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Foreword 

 

The purpose of this document is both to inform the reader of the results of the work at hand as 

well as to provide a global perspective on the theoretical and experimental treatment of the 

system.   Therefore, the mathematical formalism is limited to physically insightful derivations 

whenever possible and the reader is referred to more detailed demonstrations of formal 

analysis when necessary.   

Some portions of this work originally appeared in an earlier oral qualifier document.  As the oral 

qualifier was intended to be an early draft of this document these portions have been revised as 

necessary. 
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Chapter 1 Introduction 
 

For many years highly confined traveling wave optical resonances of dielectric cavities, 

known as whispering gallery modes (WGMs), have been of great interest to scientists in a 

plethora of disciplines [1-11]. The historical roots of the analogous acoustic effect, also called 

WGMs, can be used to give one a conceptual insight into the structure and confinement of the 

optical field within the cavity.  In 1938 A. E. Bate wrote [12] in the Proceedings of the Physical 

Society of a disagreement between Lord Rayleigh and C. V. Raman concerning the nature of 

acoustic wave propagation in St. Paul’s Cathedral in London; in his paper he states: 

“Sabine… referred to a whispering gallery as one so shaped that faint sounds can be 

heard at extraordinary distances, as a result either of focusing or of the creeping (as 

Rayleigh… termed it) of sound waves round a curved wall.  The phenomenon in 

those buildings in which focusing occurs requires no explanation, and is usually 

apparent at one region only, the focus; but the galleries of the second category, that 

in St Paul’s being the classic example, still await complete explanation.” 

He concludes, after experimental investigation of the cathedral: 

“The sound which is heard is that which travels round the wall by successive 

reflections along short chords. This sound suffers very little absorption at the hard 

smooth wall during reflection, so that the main energy-loss would appear to be due 

to the divergence of the sound. This, however, is minimized by the reinforcement of 

incident and reflected waves which combine to produce waves with fronts traveling 

at right angles to the wall.” 

This is also the very structure that an optical field will assume if “whispered” into a dielectric 

cavity.  How then does one whisper into an optical cavity?  One can whisper into a cavity 
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through an effect not described by the classical mechanics which governed the disagreement 

between Lord Rayleigh and C. V. Raman.  The optical field, or photons as we would say today, 

must be tunneled into and out of the cavity in order to effectively trap light within.  To that end, 

optical whispers can always be found, due to continuity boundary conditions when an 

electromagnetic field is subject to total internal reflection, and are fittingly termed evanescent: 

“to vanish”.  These exponentially decaying evanescent fields extend into the adjacent medium 

and allow one to “whisper”, conceptually speaking, into an optical cavity with but a slight 

perturbation on the structure of a resonance.  The optical WGM excited within the dielectric 

cavity itself remains a “whisper” in the sense that it travels just under the surface, tightly 

confined by total internal reflection and producing its own external evanescent field.  

Perturbation is an important point to stress, because to achieve the many fundamental physical 

effects that modern research scientists are interested in, one can not disrupt the low-loss, high-

confinement nature of the resulting resonance with a strong coupling mechanism.  It is this very 

feature set that produces the rich physical environment of high cavity quality factors and small 

effective mode volumes that can be used to explore a myriad of fundamental and applied 

processes including cavity quantum electrodynamics [1], nonlinear optics [2-3], microlasers [4-

5], laser stabilization [6], mechanical mode cooling [7], evanescent-wave sensors [8-9],  optical 

switches [10], optical capacitors [11] and photonic clocks [7]. 

Experimentally, there are two preferred methods in use to “whisper” into a dielectric cavity.  

The older of the two, termed prism coupling, places the cavity in contact with a prism where a 

tunable laser is focused to a small spot size at the prism-resonator interface at an angle greater 

than the critical angle [6].  The total internal reflection of the laser field produces an evanescent 

field extending from the prism surface into the volume of the cavity which allows for energy 

transfer into the cavity.  The reverse is also true, in that the cavity produces an evanescent field 
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within that prism or a second diametrically opposed prism which allows energy to flow out of 

the system.  While effective, this type of coupling is rarely used in current research as it is 

notoriously difficult experimentally.   The far more common practice of fiber coupling, in which a 

step index optical fiber is radically tapered, say from an initial diameter of 125  to 2 , is 

conceptually similar [13].  When the field is propagating in the untapered region of the fiber it is 

confined within the core due to total internal reflection between the core and the cladding.  As 

the field propagates into the tapered region it transforms from core-cladding guidance to 

cladding-air guidance, producing an external evanescent field which extends into an adjacent 

cavity.  Likewise, the evanescent field of the cavity extends simultaneously, while in steady 

state, back into the fiber providing a ready means of energy transport out of the system. In 

either coupling method, by using a second coupler one can monitor the signal transmitted 

through the system, a resonance peak; using a single coupler one typically monitors the sum of 

the transmitted and incident signals, a resonance dip. Fiber coupling is considered exclusively 

for the remainder of this dissertation, whereas prism coupling has been presented only for 

conceptual completeness. 

It is the intention of this dissertation to present the treatment of these micro-resonator 

systems in a coherent global perspective for the reader.  Because of this, the novel additions to 

the breadth of previous scientific work have been intentionally wrapped, seamlessly, into the 

text.  However, chapter 6, which summarizes this work sets forth to make those distinctions of 

novelty and attribution that the preceding chapters have obscured.  The reader is then referred 

to this summary chapter for both attribution and specific novel additions to the scientific 

literature.  The remaining chapters are structured as follows.  Chapter 2 sets out both to derive a 

formal mathematical framework to understand the system and further to validate the 

conclusions through independent analysis.  In chapter 3 we extend the previous formal 
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framework to include multiple resonant waveguide coupling and apply this model to an 

experimental system for verification.  We once again extend the basic framework in chapter 4 to 

include optical surface plasmonic coupling effects and experimental applications of these 

extensions.  Finally, chapter 5 revisits the basic model, generalizing it, to include internal and 

external polarization coupling effects encountered in the experimental system.  
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Chapter 2 General Methodology:  The Foundations of Microcavity 

Modeling 
 

 

Figure 1.  Microcavity which is being pumped by a tapered fiber, where red indicates laser light.  
This system is the starting point for modeling. 

 

In almost all experimental systems, little information can be obtained through direct 

observation of a system’s response.  Rather, these observations must be put into the context of 

an appropriate theory which allows for the extraction of pertinent information regarding the 

system.  This basic theory, when applied to an experimental system, can be considered a 
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mathematical model of the physical system.  It is through the relative comparison of known 

changes to the experimental system parameters and the corresponding changes to the model 

parameters that one may verify the validity of the model.   This process is a crucial first step in 

establishing not only the fundamental physics that governs a system response, but also the 

applied physics that can be employed when one attempts to use the system for some practical 

purpose.  The intent of the following chapter is to demonstrate the derivation of a 

straightforward experimentally useful microcavity model of the system, shown in Fig. 1, which 

has been fully verified.  This is a critical first step in establishing the validity of the foundation 

that the remaining work will be built on.   The preliminary model will be validated through 

additional modeling based on fundamental physics concepts which then can be experimentally 

determined.  Finally, the individual pieces will be combined with the preliminary model and 

shown to be accurately predictive of the overall experimental system response to various 

changes.   

 

Experimental System: 

Given that the experimental system, sketched in Fig. 2, will be employed at every 

conceivable juncture to verify and extend the model, it is pertinent to describe it first. The 

experimental setup employs a free space tunable diode laser that is injected into an integrated 

fiber optic component network which includes the fiber-microsphere system.  The laser is 

frequency scanned across a WGM resonance while the system’s output power and polarization 

are monitored in both directions, and the system’s transient (~ 1 ) responses are monitored in 

the forward direction without polarization analysis.  The detector signals are captured with the 

oscilloscopes which are further connected to a laptop computer (not shown) for additional data 

analysis. 
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Figure 2.  The experimental setup. Black lines represent electrical connects, red lines represent 
forward propagating laser light, and blue lines represent backward propagating laser 
light. 

 Black Vertical Lines:  butt connections between fiber optic components 

 Diode Laser: New Focus Velocity tunable diode laser (1508 nm to 1580 nm) 

 WP: wave plates,  one half wave and  two quarter wave 

 FC: free space fiber coupler on a high resolution 3D stage 

 MZ: fiber coupled high speed (1 MHz) Mach- Zehnder modulator 

 Isolator: fiber coupled optical isolator 

 50/50: reverse installed 50% fiber coupled splitter 

 PC: compression based polarization controller (effectively 3 fractional waveplates) 

 10/90: forward installed 10%/90% fiber coupled splitter 

 FG1: 100 MHz arbitrary function generator to drive the laser frequency scan (operated typically at 10 Hz) 

 FG2: 100 MHz arbitrary function generator to drive Mach-Zehnder modulator, triggered by FG1 

 Scope 1: oscilloscope, triggered by FG1 

 Scope 2: oscilloscope, triggered by FG1 

 D1: Newport NIR photodetector, monitors backscattered power 

 D2: Newport NIR photodetector, monitors drop fiber transmitted cavity power and polarization 

 D3: Newport NIR photodetector array, monitors system through power and polarization (see Fig. 10) 

 D4: Thor Labs high speed photo detector, monitors transient system responses of nanosecond order 

 

Ring Cavity: 

While the particular physical structure of the electromagnetic fields in both the 

microcavity and tapered fiber will be shown to be important (see coupled mode theory below), 

the fundamental physical system response can be most readily analyzed using a resonant cavity 

model.  Given the spherical geometry of the experimental cavity and the planar optical path 

within, the natural choice of an analogous cavity is a ring cavity [14-15]. This choice is justified 



P a g e  | 2-8 

 

 
 

by the fact that it is possible to choose parameters of the experimental fiber-microsphere 

system to ensure that a single fiber mode is interacting with one WGM of the sphere at a time 

[14, 16].  This ring cavity is treated as four mirrors, with all but one mirror having perfect 

reflectance; see Fig. 3.  In the treatment of any cavity structure one must be careful with the 

treatment of phase, and in this analogy we explicitly treat reflections as accumulating no phase 

and transmissions as accumulating a    phase shift. Therefore a field transmitted into the 

cavity and then back out of the cavity, on resonance, accumulates a total phase shift of   with 

respect to the incident field. 

 

Figure 3.  Analogous ring cavity to describe resonance behavior of the WGM. 

 

To find the sphere field  we consider transmission into the cavity from the fiber field  , after 

one round trip at the location just before the field re-encounters the partially transmitting 

mirror, and then sum over cavity round trips: 
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(1)  

Here  is the amplitude transmission coefficient into the cavity and is taken to be imaginary,   

is the (real) amplitude reflection coefficient of the cavity,  is the phase detuning from cavity 

resonance (defined in detail later) and  is the round trip cavity power loss (  the field 

loss); here  is an effective intrinsic loss (scattering + absorption) coefficient, and  is 

the circumference of the sphere of radius . This sum can be written in closed form as 

 (2)  

To coincide with experimental data we sum the untransmitted fiber field and the out-of-phase 

cavity output: 

  

 
(3)  

The measured throughput power    is then computed from the incident fiber power,  as: 

 
(4)  
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(5)  

The relationship of observed throughput power to phase (or frequency) detuning takes the 

structure of a Lorentzian dip, shown in Fig. 4, as would be expected for a damped harmonic 

oscillator [17] (pg. 500).   

 

 

Figure 4.  Lorentzian line shape structure of the analogous ring cavity resonance for arbitrary 
parameters. 
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Figure 5.  Lorentzian structure of an experimentally observed resonance.  The slight asymmetry 
visible on the right is caused by a weak overlapping second resonance. 

 

This coincides very nicely with the observed experimental resonance structure shown in Fig. 5. 

With the model now in place the system can begin to be characterized in terms of experimental 

observables.  Once beyond the general structure of the resonance, which is observed to be 

Lorentzian, there are two prominent observables: the decrease in throughput power on 

resonance (dip depth ), and the spectral width of the resonance .   

Before beginning the actual analysis let us verify our ansatz on the phase relation between 

cavity transmission and reflection coefficients.  We can construct a power conservation 

equation from Eq. (3) by dropping the assumed phase relations and taking the cavity to be on 

resonance with no loss.  In this construction then input and output powers must be identical and 

we can use this to determine the structure of the aforementioned coefficients.  Assuming that 

the reflection, , and transmission, , coefficients for incidence from either side of the partially 
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transmitting mirror are symmetric  the power conservation equation is constructed from the 

fields as,  

 

 

(6)  

Now if we take the square modulus we find the required power conservation equation, 

 (7)  

which can be satisfied if  subject to the constraints imposed by conservation of 

energy, namely   To check that our treatment enforces power conservation let the 

transmission coefficient be pure imaginary and the reflection coefficient be real 

 

 

 

(8)  

Thus we can conclude that, given our prior assumptions, there is a required  phase shift 

between reflection and transmission amplitude coefficients and that the power is conserved in 

our system.  

To find the dip depth we begin with a dimensionless version of Eq.  (5) taken to be on resonance 

( ): 
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 (9)  

With simplification this can be expressed as 

 (10)  

Now let us assume the loss term is small, . While the validity of this is yet to be 

determined it allows for a series expansion around zero for the exponential.  When substituted 

into Eq. (10) we have 

 (11)  

Rather than expressing  in terms of an amplitude reflection coefficient it would be 

experimentally advantageous to express  in terms of the real power transmission coefficient, 

.  For this, conservation of energy is employed in the traditional manner, 

 

 

 

(12)  

With this substitution  becomes 

 
(13)  
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Let us assume the transmission to be small,  , and take a series expansion to first order 

in   so that .  The dip depth then becomes 

 
(14)  

Now since it has been assumed that the loss term is small, , the dip depth can be 

expressed in terms of the dimensionless variable  as 

 (15)  

where the dimensionless variable  is defined as 

 (16)  

This then has the physical significance that the on-resonance power observed in the through 

fiber is singularly a function of the ratio of coupling to intrinsic losses.  Further physical insight 

can be garnered by further evaluating the power enhancement in the sphere as a function of 

this ratio.  We define the dimensionless power enhancement  as the ratio of input power to 

power within the sphere on resonance, which is expressed as the square modulus of Eq. (2) 

with , 

 (17)  
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We then seek to maximize this function by minimizing the first derivatives in terms of the 

ratio .  We rigorously maximize the enhancement by varying the coupling loss with fixed 

intrinsic loss as 

 

(18)  

This is solved as 

 (19)  

We can arrive at this very same conclusion in a more intuitive manner by fixing the intrinsic loss 

in Eq. (17) and maximizing the dip depth  as 

 (20)  

where we can recognize that maximum obtainable dip depth is unity and this occurs when 

.  Physically we conclude that the maximum obtainable power enhancement of the 

sphere field for any given intrinsic loss will be when parameter  is unity or rather when the 

transmission coefficient and intrinsic cavity loss are equal.   

With the knowledge afforded from the parameter , we can now make an analogy to the 

classical harmonic oscillator.  Just as this type of oscillator [18] (Pg. 110) has three distinct 

regimes of system response based on the strength of damping in the system (underdamped, 

critically damped and overdamped) the optical oscillator will likewise have three distinct 

damping regimes.   However, we must make the distinction that in our optical system damping 

is not the most pertinent parameter, but rather the pertinent observable is coupling strength.  



P a g e  | 2-16 

 

 
 

With this the response regimes are undercoupled: , critically coupled:  and 

overcoupled: .  Furthermore, these regimes clearly correspond to ,  and 

 respectively.  Notice that the dip depth  (Eq. (15)) is quadratic in the parameter .  This 

then leads to two solutions for  given any particular dip depth which is less than 100%.  These 

two solutions are analogous to both under- and overcoupled regimes of a damped harmonic 

oscillator. 

For further analysis it becomes convenient to derive an analytic Lorentzian form for the power 

spectrum of an observed WGM.   To begin assume that the intracavity power can be expressed 

in terms of a familiar optical Lorentzian with resonance centered at zero as [17] (pg 500), 

 
(21)  

where  is a damping constant which is to be determined.  We then relate this to the known 

analytic expression for the microcavity power (proportional to Eq. (2)’s modulus squared) and 

solve for the damping constant.  Given that we are only interested in a particular resonance and 

the cavity will have a resonance every free spectral range (  =   for 

), it is necessary to expand the analytic detuning parameter   to second order 

in   around 0 to avoid a transcendental solution for damping.  Applying this alongside our 

previous assumptions on small transmission and low intrinsic loss, Eq. (2) becomes, 

 
(22)  

Taking the square modulus we regain an equation in terms of power as  
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(23)  

We can now compare forms with that of the analytic Lorentzian given in Eq. (21) to identify the 

damping parameter  as 

 (24)  

Notice now that Eq. (17) for peak power enhancement can be expressed in a more concise form 

as 

 (25)  

Finally, the total expression for the sphere power can be written concisely as 

 
(26)  

and the detuning dependent power enhancement as 

 
(27)  

With the microcavity power spectrum now expressed in a traditional Lorentzian form the 

spectral width can be readily evaluated.  By inspection the half width of the resonance will be 

achieved when the denominator of Eq. (27) doubles, .  This will then produce a full 
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width at half max power width (FWHM) of   Notice that  is dimensionless in the above 

expression and as such requires physical interpretation. 

Let us assume a plane wave propagating with angular frequency  and wave vector   along a 

circular path of length   where the cavity radius is again  .  Further, let us assume an 

adjacent natural resonance of the system with characteristics  is available in the 

cavity.  The relative phase detuning of the plane wave from the cavity resonance can then be 

expressed as the difference between the phases after one round trip L , or rather, 

 (28)  

The wave vector  can now be expressed as the ratio of angular frequency ( ) to propagation 

velocity v.  This allows the detuning to be expressed in terms of the cavity mode’s effective 

index of refraction v and frequency  as, 

 (29)  

Where an effective index has been used rather than the material index because the cavity 

modes will be shown, see page 29, to have a slightly lower phase velocity (by 1-2% in our 

system) than the material index would suggest.  Notice that the pre-factor term is the ratio of 

the cavity’s optical path length to propagation velocity and therefore has the physical 

significance of the time associated with a single round trip ( ).   The round trip time 

is also the inverse of the free spectral range of the cavity  which is defined as the frequency 

spacing between adjacent identical resonant modes, or rather a full rotation in the cosine term 

of Eq. (5).   The detuning can then be written succinctly in measurable quantities as 
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(30)  

Let us now derive a physical interpretation of the measurable spectral width of the resonance 

defined, in terms of phase, by .  Looking at the positive and negative detuning from the central 

frequency  we have 

 (31)  

However, from the previous analysis we also know the phase spectral width (or phase linewidth) 

in terms of the cavity round trip loss.  Equating these expressions we have 

 
(32)  

Solving for the measurable linewidth  we have 

 (33)  

Let us now separate the contributions to the total linewidth into components caused by 

coupling (c) and intrinsic loss (i) written in terms of partial linewidths as 

 

 

(34)  

The linewidth written in component form then becomes 
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(35)  

We can now begin the discussion on the cavity quality factor  which can be thought of as the 

ratio of the energy of an undamped oscillation divided by the work done per cycle [19] (pages 

317-372).  Formally, the  can be expressed as 2  times the ratio of time-averaged energy 

stored in the cavity to the cavity’s energy loss per optical cycle.  Mirroring the derivation 

outlined in Jackson [19] (pages 317-372),  if  is defined as the average energy in a cavity then 

the time rate of change of the energy is the power dissipated per cycle and the quality factor 

can be expressed as 

 (36)  

This provides us with a first order differential equation which is solved simply as 

 

 

(37)  

We can immediately recognize that the energy will therefore have a characteristic cavity energy 

lifetime given by .   For further analysis we must now relate the measured spectral 

width to the cavity .  Let us define a cavity field with ohmic losses given by Eq. (37) and single 

angular frequency   as 

 (38)  

Now taking the Fourier transform of the cavity field to shift to a frequency domain we find 
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 (39)  

By taking the square modulus of Eq. (39) we find an expression that is proportional to the power 

spectrum: 

 (40)  

We can now see that the field initially at a single frequency  has been broadened by an 

amount .  Solving for  we have the bridge to interpret the spectral width derived 

from the ring cavity model as 

 (41)  

This parameter then gives one a dimensionless parameter that can be used to compare 

resonant responses of cavities with similar or vastly different configurations, for example a mass 

on a spring as compared to a capacitor or even a photonic crystal cavity.  In our case using the 

results of Eq. (35) we have 

 (42)  

Observing the structure of Eq. (42) allows one to rewrite the total  into the contributions due 

to the coupling and intrinsic losses separately as 

 (43)  
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Or more traditionally we may also write the inverse of  as a sum of parallel impedances, 

 (44)  

Where the contributions have been expressed in the same manner as Eq. (42) by sequentially 

setting each loss term to zero, 

 

 

(45)  

From the results of Eq. (37) we can express the  as 

 (46)  

With this we can now see the physical meaning of the lifetime by equating Eq. (42) and Eq. (46): 

 (47)  

As one would expect the cavity lifetime is inversely proportional to the total cavity loss and this 

allows us to define a field decay rate , or rather a power decay rate of .   

If  dephasing is present the  derived from spectral width in Eq. (41) will not be the same as that 

explicitly derived from cavity lifetime as the lifetime is only dependent on loss, not dephasing.   

The proper definition of  is that derived in Eq. (46) while Eq. (41) is an approximation, valid 

when dephasing is not present, so this must be verified before use.   The aforementioned 

dephasing is the result of fluctuations in phase while the mode propagates within the cavity.  

For example, the round-trip phase ( ) or time ( ) may not have the same value for every 
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round trip of a photon, clearly leading to a broadening of the resonance without adding more 

loss.  This could come about due to thermal fluctuations, multiple scattering, or tunneling into 

and immediately back out of the coupling fiber. 

The final bit of physical analysis that remains to be done is in regard to the cavity’s free spectral 

range and finesse.  The free spectral range is simply the frequency spacing between adjacent 

identical resonant modes while the cavity finesse is the number of resonance widths (FWHM) 

within one free spectral range.  These properties are intimately related and also related to 

physical properties derived in the preceding analysis.  The relationship between the cavity 

finesse  free spectral range  and coefficient of finesse  is given by 

 (48)  

Assuming no intrinsic loss, the coefficient of finesse for a ring cavity with one partial reflector (as 

in Fig. 3) can be expressed in terms of the reflection coefficient  or coupling loss  (for ) 

as 

 (49)  

Now, the finesse is found to be 

 (50)  

Generalizing this to include intrinsic loss gives 

 (51)  
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While the amount of analysis that can be performed on the simple ring cavity structure is rather 

staggering, the methods developed in the above analysis will be shown to be crucial tools 

required to adequately understand the physical system.  If one applies these tools to a physical 

system, momentarily ignoring that the model has yet to be verified, we find that a typical 

microsphere of radius  used at a wavelength of  has the following physical 

characteristics: 

 

 

 

 

 

 

 

 

(52)  

Based on the above properties one can begin to surmise why these microcavities are of such 

interest to scientists.   Their ease of construction and low cost coupled with the very narrow 

linewidths and large free spectral ranges lead to a myriad of applications from very high 

bandwidth device applications in optical networking to ultra-sensitive traveling wave evanescent 

sensors.  All of these properties can be had for a cost of around 5¢ and an investment of 5 

minutes of time. 

Modeling to find Transmission: 

Let us begin the process of model verification with a rigorous coupled mode treatment 

of the transmission probability ( ; probability of photon tunneling between the waveguide and 
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the resonator) used in the experimental system.  The coupled-mode treatment in this case is 

under the weak coupling regime ansatz which physically means that the assumed interaction 

between the guides is only a modest perturbation and as such the orthonormal modal 

expansion in each guide is still a “good” basis set to describe the electromagnetic fields [20].  

This is along the line of the arguments presented in the derivations for the ring cavity, i.e. 

 . This then allows us to find the unperturbed modes of each guide and use them to 

characterize the transmission probability.  This is done through what is typically termed an 

overlap integral [13, 20] and in effect is the dot product of the vector fields, including phase, 

which is then integrated over the interaction volume of the guide into which power is flowing.  

Our path towards verification therefore begins with modal expansions of the fields in both the 

tapered fiber and the microsphere and ends in the actual computation of the overlap integrals 

of interest. 

Fiber Modes: 

The propagation of electromagnetic fields within a typical step-index azimuthally 

uniform fiber (see Figs. 6 and 7) can be described in both the ray picture of light, in which one 

treats ray reflections due to total internal reflection, or with full field solutions to Maxwell’s 

equations [21]  (Pgs. 3 and 205).  While the ray picture of light propagation in the waveguide 

provides for a more readily accessible conceptual overview of the system, its simpler 

methodology limits the rigorous analysis of fundamental effects within the guide.  As our system 

is expected to include these fundamental effects we limit our treatment to the much more 

rigorous field analysis.   
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Figure 6.  A typical step index fiber waveguide.  The radii of regions 1 (core radius a) and 2 
(cladding radius b) are shown to scale. Here, > >   

 

Let us begin with a basic wave equation in an isotropic homogenous medium with assumed 

harmonic time dependence of the field.  This leads to what is known as the vector Helmholtz 

equation and it takes the form [19] (Pg. 380) 

 (53)  

where  is the Laplacian operator,  is a potentially complex wavenumber for the dielectric 

medium and  is a vector electric field. We can note that while  can be complex in general, the 

real component represents power flow and will be termed the propagation constant or 
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wavenumber while the imaginary component will represent attenuation of the propagating 

wave and is typically denoted in optics by the negative of half the absorption coefficient  [19] 

(Pg. 310).  Notice that attenuation will then appear as a decreasing exponential, such that we 

will expressly treat   as real and include exponential attenuation when it is physically 

necessary, as in the ring cavity.  For the moment let us assume a constant phase plane solution 

such that there is no transverse field gradient, i.e. the field is linearly polarized in the transverse 

plane, propagating along  with an exclusively real wavenumber .  The Helmholtz equation 

then becomes 

 (54)  

This then is solved as, 

 (55)  

which is the proverbial plane wave solution.  Throughout the remainder of this chapter, the 

convention   will be used for plane waves propagating along .  Now consider the 

consequences of disregarding the previous assumption on transverse field variation. This 

amounts to lifting the assumption of a uniform transverse dielectric profile, but still allows for 

real propagation along  with the transverse behavior determined by the perturbation of, or 

rather deviation from, a free space linearly polarized plane wave.   Let us then take a form that 

has planar wavefronts orthogonal to its propagation along  as:  

 (56)  
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where  is the propagation constant in the medium.  If we then insert this into the preceding 

Helmholtz equation we find the transverse response is governed by 

 (57)  

where  is the transverse Laplacian. Notice the implications of allowing : we regain a 

linearly polarized plane wave solution as the transverse field gradient must also collapse in this 

limit.  Thus   represents the divergence of the field solution from that of a pure linearly 

polarized plane wave, or the strength of the polarization modifications of said plane wave due 

to the presence of a transverse dielectric profile.   

For a single homogeneous dielectric boundary problem such as Fig. 6 in the limit , termed 

a step index waveguide, it can be shown [21] (Pg. 226) that   must be strictly bounded by the 

wavenumbers of plane waves propagating along  in each of the two media  and  

independently as 

 (58)  

where the wavenumbers are defined such that .  Physically, this relationship is easier to 

discuss if one defines an effective index of refraction, which represents some weighted average 

of the two indices, experienced by the guided field: 
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Figure 7.   The cylindrical coordinate system used for modeling for a step-index fiber. 

 

 (59)  

Now in terms of indices of refraction we have 

 (60)  

The physical meaning of the effective index should be clear in that as the effective index 

approaches either of the two limits we can approximate the solution as a linearly polarized 

plane wave.  The higher of the two limits in which  represents the strong confinement 

limit in which the field is almost entirely bound in medium  and as such only has minor 

polarization nonuniformity over a small outer portion of the mode cross section.  In the second 
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limit in which   the confinement is weak and the field propagates almost entirely in 

medium  with a small polarization nonuniformity only in a small region at the core.  Similar 

conclusions can also be drawn about the effective phase velocity of the field within the guide as 

the phase velocity will therefore increase as the field effective index approaches that of  and 

loses confinement. 

It has been shown [21] (Pg. 592) that given a longitudinally invariant waveguide the transverse 

field components can be found analytically given a known longitudinal solution to Maxwell’s 

equations.  We begin by assuming an orthonormal expansion of the field which in 

electromagnetic circles is termed a modal expansion of the field.  In this treatment each solution 

is vector orthogonal with discrete indices in amplitude coefficients and effective wavenumbers. 

Given a particular geometry only modes of certain discrete indices propagate; this is termed 

cutoff and is the reason some optical fibers are termed single-mode.  In these fibers the ratios of 

core and cladding radii and indices is such that only the mode which has an effective index 

closest to that of the core can propagate without loss. This mode is termed the fundamental 

mode and has an intensity profile and vector field structure given by Fig. 8 and Fig. 9 

respectively.   It is typically denoted by its hybrid electric-magnetic field structure as .  

These modes are termed hybrid as the confinement is sufficiently strong as to mix the fields 

such that neither the electric nor magnetic fields are entirely confined to a transverse 

polarization plane.  Because a tapered fiber is used for coupling to the resonator, Figs. 8 and 9 

reflect this, with the guiding interface being that between cladding and air. 
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Figure 8.  Cross-section power plot of the fundamental tapered-fiber mode where propagation is 
in the z direction.  Notice the development of the evanescent field at the fiber-air 
interface (1.7 μm radius). 
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Figure 9.  Polarization characteristics of the fundamental fiber mode along the dielectric interface 
with air. 

 

As  the experimental system is intentionally single-mode and the explicit treatment of higher 

mode families has been studied elsewhere [14] the remaining discussion will focus exclusively 

on the fundamental mode.  

We revisit the Helmholtz equation for the  components of the fields in cylindrical coordinates:  

 
(61)  

Here we have taken the explicit propagation dependence of the fields as 
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(62)  

with the propagation constant along  again defined to be .  If the Laplacian operator is then 

expanded in polar coordinates, as a general form in the scalar parameter , we find 

 (63)  

Let us now take the traditional step of assuming a separable solution of the form 

 (64)  

In this regard we have already taken the form of the time and longitudinal dependence to be 

 (65)  

Now observing that the waveguide is rotationally invariant in  allows us to further assume 

harmonic rotation dependence as: 

 (66)  

subject to the constraint that  must be an integer such that .  Now 

inserting this back into Eq. (63) gives, 

 
(67)  
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This can be readily recognized as Bessel’s equation with the typical known solutions for each 

dielectric region given by 

 

 

 

(68)  

Where  and  are Bessel functions of the first and second kind and modified 

Bessel functions of the first and second kind of order respectively, with amplitude 

coefficients given by  .  The cofactor in each argument is given by the root square deviation of 

the propagation constant from that of a linearly polarized plane wave: 

 
(69)  

Notice that the generalized complex Bessel functions are used in regions 2 and 3 because in 

these regions  will be explicitly imaginary while core guidance is maintained,

.  These expressions simplify somewhat when physicality is imposed on the solution set as  

and  have singularities at zero and infinity respectively.  For these components we must set 

the amplitude coefficients to zero and the full solution set then becomes 
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(70)  

where the amplitude coefficients have been renumbered for simplicity.  From this general scalar 

solution in the  field components all the remaining scalar field components are found [21] (Pg. 

593) in each medium  from 

 

 

 

 

(71)  

Where the longitudinal components in dielectric  have been expressed as 

 (72)  

and the convention is taken that these components are purely imaginary while the transverse 

components are taken to be purely real.  Enforcement of continuity boundary conditions at each 

interface for the longitudinal  and azimuthal  field components of  and allow us to 

find an expression for the unknown amplitude coefficients  as well as to formulate an 
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eigenvalue equation for . Traditionally, the amplitude coefficients are treated analytically [14] 

by first assuming  and ignoring the second interface.  This will be shown to be valid under 

the experimental conditions we are interested in, but the more generalized two-interface 

methodology allows for the treatment of more complex dielectric structures and power transfer 

between core and cladding field guidance.  This generality comes at a price however, as the 

increased complexity of including the second interface typically requires a numerical treatment 

in order to find approximate solutions to the boundary value problem. 

 With the boundary conditions established one can then formulate an eigenvalue equation from 

the matrix form of the boundary conditions equations [14].  The eigenvalues found here 

represent the discrete effective wavenumbers of the allowed bound modes, each of which will 

have a unique set of amplitude coefficients.  The resulting eigenvalue equation in either the 

single or double boundary problem, however, is transcendental in  and must be treated 

numerically.  We must then consider the ramifications of inserting a potential numerical solution 

of the  eigenvalue equation which is not strictly real into the field solution we have found.  The 

imaginary component, which strictly means that the solution is not an “eigenvalue” of the 

analytic eigenvalue equation, will lead to an effective field loss term as which can be 

considered a radiation loss, as the mode becomes unbounded.  Numerically, then, we must 

always minimize the imaginary component of a particular solution to approximate a “good” 

eigenvalue for the system.  With a particular solution numerically isolated the boundary 

conditions are evaluated for determination of the amplitude coefficients. 

For a general two-boundary system we expect two regions of solutions:  those that are guided 

by the 
 
interface, aka core-guided modes, and those guided by the 

 
interface, 

aka cladding-guided.  Physically, when the effective index is found to lie between the indices of 
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any two regions we can conclude that it is this limiting dielectric interface that is responsible for 

guiding the mode.  This turns out to be important only in the treatment of power transfer 

between the core and cladding guided modes in the taper transition region of the fiber.  In the 

untapered region the power is core confined while in the fully tapered region the power is 

cladding confined.  However, in the taper transition region the power is simultaneously guided 

by both the core and cladding.  Thus a full field treatment is thereby only strictly necessary if 

one is to model the power transfer within the waveguide itself to limit non-orthogonal couplings 

to modes of varying symmetries.  Making these internal power transfers negligible is typically 

referred to as fiber adiabaticity in the sense that a single mode fiber will then maintain a single 

mode nature even in the fully tapered region.   These power couplings are then controlled by 

maintaining high symmetry between the core and cladding guided modes to facilitate near 

orthonormality in the field expansions of the guide.  In this sense the tapering of the guide can 

be thought of as a perturbation to the orthonormal field expansion of the guide and as long as 

this expansion remains a “good” basis set the internal power transfer within the guide will not 

be lossy due to couplings to higher order fiber modes.   

 

Figure 10.  Fundamental mode profiles for a tapered fiber as a function of position along the 
taper transition region.  The blue trace is the solution to the two-boundary problem 
while the red trace is that of a single-boundary approximation. 
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One can note that in the above figure (Fig. 10) the single boundary approximation is reasonable 

in both the strictly core- and cladding-guided regions.  In the core-guided region both solutions 

are in perfect agreement, while in the cladding-guided region the solutions are very similar with 

the core of the two-boundary solution maintaining some weak guidance.  This shows that the 

experimental system, in which the interaction is occurring in the cladding-guided region, can be 

modeled as a single-boundary problem for power transfer calculations given that adiabatic 

fibers are used.   It is of some merit, however, to observe the evolution of power guidance as 

the field encounters the tapered region.  Notice that phenomenologically we can observe the 

peak power moving away from the core into the cladding, filling and broadening the mode until 

only a small fraction of the total power is contained in the core. 

Sphere Modes: 

The solutions to the field expansions in a spherical cavity with the modified spherical 

coordinate representation depicted in Fig. 11 can be found in a manner which is intuitively 

similar to that for the fiber.  One begins with the same Helmholtz equation and arguments 

associated with it.  The form of the time dependence and propagation direction and effective 

wavenumber are taken identically with the exception that the propagation is taken to be along a 

cut equatorial plane of the sphere in the  direction.  Unlike the fiber, in which the 

dimensionality of the guiding fiber is of the order of the wavelength, causing the modal fields to 

experience the dielectric interface in all transverse directions simultaneously, the much larger 

dimensions of the spherical cavity with respect to the wavelength will lead to fields confined to 

a very small fraction of the total cavity volume.  Because the guidance is only along a single one-

sided boundary in this type of cavity we can treat the field polarizations in the natural 
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coordinates [13] shown in Fig. 11.  The modes of this type of cavity are then decomposed into 

pure transverse electric (TE) and magnetic (TM) polarizations.  What this means in practical 

terms is that we can assume the direction of the electric or magnetic field because the fields are 

not dependent or mixed as they were in the fiber.   

 

 

 

Figure 11. Coordinate representation of the microsphere. Field propagation is assumed to be 
along . 
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As was first illustrated by Mie and Debye,  just after the turn of the century and later fully 

fleshed out by Hansen [22], when one considers a generalized scalar solution to the Helmholtz 

equation, 

 (73)  

then this solution can further be used as a generating function as elucidated by Stratton for a 

generalized complex wavenumber  [23] (Pg. 415), or rather potential,  to generate two 

independent vector solutions to the Helmholtz equation.  These vector functions are expressed 

as 

 

 

 

(74)  

which (  is an arbitrary unit vector) all satisfy Eq. (73).  For the current case of interest these 

reduce, due to the harmonic time dependence, to two orthogonal coupled vector ( ) 

solutions (for a given polarization, referenced to ) which are then determined by a scalar 

potential , or generating function, termed a Debye potential.  Given the orthogonal nature of 

these solutions they are therefore appropriate representations of the vector fields   and .  

The brunt of the work then lies in the derivation of the form of the Debye potential for a 

particular system of interest.  In the case of standard spherical coordinates the Helmholtz 

equation acting on a particular potential  is separable: 
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(75)  

where  and  are separation constants to be determined.  We can immediately note that any 

solution that has   dependence is subject to periodic boundary conditions as

.  This is solved as a simple complex exponential in the integer index  which determines 

the first separation constant as .  The second constant can be found by noting that the 

differential equation governing the  component is solved by an associated Legendre function.   

To maintain physicality, specifically finiteness at the poles, in our solution we must truncate one 

of the associated Legendre series solutions by choosing , where  is a positive 

integer.  Now with the differential equations fully defined let us clean things up a bit before 

actually solving them.  

Given that we treat field propagation within the microsphere to occur at the equatorial 

plane, , it is a matter of convenience to symmetrize the fields by a rotation in the 

coordinate system definitions such that  is along this plane.  This amounts to simply 

replacing terms as .  With the equation symmetrized we may 

further note that the dimensions of the system of interest are such that a small angle 

approximation in to second order is quite reasonable for the region of field confinement 

( ).  Now observe that the solution of the differential equation that describes the 
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radial dependence is a spherical Bessel function.  While these analytical solutions are readily 

available some further approximations can be quite insightful.  While the interior dielectric 

solution gives no additional insight under approximation the evanescent portion is very 

insightful, because it will  have a fast exponential decay with dimensionality on the order of a 

wavelength.  Under these conditions it is appropriate to rescale the radial dependence in a 

relative coordinate defined from the surface of the sphere with radius as   

and examine the radial equation in the exterior near field ( ) [13]: 

 
(76)  

which is related to the Airy equation and the wavenumber  has been defined through

 for the external index .  This can be even further simplified by neglecting the third 

multiplier of , giving 

 
(77)  

This, as per our early discussion, suggests a localized plane wave with an effective wavenumber 

given by .  In full reduced form our differential equations become 
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(78)  

where the wavenumber  is defined by the sphere’s index of refraction .  The radial 

solutions are then found to be, 

 
(79)  

where  is the spherical Bessel function of the first type (the general solution also contains 

a spherical Bessel function of the second type which has been set to zero for physicality)  is an 

undetermined amplitude coefficient, and  with . 

If we assume the integers  and  are large and roughly equal the polar solution is found to be 

 
(80)  

where  is the Hermite polynomial function,  is the Kummer confluent 

hypergeometric function, and the remaining variables are given and approximated as 
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(81)  

The last solution, to the azimuthal equation, is found simply to be 

 (82)  

Now, with the scalar solution in hand we are seemingly ready to use the vector relations of Eq. 

(74) to find the field components, where once again we have taken the transverse components 

to be purely real and the longitudinal components to be pure imaginary.  There is a subtlety 

here however that has been overlooked.  We have said very little about the assumed arbitrary 

unit vector .  This vector will determine the field polarization as TE or TM.  While the 

development of the scalar Debye potential is quite valid, the vector fields which are found will 

have little physical usefulness if one cannot represent either  or  as directed having a zero 

radial component (meaning the field is transverse).   For this reason the methodology employed 

for representing the fields of the fiber has a much different development than that of the 

microsphere as the fiber fields will never be found to have a zero component.  With this subtlety 

illuminated we can then freely assume the aforementioned polarization basis by setting  

along , or explicitly , and letting  for the polarizations (TE, TM) 

respectively.   With either  now defined through  the other can be determined 

through ; notice that the third of Eqs. (74) for a generalized complex wavenumber reduces to 
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Maxwell’s curl equations [23] (Pg. 414) for a harmonic wave with finite conductance.  Thus our 

formulation to this point is entirely congruent with a typical Maxwellian treatment.  

The remaining treatment is an eigensystem treatment just as for the fiber fields.  Just as before 

we are tasked with solving the discrete eigenvalue equation and eigenvector equations for the 

microsphere which in practical terms means finding the effective wavenumbers of the 

modes, , and the amplitude coefficients,  which meet the transverse field continuity 

boundary conditions.  The resulting solutions in  will therefore depend on the separation 

constants ( ) which will both define the spatial profile of the mode and determine the 

modes resonance frequency centered at .  Thus, each solution with differing indices will have 

a different resonance frequency and spatial profile. 

Given that an analytical or numerical treatment is nearly identical to that for the fiber the 

methodology will not be revisited, but the results are interesting and worth discussion.  In 

particular, the resulting fields of the solved eigensystem elucidate the physical interpretation of 

the indices found as separation constants in the proceeding discussion.  If we label the modal 

solutions as is typical for this type of treatment [13]  ,  then enumerates the order of 

the solution to the characteristic equation beginning at one,  is the number of integer 

wavelengths in one round trip and  is not explicitly determined.  Physically then,  will 

determine the number of radial intensity  maxima,  the number of polar intensity 

maxima  and  the number of azimuthal field extrema .   

Furthermore, we can also deduce from the near field radial solution that much like the fiber 

each solution will have an effective wavenumber , where we have added an 

explicit subscript .  Notice the path described by  does not contain all of the modal indices (it 
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lacks  dependence) and therefore cannot describe the propagation of the mode as a whole; 

rather this can thought of as the path a particular photon would take within the cavity.  The 

fields, which are described by the cumulative effect of many photons, must strictly depend on 

all indices and will only then describe the propagation of the mode as a whole.  If then we look 

at the mode of lowest polar order  such that , which is taking the 

projection of  onto the equatorial plane,  we see that the total propagation constant is fully 

dependent on all pertinent indices as we require and describes the modal propagation as seen 

in Fig. 12 below. For this reason  is what is typically termed the propagation constant for the 

sphere mode, because it gives a full description of the mode’s propagation, and defines the 

mode’s effective index through .   
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Figure 12.    A high angle (exaggerated) polar mode which comprises the superposition of 
precessional modes (see chapter 5) can be used to attribute physicality to the 
two propagation constants of the microsphere mode. From this analysis  is 
the photon propagation path while  is the cumulative mode propagation 
path. 

 

Just as for the fiber fields we can define what is termed a fundamental mode, which is a mode of 

either polarization with one intensity maximum and is defined by ; see Fig. 13.   The modes 

of the microsphere per our construction are either TE or TM polarized for all mode orders as 

seen in Fig. 14.  The TE and TM polarized fundamental  modes are treated exclusively in this 

study as the general properties of interest here have been found to be only weakly dependent 

on mode order [16]. 
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Figure 13.  A fundamental TE sphere mode plotted in cross section at the equator.  The sphere-air 
interface occurs at 300 μm. 
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Figure 14.  Vector electric field plot of (a) TE fundamental mode, (b) TM Fundamental mode, (c) 
TE 3rd order polar mode, (d) TM 3rd order polar mode.  Notice that the field vectors 
are either tangent to or normal to the surface, thereby defining the polarization 
basis. 
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Coupled Mode Theory: 

Coupled mode theory was originally used as a tool to understand the amount of cross 

talk, or power transfer, to expect between adjacent fiber optic cables [14, 20]. In the original 

inception these power transfer models were based on scalar treatments for waveguides in an 

energy orthogonal basis.  However, as optical waveguides gained interest among scientists, 

around the time of the first commercially available optical fiber, many worked to extend the 

basic methodology first to a full vector treatment and then to waveguides with non-orthogonal 

energy bases.  The following formulation is termed “non-orthogonal vector coupled-mode 

theory” and is reasonably well suited to our needs, as will be shown.  Foremost in all 

formulations one begins with a power conservation argument.  One would like to argue that the 

power loss in one guide is the negative of that of the second guide.  For this reason the 

treatment typically begins with a derivation of a reciprocity relation between the guides which 

in turn leads to factors which can then be characterized as power transfer coefficients.  This 

treatment of reciprocity in electromagnetics is closely related to the treatment of Hermitian 

operators in quantum systems in that label exchange should not affect the physicality of the 

outcome. We can again begin with two of Maxwell’s equations in a lossless source free region;  

 

 

(83)  

where  and  are the medium dependent permittivity and vacuum permeability 

respectively.  Using a procedure analogous to the derivation of Lorentz reciprocity which relies 

fundamentally on the general expansions of the vector operators we have 

 (84)  
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The indices  and   allow for the consideration of the fields of two systems.  Notice the 

symmetry under exchange of the indices  

 (85)  

If Eq. (84) and Eq. (85) are summed we arrive at a useful reciprocity relation: 

 (86)  

As we are only interested in power transfer, which has been defined to propagate along , let us 

convert this into an integral expression over an infinitesimal  as 

 
(87)  

where the dielectric constants are left within the integrand as a generality to account for a 

transverse profile and  is the cross sectional area.  One may note here that while we are 

interested in the coupling effects along the direction of propagation we have dropped the 

analogous transverse components on the left-hand side of Eq. (86).  Rigorously these 

components have not been dropped at all but rather, as we have both defined propagation to 

be along  and further neglected radiation losses in these field solutions to the Helmholtz 

equation along , the transverse components on the left hand side can be shown to ultimately 

have no contribution [24]. 

A casual observation at this point, as the structure of Eq. (86) is that of a Poynting vector, would 

seem to imply that the derivations done would seem to represent power flow.  This is caused by 

the direct derivation of the reciprocity theorem without the context of the actual fields to be 
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used.  The preceding derivation is rigorous and correct but without context we are left with a 

result which cannot be interpreted.  Strictly speaking, we must find the coupled mode equations 

which show analytically how the fields respond to coupling. 

Let us construct a system of two-single mode unperturbed waveguides labeled 1 and 2, 

embedded in a uniform background dielectric. The two guides have identical transverse 

permittivity profiles  in guide 1 and  elsewhere, and  in guide two 

and  elsewhere.  We begin the analysis by perturbing the forward propagating field of a 

particular guide by interacting it with the field of the total system through the reciprocity 

relation.   We must construct the permittivity profile of the total system; however, it cannot be a 

simple summation of the individual guide profiles because they simultaneously exist in the same 

background dielectric.  We will treat the system’s permittivity profile then as a series of steps, 

i.e.,  in guide 1, =  in guide 2, and =  elsewhere.  The fields of the total system 

are constructed from a linear superposition of the fields of the unperturbed guides as  

 

 

 

(88)  

where  and  are unknown amplitude coefficients and the superscripts  represent 

the transverse and longitudinal field components.  Notice that the longitudinal components of 

the electric field are modified by the dielectric function of that particular guide’s ratio to that of 

the total system.  The total longitudinal components are bound to the total transverse 

components just as we have seen in the derivation of the fiber fields (Eq. (71)) due to Maxwell’s 

equations and this leads to dielectric coupling.  The system field is placed back into the 
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reciprocity relation as the  field while the  field is taken individually as that of either guide 

one or two.   The result is found to be 

 

 

(89)  

for guides one and two respectively.  Here we have defined the constants to be 

 

 

(90)  

Notice that  is almost identical to the right-hand side of the reciprocity theorem with the 

additional inclusion of systemic dielectric effects.  The reader should also note that because we 

have taken the convention that the transverse and longitudinal field components are purely real 

and imaginary, respectively, that both the  and  integrals will evaluate to be purely real.  

The general solution to the coupled differential equations above does not readily lend itself to 

providing physical insight.  For physical perspective, not rigor, let us assume identical couplers 

with the unity power contained initially only in waveguide 2.  This effectively reduces our 

treatment to that of the earliest formulation of coupled mode theory in microwave cavities of 

the Manhattan-Project era [25] such that,  
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(91)  

The power in a particular guide as a function of distance is then, 

 

 

(92)  

While this is a crude treatment it does give the physical interpretation of the reciprocity relation 

we are interested in.  This can be observed most readily by making a small angle approximation, 

or rather small interaction length approximation, of the argument of the trigonometric functions 

as; 

 

 

(93)  

We can conclude that represents the  dependent amplitude coupling between the guides, 

much like as that seen in nonlinear optics [26] (Pg. 92), and  represents power transmission 

between guides.   This is readily observed graphically when the powers in the simplified guides 

are plotted vs. propagation as seen in Fig. 15; power is clearly conserved at all . 
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Figure 15.  Power transfer as a function of propagation for the simplified waveguides for guide 
a(blue) and b(red) .  Notice that the power is conserved for all z. 

 

This is all that is needed to continue along the verification of the ring cavity model, but let us 

take one final step and look rigorously at power conservation in the system.  The power of the 

total system can be found directly through the Poynting vector of the total fields, Eq. (88) as, 

 (94)  

where only the real component of the cross term is taken to represent power flow on physical 

grounds.   The power can be made invariant if the conditions of Eq. (89) are solved 

simultaneously as, 

 (95)  
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Which we can immediately note implies the amplitude coupling coefficients will be unequal if 

the waveguides are not phase-matched, i.e., .  This is not the problem it would appear 

to be from the surface.  Looking back at the form of both  and   in Eq. (90), we can note that 

while  is an unbounded integral the system dielectric profile of the  integral will cause the 

integrals outside the waveguide being coupled into to go to zero.  Physically then we can think 

of the interaction energy as having two parts; one a local energy transfer and the other a 

systemic depression in the modal energy due to the presence of another dielectric structure, 

something akin to an induced polarization in the adjacent dielectric structure.  If the field extent, 

and thus phase velocity, is vastly different between the guides we would expect the relative 

strength of field perturbation to be dissimilar, thus limiting the energy available to transfer.    

With the groundwork firmly established we can move on to actual computation.  The 

fundamental assumption that the theory relies on, a fact which is not immediately apparent, is 

that the guides must be parallel; or rather the waveguides must be linear since we are to 

enforce power conservation in some cardinal direction.  In applying this method to fiber-sphere 

coupling we must treat the sphere as a linear waveguide, which is not as poor an approximation 

as it sounds, and enforce power conservation along the propagation direction of the fiber.   The 

validity of this assumption lies in the very short interaction region between the guides, 

something on the order of a few .  Within this region the curvature of the sphere (typical 

radius  400 ) is small compared to a wavelength and thus our assumption amounts to 

something of a small angle approximation in the dot product of the wavevectors of the two 

guides:  

 (96)  
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Furthermore, for the results of the overlap integration to be of merit one must also properly 

normalize the fields in each guide.  As power transfer is of fundamental interest the waveguide 

power is normalized to unity over the cross sectional area.  Thus when the power transmission 

probabilities,   are found they will directly represent the power flow between the 

guides.    

With the fields found for each of the guides the most challenging aspect of actually computing 

these transmission probabilities is in the coordinate transforms that are required to convert one 

coordinate system to the next and account for polarization and physical geometry in the new 

coordinate system.  The field in the guide not being integrated over must first be converted, via 

a unitary transform, into a Cartesian basis so a linear offset can be added, placing the two guides 

together at the bounding surface.  The field must then be converted into the basis of the guide 

being integrated over, all the while allowing for arbitrary polarization and potential 

misalignment in the unitary transform.  This process, if not completed rigorously, can readily 

lead to erroneous results.   Let us begin by deriving the transforms that place the microsphere 

fields in the fiber’s coordinate system.  The fiber coordinate system must first be decomposed 

into a Cartesian basis so the microsphere’s Cartesian coordinates can be expressed in the fiber’s 

Cartesian basis: 

 

 

 

(97)  

where the explicit coordinate dependences have been dropped and the radial and azimuthal 

coordinates of the fiber have been redefined,  and , to provide notational similarity 
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between the spherical and cylindrical coordinate systems.  This serves to simplify the respective 

transforms as the radial and azimuthal coordinates then have the same meaning in both 

systems.  Angular and linear offsets can be added to each component to account for arbitrary 

alignment between the guides, such as 

 

 

 

(98)  

where  is the microsphere radius,   is the gap distance between guides and  is the 

angular position of the fiber center with respect to the microsphere’s equatorial ( ) 

plane.  New spherical coordinates can be found from the transformed Cartesian components of 

the fiber as 

 

 

 

 

(99)  

These transforms appear structurally unfamiliar because we made the  component of the 

spherical system congruent with that of the cylindrical system and defined  as the angle up 

from the new equatorial plane.  We construct a unitary transform in terms of base cylindrical 
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coordinates that transforms the native spherical coordinates into transformed cylindrical 

coordinates as 

  

 

(100)  

Finally, the microsphere fields can be defined in the modified fiber basis as, 

 

 

(101)  

where  and  are the base fields of the microsphere and the explicit dependence of fiber 

coordinates has been included for completeness. 

The fiber fields must be treated in an analogous manner before the transmission probabilities 

can be found.  We begin with a decomposition into Cartesian coordinates, 

 

 

 

(102)  

  The offset Cartesian components are then found to be 
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(103)  

Just as before we can now derive transformed cylindrical coordinates as 

 

 

 

(104)  

The unitary transformation matrix for native cylindrical to modified spherical coordinates is 

derived to be 

  

 

(105)  

The fiber fields can now be expressed in the modified spherical coordinates as 
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(106)  

where  and are the native fiber fields and the explicit dependence of the transformations 

are included for completeness.   Let us now explicitly define the fiber and microsphere fields for 

the two polarizations used in the computations.  The sphere fields are found in terms of the 

Debye potential and Maxwell’s equations to be 

 

 

(107)  

For the fiber we will define the polarization based on the sphere polarization basis rather than 

the absolute lab basis.  When the mean polarization, in the sense that the fiber’s polarization is 

not uniform, of the electric field of the fiber is along  we will term this TE polarized and when 

the magnetic field is along  it will be termed TM polarized.  Let us not rewrite the field 

expressions derived earlier, but rather express the solution as 

 

 

(108)  
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This allows us to readily assign an arbitrary mean polarization direction to the fields by the 

addition of a rotation to the coordinate  as .  The particular polarization directions 

we are interested in can be expressed as 

 

 

(109)  

As we are interested not in the differential transfer of power as expressed in Eq. (90) above, but 

rather the total power transfer, the overlap integrals must be further integrated along . This 

has no effect on the analysis presented previously; it only changes the form of the overlap 

integral to 

 
(110)  

With the fields properly normalized and the polarizations defined the overlap integrals can be 

evaluated to find the transmission coefficients.  The overlap integrals are, 

  

 

 

(111)  



P a g e  | 2-63 

 

 
 

where the convention is taken that the coupling direction is   which is counter to the typical 

treatment in the literature [16].  Notice that the systemic dielectric constant has limited the 

overlap regions to only the volume of interest.  Although both the fiber and sphere are made of 

fused silica, their refractive indices are written as  and , respectively.  Before evaluating the 

overlap let us check the validity of the transforms graphically.  In each of the vector field plots 

below every aspect: boundaries, vector fields and strengths have been plotted rigorously using 

the coordinate transforms cited above.  We can observe that the characteristics of the fields and 

their respective physical location are summarily identical in both the fiber, Fig. 16, and 

microsphere, Fig. 17, native coordinate systems.  With the transformational symmetry 

confirmed we can begin computing the transmission probabilities. 
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Figure 16.  Vector plots of the native fiber field (grey) and transformed sphere fields (black) with a 
small offset between the equatorial plane and the fiber.  Here all elements including 
boundary locations (dashed lines) have been found from the derived unitary 
transforms.  Notice that the origin is located at the fiber center. 
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Figure 17.  Vector field plots of the native sphere field (black) and the transformed fiber field 
(grey), where the polarization of the fiber field has been rotated to TE for 
demonstration of validity.  Notice that the equatorial offset appears more 
pronounced in the sphere system, but is identical to Fig 16.  Notice as well that the 
origin is now located at the sphere center. 
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The induced complexity of these transforms and the field equations themselves do not readily 

lend themselves to analytic analysis.  The overlap integrals are therefore evaluated numerically 

with great care taken to prevent limitations due to numerical precision.  To illustrate the 

difficulty faced in performing these computations here is the final integrand for fiber to 

microsphere coupling: 
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The numerical overlap integral is iteratively computed over decreasing fiber diameter for a fixed 

microsphere diameter.  This is done so that one can predict for a given wavelength and 

microsphere diameter what fiber diameter is best suited to both maximize forward coupling to 

the microsphere and minimize output coupling into higher mode families.  Output coupling into  
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Figure 18.  The coupling amplitude between the fundamental modes of the fiber and microsphere 
vs. fiber radius for input (red) and output (blue) coupling directions.  Notice that they 
are not perfectly symmetric, however they are very close. 

 

higher order fiber modes can be suppressed as the fiber will have some minimum diameter 

where only fundamental mode coupling occurs [14].  The results of the input and output 

coupling show high symmetry with peak values of  on the order of  as seen in Fig. 

18 and Fig. 19.  The calculated peak values are comparable to the measured peak values for the 

experimental system. 
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Figure 19.  Amplitude transmission coefficient shown as a function of misalignment angle 
between the sphere’s equatorial plane and the fiber’s z axis. 

 

It has been previously discussed that the input/output coupling coefficients can be unequal if 

the waveguides are not strictly phase matched.  While this is rigorously true the relative 

difference should be small for guides which are weakly coupled.  This can be thought of in terms 

of the interaction energy terms .  For a weakly coupled system the perturbation of the modes 

due to the presence of a second guide is small and as such the interaction energy terms are also 

small.  As shown below in Fig. 20 even as phase matching is decreased and  gets large 

the difference between input/output transmission (Fig. 18) continues to decrease because  

decreases more rapidly than phase mismatch increases.  One may note that this should be 

expected because, while it has not been explicitly alluded to, the integrals which represent   

also contain phase matching terms which lead to their nonlinear reduction as  gets large.  

Notice as well in Fig. 21 that even when the modes are perfectly phase matched the relative 
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difference is still of order 0.7% which indicates that the difference is most likely due to numeric 

limitations in evaluating the coupling coefficients rather than a physical effect.  Ultimately, we 

find the difference in the amplitude coefficients to be of the order of 0.7% for a typical aligned 

configuration, see Fig. 21 below, and of the order of a few percent for a system which is 

misaligned, Fig. 22 below.  In either case these differences are small and may be safely 

neglected in our ring cavity treatment. 

 

Figure 20.  Absolute percent phase mismatch between fiber and microsphere as the fiber radius is 
reduced. 
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Figure 21.  The percent difference between input and output coupling plotted as a function of 
fiber radius.  Notice that while the peak value is around 0.7% the difference reduces 
dramatically as the guides become more weakly coupled. 

 

 

Figure 22.  Percent difference between input and output coupling as a function of equatorial 
alignment angle.  Note that the jumps are caused by limited numeric precision in the 
calculations. 
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We have now independently demonstrated that the ring cavity treatment of equal input/output 

transmission probabilities is a fair approximation to the real modal system.  Furthermore, while 

it is technologically impossible at the moment to experimentally determine the mode of the 

microsphere that we are observing at a particular frequency, due to uncertainty in geometric 

measurements of the microsphere, we have found that the peak transmission probabilities as 

determined from the ring cavity model are of the same order as those predicted in the 

independent coupled-mode analysis.  Up to this point we can conclude that the ring cavity 

resonance model is a reasonable representation of the system. 

Determining the cavity loss: 

The next aspect of the ring cavity model which must be verified is the treatment of 

cavity loss.  The loss in this case is composed of two components and these must be treated 

separately.   The first mechanism of cavity loss is absorption while the second is scattering.   

Thermal Bistability: 

In an optical absorption process the absorbed optical energy is converted into thermal 

energy.  This can be understood strictly from a conservation of energy perspective as without 

re-radiation of the optical power the material remains in an excited state, increasing the mean 

temperature.  This provides us with a mechanism for differentiating the loss mechanisms of the 

microsphere because scattering is loss without heating.   We must then devise a means of 

measuring the heating associated with absorption and understand how to characterize that in 

terms of a cavity loss coefficient.  This is not an insurmountable task as the observed optical 

properties and thermal properties are intrinsically linked by both the thermal dispersion in the 

index of refraction of the guide and the change in guide geometry due to thermal expansion.  
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We know that the cavity will be resonant when there are an integer number of wavelengths  in 

one round trip.  Thus a particular cavity resonance can be expressed as 

 (112)  

where the effective index of refraction has been assumed to be approximately the nominal 

index of refraction.  Now let us see how this resonant wavelength is affected by temperature 

dependence in the index and radius.  In terms of frequency we find 

 

 

(113)  

The known values for the thermal expansion coefficient [27] and index dispersion [28] are 

 and  respectively at .  

This leads to a temperature dependence in the resonant frequency of a particular mode of 

about  which has been experimentally verified [29].   If we now include 

the temperature dependence of the resonance frequency in the previous Lorentzian resonance 

structure we find that the throughput power can be expressed as, 

 
(114)  

where  and both the temperature and laser scan frequency relative to  have 

been expressed explicitly as a function of time.   We can then derive an expression for the 

microsphere’s temperature change from equilibrium,  [29] by considering the difference 

between heating due to optical absorption and cooling due to external processes: 
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(115)  

where  is the ratio of absorption to total loss,  is the thermal lifetime and  is the 

mass of the microsphere ( ) times the specific heat capacity (

) of fused silica, giving the total heat capacity of the microsphere. Now we must 

characterize the total cooling rate .  For this we can envision the creation of an 

experimental sample, as seen in Fig. 23 and Fig. 24, which is very limited in terms of thermal 

conduction into the suspension mechanism, leaving predominantly the conduction loss into the 

surrounding gas, as bodies of this size have negligible convection losses and small blackbody 

radiation losses for temperatures within a few  of equilibrium. 
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Figure 23.  Creation process of thermal-conduction-limited microsphere.  The object in the lower 
field of view is the tip of a jeweler’s torch fed by a hydrogen-oxygen mix.  The 
patterns within the sphere are internal reflections of the blackbody radiation 
( C) of the microsphere.  
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Figure 24.  Thermal-conduction-limited microsphere suspended on a tapered fiber.  A sphere of 
diameter ~600 m is suspended on a tapered fiber of diameter ~3 m. 

 

With the realization of an experimental sample with limited thermal conductivity into the 

suspension mechanism as seen above in Fig. 24, the thermal lifetime can be expressed as 

 (116)  

where  is the thermal conductivity of the ambient atmosphere,  is the Stefan-

Boltzmann constant,  is the emissivity of fused silica and  is an 

approximation for the equilibrium temperature of the cavity .  The thermal lifetime can 

now be directly measured.  To measure the thermal lifetime the microsphere is placed 

in a vacuum chamber and probed with a very weak probe diode laser ( ) at 

1550 nm.  A second powerful ( ) nm beam is focused through a laser 

window, located on the side of the chamber, onto the center of the microsphere, as 

seen in Fig. 25 and Fig. 26 below.  This allows one to heat the microsphere a few 
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degrees above room temperature and directly measure the thermal relaxation rate 

which is the inverse of the thermal lifetime.  

 

 

 

Figure 25.  Thermal lifetime experiment. A 532-nm laser, off camera, is focused into the center of 
the chamber where a microsphere is located. 
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Figure 26.  Close-up of a thermal lifetime experiment. A 532 nm laser is focused into the center of the 
chamber where a microsphere is located.  The microsphere is the bright object in the 
center of the field of view. 

 

The thermal lifetime is measured from pressures ranging from  to .  The 

dynamic behavior of the thermal lifetime serves both as a means of verifying that the 

conduction loss into the suspension mechanism has been minimized and also as an independent 

means of verifying the theory as the thermal accommodation coefficient is found from the trace 

and compared to known values.  As seen in Fig. 27 the agreement is very good, with measured 

values of  over the course of 4 experiments in ambient air, while typical values for 

air on glass are around  [30]. 
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Figure 27.  Measured thermal conductivity of air as a function of pressure for a prolate spheriod 
of minor radius 325 µm.  The solid line is a fit from a thermal conductivity model with 
one free parameter, the accommodation coefficient of the surrounding gas on the 
fused-silica surface. 

 

With the thermal relaxation rate determined, the strong probe laser is turned off and the probe 

laser is increased in power to induce heating due to absorption.  Notice that the temperature 

tuning parameter is negative, so that as the laser is linearly scanned up in frequency, the 

thermal frequency shift of the mode will be counter to the laser scan direction causing apparent 

narrowing of the trace, while when the laser scans down in frequency, the thermal shift of the 

mode will be in the direction of laser scan producing apparent broadening.  All of the 

parameters of a particular mode are first measured at low power/ fast scan rate such that no 

thermal effects are present.  The probe laser power is then increased by roughly 3 orders of 

magnitude (to about ) and the scan rate is reduced by 3 orders of magnitude (to about 

) such that the mode will be in thermal equilibrium throughout the scan.  The only free 

parameter remaining in the bistability response theory is the parameter  which is used to 
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quantify the ratio of absorption loss to total intrinsic loss from the dynamic fit as seen in Fig. 28 

which shows the result of a typical experiment and fit to the observed response. 

 

Figure 28.  Observed thermal bistability response of the microsphere (black) and fit from the 
model to the response (red).  From the fit we can find the fraction of total loss that is 
caused by absorption. 

 

Fitting gives the fraction of intrinsic losses due to absorption, but the actual absorption is still 

ambiguous as we have two potential intrinsic loss solutions which could produce the same 

observed unperturbed modal characteristics ( ) depending on the system’s coupling loss; 

see Eq. (15).  In order to determine which of the two solutions for  (the ratio of coupling to 

intrinsic loss) represents our physical system we must also determine the coupling regime of the 

cavity; this is treated in detail in the next section.  Furthermore, we have treated the total 

intrinsic loss as simply the sum of absorption and scattering losses which excludes any potential 

radiation losses from the cavity.  For cavities of our dimensionality ( ) the radius of 

curvature is sufficiently large, and confinement sufficiently strong, that radiation losses are a 
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very small fraction of the total intrinsic losses and can be safely ignored [31] in our treatment.  

With the radiation losses ignored and the coupling regime of the cavity determined we can then 

infer the cavity’s absorption coefficient and scattering coefficient from the total intrinsic loss.   

What we have found is that for an average microsphere the amount of measured absorption 

corresponds well to that which would be expected from approximately a single molecular layer 

of water residing on the surface (bulk material absorption is negligible at ).  Fused 

silica is well known to form a surface hydroxide (water) layer, through chemisorption [31], which 

has previously been found to have a thickness of roughly one molecular layer [31-32], agreeing 

well with our measurement of absorption losses.  Furthermore, from the model above we can 

estimate that in these particular bi-tapered thermal resonator samples, Fig. 24, that absorption 

losses account for roughly 5%-10% of the total intrinsic loss.  These thermal bi-tapered samples, 

on average, have been found to have very low loaded  when compared to typical samples 

(roughly 10-100x lower) which given the amount of manipulation required to create them 

strongly supports a dominating rise in scattering loss due to surface contaminants as also 

indicated by the above model.  We have further observed that samples with vastly different 

loaded  are measured to have roughly invariant coupling and absorption losses, sample to 

sample, which again serves to verify dominating scattering losses generated during the creation 

process.  With this, we can reasonably conclude that our treatment of loss within the ring cavity 

model is valid and move forward. 

Determining the Cavity Quality Factor and Coupling Regime: 

Now we are left with the verification of the last two critical aspects of the ring cavity 

model.   We must determine if our treatment of cavity quality factor in terms of spectral 

linewidth is reasonable and further we must also verify that we indeed have three separate 

coupling regimes as we would expect for a harmonic oscillator-like system.  Fortunately, both 
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can be found directly from the cavity’s transient response to an abrupt (sub-cavity lifetime) 

incident power change.   In all of the preceding treatment we have analyzed a steady-state 

response to infer behavior; let us now look into the transient response. 

Transient cavity response: 

Clearly from the analysis performed for the ring cavity we would expect the intracavity 

power to decay as a pure exponential and as such we could trivially treat its transient response 

to a rapid decrease in pump power.  While this is straightforward, much more information can 

be garnered from the full response of the throughput field to an arbitrary power off/on event.  

Let us begin by assuming the cavity round trip losses are small and we are sufficiently close to 

resonance such that the sum over cavity round trips in Eq. (2), substituted into Eq. (3), can be 

replaced by an integral over all time in the fractional time required to reach steady state 

: 

 (117)  

where  is the number of round trips, and the field decay rate  and cavity detuning in units 

of half linewidths  have been inserted explicitly using the relations found from Eq. (34), Eq. 

(47),  and Eq. (30).  To aid in the analysis of the time dependence of the integrand let us further 

change variables as .  With this we find 

 (118)  

where the limits of integration have been redefined for consistency with the substitution.  We 

can now take the time derivative of each side to find the differential equation that describes the 

transient throughput response as: 
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(119)  

With simplification and substitution we arrive at the final form of the useful differential 

equation for throughput transient response, 

 (120)  

When solved numerically we find not only the field decay rate but also there are three distinct 

response regions based on the coupling regime; see Figs. 29-31 below.  It is important when 

solving the above differential equation that a realistic fiber field switching and modulation is 

used as this can severely affect the observed response of the system as the switching lifetime 

becomes comparable to the cavity lifetime.  The switching response is then taken as single 

exponential with the lifetime determined experimentally.  We determine the WGM’s loaded 

quality factor and dip depth from the steady state response prior to modulating the probe laser.  

When the probe laser is modulated we observe a distinct turn on and turn off response that 

varies with coupling regime.  In fact what we are observing is a measure of the interference 

between the fiber and microsphere fields.  This is only observable because the cavity lifetimes 

are much longer than probe switching lifetimes so for all intents and purposes the incident fiber 

field is steady state while the cavity fields are transient.  As the fiber field is switched either on 

or off the field in the cavity responds more slowly than the switched probe, allowing observation 

of the cavity output/probe interference.  Thus we can infer that the observation of a zero 

crossing in the throughput field represents a phase reversal in the total throughput field.  The 

knowledge of phase then is the knowledge of coupling regime because for an undercoupled 
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mode, seen in Fig. 29, the steady-state cavity output is weaker than the probe field and the 

throughput field will have the same phase as the probe.  In an overcoupled case, seen in Fig. 31, 

the steady-state cavity output is stronger than the probe field and as such the throughput field 

will have a  phase with respect to the probe and thus a zero crossing as the cavity equilibrates.  

Finally, for a critical coupling regime, seen in Fig. 30, we can only observe a load and unload 

cycle as at equilibrium there is no observed throughput power.   The large power pulse in the 

overcoupled ringdown does not represent any form of energy conservation violation but rather 

is a result of nothing more than the energy storage of the cavity, as the cavity field escaping is 

no longer partially canceled by destructive interference with the fiber field.  

 

Figure 29.  Undercoupled cavity transient response on resonance for the model (red) for a given 
input pulse (blue). The system parameters are , and

. The pulse is turned on and off exponentially with a characteristic time of    
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Figure 30.  Critically coupled transient response on resonance for the model (red) for a given input 
pulse (blue). The system parameters are , and . 
The pulse is turned on and off exponentially with a characteristic time of    

 

 

Figure 31.  Overcoupled transient response on resonance for the model (red) for a given input 
pulse (blue). The system parameters are , and . 
The pulse is turned on and off exponentially with a characteristic time of    
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We have now demonstrated both that the prediction of harmonic-oscillator-like damping 

response regimes (coupling regimes) and the treatment of cavity output phase in the ring cavity 

model are quite valid.  Furthermore, the predicted coupling regimes above have been 

experimentally verified by a rigorous comparison between the dip depth response to an 

increase in cavity loss and the transient response.   The two methodologies are in perfect 

agreement.  Formally this technique allows us to determine both the coupling regime and the 

cavity  in a single experiment. 

While one would like to directly find the cavity  from the fits of the above traces, if one 

is to verify with high certainty that no internal mode dephasing is occurring a traditional cavity 

ringdown experiment must still be performed.  However, we must consider how the probe-

cavity interference will affect the measurements as the probe power is switched off.  Shown 

below in Fig. 32 is a theoretical comparison between the overall throughput transient response 

from Eq. (120) and the typical single exponential cavity ringdown one would expect beginning at 

the probe switch off time (~1000 ns).  Notice that we can see the pure cavity ringdown after the 

interaction with the fiber field has substantially decreased (~1050 ns).   
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Figure 32.  Comparison between modeled transient response on resonance (red) and single 
exponential decay (blue). The system parameters are ,

and . The pulse is turned on and off exponentially with a characteristic 
time of    

 

Clearly then the switching lifetime will be critical in determining cavity  with high accuracy.  

The switching time is adjusted to 1 ns and the cavity lifetime is measured directly from the 

cavity ringdown as seen in Fig. 33 below.  There is no measurable disagreement between the 

decay rate predicted by the linewidth determination of the decay rate and its direct 

measurement.  However, because the region of high certainty of a pure cavity response, no 

interference effects, is only found after considerable time after switching the power has 

substantially decreased and the signal to noise ratio is very low.  Thus the uncertainty in 

measured values is quite high and this is unacceptable for high level verification. 
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Figure 33.  Measurement of the cavity decay rate.  Here the grey curve is the measured data; the 
red trace is a single exponential fit and the blue trace is derived from the linewidth 
measurement.  Notice the experimental trace is noisy, but appears linear on a log 
scale which is indicative of single exponential decay.  The measured system 
parameters are , and . The pulse is turned off 
exponentially with a characteristic time of  

 

Unfortunately, due to low power limitations of fast-response optical detectors the direct 

measurement of cavity ringdown cannot be significantly improved in accuracy.  However, we 

can devise another methodology which maintains high power, but still allows the determination 

of the cavity lifetime.  In this methodology we again rely on a transient cavity response, but in 

this case we look not at the fill/decay cycle but rather we look at an apparent phase shift in a 

sinusoidally modulated input power which has been modulated on sub-cavity-lifetime time 

scales.  These experiments are traditionally performed by measuring the phase shift of the 

output power in the drop signal (transmitted signal).  However, as has been discussed 

previously, this signal in our system has a very poor signal to noise ratio which greatly increases 

the uncertainty in determining the cavity .  What is done instead is to measure the phase shift 
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of the through signal which has a very good signal to noise ratio.  Unfortunately this type of 

apparent phase shift is dependent not just on the retention time of the field within the cavity 

but also the phase change of the field itself when it enters and exits the cavity making the 

response coupling-regime dependent.  This makes analytic analysis very difficult without making 

a great many assumptions as was done in [33] where both the scattered and transmitted signal 

must be monitored simultaneously to achieve low precision results.  However, we can employ 

the same numerical techniques which were employed in the cavity’s fill/decay response.  The 

methodology is identical with the only exception being the replacement of the square wave 

input with a sinusoidal input.  Shown below are modeled throughput phase (experimental data 

is shown in the next section) shifts from a sinusoidally modulated power input at a frequency of 

1 MHz for both an overcoupled, Fig. 34, and undercoupled, Fig. 35, mode with a cavity  of 

 and a dip depth of .  In this case the undercoupled and overcoupled cavity 

lifetimes are identical, but the observed phase shifts are significantly different. Empirically we 

find that the maximization of the observed throughput phase shift occurs for either coupling 

regime when the ratio of the modulation period to cavity lifetime is approximately 25.  This 

maximization is important in that the larger phase shift allows for increased accuracy in 

determination of .  Finally, because we look at the phase shift over many cycles, this increases 

accuracy in a statistical manner and provides the most accurate measure of cavity  we have 

thus far demonstrated. 
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Figure 34.  Throughput (blue) phase-shifted from the drive signal (red) for an overcoupled mode 
with a dip depth of 70% and a loaded cavity  of . 

 

 

Figure 35.  Throughput (blue) phase-shifted from the drive signal (red) for an undercoupled mode 
with a dip depth of 70% and a loaded cavity  of . 
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Let us now verify that line broadening due to internal cavity dephasing is not occurring and that 

the spectral width measurements are adequate to determine the loaded cavity .  We have 

developed the tools to do this by rigorous comparison of the loaded cavity  found from 

spectral width, cavity ringdown, transient response for a square wave input, and phase-sensitive 

cavity ringdown response.   We first measure the loaded cavity  from the spectral width; see 

Fig. 36 below.  We find that  where the high uncertainty is due to an 

asymmetry in the mode.  We then proceed to modulate the power with a square wave, Fig. 37 

below, and from the fit we find the mode is undercoupled with a .  Next 

we look only at the direct cavity ringdown, Fig. 38 below, and find .   

Finally we modulate the power sinusoidally at a frequency of 1 MHz and measure the cavity 

phase shift, Fig. 39 below, which from the fit gives .  
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Figure 36.  Measurement of the loaded cavity Q from spectral width.  We find that
. 

 

 

Figure 37.  Measurement of the loaded cavity Q from the transient fill/decay response.  We find 
that .   
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Figure 38.  Measurement of the loaded cavity Q from the transient fill/decay response.  The 
shaded region represents the turn-off time of the modulator which still includes 
cavity interference effects.  We find that .    

 

Figure 39.  Measurement of the loaded cavity Q from the phase-sensitive cavity response.  We 
find that . 
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The results of all of these various methods are in good agreement within their respective 

uncertainties and we can thus conclude that if cavity dephasing is present it is beneath the 

certainty to which we can reliably measure and is of no immediate threat to skew our results. 

Putting the pieces together- a verified model: 

We have verified the assumptions of cavity phase, harmonic-oscillator-like coupling 

regimes, weak and symmetric cavity coupling and small loss assumptions used in the derivations 

of the ring cavity model.  Furthermore, we have demonstrated that the parameters inferred 

from the application of the ring cavity to a real experimental system are in good agreement with 

those same parameters as found from independent theoretical and experimental treatments.   

With each assumption validated, and every numeric parameter verified to within a reasonable 

certainty, we can confidently move forward to extend this basic framework to include a myriad 

of different system configurations 
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Chapter 3 Coupled-Resonator Effects 
 

It was shown in the previous analysis of coupling regime and Lorentzian resonance 

structure that the resonances of the microsphere can be thought of as harmonic oscillators.  

With a wealth of resonances in other systems, most notably atomic, which have historically 

been treated as harmonic oscillators one can ask if effects similar to those seen in atomic 

systems can be observed in a microsphere system.  It is this harmonic analogy to atomic systems 

that leads some authors to describe whispering-gallery resonances of these dielectric structures 

as “optical atoms” [34].   If this analogy is indeed valid we would expect a number of atomic 

effects to be directly observable in an optical-atom system.  In particular, because of the 

potential usefulness in optical circuits, we would like to create dramatic changes in system 

transmission at a particular frequency.   We can then envision optical analogs of 

electromagnetically induced transparency and absorption as seen in atomic vapors.  To do this 

we need to couple various resonances of our “optical atom”.  This is difficult, but not impossible 

(see Chpt. 5), to do with a single microsphere; we can, however, bring in another microsphere 

coupled to the first such that we induce coupled-resonance behavior. 

Modification to the base model: 

Let us begin by modifying the basic ring cavity model to allow input/output coupling to a 

second cavity through one of the mirrors which was previously treated as fully reflective; see 

Fig. 40 below.  
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Figure 40.  Modification of the basic ring cavity model to include coupling to another waveguide. 

 

While the addition of a second cavity would offhand appear to add considerable mathematical 

complexity to the ring cavity model it does not.  We already have the field for the first cavity, so 

with the modification that the far mirror is no longer perfectly reflective, we find 

 (121)  

where  is the modified reflection coefficient that accounts for the second cavity.  Notice 

now that the structure of the field input/output characteristics of the second resonator will be 
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independent of the specific nature of the field in the first resonator.  Thus the solution we found 

for fiber-sphere coupling is also the solution we will find for sphere-sphere coupling with the 

proper change in parameters.  The effective reflection coefficient that the first cavity field will 

see then is 

 (122)  

where the cavity detuning has been written in terms of a relative detuning from the first cavity 

resonance, .  Notice that the implicit simplicity of this mechanism easily lends 

itself well to higher-order coupled-cavity systems as one must only iteratively replace the far 

reflection coefficient with an effective coefficient structurally identical to Eq. (122).  While this 

procedure is generalized we will confine our conclusions to only two coupled cavities as we are 

interested in analogous two-resonance atomic processes.  We can once again take the square 

modulus of the through field to find the through power from the following: 

 

 

 

(123)  
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where the coupled coefficients have been defined as 

 
 

 
 

 
 

(124)  

The through power is then, 

 (125)  

We can see in the through power plots below, Fig. 41, that over the physically justifiable 

parameter domain the mode of the first sphere can be induced to produce transparency or 

absorption at the resonance frequency, depending on the particular interaction with the second 

cavity.  These effects are termed coupled-resonator-induced transparency and absorption and 

are abbreviated CRIT and CRIA respectively [34].    
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Figure 41.  Coupled resonator frequency response.  Top is the unperturbed mode of the first 
cavity, bottom left is an induced transparency (CRIT), bottom right is an induced 
absorption (CRIA). 

 

Coupled-Mode Theory of Twin-Cavity Coupling: 

At this juncture we must quantify what the physically justifiable parameters are for this coupled 

system.  Clearly the fiber-sphere coupling coefficient can be taken to be of the same order as 

found previously.  It is further reasonable to take both cavities’ intrinsic losses to also be of the 

same order as was previously determined.  The only parameter that we have no a priori 

knowledge of is then the coupling coefficient between the two cavities.  Let us then employ the 

coupled-mode technique to this system as well. 
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Using identical methodology to fiber-sphere coupling, which we gain nothing by detailing again, 

the overlap integral and fields of the second cavity in the first cavity’s coordinate system are 

found to be, 

 

 

 

(126)  

We can note that because of cavity coordinate symmetry the indices of the cavities are arbitrary 

and have been dropped from both the coupling coefficient and coordinate transforms.   

Begin by considering two microspheres, equatorial planes coinciding, in contact with each other.  

When the overlap integrals are evaluated numerically for varying radial orders, denoted by , of 

both microspheres, as seen in Fig. 42 below, we find peak coupling strengths which are slightly 

higher than those observed in fiber-microsphere coupling. 
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Figure 42.  Coupling strength between various TE radial orders of symmetric  spheres at 
= . Each trace represents a different radial order of the 1

st
 sphere, where   

= {1, 3, 5} for traces {red, green, blue} respectively.  

 

However, when the radial mode order is fixed at the fundamental and the polar order is 

increased in both microspheres, as seen in Fig. 43 below, we find a very rapid decrease in 

coupling strength between the cavities.  This is simply due to a very rapid decrease in the spatial 

overlap of the fields due to the curved geometry of the interface between the resonators. 
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Figure 43.  Coupling strength between various even TE polar orders of symmetric  spheres 
at = . Each trace represents a different polar order of the 1

st
 cavity, where -

 = {0, 4, 8} for traces {red, green, blue} respectively. 

 

We can also evaluate the effect of placing a gap between the cavities, as shown in Fig. 44 below.  

As we would reasonably expect, the coupling strength falls off exponentially for all mode 

configurations due to the exponential decrease in the evanescent fields.  The normalized falloff 

rate with distance will be shown to be an important tool for verification of these predictions and 

it is loosely only a function of the evanescent decay rate which is largely invariant to mode 

configuration, as seen in Fig. 45 below. 
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Figure 44.  Coupling strength for various TE modal overlaps for symmetric  spheres vs. 
separation distance between cavities at = . Here each trace represents 
identical mode coupling of the spheres, where {q, - } = {1, 0}, {10, 0}, {1, 2} traces 
{red, green, blue} respectively for both cavities. 

 

Figure 45.  Peak coupling falloff as a function of separation distance for fundamental TE modes of 
 spheres at =  in a log scale. Within  the coupling has 

decreased by almost four orders of magnitude. 
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From this we can conclude that peak coupling will occur between fundamental cavity TE modes 

(TM coupling is an order of magnitude weaker) with a peak magnitude of , 

which is slightly higher than that for fiber-sphere coupling.  However, given that coupling drops 

very rapidly as polar order is increased, due to a decrease in spatial overlap of the fields, this 

peak value represents a strong upper limiting case with physical infrequency.  

Experimental Verification of the Model: 

These results also indicate that the coupling between the cavities can be readily 

controlled by the creation of a variable gap between the cavities as seen in Fig. 44 and Fig. 45 

above.  This methodology was previously employed by our group in [34] to induce the CRIT 

behavior seen in Fig. 46 below. 
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Figure 46.  Coupled cavity response (CRIT) as separation distance is decreased.  Each trace has 
been offset upwards.  In the ascending direction the coupling strength is increased and 
the separation distance decreased until the cavities are in contact (top).   

 

We can attempt to verify the conclusions of coupled mode theory by direct comparison to the 

experimental data above.  Let us then assume that this data was recorded because the response 

was strong which implies near fundamental mode coupling behavior as seen in Fig. 42.  Let us 

then linearly decrease the coupling distance in five steps from first sign of interaction to contact; 

using all other known physical parameters we find the behavior shown in Fig. 47 below. 
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Figure 47.  Predictions of induced transparency based on coupled mode theory.  The interaction 
has been assumed to be between fundamental modes at = .  The values for 
coupling strength were found from coupled mode theory assuming each trace has 
reduced the gap distance . 

 

The results of the coupled mode theory are then in very good agreement with the experimental 

data presented previously.  However, the previous experiments relied exclusively on 

coincidental resonances between the cavity modes, which is inefficient.  We would like to 

control the particular modes that are interacting as well as the coupling strength between them.  

To this end we have previously discovered that the index of refraction, and thus resonance 

frequency, is thermally sensitive.  We could then envision modestly elevating the temperature 

of the second cavity to control the particular modes that are interacting.  This is done by 

mounting the high-thermal-conductivity stem of the second cavity to a high-efficiency thermo-

electric heating/cooling device (Nextherm model UMC60).  Thus an external applied voltage 

directly controls the index of the second sphere and the modal interaction of the coupled 
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system.  Early experiments show a frequency tuning range of roughly 10 GHz which is more than 

adequate for our needs.  Although the physical surface area contact between the two cavities is 

small and the direct conduction limited, the thermal conduction into the air is strong enough to 

also cause frequency shifting of the first cavity.  This can be mitigated somewhat by circulating a 

dry low pressure nitrogen stream between the two cavities as the temperature of the second 

cavity is increased.  From the ring-cavity model previously presented we predict control of both 

location and spectral magnitude of the transparency feature when the frequency of the second 

cavity is externally controllable as seen in Fig. 48 below.  With these predictions in hand an 

experimental system is constructed and tested, with results shown in Fig. 49 below, for first-

order agreement with the model.  

 

  

  

Figure 48.  Effects of detuning on CRIT response. The system throughput trace is represented in 
blue while the second cavity resonance (not to scale) is represented in red. Thermal 
tuning can be used to control the width of the transparency window and its location.   
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Figure 49.  Experimental demonstration of thermal control of CRIT window.  Each ascending trace 
has been offset by 2.5 . 

 

The ring-cavity model likewise predicts control of the CRIA feature via external control of the 

second cavity’s resonance, as seen in Fig. 50 below.  However, as the experimental apparatus is 

only in a proof of concept stage these types of responses have yet to be experimentally verified.  

Based on the CRIT response we are confident that the control of the CRIA response can likewise 

be externally controlled with advancements in experimental methodology.    
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Figure 50.  Detuning effects on CRIA response.  The system throughput trace is represented in blue 
while the second cavity resonance (not to scale) is represented in red.  Thermal 
detuning gives frequency control of the absorptive window. 

 

Thermal frequency tuning offers the promise of not only mode selection for interaction, but also 

some control on the central frequency, or frequency width, of either the induced transparency 

or absorption window.  

Discussion: 

It has been shown that coupled cavities produce effects which are analogous to those 

observed in atomic systems.  The strength of the effects have been directly characterized by 

applying coupled-mode theory to predict reasonable ranges of interaction strength and these 

predictions were further used to accurately reproduce the outcome of experiment.  It has 

further been demonstrated that thermal control of the index of refraction of the second cavity 
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can be an effective tool to control both mode selection for interaction and frequency location of 

the induced feature.  
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Chapter 4 Optical Plasmonic Coupling 
 

While we have shown that the coupling between waveguides can be controlled by 

geometric considerations we would like to control the properties of the cavity modes 

themselves.   In particular, control of the amount of power contained in the evanescent portion 

of the field would allow enhancement of almost all potential applications.   To this end we could 

consider increasing the index of refraction of the surrounding medium, i.e. placing the system in 

solution, which would decrease the confinement and increase the evanescent fraction of power.  

This is effective, but rather limiting in application as increased absorption due to the solution is 

extremely detrimental to the cavity Q.  Rather than focus on confinement let us look instead 

into processes which provide strong near-field effects.  One of the most well known and widely 

explored of the near-field processes is that which occurs at a metal interface.  Much like in the 

principle of tunneling in quantum mechanics, when an electromagnetic wave is evanescently 

incident on a material with large but finite conductance, more specifically a material with a 

complex dielectric constant,  a small portion of the field exists just under the surface  [35].  This 

is the metal’s equivalent of an evanescent field at a dielectric interface.   This field is termed a 

surface plasmonic wave and has a characteristic decay length (just as our evanescent field) into 

the surface termed the skin depth.  In an infinite system these fields are coherent oscillating 

induced charges which travel along the surface.  If the dimensional freedom is reduced, say to a 

finite length and depth, these coherent charge oscillations can become resonant much as would 

be expected in an optical cavity, and more importantly the boundaries affect the plasmonic 
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resonance frequencies.   Furthermore, just as seen in the tapered fibers, when the 

dimensionality of the metal is further reduced to characteristic scales on the order of the skin 

depth the field at the surface can itself become highly evanescent.  With this in mind we could 

envision placing these nano-structures on the surface of our optical cavities such that they are 

coherently pumped optically at the plasmonic resonance by the evanescent optical field of the 

cavity.  This would then lead to coherent charge oscillations in the nanostructure at the optical 

frequency increasing the near field due to resonant plasmonic enhancement.   One can now 

consider the consequence of conservation of total power, in that as the near field and thus 

evanescent fields are enhanced in power it is reasonable to consider this a process of shifting 

optical power from the interior to the evanescent portion of the optical field.  Let us then begin 

with determining the nanostructures of the most pertinence to our optical system and then 

move into potential applications.  

Plasmonic enhancement modeling and theory: 

For a surface plasmonic resonance to be of use to our studies we require some level of 

control over the frequency of the resonance to provide frequency overlap with our existing laser 

sources.  While with all possible tools at our disposal any structure could potentially be created, 

we must limit ourselves to structures which can be generated in-house using a wet chemical 

method.  The structures generated in a typical wet synthesis method have structures that are 

spherical, cylindrical or inhomogeneous in geometry; see Fig.  51.  Of these three basis 

geometries both the spherical and inhomogeneous structures have weak resonance-frequency 

dependence on characteristic dimensionality [36] and furthermore the frequency degeneracy, 

or near degeneracy in the inhomogeneous case,  of the geometric cavity modes leads to 

resonance broadening; thus these structures do not meet our needs.  The cylindrical 

nanostructures, on the other hand, have broken symmetry in the longitudinal dimension which 
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lifts the frequency degeneracy and leads to narrower linewidths whose frequency depends not 

on a characteristic dimension, but rather the ratio of length to diameter, termed the aspect ratio 

[36].   

 

Figure 51.  Typical structures produced when metal nanoparticles are created in a wet synthesis 
method, shown after initial separation of small platelets and spheres has been 
performed. 

 

With a particular structure chosen we are tasked with choosing material composition and 

further understanding how to control the resonance frequency.  Material choice is 

straightforward as plasmonic waves of all types are known to be strongest in materials with 
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closed d-shells [37-38], the so called noble metals, so our selection is limited to either gold or 

silver.  Silver is eliminated outright because of problems with surface oxidation and thus gold is 

our material of choice.  

To first order one can calculate the plasmonic resonance frequency of a gold nanorod from first 

principles using the simple dipole model for absorbance  based on the Mie theory of scattering 

[36], 

 

(127)  

where the eccentricity , polarizability  and surrounding medium dielectric constant  are 

defined as 

 

 

 

 

 

(128)  

Here the physical constants are aspect ratio , real and imaginary components of the dielectric 

constant of gold  = (-24.15, -115.36) and  = (1.52, 11.14) at (800 nm, 1550 nm) respectively, 

dielectric constant of fused silica  = (2.11, 2.09) at (800 nm, 1550 nm) respectively and 

fractional field overlap  of the field with the fused silica surface in a background medium of 



P a g e  | 4-119 

 

 
 

index .  This fractional overlap must be included as the resonance frequency will be shown to 

be strongly dependent on the local dielectric constant and the nanorods will be placed on a 

step-index dielectric interface, thus the associated frequency shift must be accounted for.  For 

validation, let us compare experimental absorbance data obtained from the commercial supplier 

Nanopartz to absorbance predicted from our above model, Eq. (127), as seen in Fig. 52. 

 

 

Figure 52.  A direct comparison between normalized experimental absorbance data (top) and 
unnormalized predictions of the absorbance dipole model (bottom).  The index of 
refraction in the model is taken to be 5% higher than that of bulk water to empirically 
account for the gold nanorod capping layer. 
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Clearly the dipole model has reasonable predictive capacity for plasmonic resonance frequency.  

However, one can observe that the model fails to predict both spectral width broadening as 

aspect ratio is increased and further the model does not account for the ratio of the short to 

long wavelength peaks.  These comprise well known failures of this type of model  [39].  

Furthermore, as the aspect ratio gets large and the quadrupole excitation is no longer negligible 

the dipole model will predict peaks which are red shifted from those which are observed 

experimentally.  However, in our range of interest the largest error will be less than 100 nm, 

which is only a fraction of the spectral width, for nanorods of aspect ratio 12:1 used in NIR 

experiments.  For our immediate purposes, reasonable predictive capacity of plasmonic 

resonance frequency is all that is required, and as such we will move forward.  Notice that the 

short-wavelength peak is not affected by aspect ratio.  This peak is the transverse resonance 

which is largely invariant to aspect ratio for the same reason as the plasmon resonance of a 

spherical nanoparticle is only weakly dependent on diameter.  This effect is directly related to 

the rotational invariance of mode structure in both spheres and cylindrical cross sections.  We 

can further observe that the stronger long wavelength peak scales nicely with aspect ratio.  This 

is termed the longitudinal resonance and it is both stronger and narrower due to a single degree 

of freedom in mode structure.  Clearly we must then focus our efforts on excitation of the 

controllable longitudinal plasmonic resonance. 

However, before we attempt to synthesize these particles, we must still account for the 

dielectric discontinuity of nanorod placement on a microsphere.  The problem with defining the 

surrounding material dielectric constant in the dipole model is graphically represented to scale 

for the fiber-microsphere interaction region in Fig. 53 below, and for the remainder of the 

circumference in Fig. 54 below.  In either case we can clearly observe that some form of average 
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surrounding dielectric constant must be used, or rather a fractional interaction effect as alluded 

to previously. 

 

Figure 53.  Cross section of a nanorod placed between a microsphere and fiber in the coupling 
region.  The nanorod is between the two surfaces and all aspects are to scale for a 
typical configuration.  

 

Figure 54.  Cross section of a nanorod placed on the surface of a microsphere. All aspects are to 
scale for a typical configuration.  

 



P a g e  | 4-122 

 

 
 

As a rigorous field model for these effects is extremely complicated, and a high accuracy 

measure of the expected frequency shifts is not required due the large spectral width of the 

resonances, geometric considerations are used to approximate the fractional field interaction 

used in Eq. (128).  Some results, for the situation shown in Figs. 53 and 54, i.e., nanorods on a 

microsphere in air, are shown in Figs. 55-57. 

 

 
 

Figure 55.  Comparison between plasmonic resonance for nanorods in the coupling region (red, 
left) and those along the remaining equatorial plane (red, right).  The aspect ratio is 
taken as 4:1 and the surface interaction fraction f is taken as 70% and 35% 
respectively.  Both are compared to what would be experimentally measured after 
synthesis in solution (blue). 

 

From the comparisons in Fig. 55 for 4:1 gold nanorods we can observe that in the coupling 

region the resonance frequency is approximately what would be measured in water with about 

a 25 nm blue shift, but outside the fiber region the resonance is blue shifted by around 100 nm.  

These shifts are far larger for high aspect ratio rods as seen below in Fig. 56 for 11:1 nanorods.  

In the coupling region the resonance has blue shifted by 65 nm from water while outside this 

region the blue shift is 175 nm.  While we have shown that the simple dipole model does not 

accurately predict broadening,  which will serve to minimize the effects of the dielectric induced 
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blue shifts, it does become clear from the preceding analysis that we must decide if we are 

interested in enhancing the overall field or just the field in the coupling region.  

  

Figure 56.  Comparison between plasmonic resonance for nanorods in the coupling region (red, 
left) and those along the remaining equatorial plane (red, right).  The aspect ratio is 
taken as 11:1 and the surface interaction fraction f is taken as 70% and 35% 
respectively.  Both are compared to what would be experimentally measured after 
synthesis in solution (blue). 

 

In principle, we could take advantage of this effect to minimize the coupling effects of the 

nanorods by intentionally using rods that are too long in order to shift the coupling region 

plasmonic resonance away from the pump laser while maintaining resonance for the remaining 

regions as seen in Fig. 57 below.  On the other hand, the opposite could be done to limit strong 

plasmonic enhancement of the evanescent field to the coupling region only. 



P a g e  | 4-124 

 

 
 

 

Figure 57.  Prediction of control of overall enhancement and coupling region enhancement by the 
intentional choice of 13:1 aspect ratio nanorods.  The pump wavelength is indicated by 
the black vertical line.  Notice the overall evanescent field will be enhanced while the 
field in the coupling region should only be marginally perturbed.  

 

With the necessary predictive capacity for the resonance behavior of the gold nanorods in place 

we can move forward to synthesis and adhesion. 

Basic experimental chemistry: 

The wet synthesis method employed to generate nanorods is termed a sequential seed-

mediated growth process [40] and it produces single crystalline (notice the near vertical lines in 

Fig. 58 below)  gold nanorods of pentagonal cross section with diameters of the order of 20 nm.   
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Figure 58.  High resolution TEM image of the lattice structure and single crystalline nature of gold 
nanorods produced in-house.  The lattice is visible as fringes running across the 
nanorod’s diameter. 

 

In this methodology ~4-nm-diameter single-crystalline gold seeds are first synthesized from gold 

salts in solution, in the presence of both a weak reducing agent and a citrate capping agent.  The 

resulting seed crystals are chemically capped with citrate to prevent aggregation and the growth 

process is completed in 4-5 hours.  Three solutions of activated gold ions are then created in an 

analogous manner to the growth solution for seeds.  These solutions however, use a much 

weaker reducing agent so that self-activated growth cannot occur without perturbation 

(seeding) and the presence of a cationic surfactant-based capping material to encourage growth 

along a particular crystal lattice direction.  The resulting solutions are then extremely chemically 
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active and much care must be taken to remove contaminants from containers as any particulate 

present will initiate growth.  A small quantity of gold seeds is then added to the first activated 

growth solution.  Growth occurs very rapidly and if left undisturbed until the reaction completes 

the resulting nanorods will have an aspect ratio of approximately 4:1 and a longitudinal 

resonance wavelength of about 800 nm.   To create longer rods one must use the still-growing 

rods from the first solution as seeds in the next activated solution and then repeat this 

procedure to seed the final solution.  The ultimate aspect ratio of the resulting rods in the final 

solution is a direct product of how large the growth rate was at each seeding step.  If in the 

steps of using rods as seeds they are still extremely active (taken about 5 s after initial seeding) 

and growing when used, the resulting rods will have a final aspect ratio of about 18:1 with a 

longitudinal resonance wavelength of about 1.8 µm.  If each solution has largely stopped 

reacting before each seeding step (4-5 hrs) the resulting nanorods will have an aspect ratio of 

about 13:1 and a longitudinal resonance wavelength of about 1.6 µm.  Our lasers are roughly 

centered at 800 nm and 1.55 µm, so we focus on producing either 4:1 or 13:1 nanorods, 

respectively.  In any of the aforementioned growth procedures the resulting solution has a low 

yield of nanorods (of the order of a few percent) with respect to other shapes.  The structures 

which are not rod-like will only contribute to cavity loss if deposited on a microresonator and as 

such must be removed prior to use.   Mass separation can be performed using either gravity 

sedimentation or low speed centrifugation to remove both nanospheres and small platelets, 

increasing the nanorod yield to a few tens of percent.  However, neither process is effective at 

removing large platelets as they have roughly the same mass as the nanorods.   Further 

increases in yield can be had if either the initial growth is chemically altered to produce fewer 

large platelets, or a reducing agent is further added to the final solution to attack the sharp 

edges of the platelets, thus reducing their mass.  In the literature both methods of increasing 
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yield have been shown to reach about 99%. However, in-house we have only produced 50% and 

75% yields with these methods respectively as seen in Fig. 59 (left) and (right) respectively. 

  
 

Figure 59.  High-aspect-ratio nanorod yields for chemically modified growth process (left) and 
platelet reduction by reagent (right). 

 

Although these yields are reasonable for use in our studies, we have found control over aspect 

ratio and dispersion in aspect ratio of long rods to be extremely difficult.  In particular, the 

aspect ratios produced in the above studies were 14.5 ± 2 and 15.6 ± 3 respectively and these 

results show very poor repeatability.     

In previous studies of plasmonic enhancement of microsphere cavities the nanorods were 

grown directly on the surface [41].  This was shown to be effective at the wavelength used (800 

nm) but much as the solution grown nanorods have been shown to have low initial yields the 

surface grown nanorods had yields of only 30 percent.  In these previous studies the relative 

increase in surface scattering of the non-contributing elements was small, so yield was not a 
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matter of concern.  However, as one scales to longer wavelengths which require larger rods the 

non-contributing elements are a larger fraction of the pump wavelength and as such can 

produce a dominating increase in scattering.   As we have little control over the distribution of 

surface grown features we would prefer to grow the nanorods in a separate solution which can 

be filtered and then adhere them directly to the cavity surface.   

This can be accomplished Coulombically because the capping layer of the uncharged gold 

nanorods in solution is cationic, which has a large net positive charge.  While the surface of the 

fused-silica cavity is negatively charged, due to surface hydroxides, the net charge has been 

demonstrated to be too weak to permanently adhere the capped nanorods.  We are then tasked 

with functionalizing the cavity surface to create a strong negative charge.  This can be done in 

one of two ways.  The first method is an extension of previous work performed in-house to 

adhere nanocrystals to the cavity [41].  In this methodology the cavity is coated with a charged 

polymer (polyelectrolyte) which forms a thin (~1 nm) charged film on the surface.  The polymer 

is typically a highly branched organic molecule with molecular weights of several hundred 

kilograms per mole.  The adhesion to the surface of the cavity is dominated by the branched 

molecules effectively tangling producing a “web” on the surface.  Thus the particular charge of 

the polymer is a matter of selection and is not a strict requirement for cavity adhesion.   While 

we have had success with a number of ionic polymers allowing adhesion of nanorods to the 

functionalized cavity surface, the optical properties were severely impacted due to a 

combination of increased absorption and/or scattering of the cavity field by the thin polymer 

film. 

The second adhesion method is a pure chemical treatment.  We take advantage of the surface 

hydroxide layer and use a chemical procedure which first breaks the silicon-hydroxide bond and 
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then replaces the hydroxide with a functionalized molecule which forms the overall molecular 

structure of a silane (silicon structural equivalent of methane).  Our choice of functionalizing 

molecule then gives us control over the final surface charge of the cavity.  The most effective 

functionalizing molecule used to date is a methyl group [42] that has been shown to produce 

less than a factor of two decrease in the cavity quality factor, which is quite acceptable.  These 

functionalized microspheres have been repeatedly demonstrated to produce very high surface 

adhesion rates for nanorods in solution, as seen below in Fig. 60. 

 

Figure 60.  Direct surface adhesion of nanorods from a filtered growth solution, as seen in an SEM 
of the surface of a silanized microsphere. 

 

With the cavity adequately functionalized the adhesion process is straightforward.  A growth 

solution which has been previously mass-separated is briefly centrifuged at high RPM (~13,000) 



P a g e  | 4-130 

 

 
 

to settle all the solids in solution to the bottom.  The resulting supernatant, which contains the 

remaining charged chemicals from growth, is drawn off and replaced with deionized water.  This 

is repeated numerous times until the capped nanorods are suspended only in deionized water.  

Care must be taken in this process as each round of purification increases the likelihood of 

disrupting the capping layer of the nanorods and inducing aggregation.  The functionalized 

cavity is then dipped in the nanorod solution for varying lengths of times.  Upon removal, the 

cavity is further rinsed in deionized water to remove any unbonded structures.  As would be 

expected, we have directly observed that the final surface density of nanorods is directly related 

to the amount of time the cavity is held in solution, in the short time (seconds) limit.  We have 

further found that there is a finite upper limit (10s of minutes) to the final surface density 

achievable, which is far short of surface saturation.  This appears to be due to some residual 

charged molecules in the purified nanorod solution bonding to the functionalized sites, thus 

limiting nanorod adhesion. 

Experiments using plasmonic enhancement: 

With controlled growth and adhesion demonstrated we can envision a myriad of 

experiments involving these evanescently enhanced cavities.   Given that we have increased the 

strength of the evanescent field of the cavity we can reasonably expect the modified resonator 

to couple more strongly to adjacent waveguides and also to show a marked increase in 

environmental sensitivity.  We could then characterize the particular experiments into two 

categories: those which rely on enhanced waveguide coupling, and those which rely on 

increased environmental sensitivity.  Enhanced coupling experiments will first be used to 

validate the nature of the plasmonic enhancement effect before it is then used for some 

practical application.  Then with the effect validated the increased environmental sensitivity will 

be used to probe the local environment around the cavity.  
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Coupling and loss enhancement: 

Just as in the previous study using surface grown nanorods [41] we can determine the 

increase in coupling and loss by directly measuring both the cavity transmission probability and 

intrinsic loss coefficient before and after the application of nanorods to the surface.  This is done 

through our knowledge acquired in the ring cavity analysis.  If one directly measures the cavity’s 

loaded quality factor and dip depth we will find two physical solutions for the ratio of coupling 

loss to intrinsic loss  that can produce the measured parameters.  If we further determine the 

cavity’s coupling regime through either the cavity’s transient response to a change in incident 

power or an invasive increase in cavity loss we will be able to eliminate one of the two solutions 

giving us explicit measurement of both the cavity’s transmission coefficient and intrinsic loss.  In 

particular the coefficients are found to be 

 

 

(129)  

where  represents the coupling regime,  for undercoupled and overcoupled 

respectively.  With this we can readily define the coupling enhancement factor  and intrinsic 

loss enhancement factor  as 

 

 

(130)  
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where the subscripts  and  represent before and after the addition of the nanorods to the 

surface. 

 

Method AR /  Yield 
Dip 

Time 
Fc / Fi 

 
Fc / Fi 

 

Surface Grown 4:1 / 0.8  30% NA 100 / 1 2 / 2 

Purchased 4:1 / 0.8  99% 15 s 300 / 1 10 / 10 

Chemically modified 14.4:1 / 1.65  50% 15 s 4 / 10 20 / 20 

Chemically modified 14.4:1 / 1.65  50% 10 min NA 1500 / 1500 

Platelet reduction 15.6:1 / 1.75  75% 15 s 4 / 10 20 / 20 

Platelet reduction 15.6:1 / 1.7 5  75% 5min NA 300 / 100 

 

Table 1 Peak approximate results of various gold nanorod growth and application methods.  Here 
 is the plasmonic resonance wavelength for nanorods of aspect ratio AR and 

enhancement results are shown for both  and   

 

In the above summary table, Table 1, of the results of various application times and growth 

methods, we can note that the peak enhancement is seen for the wavelength which is closer to 

the plasmonic resonance frequency.  Furthermore, we note that the amount of coupling 

enhancement increases with the final surface density as indicated by the higher enhancement 

seen for longer dipping times.  However, as a consequence of the higher surface densities we 

can also observe that the intrinsic loss is also enhanced.  Further we observe that the measured 

increase in intrinsic loss is less for higher yields of the particular growth solution, confirming the 

ansatz stated previously concerning non-contributing elements. 



P a g e  | 4-133 

 

 
 

Localization of enhancement: 

While the observed dependence on wavelength and nanorod yield in the increased 

intrinsic loss and coupling are good indicators that the observed effects are plasmonic in nature, 

the homogeneous surface distribution of nanorods will produce uniform spatial enhancement 

on the surface making it impossible to definitively distinguish the plasmonic nature of the effect.   

However, if we could localize the enhancement region we could spatially probe the cavity and 

directly observe the increase in both coefficients when nanorods are present in the coupling 

interface confirming the coefficient increases are due to the nanorods. 

Clearly a dipping methodology will not be appropriate as this will always produce a 

homogeneous surface distribution.  In a direct extension of the work of Dr. Flanders [43] a 

nanowire is grown from nanorods suspended in solution using a directed dielectrophoretic 

method.  This methodology has been extended in house to produce nanowires which are very 

long (~1 mm) by mimicking the procedures associated with crystal growth.  That is, the 

electrodes are constructed from finely sharpened, rotationally symmetric copper wires, forming 

needles.  These are connected to linearly opposed stages so that the electrode gap distance can 

be slowly increased during the growth process, as seen in Fig. 61 below.  Thus a fine short 

nanowire can be “drawn out” to a very long wire with peak aspect ratios on the order of 1000.  

We have observed during this process that the required peak-to-peak drive voltage and 

frequency, 2 V @ 10 Hz, are much lower than typically reported in the literature and we 

associate this with both the drawing methodology and the larger aspect ratio of rods in our 

particular solutions (4:1). 
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Figure 61.  Microsphere shown between electrodes after a nanowire is grown in solution.  Note 
that the nanowire is present between electrodes but not visible in the image due to 
its dimension. 

 

After the nanowire is grown between the electrodes a microsphere, controlled by a high 

resolution stage, is carefully lowed under the electrode gap so that the equatorial plane is 

aligned to the nanowire, as seen in Fig. 61.  The microsphere is then drawn directly upwards 

through the gap, which breaks the nanowire free of the electrodes and places it in the proper 

location on the microsphere.  Great care must then be taken as the microsphere breaks the 

surface of the solution during removal, since the surface tension of the solution can break 

and/or displace the nanowire from the initial contact point.  Once out of solution the nanowire 

will remain permanently attached to the contact point on the surface of the microsphere due to 
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induced dipole forces caused by a small remaining charge in the nanowire.  This mechanism for 

adhesion is confirmed by the nanowire having limited affinity for the fused-silica surface in the 

polar solution, composed mostly of water, in which the nanowire is grown.   

With the nanowire in place on the surface, the cavity is probed spatially and the coupling and 

intrinsic loss enhancements are simultaneously measured by comparing to a spatial profile of 

the cavity taken prior to placement of the nanowire.  Although the nanowires are not single-

crystalline in nature, the plasmonic resonance of any nanowire fragments still exists at the 

typical central frequency but is broadened by the additional impedance loss associated with 

internal boundaries  [44-45].  Surface positioning is recorded by measuring the z axis position of 

the tapered pump fiber with respect to the upper pole of the microsphere with a micrometer 

and measuring the rotation angle that the pump fiber makes with the stem of the microsphere 

as seen from above in a high-definition CCD camera.  This provides us 2D surface positioning 

data which can later be directly correlated with SEM (scanning electron micrograph) images of 

the surface of the sphere.  The coupling enhancement is found to clearly be maximized when 

the pump fiber is located over the spatially localized nanowire feature, as seen in Fig. 62 below. 
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Figure 62.  Coupling enhancement  as a function of surface position along two different paths 
labeled A and B. 
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We can make a number of observations concerning this data.  We must note that we are not 

exciting a resonance in the overall nanowire due to its extreme aspect ratio.  Rather the 

nanowire as placed on the surface is highly dendritic, or tree like, composed of branches which 

have aspect ratios of the order of 12:1 as seen in Fig. 63 below.  These structures have a very 

large dispersion in the mean aspect ratio, where what could be considered the largest is on the 

order of about 12:1. 

 

Figure 63.  SEM image of an isolated dendrite fragment as seen on the surface of the microsphere. 

 

In high density regions these dendrite structures lie atop one another, as seen in Fig. 64 below, 

and this serves to both broaden the plasmonic resonance and dramatically increase scattering 

loss.  The increase in loss limits the usefulness of the technique in practical applications outside 

that of mere verification.   
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Figure 64.  Stacked dendritic structures observed in high density regions.  Each individual dendrite 
has an aspect ratio of approximately 12:1. 

 

As one would expect because scattering occurs over the whole propagation path the scattering 

loss enhancement is largely invariant to position with the exception of propagation paths which 

include a significant portion of the nanowire.  Furthermore, we can observe that the mean 

enhancement factor is greater than one in regions which contain no wire.  This is due to residual 

nanorod fragments from the solution adhering homogenously to the surface as seen in the 

background in Fig. 63 above.   We must also note that these dendritic structures as placed on 

the surface are not completely environmentally inert and will tend to break down over time, 

even when stored in dark conditions, as seen in Fig. 65 which was taken approximately two 

months after growth, adhesion, and storage. 
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Figure 65.  Adhered nanowire structures imaged approximately two months after growth, 
adhesion, and storage.  Notice the structures appear melted in comparison to the 
previous image. 

 

The correlated increase in coupling associated with the nanowire as found on the surface thus 

gives us reasonable, in situ, verification that these effects are directly associated with optical 

plasmonic resonances of these gold nanostructures. 

Plasmonic switching: 

Given that we are exciting plasmonic resonances which comprise a finite number of 

oscillating electrons, one can envision “stealing” the electrons from the oscillation induced by a 

weak probe beam through the introduction of a strong pump beam.  This is termed saturation 
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and has been demonstrated on gold nanorods in the literature using high-intensity pulsed lasers 

[46-47].   

Consider the consequence of placing gold nanorods in the gap between coupled cavities.  

Assume that these cavities are co-resonant and exhibiting an induced transparency feature with 

the nanorods present.  If we then bring in an external beam from a high intensity pump laser, 

which has been detuned from the probe laser enough that it has no frequency overlap with the 

co-resonant WGMs, this pump laser will saturate the plasmonic resonance, thus switching off 

the coupling between cavities at the probe frequency.  In this configuration we have created an 

optical delay by trapping the light at the probe frequency in the now isolated outer cavity.  

When the pump beam is extinguished the cavities once again couple strongly and the delayed 

light will be released to propagate through the system.   

Now envision two evanescently coupled linear waveguides with a finite region of plasmonic 

coupling enhancement.  Assume all of the power is initially in the first guide and that the 

separation is such that coupling only occurs in the nanorod region.  Further assume that the 

strength of enhanced coupling is such that at the output port the power is equally distributed 

between the guides.  Then if one were to send a counterpropagating strong pump pulse down 

the second guide we would switch off the power in that guide on a time scale of the order of the 

plasmonic lifetime.  As the lifetime of a resonance is inversely related to the spectral width we 

could expect switching times of the order of the plasmonic lifetime, about 15 fs, which would 

provide power modulation rates limited only by pulse repetition frequencies [47]. 

One can endlessly perform these gedanken experiments but the question remains: can all-

optical control of evanescent coupling be achieved?  
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We do not have access to a pulsed laser and as such we must attempt control with continuous 

sources.   If one is to implement a practical device there are a number of applications where 

continuous sources would be strictly required anyway.  We can choose one of two 

configurations for optical control of the plasmonic coupling enhancement.  In the first method, a 

counterpropagating mode of a nanorod-coated microsphere is excited with a second tapered 

fiber. In the second, a free-space laser beam is tightly focused onto the coupling region between 

a fiber and nanorod-coated microsphere.   

When a counterpropagating pump mode is used for saturation much care must be taken to 

avoid strong coupling between the counterpropagating mode and the probe fiber even though 

the propagating power is in the opposite direction to our detectors.  This is because the 

backscattered radiation from the much more powerful pump mode can obscure the change in 

probe power measured in the forward detector array.  Shown below in Fig. 66 and Fig. 67 are 

the results of the aforementioned experiment for undercoupled and overcoupled probe modes, 

respectively. 
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Figure 66.  Optical control of coupling in an undercoupled probe mode.  The oscilloscope traces 
have been overlapped for clarity.  The blue trace is the natural mode while the red is 
the controlled mode.  Notice the mode’s dip depth reduces, i.e., the mode becomes 
more undercoupled, when the plasmonic enhancement is reduced optically. The 
approximate change in m is of order 1%. 

 

 

Figure 67.  Optical control of coupling in an overcoupled probe mode.  The oscilloscope traces 
have been overlapped for clarity.  The blue trace is the natural mode while the red is 
the controlled mode.  Notice the mode’s dip depth increases, i.e., the mode becomes 
less overcoupled, when the plasmonic enhancement is reduced optically. The 
approximate change in m is of order 1%. 
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Using counterpropagating modes we were able to demonstrate an average change in observed 

dip depth of about 1%.  The amount of control was severely impacted by heating due to 

absorption of the powerful pump mode which is approximately one-thousand times more 

powerful than the probe.  We achieved circulating intensities of around 300 kW/  in the 

pump mode at a wavelength of 1650 nm for the probe intensity of 1 W/  at a wavelength of 

1550 nm. 

Free space beams were used in two configurations, each focused to a spot size on the order of 

the coupling region coupling (~5 µm).  First a free-space 1650-nm beam is focused onto the 

coupling region at an intensity of 500 kW/ .  Changes of less than a percent, under our signal 

to noise ratio, were observed but were inconclusive.  Next we attempted to use the transverse 

resonance to saturate the plasmonic resonance.  A 532-nm DPSS laser at a power of roughly 3 W 

was focused to an intensity of 100 MW/  on the interaction region.  Very large changes were 

observed in dip depth (~10%), but these could not be rigorously isolated from thermal effects 

and thus remain inconclusive.   

While the experimentally measured changes in coupling where not as large as we had hoped, 

presumably due to our continuous-wave sources, we can with reasonable certainty conclude 

that optical control of evanescent coupling has been demonstrated.  Far larger levels of control 

are anticipated with pulsed sources which would provide much higher intensities and largely 

mitigate the heating problems encountered above.  

Chemical sensing enhancement: 

With the evanescent field enhanced, we can reasonably expect our system, when used 

as a traveling wave evanescent sensor, to increase in sensitivity [8].  To determine the sensitivity 

increase both the tapered fiber and microsphere are immersed in deionized water.  The 
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polyelectrolyte coated cavity without rods present is exposed to an absorbing analyte in 

increasing concentrations while the mode’s quality factor and dip depth are monitored.  The 

cavity is then removed from the bath, rinsed, and nanorods are grown on the surface as in [48].   

  

  

 

Figure 68.  Sensitivity to analyte absorption before (left) and after (right) the addition of nanorods 
to a polyelectrolyte coated microsphere. 

 

The experiment is then repeated on a mode with similar initial conditions in both quality factor 

and dip depth.  The particular analyte that was chosen was SDA-2072, because of its strong 

absorption at 1.5 µm; however it is not water soluble.  As SDA is soluble in methanol and 

methanol is soluble in water the SDA was dissolved to its solubility limit in methanol and this 

solution was used as our analyte. In Fig. 68 above the top images are the observed dips while 
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the lower images are the calculated sensitivities for both native (left) and enhanced (right) 

samples respectively.  The concentration reported is the effective concentration of SDA in the 

deionized water bath. 

Over the range of measured analyte concentrations the cavity without nanorods shows no 

sensitivity to analyte concentration while over the same range the nanorod-coated cavity shows 

a sensitivity of  in measured intrinsic loss.  These experiments are performed 

over a number of modes both before and after coating to limit the impact of mode selection. 

Although addition of nanorods dramatically increases the sensitivity over that of the 

polyelectrolyte coated resonator, this increased sensitivity is still markedly less than that of a 

bare resonator.  This may, however, simply be because dye molecules are adsorbed on bare 

silica but not the polyelectrolyte coated silica.  Further investigation is warranted. 

Surface Enhanced Raman Scattering: 

It is well known that when a field is incident on a solution Raman scattering causes new 

emission lines which are either blue shifted or red shifted from the pump wavelength.  These 

are respectively termed anti-Stokes and Stokes lines and are due to inelastic interactions with 

the molecule.  Raman scattering is distinct from typical Rayleigh scattering in that no frequency 

shift is associated with elastic Rayleigh scattering.  However, it is also known that these Raman 

shifts scale in amplitude as the inverse of the wavelength.  Previous experiments performed in-

house have not observed Raman emission from the microsphere because intensities in the 

evanescent fields were not high enough to produce signals above the noise level of the 

equipment.  With the level of near-field enhancement we have at the nanorod-solution 

interface we could potentially increase the emission strength to an observable level.   Raman 
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signals produced in this manner are termed surface-enhanced Raman and can be quite large for 

confined nanostructures compared to typical Raman scattering [49]. 

In this series of experiments, all elements outside of the Raman active material were first 

confirmed to produce no measurable signal within our equipment’s signal to noise ratio.  This 

includes any fiber-coupled equipment in the experimental setup as well as both the fused silica 

itself and the methyl groups used to functionalize the microsphere’s surface.  With a given 

microsphere verified to produce no additional frequency components the surface is coated with 

nanorods and a particular Raman material is tested.  We had initially hoped that Raman 

scattering from the surface would be captured in a microsphere mode leading to additional 

cavity enhancement and a strong observable signal on the pump fiber.  Unfortunately, this 

proved to not be the case and signals measured in this manner could not be differentiated with 

certainty from the equipment noise floor.  To overcome this limitation, an end-polished 

untapered fiber was used to capture the power scattered perpendicular to the propagation 

direction just outside the optical resonance plane of the microsphere.  This scattered signal was 

then analyzed for additional frequency components.   

The first material tested was the surfactant capping layer CTAB surrounding the nanorods.  CTAB 

has been shown to be weakly Raman active with a broad low-energy Stokes peak shifted by 

between  and .  The noise floor of the spectrum analyzer was tested when 

pumped directly by the pump fiber in the anticipated Raman region, shown in Fig. 69 below.  

With the region confirmed to be structureless the microsphere was brought into contact with 

the pump fiber and sampled, with the results shown in Fig. 70 below. 
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Figure 69.  Signal noise floor for the anticipated Raman region for CTAB pumped at
.  CTAB has a low-energy broad Raman shift in the region  to 

 as shown by the dashed lines above.  Notice that there is no structure to 
the noise in this region. 

 

Figure 70.   Side scattered Raman signal for CTAB pumped at pumped at .  CTAB 
has a low-energy broad Raman shift in the region  to  as shown by 
the dashed lines above.  Notice that the scattered power now has structure in the 
Raman region. 
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These results were encouraging so pure ethanol was the next material to be tested.  The ethanol 

was applied as a droplet to the fiber-microsphere system such that the entire surface was 

sufficiently wetted.  Once again a noise floor reference was established prior to sampling for 

Raman scattering; see Fig. 71 below.  The microsphere was brought into contact with the fiber 

and the side scattered light was sampled as seen in Fig. 72 below.  With the surface wetted with 

ethanol we can clearly observe a new frequency component which corresponds to the first 

strong Stokes line of ethanol located at . 

 

Figure 71.  Noise floor for the spectrum analyzer in the region we expect to observe Raman scattering in 
ethanol when pumped at .  The first strong Raman line in ethanol is found at 

. 
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Figure 72.  Side scattered power from the microsphere showing Raman scattering in ethanol when pumped 

at .  The first strong Raman line in ethanol is found at . 

 

In ethanol the agreement with the anticipated Raman shift and the measured shift were quite 

good; see Fig. 72.  The small disagreement is likely due to uncertainty in the pump wavelength.  

Unfortunately, during these experiments we also discovered that the ethanol appeared to 

destroy the surface chemistry that Coulombically held the nanorods on the sphere surface.  This 

was apparent in a rapid decrease in both the cavity’s quality factor and the power transmitted 

through the tapered fiber as the surface ethanol dried.  The cavity ’s dropped to the point 

where modes were no longer observable, and the transmitted power along the fiber fell by five 

orders of magnitude due to contamination floated in from the sphere.  Additional experiments 

confirmed that this was not a unique phenomenon as additional samples exhibited the same 

behavior in ethanol.  Moreover, when these experiments were repeated with strong organic 

solvents with large Raman scattering intensities, such as carbon tetrachloride, the effect was 

compounded and the experiment was destroyed in a time scale shorter than the necessary scan 

time to produce a side scattered power spectrum. 
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While the scattered Raman lines observed in this course of experiments are weak, we can with 

reasonable certainty confirm that we have observed these effects.   Additional work will still be 

needed to understand the surface chemistry of adhering the nanorods as we must learn to 

protect the adhesion from aggressive solvents before stronger Raman scattering liquids can be 

used to fully establish the effect. 

Discussion 

We have demonstrated that both single crystalline nanorods and multi-crystalline 

nanowires can be produced and used to enhance the external, evanescent field of the cavity.  

Further methodology has been developed to adhere these structures to the surface in a semi-

permanent manner usable for experiments.  The effects associated with the gold nanostructures 

have been demonstrated to be plasmonic resonant in nature.  We have applied these 

fundamental effects to show optical control of coupling between waveguides and enhanced 

sensitivity in evanescent sensing for both absorption and Raman emission.  We expect further 

sensitivity in both of these fields as control over nanorod aspect ratio and size dispersion is 

improved in future work.    
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Chapter 5 Cross Polarization Coupling 
 

In an early series of experiments it was observed that when one pumped the cavity on 

resonance with linear polarization aligned to one of the cavity’s polarizations, peaks of 

orthogonally polarized light were observed in the throughput.   These effects are termed cross 

polarization coupling (CPC) and must be explored rigorously if we are to infer information from 

the ring-cavity analysis mechanism.  Unlike the experiments reported on previously, we have no 

a priori knowledge of where these effects are being generated.  We must then explore every 

potential cause of the effect until a reasonable solution is found. 

These polarization coupling effects do not appear to cause any type of fundamental broadening 

of the resonances because modes with and without CPC effects have been tested to have similar 

spectral widths.  However, typical measurements on the dip depth of the system are taken 

without polarization analysis.  What effect would CPC have on this?  In the polarization parallel 

to the pump, the cavity output field is out of phase with the pump field, destructively 

interfering, which in turn produces a dip in the throughput when there is intrinsic (scattering) 

loss in addition to the coupling loss.  In the perpendicular component there is no pump field and 

thus the CPC output, which is also out of phase, is observed as a peak. In the event that the 

photodiode used to measure the power at the output of the system has no polarization analysis 

we can expect direct power addition of the two orthogonal polarization components.  Clearly if 

a power dip is added to a power peak the apparent dip depth can be greatly reduced.  In the 

extreme this has been observed to produce “ghost modes,” which are modes with equal dip 
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depths and CPC peaks.  In these rare cases the sum of the two polarization components erases 

the observable dip in through power if polarization analysis is not performed.   

Figure 73 is a direct observation of the CPC effect and its consequences.  The cavity is fiber 

coupled and pumped with approximately linearly polarized light in the cavity’s TE (transverse 

electric) polarization basis.  Simultaneous measurements are then made on the system 

throughput using separate detectors preceded by TE and TM (transverse magnetic) polarization 

analyzers, as well as another detector with no polarization analysis.   The TE and TM output are 

added, in real time, and compared to the unpolarized detector response.   The concurrence of 

the unpolarized intensity detector response with the direct addition of the orthogonal 

polarizations suggests strongly that if the experimental parameters were to be determined 

without an understanding of the polarization response, the inferred parameters could be in 

grievous error. 
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Figure 73.  The system is pumped with a pure TE cavity polarization.  The resulting TE and TM 
fiber outputs are summed (yellow trace) and compared to an unpolarized intensity 
trace (red).  The table lists several examples of the respective dip depths.  

 

 

Modeling of cross polarization coupling: 

We begin to attempt to understand these effects by extending previous successful 

theoretical work.  Coupled mode theory, as it was previously derived in pure vector form, can be 

readily evaluated to predict any direct field interaction polarization effects. 
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Coupled mode theory: 

There are two field effects which will directly cause cross polarization coupling, or CPC, 

effects.  One is the difference in polarization basis, i.e. the curvature in the sphere polarization.  

This effect is almost entirely mitigated in our system due the very small field overlap region as 

seen in Fig. 74 below.  The divergence angle between the surface and a linear approximation is 

on the order of  at absolute maximum which is then a difference in the dot product of the 

fields from pure linear polarization of approximately 0.01%. 

 

Figure 74.  The interaction region in fiber sphere coupling.  Notice that the fiber field shows a 
much large deviation from pure y-polarization than the cavity field over the region of 
interest.  
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The second effect is much stronger and that is the non-uniformity of the fiber field at the 

dielectric fiber-air interface which can be as much as  divergent from linear polarization, as 

seen in Fig. 75 below.  While the non-uniformity is antisymmetric about the y axis and thus the 

effect will cancel for perfect alignment, when the alignment is not ideal significant power can 

transfer between the fiber and the orthogonal sphere mode. 

 

 

Figure 75.  Vector field plot of the electric field of a fundamental fiber mode at an angle of  
above the x axis. These non-uniformities are antisymmetric when mirrored about 
either the x or y axis. 

 

The overlap integrals are calculated for a number of different modal configurations of the 

microsphere over varying angular misalignments and these results are plotted vs. fiber diameter 

to determine peak expected coupling coefficients.  Peak CPC field coupling coefficients are 
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found to be on the order of one-thousand times smaller than the coefficient for direct coupling.  

These levels of input/output CPC are far too low to produce the amount of experimentally 

measured orthogonal power.  We must also note that the input/output CPC coefficients found 

from the above methodology can be as much as a factor of two different.  This is an artifact of 

using the unperturbed waveguide solutions as systemic solutions.  Without the additional 

modifications to the field induced by the adjacent dielectric structure the fields are not truly 

solutions to Maxwell’s equations for the system for either polarization.  However, for the much 

larger main polarization component this dielectric effect is a small correction, while for the very 

small minor polarization component the correction can result in a significant relative increase in 

field strength.   Proper solutions for the system can be expected to balance the input/output 

CPC which would be expected to be near the mean of the independent solutions.  For this 

reason the larger of the two calculated coefficients is taken as an upper limit on the strength of 

input/output CPC as seen below (Fig. 76).  
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Figure 76.  The coupling coefficient shown for both parallel and orthogonal polarizations in the 
same system. 

 

Potential Causes of Polarization Coupling Behavior: 

The first direct observation of CPC effects was during an unrelated thermal experiment.  

One of the requirements of this particular experiment was to determine the coupling regime of 

the system via phase sensitive-cavity ringdown experiments.  A fiber-coupled Mach-Zehnder 

high speed modulator was employed to induce a transient cavity response.  However, initial 

results were inconclusive, in contrast to earlier results obtained using a free space acousto-optic 

modulator.  It was suspected (correctly, as it turned out) that an incident polarization mismatch 

to the modulator’s polarization-preserving input fiber was allowing some of the orthogonal 

polarization to leak through unmodulated.  To test this suspicion, a thin-film polarization 

analyzer (20:1 extinction ratio) was placed at the fiber output of the total system and the output 

was observed for both the pump (modulator) polarization and the orthogonal polarization.  The 

placement of the analyzer at the output of the total system was done just for convenience, as it 

is time consuming to remove the modulator and test it independently.  This turned out to be 



P a g e  | 5-158 

 

 
 

quite serendipitous, as an intriguing effect was seen when the scanning diode laser was 

resonant with the in-place microsphere; after the modulator input polarization was corrected, 

power peaks were observed in the polarization orthogonal to the pump, as seen in Fig. 77.  

Orthogonally polarized light leaking through the modulator had produced dips, not peaks. 

 

Figure 77.  An oscilloscope trace showing modes of the pump polarization (yellow trace) and the 
unpumped orthogonal polarization (blue trace).  Note that the blue trace is scaled up 
by a factor of four with respect to the yellow trace. 

 

Polarization Analyzer: 

After correction of the modulator the initial culprit for the orthogonal transmitted 

power was the thin-film analyzer.  While a failure of this device could lead to transmitted 

orthogonal power, it could not lead to the creation of power peaks from a signal that contained 

only power dips.  However, the analyzer is the first link in the discovery process and must 

therefore be addressed before more complex experiments are conducted.  To rule out any 
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possible effect of the low isolation ratio of the thin film analyzer, a 400:1 polarizing beam 

splitter was used in its place.  Only the transmitted signal was monitored at this juncture.  No 

change was seen in the strength of the effect and more importantly the strength of the effect 

appeared to vary from one sphere resonance to the next. 

Alignment of Polarization Basis: 

An apparatus was constructed that allowed for both the incident and orthogonal 

polarizations of the throughput to be monitored simultaneously.  A NIR fiber-coupled collimator 

was aligned to the axis of the polarizing beam splitter.  Power detectors were then aligned to 

the transmitted and reflected signals and the whole system was calibrated for equal power 

distribution and connected to the oscilloscope.  This then allows one to monitor the output 

power in both the pump and orthogonal polarizations simultaneously. 

As discussed in the preceding section the fundamental polarization basis of the fiber field is 

Cartesian while that of the sphere is tangent to the spherical surface.  A misalignment between 

the analyzer and sphere basis could produce peaks which looked to be CPC [50].  If we assume 

the sphere has perfect symmetry (this is not strictly true) then the placement of the fiber 

anywhere along the surface causes nothing more than a rotation of the respective inherent 

polarization basis from the lab basis.  For example consider placement of the pump fiber on the 

sphere at  latitude.  The sphere’s TE polarization is tangent to the surface which is now at a 

 angle to the lab’s basis.  Thus what appears to be linearly polarized pump light at  in the 

lab basis could be at an arbitrary angle with respect to the basis of the sphere.  What appears to 

be CPC could in fact be evidence of pumping modes of both polarizations.  Ideally one could 

directly measure the position of the fiber on the sphere’s surface and adjust its placement so 

the analyzer is in the sphere’s basis.  However, this is experimentally quite challenging as the 
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characteristic dimensions of the system are on the order of 700  and 2  for the resonator 

and pump fiber diameters, respectively. This difficulty is further enhanced by the fact that the 

material which comprises these structures is transparent.  It is therefore difficult to visually 

determine the sphere’s basis with high certainty.  To counter this, the aforementioned analyzer 

array was rebuilt to allow for one degree of rotational freedom; see Fig. 78.  With the sphere in 

contact one can use the lack of degeneracy over a finite frequency region between the two 

polarization spectra of the sphere to assure proper basis alignment with reasonable certainty.  

This is done by simply making successive adjustments to the input polarization and the 

orientation of the polarization detector array until it is clear that WGMs of only one polarization 

are being pumped. 

 

Figure 78.  Polarization detector array.  The axis of rotation for the array is along the input fiber 
axis.  Also pictured is the transient high speed detector.  The x polarization axis is 
parallel to the detector base while the y axis is perpendicular. 
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To further verify that the basis for the detector array is aligned properly to the sphere modes, a 

second fiber, or drop fiber, is brought into contact with the sphere diametrically opposed to the 

pump fiber.  The output from this fiber will be pure transmission, with no interference between 

the cavity output and the remaining pump field; this output coupled into a second polarization-

dependent detector array allows one to probe the sphere modes’ polarizations unambiguously 

in the lab’s Cartesian basis.  We have only to calibrate the respective angles between the 

throughput and drop signal detector arrays in order to align the detector basis to the sphere 

basis.   

Fiber-Sphere Geometry: 

To verify that the alignment between the pump fiber and the microsphere is not leading 

to polarization effects a sphere was created on an un-tapered fiber, rather than at the end of 

the fiber.  An example is shown in Fig. 79.  This configuration allows for the sphere to be 

mounted on a rotational stage with its axis of rotation being in the sphere’s equatorial plane.  

Thus experimentally we can check the confluence of angular misalignment and equatorial offset 

on the CPC strength. This configuration allows the sphere to be rotated a full 360 degrees while 

in contact with the pump fiber.  CPC does not appear to depend strongly on any geometric 

alignment.  
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Figure 79.  A prolate microsphere created on an optical fiber.  The sphere is then mounted in the 
geometric center of a 3/16 inch bolt head. 

 

Precessional Modes: 

In a perfect sphere the electromagnetic resonances will follow a closed circular path 

creating a resonance plane parallel to the placement of the pump fiber.  However, any slight 

ellipticity of the resonator causes the resonance to have a single preferential resonance plane, 

the equatorial plane.  If we pump the elliptic cavity from a plane that is not equatorial, the 

resonance light path will not close.  Rather, the optical orbital angular momentum vector will 

precess about the sphere’s axis [51].  Thus light will simultaneously be coupled out into the 

pump fiber and into a drop fiber in the same plane of latitude, as indicated graphically in Fig. 80 

where the pump and drop fibers are both at  latitude above the equatorial plane.  The 
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polarization of the precessional modes experimentally maintains that of the pump polarization.  

That is, if the pump light is polarized tangent to the surface of the sphere at the contact point of 

the pump fiber the light which couples out along the drop fiber will also be polarized along the 

tangent of the sphere, but now at the location of the contact point of the drop fiber.  This can be 

a little misleading as the measured polarization angle of the pump fiber and drop fiber powers 

will not necessarily be the same (in Fig. 80 the drop fiber field will be rotated  with respect to 

the pump fiber polarization). 

 

Figure 80.  Optical path of a precessional mode of the cavity (cross-hatched structure).  The 
spheroidal symmetry axis is vertical and the angular momentum vector of the mode 
precesses about this axis. 
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Fused Silica Birefringence in the Fiber: 

Fused silica is well known to exhibit strain-induced birefringence [52].  Experimentally 

this means that any fiber or fiber component which is bent, or strained, will turn the linearly 

injected polarization into an arbitrary elliptical polarization.  Because the state of polarization 

ellipticity is rather arbitrary, correcting the polarization back to linear can be difficult.  In order 

to correct the polarization we take advantage of the strain-induced birefringence and employ a 

three stage compression polarization controller.  This device compresses the fiber in three 

locations, acting effectively as three fractional waveplates, allowing the creation of any arbitrary 

polarization state.  While practical, these devices can not completely linearize the incident field; 

this in turn could lead to apparent CPC effects.  To both test the relative polarization alignment 

of the other system components and to test the effect of a small nonlinearity in the polarization 

output of the system the polarization controller was removed and replaced with a straight piece 

of optical fiber.  The system now had no bends in any fiber component and should be 

polarization-maintaining.  The polarization was then controlled by the addition of a zeroth-order 

half waveplate in the free space beam before injection into the fiber.   The small degree of 

previous nonlinearity in the field had no apparent effect on the observed CPC and the remainder 

of the system was confirmed to be in good polarization alignment with the lab frame and 

exhibited good polarization-preserving behavior. 

Fused Silica Birefringence in the Taper: 

The tapered fibers which are used for evanescent coupling are created by brushing a 

hydrogen-oxygen torch under a cleaned section of optical fiber while symmetrically pulling on 

both ends of the fiber.  This procedure produces symmetric up and down tapers (bi-tapers) 

which are adiabatic, i.e., induce no power transfer to higher order fiber modes in the taper 

transition.  This process is quite effective and repeatable, but as we are quite literally pulling on 
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the fiber we must confirm the polarization characteristics of the taper itself.  In order to 

properly determine the polarization behavior of a single taper the bi-tapered system must be 

decoupled.  This is done by first confirming that a bi-tapered fiber-sphere system is producing 

CPC.  The tapered fiber is then intentionally broken in the center.  The broken end of the down 

taper is then placed in a collimator and aligned to a polarization detector array, as shown in Fig. 

81.  A free-space beam with known polarization characteristics is then coupled into the fiber and 

the effect on the polarization state due to the taper is measured.  The taper was found to have 

no apparent effect on the polarization state of light propagating through it. 

 

 

Figure 81.  Testing of the tapered fiber for polarization effects. 
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Fused Silica Birefringence in the Sphere: 

Fused silica exhibits strain-induced birefringence, as was mentioned previously.   

Perhaps the creation of the spheres, by melting the tip of a clean optical fiber in a hydrogen-

oxygen torch, is causing some residual stress at the surface which induces a small degree of 

birefringence.  Considering that a single photon on average will propagate within a high Q 

resonance ( ) for tens of meters it would take only a small degree of birefringence to 

ultimately lead to a large degree of polarization rotation in the natural basis of the sphere 

modes.  As a first step we could directly use a sphere as a ball lens: pass a polarized source 

through it and see if ellipticity is produced as seen in Fig. 82 below. 

 

Figure 82.  A source image (text) is focused through a microsphere placed between polarizers. The 
left image is parallel polarizers and the right is crossed polarizers.  Notice there is no 
apparent transmission through the crossed polarizers.  This result implies that the 
incident linear polarization is not affected strongly by single-pass propagation 

through the sphere. 

 

Secondary testing relies on the mechanism which could leave residual strain on the sphere, 

namely surface annealing during thermalization.  In this series of experiments multiple spheres 
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of the same basic geometry are annealed for progressively longer times.  Each sphere is then 

tested for its level of CPC compared to typically prepared samples and the other annealed 

samples.  After accounting for known experimental variables no statistical variance is found 

from typical samples. 

 

Fused Silica Optical Nonlinearity: 

One of the many striking features of the CPC effect is that its development appears to 

depend most strongly on two factors; the first is the cavity quality factor while the second is the 

modal dip depth.  As either of these two measures is increased the CPC strength appears to also 

increase.  From one perspective this is to be expected as both dip depth for a given intrinsic loss 

and quality factor are direct measures of circulating intracavity power and any measure of 

output power should scale likewise with these parameters.  This observation does bring into 

question the possibility of a nonlinear optical process enhancing the effect.  Optical self-focusing 

and self-modulation through the Kerr nonlinearity in fused silica is known to cause induced 

birefringence [53].  The intensity thresholds for these effects are on the order of  for 

weakly birefringent fibers [3, 54] such as common commercial fused-silica fibers.  These 

intensity levels for continuous-wave devices such as the microcavity are quite high but at the 

lowest limit may be obtainable to within a few orders of magnitude with a very high-Q WGM.  

Given the level of resonant enhancement for these high-Q WGMs strong nonlinear responses 

are not strictly required to cause observable effects.  To experimentally determine if a nonlinear 

process is driving the strength of CPC, the on-resonance power in the linear polarization and the 

on-resonance power in the orthogonal polarization are taken over an order of magnitude 

change in the incident power (160 W to 7 W or circulating Intensities of approximately 5 
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MW/cm2 to 0.2 MW/cm2). Each power is then plotted vs. incident power, as shown in Fig. 83.  

No nonlinear relationship is found. 

 

Figure 83.  Pump polarization modal power on resonance and CPC peak power on resonance over 
an order of magnitude change in incident power.  Notice that the CPC power is linear 
to within the limits of uncertainty of the experiment. 

 

Scattering: 

In this conversion process scattering events can lead to intermodal coupling between 

orthogonally polarized co-resonant modes.  In effect, as the light is scattered its relative 

polarization can be rotated, and if there so happens to be another mode at that same frequency 

but with an orthogonal polarization, significant power transfer can occur in the cavity between 

polarizations.  It could be possible then to observe power peaks in the through signal in the 

orthogonal polarization.  The output peaks in the orthogonal polarization due to this effect will 

always be found at frequencies of the sphere’s orthogonal modes. Unfortunately, these 

resonances may not be measurable when directly pumped by the fiber as we rely on the relative 
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coupling strength between fiber and sphere modes when attempting to measure a resonance 

and not all modes will couple with a strength in the range required for the dip to be measurable 

within a particular frequency region.  Therefore, the absence of an observed directly pumped 

resonance does not rule out the possibility of intermodal polarization coupling.   With the 

aforementioned detector array one can readily test experimentally the correlation between 

orthogonal sphere modes and orthogonal output peaks.  The observed orthogonal peaks 

corresponded almost exclusively with the pump polarized modes of the sphere rather than 

those orthogonal modes which where observable.  Unfortunately, because we can only observe 

a small fraction of the modes that are potentially available in the orthogonal polarization these 

correlations are inconclusive at this juncture.  

Scattering events which could lead to intermodal coupling should also have a component which 

is directly backscattered [55].  Given that the eigenfrequencies of the modes are not dependent 

on propagation direction, significant power could then build in the counterpropagating 

direction.  To test for counterpropagating power, a bi-directional 50/50 fiber-coupled splitter 

was reverse installed before the fiber-sphere interaction region.  In this manner half of any 

counterpropagating power can be picked off and sent to a detector without interfering with the 

injection power.  This signal is then monitored simultaneously along with the forward direction 

polarization-dependent detection while the system is frequency scanned (one must correlate 

the CPC to reverse transmission peaks if present). When the experiment was underway no 

correlated counterpropagating power was observed due to CPC, but another effect was seen.   

The fiber, because the end faces are approximately parallel, acts as a secondary cavity with 

linear Fabry-Pérot type resonances.  While these resonances are broad and weak in comparison 

with those of the sphere they do lead to pumping of counterpropagating frequency-degenerate 
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modes while scanning (as indicated by sharp dips in the Fabry-Pérot resonances).  This effect 

must be eliminated to rule this out as a potential culprit for CPC.  One can intentionally deface 

the output fiber face destroying the Q of the linear cavity modes, but this leads to high and 

unpredictable output beam divergence, a problem for the calibrated detector array which relies 

on proper collimation.  The most direct way to address this issue is then to install a fiber coupled 

optical isolator after the fiber-sphere interaction region to suppress reflections from the fiber’s 

end face.  However, at every location within the system where a butt connection (black vertical 

lines in the experimental setup diagram Fig. 2) is employed to connect fiber components, a 

separate coupled linear cavity is created and the isolator will not suppress these modes.  To 

address this, gel with the same index of refraction as fused silica and virtually no absorption in 

the NIR is placed between each fiber splice in the system, thus converting a system of many 

coupled resonators into one large resonator whose modes the optical isolator can suppress.  

With this in place the experiment was conducted again and now no measurable power was 

obtained in the counterpropagating direction.  However, since backscattering might be 

significantly weaker than polarization-changing scattering, this result is also inconclusive. 

Modified Ring Cavity Model: 

Based on the experiments above we have preliminarily concluded that the observed 

polarization effects are associated with a combination of an internal intermodal coupling 

mechanism (a fundamental source of these effects) and a misalignment of the relative 

polarization basis of the cavity and detector (a trivial source). 

Let us ignore for the moment any internal coupling between orthogonal cavity modes, and 

envision pumping a critically coupled transverse electric (TE) cavity mode equatorially with a 

linear polarization, vertical in the lab basis. Without any form of polarization analysis on the 
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through signal we would observe a dip as the laser scanned through the resonance.   Now we 

place a polarizer before our detector such that the polarizer is aligned vertically in the 

laboratory reference frame, i.e., aligned to the polarization basis of the cavity mode.  In this 

configuration we again observe the same dip on resonance as we had previously.  Let us then 

rotate both the incident linear polarization and the polarization analyzer by 45 degrees.  As the 

field then encounters the resonance only the component of the incident polarization which is in 

the cavity mode’s polarization basis (vertical) will experience a dip.  Thus on resonance in our 

polarization analyzer we would again observe a dip, but the measured dip depth would be 

modified from our initial measurement.  However, if we now rotate our analyzer to be 

orthogonal to the 45 degree incident linear polarization, we observe no through power off 

resonance, but we will observe power peaks on resonance.  What has occurred is a functional 

rotation in the output polarization state due to power drop of one component of the incident 

polarization.  We term this direct polarization conversion (DPC) and it is an artifact of the 

misalignment between the cavity and detector polarization bases. 

Let us now assume that there are cavity resonances of both polarizations present with 

overlapping spectral widths with each equally pumped by an incident 45 degree polarization.  

Due to the polarization orthonormality of the two cavity modes we would expect to observe 

two distinct resonances depending on whether our analyzer was set vertically or horizontally as 

these represent the cavity’s TE and TM polarizations respectively in our example.  Without an 

internal coupling mechanism between the cavity modes that is exactly what one would expect.  

However, that is not what has been observed experimentally.  Experimentally we observe 

interference between the orthogonally polarized cavity modes when the detector basis is 

properly aligned and the incident pump is linearly polarized at 45 degrees.  Moreover, the 

structure of the observed interference changes when the relative phase between components 
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of the incident linear polarization is changed, e.g. for a 45-degree linearly polarized incident field 

the field vector can be pointed in either the first or third quadrants.  This internal polarization 

coupling (IPC) is almost certainly associated with an internal scattering mechanism [56]. 

Both DPC and IPC can be readily understood from a simple internally coupled ring cavity model.  

In this model the pump field , with polarization components , is incident on a partially 

transmitting front mirror with real reflection and imaginary transmission coefficients of  and 

 respectively for each polarization with the remaining cavity mirrors taken to be lossless.  

Each polarization is taken to have round trip power losses of  and detuning from the cavity’s 

natural frequencies of .  Within this cavity a pointwise scattering plane is inserted just beyond 

the primary pump mirror, shown offset in Fig. 84 below.  This plane is represented by the 

transmission (scattering) and reflection (no scattering) coefficients  and  , where the 

scattered light is assumed to rotate polarization by .  We must note that in a physical system 

the scattering will not occur just at the interface mirror where the orthogonal modes are 

pumped by the same source.  Rather scattering will occur throughout the cavity.  Because of 

this, our model, when fit to experimental data, will give an effective coefficient which represents 

the cumulative effects of both orthogonal scattering and phase mismatch.  This effective 

coefficient is thereby a lower limit on the true orthogonal scattering amplitude within the cavity. 
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Figure 84.  Modified ring cavity.  Colored terms represent different polarizations. 

 

 The fields are constructed just as we have done previously over round trips as 

 

 

(131)  

where the indices (1,2) indicate the two polarizations of the cavity, and the pump field is 

allowed to have components in  both of these polarization directions.  Notice that the cavity 

fields are internally coupled by the scattering and must be separated before use: 



P a g e  | 5-174 

 

 
 

 

 

(132)  

We must then enforce power conservation in the cavity in an analogous manner to the basic 

single cavity.  We turn off the losses, put the entire system on resonance and pump the cavity 

with only one linear polarization.  For this the output fields become 

 

 

(133)  

With these fields a power conservation equation can be constructed from the incident power 

and the sum of the respective square moduli (powers) as, 
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(134)  

For simplicity, the fiber-sphere coupling coefficients have been set equal ( ).  Using 

the express power conservation,  we find that this is true when either 

 

or 

 

(135)  

which then defines the phase difference between the scattering reflection and transmission 

coefficients to be  as one might expect because of the assumed symmetric coupling between 

the two polarizations across the scattering plane.  On physical grounds, we select the solution in 

which the phase change is on the scattered field. 

In the following (Figs. 85-93), the  values given are the loaded ’s (Including coupling loss) and 

the detuning of the incident light from resonance with mode  ( ) is given by .  Then, as 

in Eq. (29),  (the two modes, though orthogonal, are assumed to have the 

same ).  In Figs. 85-88,  was assumed. 
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Figure 85.  Mode splitting expected from internal scattering for a critically coupled  
pump mode (blue) and critically coupled orthogonal mode (red) with 
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Setting  we find that the fields exhibit symmetric splitting even for small scattering 

power coefficients  as seen in Fig. 85 above for a cavity pumped with only one 

polarization.  The reader may note that what we have done is a generalization of the coupled-

resonator model.  This generalization covers any power transfer effects between resonances, 

whether in another cavity or within the same cavity.  Furthermore, it also models backscattering 

within the cavity, and the mode splitting due to it [55], by simply changing the interpretation of 

the scattering coefficients.  When considering backscattering our predicted onset of induced 

mode splitting is in good agreement with the amplitudes discussed in the literature [55].  Thus 

the generalized model also predicts both CRIT and CRIA behavior but the particular intermodal 

polarization coupling model above has one interesting feature that could not occur in the 

previous model.  Because the interaction is occurring between modes of the same cavity, each 

with a distinct linear polarization, we can see interference between the modes for certain 

choices of the incident polarization state.  

That is, when the incident polarization has some particular phase relationship between the 

orthogonal components, e.g., elliptically polarized, we would expect a change in the 

interference observed in the system throughput as seen in Fig. 86 below.  
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        Linearly polarized at  (+ in Quadrant 1)         Linearly polarized at  (+ in Quadrant 3) 

 

Figure 86.  Mode splitting interference expected from internal scattering for a critically coupled 
 pump mode (blue) and critically coupled orthogonal 

mode (red) with .  The cavity is pumped with a  
linear polarization pointing into the first quadrant (left) and third quadrant (right). 

 

These features are unique to a cavity with internal mode couplings in the sense that no external 

effects can lead to this type of phase dependence on linearly polarized pump fields.  In principle, 

then, measurement of this cavity response can allow one to construct the Stokes vector for any 

arbitrary polarization state incident on the system without the need for additional external 

waveplates.  

It is also of note here that mode splitting will only occur for relatively strong scattering given 

modes which are both undercoupled.  Interestingly, for one linear polarization (TE or TM) if the 

pump mode of input power  is undercoupled and the orthogonal mode is so strongly 

overcoupled that it would not be experimentally observable the scattering power coefficient 

which is required to produce experimentally observable effects is reduced by more than two 

orders of magnitude for the same modes to   as seen in Fig. 87 below.  The 

amount of power transferred into the orthogonal mode and then out to the pump fiber, , is 

the product of the circulating power of the pump mode , the scattering power coefficient 
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, the orthogonal mode transmission coefficient  and four times the inverse of the 

total round-trip loss of the orthogonal mode: .  Comparing to the case of an 

undercoupled orthogonal mode, and assuming the orthogonal loaded cavity ’s are roughly the 

same, , and that both cases have the same circulating pump power, if one is to 

observe identical transmitted orthogonal power for both coupling regimes of the orthogonal 

modes we must then have 

 
(136)  

which, given ,  leads to the dramatically lower scattering coefficients for overcoupled 

modes,   , alluded to above. 

  

Figure 87.   Production of CPC orthogonal polarization peaks from internal scattering for a 
critically coupled  pump mode (blue) and critically coupled 

orthogonal mode (red) with .  Here the scattering 
coefficient is . 
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Furthermore, when the orthogonal mode is strongly overcoupled, its additional outcoupling 

losses tend to increase its spectral width, thus increasing the probability of coincidental co-

resonances between it and the pump mode as seen in Fig. 88 below. 

 

 

Figure 88.  Increased probability of CPC orthogonal polarization peaks from internal scattering for 
the critically coupled  detuned pump mode (blue) and the strongly 
overcoupled ( ) orthogonal mode (red) with

.  Here the scattering coefficient is . 

 

Because we have previously observed that both the alignment of the polarization analyzer to 

the cavity basis (DPC) and the incident pump polarization state (IPC) will affect the experimental 

observations of the system we must construct a model of not just the cavity interactions, but 

rather the entire experimental apparatus.  We begin by setting the phase difference between 

pump polarization components.  This is done in a simple manner (because we are only 

interested in components and not the full Stokes vector) as 
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(137)  

were  is the incident power,   the mean angle the polarization makes with respect to the 

cavity basis and  the phase angle between the polarization components.  We then construct 

the total throughput field from the cavity and fiber fields as 

 (138)  

Thus the fields and power observed in the polarization analyzer basis will be, 

 

 

 

(139)  

where  is the angle the polarization analyzer makes to the cavity basis,   is total vector field 

incident on analyzer with power components  and  observed on detectors 1 and 2 

respectively.  Finally, the power observed on the intensity detector will be 

 (140)  

The full model as derived above is a dynamic model of the system in the sense that without 

changing the modes of the cavity under observation, the lab conditions can be dynamically 

varied and the model must remain predictive.  Thus the dynamic response in itself can be used 

as a verification tool. 
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Experimental verification of the model: 

We are not directly able to measure the scattering amplitude between cavity modes.  

However, using dynamic modeling we can repeatedly probe the scattering response of a given 

set of coupled orthogonal cavity modes, without perturbing them, by repeatedly varying the 

external system parameters (incident polarization angle and phase, detector angle) and use the 

homogeneity of the repeated fit to the model to infer the actual scattering amplitude.  To do 

this we first gain as much information as possible for both cavity modes of interest by pumping 

the cavity with either a TE or TM polarized pump.  This allows us to measure cavity coupling and 

intrinsic loss in a least-perturbation regime, as well as the relative detuning between cavity 

modes.  While we cannot, without further analysis, know the phase of the incident polarization, 

we can use the equipment in place to determine information about the incident polarization.  

For instance, if we observe that off resonance the measured power in each detector of our 

analyzer is rotationally invariant in  we know that the pump is circularly polarized.  Linear 

polarization and angle can be determined by rotation of the analyzer and the requirement of 

power observation of only  or .  Furthermore, while the phase is not known, we can use 

the combination of the above technique and the non-symmetric cavity response on resonance 

(similar to Fig. 86) to find that we have changed the handedness of the pump polarization.  This 

is done iteratively for many pump polarizations, and through requiring that the model fit all, we 

are able to reduce the uncertainty in the inferred scattering coefficient in a statistical manner. 

The external parameters are varied in Figs. 89-93 over many incident polarization states and 

detector angles and in each we require predictive dynamic modeling accuracy. The experimental 

data (black) is simultaneously fit to the predicted behavior for both cavity polarizations, TE 

(blue) and TM (red), while the intensity traces are only analyzed for structural agreement with 

the model (pink).  The experiment was conducted at a wavelength of 1.55 µm for undercoupled 
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(TE, TM) modes with quality factors ( ) and dip depths ( ) of (6.9, 7.3)  and 

(0.68, 0.58) respectively.  

 

 

Figure 89.  Experimental and theoretical response of the cavity for an approximately pure TM 
input polarization with  

 

 

 

Figure 90.  Experimental and theoretical response of the cavity for an approximately pure TE input 
polarization with . 
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Figure 91.  Experimental and theoretical response of the cavity for an approximately known incident 
linear polarization at an angle of .  From the 
model we find that the field vector points into the first quadrant ( ). 

 

 

Figure 92.  Experimental and theoretical response of the cavity for a known incident elliptic 
polarization at an angle of with .  From the 
model we find that the field vector points into the third quadrant ( ). 
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Figure 93.  Experimental and theoretical response of the cavity for a known incident elliptic 
polarization at an angle of with .  From the 
model we find that the field vector points into the third quadrant ( ). 

 

From the above fits we can infer that the cross polarization scattering power coefficient is 

roughly  which is reasonable, given that the expected upper limit value for all 

scattering loss is roughly   [31] . 

As another method of verification we can also look at the probability of observing a CPC peak 

given a particular known coupling regime for the orthogonal modes.   We take a particular cavity 

and place it in contact with a thick region of the tapered coupling fiber such that the strongest 

coupled pump mode has a dip of 50% and is undercoupled.  We then know that all modes, 

visible or otherwise, are undercoupled, and we collect the number of CPC peaks and the overall 

number of observable resonances to find the average probability of observing orthogonal power 

above our uncertainty (roughly 2% of the pump power) given an observable pump resonance.  

We then increase the coupling such that both undercoupled and overcoupled modes are 

available, by placing the cavity at a thin region of the fiber, such that the deepest modes are 

critically coupled.  The same data is taken to find the probability of observation.  Just as 

predicted from the ring cavity model, the probability of observing a CPC peak given an 

observable pump resonance is far larger when overcoupled modes are present, as compared to 
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the case of an undercoupled spectrum.  Further, the amount of power transmitted into the fiber 

in the orthogonal polarization is approximately 30x larger for an overcoupled spectrum as 

compared to an undercoupled spectrum, as seen in Table 2 below. 

 

Approximate 
Coupling Regime of 
TE Pump Spectrum 

Number of 
Observable 

Pump Modes 
per GHz 

Percent of Modes 
Producing CPC Power 

Greater than 2% of 
Pump Power 

Peak CPC Power 
Compared to 
Pump Power 

Mean CPC Power 
Compared to 
Pump Power 

Undercoupled 
 

28 0% 0.56% 0.14% 

Critically Coupled 
 

60 10% 4.8% 1.9% 

Overcoupled 
 

158 30% 13.6% 4.0% 

 

Table 2. Comparative analysis of the probability of observing a significant CPC event given a 
particular coupling regime in the TE pump polarization.   

 

Discussion: 

We have demonstrated that the observed CPC peaks are the result of two independent 

processes: direct polarization conversion (DPC) and internal polarization coupling (IPC).  The DPC 

has been shown to stem from a polarization basis misalignment between the cavity and 

detector.  Further, the IPC has been shown to be the result of an internal intermodal coupling 

mechanism by demonstrating cross polarization interference when the cavity is pumped with a 

linearly polarized source at an angle of .  Without internal processes no interference would 

be expected as the states are formally orthogonal.  We have further produced a generalized ring 

cavity model which treats not only CPC but also backscattering and multiresonator couplings, 

where in each case mode-splitting, CRIT and CRIA can be expected.  This generalized model was 

used to construct a dynamic model of the experimental apparatus accounting for geometric and 
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phase effects.  This dynamic model has been used to directly measure the phase angle between 

orthogonal polarization components of the pump field.  This could prove to be a beneficial 

method of measuring an arbitrary polarization state of laser light in optical fibers, in situ, in a 

one step process.   While we have not unambiguously demonstrated that these internal 

couplings are driven by internal scattering centers the predicted amplitudes are in reasonable 

agreement with both theoretical predictions [31, 56] and previous measures of backscattering 

within these types of cavities [31, 55]. 
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Chapter 6  Summary of Conclusions 
 

Coupled mode theory, as applied to fiber-microsphere coupling, has been reformulated 

such that the fields and associated coordinate transforms are fully vectoral.  Previous 

treatments have used scalar approximations, due to limited available computational power, 

which lead to debate of energy conservation centered on nonsymmetrical input/output coupling 

predictions.   Furthermore, this previous treatment also contained non-unitary coordinate 

transforms when misalignments in the waveguides were included leading to skewed results.  My 

reformulated vector treatment has ended the debate on energy conservation as the 

input/output coupling is found to be symmetric to within numeric precision.  My treatment has 

further allowed for misalignments in the system to be fully characterized.  This model was then 

applied to cross polarization couplings, which occurs due to non-uniformity in the fiber 

polarization; the results set an upper bound on the expected coupling strength.  Unfortunately, 

the calculated cross polarization input/output couplings are not symmetric due to the neglect of 

the adjacent dielectric interface on the waveguide modes.  Proper modification of the fields at 

the interface is expected to symmetrize the coupling.  This type of coupling has been found to 

be weak in comparison to direct coupling, and for most applications, can be safely neglected.  

Finally, these predictions of coupling strength serve to verify the weak coupling assumptions 

used in the ring cavity models. 

Coupled mode theory was also used for the first time to treat coupling between 

microresonators.  The results of these calculations are critical in understanding coupled 
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resonator effects.  I have found that the peak coupling strengths, for either TE or TM 

polarizations, are slightly larger than those of fiber-microsphere coupling and they occur 

between fundamental microsphere modes.  Radial mode coupling is found to be larger, in 

general, than polar order mode coupling due to the curved geometry of the interface which 

leads to a rapid decrease in coupling as polar mode order is increased.  For radial mode orders 

coupling strength is dominated by phase mismatch between dissimilar mode orders.  Much like 

fiber-microsphere coupling TE polarized modes are found to couple roughly ten times more 

strongly than TM polarized modes.  Finally, these results were used in a modified coupled ring 

cavity model and compared with experiment.  The results are in good agreement. 

I have constructed a new type of microresonator, a spheriod suspended on a tapered fiber.  This 

resonator has very limited thermal conduction pathways into the suspension mechanism, while 

maintaining high mechanical strength, allowing characterization of thermal conduction into the 

local atmosphere.  Characterization of the efficiency of this transfer has allowed us to predict 

the thermal accommodation coefficient with an unprecedented accuracy which is needed to 

further measure the fraction of intrinsic loss due to absorption in bistability experiments.  This 

absorption loss has been attributed to a molecular layer of water on the surface of an uncoated 

sphere in good agreement with previous work.  Measurements of absorption loss serve to verify 

the assumptions of weak absorption used in the derivation of the ring cavity models. 

I have developed a novel technique for determining the cavity quality factor and coupling 

regime.  I have applied phase sensitive cavity ringdown to the through signal of the fiber-

microsphere system.  This technique includes interference effects between the output field of 

the cavity and the remaining field of the pump fiber which causes the observed phase shift to 

depend on the input modulation frequency.  Theoretical modeling of this response has allowed 
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me to empirically maximize the observed phase shift from the reference signal allowing 

increased precision in these measurements.  High precision measurements taken in this manner 

have been compared to more traditional methods (spectral width, transient fill decay cycle and 

cavity ringdown) and not only are they in good agreement, they demonstrate that the 

assumption of limited mode dephasing in the ring cavity model is valid. 

We have demonstrated a number of novel methods for plasmonically enhancing the evanescent 

field of the cavity.  In previous studies gold nanorods were chemically grown on the surface of 

the microsphere which has limited controllability.  In the new methodology, gold nanorods are 

grown in solution and then processed to control the desirable characteristics.  The 

microsphere’s surface is then chemically modified in a manner that both preserves the cavity 

quality factor, which is novel, and charges it for Columbic adhesion of the gold nanorods.  We 

have demonstrated enhancement at 800 nm which is comparable to previous studies.  

Furthermore, we have demonstrated large enhancement at the much longer 

telecommunication wavelengths around 1550 nm.  Unfortunately, we have found that intrinsic 

scattering loses from the non-resonant gold structures on the surface are much larger at these 

wavelengths and additional work is needed to increase nanorod yield and homogeneity in 

solution prior to application to the cavity.  Furthermore, I have developed techniques based on 

both crystal growth and dielectrophoresis that allow for the growth of extreme aspect ratio 

composite nanowires.  The aspect ratio of these composite wires is as high as 1000.  I have used 

these composite nanowires to verify the localization of plasmonic evanescent enhancement.  

These nanowires have been shown to not only dramatically increase coupling but also intrinsic 

loss.  For these nanowires to be of greater benefit, work must still be conducted to decrease 

non-contributing elements which increase cavity loss.    
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I have used plasmonically enhanced resonators in a number of novel potentially beneficial 

applications.  I have demonstrated an increase in sensitivity to analyte absorption over an 

unenhanced sample.  I have further demonstrated that an enhanced resonator is capable  of 

producing measurable Raman scattering signals which could dramatically increase the 

usefulness of traveling wave evanescent sensors for species characterization.  Finally, using 

saturation of the plasmonic resonance with a strong pump beam I have demonstrated all optical 

control of coupling which could be valuable in ultrafast optical switching and optical delays.  In 

each of these potential applications I have only demonstrated proof of concept work and much 

work remains to be done on each application in the future. 

I have been the first to observe and characterize intermodal polarization coupling within the 

microresonator system, a never before treated fundamental effect.  To understand this effect I 

have generalized the simple ring cavity model to allow for arbitrary coresonant mode coupling.  

This generalized model can be used to treat coupled resonators, mode splitting due to 

backscatter within the cavity, as well as intermodal polarization coupling within the cavity.  The 

ring cavity model was used to construct a larger model of the experimental lab by the inclusion 

of both an arbitrary input polarization state and polarization basis misalignment between the 

cavity and detector to split the experimentally observed polarization effects into a trivial effect 

(DPC) and the never before seen fundamental effect (IPC).  Using the model dynamically, in the 

sense that the modes are left unperturbed and external parameters are varied, I have shown 

good agreement with experimental results that allow for inferred measure of both the 

polarization scattering amplitude within the cavity and phase of an arbitrary incident 

polarization state.   Work remains to be done on controlling the scattering amplitude to either 

mitigate IPC in telecommunication devices (switches, multiplexers) or increase IPC to create 

fiber coupled polarization analyzers.  
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used to show that modal dephasing is below measuremental uncertainty.  The 

calculation of dual sphere coupling predicts that the peak coupling strength is slightly 

greater than fiber-microsphere coupling and will occur between fundamental cavity 

modes.  It is found that mode phase matching dominates radial mode order coupling 

while spatial overlap dominates polar mode order coupling.   Nanowires, grown from 

solution, have been grown with aspect ratios in excess of 1000.  These wires have been 

placed directly on the microsphere and used to demonstrate the localization of 

evanescent field enhancement.  Gold nanorods grown in solution have been directly 

adhered to the cavity surface allowing control of plasmonic character while still in 

solution.  These enhanced cavities have been shown to exhibit similar levels of coupling 

enhancement at wavelengths of 800 nm to surface grown nanorods (~300) and much 

larger enhancement at wavelengths of 1550 nm (~1500).  These enhanced cavities have 

been shown to increase sensitivity of traveling wave evanescent sensors.   They have 

also been shown to produce surface enhanced Raman scattering, which has the 

potential to demonstrate species identification.  Optical control of plasmonic 

enhancement has been demonstrated and used to control the observable dip-depth of 

the cavity resonance.   Finally, internal polarization coupling between orthogonal cavity 

modes has been observed and understood from a modified ring cavity scattering model; 

the results are in good agreement with experiment. 
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