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CHAPTER 1

INTRODUCTION

The Standard Model (SM) of electroweak interactions [1], based on the gauge

symmetry group SU(2)L × U(1)Y , provides a highly successful description of elec-

troweak precision tests (EWPT) [2, 3]. One fundamental ingredient of the SM is the

Higgs mechanism [4], which accomplishes electroweak symmetry breaking (EWSB)

and at high energies unitarizes massive W± and Z scattering through the presence of

the scalar Higgs doublet [5]. Although the mass of the Higgs boson is not predicted

by the SM, accurate measurements of the top quark and the W boson mass at the

Tevatron, as well as the Z boson mass at LEP, have narrowed the SM Higgs boson

mass between 80 and 200 GeV [3]. Failure to observe the SM Higgs boson at LEP2

has also placed a direct lower bound of 114 GeV on its mass [6]. The dominant decay

modes of the SM Higgs boson are to bb, WW , ZZ or tt, depending on its mass.

Extensions of the SM may avoid constraints on the Higgs mass, and may allow Higgs

bosons with masses less than the above limits. The dominant decay modes of the

Higgs bosons can also be altered in such extensions, thus transforming the discovery

signals for the Higgs bosons at the Large Hadron Collider (LHC). However, there is

as yet no direct evidence of the Higgs boson, so that the details of the Higgs sector,

if it even exists, remain a mystery. Thus, it is important to explore alternative Higgs

sector scenarios.

One interesting scenario involves the role of the Higgs sector in neutrino mixing.

The existence of neutrino masses is now well established experimentally [7,8]. At 1σ,
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the mass-squared differences and mixing angles are [7]:

∆m2
21 = 7.65(+0.23/− 0.20)× 10−5 eV 2, ∆|m2

31| = 2.40(+0.13/− 0.11)× 10−3 eV 2,

and

sin2 θ23 = 0.50(+0.022/− 0.016), sin2 θ12 = 0.341(+0.07/− 0.06),

sin2 θ13 < 0.035.

These values are in good agreement with a tribimaximal mixing pattern given by the

mixing matrix [9, 10]

UMNS =




√
2
3

1√
3

0

− 1√
6

1√
3
− 1√

2

− 1√
6

1√
3

1√
2




P (1.1)

where P is a diagonal phase matrix. This corresponds to

sin2 θ23 = 1/2, sin2 θ12 = 1/3, sin2 θ13 = 0.

It has long been known that such a mixing pattern can be obtained using a finite

family symmetry [10-25] such as A4 [19-25]. In these models, A4 is broken to a Z2

subgroup in the neutrino sector by a triplet Higgs, with the VEV structure (0, 1, 0)

or some permutation thereof, and to a Z3 subgroup in the charged lepton sector

by a triplet Higgs, with the VEV structure (1, 1, 1). However, there is a serious

technical problem with this, in that couplings between the Higgs fields responsible for

the symmetry breaking will force the VEV’s to align, upsetting the desired breaking

pattern [21-25]. To overcome this problem, one can introduce more complicated

symmetries. In Section 2, we consider models where the SM lepton families belong

to representations of the finite symmetry which are not faithful (that is, not every

member of the group is represented by a distinct transformation). In effect, the
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Higgs sector knows about the full symmetry while the lepton sector does not. We

consider a renormalizable non-supersymmetric gauge theory with an additional finite

symmetry that has the semi-direct product structure G = (G1 × G2) o A4, with

G1 = S3×S3×S3×S3 and G2 = Z2×Z2×Z2. A symmetry thus structured will contain

G1, G2, and G1 × G2 as invariant subgroups, so that G will have representations

corresponding to the homomorphisms G/(G1 × G2) ∼ A4, G/G1 ∼ G2 o A4, and

G/G2 ∼ G1oA4. SM leptons can then be assigned to representations of A4. Neutrino

masses are generated by a Higgs field φ, belonging to a 16-dimensional representation

of G1 o A4, while charged-lepton masses are generated by a Higgs field χ, belonging

to a 6-dimensional representation of G2oA4. The additional symmetries, G1 and G2,

prevent quadratic and cubic interactions between φ and χ and allow only a trivial

quartic interaction (i.e., the interaction is the product of quadratic invariants) that

does not cause an alignment problem. In this way, the alignment problem is addressed

without altering the desired properties of the family symmetry, so that neutrino

mixing can be explained using only symmetries which are broken spontaneously by

the Higgs mechanism.

However, no fundamental scalar particle has been observed yet in nature, and as

long as there is no direct evidence for the existence of the Higgs boson, the actual

mechanism of EWSB remains a mystery. In case the Higgs boson will also not be

found at the Tevatron or the LHC, it will therefore be necessary to consider alternative

ways to achieve EWSB without a Higgs. We explore this possibility in Section 3.

It is well known, that in extra dimensions, gauge symmetries can also be broken

by boundary conditions (BC’s) on a compact space [27]. Here, a geometric ”Higgs”

mechanism ensures tree-level unitarity of longitudinal gauge boson scattering through

a tower of Kaluza-Klein (KK) [28] excitations [29]. The original model for Higgsless

EWSB [30] is an SU(2)L×SU(2)R×U(1)B−L gauge theory compactified on an interval

[0, πR] in five-dimensional (5D) flat space. At one end of the interval, SU(2)R ×
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U(1)B−L is broken to U(1)Y . At the other end, SU(2)L × SU(2)R is broken to the

diagonal subgroup SU(2)D, thereby leaving only U(1)Q of electromagnetism unbroken

in the effective four-dimensional (4D) theory. Although this model exhibited some

similarities with the SM, the ρ parameter deviated from unity by ∼ 10% and the

lowest KK excitations of the W± and Z were too light (∼ 240 GeV ) to be in agreement

with experiment. These problems have later been resolved by considering the setup

in warped space [33]. Based on the same gauge group, similar effects can be realized

in 5D flat space [32], when 4D brane kinetic terms [34–36] dominate the contribution

from the bulk. In 5D Higgsless models, a ρ parameter close to unity is achieved at the

expense of enlarging the SM gauge group by an additional gauge group SU(2)R, which

introduces a gauged custodial symmetry in the bulk. However, it is possible to obtain

consistent 6D Higgsless models of EWSB, which are based only on the SM gauge group

SU(2)L × U(1)Y and allow the ρ parameter to be set equal to unity. We consider a

Higgsless model for EWSB in six dimensions, which is based only on the SM gauge

group SU(2)L × U(1)Y , where the gauge bosons propagate in the bulk. The model

is formulated in flat space with the two extra dimensions compactified on a rectangle

and EWSB is achieved by imposing consistent BC’s. The higher KK resonances of

W± and Z decouple below ∼ 1TeV through the presence of a dominant 4D brane

induced gauge kinetic term. The ρ parameter is arbitrary and can be set exactly

to one by an appropriate choice of the bulk gauge couplings and compactification

scales. Unlike in the 5D theory, the mass scale of the lightest gauge bosons W and

Z is solely set by the dimensionful bulk couplings, which (upon compactification via

mixed BC’s) are responsible for EWSB. We calculate the tree-level oblique corrections

to the S, T, and U parameters and find that they are in better agreement with data

than in proposed 5D warped and flat Higgsless models.

In Section 4, we present a model that includes a second Higgs doublet that pro-

vides an alternate explanation for the tiny masses of the SM neutrinos, as well as
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possibilities for altering signals for discovery of the Higgs at the LHC. Our proposal

is to extend the SM electroweak symmetry to SU(2)L × U(1) × Z2 and introduce

three SU(2)×U(1) singlet right handed neutrinos, NR, as well as an additional Higgs

doublet, φ. While the SM symmetry is spontaneously broken by the VEV of an EW

doublet χ at the 100 GeV scale, the discrete symmetry Z2 is spontaneously broken by

the tiny VEV of this additional doublet φ at a scale of 10−2 GeV . Thus in our model,

tiny neutrino masses are related to this Z2 breaking scale. We note that although our

model has extreme fine tuning, that is no worse than the fine tuning problem in the

usual GUT model. Many versions of the two Higgs doublet model have been exten-

sively studied in the past [37]. The examples include: a) a supersymmetric two Higgs

doublet model, b) non-supersymmetric two Higgs doublet models i) in which both

Higgs doublets have vacuum expectation values (VEV’s) with one doublet coupling

to the up type quarks only, while the other coupling to the down type quarks only,

ii) only one doublet coupling to the fermions, and iii) only one doublet having VEV’s

and coupling to the fermions [38]. What is new in our model is that one doublet

couples to all the SM fermions except the neutrinos, and has a VEV which is same as

the SM VEV, while the other Higgs doublet couples only to the neutrinos with a tiny

VEV ∼ 10−2 eV . This latter involves the Yukawa coupling of the left-handed SM

neutrinos with a singlet right-handed neutrino, NR. The left-handed SM neutrinos

combine with the singlet right-handed neutrinos to make massive Dirac neutrinos.

The neutrino mass is so tiny because of the tiny VEV of the second Higgs doublet,

which is responsible for the spontaneous breaking of the discrete symmetry, Z2. Note

that in the neutrino sector, our model is very distinct from the sea-saw model. Lepton

number is strictly conserved, and hence no NRNR mass terms are allowed. Thus the

neutrino is a Dirac particle, and there is no neutrino-less double β decay in our model.

In the Higgs sector, in addition to the usual massive neutral scalar and pseudoscalar

Higgs, and two charged Higgs, our model contains one essentially massless scalar
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Higgs. We will show that this is still allowed by the current experimental data and

can lead to an invisible decay mode of the SM-like Higgs boson, thus complicating

the Higgs searches at the Tevatron and the LHC.
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CHAPTER 2

Unfaithful Representations of Finite Groups and Tribimaximal Neutrino

Mixing

2.1 The Discrete Symmetry

As described in the Introduction, we consider a renormalizable non-supersymmetric

gauge theory with an additional finite symmetry given by the semi-direct product1

G = (G1×G2)oA4, with G1 = S3×S3×S3×S3 and G2 = Z2×Z2×Z2. The group

A4 can be described using two generators obeying the relations,

X2 = Y 3 = E, XY X = Y 2XY 2, (2.1)

where E is the identity. The irreducible representations are one real singlet, 1; two

complex singlets, 1′ and 1′′; and one real triplet, 3. Table 1 gives X and Y in each of

these representations for a certain choice of basis. The S3 generators, Ai and Bi, and

the Z2 generators, Ci, obey

A3
i = B2

i = E, BiAiB
−1
i = A−1

i , C2
i = E, (2.2)

and Ci commutes with Ai and Bi. The remaining relations defining the full symmetry

are

XA1X
−1 = A2, XA2X

−1 = A1, XA3X
−1 = A4, XA4X

−1 = A3,

1The semi-direct product, N oH, contains N and H as subgroups and obeys hnh−1 ∈ N for all

n ∈ N and h ∈ H [39]. Thus, N is an invariant subgroup. The number of elements in the group,

denoted by |N oH|, is |N ||H|. The semi-direct product exists when H has a factor group which is

a subgroup of the automorphism group of N .
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X Y

1 1 1

1′ 1 ω

1′′ 1 ω2

3




−1 0 0

0 1 0

0 0 −1







0 0 1

1 0 0

0 1 0




ω = e2iπ/3

Table 2.1: This table shows the matrices representing the generators in each irrep. of

A4, in a certain basis.

XB1X
−1 = B2, XB2X

−1 = B1, XB3X
−1 = B4, XB4X

−1 = B3, (2.3)

Y A1Y
−1 = A1, Y A2Y

−1 = A3, Y A3Y
−1 = A4, Y A4Y

−1 = A2,

Y B1Y
−1 = B1, Y B2Y

−1 = B3, Y B3Y
−1 = B4, Y B4Y

−1 = B2, (2.4)

XC1X
−1 = C1C2C2, XC2X

−1 = C3, XC3X
−1 = C2,

Y C1Y
−1 = C2, Y C2Y

−1 = C3, Y C3Y
−1 = C1. (2.5)

It’s easy to see that if C1, C2, and C3 are all represented by the identity matrix,

then (6) is trivially satisfied. So in this case, one need only find representations that

respect Eqs. (2)-(5). But this is equivalent to finding representations of G1oA4. The

representations of this type that we will be using are a real 16-dimensional represen-

tation, a real 48-dimensional representation, and a real 8-dimensional representation.

These will be referred to hereafter as 16AB, 48AB, and 8AB. The matrices representing

the remaining generators in each of these representations can be found in Section 2.3

8



below. Similarly, if A1, A2, A3, A4, B1, B2, B3, and B4 are all represented by the

identity matrix, then (4) and (5) are trivially satisfied. Finding these representations

corresponds to finding representations of G2 o A4. For this type, we will be using a

real 6-dimensional representation, which we will call 6C . The matrices representing

the remaining generators in this representation can also be found in Section 2.3. Fi-

nally, if the Ai’s, Bi’s, and Ci’s are all represented by the identity matrix, then the

only non-trivial relation is (2), corresponding to the representations of A4 given in

Table 1. These representations will be used for SM leptons.

2.2 The Model

The SM lepton assignments under A4 are

eR1 ∼ 1, eR2 ∼ 1′, eR3 ∼ 1′′, (L1, L2, L3) ∼ 3. (2.6)

The finite symmetry is broken at a scale M∗, which is large compared to the weak

scale, by two Higgs fields, φ and χ. Neutrino Dirac masses are generated by the real

Higgs field φ belonging to 16AB, while charged lepton masses are generated by the real

Higgs field χ belonging to 6C . Symmetry-invariant interactions between φ and χ must

consist of products of G1 invariants constructed from φ with G2 invariants constructed

from χ. The 16-dimensional representation to which φ belongs is (2, 2, 2, 2) with

respect to G1 = S3 × S3 × S3 × S3, so that there is only one quadratic G1 invariant

that can be constructed with φ, which is invariant under the full symmetry. Thus,

there are no cubic invariants involving both φ and χ, and the only quartic invariant

containing both is a trivial product of quadratic invariants, which does not generate

a VEV alignment problem. Then the potential of φ and χ has the form

Vφχ = a1f1(φ, φ) + a2f2(χ, χ) + b1g1(φ, φ, φ) + b2g2(χ, χ, χ) + c1h1(φ) + c2h2(φ)

+c3h3(χ) + c4h4(χ) + c5h5(χ) + c6h6(χ) + c7f1(φ, φ)f2(χ, χ), (2.7)

9



where the functions f1, f2, g1, g2, h1, h2, h3, h4, h5, and h6 are given in Section 2.4

below.

The neutrino masses are generated from φ by integrating out multiplets of heavy

right-handed neutrinos, with masses at a scale M∗ which is large compared to the EW

scale. These multiplets are N ∼ 3, N ′ ∼ 48AB, and N ′′ ∼ 8AB. If the Z2 subgroup

of A4 generated by X is left unbroken by the VEV of φ (along with an additional

accidental Z2 that is actually part of S4, see [41]), the light neutrino mass matrix is

forced to have the form

Mν =




aν 0 cν

0 bν 0

cν 0 aν




. (2.8)

This matrix is diagonalized by

Uν =
1√
2




1 0 −1

0
√

2 0

1 0 1




Pν , (2.9)

where diagonal Pν is a phase matrix. The charged lepton masses are generated from

χ by integrating out multiplets of heavy vector-like fermions, whose masses are also

at the high scale M∗, with the same gauge quantum numbers as right-handed charged

leptons. These are EL,R ∼ 3 and E ′
L,R ∼ 6C . If the Z3 subgroup of A4 generated by

Y is left unbroken by the VEV of χ, the light left-handed charged lepton mass matrix

is forced to have the form

M †
eMe =

1√
3




1 1 1

1 ω ω2

1 ω2 ω







ae 0 0

0 be 0

0 0 ce




1√
3




1 1 1

1 ω2 ω

1 ω ω2




= UL




ae 0 0

0 be 0

0 0 ce




U †
L (2.10)
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SU(2)L U(1)Y (S4
3 × Z3

2)o A4

L 2 -1/2 3

eR1 1 -1 1

eR2 1 -1 1′

eR3 1 -1 1′′

N 1 0 3

N ′ 1 0 48AB

N ′′ 1 0 8AB

EL 1 -1 3

ER 1 -1 3

E ′
L 1 -1 6C

E ′
R 1 -1 6C

φ 1 0 16AB

χ 1 0 6C

H 2 -1/2 1

Table 2.2: This table shows the assignments of the fermions and Higgs fields under

SU(2)L × U(1)Y × [(S4
3 × Z3

2)o A4]

Eqs. (10) and (11) then give the desired form (1) for the mixing matrix UMNS =

UT
L U∗

ν . The symmetry assignments of the fermions and Higgs fields in the model are

summarized in Table 2.

From the matrices given in Section 2.3, it can be seen that the most general VEV

structure for χ that leaves the Z3 subgroup of A4 generated by Y unbroken is

〈χ〉 = (vχ1, vχ2, vχ1, vχ2, vχ1, vχ2). (2.11)

Upon minimizing the potential, one finds that vχ2 = 0, vχ1 6= 0 is allowed. Here,

C1C2C3 is left unbroken in addition to Y . Since the SM leptons do not transform un-

der the Ci’s, these additional symmetries do not affect the light lepton mass matrices.
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So the desired minimum is

〈χ〉 = (vχ, 0, vχ, 0, vχ, 0). (2.12)

Since C1C2C3, and Y commute, the subgroup they generate is Z2 ×Z3. Of course, χ

also trivially leaves all Ai’s and Bi’s unbroken.

The most general VEV structure for φ that leaves the Z2 subgroup of A4 generated

by X unbroken is

〈φ〉 = (vφ1, vφ2, vφ2, vφ3, vφ4, vφ5, vφ6, vφ7, vφ4, vφ6, vφ5, vφ7, vφ9, vφ9, vφ9, vφ10). (2.13)

Upon minimizing the potential, we find that

〈φ〉 = (0, 0, 0, 0, vφ, vφ, vφ, vφ, vφ, vφ, vφ, vφ, 0, 0, 0, 0) (2.14)

is acceptable. In addition to X, this VEV leaves the generators B1, B2, B3B4, and

A3A4 unbroken. These form the subgroup D4 × S3, with D4 generated by B1, B2,

and X and with S3 generated by A3A4 and B3B4. Of course, φ also leaves all Ci’s

unbroken. (To leave the accidental Z2 ⊂ S4 mentioned above unbroken requires

vφ5 = vφ6 in (14), which is satisfied in (15).)

From (8), we find that vφ and vχ in (13) and (15) must be solutions to

2a1 + 3b1vφ + 2(c1 + c2)v
2
φ + 6c7v

2
χ = 0, 2a2 + 3b2vχ + 4(c3 + c5)v

2
χ + 16c7v

2
φ = 0.

Neutrino Dirac masses are generated through

Lν = λ(L1N1 + L2N2 + L3N3)H̃ + mN(N2
1 + N2

2 + N2
3 ) + m′

Nf3(N
′, N ′) + m′′

Nf4(N
′′, N ′′)

+α1g3(N, φ, N ′) + α2g4(N
′′, φ, N ′) + βg5(φ,N ′, N ′), (2.15)

where the functions f3, f4, g3, g4, and g5 are given in Section 2.4. N ∼ 3 is required

because the SM Higgs H only breaks EW symmetry, so that it can only cause left-

handed neutrinos to mix with a triplet. Since 3 × 16AB = 48AB, φ ∼ 16AB induces

12



mixing between N and N ′ ∼ 48AB. N ′′ ∼ 8AB is needed to remove unwanted acci-

dental symmetries. Upon integrating out the heavy right-handed neutrinos, the light

neutrino mass matrix (9) is obtained (see Section 2.5). The light neutrino masses are

found to be

m1 =

∣∣∣∣∣
λ2v2

2

m′
Nm′′

N − 4α2
2v

2
φ + βvφm

′′
N

−2α2
1v

2
φm

′′
N + mN

(
m′

Nm′′
N − 4α2

2v
2
φ + βvφm′′

N

)
∣∣∣∣∣ ,

m2 =

∣∣∣∣∣
λ2v2

2

m′
Nm′′

N − 2α2
2v

2
φ + βvφm

′′
N

−2α2
1v

2
φm

′′
N + mN

(
m′

Nm′′
N − 2α2

2v
2
φ + βvφm′′

N

)
∣∣∣∣∣ ,

m3 =

∣∣∣∣∣
λ2v2

2

m′
N + βvφ

−2α2
1v

2
φ + mN(m′

N + βvφ)

∣∣∣∣∣ .

Charged lepton masses are generated through

Le = κ(ER1L1 + ER2L2 + ER3L3)H + mE(ER1EL1 + ER2EL2 + ER3EL3) + m′
Ef2(E

′
R, E ′

L)

+γ1g6(ER, E ′
L, χ) + γ2g6(EL, E ′

R, χ) + ε1eR1f2(E
′
L, χ) + ε2g7(eR2, E

′
L, χ) + ε3g8(eR3, E

′
L, χ)

+η1g2(E
′
R, E ′

L, χ) + η2g2(E
′
L, E ′

R, χ) + c.c., (2.16)

where the functions g6, g7, and g8 are once again given in Section 2.4. Upon integrating

out the heavy fermions, the light charged lepton mass-squared matrix (11) is obtained

(see Section 2.6). The masses are

m2
e =

3|κε1γ2v
2
χv|2

3|ε1vχ(mE + γ2vχ)|2 + |mE(m′
E + η1vχ + η2vχ)− γ1γ2v2

χ|2
,

m2
µ =

3|κε2γ2v
2
χv|2

3|ε2vχ(mE + ωγ2vχ)|2 + |mE(m′
E + ω2η1vχ + ωη2vχ)− γ1γ2v2

χ|2
,

m2
τ =

3|κε3γ2v
2
χv|2

3|ε3vχ(mE + ω2γ2vχ)|2 + |mE(m′
E + ωη1vχ + ω2η2vχ)− γ1γ2v2

χ|2
.
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2.3 Derivation of Representations

Let H ⊂ G, and assume that we understand the representation theory of H. G

can be decomposed into cosets of H,

G =
n∑

i=1

siH =
n∑

i=1

{sih| h ∈ H}, (2.17)

where the number n of cosets is equal to the number of elements in G divided by the

number of elements in H. The coset decomposition is independent of the choice of the

representative si for each coset. Let γ be a k-dimensional irreducible representation

of H. It induces a representation γ↑ of G given by

γ↑(g)ij =
∑

h∈H

γ(h)δ(h, s−1
i gsj). (2.18)

In other words, the ij sub-block of γ↑ is γ(s−1
i gsj) when s−1

i gsj ∈ H and is zero

otherwise. Note that the dimension of the induced representation is kn. In general,

γ↑ is reducible. Up to this point, it was not necessary to assume that H is invariant.

Let us now do so,

h ∈ H =⇒ ghg−1 ∈ H, ∀g ∈ G.

Then for each g ∈ G, we can define a new representation γg from γ

γg(h) = γ(ghg−1). (2.19)

For g ∈ H, γg is equivalent to γ (that is, γg is γ in a different basis),

γg(h) = γ(g)γ(h)γ−1(g).

If g is outside of H, then γg may be either equivalent or inequivalent to γ. The set

of all inequivalent irreducible representations that can be obtained from γ by the

transformation (20) (including γ itself) is called the orbit Oγ of the representation γ.

Note that the true singlet (i.e., γ(h) = 1, ∀h ∈ H) is always in its own orbit. Two

14



representations that belong to the same orbit have equivalent induced representations

(19). If g1 and g2 belong to the same coset in (18), then they differ by a factor

belonging to H. So, by an argument similar to that showing γg is equivalent to γ for

g ∈ H, γg1 and γg2 are equivalent. Then, to identify the orbit, it suffices to consider

how γ transforms under the coset representatives, si. Let Hγ be the set of all g ∈ G

such that γg is equivalent to γ. Then, not only does Hγ contain H, but it consists of a

whole number of cosets from (18). Hγ is an invariant subgroup of G and is called the

little group of the representation γ (or of the orbit Oγ). Note that the little group of

the true singlet is always the entire group G. If each coset sends γ to an inequivalent

representation, then the number of representations in Oγ is equal to the number n of

cosets, and Hγ = H. In this case, the induced representation γ↑ in (19) is irreducible.

Otherwise, it is reducible.

As an example, consider the group A4 = (Z2 × Z2)o Z3. Let X and Z be the Z2

generators and Y be the Z3 generator. Y cyclicly permutes the three Z2 subgroups

of Z2 × Z2:

Y XY −1 = Z, Y ZY −1 = XZ, Y (XZ)Y −1 = X. (2.20)

Note that Z is not an independent generator (Z = Y XY −1). The decomposition into

cosets of Z2 × Z2 is

A4 = {E, X, Z, XZ}+ {Y, Y X, Y Z, Y XZ}+ {Y 2, Y 2X, Y 2Z, Y 2XZ}.(2.21)

We can choose E, Y , and Y 2 = Y −1 as coset representatives. Then the induced

representation (19) takes the form

γ↑(X) =




γ(X) 0 0

0 γ(Y −1XY ) 0

0 0 γ(Y XY −1)




, γ↑(Z) =




γ(Z) 0 0

0 γ(Y −1ZY ) 0

0 0 γ(Y ZY −1)




,
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γ↑(Y ) =




0 0 γ(E)

γ(E) 0 0

0 γ(E) 0




. (2.22)

There are four one-dimensional irreducible representations of Z2 × Z2:

(a) γ(X) = 1, γ(Z) = 1

(b) γ(X) = −1, γ(Z) = −1

(c) γ(X) = −1, γ(Z) = 1

(d) γ(X) = 1, γ(Z) = −1

As always, the true singlet (a) belongs to its own orbit. The induced representation

is

γ↑(X) = γ↑(Z) =




1 0 0

0 1 0

0 0 1




, γ↑(Y ) =




0 0 1

1 0 0

0 1 0




.

These matrices can be diagonalized simultaneously, yielding three one-dimensional

representations:

1 : X = Z = 1, Y = 1;

1′ : X = Z = 1, Y = ω;

1′′ : X = Z = 1, Y = ω∗;

with ω = exp(2iπ/3). Using (21), we have for (b),

γY (X) = γ(Y XY −1) = γ(Z) = −1, γY (Z) = γ(Y ZY −1) = γ(XZ) = 1,
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which is (c), and

γY −1(X) = γ(Y −1XY ) = γ(XZ) = 1, γY −1(Z) = γ(Y −1ZY ) = γ(X) = −1,

which is (d). Thus, (b), (c), and (d) make up a single orbit. Since the number of

representations in this orbit is equal to the number of cosets in (22), the induced

representation is irreducible. From (23), we have

3 : X =




−1 0 0

0 1 0

0 0 −1




, Z =




−1 0 0

0 −1 0

0 0 1




, Y =




0 0 1

1 0 0

0 1 0




.

For every group G, there exists a maximal invariant subgroup H; that is, there are

no proper invariant subgroups that contain H. For this subgroup, the factor group

G/H is simple. If G is itself a simple group then the maximal invariant subgroup is

the trivial subgroup, {E}. There also exists a maximal invariant subgroup H ′ of H.

So, we have a chain,

Hi ⊂ Hi−1 ⊂ ... ⊂ H2 ⊂ H1 = G,

where Hj+1 is an invariant subgroup of Hj, and Hj/Hj+1 is simple. This chain can be

continued until the trivial subgroup {E} is reached, but for our purposes it suffices

to stop at the largest subgroup whose representation theory we already know. Then,

if we know how to determine the representation theory of a group from that of its

maximal invariant subgroup, we can apply this recursively. So, let G be a group,

and let H be its maximal invariant subgroup. We will further assume that G/H is

a cyclic group. Since the little group of a representation of H must be an invariant

subgroup of G containing H, the little group for each representation must be either

H or all of G. If the little group is H, the induced representation is irreducible. So

we need only concern ourselves with the case where the little group is G.

Let us consider another example. The group S4 is equal to A4 o Z2. The A4

generators given above and the Z2 generator, which we will denote by W , obey the
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relations

WXW−1 = Z, WZW−1 = X, WY W−1 = Y −1, (2.23)

along with (21). The decomposition into cosets of A4 is S4 = A4 +WA4. Noting that

W−1 = W , the induced representations have the form

γ↑(X) =




γ(X) 0

0 γ(WXW )


 , γ↑(Z) =




γ(Z) 0

0 γ(WZW )


 ,

γ↑(Y ) =




γ(Y ) 0

0 γ(WY W )


 , γ↑(W ) =




0 γ(E)

γ(E) 0


 . (2.24)

For the 1 of A4,

γ↑(X) = γ↑(Z) = γ↑(Y ) =




1 0

0 1


 , γ↑(W ) =




0 1

1 0


 .

Upon diagonalization, this yields

X = Z = Y = 1, W = 1;

X = Z = Y = 1, W = −1.

Without much difficulty, we see that 1′ and 1′′ make up an orbit, so that the induced

representation is irreducible,

X = Z =




1 0

0 1


 , Y =




ω 0

0 ω∗


 , W =




0 1

1 0


 .

The triplet 3 of A4,

γ(X) =




−1 0 0

0 1 0

0 0 −1




, γ(Z) =




−1 0 0

0 −1 0

0 0 1




, γ(Y ) =




0 0 1

1 0 0

0 1 0




,
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must belong to its own orbit because there is no other possibility. We have

γW (X) = γ(WXW ) = γ(Z) =




−1 0 0

0 −1 0

0 0 1




,

γW (Z) = γ(WZW ) = γ(X) =




−1 0 0

0 1 0

0 0 −1




,

γW (Y ) = γ(WY W ) = γ−1(Y ) =




0 1 0

0 0 1

1 0 0




.

Since this representation must lie in its own orbit, there exists a matrix S such that

SγW (X)S−1 = γ(X), SγW (Z)S−1 = γ(Z), SγW (Y )S−1 = γ(Y ).

Indeed, by inspection, we see that we can take

S =




1 0 0

0 0 1

0 1 0




.

Note that S−1 = S. The induced representation of S4 can then be written

γ↑(X) =




γ(X) 0

0 Sγ(X)S


 , γ↑(Z) =




γ(Z) 0

0 Sγ(Z)S


 ,

γ↑(Y ) =




γ(Y ) 0

0 Sγ(Y )S


 , γ↑(W ) =




0 I

I 0


 .
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Let

S =
1√
2




I I

I −I







I 0

0 S


 .

Then

Sγ↑(X)S−1 =




γ(X) 0

0 γ(X)


 , Sγ↑(Z)S−1 =




γ(Z) 0

0 γ(Z)


 ,

Sγ↑(Y )S−1 =




γ(Y ) 0

0 γ(Y )


 , Sγ↑(W )S−1 =




S 0

0 −S


 .

So there are two irreducible triplets of S4,

X = γ(X), Z = γ(Z), Y = γ(Y ), W = S,

and

X = γ(X), Z = γ(Z), Y = γ(Y ), W = −S.

Let us now consider the group (Z2 ×Z2 ×Z2)oA4. Let Ci be the Z2 generators.

With the A4 generators in (21), they obey

XC1X
−1 = C1C2C2, XC2X

−1 = C3, XC3X
−1 = C2, (2.25)

ZC1Z
−1 = C3, ZC2Z

−1 = C1C2C3, ZC3Z
−1 = C2, (2.26)

Y C1Y
−1 = C2, Y C2Y

−1 = C3, Y C3Y
−1 = C1. (2.27)

We have the chain

Z3
2 ⊂ (Z3

2)o Z2 ⊂ (Z3
2)o (Z2 × Z2) ⊂ (Z3

2)o A4

of invariant subgroups. Without much difficulty, we can see that the representations

(a) C1 = 1, C2 = −1, C3 = −1
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(b) C1 = −1, C2 = 1, C3 = 1

(c) C1 = −1, C2 = 1, C3 = −1

(d) C1 = 1, C2 = −1, C3 = 1

(e) C1 = −1, C2 = −1, C3 = 1

(f) C1 = 1, C2 = 1, C3 = −1,

lie in the same orbit with respect to (Z3
2)oA4. Now consider the subgroup (Z3

2)oZ2,

where the last Z2 is generated by X. From (26), under X

C1 → C1C2C3, C2 ↔ C3,

so that

(a) ↔ (a), (b) ↔ (b), (c) ↔ (d), (e) ↔ (f).

So (a) and (b) each give two one-dimensional representations of (Z4
2)o Z2:

(a) C1 = 1, C2 = −1, C3 = −1, X = 1

(a′) C1 = 1, C2 = −1, C3 = −1, X = −1

(b) C1 = −1, C2 = 1, C3 = 1, X = 1

(b′) C1 = −1, C2 = 1, C3 = 1, X = −1,

while (c/d) and (e/f) each give two-dimensional irreducible representations:

(c/d) C2 = M1, C1 = C3 = M2, X = S
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(e/f) C3 = M1, C1 = C2 = M2, X = S,

where

M1 ≡




1 0

0 −1


 , M2 ≡



−1 0

0 1


 , S ≡




0 1

1 0


 . (2.28)

Now add Z to obtain (Z3
2)o (Z2 × Z2). Under Z

C1 → C3, C2 → C1C2C3, X ↔ X,

so that

(a) ↔ (b), (a′) ↔ (b′), (c/d) ↔ (c/d), (e/f) ↔ (e/f).

Now (a/b) and (a′/b′) each give two-dimensional irreducible representations:

(a/b) C1 = M1, C2 = C3 = M2, X = I, Z = S

(a′/b′) C1 = M1, C2 = C3 = M2, X = −I, Z = S

For (c/d), the induced representation is

C2 =




M1 0

0 M1


 , C1 = C3 =




M2 0

0 M2


 , X =




S 0

0 S


 , Z =




0 I

I 0


 .

This can be block-diagonalized by inspection,

(c/d) C2 = M1, C1 = C3 = M2, X = S, Z = I

(c′/d′) C2 = M1, C1 = C3 = M2, X = S, Z = −I.

For (e/f), the induced representation is

C1 = C4 =




M1 0

0 M2


 , C2 = C3 =




M2 0

0 M1


 , X =




S 0

0 S


 , Z =




0 I

I 0


 .

22



Noting that M2 = SM1S, we can block-diagonalize this using the same method that

was used in the S4 example for the triplet orbit. This gives

(e/f) C1 = C4 = M1, C2 = C3 = M2, X = S, Z = S

(e′/f ′) C1 = C4 = M1, C2 = C3 = M2, X = S, Z = −S.

Finally, we add Y . With a little effort, it can be seen that (a/b), (c/d), and (e/f) lie

in one orbit, and (a′/b′), (c′/d′), and (e′/f′) lie in another. Then, the induced repre-

sentations are irreducible. So, we finally end up with two six-dimensional irreducible

representations of (Z3
2)o A4:

C1 =




M1 0 0

0 M2 0

0 0 M2




, C2 =




M2 0 0

0 M1 0

0 0 M2




, C3 =




M2 0 0

0 M2 0

0 0 M1




,

X =




I 0 0

0 S 0

0 0 S




, Z =




S 0 0

0 I 0

0 0 S




, Y =




0 0 I

I 0 0

0 I 0




,

and

C1 =




M1 0 0

0 M2 0

0 0 M2




, C2 =




M2 0 0

0 M1 0

0 0 M2




, C3 =




M2 0 0

0 M2 0

0 0 M1




,

X =




−I 0 0

0 −S 0

0 0 S




, Z =




S 0 0

0 −I 0

0 0 −S




, Y =




0 0 I

I 0 0

0 I 0




.

It can be checked directly that these matrices respect all of the relations (21), (26),

(27), and (28).
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Now consider the group (S3 × S3 × S3 × S3) o A4. Let Ai and Bi be the S4

generators. They obey

A3
i = B2

i = E, BiAiB
−1
i = A−1

i . (2.29)

The irreducible representations of S3 are two one-dimensional representations given

by

Ai = 1, Bi = 1,

Ai = 1, Bi = −1,

and one two-dimensional representation given by

Ai = MA ≡




ω 0

0 ω2


 , Bi = MB ≡




0 1

1 0


 ,

With the A4 generators in (4), Ai and Bi respect the relations

XA1X
−1 = A2, XA2X

−1 = A1, XA3X
−1 = A4, XA4X

−1 = A3,

XB1X
−1 = B2, XB2X

−1 = B1, XB3X
−1 = B4, XB4X

−1 = B3, (2.30)

ZA1Z
−1 = A3, ZA2Z

−1 = A4, ZA3Z
−1 = A1, ZA4Z

−1 = A2,

ZB1Z
−1 = B3, ZB2Z

−1 = B4, ZB3Z
−1 = B1, ZB4Z

−1 = B2, (2.31)

Y A1Y
−1 = A1, Y A2Y

−1 = A3, Y A3Y
−1 = A4, Y A4Y

−1 = A2,

Y B1Y
−1 = B1, Y B2Y

−1 = B3, Y B3Y
−1 = B4, Y B4Y

−1 = B2. (2.32)

As in the last example, we have a chain of invariant subgroups,

S4
3 ⊂ (S4

3)o Z2 ⊂ (S4
3)o (Z2 × Z2) ⊂ (S4

3)o A4.
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The representation (2, 2, 2, 2) under S3 × S3 × S3 × S3 lies in its own orbit. This

representation can be written in terms of 16-dimensional matrices,

γ(A1) = MA ⊗ I ⊗ I ⊗ I, γ(B1) = MB ⊗ I ⊗ I ⊗ I,

γ(A2) = I ⊗MA ⊗ I ⊗ I, γ(B2) = I ⊗MB ⊗ I ⊗ I,

γ(A3) = I ⊗ I ⊗MA ⊗ I, γ(B3) = I ⊗ I ⊗MB ⊗ I,

γ(A4) = I ⊗ I ⊗ I ⊗MA, γ(B4) = I ⊗ I ⊗ I ⊗MB.

Now add X to obtain the subgroup (S4
3)o Z2. From (14), under X

A1 ↔ A2, A3 ↔ A4,

B1 ↔ B2, B3 ↔ B4.

Consider how this rearranges the eigenvalues of each of the 16 basis states under the

diagonal generators (A1, A2, A3, A4),

(1) (ω, ω, ω, ω) −→ (ω, ω, ω, ω) ∼ (1)

(2) (ω2, ω, ω, ω) −→ (ω, ω2, ω, ω) ∼ (3)

(3) (ω, ω2, ω, ω) −→ (ω2, ω, ω, ω) ∼ (2)

(4) (ω2, ω2, ω, ω) −→ (ω2, ω2, ω, ω) ∼ (4)

(5) (ω, ω, ω2, ω) −→ (ω, ω, ω, ω2) ∼ (9)

(6) (ω2, ω, ω2, ω) −→ (ω, ω2, ω, ω2) ∼ (11)
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(7) (ω, ω2, ω2, ω) −→ (ω2, ω, ω, ω2) ∼ (10)

(8) (ω2, ω2, ω2, ω) −→ (ω2, ω2, ω, ω2) ∼ (12)

(9) (ω, ω, ω, ω2) −→ (ω, ω, ω2, ω) ∼ (5)

(10) (ω2, ω, ω, ω2) −→ (ω, ω2, ω2, ω) ∼ (7)

(11) (ω, ω2, ω, ω2) −→ (ω2, ω, ω2, ω) ∼ (6)

(12) (ω2, ω2, ω, ω2) −→ (ω2, ω2, ω2, ω) ∼ (8)

(13) (ω, ω, ω2, ω2) −→ (ω, ω, ω2, ω2) ∼ (13)

(14) (ω2, ω, ω2, ω2) −→ (ω, ω2, ω2, ω2) ∼ (15)

(15) (ω, ω2, ω2, ω2) −→ (ω2, ω, ω2, ω2) ∼ (14)

(16) (ω2, ω2, ω2, ω2) −→ (ω2, ω2, ω2, ω2) ∼ (16).
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This yields the permutation matrix

PX ≡




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




.

Note that P−1
X = PX . We can now check directly that

PXγ(B1)P
−1
X = γ(B2), PXγ(B2)P

−1
X = γ(B1),

PXγ(B3)P
−1
X = γ(B4), PXγ(B4)P

−1
X = γ(B3).

So, we obtain two 16-dimensional irreducible representations of (S4
3)o Z2,

(a) Ai = γ(Ai), Bi = γ(Bi), X = PX

(b) Ai = γ(Ai), Bi = γ(Bi), X = −PX .
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Next add Z to obtain the subgroup (S4
3)o (Z2 × Z2). Proceeding as is the previous

step yields

PZ ≡




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




.

Again note that P−1
Z = PZ . This gives four 16-dimensional irreducible representations

of (S4
3)o (Z2 × Z2),

(a) Ai = γ(Ai), Bi = γ(Bi), X = PX , Z = PZ

(a′) Ai = γ(Ai), Bi = γ(Bi), X = PX , Z = −PZ

(b) Ai = γ(Ai), Bi = γ(Bi), X = −PX , Z = PZ

(b′) Ai = γ(Ai), Bi = γ(Bi), X = −PX , Z = −PZ .

28



Finally, add Y to obtain (S4
3)oA4. Then, (a) lies in its own orbit, while (a′), (b), and

(b′) lie in another orbit. First, consider the orbit of (a). We find that the permutation

matrix

PY ≡




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




respects the relations

PY γ(A1)P
−1
Y = γ(A1), PY γ(A2)P

−1
Y = γ(A3), PY γ(A3)P

−1
Y = γ(A4), PY γ(A4)P

−1
Y = γ(A2),

PY γ(B1)P
−1
Y = γ(B1), PY γ(B2)P

−1
Y = γ(B3), PY γ(B3)P

−1
Y = γ(B4), PY γ(B4)P

−1
Y = γ(B2),

PY PXP−1
Y = PZ , PY PZP−1

Y = PXPZ , PY (PXPZ)P−1
Y = PX .
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(Note that P−1
Y = P 2

Y .) The induced representation can then be written

γ↑(Ai) =




γ(Ai) 0 0

0 P 2
Y γ(Ai)PY 0

0 0 PY γ(Ai)P
2
Y




, γ↑(Bi) =




γ(Bi) 0 0

0 P 2
Y γ(Bi)PY 0

0 0 PY γ(Bi)P
2
Y




γ↑(X) =




γ(X) 0 0

0 P 2
Y γ(X)PY 0

0 0 PY γ(X)P 2
Y




, γ↑(Z) =




γ(Z) 0 0

0 P 2
Y γ(Z)PY 0

0 0 PY γ(Z)P 2
Y




,

γ↑(Y ) =




0 0 I

I 0 0

0 I 0




.

Let

P =
1√
3




I I I

I ωI ω2I

I ω2I ωI







I 0 0

0 PY 0

0 0 P 2
Y




.

Then

Pγ↑(Ai)P−1 =




γ(Ai) 0 0

0 γ(Ai) 0

0 0 γ(Ai)




, Pγ↑(Bi)P−1 =




γ(Bi) 0 0

0 γ(Bi) 0

0 0 γ(Bi)




,

Pγ↑(X)P−1 =




γ(X) 0 0

0 γ(X) 0

0 0 γ(X)




, Pγ↑(Z)P−1 =




γ(Z) 0 0

0 γ(Z) 0

0 0 γ(Z)




,

Pγ↑(Y )P−1 =




PY 0 0

0 ωPY 0

0 0 ω2PY




.
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So the result is three 16-dimensional irreducible representations of (S4
3)oA4. For the

other orbit, the induced representation is irreducible. It is given by

γ↑(A1) =




γ(A1) 0 0

0 γ(A1) 0

0 0 γ(A1)




, γ↑(B1) =




γ(B1) 0 0

0 γ(B1) 0

0 0 γ(B1)




,

γ↑(A2) =




γ(A2) 0 0

0 γ(A4) 0

0 0 γ(A3)




, γ↑(B2) =




γ(B2) 0 0

0 γ(B4) 0

0 0 γ(B3)




,

γ↑(A3) =




γ(A3) 0 0

0 γ(A2) 0

0 0 γ(A4)




, γ↑(B3) =




γ(B3) 0 0

0 γ(B2) 0

0 0 γ(B4)




,

γ↑(A4) =




γ(A4) 0 0

0 γ(A3) 0

0 0 γ(A2)




, γ↑(B4) =




γ(B4) 0 0

0 γ(B3) 0

0 0 γ(B2)




,

γ↑(X) =




PX 0 0

0 −PXPZ 0

0 0 −PZ




, γ↑(Z) =




−PZ 0 0

0 PX 0

0 0 −PXPZ




, Y (48) =




0 0 I

I 0 0

0 I 0




.

We can also see that the representations (2, 1, 1, 1), (1, 2, 1, 1), (1, 1, 2, 1), and

(1, 1, 1, 2) of S3 × S3 × S3 × S3 make up an orbit. The 8-dimensional representation

of (S4
3)o A4 this orbit gives rise to is given by

A1 = diag(ω, ω2, 1, 1, 1, 1, 1, 1), A2 = diag(1, 1, ω, ω2, 1, 1, 1, 1),

A3 = diag(1, 1, 1, 1, ω, ω2, 1, 1), A4 = diag(1, 1, 1, 1, 1, 1, ω, ω2),
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B1 =




0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1




, B2 =




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1




,

B3 =




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1




, B4 =




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0




,

X =




0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0




, Z =




0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0



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Y =




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0




.

2.4 Invariants Under the Discrete Symmetry

In this section, we give the symmetry invariants which are used in our model.

These can be computed directly from the matrices given in the previous section.

16AB × 16AB invariant (xi, x
′
j ∼ 16AB):

f1(xi, x
′
j) = x1x

′
16 + x2x

′
15 + x3x

′
14 + x4x

′
13 + x5x

′
12 + x6x

′
11 + x7x

′
10 + x8x

′
9

+x9x
′
8 + x10x

′
7 + x11x

′
6 + x12x

′
5 + x13x

′
4 + x14x

′
3 + x15x

′
2 + x16x

′
1

6C × 6C invariant (wi, w
′
j ∼ 6C):

f2(wi, w
′
j) = w1w

′
1 + w2w

′
2 + w3w

′
3 + w4w

′
4 + w5w

′
5 + w6w

′
6.

48AB × 48AB invariant (yi, y
′
j ∼ 48AB):

f3(yi, y
′
j) = y1y

′
16 + y2y

′
15 + y3y

′
14 + y4y

′
13 + y5y

′
12 + y6y

′
11 + y7y

′
10 + y8y

′
9
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y9y
′
8 + y10y

′
7 + y11y

′
6 + y12y

′
5 + y13y

′
4 + y14y

′
3 + y15y

′
2 + y16y

′
1 + y17y

′
32 + y18y

′
31

+y19y
′
30 + y20y

′
29 + y21y

′
28 + y22y

′
27 + y23y

′
26 + y24y

′
25 + y25y

′
24 + y26y

′
23 + y27y

′
22 + y28y

′
21

+y29y
′
20 + y30y

′
19 + y31y

′
18 + y32y

′
17 + y33y

′
48 + y34y

′
47 + y35y

′
46 + y36y

′
45 + y37y

′
44 + y38y

′
43

+y39y
′
42 + y40y

′
41 + y41y

′
40 + y42y

′
39 + y43y

′
38 + y44y

′
37 + y45y

′
36 + y46y

′
35 + y47y

′
34 + y48y

′
33

8AB × 8AB invariant (zi, z
′
j ∼ 8AB):

f4(zi, z
′
j) = z1z

′
2 + z2z

′
1 + z3z

′
4 + z4z

′
3 + z5z

′
6 + z6z

′
5 + z7z

′
8 + z8z

′
7

16AB × 16AB × 16AB invariant (xi, x
′
j, x

′′
k ∼ 16AB):

g1(xi, x
′
j, x

′′
k) = x1x

′
1x
′′
1 + x2x

′
2x
′′
2 + x3x

′
3x
′′
3 + x4x

′
4x
′′
4 + x5x

′
5x
′′
5 + x6x

′
6x
′′
6 + x7x

′
7x
′′
7 + x8x

′
8x
′′
8

x9x
′
9x
′′
9 + x10x

′
10x

′′
10 + x11x

′
11x

′′
11 + x12x

′
12x

′′
12 + x13x

′
13x

′′
13 + x14x

′
14x

′′
14 + x15x

′
15x

′′
15 + x16x

′
16x

′′
16

6C × 6C × 6C invariant (wi, w
′
j, w

′′
k ∼ 6C):

g2(wi, w
′
j, w

′′
k) = w1w

′
3w

′′
5 + w5w

′
1w

′′
3 + w3w

′
5w

′′
1 + w1w

′
4w

′′
6 + w6w

′
1w

′′
4 + w4w

′
6w

′′
1

+w2w
′
3w

′′
6 + w6w

′
2w

′′
3 + w3w

′
6w

′′
2 + w2w

′
4w

′′
5 + w5w

′
2w

′′
4 + w4w

′
5w

′′
2

3× 16AB × 48AB invariant (ti ∼ 3, xj ∼ 16AB, yk ∼ 48AB):

g3(ti, xj, yk) = t1(x16y33 + x15y34 + x8y35 + x7y36 + x14y37 + x13y38 + x6y39 + x5y40
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+x12y41 + x11y42 + x4y43 + x3y44 + x10y45 + x9y46 + x2y47 + x1y48)

t2(x16y1 + x7y10 + x6y11 + x5y12 + x4y13 + x3y14 + x2y15 + x1y16

+x15y2 + x14y3 + x13y4 + x12y5 + x11y6 + x10y7 + x9y8 + x8y9)

t3(x16y17 + x15y18 + x12y19 + x11y20 + x8y21 + x7y22 + x4y23 + x3y24

+x14y25 + x13y26 + x10y27 + x9y28 + x6y29 + x5y30 + x2y31 + x1y32)

8AB × 16AB × 48AB invariant (zi ∼ 8AB, xj ∼ 16AB, yk ∼ 48AB):

g4(zi, xk, yj) =

z1(x15y1 + x5y11 + x3y13 + x1y15 + x15y17 + x11y19 + x7y21 + x3y23 + x13y25 + x9y27 + x5y29 + x13y3

+x1y31 + x15y33 + x7y35 + x13y37 + x5y39 + x11y41 + x3y43 + x9y45 + x1y47 + x11y5 + x9y7 + x7y9)

+z2(x8y10 + x6y12 + x4y14 + x2y16 + x16y18 + x16y2 + x12y20 + x8y22 + x4y24 + x14y26 + x10y28 + x6y30

+x2y32 + x16y34 + x8y36 + x14y38 + x14y4 + x6y40 + x12y42 + x4y44 + x10y46 + x2y48 + x12y6 + x10y8)

+z3(x14y1 + x5y10 + x2y13 + x1y14 − x14y17 − x13y18 − x10y19 + x13y2 − x9y20 − x6y21 − x5y22 − x2y23

−x1y24 − x14y33 − x13y34 − x6y35 − x5y36 − x10y41 − x9y42 − x2y43 − x1y44 + x10y5 + x9y6 + x6y9)

+z4(x8y11 + x7y12 + x4y15 + x3y16 − x16y25 − x15y26 − x12y27 − x11y28 − x8y29 + x16y3 − x7y30 − x4y31

−x3y32 − x16y37 − x15y38 − x8y39 + x15y4 − x7y40 − x12y45 − x11y46 − x4y47 − x3y48 + x12y7 + x11y8)

+z5(−x12y1 − x3y10 − x2y11 − x1y12 + x12y17 + x11y18 − x11y2 + x4y21 + x3y22 + x10y25 + x9y26 + x2y29

−x10y3 + x1y30 − x12y33 − x11y34 − x4y35 − x3y36 − x10y37 − x9y38 − x2y39 − x9y4 − x1y40 − x4y9)

+z6(−x8y13 − x7y14 − x6y15 − x5y16 + x16y19 + x15y20 + x8y23 + x7y24 + x14y27 + x13y28 + x6y31 + x5y32

−x16y41 − x15y42 − x8y43 − x7y44 − x14y45 − x13y46 − x6y47 − x5y48 − x16y5 − x15y6 − x14y7 − x13y8)

+z7(−x8y1 − x8y17 − x7y18 − x4y19 − x7y2 − x3y20 − x6y25 − x5y26 − x2y27 − x1y28 − x6y3 + x8y33

+x7y34 + x6y37 + x5y38 − x5y4 + x4y41 + x3y42 + x2y45 + x1y46 − x4y5 − x3y6 − x2y7 − x1y8)

+z8(x15y36 − x14y11 − x13y12 − x12y13 − x11y14 − x10y15 − x9y16 − x16y21 − x15y22 − x12y23 − x11y24 − x14y29

−x13y30 − x10y31 − x9y32 + x16y35 − x15y10 + x14y39 + x13y40 + x12y43 + x11y44 + x10y47 + x9y48 − x16y9)
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16AB × 48AB × 48AB invariant (xi ∼ 16AB; yj, y
′
k ∼ 48AB):

g5(xi, yj, y
′
k) = x1y1y

′
1 + x2y2y

′
2 + x3y3y

′
3 + x4y4y

′
4 + x5y5y

′
5 + x6y6y

′
6 + x7y7y

′
7 + x8y8y

′
8

+x9y9y
′
9 + x10y10y

′
10 + x11y11y

′
11 + x12y12y

′
12 + x13y13y

′
13 + x14y14y

′
14 + x15y15y

′
15 + x16y16y

′
16

+x1y17y
′
17 + x2y18y

′
18 + x3y25y

′
25 + x4y26y

′
26 + x5y19y

′
19 + x6y20y

′
20 + x7y27y

′
27 + x8y28y

′
28

+x9y21y
′
21 + x10y22y

′
22 + x11y29y

′
29 + x12y30y

′
30 + x13y23y

′
23 + x14y24y

′
24 + x15y31y

′
31 + x16y32y

′
32

+x1y33y
′
33 + x2y34y

′
34 + x3y37y

′
37 + x4y38y

′
38 + x5y41y

′
41 + x6y42y

′
42 + x7y45y

′
45 + x8y46y

′
46

+x9y35y
′
35 + x10y36y

′
36 + x11y39y

′
39 + x12y40y

′
40 + x13y43y

′
43 + x14y44y

′
44 + x15y47y

′
47 + x16y48y

′
48

3× 6C × 6C invariant (ti ∼ 3; wj, w
′
k ∼ 6C):

g6(ti, wj, w
′
k) = t1(w5w

′
5 − w6w

′
6) + t2(w1w

′
1 − w2w

′
2) + t3(w3w

′
3 − w4w

′
4)

1′ × 6C × 6C invariant (s′ ∼ 1′; wi, w
′
j ∼ 6C):

g7(s
′, wi, w

′
j) = s′(w1w

′
1 + w2w

′
2 + ω2w3w

′
3 + ω2w4w

′
4 + ωw5w

′
5 + ωw6w

′
6)

1′′ × 6C × 6C invariant (s′′ ∼ 1′′; wi, w
′
j ∼ 6C):

g8(s
′′, wi, wj) = s′′(w1w

′
1 + w2w

′
2 + ωw3w

′
3 + ωw4w

′
4 + ω2w5w

′
5 + ω2w6w

′
6)

For our purposes, it suffices to have the 16AB×16AB×16AB×16AB and 6C×6C×6C×6C
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invariants for the case where all four fields are the same.

16AB × 16AB × 16AB × 16AB invariants (xi ∼ 16AB):

h1(xi) = x2
1x

2
16 + x2

2x
2
15 + x2

3x
2
14 + x2

4x
2
13 + x2

5x
2
12 + x2

6x
2
11 + x2

7x
2
10 + x2

8x
2
9,

h2(xi) = x1x2x15x16 + x1x3x14x16 + x2x4x13x15 + x3x4x13x14 + x1x5x12x16 + x4x5x12x13

+x2x6x11x15 + x3x6x11x14 + x5x6x11x12 + x2x7x10x15 + x3x7x10x14 + x5x7x10x12

+x1x8x9x16 + x4x8x9x13 + x6x8x9x11 + x7x8x9x10

6C × 6C × 6C × 6C invariants (wi ∼ 6C):

h3(wi) = w4
1 + w4

2 + w4
3 + w4

4 + w4
5 + w4

6,

h4(wi) = w2
1w

2
2 + w2

3w
2
4 + w2

5w
2
6,

h5(wi) = w2
1w

2
3 + w2

1w
2
4 + w2

1w
2
5 + w2

1w
2
6 + w2

2w
2
3 + w2

2w
2
4 + w2

2w
2
5 + w2

2w
2
6

+w2
3w

2
5 + w2

3w
2
6 + w2

4w
2
5 + w2

4w
2
6,

h6(wi) = w1w2w3w4 + w1w2w5w6 + w3w4w5w6
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2.5 Calculation of the Neutrino Mass Matrix

In this section, we show how the neutrino mass matrix is computed. From Section

2.4, the term in Eq. (13) that mixes N and N ′ is2

g3(N, 〈φ〉, N ′) = vφN1(N
′
35 + N ′

36 + N ′
39 + N ′

40 + N ′
41 + N ′

42 + N ′
45 + N ′

46)

+vφN2(N
′
5 + N ′

6 + N ′
7 + N ′

8 + N ′
9 + N ′

10 + N ′
11 + N ′

12)

+vφN3(N
′
19 + N ′

20 + N ′
21 + N ′

22 + N ′
27 + N ′

28 + N ′
29 + N ′

30).

The term that mixes N ′ and N ′′ is

g4(N
′′, 〈φ〉, N ′) = vφN

′′
1 (N ′

5 + N ′
7 + N ′

9 + N ′
11) + vφN

′′
2 (N ′

6 + N ′
8 + N ′

10 + N ′
12)

+vφN
′′
3 (N ′

5 + N ′
6 + N ′

9 + N ′
10) + vφN

′′
4 (N ′

7 + N ′
8 + N ′

11 + N ′
12)

−vφN
′′
5 (N ′

1 + N ′
2 + N ′

3 + N ′
4)− vφN

′′
6 (N ′

13 + N ′
14 + N ′

15 + N ′
16)

−vφN
′′
7 (N ′

1 + N ′
2 + N ′

3 + N ′
4)− vφN

′′
8 (N ′

13 + N ′
14 + N ′

15 + N ′
16)

+vφN
′′
1 (N ′

19 + N ′
21 + N ′

27 + N ′
29) + vφN

′′
2 (N ′

20 + N ′
22 + N ′

28 + N ′
30)

−vφN
′′
3 (N ′

19 + N ′
20 + N ′

21 + N ′
22)− vφN

′′
4 (N ′

27 + N ′
28 + N ′

29 + N ′
30)

+vφN
′′
5 (N ′

17 + N ′
18 + N ′

25 + N ′
26) + vφN

′′
6 (N ′

23 + N ′
29 + N ′

31 + N ′
32)

−vφN
′′
7 (N ′

17 + N ′
18 + N ′

25 + N ′
26)− vφN

′′
8 (N ′

23 + N ′
29 + N ′

31 + N ′
32)

+vφN
′′
1 (N ′

35 + N ′
39 + N ′

41 + N ′
45) + vφN

′′
2 (N ′

36 + N ′
40 + N ′

42 + N ′
46)

2Note that, in the 16AB basis used here, φ17−i = φ∗i , i = 1− 8.
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−vφN
′′
3 (N ′

35 + N ′
36 + N ′

41 + N ′
42)− vφN

′′
4 (N ′

39 + N ′
40 + N ′

45 + N ′
46)

+vφN
′′
5 (N ′

33 + N ′
34 + N ′

37 + N ′
38) + vφN

′′
6 (N ′

43 + N ′
44 + N ′

47 + N ′
48)

−vφN
′′
7 (N ′

33 + N ′
34 + N ′

37 + N ′
38)− vφN

′′
8 (N ′

43 + N ′
44 + N ′

47 + N ′
48)

Since the symmetries B1, B2, B3B4, and A3A4 are unbroken, components of N ′ and

N ′′ that transform under these symmetries cannot mix with the light neutrinos. This

leaves

p1 =
N ′

5 + N ′
6 + N ′

7 + N ′
8 + N ′

9 + N ′
10 + N ′

11 + N ′
12√

8
,

p2 =
N ′

19 + N ′
20 + N ′

21 + N ′
22 + N ′

27 + N ′
28 + N ′

29 + N ′
30√

8
,

p3 =
N ′

35 + N ′
36 + N ′

39 + N ′
40 + N ′

41 + N ′
42 + N ′

45 + N ′
46√

8
,

q1 =
N ′′

1 + N ′′
2√

2
, q2 =

N ′′
3 + N ′′

4√
2

.

We now have

g3(N, 〈φ〉, N ′) =
√

8vφ(N1p3 + N2p1 + N3p2),

g4(N
′′, 〈φ〉, N ′) = 2vφ(q1p1 + q2p1 + q1p2 − q2p2 + q1p3 − q2p3) + ...,

where the ellipses in the second equation refer to terms involving only decoupled

components. The mass matrix for (ν1, ν2, ν3, N1, N2, N3, p1, p2, p3, q1, q2) has the form

1

2
Mν =




0 m

mT M


 ,

with

m =




1
2
λv 0 0 0 0 0 0 0

0 1
2
λv 0 0 0 0 0 0

0 0 1
2
λv 0 0 0 0 0




,
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M =




mN 0 0 0 0
√

2α1vφ 0 0

0 mN 0
√

2α1vφ 0 0 0 0

0 0 mN 0
√

2α1vφ 0 0 0

0
√

2α1vφ 0 m′
N + βvφ 0 0 α2vφ α2vφ

0 0
√

2α1vφ 0 m′
N + βvφ 0 α2vφ −α2vφ

√
2α1vφ 0 0 0 0 m′

N + βvφ α2vφ −α2vφ

0 0 0 α2vφ α2vφ α2vφ m′′
N 0

0 0 0 α2vφ −α2vφ −α2vφ 0 m′′
N




.

Here, m only contains entries at the EW scale, while M contains entries at the higher

scale M∗. To order M2
W /M2

∗ , Mν is block-diagonalized by

Uν =




I −mM−1

M−1mT I


 .

The light neutrino mass matrix Mν is given by the upper-left block of UνMνUT
ν ,

1

2
Mν = −mM−1mT .

Let

S =
1√
2




1 0 0 0 0 0 1 0

0 0 0
√

2 0 0 0 0

1 0 0 0 0 0 −1 0

0 0 0 0
√

2 0 0 0

0 1 0 0 0 0 0 1

0 1 0 0 0 0 0 −1

0 0 1 0 0 1 0 0

0 0 −1 0 0 1 0 0




.
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Then,

S−1MS =




A 0 0

0 B 0

0 0 C




,

with

A =




mN

√
2α1vφ 0

√
2α1vφ m′

N + βvφ 2α2vφ

0 2α2vφ m′′
N




,

B =




mN

√
2α1vφ 0

√
2α1vφ m′

N + βvφ

√
2α2vφ

0
√

2α2vφ m′′
N




,

C =




mN −√2α1vφ

−√2α1vφ m′
N + βvφ


 .

So, we can write

1

2
Mν = −mS




A−1 0 0

0 B−1 0

0 0 C−1




S−1mT

= −λ2v2

8




(A−1)11 + (C−1)11 0 (A−1)11 − (C−1)11

0 2(B−1)11 0

(A−1)11 − (C−1)11 0 (A−1)11 + (C−1)11




This mass matrix is diagonalized by (10), and the masses are given by

m1 =

∣∣∣∣
λ2v2

2
(A−1)11

∣∣∣∣ , m2 =

∣∣∣∣
λ2v2

2
(B−1)11

∣∣∣∣ , m3 =

∣∣∣∣
λ2v2

2
(C−1)11

∣∣∣∣ .
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2.6 Calculation of the Charged Lepton Mass Matrix

In this section, we show how the charged lepton mass matrix is computed. From

Section 2.4, the terms in Eq. (14) that mix eR1, eR2, and eR3 with E ′
L are

eR1f2(E
′
L, 〈χ〉) + c.c. = vχeR1(E

′
L1 + E ′

L3 + E ′
L5) + c.c.,

g7(eR2, E
′
L, 〈χ〉) + c.c. = vχeR2(E

′
L1 + ω2E ′

L3 + ωE ′
L5) + c.c.,

g8(eR3, E
′
L, 〈χ〉) + c.c. = vχeR3(E

′
L1 + ωE ′

L3 + ω2E ′
L5) + c.c..

The term that mixes ER and E ′
L is

g6(ER, E ′
L, 〈χ〉) + c.c. = vχ(ER1E

′
L5 + ER2E

′
L1 + ER3E

′
L3) + c.c.,

with a similar result for the term that mixes EL and E ′
R. In the basis with (eL1, eL2, eL3, EL1, EL2,

EL3, E
′
L1, E

′
L3, E

′
L5) on the left and (eR1, eR2, eR3, ER1, ER2, ER3, E

′
R1, E

′
R3, E

′
R5) on the

right, the mass matrix has the form

Me =




0 M ′

m M


 ,

with

m =




κv 0 0

0 κv 0

0 0 κv

0 0 0

0 0 0

0 0 0




,

M ′ =




0 0 0 ε1vχ ε1vχ ε1vχ

0 0 0 ε2vχ ω2ε2vχ ωε2vχ

0 0 0 ε3vχ ωε3vχ ω2ε3vχ




,
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and

M =




mE 0 0 0 0 γ1vχ

0 mE 0 γ1vχ 0 0

0 0 mE 0 γ1vχ 0

0 γ2vχ 0 m′
E η2vχ η1vχ

0 0 γ2vχ η1vχ m′
E η2vχ

γ2vχ 0 0 η2vχ η1vχ m′
E




.

Here, m only contains entries at the EW scale, while M and M ′ contain entries at

the higher scale M∗. To order M2
W /M2

∗ , the left-handed mass-squared matrix M†
eMe

is block-diagonalized by

UL =




I m†M(M †M + M ′†M ′)−1

(M †M + M ′†M ′)−1M †m I


 .

The upper left entry of ULM†
eMeU †L is the light left-handed mass-squared matrix

M †
eMe = m†m−m†M(M †M + M ′†M ′)−1M †m

Let

S =
1√
3




1 0 1 0 1 0

1 0 ω 0 ω2 0

1 0 ω2 0 ω 0

0 1 0 1 0 1

0 1 0 ω 0 ω2

0 1 0 ω2 0 ω




.

Then S†MS and S†M ′†M ′S are both block diagonal (three 2× 2 blocks each). So we

have

m†M(M †M + M ′†M ′)−1M †m = m†S




A 0 0

0 B 0

0 0 C




S†m.
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=
|κv|2

3




A11 + B11 + C11 A11 + ω2B11 + ωC11 A11 + ωB11 + ω2C11

A11 + ωB11 + ω2C11 A11 + B11 + C11 A11 + ω2B11 + ωC11

A11 + ω2B11 + ωC11 A11 + ωB11 + ω2C11 A11 + B11 + C11




This has the form (11). The masses are given by

m2
e = |κv|2(1− A11), m2

µ = |κv|2(1−B11), m2
τ = |κv|2(1− C11).
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CHAPTER 3

A 6D Higgsless Standard Model

3.1 The Model

Let us consider a 6D SU(2)L × U(1)Y gauge theory in a flat space-time back-

ground, where the two extra spatial dimensions are compactified on a rectangle1.The

coordinates in the 6D space are written as zM = (xµ, ym), where the 6D Lorentz

indices are denoted by capital Roman letters M = 0, 1, 2, 3, 5, 6, while the usual 4D

Lorentz indices are symbolized by Greek letters µ = 0, 1, 2, 3, and the coordinates ym

(m = 1, 2) describe the fifth and sixth dimension.2 The physical space is thus defined

by 0 ≤ y1 ≤ πR1 and 0 ≤ y2 ≤ πR2, where R1 and R2 are the compactification radii

of a torus T 2, which is obtained by identifying the points of the two-dimensional plane

R2 under the actions T5 : (y1, y2) → (y1+2πR1, y2) and T6 : (y1, y2) → (y1, y2+2πR2).

We denote the SU(2)L and U(1)Y gauge bosons in the bulk respectively by Aa
M(zM)

(a = 1, 2, 3 is the gauge index) and BM(zM). The action of the gauge fields in our

model is given by

S =

∫
d4x

∫ πR1

0

dy1

∫ πR2

0

dy2 (L6 + δ(y1)δ(y2)L0) , (3.1)

where L6 is a 6D bulk gauge kinetic term and L0 is a 4D brane gauge kinetic term

localized at (y1, y2) = (0, 0), which read respectively

L6 = −M2
L

4
F a

MNFMNa − M2
Y

4
BMNBMN , L0 = − 1

4g2
F a

µνF
µνa − 1

4g′2
BµνB

µν , (3.2)

1Chiral compactification on a square has recently been considered in Ref. [42].
2For the metric we choose a signature (+,−,−,−,−,−).
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with field strengths F a
MN = ∂MAa

N − ∂NAa
M + fabcAb

MAc
N (fabc is the structure con-

stant) and BMN = ∂MBN − ∂NBM . In Eqs. (3.2), the quantities ML and MY have

mass dimension +1, while g and g′ are dimensionless. Since the boundaries of the

manifold break translational invariance and are ”singled out” with respect to the

points in the interior of the rectangle, brane terms like L0 can be produced by quan-

tum loop effects [34, 35] or arise from classical singularities in the limit of vanishing

brane thickness [36].

Unlike in five dimensions (for a discussion of the ξ → ∞ limit in generalized 5D

Rξ gauges see, e.g., Ref. [43] and also Ref. [30]), we cannot go to a unitary gauge

where all fields Aa
5,6 (a = 1, 2, 3) and B5,6 are identically set to zero. Instead, there

will remain after dimensional reduction one combination of physical scalar fields in

the spectrum3. To make these scalars sufficiently heavier than the Lee-Quigg-Thacker

bound of ≈ 2 TeV , we can assume, e.g., a seventh dimension compactified on S1/Z2

with compactification radius R3 . R1, R2. By setting Aa
5,6,7 = B5,6,7 = 0 (Aa

7 and B7

are the seventh components of the gauge fields) on all boundaries of this manifold,

the associated scalars can acquire for compactification scales R−1
1 , R−1

2 ' 1− 2 TeV ,

masses well above 2 TeV . Therefore, at low energies . 2− 3 TeV , we have a model

without any light scalars and will, in what follows, neglect the heavy scalar degrees

of freedom.

Since the Lagrangian in Eq. (3.2) does not contain any explicit gauge symmetry

breaking, we can obtain consistent new BC’s on the boundaries by requiring the

variation of the action to be zero. Variation of the action in Eq. (3.2) yields after

3We thank H. Murayama and M. Serone for pointing out this fact.
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partial integration

δS =

∫
d4x

∫ πR1

y1=0

dy1

∫ πR2

y2=0

dy2

[
M2

L

(
∂MF aMµ − fabcF bMµAc

M

)
δAa

µ + M2
Y ∂MBMµδBµ

]

+

∫
d4x

∫ πR2

y2=0

dy2

[
M2

LF a
5µδA

aµ + M2
Y B5µδB

µ
]πR1

y1=0

+

∫
d4x

∫ πR1

y1=0

dy1

[
M2

LF a
6µδA

aµ + M2
Y B6µδB

µ
]πR2

y2=0

+

∫
d4x

[
1

g2
(∂µF

aµν − fabcF bµνAc
µ)δAc

ν +
1

g′2
∂µB

µνδBν

]

(y1,y2)=(0,0)

= 0, (3.3)

where we have (as usual) assumed that the gauge fields and their derivatives go to

zero for xµ →∞. The bulk terms in in the first line in Eq. (3.3), lead to the familiar

bulk equations of motion. Moreover, since the minimization of the action requires

the boundary terms to vanish as well, we obtain from the second and third line in

Eq. (3.3) a set of consistent BC’s for the bulk fields.

We break the electroweak symmetry SU(2)L × U(1)Y → U(1)Q by imposing on

two of the boundaries following BC’s:

at y1 = πR1 : A1
µ = 0, A2

µ = 0, (3.4a)

at y2 = πR2 : ∂y2(M
2
LA3

µ + M2
Y Bµ) = 0, A3

µ −Bµ = 0. (3.4b)

The Dirichlet BC’s in Eq. (3.4a) break SU(2)L → U(1)I3 , where U(1)I3 is the U(1)

subgroup associated with the third component of weak isospin I3. The BC’s in

Eq. (3.4b) break U(1)I3 × U(1)Y → U(1)Q, leaving only U(1)Q unbroken on the

entire rectangle (see Fig. 3.1). Note, in Eq. (3.4b), that the first BC involving the

derivative with respect to y2 actually follows from the second BC δA3
µ = δBµ by

minimization of the action. The gauge groups U(1)I3 and U(1)I3 × U(1)Y remain

unbroken at the boundaries y1 = 0 and y2 = 0, respectively. Locally, at the fixed

point (y1, y2) = (0, 0), SU(2)L × U(1)Y is unbroken. We can restrict ourselves, for

simplicity, to the solutions which are relevant to EWSB, by imposing on the other
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Figure 3.1: Symmetry breaking of SU(2)L × U(1)Y on the rectangle. At one boundary

y1 = πR1, SU(2)L is broken to U(1)I3 while on the boundary y2 = πR2 the subgroup

U(1)I3×U(1)Y is broken to U(1)Q, which leaves only U(1)Q unbroken on the entire rectangle.

Locally, at the fixed point (0, 0), SU(2)L × U(1)Y remains unbroken. The dashed arrows

indicate the propagation of the lowest resonances of the gauge bosons.

two boundaries the following Dirichlet BC’s:

at y1 = 0 : A1,2
µ (zM) = A

1,2

µ (xµ), (3.5a)

at y2 = 0 : A3
µ(zM) = A

3

µ(xµ), Bµ(zM) = Bµ(xµ), (3.5b)

where the bar indicates a boundary field. The Dirichlet BC’s in Eqs.(3.5) require A1,2
µ

to be independent of y2, while A3
µ and Bµ become independent of y1, such that we

can generally write A1,2
µ = A1,2(xµ, y1), A3

µ = A3
µ(xµ, y2), and Bµ = Bµ(xµ, y2). For

the transverse4 components of the gauge fields the bulk equations of motion then take

the forms

(p2+∂2
y1

)A1,2
µ (xµ, y1) = 0, (p2+∂2

y2
)A3

µ(xµ, y2) = 0, (p2+∂2
y2

)Bµ(xµ, y2) = 0, (3.6)

where p2 = pµp
µ and pµ = i∂µ is the momentum in the uncompactified 4D space.

Since we assume all the gauge couplings to be small, we will, in what follows, treat

4Note that ∂MF aMµ = p2Pµν(p)Aaµ + (∂2
y1

+ ∂2
y2

)Aa
ν = 0, where Pµν(p) = gµν − pµpν/p2 is the

operator projecting onto transverse states.
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Aa
µ approximately as a ”free” field (i.e., without self interaction) and drop all cubic

and quartic terms in Aa
µ.

We assume that the fermions, in the first approximation, are localized on the brane

at (y1, y2) = (0, 0), away from the walls of electroweak symmetry breaking. This

choice will avoid any unwanted non-oblique corrections to the electroweak precision

parameters.

3.2 Effective theory

The total effective 4D Lagrangian in the compactified theory Ltotal can be written

as Ltotal = L0 +Leff , where Leff =
∫ πR1

0
dy1

∫ πR2

0
dy2 L6 denotes the contribution from

the bulk, which follows from integrating out the extra dimensions. After partial inte-

gration along the y1 and y2 directions, we obtain for Leff the non-vanishing boundary

term

Leff = −M2
LπR2

[
A

1

µ∂y1A
1µ + A

2

µ∂y1A
2µ

]
y1=0

−πR1

[
M2

LA
3

µ∂y2A
3µ + M2

Y Bµ∂y2B
µ
]

y2=0
,

(3.7)

where we have applied the bulk equations of motion and eliminated the terms from the

boundaries at y1 = πR1 and y2 = πR2 by virtue of the BC’s in Eqs. (3.4). Notice, that

in arriving at Eq. (3.7) we have redefined the bulk gauge fields as Aµ → A′
µ ≡ Aµ/

√
2

to canonically normalize the kinetic energy terms of the KK modes. In order to

determine Ltotal explicitly, we first solve the equations of motion in Eq. (3.6) and insert

the solutions into the expression for Leff in Eq. (3.7). The most general solutions for

Eqs. (3.6) can be written as

A1,2
µ (xµ, y1) = A

1,2

µ (xµ) cos(py1) + b1,2
µ (xµ) sin(py1), (3.8a)

A3
µ(xµ, y2) = A

3

µ(xµ) cos(py2) + b3
µ(xµ) sin(py2), (3.8b)

Bµ(xµ, y2) = Bµ(xµ) cos(py2) + bY
µ (xµ) sin(py2), (3.8c)
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where p =
√

pµpµ and we have already applied the BC’s in Eq. (3.5). The coefficients

ba
µ(xµ) and bY

µ (xµ) are then determined from the BC’s in Eqs. (3.4). For b1,2
µ (xµ), e.g.,

we find from the BC’s in Eq. (3.4a) that b1,2
µ (xµ) = −Aµ

1,2
(xµ) cot(pπR1) and hence

one obtains

A1,2
µ (xµ, y1) = A

1,2

µ (xµ) [cos(py1)− cot(pπR1) sin(py1)] . (3.9a)

In a similar way, one arrives after some calculation at the solutions

A3
µ(xµ, y2) = A

3

µ(xµ)

[
cos(py2) +

M2
L tan(pπR2)−M2

Y cot(pπR2)

M2
L + M2

Y

sin(py2)

]

+ Bµ(xµ)
M2

Y tan(pπR2) + M2
Y cot(pπR2)

M2
L + M2

Y

sin(py2), (3.9b)

Bµ(xµ, y2) = A
3

µ(xµ)
M2

L tan(pπR2) + M2
L cot(pπR2)

M2
L + M2

Y

sin(py2)

+ Bµ(xµ)

[
cos(py2) +

M2
Y tan(pπR2)−M2

L cot(pπR2)

M2
L + M2

Y

sin(py2)

]
.(3.9c)

Inserting the wavefunctions in Eqs. (3.9) into the effective Lagrangian in Eq. (3.7),

we can rewrite Leff as

Leff = A
a

µΣaa(p
2)A

aµ
+ A

3

µΣ3B(p2)B
µ

+ BµΣBB(p2)B
µ
, (3.10)

where (aa) = (11), (22), and (33) and the momentum-dependent coefficients Σ are

given by

Σ11(p
2) = Σ22(p

2) = πR2M
2
L p cot(pπR1),

Σ33(p
2) = −πR1M

2
L p

M2
L tan(pπR2)−M2

Y cot(pπR2)

M2
L + M2

Y

,

Σ3B(p2) = −2πR1M
2
LM2

Y p
tan(pπR2) + cot(pπR2)

M2
L + M2

Y

,

ΣBB(p2) = −πR1M
2
Y p

M2
Y tan(pπR2)−M2

L cot(pπR2)

M2
L + M2

Y

. (3.11)

The Σ’s can be viewed as the electroweak vacuum polarization amplitudes which

summarize in the low energy theory the effect of the symmetry breaking sector. The
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presence of these terms leads at tree level to oblique corrections (as opposed to vertex

corrections and box diagrams) of the gauge boson propagators and affects electroweak

precision measurements [44,45]. Since Leff in Eq. (3.7) generates effective mass terms

for the gauge bosons in the 4D theory5, the KK masses of the W± bosons are found

from the zeros of the inverse propagator as given by the solutions of the equation

Σ11(p
2)− p2

2g2
= 0. (3.12)

To determine the KK masses of the gauge bosons, we will from now on assume that

the brane terms L0 dominate the bulk kinetic terms, i.e., we take 1/g2, 1/g′2 À
(ML,Y π)2R1R2. As a result, we find for the W±’s the mass spectrum

mn =
n

R1

(
1 +

2g2M2
LR1R2

n2
+ . . .

)
, n = 1, 2, . . . ,

m2
0 =

2g2M2
LR2

R1

+O(g4M4
LR2

2) = m2
W , (3.13)

where we identify the lightest state with mass m0 with the W±. Observe in Eq. (3.13),

that the inclusion of the brane kinetic terms L0 for 1/R1, 1/R2 & O(TeV ) leads to

a decoupling of the higher KK-modes with masses mn (n > 0) from the electroweak

scale, leaving only the W± states with a small mass m0 in the low-energy theory (see

Fig. 3.2). Note that a similar effect has been found for warped models in Ref. [47].

The calculation of the mass of the Z boson goes along the same lines as for W±,

but requires, due to the mixing of A
3

µ with Bµ in Eq. (3.10), the diagonalization of

the kinetic matrix

Mkin =




Σ33(p
2)− p2

2g2
1
2
Σ3B(p2)

1
2
Σ3B(p2) ΣBB(p2)− p2

2g′2


 , (3.14)

which has the eigenvalues

λ±(p2) =
1

2

(
Σ33(p

2)− p2

2g2
+ ΣBB(p2)− p2

2g′2

)

± 1

2

√(
Σ33(p2)− p2

2g2
− ΣBB +

p2

2g′2

)2

+ Σ2
3B(p2), (3.15)

5For an effective field theory approach to oblique corrections see, e.g., Ref. [46].
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Figure 3.2: Effect of the brane kinetic terms L0 on the KK spectrum of the gauge bosons

(for the example of W±). Solid lines represent massive excitations, the bottom dotted lines

would correspond to the zero modes which have been removed by the BC’s. Without the

brane terms (a), the lowest KK excitations are of order 1/R ' 1 TeV . After switching on

the dominant brane kinetic terms (b), the zero modes are approximately “restored” with a

small mass mW ¿ 1/R (dashed line), while the higher KK-levels receive small corrections

to their masses (thin solid lines) and decouple below ∼ 1 TeV .

where the KK towers of the γ and Z are given by the solutions of the equations

λ−(p2) = 0 (for γ) and λ+(p2) = 0 (for Z), respectively. By taking in Eq. (3.15) the

limit p2 → 0, it is easily seen that λ−(p2) = 0 has a solution with p2 = 0, which

we identify with the massless γ of the SM, corresponding to the unbroken gauge

group U(1)Q. The lowest excitation in the tower of solutions to λ+(p2) = 0 has a

mass-squared

m2
Z =

2(g2 + g′2)M2
LM2

Y R1

(M2
L + M2

Y )R2

+O(g4M4
LR2

2), (3.16)

which we identify with the Z of the SM. All other KK modes of the γ and Z have

masses of order & 1/R2 and thus decouple for 1/R1, 1/R2 & O(TeV ), leaving only a

massless γ and a Z with mass mZ in the low-energy theory.
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3.3 Relation to EWPT

One important constraint on any model for EWSB results from the measurement

of the ρ parameter, which is experimentally known to satisfy the relation ρ = 1 to

better than 1% [2]. In our model, we find from Eqs. (3.13) and (3.16) a fit of the

natural zeroth-order SM relation for the ρ parameter in terms of

ρ ≡ m2
W

m2
Z cos2 θW

=
g2

g2 + g′2
M2

L + M2
Y

M2
Y

(
R2

R1

)2
1

cos2θW

= 1, (3.17)

where θW ≈ 28.8◦ is the Weinberg angle of the SM. For definiteness, we will choose

in the following the 4D brane couplings g and g′ to satisfy the usual SM relation

g2/(g2 + g′2) = cos2θW ≈ 0.77. Defining ρ = 1 + ∆ρ, we then obtain from Eq. (3.17)

that ∆ρ = 0 if the bulk kinetic couplings and compactification radii satisfy the relation

(M2
L + M2

Y )/M2
Y = R2

1/R
2
2. (3.18)

Although we can thus set ∆ρ = 0 by appropriately dialing the gauge couplings and

the size of the extra dimensions, we observe in Eq. (3.10) that Leff introduces a

manifest breaking of custodial symmetry (which transforms the three gauge bosons

Aa
µ among themselves) and will thus contribute to EWPT via oblique corrections to

the SM parameters.6

To estimate the effect of the oblique corrections in our model let us consider in the

4D effective theory a general vacuum polarization tensor Πµν
AB(p2) between two gauge

fields A and B which can (for canonically normalized fields) be expanded as [46]

iΠAB
µν (p2) = igAgB

[
Π

(0)
AB + p2Π

(1)
AB

]
gµν + pµpν terms, (3.19)

where gA and gB are the couplings corresponding to the gauge fields A and B, re-

spectively. After going in Leff back to canonical normalization by redefining Aa
µ →

A′
µ ≡ Aa

µ/g and Bµ → B′
µ ≡ Bµ/g

′, we identify Σaa(p
2) ' 1

2
[Π

(0)
aa + p2Π

(1)
aa ], for

6Note, however, that in the limit p2 → 0, we have Σ11 = Σ33, which restores custodial symmetry.
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(aa) = (11), (22), (33), (BB), while Σ3B(p2) ' Π
(0)
3B + p2Π

(1)
3B. From Eqs. (3.11) we

then obtain the polarization amplitudes

Π
(0)
11 = Π

(0)
22 = 2M2

L

R2

R1

, Π
(1)
11 = Π

(1)
22 = −2

π2M2
L

3
R1R2,

Π
(0)
33 = 2

M2
LM2

Y

M2
L + M2

Y

R1

R2

, Π
(1)
33 = −2

π2M2
LR1R2

M2
L + M2

Y

(M2
L +

1

3
M2

Y ),

Π
(0)
3B = −2

M2
LM2

Y

M2
L + M2

Y

R1

R2

, Π
(1)
3B = −4

3

π2M2
LM2

Y

M2
L + M2

Y

R1R2. (3.20)

A wide range of effects from new physics on EWPT can be parameterized in the ε1,

ε2, and ε3 framework [45], which is related to the S, T , and U formalism of Ref. [44]

by ε1 = αT , ε2 = −αU/4 sin2θW , and ε3 = αS/4 sin2θW . The experimental bounds

on the relative shifts with respect to the SM expectations are roughly of the order

ε1, ε2, ε3 . 3·10−3 [48]. From Eq. (3.20) we then obtain for these parameters explicitly

ε1 = g2(Π
(0)
11 − Π

(0)
33 )/m2

W = −2g2 M2
L

m2
W

R1

R2

(
M2

Y /(M2
L + M2

Y )− (R2/R1)
2
)
,(3.21a)

ε2 = g2(Π
(1)
33 − Π

(1)
11 ) = −g2 4π2

3

M4
L

M2
L + M2

Y

R1R2, (3.21b)

ε3 = −g2Π
(1)
3B = g2 4π2

3

M2
LM2

Y

M2
L + M2

Y

R1R2, (3.21c)

where we have used in the last equation that −ε3/(gg′) = Π
(1)
3γ /sin2θW − Π

(1)
33 =

cot θW Π
(1)
3B [45]. Note in Eq. (3.21a), that for our choice of parameters we have

ε1 = ∆ρ = 0. The quantities |ε2| and |ε3|, on the other hand, are bounded from below

by the requirement of having sufficiently many KK modes below the strong coupling

(or cutoff) scale of the theory. Using “naive dimensional analysis” (NDA) [49,50], one

obtains for the strong coupling scale Λ of a D-dimensional gauge theory [51] roughly

ΛD−4 ' (4π)D/2Γ(D/2)/g2
D, where gD is the bulk gauge coupling. In our 6D model,

we would therefore have Λ ' √
2(4π)3/2ML,Y which leads for ML,Y ' 102 GeV to a

cutoff Λ ' 6 TeV . Assuming for simplicity ML = MY , it follows from Eq. (3.18) that

R2 = R1/
√

2, and using Eqs. (3.21b) and (3.21c) we obtain

ε3 ' g2

96
√

2π
(ΛR2)

2 ' 2.3× 10−3 × (gΛR2)
2, (3.22)
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while ε2 ' ε3. It is instructive to compare the value for ε3 in our 6D setup as given

by Eq. (3.22) with the corresponding result of the 5D model in Ref. [32]. We find

that by going from 5D to 6D, the strong coupling scale of the theory is lowered from

∼ 10 TeV down to ∼ 6 TeV . Despite the lowering of the cutoff scale, however,

the parameter ε3 is in the 6D model by ∼ 15% smaller than the corresponding 5D

value7. This is due to the fact that in the 6D model the bulk gauge kinetic couplings

satisfy ML = MY ' 100 GeV , while they take in 5D the values ML ' MY ' 10 GeV ,

which is one order of magnitude below the electroweak scale. From Eq. (3.22) we then

conclude that one can take for the inverse loop expansion parameter ΛR2 ' 1/g ≈ 1.6

in agreement with EWPT. Like in the 5D case, however, the 6D model seems not to

admit a loop expansion parameter in the regime ΛR2 À 1 as required for the model

to be calculable.

3.4 Non-oblique corrections and fermion masses

In the previous discussion, we have assumed that the fermions are (approximately)

localized at (y1, y2) = (0, 0). This would make the fermions exactly massless, since

they have no access to the EWSB at y1 = πR1 and y2 = πR2. In this limiting case,

the effects on the electroweak precision parameters (ε1, ε2, ε3/S, T, U) come from the

oblique corrections due to the vector self energies as given by Eq. (3.10). A more

realistic case will be to extend the fermion wave functions to the bulk, i.e., to the walls

of EWSB, where fermion mass operators of the form CΨLΨR (C is some appropriate

mass parameter) can be written. Thus, although the fermion wave functions will be

dominantly localized at (0, 0), the profile of the wavefunctions in the bulk will be such

that it will have small contributions from the symmetry breaking walls, giving rise to

fermion masses. The hierarchy of fermion masses would then be accommodated by

7Notice that in Ref. [32], the strong coupling scale is defined by 1/Λ = 1/ΛL + 1/ΛR, while we

assume for ML = MY that Λ = ΛL = ΛY .
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some suitable choice of the parameters C [52].

To make the incorporation of heavy fermions in our model explicit, let us introduce

the 6D chiral quark fields Qi, Ui, and Di (i = 1, 2, 3 is the generation index), where

Qi are the isodoublet quarks, while Ui and Di denote the isosinglet up and down

quarks, respectively. For the cancellation of the SU(3)C×SU(2)L×U(1)Y gauge and

gravitational anomalies we assume that Qi have positive and Ui,Di have negative

SO(1, 5) chiralities [53]. Next, we consider the action of the top quark fields with

zero bulk mass, which is given by

Sfermion =

∫
dx4

∫ πR1

0

dy1

∫ πR2

0

dy2 i(Q3Γ
MDMQ3 + U3Γ

MDMU3)

+

∫
dx4

∫ πR1

0

dy1

∫ πR2

0

dy2 Kδ(y1)δ(y2)i[Q3Γ
µDµQ3 + U3Γ

µDµU3]

+

∫
dx4

∫ πR1

0

dy1

∫ πR2

0

dy2 Cδ(y1 − πR1)δ(y2 − πR2)Q3LU3R + h.c.,(3.23)

where we have added in the second line 4D brane kinetic terms with a (common)

gauge kinetic parameter K = [m]−2 at (y1, y2) = (0, 0) and in the third line we

included a boundary mass term with coefficient C = [m]−1, which mixes Q3L and

U3R at (y1, y2) = (πR1, πR2). Note, that the addition of the boundary mass term in

the last line of Eq. (3.23) is consistent with gauge invariance, since U(1)Q the only

gauge group surviving at (y1, y2) = (πR1, πR2). Consider now first the limit of a

vanishing brane kinetic term K → 0. Like in the 5D case [31], appropriate Dirichlet

and Neumann BC’s for Q3L,R and U3L,R would give, in the KK tower corresponding

to the top quark, a lowest mass eigenstate, which is a Dirac fermion with mass mt of

the order mt ∼ C/R2, where we have defined the length scale R ∼ R1 ∼ R2. Next,

by analogy with the generation of the W± and Z masses, switching on a dominant

brane kinetic term K/R2 À 1, ensures an approximate localization of Q3L and U3R

at (y1, y2) = (0, 0) and leads to mt ∼ C/K [32]. Now, the typical values of non-

oblique corrections to the SM gauge couplings coming from the bulk are8 ∼ CR/K ∼
8The factor C becomes obvious when treating the brane fields in Eq. (3.23) as 4D fields, in which
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mt/(1/R) and keeping these contributions under control, the compactification scale

1/R must be sufficiently large. Like in 5D models, this generally introduces a possible

tension between the 3rd generation quark masses and the coupling of the Z to the

bottom quark. Replacing in the above discussion U3L,R with D3L,R and mt by the

bottom quark mass mb(mZ) ≈ 3 GeV , we thus estimate for 1/R ∼ 1 TeV a shift

of the SM Z → bLbL coupling by roughly ∼ 0.3%, which is of the order of current

experimental uncertainties9. Similarly, we predict in our model the coupling of the Z

to the top quark to deviate by ∼ 10% from the SM value, which can be checked in

the electroweak production of single top in the Tevatron Run 2. It can also be tested

in the tt pair production in a possible future linear collider.

3.4.1 Improving the calculability

To improve the calculability of the model, it seems necessary to raise (for given

1/g2
D) the strong coupling scale Λ, which would allow the appearance of more KK

modes below the cutoff. In fact, it has recently been argued that the compactification

of a 5D gauge theory on an orbifold S1/Z2 gives a cutoff which is by a factor of 2

larger than the NDA estimate obtained for an uncompactified space [48]. Let us now

demonstrate this effect explicitly by repeating the NDA calculation of Ref. [49] on

an orbifold following the methods of Refs. [35] and [54]. For this purpose, consider

a 5D scalar field φ(xµ, y) (where we have defined y = y1), propagating in an S1/Z2

orbifold extra dimension. The radius of the 5th dimension is R and periodicity implies

y + 2πR ∼ y. As a consequence, the momentum in the fifth dimension is quantized

as p5 = n/R for integer n. Under the Z2 action y → −y the scalar transforms as

φ(xµ, y) = ±φ(xµ,−y), where the + (−) sign corresponds to φ being even (odd) under

case C = [m]+1 and K = [m]0.
9The LEP/SLC fit of Γb/Γhad in Z decay requires the shift of the Z → bLbL coupling to be

. 0.3% [3].
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Figure 3.3: One-loop diagram for φ-φ scattering on S1/Z2. The total incoming momentum

is (p, p′5) and the total outgoing momentum is (p, p5). Generally, it is possible that |p′5| 6=

|p5|, since the orbifold fixed points break 5D translational invariance.

Z2. The scalar propagator on this space is given by [35,54]

D(p, p5, p
′
5) =

i

2

{
δp5,p′5 ± δ−p5,p′5

p2 − p2
5

}
, (3.24)

where the additional factor 1/2 takes into account that the physical space is only

half of the periodicity. Consider now the one-loop φ-φ scattering diagram in Fig. 3.3.

The total incoming momentum is (p, p′5) and the total outgoing momentum is (p, p5),

which can in general be different, since 5D translation invariance is broken by the

orbifold boundaries. Locally, however, momentum is conserved at the vertices. The

diagram then reads

iΣ =
1

4

λ2

2

1

2πR

∑

k5,k′5

∫
d4k

(2π)4

{
δk5,k′5 ± δ−k5,k′5

k2 − k2
5

}{
δ(p5−k5),(p′5−k′5) ± δ−(p5−k5),(p′5−k′5)

(p− k)2 − (p5 − k5)2

}
,

(3.25)

where λ is the quartic coupling and the additional factor 1/4 results from working on

S1/Z2. After summing over k′5, the integrand can be written as

F (k5) =
1

(k2 − k2
5) [(p− k)2 − (p5 − k5)2]

{
δp5p′5 + δp5,−p′5 ± δ2k5,(p5+p′5) ± δ2k5,(p5−p′5)

}
.

(3.26)

In Eq. (3.26), the first two terms in the bracket conserve |p′5| and contribute to the

bulk kinetic terms of the scalar. The last two terms, on the other hand, violate |p′5|
conservation and thus lead to a renormalization of the brane couplings [35]. Note
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that these brane terms lead in Eq. (3.25) to a logarithmic divergence. Applying, on

the other hand, to the bulk terms the Poisson resummation identity

1

2πR

∞∑
m=−∞

F (m/R) =
∞∑

n=−∞

∫ ∞

−∞

dk

2π
e−2πikRnF (k), (3.27)

we obtain a sum of momentum space integrals, where the “local” n = 0 term diverges

linearly like in 5D uncompactified space. This term contributes a linear divergence to

the diagram such that the scattering amplitude becomes under order one rescalings

of the random renormalization point for the external momenta of the order

iΣ → λ2

4

∫
d5k

(2π)5
[k2(p− k)2]−1 ' λ2

2

Λ

(4π)5/2Γ(5/2)
, (3.28)

where Λ is an ultraviolet cutoff. On S1/Z2, we thus indeed obtain for the strong

coupling scale Λ ' 48π3λ−2, which is two times larger than the NDA value obtained

in 5D uncompactified space. This is also in agreement with the definition of Λ for a

5D gauge theory on an interval given in Ref. [48].

Similarly, when the 5th dimension is compactified on S1/(Z2×Z ′
2) [55], we expect

a raising of Λ by a factor of 4 with respect to the uncompactified case. Let us

briefly estimate how far this could improve the calculability of our 6D model. To this

end, we assume, besides the two extra dimensions compactified on the rectangle, two

additional extra dimensions with radii R3 and R4, each of which has been compactified

on S1/(Z2×Z ′
2). We assume that the gauge bosons are even under the actions of the

Z2×Z ′
2 groups. Moreover, we take for the bulk kinetic coefficients in eight dimensions

M4
L = M4

Y and set R3 = R4 = R2 = R1/
√

2. From the expression analogous to

Eq. (3.21c), we then obtain the estimate ε3 ' g2(πMLR2)
4/3
√

2, where the relative

factor (πR2/2)2, arises from integrating over the physical space on each circle, which

is only 1/4 of the circumference. With respect to the NDA value Λ4 ' (4π)4Γ(4)M4
L

in uncompactified space, the cutoff gets now modified as Λ4 → 16 ·Λ4, implying that

ε3 ' g2

192
√

2
(ΛR2/4)4 ' 1.3× 10−3 × (ΛR2/4)4. (3.29)
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In agreement with EWPT, the loop expansion parameter could therefore assume here

a value (ΛR2)
−1 ' 0.25, corresponding to the appearance of 4 KK modes per extra

dimension below the cutoff. Taking also a possible additional raising of Λ by a factor

of
√

2 due to the reduced physical space on the rectangle into account, one could have

(ΛR2)
−1 ' 0.2 with 5 KK modes per extra dimension below the cutoff. In conclusion,

this demonstrates that by going beyond five dimensions, the calculability of Higgsless

models could be improved by factors related to the geometry.
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CHAPTER 4

A New Two Higgs Doublet Model

4.1 Model and the Formalism

Our proposed model is based on the symmetry group SU(3)c × SU(2)L ×U(1)×
Z2. In addition to the usual SM fermions, we have three EW singlet right-handed

neutrinos, NRi, i = 1− 3, one for each family of fermions. The model has two Higgs

doublets, χ and φ. All the SM fermions and the Higgs doublet χ, are even under the

discrete symmetry, Z2, while the RH neutrinos and the Higgs doublet φ are odd under

Z2. Thus all the SM fermions except the left-handed neutrinos, couple only to χ. The

SM left-handed neutrinos, together with the right-handed neutrinos, couple only to

the Higgs doublet φ. The gauge symmetry SU(2)× U(1) is broken spontaneously at

the EW scale by the VEV of χ, while the discrete symmetry Z2 is broken by a VEV of

φ, and we take 〈φ〉 ∼ 10−2 eV . Thus, in our model, the origin of the neutrino masses

is due to the spontaneous breaking of the discrete symmetry Z2. The neutrinos are

massless in the limit of exact Z2 symmetry. Through their Yukawa interactions with

the Higgs field φ, the neutrinos acquire masses much smaller than those of the quarks

and charged leptons due to the tiny VEV of φ.

The Yukawa interactions of the Higgs fields with the leptons are

LY = ylΨ
l

LlRχ + yνl
Ψ

l

LNRφ̃ + h.c., (4.1)

where Ψ
l

L = (ν l, l)L is the usual lepton doublet and lR is the charged lepton singlet.

The first term gives rise to the mass of the charged leptons, while the second term

gives a tiny neutrino mass. The interactions with the quarks are the same as in the
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Standard Model with χ playing the role of the SM Higgs doublet. Note that in our

model, a SM left-handed neutrino, νL combines with a right handed neutrino, NR,

to make a massive Dirac neutrino with a mass ∼ 10−2 eV, the scale of Z2 symmetry

breaking.

For simplicity, we do not consider CP violation in the Higgs sector. (Note that

in this model, spontaneous CP violation would be highly suppressed by the small

VEV ratio and could thus be neglected. However, one could still consider explicit CP

violation). The most general Higgs potential consistent with the SM ×Z2 symmetry

is [56]

V = −µ2
1 χ†χ− µ2

2 φ†φ + λ1(χ
†χ)2 + λ2(φ

†φ)2 + λ3(χ
†χ)(φ†φ)− λ4|χ†φ|2

−1

2
λ5[(χ

†φ)2 + (φ†χ)2]. (4.2)

The physical Higgs fields are a charged field H, two neutral scalar fields h and σ, and

a neutral pseudoscalar field ρ. In the unitary gauge, the two doublets can be written

χ =
1√
2




√
2(Vφ/V )H+

h0 + i(Vφ/V )ρ + Vχ


 ,

φ =
1√
2




−√2(Vχ/V )H+

σ0 − i(Vχ/V )ρ + Vφ


 , (4.3)

where Vχ = 〈χ〉, Vφ = 〈φ〉, and V 2 = V 2
χ + V 2

φ . The particle masses are

m2
W =

1

4
g2V 2, m2

H =
1

2
(λ4 + λ5)V

2, m2
ρ = λ5V

2,

m2
h,σ = (λ1V

2
χ + λ2V

2
φ )±

√
(λ1V 2

χ − λ2V 2
φ )2 + (λ3 − λ4 − λ5)2V 2

χ V 2
φ . (4.4)
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An immediate consequence of the scenario under consideration is a very light scalar

σ with mass

m2
σ = 2λ2V

2
φ [1 + O(Vφ/Vχ)]. (4.5)

The mass eigenstates h, σ are related to the weak eigenstates h0, σ0 by

h0 = ch + sσ, σ0 = −sh + cσ, (4.6)

where c and s denotes the cosine and sine of the mixing angles, and are given by

c = 1 + O(V 2
φ /V 2

χ ),

s = −λ3 − λ4 − λ5

2λ1

(Vφ/Vχ) + O(V 2
φ /V 2

χ ). (4.7)

Since Vφ ∼ 10−2 eV and Vχ ∼ 250 GeV, this mixing is extremely small, and can

be neglected. Hence, we see that h behaves essentially like the SM Higgs (except of

course in interactions with the neutrinos).

The interactions of the neutral Higgs fields with the Z are given by

Lgauge =
g

2V
(cVφ + sVχ)(ρ∂µh− h∂µρ)Zµ +

g

2V
(sVφ − cVχ)(ρ∂µσ − σ∂µρ)Zµ

+
g2

4
(sVφ − cVχ)hZµZµ +

g2

4
(cVφ + sVχ)σZµZµ +

g2

8
(h2 + σ2 + ρ2)ZµZµ (4.8)

where g2 = g2 + g′2, and Vχ and Vφ are the two VEV’s.

4.2 Phenomenological Implications

We now consider the phenomenological implications of this model. There are sev-

eral interesting phenomenological implications which can be tested in the upcoming
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neutrino experiments and high energy colliders. The light neutrinos in our model are

Dirac particles. So neutrino-less double beta decay is not allowed in our model. This

is a very distinctive feature of our model for the neutrino masses compared to the

traditional see-saw mechanism. In the see-saw model, light neutrinos are Majorana

particles, and thus neutrino-less double beta decay is allowed. The current limit on

the double beta decay is mee ∼ 0.3 eV . This limit is expected to go down to about

mee ∼ 0.01 eV in future experiments [57]. If no neutrino-less double beta decay is

observed to that limit, that will cast serious doubts on the see-saw model. In our

model, of course, it is not allowed at any level.

Next, we consider the implications of our model for high energy colliders. First

we consider the production of the light scalar σ in e+e− collisions. The only possible

decay modes of this particle are a diphoton mode, σ → γγ which can occur at the

one-loop level and, if it has enough mass, a σ → νν mode. The one loop decay

to two photons takes place with quarks, W bosons, or charged Higgs bosons in the

loop. The largest contribution to this decay mode is ∼ e8m5
σ/mq

4. This gives the

lifetime of σ to be ∼ 1020 years, which is much larger than the age of the universe.

Thus σ essentially behaves like a stable particle, and its production at the colliders

will lead to missing energy in the event. The couplings of σ to quarks and charged

leptons takes place only through mixing which is highly suppressed (proportional to

the ratio Vφ/Vχ). Thus we need only consider its production via its interactions with

gauge bosons. The ZZσ coupling is also highly suppressed, so that processes such as

e+e− → Z∗ → Zσ and Z → Z∗σ → ffσ are negligible. However, no such suppression

occurs for the ZZσσ coupling. Consider the Z decay process Z → Z∗σσ → ffσσ.

A direct calculation yields the width (neglecting the σ and fermion masses),
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Γ(Z → ffσσ) =
G3

F m5
Z(g2

V + g2
A)

2
√

2(2π)5

∫ mZ/2

0

dE1

∫ mZ/2

0

dE2

×
∫ 1

−1

d(cos θ)
E2

1E
2
2(3− cos θ)

(2E1E2 − 2E1E2 cos θ −m2
Z)2 + m2

ZΓ2
Z

, (4.9)

where gV = T3 − 2Q sin2 θW and gA = T3. This gives

∑

f

Γ(Z → ffσσ) ' 2.5× 10−7 GeV. (4.10)

For the 1.7 × 107 Z’s observed at resonance at LEP1 [58], this gives an expectation

of only about two such events.

Now we consider the production of the heavy Higgs particles in our model. Since

the charged Higgs H± and the pseudoscalar, ρ can be produced along with the light

scalar σ, there will be stricter mass bound on these particles than in a typical two

Higgs doublet model. Let us consider the pseudoscalar ρ, and assume mρ < mZ .

Then the Z can decay via Z → σρ. Since ρ couples negligibly to all SM fermions

except the neutrinos, here we need only consider its decay to νν (or σσ if we consider

CP violation), so this process contributes to the invisible decay width of the Z. The

width for this process is

Γ =
GF m3

Z

24
√

2π

(
1− m2

ρ

m2
Z

)3

(4.11)

This is less than the experimental uncertainty in the invisible Z width for mρ &

78 GeV . (The experimental value of the invisible Z width is 499.0± 1.5 MeV [59].)

For mρ > mZ , real pseudoscalar ρ can be produced via e+e− → Z∗ → ρσ. The

total cross section for this process is

σ =
G2

F m4
Z(g2

V + g2
A)s

24π

(
1

s−m2
Z

)2 (
1− m2

ρ

s

)3

. (4.12)

65



For LEP2,
√

s ' 200 GeV , we find that less than one event is expected in ' 3000 pb−1

[6] of data for mρ & 95 GeV . Note that the bound on the ρ mass we obtain is much

less than the mass for which the Higgs potential becomes strongly coupled (λ5 ≤ 2
√

π

which gives mρ ≤ 470 GeV).

For mρ > mZ , the Z can still decay invisibly through Z → ρ∗σ → ννσ. The

width for this decay is

invwidthΓ =
GF m2

Zy2
νl

3
√

2(2π)3

∫ mZ/2

0

dE
E3(mZ − 2E)

(m2
Z − 2mZE −m2

ρ)
2
. (4.13)

Summing over generations, this gives

Γ(mρ = 100 GeV ) ' (0.1 MeV )(
1

3

∑

l

y2
νl
)

Γ(mρ = 200 GeV ) ' (4× 10−3 MeV )(
1

3

∑

l

y2
νl
). (4.14)

Even if we take 1
3

∑
y2

νl
∼ 1, these values are well within the experimental uncertainty

in the invisible Z width of 1.5 MeV . Note that if we allow explicit CP violation in

the Higgs sector, the invisible decay Z → ρσ → σσσ will also occur.

Our model has very interesting implications for the discovery signals of the Higgs

boson at the high energy colliders, such as the Tevatron and LHC. Note that since Vφ

is extremely small compared to Vχ, the neutral Higgs boson, h is like the SM Higgs

boson so far its decays to fermions and to W and Z bosons are concerned. However,

in our model, h has new decay modes, such as h → σσ which is invisible. This could

change the Higgs signal at the colliders dramatically. The width for this invisible

decay mode h → σσ is given by

Γ(h → σσ) =
(λ3 + λ4 + λ5)

2V 2
χ

32πmh

. (4.15)
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Figure 4.1: Left panel: Branching ratio for h → σσ as a function of mh for the value

of the parameter, λ∗ = 0.1. Right panel: Branching ratio for h → σσ as a function

of λ∗ for mh = 135 GeV .

Using

m2
h = 2λ1V

2
χ + O(V 2

φ /V 2
χ ), (4.16)

this can be written

Γ(h → σσ) =
(λ3 + λ4 + λ5)

2mh

64πλ1

. (4.17)

Depending on the parameters, it is possible for the dominant decay mode of h to

be this invisible mode. The branching ratios for the Higgs decay to this invisible mode

are shown in Fig. 4 (left panel), for the Higgs mass range from 100 to 300 GeV , for

the choice of the value of the parameter, λ∗ equal to 0.1 where λ∗ is defined to be equal

to (λ3+λ4+λ5)2

λ1
. The right panel in Fig. 4 shows how this branching ratio depends on

this parameter for a Higgs mass of 135 GeV . (The results for the branching ratio is

essentially the same for other values of the Higgs mass between 120 and 160 GeV ). We

see that for a wide range of this parameter, for the Higgs mass up to about 160 GeV ,

the invisible decay mode dominates, thus changing the Higgs search strategy at the

Tevatron Run 2 and the LHC . The production rate of the neutral scalar Higgs h in

our model are essentially the same as in the SM. This implies that the Higgs mass

bound from LEP is not significantly altered . (The L3 collaboration set a bound of
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mh ≥ 112.3 GeV for an invisibly decaying Higgs with the SM production rate [60]).

However, because of the dominance of the invisible decay mode, it will be very difficult

to observe a signal at the LHC in the usual production and decay channels such as

qqh → qqWW , qqh → qqττ , h → γγ, h → ZZ → 4l, tth (with h → bb) and

h → WW → lνlνl [61]. However, a signal with such an invisible decay mode of the

Higgs (as in our model) can be easily observed at the LHC through the weak boson

fusion processes, qq → qqW+W− → qqH and qq → qqZZ → qqH [62] if appropriate

trigger could be designed for the ATLAS and CMS detector. For example, with

only 10 fb−1 of data at the LHC, such a signal can be observed at the 95 percent

CL with an invisible branching ratio of 31 percent or less for a Higgs mass of upto

400 GeV [62]. Thus our model can be easily tested at the LHC for a large region

of the Higgs mass. Of course, establishing that this signal is from the Higgs boson

production will be very difficult at the LHC. For the Higgs search at the Tevatron,

the usual signal from the Wh production, and the subsequent decays of h to WW ∗

or bb will be absent. The most promising mode in our model will be the production

of ZH, with Z decaying to l±l± (l = e, µ) and the Higgs decaying invisibly. There will

be a peak in the missing energy distribution in the final state with a Z. We urge the

Tevatron collaborations to look for such a signal.

4.3 Cosmological Implications

Our model has several interesting astrophysical and cosmological implications.

Firstly, there is a problem with primordial nucleosynthesis [63]. This occurs because

the relatively strong interactions between left- and right-handed neutrinos and the

light scalar σ will keep right-handed neutrinos and σ in thermal equilibrium with left-

handed neutrinos during nucleosynthesis. So, the effective number of light degrees

of freedom, g∗ = gb + 7
8
gf (gb and gf are the numbers of bosonic and fermionic spin

degrees of freedom respectively), is
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g∗ = (g∗)SM + 1 +
7

8
(6) = 17. (4.18)

(Equivalently, the effective number of neutrinos is Nν = 6 + 4
7
.) This increases the

expansion rate of the universe, which is proportional to
√

g∗. As a result, reactions

which interconvert protons and neutrons freeze out of thermal equilibrium at a higher

temperature, increasing the ratio of neutrons to protons during nucleosynthesis. This

increase alters the abundances of light elements produced in subsequent nucleosyn-

thesis reactions, most notably, helium-4 is greatly overproduced. The mass fraction

of helium-4 obtained here is ' 0.3 compared to the observed fraction ' 0.25. To

solve this problem, our model requires a non-standard nucleosynthesis scenario. One

possibility is a large neutrino degeneracy. It is assumed in standard nucleosynthe-

sis that the chemical potential of neutrinos µν ' 0. However, since relic neutrinos

are not observed, this is not required by observation. A large value of µν alters the

equilibrium ratio of neutrons to protons,

n

p
= e−µν/T

(
n

p

)

µν=0

, (4.19)

leading to an alteration of light element abundances. Our problem can be solved with

µν ∼ 0.1 MeV . In depth studies have been conducted, where the effective number

of neutrinos, neutrino degeneracy and the density of baryons are allowed to vary,

in order to find the most general values consistent with BBN and WMAP [65](as

well as studies which fix Nν = 3, leading to much stronger bounds on neutrino

degeneracy [66]). These studies find upper bounds on Nν from 7.1 to 8.7, depending

on how conservative an interpretation of the data is used. Another possible solution

could be the existence of massive particle species that decay after nucleosynthesis.

Energetic decay products of these particles interact with background nuclei, causing

non-thermal nuclear reactions, such as helium-4 dissociation, that reset light element
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abundances [64]. (We also note that in the above analysis, we have taken three right-

handed neutrinos. For the oscillation experiments, as well as for direct measurements,

the lightest neutrino mass can be zero. So, only two right-handed neutrinos are strictly

required. This could make the Big Bang nucleosynthesis problem somewhat milder.)

There are also bounds on the effective number of neutrinos coming from astro-

physical observations other than light element abundances. For example, data from

WMAP and the Sloan Digital Sky Survey (SDSS) power spectrum of luminous red

galaxies, give a bound 0.8 < Nν < 7.6 [67]. The authors of [68] claim that data from

the SDSS Lyman-α forest power spectrum, along with cosmic microwave background,

supernova, and galaxy clustering data, seem to require Nν > 3.

Additionally, the ννσ interaction can affect supernova explosion dynamics,and

since this interaction can be fairly strong it may bind νν, giving rise to the possibility

of νν atoms and a new kind of star formation.

Also, the spontaneous breaking of the discrete global symmetry Z2 will lead to

the formation of cosmological domain walls. These walls will have energy per unit

area η ∼ V 3
φ , so their effect will be small. The resulting temperature anisotropies are

δT

T
' GηH−1

0 ∼ 10−20, (4.20)

where G is Newton’s gravitational constant and H0 is the present Hubble parameter.

The observed level of CMB temperature anisotropies is 10−5 [59], so this is not a

problem.
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CHAPTER 5

CONCLUSIONS

We have presented several scenarios that alter the Higgs sector from that of the

SM.

First, we presented a renormalizable non-supersymmetric model based on the finite

symmetry G = (G1×G2)oA4, with G1 = S3×S3×S3×S3 and G2 = Z2×Z2×Z2,

with SM leptons assigned to representations of A4. Neutrino masses are generated

by a Higgs field φ belonging to a 16-dimensional representation of G1 o A4 while

charged-lepton masses are generated by a Higgs field χ belonging to a 6-dimensional

representation of G2oA4. The additional symmetries, G1 and G2, prevent quadratic

and cubic interactions between φ and χ and allow only a trivial quartic interaction

that does not cause an alignment problem, addressing the alignment problem without

altering the desired properties of the family symmetry. In this way, we are able to

explain all aspects of neutrino mixing using only symmetries which are spontaneously

broken by the Higgs mechanism.

Next, we have considered a 6D Higgsless model for EWSB based only on the SM

gauge group SU(2)L × U(1)Y . The model is formulated in flat space with the two

extra dimensions compactified on a rectangle of size ∼ (TeV )−2. EWSB is achieved

by imposing consistent BC’s on the edges of the rectangle. The higher KK resonances

of W± and Z decouple below ∼ 1 TeV through the presence of a dominant 4D brane

induced gauge kinetic term at the point where SU(2)L × U(1)Y remains unbroken.

The ρ parameter is arbitrary and can be set exactly to unity by appropriately choosing

the bulk gauge couplings and compactification scales. The resulting gauge couplings
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in the effective 4D theory arise essentially from the brane couplings, slightly modified

(at the level of one percent) by the bulk interaction. Thus, the main role played by

the bulk interactions is to break the electroweak gauge symmetry. We calculate the

tree-level oblique corrections to the S, T , and U parameters and find them to be

consistent with current data.

Finally, we have presented a simple extension of the Standard Model supplemented

by a discrete symmetry, Z2. We have also added three right-handed neutrinos, one

for each family of fermions, and one additional Higgs doublet. While the electroweak

symmetry is spontaneously broken at the usual 100 GeV scale, the discrete symmetry,

Z2 remains unbroken to a scale of about 10−2 eV . The spontaneous breaking of this

Z2 symmetry by the VEV of the second Higgs doublet generates tiny masses for the

neutrinos. The neutral heavy Higgs in our model is very similar to the SM Higgs in its

couplings to the gauge bosons and fermions, but it also couples to a very light scalar

Higgs present in our model. This light scalar Higgs, σ, is essentially stable, or decays

to νν. Thus the production of this σ at the high energy colliders leads to missing

energy. The SM-like Higgs, for a mass up to about 160 GeV dominantly decays to

the invisible mode h → σσ. Thus the Higgs signals at high energy hadron colliders

are dramatically altered in our model. Our model also has interesting implications

for astrophysics and cosmology.
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