

for estimating the buckling loads. Convergence o f the trial functions considered is 

established for all plate edge conditions. The buckling results are tabulated for 

combinations o f simply supported and clamped edge conditions. Once again, close 

agreements o f the buckling results is observed between all the methods considered. 

Owing to the stress diffusion phenomenon, at higher plate aspect ratios, relatively higher 

magnitudes o f  stresses act near the edges. This behavior is very different than when one 

considers a stress distribution which is the same at all plate sections. As a result o f this, 

the plate sustains higher buckling loads than were obtained in the literature. Buckling 

loads o f up to 30 percent higher are observed in the present analysis.

The third part o f the present work deals with the flexural vibration characteristics 

o f rectangular plates under half-sinusoidal loads as described above. Once again, using 

the Galerkin method, frequencies are obtained for various edge conditions and using all 

in-plane elasticity solutions. The results are compared with those from finite element 

analysis and excellent agreement is observed for all plate sizes and edge conditions. 

Extensive results are tabulated for reference.
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4.2 Recommendations

From the in-plane elasticity solution, it is apparent that one cannot ignore the 

contribution o f the y-direction normal stresses as well as the shear stresses in general as 

they are o f considerable magnitude relative to the applied in-plane edge loads. Owing to 

the relatively large magnitudes o f the edge stresses, the polynomial solution is not 

recommended for plate aspect ratios o f more than 1. Among the other solutions, the two- 

stress-function and the Timoshenko solutions showed no spurious edge stresses at the 

boundaries. In this regard, the two-stress-function solution can be considered superior as 

it satisfied the governing differential equation. The four-stress-function solution is more 

complicated than the two-stress-function solution due to the additional stress functions 

and the associated Fourier expansions. All o f  the in-plane elasticity solutions developed 

in this study including the finite element method clearly exhibited the stress diffusion 

phenomenon at higher plate aspect ratios and therefore can not be neglected for 

estimating the buckling loads and the flexural vibration characteristics o f the plate.

In the buckling analysis, all the current in-plane elasticity solutions yield loads 

higher than the corresponding values from the literature. The dimensionless buckling 

loads are plotted for various plate edge conditions and the use o f these plots is 

recommended in place o f the existing plots in the literature. Also, the buckling loads 

obtained clearly indicate that the plate under such loading conditions can sustain higher 

buckling loads, which enables the designer to select plate sizes more efficiently. Clearly 

the stress diffusion phenomenon at higher plate aspect ratios caused the plate to sustain 

higher buckling loads. Also from the present study it was observed that various methods
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estimate the lowest buckling load for various plate edge conditions with the exception of 

the fbur-stress-tunetion solution. In general the two-stress-function solution estimate the 

lowest buckling load for most o f the eases.

Extensive flexural vibration frequencies are tabulated for all the plate edge 

conditions and with varying in-plane load ratios. All the analytical solutions and finite 

element solution show excellent agreement especially near smaller in-plane load ratios. 

From the results o f the flexural vibration analysis, one can estimate the resonant 

frequencies o f  plate structures from the present results which are plotted for various in- 

plane load ratios.

4.3 Future work

The present work can be extended in many facets to include other complexities 

involving geometry and material behavior. However, as a first step towards establishing 

the present behavior, one can conduct experimental analysis confirming the in-plane and 

buckling characteristics o f rectangular plates with sinusoidal edge loads. . In a similar 

fashion, the present work can be extended to include combinations o f other edge 

conditions such as free and guided edges. In general the Rayleigh-Ritz method seems to 

be promising owing to boundary condition relaxation for the trial functions.

Furthermore anisotropic and laminated composite plates could be considered as 

an extension o f the material behavior It is also possible to extend the present analysis for 

various applications involving spherical or cylindrical shell panels.
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APPENDIX I 

Computer code for two-stress-function in-plane solution written in Matlab

Notes: The following code is run on Matlab (Version 6.0.1). The constants tl ,  t2 and t3 

are the Fourier expansions o f the shear stress due to stress function (pi. These constants 

are to be calculated separately and are to be changed for any plate aspect ratio. Here “k” 

is the plate aspect ratio.

% This program calculates the constants o f in-plane analysis

% for two stress function approach.

k=1.2;

c= 1.5707963; 

pi=c*2.0;

denm=sinh(k*c)*cosh(k*c) + k*c; 

fl=(sinh(k*c) + k*c*cosh(k*c))/denm; 

f4= -1.0*k*c*sinh(k*c)/denm;

% tl,t2,t3 are Fourier expansions o f the shear stress due

% to stress fonction phi-1 at y/b=+/- 1 edges

tl=2.0159e-l;

t2=-3.923e-2;

t3=1.2771e-2;

c41=-l .0/(tanh(pi/k));
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c42=-l .0/(tanh(2.0*pi/k));

c4 3=-1.0/(tanh(3.0 * pi/k)) ;

pl=(pi/k+c41)*sinh(pi/k) + c41*pi*cosh(pi/k)/k;

p2=((2.0*pi/k)+c42)*sinh(2.0*pi/k) + c42*2.0*pi*cosh(2.0*pi/k)/k;

p3=((3.0*pi/k)+c43)*sinh(3.0*pi/k) + c43*3.0*pi*cosh(3.0*pi/k)/k;

c ll= -1 .0* tl/p l;

cl2=-1.0*t2/(2.0*p2);

Cl3=-1.0*t3/(3.0*p3);

c41=cll*c41;

c42=cl2*c42;

c43=cl3*c43;

q l l -  (cll*((pi/k)^2) + c41*2.0*pi/k)*k/pi;

q41= c41*((pi/k)^2)*k/pi;

q l2=  (cl2*((2.0*pi/k)^2) + c42*4.0*pi/k)*k/pi;

q42= c42*((2.0*pi/k)^2)*k/pi;

q l3=  (cl3*((3.0*pi/k)^2) + c43*6.0*pi/k)*k/pi;

q43= c43*((3.0*pi/k)'^2)*k/pi;

sum=-l ,0*(ql 1 *cosh(pi/k) + q41 *sinh(pi/k));

sum = sum + (ql2*cosh(2.0*pi/k) + q42*sinh(2.0*pi/k));

sum = sum - (ql3*cosh(3.0*pi/k) + q43*sinh(3.0*pi/k));

% R = Uniform stress, r = multiplication factor 

R=sum;

sum=-1.0 - q l 1 + q l2  - ql3 - R;
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r= -1.0/sum;

tm pl=fl + (4.0*f4/(k*pi)); 

tmp2=fl + (2.0*f4/(k*pi));

= %e\n',R); 

fprintf(l,'r = %e\n',r);

% Following stresses are compressive which can be directly 

% substituted into the Mathematiea files in the same order 

lprintf(l,'sigma x\n'); 

fpr intf( 1, '%e\t%e\n', fl * r, f4 * r) ; 

fiprintf(l,'%e\t%e\n',-l .0*ql 1 *r,-l .G*q41 *r);

Ipr intf( 1 ,'%e\t%e\n', - l.G*ql2*r,-l.G*q42*r);

Q)rintf( 1 ,'%e\t%e\n',- l.G*ql3*r,-l .G*q43 *r); 

fprintf( 1 ,'%e\n',R*r) ; 

fprintf(l,'sigma y\n');

fprintf( 1 ,'%e\t%e\n',-1 .G*tmp 1 *r,-1 .G*f4*r);

fprintf(l,'%e\t%e\n',el 1 *pi*r/k,c41 *pi*r/k);

fprintf(l,'%e\t%e\n',cl2*4.G*pi*r/k,c42*4.G*pi*r/k);

fprintf(l,'%e\t%e\n',cl3*9.G*pi*r/k,c43*9.G*pi*r/k);

iprintf( 1, 'sigma xy\n') ;

fprintf( 1, '%e\t%e\n', -1. G * tmp2 * r,-1. G * f4 * r) ;

iprintf(l,'%e\t%e\n',-l .G*r*(cl 1 *pi/k+c41),-1 .G*r*c41 *pi/k);

iprmtf(l,'%e\t%e\n',-2.G*r*(cl2*2.G*pi/k+c42),-2.G*r*c42*2.G*pi/k);

fprintf(l,'%e\t%e\n',-3.G*r*(cl3*3.G*pi/k+c43),-3.G*r*e43*3.G*pi/k);
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APPENDIX II

Computer code for calculating the in-planc stresses written in Matlab

fid=fopen('c;\twostressplotinput.txtVr');

% vector A contains elements for sig xx coefficients 

A = fscanf(fid,'%e',9);

% vector B contains elements for sig yy coeff 

B = fscanf(fid,'%e',8);

% vector C contains elements for sig xy coeff

C = fscanf(fid,'%e',8);

fclose(fid);

k=3;

pby2 = 1.5707963;

% N(xx) plot 

z = 1.0;

j = i;

for eta = 0.0:0.1:1.0 

y(j) = Gta;

si = ( A(l)*cosh(k*pby2*z) + A(2)*z*sinh(k*pby2*z) )*cos(pby2*eta); 

s2 = ( A(3)*cosh(2.0*pby2*eta/k) + A(4)*eta*sinh(2.0*pby2*eta/k) 

)*cos(2.0*pby2*z);

s3 = ( A(5)*cosh(4.0*pby2*eta/k) + A(6)*eta*sinh(4.0*pby2*eta/k)

) * cos(4.0 * pby2 * z) ;
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s4 ( A(7)*cosh(6.0*pby2*eta/k) + A(8)*eta*sinh(6.0*pby2*eta/k) 

)*cos(6.0*pby2*z);

x(j) = si + s2 + s3 + s4 + A(9);

j = j + i ;

. end 

plot(x,y)

% N(yy) plot 

z = 1.0;

j = i;

for eta = 0.0:0.1:1.0 

xl(i) = eta;

si = ( B(l)*cosh(k*pby2*z) + B(2)*z*sinh(k*pby2*z) )*cos(pby2*eta); 

s2 = ( B(3)*cosh(2.0*pby2*eta/k) + B(4)*eta*sinh(2.0*pby2*eta/k) 

)*cos(2.0*pby2*z);

s3 = ( B(5)*cosh(4.0*pby2*eta/k) + B(6)*eta*sinh(4.0*pby2*eta/k) 

)*cos(4.0*pby2*z);

s4 = ( B(7)*cosh(6.0*pby2*eta/k) + B(8)*eta*sinh(6.0*pby2*eta/k) 

)*cos(6.0*pby2*z);

y l 0  = si + s2 + s3 + s4;

j = j  + 1;

end

% N(xy) plot 

eta = 1.0;
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j = i;

for z = 0.0:0.1:1.0 

x2(j) = z;

si = ( C(l)*sinh(k*pby2*z) + C(2)*z*cosh(k*pby2*z) )*sin(pby2*eta); 

y 3 0  = s l;

s2 = ( C(3)*sinh(2.0*pby2*eta/k) + C(4)*eta*cosh(2.0*pby2*eta/k) 

)*sin(2.0*pby2*z);

s3 = ( C(5)*sinh(4.0*pby2*eta/k) + C(6)*eta*cosh(4.0*pby2*eta/k) 

)*sin(4.0*pby2*z);

s4 = ( C(7)*sinh(6.0*pby2*eta/k) + C(8)*eta*cosh(6.0*pby2*eta/k) 

)*sin(6.0*pby2*z); 

y2(j) = si + s2 + s3 + s4;

j = j + i ;

end
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APPENDIX III 

Sample finite element analysis input data for MSC-MARC

Notes on the input data

The data file given below is only a sample file in which only part o f the nodal and 

element input data is shown for brevity. However, all the remaining data fields are shown 

exactly. Although this input data file is generated by the software, certain fields can be 

edited using a text processor. The data set can be divided in two major groups in which 

the first sub group contains all the element geometry and boundary condition parameters 

in addition to the analysis options. In the second part all load cases are defined in the 

order in which they are applied. For the elastic buckling analysis, the option “large disp” 

has to be specified in addition to the “buckle” option at the beginning o f the file. With 

these two options, the software superimposes the second load case (which is buckling) on 

the first load case (named Prestress in the present analysis) and solves the whole system.

Prior to the “Loadcase” option, a “dist loads” option can be seen towards the end 

o f the first group which represents the loading condition at zero time step. Typically the 

loads applied using this option will be applied at zero time step and the loads specified 

using the “Load case” option are applied at any other time step that can be defined. In a 

static stress analysis, either option will give the same results. However, for buckling 

analysis, only those loads that are specified using the “Load case” option are considered 

for prestress condition upon which the buckling analysis will be superposed.

The element 72 (rectangular plate element) has 4 comer nodes and 4 nodes at the 

mid side o f the edges. Each mid node has a degree o f fteedom which is rotation o f the
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edge about itself. In order to model the clamped edge condition, one has to specify this 

DOF (degree o f freedom) to be zero.

In case o f dynamic analysis, the buckle option will be replaced by the modal 

frequency option with number o f frequencies to be extracted as a parameter. The 

frequencies are always arranged starting from the lowest one. The important difference in 

case o f the dynamic analysis is the inclusion o f an additional load case with “zero” in

plane loads. This causes the software to superpose the first load case (Prestress in the 

present case) with the dynamic modal analysis load case.
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title Sinusoidal load (trial 2)
$....MARC input file produced by MSC.Marc Mentat 2001r2
sizing 1000000 800 2521 302
elements 72
processor 1 1 1
large disp
buckle 2 2 1 0 0 0
all points
dist loads 20 2 0 
shell sect 3 
setname 7 
end
$......................
solver

4 0 0 0 0 0 0 0  
optimize 10
connectivity 

0 0 0 
1 72 1 2 43 42 862 863 864 865
2 72 2 3 44 43 866 867 868 863
3 72 3 4 45 44 869 870 871 867
4 72 4 5 46 45 872 873 874 870
5 72 5 6 47 46 875 876 877 873
6 72 6 7 48 47 878 879 880 876
7 72 7 8 49 48 881 882 883 879
8 72 8 9 50 49 884 885 886 882
9 72 9 10 51 50 887 888 889 885
10 72 10 11 52 51 890 891 892 888

coordinates
3 2521 0 0
1 0 .00000+0 0 .00000+0 0 .00000+0
2 3.75000-2 0.00000+0 0.00000+0
3 7.50000-2 0.00000+0 0.00000+0
4 1.12500-1 1.1102-16 0.00000+0
5 1.50000-1 0.00000+0 0.00000+0
6 1.87500-1 0.00000+0 0.00000+0
7 2.25000-1 0.00000+0 0.00000+0
8 2.62500-1 0.00000+0 0.00000+0
9 3.00000-1 0.00000+0 0.00000+0
10 3.37500-1 0.00000+0 0.00000+0

2510 1.31250+0 4.87500-1 0.00000+0
2511 1.29375+0 4.99219-1 0.00000+0
2512 1.35000+0 4.87500-1 0.00000+0
2513 1.33125+0 4.99219-1 0.00000+0
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2514 1.38750+0 4.87500-1 0.00000+0
2515 1.36875+0 4.99219-1 0.00000+0
2516 1.42500+0 4.87500-1 0.00000+0
2517 1.40625+0 4.99219-1 0.00000+0
2518 1.46250+0 4.87500-1 0.00000+0
2519 1.44375+0 4.99219-1 0.00000+0
2520 1.49766+0 4.87500-1 0.00000+0
2521 1.48125+0 4.99219-1 0.00000+0 

isotropic

1 0 0 0 Omateriall
2.0000+11 3.00000-1 7.80000+3 0.00000+0 0.00000+0 0.00000+0 0.00000+0 

0 .00000+0
1 to 800

geometry

1.00000-2 0 .00000+0 0 .00000+0 0 .00000+0 0 .00000+0 0 .00000+0 0 .00000+0 
1 to 800

fixed disp

0 .00000+0
1
21 62 103 144 185 226 267 308 349 c

390 431 472 513 554 595 636 677 718 c
759 800 841

00000+0
J

1 2 3 4 5 6 7 8 9 c
10 11 12 13 14 15 16 17 18 c
19 20 21 22 23 24 25 26 27 c
28 29 30 31 32 33 34 35 36 c
37 38 39 40 41 42 82 83 123 c
124 164 165 205 206 246 247 287 288 c
328 329 369 370 410 411 451 452 492 c
493 533 534 574 575 615 616 656 657 c
697 698 738 739 779 780 820 821 822 e
823 824 825 826 827 828 829 830 831 c
832 833 834 835 836 837 838 839 840 c
841 842 843 844 845 846 847 848 849 c
850 851 852 853 854 855 856 857 858 c
859 860 861

,00000+0

411 to 451
0 .00000+0

1
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862 865 866 869 872 875 878 881 884 c
887 890 893 896 899 902 905 908 911 c
914 917 920 923 926 929 932 935 938 c
941 944 947 950 953 956 959 962 965 c
968 971 974 977 980 981 985 1062 1066 c
1143 1147 1224 1228 1305 1309 1386 1390 1467 c
1471 1548 1552 1629 1633 1710 1714 1791 1795 c
1872 1876 1953 1957 2034 2038 2115 2119 2196 c
2200 2277 2281 2358 2362 2439 2442 2443 2445 c
2447 2449 2451 2453 2455 2457 2459 2461 2463 c
2465 2467 2469 2471 2473 2475 2477 2479 2481 c
2483 2485 2487 2489 2491 2493 2495 2497 2499 c
2501 2503 2505 2507 2509 2511 2513 2515 2517 c
2519 2520 2521

dist loads

21 0.00000+0 0.00000+0 0.00000+0 4
40 800

41 0.00000+0 0.00000+0 0.00000+0 4 
1 761

21 0.00000+0 0.00000+0 0.00000+0 5
80 760

41 0.00000+0 0.00000+0 0.00000+0 5
41 721

21 0 .00000+0 0 .00000+0 0 .00000+0 6
120 720

41 0.00000+0 0.00000+0 0.00000+0 6
81 681

21 0.00000+0 0.00000+0 0.00000+0 7
160 680 

41 0.00000+0 0.00000+0 0.00000+0 7
121 641

21 0.00000+0 0 .00000+0 0 .00000+0 8
200 640

41 0.00000+0 0.00000+0 0.00000+0 8 
161 601 

21 0.00000+0 0.00000+0 0.00000+0 9
240 600

41 0.00000+0 0.00000+0 0.00000+0 9
201 561

21 0 .00000+0 0 .00000+0 0 .00000+0 10 
280 560

41 0.00000+0 0.00000+0 0.00000+0 10
241 521

21 0 .00000+0 0 .00000+0 0 .00000+0 11 
320 520
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41 0.00000+0 0.00000+0 0.00000+0 11 
281 481

21 0 .00000+0 0 .00000+0 0 .00000+0 12
360 480

41 0.00000+0 0.00000+0 0.00000+0 12 
321 441

21 0.00000+0 0.00000+0 0.00000+0 13 
400 440

41 0.00000+0 0.00000+0 0.00000+0 13
361 401 

no print 
summary 
post

1 16 17 0 0 19 20 0 1 0 0 0 0 0
311 0

parameters
1.00000+0 1.00000+9 1.00000+2 1.00000+6 2.50000-1 5.00000-1 1.50000+0-5.00000-1 
8.62500+0 2.00000+1 1.00000-4 1.00000-6 1.00000+0 1.00000-4 
8.31400+0 2.73150+2 0.00000+0 0.00000+0 5.67051-8 

end option 
$ ......................
$.... start o f loadcase Prestress
title Prestress
control
99999 10 0 0 0 1 0 0 1 0 0
1.00000-1 0 .00000+0 0 .00000+0 0 .00000+0 0 .00000+0 0 .00000+0 0 .00000+0 

0 .00000+0 
parameters
1.00000+0 1.00000+9 1.00000+2 1 00000+6 2.50000-1 5.00000-1 1.50000+0-5.00000-1 
8.62500+0 2.00000+1 1.00000-4 1.00000-6 1.00000+0 1.00000-4 
8.31400+0 2.73150+2 0.00000+0 0.00000+0 5.67051-8 

auto load 
1 0 10 

time step 
1.00000+0 

dist loads 0

21 6.54080+4 0.00000+0 0.00000+0 4
40 800

41 6.54080+4 0.00000+0 0.00000+0 4 
1 761

21 1.94579+5 0.00000+0 0.00000+0 5 
80 760

41 1.94579+5 0.00000+0 0.00000+0 5
41 721

21 3.19024+5 0.00000+0 0.00000+0 6
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120 720
41 3.19024+5 0.00000+0 0.00000+0 6 

81 681
21 4.35594+5 0.00000+0 0.00000+0 7 

160 680 
41 4.35594+5 0.00000+0 0.00000+0 7

121 641
21 5.41422+5 0.00000+0 0.00000+0 8

200 640
41 5.41422+5 0.00000+0 0.00000+0 8 

161 601
21 6.33945+5 0.00000+0 0.00000+0 9

240 600
41 6.33945+5 0.00000+0 0.00000+0 9

201 561
21 7.10845+5 0.00000+0 0.00000+0 10

280 560
41 7.10845+5 0.00000+0 0.00000+0 10

241 521
21 7.70269+5 0.00000+0 0.00000+0 11

320 520
41 7.70269+5 0.00000+0 0.00000+0 11

281 481
21 8.10664+5 0.00000+0 0.00000+0 12

360 480
41 8.10664+5 0.00000+0 0.00000+0 12

321 441
21 8.31145+5 0.00000+0 0.00000+0 13 

400 440
41 8.31145+5 0.00000+0 0.00000+0 13

361 401 
continue
$....end o f loadcase Prestress 
$......................
$....start o f loadcase Buckle 
title Buekle 
buckle 

40 1.00000-4 0 
continue 
recover 

1 2 2 
continue
$....end o f loadcase Buckle 
$ ......................
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