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CHAPTER 1

INTRODUCTION

Quantum physics and Information theory once thought to be different branches of

science have infact been connected since the early days of quantum mechanics. In

his paper on black body radiation Planck [1] had already established the relationship

between information and entropy through the Boltzmann’s constant KB
1. This con-

nection would remain hidden until mid 1980’s, when it occurred to Richard Feynman

who was working on an involved problem in field theory that, if he had a machine

that could operate on the principles of quantum mechanics, it would be possible to

attain a solution in finite time which otherwise on a classical machine will take a

computation time of the order of lifetime of the universe. Following this, Feynman [2]

and David Deutsch [3] independently proposed that a quantum mechanical device (a

quantum computer as presently known) which could represent the state of quantum

systems and could be used to do unitary transformation of that state, would be more

efficient in computing the dynamical evolution of the said quantum system.

This idea was not taken seriously until ten years later when Peter Shor [4], dis-

covered an algorithm which when working on a quantum computer would be able to

factorize an integer N in polynomial time i.e. in log(N) time. This is exponentially

faster than the most efficient known classical factoring algorithm. Shor’s algorithm

generated unprecedented interest as it showed that if one has a quantum computer,

1Note that although Boltzmann first linked entropy and probability in 1877, the relation was

never expressed with a specific constant until Max Planck first introduced K , in his derivation of

the law of black body radiation in 1900− 1901. The iconic terse form of the equation S = K log W

on Boltzmann’s tombstone is in fact due to Planck, not Boltzmann
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it is possible to break the widely used public-key cryptography scheme known as RSA

with out much difficulty. Note that the strength of RSA lies on the incapability

of a classical computer (even the most advanced supercomputer to date working on

the principles of classical physics) to factor large numbers in computationally feasi-

ble time. The discovery of Shor’s algorithm led to an outburst of theoretical and

experimental activities in the scientific community and created a whole new field of

quantum computation and quantum information [5].

The key aspect of quantum information science that makes it so interesting from

the context of both fundamental studies and applications is the existence of a non-local

correlation known as entanglement [6]. Entanglement is a phenomenon that exists

only between two or more quantum mechanical systems and has no classical analog.

Since its discovery entanglement has been at the center of several controversies and

has profoundly influenced our understanding of nature. In particular entanglement is

quite fascinating as it leads to phenomena like the famous Schrödinger CAT paradox

[6] which challenges our perception of the physical reality.

1.1 Quantum Entanglement

With the advent of quantum information sciences, entanglement has evolved during

the last decade from being a controversial artifact of the quantum theory to a key

resource behind numerous quantum information protocols. Thus, it is important to

understand what entanglement is before we can discuss its implications and applica-

tions. Suppose we are given a quantum system S that is composed of two subsystems

S1 and S2. Then from quantum mechanics we know that the state space of the com-

posite system S can be written as the tensor product of subsystem spaces, i.e the

Hilbert space of S is H = ⊗2
i=1Hi. Further the superposition principle tells us that
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the state of the system S can then be written as,

|Ψ〉 =
∑

i1,i2

ci1,i2|i1〉 ⊗ |i2〉, (1.1)

where |i1〉 and |i2〉 are the basis vectors spanning the Hilbert space of the subsystems

S1 and S2 respectively. Now we also know from quantum mechanics that any state

vector |Ψ1〉 and |Ψ2〉 of the subsystems S1 and S2, can be expanded in terms of the

basis vectors as,

|Ψ1〉 =
∑

i1

ci1 |i1〉; |Ψ2〉 =
∑

i2

ci2 |i2〉. (1.2)

From equations (4.1) and (1.2) we see that if ci1,i2 6= ci1ci2 for any i1, i2, then |Ψ〉 6=

|Ψ1〉⊗|Ψ2〉. The state |Ψ〉 is then said to be an entangled state and the subsystems S1

and S2 entangled. As this entanglement arises between two systems it is also known

as bipartite entanglement. If one has n subsystems it is in principle possible to have

a n-partite entanglement. Moreover, the entanglement we just defined is for pure

states. In practice though, we encounter mixed states more often than pure states.

Entanglement of a mixed state is no longer equivalent to being nonproduct states,

instead one calls a mixed state of two subsystems S1 and S2 entangled if the density

matrix of the composite system cannot be written as a sum of the product of the

density matrices of the two subsystems, i.e.

ρ 6=
∑

i

piρ
i
1 ⊗ ρi

2, (1.3)

ρi
1, ρ

i
2 being the density matrix of the subsystems 1 and 2 respectively, and pi their

statistical weight in the mixture. A practical and common example of a pure entangled

state is the spin singlet state,

|Ψ〉 =
1√
2
[| ↑〉1| ↓〉2 − | ↓〉1| ↑〉2] (1.4)

of two spin-1
2

particles whose Hilbert space are spanned by the mutually orthogonal

basis vectors | ↑〉i and | ↓〉i, i = 1, 2. Now that we have defined what entanglement is

let us discuss its physical meaning and implications.
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Physically entanglement means that the two subsystems S1 and S2 no longer

posses any independent physical characteristics and can only be defined by the quan-

tum state |Ψ〉 of the composite system 2. It is therefore not possible to have a local

measurement or operation on either S1 or S2 to determine the complete physical prop-

erty of the quantum state |Ψ〉. This is true even after the two subsystems separate

physically, as if they have some kind of a memory of their earlier interaction. Thus

entanglement creates a nonlocal nonclassical correlation among the systems. This as-

pect of non-local correlation can be understood well by considering a simple example

of two spin-1
2

particle.

Suppose a system of spin-1
2

particles is described by the spin singlet state (which

is an entangle state) of equation (1.4). Then we see that in any measurement on this

state, if the first particles is found to be in the “spin up” state, we can immediately

infer that the second particle upon similar measurement will always be found in the

“spin down” state. Thus due to the non-local correlation, a measurement on the

first particle influences the second which then adjusts itself to the “spin down” state

to give the desired outcome of measurement on it 3. Note that there seems to be

an apparent violation of special relativity as information about the measurement of

the first particle was instantaneous transferred to the second that may be spatially

separated by arbitrary distance. In truth though, there is no violation. Even though

the measurement on the second particle is instantaneously fixed by the outcome of the

first, the complete randomness of the latter outcome means that no useful information

2In the classical physics the sub-systems simply add up to make a bigger composite system yet

retaining their independent properties
3In contrast in classical physics correlations arise often from conservation laws. For example a

particle at rest may decay into two identical fragments whose momentum is then correlated following

the conservation law. Hence measuring one of the particles momentum tell us the other. But note

that the momentums of each particle exists independent of the other and no measurement on one

can influence or change the other.
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can be transmitted between the partners.

Einstein was quite intrigued by the existence of such nonlocal correlations and

termed it “spooky action at a distance”. He along with Boris Podolsky and Allen

Rosen envisioned a Gedanken experiment with two particles and argued in terms of

their momentum and position co-ordinates that such nonlocal correlation is an artifact

of incompleteness of the quantum theory [7]. This later came to be known as the

Einstein-Podolsky-Rosen (EPR) paradox 4. The EPR paradox led to “hidden variable

theories” , where one assumes that the dynamic behavior of a system’s properties at

a microscopic level appears probabilistic because of some yet unknown parameters so

called the hidden variables.

1.1.1 The Bell’s Inequalities

Until 1964 it was thought that by suitable choice of the hidden variable one can match

the predictions of quantum mechanics with hidden variable theories. But then John

Bell showed that such hidden variable theories actually predict a testable inequality

relation among the observables of spin systems that disagrees with the predictions

of quantum mechanics [8]. It is worth mentioning that Bell’s inequality is a general

relation about correlations among systems and is not based on quantum theory.

To understand this inequality let us consider a specific example of a composite

system of two spin-1
2

particles which are correlated in spin. We then consider three

measurement direction of spin of the particles along the unit vectors â, b̂, ĉ which are

in general not mutually orthogonal.

Further suppose that one of the particles belong to some definite type, say (â−, b̂+, ĉ+),

which means that if a projection of spin operator ~Si, i = 1, 2 is taken along the unit

vector â we will get (−) sign, that along b̂, (+) sign and so on. The other particle

then should belong to the type (â+, b̂−, ĉ−) to ensure zero total angular momentum.

4A generalization of EPR paradox to composite spin- 1

2
was later done by D. Bohm
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Table 1.1: Spin component matching in correlated measurement

Population Particle 1 Particle 2

N1 (â+, b̂+, ĉ+) (â−, b̂−, ĉ−)

N2 (â+, b̂+, ĉ−) (â−, b̂−, ĉ+)

N3 (â+, b̂−, ĉ+) (â−, b̂+, ĉ−)

N4 (â+, b̂−, ĉ−) (â−, b̂+, ĉ+)

N5 (â−, b̂+, ĉ+) (â+, b̂−, ĉ−)

N6 (â−, b̂+, ĉ−) (â+, b̂−, ĉ+)

N7 (â−, b̂−, ĉ+) (â−, b̂+, ĉ−)

N8 (â−, b̂−, ĉ−) (â+, b̂+, ĉ+)

In this way we have a total of eight possibilities which are mutually exclusive and

disjoint for the pair of spins. All the eight possibilities are listed in table (1.1).

Let P(â+, b̂+) be the probability that in a random selection, some observer A

measures ~S1 · â to be + and observer B measures ~S2 · b̂ to be +, then we should have

P (â+, b̂+) =
(N3 +N4)
∑8

i Ni

, (1.5)

where N3, N4 are the number of particle pairs for which this situation is found. In a

similar manner we find,

P (â+, ĉ+) =
(N2 +N4)
∑8

i Ni

; P (ĉ+, b̂+) =
(N3 +N7)
∑8

i Ni

. (1.6)

Now as Ni is positive semidefinite, we can write inequality relations like

N3 +N4 ≤ (N2 +N4) + (N3 +N7). (1.7)

Using equations (1.5, 1.6) in (1.7) we then find,

P (â+, b̂+) ≤ P (â+, ĉ+) + P (ĉ+, b̂+). (1.8)
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Equation (1.8) is the famous Bell’s inequality [8, 9]. Note that this inequality is a

mathematical expression of the bound that arises from EPR locality assumption (in-

dependence of measurement) which implies that certain combinations of expectation

values have definite bound [10]. Now that we know what Bell’s inequality is, let us

study its implication in respect to the nonlocal quantum correlations - entanglement.

1.1.2 Entanglement and violation of Bell’s inequality

Let us now calculate the probabilities for the spin correlated system using quantum

mechanics. Our spin-1
2

composite system is then characterized by the spin singlet

state

|Ψ〉 =
1√
2
[| ↑〉1| ↓〉2 − | ↓〉1| ↑〉2]; (1.9)

where we take the quantization axis to be the z− axis. To calculate the probability

P (â+, b̂+) we need to consider a new quantization axis b̂ that makes an angle θab

with â as shown in Fig (1.1).

Following standard spin operator formalism we find the probability that the ~S2 · b̂

measurement yield (+) when particle 2 is in the eigenket of ~S2 · â with negative

eigenvalue is given by,

cos2

[

(π − θab)

2

]

= sin2

(

θab

2

)

. (1.10)

Hence, we find

P (â, b̂) =
1

2
sin2

(

θab

2

)

. (1.11)

Similarly evaluating the other probabilities and substituting them in the inequality

(1.8) we get

sin2

(

θab

2

)

≤ sin2

(

θac

2

)

+ sin2

(

θcb

2

)

. (1.12)

Now for simplicity let us choose â, b̂ and ĉ to lie in a plane such that

θab = 2θ; θac = θcb = θ (1.13)
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〈!S1〉

〈!S2〉

θab

ẑ

Figure 1.1: Orientation of the spin components in space. ẑ being the quantization

axis.
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then we find that for 0 < θ < π/2 the inequality is violated 5.

Thus we see that quantum mechanical measurement of the spin correlations can

lead to violation of Bell’s inequality. Note that in this example we attributed perfect

correlations among the two spin-1
2
particles. In real quantum mechanical systems

such correlation are practically impossible and hence experimentally it is difficult to

test this inequality. The Bell’s inequality was later generalized by Clauser, Horne,

Shimony, and Holt [11] with the intent of experimentally testing it. Consider a

correlation experiment in which the variables (A1, A2) are measured on one subsystem

of the whole system and (B1, B2) on the other subsystem with both the subsystems

spatially separated. Then the hidden variable theory imposes the following constraint

on the statistics of the measurements on a large ensemble of such systems,

|E(A1, B1) + E(A1, B2) + E(A2, B1) − E(A2, B2)| ≤ 2, (1.14)

where E(Ai, Bj) is the expectation value of the correlation experiment AiBj and it is

assumed that they are dichotomic i. e. have values ±1 . This is the CHSH(Clauser,

Horne, Shimony and Holt) inequality which gives experimentally observable bound

on any hidden variable theory. Violation of this inequality was found in a series of ex-

periment with linear polarization correlation of two photons during the 70’s and 80’s

thus refuting the existence of hidden variable theory [12, 13, 14]. A schematic diagram

showing the basic essence of these experiments is shown in Fig. (1.2). Incidentally

this where also the first experiments to demonstrate non-local quantum correlations

i.e. entanglement among two quantum systems. Moreover, the experimental obser-

vations are in accordance with quantum mechanics thus proving its completeness as

a theory for studying nature. The maximum violation of Bell’s or CHSH inequality

5This explanation of violation of Bell’s inequality follows closely to that of Modern Quantum

Mechanics, J. J. Sakurai, page 228-230
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S

Polarizer Polarizer

θ φ

Figure 1.2: Typical experimental arrangement to test Bells inequality. A source

emits, say, polarization-entangled pairs of photons. Each photon is sent through a

polarizer whose orientation can be varied. Finally behind each polarizer, the trans-

mitted photons are registered. Quantum mechanics predicts a sinusoidal variation

of the coincidence count rate as a function of the relative angular orientation of the

polarizers. Any such variation violates local realism as expressed by Bells inequality.
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is manifested by a set of entangled states known as the Bell’s state :

|φ±〉 =
1√
2

[|00〉 ± |11〉]

|Ψ±〉 =
1√
2

[|01〉 ± |10〉] , (1.15)

in which case equation (1.14) is 2
√

2. Here |0〉, |1〉 can be the spin up, spin down

kets for spin-1
2

particles or orthogonal polarization H , V for photons. Note that in

the case of mixed entangled states their is no particular criteria or inequalities to test

the hidden variable theory. However, for bi-partite (two qubit) entanglement, if the

mixed state is a Werner state [15] (a mixture of the singlet with white noise) of the

form

ρ = p|Ψ−〉〈Ψ−| + (1 − p)I/4, (1.16)

the CHSH inequality is applicable and can be shown to be violated when 2−1/2 <

p ≤ 1 [16]. Here ρ is the density matrix of the system, Ψ− are the singlet state

(equation 1.15), p the statistical weight of the mixture and I is the identity operator.

1.2 Producing entanglement

1.2.1 Cascade emission from atoms

The pioneering experiment showing entanglement and the violation of Bell’s inequal-

ity was performed by Freedman and Clauser in 1972 [12]. They studied the polar-

ization correlation among two photons emitted in the cascade decay of a Ca atom.

The schematic diagram of the atomic level structure and the experimental setup are

shown in Fig (1.3). The decaying atoms were viewed by two symmetrically placed

optical systems, each consisting of two lenses, a wavelength filter, a rotatable and

removable polarizer, and a single photon detector. Coincidence rates for two photon

detection as a function of the angle φ between the planes of the linear polarization

defined by the orientation of the inserted polarizers were measure in different con-

figurations : R(φ), when both polarizers present, R1, coincidence rate when second
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Figure 1.3: Sketch of the atomic level of Ca and experimental setup of the experiment

of Freedman and Clauser (1972). The two photons emitted in an atomic cascade in

Ca are collected with lenses and, after passage through adjustable polarizers, coin-

cidences are registered using photomultiplier detectors and suitable discriminators

and coincidence logic. The observed coincidence counts violate the generalized Bell’s

inequality (CHSH inequality)
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polarizer removed, R2, when first polarizers removed and R0 when both polarizers

removed. The inequality (1.14) for this set of measurements then takes the form,

−1 ≤ ∆(φ) ≤ 0, (1.17)

where

∆(Φ) =
3R(φ)

R0
− R(3φ)

R0
− R1 +R2

R0
. (1.18)

They found that this inequality is not satisfied by quantum mechanical predictions

of coincidence rates for a range of values of φ. Maximum violation occurs at φ =

22.50[∆(φ) > 0] and φ = 67.50[∆(φ) < −1]. These violations proved for the first time

that non-local correlations, as predicted by quantum theory, can truly exist in nature

(in this case among the photons), thus questioning the EPR notion of physical reality

and existence of any hidden variables.

Later Aspect, Grangier and Roger [14] improved upon this result using a high

efficiency source of Ca cascade and two channel polarizers (an optical analog of Stern-

Gerlach filters). Unlike the earlier experiments [12, 13], by applying the two channel

polarizers they were able to measure true dichotomic polarizations of visible photons

and thus measure the coincidences required for the CHSH inequalities directly. A

schematic diagram of their experimental setup is shown in Fig (1.4). The observed

coincidence counts were in agreement with quantum mechanical predictions and vio-

lated the CHSH inequality of equation (1.14). Note that the expectation values of

the correlation measurement are related to the coincidence counts by the relation

E(A1, B1) =
1

N
[C++(A1, B1) + C−−(A1, B1) − C+−(A1, B1) − C−+(A1, B1)] ,

(1.19)

where it is assumed that each photon is subject to a measurement of linear polar-

ization with a two-channel polarizer whose outputs are + and −. Then, for example

C++(A1, B1) is the number of coincidences between the + output port of the polar-

izer measuring photon 1 along A1 and the + output port of the polarizer measuring
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Figure 1.4: Schematic of the experimental set up of Aspect, Grangier and Roger’s ex-

periment. Two polarimeters I and II, in orientations Â and B̂, perform the dichotomic

measurements of linear polarization of photons. Each polarimeter is rotatable around

the axis of the incident beam. The counting electronics monitors the singles and the

coincidences. Figure source : PRL 49, 91 (1982).
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photon 2 along B1. Maximal violation was observed for A1 = 50o, B1 = 22.5o, A2 =

45o, B2 = 67.5o where,

|E(A1, B1) + E(A1, B2) + E(A2, B1) − E(A2, B2)| = 2
√

2. (1.20)

This is to date the maximum known violation of Bell’s inequality. In later years

several other sources ranging from non-linear crystals to semiconductors have been

discovered to produced entanglement. Let us now discuss some of them.

1.2.2 Parametric down conversion

Another method of producing entanglement (in particular bi-partite entanglement)

is by spontaneous parametric down conversion (SPDC). This method was first im-

plemented by Alley and Shih [17] for a Bell-inequlity type experiment. In the para-

metric down conversion process a nonlinear crystal is pumped by a sufficiently strong

laser beam. Then, with a certain very small probability, the nonlinear crystal splits

incoming photons into pairs of photons of lower energy. The phase-matching con-

ditions which for sufficiently large crystals are practically equivalent to energy and

momentum conservation, imply that the momenta and the energies of the two created

photons have to sum up to the corresponding value of the original pump photon inside

the crystal (see Fig 1.5). Further, the phase matching condition also dictates that

the photon pair be entangled in the frequency domain [18]. SPDC is stimulated by

random vacuum fluctuations, as such the photon pairs are created at random times.

However, if one of the pair (the “signal”) is detected at any time then we know its

partner (the “idler”) is present. In effect, a very rich entangled state results. The

two emerging photons are entangled both in energy and in momentum. In type-I

down conversion, these two photons have the same polarization while in type-II down

conversion, they have different polarization.

Recent experiments using the parametric down conversion process, utilizes type-II

down conversion. In this case the two emerging photons having orthogonal polariza-
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Figure 1.5: Schematic of type-II parametric down conversion to produce directed

beams of polarization entangled photons An incident pump photon can spontaneously

decay into two photons which are entangled in momentum and energy. Each photon

can be emitted along a cone in such a way that two photons of a pair are found

opposite to each other on the respective cones. The two photons are orthogonally

polarized. Along the directions where the two cones overlap, one obtains polarization-

entangled pairs.
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tions lead to a polarization-entangled state,

|ψ〉 =
1√
2

[|H〉1|V 〉2 − |V 〉1|H〉2] . (1.21)

Here H and V stand for the horizontal and vertical polarization respectively. Note

that this being one of the four Bell states, is a maximally entangled state in the

polarization basis. Further progress in experiments have demonstrated such polariza-

tion entanglement over large distances [19]. SPDC is till now the most widely used

method of producing entangled photon states. Several quantum information proto-

cols like teleportation, key distribution, cryptography and communication have been

implemented using such polarization entangled photons in recent times [5, 20, 21, 22,

23, 24, 25].

1.2.3 Other methods

The problem with spontaneous down conversion as a source of entanglement is its low

efficiency and probabilistic nature. During the last few years several other systems

have been investigated for achieving a stable source of entanglement. In particular

laser cooled trapped ions [26, 27, 28], cascade emission from semiconductor quantum

dots [29, 30, 31, 32] and cold atoms in optical lattices [33, 34, 35, 36] have turned out

to be promising alternatives for entanglement generation. Studies invoking coherent

interactions (coulomb and dipolar) among ions and trapped atoms have shown the

implementation and working of basic quantum logic gates like the C-NOT and phase

gates. Systems of a few trapped ions (see Fig. 1.6) have demonstrated quantum-

entanglement engineering with high fidelity and are promising candidates for scalable

quantum computing. Another approach of using atomic systems for entanglement

generation are the cavity-QED techniques This involves quantum optical manipu-

lations and control of coherently exchanging single atoms and excitation between

radiation field (see Fig. 1.7). Further control of loss or decoherence rate, including

atomic spontaneous emission and photon leakage from the cavity is also under active
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Figure 1.6: A linear quadrupole ion trap containing individually addressed 40Ca+

ions (blue) is depicted. After cooling by laser beams (red), the trapped ions form

a string and are then imaged by using a charge-coupled device (CCD). In the CCD

image shown, the spacing of the two centre ions is ∼ 8µm. Figure courtesy: Rainer

Blatt and D. J. Wineland, Nature 453, 1008 (2008)
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Figure 1.7: Single-atom cavity-QED experiment. Cold caesium atoms are dropped

into a high-finesse optical cavity of axial spacing 10 µm. The trajectory of a single

atom traversing the cavity is reconstructed (inset) by monitoring the field that leaks

out of the cavity. Figure courtesy : C. Monroe, Nature 416, 238 (2002).
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investigations. Several groups across the world are currently working towards this

goal [37, 38, 39, 40, 41]. The discovery that optically excited semiconductor quantum

dots (QD) can behave as single two level atoms [42, 43, 44, 45, 46, 47, 48, 49, 50] has

created the possibility of using the QDs as solid state qubits for quantum computa-

tion. Moreover, methods for quantum logic gate implementation with QDs using the

coupling or exchange tunneling between two QDs have been proposed [51, 52, 53, 54].

These experiments have created enormous interest in the study of QD system with

focus on potential application in quantum information and quantum computation.

Recently both charge and spin degrees of freedom in QDs have been studied for the

generation of entangled photons (see for example Fig. 1.8) and implementation of

quantum logic gates [30, 32, 53, 55, 56].

Further, in last few years studies of nonclassical correlation in evanescently coupled

waveguides [57, 58, 59, 60, 61, 62] have shown their utility for entanglement generation

[63, 64]. In recent experiments coupled waveguides have been used in realization of a

quantum controlled NOT gate [64] and generation of a multimode interferometer on

an integrated chip experiment [65, 66]. Further such interferometers can be used to

generate arbitrary quantum circuits and entangled states like the NOON states [67].

1.3 Characterization of entanglement

One of the most difficult and less understood aspect of entanglement is its character-

ization. During the last decade many studies have appeared on this subject (see ref

[16] for a detailed account of this). Currently there exists well defined measures of en-

tanglement for bi-partite systems but a definitive multipartite entanglement measure

is not yet known. In this section we discuss these bi-partite entanglement measures.

In particular we discuss the two qubit concurrence introduced first by Wootters [68]

and the Gaussian entanglement measures [70, 71, 72, 73] useful for continuous vari-

able systems. These measures will be later used extensively in chapter (5) and (6) of
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Figure 1.8: Schematic of single and paired photon emission in cascade de-

cay from II-VI and III-V quantum dots. Figure source: www.ihfg.uni-

stuttgart.de/.../ullrich/fig2.jpg
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the thesis.

1.3.1 Peres separability criterion

A necessary condition for separability of quantum states has been provided by Peres

[73], called the positive partial transpose or PPT criterion. It says that if ρAB, the

density matrix of a composite system made of two subsystem A and B, is separable

then the new matrix ρTB

AB with elements defined in some fixed product basis as,

〈m|〈µ|ρTB

AB|n〉|ν〉 ≡ 〈m|〈ν|ρAB|n〉|µ〉, (1.22)

will also be a density operator meaning that ρTB

AB is also a quantum state (it also

guarantees the positivity of ρTA

AB defined in an analogous way ). The operation TB,

called a partial transpose, corresponds to transposition of indices corresponding to

the second subsystem. Thus when a density operator corresponding to a quantum

state fails to satisfy this criterion we can say the quantum state of the bi-partite

system is in as entangled state.

1.3.2 Entanglement witness

Entanglement witnesses [16, 74, 75] is another fundamental measure in quantum

entanglement theory. These are observables that completely characterize separable

states and allow us to detect entanglement physically. According to this measure,

the state ρAB of a bi-partite system belongs to the set of separable states if it has a

non-negative mean value,

Tr(WρAB) ≥ 0, (1.23)

for all observables W that (a) have at least one negative eigenvalue and (b) have a

non-negative mean value on product states or equivalently satisfy the non-negativity

condition

〈ψA|〈φ|W |ψA〉|φB〉 ≥ 0, (1.24)
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for all pure product states |ψA〉|φB. The observables W satisfying conditions (a) and

(b) above are called the entanglement witnesses [75]. Thus, such observables can be

said to be entanglement detectors. In particular, one says that entanglement of ρ is

detected by witness W if and only if Tr(Wρ) < 0 (see the Fig 1.9 ).

1.3.3 Concurrence

The entanglement for any bipartite qubit system is best identified by examining the

concurrence [68, 76, 77], an entanglement measure that relates to the density matrix

of the system ρ. Concurrence is a entanglement monotone i.e. it cannot be increased

by any local operations on the system. The concurrence for a bipartite system is

defined as,

C(t) = max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4}, (1.25)

where λ’s are the eigenvalues of the non-hermitian matrix ρ(t)ρ̃(t) arranged in decreas-

ing order of magnitude. The matrix ρ(t) being the density matrix for the bipartite

system and the matrix ρ̃(t) is defined by,

ρ̃(t) = (σ(1)
y ⊗ σ(2)

y )ρ∗(t)(σ(1)
y ⊗ σ(2)

y ), (1.26)

where ρ∗(t) is the complex conjugation of ρ(t) and σy is the well known time reversal

operator for spin half systems in quantum mechanics,

σy =







0 −i

i 0






. (1.27)

In the basis defined in equation (1.2) the σ
(1)
y ⊗ σ

(2)
y operator is given by,

σ(1)
y ⊗ σ(2)

y =



















0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0



















. (1.28)
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Figure 1.9: The line represents a hyperplane corresponding to the entanglement wit-

ness W . All states located to the left of the hyperplane or belonging to it in par-

ticular, all separable states provide non-negative mean value of the witness, i.e.,

Tr(Wρsep) ≥ 0 while those located to the right are entangled states detected by the

witness.
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Note that concurrence varies from C = 0 for a separable state to C = 1 for a

maximally entangled state like the Bell states. The importance of the measure stems

from the fact that it allows us to compute the entanglement of formation for two

qubits according to [68]

EF = H

(

1 +
√

1 − C2(ρ)

2

)

(1.29)

where H is the binary entropy H(x) = −x log2 x− (1 − x) log2(1 − x).

1.3.4 Negativity

A simple computable measure of bipartite entanglement termed negativity was intro-

duced first by Zyczkowski et. al. [69] and later shown by Vidal and Werner [78] to

be a monotone,

N =
∑

λ<0

λ, (1.30)

where λ are eigenvalues of ρPT
AB. Here PT is a partial transpose with respect to one

of the subsystems A or B of the composite system matrix ρAB . A version of the

measure called logarithmic negativity is given by,

EN (t) = log2 ‖ ρPT ‖,

‖ ρPT ‖= (2N (ρ) + 1) , (1.31)

and is the upper bound for distillable entanglement [78]. Here the symbol ‖‖ denotes

the trace norm and N (ρ) is the absolute value of the sum of all the negative eigenvalues

of the partial transpose of ρ. The log negativity is a non-negative quantity and a non-

zero value of EN would mean that the state is entangled.

1.3.5 Characterization of continuous variable entanglement

In the famous EPR paper [7] Einstein, Podolsky and Rosen considered a two particle

state quantum mechanically correlated with respect to their position and momenta.
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They defined a position wavefunction

ψ(x1, x2) = Cδ(x1 − x2 − u), (1.32)

with a vanishing normalization constant C. Hence the corresponding quantum state,
∫

dx1dx2ψ(x1, x2)|x1, x2〉 ∝
∫

dx|x, x− u〉, (1.33)

describes perfectly correlated positions (x1−x2 = u) and momenta (total momentum

zero, p1 + p2 = 0) [79]. This wavefunction happens to be the first known example

of an entangled state. Moreover as the position and momentum variables xi, pi can

vary continuously in an infinite dimensional space, this wave function is also the first

example of continuous variable entanglement. Thus though discrete variable or qubit

entanglement came to focus with the advent of quantum information science, entan-

glement itself came to light in continuous variable setting. The study of continuous

variable entanglement has gained much interest in recent times with the observation

that many of the quantum communication protocols is achievable in quantum optics

utilizing continuous quadrature amplitude of the quantized electromagnetic field (see

for example ref. [79] for a comprehensive review on this subject). In this section we

focus on how to get a measure of entanglement in case of continuous variables.

Let us consider a continuous variable (CV) system, described by the Hilbert space

H = ⊗n
i=1Hi resulting from the tensor product of the infinite-dimensional Fock spaces

Hi’s. Let aj be the annihilation operator acting on Hj, and x̂j =
(aj+a†

j)√
2

and p̂j =

(aj−a†
j)√

2i
be the related quadrature phase operators. The corresponding phase space

variables will be denoted by x̂i and p̂i. Let us then group together the operators x̂i

and p̂i in a vector of operators X̂ = (x̂1, p̂1, ......, x̂n, p̂n). The canonical commutation

relations for the X̂ ′
is are encoded in the symplectic form Ω:

[

X̂i, X̂j

]

= iΩij

Ω ≡ ⊕n
i=1ω ω =







0 1

−1 0






. (1.34)
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There is a class of CV states that are well characterized with respect to separabil-

ity. This is the class of Gaussian states with Gaussian characteristic functions and

quasiprobability distributions. Therefore a Gaussian state ρ is completely character-

ized by its first and second statistical moments, which form respectively, the vector of

first moments X̄ ≡ (〈X̂1〉, 〈X̂1〉, .....〈X̂n〉, 〈X̂n〉) and the covariance matix of elements

σ:

σij ≡
1

2
〈X̂iX̂j + X̂jX̂i〉 − 〈X̂i〉〈X̂j〉, (1.35)

where for any obervable Ô the expectation value 〈Ô〉 = Tr(ρÔ). As the first statistical

moments can be arbitrarily adjusted by local unitary operations, it does not affect

any property related to entanglement or mixedness and thus the behavior of the

covariance matrix σ is all important for the study of entanglement.

Let us now consider the hermitian operator ŷ = Y X̂T , where Y ǫR2n is an arbitrary

real 2n-dimensional row vector. Positivity of ρ imposes the condition Tr(ρŷ2) ≥ 0

which can be simply recast in terms of second moments as Y ηY T ≥ 0, with ηij =

〈X̂iX̂j〉. This relation along with the canonical commutation relations, can be used

in conjunction with equation (1.35) and the arbitrarity nature of Y , to recast the

Heisenberg uncertainty principle in the form

σ +
i

2
Ω ≥ 0. (1.36)

The uncertainty principle (1.36) is the necessary and sufficient constraint σ has to

fulfill to be a true covariance matrix [81, 82]. Note that such a constraint implies

σ ≥ 0. Based on this uncertainty principle involving the covariance matrix and

invoking the Peres [73] separability criterion two different ways of studying Gaussian

entanglement has been proposed. One of them is a inequality due to Simon [70] and

the other is the logarithmic negativity for Gaussian states [71].
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Simon’s inequality

Simon recognized that the partial transpose operation on the density matrix ρ defin-

ing a bi-partite quantum state acquires, in the continuous variable case, a beautiful

geometric interpretation as a mirror reflection in the Wigner phase space. The Wigner

distribution of a separable ρ remains a Wigner distribution. This essentially implies

that the covariance matrix σ → σ̃ = ΛσΛ, where Λ = diag(1, 1, 1 − 1). The uncer-

tainty principle then takes the form

σ̃ +
i

2
Ω ≥ 0. (1.37)

Thus now for the state to be separable both (1.36) and (1.37) has to be satisfied.

Simon used this restriction and the Peres-Horodecki [73, 80] criterion of positivity to

derived an inequality

detA detB +

(

1

4
− | detC|

)2

− tr(AωCωBωCTω) ≥ 1

4
(detA+ detB), (1.38)

where the covariance matrix has a block form

σ =







A C

CT B






, (1.39)

and A,B,C are 2 × 2 matrices given by,

A =













〈x2
1〉 〈x1p1+p1x1

2
〉

〈x1p1+p1x1

2
〉 〈p2

1〉













; (1.40)

B =













〈x2
2〉 〈x2p2+p2x2

2
〉

〈x2p2+p2x2

2
〉 〈p2

2〉













; (1.41)

C =













〈x1x2+x2x1

2
〉 〈x1p2+p2x1

2
〉

〈x2p1+p1x2

2
〉 〈p1p2+p2p1

2
〉













. (1.42)
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This inequality (eqn. 1.38) shows that the Peres-Horodecki criterion is a necessary and

sufficient separability condition for all bipartite Gaussian states. Thus any Gaussian

state whose covariance matrix violates this inequality can be said to be entangled.

Logarithmic negativity

The measure of entanglement for a Gaussian state can also be characterized by the

logarithmic negativity EN , a quantity evaluated in terms of the symplectic eigenvalues

of the covariance matrix σ [71]. The elements of the covariance matrix σ are given

in terms of the conjugate observables x and p in the form (1.40, 1.41) and (1.42).

The condition for entanglement of a Gaussian state is derived from the positive par-

tial transpose (PPT) criterion [73, 70], according to which the smallest symplectic

eigenvalue ν̃< of the transpose of matrix σ should satisfy

ν̃< <
1

2
, (1.43)

where ν̃< is defined as

ν̃< = min[ν̃+, ν̃− ] (1.44)

and ν̃± is given by,

ν̃± =

√

√

√

√∆̃(σ) ±
√

∆̃(σ)2 − 4Detσ

2
, (1.45)

where ∆̃(σ) = ∆(σ̃) = Det(α) + Det(β) − 2Det(µ). Thus according to the condition

(3.5) when ν̃< ≥ 1/2 a Gaussian state become separable. The corresponding quan-

tification of entanglement given in terms of the logarithmic negativity EN [71, 78, 69]

is then defined as,

EN = max[0,− ln{2ν̃<}]. (1.46)

Thus according to this quantification, for a Gaussian state ρ if EN > 0 the state is

entangled and the amount of entanglement is given by the value of EN .

29



Duan-Giedke-Cirac-Zoller inequality

An inseparability criterion based on the total variance of a pair of Einstein-Podolsky-

Rosen (EPR) type operators was proposed for CV systems by Duan, Giedke, Cirac

and Zoller [72]. They considered the following EPR like operators,

û = |a|x̂1 +
1

a
x̂2,

v̂ = |a|p̂1 −
1

a
p̂2, (1.47)

where a is an arbitrary non-zero real number. They showed that for any separable

quantum state ρ, the total variance of any pair of EPR-like operators in the form

(1.47) satisfies a lower bound given by the inequality

〈(∆û)2〉 + 〈(∆v̂)2〉 ≥ a2 +
1

a2
, (1.48)

where ∆α̂ = α̂ − 〈α̂〉, α̂ = û, v̂. This inequality provides a sufficient condition for

entanglement of any bipartite continuous variable states. Furthermore, for all Gaus-

sian states ρ whose covariance matrix satisfy the uncertainty principle (1.36) and the

restriction (1.37) , this inequality turns out to be a necessary and sufficient condition

for inseparability.

1.4 Decoherence

Now that we have discussed quantum entanglement, a key resource in quantum infor-

mation and quantum computation, we turn our attention to the subject of decoherence

- a phenomenon that arises as a result of unavoidable system-environment coupling.

The study of decoherence is of fundamental importance being the prime reason of ap-

parent absence of quantum signatures (like the superposition principles) at a macro-

scopic level [83]. Its consequences have profound implication in different branches

of science ranging from quantum information to molecular chemistry. Further, de-

coherence is a key obstacle in the control and manipulation of quantum features of
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microscopic systems and relating them to the system’s macroscopic properties. In

the context of quantum information sciences decoherence is extremely important as

entanglement is known to be susceptible to it [24]. As such a detailed understanding

of the interplay between entanglement and decoherence is of utter importance both

from the viewpoint of fundamental knowledge and application. Let us now define and

understand what decoherence is and why it poses the biggest obstacle in quantum

information

The linearity of the Schrödinger equation in quantum mechanics, assures that

if at a certain time instant the physical state of a system is known, its state at a

later time can be found from the unitary evolution of the system Hamiltonian. An

important underlying condition for this to satisfy is that the system remains closed

i.e. either isolated or weakly interacting with its surrounding (environment) at all

time. In practice however, preparing such an isolated system is not possible and any

physical system as it evolves dynamically will interact with its environment and thus

get influenced by the interaction. This thereby renders the system open and thus its

evolution remains no longer unitary. Hence, we have a irreversible loss of information

about the system properties due to its interaction with its environment. Consider now

a physical system having some initial coherence, then due to its interaction with the

environment the environmental degrees of freedom get coupled into this coherence.

As these degrees of freedom are typical much larger (infinite) in comparison to that of

the system, monitoring the distributed coherence among these degrees are infeasible

by any process. Thus one can no longer harness the systems coherence for some useful

purpose. This process of irrecoverable loss of quantum coherence of a physical system

interacting with its environment is known as decoherence [83, 84, 85, 86].

To understand the environment induced decoherence effect better let us next con-

sider a simple system of two level atom with an excited state |e〉 and ground state

|g〉. The most general density matrix characterising this two level atom can then be
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written as,

ρ = ρee|e〉〈e| + ρgg|g〉〈g|+ ρeg|e〉〈g|+ ρge|g〉〈e|. (1.49)

Note that the off diagonal terms represent the coherence in the system. Now as the

system interacts with the environment during a observation or measurement on a

time scale t, the density matrix evolves as

ρ(t) = ρee|e〉〈e|e−t/T1 + ρgg|g〉〈g|(1− et/T1)

+[ρeg|e〉〈g| + ρge|g〉〈e|]e−t/T2. (1.50)

Here T1 and T2 correspond to the lifetime of the excited state and the dynamically

generated coherences respectively. Now when t >> T1, T2, we get ρ(t → ∞) =

ρgg|g〉〈g|, thus the system decays to its ground state. However for t >> T2 but

t < T1, which is very common in many microscopic systems we have,

ρ(t) = ρee|e〉〈e|e−t/T1 + ρgg|g〉〈g|(1− e−t/T1) (1.51)

Thus we find that for this time scale the off-diagonal terms have decayed completely

thereby causing the system to lose all its coherence. This phenomenon of coherence

loss is known as decoherence. Further, it is well known that the rate of decoherence in

a system increases exponentially with its size [87]. Thus any non-classical or quantum

correlation between two macroscopic system will decay much faster than the response

time of the measurement devices. This makes decoherence primarily responsible for

the absence of any quantum signatures in our macroscopic world.

How is decoherence an obstacle in the progress of quantum information sciences?

To answer this question one has to note that generation of entanglement alone is

not sufficient for quantum information and quantum computation. A successful im-

plementation of a quantum computer will require numerous microscopic systems as

qubits, and sustained entanglement among the qubits as they evolve dynamically

over the period of computation. Thus to use its true potentials one needs to preserve
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entanglement over the period of computation. However in any practical realization of

quantum information protocols system-environment interaction and hence decoher-

ence would be unavoidable. In addition as decoherence increases rapidly with the size

of the system [87] in any realistic computation involving qubits in bulk, entanglement

is bound to be severely degraded. In the last few years numerous investigations have

shown how decoherence can lead to the decay of entanglement [88, 89, 90, 91] and

even to its complete disappearance in a short time [92, 93, 94, 95, 96]. Thus, it is

quite clear that one has to control decoherence to be able to harness the power of

entanglement for useful application in the field of quantum information sciences.

1.5 Overview

In recent years, much of the scientific research has been motivated towards manipula-

tion of microscopic systems and control of decoherence for useful application in quan-

tum information sciences. Several novel systems like trapped ions, atom in cavities,

semiconductor quantum dots (QDs), super-conducting qubits and photonic waveg-

uides have been investigated for the purpose of manipulating the quantum dynamics

at a microscopic level. Further, quantum optical studies in atomic and semiconductor

systems have led to quantum logic gates implementations using this systems. Semi-

conductor quantum dots in particular have been found to be promising candidates

for basic units in solid state quantum computing. Recently, some success has also

been achieved in the manipulation of entanglement in the face of decoherence using

coherent light matter interactions [97, 98, 99] and by controlling reservoir properties

[100, 101].

We contribute to these endeavors through several interesting and impactful results

reported in this thesis. The thesis is primarily focussed on the theoretical study of

quantum entanglement and decoherence phenomena in some of the novel microscopic

systems which can serve as qubits for quantum computation. We specifically study
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trapped ions/neutral atoms, quantum dots and photonic waveguides. We use coher-

ent external electromagnetic fields to manipulate the quantum correlations in these

systems and thus achieve external control over the generation and manipulation of

entanglement. Moreover, we study the effect of environment induced decoherence on

entanglement dynamics in qubits. Our studies are based on the general framework of

quantum optics. We use both analytical and numerical techniques. Our predictions

are based on realizable experimental parameters and can thus be useful in future

experimental implementations.

1.6 Organization

As spontaneous emission is a fundamental limitation on coherence times in atomic

systems [102, 103, 104], manipulation and control of the spontaneous emission rate is

of great importance in quantum information processing with atoms and ions. Several

methods exist to achieve this in atomic systems. One such method is by inducing

quantum interference effects known as vacuum induced coherences (VIC)[105]. VIC is

a quantum interference effect that arise as a result of interaction between the atomic

system and electromagnetic vacuum when certain conditions on the dipole matrix

elements between the excited states and the ground state are satisfied. In particular,

they have to be non-orthogonal [105, 106]. This in practice is quite hard to realize.

It was suggested that the above condition on dipole matrix elements can be bypassed

if we consider anisotropic vacuum [107] which for example would be the case while

considering emission from excited atoms on nano particles [108]. A recent study by

Kiffner et. al.[109] showed that in atomic systems with degenerate transitions j =

1/2 ↔ j = 1/2 VIC effects are prominent. Such degeneracies are commonly found in

198Hg+ and 138Ba+ ions in a trap [110, 111]. As these trapped ions can be useful for

quantum information processing it is important to study the effect of VIC in these

systems.
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In chapter 2 we begin our investigation by studying vacuum induced coherence

(VIC) effects in trapped ions. We show how the effects of vacuum induced coherence

can be realized by studying non-classical photon -photon correlation in the π-polarized

fluorescence in j = 1/2 to j = 1/2 transition. The effect of this coherence is reflected in

the form of stronger damping and overall larger values of the second order correlation

function G(2). These effects should be thus observable in measurements of photon

statistics in for example Hg and Ba ion traps.

Chapter 3 describes the generation of a new quantum interference effect in spon-

taneous emission from a resonantly driven system of two identical two-level atoms

due to the spatial variation of the laser phase at the positions of the atoms. This

interference affects significantly the spectral features of the emitted radiation and

the quantum entanglement in the system. The interference leads to dynamic cou-

pling of the populations and coherences in a basis, determined by the laser phase and

represents a kind of vacuum mediated super-exchange between the symmetric and

antisymmetric states. This can thus enhance and suppress the spontaneous emission

rate in the system.

Chapter 4 presents a theoretical model to study the Intensity-Intensity correlation

of polarisation entangled photons emitted in a biexciton-exciton cascade. We calcu-

late the degree of correlation and show how polarisation correlations are affected by

the presence of dephasing and energy level splitting of the excitonic states. Our

theoretical calculations are in agreement with the recent observation of polarisation

dependent Intensity-Intensity correlations from a single semiconductor quantum dot

[R. M. Stevenson et. al. Nature 439, 179 (2006)] . Our model can be extended to

study polarisation entangled photon emission in coupled quantum dot systems.

Chapter 5 discusses the competition between the dissipative and coherent effects

in the entanglement dynamics of two qubits. The coherent interactions are needed for

designing logic gate operations with systems like ion traps, semicondutor quantum
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dots and atoms. We show that the interactions lead to a phenomenon of periodic dis-

entanglement and entanglement between the qubits. The disentanglement is primarily

caused by environmental perturbations. The qubits are seen to remain disentangled

for a finite time before getting entangled again. We find that the phenomenon is

generic and occurs for wide variety of models of the environment. We present analyt-

ical results for the time dependence of concurrence for all the models. The periodic

disentanglement and entanglement behavior is seen to be precursor to the sudden

death of entanglement (ESD) and can happen, for environments which do not show

ESD for noninteracting qubits. Further we also find that this phenomenon can even

lead to delayed death of entanglement for correlated environments.

Chapter 6 discusses the viability of coupled waveguides as basic units of quantum

circuits. In particular, we study the dynamics of entanglement for the single mode

and two mode squeezed vacuum state. We present explicit analytical results for the

measure of entanglement in terms of the logarithmic negativity. We also address the

effect of loss on entanglement dynamics of waveguide modes. Our results indicate

that the waveguide structures are reasonably robust against the effect of loss and

thus quite appropriate for quantum architectures.

Finally in chapter 8, we give concluding remarks and indicate the future directions

for further work .
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CHAPTER 2

PHOTON-PHOTON CORRELATION AS A PROBE OF VACUUM

INDUCED COHERENCES IN TRAPPED IONS

2.1 Overview

An early work [105] had predicted an unusual effect of quantum interference in the

problem of spontaneous emission. It was shown that in a degenerate V-system

one could get population trapping and generation of quantum coherences in the

excited states. This comes due to the interference between different channels of

spontaneous emission. One of the key conditions for the occurrence was that the

dipole matrix elements of the two transitions from the excited states to the com-

mon ground state were non-orthogonal. In the meanwhile a very large body of the-

oretical literature has been devoted to the subject of vacuum induced coherences

[112, 113, 114, 115, 116, 117, 118, 119] and a nice review is given in Ref [112]. It was

also suggested how the above condition on dipole matrix elements can be bypassed

if we consider anisotropic vacuum [107] which for example would be the case while

considering emission from excited atoms on nano particles [108]. We thus look for

possible realistic systems where vacuum induced coherences (VIC) are observable.

Kiffner et. al.[109] showed that an atomic system with degenerate transitions j = 1/2

↔ j = 1/2 would be a suitable system where effects of VIC are prominent. They

showed how vacuum induced coherences change the spectrum of the emitted radia-

tion. While the results of Kiffner et. al. on the spectrum are quite interesting much

of the current experimental effort [110, 120, 121, 122] is focussed on the study of

photon-photon correlations [123]. Thus one would like to understand if the vacuum
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induced coherences significantly affect the photon-photon correlations. This is the

question we examine. The significance of VIC depends on the system under consid-

eration. We deal specifically with the j = 1/2 to j = 1/2 transitions. The details of

which are given in the next section where we also explain how VIC are important for

such a system. We mention explicitly two systems where we have such transitions

and thus these systems would, for example, be candidates for the effect of VIC on

photon-photon correlations. These systems are : (A) a single 198Hg+ ion in a trap

[110] and (B) a single 138Ba+ ion in a trap [120]. In both the cases the ground level

is 6s2S1/2 and the excited level is 6p2P1/2. The measurement of photon-photon cor-

relation for such multilevel systems can be done in the standard way (see [120] and

F. Diedrich et. al. [123]).

It may be added that the photon-photon correlations have acquired new signifi-

cance in the context of quantum information processing and quantum imaging as well

as in interferences from independent atoms [121, 122, 124]. Thus it is pertinent to

check if VIC effects are to be included in the calculation of photon-photon correlations

for a given experimental system.

The organization of this chapter is as follows-in Sec 2 we introduce the model and

present the working equations. In Sec 3 we calculate the photon-photon correlations

both in presence and in absence of the vacuum induced interference effects. In Sec

4 we present numerical results to highlight the effects of vacuum induced coherences

on photon-photon correlations. In Sec 5 we conclude with the outlook and future

directions.
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Figure 2.1: Schematic diagram of a four-Level atom modelled by j = 1/2 to j = 1/2

transition
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2.2 Model

Fig. (2.1) shows the level scheme of a four-level atom modelled by a j = 1/2 to j =

1/2 transition. This kind of level scheme is realizable for example in 198Hg+ [110] and

138Ba+[120] ions. The ground level is 6s2S1/2 and the excited level is 6p2P1/2. Each

of these levels is two fold degenerate. We exhibit the magnetic sub-levels explicitly.

The nature of transitions between these levels can be found from various dipole ma-

trix elements. The dipole matrix elements can be obtained from the Wigner-Eckart

theorem and the Clebsch-Gordon coefficients. These are found to be

~d31 = −~d42 = − 1√
6
Dêz ,

~d41 = ~d∗32 =
1√
3
Dǫ̂− , (2.1)

with ǫ̂− = (x̂ − iŷ)/
√

2 and êz is the unit vector along the z-direction. In Eq. (2.1)

D denotes the reduced matrix element of the dipole moment operator d. Thus the

transitions |1〉 ↔ |4〉 and |2〉 ↔ |3〉 couple to σ+ and σ− polarized light respectively.

The transitions |1〉 ↔ |3〉 and |2〉 ↔ |4〉 couple to light linearly polarized along the

êz. The spontaneous decays of the excited state to the two ground states are given

by 2γ and 2γσ as shown in the figure. The spontaneously emitted photons are π-

polarized on the transitions |1〉 ↔ |3〉 , |2〉 ↔ |4〉 whereas these are σ-polarized on

the transitions |1〉 ↔ |4〉, |2〉 ↔ |3〉. The four-level system is driven by a π polarized

monochromatic field of frequency ω ,

E(t) = E0e
−iωtez + c.c. , (2.2)

were c.c is the complex conjugate. With this particular choice of polarization, the

driving field couples only to the two transitions |1〉 ↔ |3〉 and |2〉 ↔ |4〉. The total

Hamiltonian for this atom-field system is given by

H = HA + HI , (2.3)
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where the unperturbed Hamiltonian for the atom is,

HA = ~

2
∑

i=1

ω0|i〉〈i| , (2.4)

where energies are measured from the ground level. The interaction Hamiltonian is

given by

HI = −d.E(t)

= ~Ω(|1〉〈3| − |2〉〈4|)e−iωt +H.c , (2.5)

where H.c is the Hermitian conjugate and Ω is the Rabi frequency defined by

Ω = E0

~d42 · êz

~
=

1√
6
DE0/~; , (2.6)

The time evolution of this four level system is investigated by studying the den-

sity matrix equation. The spontaneous emission is included via the master equation

techniques. Following the standard procedure [105] we obtain,

ρ̇ = − i

~
[H, ρ] + Lρ ,

Lρ = −γσ[|1〉〈1|ρ+ |2〉〈2|ρ+ ρ|1〉〈1|

+ ρ|2〉〈2| − 2|3〉〈3|ρ22 − 2|4〉〈4|ρ11]

− γ[|1〉〈1|ρ+ |2〉〈2|ρ+ ρ|1〉〈1|

+ ρ|2〉〈2| − 2|3〉〈3|ρ11 − 2|4〉〈4|ρ22]

+ γ[|4〉〈3|ρ21 + |3〉〈4|ρ12] , (2.7)

The last two terms in Eq. (2.7) arise from the vacuum induced interference and it

comes as the dipole matrix elements ~d13 and ~d24 are anti-parallel. In a frame rotating

with the frequency of the coherent drive the density matrix equations are,

˙̃ρ11 = iΩ∗ρ̃13 − iΩρ̃31 − 2Γρ̃11 ,

˙̃ρ22 = iΩρ̃42 − iΩ∗ρ̃24 − 2Γρ̃22 ,
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˙̃ρ33 = iΩρ̃31 − iΩ∗ρ̃13 + 2γσρ̃22 + 2γρ̃11 ,

˙̃ρ12 = −iΩρ̃32 − iΩ∗ρ̃14 − 2Γρ̃12 ,

˙̃ρ13 = −i∆ρ̃13 + iΩ(ρ̃11 − ρ̃33) − Γρ̃13 , (2.8)

˙̃ρ14 = −i∆ρ̃14 − iΩρ̃12 − iΩρ̃34 − Γρ̃14 ,

˙̃ρ23 = −i∆ρ̃23 + iΩρ̃21 + iΩρ̃43 − Γρ̃23 ,

˙̃ρ24 = −i∆ρ̃24 − iΩ(ρ̃22 − ρ̃44) − Γρ̃24 ,

˙̃ρ34 = −iΩρ̃32 − iΩ∗ρ̃14 + γρ̃12 ,

where

ρ̃ii = ρii; ρ̃12 = ρ12, ρ̃34 = ρ34;

ρ̃ij = ρije
−iωt; (i = 1, 2; j = 3, 4)

Γ = (γσ + γ); ∆ = ω − ω13 = ω − ω24 , (2.9)

The remaining equations can be generated by taking complex conjugates and using

Tr{ρ} = 1. The steady state solution of Eq. (2.8) is found to be

ρ̃12 = ρ̃14 = ρ̃32 = ρ̃34 = 0 , (2.10)

ρ̃11 = ρ̃22 =
1

2

|Ω|2
[2|Ω|2 + Γ2 + ∆2]

,

ρ̃33 = ρ̃44 =
1

2

|Ω|2 + Γ2 + ∆2

[2|Ω|2 + Γ2 + ∆2]
, (2.11)

ρ̃13 = −ρ̃24 = − iΩ

Γ + i∆
{1

2

Γ2 + ∆2

[2|Ω|2 + Γ2 + ∆2]
} ,

As can be seen from Eqs. (2.10) and (2.11) the vacuum induced interference has no

effect on the steady state solutions. Thus one should investigate how vacuum induced

coherences can show up in dynamical quantities like the correlation functions.
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2.3 Photon-Photon Correlations

Since the objective of this chapter is to investigate the observable consequences of

the vacuum induced coherence, we focus our attention on the photon statistics of the

radiation emitted by our model system. We in particular will calculate photon-photon

correlations as currently considerable experimental effort is on such correlations. For

this we need to know how to relate the atomic properties with the statistical properties

of the spontaneously emitted radiation. The answer to this question already exists in

quantum theory. In fact from the existing literature [125], we know that the positive

frequency part of the electric-field operator at a point ~r in the far-field zone can be

written in terms of the atomic operators as

E+(~r, t) = E+
0 (~r, t) − k2

0

∑

i

{[R̂i × (R̂i × ~d31)|3〉〈1|τ ]

+ [R̂i × (R̂i × ~d42)|4〉〈2|τ ] + [R̂i × (R̂i × ~d32)|3〉〈2|τ ]

+ [R̂i × (R̂i × ~d41)|4〉〈1|τ ]}R−1
i × e−i(k0r̂·~ri+ωτ) , (2.12)

where ~Ri = ~r−~ri , ~r being the distance of the point of observation from the origin and

~ri being the position of the atom from the origin. Further τ = t − r
c

is the retarded

time, ko = ω0

c
, ω0 = ω13 = ω24 and ~dij is the electric dipole moment operator. The

first term on the right of Eq. (2.12) is the free field term and the second term is

the retarded dipole field emitted by the atom. The emitted radiation consists of

different polarization components- the π and the σ polarized components. In Eq.

(2.12) the terms |3〉〈1|τ and |4〉〈2|τ correspond to π polarization whereas the ones

|3〉〈2|τ and |4〉〈1|τ correspond to σ polarization. We next calculate the photon-photon

correlations and the normalized second order correlations for the emitted radiations

from the π transitions of this driven four-level atom. For π polarization the relevant

part of the electric field operator is given by,

E+(~r, t) = E+
0 (~r, t) − (

ω0

c
)21

r
([n̂× (n̂× ~d31)]|3〉〈1|τ
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+[n̂× (n̂× ~d42)]|4〉〈2|τ ) , (2.13)

where τ as before is the retarded time (t-r/c). In the lowest order correlation the

free field term of Eq. (2.13) does not contribute. This can be seen directly from the

definition of quantized fields [125], the fact that the field is initially in the vacuum

state and the expression for the normally ordered correlation function for the field,

〈E−(~r, t)E+(~r′, t′)〉. Hence with no contribution from the free field term the intensity

Iπ of the light emitted on the π transition from the atom is ,

〈Iπ〉 = 〈E−
π (~r, t) · E+

π (~r, t)〉

= (
ω0

c
)4 1

r2
〈[n̂× (n̂× ~d31)]

∗ · [n̂× (n̂× ~d31)]|1〉〈1|τ

+[n̂× (n̂× ~d42)]
∗ · [n̂× (n̂× ~d42)]|2〉〈2|τ 〉 , (2.14)

where we have taken our origin at the location of the atom , ~r = n̂r, τ is the retarded

time and we used the property AijAkl = Ailδkj. The negative frequency part of

the electric field operator E−(~r, t) can be found by taking the complex conjugate

of the positive frequency part. Now if we assume that the point of observation lies

perpendicular to both the polarization and propagation direction we have from Eq.

(2.14)

〈Iπ〉 = (
ω0

c
)4 1

r2
(|~d31|2〈|1〉〈1|〉τ + |~d42|2〈|2〉〈2|〉τ) , (2.15)

Eq.(2.15) can be further simplified using Eqs. (2.1) and (2.11), where in using Eq.

(2.11) we have assumed that observation is been made at long time limit. The final

expression for Iπ in the long time limit (steady state) is then,

〈Iπ〉st = (
ω0

c
)4 |D|2

6r2

|Ω|2
[2|Ω|2 + Γ2 + ∆2]

, (2.16)

Eq.(2.16) clearly show that intensity emitted on the π transitions is not altered by

vacuum induced coherences and is simply proportional to the steady state population

of the excited states.

Let us now investigate what happens incase of two time photon-photon correlations
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on the π transitions. The two-time photon-photon correlation for the level scheme in

Fig.2.1 can be written as

〈Iπ(t+ τ)Iπ(t)〉 = 〈E−
π (~r, t)E−

π (~r, t+ τ) : E+
π (~r, t+ τ)E+

π (~r, t)〉

= (
ω0

c
)8 1

r4
{[n̂× (n̂× ~d31)]

∗ · [n̂× (n̂× ~d31)]}2

〈(|1〉〈3| − |2〉〈4|)t(|1〉〈1| + |2〉〈2|)t+τ

(|3〉〈1| − |4〉〈2|)t〉 , (2.17)

The two-time correlation function which appears in Eq. (2.17) is to be obtained

from the solution of the time-dependent density matrix equations (Eq.(2.8)) and the

quantum regression theorem [126]. In the rest of the chapter we deal with correlations

like (2.17) in steady state where these depend only on time difference τ and thus the

retarded time becomes irrelevant. A closer look at Eq. (2.8) show that eight of the

fifteen equations form a closed set of linear equations which can be solved to find

|1〉〈1|t+τ , |2〉〈2|t+τ and hence the term (|1〉〈1|+ |2〉〈2|)t+τ in Eq. (2.17). Before going

further let us list those eight equations,

˙̃ρ11 = iΩ∗ρ̃13 − iΩρ̃31 − 2Γρ̃11 ,

˙̃ρ33 = iΩρ̃31 − iΩ∗ρ̃13 + 2γσρ̃22 + 2γρ̃11 ,

˙̃ρ13 = −i∆ρ̃13 + iΩ(ρ̃11 − ρ̃33) − Γρ̃13 ,

˙̃ρ31 = i∆ρ̃31 − iΩ∗(ρ̃11 − ρ̃33) − Γρ̃31 , (2.18)

˙̃ρ22 = iΩρ̃42 − iΩ∗ρ̃24 − 2Γρ̃22 ,

˙̃ρ44 = iΩ∗ρ̃24 − iΩρ̃42 + γσρ̃11 + γρ̃22 ,

˙̃ρ24 = −i∆ρ̃24 − iΩ(ρ̃22 − ρ̃44) − Γρ̃24 ,

˙̃ρ42 = i∆ρ̃42 + iΩ∗(ρ̃22 − ρ̃44) − Γρ̃42 ,

In compact notation this equations can be written as,

˙̃ρ = Mρ̃ , (2.19)
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where ˙̃ρ , ρ̃ are (8×1) column matrix and M is a (8×8) square matrix. Now using the

method depicted in [127] and using Eq.(2.18) the solution of 〈|1〉〈1|t+τ〉 and 〈|2〉〈2|t+τ〉

can be expressed in the form

〈|1〉〈1|t+τ〉 = f11(τ)〈|1〉〈1|t〉 + f12(τ)〈|3〉〈|3|t〉

+ f13(τ)〈|3〉〈1|t〉 + f14(τ)〈|1〉〈3|t〉

+ f15(τ)〈|2〉〈2|t〉 + f16(τ)〈|4〉〈4|t〉

+ f17(τ)〈|4〉〈2|t〉 + f18(τ)〈|2〉〈4|t〉 , (2.20)

〈|2〉〈2|t+τ〉 = f51(τ)〈|1〉〈1|t〉 + f52(τ)〈|3〉〈|3|t〉

+ f53(τ)〈|3〉〈1|t〉 + f54(τ)〈|1〉〈3|t〉

+ f55(τ)〈|2〉〈2|t〉 + f56(τ)〈|4〉〈4|t〉

+ f57(τ)〈|4〉〈2|t〉 + f58(τ)〈|2〉〈4|t〉 , (2.21)

where the f’s are defined by

fik(τ) = (eMτ )ik , (2.22)

and

Mik =
∑

l

PilΛllP
−1
lk

(eMτ )ik =
∑

l

Pile
ΛllτP−1

lk , (2.23)

Here we have diagonalized the matrix M with Λ being the eigenvalues and P being

the corresponding eigenvectors. We now make use of the quantum regression theorem

to obtain the two time correlation function as,

〈B†(t)(|1〉〈1|+ |2〉〈2|)t+τB(t)〉 = F1(τ)〈B†(t)|1〉〈1|tB(t)〉

+ F2(τ)〈B†(t)|3〉〈3|tB(t)〉

+ F3(τ)〈B†(t)|3〉〈1|tB(t)〉
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+ F4(τ)〈B†(t)|1〉〈3|tB(t)〉

+ F5(τ)〈B†(t)|2〉〈2|tB(t)〉

+ F6(τ)〈B†(t)|4〉〈4|tB(t)〉

+ F7(τ)〈B†(t)|4〉〈2|tB(t)〉

+ F8(τ)〈B†(t)|2〉〈4|tB(t)〉 ,

(2.24)

where we define the operator B as, B†(t) = (|1〉〈3| − |2〉〈4|)t ; B(t) = (B†(t))† and

Fi(τ) = f1i(τ) + f5i(τ). Using this new definition of the operator in Eq. (2.17), the

expression for the two-time photon-photon correlation becomes,

〈Iπ(t+ τ)Iπ(t)〉 = (
ω0

c
)8 1

r4
{[n̂× (n̂× ~d31)]

∗ · [n̂× (n̂× ~d31)]}2 (2.25)

× 〈B†(t)(|1〉〈1| + |2〉〈2|)t+τB(t)〉 ,

which when Eq. (2.24) is used, simplifies to

〈Iπ(t+ τ)Iπ(t)〉 = (
ω0

c
)8 1

r4
{[n̂× (n̂× ~d31)]

∗ · [n̂× (n̂× ~d31)]}2 (2.26)

× (F2(τ)〈|1〉〈1|〉t + F6(τ)〈|2〉〈2|〉t) ,

In the long time limit 〈|1〉〈1|〉t ≡ ρ̃11(t) and 〈|2〉〈2|〉t ≡ ρ̃22(t), where ρ̃11(t), ρ̃22(t)

are the steady state populations of the excited states given by Eq. (2.11). Now

following our assumption that the point of observation lies perpendicular to both

the polarization and propagation directions and substituting for ρ̃11 , ρ̃22 from Eq.

(2.11), Eq. (2.26) can be further simplified. The final expression for the two-time

photon-photon correlation is then,

G(2)
π (τ) = 〈Iπ(t+ τ)Iπ(t)〉

= (
ω0

c
)8 |D|4

36r4
(F2(τ) + F6(τ))

× (
1

2

|Ω|2
[2|Ω|2 + Γ2 + ∆2]

) , (2.27)
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where we have used Eq. (2.1) for the dipole matrix elements. Note that F2(τ)[F6(τ)]

is the sum of probabilities of finding the atom in the states |1〉 and |2〉 given that at

τ = 0, the atom was in the state |3〉[|4〉]. In the limit of large τ ,

G(2)
π (τ) → (

ω0

c
)8 |D|4

36r4
(

2|Ω|2
[2|Ω|2 + Γ2 + ∆2]

) , (2.28)

Next let us derive the expression for two-time photon-photon correlation in absence of

interference. In this case the total photon-photon correlation will be a simple addition

of photon-photon correlations for radiation emitted on individual π transitions.

G(2)
π (τ) = 〈Iπ(t+ τ)Iπ(t)〉

= 〈E−
π (~r, t)E−

π (~r, t+ τ) : E+
π (~r, t+ τ)E+

π (~r, t)〉|1〉〈3|

+ 〈E−
π (~r, t)E−

π (~r, t+ τ) : E+
π (~r, t+ τ)E+

π (~r, t)〉|2〉〈4| ,

(2.29)

= (
ω0

c
)8 1

r4
{[n̂× (n̂× ~d31)]

∗ · [n̂× (n̂× ~d31)]}2

〈|1〉〈3|t(|1〉〈1|)t+τ |3〉〈1|t〉

+ (
ω0

c
)8 1

r4
{[n̂× (n̂× ~d42)]

∗ · [n̂× (n̂× ~d42)]}2

〈|2〉〈4|t(|2〉〈2|)t+τ |4〉〈2|t〉 , (2.30)

Finally using Eq. (2.20),(2.21) and (2.11) we get the photon-photon correlation in

absence of interference as

G(2)
π (τ) = (

ω0

c
)8 |D|4

36r4
(f12(τ) + f56(τ))

× (
1

2

|Ω|2
[2|Ω|2 + Γ2 + ∆2]

) , (2.31)

Here f12(τ)[f56(τ)] is the probability of finding the atom in the states |1〉 [|2〉] given

that at τ = 0, the atom was in the state |3〉 [|4〉]. Eq. (2.31) in the limit of large τ

becomes,

G(2)
π (τ) → (

ω0

c
)8 |D|4

36r4
(

|Ω|2
[2|Ω|2 + Γ2 + ∆2]

) , (2.32)
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We now further calculate the normalized photon-photon correlation corresponding to

Eq. (2.27) and Eq. (2.31). The g(2) function gives the non-classical aspects of photon

statistics.

g(2)(t+ τ, t) =
〈Iπ(t+ τ)Iπ(t)〉
〈Iπ(t+ τ)〉〈Iπ(t)〉 =

(F2(τ) + F6(τ))ρ̃11

4ρ̃2
11

, (2.33)

g(2)(t+ τ, t) =
〈Iπ(t+ τ)Iπ(t)〉

(〈Iπ(t+ τ)〉〈Iπ(t)〉)|1〉〈3| + (〈Iπ(t+ τ)〉〈Iπ(t)〉)|2〉〈4|
=

(f12(τ) + f56(τ))ρ̃11

2ρ̃2
11

, (2.34)

Here ρ̃11 is the steady state population of the excited state given by Eq. (2.11) and g(2)

[g(2)] is the normalized two time photon-photon correlation function corresponding to

presence [absence] of vacuum induced interference.

2.4 Numerical Results

In this section we present our numerical results and discuss their consequences. To

begin with, we first discuss our method of computation. The decay rates of the

excited states to the two ground states, 2γσ and 2γ are proportional to |~d41|2 and

|~d31|2 respectively. From Eq. (2.1) we get, 2γσ ≡ γ0/3 and 2γ ≡ γ0/6 , where γ0 is

proportional to the square of the reduced dipole matrix element. We use these values

for the decays in our numerical computation and normalize all the computational

parameters with respect to γ0. Further we use standard subroutines to diagonalize

the complex general matrix M and obtain complex eigenvalues and eigenvectors of

the form (α + iβ).
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Figure 2.2: Plot of two-time Photon-Photon correlation as a function of time for

Ω = 0.5γ0,∆ = 0.0γ0. where γ0 =
4|D|2ω3

14

3c3
. All the plotted parameters are normalized

with respect to γ0 rendering them dimensionless. The blue and red lines in this figure

and Figs.(2.3,2.4 and 2.6) correspond to photon-photon correlations in presence and

absence of VIC respectively.
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Figure 2.3: Plot of two-time Photon-Photon correlation as a function of time but now

for a small detuning ∆ = 0.5γ0, other parameters remaining same as in Fig.2.2
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Figure 2.4: Plot of two-time Photon-Photon correlation as a function of time for Ω =

3.0γ0,∆ = 0.0γ0, where γ0 =
4|D|2ω3

14

3c3
. All the plotted parameters are dimensionless.

52



Table 2.1: Eigenvalues(in units of γ0) for the diagonalized matrix M corresponding

to two different values of the Rabi frequency of the driving field which is on resonance

with the atomic transitions.

λ/γ0 Ω = 0.5γ0 Ω = 3.0γ0

1 (-0.349797,-1.10904) (-0.375000,5.99870)

2 (-0.349797,1.10904) (-0.375000,-5.99870)

3 (-0.215794,-1.09726) (-0.208269,5.99522)

4 (-0.215794,1.09726) (-0.208269,-5.99522)

5 (-0.300406,0.000000) (-0.250000,0.000000)

6 (-0.165314,0.000000) (-0.250000,0.000000)

7 (-0.403098,0.000000) (-0.333462,0.000000)

8 (0.000000,0.000000) (0.000000,0.000000)
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For all values of detuning and Rabi frequency used in our computation we have two

pairs of complex conjugate eigenvalues and four other eigenvalues whose complex part

are so small compare to the real part that these complex parts have no significant

contributions. Hence these four eigenvalues can be taken to be purely real. Note

that this is in contrast to the case of photon-photon correlations for the two level

model where the number of eigenvalues is four [128]. The changes in the eigenvalues

lead to spectral modification as discussed by Kiffner et. al. [109]. The eigenvalues

for Ωc = 0.5γ0, and Ωc = 3γ0 and detuning ∆ = 0 are listed in the Table (2.1).

Note for example that for Ωc = 3γ0 we have eigenvalues ±5.99870i − 0.375 and

±5.99522i − 0.208269. This difference in the real parts can produce a dip in the

side bands in the Mollow spectrum [129]. Next we calculate the elements fij of the

8×8 matrix [f ] using Eq. (2.22) and Eq. (2.23). Finally we use the elements fij

corresponding to Eqs. (2.27),(2.31) and Eqs. (2.33),(2.34) to evaluate the two time

photon-photon correlations and normalized photon-photon correlations in presence

and absence of vacuum induced interference respectively.

The Figs. (2.2-2.4) show photon-photon correlations corresponding to Eqs. (2.27)

and (2.31). The blue and red lines in the figures correspond respectively, to photon-

photon correlations in presence and absence of interference. The correlations cal-

culated in the presence of interference show strong damping of the oscillations and

attain an overall higher value as the time separation τ between two counts increases.

The differences between G(2) and G(2) are most noticeable in the limit of large time

separation τ . In order to understand this we examine the distinction between

F2(τ) = f12(τ) + f52(τ) and f12(τ). We recall that f12[f52] was the probability of

finding the atom in the state |1〉[|2〉] given that at τ = 0, it was in the state |3〉.

We exhibit these probabilities in the Fig. (2.5). We observe that the function f52(τ)

starts becoming significant at the time scale of the order of γ−1
σ .
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Figure 2.5: Probability for finding the atom in state |1〉 (f12) and |2〉 (f52) given

that at time τ = 0 the atom was in the state |3〉 for Ω = 0.5γ0,∆ = 0.5γ0, where

γ0 =
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. All the plotted parameters are dimensionless.
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Further for large τ , f12 and f52 become comparable. The physical process that con-

tributes to f52 is the following,

|3〉 laser

π−pol
// |1〉σ−photon

emission
// |4〉 laser

π−pol
// |2〉 . (2.35)

Similarly population can start from the state |4〉 and end up in the state |1〉 via,

|4〉 laser

π−pol
// |2〉σ−photon

emission
// |3〉 laser

π−pol
// |1〉 . (2.36)

We show normalized photon-photon correlations in a typical case in the Fig. (2.6).

In case of interference we observe stronger damping of the oscillations and an overall

reduction of the g(2) function at shorter time scales. At long time limits g(2)(τ → ∞)

is 1. Photon antibunching effect is also visible as 0 6 g(2)(0) < 1. For shorter time

scale we get g(2)(τ) 6≤ 1 a clear signature of the nonclassical nature of the two-time

photon-photon correlations.

2.5 Conclusions

In conclusion we have shown that the vacuum induced coherence (VIC) do signifi-

cantly affect the two-time photon-photon correlations even though they show no effect

on the total steady state intensity of the radiation emitted on the π transitions. The

effect of this coherence is reflected in form of stronger damping and overall larger

values of the correlation function G(2). The level scheme j = 1/2 → j = 1/2 is easily

realizable and has already been used, for example in 198Hg+ [110] in the context of

interferences produced by a system of two ions and more recently in 138Ba+ [120] in

the context of emission in presence of a mirror.

The content of this chapter has been published in Phys. Rev. A 77, 033850

(2008).
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CHAPTER 3

QUANTUM INTERFERENCES IN COOPERATIVE DICKE

EMISSION FROM SPATIAL VARIATION OF LASER PHASE

3.1 Overview

Spontaneous emission from cooperative systems has been extensively studied since

the classic paper of Dicke [105, 131, 132]. The details of the emission depend on the

interatomic distances and how the system is initially prepared. The emission can

further be influenced if the system is continuously driven by a coherent field. The

two atom problem has been especially attractive in this context as many features

of cooperative emission can be analyzed in terms of this simple problem. There

is renewed interest in these problems for quantum information sciences. Studies

have shown that spontaneous emission from cooperative systems leads to quantum

entanglement among atoms [132]. Further with the discovery of similarities between

semiconductor quantum dots and two level atoms [51, 49, 196], we have a new class of

systems where the cooperative effects can be studied in a regime which was difficult to

achieve with atoms. In recent times such quantum dot systems are proving especially

important in quantum information science [52, 134, 135].

In this chapter we discuss a new quantum interference effect which arises from

the spatial variation of the laser phase at the positions of the atoms. We show how

this phase variation affects the spectral features of the emitted radiation as well as

the quantum entanglement in the system. We further show how populations and

coherences, in a basis determined by the laser phase, get coupled dynamically. We

demonstrate a kind of super-exchange between the symmetric and anti-symmetric
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states and show a strong connection to the well known vacuum induced coherence

[107, 118, 136, 137]. Further our results have implications for the decoherence of

coupled qubits.

3.2 Model

The dynamical behavior of a system of atoms undergoing cooperative emission can

be described by a master equation approach [105]. Let us specifically consider the

system of two identical two-level atoms with transition frequency ω. Each atom is

described by the spin half angular momentum algebra. The master equation for the

dynamical behavior of this kind of a system in the Born, Markov and rotating wave

approximation is then given by ref [105] (pg 31-33),

∂ρ

∂t
= −iω

∑

j

[Sz
j , ρ] − i

∑

j 6=k

Ωjk[S
+
j S

−
k , ρ]

−
∑

jk

γjk(S
+
j S

−
k ρ− 2S−

k ρS
+
j + ρS+

j S
−
k ), (3.1)

Here (j,k = 1-2) , Ωjk = 3/2γ{(1−3 cos2 θ)[sin(k0rjk)/(k0rjk)
2+cos(k0rjk)/(k0rjk)

3]−

(1−cos2 θ)[cos(k0rjk)/(k0rjk)]} and γjk = γ{sin(k0rjk)/(k0rjk)+1/2(3 cos2 θ−1)[(3/(k0rjk)
2−

1) sin(k0rjk)/(k0rjk) − 3 cos(k0rjk)/(k0rjk)
2]} is the spontaneous decay rates for the

cooperative system, 2γ = 2γ11 = 2γ22 = 4|~deg|2ω3/3~c3 is the Einstein’s A coefficient,

k0 = ω/c, ~deg is the dipole moment and ρ is the density operator for the system. θ is

the angle between the direction of the dipole moment and the line joining the jth and

the kth atom, whose distance is denoted by rjk = |~rj −~rk|. If we assume this angle to

be random, and take an average for all possible orientations, then the coefficients in

the master equation simplify considerably and are given by Ωjk = −γ cos(k0rjk)/k0rjk,

γjk = γ sin(k0rjk)/k0rjk. The second term in the master equation (3.1) is the dipole-

dipole (d-d) interaction term. It arises from the virtual photon exchange between

pairs of atoms. It becomes especially significant at small interatomic distances and

has important consequences. For example it can lead to two photon resonance which
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Figure 3.1: Diagrammatic representation of a setup to detect the cooperative emission

from a system of two identical two-level atoms. The atoms are driven resonantly by a

weak laser of frequency ω and propagation vector ~k. ζ is the angle between the laser

propagation direction and the orientation of the atoms. ~deg is the dipole moment of

the atoms and ~r1, ~r2 are the position vectors of the atoms 1 and 2.
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was predicted and later observed experimentally [138].

Here we assume that the atoms are continuously driven by a resonant laser prop-

agating in the direction ~k with frequency ω. The driving term is hence given by,

Hc = −~

∑

j

(Gei~k·~rj−iωtS+
j +Ge−i~k·~rj+iωtS−

j ), (3.2)

where (j = 1,2) and G = ~deg · ~Eo/~ is the Rabi frequency. Note that we have in-

cluded the spatially varying phase factors in the driving term. This would affect the

dynamical evolution of the system.

3.3 Quantum interference induced by laser phase

Our main focus in this chapter is to investigate new effects arising from such a phase

variation. We specifically demonstrate how such phase factors can bring out new in-

terference effects which can be experimentally investigated by studying the spectrum

of the emitted radiation. While in this chapter we concentrate on spectral features

and entanglement, a previous work [118] has examined the effect of laser phase on

emission rates. Further we specifically concentrate on the case where the relative

inter-atomic distance is smaller than a wavelength when such interferences are even

more dramatic. The relative orientation φ = ~k · (~rj − ~rk) = 2π
λ
|~rj − ~rk| cos ζ of the

two atoms and the direction of propagation of the laser drive is especially important

in this context. Here ζ is the angle between the direction of the laser drive and the

line joining the jth and the kth atom (see Fig.3.1). The quantum interference effects

discussed in this chapter disappear if the relative orientation is perpendicular to the

direction of propagation of the laser field. When the driving laser is weak, it is ade-

quate to consider the generated states in the single photon space and clearly with two

atoms starting in the ground state |g〉 ≡ |g1, g2〉 we would generate the symmetric

state |s〉 which depends on the phase of the laser at the location of two atoms [118],

|s〉 ≡ 1√
2
(ei~k·~r1|e, g〉 + ei~k·~r2|g, e〉). (3.3)
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Thus one would expect that once the system is excited to the state |s〉, it would

decay to |g〉. However we show that due to quantum interferences associated with

the spatial phase φ, the system could also be found in the antisymmetric state |a〉

defined as ,

|a〉 ≡ 1√
2
(ei~k·~r1|e, g〉 − ei~k·~r2 |g, e〉). (3.4)

Clearly, if we are working with single photon excitation then it should be adequate

to deal with the states |s〉, |a〉 and |g〉. In order to see this we find from the master

equation that the population in the symmetric state |s〉 is governed by,

ρ̇ss = −2(γ + γ12 cosφ)ρss − i sin φ(γ12 + iΩ12)ρas

+i sinφ(γ12 − iΩ12)ρsa, (3.5)

We immediately see that the population in the symmetric state decays at the rate

2(γ + γ12 cosφ), however it is also effected by the presence of atomic coherence terms

ρas and ρsa which are dynamically generated. This coupling of populations to the

coherences is at the heart of the quantum interference phenomenon [139] that we

discuss in this chapter. From Eq.(3.5) it is clear that this coupling vanishes when the

laser propagates in a direction perpendicular to the location of the two atoms(φ = 0).

Further from the structure of Eq.(3.5) we can say that such quantum interferences

should be especially important for smaller inter-atomic distances as then Ω12 is large

and the coherence terms strongly influence the population dynamics of the symmetric

state. Note further that for small times the effect of the quantum interferences does

not show up as the solution of ρss is then,

ρss
∼= 1 − 2t(γ + γ12 cosφ), (3.6)

and hence the effect of interferences should appear in physical parameters which are

determined by the long time dynamics. From the master equation we find that if

the system starts in the initial state |s〉, then the population ρaa of the antisymmetric
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Figure 3.2: The two atom Dicke state configuration
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Figure 3.3: Schematic diagram showing population exchange between the symmetric

and anti-symmetric state due to non-zero laser phase which generates dynamical

coherences in ths system.
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Figure 3.4: Population of the anti-symmetric state as function of the Rabi frequency

for an inter-atomic distance of λ/8 and different orientation of the laser. All plotted

parameters are dimensionless.
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Figure 3.5: Atomic coherence ρas as a function of the Rabi frequency for an inter-

atomic distance of λ/8 and for different orientations of the laser. The solid and dashed

lines correspond to the real and imaginary parts of ρas.
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state |a〉 grows as,

ρaa ∼ sin2 φ(|γ12 + iΩ12|2t2), (3.7)

Thus the states |s〉 and |a〉 get coupled by the vacuum of the electromagnetic field

provided that φ 6= 0 (modulo π). This is a process in which the transition |s〉 → |a〉

is mediated via the state |g〉. It is to be noticed that the asymmetric state for

small values of the driving field remains unpopulated if ζ = π/2 (φ = 0)[see Fig.

3.4]. However at larger values of the Rabi frequency the two photon state |e, e〉 gets

populated and this changes the dynamical evolution leading to the population of the

state |a〉. In Fig.(3.5) we show the coherence ρas which is quite significant for non-zero

values of the angle ζ .

3.4 Effect of quantum interference on co-operative emission spectrum

To investigate the effects of this interference we study the steady state spectrum of

cooperative emission. The incoherent part of the steady state emission spectrum

integrated over all solid angles is given by,

S(ω) = Re
∑

ij

γij

∫ ∞

0

dτe−zτ lim
t→∞

[〈Ŝ+
i (t+ τ)Ŝ−

j (t)〉

−〈Ŝ+
i (t+ τ)〉〈Ŝ−

j (t)〉]z=i(ω−ω0)/γ . (3.8)

A detailed treatment of how to calculate the emission spectrum for such two atom

systems undergoing cooperative emission is discussed in appendix A. We have cal-

culated Eq.(3.8) when the system is driven weakly by a coherent field and for small

interatomic distances. Under these conditions the quantum interference effects are

dominant. The results of our numerical calculations are shown in Figs (3.6-3.7). In

the Fig (3.6) we show the incoherent part of the normalized steady state spectrum for

a weak coherent drive (G = 0.1γ) and small inter-atomic separation, r12 = λ/8. We

have normalized the incoherent part of the steady state spectrum by dividing it with

two times the steady state value of [〈S+S−〉 − 〈S+〉〈S−〉] for a single two level atom
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[129]. The spectrum exhibits a doublet structure because of the strong dipole-dipole

interaction Ω12 for small inter-atomic distances. The quantum interferences arising

from the spatial phase factor φ determine the characteristics of the doublets. For

example the peak of the doublet is almost seven times greater, when ~k is parallel or

anti-parallel to ~r12 in comparison to when ~k ⊥ ~r12. The Fig.(3.7) shows the incoherent

steady state spectrum for a moderately strong driving field strength (G = 1.0γ). The

inset in Fig.(3.7) is for still larger field strength. The doublet structure vanishes for

moderately strong drive as seen in Fig.(3.7) and we get only the broadened central

peak at ω = ω0. The quantum interference leads to pronounced asymmetry in the

spectrum. For even higher field strength (inset of Fig. 3.7) the cooperative effects

are almost insignificant and we get the Mollow spectrum [129] for a two level atom.

3.5 Dynamical coherences induced by vacuum

The coupling of coherences to populations in the Dicke problem of cooperative emis-

sion can be understood as vacuum induced coherence effect[105, 132, 118, 137]. This

can be appreciated more clearly at the level of Schrödinger equation. The basic

Hamiltonian between the vacuum of the electromagnetic field and the atoms in the

interaction picture can be written as,

HI(t) =
∑

jks

{gjksakse
−iωkst(S+

j e
−iωt + S−

j e
iωt) +H.C.}, (3.9)

Here gjks = −i(2πck/~L3)1/2(~d · ǫ̂ks)e
i~k·~rj is the vacuum coupling strength and the

field annihilation(creation) operator is given by aks(a
†
ks). The subscripts (k, s) denote

the kth mode of the field with polarization along ǫ̂ks. The initial state is |s, {0ks}〉,

and the final state is |a, {0ks}〉. Iterating the Schrödinger equation to second order

in HI(t) we find that the lowest order non-vanishing contribution to the transition

amplitude is,

d

dt
〈a|s(t)〉 ≡ − 1

~2
lim
t→∞

∫ t

0

dτ〈a, {0ks}|HI(t)HI(τ)|s, {0ks}〉. (3.10)
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Figure 3.6: Normalized steady state spectrum of incoherent emission from two iden-

tical two level atoms for interatomic separation of λ/8 and Rabi frequency of 0.1γ.

The relative orientation is given by φ = 2π
λ
|~ri − ~rj | cos ζ .
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Figure 3.7: Normalized steady state spectrum of incoherent emission for interatomic

separation of λ/8 and Rabi frequency G = 1.0γ. In the inset we show the spectrum

for G = 3.0γ.
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A long calculation (check appendix B for a rigorous derivation of this result) then

leads to,

d

dt
〈a|s(t)〉 ∼ i sinφ(γ12 + iΩ12), (3.11)

One can clearly see that this transition amplitude is zero if φ = 0(modulo π). The

second order transition amplitude (3.11) from the state |s〉 to |a〉 is mediated via the

ground state |g〉. We have thus shown an intriguing connection between the quantum

interference effects arising from spatial variations of the laser phase and the vacuum

induced coherence effects.

3.6 Quantum correlation

We conclude the chapter with a discussion of how the quantum entanglement between

two atoms (qubits) also depends in a significant way on the spatial variation of the

phase φ. Note that the entanglement in this system arises from the fact that the den-

sity operator of the two atoms does not factorize, ρ 6= ρ(i) ⊗ρ(j). This happens due to

cooperative emission [132]. The non-factorizability of the density matrix is especially

significant due to the Ω12 term in the dynamics. We show in the Fig.(3.8), existence

of the quantum correlation Γ12 = Re[〈Ŝ+
1 Ŝ

−
2 〉/〈Ŝ+

1 〉〈Ŝ−
2 〉] − 1 for small inter-atomic

distance and for different values of the angle between laser propagation direction and

the line joining the two atoms. In the absence of any entanglement in the system

such correlation would vanish. One can see clearly from the Fig.(3.8) that at small

interatomic separation the presence of the laser phase significantly effects the quan-

tum correlation. Around r12 ∼ λ/6 the value of the quantum correlation is about

25 times more in presence of the laser phase (ζ = π, π/8) in comparison to when

φ = 0(ζ = π/2). Thus the quantum interference can lead to strong entanglement in

the system at small interatomic separation. One can further characterize quantita-

tively such entanglement by calculating its concurrence.
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1 Ŝ
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3.7 Conclusion

We have shown how the variation of the laser phase at the positions of the atoms

can lead to new quantum interference effects. The phase variation is found to af-

fect the spectral features of cooperative emission significantly and generate strong

entanglement in the system. We further demonstrate that the coupling between the

symmetric and antisymmetric states has strong connections to the vacuum induced

coherence in the system. A plausible system for the observation of the interference

effects of this chapter would be semiconductor quantum dots. Note that the splitting

in photoluminescence spectra from a system of coupled quantum dots was observed

[196]. The dots in these experiments satisfy the condition, wavelength ≫ interdot

distance & size of the dot. Thus our theoretical results sould be observable in such

systems.

The content of this chapter has been published in Phys. Rev. Lett. 101, 153601

(2008).
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CHAPTER 4

NONCLASSICAL CORRELATION OF POLARIZATION

ENTANGLED PHOTONS IN A BIEXCITON-EXCITON CASCADE

4.1 Introduction

Polarization correlations of photons emitted in cascade emission are well known phe-

nomenon and numerous theoretical and experimental studies exist in the literature on

this subject since the early days of quantum optics [11, 12, 13, 14, 140, 141, 142]. Some

of the earlier studies were motivated in testing generalised Bell’s inequalities [11], the

existence of hidden variables and whether quantum mechanics was a non-local theory

or not [12, 13, 14], following the question raised by Einstein, Podolsky and Rosen [7].

In recent times polarization correlated photon pairs have become important in the

field of quantum information science due to their entangled nature. Moreover many

applications of quantum information, such as quantum key distribution [20], efficient

optical quantum computing [21], long distance quantum communication using quan-

tum repeaters [22] and implementation of quantum telecommunication schemes [23]

require single photon pairs per cycle. This requirement of entangled photon pairs per

cycle of excitation could be satisfied by cascade emission from a single atom or atom

like systems like semiconductor quantum dots, provided one gets over the inherent

asymmetries. Recently such cascade emission has been reported for semiconductor

quantum dots [29, 30, 31, 32]. It was further seen that polarization entanglement of

the emitted photon pairs was degraded by the presence of energy level splitting of the

intermediate excitonic states and any incoherent process that leads to a population

transfer between the two intermediate excitonic states [31, 32, 143]. Moreover dephas-
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ing arising due to interaction of the quantum dot with its solid state environment can

also degrade the entanglement [144]. Some recent studies have also shown how the

fidelity of entanglement depends on excitonic level splitting [145] and the dynamics

of the incoherent dephasing [146]. Different methods have been proposed to reduce

and control the incoherent dephasing and energy level splitting of the excitonic states

thereby preserving the entanglement in the system [31, 32, 143, 145, 147, 148, 149].

Further, methods to enhance the generated entanglement by coupling the quantum

dot to a micro-cavity have also been proposed [55, 150]. As quantum dot systems are

of great importance for future applications in quantum information science, a clear

yet simple model for understanding the effects of all these different decoherence mech-

anism on the dynamics of the system is required. Thus we develop, in this chapter, a

simple theoretical model to analytically study the influence of different decoherence

mechanisms and the intermediate state splitting on the generation of polarization

entangled photon pairs in cascade emission.

4.2 Model

We consider a four level system undergoing cascade emission as our model. We show

a schematic diagram of such a cascade in Fig (4.1). The excited state |i〉 and the

intermediate states |α〉, |β〉 would correspond to the biexcitonic and optically active

excitonic states respectively in a quantum dot. Further |j〉 is taken to be the ground

state. Here 2γ = 2(γ1 + γ3) is the total spontaneous emission rate of the state |i〉,

2γ2, 2γ4 are the spontaneous emission rates of the states |α〉 and |β〉 respectively

and 2γβα(2γαβ) is the incoherent dephasing rate of the state |α〉 (|β〉). The energy

level splitting of the intermediate state is given by ∆. In this type of four-level

cascade scheme there are two decay paths for the excited state, |i〉 → |α〉 → |j〉

and |i〉 → |β〉 → |j〉. The generation of entanglement in these scheme is attributed

to the fact that these decay paths can become indistinguishable. The eigenbasis of
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Figure 4.1: Schematic diagram of a four level cascade system. Here H and V refers to

horizontally and vertically polarized photon emission. ∆ is the energy level separation

of the intermediate states and γ’s are the spontaneous emission rates given by γk =

2ω3
kl|~dkl|2/3~c3. The incoherent dephasing rates of the intermediate states are given

by 2γαβ and 2γβα respectively.
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this system is formed by the four states ({|i〉}, {|α〉}, {|β〉}, {|j〉}). In this basis the

radiative transition from the excited state generates two collinearly polarized photons

with linear polarizations along two orthogonal directions denoted by H (horizontal)

and V (vertical). When the states |α〉 and |β〉 are degenerate, the decay paths become

indistinguishable and we get a maximally entangled two photon state [7, 29]

|E〉 =
1√
2
(|H1H2〉 + |V1V2〉). (4.1)

In practical systems like atoms and quantum dots these levels are usually non degen-

erate and hence the entanglement of the emitted photon pairs depend completely on

the degree of degeneracy and dynamics of these intermediate states. In our model we

have taken them to be non-degenerate and study the effect of such intermediate level

splitting on the correlation of the emitted photon pairs. To understand the effect of

incoherent dephasing and energy level splitting of the excitonic state on the dynamics

of emitted photon pairs from the cascade, we need to study the two time second order

correlations. This is given by,

〈II〉 = 〈ǫ̂∗(θ1,φ1) · ~E−(~r, t)ǫ̂∗(θ2,φ2) · ~E−(~r, t+ τ)

: ǫ̂(θ2,φ2) · ~E+(~r, t+ τ)ǫ̂(θ1,φ1) · ~E+(~r, t)〉.

(4.2)

where 〈II〉 stands for the two time polarization angle dependent intensity-intensity

correlation 〈I(θ2,φ2)(~r, t + τ)I(θ1,φ1)(~r, t)〉. Further E+(~r, t)(E−(~r, t)) is the positive

(negative) frequency part of the quantized electric field operator at a point ~r in the

far-field zone and ǫ̂(θ,φ) is the polarization unit vector of the measured radiation at the

detector along any arbitrary direction given by (θ, φ). ǫ̂(θ,φ)’s are related to the linear

polarization unit vectors ǫ̂H , ǫ̂V (where H stands for horizontal and V for vertical) by

,






ǫ̂
(1)
(θ,φ)

ǫ̂
(2)
(θ,φ)






=







cos θ e−iφ sin θ

−eiφ sin θ cos θ













ǫ̂H

ǫ̂V






(4.3)
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and these satisfy the relation (ǫ̂
(1)
(θ,φ) · ǫ̂

(2)∗
(θ,φ)) = 0. The above relation can be understood

as a unitary transformation between a basis defined by the linear polarisation unit

vectors and a basis defined by ǫ̂(1) and ǫ̂(2). In an experimental setup the angles θ, φ

would correspond to the orientation of the optic axis of a half/quarter wave plate

to the direction of propagation of the emitted radiation. Let us now consider for

simplicity that both the levels |α〉 and |β〉 in Fig (4.1) have the same incoherent

dephasing rates i.e. γαβ = γβα. Further we assume that the spontaneous decay rates

of the intermediate levels are also equal. Such assumptions are well justified as they

do not influence the dynamics of the system significantly and yet lead to a simplified

form of the second order correlation, thereby providing a better understanding of the

problem. Under the above assumptions and for φ1 = φ2 = 0 the form of the two-time

polarization angle dependent intensity-intensity correlation is found to be ,

〈I(θ2, t+ τ)I(θ1, t)〉 =
(ω0

c

)8 1

2r4
D2

1D2
2〈|i〉〈i|t〉

× {e−2γ2τ + cos 2θ1 cos 2θ2e
−2(γ2+2γαβ)τ

+ sin 2θ1 sin 2θ2e
−2(γ2+γαβ)τ cos(∆τ)} (4.4)

where D1 = |~dαi| = |~dβi| and D2 = |~djα| = |~djβ|. The above simple form of the

second order correlation has been derived to match our theoretical analysis to that of

the experiment results [32]. For details of the mathematical analysis leading to the

generalised form of the two time intensity-intensity correlation the reader is referred

to section 4 of this chapter. One can clearly see from Eq no. (4.4) that the second

order correlation is profoundly influenced by both the incoherent dephasing rates as

well as the energy level splitting of the intermediate states. Note further, that in the

presence of small ∆ this becomes equivalent to the second order correlations measured

in ref.[12, 13, 14]. Next we define a quantity the degree of correlation cµ as,

cµ =
〈IµIµ〉 − 〈IµIµ′〉
〈IµIµ〉 + 〈IµIµ′〉 (4.5)

78



where µ, µ′ stands for mutually orthogonal polarization basis. The degree of corre-

lation varies between +1 and −1, where +1 represents perfect correlation (−1 for

anti-correlation) and 0 represent no polarization correlation.

4.3 Results and Discussion

4.3.1 Effect of excitonic level splitting on the correlation

In Fig (4.2) we show how the time averaged degree of correlation varies with the basis

angle for different values of splitting ∆, of the excitonic levels. Note that here the

excitonic level dephasing γαβ has been taken to be zero. We see that the degree of

correlation is independent of the polarization basis when ∆ = 0 and takes a value cµ =

1. This correspond to perfect polarization correlation among the emitted photons.

From the expression of cµ it is clear that this can happen only when the cross-polarized

correlations vanishes and the emitted photons are perfectly co-polarized. One can

even see this explicitly from Eq no. (4.4) by putting the values of θ1, θ2 = θ1 + π/2

for H-V , D-D′ and V-H basis. where H, V, D and D′ stand for horizontal, vertical,

diagonal and orthodiagonal polarization basis respectively. Further as the cross-

polarized correlations are absent the pair of photons emitted in one excitation cycle

can take either of the two paths |i〉 → |α〉 → |j〉 or |i〉 → |β〉 → |j〉 thus making

these paths indistinguishable. As a consequence we do not get the ”Welcher Weg”

or which path information thereby making the final state of the emitted photon pair

entangled in both the linear and diagonal polarization basis. The generated entangled

states can hence be written as 1/
√

2(|HH〉 + |V V 〉) and 1/
√

2(|DD〉 + |D′D′〉) for

the rectilinear and diagonal basis respectively. Note further that in this case perfect

anti-correlation (cµ = -1) is expected for measurement in the circularly polarized basis

with the entangled state given by 1/
√

2(|RL〉+ |LR〉). Thus one should get perfectly

cross-polarized photons as the co-polarized correlations vanish in this basis. This is
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Figure 4.2: Degree of correlation averaged over time as a function of basis angle, for

different excitonic level splitting ∆. H , D, D′, V stands for horizontal, diagonal,

orthodiagonal and vertical polarization basis respectively. Here we have considered

zero dephasing of the excitonic states. All parameters are normalized with respect to

γ.
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Figure 4.3: Conditional measurement of intensity-intensity correlation in the circu-

lar basis. The red curve corresponds to co-polarized (θ1 = θ2 = π/4, φ1 = φ2 =

−π/2)photons and the blue for cross-polarized (θ1 = θ2 = π/4, φ1 = −π/2, φ2 = π/2)

ones. The solid curve is for ∆ = 0 and the broken one for ∆ ∼ large. Here R and

L stands for right and left circular polarisation. The R-R correlation curve in case

of large splitting is time shifted for better comparison to the R-L correlation. All

parameters are normalized with respect to γ.

81



exactly what we get from the general expression of Eq no. (4.4) [see section 4, Eq no.

(4.13)] and is shown by the solid curves in Fig (4.3).

Further in Fig (4.2) we see that the degree of correlation is practically indepen-

dent of the excitonic level splitting ∆ in the rectilinear basis. As we change our

polarization basis the effect of ∆ becomes significant. In the diagonal basis for exam-

ple with the increase in level splitting the degree of correlation gradually decreases

and eventually vanishes. In presence of ∆, the cross-polarization does not vanish

and we have a which path information for the emitted photons when we measure

the second order correlations, thus destroying any entanglement in the system. The

behaviour of the correlations in the circular basis in the presence of large excitonic

level splitting is shown by the broken curves in Fig (4.3). One can clearly see that

there is no polarization correlation at all for large ∆. The sinusoidal behaviour of cµ

for non zero values of ∆ as seen in Fig (4.2) is in agreement with the classical linear

polarization correlation behaviour. Note that our theoretical results are in agreement

to experimentally observed data [32].

It should be noted that in our analysis we have concentrated on the calculation of

the quantum correlation cµ. This was also measured in the experiment of Stevenson

et. al. We have not examined measures of entanglement like concurrence. This is

because if ∆ -the intermediate state exciton splitting is nonzero, then horizontal and

vertical photons have different frequencies. This amounts to saying that we have for

nonzero ∆ quantum states which are characterized by two different parameters and

measures of entanglement in such situations do not exist.

4.3.2 Effect of decoherence on the correlation

In figures (4.4) and (4.5) we show how the incoherent dephasing of the intermediate

excitonic states affect the time averaged degree of correlations cµ when excitonic states

are non-degenerate (∆ 6= 0) and degenerate (∆ = 0) respectively. Note that here we
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have assumed that both the intermediate states have same dephasing rates. One can

clearly see that the effect is different for different measurement bases. The degree of

polarization correlation for example in the rectilinear basis decreases with increasing

dephasing irrespective of whether the excitonic states are non-degenerate or degener-

ate. For large dephasing rates the emitted photon pairs become almost un-correlated

in their polarisation. This is attributed to the presence of significant cross-polarized

correlation for large dephasing rates of the intermediate states. The incoherent de-

phasing of the intermediate levels causes an incoherent population transfer among

the states |α〉 and |β〉 thereby allowing the second photon to be emitted with or-

thogonal polarization to the first one. In the diagonal basis on the other hand the

dephasing does not affect the correlation at all for large ∆ but significantly decreases

the correlation when ∆ = 0 for large dephasing rates. So we see that in diagonal

basis even when the intermediate levels are degenerate we can still have significant

cross-correlation if there is some incoherent relaxation process by which they can get

coupled. This in turn spoils the quantum correlation in the system as can be seen

clearly from Fig (4.5). In Fig (4.6) we show how the correlations behave in the cir-

cular basis in presence of large dephasing rate (γαβ/γ = 10) for both non-degenerate

and degenerate intermediate states. We find that in the circular basis decoherence

arising due to the incoherent dephasing does not affect the degree of correlation of the

emitted photons when ∆ is large. Further we find that for degenerate intermediate

levels, even though the degree of correlation cµ = −1 for zero time delay, it vanishes

at all later time in presence of the large dephasing. Thus the decoherence makes

the perfectly anti-correlated photons completely uncorrelated. The incoherent relax-

ation process discussed by us here are practically present in the biexcitonic-excitonic

cascade in quantum dots [144, 146]. Thus we have shown by a simple model how

the decoherence arising due to such incoherent processes would strongly affect the

quantum correlations.
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Figure 4.4: Degree of correlation averaged over time as a function of basis angle,

for large ∆ and different incoherent dephasing rates γαβ of the intermediate level.

Here we have assumed that both the intermediate states dephase at same rate i.e

γαβ = γβα. H , D, D′, V stands for horizontal, diagonal, orthodiagonal and vertical

basis respectively.
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Figure 4.5: Degree of correlation averaged over time as a function of basis angle,

for ∆ = 0 and different incoherent dephasing rates γαβ of the intermediate level.

Here we have assumed that both the intermediate states dephase at same rate i.e

γαβ = γβα. H , D, D′, V stands for horizontal, diagonal, orthodiagonal and vertical

basis respectively.
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Figure 4.6: Conditional measurement of intensity-intensity correlation in the circular

basis for incoherent dephasing γαβ/γ = 10. The red curve corresponds to co-polarized

(θ1 = θ2 = π/4, φ1 = φ2 = −π/2)photons and the blue for cross-polarized (θ1 = θ2 =

π/4, φ1 = −π/2, φ2 = π/2) ones. The solid curve is for ∆ ∼ large and broken one

for ∆ = 0. Here R and L stands for right and left circular polarisation. The R-R

correlation curve are time shifted for better comparison to the R-L correlation.
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4.4 Intensity-Intensity correlation of emitted photons

Our model consists of a biexcitonic state and two excitonic states labelled as |i〉

and |α〉, |β〉 respectively. The equilibrium state is labelled as |j〉. The biexcitonic

state decays by emission of either a horizontally (H) polarized photon (|i〉 → |α〉)

or a vertically(V) polarized photon (|i〉 → |β〉)[29, 30]. The excitonic state |α〉(|β〉)

decays to the equilibrium state |j〉 by emission of a H(V)- polarized photon. The two

excitonic states have a energy difference of ~∆. Note that the splitting of the excitonic

state in quantum dots arises due to anisotropic electron-hole exchange interactions

[152, 153]. Figure (4.1) show a schematic diagram of our model. The eigenbasis of

this system is formed by the four states ({|i〉}, {|α〉}, {|β〉}, {|j〉}). In this basis the

unperturbed Hamiltonian H is given by,

H =
∑

k

~ωk|k〉〈k|, (4.6)

where ~ωk is the energy of the four levels (k = i, α, β, j). Note that this kind of energy

level scheme has been extensively used to study the cascade emission in quantum dots

[31, 143, 144, 145, 146]. The spontaneous emission and dephasing effects in the system

are incorporated via a master Eq no. technique [105] under the Born, Markov and

rotating wave approximations and is given by,

Lρ = −γ{Sii, ρ} − γ2{Sαα, ρ} − γ4{Sββ, ρ} − γβα{Sαα, ρ}

− γαβ{Sββ, ρ} + 2(γ1ρiiSαα + γ3ρiiSββ + γ2ρααSjj

+ γ4ρββSjj) + 2 (γβαρααSββ + γαβρββSαα) . (4.7)

Here 2γ = 2(γ1+γ3) is the total spontaneous emission rate of the biexcitonic state |i〉,

2γ2( 2γ4) and 2γβα(2γαβ) are the spontaneous emission rate and incoherent dephasing

rate of the excitonic state |α〉(|β〉) (see Fig. 4.1). Such incoherent dephasing arises in

quantum dots due to it’s interaction with the solid-state environment (in form of spin

flip processes or phonon scattering) [144]. The curly bracket {.., ..} stands for the anti-
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commutator and Skl = |k〉〈l|(S†
kl = |l〉〈k| ) is the atomic lowering (raising) operator

which follow the simple angular momentum commutation relations. To study the

dynamical evolution of this four-level cascade system we solve for the time evolution

of the density operator which is given by,

∂ρ

∂t
= − i

~
[H, ρ] + Lρ, (4.8)

We will set the energy of the state |j〉 equal to zero henceforth. On substituting Eq

nos. (4.6) and (4.7) in (4.8) and solving for the population terms we get,

pi(t) = e−2γtpi(0); pi = ρii − R/2γ

ραβ(t) = e−(a0−i∆)tραβ(0);

ραα(t) = e−a0t

(

cosh(At) +
Γa

A
sinh(At)

)

ραα(0)

+2e−a0tγαβ

A
sinh(At)ρββ(0)

+
R

2γ
C(t) + pi(0)e−2γtD(t);

ρββ(t) = e−a0t

(

cosh(At) − Γa

A
sinh(At)

)

ρββ(0)

+2e−a0tγβα

A
sinh(At)ραα(0)

+
R

2γ
F (t) + pi(0)e−2γtK(t). (4.9)

Here R signifies a constant feeding of population into the state |i〉 from some arbitrary

state |n〉. Note that in our model we are only concerned with the dynamics of the

cascade decay once the upper level is populated, and thereby do not consider explicitly

the pumping of the biexciton state |i〉. Further the excitonic level splitting ∆ =

ωα−ωβ , a0 = (γ2+γ4+γαβ+γβα), Γa = (γ4−γ2+γαβ−γβα) and A =
√

Γ2
a + 4γαβγβα.

The time dependent coefficients C,D, F and K are given by,

C(t) =

(

2γ1

(

1 +
Γa

A

)

+ 4
γ3γαβ

A

)

1 − e−(a0−A)t

2(a0 −A)

+ (A→ −A) ,

(4.10)
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D(t) =

(

2γ1

(

1 +
Γa

A

)

+ 4
γ3γαβ

A

)

1 − e−(a0−A−2γ)t

2(a0 −A− 2γ)

+ (A→ −A) ,

F (t) =

(

2γ3

(

1 − Γa

A

)

+ 4
γ1γβα

A

)

1 − e−(a0−A)t

2(a0 − A)

+ (A→ −A) ,

K(t) =

(

2γ3

(

1 − Γa

A

)

+ 4
γ1γβα

A

)

1 − e−(a0−A−2γ)t

2(a0 − A− 2γ)

+ (A→ −A) .

The effect of non-degenaracy of the excitonic states and their incoherent dephasing

on the dynamical evolution of the system shows up if one studies the two-time non-

classical second order correlation defined in Eq no. (4.2). For our four level system

the explicit form of the positive frequency part of the electric field operator is given

by [105],

~E(+)(~r, t) = ~E
(+)
0 (~r, t) −

(ω0

c

) 1

r
(
[

n̂× (n̂× ~dαi)
]

|α〉〈i|t

+
[

n̂× (n̂× ~dβi)
]

|β〉〈i|t

+
[

n̂× (n̂× ~djα)
]

|j〉〈α|t

+
[

n̂× (n̂× ~djβ)
]

|j〉〈β|t). (4.11)

Finally using Eq no. (4.11) in (4.2) we get the general form of the two time intensity-

intensity correlation

〈II〉 =
(ω0

c

)8 1

r4
{〈[(ǫ̂H · ~dαi)

∗ cos θ1|i〉〈α|t

+ (ǫ̂V · ~dβi)
∗eiφ1 sin θ1|i〉〈β|t]

× (|ǫ̂H · ~djα|2 cos2 θ2|α〉〈α|t+τ + |ǫ̂V · ~djβ|2 sin2 θ2|β〉〈β|t+τ

+ e−iφ2(ǫ̂H · ~djα)∗(ǫ̂V · ~djβ) cos θ2 sin θ2|α〉〈β|t+τ

+ eiφ2(ǫ̂H · ~djα)(ǫ̂V · ~djβ)
∗ cos θ2 sin θ2|β〉〈α|t+τ)

×
[

(ǫ̂H · ~dαi) cos θ1|α〉〈i|t + (ǫ̂V · ~dβi)e
−iφ1 sin θ1|β〉〈i|t

]

〉}.

(4.12)
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The two time correlation function that appears in Eq no. (4.12) is evaluated by

invoking the quantum regression theorem [126] and Eq no. (4.9). Finally we get,

〈II〉 =
(ω0

c

)8 1

4r4
D2

1D2
2〈|i〉〈i|t〉

× {f1(τ) + w1(τ) + f2(τ) + w2(τ)

+ (cos 2θ1 + cos 2θ2)(f1(τ) − w2(τ))

+ (cos 2θ1 − cos 2θ2)(w1(τ) − f2(τ))

+ cos 2θ1 cos 2θ2(f1(τ) + w2(τ) − f2(τ) − w1(τ))

+ sin 2θ1 sin 2θ2(e
−i(φ1+φ2)u(τ) + ei(φ1+φ2)u∗(τ))}.

(4.13)

Here D1 = |~dαj| = |~dβj| and D2 = |~djα| = |~djβ|. The f ’s, w’s and u are found from

the solutions of the density matrix Eq no.s (4.9) and are given by,

f1(τ) = e−a0τ

(

cosh(Aτ) +
Γa

A
sinh(Aτ)

)

,

f2(τ) = 2e−a0τ γαβ

A
sinh(Aτ),

w1(τ) = 2e−a0τ γβα

A
sinh(Aτ),

w2(τ) = e−a0τ

(

cosh(Aτ) − Γa

A
sinh(Aτ)

)

,

u(τ) = e−(a0−i∆)τ . (4.14)

The Eq no. (4.13) gives the most general form of the two time intensity-intensity

correlations for arbitrary polarization directions and for any system undergoing a

cascade emission. In the special case of φ1 = φ2 = 0, γαβ = γβα and γ2 = γ4 this

reduces to the simplified result (4.4) of section (2).

4.5 Conclusions

In conclusion we have developed a simple theory to understand how the dephasing

and energy level splitting of the excitonic states can affect polarization entanglement
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of photons emitted in a biexciton-exciton cascade. We have also shown how these

effects are important in determining whether the emitted photon pairs are classically

correlated or entangled in different polarization basis. Further we have shown that

our theoretical calculation is in agreement with the experimental results found in

context to such cascade emissions in quantum dots.

The content of this chapter has been published in J. Phys. B. 41, 225502 (2008).
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CHAPTER 5

COMPETING EFFECTS OF COHERENT INTERACTION AND

ENVIRONMENTAL DECOHERENCE IN QUBITS

5.1 Overview

It is now well understood that entanglement is the key resource for implementation

of many quantum information protocols like teleportation, cryptography, logic oper-

ations and quantum communications [3, 4, 5, 24, 134]. Bi-partite entanglement i.e

entanglement among two quantum mechanical systems each envisaged as a quan-

tum bit (a quantum mechanical two level system analogous to a classical bit), has

been found to be particularly important in this context. Numerous methods of pro-

ducing qubit-qubit entanglement have been investigated during the past decade. A

method, which is of particular interest in the context of quantum logic gate oper-

ations with systems like ion-traps and semiconductor nanostructures, relies on the

coherent interactions among the qubits [26, 27, 51, 52, 53, 134, 135, 155, 156, 157].

An earlier proposal by Barenco et. al. [51] has shown how one can implement a fun-

damental quantum gate like the C-NOT gate using dipole-dipole interaction among

two quantum dots modeled as two qubits. This was followed by another proposal

from DiVincenzo and Loss [52] in which they showed how the Heisenberg exchange

interaction between two quantum dots can be used to implement universal one and

two-qubit quantum gates. In their model the qubit is realized as the spin of the excess

electron on a single-electron quantum dot. They proposed the electrical gating of the

tunneling barrier between neighbouring quantum dots to creat a Heisenberg coupling

between the dots. Finally they showed explicitly how by controlling the exchange
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coupling one can implement a quantum swap gate and XOR operation. Moreover

they also showed the implementation of single qubit rotation using a pulsed mag-

netic field. Further in a later work Cirac and Zoller [26] discovered that by using

the coulombic interaction among two ions one can implement a two-qubit quantum

logic gate operation. Clearly many proposals require interacting qubits for two qubit

quantum gates.

However for a computation to progress efficiently one needs sustained entangle-

ment among the qubits as they dynamically evolve in time. This can be achieved

effectively if the quantum mechanical system under evolution is weakly interacting

with its surrounding. In practice though as the system evolves the system - envi-

ronment interaction becomes stronger thereby inhibiting loses in its initial coherence.

This loss of quantum coherence is known as decoherence [87] and leads to degradation

of entanglement. Thus the study of dynamical evolution of two entangled qubits cou-

pled to environmental degrees of freedom is of fundamental importance in quantum

information sciences [88, 89, 90, 91, 92, 93, 158]. One study in particular predicted

a remarkable new behavior in the entanglement dynamics of a bi-partite system. It

reported that a mixed state of an initially entangled two qubit system, under the

influence of a pure dissipative environment becomes completely disentangled in a fi-

nite time [92]. This was termed as Entanglement Sudden Death (ESD) [94] and was

recently observed in two elegantly designed experiments with photonic qubits [95]

and an atomic ensemble [96]. Note that an earlier proposal have discussed a pausible

experiment to observe ESD in cavity QED and trapped ion systems [159]. The phe-

nomenon of ESD has motivated numerous theoretical investigation in other bipartite

systems involving pairs of atomic, photonic, and spin qubits [160, 161, 162, 163], mul-

tiple qubits [164] and spin chains [165, 166, 167]. Further ESD has also been studied

for different environments including collective vacuum noise [169], classical noise [170]

and thermal noise [171, 172, 173]. Moreover random matrix environments have been
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studied [174, 175]. These authors [175], also point out the differences in the time

evolution of concurrence arising from the internal dynamics of two entangled qubits

due to the level splitting of each qubit.

ESD in continuous variable systems has also been extensively studied. In partic-

ular the problem of oscillators interacting with different environments has attracted

lots of interest [91, 176, 177, 178, 179, 180]. Note that the conditions leading to

ESD and probable ways of suppressing it are currently being actively investigated

[159, 181]. In particular it has been shown how ESD can be avoided by using ex-

ternal modulation with an electromagnetic field [97, 98, 182] and can even lead to

sudden birth for some cases [99]. Moreover sudden birth of entanglement has also

been predicted for structured heat baths [100, 101] and certain choice of initial con-

ditions of the entangled qubits [183]. In another recent work it has been shown that

under a pure dephasing environment for a general two mode N-photon state ESD

does not occur [184]. This result was explicitly proven for a general 3-photon state

of the form |Ψ〉 = a|30〉 + b|21〉 + c|12〉 + d|03〉.

Even though numerous investigations on ESD in a variety of systems have been

done so far, the question of ESD in interacting qubits remains open. In this chapter

we investigate this question for a system of interacting qubits in contact with various

models of the environment. We show that due to coherent qubit-qubit interactions

two initially entangled qubits, get repeatedly disentangled and entangled as they dy-

namically evolve leading to dark and bright periods in entanglement [185]. Moreover

we find that the amplitude of bright periods reduce with time and eventually at some

finite time vanishes completely, thereby causing death of entanglement. Our investi-

gations also reveal that the length of the dark periods depends on the initial condition

of the entangled qubits and also on the interaction strength. Further we find dark

and bright periods in entanglement in the presence of interactions among the qubits,

for initial states which do not exhibit sudden death but simple asymptotic decay of
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entanglement in absence of the interaction. We find the existence of dark and bright

periods to be generic for interacting qubits and occurs for a wide variety of models

for the environment. We show this explicitly by considering various models of the

environment which induce correlated decays, pure and correlated dephasing of the

qubits. All of these models exhibit the phenomenon of dark and bright periods even

though some of them do not show ESD.

The organization of this chapter is as follows. In Sec 2 we discuss the model for

two interacting qubits in contact with a simple dissipative environment and formulate

their dynamical evolution by solving the quantum-Louiville equation of motion. In

Sec 3 we develop the theory to study the dynamics of entanglement of the two inter-

acting qubits and calculate the time evolution of the concurrence under the influence

of environmental perturbations. In Sec 4 we study the entanglement dynamics of

two interacting qubits under the influence of pure dephasing environment. We find

that coherent qubit-qubit interaction not only leads to dark and bright periods in

entanglement it also delays the onset of ESD. Further in Sec 5 we do a detailed study

of the dynamics of qubit-qubit entanglement for both non-interacting and interacting

qubits for two different correlated models of the environment. In Sec 5.5.1 we focus on

dissipative environments inducing correlated decay of the qubits. Here we find that

for non-interacting qubits there is no ESD and even though entanglement vanishes

for certain initial conditions at some instant, it gets partially regenerated quickly and

then decays very slowly. When we include the interaction among the qubits we find

that entanglement exhibits the phenomenon of dark and bright periods. We further

study the behavior of two qubit entanglement for a pure correlated dephasing envi-

ronment in Sec 5.5.2. We find that the correlated dephasing leads to delay of ESD in

absence of qubit-qubit interactions. We see that the degree of delay depends on the

strength of the correlation. Here again when we include the qubit-qubit interaction

we observe dark and bright periods in entanglement with a much later onset of ESD.
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In each section we mention the earlier works. Finally in Sec 6 we summarize our

findings.

5.2 Qubit-Qubit Interaction

The model that we consider for our study consist of two initially entangled interacting

qubits, labeled A and B. Each qubit can be characterized by a two-level system with

an excited state |e〉 and a ground state |g〉. Further we assume that the qubits

interact independently with their respective environments. This leads to both local

decoherence as well as loss of entanglement of the qubits. The decoherence, for

instance can arise due to spontaneous emission from the excited states. Figure (5.1).

show a schematic diagram of our model. The Hamiltonian for our model is then given

by,

H = ~ω0(S
z
A + Sz

B) + ~v(S+
AS

−
B + S+

BS
−
A ), (5.1)

where v is the interaction between the two qubits, Sz
i , S

+
i , S

−
i (i =A,B) are the atomic

energy, raising and lowering operators defined as Sz
i = 1/2(|ei〉〈ei| − |gi〉〈gi|), S+

i =

|ei〉〈gi| = (S−
i )† respectively and obey angular momentum commutation algebra. We

would use the two qubit product basis given by,

|1〉 = |e〉A ⊗ |e〉B |2〉 = |e〉A ⊗ |g〉B

|3〉 = |g〉A ⊗ |e〉B |4〉 = |g〉A ⊗ |g〉B (5.2)

Now as each qubit independently interacts with its respective environment, the dy-

namics of this interaction can be treated in the general framework of master equations.

The time evolution of the density operator ρ which gives us information about the

dynamics of the system can then be evaluated from the quantum-Liouville equation

of motion,

ρ̇ = − i

~
[H, ρ] + Lρ, (5.3)
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Figure 5.1: Schematic diagram of two qubits modelled as two two-level atom coupled

to each other by an interaction parameter v. Here |e〉, |g〉 signifies the excited and

ground states and ω0 their corresponding transition frequency. The qubits A and B

independently interact with their respective environments (baths) which lead to local

decoherence as well as loss in entanglement.
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where Lρ includes the effect of the interaction of the environment with the qubits.

Note that in its simplest form this can be considered to be a spontaneous emission

process induced by the vacuum fluctuation of the radiation field. For the case of a

simple dissipative environment with which the qubits are interacting independently,

the effect will be decay of the excited state and any initial coherences of the qubit.

As an example say for qubit A this can be written as,

ρ̇ee = −2γAρee

ρ̇eg = −γAρeg. (5.4)

The above equation together with the normalization Tr[ρ] = 1 and symmetry of the

density matrix, define completely the dynamical system. The effect of the environ-

ment as elucidated in Eq no. (5.4) can be written in a compact form in terms of the

atomic operators S+, S− as,

Lρ = −
∑

j=A,B

γj

2
(S+

j S
−
j ρ− 2S−

j ρS
+
j + ρS+

j S
−
j ), (5.5)

where the terms γA(γB) gives the decay rate of qubit A (B) to the environment. We

give the complete analytical solution of Eq no. (5.3) in the basis defined by Eq no.

(5.2) for coupling to a dissipative environment Eq no. (5.5) in appendix C

5.3 Concurrence Dynamics

To investigate the effect of interaction among the two qubits on decoherence we need

to study the dynamics of two qubit entanglement. The entanglement for any bipartite

system is best identified by examining the concurrence [68, 77], an entanglement

measure that relates to the density matrix of the system ρ. The concurrence for two

qubits is defined as,

C(t) = max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4}, (5.6)
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where the λ’s are the eigenvalues of the non-hermitian matrix ρ(t)ρ̃(t) arranged in

non-increasing order of magnitude. The matrix ρ(t) being the density matrix for the

two qubits and the matrix ρ̃(t) is defined by,

ρ̃(t) = (σ(1)
y ⊗ σ(2)

y )ρ∗(t)(σ(1)
y ⊗ σ(2)

y ), (5.7)

where ρ∗(t) is the complex conjugate of ρ(t) and σy is the well known time reversal

operator for spin half systems in quantum mechanics. Note that concurrence varies

from C = 0 for a separable state to C = 1 for a maximally entangled state. Though in

general the two qubit density matrix ρ will have all sixteen elements, here we consider

the initially entangled qubits to be in a mixed state [92] given by the density matrix,

ρ ≡ 1/3(a|1〉〈1|+ d|4〉〈4| + (b+ c)|ψ〉〈ψ|);

|ψ〉 =
1√
b+ c

(
√
b|2〉 + eiχ

√
c|3〉);

a + b+ c+ d

3
= 1; (5.8)

where a, b, c are independent parameters governing the nature of the initial state of

the two entangled qubits. Note that the entanglement part of the state depends

on the initial phase χ. Following Eq no.(5.8) one can see that the initial two qubit

density matrix has only six-elements. In the matrix form ρ is then given by,

ρ(0) =
1

3



















a 0 0 0

0 b z 0

0 z∗ c 0

0 0 0 d



















. (5.9)

Here z = eiχ
√
bc are the single photon coherences. Using the solution of the quantum-

Liouville equation from appendix (C) it can be shown that the initial density matrix

(5.9) preserves its form for all t. Finally we calculate the concurrence defined by (5.6)

and (5.7) for the two qubits as,

C(t) = Max{0, C̃(t)}, (5.10)
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where C̃(t) is given by,

C̃(t) = 2
{

|ρ23(t)| −
√

ρ11(t)ρ44(t)
}

(5.11)

Let us now consider a particular class of mixed states with a single parameter a

satisfying intially a ≥ 0, b = c = |z| = 1 and d = 1 − a [92]. Note that then (5.8),

has the structure similar to a Werner state [15]. On using the dynamical evolution

of the density matrix elements from appendix (C) and this set of initial conditions in

(5.11), we obtain,

C̃(t) =
2

3
e−γt[(cos2 χ+ sin2 χ cos2(2vt))1/2

−
√

a(1 − a+ 2w2 + w4a)], (5.12)

where w =
√

1 − e−γt. One can clearly see the dependence of C̃(t) on the interaction

v among the qubits and the initial phase χ. We see from (5.12) that in absence of

the interaction v, concurrence becomes independent of the initial phase and yields

the well established result of Yu and Eberly [92].

Note that C̃(t) can become negative if,

a(1 − a+ 2w2 + w4a) > (1 − sin2 χ sin2(2vt)), (5.13)

in which case concurrence is zero and the qubits get disentangled. To understand

how the interaction would effect entanglement we study the analytical result of Eq

no. (5.12) for different values of the parameter a and χ. In Fig (5.2) we show the

time dependence of the entanglement for v = 5γ and for different values of the initial

phase χ. The inset of Fig (5.2) shows the long time behavior of entanglement for this

case. In Fig (5.2) we show that for a = 0.4, the non-interacting qubits (v = 0) exhibit

sudden death of entanglement (ESD) [visible more clearly in the inset] whereas when

they interact (v 6= 0) the concurrence oscillates between zero and non-zero values

with diminishing magnitudes and eventually shows ESD. Thus the initially entangled

qubits in presence of interaction v gets repeatedly disentangled and entangled before
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Figure 5.2: Concurrence as a function of time for two initially entangled, interacting

qubits with initial conditions a = 0.4, b = c = |z| = 1.0 and two different initial

phases χ = π/4 (black curve) and χ = π/2 (red curve). The inset shows the long

time behavior of concurrence. Here interaction strength is taken to be v = 5γ.
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Figure 5.3: Concurrence as a function of time for two initially entangled, interacting

qubits with initial conditions a = 0.2, b = c = |z| = 1.0 and two different initial

phases χ = π/4 (black curve) and χ = π/2 (red curve). Here interaction strength is

taken to be v = 5γ.

102



0 3 6 9 12 15
νt

0

0.1

0.2

0.3

0.4

C
on

cu
rr

en
ce

γ/ν = 1/4
γ/ν =1/10
γ/ν = 1/15

Figure 5.4: Concurrence as a function of time for different decay rates of two initially

entangled qubits with initial conditions a = 0.2, b = c = |z| = 1, χ = π/2.
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finally becoming completely disentangled. Hence as a result of interaction between

the qubits, the concurrence exhibits bright and dark periods in the entanglement. The

magnitude of the bright periods diminishes with time and eventually at longer time

this behavior vanishes completely leading to death of entanglement (ESD). Further

we observe that when concurrence becomes zero, it remains zero for a time range

before reviving. The length of a dark period is determined by the condition (5.13). It

is worth mentioning here that such bright and dark periodic behavior in entanglement

has been predicted for qubits undergoing unitary evolution in a lossless cavity [188].

In Fig (5.3) we plot the concurrence for a = 0.2. Note that for a = 0.2, no ESD

is observed when the qubits are non-interacting and the concurrence monotonically

goes to zero as t −→ ∞. For v 6= 0, we observe the bright and dark periods in

entanglement with diminishing magnitudes and C(t) −→ 0 as −→ ∞. The Fig

(5.4) shows the bright and dark periods in two qubit entanglement for three different

spontaneous decay rates and a = 0.2. The initial phase χ is chosen to be π/2. For

this value of a we observe no ESD but only collapse and revival as expected. In Fig

(5.5) and (5.6) we plot the dyamical evolution of entanglement when (γ = 0) , i.e in

absence of any environmental perturbation. This is an ideal case of close quantum

systems whose dynamics is only influenced by the initial condition of the entangled

qubits and the inter-qubit interactions. In this case we get,

C̃(t) =
2

3
[
√

cos2 χ+ sin2 χ cos(2vt) −
√

a(1 − a)] (5.14)

For both the case of a = 0.2 and a = 0.4 with an initial phase of χ/4 , we observe

sinusoidal behavior of entanglement. We find that there is no ESD in the absence of

the environment effects in this case. For another value of the initial phase χ/2 we ob-

serve dark and bright periods of entanglement. The periods of disentanglement (dark

periods) are governed by the condition
√

a(1 − a) > | cos(2vt)|. It is clearly visible

from the plots that in absence of any environment the amplitude of the bright periods

does not diminish at all and thus the qubits gets back their initial entanglement com-
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Figure 5.5: Evolution of Concurrence for two initially entangled, interacting qubits

with initial conditions a = 0.4, b = c = |z| = 1.0 and different initial phases χ. Here

γ = 0. The magnitude of bright periods in absence of environment does not diminish

in magnitude.

105



0 5 10
νt

0

0.1

0.2

0.3

0.4

C
on

cu
rr

en
ce

χ = π/2
χ = π/4a = 0.4, γ = 0

Figure 5.6: Evolution of Concurrence for two initially entangled, interacting qubits

with initial conditions a = 0.4, b = c = |z| = 1.0 and different initial phases χ. Here

γ = 0. The magnitude of bright periods in absence of environment does not diminish

in magnitude.
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pletely. This regeneration of entanglement is due to the inter-qubit interactions. Note

that similar behavior in concurrence dynamics (collapse and revival of entanglement)

has been predicted in earlier studies of non-interacting qubits in atom cavity systems.

For example it was shown that for the double Jaynes-Cumming (JC) [186] model,

with completely undamped non-interacting cavities entanglement shows a periodic

death and re-birth feature [187]. This was attributed to exchange of information

between the finite number of cavity modes and the atoms - a new kind of tempo-

rary decoherence mechanism. In another work, pairwise concurrence was calculated

among four qubits, where the qubits were formed by the cavity modes and atoms

[189]. Here again JC like interactions between the atom and cavity gives rise to dark

and bright period in the entanglement dynamics of the qubits. It was shown that

during the period when the concurrence between the cavities vanish, the concurrence

between the atoms reaches its peak and vice-versa. This only happens as the cavities

where assumed to be lossless with finite number of mode and thus without environ-

mental decoherence. Further it was shown that for qubits remotely located and in

contact with their respective environment when driven independently by single mode

quantized field, one gets dark and bright periods of entanglement instead of ESD, a

feature similar to single atom behavior in cavity quantum electrodynamics [188, 190].

These works [186, 187, 188, 189, 190] differ from our’s as we focus on the effect of

interaction among the qubits in presence of a decohering environment. Note that in

a more recent work it was shown how oscillators interacting with a correlated finite

temperature Markovian bath can lead to dark and bright periods in entanglement for

certain initial conditions [180].

5.4 Pure Dephasing of the Qubits

In order to demonstrate the generic nature of our results, we consider other models

of the environment. A model which has been successfully used in experiments [191]
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Figure 5.7: Schematic diagram of two qubits modelled as two two-level atom coupled

to each other by an interaction parameter v. Here |e〉, |g〉 signifies the excited and

ground states and ω0 their corresponding transition frequency. The qubits A and

B independently dephase to their respective environments (baths) which leads to

decoherence and thus loss in entanglement. The corresponding dephasing rates are

given by ΓA and ΓB respectively.
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involves pure dephasing. The mathematical formulation for this kind of an environ-

mental model can be done via a master equation technique and is given by,

Lρ = −
∑

i=A,B

Γi(S
z
i S

z
i ρ− 2Sz

i ρS
z
i + ρSz

i S
z
i ) (5.15)

where ΓA(ΓB) is the dephasing rate of qubit A (B). Substituting (5.15) in (5.3) we

get the equation for dynamical evolution of the qubits under the influence of this

kind of an environment. Note that in this model the populations do not decay as a

result of the interaction with the environment whereas the coherences like ρ23(t) decay

as ρ23(0)e−(ΓA+ΓB)t. Let us now study the the effect of interaction v between the

qubits on the dynamics of entanglement. We assume the same initial density matrix

of Eq no. (5.9) with the initial conditions d = 1 − a, b = c = |z| = 1 and a ≥ 0 to

calculate the concurrence. One can clearly see from the solution of quantum-Louiville

equation given in appendix (D) that under pure dephasing, the form of matrix in (5.9)

is preserved for all time. Using the solutions of the master Eq no. (5.3) derived in

appendix (D) for the environment effects given by (5.15) and substituting in equations

(5.10), (5.11) we get the time dependent concurrence for this model to be,

C̃D(t) =
2

3
[e−τ{e−2τ cos2 χ + sin2 χ{cos(Ω1τ)

− 1

Ω1

sin(Ω1τ)}2}1/2 −
√

a(1 − a)], (5.16)

where the suffix D signifies that the concurrence is calculated for a dephasing environ-

ment and we assume ΓA = ΓB = Γ. Here τ = Γt and Ω1 =
√

(2v/Γ)2 − 1. For v = 0

we get C̃D(t) = 2/3[e−2τ −
√

a(1 − a)], which is independent of the initial phase χ.

We find death of entanglement for τ > −1/2 ln
√

a(1 − a). Note that Yu and Eberly

[94] have considered this case earlier but for a = 1 only in which case there is no ESD.

In Fig (5.8) and (5.9) we show the time dependence of entanglement for a purely de-

phasing model, for different values of a and initial coherences governed by the phase

χ. From the figures it is seen that for v 6= 0, the two qubit entanglement exhibits
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Figure 5.8: Concurrence as a function of time with initial conditions b = c = |z| = 1

and two different values of the initial phase χ for the dephasing model. The red

and black curve in figure is for χ = π/4 and π/2 respectively. Here the interaction

parameter is taken to be v/Γ = 4.
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Figure 5.9: Concurrence as a function of time with initial conditions b = c = |z| = 1

and two different values of the initial phase χ for the dephasing model. The red

and black curve in figure is for χ = π/4 and π/2 respectively. Here the interaction

parameter is taken to be v/Γ = 4.
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the bright and dark periods. Further we also see that for v 6= 0, entanglement ex-

hibits this feature even beyond the time when ESD occurs for noninteracting qubits.

Moreover Fig (5.9) shows that the frequency of this periodic feature increases with

increase in strength of the interaction v. The dark period between two consecutive

bright periods arises as a result of C̃D(t) < 0, for some time range. This physically

means that the two-qubits remain disentangled during this time range.

5.5 Concurrence Dynamics in Correlated Environmental Models

5.5.1 Effect of Correlated Dissipative Environment

We next consider an environment involving correlated decay and show how coupling

to such environment can lead to new effects in the entanglement dynamics for two

qubit systems. We will consider the case of both non-interacting as well as interacting

qubits for this model of the environment. To keep the analysis simple and get a better

physical insight on the decoherence effect of this environment we will first study

the case of non-interacting qubits. We assume as before that the qubits interacts

independently with their respective environments with decay rates γA and γB. Further

we assume that the qubits are close enough (r << λ, r being the inter-qubit distance

and λ the wavelength of emitted radiation in process of a decay) such that they can

undergo a correlated decay with decay rates ΓAB(ΓBA) for qubits A(B). Whether

this would lead to further decoherence is a question we want to investigate. Note

that the entanglement dynamics of two non-interacting two level atoms in presence of

dissipation caused by spontaneous emission was studied earlier in details by Jakóbczyk

and Jamróz [168]. They even considered correlated model of dissipative environment

and showed possible destruction of initial entanglement and possible creation of a

transient entanglement between the atoms. Further they also discussed the question

of non-locality and how it is influenced by the spontaneous emission by explicitly

showing the violation of Bell-CSHS inequality. One of the chief difference between this
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Figure 5.10: Schematic diagram of two qubits modelled as two two-level atom coupled

to each other by an interaction parameter v. Here |e〉, |g〉 signifies the excited and

ground states and ω0 their corresponding transition frequency.The qubits A and B

independently interact with their respective environments (baths) which lead to local

decoherence as well as loss in entanglement.
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work and ours is the initial density matrix ρ considered and the interaction introduced

between the qubits . While we consider the possibility of both the qubits (atoms) to

be initially excited and show its important consequences on the decay dynamics, they

have neglected this effect by putting ρ11(0) = 0. We would show later in this chapter

(as can also be seen from their results) that the dissipative environment preserve the

form of the initial ρ. Hence ρ11(t) = 0 for all time in their case. Moreover, in a recent

work the entanglement dynamics of two initially entangled qubits for collective decay

model was studied in context to ESD, by Ficek and Tanas [132]. They considered an

initial density matrix of the from,

ρ = |Ψ0〉〈Ψ0|;

|Ψ0〉 =
√
p|e1, e2〉 +

√

(1 − p)|g1, g2〉 (5.17)

It can be clearly seen that in this case the two-qubits are initially prepared in an

entangled state by the two-photon coherences. They further show that for this initial

condition the single photon coherences are never generated. Moreover the dipole-

dipole interaction that they consider for the two qubit system have no influence for

this initial condition. Ficek and Tanas predicted dark periods and revival in the two

qubit entanglement in their work due to the correlated nature of the bath, we on the

other hand consider the initial density matrix of the form (5.9) with single photon

coherences and show that any coherent interaction among the qubits does influence

the entanglement dynamics at all later time.

We now include the effect of a dissipative environment with both independent and

correlated decay of the qubits via a master equation technique given by,

Lρ = −
∑

j,k=A,B

Γij

2
(S+

j S
−
k ρ− 2S−

k ρS
+
j + ρS+

j S
−
k ),

Γjj = γj (5.18)

The time evolution of the density operator ρ which gives us information about the

dynamics of the system can then be evaluated by solving the quantum-Liouville Eq
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no. (5.3) with the environmental effect included by Eq no. (5.18) and taking v = 0.

Next as before we consider the qubits to be intially entangled with their initial state

to be a mixed state defined by the density matrix (5.9). We then solve the quantum-

Louiville equation to study the dynamical evolution of the system. We give an for

explicit solution of the time dependent density matrix elements for the qubits in

appendix (E). One can clearly see from appendix (E) that for this kind of model of

the environment, as before the initial density matrix preserves its form for all time

t. Now using appendix (E) in equations (5.10) and (5.11) and the initial conditions

a ≥ 0, d = 1− a, b = c = |z| = 1, we obtain the concurrence dynamics of two initially

entangled non-interacting qubits for this model of the environment as,

C̃(t) =
2

3
e−γt{[{cosχ cosh(Γt) − sinh(Γt) + aζ(t)}2

+ sin2 χ]1/2 −
√

3a[1 − κ(t)]},

(5.19)

where ζ(t) and κ(t) are given by ,

ζ(t) = e−γt{
(

1 + Γ/γ

1 − Γ/γ

)

(e(1−Γ/γ)γt − 1)

−
(

1 − Γ/γ

1 + Γ/γ

)

(e(1+Γ/γ)γt − 1)}, (5.20)

κ(t) =
1

3
ae−2γt{1 +

(

1 + Γ/γ

1 − Γ/γ

)

(e(1−Γ/γ)γt − 1)

+

(

1 − Γ/γ

1 + Γ/γ

)

(e(1+Γ/γ)γt − 1)} +
2

3
e−γt{cosh(Γt)

− cosχ sinh(Γt)}, (5.21)

For simplicity we have assumed equal decay rates of both the qubits, γA = γB = γ

and ΓAB = ΓBA = Γ. One can clearly see the dependence of C̃(t) on the correlated

environmental effect given by Γ and the initial phase χ in Eq no. (5.19). We see from

(5.19), (5.20) and (5.21) that for Γ = 0, concurrence becomes independent of the
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initial phase and yields the result of Yu and Eberly [92]. Note that C̃(t) can become

negative if,

3a[1 − κ(t)] > [{cosχ cosh(Γt) − sinh(Γt) + aζ(t)}2

+ sin2 χ] (5.22)

in which case concurrence is zero and the qubits get disentangled. To understand

how correlated decay of the qubits might effect their entanglement we study the

analytical result of Eq no. (5.19) for different values of the parameter a and χ.

In Fig (5.11) we show the time dependence of entanglement for a = 0.2 and two

different values of initial phase χ and correlated decay rate of Γ = 0.8γ. Note that for

Γ = 0, there is no ESD in this case [92] and concurrence monotonically goes to zero

as t −→ ∞. For Γ 6= 0 we observe new behavior in the entanglement of the qubits.

Concurrence is seen to have a much slower decay in comparison to when Γ = 0. For a

initial phase of χ = π/4 we observe that the condition in Eq no. (5.22) is satisfied and

entanglement vanishes temporarily i.e the qubits get disentangled. The entanglement

gets regenerated at some later time and finally goes to zero very slowly as t −→ ∞.

Note that this disentanglement and re-entanglement phenomenon is non periodic and

is very sensitive to initial coherence among the qubits, for example it do not occur

when the initial coherence is governed by the phase χ = π/2. In Fig (5.12) we plot

concurrence for a = 0.4. For this value of a ESD is observed for Γ = 0 but not for

Γ 6= 0. Instead we observe disentanglement and regeneration of entanglement among

the qubits for χ = π/4. Here again we find that no dark and bright periods nor

any ESD for initial phase of χ = π/2. Further, note that for initial phase χ = π/4

we have a longer time interval during which the qubits remain disentangled before

getting entangled again, in comparison to the case for a = 0.2. Thus we find that

the time interval between disentanglement and regeneration of entanglement as well

as the magnitude of regeneration strongly depends on the initial coherences of the
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Figure 5.11: Time evolution of concurrence for a = 0.2, b = c = |z| = 1 and two

different initial phases χ for two non-interacting qubits in contact with a correlated

dissipative environment. Here Γ/γ = 0 signifies absence of common bath for the

qubits.
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Figure 5.12: Time evolution of concurrence govern by the initial condition a = 0.4 for

two non-interacting qubits in contact with a correlated dissipative environment. Here

all other initial parameters remains the same as fig (5.10). Γ/γ = 0 signifies absence

of any common bath in which case entanglement sudden death (ESD) is observed.
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initially entangled qubits. Hence we can conclude that for non-interacting qubits in

contact with a dissipative correlated environment no ESD occurs.

Let us now consider the case of two initially entangled interacting qubits in contact

with the correlated environment. The dynamical evolution of the system in presence

of interaction v for correlated model of environment is evaluate in details in appendix

(F). We use the solutions of appendix (F) in (5.10) to calculate the concurrence for

this environment. Note that the solutions are essentially valid under the assumption

that our initial two qubit density matrix ρ is given by Eq no. (5.9). Further we

consider as before that the two entangled qubit’s evolution is governed by the initial

conditions a ≥ 0, d = 1 − a, b = c = |z| = 1. Hence the time dependent concurrence

for two initially entangled interacting qubits becomes,

C̃(t) =
2

3
e−γt{[{cosχ cosh(Γt) − sinh(Γt) + aζ(t)}2

+ cos2(2vt) sin2 χ]1/2 −
√

3a[1 − κ(t)]},

(5.23)

C(t) = Max{0, C̃(t)} ; (5.24)

where ζ(t) and κ(t) are given by equations (5.20) and (5.21) respectively. The depen-

dence of concurrence for C̃(t) > 0 on the interaction strength v between the qubits

is clearly visible in Eq no. (5.23). Further now we can see that the condition of

complete disentanglement of the qubits is given by,

3a[1 − κ(t)] > [{cosχ cosh(Γt) − sinh(Γt) + aζ(t)}2

+ cos2(2vt) sin2 χ] (5.25)

When condition (5.25) is satisfied, C̃(t) < 0 and hence C(t) = 0. Next to study

the effect of qubit-qubit interaction on the entanglement dynamics we plot the time

dependent concurrence for different value of a, initial phase χ and correlated decay

rates of Γ = 0.8γ in figures (5.13) and (5.14). We observe in the figures that for an
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Figure 5.13: Time evolution of concurrence for interacting qubits in contact with a

correlated dissipative environment with correlated decay rate of Γ/γ = 0.8. Here

b = c = |z| = 1. A long period of disentanglement is observed for initial phase

χ = π/4. Here the interaction strength among the qubits is taken to be v/γ = 5.0
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Figure 5.14: Time evolution of concurrence for interacting qubits in contact with a

correlated dissipative environment for same parameters as Fig (9) and a = 0.4. The

dark and bright periodic features sustain for a longer time for initial phase of χ = π/2.

Much longer period of disentanglement now observed for χ = π/4.
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initial phase of χ = π/2 concurrence exhibits dark and bright periods at initial time for

both a = 0.2 and a = 0.4. For longer time the concurrence shows a damped oscillatory

behavior. We attribute this effect to the competition between the fast inter-qubit

interactions v and the environmental decays. For longer time the correlated decay

becomes dominant and leads to a slow damped oscillatory decay of the entanglement.

For χ = π/4 the dark and bright periods are not very pronounced and is over shadowed

very quickly by the correlated decay. Note that for this value of initial phase we find

that there exist a long period of time during which the qubits remain disentangled.

At a much later time entanglement gets regenerated and increases initially and then

starts decaying very slowly after. This behavior is quite different from the dark

and bright periods seen for other models of the environment. Thus we see that for

interacting qubits there is no ESD for this model of the environment. Instead we

find dark and bright periods with long period of disentanglement whose occurrence

depends on the initial coherence.

5.5.2 Delay of ESD by Correlated Dephasing Environment

Finally we consider a purely correlated dephasing model of the environment and

study the effect of such an environment on the entanglement dynamics of two qubits.

Note that this kind of model is popular among solid state systems like semiconductor

quantum dots. We will study the behavior of entanglement for both non-interacting

and interacting qubits. As before to keep our analysis simple and to get a better

physical insight to the question of decoherence for this kind of environment we will

first study the case of non-interacting qubits. We will then generalize our results

by introducing the interaction among the qubits. For non-interacting qubits the

Hamiltonian for our model is given by (5.1) with v = 0. The effect of the dephasing

environment on the qubits is included via a master equation technique and is given
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Figure 5.15: Schematic diagram of two qubits modelled as two two-level atoms. Here

ω0 is the transition frequency of the excited state |e〉 to the ground state |g〉. The

qubits A and B independently dephase to their environments (baths) with a dephas-

ing rate of ΓA,ΓB respectively. The qubits can also interact with the environment

collectively when they are at proximity giving rise to correlated dephasing represented

by the decay rate Γ0.
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by,

Lρ = −
∑

i=A,B

Γi(S
z
i S

z
i ρ− 2Sz

i ρS
z
i + ρSz

i S
z
i )

−2Γ0(S
z
AS

z
Bρ− Sz

BρS
z
A + ρSz

AS
z
B − Sz

AρS
z
B),

(5.26)

where ΓA(ΓB) and 2Γ0 are respectively the independent and correlated dephasing

rate of qubit A (B) . The dynamical evolution of this system can then be studied

by solving the quantum-Louiville Eq no. (5.3) for v = 0 and including the effect

of environment by using (5.26). We now consider as earlier that the initial state of

the two qubits is defined by the density matrix ρ (5.9). Then the solution of the

quantum-Louiville equation for this model of the environment is given by,

ρ11(t) =
1

3
a, ρ22(t) =

1

3
b, ρ33(t) =

1

3
c, (5.27)

ρ23(t) =
1

3
|z|e−(ΓA+ΓB−2Γ0)teiχ (5.28)

ρ32(t) = ρ∗23(t), ρ44(t) = 1 − ρ11(t) − ρ22(t) − ρ33(t) (5.29)

All other matrix elements of the two qubit density matrix ρ are zero. Now using the

solutions of (5.29) it is straight forward to show that, for pure dephasing of the qubits,

the form of matrix in (5.9) is preserved for all time. Note that in such a model the

populations do not decay as a result of the interaction with the environment whereas

the coherences like ρ23(t) decay as ∼ ρ23(0)e−(ΓA+ΓB−2Γ0)t for χ = 0 or mod π. Let

us now study the effect of correlated dephasing of the qubits on the dynamics of

entanglement. For the initial conditions d = 1−a, b = c = |z| = 1 and a ≥ 0 on using

(5.27) in (5.10) we get the expression for time dependent concurrence as,

C̃D(t) =
2

3

{

e−2(Γ−Γ0)t −
√

a(1 − a)
}

(5.30)

where we have assumed ΓA = ΓB = Γ for simplicity. From Eq no. (5.30) it is

clearly seen that in a purely dephasing environment entanglement among the qubits
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Figure 5.16: Time evolution of concurrence for two non-interacting qubits in contact

with a purely dephasing environment for initial condition given by a = 0.2 and

b = c = |z| = 1. The effect of correlated dephasing shows up as delay in the onset of

ESD.
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is independent of the initial coherence given by χ and depends only on a and Γ0. In Fig

(5.16) we plot the time dependence of concurrence for a = 0.2. We find that the effect

of correlated dephasing is manifested in the delay of the onset of ESD. The time for

the onset of ESD is given by t ≥ 1/2(Γ−Γ0){1/ ln
√

a(1 − a)}. From the figure its is

clealy visible that with increase in correlated decay Γ0, the onset of ESD gets delayed

further until Γ0 = Γ, when concurrence bceomes independent of the dephasing rates

and is given by C = 2/3[1−
√

a(1 − a)]. This situation represents a decoherence free

subspace where concurrence becomes solely dependent on the value of a i.e population

of the excited state of the two qubits. Note that this kind of situation has already

been tailored to study entanglement in decoherence free subspace [18].

Let us now include the interaction among the qubits and study how this interaction

might influence the entanglement dynamics for this model of the environment. The

Hamiltonian of the two qubit system and its coupling to the environment is then given

by equations (5.1) and (5.26) respectively. To study the dynamics of entanglement

we follow a similar process as described earlier. We use the solution of quantum-

Louiville equation derived explicitly in appendix (G) and substitute them in Eq no.

(5.10) to calculate the time dependence of concurrence C. With the initial conditions

a = 1 − d, b = c = |z| = 1, then we get,

C̃D(t) =
2

3
[e−(Γ−Γ0)t{e−2(Γ−Γ0)t cos2 χ

+ sin2 χ(cos(Ω′t) − (Γ − Γ0)

Ω′ sin(Ω′t))2}1/2

−
√

a(1 − a)]; (5.31)

C(t) = Max{0, C̃D(t)} (5.32)

where Ω′ =
√

4v2 − (Γ − Γ0) and we have assumed ΓA = ΓB. One can clearly see the

dependence of concurrence on the interaction v among the qubits for C̃D > 0. Note

that due to the interaction among the qubits now concurrence becomes dependent

of the initial phase χ. To understand the behavior of entanglement in presence of
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Figure 5.17: Time evolution of concurrence for two interacting qubits with interaction

strength v/Γ = 5.0 in contact with a purely correlated dephasing environment and

initial condition a = 0.2., χ = π/4, b = c = |z| = 1. The red curve correspond to con-

currence of non-interacting qubits. Concurrence is seen to exhibit initial oscillations

followed by dark and bright periods with eventual death of entanglement in presence

of interaction. The interaction also leads to delayed death of entanglement. Here Γ0

is the correlated dephasing rate.
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Figure 5.18: Time evolution of concurrence for two interacting qubits in contact with

a correlated dephasing environment with same parameters as for Fig (5.17) but higher

correlated dephasing rates. The effect of higher correlated dephasing manifests itself

by increasing the periodicity of dark and bright features in concurrence . Here again

we find that dark and bright periods is followed by death of entanglement.
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Figure 5.19: Time evolution of concurrence for two interacting qubits in contact with

a correlated dephasing environment with initial condition a = 0.2., χ = π/2, b = c =

|z| = 1. Concurrence is seen to be sensitive to initial coherence among the two qubits.

It does not exhibit initial oscillations for this value of χ but dark and bright periods

with eventual death of entanglement in presence of interaction. Here the interaction

strength is taken to be v/Γ = 5.0
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interaction (v/γ = 5.0) among the qubits we plot the time dependence of concurrence

for different initial phase χ and correlated dephasing rates Γ0 in figures (5.17-5.19).

We consider the case, a = 0.2 only to do a comparative study on the behavior of

concurrence in presence and absence of inter-qubit interactions. Note that we have

already discussed the effect of correlated dephasing on the two qubit entanglement

for this value of a. Let us now focus on any new feature that arises due to the qubit-

qubit interactions. We can see clearly from Fig (5.17) that for v 6= 0, χ = π/4 the

two qubit concurrence shows a damped oscillatory behavior which leads to dark and

bright periods at longer time before eventual death of entanglement. The generation

of dark and bright periods is seen to delay the death of entanglement even further

in comparison to that induced by correlated dephasing in absence of qubit-qubit

interactions. Moreover in Fig (5.18) we see that both the oscillatory behavior as

well as dark and bright periods is enhanced with an increase in correlated dephasing

rate. When we change the initial phase to π/2 for Γ0 = 0.2Γ we find (figure 5.19)

no oscillatory behavior in entanglement rather a completely dark and bright periodic

feature with eventual delayed death. Thus we see that the onset of dark and bright

periods for this kind of environment model is profoundly influenced by the initial

coherence of the two qubit system.

The phenomenon of dark and bright periods in entanglement should have direct

consequences for systems like ion traps , quantum dots, the later being currently the

forerunner in implementation of quantum logic gates. The interaction between qubits

considered in this chapter are inherently present in these systems. In quantum dots

for example, γ−1 ∼ few ns and one can get a very large range of the parameter Γ−1

(1-100’s of ps) [192]. Further the interaction strength v can have a range between

1µev - 1 mev depending on gate biasing [53, 193, 194, 195]. An earlier study [196]

reports γ ∼ 40 − 100µev and coupling strength of ∼ 100 − 400µev, thereby making

v/γ ∼ 1 − 10 for quantum dot molecules. Thus experimental parameters are in the

130



range we used for our numerical calculation.

5.6 Summary

In summary we have done a detailed study of decoherence effect for non-interacting

and interacting initially entangled qubits in contact with different environments at

zero temperature. We have shown how the interaction between qubits generates the

phenomenon of dark and bright periods in the entanglement dynamics of an intially

entangled two qubit system in contact with different environments. We found this

feature of dark and bright periods to be generic and to occur for various models of the

environment. As an example, in a correlated dissipative environment, we found the

phenomenon of dark and bright periods in entanglement dynamics even though there

is no sudden death of entanglement. Moreover, for purely dephasing models of the

environment, we found that the dark and bright periods delay the ESD. We found that

there is no sudden death of entanglement for a correlated dissipative environment,

but rather, depending on the initial coherences in the system entanglement can show

a substantially slower decay and the phenomenon of dark and bright periods for

interacting qubits. For a simple pure dephasing environment as well as for correlated

dephasing environment we have shown the existence of sudden death of entanglement.

Due to correlated dephasing we found delayed death of entanglement. Further, in the

correlated dephasing model, we found that the onset of dark and bright periods is

sensitive to the initial coherence in the system. The frequency of dark and bright

periods was found to depend on the strength of the interaction between the qubits as

well as on the correlated decay and dephasing rates.

The content of this chapter has been published in two papers in J. Phys. B. 42,

141003 (2009), 42, 205502 (2009).
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CHAPTER 6

STUDY OF CONTINUOUS VARIABLE ENTANGLEMENT AND

DECOHERENCE IN PHOTONIC QUANTUM CIRCUITS

6.1 Overview

Waveguides coupled through evanescent waves are known to be extremely efficient

in manipulating the flow of light and have been investigated extensively in the last

two decades [57, 198, 199, 200]. Many key quantum effects like quantum interference,

entanglement and quantum random walk have been investigated in these systems

[201, 202, 203, 204, 205]. Fig. (6.1) shows a schematic diagram of an array of channel

waveguides used in many of the experiments. Quantum correlations have also been

investigated in waveguide arrays [204] using two-photon input states both in terms of

separable and entangled two-photon state. These studies have shown various features

associated with quantum interference. Moreover, coupled waveguides arrays have

been used to study the discrete analogue of the Talbot effect [58]. In addition recent

works with coupled waveguides have shown realization of different condensed matter

effects like Bloch oscillations and Anderson localization [59, 61].

Entanglement between the waveguide modes and behavior of nonclassical light in

coupled waveguides have also attracted a great deal of interest [62, 63, 206]. More-

over in recent years coupled waveguides have been used in realization of quantum

circuits for quantum information purposes [64] and the generation of a multimode

interferometer on an integrated chip experiment [65, 66]. These interferometers can

be used to generate arbitrary quantum circuits and entangled states similar to NOON

states [67]. Entanglement between waveguide modes is at the heart of many of these
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Figure 6.1: Schematic diagram of an array of evanescent coupled channel waveguides

built on a substrate. One of the waveguides is excited. Numerous different quantum

effects can be studied in such systems.
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experiments. In particular, for effective use of these waveguide circuits in quantum

computation and communication tasks sustainability of generated entanglement in

the presence of decoherence is very important [5, 24]. light of this, it is imperative to

study measures of entanglement in waveguides including loss.

In this chapter we investigate the question of entanglement and its behavior in

the presence of loss, in a simple system of two single mode waveguides, which are

coupled through the overlap of evanescent fields. This simple system serves as a unit

or the basic element for constructing a quantum circuit [207]. The input light to

the coupled waveguide system is usually produced by a parametric down-conversion

(PDC) process, at high gain which produces important nonclassical states of light

like the squeezed states. We thus consider single mode and two mode squeezed states

as the input to our waveguides and study their respective entanglement dynamics.

We present explicit analytical results for the evolution of entanglement in terms of

logarithmic negativity. We further investigate the question of possible effects of loss

on the entanglement dynamics in waveguides by considering lossy waveguide modes.

We find that in this coupled waveguides, entanglement shows considerable robustness

against loss.

The organization of the chapter is as follows: In Sec 2, we describe the model and

derive analytical result for the field modes of the coupled waveguide system. In Sec 3

, we then study the time evolution of entanglement by evaluating the logarithmic neg-

ativity for two classes of squeezed input states : (6.3.1) separable two mode squeezed

state and (6.3.2) entangled two mode squeezed state. The effect of loss in waveguides

on the entanglement dynamics is then discussed in Sec 4. Finally we summarize our

results in Sec 5.
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6.2 The Model

We consider a system with two single mode waveguides, coupled through nearest-

neighbor interaction as shown in Fig. (6.4). Let a and b be the field operators for

the modes in each waveguide. These obey bosonic commutation relations [a, a†] = 1;

(a→ b). The Hamiltonian describing the evanescent coupling between the waveguide

mode in such a system of two coupled waveguides can be derived using the coupled

mode theory [208, 209]. The coupling among the waveguides is incorporated in this

framework by treating it as a perturbation to the mode amplitudes. It is assumed

that the presence of the second waveguide perturbs the medium outside the first wave-

guide. This creates a source of polarization outside the first waveguide, which thereby

leads to modification of the amplitude of the mode in it. Further, the amplitude of the

modes in each waveguide is assumed to be a slowly varying function of the propagation

distance. Moreover, in this perturbative approach the coupling does not effect the

propagation constant or transverse spatial distribution of the waveguide modes. The

field of the first waveguide has a similar effect on the second waveguide. Under these

assumptions, the field mode of the composite structure are governed by the Helmholtz

equation which gives two coupled first order differential equations which can be solved

to obtain the time evolution of field modes in the coupled waveguide structure. The

corresponding description for the nonclassical light can be studied by quantizing the

field amplitudes as has been done in the work of Lai et. al. [210]. Following an

approach similar to that developed by Lai et. al., we can write the corresponding

quantum mechanical Hamiltonian for the coupled waveguide as

H = ~ω(a†a + b†b) + ~J(a†b+ b†a) , (6.1)
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Figure 6.2: Schematic diagram of a coupled waveguide system. The parameter J

gives the coupling between the waveguide modes and γ is the decay rate. The inputs

to the waveguides can be single mode |ζa〉 = exp( r
2
{a†2 − a2})|0〉; (a → b) or two

mode |ξ〉 = exp[r(a†b† − ab)]|00〉 squeezed states.
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where the first two terms correspond to the free energy of the waveguide modes and

the last two terms account for the evanescent coupling between the waveguide modes

with J as the coupling strength. The coupling J depend on the distance between the

waveguides. The input to the coupled waveguide system can be in a separable or an

entangled state. Let γ be the loss rates of the modes a and b. The loss γ arises from

the loss in the material of the waveguide. Table I below gives the experimental values

of coupling parameter J and loss γ for different waveguide systems.

Table 6.1: Approximate values of some of the parameters used in waveguide struc-

tures [211, 212, 213]. The loss, usually quoted in dB/cm, for different wave-

guides is converted to frequency units used in this chapter by using the formula,

10 Log(Pout

Pin
) ≡ 10 Log(e−2γ/c), where Pin is the input power, Pout is the power after

traveling unit length.

Waveguide Type Coupling parameter J (sec−1) Loss γ (sec−1) γ/J

Lithium Niobate (LiNbO3) 1.83 × 1010 - 4.92 × 1010 3 × 109 1/7-1/20

AlGaAs 2.46 × 1011 2.7 × 1010 1/10

Silica 1.53 × 1011 3 × 109 1/50

As known the silica waveguides have very little intrinsic loss and should be preferable

in many applications. Nevertheless the loss is to be included as this could be detri-

mental in long propagation for example in the study of quantum random walks. Since

the two waveguides are identical, we have taken the loss rate of both the modes to be

the same. We can model the loss in waveguides in the framework of system-reservoir

interaction well known in quantum optics and is given by,

Lρ = −γ
2
(â†âρ− 2âρâ† + ρâ†â)

−γ
2
(b̂†b̂ρ− 2b̂ρb̂† + ρb̂†b̂) , (6.2)
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where ρ is the density operator corresponding to the system consisting of fields in the

modes a and b. The dynamical evolution of any measurable 〈O〉 in the coupled wave-

guide system is then governed by the quantum-Louiville equation of motion given

by,

ρ̇ = − i

~
[H, ρ] + Lρ, (6.3)

where 〈Ȯ〉 = Tr{Oρ̇}, the commutator gives the unitary time evolution of the system

under the influence of coupling and the last term account for the loss. Note that in

absence of loss (lossless waveguides) the time evolution of the field operators can be

evaluated using the Heisenberg equation of motion and is given by

a(t) = a(0) cos(Jt) − ib(0) sin(Jt),

b(t) = b(0) cos(Jt) − ia(0) sin(Jt). (6.4)

Next we will study the entanglement characteristics of photon number and squeezed

input states as they propagate through the waveguides. To keep the analysis simple,

in the next few sections we consider the case of lossless waveguide modes (γ = 0).

We defer the discussion of loss on entanglement to Sec. IV.

6.3 Evolution of entanglement for Gaussian input states

6.3.1 Separable two mode squeezed state as an input

We next study the generation and evolution of entanglement for the case of squeezed

input states. For this purpose we first consider a separable squeezed input state

coupled to the modes a and b of the waveguide given by

|ζ〉 = |ζa〉 ⊗ |ζb〉; (6.5)

where |ζa〉(|ζb〉) are single mode squeezed states defined as

|ζa〉 = exp(
r

2
{a†2 − a2})|0〉; (a→ b). (6.6)
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where r is taken to be real. The squeezed vacuum state falls under the class of Gaus-

sian states and thus one needs to consider continuous variable entanglement in this

case. We take an approach suitable for continuous variables and discussed previously

in section (1.3.5) of the introduction to calculate the measure of entanglement in our

coupled waveguides. It is to be noted that evolution of Gaussian states has been

studied for many different model Hamiltonians [214, 215, 216, 217]. We focus on

the practical case of propagation of light produced by a down converter in coupled

waveguides which currently are used in quantum architectures and quantum random

walks.

It is well known that a two mode squeezed state like |ζ〉 can be completely char-

acterized by its first and second statistical moments given by the first moment:

(〈x1〉, 〈p1〉, 〈x2〉, 〈p2〉) and the covariance matrix σ. Note that since the first sta-

tistical moments can be arbitrarily adjusted by local unitary operations, it does not

affect any property related to entanglement or mixedness and thus the behavior of

the covariance matrix σ is all important for the study of entanglement. The measure

of entanglement is then characterized by the logarithmic negativity EN , a quantity

evaluated in terms of the symplectic eigenvalues of the covariance matrix σ [70, 72].

The elements of the covariance matrix σ are given in terms of conjugate observables,

x and p in the form

σ =













α µ

µT β













; (6.7)

where α, β and µ are 2 × 2 matrices given by,

α =













〈x2
1〉 〈x1p1+p1x1

2
〉

〈x1p1+p1x1

2
〉 〈p2

1〉













; (6.8)
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β =













〈x2
2〉 〈x2p2+p2x2

2
〉

〈x2p2+p2x2

2
〉 〈p2

2〉













; (6.9)

µ =













〈x1x2+x2x1

2
〉 〈x1p2+p2x1

2
〉

〈x2p1+p1x2

2
〉 〈p1p2+p2p1

2
〉













. (6.10)

Here x1, x2 and p1, p2 are given in terms of the normalized bosonic annihilation (cre-

ation) operators a(a†), b(b†) associated with the modes a and b respectively,

x1 =
(a+ a†)√

2
, x2 =

(b+ b†)√
2

;

p1 =
(a− a†)√

2i
, p2 =

(b− b†)√
2i

. (6.11)

The observables xj , pj satisfy the cannonical commutation relation [xk, pj] = iδkj.

The condition for entanglement of a Gaussian state like |ζ〉 is derived from the PPT

criterion [70, 73], according to which the smallest symplectic eigenvalue ν̃< of the

transpose of matrix σ should satisfy

ν̃< <
1

2
. (6.12)

where ν̃< is defined as

ν̃< = min[ν̃+, ν̃− ]; (6.13)

and ν̃± is given by,

ν̃± =

√

√

√

√∆̃(σ) ±
√

∆̃(σ)2 − 4Detσ

2
; (6.14)

where ∆̃(σ) = ∆(σ̃) = Det(α) + Det(β) − 2Det(µ). Thus according to the condi-

tion (6.12) when ν̃< ≥ 1/2 a Gaussian state become separable. The corresponding
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quantification of entanglement is given by the logarithmic negativity EN [69, 71, 78]

defined as,

EN (t) = max[0,− ln{2ν̃<(t)}]; (6.15)

which constitute an upper bound to the distillable entanglement of any Gaussian state

[71]. On evaluating the covariance matrix σ for the state (6.5) for γ = 0 (no loss),

using equation (6.3), (6.4) and (6.11), we find

α = β =







c 0

0 d






; µ =







0 e

e 0






; (6.16)

where d, e, c are given by

c =
1

2
{cosh(2r) + sinh(2r) cos(2Jt)};

d =
1

2
{cosh(2r) − sinh(2r) cos(2Jt)};

e = −1

2
sinh(2r) sin(2Jt). (6.17)

The corresponding symplectic eigenvalues ν̃± are then given by

ν̃± =
√
cd± e. (6.18)

One can clearly see from equations (6.15), (6.17) and (6.18) the dependence of loga-

rithmic negativity EN on coupling strength J between the waveguides and the squeez-

ing parameter r. In Fig (6.5), we plot the logarithmic negativity as a function of scaled

time, θ = Jt for the state |ζ〉. Here t is related to the length l of the waveguide and

its refractive index n by t = nl/v, v being the velocity of light. We see from Fig (6.5)

that as |ζ〉 is separable at t = 0, EN = 0 initially, but as Jt increases, it oscillates

periodically between a non-zero and zero value. Thus the initially separable state

|ζ〉 becomes periodically entangled and disentangled as its propagates through the

waveguide. We attribute this periodic generation of entanglement to the coupling J

among the waveguides. We further find that ν̃< = 1/2 at certain points along the

waveguide given by 2θ = (k + 1)π, k = 0, 1, 2, 3, ...... Note that at this points EN
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vanishes and |ζ〉 becomes separable. At all other points the state |ζ〉 6= |ζa〉 ⊗ |ζb〉.

We see that EN is maximum and has a value equal to the amount of squeezing 2r at

the points given by 2θ = (k + 1)π/2. Hence at this points the initial seperable state

|ζ〉 becomes maximally entangled and is given by,

|ζ〉 ≡ exp{eiπr(a†b† + ab)}|00〉 (6.19)
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Figure 6.3: Plot of the time dependent logarithmic negativity EN for the state |ζ〉.

Here amount of squeezing is taken to be r = 0.9.
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6.3.2 Entangled two mode squeezed state as an input

Let us now study the dynamical evolution of a two mode squeezed state |ξ〉 as an

input to the waveguide,

|ξ〉 = exp[r(a†b† − ab)]|00〉. (6.20)

As before we consider r to be real. To quantify the entanglement of the state |ξ〉 we

need to evaluate the logarithmic negativity EN . Thus we first evaluate the covariance

matrix σ for the state |ξ〉 using equations (6.3) with γ = 0, (6.4) and (6.11). We find

σ to be

σ =



















f g h 0

g f 0 −h

h 0 f g

0 −h g f



















, (6.21)

where f, g and h are given by,

f =
1

2
cosh(2r),

g = −1

2
sinh(2r) sin(2Jt),

h =
1

2
sinh(2r) cos(2Jt). (6.22)
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Figure 6.4: Time evolution of logarithmic negativity EN for the initial entangled state

|ξ〉. Here the squeezing is taken to be r = 0.9.
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The corresponding symplectic eigenvalues ν̃± is then given by,

ν̃± =
√

(f + g)(f − g) ± h. (6.23)

The logarithmic negativity EN can then be evaluated using equations (6.15), (6.22)

and (6.23). From equations (6.22) and (6.23) the dependence of EN on the squeezing

r and the coupling J between the waveguides is clearly visible. From equation (6.23)

we find that EN = 0 i.e. entanglement become zero when, 2θ = (k + 1)π/2 as

then ν̃< = 1/2 and thus the initially entangled state |ξ〉 becomes separable, i.e |ξ〉 =

exp{ r
2
eiπ(a†2 +a2)}|0〉⊗exp{ r

2
eiπ(b†2 + b2)}|0〉. In Fig (6.6) we plot the time evolution

of EN for r = 0.9. We see that entanglement oscillates periodically between zero

and non-zero values. We further find that in this case the oscillations in EN is π/4

out of phase to that for the initial separable state |ζ〉 . This oscillatory behavior of

entanglement is as discussed before, due to the coupling J among the waveguides.

Each time the states get separable, the presence of coupling leads to interaction

among the modes of the waveguides and creats back the entanglement. We see from

the figure that logarithmic negativity EN reaches maximum at later times at the

points 2θ = (k+ 1)π and is equal to 2r. Thus at these points the state |ξ〉 regains its

initial form given by equation (6.20).

6.4 Lossy Waveguides

In this section we study the entanglement dynamics of lossy waveguides (γ 6= 0). The

loss γ arises from the loss in the material of the waveguide. In this case the dynamical

evolution of the waveguide modes is governed by the full quantum-Louiville equation

(6.3). We next consider the cases of both photon number state and squeezed states

at the input of the waveguide and discuss the influence of the loss on their respective

entanglement evolution.
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6.4.1 Effect of Leakage on Gaussian Entanglement

For the input squeezed state |ζ〉 of equation (6.5) we find that elements of the covari-

ance matrix σ in presence of loss become dependent on the decay rate γ and is given

by,

σ =



















c′ 0 0 e′

0 d′ e′ 0

0 e′ c′ 0

e′ 0 0 d′



















; (6.24)

where c′, d′, e′ are given by

c′ =
1

2
{1 + e−2γt sinh2(r) + e−2γt sinh(2r) cos(2Jt)};

d′ =
1

2
{1 + e−2γt sinh2(r) − e−2γt sinh(2r) cos(2Jt)};

e′ = −1

2
e−2γt sinh(2r) sin(2Jt). (6.25)

The corresponding symplectic eigenvalue ν̃ of the covariance matrix is then found to

be

ν̃± =
√
c′d′ ± e′. (6.26)
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Figure 6.5: Time evolution of the logarithmic negativity EN in presence of leakage

of the waveguide modes for the input state |ζ〉. The decay rates of the modes are

given by γ/J = 0.1 (solid black), γ/J = 0.2 (broken black) and γ/J = 0.3 (red).

Here the squeezing is taken to be r = 0.9. The leakage leads to new behavior in the

entanglement.
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On substituting equation (6.26) in (6.15) and using (6.25) we get the logarithmic

negativity for lossy waveguides. To study the dependence of entanglement on loss of

the waveguide modes we plot the logarithmic negativity EN for different decay rates

γ/J in Fig (6.7). As for the case of single photon states we focus on the range of θ

important from the experiment point of view. We see new features in the entangle-

ment dynamics as an effect of the loss. We see from figure (6.7) that in presence of

loss the maximum value of entanglement for the state |ζ〉 reduces in comparison to

the case of lossless waveguides. However it is important to note that this decrease is

not substantial. We further find that with increase in decay rate, the entanglement

maximum shifts but does not show considerable reduction (the maximum changes by

only 0.4 as the decay rate becomes three times). Thus we see that entanglement is

quite robust against decoherence in this coupled waveguide systems. The robustness

of entanglement dynamics is an artifact of coherent coupling among the waveguide

modes. This findings hence suggest that coupled waveguide can be used as an effec-

tive quantum circuit for use in quantum information computations. Further we see

another new feature in entanglement in Fig (6.7). We find that there exist an interval

of θ during which the state |ζ〉 remains separable. Note that in absence of loss the

state |ζ〉 becomes separable momentarily and entanglement starts to build up instan-

taneously once it becomes zero (see figure 6.5.) Thus this feature that entanglement

remains zero for certain interval of time arises solely due to loss.

In Fig (6.8) we plot the long time behavior for entanglement of the state |ζ〉 with very

small decay rate of γ/J = 0.1 and squeezing parameter r = 0.9. We see that entan-

glement decays slowly with increasing θ as the magnitude of EN diminish successively

with every oscillations. In addition periods of disentanglement arises repeatedly in

its oscillations. We find that the length of this periods increases with increasing θ. It

is worth mentioning here that this kind of behavior has been predicted earlier for two
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qubit entanglement [185, 219]. Next we study the effect of the decay of waveguide

mode on the entanglement dynamics of the initial entangled Gaussian state |ξ〉 given

in equation (6.20). We find in this case the covariance matrix to be
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γ/J = 0.1

Figure 6.6: Long time behavior of the logarithmic negativity EN in presence of leakage

of the waveguide modes for the initial separable input state |ζ〉.
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γ/J = 0.1

Figure 6.7: Time evolution of the logarithmic negativity EN in presence of leakage

of the waveguide modes for the initial entangled input state |ξ〉. Here γ is the decay

rate of the modes and squeezing is taken to be r = 0.9.
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σ =



















f ′ g′ h′ 0

g′ f ′ 0 −h′

h′ 0 f ′ g′

0 −h′ g′ f ′



















; (6.27)

where f ′, g′, h′ are given by

f ′ =
1

2
+ e−2γt sinh2(r),

g′ = −1

2
e−2γt sinh(2r) sin(2Jt),

h′ =
1

2
e−2γt sinh(2r) cos(2Jt). (6.28)

In this case we find that the symplectic eigenvalues ν̃± are dependent on the decay

rate of the waveguide modes and is given by

ν̃± =
√
m+m− ± h′, (6.29)

where m±(t) = 1− e−2γt[1−{cosh(2r)± sinh(2r) sin(2Jt)}]. The corresponding mea-

sure of entanglement given by the logarithmic negativity EN can then be calculated

by using equations (6.15), (6.28) and (6.29). In Fig (6.9) we plot the logarithmic

negativity EN for the state |ξ〉 as a function of θ in presence of loss. We find similar

behavior in the entanglement dynamics as seen earlier for the separable state |ζ〉. We

find in Fig (6.9) that entanglement of the state |ξ〉 decreases slowly with increasing θ

for non-zero γ/J . Thus as for the separable states, in case of initial entangled input

states entanglement is found to be quite robust in the face of loss. In addition to

this we also see in Fig (6.9) periods of disentanglement appearing successively as θ

increases.

The loss in waveguides that we discussed in this section arises due to material

properties like change in refractive index and absorption. On the other hand there
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can be decay of the waveguide modes in the form of leakage to its surrounding also.

It should be noted that leakage is inherently different from the evanescent coupling as

the former can arise due to scattering and refraction due to refractive index difference

at the waveguide boundaries. Thus the analysis of this section is also valid when the

leakage is important as for example is the case when one couples channel waveguides

to slab waveguides [201, 220].

6.5 Conclusion

To conclude, we investigated the time evolution of entanglement in a coupled wave-

guide system. We quantified the degree of entanglement between the waveguide

modes in terms of logarithmic negativity. We have given explicit analytical results

for logarithmic negativity in the case of initially separable single photon states and

for separable as well as entangled squeezed states. We have also addressed the ques-

tion of decoherence in coupled waveguide systems by considering loss of waveguide

modes. For the lossy waveguides we found that the entanglement shows considerable

robustness even for substantial loss. Note that our results are based on experimental

parameters and thus should be relevant for applications of waveguides in quantum

information sciences. Our results serve as guide for experiments dealing with entan-

glement in waveguide structures. For efficient use of these waveguides, one should

choose the waveguide parameter like θ = Jt so that one is away from values where

the entanglement is a minimum.
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CHAPTER 7

SUMMARY AND FUTURE PROSPECTS

7.1 Summary of our findings

To summarize, we studied quantum interferences in novel microscopic systems like

atoms, ions, quantum dots and photonic waveguides for potential application in quan-

tum information sciences. We specifically focused on the nonlocal quantum correla-

tions i.e entanglement that can be generated as a result of such quantum interferences.

Further we also did a detailed study of decoherence effects of the environment on the

time evolution of entanglement in such systems. We found that degenerate atomic

transitions in trapped 138Ba+ and 198Hg+ ions can provide us with an alternative

to observe the effect of vacuum induced coherences (VIC)- a quantum interference

effect that arises as a result of interaction of a quantum system with the electromag-

netic vacuum fluctuations (chapter 2). We found that VIC leads to stronger quantum

correlations among the emitted photons.

In a subsequent work (chapter 3) we found new quantum interference effects in

a two level atomic system comprising of two atoms or quantum dots. This quantum

interference was induced by manipulating the spatial phase of the incident coherent

field and led to substantial modification of the Dicke incoherent emission spectrum.

Further the population dynamics of the Dicke states in this system was found to be

governed by a vacuum induced super-exchange. We also found signatures of laser

phase induced creation of entanglement in these systems by studying the quantum

correlations among the dipole moment operators. Next we studied quantum corre-

lations of biexciton cascade emission in quantum dots (chapter 4). We proposed a
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realistic theoretical model for the bi-exciton cascade in quantum dots incorporating

both structural asymmetries and decoherence effects due to the interaction of the

dot with its solid-state environment. We showed that the predictions of our model

were in agreement with the experimental results existing in literature. Thus we were

successful in providing a simple understanding of the underlying physical processes

in these microscopic systems.

In the later part of our investigation we studied the problem of two interacting

entangled qubits (which can be atoms, ions or quantum dots) in contact with the

environment (chapter 5). This is an interesting problem in the context of decoher-

ence effects on the functionality of quantum logic gates implemented using entangled

quantum dots or ions. We studied several different model of qubit-environment in-

teraction applicable in a wide range of systems and showed the effect of decoherence.

We found that the competitions of environmental decoherence and qubit-qubit inter-

actions lead to the generation of bright (entanglement) and dark (disentanglement)

periods in the time evolution of entanglement. This was found to be a generic behav-

ior and occurs for all the models that we considered. Moreover we discovered that the

length and frequency of the periods depend on the initial coherences among the two

qubits and the strength of interaction respectively. Further we found that depending

on the initial excitation of the qubits, entanglement can be destroyed completely in

short time due to decoherence.

Finally we studied the system of evanescent coupled photonic waveguides that are

currently of interest due to their scalability and robustness for constructing quantum

information circuits (chapter 6). In line with current experiments we considered a

system of two evanescent coupled waveguides and studied continuous variable entan-

glement and effect of decoherence on it. We found that when the output light fields

from a parametric down converter (which are squeezed states at high gain of the

amplifier) are the inputs to the waveguides, entanglement is dynamically generated
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among the field modes. This occurs as a result of the evanescent coupling. Further

we also found that as light propagates through the waveguides entanglement oscil-

lates between zero and non-zero values. Moreover we studied decoherence effects in

this systems in form of propagation loss in the waveguide or leakage to its surround-

ing substrate. We found that this systems are quite robust to decoherence and thus

suitable for quantum circuit engineering.

7.2 Future prospects

There are many open questions that stem from the work in this thesis which war-

rant future considerations. We discuss a few of these questions that are particularly

important in respect to quantum information sciences.

The effects of spatial variation of laser phase on the incoherent Dicke co-operative

emission spectrum as discussed in chap. 3 can change for finite spatial extensions of

the quantum dots. This can be an important issue in the practical utilization of such

two dot systems. Moreover we found a strong quantum correlation for certain distance

of separation among the dots, which can be a signature of stronger entanglement in

these systems under certain configuration. Thus our findings open up questions like

size dependence of dots on their fluorescence spectrum, entanglement. Moreover it is

known that for dots in a micro-cavity the spontaneous emission and dephasing can

be manipulated due to cavity-dot coupling. Thus multiple dots in a micro-cavity

environment would be worth investigating. Further our studies showed that even

small excitonic level splitting does not allow efficient generation of entanglement in

this system. This hence raises the question of how to get control over manipulating

this level splitting for utilization of these systems as true sources of entanglement.

A probable way to achieve such control might be by using laser induced AC-stark

shifts of one of the excitonic levels. The findings of chap. 6 for evanescent coupled

waveguides opens up the question of entanglement dynamics and decoherence effects
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for a broader class of non-classical input states of light, like the CAT states and

photon added coherent states. Moreover, our study of loss in this system shows that

for truthful implementation of these systems in quantum circuitry the behavior of

single qubit and two qubit gate operations using waveguides should include losses

and their effects on gate fidelities. We showed in chap. 5 the importance of qubit-

qubit interaction in the entanglement dynamics of qubits. Such investigation needs to

be extended for multi-qubit systems. It would be specially interesting to extend the

work of chap. 5 to the GHZ and W states. Further, study of decoherence effects of

finite temperature environments in such interacting qubits should also be interesting

from a quantum computation perspective.

Further to save entanglement over long periods, a way would be by coupling the

qubits to environments with memory. Quantum dots and photonic band gap materials

are excellent examples of realistic systems where one can find such long time memory

of the environments. In particular earlier studies in photonic band gap materials have

shown [221, 222] that near the band edge the nature of spontaneous emission from an

atom is very different. In particular some population remains trapped in the excited

state. Thus photonic band gap materials are expected to be promising systems for

preserving entanglement in the long time limit if the qubits are encoded in such

materials. A comprehensive study of entanglement and decoherence phenomenon in

photonic band gap material should open up new directions in the field of quantum

information and computation.
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APPENDIX A

EVALUATION OF THE DICKE EMISSION SPECTRUM

The density matrix equations for the two atom system in the bare state basis :

ρ̇11 = −4γρ11 − ig1ρ31 + ig∗1ρ13 − ig2ρ21 + ig∗2ρ12

ρ̇22 = −2γ(ρ22 − ρ11) − ig1ρ42 + ig∗1ρ24 + ig2ρ21 − ig∗2ρ12

−(γ12 + iΩ12)ρ32 − (γ12 − iΩ12)ρ23

ρ̇33 = −2γ(ρ33 − ρ11 + −ig1ρ31 − ig∗1ρ13 − ig2ρ43 + ig∗2ρ34

−(γ12 + iΩ12)ρ23 − (γ12 − iΩ12)ρ32

ρ̇12 = −3γρ12 − ig1ρ32 + ig∗1ρ14 + ig2(ρ11 − ρ22) − (γ12 − iΩ12)ρ13

ρ̇13 = −3γρ13 − ig2ρ23 + ig∗2ρ14 + ig1(ρ11 − ρ33) − (γ12 − iΩ12)ρ12

ρ̇14 = −2γρ14 − ig1ρ34 + ig1ρ12 − ig2ρ24 + ig2ρ13

ρ̇23 = −γρ23 + 2γ12ρ11 + ig1ρ21 − ig∗2ρ13 + igast
2 ρ24 − ig1ρ43

−(γ12 + iΩ12)ρ33 − (γ12 − iΩ12)ρ22

ρ̇24 = −γρ24 + 2γρ13 + 2γ12ρ12 + ig2ρ23 − ig∗2ρ14 + ig1(2ρ22 + ρ11 + ρ33)

−(γ12 + iΩ12)ρ34 + ig∗1

ρ̇34 = −γρ34 + 2γρ21 + 2γ12ρ31 + ig1ρ32 − ig∗1ρ14 + ig2(2ρ33 + ρ11 + ρ22)

−(γ12 − iΩ12)ρ24 − ig2

Trρ = 1, ρ∗ij = ρji (A.1)

where we have g1 = Gei~k·~r1 and g2 = Gei~k·~r2 In a compact matrix form these equations

can be written as

Ψ̇(t) = MΨ + I (A.2)
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where Ψ and I are a 15×1 column vector and M is a 15×15 square matrix. Taking

the laplace transform of equation (A.2) one then gets,

Ψ(z) = (z −M)−1Ψ(0) + z−1(z −M)−1)I (A.3)

Using equation (A.3) and the quantum regression theorem one can then calculate the

incoherent emission spectrum. As an example let me show how one can calculate say

the term
∫∞
0
dτe−zτ 〈S+

1 (t+ τ)S−
2 (t)〉. To do this first we will evaluate 〈S+

1 (z)〉.

〈S+
1 (z)〉 =

∫ ∞

0

dte−zt〈S+
1 (t)〉

=

∫ ∞

0

dte−ztTr(ρS+
1 )

=

∫ ∞

0

dte−zt[ρ31(t) + ρ42(t)]

=

∫ ∞

0

dte−zt[Ψ7(t) + Ψ13(t)]

= Ψ7(z) + Ψ13(z) (A.4)

Then on using equation (A.3) in (A.4 )we get,

〈S+
1 (z)〉 =

15
∑

j=1

[(z −M)−1
7 + (z −M)−1

13 ]jΨj(0)

+z−1
15
∑

j=1

[(z −M)−1
7 + (z −M)−1

13 ]jIj (A.5)

Then using equation (A.5) and the quantum regression theorem we have
∫ ∞

0

dτe−zτ 〈S+
1 (t+ τ)S−

2 (t)〉 = 〈S+
1 (z)S−

2 (0)〉

=

15
∑

j=1

[(z −M)−1
7 + (z −M)−1

13 ]j〈Ψj(0)S−
2 (0)〉

+ z−1
15
∑

j=1

[(z −M)−1
7 + (z −M)−1

13 ]j〈S−
2 (0)〉

(A.6)

Now one can calculate the quantities 〈Ψj(0)S−
2 (0)〉 and 〈S−

2 (0)〉 using the definition

〈A〉 = Tr(ρA) and the steady state solution of equation (A.3) which is given by

Ψ(∞) = limz→∞ zΨ(z) = −M−1I.
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The density matrix equations in the Dicke symmetric and anti-symmetric state

basis :

ρ̇ss = −2[γ + γ12 cos(φ)]ρss − i sin(φ)[γ12 + iΩ12]ρas + i sin(φ)[γ12 − iΩ12]ρsa

ρ̇aa = −2[γ − γ12 cos(φ)]ρaa − i sin(φ)[γ12 − iΩ12]ρas + i sin(φ)[γ12 + iΩ12]ρsa

ρ̇gg = 2[γ + γ12 cos(φ)]ρss + 2[γ − γ12 cos(φ)]ρaa + 2iγ12 sin(φ)[ρas − ρsa]

ρ̇as = −2[γ − iΩ12 cos(φ)]ρas + iγ12 sin(φ)[ρss + ρaa] − sin(φ)Ω12[ρss − ρaa]

ρ̇sg = −[γ + γ12 cos(φ) + iΩ12 cos(φ)]ρsg − i sin(φ)[γ12 + iΩ12]ρag

ρ̇ag = −[γ − γ12 cos(φ) − iΩ12 cos(φ)]ρag + i sin(φ)[γ12 + iΩ12]ρsg

(A.7)

and the remaining equations can be written using ρ∗ij = ρji
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APPENDIX B

CALCULATION OF TRANSITION AMPLITUDE BETWEEN THE

SYMMETRIC AND ANTI-SYMMETRIC STATE

This appendix gives the explicit derivation of the transition amplitude between the

symmetric and antisymmetric Dicke states as discussed in chapter 3 equation (3.11)

If the initial state is |s〉; what is the probability that final state is |a〉?

HI = −~d · ~E = −~d(S†
1e

iωt + S−
1 e

−iωt) · ~E(~r1, t) − ~d(S†
2e

iωt + S−
2 e

−iωt) · ~E(~r2, t) (B.1)

E(~r, t) = i
∑

(
2πck

L3
)1/2a~ksε~kse

i~k·~r−iωkst − i
∑

(
2πck

L3
)1/2a†~ks

ε∗~ks
e−i~k·~r+iωkst (B.2)

Schrodinger equation

ψ̇ = − i

~
HI(t)ψ (B.3)

ψ(t) = ψ(0) − i

~

∫ t

0

HI(t)ψ(0)dt1 −
1

~2

∫ t

0

HI(t1)

∫ t1

0

HI(t2)ψ(0)dt2dt1 (B.4)

HI(t) = g
(1)
ks (S†

1e
iωt + S−

1 e
−iωt)akse

−iωkst + g
∗(1)
ks (S†

1e
iωt + S−

1 e
−iωt)a†kse

iωkst

+g
(2)
ks (S†

2e
iωt + S−

2 e
−iωt)akse

−iωkst + g
∗(2)
ks (S†

2e
iωt + S−

2 e
−iωt)a†kse

iωkst

(B.5)

g
(i)
ks = −i(2πck

L3
)1/2(−~d · ~ε~ks)e

i~k·~ri (B.6)

On short

HI = g
(i)
~ks

[a~ks(S
†
i e

iωt + S−
i e

−iωt)] +H.C. (B.7)

|s〉 = ei~kl·~r1|e1g2〉 + ei~kl·~r2|g1e2〉 (B.8)

|a〉 = ei~kl·~r1|e1g2〉 − ei~kl·~r2|g1e2〉 (B.9)
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〈{0}, a|HI |s, {0}〉 = 〈{0}, a|g(i)
~ks

[a~ks(S
†
i e

iωt + S−
i e

−iωt)]e−iωkst

+g
∗(i)
~ks

[(S†
i e

iωt + S−
i e

−iωt)]a†~ks
eiωkst|s, {0}〉

= 〈{0}, a|g(i)
~ks

[a~ks(S
†
i e

iωt + S−
i e

−iωt)]e−iωkst|s, {0}〉

+〈{0}, a|g∗(i)~ks
[(S†

i e
iωt + S−

i e
−iωt)]a†~ks

eiωkst|s, {0}〉

(B.10)

〈{0}, a|HI |s, {0}〉 = 0 (B.11)

ψ0 = 〈a|s〉0 = 0 (B.12)

Hence we are left with the second order perturbation term.

〈a|s〉t = − 1

~2

∫ t

0

∫ t1

0

〈a|HI(t1)HI(t2)|s〉dt2dt1

= − 1

~2

∫ t

0

∫ t1

0

〈{0}, a|HI(t1)HI(t2)|s, {0}〉dt2dt1
(B.13)

HI(t1) =
∑

jks

gjksaks(S
†
je

iωt1 + S−
j e

−iωt1)e−iωkst1 +H.C. (B.14)

HI(t2) =
∑

lks

glksaks(S
†
l e

iωt2 + S−
l e

−iωt2)e−iωkst2 +H.C. (B.15)

HI(t1)HI(t2) =
∑

ljks

[gjksaks(S
†
je

iωt1 + S−
j e

−iωt1)e−iωkst1

+g∗jks(S
†
je

iωt1 + S−
j e

−iωt1)a†kse
iωkst1 ]

×[glksaks(S
†
l e

iωt2 + S−
l e

−iωt2)e−iωkst2

+g∗lks(S
†
l e

iωt2 + S−
l e

−iωt2)a†kse
iωkst2 ]

(B.16)

Using RWA

〈{0}, a|HI(t1)HI(t2)|s, {0}〉 =
∑

ljks

gjksg
∗
lkse

−iωks(t1−t2)

×〈a|(S†
je

iωt1 + S−
j e

−iωt1)(S†
l e

iωt2 + S−
l e

−iωt2)|s〉

=
∑

ljks

gjksg
∗
lkse

−iωks(t1−t2)

×[〈a|S†
jS

−
l |s〉eiω(t1−t2) + 〈a|S−

j S
†
l |s〉e−iω(t1−t2)]

(B.17)
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∫ t

0
dt1
∫ t1
0
dt2〈{0}, a|HI(t1)HI(t2)|s, {0}〉

=
∫ t

0
dt1
∫ t1
0
dt2
∑

ljks

gjksg
∗
lks[〈a|S†

jS
−
l |s〉e−i(ωks−ω)(t1−t2)〉

+〈a|S−
j S

†
l |s〉e−i(ωks+ω)(t1−t2)]

(B.18)

As t1 → t; t2 → t− τ ,

d

dt
〈a|s(t)〉 = − 1

~2

∑

ljks

gjksg
∗
lks

∫ t

0

dτe−i(ωks−ω)τ 〈a|S†
jS

−
l |s〉

− 1

~2

∑

ljks

gjksg
∗
lks

∫ t

0

dτe−i(ωks+ω)τ 〈a|S†
l S

−
j |s〉

= − 1

~2
{
∑

ljks

gjksg
∗
lks lim

t→∞

∫ t

0

dτe−i(ωks−ω)τ 〈a|S†
jS

−
l |s〉

+
∑

ljks

gjksg
∗
lks lim

t→∞

∫ t

0

dτe−i(ωks+ω)τ 〈a|S†
l S

−
j |s〉}

= − 1

~2

∑

ljks

gjksg
∗
lks lim

t→∞
{
∫ ∞

0

dτe−ǫτe−i(ωks−ω)τ 〈a|S†
jS

−
l |s〉

+
∫∞
0
dτe−ǫτe−i(ωks+ω)τ 〈a|S†

l S
−
j |s〉}

= − 1

~2

∑

ljks

gjksg
∗
lks{lim

ǫ→0

1

ǫ+ i(ωks − ω)
〈a|S†

jS
−
l |s〉

+ lim
ǫ→0

1

ǫ+ i(ωks + ω)
〈a|S†

l S
−
j |s〉}

= − 1

~2

∑

ljks

gjksg
∗
lks{lim

ǫ→0

ǫ− i(ωks − ω)

ǫ2 + (ωks − ω)2
〈a|S†

jS
−
l |s〉

+ lim
ǫ→0

ǫ− i(ωks + ω)

ǫ2 + (ωks + ω)2
〈a|S†

l S
−
j |s〉}

(B.19)
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a,s; l,j are dummy indices, we can write

= − 1

~2

∑

ij

gksg
∗
ks{lim

ǫ→0
(

ǫ

ǫ2 + (ωks − ω)2
+

ǫ

ǫ2 + (ωks + ω)2
)

+ lim
ǫ→0

(
i(ω − ωks)

ǫ2 + (ωks − ω)2
− i(ω + ωks)

ǫ2 + (ωks + ω)2
)}〈a|S†

iS
−
j |s〉

= − 1

~2

∑

i6=j

(γij + iΩij)〈a|S†
iS

−
j |s〉

= − 1

~2
{(γ12 + iΩ12)〈a|S†

1S
−
2 |s〉 + (γ12 + iΩ12)〈a|S†

2S
−
1 |s〉}

(B.20)

d

dt
〈a|s(t)〉 = − 1

~2
(γ12 + iΩ12)(〈a|S†

1S
−
2 |s〉 + 〈a|S†

2S
−
1 |s〉)

= − 1

~2
(γ12 + iΩ12)(

e−i~kl·(~r1−~r2) − ei~kl·(~r1−~r2)

2
)

=
i

~2
sin(2φ)(γ12 + iΩ12)

(B.21)
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APPENDIX C

DYNAMICAL EVOLUTION OF TWO INTERACTING QUBITS IN

DISSIPATIVE ENVIRONMENT

The solutions correspond to the initial matrix ρ defined in equation (5.9)

ρ11(t) = ρ11(0)e−2γt,

ρ22(t) =
1

2
ρ22(0)e−γt(1 + cos(2vt)) +

1

2
ρ33(0)e−γt(1 − cos(2vt))

+ ρ11(0)e−2γt(eγt − 1) − i

2
(ρ32(0) − ρ23(0))e−γt sin(2vt)

ρ33(t) =
1

2
ρ22(0)e−γt(1 − cos(2vt)) +

1

2
ρ33(0)e−γt(1 + cos(2vt))

+ ρ11(0)e−2γt(eγt − 1) +
i

2
(ρ32(0) − ρ23(0))e−γt sin(2vt)

ρ12(t) = ρ12(0)e−3γt/2 cos(vt) + iρ13(0)e−3γt/2 sin(vt)

ρ13(t) = ρ13(0)e−3γt/2 cos(vt) + iρ12(0)e−3γt/2 sin(vt)

ρ14(t) = ρ14(0)e−γt

ρ23(t) =
i

2
(ρ22(0) − ρ33(0)) sin(2vt)e−γt +

1

2
ρ23(0)e−γt(1 + cos(2vt))

+
1

2
ρ32(0)e−γt(1 − cos(2vt))

ρ24(t) = ρ24(0)e−γt/2 cos(vt) − iρ34(0)e−γt/2 sin(vt) − ρ12(0)

(

1

v2 + (9/4)γ2

)

[2ive−2γt

+ e−γt/2{2v cos(vt) − 3iγ sin(vt)}] − ρ13(0)

(

1

v2 + (9/4)γ2

)

[3γe−2γt

− e−γt/2{2v sin(vt) + 3γ cos(vt)}]

ρ34(t) = ρ34(0)e−γt/2 cos(vt) − iρ24(0)e−γt/2 sin(vt)

− ρ12(0)

(

1

v2 + (9/4)γ2

)

[3γe−2γt − e−γt/2{2v sin(vt) + 3γ cos(vt)}]
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− ρ13(0)

(

1

v2 + (9/4)γ2

)

[2ive−2γt + e−γt/2{2v cos(vt) − 3iγ sin(vt)}]

(C.1)

and ρ32(t) = ρ∗23(t), ρ21(t) = ρ∗12(t), ρ31(t) = ρ∗13(t), ρ41(t) = ρ∗14(t), ρ42(t) = ρ∗24(t), ρ43(t) =

ρ∗34(t), ρ44(t) = 1 − ρ11(t) − ρ22(t) − ρ33(t). Note that here we have considered

γA = γB = γ.
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APPENDIX D

DYNAMICAL EVOLUTION OF TWO INTERACTING QUBITS IN

DEPHASING ENVIRONMENT

The solutions correspond to the initial matrix ρ defined in equation (5.9)

ρ11(t) = ρ11(0) , (D.1)

ρ22(t) =
1

2
ρ22(0)

[

1 + e−(ΓA+ΓB)t/2

{

cos (2Ωt) +
(ΓA + ΓB)

4Ω
sin (2Ωt)

}]

+
1

2
ρ33(0)

[

1 − e−(ΓA+ΓB)t/2

{

cos (2Ωt) +
(ΓA + ΓB)

4Ω
sin (2Ωt)

}]

+
i[ρ23(0) − ρ32(0)]ve−(ΓA+ΓB)t/2

2Ω
sin (2Ωt) , (D.2)

ρ33(t) =
1

2
ρ22(0)

[

1 − e−(ΓA+ΓB)t/2

{

cos (2Ωt) +
(ΓA + ΓB)

4Ω
sin (2Ωt)

}]

+
1

2
ρ33(0)

[

1 + e−(ΓA+ΓB)t/2

{

cos (2Ωt) +
(ΓA + ΓB)

4Ω
sin (2Ωt)

}]

− i[ρ23(0) − ρ32(0)]ve−(ΓA+ΓB)t/2

2Ω
sin (2Ωt) , (D.3)

ρ23(t) =
1

2
e−(ΓA+ΓB)t/2[ρ23(0){e−(ΓA+ΓB)t/2 + cos (2Ωt) +

(ΓA + ΓB)

4Ω
sin (2Ωt)}

+ ρ32(0){e−(ΓA+ΓB)t/2 − cos (2Ωt) − (ΓA + ΓB)

4Ω
sin (2Ωt)}]

+
ive−(ΓA+ΓB)t/2

2Ω
sin (2Ωt) [ρ22(0) − ρ33(0)], (D.4)

Ω =

√

v2 −
(

ΓA + ΓB

4

)2

. (D.5)

ρ32(t) = ρ∗23(t), ρ44(t) = 1 − ρ11(t) − ρ22(t) − ρ33(t). (D.6)

All other elements of the density matrix ρ defined in the two qubit product basis (5.2)

remains zero for all time t.

184



APPENDIX E

DYNAMICAL EVOLUTION OF TWO NON-INTERACTING QUBITS

IN CORRELATED DISSIPATIVE ENVIRONMENT

The solutions correspond to the initial matrix ρ defined in equation (5.9)

ρ11(t) = ρ11(0)e−2γt ; (E.1)

ρ22(t) =
1

2
ρ22(0)e−γt(1 + cosh(Γ12t)) −

1

2
ρ33(0)e−γt(1 − cosh(Γ12t))

− ρ11(0)e−2γt

(

γ2 + Γ2
12

γ2 − Γ2
12

)

− 1

2
[ρ23(0) + ρ32(0)]e−γt sinh(Γ12t)

+
1

2
ρ11(0)e−γt

[(

γ + Γ12

γ − Γ12

)

eΓ12t +

(

γ − Γ12

γ + Γ12

)

e−Γ12t

]

;

(E.2)

ρ33(t) =
1

2
ρ33(0)e−γt(1 + cosh(Γ12t)) −

1

2
ρ22(0)e−γt(1 − cosh(Γ12t))

− ρ11(0)e−2γt

(

γ2 + Γ2
12

γ2 − Γ2
12

)

− 1

2
[ρ23(0) + ρ32(0)]e−γt sinh(Γ12t)

+
1

2
ρ11(0)e−γt

[(

γ + Γ12

γ − Γ12

)

eΓ12t +

(

γ − Γ12

γ + Γ12

)

e−Γ12t

]

;

(E.3)

ρ23(t) =
1

2
ρ23(0)e−γt(1 + cosh(Γ12t)) −

1

2
ρ32(0)e−γt(1 − cosh(Γ12t))

− 1

2
[ρ22(0) + ρ33(0)]e−γt sinh(Γ12t) − ρ11(0)e−2γt

(

2γΓ12

γ2 − Γ2
12

)

+
1

2
ρ11(0)e−γt

[(

γ + Γ12

γ − Γ12

)

eΓ12t +

(

γ − Γ12

γ + Γ12

)

e−Γ12t

]

;

(E.4)

ρ32(t) = ρ∗23(t), ρ44(t) = 1 − ρ11(t) − ρ22(t) − ρ33(t). (E.5)

All other elements of the density matrix ρ defined in the two qubit product basis (5.2)

remains zero for all time t.
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APPENDIX F

DYNAMICAL EVOLUTION OF TWO INTERACTING QUBITS IN

CORRELATED DISSIPATIVE ENVIRONMENT

The solutions correspond to the initial matrix ρ defined in equation (5.9)

ρ11(t) = ρ11(0)e−2γt ; (F.1)

ρ22(t) =
1

2
ρ22(0)e−γt(cos(2vt) + cosh(Γ12t)) −

1

2
ρ33(0)e−γt(cos(2vt) − cosh(Γ12t))

− ρ11(0)e−2γt

(

γ2 + Γ2
12

γ2 − Γ2
12

)

+
1

2
ρ11(0)e−γt

[(

γ + Γ12

γ − Γ12

)

eΓ12t +

(

γ − Γ12

γ + Γ12

)

e−Γ12t

]

− 1

2
[ρ23(0) + ρ32(0)]e−γt sinh(Γ12t) +

1

2
[ρ23(0) − ρ32(0)]e−γt sin(2vt);

(F.2)

ρ33(t) =
1

2
ρ33(0)e−γt(cos(2vt) + cosh(Γ12t)) −

1

2
ρ22(0)eγt(cos(2vt) − cosh(Γ12t))

− ρ11(0)e−2γt

(

γ2 + Γ2
12

γ2 − Γ2
12

)

+
1

2
ρ11(0)e−γt

[(

γ + Γ12

γ − Γ12

)

eΓ12t +

(

γ − Γ12

γ + Γ12

)

e−Γ12t

]

− 1

2
[ρ23(0) + ρ32(0)]e−γt sinh(Γ12t) −

1

2
[ρ23(0) − ρ32(0)]e−γt sin(2vt);

(F.3)

ρ23(t) =
1

2
ρ23(0)e−γt(cos(2vt) + cosh(Γ12t)) −

1

2
ρ32(0)e−γt(cos(2vt) − cosh(Γ12t))

− ρ11(0)e−2γt

(

2γΓ12

γ2 − Γ2
12

)

+
1

2
ρ11(0)e−γt

[(

γ + Γ12

γ − Γ12

)

eΓ12t +

(

γ − Γ12

γ + Γ12

)

e−Γ12t

]

− 1

6
[ρ22(0) + ρ33(0)]e−γt sinh(Γ12t) +

1

2
e−γt[ρ22(0) − ρ33(0)]i sin(2vt);

(F.4)

ρ32(t) = ρ∗23(t), ρ44(t) = 1 − ρ11(t) − ρ22(t) − ρ33(t). (F.5)

All other elements of the density matrix ρ defined in the two qubit product basis (5.2)

remains zero for all time t.
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APPENDIX G

DYNAMICAL EVOLUTION OF TWO INTERACTING QUBITS IN

CORRELATED DEPHASING ENVIRONMENT

The solutions correspond to the initial matrix ρ defined in equation (5.9)

ρ11(t) = ρ11(0) , (G.1)

ρ22(t) =
1

2
ρ22(0)

[

1 + e−(ΓA+ΓB−2Γ0)t/2 cos (2Ω′t) +
(ΓA + ΓB − 2Γ0)

4Ω′ sin (2Ω′t)

]

+
1

2
ρ33(0)

[

1 − e−(ΓA+ΓB−2Γ0)t/2 cos (2Ω′t) +
(ΓA + ΓB − 2Γ0)

4Ω′ sin (2Ω′t)

]

+
i[ρ23(0) − ρ32(0)]ve−(ΓA+ΓB−2Γ0)t/2

2Ω′ sin (2Ω′t) , (G.2)

ρ33(t) =
1

2
ρ22(0)

[

1 − e−(ΓA+ΓB−2Γ0)t/2 cos (2Ω′t) +
(ΓA + ΓB − 2Γ0)

4Ω′ sin (2Ω′t)

]

+
1

2
ρ33(0)

[

1 + e−(ΓA+ΓB−2Γ0)t/2 cos (2Ω′t) +
(ΓA + ΓB − 2Γ0)

4Ω′ sin (2Ω′t)

]

− i[ρ23(0) − ρ32(0)]ve−(ΓA+ΓB−2Γ0)t/2

2Ω′ sin (2Ω′t) , (G.3)

ρ23(t) =
1

2
e−(ΓA+ΓB−2Γ0)t/2[ρ23(0){e−(ΓA+ΓB−2Γ0)t/2

+ cos (2Ω′t) +
(ΓA + ΓB − 2Γ0)

4Ω′ sin (2Ω′t)}

+ ρ32(0){e−(ΓA+ΓB−2Γ0)t/2 − cos (2Ω′t) − (ΓA + ΓB − 2Γ0)

4Ω′ sin (2Ω′t)}]

+
ive−(ΓA+ΓB−2Γ0)t/2

2Ω′ sin (2Ω′t) [ρ22(0) − ρ33(0)] , (G.4)

Ω′ =

√

v2 −
(

ΓA + ΓB − 2Γ0

4

)2

(G.5)

ρ32(t) = ρ∗23(t), ρ44(t) = 1 − ρ11(t) − ρ22(t) − ρ33(t). (G.6)

All other elements of the density matrix ρ defined in the two qubit product basis (5.2)

remains zero for all time t.
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