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CHAPTER 1 
 
 

INTRODUCTION 

 

 
1.1  Overview 
 
 Since the discovery of carbon nanotubes by Iijima,[1] research involving nano-

scale quasi one-dimensional materials has increased at a revolutionary pace.  The wide 

range of current applications and potential devices drives the need for a better theoretical 

understanding of these novel materials.  Two types of inorganic one-dimensional 

structures are considered herein:  silver and zinc-oxide nanotubes and nanowires.  

Through undertaking this study, we explore some of the lesser understood characteristics 

of these materials, including their electronic structures and unique optical properties.  We 

begin by introducing the defining characteristics of low-dimensional materials along with 

their distinctive properties and applications.  The remainder of this chapter introduces the 

topics comprising this dissertation. We present the theoretical background and 

computational methods employed, and we introduce the separate studies regarding silver 

and zinc-oxide quasi one-dimensional structures, the primary focus of this work. 

1.2  Low-Dimensional Structures 
 
 Nanotechnology encompasses structures with dimensions on the order of a 

nanometer, one-billionth of a meter, and one thousand times smaller than a micron.  A 

material may be classified as a nanomaterial if at least one dimension is confined on the 
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order of 1 to 100 nanometers.  These materials may be confined in all three spatial 

dimensions, two dimensions, or only one dimension.  The dimensionality of the material 

refers to how many dimensions are unconstrained, or free to extend periodically, as such 

crystalline bulk materials are three-dimensional. Materials with all three spatial 

dimensions confined to the nanoscale are zero-dimensional materials called quantum 

dots.  If only one dimension is constrained to the nanoscale, the material is two-

dimensional and is termed a quantum well.  If two dimensions are constrained to the 

nanoscale, the material is one-dimensional.  Examples of these materials are nanowires or 

nanotubes, and are the focus of this dissertation.   

 Meeting the current and future needs of nanoscale electronic devices, will require 

a better understanding of the components associated with these devices.  Novel properties 

of materials can arise when the size and dimensionality are reduced. These unique 

properties include:  quantum confinement, mechanical and thermal stability, lasing, 

phonon transport, photoconductivity and chemical sensing, magnetic effects, and 

electronic and ionic transport.[2] Changes in the electronic properties upon reducing the 

dimensionality and varying the geometries of the materials are the primary focus of this 

work.   

  Nanotechnology will have an extensive impact on many aspects of our lives due 

to current and potential applications including electronic devices, national security, and 

even health care.  Silver nanowires have uses ranging from interconnects to chemical 

sensing.[2]  P. Yang reported Langmuir-Blodgett silver nanowire monolayers for 

molecular sensing using Surface-Enhanced Raman Spectroscopy (SERS) where they 

successfully demonstrated their use for the detection of 2,4 – dinitrotoluene (2,4 – DNT), 
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the nitroaromatic compound most commonly used as a marker for detecting buried 

landmines and other explosives.[3]   

 The optical properties of these materials are directly linked to size-induced 

changes in the electronic structure.  Zinc oxide is one of the few oxides that show 

quantum confinement effects in an experimentally accessible size range (<8nm), which 

makes it a particularly promising material.[2]  Yin et al, [4] observed quantum 

confinement effects in ZnO nanorods with radii of 1.01.1 ±  nm, smaller than the exciton 

Bohr radius of approximately 2.34 nm.  In semiconductors, size confinement effects can 

result in bandgap tunability.  Wang et al. reported a 120 meV blueshift in the spectra of 

ZnO nanobelts with widths of 200 nm and 6 nm.[5]   

 Zinc oxide has a wide range of applications from use in sunscreen lotion to use in 

sensors and photovoltaics.[6]  Due to many unique properties including versatile 

geometrical configurations and a vast array of novel applications, ZnO is predicted to 

become one of the most widely used one-dimensional nanostructures.[7] As an added 

bonus, ZnO is “bio-friendly” and is very stable under high-energy radiation, indicating 

possible uses in medicine and space-oriented applications.[7-9]  Applications pertaining 

to nanotechnology will likely have a widespread influence on health care as they are 

expected to revolutionize cancer diagnostics, imaging, and treatment which could 

ultimately lead to an era of personalized medicine.[10]  These potentially life-changing 

applications serve as inspiration as we explore the modifications in the properties upon 

reducing the dimensionality and varying the structures of these materials.  
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1.3  Organization of Dissertation 
 

Chapter 2 provides details regarding the theoretical background and the 

computational methods utilized throughout this dissertation.  We briefly review the 

theoretical formalism underlying the work carried out herein of density functional theory 

(DFT), band structure methods and Gaussian basis sets.  Next, we discuss the 

computational methods used including the NRL/OSU POLYXA code and CRYSTAL03 

[11].  

 Chapter 3 presents results from a study carried out on helical silver single-wall 

nanotubes and nanowires.  The primary motivation for this study was the experimental 

work reported by Takayanagi and co-workers for constructing helical gold nanowires and 

a single-wall gold nanotube, with diameters as small as 0.40 nm.[12, 13]  Herein, we 

elected to model similar geometrical systems using silver instead of the more complex 

systems involving gold.  In this study, we address similar trends in our first-principles 

electronic structure results compared with other theoretical work using gold and silver.  

We have published results pertaining to this study in the refereed literature.[14-16] 

 Chapter 4 describes the study carried out involving ZnO nanotubes and 

nanowires.  ZnO is a direct band-gap (Eg = 3.37 eV) semiconductor with a large exciton 

binding energy (60meV), exhibiting near-UV emission, transparent conductivity, and 

piezoelectricity. ZnO, a very versatile II-VI semiconductor material, can form a variety of 

nanostructures including:  nanodots, nanorods, nanowires, nanobelts, nanotubes, 

nanobridges and nanonails, nanowalls, nanohelixes, nanorings, and nanocages.[17-26]  In 

a recent theoretical study, a new energetically favorable ‘graphitic-like’ structure was 

predicted for ZnO thin films.[27]  These findings raise the possibility of ZnO existing in 
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single-wall structures similar to carbon nanotubes.  Herein, we examine the electronic 

properties for different geometrical configurations of ZnO including:  single-wall 

graphitic-like nanotubes, single-wall bulk-like nanotubes, and ultrathin nanowires.  The 

optical cross sections are calculated using an Ehrenreich – Cohen formalism.[28]  The 

single-wall graphitic-like structures are the primary focus, with the nanotubes and 

nanowires with bulk-like geometries used primarily for comparison.  Portions of this 

chapter will be submitted for publication. 

 Chapter 5 provides a final overview of the dissertation, emphasizing the 

highlights and the most relevant findings.  We discuss the results from the helical silver 

nanotube and nanowire study, presented in Chapter 3.  A few closing remarks are made 

concerning the zinc oxide nanostructure study, presented in Chapter 4.  
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 CHAPTER 2 
 
 

THEORETICAL APPROACH AND COMPUTATIONAL METHODS 

 

2.1  Overview 

The electronic and structural properties of quasi one-dimensional systems are 

modeled within the framework of density functional theory (DFT).  The fundamental 

theoretical background is discussed, including basic quantum mechanics and the 

theorems of Hohenberg-Kohn and Kohn-Sham, along with band structure methods. A 

description of the computational methods follow, including the framework behind the 

NRL/OSU POLYXA code and CRYSTAL03 [29].  

Most of the simulations reported in this work have used the NRL/OSU POLYXA 

code, developed by Mintmire and colleagues at the Naval Research Laboratory and 

Oklahoma State University. This computational package models the electronic structures 

of quasi-one-dimensional systems using first-principles calculations. [30-32] This 

software differs from other available software in that it has been adapted for helical 

symmetry and can therefore model a broader range of structures.  Employing helical 

symmetry allows for the use of a smaller unit cell size which is particularly important for 

calculations pertaining to chiral systems with helical periodicity.  Applying purely 

translational symmetry to such systems can require excessively large unit cell sizes, 

greatly increasing the computational expense. Reducing the computational size of the 
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electronic structure calculation using helical symmetry is a unique approach, first 

proposed by Imamura and Fujita [33, 34] for semiempirical methods and further 

developed by Mintmire and colleagues at the NRL. This approach has proven successful 

in a range of applications with polymers and carbon nanotubes;  perhaps most notable is 

the prediction of metallic carbon nanotubes prior to experimental observation.[35]   

The CRYSTAL03 package, developed at the University of Torino, has also been 

used in our study.  This software package models systems with 0D, 1D, 2D, and 3D using 

purely translational periodicity, was implemented in the ZnO study primarily for the 

purposes of better interpreting our results.   
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2.2  DFT Methods 

2.2.1 Basic Quantum Mechanics 

 The time-independent non-relativistic Schrödinger equation is expressed as,  

)...,,,,...,,,()...,,,,...,,,(ˆ
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where Ĥ is the Hamiltonian operator for a molecular system with N electrons and M 
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Ei is the numerical value of the energy of the state described by the wave function iΨ  

which contains all the information about the quantum system.  The Born-Oppenheimer 

approximation further simplifies the Schrödinger equation.  Because the massive nuclei 

move much slower than the electrons, the electrons are considered as moving in the field 

of fixed nuclei.  Equation (2.1) reduces to what is known as the electronic Schrödinger 

equation where is the electronic Hamiltonian. elecĤ

 

     (2.3) 
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where Te is the kinetic energy of the electrons, VNe is the electron-nuclear attractive 

Coulomb potential, and Vee is the electron-electron repulsive Coulomb potential. Together 

with the electronic wave function, elecψ , which is dependent upon the electronic 

coordinates, the electronic Schrödinger equation is expressed as 

                              (2.4) elecelecelecelec EH ψψ =ˆ
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The Schrödinger equation can only be solved exactly for the simplest one-electron 

systems, therefore one has to rely on approximate methods to solve most systems of 

interest.   

 With these aspects in mind, we pursue the development of density functional 

theory.  The following references were consulted [31, 36-40] and can provide more 

rigorous derivations too lengthy for this overview.  

2.2.2  Preliminaries to Modern DFT  

Before introducing the more prevalent concepts associated with density functional 

theory, we must first take a step back in time and address some preliminary concepts 

including the Thomas-Fermi model along with Dirac’s local exchange approximation. 

[39]  The approximations that Thomas and Fermi made were in the calculation of the 

density of states and the kinetic energy.  Start with the Fermi distribution function 

 
1/)exp(

1
+−

=
kT

f
Fi

i εε
 ,        (2.5) 

which means that at the absolute zero temperature all one-electron energy levels with 

energy below fε  will be occupied with 1=if , and all one-electron energy levels above 

fε  will be empty, with .  Thomas and Fermi obtained the charge density at an 

arbitrary point in space by assuming that the electron distribution in the neighborhood of 

that point could be treated as part of a homogeneous electron gas.  If all the states with 

energy less than E are occupied, and if we take into account the two orientations of spin 

and charge of an electron, the charge density can be expressed as 

0=if

 2/3
3 )2(

3
8 mE
h

e πρ −=                     (2.6) 
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with e being the magnitude of the electronic charge.  Homogenous electron gas theory 

indicates that at the point where the potential is V(r), electrons have kinetic energies from 

zero up to eV(r), so that the total energy of the electron with maximum kinetic energy is 

zero.  The assumption that Thomas and Fermi made was that the charge density of 

electrons at this point was 

 2/3
3 )](2[

3
8 rmeV
h

e πρ −=               (2.7) 

Within their method, an electron in an N-electron atom would move in the field of the 

nucleus and all N electrons, rather than in the field of N-1 electrons.  Dirac developed a 

method to overcome this difficulty by adding an exchange term proportional to the cube 

root of the charge density.  In 1951, Slater suggested a model in which the kinetic energy 

would be treated as in the Hartree-Fock model, but where the statistical approximation 

would be used for the exchange term.[41]  This work led to what is known as the Xα – 

SCF method.  Slater obtained the one-electron exchange potential, in Hartree atomic 

units, 

                  (2.8) 3/1)4/3(3 πρ−=xV

where ρ is the total electronic charge density.   

 In 1954, Gáspár published a paper in which he obtained the same kind of 

dependence of the exchange correlation energy on the charge density, but instead of the 

coefficient of 3(3/4π)1/3 he found a coefficient of only two-thirds the value, or 2(3/4)1/3.  

This is an interesting piece of information, as Gáspár seems to get lost in the shuffle these 

days, with Kohn and Sham getting most of the credit.  In fact, very little attention was 

paid to Gáspár’s paper at the time, as nobody had a way to make practical use of it.  

Eleven years after Gáspár’s paper, Kohn and Sham, unaware of Gáspár’s work, again 
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found the coefficient two-thirds the size of Slater’s.  Interestingly, Slater had noticed 

Gáspár’s result and thought his arguments were valid. In one of his books, Slater 

addresses the discrepancy in detail, concluding that his method is suitable for one-

electron energies, but the other method is more appropriate for treating the total energy of 

the system.[39]  The approach became known as the Xα method (X for exchange and α 

for the parameter), where the exchange-correlation term is written in the form 

 

              (2.9) 

 

3/1
3/1

4
33 ρ
π

α ⎟
⎠
⎞

⎜
⎝
⎛−

with 1=α  for Slater’s original value and 
3
2

=α  for that of Gáspár, Kohn, and Sham.   

Our LDF approach, described in section 2.7.1, employs the Gáspár-Kohn-Sham 

exchange-correlation potential.  This approach is also commonly referred to as the local 

density approximation (LDA). Next we review the breakthroughs of Hohenberg, Kohn, 

and Sham, which laid the foundation for DFT. 
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2.2.3  Hohenberg-Kohn and Kohn-Sham Theorems 

 The basic idea behind DFT is that a relationship exists between the total 

electronic energy and the overall electronic density.  Hohenberg and Kohn showed that 

the ground-state energy and other properties of a system could be uniquely determined by 

the electron density.[42]  Hohenberg and Kohn also showed that there exists a universal 

functional )]([ rF rρ  such that, for a given external potential )(rext
rυ , the actual ground 

state energy E and charge density )(rrρ  are obtained by minimizing an unknown energy 

functional, given below, with respect to variations in the charge density. 

 ∫+= rdrrrFrE ext
3)()()]([)]([ rrrr ρυρρ       (2.10) 

The charge density of the system is the sum of the squares of a set of one-electron 

orthonormal orbitals: 

 ∑
=

=
N

i
i rr

1

2)()( rr ψρ          (2.11) 

 

Before the energy is minimized, a constraint is placed on the electron density as the 

number of electrons (N) is fixed: 

 ∫= rdrN rr)(ρ       (2.12) 

To proceed with minimizing the energy, this constraint is introduced as a Lagrangian 

multiplier (-µ) 

 [ ]∫− rdrrE
r

rrr
r )()]([
)(

ρµρ
δρ
δ        (2.13) 

From Eq. 2.13 the Lagrangian multiplier is expressed as: 
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This equation (Eq. 2.14) is the DFT equivalent of the Schrödinger equation.  

 In their landmark paper, Kohn and Sham[43] devised a practical way to solve the 

Hohenberg-Kohn[42] theorem for a set of interacting electrons.  Kohn and Sham 

suggested that the functional )]([ rF rρ  should be approximated as the sum of three terms:  

the kinetic energy )]([ rEKE
rρ , the electron-electron Coulombic energy )]([ rEH

rρ , and the 

exchange and correlation energy )]([ rEXC
rρ : 

 )]([)]([)]([)]([ rErErErF XCHKE
rrrr ρρρρ ++=   (2.15) 

The kinetic energy term is defined as the kinetic energy of a system of non-interacting 

electrons with the same density )(rrρ as the real system: 

 rdrrrE i
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i
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rrrr )(
2

)()]([
2

1

ψψρ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∇
−= ∑∫

=

  (2.16) 

The electron Coulombic energy term is also known as the Hartree electrostatic energy.  

This electrostatic energy arises from the classical interaction between two charge 

densities; when summed over all possible pairwise interactions it is expressed as: 

 ∫ ∫ −
= 21

21

21 )()(
2
1)]([ rdrd

rr
rrrEH

rr
rr

r ρρ
ρ     (2.17) 

Upon combining these two terms and adding the electron-nuclear interaction, the full 

expression for the energy becomes 
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Upon introducing this expression for the electron density and applying the appropriate 

variational condition, the following one-electron Kohn-Sham equations result (adding the 

electron-nuclear interactions): 
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            (2.19) 

The orbital energies are iε , and the exchange-correlation functional is given by , 

which is related to the exchange-correlation energy by 

XCV

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

)(
)]([

][
r

rE
rV XC

XC r

r
r

δρ
ρδ

   (2.20) 

The Kohn-Sham equations are solved self-consistently. 

 The exchange-correlation functional is unknown.  Kohn and Sham proposed the 

local-density approximation (LDA) to deal with this problem,    

 rdrrEE xc
LDA
XCXC

3hom ))(()( rr ρερ∫=≈    (2.21) 

where is the exchange-correlation energy per particle in the homogeneous electron 

gas.  There are a broad range of density functionals available, but LDA was used 

throughout the current work. 

hom
xcε
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2.3  Band Structure Methods 
 
 We have presented the basics behind density functional theory for atoms and 

molecules, and now we must incorporate extended systems into this discussion. We first 

introduce Bloch’s theorem and explain the linear combination of atomic orbitals (LCAO) 

approach for modeling band structures.  The following references were consulted and 

provide a nice review of the concepts described: Refs.[44] and [45]. 

 Bloch’s theorem describes electrons in solids moving about in a periodic 

potential.  The theorem proves that the solutions of the Schrödinger equation for a 

periodic potential can be expressed in the form: 

 )exp()()( rkirur kk
rrrr
⋅=ψ ,  (2.22) 

where has the period of the crystal lattice with )(ruk
r )()( Truru kk

rrr
+= .  The 

eigenfunctions of the wave equation for a periodic potential are the product of a plane 

wave times a function )exp( rki rr
⋅ )(ruk

r with the periodicity of the crystal lattice. The 

value of k
r

is used as an index to label the eigenfunction kψ ; it is called the Bloch wave 

vector and k
r

h is the crystal momentum.  For a given value of k
r

, there may exist many 

energy eigenvalues, which are frequently labeled by a band index n, expressed in Dirac 

notation as: 

 nknknkH ψεψ =ˆ , (2.23) 

where nkε  are the band energies.  There are various methods available to calculate these 

band energies including:  pseudopotentials and orthogonalized plane waves (OPW), 

linear combination of atomic orbitals (LCAO), linear augmented plane waves (LAPW), 

and linearized muffin tin orbitals (LMTO).   
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 We implement the LCAO approach throughout this work, and describe it in the 

remainder of this section.  The one-dimensional periodicity present in nanowires and 

nanotubes results in a delocalization of electron states like that in crystals, but the 

finiteness in other dimensions calls for the use of localized wavefunctions as in molecular 

approaches, making an LCAO approach the natural choice for one-dimensional systems. 

The approach has been modified for the use of helical symmetry, and as such it is 

described within that context.  If one wishes to use purely translational symmetry, the 

screw operator, described as follows, may be replaced by the translational operator. 

Reducing the computational size of the electronic structure calculation using helical 

symmetry is an approach, first proposed by Imamura and Fujita [33, 34] for 

semiempirical methods and further developed by Mintmire and colleagues at NRL for use 

in first-principles calculations. The following references provide additional information 

[30, 31, 46-49].   

 Analogous to a translation operator used in translational systems, a screw operator 

is used in helical systems.  We define a screw operation S in terms of a translation h units 

down the z axis along with a right-handed rotation φ  about the z axis: 

                  (2.24) 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+
+
−

≡
hz
yx
yx

rhS φφ
φφ

φ cossin
sincos

),( r

The symmetry group generated by the screw operation S is isomorphic with the one-

dimensional translation group. Bloch’s theorem can therefore be generalized so that the 

one-electron wavefunctions will transform under S according to: 

 );()exp();( κψκκψ rmirS ii
m rr

= .              (2.25) 
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The quantity κ is a dimensionless quantity which is conventionally restricted to a range 

of πκπ ≤<− , a central Brillouin zone, and the quantity m represents the mth unit cell.  

If 0=φ , S represents a pure translation, and κ corresponds to k, the traditional 

wavevector from Bloch’s theorem in solid-state band-structure theory. 

 The one-electron wavefunctions iψ  are constructed from a linear combination of 

Bloch functions jϕ , which are constructed from a linear combination of nuclear-centered 

Gaussian-type orbitals jχ , 

 ∑=
j

jii rcr );()();( κϕκκψ rr                   (2.26) 

             )()exp();( rSmir j
m

m
j

rr χκκϕ ∑ −= . (2.27) 

 
 
 
The one-electron density matrix is then given by 

 
);();()(

2
1);( * κψκψκκ
π

ρ
π

π
∑ ∫

−

′=′
i

iii rrndrr rrrr

  (2.28) 

 )()(
'

rrP m
j

jj m m

mm
j

m
jj

rr ′

′

′+
′′∑∑ ∑ ′= χχ ,  (2.29) 

where )(κin are the occupation numbers of the one-electron states, denotes m
jχ )(rS j

m rχ , 

and are the coefficients of the real lattice expansion of the density matrix given by m
ijP

 )exp()()()(
2
1 *

'' miccndP ji
i

iji
m

jj κκκκκ
π

π

π
∑ ∫

−

=   (2.30) 

The total energy for the system is given by 
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where and nZ nR
r

denote the nuclear charges and coordinates within a single unit cell, 

m
nR
r

denotes the nuclear coordinates in unit cell m )( n
mm

n RSR
rr

≡ , and [ 21 | ]ρρ  denotes the 

electrostatic interaction integral 

 [ ] ∫ ∫≡
12

2211
2

3
1

3
21

)()(|
r

rrrdrd
rr ρρ

ρρ . (2.32) 
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2.4  Gaussian Basis Sets  
 

Basis sets composed of atomic functions are often used in quantum mechanical 

calculations.  The following discussion is adapted from Ref. [37].   Slater type orbitals 

would be suitable, but many of the required integrals are difficult, if not impossible, to 

calculate.  It is therefore common to use Gaussian functions which have the 

form , comprised of integral powers of x, y and z multiplied by , )exp( 2rα− )exp( 2rα−

   (2.33) )exp( 2rzyx cba α−

where α determines the spread of the function.  The order of the function is determined 

by the summation of the powers of the Cartesian variables.  For example, a zeroth-order 

function has and a first-order function has0=++ cba 1=++ cba .  Replacing a Slater 

type orbital by a single Gaussian function leads to undesirable errors.  This problem is 

overcome by representing each atomic basis function as a linear combination of Gaussian 

functions.  Each linear combination has the form 

   (2.34) ∑
=

=
L

i
iiid

1

)( µµµ αφφ

where  is the coefficient of the primitive Gaussian function µid iφ which has the exponent 

µα i .   

 A Gaussian expansion has two parameters:  the coefficient and the exponent.  

These Gaussians can be uncontracted (primitive) or contracted.  Calculations with 

primitive Gaussians are computationally more expensive. Therefore basis sets that consist 

of contracted Gaussian functions are commonly used.  In a contracted function the 

coefficients and exponents are predetermined and remain constant during the calculation.   
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 A minimal basis set contains just the number of functions that are required to 

accommodate all the filled orbitals in each atom.  It is found that at least three Gaussian 

functions are required to minimally represent each Slater type orbital, therefore the STO-

3G basis set is considered the ‘absolute minimum’. A double zeta basis set doubles the 

number of functions in the minimal basis set.  A split valence basis set is an alternative to 

the double zeta basis approach in which the number of functions used to describe the 

valence electrons is doubled but a single function is used for the inner shells.  The 

reasoning is that the valence orbitals have a greater affect on chemical properties.  In the 

3-21G basis set, three Gaussian functions describe the core orbitals.  The valence 

electrons are also represented by three Gaussians:  the contracted part by two Gaussians 

and the diffuse part by one Gaussian.  Throughout this work, we use a 3-21G split 

valence set to model the silver nanotubes and nanowires discussed in Chapter3, and we 

use 6-31G split valence basis sets to model zinc-oxide nanotubes and nanowires in the 

study presented in Chapter 4.   
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2.5  Mulliken Population Analysis 

 Population analysis partitions the electron density of the nuclei in a system so that 

each nucleus has a number of electrons associated with it, although not necessarily an 

integral number.  This method offers a way to calculate the atomic charge on each 

nucleus.  The partitioning scheme is arbitrary, and consequently many methods exist.  

Herein, we employ the approach proposed by R. S. Mulliken in which the contribution is 

equally partitioned between two atoms.[50]  Refs. [36] and [37] provide a detailed 

background of this topic. 

 We begin our discussion with the equation below which relates the total number 

of electrons, N, to the density matrix, P, and to the overlap integrals, S 

   (2.35) ∑ ∑ ∑
= = +=

+=
K K K

SPPN
1 1 1

2
µ µ µν

µνµνµµ

All of the electron density  in an orbital is allocated to the atom on which µµP µφ  

originates, while the remaining electron density is related the overlap population, νµφφ .  

For each element νµφφ of the density matrix, half of the density is assigned to the atom on 

which µφ  is located and half to the atom on which νφ is located.  The net charge on an 

atom A is then calculated by subtracting the number of electrons from the nuclear charge, 

ZA [37]: 

   (2.36) ∑ ∑∑
= ≠==

−−=
K

Aon

KK

Aon
AA SPPZq

µµ µνν
µνµν

µµ
µµ

;1 ;1;1

The Mulliken population analysis depends on the use of a balanced basis set, in which an 

equivalent number of basis functions is present on each atom in the molecule, and it 

assumes that basis functions are centered on the nuclei.  The atomic charges are 

 21



dependent upon the basis set being used.  Although we can accurately compare our 

results with other results obtained within this study, caution should be used when 

comparing our conclusions with those presented elsewhwere.  

 22



2.6  First-Principles Optical Absorption Spectra 

 We have calculated the optical absorption spectra of ZnO quasi one-dimensional 

systems using an Ehrenreich-Cohen perturbation theory approach using the LDF 

electronic structure results.[28, 51]   The approach used here, implemented in the 

NRL/OSU POLYXA code, has been discussed in detail elsewhere.[31, 32, 52]   The 

optical cross sections are calculated as the imaginary component of the dielectric 

response tensor in the long wavelength limit, 

      

 (2.37) ∑ −−= '2 )(2)( kkfe ωεεδπωε αβαβ h
h

Ω ',
',

2

kk
kkmω

 

using a notation similar to that used by Harrison.[53] The summation in Eq. 2.37 is over 

occupied electron states at k and unoccupied states at k’, and Ω represents the volume of 

the unit cell. The quantities are dimensionless oscillator strengths given in terms of 

the matrix elements of the gradient operator 

βα ,
',kkf

 (2.38) ;
)(

2
'

βααβ Pf =
h

,'',
'

2

, εε kkkk
kk

kk P
m −

where 

 (2.39) 
.'', kkkk x

P ψψ
α

α ∂
∂

=
 

Herein, we consider the diagonal elements of the dielectric tensor of the form .  

For polarizations parallel to the helical axis, the gradient operator matrix elements will be 

non-zero for direct transitions in the Brillouin zone, i.e., for transitions between electronic 

states k and k’, with the same value of 

)(2 ωε αα

κ .  Polarizations transverse to the axis lead to 
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indirect transitions from an occupied state at κ in the Brillouin zone to an unoccupied 

state at φκ ± , where φ  is the twist angle. 
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2.7  Computational Methods Used 

2.7.1  NRL/OSU POLYXA 
 
       The local-density band structure approach discussed herein was developed by 

Mintmire and colleagues originally to treat helical polymer systems.[31] The charge 

density (in the Coulomb potential) and the exchange-correlation potential are fit to linear 

combinations of Gaussian-type functions.[52, 54-57]   

 Fitting the charge density, ρ(r), for use in the Coulomb interaction terms of the 

total energy expression was introduced for DFT calculations by Sambe and Felton as a 

means of reducing computational effort.  Rather than using the bilinear expansion of the 

charge density, the approximate charge density, )(~ rρ , is given by a linear combination of 

fitting functions, , )Fi r(

 ∑=
i

ii (f )F)(~ rrρ . (2.40) 

The POLYXA code implements this fitting approach for helical systems using an 

auxiliary basis set of s, p, and d type atom-centered Gaussian functions generated from 

the totally symmetry combination of local functions 

 ∑=
m

i
m (FS( ))Fi rr . (2.41) 

These functions are equivalent to Bloch functions with κ=0.  Dunlap, et al. [54] and 

Mintmire [52] showed that methods developed for minimizing the error in the Coulomb 

error [58] could be used in molecular DFT-based calculations.  These methods are based 

on minimizing the self-interaction of the error in the charge density, 

)(~)()( rrr ρρρ −=∆ .  The exact expression for the electron repulsion energy, Ec, can be 

written 
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  (2.42) 

Minimization of the Coulomb self-interaction of the error density, [ ]ρρ ∆∆ | , leads to the 

condition for best fit, 

 0]F|~[ =− iρρ , (2.43) 

This condition leads to the corresponding matrix equations for solution of the above 

equation for molecular systems, 

 [ ] [ ]jji F|F|F ρ=∑ j
j

f . (2.44) 

The Coulomb integrals given above are not well defined for periodic, extended systems 

and this scheme for molecular systems could not be extended directly to helical systems 

in the POLYXA code.  Inclusion of Coulomb interactions involving the nuclei allowed 

the development of a mathematically well-defined algorithm.  Defining the ratio, iη  of 

the total charge in a fitting function to the total nuclear charge in a unit cell,  

 { } ∑∫=
n

nii ZFrd /)(3 rη , (2.45) 

the above condition for best fit can then be written 

 ]~|[]-F|[-]-F|~[ iNiiNii ρρρηρηρρρηρρ −=−− NNN . (2.46) 

These equations are solved by treating the electrostatic interaction on the right-hand side 

as an undetermined multiplier, ]~|[ ρρρλ −= N  and solve the matrix equations 

 , (2.47) iNNiijNj
j

Nii f ληρρρηρηρη +−−=−−∑ ]|F[]F |F[ j

subject to the charge neutrality constraint, 
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 ∑ =
i

iif 1η .  (2.48) 

Formally the approximate Coulomb energy using the fitting functions includes the 

approximate electron-electron interaction but includes the exact electron-nuclear and 

nuclear-nuclear interactions using 

 
]|[

2
1]|[]~|~[

2
1]~|[

]~|~[
2
1]~|[

NNN

NNNNapproxE

ρρρρρρρρ

ρρρρρρρρ

+−−=

−−−−−=
. (2.49) 

 Analytic integrals cannot be directly calculated for the matrix elements of the 

exchange-correlation potential or exchange-correlation energy density.  Rather than use 

numerical integration techniques to evaluate the matrix elements needed for the secular 

equation and the total energy evaluation, the POLYXA code uses a least-squares fitting 

technique to approximate the exchange-correlation potential (and exchange-correlation 

energy density) with a linear combination of periodic fitting functions, similar to the 

expansion used for fitting the charge density, using the form below 

 

 ∑=
i

iixc gv )(G)(~ rr , (2.50) 

where 

 ∑=
m

i
m

i rGS )()(G r . (2.51) 

The coefficients  are chosen by minimizing the least-squares sum over a weighted set 

of points, 

lg

 , (2.52) 
2
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to yield the best-fit condition in algebraic form 

 )()()()( ll
l

lll
l

l rrrr xciji
j

j vGwGGwg ∑∑ ∑ = . (2.53) 

Dunlap and Cook [59] found that an optimum choice of weighting functions, , can be 

generated by multiplying the normal quadrature weights , appropriate for normal 

quadrature over space, with a factor proportional to the charge density divided by the 

exchange-correlation energy density.  For LDA these quantities are related by: 

lw

lv

 )(3
2

lll rρvw = . (2.54) 

The numerical integration grid points, , and quadrature weights, , are chosen using 

techniques for smoothly combining nuclear-centered grids developed by Becke. [60] 

lr lv
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2.7.2  CRYSTAL03 
 

CRYSTAL03 [11] is utilized for comparison of results obtained using POLYXA. 

It performs ab initio calculations of the ground state energy, energy gradient, electronic 

wave function and properties of periodic systems using the LCAO approach. 

CRYSTAL03 has the capabilities of modeling structures in 0D, 1D, 2D, and 3D.  

Although crystal symmetry is taken into account by CRYSTAL03, only translational 

periodicity is implemented, thus limiting the variety of structures that we modeled.  

CRYSTAL03 operates within the framework of Hartree-Fock or Kohn-Sham and utilizes 

Gaussian basis sets.  Although CRYSTAL03 uses different numerical grids and uses the 

full Coulomb interaction, it has similar fitting of the exchange potential used in 

POLYXA.  
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 CHAPTER 3 

 
HELICAL SILVER SINGLE-WALL NANOTUBES AND NANOWIRES 

 
 
 
3.1  Introduction 

 As the miniaturization of electronic devices continues to advance, nanotubes and 

nanowires will become increasingly important in the development of these devices. A 

variety of procedures have been reported for constructing both gold and silver wires with 

nanoscale diameters.[12, 13, 61-68]  Only one method has successfully produced gold 

nanowires exhibiting helical periodicity.[12, 13]   This unique fabrication method 

reported by Takayanagi et al., for constructing gold nanowires with diameters as small as 

0.4 nm relies on the surface reconstruction properties present in gold.[12, 13, 69]  The in 

situ fabrication method entails using high-resolution transmission electron microscopy 

(HRTEM) to irradiate a gold (001) film 3 to 5 nm in thickness until holes form, creating a 

bridge between two holes.  As this bridge narrows to less than 1.5 nm in diameter, it 

reconstructs into a helical nanowire suspended between two bulk-like gold tips.   

 Rodrigues, et al.[64] implemented the above technique using silver. They 

successfully synthesized silver nanowires exhibiting a tube-like contrast pattern with an 

especially stable atomic structure.  Although the silver wires were produced with 

diameters comparable to the gold nanowires reported by Takayanagi,[12, 13] the silver 

wires did not undergo a surface reconstruction leading to the helical structure, observed 
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for gold nanowires. However, a different fabrication method, one that does not rely 

directly upon surface reconstruction, may successfully yield silver nanowires exhibiting 

helical periodicity.  For example, Hong et al.,[61] synthesized single-crystalline silver 

nanowires in an ambient solution phase.  These silver nanowires, with 0.4 nm diameter, 

are comparable to the {4,2} silver nanowire (see the following section for notational 

description) discussed here with an energetic local minima. The structure of this silver 

nanowire is markedly different than bulk, and although not immediately apparent, this 

structure does exhibit helical periodicity. 

 Nevertheless, we are particularly interested in the helical multi-shell nanowires 

and a helical single-wall gold nanotube synthesized by Takayanagi et al.,[12, 13] which 

are favorable structures for our method of calculation based on the use of helical 

symmetry.  As a starting point, we decided to model silver instead of more complex 

systems involving gold.  Calculations for gold require treating relativistic effects, which 

is beyond the capability of our current first-principles approach.  In this preliminary 

work, we will address similar trends in our results compared with theoretical work using 

gold and silver described elsewhere.[70-76]  

 The single-wall gold nanotube and the smallest multi-shell gold nanowire 

reported experimentally[12, 13] have been studied theoretically by others.[64, 71-73, 75] 

Calculations on several gold nanotube structures published elsewhere report results in 

terms of energy per unit length of wire, defined by the positive work done in drawing the 

wire out of the bulk-like gold tips, denoted as the string tension.[73, 74]  Based upon 

first-principles calculations, Senger et al. studied a variety of possible structures for gold 

single-wall nanotubes.[73]  In addition to the {5,3} gold nanotube fabricated 
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experimentally[13], they calculated six additional single-walled nanotubes as either tip-

suspended or free-standing structures. The {5,5} tube was determined to be the most 

energetically favorable free-standing single-wall gold nanotube, and they predicted one 

other tube, the tip-suspended {4,3}, as another energetically favorable single-wall gold 

nanotube yet to be observed experimentally.[73] First-principles calculations by Yang et 

al., showed that the {5,3} gold nanotube was capable of enduring large elongation 

without change in conductivity.[75]  Perhaps the most interesting theoretical analysis is a 

recent first-principles study of the smallest helical multi-shell gold nanowire, a single-

wall gold nanotube with an inserted chain, in which the authors conclude that helical gold 

nanowires are good candidates for nanometer-scale solenoids.[72]  

 The conductivity of the related gold nanowires[72, 73, 75] and very thin silver 

nanowires[70, 76] has been addressed in other theoretical studies.  It is of interest due to 

the observation of quantized conductance in both gold and silver nanowires.[63, 64]  

Takayanagi et al., observed quantized conductance through individual rows of tip-

suspended gold atoms.[63] The conductance was observed in units of , 

where e is the electron charge and h is Planck’s constant. Consistent with this 

interpretation, the conductance is quantized such that it increases by a quantum 

conductance   whenever a band crosses the Fermi level.[77, 78]  For an individual 

atomic chain only one conductance channel (i.e., N

heG /2 2
0 =

he /2 2

c = 1) or band crosses the Fermi level.  

With each gold atomic chain contributing one channel of conductance, the quantized 

conductance for an N-channel system is expressed as NcG0.  

 The observation of quantum transport effects in nanowires requires structures 

with widths comparable to the Fermi wavelength (less than 1 nm for metals). [2] All of 
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the nanowire and nanotube structures within this study are certainly within this size 

requirement. Within the (n1, n2) notation scheme used herein, described in detail in 

Section 3.2.2, n1 + n2 = N  is equal to the number of helical strands comprising the tube. 

Because helical gold nanowires are essentially comprised of N-atom strands winding 

about the wire axis, the natural question to ask is whether quantized conductance is 

observed in steps of NG0  in the helical nanotubes and nanowires.  Other studies have 

found that the number of bands crossing the Fermi level, or the number of putative 

conduction channels, do not always correspond to the numbers of atom rows in the 

helical gold nanowires.[72-75] Similar studies have addressed the quantum transport 

mechanism present in silver nanowires.[70, 76]

 Herein, we study the electronic structures of a variety of silver single-wall 

nanotubes and nanowires.  We are particularly interested in the behavior of the total 

energies with respect to structural changes such as increasing nanotube radii.  In addition, 

we studied the number of conduction channels associated with the calculated band 

structures of these systems.  The methodology behind our approach and the geometrical 

models considered are the subject of the following section. 
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3.2  Computational Methods and Models 

3.2.1   Theoretical Approach 
 
 We examined the electronic structures of extended silver single-wall nanotubes 

(AgSWNTs) within a first-principles, all-electron self-consistent LDF approach adapted 

for helical symmetry.  A 3-21G basis set was used [79], along with 512 k points in the 

central Brillioun zone. The approach used here has been discussed in detail 

elsewhere.[14, 30, 31]  All structures were calculated at or near equilibrium 

conformations. The specific tubes were chosen based on theoretical work published 

elsewhere for gold systems,[73, 75] as well as the single-wall gold nanotube fabricated in 

Ref. [13].  We carried out calculations on twenty-one different AgSWNTs ranging in 

radii from approximately 1.3 Å to 3.6 Å. AgSWNTs with radii greater than 2.2 Å were 

also calculated with a silver atomic chain inserted along the axis of the nanotube – these 

structures are termed silver nanowires (AgNWs).

3.2.2  Geometry and Notation of AgSWNTs  
 
 Modeling the silver nanotubes involves “rolling up” a triangular sheet of silver 

atoms and mapping the atoms onto the surface of a cylinder, comparable to rolling up a 

graphite sheet for a carbon nanotube.  For the triangular sheet depicted in Fig. 1, each 

Bravais lattice vector, R, is defined by two primitive lattice vectors  and  and the 

pair of integers (n

1a 2a

1, n2), so that the lattice vector 

 .21 21 aaR nn +=   (3.1) 

Basis vectors are defined as 

      (3.2a) id ˆ
1 =a
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  jdid ˆ
2

3ˆ
22 +=a ,    (3.2b) 

where d is the Ag-Ag or Au-Au bond distance, and i and are the unit vectors along the 

x and y directions.  The radius for an (n

ˆ ĵ

1, n2) nanotube is given by 

     ,
22 21

2
2

2
1 nnnnd

++==
ππ

ρ
R

    (3.3) 

where d is the Ag-Ag bond length from the triangular sheet. The notation chosen here 

with a 60◦ angle formed between the two basis vectors is related to the convention used 

for carbon nanotubes.  As shown in Fig. 3-1, a line of symmetry extends through the 

triangular lattice for , and another line of symmetry is present for .  All 

possible AgSWNTs can be reduced by symmetry to an irreducible wedge formed 

between the two lines of symmetry.  Analogous to carbon nanotubes, each R within this 

wedge defines a different AgSWNT, and all unique AgSWNTs defined by rolling up the 

triangular sheet of silver atoms can be generated by this set of R’s.[32]  

21 nn = 02 =n

 The twenty-one different nanotubes considered herein are labeled with a solid 

marker in Fig. 3-1.  Structures to the left of the bold line were modeled as single-wall 

nanotubes only, as their radii are too small to contain an axial chain.  Structures to the 

right of the bold line were modeled as single-wall tubes both with and without an inserted 

axial chain.  The (3,2) nanotube and (4,3) nanotube and nanowire were treated in my 

M.S. report. [80]  Herein, we study a much larger assortment of possible structures, using 

an improved basis set, and the orbital densities are plotted for the first time.  
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Figure 3-1. Triangular network of silver (or gold) atoms.  Basis vectors are designated as 

and .  Each tube is labeled by two integers, (n1a 2a 1, n2), where the rollup vector is 

  The dashed lines represent lines of symmetry; an irreducible wedge is 

formed between the two lines.  AgSWNTs labeled with a solid marker correspond to the 

nanotubes that we consider in the present study.  AgSWNTs located to the right of the 

bold line were also modeled with a silver atomic chain inserted along the axis of the 

nanotube.  AgSWNTs containing an axial chain are designated as nanowires (AgNWs). 

.21 21 aaR nn +=
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 Models of selected AgSWNTs and a AgNW are given in Fig. 3-2.  The (2,2) and 

(6,0) SWNTs are located along the lines of symmetry depicted in Fig. 3-1.  Nanotubes 

with geometries lying between these lines of symmetry such as the (3,2) and (5,2) 

AgSWNTs are chiral.  

 The notation chosen scheme used throughout this dissertation is somewhat 

different than the notation used elsewhere which utilizes a 120◦ angle between basis 

vectors.[12, 13, 15, 16, 71, 73-75]  Our decision to use this second notation scheme from 

previously published works[15, 16] was simply to be consistent with the works of others.  

For completeness we now discuss the differences between the two notation schemes and 

why we chose the notation scheme presented in Fig. 3-1 throughout this chapter.  For 

comparison, we shall also provide a simple mechanism to convert from one notation to 

the other.  

 

 

Figure 3-2. Models of selected AgSWNTs and the (5,2) AgNW (AgSWNT + inserted 

silver atomic chain). 
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 Figure 3-3 illustrates the two different notational styles.  Our notational style is 

indicated by parentheses, and the notational style adopted by others is indicated by curly 

brackets.  Within the second notational style depicted in Fig. 3-3, each Bravais lattice 

vector, R, is defined by two primitive lattice vectors  and  and the pair of integers 

{n

1b 2b

1’,n2’}, so that the lattice vector 

 .21 21 bbR nn ′+′=   (3.4) 

Basis vectors are defined as: 

     (3.5a) id ˆ
1 =b

  jdid ˆ
2

3ˆ
22 −=b ,    (3.5b) 

 where d is the Ag-Ag or Au-Au bond distance, and i and are the unit vectors.  ˆ ĵ

 
The radius for an {n1’, n2’} nanotube is given by 

        ,
22 21

2
2

2
1 nnnnd

−+==
ππ

ρ
R

  (3.6) 

where d is the Ag-Ag bond length from the triangular sheet, prior to rolling up the 

nanotube.  
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Figure 3-3. Triangular network of silver (or gold) atoms where two different notational 

styles are presented for comparison.  Basis vectors for the preferred notational style are 

designated as and where the rollup vector is 1a 2a .21 21 aaR nn +=  (Note:  These basis 

vectors are interchanged without loss of generality with respect to Fig. 3-1.)  Basis 

vectors corresponding to the second notational style are indicated as and , and each 

nanotube is labeled by two integers {n

1b 2b

1’,n2’} where the rollup vector is .21 21 bbR nn ′+′=  

The dashed lines represent lines of symmetry. 
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 Although both notation schemes are acceptable, we prefer the first notation 

method which utilizes a 60◦ angle between basis vectors because the numbering scheme 

is self contained.  Within both notation schemes, each R within the wedge defines a 

different AgSWNT, and all unique AgSWNTs defined by rolling up the triangular sheet 

of silver atoms can be generated by that set of R’s.[32] Within the first notation scheme 

which utilizes a 120◦ angle between basis vectors, the irreducible wedge is formed 

between two lines of symmetry: 21 nn = and 02 =n .  In other words, the first numbering 

method starts at (n1, 0) and ends at (n1, n2) where n1 = n2.  However, within the second 

notation scheme, the irreducible wedge is formed between two other lines of symmetry:  

n1 = n2 and n1 = 2n2.  This means that the second numbering format starts at {2n2’, n2’}, 

as opposed to {n1’, 0}, and ends at {n1’, n2’}.   

 There are two problems associated with the second notational style which are best 

explained by example. Consider the nanotubes along the n1’ = 2n2’ line of symmetry.  

Since the numbering scheme does not start at zero, this means that the {5,3} AgSWNT 

located on one side of the line of symmetry is also the {5,2} AgSWNT, located on the 

other side of the line of symmetry. The {7,4} is also the {7,3}, etc.  Another confusing 

but important implication within the second numbering scheme is that the {7,7} and 

{7,0} would be the same nanotube!  In other words, the second numbering scheme is not 

self-contained within the irreducible wedge.   

 To prevent any further confusion, we will follow the first notation scheme.  If one 

finds it necessary to convert from one notation to the other, a simple algorithm follows.  

Letting the unprimed values in soft brackets represent our notation and the primed values 
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in curly brackets represent notation used by others, one can convert from one notation to 

 (3.7a) 

the other through the following translation: 

(3.7b) 

 

or example, the (3,2) AgSWNT within our notation corresponds to the {5,3}AgSWNT 

 

},{),(),( 2112121 nnnnnnn ′′→+→

 

 ).,(},{},{ 2121221 nnnnnnn →′−′′→′′

F

within the second notation scheme.  Within this study we will refer to all structures using

our notation unless stated otherwise. 
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3.3  Method I:  Conventional Helical Geometry and Unit Cell Sizes 

3.3.1  Overview 

 We define the helical periodicity of the AgSWNTs in terms of a unit cell of a 

small number of silver atoms and a screw operation ),( φhS that will generate the lattice 

of the nanotube nuclear coordinates. For mathematical convenience we define the screw 

operation in terms of a translation h units down the z axis in conjunction with a right-

handed rotation φ about the z axis. Once we know (n1,n2) and the rollup vector 

, as discussed in the previous section, the procedure for determining the 

necessary parameters is straightforward.  The appropriate unit cell size, N, for generating 

the AgSWNT is simply the greatest common factor of the nanotube indices. 

2211 aaR nn +=

 ),( 21 nnGCFN =       (3.8) 

 Hence, for the (3,2) AgSWNT, only one silver atom comprises the unit cell.  By 

repeatedly applying the screw operation to that one silver atom, we generate the entire 

(3,2) AgSWNT.  For the (2,2) AgSWNT, there are two silver atoms in the unit cell, and 

for the (6,0) AgSWNT six silver atoms are contained within the unit cell.  The unit cell 

sizes associated with the use of helical periodicity are typically much smaller than those 

associated with using the more traditional translational periodicity.   

 The procedure for determining h and φ is as follows.  First, we find the 

appropriate H in terms of m1 and m2 that satisfies: 

 Nmnmn ±=− )()( 1221    (3.9) 

 211 aaH mm +=     (3.10) 

Once we have determined H, it is straightforward to calculate h and φ: 
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R

RH ×
=h            (3.11) 

 22
R

RH ⋅
= πφ     (3.12) 

 

 Establishing the geometry and unit cell sizes for the AgNWs (AgSWNTs with an 

inserted chain) is less straightforward.  A super-cell was used to match the helical 

periodicity and translational spacing of the chain with the AgSWNT.  The bond lengths 

of the inserted chains range from 2.43 Å to 2.88 Å and were chosen in order to match the 

periodicity of the respective nanotube.  The atomic chain with the lowest total energy in 

this study had a bond length of 2.61 Å, which is comparable to the 2.64 Å optimized 

bond length recently reported by Agrawal et al.[70]  

 The approach for determining the unit cell size for the nanowires is best explained 

by way of example.  Consider the (5,2) AgSWNT with an inserted chain.  The following 

parameters define the (5,2) AgSWNT:  h = 0.39106 Å,   φ = 2.6583, and ρ = 2.8029 Å.  

To determine how many silver atoms are needed to generate the nanotube component of 

the super-cell, we first determine how many silver atoms are needed to match the 

translational periodicity of the chain with the nanotube.  We know that h = 0.3911 Å in 

this case for the AgSWNT, but we want h’, the translational parameter of the super-cell, 

to be approximately 2.6 Å.  Thus, if Ntube represents the number of atoms corresponding 

to the nanotube in the super-cell, we evaluate: 6.2≈′=⋅ hhNtube .  The closest match in 

this case is Ntube = 7, resulting in h’ = 2.7374 Å.  One additional silver atom is used for 

the inserted chain, resulting in a total of 8 silver atoms for the super-cell of the (5,2) 

AgNW.  The twist angle of the supercell φ’ is determined by: 
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              (3.13) 

 

πφφ 2mod)( tubeN=′

Therefore, in this example, φ’=6.0415. 

 In almost all cases the chain was placed precisely at the origin, but in some cases 

it proved energetically favorable to displace the chain slightly along the z – axis, relative 

to the exterior AgSWNT.  For example, the (5,0) AgSWNT shown in Fig. 3-4 with a 

radius of 1.4801 Å is the smallest nanotube considered in this study with an inserted axial 

chain.  The nanotube radius corresponds to a bond length much too short to be 

energetically favorable or even plausible.  By staggering the chain along the z – axis, the 

nearest neighbor bond length between atoms in the chain and atoms in the nanotube 

increases to approximately 2.5 Å.   

 

 

(a)   (b)  

Figure 3-4.  Model of the (5,0) AgNW (a) looking down the axis of the nanotube and (b) 

along the side.  
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3.3.2  Energetic Results 

 The optimized total energies for the AgSWNTs and AgNWs are given with 

respect to radius in Table I and are plotted in Fig. 3-5.  As a result of our calculations, we 

find local minima in total energy to exist for the (2,2), (3,2), (3,3), (4,3), (5,2), (5,3), and 

(7,1) AgSWNTs.  Upon inserting the chain into the (5,2) nanotube, this structure 

becomes the most energetically favorable AgNW, with the (6,0) and (4,3) AgNWs 

following within 10-4 eV.  We find the (2,1) and (3,0) to be the highest in total energy, 

and therefore the least favorable structures within this study.   
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Figure 3-5.  Total energy per silver atom versus nanotube radius. Open circles represent 

AgSWNTs and closed circles represent AgNWs. The (5,2) AgNW has the lowest energy 

and is centered about zero; the energies of all other tubes are plotted with respect to zero.  

Local minima in total energy are shown for the (2,2), (3,2), (3,3), (4,3), (5,2), (5,3) and 

(7,1) AgSWNTs.  [16] 
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AgSWNT 

 
AgNW 

(AgSWNT + Center Chain) 

Structure Radius (Å) NAg eV/NAg NAg eV/NAg

(2,1) 
(3,0) 
(2,2) 
(3,1) 
(4,0) 
(3,2) 
(4,1) 
(5,0) 
(3,3) 
(4,2) 
(5,1) 
(6,0) 
(4,3) 
(5,2) 
(6,1) 
(4,4) 
(5,3) 
(7,0) 
(6,2) 
(7,1) 
(8,0) 

1.3096 
1.4801 
1.6099 
1.6756 
1.8398 
1.9972 
2.0640 
2.2361 
2.3156 
2.3497 
2.4812 
2.6834 
2.7300 
2.8029 
2.9431 
3.0874 
3.1306 
3.1417 
3.2250 
3.3524 
3.5523 

1 
3 
2 
1 
4 
1 
1 
5 
3 
2 
1 
6 
1 
1 
1 
4 
1 
7 
2 
1 
8 

0.8956 
0.9430 
0.4911 
0.5488 
0.5528 
0.4448 
0.4794 
0.4671 
0.4251 
0.4443 
0.4640 
0.4668 
0.4173 
0.4158 
0.4272 
0.4158 
0.3945 
0.4491 
0.4250 
0.3857 
0.4006 

- 
- 
- 
- 
- 
- 
- 
6 
7 
7 
7 
7 
8 
8 
8 
9 
9 
8 
9 
10 
9 

- 
- 
- 
- 
- 
- 
- 

0.3772 
0.3817 
0.3156 
0.0994 
0.0014 
0.0015 
0.0000 
0.0554 
0.0446 
0.0634 
0.1022 
0.0795 
0.1212 
0.1610 

 

Table I. Total energies relative to the (5,2) AgNW.  The structures are listed by 

increasing radii, and NAg represents the number of silver atoms per unit cell. Super cells 

were used for the AgNWs to match the periodicity of the chains with their respective 

AgSWNTs.  Shown in bold italics, the (6,0), (4,3), and (5,2) are the most energetically 

favorable AgNWs, while the (7,1) is the most energetically favorable AgSWNT. 
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 Energetic trends for the AgSWNTs with respect to nanotube radius differ from 

what we would expect; the total energy does not necessarily decrease monotonically as 

radius increases.  In some cases, between local minima, the total energy per silver atom 

increases as nanotube radius increases.  Elastic strain models, such as those used for 

carbon SWNTs, would predict that the total strain energy should increase as the radius 

decreases. The strain energy per carbon atom in carbon nanotubes relative to an 

unstrained graphite sheet scales as 1/R2 (where R is the tube’s radius).[35]  A smooth 

1/R2 trend is not present within our results for the AgSWNTs.  If we group the 

AgSWNTs by their geometries, the total energy versus radius curve becomes smoother, 

but we see a trend where the calculated energy initially falls off at a rate faster than 1/R2.  

We grouped the applicable (n1,n2) AgSWNTs as belonging to either the (n1, 0) group (i.e. 

the (5,0) AgSWNT) or the (n1 ,1) group (i.e. the (4,1) AgSWNT).  The plots for the (n1, 0) 

and (n1 ,1) groups are given in Figs. 3-6 and 3-7 respectively.  Although there are two 

additional groups present, the (n1 , 2) and the (n1 , 3) group, these later two groups do not 

contain AgSWNTs with small enough diameters to see the trend – their curves are 

essentially flat.   
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Figure 3-6.  Total energy per silver atom versus nanotube radius for all (n1, 0) 

AgSWNTs. The solid line represents calculated values, while the dashed line represents a 

1/R2 fit.  In each case, the calculated values fall off at a rate faster than 1/R2. Calculated 

values are given in Table 1. [16] 
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Figure 3-7.  Total energy per silver atom versus nanotube radius for all (n1 ,1) type 

AgSWNTs. The solid line represents calculated values, while the dashed line represents a 

1/R2 fit.  In each case, the calculated values fall off at a rate faster than 1/R2. Calculated 

values are given in Table 1. [16] 
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3.3.3  Band Structures, Densities of States, and Conduction Channels 
 
 The band structures and densities of states for the (7,1) and (3,2) AgSWNTs are 

shown in Figs. 3-8 and 3-9.  The (7,1) AgSWNT has the lowest total energy of all 

AgSWNTs.  The (3,2) AgSWNT is of interest because it has the same structure as the 

helical gold single-wall nanotube reported by Takayanagi et al. [13]  That is, it 

structurally corresponds to the only single-wall gold nanotube ever observed 

experimentally. Again, for the (n1, n2) notation scheme chosen here, n1 + n2 is equal to the 

number of helical strands comprising the tube.  The (7,1) AgSWNT comprised of eight 

strands has seven Fermi crossings, while the (3,2) AgSNWT with five strands has five 

Fermi crossings.  Lower-lying flatter bands observed in the band structures correspond to 

d-orbitals.  Because the density of states is inversely proportional to the slope of the 

energy versus k curve, the densities of states are much greater for these lower-lying 

bands. 
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Figure 3-8. (a) Band structure and (b) density of states for the (7,1) AgSWNT.  The 

Fermi level is indicated at -1.9795 eV.   
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Figure 3-9. (a) Band structure and (b) density of states for the (3,2) AgSWNT.  The 

Fermi level is indicated at -2.4342 eV. 

 

The band structures comprising the (4,3) AgNW is shown in Fig. 1.11.  The (4,3) AgNW 

corresponds to the smallest helical gold nanowire observed experimentally.[12]  

Although the number of conduction channels in a AgSWNT does not always 

correspond to the number of atom rows, inserting an atomic chain along the nanotube 

axis always contributes one additional conduction channel. The band structures from our 

calculations are shown in Fig. 1.10 for the (3,2) AgSWNT.  The band structure is 

depicted within a zone folding scheme to better illustrate the number of bands crossing 

the Fermi level.  The points correspond to locations where the bands cross the Fermi 
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level, and they correspond to the orbital density figures generated in Fig. 1.12.  This 

nanotube with n1 + n2 = 5 exhibits five conduction channels.   

 

                      

Figure 3-10.  Band structure for the (3,2) AgSWNT shown within a zone-folding 

scheme.  Points correspond to the orbital density images shown in Figure 12.  

 

Band structures for the (4,3) AgSWNT, the silver atomic chain, and the (4,3) with 

the inserted chain are shown in Fig. 3-11.  The (4,3) AgNW corresponds to the smallest 

multishell gold nanowire found experimentally[12] and has recently been suggested as a 

possible nano-solenoid.[72]  The inserted atomic chain contributes one conduction 

channel, while the (4,3) tube without an inserted chain with n1 + n2 = 7, contributes five 

 53



conduction channels.  The composite structure with n1 + n2 = 8, has six conduction 

channels.  These results agree with results for the number of conduction channels from 

first-principles calculations on the 7-1 helical gold nanowires.[72, 74]  The band crossing 

the Fermi level associated with the chain, shown in bold in Fig. 3-11(b), is shifted higher 

in energy into the conduction band upon being placed inside the AgSWNT, as shown in 

Fig. 3-11(c).  The band that lies just above the Fermi level in the AgSWNT shown in Fig. 

3-11(a) dips below the Fermi level upon inserting the chain, as shown in Fig. 3-11(c). 

Inserting the chain lowers the energies of the bands from the AgSWNT with respect to 

the Fermi level, resulting in one additional conduction channel.   
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Figure 3-11.  Band structures for the (a) (4,3) AgSWNT, (b) silver atomic chain, and 

(c) the (7,4) AgNW. Fermi levels are shown with a dashed line.  Points correspond to 

the orbital density images shown in Figure 6.  The band crossing the Fermi level in 

(b), shown in bold, is shifted higher in energy into the conduction band in (c). The 

band that lies just above the Fermi level in the AgSWNT shown in (a) dips below the 

Fermi level upon inserting the chain, as shown in (c).  The number of Fermi crossings 

corresponds to the number of conduction channels in a particular structure. There are 

five Fermi crossings in (a), one Fermi crossing in (b), and six Fermi crossings in (c). 

[16] 
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3.3.4  Orbital Densities 

The orbital densities for the (3,2) AgSWNT are shown in Fig. 3-12, and orbital 

densities for the (4,3) AgSWNT, the inserted silver atomic chain, and (4,3) AgNW are 

shown in Fig. 3-13.  The images correspond to bands at specific points within the 

Brillioun zone, depicted in Figs. 3-10 and 3-11 by points located from left to right 

respectively.  Upon close inspection of the band structures, we note that the band crossing 

the Fermi level in Fig. 3-11(b), from the chain alone does not correspond directly to the 

extra band crossing the Fermi level in Fig. 3-11(c).  Rather, the band lying just above the 

Fermi level in the AgSWNT shown in Fig. 3-11(a) dips below the Fermi level upon 

inserting the chain, as shown in Fig. 3-11(c).  Inserting the chain lowers the energies of 

the bands from the AgSWNT with respect to the Fermi level, resulting in one additional 

conduction channel.  The bands mix and introduce substantial chain character into 

multiple bands near the Fermi level. The band crossing the Fermi level in Fig. 3-11(b) 

does not simply disappear – it is shifted higher in energy into the conduction band.  This 

behavior upon inserting the chain consistently results in an extra conduction channel for 

all AgNWs considered in this study. 
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Figure 3-12. Orbital densities for the (3,2) AgSWNT.  The images correspond to bands 

at specific points within the Brillioun zone, as indicated in Figure 10 by points.  The 

numbering scheme from 1 to 5 corresponds to the solid points located from left to right 

respectively. 
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Figure 3-13. Orbital densities for the (a) (7,4) AgSWNT, (b) silver atomic chain, and 

(c) (7,4) AgNW. The structure of the inserted chain (c) is shown in red to aid in 

visualization. The images correspond to bands at specific points within the Brillioun 

zone, as indicated in Figure 11 by solid dots. The numbering scheme from 1 to 6 

corresponds to the solid dots located from left to right respectively. [16] 
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3.3.5   Summary and Conclusions 

 The calculated energetic results were not as expected.  The total energies for the 

AgSWNTs do not decrease monotonically as radius increases.  We find a series of local 

minima to exist for the AgSWNTs, with the (7,1) AgSWNT having the lowest energy 

among the hollow nanotubes.  Upon inserting the chain into the nanotubes, the (5,2), 

(6,0) and (4,3) AgNWs have the lowest total energies. We observe the following for all 

AgSWNTs considered here:  three conduction channels are present if n1 + n2 = 3 or 4, 

five conduction channels are present if n1 + n2 = 5, 6, or 7, and seven conduction channels 

are present if n1 + n2  = 8.  In agreement with Senger et al.,[73] our band structure 

calculations for the (3,2), (4,1) and (5,0) AgSWNTs, with n1 + n2 = 5 silver atom strands, 

all have densities of states corresponding to five conduction channels.  In agreement with 

other theoretical work the structure corresponding to the (4,2) AgSWNT  with n1 + n2 = 4 

helical strands exhibits three conductance channels.[72, 76]  
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3.4  Method II:  Strand by Strand – A Complementary Approach to  
       Conventional Helical  Geometry 
 
3.4.1  Overview 
 
 Within the (n1,n2) notation scheme chosen here, n1+ n2 is equal to the number of 

helical strands comprising the tube.  In this approach we calculate the band structures of 

these AgSWNTs by “building” these structures strand by strand. This section explains 

how the number of silver atoms per unit cell is determined when modeling these 

structures strand by strand.  Although this approach may be used for all types of 

AgSWNT within this study, we choose to focus on the (n1, 0) – type AgSWNTs and 

AgNWs.  Figure 1.14(a-f) illustrates this concept for a (6,0) AgSWNT, and Figure 3-14 

(g) shows the insertion of the atomic chain along the axis of the nanotube.   

 

 

 

Figure 3-14.  (a-f) The (6,0) AgSWNT assembled strand by strand. (g) The (6,0) 

AgSWNT with an inserted silver chain along the axis of the nanotube. The nanotube is 

tilted at a slight angle to aid in visualization. [15] 
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 As explained in Section 3.3.1, supercells were used for the AgNWs to match the 

helical periodicity and translational spacing of the chain with the AgSWNT. We also 

recall that the unit cell size, N, for a AgSWNT is simply the greatest common factor of 

the nanotube indices.  Therefore, for all (n1,0) – type AgSWNTs, N = n1.  In other words, 

by repeatedly applying the screw operation to all N atoms in the unit cell, the entire 

AgSWNT is generated.  This also means that repeatedly applying the screw operation to 

only 1 atom in the unit cell generates only 1/Nth of the AgSWNT.  Therefore, the 

nanotube can be built by adding one atom at a time to the unit cell until the entire tube is 

generated.  Specifically, the number of silver atoms in a unit cell is equal to the number 

of strands desired. Lastly, for the (n1, 0) – type systems, the translational periodicity h 

conveniently corresponds to the approximate bond length desired for the inserted chain. 

 We are interested in the correlation between the total energies and the number of 

strands within a given system as the structures is built strand by strand.  We are also 

concerned with how the number of available conduction channels change upon 

successive addition of each strand. Through using this approach, we shall see the 

properties of these systems change as the nanotubes and nanowires are being built. 

3.4.2  Energetic Results 

 Numerical values for the total energies per number of strands are given in Table 

II, and the total energy versus the number of strands is shown in Fig. 3-15.  The (6,0) 

AgSWNT with the inserted chain has the lowest total energy, therefore it is set to zero 

and all other energies are plotted with respect to zero.  With the addition of each strand, 

from 1 to , the total energy falls off inversely proportional to the number of strands.  1−n

 61



Upon adding the nth chain, there is an abrupt lowering of the total energy, and the energy 

drops even further upon inserting the axial chain into the (6,0), (7,0), and (8,0) 

AgSWNTs.   

 

 

eV/NAg
Structure 

 
 

NAg 1 2 3 4 5 6 7 8 9 
 

(4,0) 
 

2.0762 
 

1.2381 
 

0.8789
 

0.4980
 

----- 
 

---- 
 

---- 
 

---- 
 

---- 
 

(5,0) 
 

2.0191 
 

1.1647 
 

0.8408
 

0.6939
 

0.4109
 

---- 
 

---- 
 

---- 
 

---- 
 

(6,0) 
 

2.0230 
 

1.1540 
 

0.8300
 

0.7211
 

0.6531
 

0.4112
 

0.0000 
 

---- 
 

---- 
 

(7,0) 
 

2.0463 
 

1.1538 
 

0.8164
 

0.7129
 

0.6422
 

0.5733
 

0.3946 
 

0.0463 
 

---- 
 

(8,0) 
 

2.0273 
 

1.1266 
 

0.8000
 

0.6912
 

0.6286
 

0.5796
 

0.5225 
 

0.3456 
 

0.1116
 

Table II.  Total energies given by strand count relative to the (6,0) AgNW.  The energies 

associated with the completed AgSWNTs are italicized, and the energies associated with 

the completed AgNWs are given in bold italics.   
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Figure 3-15.  Total energy versus the number of strands for 21 nn = type structures.  x’s 

represent the (4,0) AgSWNT, *’s represent the (5,0) AgSWNT, ∆’s represent the (6,0) 

AgSWNT, □’s represent the (7,0) AgSWNT, and ○’s represent the (8,8) AgSWNT.  Solid 

markers, ▲, ■, and ●, represent the (6,0), (7,0), and (8,0) AgSWNTs with inserted chains 

along their axis. [15] 
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3.4.3  Band Structures, Densities of States, and Conduction Channels 

 For each individual configuration shown in Fig. 3-15, the corresponding band 

structure is given in Fig. 3-16. While the structures with one or two strands supply one or 

two channels of conductance, respectively, this trend begins to decline with the addition 

of the third strand.  Upon adding the sixth strand, thus completing the (6,0) AgSWNT, 

there are only five channels of conductance present. The addition of the seventh strand 

along the axis of the nanotube results in one additional conduction channel; there are now 

six channels of conductance available for the seven-stranded composite system. We note 

that the Fermi level generally rises with the addition of more strands, while decreasing 

upon inserting the axial chain. Furthermore, inserting the chain lowers the energies of the 

bands from the AgSWNT with respect to the Fermi level resulting in one additional 

conduction channel. The band lying just above the Fermi level in the AgSWNT indicated 

dips below the Fermi level upon inserting the chain, as shown in Fig. 3-16(g).   
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Figure 3-16. (a-f) Band structures for the (6,0) AgSWNT, assembled strand by strand, 

corresponding to the respective structures in Figure 3-15. (g) Band structure for the (6,0) 

AgSWNT with the inserted silver chain along the axis of the nanotube.  
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3.4.4  Orbital Densities 
 
 The orbital densities corresponding to locations where the bands cross the Fermi 

level in the (6,0) AgSWNT and AgNW are shown in Fig. 3-17.  Labels (a – g) denote 

orbital densities corresponding to Fig. 3-16.  The numbering scheme corresponds to the 

points in Fig. 3-16., from left to right respectively.  The inset shows a close-up view of 

the orbital density corresponding to the extra band crossing the Fermi level upon 

inserting the axial atomic chain. 
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Figure 3-17. Orbital densities for the (6,0) AgSWNT and AgNW as the system is built 

starting with one strand and consecutively adding one additional strand until the structure 

is complete. 
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3.4.5  Summary and Conclusions 
 
 With the addition of each strand, the total energy falls off inversely proportional 

to the number of strands.  Upon adding the final strand and thus completing the nanotube 

structure, there is an abrupt lowering of the total energy.  The total energies are the lowest 

for the nanotubes containing an axial chain.  The number of conduction channels does not 

always correspond to the number of atomic strands comprising the structure. By 

calculating the band structures for the AgSWNTs considered here, we observe the 

following:  the (4,0) AgSWNT has three conduction channels, the (5,0), (6,0), and (7,0) 

AgSWNTs have five conduction channels, and the (8,0) AgSWNT has seven conduction 

channels.  The addition of the central chain to the (6,0), (7,0), and (8,0) AgSWNTs 

contributes one additional channel of conductance.  We also note that the Fermi level 

rises with the addition of each strand, while decreasing upon inserting the axial chain.  
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3.5  Perspectives and Future Work 

 Relativistic effects are most likely responsible for the experimentally observed 

differences in gold and silver.  Rodrigues et al., [8] implemented the same approach for 

making helical gold nanowires reported by Takayanagi et al., [2,3] using silver.  They 

successfully made silver nanowires, but the silver wires did not undergo the surface 

reconstruction phase which leads to the helical structures observed for gold nanowires.   

 Studies by Takeuchi et al. cite relativistic effects as the underlying reason behind 

surface reconstruction differences in gold and silver.  For example, the ideal un-

reconstructed (100) surface of Au should be a square lattice, but experiments indicate that 

the ground state of this surface corresponds to a contracted hexagonal-close-packed 

overlayer on top of a square substrate.  The differences in both bulk and surface 

properties of gold and silver originate from relativistic effects which lower the position of 

the s-like electrons relative to the d bands.  Herein, we are primarily interested in the 

reconstruction of this top layer itself, as it ultimately forms the helical gold nanowires. 

Using first-principles techniques, they show that for isolated monolayers it is 

energetically favorable for both gold and silver to transform into hexagonal-close-packed 

arrangements.  However, it is more energetically favorable for gold to contract than 

silver, leading to the observed surface reconstruction for gold.  Silver gains 

approximately 23 mRy per atom in contracting, while gold gains more than 60 mRy per 

atom, or about 2.5 times more energy than silver.  

As a starting point we carried out calculations for silver, with an atomic number 

of 47 and a ground state configuration of [81].4d10.5s1, instead of gold, with an atomic 

number of 79 and a ground state configuration of [Xe].4f14.5d10.6s1.  Modeling gold 
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nanotubes requires addressing the added complexities due to the increased number of 

electrons and complications due to relativistic effects.  Therefore calculations for 

analogous gold systems are left for future work. 

  If the systems of gold are to be tackled in the future one needs to account for the 

added complexities due to the increased number of electrons per atom and relativistic 

effects.  One way to handle both issues is by incorporating effective core potentials that 

model the core as a whole and address the valence electrons involved in bonding as 

opposed to an all-electron conventional basis set.[82] Effective core potentials 

incorporate relativistic effects internally, which means that the existing code would not 

need modification with respect to the addition of extra terms in the Hamiltonian to 

account for relativistic effects.  One may also incorporate relativistic treatments using 

Douglas-Kroll-Hess approaches. [81, 83-85]
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CHAPTER 4 

ZnO NANOSTRUCTURES 

 

4.1  Introduction 

 ZnO, a geometrically versatile II-VI semiconductor material, can form nanodots, 

nanorods, nanowires, nanobelts, nanotubes, nanobridges, nanonails, nanowalls, 

nanohelixes, nanorings, and nanocages.[17-26]  ZnO is a direct band-gap (Eg = 3.37 eV) 

semiconductor with a large exciton binding energy (60meV), exhibiting near-UV 

emission, transparent conductivity, and piezoelectricity.  Due to its many favorable 

characteristics, including bio-friendliness, it has received considerable attention lately, 

particularly with respect to applications involving optoelectronics and sensing.   

 Wireless devices are particularly attractive for biomedical applications, and self-

powered devices are especially ideal. Wang and Song recently converted nanoscale 

mechanical energy into electrical energy by deforming piezoelectric zinc oxide nanowires 

with an atomic force microscope (AFM) tip.[86]  As a consequence of their findings, we 

are interested in not only how the electronic and optical properties of these systems vary 

according to geometry but also how these properties change further upon slight 

deformations (i.e. stretching and twisting) of their structural configurations. Herein, we 

examine the electronic properties for different geometrical configurations of ZnO single-

wall nanotubes and bulk-like nanowires and nanotubes, and we study the optical cross 

sections using an Ehrenreich – Cohen formalism.[28]  
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 Nanotubular structures are typically grown from materials with a layered 

structure, such as graphite or graphite-like structures (BN, BCN, WS2, MoS2). [87]  To 

date, however, no related ZnO nanotubular structures, i.e. single-wall ZnO nanotubes, 

have been reported.  Nonetheless, despite limitations in the experimental realm recent 

theoretical reports have addressed this possibility.  It is with this motivation and the 

desire to understand fundamental properties of these potential systems that we pursue the 

current study involving ZnO single-wall nanotubes. 

 A variety of procedures have been reported for constructing ZnO nanowires and 

nanorods.[4, 88, 89]  Perhaps the most interesting is a study by Yin et al., in which 

nanorods with radii of 1.1 ± 0.1 nm were fabricated.[4]  Due to the radii of the nanorods 

being smaller than the exciton Bohr radius (2.34 nm), quantum confinement effects were 

observed.  Most notably, the exciton binding energy was significantly enhanced.  

Changes in the spectra of ZnO nanobelts have also been observed.  In a study by X. 

Wang et al., a 120 meV blueshift was observed in the spectra of ZnO nanobelts.[5]  

These nanobelts were recently converted into super-lattice structured nanohelices.[7]   

 Although ZnO nanowires and nanorods have received comparatively more 

attention than ZnO nanotubes, a large variety of studies do exist involving the fabrication 

of ZnO nanotubes with bulk-related geometries.[26, 87, 90-103]   For example, Xu et al. 

observed ZnO nanotubes with ‘thick’ single and double walls;[92] these tubes were 

grown along the [0001] direction of the hexagonal wurtzite structure and had wall 

thicknesses of approximately 15 nm  (as opposed to a monolayer-sheet thickness as in 

carbon nanotubes) with diameters ranging from 50 to 100 nm.  Xing et al. also 

synthesized ZnO nanotubular structures with geometries related to the hexagonal 
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structure of the ZnO crystal; they produced tubes with wall thicknesses as small as 4 nm 

with diameters ranging from 30 to 100 nm.[87]   

4.2  Computational Methods  

 Herein, we study the electronic and optical properties of ZnO single-wall 

graphitic-like nanotubes, ZnO single-wall bulk like nanotubes, and ZnO ultrathin 

nanowires.  We are particularly interested in the behavior of the total energies and optical 

cross sections with respect to structural changes.  The methodology behind our approach 

and details of the geometrical models considered are the subject of the following sections.  

The first-principles optical absorption spectra calculated within an Ehrenreich – Cohen 

formalism was discussed in Section 2.6.[28]  A discussion reviewing the details of the 

Mulliken Population analysis used throughout the ZnO study is available in Section 2.5. 
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4.3  ZnO Nanotubes:  Single-Wall 

4.3.1  Overview 

 In a recent theoretical study using ab initio density functional methods, 

Claeyssens et al. calculated a new energetically favorable ‘graphitic’-like structure for 

ZnO thin films (< 10 layers).[27]   If it is indeed possible for ZnO to exist in a graphitic-

like structure, it certainly fuels the question as to whether ZnO could exist in single-wall 

structures similar to carbon nanotubes. In another theoretical study, Erkoç and Kökten 

examined the structural and electronic properties of armchair and zigzag single-wall ZnO 

nanotubes by carrying out semiempirical molecular orbital self-consistent field 

calculations at the level of AM1 method within the RHF formulation.[104]  Erkoç and 

Kökten obtained an energy gap of 0.02 eV for the (4,4) armchair ZnO nanotube, while 

they calculated an energy gap of 4.40 eV for the (4,0) zigzag ZnO nanotube. [104] 

Therefore, their results suggested that armchair ZnO nanotubes behave like narrow-gap 

semiconductors whereas zigzag ZnO nanotubes are insulating.  In sharp contrast, we 

determined all ZnO single-wall nanotube structures to be semiconducting with little 

variation in the bandgap. 

 Herein we calculated the electronic and optical properties of ZnO single-wall 

nanotubes with varying geometries, both chiral and non-chiral, with radii ranging from 

approximately 2.10 Å to 5.38 Å. The geometry was optimized according to bond length, 

which varied from 1.87 Å to 1.90 Å according to structure. The LDF method discussed in 

section 1.3.6 was implemented, with 128 k points in the Brillioun zone along with a  

6-31G basis set. [105]  The optical properties were calculated using the LDF results 

within the Ehrenreich – Cohen formalism outlined in section 1.3.9.   
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4.3.2  Geometries 

 ZnO single-wall nanotubes were modeled using the same geometrical approach as 

for carbon nanotubes.[32]  Each Bravais lattice vector, R, is defined by two primitive 

lattice vectors and illustrated in Figure 2.1 and a pair of integers (n1R 2R 1,n2) so that  

 2211 RRR nn +=   (4.1) 

Basis vectors are defined as 

  (4.2a) ia ˆ
1 =R

  jaia ˆ
2

3ˆ
22 +=R ,    (4.2b) 

where da 3=  is the nearest-neighbor bond distance within a ZnO pair, and i and are 

the unit vectors along the x and y directions.  The radius for an (n

ˆ ĵ

1, n2) nanotube is given 

by 

 ,
22 21

2
2

2
1 nnnna

++==
ππ

ρ
R

  (4.3) 

Each R within this wedge defines a different ZnO SWNT and all unique ZnO SWNTs are 

generated by this set of R’s.  The (n1,0) – type structures are referred to as zigzag while 

the (n1,n2) – type structures are referred to as armchair nanotubes.  All other structures are 

chiral.  In this study, we consider twenty-six different zigzag, armchair, and chiral 

structures labeled in Figure 4-1 with selected nanotubes illustrated as ball and stick 

models in Figure 4-2. 
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Figure 4-1. Irreducible wedge of a honeycomb lattice indicating ZnO single-wall 

nanotube geometry.  The same numbering scheme as carbon nanotubes is used with 

zigzag nanotubes defined by rollup vectors along the (n,0) direction and armchair 

nanotubes defined by rollup vectors along the (n,n) direction.   
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Figure 4-2.  Ball and stick models of selected ZnO nanotubes: (a) (4,0) zigzag, (b) (4,4) 

armchair, and (c) (7,3) chiral nanotube. 
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4.3.3  Energetic Results 

 Energetic trends for the ZnOSWNTs with respect to nanotube radius differ from 

what we would expect; the total energy does not exhibit any dependence on nanotube 

radius. Elastic strain models, such as those used for carbon SWNTs, would predict that 

the total strain energy should increase as the radius decreases.  The strain energy per 

carbon atom in carbon nanotubes relative to an unstrained graphite sheet scales as 1/R2 

(where R is the tube’s radius).[35]  Instead of a smooth 1/R2 trend, we observe a random 

pattern within our results, as shown in Fig. 4-3.  The corresponding numerical data is 

given in Table III.  In addition, contrary to the AgSWNTs, grouping the nanotubes by 

geometry does not result in any improvements or alternative energetic dependencies on 

nanotube radius.   
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Figure 4-3.  Total energy versus nanotube radius for all ZnOSWNTs considered herein.  

Unlike single-wall carbon nanotubes, there is no energetic dependency on nanotube 

radius. 
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Structure Radius (Å) NZnO Total Energy (Hartrees/NZnO) 

(4,0) 
(4,1) 
(5,0) 
(4,2) 
(5,1) 
(6,0) 
(4,3) 
(5,2) 
(6,1) 
(4,4) 
(5,3) 
(7,0) 
(6,2) 
(7,1) 
(5,4) 
(6,3) 
(8,0) 
(7,2) 
(8,1) 
(5,5) 
(6,4) 
(7,3) 
(8,2) 
(6,5) 
(7,4) 
(6,6) 

2.0951 
2.4002 
2.6050 
2.7569 
2.9162 
3.1260 
3.1524 
3.2365 
3.4165 
3.5905 
3.6084 
3.6470 
3.7371 
3.9127 
4.0692 
4.1135 
4.1460 
4.2195 
4.4515 
4.4643 
4.5180 
4.5818 
4.7498 
4.9175 
5.0244 
5.3838 

4 
1 
5 
2 
1 
6 
1 
1 
1 
4 
1 
7 
2 
1 
1 
3 
8 
1 
1 
5 
2 
1 
2 
1 
1 
6 

-1847.7191 
-1847.7178 
-1847.7219 
-1847.7246 
-1847.7136 
-1847.7217 
-1847.7242 
-1847.7317 
-1847.7149 
-1847.7250 
-1847.7181 
-1847.7253 
-1847.7244 
-1847.7188 
-1847.7287 
-1847.7242 
-1847.7256 
-1847.7298 
-1847.7137 
-1847.7283 
-1847.7187 
-1847.7312 
-1847.7241 
-1847.7281 
-1847.7139 
-1847.7289 

 

Table III. The total energies per structure are listed by increasing radii, and NZnO 

represents the number of ZnO pairs per unit cell. The structure with the lowest total 

energy, the (5,2) ZnOSWNT, is shown in bold italics.   
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 Although the nanotube radii for all the nanotubes considered herein ranged from 

2.0951 Å to 5.3838 Å,  the (5,2) ZnOSWNT with a radius of 1.8686 Å had the lowest 

total energy of -1847.7317 Hartrees per ZnO pair, while the (5,1) ZnOSWNT with a 

radius of 2.9162 Å had the highest total energy of -1847.7136 Hartrees per ZnO pair.  

Despite the absence of an energetic trend with respect to nanotube radius, the total 

energies of the single-wall structures are comparable with the other structures examined 

herein.  For example, a ZnO nanowire with a radius of approximately 4 Å oriented along 

the c-axis has a total energy per ZnO pair of -1847.7239 Hartrees, while a ZnO nanowire 

with a comparable radius in the rock-salt structure has a total energy per ZnO pair of -

1847.7243 Hartrees.  

 Results from the Mulliken population analysis are presented in Table IV.  The 

atomic populations for Zinc and Oxygen are plotted versus nanotube radius in Fig. 4-4.  

In general, there is a charge transfer on the order of 0.72e from Zinc to Oxygen.  

Although there is not a monotonic linear trend, the amount of charge transfer from Zinc 

to Oxygen is slightly less overall for nanotubes of smaller radii and more for nanotubes 

of larger radii.  Erkoç and Kökten present a similar trend in the finite armchair and zigzag 

nanotubes.[104]  They report a charge transfer on the order of 0.64e, from Zn to O, for 

the (4,0) ZnOSWNT and on the order of 0.67e, from Zn to O, for the (4,4) ZnOSWNT.  

(For comparison, we find a charge transfer of 0.70e, from Zn to O, for the (4,0) 

ZnOSWNT and 0.72e for the (4,4) ZnOSWNT.) In their results, they report that atomic 

charges are developed almost equally on all atoms (negative on O, positive on Zn), 

except the end atoms of the zigzag model.  Our results for extended systems show that 
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charge develops equally on all atoms, Zn and O respectively, regardless of their positions 

within the unit cell.   
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Figure 4-4. Change in atomic populations versus nanotube radius according to Mulliken 

population analysis data given in Table IV. 
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Structure Radius (Å) 

 
Change in Atomic Populations  |±∆e|

(+Zn, -O) 
 

 
(4,0) 
(4,1) 
(5,0) 
(4,2) 
(5,1) 
(6,0) 
(4,3) 
(5,2) 
(6,1) 
(4,4) 
(5,3) 
(7,0) 
(6,2) 
(7,1) 
(5,4) 
(6,3) 
(8,0) 
(7,2) 
(8,1) 
(5,5) 
(6,4) 
(7,3) 
(8,2) 
(6,5) 
(7,4) 
(6,6) 

 
2.0951 
2.4002 
2.6050 
2.7569 
2.9162 
3.1260 
3.1524 
3.2365 
3.4165 
3.5905 
3.6084 
3.6470 
3.7371 
3.9127 
4.0692 
4.1135 
4.1460 
4.2195 
4.4515 
4.4643 
4.5180 
4.5818 
4.7498 
4.9175 
5.0244 
5.3838 

 
0.7086 
0.7107 
0.7167 
0.7148 
0.7102 
0.7164 
0.7207 
0.7202 
0.7167 
0.7203 
0.7240 
0.7175 
0.7212 
0.7211 
0.7159 
0.7220 
0.7221 
0.7257 
0.7175 
0.7266 
0.7237 
0.7266 
0.7229 
0.7283 
0.7248 
0.7211 

 

Table IV.  Mulliken population analysis for ZnO single-wall nanotubes. 
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4.3.4  Band Structures and Densities of States 

 The first-principles band structures and densities of states for the (4,0), (4,4), and 

(7,3) ZnOSWNT are shown in Figs. 4-5 through 4-7, respectively.  Their band gaps are 

similar to each other, on the order of 1.1 eV, despite different radii and geometries.  Our 

results are remarkably different than those by Erkoç and Kökten where they indicated 

that armchair (4,4) ZnO nanotubes behave like narrow-gap semiconductors, with an 

energy gap of 0.20 eV, while zigzag (4,0) ZnO nanotubes exhibit insulating behavior, 

with an energy gap of 4.40 eV.[104]   

 

 

Figure 4-5. First-principles LDF band structure and density of states for the (4,0) 

ZnOSWNT.  The Fermi level is indicated at -3.2576 eV. 
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Figure 4-6.  First-principles band structure and density of states for the (4,4) ZnOSWNT.  

The Fermi level is indicated at -3.2177 eV. 

 

 

Figure 4-7. First-principles band structure and density of states for the (7,3) ZnOSWNT.  

The Fermi level is indicated at -3.1333 eV. 
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4.3.5  Optical Absorption Spectra 

 The optical spectra and the corresponding transitions within the band structures 

and densities of states for the (4,0), (4,4), and (7,3) ZnO single-wall nanotubes are given 

in Figs. 4-8 through 4-10, respectively.  Solid blue lines represent direct transitions 

corresponding to polarizations parallel to the helical axis, while red dashed lines 

represent indirect transitions associated with polarizations perpendicular to the helical 

axis.  Black solid lines represent the composite spectra.  The spectra are mostly 

dominated by parallel transitions, while the peaks corresponding to perpendicular 

transitions are greatly suppressed in comparison.   

 The location of the first parallel peak, associated with the band gap, is fairly 

consistent throughout all the structures considered, irrespective of nanotube radii.  

However, the location of the second parallel peak increases with decreasing nanotube 

radii.  For example, the radii of the (4,0), (4,4) and (7,3) ZnO SWNTs are: 2.10 Å, 3.59 

Å, and 4.58 Å, while the locations of their second peaks are:  3.50 eV, 2.27 eV, and 1.88 

eV. 

The allowed transitions are best explained using symmetry arguments for the (4,0) 

and (4,4) nanotubes.  The (4,0) zigzag nanotube has C4v symmetry while the (4,4) 

armchair nanotube has C4 symmetry.  For the C4v case, there are two types of a 

representations, a1 and a2, because the screw operator, , commutes with the reflection 

operator, 

Ŝ

σ̂ , over the set of a representation functions.  On the other hand, for the C4 

case,  does not commute with Ŝ σ̂ , and therefore there is only one a representation.   

In the (4,0) zigzag nanotube with C4v - type symmetry, the first few allowed 

transitions depicted in Fig. 4-8 are described as follows.  The first peak corresponding to 
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parallel excitations occurs at 1.36 eV.  This is a direct transition between two bands of a1 - 

type symmetry.  The second peak associated with a parallel excitation, occurring at 3.50 

eV, is a direct transition between two bands of e1 - type symmetry.  There are two 

indirect transitions present, occurring between bands with different symmetries.  The first 

peak associated with perpendicular polarization occurs at 2.34 eV; it arises from an 

indirect transition between bands of a1 and e1 type symmetries.  The second peak arising 

from a perpendicular excitation occurs at 2.77 eV, and it is due to an indirect transition 

between bands of a2 and e1 type symmetries. 

We shall now describe the allowed transitions occurring for the (4,4) armchair 

nanotube with C4 type symmetry, as shown in Fig. 4-9.  The first peak arising from a 

parallel excitation occurs at 1.11 eV.  It is a direct transition between states of a- type 

symmetry.  The second peak due to parallel excitations is located at 2.27 eV, and it is a 

direct transition between bands with e1 – type symmetry.  The third peak associated with 

a direct transition occurs at 4.16 eV, and it is between states of b – type symmetry.  The 

peaks arising from perpendicular polarizations occur at 1.86 and 2.04 eV, and they result 

from indirect transitions between states of a and e1 - type symmetries. 
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Figure 4-8. Optical absorption spectra and corresponding band structure and density of 

states for the (4,0) ZnOSWNT.  Solid blue lines represent peaks corresponding to parallel 

polarizations, dashed red lines represent peaks corresponding to perpendicular 

polarizations, and black solid lines represent the total spectra.  
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Figure 4-9. Optical absorption spectra and corresponding band structure and density of 

states for the (4,4) ZnOSWNT.  Solid blue lines represent peaks corresponding to parallel 

polarizations, dashed red lines represent peaks corresponding to perpendicular 

polarizations, and black solid lines represent the total spectra.  
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Figure 4-10. Optical absorption spectra and corresponding band structure and density of 

states for the (7,3) ZnOSWNT.  Solid blue lines represent peaks corresponding to parallel 

polarizations, dashed red lines represent peaks corresponding to perpendicular 

polarizations, and black solid lines represent the total spectra.  
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The trend associated with the second parallel transition discussed previously holds 

true for all the single-wall nanotubes; the location of the second peak consistently 

increases as nanotube radius decreases.  If we just consider the first two direct transitions, 

schematically illustrated in Fig. 4-11, along with the band gap, we observe the trend in 

peak energy versus nanotube radius plotted in Fig. 4-12.  The corresponding numerical 

data is displayed in Table V. The band gap is defined as the difference between the 

lowest point of the conduction band and the highest point of the valence band at the 

central point (Г) of the Brillioun zone.  

 In comparison to the second absorption peak, the energies of the band gap and 

first absorption peak remain fairly constant, (see Fig. 4-12).  This is in contrast to 

behavior in carbon nanotubes; for in carbon nanotubes both peaks exhibit a dependence 

on nanotube radii.  Upon further inspection, however, the energies of the band gap and 

first optical peak exhibit a peculiar trend, as revealed in Fig. 4-13.  As the nanotube 

radius increases from approximately 2.10 Å to 5.38 Å, the band gap energy and energy of 

the first optical peak decrease, albeit not monotonically, as the nanotube radius increases.  

As the nanotube radius increases beyond 4.0 Å, the band gap energy and first optical 

peak energy increases somewhat before leveling off.  Furthermore, as the nanotube radius 

increases, the band gap energy and first optical peak energy achieve a better agreement 

with one another.  
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Figure 4-11.  Schematic of energies corresponding to the first two excitations in the (4,4) 

ZnOSWNT due to parallel polarizations.  The first transition is labeled as (E1), while the 

second transition is designated as (E2). 
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Figure 4-12.  Energies corresponding to the band gap and first two excitations due to 

parallel polarizations versus nanotube radius for all ZnOSWNTs considered herein.  The 

band gap is designated by closed circles (●), and the first optical absorption peak is 

designated by open circles (○). The second peak (E2), represented by solid triangular 

points (▼), exhibits an energetic dependence on nanotube radius, while the first peak 

(E1), does not exhibit a similar energetic dependence on nanotube radius. 
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Figure 4-13.  Zoomed-in perspective of the energies corresponding to only the band gap 

and first excitation due to parallel polarizations versus nanotube radius for all 

ZnOSWNTs considered herein.  The band gap, EG,  is designated by closed circles (●), 

and the first optical absorption peak, E1, is represented by open circles (○). 
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Structure Radius (Å) EG (eV) E1 (eV) E2 (eV) 

(4,0) 
(4,1) 
(5,0) 
(4,2) 
(5,1) 
(6,0) 
(4,3) 
(5,2) 
(6,1) 
(4,4) 
(5,3) 
(7,0) 
(6,2) 
(7,1) 
(5,4) 
(6,3) 
(8,0) 
(7,2) 
(8,1) 
(5,5) 
(6,4) 
(7,3) 
(8,2) 
(6,5) 
(7,4) 
(6,6) 

2.0951 
2.4002 
2.6050 
2.7569 
2.9162 
3.1260 
3.1524 
3.2365 
3.4165 
3.5905 
3.6084 
3.6470 
3.7371 
3.9127 
4.0692 
4.1135 
4.1460 
4.2195 
4.4515 
4.4643 
4.5180 
4.5818 
4.7498 
4.9175 
5.0244 
5.3838 

1.1726 
1.1181 
1.1102 
1.0960 
1.0860 
1.0873 
1.0953 
1.0895 
1.0864 
1.0972 
1.1050 
1.0980 
1.1022 
1.1152 
1.0993 
1.1192 
1.1164 
1.1226 
1.1263 
1.1230 
1.1366 
1.1189 
1.1305 
1.1436 
1.1474 
1.1354 

1.36 
1.26 
1.24 
1.11 
1.18 
1.17 
1.11 
1.15 
1.15 
1.11 
1.13 
1.16 
1.16 
1.17 
1.11 
1.14 
1.17 
1.16 
1.17 
1.14 
1.16 
1.15 
1.17 
1.16 
1.17 
1.15 

3.50 
3.16 
2.98 
2.83 
2.70 
2.56 
2.54 
2.48 
2.37 
2.27 
2.27 
2.25 
2.20 
2.13 
2.04 
2.04 
2.04 
2.01 
1.94 
1.92 
1.92 
1.88 
1.85 
1.82 
1.80 
1.70 

 

Table V. Energies of the first two excitation peaks due to parallel polarizations for 

ZnOSWNTs. Structures are listed according to increasing nanotube radii. 
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4.3.6  Structural Deformation Effects I:  Longitudinal, Transverse, and Shear Strain 

 We now describe the procedure for determining the coordinates for a stretched 

nanotube obtained by first straining a 2D ZnO sheet with graphitic geometry and then 

mapping the atomic coordinates to the surface of a cylinder, thus creating the strained 

nanotube.  We take into account the following quantities which are dimensionless:  

longitudinal (εl), transverse (εt), and shear (εs) strains.  

 This procedure is best explained by example, where we assume that we have an 

(n1,n2) single-wall nanotube where n1 and n2 are relatively prime.  In this case, there are 

two atoms per unit cell – one Zinc and one Oxygen.  (Otherwise there are 2N ZnO atom 

pairs per unit cell, where N is the greatest common divisor of the nanotube indices.)  First 

we determine the (x,y) coordinates of the ZnO atom pair in the 2D sheet, where d 

represents the bond length between Zn and O nearest neighbors: 

   (4.4a) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2/
0

1 d
r

   (4.4b) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
2/

0
2 d

r

We transform the coordinates to the “strip” reference frame as follows 

 ( )
R

Rrx r

rr
⋅

=′   (4.5a) 

 ( )
R

zRry r

rr ˆ⋅×
=′   (4.5b) 

These coordinates, now strained, are expressed as 

 yxx st ′+′+=′′ εε )1(   (4.6a) 
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 yy l ′+=′′ )1( ε   (4.6b) 

The strained coordinates are now transformed into cylindrical coordinates: 

 
π

ρ
2

R ′′
=

r

  (4.7) 

 
R

x

R

Rr
′′
′′

=
′′

′′⋅′′
=

ππφ 22
2r

rr

  (4.8) 

 

Upon rolling up the sheet and forming the nanotube, the longitudinal strain (εl) 

corresponds to stretching the nanotube along the z-axis, the transverse strain (εt) is a 

radial expansion analogous to the radial breathing mode present in carbon nanotubes, and 

the shear strain (εs) represents a torsional twist along the nanotube’s axis.  

 We are interested in changes to the total energy, Mulliken atomic population and 

optical properties upon introducing strain.  In our following discussion, we consider three 

types of tubes, the (4,0) zigzag, (4,4) armchair, and the (7,3) chiral ZnO SWNTs.  The 

starting point of the geometry of the nanotubes was already optimized according to bond 

length.  We find that the total energies of the systems are not generally lowered upon 

introducing strain.  Results of the total energies upon straining suggest that the 

geometrical configurations obtained previously, due to variations in bond length alone, 

are very close to optimal. 

  Figure 4-14 shows the change in total energy versus longitudinal strain.  Although 

the (4,0) ZnO SWNT experiences a negligible lowering of total energy  (approximately 

Hartrees) upon compression, in general, the total energies of the nanotubes 

increase quadratically about zero upon introducing longitudinal strain. The total energy is 

4102 −×
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plotted versus transverse strain in Fig. 4-15.  Again, the optimized energies are primarily 

centered about zero, indicating that ZnO single-wall nanotubes prefer not to be strained.  

 

Longitudinal Strain 
-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

T
ot

al
 E

ne
rg

y 
(H

ar
tr

ee
s p

er
 Z

nO
 P

ai
r)

-1847.735

-1847.730

-1847.725

-1847.720

-1847.715

-1847.710

-1847.705

 

Figure 4-14.  Total energy versus longitudinal strain for the (●) (4,0), (○) (4,4), and (▼) 

(7,3) ZnOSWNTs.   
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Figure 4-15.  Total energy versus transverse strain for the (●) (4,0), (○) (4,4), and (▼) 

(7,3) ZnOSWNTs.   
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 In Fig. 4-16. the total energy is plotted versus shear strain.  While the total energy 

versus strain curve is smooth for the (7,3) ZnO SWNT, a similar smooth trend is not 

present for the tubes with higher symmetry, particularly with respect to the (4,4) ZnO 

SWNT.  These results indicate that the (4,4) nanotube may prefer to experience a minor 

shear strain.  However, these fluctuations are most likely a result of numerical noise. 
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Figure 4-16.  Total energy versus shear strain for the (●) (4,0), (○) (4,4), and (▼) (7,3) 

ZnOSWNTs.   
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 Figures 4-17 and 4-18 illustrate the changes in Mulliken atomic populations due 

to longitudinal and transverse strain, respectively.  Total charge transfer decreases as 

strain increases for both longitudinal and transverse strain.  The Mulliken population 

decreases slightly faster with respect to longitudinal strain for the (4,0) nanotube, as 

indicated by Fig. 4-17.  In addition, the (4,0) ZnO SWNT also exhibits a slightly different 

behavior with respect to transverse strain, as indicated in Fig. 4-18.  The effect on atomic 

population is less as strain decreases, in comparison to the (4,4) and (7,3) nanotubes.  The 

differences in behavior could be due to the (4,0) having a smaller radius in comparison to 

the other structures.   
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Figure 4-17.  Mulliken atomic population versus longitudinal strain for the (●) (4,0), (○) 

(4,4), and (▼) (7,3) ZnOSWNTs.   
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Transverse Strain
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Figure 4-18.  Mulliken atomic population versus transverse strain for the (●) (4,0), (○) 

(4,4), and (▼) (7,3) ZnOSWNTs.   
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Figure 4-19.  Mulliken atomic population versus shear strain for the (●) (4,0), (○) (4,4), 

and (▼) (7,3) ZnOSWNTs.   
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 The optical absorption peaks shift in energy as a function of transverse and 

longitudinal strain. The E1 and E2 optical cross section peaks shift to higher energies in 

response to negative strain values, and they shift lower in energy in response to positive 

strain values. Figure 4-20. illustrates this concept for the (4,0) ZnOSWNT.  Changes in 

the E1 and E2 optical absorption peaks due to longitudinal and transverse strain are shown 

in Figs. 4-21 and 4-24, respectively.  We are primarily concerned with the behavior of the 

peaks resulting from direct transitions, as they are more intense than peaks due to indirect 

transitions in the optical spectra.  Changes in the peaks due to shear strain are less 

straightforward.  As illustrated in Figs. 4-25 through 4-27, the peaks split due to lifting of 

degeneracy. 

 

 

Figure 4-20. Changes in optical absorption spectra for the (4,0) ZnOSWNT due to 

transverse strain. Solid blue lines represent peaks corresponding to parallel polarizations, 

dashed red lines represent peaks corresponding to perpendicular polarizations, and black 

solid lines represent the total spectra.  
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Figure 4-21.  E1 optical absorption peak position versus longitudinal strain for the (●) 

(4,0), (○) (4,4), and (▼) (7,3) ZnOSWNTs.   
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Figure 4-22.  E1 optical absorption peak position versus transverse strain for the (●) 

(4,0), (○) (4,4), and (▼) (7,3) ZnOSWNTs.   
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Figure 4-23.  E2 optical absorption peak position versus longitudinal strain for the (●) 

(4,0), (○) (4,4), and (▼) (7,3) ZnOSWNTs.   
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Figure 4-24.  E2 optical absorption peak position versus transverse strain for the (●) 

(4,0), (○) (4,4), and (▼) (7,3) ZnOSWNTs.   
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The optical absorption spectra for the unstrained and shear-strained cases are 

given in Fig. 4-25. for the (4,0) ZnO SWNT.  The first longitudinal absorption peak for 

the unstrained nanotube is located at 1.36 eV, but upon introducing a shear strain, the 

peak splits into two separate peaks located at 1.05 and 1.35 eV.  For the second peak, a 

shoulder appears in the spectra, indicating a possible splitting.  As shown in Fig. 4-26, a 

similar situation arises for the (4,4) ZnO SWNT.  The first longitudinal peak occurs at 

1.11 eV, and upon inducing shear strain, two peaks are present at 0.97 and 1.23 eV.  For 

the (4,4) ZnO SWNT, the splitting is also present in the second longitudinal peak 

occurring at 2.27 eV.  Upon introducing shear strain, the second peak splits into two 

peaks located at 2.21 and 2.71 eV.  The splitting is a result of breaking the symmetry 

which lifts the degenerate states located at the top of the valence band.  The same 

splitting behavior arises in the (7,3) chiral ZnO SWNT, as shown in Fig. 4-27  For the 

(7,3) unstrained nanotube, the first peak occurs at 1.15 eV, and it splits into two peaks 

occurring at 0.95 and 1.26 eV.  The second longitudinal peak, located at 1.88 eV for the 

unstrained case, splits into two peaks occurring at 1.78 and 2.20 eV.  For the (7,3) 

nanotube, we also observe splitting of the third longitudinal peak.   
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Figure 4-25. Optical absorption spectra for the (Top) unstrained and (Bottom) shear 

strained (-0.10 εs) (4,0) ZnOSWNT.  
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Figure 4-26. Optical absorption spectra for the (Top) unstrained and (Bottom) shear 

strained (-0.10 εs) (4,4) ZnOSWNT.  
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Figure 4-27. Optical absorption spectra for the (Top) unstrained and (Bottom) shear 

strained (-0.10 εs) (7,3) ZnOSWNT.  
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4.3.7  Structural Deformation Effects II:  Puckering 

 The most energetically favorable structure for ZnO in bulk form is the 

tetrahedrally coordinated hexagonal wurtzite configuration.  Due to the lack of 

experimental evidence concerning single-wall nanotubes, the possibilities pertaining to 

the detailed energetically favorable geometries of these systems remain open for 

consideration.  The theoretical study reported by Claeyssens et al. [27] suggested that in 

thin films, ZnO may indeed favor a flat graphic-like structure.  Although this supports the 

idea of ZnO being stable in a carbon nanotube-like configuration, other possibilities exist.   

 For example, would the “flat” structure preferable, or would a “puckered” 

configuration be more favorable for the single-wall nanotubes?  In the study carried out 

by Erkoç and Kökten, they suggested that the ends of finite ZnO SWNTs may prefer to 

be puckered.  Specifically, for the (4,0) ZnO SWNT, the ends terminated by Zn atoms 

preferred to be puckered inwards towards the z-axis of the nanotube, and although the 

(4,4) ZnO SWNT did not exhibit a similar behavior on the ends of the nanotube, the Zn 

and O atoms did not strictly lie within the same cylindrical plane.[104]  We point towards 

another study, as motivation, in which the stability and electronic structures of 

phosphorus nanotubes with a puckered configuration were examined.[106]   

 Figure 4-28. illustrates the puckered geometry of the (4,4) ZnO SWNT considered 

herein.  Two different geometrical variations were considered.  The equilibrium or 

starting point configuration is shown in Figure 4-28(a) where both the Zinc and Oxygen 

atoms lie within the same cylindrical plane and hence along the same circumference.  

Figure 4-28(b) illustrates another possible puckered configuration in which the oxygen 

atoms are moved towards the inside of the nanotube and hence along the plane of a 
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smaller cylinder, indicated by the dashed line.  In Figure 4-28(c), the oxygen atoms are 

moved outside of the plane of the original nanotube, lying in the plane of a cylinder with 

a larger radius, again denoted by a dashed line.   

 

 

 

 

Figure 4-28.  Puckered geometry of the (4,4) ZnOSWNT:  (a) equilibrium conformation, 

i.e. Zn and O atoms lie along the same radius, (b) Oxygen atoms moved inside the 

nanotube along the circumference of a  smaller radius, and (c) Oxygen atoms moved 

outside of the nanotube  along the circumference of a larger radius. 
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 Figure 4-29 illustrates the change in total energy versus pucker for the (4,4) 

ZnOSWNT.  The amount of pucker is quantified by the change in radius of the plane in 

which the oxygen atoms lie, as indicated in Fig. 4-28.  In this case, by increasing the 

radius of oxygen atoms in the nanotube by only a fraction of an Angstrom, the total 

energy decreases by a mere  Hartrees.  As a result, due to the extremely fine 

deviations in energy, it is a safe approximation to assume that the single-wall nanotubes 

do not prefer substantial puckering.     
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Figure 4-29.  Total energy versus change in oxygen radius for the (4,4) ZnOSWNT. 
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 Changes in Mulliken atomic population and changes in optical properties may are 

indicated in Figs. 4-30 to 4-32, respectively. As the oxygen atoms move outwards, 

increasing in radius up to 0.06 Å, the Mulliken population increases by nearly .04e.  In 

Figs. 2.31 and 2.32, the E1 and E2 optical absorption peaks are plotted versus pucker.   

For the first absorption peak, E1, the energy value changes from approximately 1.1 eV to 

1.18 eV upon increasing the oxygen radius as much as 0.06 Å.  The second peak, E2, 

changes from approximately 2.27 eV to 2.32 eV.   

  Oxygen Pucker; Change in Radius (A)

-0.02 0.00 0.02 0.04 0.06 0.08

M
ul

lik
en

 A
to

m
ic

 P
op

ul
at

io
n

0.718

0.719

0.720

0.721

0.722

0.723

0.724

0.725

 

 

Figure 4-30.  Mulliken atomic population versus change in oxygen radius for the (4,4) 

ZnOSWNT. 
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Figure 4-31.  E1 optical absorption peak position versus change in oxygen radius for the 

(4,4) ZnOSWNT. 
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Figure 4-32.  E2 optical absorption peak position versus change in oxygen radius for the 

(4,4) ZnOSWNT. 
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4.3.8  Summary of Results 

 First-principles calculations were carried out on twenty-six ZnO single-wall 

nanotubes with different chiralities and radii ranging from 2.10 Å to 5.38 Å.  The total 

energies of the single-wall nanotubes did not exhibit a dependence on nanotube radii, but 

results from the Mulliken population analysis do show some dependence on nanotube 

radii.  While a strict linear trend is not present, the degree of charge transfer from Zn to O 

is generally less for nanotubes of smaller radii, approximately ±0.710e, and slightly more 

for larger nanotubes, approximately ±0.725e.  The optical absorption spectra show a 

fascinating trend.  While the first peak associated with a direct transition stays relatively 

stationary, roughly 1.25 eV, as nanotube radius varies, the second optical peak resulting 

from a direct transition displays a blue-shift from 1.70 eV to 3.50 eV with decreasing 

nanotube radius.   

 The analysis was extended to include structural deformation effects.  Two types 

of effects were considered:  straining and puckering.  Overall, it is not energetically 

preferred to strain or pucker the single-wall tubes.  The Mulliken atomic populations 

decrease linearly as longitudinal and transverse strain increases.  With respect to 

puckering, as the oxygen atoms in the (4,4) nanotube move outwards, the Mulliken 

atomic population decreases.   

 The optical absorption spectra proved very sensitive to even the smallest 

structural deformations.  For example, upon introducing a small transverse strain of ±0.05 

εt, the first optical absorption peak, E1, shifted from 1.36 eV to 1.25 eV and 1.51 eV, 

respectively, while the second peak, E2, shifted from 3.50 eV to 3.33 eV and 3.67 eV, 

respectively.  Upon taking into account shear strain, the peaks often split due to a lifting 
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of degeneracy.  The optical absorption spectra of the (4,4) ZnOSWNT also reveals a 

shifting of peaks. For both the E1 and E2 peaks, the energies increase on the order of 0.05 

eV as the oxygen atoms move outside of the nanotube’s original cylindrical plane.   

 If these ZnO single-wall nanotubes which are structurally analogous to carbon 

nanotubes are ever produced experimentally, their greatest utility will likely involve their 

geometrically sensitive optical absorption spectra.  In the next section, we explore 

ultrathin nanowires and a different type of ZnO nanotube; these nanotubes are modeled 

from cutting the core out of an ultra-thin ZnO nanowire in a hexagonal wurtzite or 

rocksalt structure, as opposed to mapping a sheet of atoms onto the surface of a cylinder.  

The results obtained in the next section also indicate that the single-wall ZnO nanotubes 

in a carbon nanotube-like configuration are the most energetically favorable nanotube 

structure. 
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4.4  ZnO Nanowires and Nanotubes:  Bulk-Like 
 
4.4.1  Overview 

 The most common growth direction for the ZnO nanorods and nanowires is along 

the direction, the c-axis, of the hexagonal wurtzite structure.  However, ZnO 

may also crystallize in a zinc-blende or rock-salt structure under certain conditions.  The 

two configurations we consider are hexagonal wurtzite and rock-salt.  Ultrathin 

nanowires are calculated for both configurations.  Due to the computational expense of 

large unit cell sizes, a limited variety of these structures were calculated.  Nonetheless, 

because the radii of these ultra-thin nanowires are on the order of the single-wall 

nanotubes, they provide for some interesting comparisons.  Bulk-like single-wall 

nanotubes were also considered.  As opposed to the graphitic-like single-wall nanotubes 

discussed in the previous section, these bulk-like single-wall nanotubes are modeled 

directly from bulk configurations by ‘cutting’ a core section from the center of either the 

hexagonal wurtzite structure or the rocksalt structure.   

]0001[±

Herein, our study includes two ultra-thin nanowires, one with a wurtzite structure 

and one with a rocksalt structure.  We consider two types of bulk-like nanotubess 

constructed from the wurtzite structure:  the (1,2) 3yH and (2,3) 6yH nanotubes, along 

with a rocksalt nanotube constructed from the rocksalt nanowire with a hallowed-out 

core.  We proceed by introducing the detailed geometry of these systems.  A discussion 

of results then follows, including a discussion of energetic results (total energies and 

Mulliken population analysis), band structures and densities of states, and optical cross 

sections.   
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4.4.2  Geometries 

 Most II-IV compound semiconductors (including ZnO) crystallize in either a 

hexagonal wurtzite or cubic zinc-blende structure where each anion is surrounded by four 

cations at the corners of a tetrahedron, and vice versa.[8]  These materials exhibit 

substantial ionic character, even though the tetrahedral coordination is typical of sp3 

covalent bonding. [8]  ZnO is most commonly found in the wurtzite phase, but it has also 

been observed in the zinc-blende phase in thin films and in the rocksalt phase under high-

pressure conditions.   The wurtzite structure has a hexagonal unit cell with two lattice 

parameters, a and c, as indicated in the nanowire segment oriented along the c-axis of the 

hexagonal wurtizte structure shown in Fig. 4-33., with an ideal ratio of 

633.13/8/ ==ac .  In a real crystal, these parameters differ slightly from the ideal 

structure likely due to lattice stability, defects such as oxygen vacancies, and ionicity.[8]  

The lattice parameters typically range from 3.2475 to 3.2501 Å for the a parameter and 

from 5.2042 to 5.2075 Å for the c parameter.[8]  In our calculations, c = 5.2 Å and a = 

3.184 Å, yielding a c/a ratio of approximately 1.633.  The bond-length between ZnO 

pairs is approximately 1.95 Å, which was calculated to be more energetically favorable 

for these structures within the LDA formalism.   

Similar to other II-VI semiconductors, wurtzite ZnO can change into the rocksalt 

(NaCl) structure under high-pressure conditions.  A segment of a ZnO nanowire in the 

rocksalt structure is shown in Fig. 4-33.  The high-pressure phase transition from the 

wurtizte to the rocksalt structure decreases the lattice constant to the range of 4.271 Å to 

4.294 Å.[8]  From our first-principles calculations, a slightly smaller lattice constant of 
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4.13 Å proved energetically favorable.  The reduction of lattice dimensions purportedly 

causes the interionic Coulomb interaction characteristic of ZnO to favor the ionic 

behavior over the covalent character. [8]    

  

 

 

Figure 4-33.  Ball and stick model of the ZnO wire segments constructed from the 

following bulk structures:  (left) hexagonal wurtzite, and (right) rocksalt.  In our 

calculations for wurtzite, c = 5.2 Å and a = 3.184 Å, yielding a c/a ratio of 1.633.   

For rocksalt, a lattice constant of c = 4.13 Å proved energetically favorable.   
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Ivanka Milošević and co-workers recently reported a theoretical study involving 

the symmetry of zinc oxide nanostructures.[107]  In their work, they provided a rather 

elegant method of classifying various structures of zinc-oxide nanotubes made from bulk 

wurtzite-structures.   A zinc-oxide bulk-like nanowire, distinct from the single-wall 

nanotubular structures discussed in the previous section, is essentially a wire structure 

with a core hollowed out of the center – thus representing a tube which preserves the 

periodicity along the z-axis of the bulk structure.  The wurtzite configuration has two 

types of rotational axes along the z-direction:  a third-order rotational axis which runs 

through the atoms and a sixth-order screw axis which goes through the centers of the 

hexagons formed by the atoms.  Thus, according to the classification scheme proposed by 

Milošević et al. one may obtain two types of nanowires or nanotubes:  3H or 6H.[107]   

We shall briefly discuss these classification schemes in relation to the structures 

that we have considered herein.   The structures may be further classified as:  3xH, 3yH, 

6xH, and 6yH.  In our calculations, we consider structures of type 3yH and 6yH, shown 

in Figs. 4-34 through 4-37, respectively.  A 3yH structure (Fig. 4-34) may be obtained by 

cutting the bulk structure along the planes perpendicular to 1b=ye and along vectors 

successively rotated by 3/π .  The nanotube is parameterized as , where n),( 21 nn 1 

represents the line along the inner cut, and n2 represents the line along the outer cut.  For 

example, the structure illustrated in Fig. 4-36. is a (1,2) 3yH nanotube.  Similarly, a 6yH 

structure is constructed by cutting along the bulk structure as indicated in Fig. 4-35. The 

6H type nanotubes are characterized again by , but with ),( 21 nn 211 nn << .  As such, the 

structure shown in Fig. 4-37 is a (2,3) 6yH nanotube.   
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Figure 4-34.  Schematic diagram illustrating nanotubes of the 3yH type.   
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Figure 4-35.  Schematic diagram illustrating nanotubes of the 6yH type.   
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Figure 4-36.  Models of the (1,2) 3yH ZnO nanotube.  (a) Top view schematic of the 

construction from a bulk-wire, (b) perspective view down the z-axis of the nanotube, (c) 

side view of the nanotube structure. 
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Figure 4-37.  Models of the (2,3) 6yH ZnO nanotube.  (a) Top view schematic of the 

construction from a bulk-wire, (b) perspective view down the z-axis of the nanotube, (c) 

side view of the nanotube structure. 
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4.4.3  Energetic Results 

For ZnO in bulk geometrical configurations, the total energy is most energetically 

favorable for hexagonal wurtzite, with zinc blende closely related and rocksalt the least 

energetically favorable.[8]  As the dimensionality of these systems decrease, the bulk-like 

characteristics do not necessarily hold true.  In our calculations, for the ultrathin nanowire 

configurations, the wurtzite structure with a radius of approximately 3.5 Å had a total 

energy per ZnO pair of -1847.7239 Hartrees, while the total energy per ZnO pair for the 

rocksalt structure with a radius of approximately 3.0 Å was -1847.7243 Hartrees per ZnO 

pair.   

 The bulk-like nanotubes were much higher in total energy than both the bulk-like 

nanowires and the graphitic-like single-wall nanotubes.  Upon comparing the bulk-like 

nanotubes, the (1,2) 3yH ZnO nanotube, with a radius of approximately 3.5 Å, has a 

slightly lower total energy per ZnO pair of -1847.7059 Hartrees, in comparison to the 

(2,3) 6yH ZnO nanotube, with a radius of approximately 5 Å, has a total energy per ZnO 

pair of -1847.7051 Hartrees.  The results of the total energies are presented in Table X 

and plotted in Fig. 4-38 with respect to radii.  The energetic results are more dependent 

on structure than radii, i.e. the total energies are lower for the nanowires than the 

nanotubes, but a clear trend is not present with respect to structure radii. 
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Structure Radius  

(Å) 

Total Energy 

(Hartrees per ZnO Pair) 

Nanowires  

   Hexagonal Wurtzite Nanowire 

   Rocksalt Nanowire 

3.5 

3.0 

-1847.7239 

-1847.7243 

Nanotubes  

   (1,2) 3yH (Hexagonal Wurtzite) 

   (2,3) 6yH (Hexagonal Wurtzite) 

   Rocksalt 

3.5 

5.0 

3.0 

-1847.7059 

-1847.7051 

-1847.7084 

 

Table VI.  Total energies of the ZnO Bulk-like nanotubes and nanowires. 
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Figure 4-38.  Total energies of the ZnO Bulk-like nanotubes and nanowires versus 

radius. 
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Results from the Mulliken population analysis of the hexagonal wurtzite and 

rocksalt nanowires are shown as follows, with charges on Zinc (gray) and Oxygen (red) 

atoms indicated in units of e.  In general, for the hexagonal wurtzite wire (Fig. 4-39), the 

charges on Zn along the outer perimeter of the wire range from +.6443e to +.6639e, and 

the charges for oxygen atoms lying along the outer perimeter range from -.6518e to -

.6443e. The charges associated with the central ZnO atom pair and the atoms bonded 

directly to the central atoms exhibit a slightly different behavior.  The charge on the 

central Zn atom is only +.4529e, while the charge on the central O atom is -.7255e.  The 

remaining three Zn atoms which are bonded to the central O atom have charges of 

+.8044e, while the remaining three oxygen atoms which (which when translated 

periodically) bond to the central Zn atom have charges of -.7383e.  The change in atomic 

population versus the radial distance from the atom position and (x,y) origin of the 

wurtzite nanowire is displayed graphically in Fig 4-41.   

Results from the Mulliken population analysis for the (1,2) 3yH and (2,3) 6yH 

Wurtzite Nanotubes are shown in Figs. 4-40 and 4-42, with charges on Zinc (gray) and 

Oxygen (red) atoms indicated in units of e.   Figs. 4-41 and 4-43. display the change in 

atomic population versus the radial distance from the atomic positions and (x,y) origin of 

the (1,2) 3yH and (2,3) 6yH Nanotubes, respectively.   

For the (1,2) 3yH Nanotube, the atoms are located at three incremental distances 

from the origin of the nanotube.  The Zinc atoms located closest to the origin and furthest 

away from the origin have the greatest positive charge ( +.75e), while the Zinc atoms 

located mid-distance have the least atomic charge (+.62e).  The Oxygen atoms located on 
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the outer-edge of the nanotube exhibit slightly more negative charge (-.70e) than the 

Oxygen atoms located closest to the nanotube origin ( +-.68e) and at mid-distance (-.66e) 

from the origin.   

For the (2,3) 6yH Nanotube, the atoms are located at two incremental distances 

from the origin of the nanotube.  The Zinc atoms located at the distance furthest from the 

origin have a more positive atomic charge (+.71e) than the Zinc atoms located closer 

(+.53e) to the origin of the nanotube.  The Oxygen atoms possess a similar degree of 

negative charge (-.65e) independent of their distances from the nanotube origin. 
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Figure 4-39.  Ball and stick model of the unit cell for the wurtzite structure ZnO wire.  

Charges associated with the Mulliken population analysis are indicated in units of e. 

 

Figure 4-40.  Ball and stick model of the unit cell for the (1,2) 3yH ZnO nanotube.  

Charges associated with the Mulliken population analysis are indicated in units of e. 
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Figure 4-41.  Change in atomic populations versus distance from nanowire/nanotube 

origin for Zn (●, ▼) and O (○, ∇ ) atoms in the hexagonal wurtzite nanowire and the 

(1,2) 3yH nanotube, respectively.   
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Figure 4-42.  Ball and stick model of the unit cell for the (2,3) 6yH ZnO nanotube.  

Charges associated with the Mulliken population analysis are indicated in units of e. 

0 1 2 3 4 5 6

C
ha

ng
e 

in
 A

to
m

ic
 P

op
ul

at
io

ns
  ±

e

-1.0

-0.5

0.5

1.0

Distance from (2,3) 6yH Nanotube Origin (Å)  

Figure 4-43.  Change in atomic populations versus distance from nanotube origin for  

Zn (▼) and O (∇ ) atoms in the (2,3) 6yH ZnO nanotube. 
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 For the rocksalt wire, shown in Fig. 4.44., the central ZnO atom pair also exhibit 

different charges in comparison to the atoms along the outer perimeter of the wire.  For 

rocksalt, the central Zn atom has a charge of +1.0478e, while the O atom has a charge of 

-.7437e.  In comparison, the Zn atoms lying furthest away from the core of the wire have 

charges ranging from +.5866e to +.5917e, and the O atoms lying furthest away from the 

core have charges ranging from -.6292e to -.6315e.  Fig x. exhibits the change in atomic 

population versus the radial distance from the atom position and (x,y) origin of the 

rocksalt nanowire. 

For the rocksalt nanotube (Fig. 4-45), the excess charge of +1.0478e previously 

located on the central Zn atom in the wire, is disbursed to the outer Zn atoms of the 

nanotube increasing their charges by +.2e in comparison to the rocksalt nanowire.  In 

contrast, the Zn atoms located closer to the core have lost .1e in charge.   
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Figure 4-44.  Ball and stick model of the unit cell for the rocksalt structure ZnO wire.  

Charges associated with the Mulliken population analysis are indicated in units of e. 

 

 

 

 

Figure 4-45.  Ball and stick model of the unit cell for the rocksalt structure ZnO tube.  

Charges associated with the Mulliken population analysis are indicated in units of e. 
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Figure 4-46.  Change in atomic populations versus distance from nanowire/nanotube 

origin for Zn (▼) and O ( ) atoms in the rocksalt nanowire and nanotube.   ∇
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4.4.4  Band Structures and Densities of States 

The first-principles band structures and densities of states for the hexagonal 

wurtzite and rocksalt nanowires and nanotubes are shown in Figs. 4-47 through 4-51.  

Although their band structures and densities of states exhibit similar characteristics, the 

rocksalt band structure displays an interesting result, as there is no longer a direct band 

gap.  

The first-principles band structures and densities of states for the wurtzite 

nanowire, the (1,2) 3yH ZnO and the (2,3) 6yH ZnO nanotubes are shown in Figs. 4-47 

through 4-49, respectively. The difference between the lowest unoccupied conduction 

band and the highest occupied valence band at the Г point is 0.8073 eV for the hexagonal 

wurtzite nanowire, while it shifts to 0.5672 eV and 0.8052 eV for the (1,2) 3yH and the 

(2,3) 6yH nanotubes, respectively. The band structures and densities of states for the 

rocksalt nanowire and nanotube are shown in Figs. 4-50 and 4-51, respectively.    

 

Figure 4-47.  Band structure and density of states for the hexagonal wurtzite ZnO 

nanowire.  The Fermi level is indicated at  -3.8041 eV.  
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Figure 4-48.  Band structure and density of states for the (1,2) 3yH ZnO nanotube.  The 

Fermi level is indicated by the dashed line at -3.6432 eV. 

 

Figure 4-49.  Band structure and density of states for the (2,3) 6yH ZnO nanotube.  The 

Fermi level is indicated by the dashed line at -3.7307 eV. 
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Figure 4-50.  Band structure and density of states for the rocksalt ZnO nanowire. The 

Fermi level is indicated at -3.3446 eV. 

 

Figure 4-51.  Band structure and density of states for a rocksalt ZnO nanotube.  The 

Fermi level is indicated by the dashed line at -3.4004  eV. 
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4.4.5  Optical Absorption Spectra 

The optical spectra for the hexagonal wurtzite ZnO nanostructures and rocksalt 

nanostructures are given in Figs. 4-52 to 4-54, respectively.  The absorption peak 

energies of the wurtzite and rocksalt structures are very different due to the indirect band 

gap calculated in the rocksalt band structure. Qualitatively, however, the absorption 

spectra are similar as they are both dominated by direct transitions due to parallel 

excitations.   

For the hexagonal wurtzite nanowire (Fig. 4-52), the first allowed transition due 

to parallel excitations is located at 0.82 eV. The optical spectra for the (1,2) 3yH 

nanotube given in Fig. 4-52. undergoes only minor changes upon transitioning from the 

nanowire to the nanotube structure. In comparison the absorption spectra of the (2,3) 6yH 

larger bulk-like nanotube (Fig.4-53) is relatively different, as the peaks associated with 

parallel transitions are much closer to each other in the larger nanotube.   

The optical spectra for the rocksalt nanotube and nanowire are given in Fig. 4-54.  

In the rocksalt nanowire, the first peak associated with a direct transition is at 2.58 eV, 

while the first peak in the nanotube is shifted lower in energy, to 2.18 eV.  The second 

peak associated with the nanotube is also now further apart and higher in intensity. 

Specifically, the difference between the first two allowed parallel transitions in the 

nanowire is 0.17 eV, while the difference between the same peaks in the nanotube is 

twice as much at 0.34 eV. 
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Figure 4-52.  Optical absorption spectra for a (upper) hexagonal wurtzite ZnO nanowire 

and (lower) the (1,2) 3yH nanotube. Solid blue lines represent peaks corresponding to 

parallel polarizations, dashed red lines represent peaks corresponding to perpendicular 

polarizations, and black solid lines represent the total spectra.  
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Figure 4-53.  Optical absorption spectra for the (2,3) 6yH ZnO nanotube.  Solid blue 

lines represent peaks corresponding to parallel polarizations, dashed red lines represent 

peaks corresponding to perpendicular polarizations, and black solid lines represent the 

total spectra.  
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Figure 4-54.  Optical absorption spectra for a rocksalt (top) ZnO nanowire and (bottom) 

nanotube. Solid blue lines represent peaks corresponding to parallel polarizations, dashed 

red lines represent peaks corresponding to perpendicular polarizations, and black solid 

lines represent the total spectra.  
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 The results associated with the first two parallel excitations for the bulk-like ZnO 

nanowires and nanotubes are displayed numerically in Table VII.  Due to the indirect 

bandgap associated with the rocksalt structure, it is difficult to compare the results with 

the wurtzite nanowires and nanotubes.  While the locations of the peaks associated with 

the first and second allowed parallel transitions for the wurtzite nanotubes do not exhibit 

a trend versus radius, the difference between the two peaks does exhibit a trend:  as the 

nanotube radius increases from 3.5 Å in the (1,2) 3yH structure to 5.0 Å in the (2,3) 6yH 

structure, the first two peaks become closer together.  The difference between the first 

two peaks decreases from 0.79 eV for the smaller (1,2) 3yH nanotube to 0.45 eV for the 

larger (2,3) 6yH nanotube. 

 

Structure Radius  

(Å) 

E1  

(eV) 

E2  

(eV) 

(E2-E1)  

(eV) 

Nanowires     

   Hexagonal Wurtzite Nanowire 3.5 0.82 2.18 1.36 
 

   Rocksalt Nanowire 3.0 2.58 2.75 .17 

Nanotubes     

   (1,2) 3yH (Hexagonal Wurtzite) 3.5 0.86 1.65 
 

0.79 
 

   (2,3) 6yH (Hexagonal Wurtzite) 5.0 0.96 1.41 0.45 

   Rocksalt 3.0 2.18 2.52 0.34 

Table VII.  Energies for the first two optical absorption peaks corresponding to parallel 

excitations for the ZnO bulk-like nanowires and nanotubes. 
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4.4.6  Summary of Results 

 Using our first-principles LDF approach, we studied ultrathin bulk-like ZnO 

nanowires and nanotubes.  Hexagonal wurtzite and rocksalt nanowires were considered, 

as well as bulk-like nanotubes constructed from the wire structures. We now summarize 

the results obtained for these structures.  Further discussion in the next section highlights 

similarities and differences between these bulk-like 1D structures and the single-wall 

nanotubes studied in the previous chapter. 

 Not surprisingly, the solid nanowire structures were approximately 0.5 eV lower 

in total energy than the hollow nanotube structures for both wurtzite and rocksalt 

configurations.  Within each structure (i.e. nanowire or nanotube), however, systems with 

rocksalt geometry were somewhat energetically more favorable than the corresponding 

wurtzite structures.  For example, the rocksalt nanowire was roughly .01 eV lower in 

energy than the hexagonal wurtzite nanowire.  These results are somewhat in contrast to 

what we expected because in bulk configurations wurtzite is clearly more energetically 

favorable.  In our case, since the energies differences are so small, it is difficult to 

conclude if the rocksalt structures are preferable over the wurtzite structures for 1D 

geometries.   

 The Mulliken populations of these structures were also analyzed.  The most 

appreciable differences were with respect to the wurtzite and rocksalt nanowires.  While 

the Zn and O atom pair in the rocksalt structure had atomic populations of +0.4529e and -

0.7255e, respectively, the Zn and O atom pair in the rocksalt structure had atomic 

populations of +1.0478e and -0.7437e, respectively.  Upon removing the central ZnO 
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atom pair for both wurtzite and rocksalt wires, thus forming a tube, the outer Zn atoms 

became more positively charged by at least 0.1e.  The outer O atoms in the wurtzite 

structure became proportionally more negatively charged, while the outer O atoms in the 

rocksalt structure remained relatively unchanged.   

 While the band structures were similar within all wurtzite structures and all types 

of rocksalt structures, respectively, the wurtzite structure exhibited a direct band gap, 

while the rocksalt structures displayed an indirect band gap.  The tight-binding bands 

were also qualitatively similar to the first principles results, although the magnitudes of 

the band gaps were quantitatively larger.     

            Although all structures were dominated by peaks due to parallel polarizations, the 

optical absorption spectra varied from structure to structure.  Due to the indirect band gap 

present in the rocksalt structure, the presence of the first allowed parallel peak associated 

with a direct transition was shifted on the order of 1.5 eV higher in energy.  For the 

wurtizite structures, the (2,3) 6yH nanotube with the larger radius exhibited a blue-

shifting of the second allowed optical absorption peak arising from parallel polarization.  

This result is similar to the findings in the single-wall nanotubes; as nanotube radius 

increased, the second peak occurred at relatively lower energies.  
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4.5  Assessment of Results:  Single-Wall Nanotubes vs. Bulk-Like 1D Structures 

             The energetic results for the single-wall nanotubes and bulk-like nanotubes and 

nanowires are summarized in Table VIII.  The total energies of the graphitic-like single-

wall nanotubes range from -1847.7317 to -1847.7136 Hartrees per ZnO pair, an energy 

range of approximately 0.5 eV.  The bulk-like nanotubes are the least energetically 

favorable, roughly 0.25 eV higher in energy than the upper range of the single-wall 

nanotubes.  The total energies of the nanowires were within the range of the single-wall 

graphitic-like nanotubes.  The band gaps of the graphitic-like single-wall nanotubes were 

approximately 1.10 eV, while the bulk-like structures ranged from 0.5 eV to 0.8 eV.   

 

ZnO Structure 

 

Total Energy  

(Hartrees/ ZnO) 

Band Gap 

 (eV) 

Single-Wall Nanotubes   

               Graphitic-Like -1847.7317 to -1847.7136 1.08-1.14  

 

                Bulk-Like:   

                     (1,2) 3yH -1847.7059 .5672 

                     (2,3) 6yH -1847.7051 .8052 

                     Rocksalt -1847.7084  .8039* 

Nanowires:   

              Wurtzite -1847.7239 .8073 

               Rocksalt -1847.7243  .5302* 

 

Table VIII. Total energies and band gaps of all ZnO nanotube and nanowire structures 

considered.  (*)  Denotes an indirect band gap. 
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4.6  A Comparative Analysis with NRL/OSU POLYXA and Crystal 03  

4.6.1  Overview 

           The NRL/OSU POLYXA code calculates the electronic structures for 1D 

materials.  Different program packages can be utilized in order to model materials in 2D 

and 3D.  For comparison, we chose to employ Crystal03 which has the capabilities of 

modeling structures in 0D, 1D, 2D, and 3D.  Although crystal symmetry is taken into 

account by Crystal03, only translational periodicity is implemented, thus limiting the 1D 

structures that we can model using a reasonable unit cell size.  Crystal03 proved useful 

for modeling structures in higher dimensions, and it demonstrated comparable behavior 

to POLYXA when it came to modeling the single-wall ZnO nanotubes, described in 

detail in section 4.6.4. 

          Using Crystal03, we modeled the following ZnO structures within the context of 

LDA: the 3D hexagonal wurtzite bulk form, a 2D sheet with a graphitic monolayer 

structure, and the (4,4) ZnOSWNT, the only common structure taken into account using 

both programming packages.  Although comparable, the results for the SWNT were not 

exactly the same, thus we address some discrepancies within the results.  As a final step, 

utilizing POLYXA, we calculate 1D ZnO graphitic-like strips and estimate the expected 

energy for the 2D sheet.  
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4.6.2  Hexagonal Wurtzite in 3D   

As stated previously, the lattice parameters for ZnO in the hexagonal wurtzite 

crystal structure typically range from 3.2475 to 3.2501 Å for the a parameter and from 

5.2042 to 5.2075 Å for the c parameter.[8]  In our hexagonal wurtzite wire calculations c 

= 5.2 Å and a = 3.184 Å, yielding a c/a ratio of approximately 1.633.  Here, for the bulk 

calculation using CRYSTAL03, we considered a small range of parameters from Ref. 14, 

and we found the values that we used (c = 5.2 Å and a = 3.184 Å) in our wire 

calculations were also more energetically favorable for the 3D hexagonal wurtzite model.   

The calculated results obtained with Crystal03 [11] are summarized in Table IX 

along with selected results from the literature for comparison. Within the LDA 

approximation we obtain a total energy of -1847.7496 Hartrees per ZnO pair, and we 

calculate the band gap energy to be 0.82 eV.   We find our band gap of 0.82 eV within 

the LDA approximation to be consistent with what others have obtained.   Figure 4-55 

illustrates the first Brillioun zone for a hexagonal wurtzite crystal.  The band structure 

generated with Crystal03 is shown in Fig. 4-56. 
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Theory Band Gap (eV) 

Current Study: 

LDA 

 

0.82 

From Literature: 

LDA [108] 

GGA [108] 

LDA-PP [8, 109] 

LDA-SIC-PP [8, 109] 

 

0.74 

0.80 

0.23 

3.77 

 

Table IX.  Energetic results obtained in this study using Crystal03 [11] along with 

selected results from literature for ZnO in the bulk hexagonal wurtzite structure.   

GGA, generalized gradient approximation; LDA-PP, local-density approximation 

pseudopotential; LDA-SIC-PP, local-density approximation self-interaction-corrected 

pseudopotential [8, 109] . 
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 Figure 4-55.  First Brillioun Zone of the hexagonal wurtzite crystal structure. 

 

 

 

Figure 4-56.  Energy bands of ZnO in the hexagonal wurtzite crystal structure within the 

LDA approximation obtained using Crystal03 [11]. 
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4.6.3  ZnO in a 2D Graphitc-Like Sheet 

As mentioned previously, Claeyssens et al. calculated a new energetically 

favorable ‘graphitic’-like structure for ZnO thin films (< 10 layers). [27]   Because the 

single-wall ZnO nanotubes studied in section xx. are essentially a rolled-up sheet of ZnO 

in a graphitic-like geometrical configuration, we are interested in determining the strain 

energy for the single-wall nanotube as a result of rolling up the sheet.   Herein, using 

Crystal03, we evaluate the total energy and band structure for ZnO in a 2D graphitic-like 

geometrical configuration illustrated in Fig. 4-57.   

The band structure generated with Crystal03 is given in Fig. 4-58.  The total 

energy within the LDA approximation is -1847.7234 Hartrees per ZnO pair, with a band 

gap of approximately 1.20 eV.  The total energy of the 2D sheet is 0.0262 Hartrees (~ 

0.7129 eV) higher in energy than the 3D hexagonal wurtzite structure. It is comparable 

with our results for the single-wall nanotubes, but we would expect the sheet energy to be 

lower in energy than the single-wall nanotubes (i.e. less than -1847.73  Hartrees), which 

is not the case using Crystal03.  Therefore, in the following section, we compare our 

results using POLYXA for the (4,4) ZnO SWNT to the results obtained using 

CRYSTAL03.   
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Figure 4-57.  Ball and stick model of a 2D ZnO sheet in a graphitic structure.  The sheet 

is periodic along the x and z – axes. 

 

 

Figure 4-58.  Energy bands of ZnO in a 2D graphitic-like structure within the LDA 

approximation obtained using CRYSTAL03 [11]. 
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4.6.4  The (4,4) ZnOSWNT Revisited 

            Can we accurately compare our results using POLYXA with results obtained 

using CRYSTAL03?  Our choice of 1D systems using CRYSTAL03 (with translational 

symmetry) was very limited due to chirality and symmetry constraints.  The achiral 

ZnOSWNTs have either Cnv or Cn type symmetry, and CRYSTAL03 has such 

symmetries available through C4v.  Therefore, we chose to model the (4,4) ZnO SWNT.   

 The energy obtained for the (4,4) ZnOSWNT using CRYSTAL03 within the LDA 

approximation was -1847.7227 Hartrees per ZnO pair.  The energy was quite comparable 

to the value obtained with POLYXA:  -1847.7250 Hartrees per ZnO pair.  Through 

further investigation, we determined the exact numerical deviation to be most likely 

attributed to numerical variations arising from grid differences.  Upon adjusting the grid 

for POLYXA, the total energy varied from -1847.7221 to -1847.7279 Hartrees per ZnO 

pair, a variation on the order of ± 0.003 Hartrees.   

 The band structures for the (4,4) ZnO SWNT are shown in Fig. 4-59; the bands 

obtained using POLYXA are shown in (a), the bands generated with CRYSTAL03 are 

shown in (b), and they are plotted together in (c).  The helical bands originally generated 

with POLYXA (see Fig. 4-6) were shifted to correspond to what would be obtained with 

translational periodicity.  The most immediate difference is the location of the Fermi 

levels.  Using POLYXA, the Fermi level in (a) is calculated at -3.2150 eV, while Fermi 

level in (b) obtained using CRYSTAL03 is calculated to be -3.3266 eV, a difference of 

0.1116 eV.  Therefore, in order to accurately compare the results, the bands obtained with 

CRYSTAL03 are shifted by 0.1116 eV in (c) in order to match the Fermi level calculated 
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using POLYXA.  The shift in the Fermi level most likely originates from how the two 

codes truncate the long-range interactions differently.  

 One important result is that the band gaps obtained within the LDA 

approximation are essentially the same:  roughly 1.10 eV, using POLYXA and 

CRYSTAL03.  This is again in sharp contrast to the values obtained by Erkoç and 

Kökten; recall they calculated the bandgap of the (4,4) ZnO SWNT to be 0.20 eV, using 

semiempirical molecular orbital self-consistent field calculations at the level of AM1 

method within the RHF formulation.[104]   
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Figure 4-59.  Energy bands of the (4,4) ZnO SWNT within the LDA approximation 

generated with (a) NRL/OSU POLYXA, (b) CRYSTAL03 [11], and (c) NRL/OSU 

POLYXA and CRYSTAL03 together.  The Fermi level obtained with NRL/OSU 

POLYXA is indicated in (a) at -3.2150 eV, and the Fermi level calculated using 

CRYSTAL03 is designated in (b) at -3.266 eV.  In (c), the bands calculated using 

CRYSTAL03 are shifted to match the Fermi level for POLYXA (-3.2150 eV). 
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4.6.5  Graphitic-Like Strips in 1D 

 Unlike single-wall carbon nanotubes, whose strain energies scale as 1/R2, where 

R is the nanotube radius, such a trend is not present within the results for ZnO SWNTs. 

(See Fig. 4-3).  Therefore, it is not possible simply to extrapolate the expected 2D sheet 

energy from the single-wall nanotube energies.  As a final task using POLYXA, we 

calculated the total energies of 1D graphitic-like strips, as illustrated in Fig. 4-60.  By 

taking into account total energy changes with increasing strip widths (hence increasing 

unit cell sizes), we estimated the expected value for ZnO in a 2D graphitic-like sheet to 

be -1847.7229 Hartrees per ZnO pair. 

 

 

 

Figure 4-60.  Ball and stick models of 1D Graphitic-Like ZnO Strips, periodic along the 

z-axis, depicted in (a – d) with increasing strip width.  The atoms comprising the unit 

cells are highlighted in yellow.   
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               The energetic results obtained for the 1D graphitic-like ZnO strips are displayed 

in Table X.  The total energies per ZnO pair for the individual strips were what we 

expected – slightly higher in energy than the single-wall nanotubes.  The band gaps 

exhibit an interesting behavior; they increase somewhat as the strip width increases.  This 

is a topic that may be explored further in future work.  The band structures are given in 

Fig. 4-61.  The objective of calculating the 1D strips was to determine the approximate 

energy of a 2D sheet using the POLYXA code.  To calculate the expected sheet total 

energy (TE), we take the difference between strips and divide by the increase in the 

number of ZnO unit pairs: 

 

 
N

TE
TE Strip

NSheet ∆

∆
≈

∞→
lim   (4.9) 

 

      The estimated sheet energy, -1847.7229 Hartrees per ZnO pair should be a little lower 

in energy – on the order of the -1847.7234 value calculated using CRYSTAL03 for the 

2D sheet.  Calculations with larger strips may be necessary in order to validate the 

approximation. 
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1D Strips 

ZnO Pairs 

N 

Total Energy 

(Hartrees/Unit Cell) 

∆TE/∆N 

(Hartrees/N) 

Total Energy / 

ZnO Pair 

Band Gap 

(eV) 

(a) 

(b) 

(c) 

(d) 

5 

7 

9 

11 

-9238.4249 
 

-12933.8712 
 

-16629.3146 
 

-20324.76045 

------ 
 

-1847.72315 
 

-1847.7217 
 

-1847.7229 

-1847.6850 
 

-1847.6959 
 

-1847.7016 
 

-1847.7055 

0.8609 

0.9130 

0.9286 

0.9459 

 

Estimated 2D  Sheet Energy: 

 
 
-1847.7229 (Hartrees per ZnO Pair) 

 

Table X.  Total energy and band gap summary of 1D ZnO strips, along with the expected 

extrapolated energy for a 2D ZnO sheet. 
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Figure 2.61.  Band structures obtained using POLYXA for the ZnO 1D strips in a 

graphitic configuration with (a) 5, (b) 7, (c) 9, and (d) 11 ZnO atom pairs per unit cell.
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4.6.6  Interpretation of Results 

          Table XI summarizes the energetic results obtained using POLYXA and 

CRYSTAL03.  In section 4.6.4, we discussed the small differences in energy for the (4,4) 

SWNT as obtained by POLYXA and CRYSTAL03.  The values are in fairly good 

agreement, as the values in total energy for the (4,4) ZnO SWNT are similar, irrespective 

of the software utilized.  However, the difference in total energy between the (4,4) 

SWNT and the extrapolated 2D sheet, using POLYXA, is roughly 0.0021 Hartrees, while 

the difference between the (4,4) SWNT and the actual 2D sheet value, obtained with 

CRYSTAL03, is approximately 0.0007 Hartrees.  We would expect these differences to 

be closer, and further investigation is required to determine the exact mechanism driving 

these disparities.  The most reasonable explanation is that the estimated sheet value 

obtained using POLYXA is not a good enough approximation; larger strips may be 

necessary in order to improve the approximation. 
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ZnO Structure 

 

Total Energy (LDA) 

(Hartrees/ ZnO) 

Band Gap Energy 

(eV) 

POLYXA:  

Single-Wall Nanotubes 

  

               Range:  

               (4,4) SWNT 

-1847.7317 to -1847.7136 

-1847.7250 

1.08-1.14  

1.10 

                Bulk-Like:   

                     (1,2) 3yH -1847.7059 0.5672 

                     (2,3) 6yH -1847.7051 0.8052 

                     Rocksalt -1847.7084  0.8039* 

Nanowires   

                    Wurtzite -1847.7239 0.8073 

                    Rocksalt 

Strips (listed by ZnO Pair) 

                       5 

                       7 

                       9 

                     11 

        Extrapolated 2D Sheet: 

-1847.7243 

 

-1847.6850 
 

-1847.6959 
 

-1847.7016 
 

-1847.7055 

-1847.7229 

 0.5302* 

 

0.8609 

0.9130 

0.9286 

0.9459 

--------- 

XSTAL03 

Bulk  

Sheet 

(4,4) SWNT 

 

-1847.7496 

-1847.7234 

-1847.7227 

 

0.82 

1.20 

1.09 

 

Table XI.  Summary of energetic results using POLYXA and CRYSTAL03.  * Denotes 

an indirect band gap. 
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4.7  Perspectives and Future Work 

 The geometrical versatility of ZnO nanostructures leads to encouraging results 

and raises new possibilities.  For example, the optical spectra varies from 3.50 eV to 1.70 

eV for the second absorption peak as the radius of the single-wall nanotubes varies from 

1.2096 Å to 3.1260 Å, independent of chirality.   The small sampling of bulk-like 

nanotubes indicates that a similar trend may be present for the bulk-like nanotube 

structures derived from the hexagonal wurtzite structure.   

 Although the optical spectra and energetic results change according to structure, 

one important feature stays the same:  all of the ZnO 1D structures are semiconducting.   

This is a significant finding, as others have predicted the opposite: Erkoç and Kökten 

suggested that the  (4,0) armchair ZnO nanotube is a conductor while the (4,4) zigzag 

ZnO nanotube is semiconducting.[104]   

 Perhaps the most interesting findings within the ZnO study are the changes in 

optical absorption spectra.  We considered the diagonal elements of the dielectric tensor 

of the form .  In future work, further improvements can be made by taking into 

account the local field effects.  Hybertsen and Louie discuss an approach within the local-

density approximation in which the full dielectric matrix is calculated and information 

about the local fields is obtained.[110]  The off-diagonal elements of the dielectric matrix 

in reciprocal space contain the information about the local fields, the inhomogeneity of 

the microscopy response of the electrons.   Hybernsten and Louie developed their 

approach using the perturbative technique of Adler [111] and Wiser [112] for the 

independent-particle polarizability and the local-density approximation to include the 

exchange and correlation effects.  

)(2 ωε αα
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CHAPTER 5 

FINAL STATEMENTS 

 

 As a result of the current boom in nanotechnology, much emphasis has been 

placed on size confinement effects arising from the changes in properties as the transition 

is made from bulk to the nanoscale.  Even within the nanoscale, further modifications can 

result simply by varying the geometry of the system.  Utilizing our first-principles local 

density functional approach, adapted for helical symmetry, we carried out two separate 

studies on silver and zinc oxide one-dimensional systems.   

 The study involving helical silver single-wall nanotubes presented in Chapter 3 

was motivated by experimental work in which helical gold nanowires and a single-wall 

gold nanotube structure were reported. [12, 13]  We examined the electronic structures of 

a variety of silver single-wall nanotubes and nanowires.  We were particularly interested 

in energetic changes with respect to nanotube radius and the number of conduction 

channels related to the calculated band structures.  Two different approaches were used in 

modeling the silver structures:  conventional helical geometry and strand-by-strand 

helical geometry.  Within the conventional approach, we found that the total energies of 

the nanotubes do not decrease monotonically as radius increases, as in carbon nanotubes.  

Within the strand-by-strand approach, however, we find that total energy decreases 

inversely proportional to the number of strands, falling off further upon adding the last 

strand and thus completing the nanotube or nanowire structure.  In addition, the number 
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of conduction channels did not always correspond to the number of helical strands.  If 

these structures are produced experimentally in the future, the helical orbital densities 

may prove to be the most useful result of the study, as other have already suggested that 

the smallest helical gold nanowires may be good candidates for nanometer-scale 

solenoids. [72]   

 The ZnO study carried out in Chapter 4 also involved nanotubes and nanowires.  

For this study, two different types of nanotubes were taking into account:  single-wall 

nanotubes with structures analogous to carbon nanotubes and bulk-like nanotubes 

modeled from cutting the core region from a hexagonal wurtzite or rocksalt bulk-like 

nanowire.  All of the nanotube and nanowire structures were found to be semiconducting.  

The total energies of the nanowires were within a similar range as the single-wall 

nanotubes. The bulk-like single-wall nanotubes were least energetically favorable.  

 Results in the optical absorption spectra presented some interesting findings, 

particularly in regards to the single-wall nanotubes.  The optical absorption spectra varied 

from structure to structure. Although the first peak associated with a direct transition 

stayed relatively constant, approximately 1.25 eV, the second optical peak resulting from 

a direct transition displayed a blue-shift from 1.70 eV to 3.50 eV with decreasing 

nanotube radius.   

 The final section of Chapter 4 included an assessment of results obtained using 

our in-house POLYXA code and the commercially available CRYSTAL03 software.  

The results obtained using the two programs were surprisingly comparable for the (4,4) 

ZnOSWNT.
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Scope and Method of Study:  In this work, we report simulations of the electronic 

structure pertaining to two types of quasi-one-dimensional nanostructures:  silver and 
zinc-oxide nanotubes and nanowires. The electronic structures were investigated 
within a first-principles, all-electron, self-consistent local density functional approach 
(LDF) adapted for helical symmetry.  Two different approaches were used in 
modeling the silver structures:  conventional helical geometry and strand-by-strand 
helical geometry.  Within the silver study, we were particularly interested in energetic 
changes with respect to nanotube radius and the number of conduction channels 
related to the calculated band structures.  Within the zinc oxide study, we were 
interested in the changes of optical properties in response to changes in nanotube 
diameter, and as such, the optical cross sections of the zinc-oxide nanotubes and 
nanowires are calculated using an Ehrenreich – Cohen formalism.   

 
Findings and Conclusions: 
      For the silver study, we found that the total energies of the nanotubes do not decrease 

monotonically as radius increases, as in carbon nanotubes.  Within the strand-by-
strand approach, we found that the total energy decreases inversely proportional to 
the number of strands, falling off further upon adding the last strand and thus 
completing the nanotube or nanowire structure.  In addition, the number of 
conduction channels did not always correspond to the number of helical strands.  For 
the zinc oxide study, all single-wall nanotubes were semiconducting with little 
variation in the band gap.  The optical absorption spectra exhibited a fascinating 
trend.  While the first peak associated with a direct transition stays relatively 
stationary, roughly 1.25 eV, as nanotube radius varies, the second optical peak 
resulting from a direct transition displays a blue-shift from 1.70 eV to 3.50 eV as 
nanotube radius decreases from 1.20 Å to 3.13 Å.  The optical absorption spectra of 
the zinc oxide nanostructures proved very sensitive to even the smallest structural 
deformations. 
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