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CHAPTER 1

INTRODUCTION

The Standard Model (SM) of electroweak interactions [1], based on the gauge
symmetry group SU(2);, x U(1)y, provides a highly successful description of elec-
troweak precision tests (EWPT) [2,3]. One fundamental ingredient of the SM is the
Higgs mechanism [4], which accomplishes electroweak symmetry breaking (EWSB)
and at high energies unitarizes massive W+ and Z scattering through the presence of
the scalar Higgs doublet [5]. Although the mass of the Higgs boson is not predicted
by the SM, accurate measurements of the top quark and the W boson mass at the
Tevatron, as well as the Z boson mass at LEP, have narrowed the SM Higgs boson
mass between 80 and 200 Gel/ [3]. Failure to observe the SM Higgs boson at LEP2
has also placed a direct lower bound of 114 GeV on its mass [6]. The dominant decay
modes of the SM Higgs boson are to bb, WW, ZZ or tt, depending on its mass.
Extensions of the SM may avoid constraints on the Higgs mass, and may allow Higgs
bosons with masses less than the above limits. The dominant decay modes of the
Higgs bosons can also be altered in such extensions, thus transforming the discovery
signals for the Higgs bosons at the Large Hadron Collider (LHC). However, there is
as yet no direct evidence of the Higgs boson, so that the details of the Higgs sector,
if it even exists, remain a mystery. Thus, it is important to explore alternative Higgs
sector scenarios.

One interesting scenario involves the role of the Higgs sector in neutrino mixing.

The existence of neutrino masses is now well established experimentally [7,8]. At 1o,



the mass-squared differences and mixing angles are [7]:
Am3, = 7.65(+0.23/ — 0.20) x 1077 eV?, A|m3,| = 2.40(+0.13/ — 0.11) x 1073 eV?,
and

sin? fy3 = 0.50(4-0.022/ — 0.016), sin? 615 = 0.341(4-0.07/ — 0.06),

sin? 015 < 0.035.

These values are in good agreement with a tribimaximal mixing pattern given by the

mixing matrix [9, 10]

2 1
s v 0
= -1 1 1
Umns % B 0 P (1.1)
11 1
V6 V3 V2

where P is a diagonal phase matrix. This corresponds to
sin? fy3 = 1/2, sin®@0y, = 1/3, sin?#y3 = 0.

It has long been known that such a mixing pattern can be obtained using a finite
family symmetry [10-25] such as A, [19-25]. In these models, A4 is broken to a Z,
subgroup in the neutrino sector by a triplet Higgs, with the VEV structure (0, 1,0)
or some permutation thereof, and to a Z3 subgroup in the charged lepton sector
by a triplet Higgs, with the VEV structure (1,1,1). However, there is a serious
technical problem with this, in that couplings between the Higgs fields responsible for
the symmetry breaking will force the VEV’s to align, upsetting the desired breaking
pattern [21-25]. To overcome this problem, one can introduce more complicated
symmetries. In Section 2, we consider models where the SM lepton families belong
to representations of the finite symmetry which are not faithful (that is, not every

member of the group is represented by a distinct transformation). In effect, the



Higgs sector knows about the full symmetry while the lepton sector does not. We
consider a renormalizable non-supersymmetric gauge theory with an additional finite
symmetry that has the semi-direct product structure G = (G x G3) x Ay, with
G = S3x893xS53xS3 and Gy = Zy X Zy X Zy. A symmetry thus structured will contain
G1, Go, and G; x G4 as invariant subgroups, so that G will have representations
corresponding to the homomorphisms G/(G7 x Gg) ~ Ay, G/G1 ~ Go x Ay, and
G /Gy ~ Gy x Ay. SM leptons can then be assigned to representations of A4. Neutrino
masses are generated by a Higgs field ¢, belonging to a 16-dimensional representation
of G x A4, while charged-lepton masses are generated by a Higgs field y, belonging
to a 6-dimensional representation of Go x A4. The additional symmetries, GG; and G,
prevent quadratic and cubic interactions between ¢ and y and allow only a trivial
quartic interaction (i.e., the interaction is the product of quadratic invariants) that
does not cause an alignment problem. In this way, the alignment problem is addressed
without altering the desired properties of the family symmetry, so that neutrino
mixing can be explained using only symmetries which are broken spontaneously by
the Higgs mechanism.

However, no fundamental scalar particle has been observed yet in nature, and as
long as there is no direct evidence for the existence of the Higgs boson, the actual
mechanism of EWSB remains a mystery. In case the Higgs boson will also not be
found at the Tevatron or the LHC, it will therefore be necessary to consider alternative
ways to achieve EWSB without a Higgs. We explore this possibility in Section 3.
It is well known, that in extra dimensions, gauge symmetries can also be broken
by boundary conditions (BC’s) on a compact space [27]|. Here, a geometric ”Higgs”
mechanism ensures tree-level unitarity of longitudinal gauge boson scattering through
a tower of Kaluza-Klein (KK) [28] excitations [29]. The original model for Higgsless
EWSB [30] is an SU(2), x SU(2)r x U (1) p—. gauge theory compactified on an interval

[0, 7R] in five-dimensional (5D) flat space. At one end of the interval, SU(2)r X



U(1)p—r is broken to U(1)y. At the other end, SU(2), x SU(2)g is broken to the
diagonal subgroup SU(2)p, thereby leaving only U(1)q of electromagnetism unbroken
in the effective four-dimensional (4D) theory. Although this model exhibited some
similarities with the SM, the p parameter deviated from unity by ~ 10% and the
lowest KK excitations of the W* and Z were too light (~ 240 GeV') to be in agreement
with experiment. These problems have later been resolved by considering the setup
in warped space [33]. Based on the same gauge group, similar effects can be realized
in 5D flat space [32], when 4D brane kinetic terms [34-36] dominate the contribution
from the bulk. In 5D Higgsless models, a p parameter close to unity is achieved at the
expense of enlarging the SM gauge group by an additional gauge group SU(2)g, which
introduces a gauged custodial symmetry in the bulk. However, it is possible to obtain
consistent 6D Higgsless models of EWSB, which are based only on the SM gauge group
SU(2), x U(1)y and allow the p parameter to be set equal to unity. We consider a
Higgsless model for EWSB in six dimensions, which is based only on the SM gauge
group SU(2), x U(1)y, where the gauge bosons propagate in the bulk. The model
is formulated in flat space with the two extra dimensions compactified on a rectangle
and EWSB is achieved by imposing consistent BC’s. The higher KK resonances of
W= and Z decouple below ~ 1TeV through the presence of a dominant 4D brane
induced gauge kinetic term. The p parameter is arbitrary and can be set exactly
to one by an appropriate choice of the bulk gauge couplings and compactification
scales. Unlike in the 5D theory, the mass scale of the lightest gauge bosons W and
Z is solely set by the dimensionful bulk couplings, which (upon compactification via
mixed BC’s) are responsible for EWSB. We calculate the tree-level oblique corrections
to the S, T, and U parameters and find that they are in better agreement with data
than in proposed 5D warped and flat Higgsless models.

In Section 4, we present a model that includes a second Higgs doublet that pro-

vides an alternate explanation for the tiny masses of the SM neutrinos, as well as



possibilities for altering signals for discovery of the Higgs at the LHC. Our proposal
is to extend the SM electroweak symmetry to SU(2); x U(1) x Zy and introduce
three SU(2) x U(1) singlet right handed neutrinos, Ng, as well as an additional Higgs
doublet, ¢. While the SM symmetry is spontaneously broken by the VEV of an EW
doublet x at the 100 GeV scale, the discrete symmetry Zs is spontaneously broken by
the tiny VEV of this additional doublet ¢ at a scale of 1072 GeV. Thus in our model,
tiny neutrino masses are related to this Z; breaking scale. We note that although our
model has extreme fine tuning, that is no worse than the fine tuning problem in the
usual GUT model. Many versions of the two Higgs doublet model have been exten-
sively studied in the past [37]. The examples include: a) a supersymmetric two Higgs
doublet model, b) non-supersymmetric two Higgs doublet models i) in which both
Higgs doublets have vacuum expectation values (VEV’s) with one doublet coupling
to the up type quarks only, while the other coupling to the down type quarks only,
ii) only one doublet coupling to the fermions, and iii) only one doublet having VEV’s
and coupling to the fermions [38]. What is new in our model is that one doublet
couples to all the SM fermions except the neutrinos, and has a VEV which is same as
the SM VEV, while the other Higgs doublet couples only to the neutrinos with a tiny
VEV ~ 1072 eV. This latter involves the Yukawa coupling of the left-handed SM
neutrinos with a singlet right-handed neutrino, Ng. The left-handed SM neutrinos
combine with the singlet right-handed neutrinos to make massive Dirac neutrinos.
The neutrino mass is so tiny because of the tiny VEV of the second Higgs doublet,
which is responsible for the spontaneous breaking of the discrete symmetry, Z,. Note
that in the neutrino sector, our model is very distinct from the sea-saw model. Lepton
number is strictly conserved, and hence no Ny N mass terms are allowed. Thus the
neutrino is a Dirac particle, and there is no neutrino-less double 5 decay in our model.
In the Higgs sector, in addition to the usual massive neutral scalar and pseudoscalar

Higgs, and two charged Higgs, our model contains one essentially massless scalar



Higgs. We will show that this is still allowed by the current experimental data and
can lead to an invisible decay mode of the SM-like Higgs boson, thus complicating

the Higgs searches at the Tevatron and the LHC.



CHAPTER 2

Unfaithful Representations of Finite Groups and Tribimaximal Neutrino

Mixing
2.1 The Discrete Symmetry

As described in the Introduction, we consider a renormalizable non-supersymmetric

gauge theory with an additional finite symmetry given by the semi-direct product!
G = (G x Gy) x Ay, with G = S5 x S3 X S3 x S3 and Gy = Zy X Z3 X Zy. The group

Ay can be described using two generators obeying the relations,
X?=Y3=F, XYX =Y?XY? (2.1)

where FE is the identity. The irreducible representations are one real singlet, 1; two
complex singlets, 1’ and 1”; and one real triplet, 3. Table 1 gives X and Y in each of
these representations for a certain choice of basis. The S35 generators, A; and B;, and

the Z, generators, C;, obey

and C; commutes with A; and B;. The remaining relations defining the full symmetry

are

XAlX_l == AQ, XAQX_l - Al, XAgX_l - A4, XA4X_1 = Ag,

!The semi-direct product, N x H, contains N and H as subgroups and obeys hnh~! € N for all
n € N and h € H [39]. Thus, N is an invariant subgroup. The number of elements in the group,
denoted by |N x H|, is |[N||H|. The semi-direct product exists when H has a factor group which is

a subgroup of the automorphism group of N.



X Y
1 1 1
1 1 w
1 1 w?
-1 0 O 0 0 1
3 0 1 0 1 00
0 0 -1 010
w — 2iT/3

Table 2.1: This table shows the matrices representing the generators in each irrep. of

Ay, in a certain basis.

XB1 X '=By, XB,X '=B,, XB;X '=By, XB,X ! =By, (2.3)

YAY P =A, YAY 1= A3 YA Y ' = Ay, YAY ' = Ay,

YBlyil = Bl, YBQYil = Bg, YB3Y71 = B4, YB4Y71 - BQ, (24)

XO X' =C1050y, XCo X1 =05, XC3X 71 =0y,

YO Y 1 =0y, YO, Y 1 =05, YO 1 =0 (2.5)

It’s easy to see that if (', Cy, and C5 are all represented by the identity matrix,
then (6) is trivially satisfied. So in this case, one need only find representations that
respect Egs. (2)-(5). But this is equivalent to finding representations of G; x A4. The
representations of this type that we will be using are a real 16-dimensional represen-
tation, a real 48-dimensional representation, and a real 8-dimensional representation.
These will be referred to hereafter as 16 45, 4845, and 8 4. The matrices representing

the remaining generators in each of these representations can be found in Section 2.3



below. Similarly, if Ay, Ay, A3, Ay, By, Bs, Bs, and By are all represented by the
identity matrix, then (4) and (5) are trivially satisfied. Finding these representations
corresponds to finding representations of Gy x A4. For this type, we will be using a
real 6-dimensional representation, which we will call 6. The matrices representing
the remaining generators in this representation can also be found in Section 2.3. Fi-
nally, if the A;’s, B;’s, and C;’s are all represented by the identity matrix, then the
only non-trivial relation is (2), corresponding to the representations of A, given in

Table 1. These representations will be used for SM leptons.

2.2 The Model

The SM lepton assignments under A, are
eri ~ 1, egy ~ 1, erg ~ 1", (L1, Lo, L3) ~ 3. (2.6)

The finite symmetry is broken at a scale M,, which is large compared to the weak
scale, by two Higgs fields, ¢ and y. Neutrino Dirac masses are generated by the real
Higgs field ¢ belonging to 16 45, while charged lepton masses are generated by the real
Higgs field x belonging to 6. Symmetry-invariant interactions between ¢ and y must
consist of products of GGy invariants constructed from ¢ with G5 invariants constructed
from x. The 16-dimensional representation to which ¢ belongs is (2,2,2,2) with
respect to G = S3 X S3 x S3 x S3, so that there is only one quadratic G; invariant
that can be constructed with ¢, which is invariant under the full symmetry. Thus,
there are no cubic invariants involving both ¢ and x, and the only quartic invariant
containing both is a trivial product of quadratic invariants, which does not generate

a VEV alignment problem. Then the potential of ¢ and x has the form

Vi = a1 f1(9, @) + az fa(x, X) + 0191(0, &, ) + baga (X, Xo X) + c1h1 (@) + caha (o)

Fcshs(x) 4 caha(x) + cshs(x) + cehe(X) + e fi(@, @) f2(X, X), (2.7)



where the functions fi, f2, g1, g2, h1, ho, h3, hg, hs, and hg are given in Section 2.4
below.

The neutrino masses are generated from ¢ by integrating out multiplets of heavy
right-handed neutrinos, with masses at a scale M, which is large compared to the EW
scale. These multiplets are N ~ 3, N’ ~ 4845, and N” ~ 8,5. If the Zy subgroup
of Ay generated by X is left unbroken by the VEV of ¢ (along with an additional
accidental Z, that is actually part of Sy, see [41]), the light neutrino mass matrix is

forced to have the form

a, 0 ¢,
M, = 0 b, 0 ) (2.8)
c, 0 a,
This matrix is diagonalized by
1 0 -1
U, = % 0v2 0 |DB, (2.9)
1 0 1

where diagonal P, is a phase matrix. The charged lepton masses are generated from
x by integrating out multiplets of heavy vector-like fermions, whose masses are also
at the high scale M,, with the same gauge quantum numbers as right-handed charged
leptons. These are Ez g ~ 3 and E} p ~ 6¢. If the Z3 subgroup of A4 generated by
Y is left unbroken by the VEV of y, the light left-handed charged lepton mass matrix

is forced to have the form

1 1 1 a. 0 O 1 1 1
1 1
MIM,=— 1| 1 2 — | 1 W2

73 w ow 0 b O 73 w® w
1 w? w 0 0 c 1 w w?

a 0 O

=U| 0 b 0 |Uf (2.10)
0 0 e

10



SU@2)r | Uy | (S5 x Z3) x Ay

L| 2 1/2 3
€R1 1 -1 1
€R2 1 -1 1
€R3 1 -1 1”
N 1 0 3
N’ 1 0 48 4B
N" 1 0 84B
Er 1 -1 3
Egr 1 -1 3
B | 1 1 6c
E.| 1 1 6c

1 0 1648
X 1 0 6c

2 1/2 1

Table 2.2: This table shows the assignments of the fermions and Higgs fields under
SU2), x U(1l)y x [(S§ x Z3) x Ay]

Egs. (10) and (11) then give the desired form (1) for the mixing matrix Uyng =
ULU*. The symmetry assignments of the fermions and Higgs fields in the model are
summarized in Table 2.

From the matrices given in Section 2.3, it can be seen that the most general VEV

structure for y that leaves the Z3 subgroup of A4 generated by Y unbroken is

<X> - (le’Ux2,vxlavx27vx17vx2)~ (211)

Upon minimizing the potential, one finds that v,, = 0, vy; # 0 is allowed. Here,
C1C5C% is left unbroken in addition to Y. Since the SM leptons do not transform un-

der the C}’s, these additional symmetries do not affect the light lepton mass matrices.

11



So the desired minimum is

(X) = (vy,0,0y,0,0,0). (2.12)

Since C1C5C5, and Y commute, the subgroup they generate is Z, x Z3. Of course, y
also trivially leaves all A;’s and B;’s unbroken.
The most general VEV structure for ¢ that leaves the Z5 subgroup of A4 generated

by X unbroken is
(@) = (1, Vo2, Vg2, V3, Vgas Vs, Vgt VgTs Vd, Uty Ugsr U, Ugo, Vg9, Ugo, Ugro)- (2.13)
Upon minimizing the potential, we find that
(@) =(0,0,0,0,v4, Vg, Vs, Vg, Vg, Vg, Vg, Ug, 0,0, 0,0) (2.14)

is acceptable. In addition to X, this VEV leaves the generators By, By, B3B,4, and
A3A4 unbroken. These form the subgroup Ds x S3, with D4 generated by B;, B,
and X and with S5 generated by A3A, and B3B,. Of course, ¢ also leaves all C;’s
unbroken. (To leave the accidental Zy C Sy mentioned above unbroken requires
Vgs = Vg in (14), which is satisfied in (15).)

From (8), we find that v, and v, in (13) and (15) must be solutions to
2a; + 3byvy + 2(c1 + cg)vi + 6(:71)3< =0, 2ay + 3byv, + 4(cs + c5)v>2< + 16071}3, = 0.
Neutrino Dirac masses are generated through

L, = MLy Ny + LyN; + L3N3)ﬁf + mn (N7 + N3 + N3) +mly fs(N', N') +m f2(N",N")

+alg3(N7 ¢7 N/) + a294(N”7 ¢a N/) + 595(¢a Nla Nl)? (215)

where the functions f3, fi1, g3, 94, and g5 are given in Section 2.4. N ~ 3 is required
because the SM Higgs H only breaks EW symmetry, so that it can only cause left-

handed neutrinos to mix with a triplet. Since 3 X 1645 = 4845, ¢ ~ 1645 induces

12



mixing between N and N’ ~ 48 ,5. N” ~ 8,5 is needed to remove unwanted acci-
dental symmetries. Upon integrating out the heavy right-handed neutrinos, the light

neutrino mass matrix (9) is obtained (see Section 2.5). The light neutrino masses are

found to be
A2p2 miymfy — 4azvl + Bugmly
= 9 20202m/! ! ol 422 ny|?
—2ajvgmiy + my (mym, — a;aUy + Bugm'y)
A2p2 miymy — 20303 + Bugm’y
ma = 2 20202m" / " 20202 " ?
—2aqvzmy + my (mym, — a3V + Bugm’y)
A? mly + Bv
ms = N+ Bug

2 =207 +my(miy + Bug) |

Charged lepton masses are generated through

L.=k(ErmLi + EpyLy+ EpsL3)H + mp(Ep Epy + EraErs + EpsErs) + m/Ef2(E;g, E})
+7196(Er, B, X) + 7296(EL, B, X) + €1€r1 f2(EL, X) + €297(€ra, B, X) + €395(€rs, EL, X)

+T1192(E;27E},7X) +77292(E/L7E;2aX) +c.c., (216>

where the functions gg, g7, and gg are once again given in Section 2.4. Upon integrating
out the heavy fermions, the light charged lepton mass-squared matrix (11) is obtained

(see Section 2.6). The masses are

o 3|kerypviv|?
¢ 3Blev (me + vy )2 + |me(my + mouy, + navy) — v2|?’
1Ux\ME T 72Uy E\Mp T N1Uy T 12Uy Y1720y

3|keayoviul?
mi | 272Uy |

3leavy(mp + wypvy)[? + [mp(ml + W, + wnpvy) — Y172vE[*

) 3|kegyavivl?
m; = :
3lesvy(mp + w?y2vy)|? + [mp(my + wnoy + w?ny) — 117208

13



2.3 Derivation of Representations

Let H C G, and assume that we understand the representation theory of H. G

can be decomposed into cosets of H,

G=> s;H=> {sih| he H}, (2.17)
=1 =1

where the number n of cosets is equal to the number of elements in G divided by the
number of elements in H. The coset decomposition is independent of the choice of the
representative s; for each coset. Let v be a k-dimensional irreducible representation
of H. It induces a representation v of G given by

Y1(9)ig = D v (h)5(h, 57" gs;). (2.18)

heH

In other words, the ij sub-block of v; is v(si_lgsj) when si_lgsj € H and is zero
otherwise. Note that the dimension of the induced representation is kn. In general,
7; is reducible. Up to this point, it was not necessary to assume that H is invariant.

Let us now do so,
he H=— ghg'eH, Vged.
Then for each g € GG, we can define a new representation +, from v

Y9(h) = 7(ghg™). (2.19)

For g € H, 7, is equivalent to v (that is, 7, is v in a different basis),

Yq(h) = 7(g9)v(R)7~(9).

If g is outside of H, then 7, may be either equivalent or inequivalent to . The set
of all inequivalent irreducible representations that can be obtained from by the
transformation (20) (including ~ itself) is called the orbit O, of the representation ~.

Note that the true singlet (i.e., y(h) = 1, Vh € H) is always in its own orbit. Two

14



representations that belong to the same orbit have equivalent induced representations
(19). If g; and go belong to the same coset in (18), then they differ by a factor
belonging to H. So, by an argument similar to that showing ~, is equivalent to v for
g € H, 74 and 7, are equivalent. Then, to identify the orbit, it suffices to consider
how v transforms under the coset representatives, s;. Let H, be the set of all g € G
such that v, is equivalent to «v. Then, not only does H, contain H, but it consists of a
whole number of cosets from (18). H., is an invariant subgroup of GG and is called the
little group of the representation ~ (or of the orbit O.). Note that the little group of
the true singlet is always the entire group G. If each coset sends v to an inequivalent
representation, then the number of representations in O, is equal to the number n of
cosets, and H, = H. In this case, the induced representation v; in (19) is irreducible.
Otherwise, it is reducible.

As an example, consider the group Ay = (Zs X Zs) x Z3. Let X and Z be the Z,
generators and Y be the Z3 generator. Y cyclicly permutes the three Z, subgroups
of Zy X Zy:

YXY ' =2 YZV ' = XZ, Y(XZ)Y ! = X. (2.20)

Note that Z is not an independent generator (Z = Y XY ~1). The decomposition into

cosets of Zy X Zy is
Ay={E, X, Z, XZ}y+{Y, YX, YZ, YXZ}+{Y? Y?X, Y*Z, Y?XZ}.(2.21)

We can choose E, Y, and Y? = Y ! as coset representatives. Then the induced

representation (19) takes the form

Y(X) 0 0 v(Z) 0 0
(X) = 0 (Y 'XY) 0 , m(Z2) = 0 (Y 1ZY) 0
0 0 (Y XYY 0 0 V(Y ZY 1)

15



nwY)=| yE) 0o 0 |- (2.22)

As always, the true singlet (a) belongs to its own orbit. The induced representation
is
1 00 001
nX)=n@)=1010 [ m¥)=]100
001 010

These matrices can be diagonalized simultaneously, yielding three one-dimensional

representations:

1: X=7Z=1,Y=1;

1": X=7=1,Y =uw;

1": X=7Z=1,Y =w
with w = exp(2in/3). Using (21), we have for (b),
Ww(X) =1(YXY ™) =79(2Z) = =1, w(Z) =7(YZY ") =9(XZ) = 1,
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which is (c), and
Wi (X) =y (YTIXY) =9(X2Z) = 1, 1y-1(2) =4(Y ' 2Y) = 9(X) = 1,

which is (d). Thus, (b), (c¢), and (d) make up a single orbit. Since the number of
representations in this orbit is equal to the number of cosets in (22), the induced

representation is irreducible. From (23), we have

-1 0 0 -1 0 0 00 1
3: X = 0 1 0 VRS 0 -1 0}, Y=]100
0 0 —1 0 0 1 010

For every group G, there exists a maximal invariant subgroup H; that is, there are
no proper invariant subgroups that contain H. For this subgroup, the factor group
G/H is simple. If G is itself a simple group then the maximal invariant subgroup is
the trivial subgroup, {£'}. There also exists a maximal invariant subgroup H’ of H.

So, we have a chain,
HZ-CHi_lc...CH2CH1:G,

where Hj; is an invariant subgroup of H;, and H;/H;, is simple. This chain can be
continued until the trivial subgroup {E£} is reached, but for our purposes it suffices
to stop at the largest subgroup whose representation theory we already know. Then,
if we know how to determine the representation theory of a group from that of its
maximal invariant subgroup, we can apply this recursively. So, let G be a group,
and let H be its maximal invariant subgroup. We will further assume that G/H is
a cyclic group. Since the little group of a representation of H must be an invariant
subgroup of G containing H, the little group for each representation must be either
H or all of G. If the little group is H, the induced representation is irreducible. So
we need only concern ourselves with the case where the little group is G.

Let us consider another example. The group S, is equal to Ay x Zy. The Ay

generators given above and the Z, generator, which we will denote by W, obey the

17



relations

WXW=Z WZW =X, WYW =Y (2.23)

along with (21). The decomposition into cosets of Ay is Sy = Aq4+ W A,. Noting that

W=1 = W, the induced representations have the form

X 0 7z 0
wo = | = ,
0 A(WXW) 0 A(WZW)
Y 0 0 E
vy = (W) = TE oy
0 ~A(WYW) vE) 0
For the 1 of Ay,
10 01
(X)) =7(Z) =n(Y) = , (W) =
01 10

Upon diagonalization, this yields

X=Z=Y=1,W=1,

X=Z=Y=1 W=-1.

Without much difficulty, we see that 1’ and 1” make up an orbit, so that the induced

representation is irreducible,

1 0 w 0 0 1
X = 7 — LY = LW =
01 0 w* 1 0
The triplet 3 of Ay,
-1 0 0 -1 0 0 0 0 1
v X)=| 0o 1 0 [,v2)=| 0o -1 0[,¥)=]10 0|,
0 0 -1 0 0 1 010



must belong to its own orbit because there is no other possibility. We have

1 0 0

Ww(X)=yWXW)=~2Z)=| 0 -1 0 |,
0 0 1
10 0

Ww(Z)=9yWZW)=~X)=] 0 1 0 |,
0 0 —1
010

Ww(¥)=yWYW)=~+"(Y)=1] 0 0 1
100

Since this representation must lie in its own orbit, there exists a matrix .S such that
Sy (X)S™ =y(X), Syw(2)S™' =4(2), Syw(Y)S™ =~(Y).

Indeed, by inspection, we see that we can take

100
S=100 1
010

Note that S~! = S. The induced representation of Sy can then be written

X 0 A 0
- | T iz = | ,
0  Svy(X)S 0 Sv(2£)S
Y 0 0 I
- | 7Y (W) =
0 SvY)s I 0
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Let

s L[ I 0
V2l g 0 S
Then
X) 0 AR
syxst—| " suzs = ,
0 y(X) 0 ~(2)
VY) 0 S 0
Sy (Y)S™ = , SH(W)S™ =

So there are two irreducible triplets of Sy,

X =7X), Z=7(2), Y =1(Y), W =5,
and

X = (X), Z=~(Z), ¥ = oY), W = -5,

Let us now consider the group (Z; X Zy X Zy) x Ay. Let C; be the Zy generators.

With the A, generators in (21), they obey

XO X1 =C1050y, XCo X1 =05, XC3X =0y, (2.25)
chzil - Cg, ZCQZil - 010203, ZCgZil - Cg, (226)
YO Y ' =0, YO, Y 1 =05, YO 1 = 0. (2.27)

We have the chain
73 C(Z3) ) Zy C (Z3)x(Zax Zy) C (Z3)x Ay
of invariant subgroups. Without much difficulty, we can see that the representations
(a) C1 =1, Co=—-1, C3=-1
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(b)Clz—]_, 02:1, 03:1

(C) 01:—1, 02:1, 03:—1

(d)Clzl, 02:—1, 03:1

(6) 01:—17 02:—]_, 03:1

(f)clzla 02:17 03:_1a

lie in the same orbit with respect to (Z3) x A4. Now consider the subgroup (Z3) x Zs,

where the last Z, is generated by X. From (26), under X
C1 — C1CyC5, Cy = Cs,
so that
(@) < (a), (b) <= (b), (¢) = (d), (¢) = (f).
So (a) and (b) each give two one-dimensional representations of (Z3) x Z:

(G)Clzl, 02:—1, 03:—1,X:1

((l,) Ol :1, 02:—]., 03:—1, X =-1

() Ci=—-1,Co=1Cyo=1 X =1

(b/) Ol = —1, 02 = 1, 03 = 1, X = —17
while (¢/d) and (e/f) each give two-dimensional irreducible representations:
(C/d) 02 :Ml, Cl :Cg :Mg, X=S5
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(e/f) Cs= M, C, =Cy= M, X =2,

where

M, = , My = , S = : (2.28)
0 -1 0 1 10

Now add Z to obtain (Z3) x (Zy x Z,). Under Z
Cy — Cs, Cy — C105C5, X « X,
so that
(a) < (b), (a') = (V), (¢/d) < (c/d), (e/f) < (e/f).
Now (a/b) and (a'/b’) each give two-dimensional irreducible representations:

(a/b)Clel, CQZCSZMQ, X:I, Z:S

(a'/b’) Ol = Ml, CQ = 03 = MQ, X = —I, Z =5
For (c¢/d), the induced representation is

M, O My, 0 S 0 0 I
Cy = , C1 =05 = , X = , 4=

0 M 0 M, 0 S I 0

This can be block-diagonalized by inspection,

(C/d)CQZMl, C’1:C’3:M2,X:S, Z =1

(C’/d/) CQZMl, Ol :ngMg, X:S, Z =—1.

For (e/f), the induced representation is



Noting that My = SM;.S, we can block-diagonalize this using the same method that

was used in the Sy example for the triplet orbit. This gives

(e/f)01:C4:M1, 02203:M2,X:S, Z =S5

(€/f)Cr=Ci=M, Co=Cs3=DM,, X=25, Z=-5.

Finally, we add Y. With a little effort, it can be seen that (a/b), (¢/d), and (e/f) lie
in one orbit, and (a’/b’), (¢’/d’), and (¢’/f') lie in another. Then, the induced repre-
sentations are irreducible. So, we finally end up with two six-dimensional irreducible

representations of (Z35) x Ay:

M, 0 0 M, 0 0 M, 0 0
C, = 0 M, 0 , Oy = 0 M, 0 , O = 0 M, 0 ;
0 0 M, 0 0 M, 0 0 M,
I 00 S 0 0 00 I

X=10S 0|, Z2=|o0T 0|, Y=|T00],

00 S 00 S 01 0
and
M, 0 0 M, 0 0 My, 0 0
Ch, = 0 M, 0 , Oy = 0 M, 0 , Oy = 0 M, 0 ;
0 0 M, 0 0 M, 0 0 M,
-1 0 0 S 0 0 00 [
X = 0 =S 0 |,.Z=]0 -1 0 , Y=1T7T0 0
0o 0 S 0o 0 -S 010

It can be checked directly that these matrices respect all of the relations (21), (26),

(27), and (28).
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Now consider the group (S5 x S3 x S3 x S3) x Ay. Let A; and B; be the Sy

generators. They obey
A3 =B?=FE, BAB " = A (2.29)

The irreducible representations of S3 are two one-dimensional representations given

by

A, =My = , B;=Mp= ,

With the A4 generators in (4), A; and B; respect the relations

XAlXil == AQ, XAQXil - Al, XAgXil - A4, XA4X71 == Ag,

XBi X' =By, XBoX ' =By, XBsX ' =By, XByX ! = B, (2.30)

IMZ V= Ay, ZAsZ V= Ay, ZAZ7 = Ay, ZAZ7" = As,

7B, 7Y =By, ZByZ ' = By, ZB3Z ' = By, ZBsZ"' = B, (2.31)

YAY ' =A, YAY ' =A;, YAY ' = Ay, YAY ' = A,

YBlyil = Bl; YBQYil = Bg, YB3Y71 - B4, YB4Y71 == BQ. (232)
As in the last example, we have a chain of invariant subgroups,
S§ C (Sg) X Z2 C (S§) Dall (Zg X Z2) C (Sg) X A4.
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The representation (2,2,2,2) under S x S3 x S3 x Ss lies in its own orbit.

representation can be written in terms of 16-dimensional matrices,

Y(A) =M@ IRIRI, v(B)=MpRI®I®I,

Y(A) =T@Ms@IRI, y(By) =I@MpRI®1,

Y(A) =ITRT @My @I, y(Bs) =IQI®@Mp®1,

Y(A) =I1RI @1 @My, y(By) =101®1® Mp.
Now add X to obtain the subgroup (S35) x Z,. From (14), under X

A1 — AQ, Ag A A4,

Bl > Bg, B3 < B4.

This

Consider how this rearranges the eigenvalues of each of the 16 basis states under the

diagonal generators (A, As, A3, Ay),

(1) (w,w,w,w) — (w,w,w,w) ~ (1)

(2) (W w,w,w) — (w,w w,w) ~ (3)



(7) (w,w? w? w) — (W w,w,w?) ~ (10)

(8) (w?, W W w) — (W, W w,w?) ~ (12)

9) (w,w,w,w?) — (W, w,w? w) ~ (5)

(10) (W w,w,w?) — (w,w?, W w) ~ (7)

(11) (w,w? w,w?) — (W w,w? w) ~ (6)

(12) (@2, % w,0?) — (W02, W% w) ~ (8)

(13> (wvwaw27w2) - (w,w,wz,wZ) ~ (13)

(14) (w27w7w27w2) - (w7w2’w2’w2) ~ (15)

(15) (w,w®, w* w?) — (W, w,w? w?) ~ (14)

(16) (W 02,0, %) — (20?0, W) ~ (16).
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This yields the permutation matrix

10000O0O0O0OO0OO0OOO0OOO0OO0®O0
001000O0O0O0OO0O0OO0OO0O0O0O0
010000O0O0O0OO0OO0OOO0O0O0O0

0 0 100000 0000
0 0 001000 000
0000O0OO0OO0OO0OO0OO0OO0OO0OT1O0O0O0
0000O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OT1O
0000O0OO0OO0OO0OO0OO0OO0OO0OO0OT® 0O
0000O0O0OO0OO0OO0OO0OO0OO0OO0OO0OO0T1

Note that Py' = Px. We can now check directly that

PXV(Bl)P);l = 7(32)7 PXV(B2)P§1 = V(Bl)a

Pxy(Bs)Px' = 7(Ba), Pxv(Bi)Px' =7(Bs).
So, we obtain two 16-dimensional irreducible representations of (S5) X Zs,

(a) Ay =v(A), B =v(B;), X =Px

(b) Ai =v(4), Bi =(By), X = —Px.
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Next add Z to obtain the subgroup (S3) x (Zy x Z3). Proceeding as is the previous

step yields

o
o
o
o
(@)
—
o o o o o o o

—
o
—
(@]
(@]
(e
S
o o o o o o o o o

o
o
o
o
o
o o o o o o o o o
- o o o o o o o o o o o
o o
o o
o o
o [an}
o [en}
o =
e
o o o o o o o o o o o o o

o o o o O

000O0®O 000O01O0O0O0

0000O0OO0O0OO0OO0OO0OO0OOO0OO0O®O01

Again note that P, ' = Py. This gives four 16-dimensional irreducible representations

of (S3) X (Zy x Zy),

(a) Ai =v(A), Bi=~(B;), X =Px, Z= Py



Finally, add Y to obtain (S3) x A4. Then, (a) lies in its own orbit, while (a’), (b), and
(b’) lie in another orbit. First, consider the orbit of (a). We find that the permutation

matrix

10000O0O0OO0OO0OO0OO0OO0OO0OOO0O
01000O0O0O0OO0O0OO0OO0O0OO0OOG®O
0000O0OO0OO0OO0OTI1TO0OO0OOO0OO0O®O0O®O
0000O0O0OO0OO0OO0O1TO0OO0OO0OO0O®O0®O
001000O0OO0OO0OO0OO0OOO0OO0O®O0O
000100O0O0OO0OO0O0OO0O0OGO0OO®O
0000O0OO0OO0OO0OO0OO0OT1TO0OO0O0O®O0O0
P = 0000O0O0OO0OO0OO0OO0OO0OT1TO0OO0O®OO®O
000010O0OO0OO0OO0OO0OO0OO0OO0O®O0O
0000O010O0OO0OO0OO0OO0OO0OO0OO0®O
000O0O 000O0O0OO0OT1QO0GO00®O0
0000O0O0OO0OO0OO0OO0O0O0OO0OO0OT1O0G®O0
0000O0OO0O1O0OO0OO0OO0OOO0OO0O®O0O®O
0000 0 1 00000O0O0O
0000 000O0O0O0OO0OO0OTO01
0000O0OO0O0OO0OO0OO0OO0OOO0OO0O®O01

respects the relations

Pyy(A1) Pyt =v(A1), Pry(A2) Pyt = ~(As), Pry(As) Pyt = ~v(Ay), Pry(As) Pyt =~(As),

Pyy(B1) Pyt =~(By), Pyy(Ba) Pyt =~(Bs), Pyy(Bs)Py' =~(By), Pry(Bs)Py' =~(Bo),

PyPyPy' = Py, PyPyPy' = PxPy, Py(PxP;)P;' = Py.
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(Note that P;;' = PZ.) The induced representation can then be written

v(Ai) 0 0 v(Bi) 0 0
Y1(A;) = 0 P2y(A)Py 0 ; 1(Bi) = 0  P2y(B)Py 0
0 0 Pyy(A;) P2 0 0 Pyy(B;)P?
Y(X) 0 0 V(Z) 0 0
M(X) = 0 Piy(X)Py 0 )= 0 PIH2Z)Py 0 :
0 0 Pyy(X) P} 0 0 Pyy(Z) Py
00 I
1Y)=|[1 0 0
010
Let
I I I I 0 0
Pz% I wl Wl 0 P 0
I Wl wl 0 0 P
Then
v(Ai) 0 0 Y(Bi) 0 0
Py(A)P = 0o yA) o0 |.PuBI)P =] 0 ~B) 0 |
0 0 ~(A4) 0 0 v(B)
vX) 0 0 vZ) 0 0
PuX)P = o ywx) o [|.Pu@P = 0o ~2 o [,
0 0 ~(X) 0 0 ~(2)
Py 0 0
Py(Y)P~ = 0 whh 0
0 0 WPy
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So the result is three 16-dimensional irreducible representations of (S5) x A4. For the

other orbit, the induced representation is irreducible. It is given by

(A1) 0 0 v(B1) 0 0
(A1) = 0 ~yA) 0 , 1(B1) = 0 ~(B) O
0 0 ~(Ay) 0 0 ~(B1)

V1(Az) = 0 ~(Ay) O , 11(B2) = 0 ~(Bs) 0 )
0 0 ~(A4s) 0 0 (Bs)
7(143) 0 0 7(33) 0 0
V1(A3) = 0  ~(4y) 0 , 1(Bs) = 0 ~(B) 0 :
0 0 7(144) 0 0 7(34)
WA) 00 WB) 00
P)/T(A4) - 0 ’7(143) 0 ) VT(B4) - 0 ’Y(Bg) 0 )
0 0 ’Y(Az) 0 0 ’7(32)
Px 0 0 —P; 0 0 0 0 I
#wX)=| 0o —-pPxP, 0 |.m@=]| 0 Py 0 LY =110 0
0 0 — Py 0 0 —PxPy 0 I 0

We can also see that the representations (2,1,1,1), (1,2,1,1), (1,1,2,1), and
(1,1,1,2) of S3 x S3 x S3 x S3 make up an orbit. The 8-dimensional representation

of (S3) »x Ay this orbit gives rise to is given by

Ay = diag(w,w?,1,1,1,1,1,1), Ay = diag(1,1,w,w? 1,1,1,1),

Az = diag(1,1,1,1,w,w? 1,1), Ay = diag(1,1,1,1,1,1, w,w?),
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2.4 Invariants Under the Discrete Symmetry

In this section, we give the symmetry invariants which are used in our model.

These can be computed directly from the matrices given in the previous section.

164p X 164p invariant (x;, 2 ~ 164p):

N / / / / / / !/ /

/ / / / / / / /
+T9Tg + T10T7 + T11Tg + T12X5 + T13T4 + T14T35 + T15T9 + T16T7

6c X 6¢ invariant (w;, w}; ~ 6¢):

!/ / / / !/ / /
fo(wi, ) = wiw| + wowy + wawy + wawy + wswy + wewg.

48 4p X 48 4p invariant (y;,y; ~ 484p):

Fa(Yis V) = n1vie + Yaths + Yavha + Ya¥iz + YsVio + Ye¥11 + Yryio + YsYy
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YoUs + Y10Yr + Y11Ys + Y1205 + Y13y + Y1aYh + YisYs + YieYs + YirYse + YisYs

+Y10Y30 1 Y20Yn9 + Y21Yss + Y22Usr + Y23Yas + Y2alas + YasYos T Yacaz 1 Yarlas + YasYs

+120Y50 + Y30Y10 + Ys1¥is + Ys2¥iy + Yssis T Ysalar + YssYas + YseYas + Ysr¥as + Yssyis

FY39Ygo + YaoYa1 + YarViao T Ya2Use + YasYss + Yaalsr + YasYse + YacYss + Yarlss 1 Yasyss

84 X 84p invariant (z;, Zi ~ 84B):

!/ / / / / !/ !/ / /
fa(zi, 25) = 2129 + 222 + 2324 + 2425 + 2526 + 2625 + 2725 + 2827

1645 X 1645 X 16 45 invariant (xi,x;-,x'k’ ~ 164p):

/ " A/l A/ A/, A/ A/ A/ /) A/
91(xi, ¥, v3) = 21217 + ToTHTy + T3TRXY + TATYTY + V5T5T5 + TeTeTg + TrTTTT + TyTRTy

! _n ! 1 / /i / 1 ! " / /i / 1 / 1
T9TgTg + T10T1gL 10 T 11011011 + T12T79T1 T T13T13%73 + T14L 14Ty + T15T15T15 + T16X 16T 16

6c X 6¢ X 6¢ invariant (w;, w}, wy ~ 6¢):

/ " N /i AN/ N /i AN/
g2(wi, Wi, wy) = wiwzwy + wswiwy + wawswy + wiwjwg + wew)wy + wawewy

A/ /i AN/ A/ [/ /i
FWW3Wg + WeWaWs3 + W3WgWsy + WalWy Wy + WsWaWy + WaW5Ws

3 X 1645 x 48,4 invariant (¢; ~ 3, z; ~ 1645, yp ~ 484p):

g3(ti, xj, yr) = t1(T16Y33 + T15Y34 + TsYss + T7Yse + T1aYs7 + T13Yss + TeYso + TsYao
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+212Ya1 + T11Ya2 + TaYaz + T3Yas + T10Yas + ToYas + TaYar + T1Yas)

ta(T16Y1 + T7y10 + TeYr1 + TsYi2 + Tayrs + T3V + To2Y1s + T1Yie

+Z15Y2 + T14Y3 + T13Ys + T12Ys + T11Y6 + T10Y7 + Toys + Tsyo)

ts(T16Y17 + T15Y18 + T12Y19 + T11Y20 + TsYa1 + T7Yoo + Tayos + T3Yos

+214Ya5 + T13Y26 + T10Y2r + ToYas + TeYoo + TsYso + TaYs1 + T1Ys2)

8ap X 164p X 4845 invariant (z; ~ 8ap, x; ~ 1645, yr ~ 484p):
94(2i, Tk, yj) =
z1(z15Y1 + T5Y11 + £3Y13 + T1Y15 + T15Y17 + T11Y19 + T7y21 + T3y23 + T13Y25 + Toy27 + T5Y20 + T13Y3
+x1y31 + T15¥33 + T7Y35 + T13Y37 + T5Y39 + T11Y41 + T3Y43 + Toyas + T1ya7r + T11Y5 + Toyr + T7Y9)
+z2(z8y10 + T6Y12 + Tay14 + T2Y16 + T16Y18 + T16Y2 + T12Y20 + T8Y22 + Tay24 + T14Y26 + T10Y28 + T6Y30
+x2y32 + 16Y34 + T8Y36 + T14Y38 + T14ya + TeYa0 + T12ya2 + Tayaa + T10Y46 + T2vas + T12y6 + T10Y8)
+z3(x14y1 + 25Y10 + T2¥13 + T1Y14 — T14Y17 — T13Y18 — T10Y19 + T13Y2 — TOY20 — TEY21 — THY22 — T2Y23
—T1Y24 — T14Y33 — T13Y34 — T6Y35 — T5Y36 — T10Y41 — TOY42 — T2Y43 — T1Y44 + T10¥Y5 + T9Ye t+ T6Y9)
+z4(z8y11 + T7Y12 + T4Y15 + T3Y16 — T16Y25 — T15Y26 — T12¥27 — T11Y28 — T8Y29 + T16Y3 — TT7Y30 — T4Y31
—T3Y32 — T16Y37 — T15Y38 — TY39 + T15Y4 — T7Y40 — T12Y45 — T11Y46 — T4Y47 — T3Y48 + T12Y7 + T11Ys)
+25(—212y1 — T3Y10 — T2Y11 — T1Y12 + T12¥17 + T11Y18 — T11Y2 + T4y21 + T3y22 + T10Y25 + Toy26 + T2Y29
—T10¥Y3 + T1Y30 — T12¥Y33 — T11¥Y34 — T4Y35 — T3Y36 — T10Y37 — TOY38 — T2Y39 — T9Y4 — T1Y40 — T4Y9)
+z6(—28Y13 — T7Y14 — T6Y15 — T5Y16 T T16Y19 + T15Y20 + TY23 + T7Y24 + T14y27 + T13Y28 + T6Y31 + T5Y32
—T16Y41 — T15Y42 — T8Y43 — TTY44 — T14Y45 — T13Y46 — TEY47 — T5Y48 — T16Y5 — T15Y6 — T14Y7 — T13Y8)
+z7(—28Y1 — TYY1T — TTY18 — T4Y19 — TTY2 — T3Y20 — TEY25 — THY26 — T2Y27 — T1Y28 — TEY3 + T8Y33
+x7y34 + T6Y37 + T5Y38 — T5Y4 + Taya1 + T3Ya2 + T2Ya5 + T1Y46 — T4Y5 — TIY6 — T2Y7 — T1Y8)
+28(215Y36 — T14Y11 — T13¥12 — T12¥13 — T11¥14 — T10¥15 — T9Y16 — T16¥21 — T15¥22 — T12Y23 — T11¥Y24 — T14Y29

—T13Y30 — T10Y31 — T9Y32 + T16Y35 — T15Y10 + T14¥Y39 + T13Y40 + T12¥43 + T11Y44 + T10Y47 + ToYas — T16Y9)
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1645 X 484p X 484p invariant (z; ~ 164p; y;, Y, ~ 484p):

95(Ti, Yj. Yi) = T191Y1 + ToYolh + T3Ysys + TaYays + TsYsYs + TeYeYs + T1Yryr + TsYsys

+ToYoYs + T10Y10Y10 + 1191111 + T12Y12Y10 + T13Y13Y15 + T1aY14Y1s + T15Y15Y15 + T16Y16Yie

FT1Y17Y17 + TaYisYis + T3YasYas + Talasas T T5Yr9Yg T TeY20Y + TrYarYar + Telaslag

+ToY21Ya1 + T10Y20Ya0 + T11Y29Ya9 + T12Y30Ys0 + L13Y23Yhs + T14Y24Yss + T15Y31Y51 + T16Y32Y50

+T1Y33Y53 + ToYsaYss + T3YsrYsr + TaYssYss + TsYa1Yar + TeYarYis + TrYaslss + TsYacYae

+T9Y35Ys5 + T10Y36Ys6 + T11Y39Y59 + T12Y10Y 50 + T13Y43Y3 + T14YaaYas + T15Ya7Yar + T16YasYas

3 X 6¢ x 6¢ invariant (¢; ~ 3; w;, w), ~ 6¢):

go(ti, wj, wy) = t1(wswy — wewg) + to(wrw| — wowsh) + t3(wzwsy — wyw})

1" x 6¢ % 6¢ invariant (s' ~ 1'; w;, w; ~ 6¢):

/ / !/ / / 2 / 2 / / /
g7(8', wi, w}) = 8 (ww) + wawy + wrwzw; + wrwaw) + wWwsws + wWwewg)

1" X 6¢ x 6¢ invariant (s” ~ 1"; w;, wj ~ 6¢):

" " / / / / 2 / 2 /
gs(s", wi, wj) = " (wiwy + wowly + wwswy + wwawy + W Wsw§ + W wewy)

For our purposes, it suffices to have the 16 ,5x16 45X 16 45X 1645 and 6o X6 X6 X 6
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invariants for the case where all four fields are the same.

1645 X 1645 X 1645 X 1645 invariants (x; ~ 164p):

2.9
hy(x;) = xixls + w3al; + w5aly + izl + adaly, + afal) + fady + 2dad,

hz(xi) = T1X2T15T16 + T1T3L14T16 + T2L4XT13T15 + T3L4T13T14 + T1T5212T16 + T4T5T12213

+ToX6T11T15 + T3T6T11T14 + T5T6T11T12 + T2T7T10T15 + T3T7T10%14 + T5L7T10T12

+X128T9T16 + T4TgL9L 13 + TeXgL9X 11 + L7LT9L 10

6c X 6¢ X 6¢ X 6¢ invariants (w; ~ 6¢):

ha(w;) = wi + wy + w3 + wi + ws + wg,

hy(w;) = wiws + wiw; + wiwg,

2
hs(w;) = w1w3 + w1w4 + w1w5 + w1w6 + w2w3 + w2w4 + w2w5 + w2w6

+wiw: + wiwg + wijwi + wiwg,

h6(wi) = W1W2W3W4 + W1W2W5Weg + W3W4W5We
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2.5 Calculation of the Neutrino Mass Matrix

In this section, we show how the neutrino mass matrix is computed. From Section

2.4, the term in Eq. (13) that mixes N and N is?

93(N, (), N') = vgN1(Nz5 + Nyg + Nyg + Nyg + Nyy + Nyg + Nys + Nyg)

+vsNo(Ny + N§ + N7 + N§ + Ny + Nyig + Ni; + Npy)

+vgN3(Ng + Nog + Nyy + Nag + Noz 4 Nog + Nog + Nag).
The term that mixes N’ and N” is

gu(N" ($), N') = vaN{ (N} + Ny + Ny + Niy) + 0Ny (N + Ny + Ny + Nj)

+vyN3 (Ng + Ng + Ny + Nig) + vg Ny (N7 + Ng + Ni; + Nip)

—vgNg (N7 + Ny + N3 + Ny) — v Ng (Ny3 + Niy + Nis + Nig)

—vN7 (N7 + Ny + N3 + Ny) — v Ng (Ny3 + Niy + Nis + Nig)

+U¢N{,<N{9 + Nél + N§7 + Nég) + U¢NQI<N§0 + Né2 + Nés + N?l)o)

_%N?/),(N{g + Néo + Ny + Nyy) — %NZ(Né? + Nés + Nég + Néo)

+vg N5 (Ni; + Nig + Nos + Nog) + v Ng (Ngg + Nog + Nyp + Nay)

—vg N7 (N{7 + Nig + Nys + Nyg) — v Ng (Ngg + Nog + Nyp + Nay)

+vgNY (Ngs + Nag + Ny + Nyg) + 0Ny (Nag + Nyg + Nyp + Nyg)

2Note that, in the 16 45 basis used here, ¢17_; = ¢

1

1=1-8.
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—g N5 (N35 + N + Ny 4 Njp) — 0N (Ngg 4+ Njo + Nys + Nyg)
+0g N5 (N3 + Niy + Niz + Nig) + v Ng (Nig + Nig + Nip + Nis)

VN7 (N33 + Ny + Nyz 4 Nig) — vy Ng (Nyz + Ny + Nyz + Nyg)

Since the symmetries By, B, B3By4, and A3A4 are unbroken, components of N’ and
N" that transform under these symmetries cannot mix with the light neutrinos. This

leaves
o= Ng—i—Né+N§+Né+Né+N{O+N{1+N{2
1 — 9
V8
1y Mo+ Njo Ny + Njy + Ny + Njy o+ Ny + Ny
2 = )
V8
_ Nig o Nig+ Njy + Nig + Njy + Nip + N + Nig

D3 \/g )

N{/ + Né’ Né/ + NZ
W=7 2= 7=
V2 V2

We now have

g3(N,{(¢),N') = \/§U¢>(N1p3 + Nap1 + N3po),

gi(N", (¢), N') = 204 (q1p1 + @2p1 + P2 — G2p2 + (s — @aps) + ..,

where the ellipses in the second equation refer to terms involving only decoupled

components. The mass matrix for (v, v, v3, N1, No, N3, p1, D2, P3, G1, g2) has the form

1 0 m
§M1/: )
mT M
with
X 0 0 00000
m=|{ 0 i 0 00000 |,

0 0 X 00000
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my 0 0 0 0 V2aivg 0 0
0 my 0 V20,04 0 0 0 0
0 0 my 0 V2aqv4 0 0 0
AV 0 \/5041% 0 m'y + Bug 0 0 QaUy QU
0 0 V20104 0 mly + Bug 0 QaVy  —Qay
\/§a1v¢ 0 0 0 0 miy + Bvy vy —aavy,
0 0 0 Vg QaVg Qa4 my 0
0 0 0 QoVg — Uy ) 0 ml

Here, m only contains entries at the EW scale, while M contains entries at the higher

scale M,. To order M3, /M?, M, is block-diagonalized by

I —mM~1
U, =
M—ImT I

The light neutrino mass matrix M, is given by the upper-left block of U, M, UL,

1
§M,, = —mM 'mT.

Let
10 0 0 O 0 1 0
00 0 v2 0 0 0 0
10 0 0 0 0 —1 0
1 1oo o o v20 0 o0
S =
V2| 01 0 0 0 1
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Then,

A0 0
S'MS=|0 B o |,

0o 0 C
with
my V2, Vg 0

A= V2aw, mly+pus 20904 |

0 200004 my

my \/§Q1U¢ 0
B=| V2as miy+Bus V20, |
0 \/§a2v¢ my

my ——Vﬂia1v¢

—V2a105 mly + B,

C:

So, we can write

(A D = (C Hn 0 (A Yy + (C Yy
This mass matrix is diagonalized by (10), and the masses are given by

2?2

A202
14 1 _
(A7

A2U2
5 (B " -

5 (C™ -

mlz ,mQZ 7m3:
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2.6 Calculation of the Charged Lepton Mass Matrix

In this section, we show how the charged lepton mass matrix is computed. From

Section 2.4, the terms in Eq. (14) that mix eg, ege, and egs with £’ are

erif2(EL, (X)) + c.c. = vem(EL, + By + Ep) + cc.,
97(€ra, EL, (X)) + c.c. = v,8pa(E), + w?Ers + wELs) + c.c.,

gg(€R3, Ei, <X>) +c.c. = UXéRg(ElLl + LUE,L?) + w2E’L5) + c.c..
The term that mixes Er and E} is
gﬁ(ER, E,L’ <X>) +c.c. = Ux(ERlEzﬁ + ERQE}J + ERSE,L?,) + C.C.,

with a similar result for the term that mixes E;, and E,. In the basis with (€11, €12, €13, Er1, E Lo,
ELg, EILDE/L& EILE)) on the left and <€R17 €Rr2, €R3, ERI; ERQ, ERg, E}ﬂ, E;%?), E}%) on the

right, the mass matrix has the form

with

0 0 0 v, €y €10y
!
M =100 0 ev, weav weav |-

0 0 0 €0, wen, wiesn,
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and

0 0 mg 0 mv, O

M =
0 v, 0 my MUy Uy
0 0 V2Ux  ThUx ij T2Uy
Y2Ux 0 0 Uy Ty m/E

Here, m only contains entries at the EW scale, while M and M’ contain entries at
the higher scale M,. To order M2, /M2, the left-handed mass-squared matrix MIM,

is block-diagonalized by

” I m!M(MTM + M'TM'")!
L p—
(MTM + MM Mtm I

The upper left entry of ULMZMGUZ is the light left-handed mass-squared matrix

MIM, =mim —m! MMM + MM M'm

Let

1 0 1 0 1 O

10 w 0 W 0

1 10w 0 w 0

S— —

\/g 01 0 1 0 1
01 0 w 0 w?

01 0 w 0 w

Then STMS and STM'TM'S are both block diagonal (three 2 x 2 blocks each). So we

have

A0 0
m! M(MTM + MM 'Mm=m'S| o B 0o |Sm.

0 0 C
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AH + Bn + 011 AH + w2311 + wC’H An + wBH + WZCH
B |kvl?

3

A1y + wByy + Wy A+ B +Cn Ay + w?Biy + wChy

An +w?By +wChiy A+ wBi 4+ wCiy A+ B +Cn

This has the form (11). The masses are given by

m? = |kv|*(1 — Apy), mi = |kv[*(1 — Byy), m2 = |kv|*(1 — Cy).
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CHAPTER 3
A 6D Higgsless Standard Model

3.1 The Model

Let us consider a 6D SU(2), x U(l)y gauge theory in a flat space-time back-
ground, where the two extra spatial dimensions are compactified on a rectangle!. The
coordinates in the 6D space are written as zy = (x,,¥m), where the 6D Lorentz
indices are denoted by capital Roman letters M = 0, 1,2, 3,5, 6, while the usual 4D
Lorentz indices are symbolized by Greek letters p = 0,1, 2,3, and the coordinates y,,
(m = 1,2) describe the fifth and sixth dimension.? The physical space is thus defined
by 0 <y < 7Ry and 0 < yp < mRs, where R; and Ry are the compactification radii
of a torus 172, which is obtained by identifying the points of the two-dimensional plane
R? under the actions T5 : (y1,y2) — (y1+27 Ry, y2) and T : (y1,y2) — (y1, y2+27Ry).
We denote the SU(2),, and U(1)y gauge bosons in the bulk respectively by A%, (zy)
(@ = 1,2,3 is the gauge index) and Bj(zy). The action of the gauge fields in our

model is given by

S = / ' /O M /0 " i (Lo + (05 (un) o) (3.1)

where L4 is a 6D bulk gauge kinetic term and £, is a 4D brane gauge kinetic term

localized at (y1,y2) = (0,0), which read respectively

M? M? 1 1
Lo=——LFs FMNe Y p BMN —po—=__—_F¢Fme_ ___B,B" (32
6 4 MN 4 MN O 492 j224 4g/2 1 ( )

LChiral compactification on a square has recently been considered in Ref. [42].

2For the metric we choose a signature (+, —, —, —, —, —).
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with field strengths F§,y = Oy A% — On A%, + fAL, AS (f9% is the structure con-
stant) and Byny = Oy By — OnvBy- In Egs. (3.2), the quantities My and My have
mass dimension +1, while g and ¢’ are dimensionless. Since the boundaries of the
manifold break translational invariance and are "singled out” with respect to the
points in the interior of the rectangle, brane terms like £y can be produced by quan-
tum loop effects [34,35] or arise from classical singularities in the limit of vanishing
brane thickness [36].

Unlike in five dimensions (for a discussion of the £ — oo limit in generalized 5D
R gauges see, e.g., Ref. [43] and also Ref. [30]), we cannot go to a unitary gauge
where all fields A5 (a = 1,2,3) and Bs are identically set to zero. Instead, there
will remain after dimensional reduction one combination of physical scalar fields in
the spectrum?®. To make these scalars sufficiently heavier than the Lee-Quigg-Thacker
bound of ~ 2 TeV, we can assume, e.g., a seventh dimension compactified on S*/Z,
with compactification radius Rz S Ri, Ry. By setting ASs; = Bss7 =0 (A% and By
are the seventh components of the gauge fields) on all boundaries of this manifold,
the associated scalars can acquire for compactification scales Ry, Ry' ~ 1 —2 TeV,
masses well above 2 T'eV. Therefore, at low energies < 2 — 3 Tel/, we have a model
without any light scalars and will, in what follows, neglect the heavy scalar degrees
of freedom.

Since the Lagrangian in Eq. (3.2) does not contain any explicit gauge symmetry
breaking, we can obtain consistent new BC’s on the boundaries by requiring the

variation of the action to be zero. Variation of the action in Eq. (3.2) yields after

3We thank H. Murayama and M. Serone for pointing out this fact.
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partial integration

TRy 7R
5SS = / d*z / dy, / dys (M} (Op FoMi — foeFPMIAS ) 6AS + M0y B0,
y1=0 2=0

TR
+ / d*x / . dys [M}Fg 6 A™ + MYB5H53“]”R10
Yo2=
+ / d*z / dy, [M2F, 5AGM+M2BGM<SBM]”R20
4 1 auy abe bur Ac c 1 v
+ d*z | = (0 F — f@FM AS)OAS + —50,B" 0B, = 0, (3.3)
9 g (y1,42)=(0,0)

where we have (as usual) assumed that the gauge fields and their derivatives go to
zero for x,, — co. The bulk terms in in the first line in Eq. (3.3), lead to the familiar
bulk equations of motion. Moreover, since the minimization of the action requires
the boundary terms to vanish as well, we obtain from the second and third line in
Eq. (3.3) a set of consistent BC’s for the bulk fields.

We break the electroweak symmetry SU(2), x U(1)y — U(1)g by imposing on

two of the boundaries following BC’s:

at y1 =R, AL =0, AZ =0, (3.4a)

at yo =mRy : Oy, (M{AS + MyB,) =0, A> — B, = 0. (3.4Db)

The Dirichlet BC’s in Eq. (3.4a) break SU(2), — U(1)y,, where U(1)y, is the U(1)
subgroup associated with the third component of weak isospin 3. The BC’s in
Eq. (3.4b) break U(1);, x U(l)y — U(1)g, leaving only U(1)g unbroken on the
entire rectangle (see Fig. 3.1). Note, in Eq. (3.4b), that the first BC involving the
derivative with respect to y, actually follows from the second BC 5Az = 0B, by
minimization of the action. The gauge groups U(1);, and U(1)y x U(l)y remain
unbroken at the boundaries y; = 0 and y, = 0, respectively. Locally, at the fixed
point (y1,y2) = (0,0), SU(2) x U(1)y is unbroken. We can restrict ourselves, for

simplicity, to the solutions which are relevant to EWSB, by imposing on the other
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Figure 3.1: Symmetry breaking of SU(2)r, x U(1)y on the rectangle. At one boundary
y1 = wRy, SU(2)p is broken to U(1)y, while on the boundary y2 = mRs the subgroup
U(1)7,xU(1)y is broken to U(1)g, which leaves only U(1)g unbroken on the entire rectangle.
Locally, at the fixed point (0,0), SU(2)z x U(1)y remains unbroken. The dashed arrows

indicate the propagation of the lowest resonances of the gauge bosons.

two boundaries the following Dirichlet BC’s:

at yr=0 : Ab2(zy) = A,%(x,), (3.52)
at o =0 : A3(za) = A(2,), Bulzar) = Bo(x,), (3.5b)

where the bar indicates a boundary field. The Dirichlet BC’s in Eqs.(3.5) require A,
to be independent of 1, while AZ and B, become independent of y;, such that we
can generally write A? = AY(z,,11), A} = A3(x,,9), and B, = By (z,,12). For
the transverse? components of the gauge fields the bulk equations of motion then take

the forms
(P°+0; VA (1) =0, (P°+05) A0 (24, y2) =0, (p°402,)Bu(,y2) =0, (3.6)

where p* = p,p* and p, = i0, is the momentum in the uncompactified 4D space.

Since we assume all the gauge couplings to be small, we will, in what follows, treat

“Note that Oy F*MH = p2 P, (p) A% + (851 + 832)/15 = 0, where P,,(p) = guw — pupv/p* is the

operator projecting onto transverse states.
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Af, approximately as a "free” field (i.e., without self interaction) and drop all cubic
and quartic terms in Aj.

We assume that the fermions, in the first approximation, are localized on the brane
at (y1,y2) = (0,0), away from the walls of electroweak symmetry breaking. This
choice will avoid any unwanted non-oblique corrections to the electroweak precision

parameters.

3.2 Effective theory

The total effective 4D Lagrangian in the compactified theory L. can be written
as Liotal = Lo + Leg, where Log = foﬂRl dy; foﬂRZ dys L denotes the contribution from
the bulk, which follows from integrating out the extra dimensions. After partial inte-
gration along the y; and y, directions, we obtain for L.g the non-vanishing boundary

term

Lot = —M27R, [Z;aylAw + ZiaylAﬂ ey [Mgzj’;ayQA?w + M2B,9,,B"| |

y2=0

(3.7)

y1=0

where we have applied the bulk equations of motion and eliminated the terms from the
boundaries at y; = 7Ry and ys = mRy by virtue of the BC’s in Eqgs. (3.4). Notice, that
in arriving at Eq. (3.7) we have redefined the bulk gauge fields as A, — A}, = A,/ V2
to canonically normalize the kinetic energy terms of the KK modes. In order to
determine Lo explicitly, we first solve the equations of motion in Eq. (3.6) and insert
the solutions into the expression for Leg in Eq. (3.7). The most general solutions for

Egs. (3.6) can be written as

A () = A (w,) cos(py) + 0L (x,) sin(pyr), (3.8a)
Ay ye) = An(x,) cos(pyz) + b3 () sin(pys), (3.8b)
B (4, y2) = B(z,) cos(pyz) + b}:(x“) sin(pys), (3.8¢)
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where p = \/p,p" and we have already applied the BC’s in Eq. (3.5). The coefficients
b%(z,) and b}, (x,) are then determined from the BC’s in Egs. (3.4). For b)*(x,,), e.g.,
we find from the BC’s in Eq. (3.4a) that by*(z,) = —A_ﬂl’Q(xu) cot(prRy) and hence

one obtains

AV (2,,50) = A, (2,) [cos(pyn) — cot(pr Ry ) sin(py,)] (3.92)

In a similar way, one arrives after some calculation at the solutions

M? tan(prRy) — M3 cot(pmRy)
M7 + Mg

— M2 tan(prRe) + M2 cot(pmRs)
+ Bu(a,)— 5 sin(pya), (3.9b)
e ME + M3

sin(pyz)

A (x,1) = Zi(x#) cos(pys) +

—3,  M?tan(prRy) + M3 cot(prRy) |
Bu(wuye) = A, (w,)—* sin(pys)
P 12N 2] MI2/_’_M§

— ME tan(prRy) — M3 cot(pmRy)
B v L
+ B,(z,) |cos(py2) + M T M2

sin(py2)(3.9¢)

Inserting the wavefunctions in Egs. (3.9) into the effective Lagrangian in Eq. (3.7),

we can rewrite Lo.g as

Log = A, S0 (p*) A" + ZiE3B (»)B" + B,Sps(p*)B", (3.10)

o
where (aa) = (11),(22), and (33) and the momentum-dependent coefficients ¥ are

given by

S (p?) = DBp(®) = wRyM}pcot(prRy),
M? tan(prRy) — M3 cot(pmRy)

Ya3(p?) = —mRIMfp VEESYE ;

L Y

tan(pm Ry) + cot(pr R

San(?) = —2nRMIMEp PP MQZ) " MQ(p 2

L Y

M2 tan(pmRy) — M? cot(prR

Spe(p?) = —mRIMZp =Y v MQQ)JFWL (pmRa) (3.11)

L Y

The Y’s can be viewed as the electroweak vacuum polarization amplitudes which

summarize in the low energy theory the effect of the symmetry breaking sector. The
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presence of these terms leads at tree level to oblique corrections (as opposed to vertex
corrections and box diagrams) of the gauge boson propagators and affects electroweak
precision measurements [44,45]. Since Leg in Eq. (3.7) generates effective mass terms
for the gauge bosons in the 4D theory®, the KK masses of the W bosons are found

from the zeros of the inverse propagator as given by the solutions of the equation
Yu(p?) — 55 =0. (3.12)

To determine the KK masses of the gauge bosons, we will from now on assume that
the brane terms £, dominate the bulk kinetic terms, i.e., we take 1/¢% 1/¢° >

(Mpy7m)?RiRy. As a result, we find for the W*’s the mass spectrum

20°M?R. R
m, = — (142 mz ) g
R1 n2
20°M?R
m: = UL L0 MERS) = md, (3.13)

Ry

where we identify the lightest state with mass mg with the W=. Observe in Eq. (3.13),
that the inclusion of the brane kinetic terms Ly for 1/Ry,1/Ry 2 O(TeV) leads to
a decoupling of the higher KK-modes with masses m,, (n > 0) from the electroweak
scale, leaving only the W* states with a small mass myg in the low-energy theory (see
Fig. 3.2). Note that a similar effect has been found for warped models in Ref. [47].

The calculation of the mass of the Z boson goes along the same lines as for W=,
but requires, due to the mixing of Zi with Eu in Eq. (3.10), the diagonalization of

the kinetic matrix

2 _ p* 1 2
Mg — |00 72 ) ) (3.14)
%E3B(p2) ZBB(p2> —

which has the eigenvalues

M) = 2 (Egs(ﬁ) . Ypp(p?) - p—Z)

2 2¢° 2g
1 p? P\’
+ 5\/(233(}92) - 2_g2 —YpB+ W + E%B(pQ), (3.15)

°For an effective field theory approach to oblique corrections see, e.g., Ref. [46].
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Figure 3.2: Effect of the brane kinetic terms L on the KK spectrum of the gauge bosons
(for the example of Wi). Solid lines represent massive excitations, the bottom dotted lines
would correspond to the zero modes which have been removed by the BC’s. Without the
brane terms (a), the lowest KK excitations are of order 1/R ~ 1 TeV. After switching on
the dominant brane kinetic terms (b), the zero modes are approximately “restored” with a
small mass my < 1/R (dashed line), while the higher KK-levels receive small corrections

to their masses (thin solid lines) and decouple below ~ 1 TeV.

where the KK towers of the v and Z are given by the solutions of the equations
A_(p*) =0 (for ) and A, (p?) = 0 (for Z), respectively. By taking in Eq. (3.15) the
limit p? — 0, it is easily seen that A_(p?) = 0 has a solution with p?> = 0, which
we identify with the massless v of the SM, corresponding to the unbroken gauge
group U(1)g. The lowest excitation in the tower of solutions to A, (p?) = 0 has a

mass-squared
2(g* + g*)M}MER,
(M} + MP)R,

which we identify with the Z of the SM. All other KK modes of the v and Z have

+ O(g* M} RY), (3.16)

2 _
my =

masses of order 2 1/Ry and thus decouple for 1/Ry,1/Ry 2 O(TeV), leaving only a

massless v and a Z with mass mz in the low-energy theory.
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3.3 Relation to EWPT

One important constraint on any model for EWSB results from the measurement
of the p parameter, which is experimentally known to satisfy the relation p = 1 to
better than 1% [2]. In our model, we find from Egs. (3.13) and (3.16) a fit of the

natural zeroth-order SM relation for the p parameter in terms of

=1, (3.17)

p =
2 cos20y

m¥, > M+ ME[(R)\® 1
m% cos? O >+ g2 M

- Ry
where 6y =~ 28.8° is the Weinberg angle of the SM. For definiteness, we will choose
in the following the 4D brane couplings g and ¢’ to satisfy the usual SM relation
/(9> + ¢'*) = cos®0y, =~ 0.77. Defining p = 1 + Ap, we then obtain from Eq. (3.17)

that Ap = 0 if the bulk kinetic couplings and compactification radii satisfy the relation
(M} + M3) /My = R}/ R3. (3.18)

Although we can thus set Ap = 0 by appropriately dialing the gauge couplings and
the size of the extra dimensions, we observe in Eq. (3.10) that L. introduces a
manifest breaking of custodial symmetry (which transforms the three gauge bosons
Af, among themselves) and will thus contribute to EWPT via oblique corrections to
the SM parameters.%

To estimate the effect of the oblique corrections in our model let us consider in the
4D effective theory a general vacuum polarization tensor IT4%(p®) between two gauge

fields A and B which can (for canonically normalized fields) be expanded as [46]
iH;‘f(p?) = 1gAgB Hg)])g + pQHS}B Guv + Pupy terms, (3.19)

where g4 and gp are the couplings corresponding to the gauge fields A and B, re-
spectively. After going in Leg back to canonical normalization by redefining Aj —

Al = At/g and B, — B), = B,/g', we identify X,,(p*) =~ %[Hg%) + p?1%Y), for

6Note, however, that in the limit p> — 0, we have X1, = X33, which restores custodial symmetry.
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(aa) = (11),(22), (33),(BB), while S35(p%) ~ I + p?11L). From Egs. (3.11) we

then obtain the polarization amplitudes

R w2 M2
my = Y =g g =y = 2" lRg,
M2M2 R mM?R.R 1
n = o —Lov Mo ) _of TLTM2 g2y 2
33 Mg‘i_M% RQ’ 33 MIQ/—‘—M}% ( L_l_ 3 Y)?
M2M2 R 4 w2 M2 M2

n® — —o L7y Mooy 2 LY p R 3.20
3B M2+ MZR, %8 3M2Z4+ M2 (3.20)

A wide range of effects from new physics on EWPT can be parameterized in the e,
€2, and e framework [45], which is related to the S, 7', and U formalism of Ref. [44]
by € = aT, e = —aU/4 sinfy, and €3 = aS/4 sin?0yy. The experimental bounds
on the relative shifts with respect to the SM expectations are roughly of the order

€1, €, €3 < 3-1073 [48]. From Eq. (3.20) we then obtain for these parameters explicitly

M? R
o = G —nymt, = <o LR g 0z ) — (/R 21
w
472 M}
2 Ly _ 2 L
e = g (Il —1Iy) = —g TWRIR% (3.21b)
472 M?ME
€3 = _ngz())lB) =g i L0 Ry Ry, (3.21¢)

3 M+ M}
where we have used in the last equation that —e3/(gg’) = Hgy) [sin?0y, — H%) =
cot HWHS; [45]. Note in Eq. (3.21a), that for our choice of parameters we have
€1 = Ap = 0. The quantities |ez| and |e3|, on the other hand, are bounded from below
by the requirement of having sufficiently many KK modes below the strong coupling
(or cutoff) scale of the theory. Using “naive dimensional analysis” (NDA) [49,50], one
obtains for the strong coupling scale A of a D-dimensional gauge theory [51] roughly
AP~ ~ (47)P/?1(D/2) /g%, where gp is the bulk gauge coupling. In our 6D model,
we would therefore have A ~ /2(47)%2M} y which leads for My ~ 10? GeV to a
cutoff A ~ 6 TeV. Assuming for simplicity M = My, it follows from Eq. (3.18) that
Ry = Ry //2, and using Eqgs. (3.21b) and (3.21c) we obtain

g’ (

96+/27

ARy)? ~ 2.3 x 1072 x (gARy)?, (3.22)

€3 ™~
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while €5 ~ €3. It is instructive to compare the value for €3 in our 6D setup as given
by Eq. (3.22) with the corresponding result of the 5D model in Ref. [32]. We find
that by going from 5D to 6D, the strong coupling scale of the theory is lowered from
~ 10 TeV down to ~ 6 TeV. Despite the lowering of the cutoff scale, however,
the parameter €3 is in the 6D model by ~ 15% smaller than the corresponding 5D
value”. This is due to the fact that in the 6D model the bulk gauge kinetic couplings
satisfy M = My ~ 100 GeV, while they take in 5D the values My ~ My ~ 10 GeV,
which is one order of magnitude below the electroweak scale. From Eq. (3.22) we then
conclude that one can take for the inverse loop expansion parameter ARy ~ 1/g ~ 1.6
in agreement with EWPT. Like in the 5D case, however, the 6D model seems not to
admit a loop expansion parameter in the regime ARy > 1 as required for the model

to be calculable.

3.4 Non-oblique corrections and fermion masses

In the previous discussion, we have assumed that the fermions are (approximately)
localized at (y1,y2) = (0,0). This would make the fermions exactly massless, since
they have no access to the EWSB at y; = 7R, and y, = mR,. In this limiting case,
the effects on the electroweak precision parameters (€1, €2,€3/5, T, U) come from the
oblique corrections due to the vector self energies as given by Eq. (3.10). A more
realistic case will be to extend the fermion wave functions to the bulk, i.e., to the walls
of EWSB, where fermion mass operators of the form CW W (C is some appropriate
mass parameter) can be written. Thus, although the fermion wave functions will be
dominantly localized at (0, 0), the profile of the wavefunctions in the bulk will be such
that it will have small contributions from the symmetry breaking walls, giving rise to

fermion masses. The hierarchy of fermion masses would then be accommodated by

"Notice that in Ref. [32], the strong coupling scale is defined by 1/A = 1/Az + 1/Ag, while we

assume for M; = My that A = A = Ay.
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some suitable choice of the parameters C' [52].

To make the incorporation of heavy fermions in our model explicit, let us introduce
the 6D chiral quark fields Q;, U;, and D; (i = 1,2, 3 is the generation index), where
Q, are the isodoublet quarks, while U; and D; denote the isosinglet up and down
quarks, respectively. For the cancellation of the SU(3)c x SU(2), x U(1)y gauge and
gravitational anomalies we assume that Q; have positive and U;, D; have negative
SO(1,5) chiralities [53]. Next, we consider the action of the top quark fields with

zero bulk mass, which is given by
TR TRo o o
Stamion = [t [y [ dyy QU Dy Qu + T Dasthy
0 0
TRy TR . o
+ /diLA/ d’yl/ dy2 Kd(y1)5<y2)Z[Q3FMDH93 +Z/{3FHD“Z/{3]
0 0
TRy TR .
+ /dLZA/ dyl / dyg C(S(yl — 7TR1>(5<3/2 - WRQ)QgLZ/{gR + h(ﬁ?),Q?))
0 0

where we have added in the second line 4D brane kinetic terms with a (common)
gauge kinetic parameter K = [m]™? at (y1,42) = (0,0) and in the third line we
included a boundary mass term with coefficient C' = [m]~!, which mixes Qs and
Usr at (y1,y2) = (mRy, mRy). Note, that the addition of the boundary mass term in
the last line of Eq. (3.23) is consistent with gauge invariance, since U(1)g the only
gauge group surviving at (yi,y2) = (7Ry,mRy). Consider now first the limit of a
vanishing brane kinetic term K — 0. Like in the 5D case [31], appropriate Dirichlet
and Neumann BC’s for Qs;, g and Usy, g would give, in the KK tower corresponding
to the top quark, a lowest mass eigenstate, which is a Dirac fermion with mass m; of
the order m; ~ C/R? where we have defined the length scale R ~ R; ~ Ry. Next,
by analogy with the generation of the W+ and Z masses, switching on a dominant
brane kinetic term K/R? >> 1, ensures an approximate localization of Qs and Usg
at (y1,y2) = (0,0) and leads to m; ~ C/K [32]. Now, the typical values of non-

oblique corrections to the SM gauge couplings coming from the bulk are® ~ CR/K ~

8The factor C' becomes obvious when treating the brane fields in Eq. (3.23) as 4D fields, in which
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my/(1/R) and keeping these contributions under control, the compactification scale
1/R must be sufficiently large. Like in 5D models, this generally introduces a possible
tension between the 3rd generation quark masses and the coupling of the Z to the
bottom quark. Replacing in the above discussion Uy, p with Dsp r and m; by the
bottom quark mass my(mz) ~ 3 GeV, we thus estimate for 1/R ~ 1 TeV a shift
of the SM Z — b.b;, coupling by roughly ~ 0.3%, which is of the order of current
experimental uncertainties?. Similarly, we predict in our model the coupling of the Z
to the top quark to deviate by ~ 10% from the SM value, which can be checked in
the electroweak production of single top in the Tevatron Run 2. It can also be tested

in the t¢ pair production in a possible future linear collider.

3.4.1 Improving the calculability

To improve the calculability of the model, it seems necessary to raise (for given
1/g%) the strong coupling scale A, which would allow the appearance of more KK
modes below the cutoff. In fact, it has recently been argued that the compactification
of a 5D gauge theory on an orbifold S'/Z, gives a cutoff which is by a factor of 2
larger than the NDA estimate obtained for an uncompactified space [48]. Let us now
demonstrate this effect explicitly by repeating the NDA calculation of Ref. [49] on
an orbifold following the methods of Refs. [35] and [54]. For this purpose, consider
a bD scalar field ¢(z,,y) (where we have defined y = y;), propagating in an S*'/Z,
orbifold extra dimension. The radius of the 5th dimension is R and periodicity implies
y+ 2mR ~ y. As a consequence, the momentum in the fifth dimension is quantized
as ps = n/R for integer n. Under the Zy action y — —y the scalar transforms as

d(x,,y) = £6(x,, —y), where the + (—) sign corresponds to ¢ being even (odd) under

case C = [m]*! and K = [m]°.

9The LEP/SLC fit of T,/T'haq in Z decay requires the shift of the Z — brbr, coupling to be
< 0.3% [3].
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Figure 3.3: One-loop diagram for ¢-¢ scattering on S'/Z. The total incoming momentum
is (p,p5) and the total outgoing momentum is (p, ps). Generally, it is possible that |pf| #

|ps|, since the orbifold fixed points break 5D translational invariance.

Zy. The scalar propagator on this space is given by [35,54]

D(p,ps,ps5) = % {%} : (3.24)
where the additional factor 1/2 takes into account that the physical space is only
half of the periodicity. Consider now the one-loop ¢-¢ scattering diagram in Fig. 3.3.
The total incoming momentum is (p, pt) and the total outgoing momentum is (p, ps),
which can in general be different, since 5D translation invariance is broken by the
orbifold boundaries. Locally, however, momentum is conserved at the vertices. The

diagram then reads

oo A1 / d'k [ Oksky E O—sy | f Otps—ks).(wy—ky) T O—(ps—ks),(ps—H3)
122k~ | Qo T K2R (p— k)2 — (ps — ks)? ’
5

fahts)

(3.25)
where A is the quartic coupling and the additional factor 1/4 results from working on

S1/Z,. After summing over kL, the integrand can be written as

1
(k2 — k?)) [(p— k)2 — (ps — ks)?] {(51351?& + 5105,—1?’5 * 521@57(?5-&-1)'5) + 52/657(105—?'5)} :

(3.26)

P(ks) =

In Eq. (3.26), the first two terms in the bracket conserve |p| and contribute to the
bulk kinetic terms of the scalar. The last two terms, on the other hand, violate |pf|

conservation and thus lead to a renormalization of the brane couplings [35]. Note
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that these brane terms lead in Eq. (3.25) to a logarithmic divergence. Applying, on
the other hand, to the bulk terms the Poisson resummation identity

1 . _ - > dk —2mwikRn
ZWng;wPKm/R)_ 3 /;O2We Flk), (3.27)

n=—oo
we obtain a sum of momentum space integrals, where the “local” n = 0 term diverges
linearly like in 5D uncompactified space. This term contributes a linear divergence to
the diagram such that the scattering amplitude becomes under order one rescalings

of the random renormalization point for the external momenta of the order

NPk o, o, N A
zzﬁz/@ﬁw@—m]_gaﬁﬁﬁm, (3.28)

where A is an ultraviolet cutoff. On S'/Z,, we thus indeed obtain for the strong
coupling scale A ~ 4873\~2, which is two times larger than the NDA value obtained
in 5D uncompactified space. This is also in agreement with the definition of A for a
5D gauge theory on an interval given in Ref. [48].

Similarly, when the 5th dimension is compactified on S'/(Zy x Z3) [55], we expect
a raising of A by a factor of 4 with respect to the uncompactified case. Let us
briefly estimate how far this could improve the calculability of our 6D model. To this
end, we assume, besides the two extra dimensions compactified on the rectangle, two
additional extra dimensions with radii R3 and Ry, each of which has been compactified
on S'/(Zy x Z}). We assume that the gauge bosons are even under the actions of the
Zy X Z4 groups. Moreover, we take for the bulk kinetic coefficients in eight dimensions
M} = M} and set Ry = Ry = Ry = R;/v/2. From the expression analogous to
Eq. (3.21¢), we then obtain the estimate e5 ~ ¢*(m M R3)*/3v/2, where the relative
factor (mRy/2)?, arises from integrating over the physical space on each circle, which
is only 1/4 of the circumference. With respect to the NDA value A* ~ (47)*T'(4) M}

in uncompactified space, the cutoff gets now modified as A* — 16 - A*, implying that

(ARy/4)* ~ 1.3 x 1073 x (ARy/4)". (3.29)
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In agreement with EWPT, the loop expansion parameter could therefore assume here
a value (ARy)™! ~ 0.25, corresponding to the appearance of 4 KK modes per extra
dimension below the cutoff. Taking also a possible additional raising of A by a factor
of v/2 due to the reduced physical space on the rectangle into account, one could have
(ARy)™! ~ 0.2 with 5 KK modes per extra dimension below the cutoff. In conclusion,
this demonstrates that by going beyond five dimensions, the calculability of Higgsless

models could be improved by factors related to the geometry.
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CHAPTER 4
A New Two Higgs Doublet Model

4.1 Model and the Formalism

Our proposed model is based on the symmetry group SU(3). x SU(2);, x U(1) x
Zy. In addition to the usual SM fermions, we have three EW singlet right-handed
neutrinos, Ng;,¢ = 1 — 3, one for each family of fermions. The model has two Higgs
doublets, y and ¢. All the SM fermions and the Higgs doublet y, are even under the
discrete symmetry, Z,, while the RH neutrinos and the Higgs doublet ¢ are odd under
Zy. Thus all the SM fermions except the left-handed neutrinos, couple only to x. The
SM left-handed neutrinos, together with the right-handed neutrinos, couple only to
the Higgs doublet ¢. The gauge symmetry SU(2) x U(1) is broken spontaneously at
the EW scale by the VEV of x, while the discrete symmetry Z; is broken by a VEV of
¢, and we take (¢) ~ 1072 eV. Thus, in our model, the origin of the neutrino masses
is due to the spontaneous breaking of the discrete symmetry Z,. The neutrinos are
massless in the limit of exact Z; symmetry. Through their Yukawa interactions with
the Higgs field ¢, the neutrinos acquire masses much smaller than those of the quarks
and charged leptons due to the tiny VEV of ¢.

The Yukawa interactions of the Higgs fields with the leptons are

—1 —1 ~
Ly =yV,lrx + v,V Nrd+ h.c., (4.1)

where WIL = (7, 1)1 is the usual lepton doublet and [y is the charged lepton singlet.
The first term gives rise to the mass of the charged leptons, while the second term

gives a tiny neutrino mass. The interactions with the quarks are the same as in the
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Standard Model with x playing the role of the SM Higgs doublet. Note that in our
model, a SM left-handed neutrino, v, combines with a right handed neutrino, Ng,
to make a massive Dirac neutrino with a mass ~ 1072 eV, the scale of Z, symmetry
breaking.

For simplicity, we do not consider CP violation in the Higgs sector. (Note that
in this model, spontaneous CP violation would be highly suppressed by the small
VEV ratio and could thus be neglected. However, one could still consider explicit CP
violation). The most general Higgs potential consistent with the SM x Z; symmetry

is [56]

V= —pd X" — 15 9T+ M(xX™X)? + Xa(870)” + As(XX) (67¢) — Aalx 10|

~ Sl + (6. (42)

The physical Higgs fields are a charged field H, two neutral scalar fields h and o, and

a neutral pseudoscalar field p. In the unitary gauge, the two doublets can be written

[ vem
V2 iV Vp+vi |

L[ —Ew
V2 oy —iK/V)p+ Vi

where V, = (x), Vg = (¢), and V> = V2 + V2. The particle masses are
1

1
e = 30PVE = SO+ X)VE = AV,

M, = WVE+ X0V £ [(0V2 = V22 + (g = M= X)PVRVE (44)
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An immediate consequence of the scenario under consideration is a very light scalar

o with mass

m2 = 2XVZ[1+ O(Vy/Vy)]. (4.5)

The mass eigenstates h, o are related to the weak eigenstates hg, oy by

ho = ch + so, 0y = —sh + co, (4.6)

where ¢ and s denotes the cosine and sine of the mixing angles, and are given by

c=1+ O(Vf/VXQ),

A3 — A — A
s = —%lf’(v(ﬁ/vx) +O(VZ V). (4.7)

Since Vi ~ 1072 eV and V, ~ 250 GeV, this mixing is extremely small, and can
be neglected. Hence, we see that h behaves essentially like the SM Higgs (except of
course in interactions with the neutrinos).

The interactions of the neutral Higgs fields with the Z are given by

Lyauge = %(d@ + sVy) (po*h — ho*p)Z, + %(svd) — V) (pdto — odtp)Z,
2 9

—2
+gz(sv¢ — VOhZ"Z, + gz(cw +sV)o 242, + %(fﬂ + o2+ p?) 217, (4.8)

where g% = g? 4+ ¢, and V, and Vj are the two VEV’s.

4.2 Phenomenological Implications

We now consider the phenomenological implications of this model. There are sev-

eral interesting phenomenological implications which can be tested in the upcoming
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neutrino experiments and high energy colliders. The light neutrinos in our model are
Dirac particles. So neutrino-less double beta decay is not allowed in our model. This
is a very distinctive feature of our model for the neutrino masses compared to the
traditional see-saw mechanism. In the see-saw model, light neutrinos are Majorana
particles, and thus neutrino-less double beta decay is allowed. The current limit on
the double beta decay is me. ~ 0.3 eV. This limit is expected to go down to about
Mee ~ 0.01 eV in future experiments [57]. If no neutrino-less double beta decay is
observed to that limit, that will cast serious doubts on the see-saw model. In our
model, of course, it is not allowed at any level.

Next, we consider the implications of our model for high energy colliders. First
we consider the production of the light scalar o in ete™ collisions. The only possible
decay modes of this particle are a diphoton mode, ¢ — 77 which can occur at the
one-loop level and, if it has enough mass, a ¢ — v7 mode. The one loop decay
to two photons takes place with quarks, W bosons, or charged Higgs bosons in the
loop. The largest contribution to this decay mode is ~ e®m?/m,*. This gives the
lifetime of o to be ~ 10?° years, which is much larger than the age of the universe.
Thus o essentially behaves like a stable particle, and its production at the colliders
will lead to missing energy in the event. The couplings of ¢ to quarks and charged
leptons takes place only through mixing which is highly suppressed (proportional to
the ratio V;,/V,). Thus we need only consider its production via its interactions with
gauge bosons. The ZZo coupling is also highly suppressed, so that processes such as
ete” —» 7* — Zoand Z — Z*0 — ffo are negligible. However, no such suppression
occurs for the ZZoo coupling. Consider the Z decay process Z — Z*oco — ffoo.

A direct calculation yields the width (neglecting the ¢ and fermion masses),
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_ 30m5 (2 2 mz/2 mz/2
N7 = ffoo) = CEM2zl9v +92) / dEl/ dE,
2v/2(27)? 0 0

! FE}E3(3 — cos0)
d(cos 12 4.9
8 /_1 (8 0) B By = 2B By cos — m2 2 + T (4.9)

where gy = Ty — 2Q sin? §yy and g4 = Ty. This gives

Y T(Z - ffoo) ~25x 1077 GeV. (4.10)
f

For the 1.7 x 10" Z’s observed at resonance at LEP1 [58], this gives an expectation
of only about two such events.

Now we consider the production of the heavy Higgs particles in our model. Since
the charged Higgs H* and the pseudoscalar, p can be produced along with the light
scalar o, there will be stricter mass bound on these particles than in a typical two
Higgs doublet model. Let us consider the pseudoscalar p, and assume m, < my.
Then the Z can decay via Z — op. Since p couples negligibly to all SM fermions
except the neutrinos, here we need only consider its decay to v¥ (or oo if we consider
CP violation), so this process contributes to the invisible decay width of the Z. The

width for this process is

GF’ITL% m?2 ’
TV k= (4.11)

mz
This is less than the experimental uncertainty in the invisible Z width for m, 2
78 GeV. (The experimental value of the invisible Z width is 499.0 & 1.5 MeV [59].)
For m, > my, real pseudoscalar p can be produced via ete™ — Z* — po. The

total cross section for this process is

3
, _ Gimi(gh + 93)s ( L )2 ( _ m_/%) , (4.12)
24m
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For LEP2, /s ~ 200 GeV, we find that less than one event is expected in ~ 3000 pb~—*
[6] of data for m, 2 95 GeV. Note that the bound on the p mass we obtain is much
less than the mass for which the Higgs potential becomes strongly coupled (A5 < 24/7
which gives m, < 470 GeV).

For m, > myz, the Z can still decay invisibly through Z — p*oc — vve. The

width for this decay is

Gpmyl [m2/? E3(myz —2E
invyidthT = —4 2% / g Elmz—28) (4.13)
3v2(2m)3 Jo (m% —2mzE —m?2)
Summing over generations, this gives
1 2
[(m, =100 GeV) = (0.1 MeV)(3 ;yw)
1
T'(m, =200 GeV) ~ (4 x 107° MeV)(5 > u) (4.14)
l

Even if we take % > ygl ~ 1, these values are well within the experimental uncertainty
in the invisible Z width of 1.5 MeV. Note that if we allow explicit CP violation in
the Higgs sector, the invisible decay Z — po — ooo will also occur.

Our model has very interesting implications for the discovery signals of the Higgs
boson at the high energy colliders, such as the Tevatron and LHC. Note that since V,
is extremely small compared to V,, the neutral Higgs boson, h is like the SM Higgs
boson so far its decays to fermions and to W and Z bosons are concerned. However,
in our model, h has new decay modes, such as h — oo which is invisible. This could
change the Higgs signal at the colliders dramatically. The width for this invisible

decay mode h — oo is given by

(A3 + Ay + A5)2VXQ'

['(h— o0) = Z

(4.15)
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Figure 4.1: Left panel: Branching ratio for h — oo as a function of my, for the value
of the parameter, \* = 0.1. Right panel: Branching ratio for h — oo as a function

of \* for my, = 135 GeV.
Using
mj, =20V +O(VZ/VY), (4.16)

this can be written

()\3 + )\4 + )\5)2mh
6471')\1

I'(h — o0) = (4.17)

Depending on the parameters, it is possible for the dominant decay mode of h to
be this invisible mode. The branching ratios for the Higgs decay to this invisible mode
are shown in Fig. 4 (left panel), for the Higgs mass range from 100 to 300 GeV/, for
the choice of the value of the parameter, A* equal to 0.1 where A* is defined to be equal
to M . The right panel in Fig. 4 shows how this branching ratio depends on
this parameter for a Higgs mass of 135 GeV. (The results for the branching ratio is
essentially the same for other values of the Higgs mass between 120 and 160 GeV'). We
see that for a wide range of this parameter, for the Higgs mass up to about 160 GeV/,
the invisible decay mode dominates, thus changing the Higgs search strategy at the
Tevatron Run 2 and the LHC . The production rate of the neutral scalar Higgs h in

our model are essentially the same as in the SM. This implies that the Higgs mass

bound from LEP is not significantly altered . (The L3 collaboration set a bound of
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myp, > 112.3 GeV for an invisibly decaying Higgs with the SM production rate [60]).
However, because of the dominance of the invisible decay mode, it will be very difficult
to observe a signal at the LHC in the usual production and decay channels such as
qqh — qgWW, qqh — qqrT, h — vy, h — ZZ — 4l, tth (with h — bb) and
h — WW — lvivl [61]. However, a signal with such an invisible decay mode of the
Higgs (as in our model) can be easily observed at the LHC through the weak boson
fusion processes, qq — qgW W~ — qqH and qq — qqZZ — qqH [62] if appropriate
trigger could be designed for the ATLAS and CMS detector. For example, with
only 10 fb=! of data at the LHC, such a signal can be observed at the 95 percent
CL with an invisible branching ratio of 31 percent or less for a Higgs mass of upto
400 GeV [62]. Thus our model can be easily tested at the LHC for a large region
of the Higgs mass. Of course, establishing that this signal is from the Higgs boson
production will be very difficult at the LHC. For the Higgs search at the Tevatron,
the usual signal from the Wh production, and the subsequent decays of h to WW*
or bb will be absent. The most promising mode in our model will be the production
of ZH, with Z decaying to I*I* (I = e, u) and the Higgs decaying invisibly. There will
be a peak in the missing energy distribution in the final state with a Z. We urge the

Tevatron collaborations to look for such a signal.

4.3 Cosmological Implications

Our model has several interesting astrophysical and cosmological implications.
Firstly, there is a problem with primordial nucleosynthesis [63]. This occurs because
the relatively strong interactions between left- and right-handed neutrinos and the
light scalar o will keep right-handed neutrinos and ¢ in thermal equilibrium with left-
handed neutrinos during nucleosynthesis. So, the effective number of light degrees
of freedom, g, = gp + %gf (g» and gy are the numbers of bosonic and fermionic spin

degrees of freedom respectively), is
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go = (g)sar + 1+ 2(6) 7 (4.18)

(Equivalently, the effective number of neutrinos is N, = 6 + %) This increases the
expansion rate of the universe, which is proportional to \/g.. As a result, reactions
which interconvert protons and neutrons freeze out of thermal equilibrium at a higher
temperature, increasing the ratio of neutrons to protons during nucleosynthesis. This
increase alters the abundances of light elements produced in subsequent nucleosyn-
thesis reactions, most notably, helium-4 is greatly overproduced. The mass fraction
of helium-4 obtained here is ~ 0.3 compared to the observed fraction ~ 0.25. To
solve this problem, our model requires a non-standard nucleosynthesis scenario. One
possibility is a large neutrino degeneracy. It is assumed in standard nucleosynthe-
sis that the chemical potential of neutrinos p, ~ 0. However, since relic neutrinos
are not observed, this is not required by observation. A large value of y, alters the

equilibrium ratio of neutrons to protons,

W gmmT <E) ’ (4.19)
p p MVZO

leading to an alteration of light element abundances. Our problem can be solved with
iy, ~ 0.1 MeV. In depth studies have been conducted, where the effective number
of neutrinos, neutrino degeneracy and the density of baryons are allowed to vary,
in order to find the most general values consistent with BBN and WMAP [65](as
well as studies which fix N, = 3, leading to much stronger bounds on neutrino
degeneracy [66]). These studies find upper bounds on N,, from 7.1 to 8.7, depending
on how conservative an interpretation of the data is used. Another possible solution
could be the existence of massive particle species that decay after nucleosynthesis.
Energetic decay products of these particles interact with background nuclei, causing

non-thermal nuclear reactions, such as helium-4 dissociation, that reset light element
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abundances [64]. (We also note that in the above analysis, we have taken three right-
handed neutrinos. For the oscillation experiments, as well as for direct measurements,
the lightest neutrino mass can be zero. So, only two right-handed neutrinos are strictly
required. This could make the Big Bang nucleosynthesis problem somewhat milder.)

There are also bounds on the effective number of neutrinos coming from astro-
physical observations other than light element abundances. For example, data from
WMAP and the Sloan Digital Sky Survey (SDSS) power spectrum of luminous red
galaxies, give a bound 0.8 < N, < 7.6 [67]. The authors of [68] claim that data from
the SDSS Lyman-a forest power spectrum, along with cosmic microwave background,
supernova, and galaxy clustering data, seem to require N, > 3.

Additionally, the v7o interaction can affect supernova explosion dynamics,and
since this interaction can be fairly strong it may bind v7, giving rise to the possibility
of v7 atoms and a new kind of star formation.

Also, the spontaneous breaking of the discrete global symmetry Z, will lead to
the formation of cosmological domain walls. These walls will have energy per unit

area 1 ~ V¢3, so their effect will be small. The resulting temperature anisotropies are

5T
= GnHy' ~ 1072, (4.20)

where G is Newton’s gravitational constant and H is the present Hubble parameter.
The observed level of CMB temperature anisotropies is 107> [59], so this is not a

problem.
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CHAPTER 5

CONCLUSIONS

We have presented several scenarios that alter the Higgs sector from that of the
SM.

First, we presented a renormalizable non-supersymmetric model based on the finite
symmetry G = (Gy X Gg) X Ay, with G; = S5 X S5 X S3 x S3 and Go = Zy X Zy X Zs,
with SM leptons assigned to representations of A4. Neutrino masses are generated
by a Higgs field ¢ belonging to a 16-dimensional representation of G; x A, while
charged-lepton masses are generated by a Higgs field y belonging to a 6-dimensional
representation of Gy x Ay. The additional symmetries, G; and Gg, prevent quadratic
and cubic interactions between ¢ and y and allow only a trivial quartic interaction
that does not cause an alignment problem, addressing the alignment problem without
altering the desired properties of the family symmetry. In this way, we are able to
explain all aspects of neutrino mixing using only symmetries which are spontaneously
broken by the Higgs mechanism.

Next, we have considered a 6D Higgsless model for EWSB based only on the SM
gauge group SU(2);, x U(1)y. The model is formulated in flat space with the two
extra dimensions compactified on a rectangle of size ~ (TeV)~2. EWSB is achieved
by imposing consistent BC’s on the edges of the rectangle. The higher KK resonances
of W* and Z decouple below ~ 1 TeV through the presence of a dominant 4D brane
induced gauge kinetic term at the point where SU(2); x U(1)y remains unbroken.
The p parameter is arbitrary and can be set exactly to unity by appropriately choosing

the bulk gauge couplings and compactification scales. The resulting gauge couplings
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in the effective 4D theory arise essentially from the brane couplings, slightly modified
(at the level of one percent) by the bulk interaction. Thus, the main role played by
the bulk interactions is to break the electroweak gauge symmetry. We calculate the
tree-level oblique corrections to the S, T, and U parameters and find them to be
consistent with current data.

Finally, we have presented a simple extension of the Standard Model supplemented
by a discrete symmetry, Z,. We have also added three right-handed neutrinos, one
for each family of fermions, and one additional Higgs doublet. While the electroweak
symmetry is spontaneously broken at the usual 100 GeV scale, the discrete symmetry,
Z, remains unbroken to a scale of about 1072 eV. The spontaneous breaking of this
Zy symmetry by the VEV of the second Higgs doublet generates tiny masses for the
neutrinos. The neutral heavy Higgs in our model is very similar to the SM Higgs in its
couplings to the gauge bosons and fermions, but it also couples to a very light scalar
Higgs present in our model. This light scalar Higgs, o, is essentially stable, or decays
to vv. Thus the production of this o at the high energy colliders leads to missing
energy. The SM-like Higgs, for a mass up to about 160 GeV dominantly decays to
the invisible mode h — oo. Thus the Higgs signals at high energy hadron colliders
are dramatically altered in our model. Our model also has interesting implications

for astrophysics and cosmology.

72



BIBLIOGRAPHY

1]

[6]

S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264; A. Salam, p.367 of Elementary
Particle Theory, ed. N. Svartholm (Almquist and Wiksells, Stockholm, 1969);
S.L. Glashow, J. Iliopoulos, and L. Maiani, Phys. Rev. D 2 (1970) 1285.

Particle Data Group Collaboration, K. Hagiwara et al., Phys. Rev. D 66 (2002)
010001.

The ElectroWeak Working Group, http://lepewwg.web.cern.ch/LEPEWWG/

F. Englert and R. Brout, Phys. Rev. Lett. 13 (1964) 321; P.W. Higgs, Phys.
Lett. 12 (1964) 132 and Phys. Rev. Lett. 13 (1964) 508; T.W. Kibble, Phys.
Rev. 155 (1967) 1554.

C. H. Llewellyn Smith, Phys. Lett. B 46 (1973) 233; D.A. Dicus, V.S. Mathur,
Phys. Rev. D 7 (1973) 3111; J.M. Cornwall, D.N. Levin, and G. Tiktopoulos,
Phys. Rev. D 10 (1974) 1145; B.W. Lee, C. Quigg, and H.B. Thacker, Phys.
Rev. D 16 (1977) 1519; M.J.G. Veltmann, Acta Phys. Polon. B 8 (1977) 475.

ALEPH, DELPHI, L3, and OPAL Collaborations, The LEP working group for
Higgs boson searches, G. Abbiendi et al., Phys. Lett. B565 (2003) 61.

T. Schwetz, M. Tortola, and J.W.F. Valle, New J. Phys. 10, 113011 (2008).

G.L. Fogli, E. Lisi, A. Mirizzi, D. Montanino, and P.D. Serpico, Phys. Rev. D74,
093004 (2006).

P.F. Harrison, D.H. Perkins and W.G. Scott, Phys. Lett. B458, 79 (1999); Phys.
Lett. B530, 167 (2002).

73



[10] Z.-Z. Xing, Phys. Lett. B533, 85 (2002); X.G. He and A. Zee, Phys. Lett. B560,
87 (2003); Phys. Rev. D68, 037302 (2003).

[11] A. Aranda, C.D. Carone, and R.F. Lebed, Phys. Rev. D62, 016009 (2000).

[12] J. Kubo, A. Mondragon, M. Mondragon, and E. Rodriguez-Jauregui, Prog.
Theor. Phys. 109, 795 (2003).

[13] C. Hagedorn, M. Lindner, and F. Plentinger, Phys. Rev. D74, 025007 (2006).

[14] 1. de Medeiros Varzielas, S.F. King, and G.G. Ross, Phys. Lett. B648, 201
(2007).

[15] M.-C. Chen and K.T. Mahanthappa, Phys. Lett. B652, 34 (2007).

[16] F. Feruglio, C. Hagedorn, Y. Lin, and L. Merlo, Nucl. Phys. B775, 120 (2007).
[17] P. Frampton and T. Kephart, JHEP 0709, 110 (2007).

(18] A. Blum, C. Hagedorn, and M. Lindner, Phys. Rev. D77, 076004 (2008).

[19] W. Grimus and L. Lavoura, JHEP 0904, 013 (2009).

20] E. Ma and G. Rajasekaran, Phys. Rev. D64, 113012 (2001)

21] E. Ma, Mod. Phys. Lett. A17, 2361 (2002).

[22] K.S. Babu, E. Ma, and J.W.F. Valle, Phys. Lett. B552, 207 (2003).

23] G. Altarelli and F. Feruglio, Nucl. Phys. B720, 64 (2005); Nucl. Phys. B741,
215 (2006).

24] K. S. Babu and X.G. He, hep-ph/0507217.
25] X.G. He, Y.Y. Keum, and R.R. Volkas, JHEP 0604, 039 (2006).

26] E. Ma, Phys. Lett. B671, 366 (2009).

74



[27]

28]

[29]

[30]

[31]
32]

33]

[34]
[35]
[36]

37]

[38]

[39]

J. Scherk and J.H. Schwarz, Phys. Lett. B 82 (1979) 60; Nucl. Phys. B 153 (1979)
61; E. Cremmer, J. Scherk, and J.H. Schwarz, Phys. Lett. B 84 (1979) 83; Y.
Hosotani, Phys. Lett. B 126 (1983) 309 (1983); Phys. Lett. B 129 (1983) 193; An-

nals Phys. 190 (1989) 233; for a recent review see M. Quiros, hep-ph/0302189.

T. Kaluza, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys. ) 1921 (1921)
966; O. Klein, Z. Phys. 37 (1926) 895.

R. Sekhar Chivukula, D.A. Dicus, and H.J. He, Phys. Lett. B 525 (2002) 175;
R.S. Chivukula, D.A. Dicus, H.J. He, and S. Nandi, Phys. Lett. B 562 (2003)
109.

C. Csaki, C. Grojean, H. Murayama, L. Pilo, and J. Terning, Phys. Rev. D 69
(2004) 055006.

C. Csaki, C. Grojean, J. Hubisz, Y. Shirman, and J. Terning, hep-ph/0310355.
R. Barbieri, A. Pomarol, and R. Rattazzi, Phys. Lett. B 591 (2004) 141.

L. Randall and R. Sundrum, Phys. Rev. Lett. 83 (1999) 4690; Phys. Rev. Lett.
83 (1999) 3370.

E.A. Mirabelli and M.E. Peskin, Phys. Rev. D 58 (1998) 065002.
H. Georgi, A.K. Grant, and G. Hailu, Phys. Lett. B 506 (2001) 207.
W.D. Goldberger and M.B. Wise, Phys. Rev. D 65 (2002) 025011.

See for example, Higgs Hunters Guide, by J.F. Gunion, H. E. Haber, G. L. Kane
and S. Dawson, Addison-Wesley Publishing, New York, 1990.

R. Barbieri, L.J. Hall, and V.S. Rychkov, Phys. Rev. D74 (2006) 015007.

S.K. Kim, Group Theoretical Methods: And Applications to Molecules and Crys-

tals, Cambridge University Press, New York, 1999.

75



[40] C. Hagedorn, M. Lindner, and R.N. Mohapatra, JHEP 0606, 042 (2006).

[41] C.S. Lam, Phys. Rev. D79, 073015 (2008); W. Grimus, L. Lavoura, and P.O.

Ludl, 0906.2689 [hep-ph].
[42] B.A. Dobrescu and E. Ponton, JHEP 0403 (2004) 071 (2004).
[43] A. Muck, A. Pilaftsis, and R. Ruckl, Phys. Rev. D 65 (2002) 085037.
[44] MLE. Peskin and T. Takeuchi, Phys. Rev. D 46 (1992) 381 (1992).

[45] G. Altarelli and R. Barbieri, Phys. Lett. B 253 (1991) 161; G. Altarelli, R.
Barbieri, and S. Jadach, Nucl. Phys. B 369 (1992) 3; Erratum-ibid. B 376
(1992) 444.

[46] B. Holdom and J. Terning, Phys. Lett. B 247 (1990) 88; M. Golden and L.
Randall, Nucl. Phys. B 361 (1991) 3.

[47] M. Carena, E. Ponton, T.M.P. Tait, and C.E.M. Wagner, Phys. Rev. D 67 (2003)

096006.
(48] R. Barbieri, A. Pomarol, R. Rattazzi, and A. Strumia, hep-ph/0405040.
[49] A. Manohar and H. Georgi, Nucl. Phys. B 234 (1984) 189.
[50] H. Georgi and L. Randall, Nucl. Phys. B 276 (1986) 241.
51] Z. Chacko, M.A. Luty, and E. Ponton, JHEP 0007 (2000) 036.
[52] K. Agashe, A. Delgado, M.J. May, and R. Sundrum, JHEP 0308 (2003) 050.

(53] B.A. Dobrescu and E. Poppitz, Phys. Rev. Lett. 87 (2001) 031801; N. Arkani-
Hamed, H.C. Cheng, B.A. Dobrescu, and L.J. Hall, Phys. Rev. D 62 (2000)
096006.

[54] H.C. Cheng, K.T. Matchev, and M. Schmaltz, Phys. Rev. D 66 (2002) 036005.

76



[55]
[56]

[57]

[62]

[63]

[64]

[66]

[67]

R. Barbieri, L.J. Hall, and Y. Nomura, Phys. Rev. D 63 (2001) 105007.
S. Nandi, Phys. Lett. B202 (1988) 385, Erratum-ibid, B207 (1988) 520.

L. Baudis et al. Phys. Rev. Lett. 83 (1999) 41; IGEX Collaboration, C.E. Aalseth
et al., Phys. Rev. D65 (2002) 092007; I. Abd et al., hep-ex/0404039.

ALEPH, DELPHI, L3, and OPAL Collaborations, The LEP EW working group,
The SLD EW and heavy flavour groups, Phys. Rept. 427 (2006) 257.

W.-M. Yao et al., J. Phys. G33 (2006) 1.
L3 Collaboration, P. Achard et al., Phys. Lett. B609 (2005) 35.

K. Crammer, B. Mellado, W. Quayle, and S. L. Wu, (ATLAS Collaboration),
ATL-PHYS-2004-034.

O.J.P. Eboli and D. Zepppenfeld, Phys. Lett. B495 (2000) 147.

The Early Universe, by E.W. Kolb and M.S. Turner, Addison-Wesley Publishing,
New York, 1990.

See for example, M. Kawasaki, K. Kohri, and T. Moroi, Phys. Rev. D71 (2005)
083502; S. Dimopoulos, R. Esmailzadeh, L.J. Hall, and G.D. Starkman, Astro-
phys. J. 330 (1988) 545.

V. Barger, J.P. Kneller, P. Langacker, D. Marfatia, and G. Steigman, Phys. Lett.
B569 (2003) 123; A. Cuoco, F. Tocco, G. Mangano, G. Miele, O. Pisanti, and
P.D. Serpico, Int. J. Mod. Phys. A19 (2004) 4431; G. Steigman, Phys. Scripta
T121 (2005) 142.

P.D. Serpico and G.G. Raffelt, Phys. Rev. D71 (2005) 127301.

K. Ichikawa, M. Kawasaki, and F. Takahashi, arXiv: astro-ph/0611784v1.

7



[68] U. Seljak, A. Slosar, and P.McDonald, JCAP 0610 (2006) 014.

[69] A. Vilenkin, Phys. Rept. 121 (1985) 263.

78



VITA
Steven Gabriel
Candidate for the Degree of

Doctor of Philosophy

Dissertation: NEW IDEAS IN HIGGS PHYSICS
Major Field: Physics
Biographical:
Personal Data: Born in Snellville, Georgia, United States on March 2, 1980.

Education:
Received the B.S. degree from Georgia State University, Atlanta, Georgia,
United States, 2002, in Physics
Completed the requirements for the degree of Doctor of Philosophy with a
major in Physics, Oklahoma State University in May, 2010.



Name: Steven Gabriel Date of Degree: May, 2010
Institution: Oklahoma State University Location: Stillwater, Oklahoma
Title of Study: NEW IDEAS IN HIGGS PHYSICS

Pages in Study: 78 Candidate for the Degree of Doctor of Philosophy
Major Field: Physics

The Higgs mechanism, which is responsible for electroweak symmetry breaking and
unitarization of massive W* and Z scattering, is a fundamental ingredient of the
Standard Model (SM). However, there is as yet no direct evidence of the Higgs boson,
so that the details of the Higgs sector, if it even exists, remain a mystery. Here, we
explore several scenarios that alter the Higgs sector from that of the SM. The first
uses additional symmetries of the Higgs sector to address certain issues of neutrino
mixing, the second uses extra dimensional boundary conditions to avoid the need for
a Higgs entirely, and the last uses additional Higgs fields to provide an alternative
explanation for tiny neutrino masses.

ADVISOR’S APPROVAL:




