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CHAPTER 1

INTRODUCTION

1.1 Matter Versus Anti-Matter

One of the great mysteries of modern particle physics and cosmology is the lack

of antimatter in our surroundings. This is somewhat puzzling given that the rela-

tivistic field theories which underlie modern particle physics have built into them a

fundamental symmetry; which states that for every particle there is an antiparticle

degenerate in mass and with quantum numbers and charges of the opposite sign. In

the old language of Dirac, for example, the relativistic wave equation for the elec-

tron has both positive and negative energy solutions, which led Dirac to predict the

necessary existence of the positron. In more modern quantum field theory language,

we think of creation or annihilation operators acting on a field that respectively cre-

ate particles and destroy antiparticles or destroy particles and create antiparticles

associated with the field. The properties and dynamics of the particles and antipar-

ticles are fundamentally related. If we consider local, Lorentz-invariant field theory

equations such as currently used for the ”Standard Model” of particle physics, and

we flip the signs of all charges that appear in them, effectively turning particles into

antiparticles, and then perform a space reversal (−→x → −−→x ) followed by a time re-

versal (t → −t), we recover the same equations. This symmetry of the equations,

the so-called CPT (Charge-Parity-Time reversal) symmetry, implies, for example,

that particle and antiparticles should have exactly the same mass. Similarly, if the

protons exist, then anti-protons with the same characteristics should exist too (and

in fact, is being made now at CERN and FermiLab). Stretching our imagination

1
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further, the Universe could then be filled with antimatter stars and galaxies that

are indistinguishable from ordinary stars and galaxies if one studies them solely via

their light emission or their gravitational attraction on neighboring bodies. This of

course assumes that antimatter stars are spatially separated from matter stars, or

else the two will annihilate each other. The fact is that anti-matter on earth is very

rare, in fact, the only anti-protons ever observed were the ones produced at CERN or

Fermilab. Cosmic probes into planets conclude they are made out of matter. With

confidence, we can say that our entire solar system consists of matter only. One can

argue that there could be patches or regions at the larger scale containing antimatter,

but experiments 1 showed otherwise. There would be a strong detectable γ radia-

tion originating from nucleons-antinucleons reactions if there was a cluster out there

that contains one or many galaxies with both matter and antimatter. Furthermore,

the well-tested Standard Model also implies that total charge as well as quantum

numbers like baryon number and lepton number should be conserved in particle in-

teractions, excluding the notion that there could be a region elsewhere that does not

contain equal amounts of matter and antimatter. The most fundamental observation

we can make about the observed universe is that it is dominantly made out of mat-

ter (no-antimatter). Baryogenesis, or Baryon Asymmetry (BA), (matter-antimatter

asymmetry), explaining BA is one of the most challenging open questions in particle

physics as well as in cosmology. The subject has been of concern to particle physicists

since the discovery of microscopic CP violation, which encouraged the construction

of concrete Baryogenesis scenarios. The subject became a standard part of modern

cosmology with the introduction of grand unified theories (GUTs), introduced in the

1970s, which establish a possible source for baryon number violation, an essential

component of Baryogenesis. More recent ideas have attempted to link the baryon

asymmetry with details of models of electroweak symmetry breaking, and offer the

possibility of testing models of Baryogenesis in future colliders such as the LHC. In

this dissertation however, we concentrate on three of the most recent and popular
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mechanisms; realized in different ways: Baryogenesis via Leptogenesis2, Soft Lep-

togenesis3,4 and resonant Leptogenesis5,6. The results of our study are reported in

7–9.

In the second chapter, we calculate 7 lepton asymmetry induced in the decay of

right–handed neutrinos in a class of minimal left–right symmetric models 10. In these

models, which assume low energy supersymmetry, the Dirac neutrino mass matrix

has a determined structure. As a result, lepton asymmetry is calculable in terms

of measurable low energy neutrino parameters. By solving the Boltzmann equations

numerically we show that adequate baryon asymmetry is generated in these models

in complete agreement with constrains by Big Bang Nucleosynthesis and the recent

high precision measurement by the NASA satellite mission WMAP experiment 11:

ηB ≡ nB

nγ

= (6.5+0.4
−0.3)× 10−10, (1.1)

where ηB is the baryon to photon ratio. Furthermore, we make predictions on the

light neutrino oscillation parameters, which can be tested in next generation neutrino

experiments.

In the third chapter of this thesis, we discuss a more recent idea, Soft Lep-

togenesis, which is an alternative and attractive mechanism to explain the baryon

asymmetry we are after. This time, we study the effect of the interactions of the

SU(2)R gauge boson WR on the generation of the primordial lepton asymmetry8.

B − L violation occurs when Left–Right symmetry is broken by the vacuum expec-

tation value (VEV) vR of the B − L = −2 triplet scalar field, which gives Majorana

masses to the r.h sneutrino, and lepton number is violated in their decay ν̃R1 → ẽRud̄

as well as ν̃R1 → ẽ∗Rūd, these decays are mediated by the right handed gauge boson

WR, and can dominate the traditional νR → Lφ†, frequently used decay to explain

BA. Furthermore, by Renormalization Group Equations (RGE) analysis, we show

that the requirement of unconventionally small B−term is no longer needed. In ad-

dition, we use RGE running and SUSY breaking effect to naturally account for the

complex O(1) phase as dictated by the success of the scenario. The mass of r.h

sneutrino can be Mν̃ ∼ MWR
∼ (109 − 1010) GeV .
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In chapter 4 we present a new realization of inverted neutrino mass hierarchy

based on S3 × U(1) flavor symmetry9. In this scenario, the deviation of the solar

oscillation angle from π/4 is correlated with the value of θ13, as they are both induced

by a common mixing angle in the charged lepton sector. We find several interesting

predictions: θ13 ≥ 0.13, sin2 θ12 ≥ 0.31, sin2 θ23 ' 0.5, 0 ≤ cos δ ≤ 0.7 for the neutrino

oscillation parameters and 0.01 eV <∼ mββ
<∼ 0.02 eV for the effective neutrino mass in

neutrinoless double β-decay. We show that the same scenario can naturally explain

the observed baryon asymmetry of the universe via resonant leptogenesis. The masses

of the decaying right–handed neutrinos can be in the range (103 − 107) GeV, which

would avoid the generic gravitino problem of supersymmetric models.

In the appendix section, we briefly review the basic thermodynamics of the ex-

panding universe, set up Boltzmann equations, review the formalism of CP violation

in the kaon system, and make some comments about the numerical methods.
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1.2 Sakharov criteria

The Standard Model of Cosmology provides a very satisfactory picture that

accounts for variety of observational data, in particular, the observed 2.7oK back-

ground black-body radiation is in total agreement with the nucleosynthesis calcu-

lation of the primordial helium abundance. On the downside, the Standard Model

with only baryon-number conserving interactions does not fix baryon-number asym-

metry ratio as indicated earlier. It is desirable that, independent of any initial

conditions, such an asymmetry could be generated by underlying physical interac-

tions. To achieve this, we must postulate new particles interactions, beyond those of

SU(3)C ⊗ SU(2)L ⊗ U(1)Y Standard Model.

In 1967, Sakharov12 proposed a radical alternative: our physics is wrong! More

precisely, there is new physics beyond the Standard Model which, at higher energies

than can currently be tested with accelerators, allows for baryon number violation.

Assuming a highly symmetric state in the early Universe, a matter-antimatter asym-

metry can be dynamically generated in an expanding Universe if the particle interac-

tions and the cosmological evolution satisfy the so called Sakharov conditions, which

we enumerate below

(i) Underlying theory must have processes that violate B number

∆B 6= 0

where B is the baryon number. If the baryon number B was conserved by the interac-

tions, it would mean that the baryon number commutes with the Hamiltonian of the

system H: [B, H] = 0. Hence, if B(t0) = 0, we would have B(t) ∝ ∫ t

t0
[B,H] dt′ = 0

at any subsequent time and no baryon number production would take place.

(ii) Both Charge Conjugation, and CP symmetry must be violated; otherwise,

one can never establish baryon-antibaryon asymmetry (since the action of C and CP

would transforms nB → nB̄). To see this, we define the following baryon number

operator,

B̂ =
1

3

∑
q

∫
d3x : q†(x, t)q(x, t) : ,
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which is C-odd and CP-odd. This is evident from the action of P, C and T on the

quark fields:

Pq(x, t)P−1 = γ0q(−x, t), P q†(x, t)P−1 = q†(−x, t)γ0,

Cq(x, t)C−1 = ıγ2q†(x, t), Cq†(x, t)C−1 = ıq†(x, t)γ2,

T q(x, t)T−1 = −ıq(x,−t)γ5γ
0γ2, T q†(x, t)T−1 = −ıγ2γ0γ5q

†(x,−t)γ0. (1.2)

Then

P : q†(x, t)q(x, t) : P−1 =: q†(−x, t)q(−x, t) :,

C : q†(x, t)q(x, t) : C−1 = − : q†(x, t)q(x, t) :,

T : q†(x, t)q(x, t) : T−1 =: q†(x,−t)q(x,−t) :, (1.3)

so that

PB̂P−1 = B̂, CB̂C−1 = −B̂, (CP )B̂(CP )−1 = −B̂.

A non-zero expectation value < BB̂ > requires that the Hamiltonian violates C and

CP . More intuitively, C symmetry would guarantee that Γ(i → f) = Γ(i† → f †),

while CP symmetry would guarantee that Γ(i → f) = Γ(̄i → f̄)∗. With CP alone it

might be possible to create baryon asymmetry in certain localized region of the phase

space, but integrating over all momenta and summing over all spins would leave a

vanishing asymmetry.

(iii) Departure from thermal equilibrium of X-particles mediating ∆B 6= 0

processes is necessary. This is because if all processes, including those which violate

baryon number, are in thermal equilibrium, the baryon asymmetry vanishes. This is

a direct consequence of the CPT invariance. To see this, define CPT ≡ θ, and the

density matrix at time t for a system in thermal equilibrium as ρ (t) = e−β(t)H(t), then

from Eq (1.3) we obtain the equilibrium average of B,

〈B〉T = Tr
(
e−βHB̂

)

= Tr
(
θ−1θe−βHB̂

)

∗x† has opposite charge but same chirality as x. x̄ has both opposite charge and
chirality.
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= Tr
(
θe−βHB̂θ−1

)

= Tr
(
θe−βHθ−1θB̂θ−1

)

= Tr
(
e−βH

(
−B̂

))

= −Tr
(
e−βHB̂

)

= −〈B〉T (1.4)

where β = 1
kBT

, and we have used the fact that H commutes with the operator

CPT that we called θ above. Thus 〈B〉T = 0. Whence, to establish asymmetry

dynamically, B violating processes must be out of equilibrium in the Universe. This

can be seen as follows:

d∆nB

dt
= −

[
γ 6Be

−
“

m−µ
kBT

”
− γ 6Be

−
“

m̄−µ̄
kBT

”]
(1.5)

where γ 6B denotes the rate for 6 B and µ is the chemical potential, and µ̄ = −µ. Since

m = m̄ by CPT theorem, e
− m

kBT is not relevant and we omit it. Then for kBT À µ,

d∆nB

dt
=
−2µ

kBT
γ 6B. (1.6)

On the other hand

∆nB =
2ζ (3)

π2
g′ (kBT )3

[
e

µ
kBT − e

−µ
kBT

]

' 2

π2
g′ (kBT )3 2µ

kBT
. (1.7)

Thus eliminating 2µ
kBT

d∆nB

dt
= −π2

2

γ 6B
g′ (kBT )3 ∆nB

= −π2

2
Γ 6B∆nB (1.8)

where Γ 6B =
γ6B

g′(kBT )3
=

γ 6B
nB

gives the rate for 6 B. The solution of above equation gives

∆nB = (∆nB)initial e
−π2

2
Γ 6Bt. (1.9)

What we learn from this result is that if B-violating processes are ever in equilibrium,

then these processes actually washes out any initial condition for Γ 6Bt ≥ 1.
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1.3 Boltzmann Equations

The processes of interest are active at high temperature while the universe is

expanding, when the system is far from thermodynamic equilibrium, and one needs

to follow evolution of a density while the particle species produces and collides with

many different species. Boltzmann equations (BE) allow us to follow the effect of

different interactions, in fact, all important calculations in Cosmology are done by

means of BE. In this section, we introduce the basic elements for setting up BE.

It is usually a good approximation to assume Maxwell-Boltzmann statistics, so

that the equilibrium number density of a particle i is given by

neq
i (T ) =

gi

(2π)3

∫
d3pi f

eq
i with feq

i (Ei, T ) = e−Ei/T . (1.10)

For a massive non relativistic particle one finds

neq
i (T ) =

giTm2
i

2π2
K2

(mi

T

)
, (1.11)

where K2 is bessel function of the second type. For a massless particle one gets

neq
i (T ) =

giT
3

π2
. (1.12)

The universe expansion and different interations modify the particle densities.

Since we are only interested in the effect of interactions, it is useful to scale out

the expansion. This is done by taking the number of particles per comoving volume

element, i.e. the ratio of the particle density ni to the entropy density s,

Yi =
ni

s
, (1.13)

as independent variable instead of the number density. In a radiation dominated

universe the entropy density reads

s = g∗
2π2

45
T 3 . (1.14)

In our case, elastic scatterings, which can only change the phase space distri-

butions but not the particle densities, occur at a much higher rate than inelastic



9

processes. Therefore, we can assume kinetic equilibrium, so that the phase space

densities are given by

fi(Ei, T ) =
ni

neq
i

e−Ei/T . (1.15)

In this framework the Boltzmann equation describing the evolution of a particle num-

ber Y in an isentropically expanding universe reads

dY

dz
= − z

sH (m)

∑
a,i,j,...

[
YYa . . .

Y eq
 Y eq

a . . .
γeq ( + a + . . . → i + j + . . .)

− YiYj . . .

Y eq
i Y eq

j . . .
γeq (i + j + . . . →  + a + . . .)

]
, (1.16)

where z = m/T and H (m) is the Hubble parameter at T = m. The γeq are space

time densities of scatterings for the different processes. For a decay one finds

γD := γeq( → i + j + . . .) = neq


K1(z)

K2(z)
Γ , (1.17)

where K1 and K2 are modified Bessel functions and Γ is the tree level decay width

in the rest system of the decaying particle. Neglecting a possible CP violation, one

finds the same reaction density for the inverse decay.

Calculation of Lepton Asymmetry will involve 2 body scattering. The reaction

density for a two body scattering is given by,

γeq( + a ↔ i + j + . . .) =
T

64π4

∞∫

(m+ma)2

ds σ̂(s)
√

s K1

(√
s

T

)
, (1.18)

where s is the squared center of mass energy and the reduced cross section σ̂(s) for

the process  + a → i + j + . . . is related to the usual total cross section σ(s) by

σ̂(s) =
2λ(s, m2

 ,m
2
a )

s
σ(s), (1.19)

where λ is the usual kinematical function

λ(s,m2
 ,m

2
a ) ≡ [

s− (m + ma)
2
] [

s− (m −ma)
2
]

. (1.20)

In order to compute the Baryon Asymmetry we will have to employ numerical

solution to the coupled Boltzmann Equation for the Lepton Asymmetry density and

the abundance of right handed neutrinos. We will shortly come back to this analysis

and discuss it in detail.
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1.4 Chemical potential, asymmetries relations and Sphalerons

In the standard model, baryon number violating processes convert three baryons

to three antileptons. This violates conservation of baryon number and lepton number,

but the difference B − L is conserved. This is because B − L has no anomalies in

the Standard Model, while B (or L) has electroweak anomalies. A sphaleron is a

static (time independent) solution to the electroweak field equations of the Standard

Model, and it is involved in processes that violate baryon and lepton number. Such

processes cannot be represented by Feynman diagrams, and are therefore called non-

perturbative. This means that under normal conditions sphalerons are unobservably

rare. However, they would have been more common at the higher temperatures of

the early universe. In almost all theories of baryogenesis an imbalance of the number

of leptons and antileptons is formed first, and sphaleron transitions then recycle this

to an imbalance in the numbers of baryons and antibaryons. Below, we derive some

of the relations between various asymmetry densities, establishing the connection

between lepton asymmetry and baryon asymmetry.

As we will see, Sphaleron transitions lead to the baryon asymmetry by recycling

a lepton asymmetry. Further B + L asymmetry generated before EW transition i.e.

at T > TEW, will be washed out. However, since only left handed fields couple to

sphalerons, a non zero value of B + L can persist in the high temperature symmetric

phase if there exist a non vanishing B−L asymmetry [see below]. In weakly coupled

plasma, one can assign a chemical potential µi to each of the quark, lepton and Higgs

field.

ni − n̄i =
2

π2
g′T 3

(
2µi

T

)
,

where g′ is the particle species effective degree of freedom, T is the temperature at

any given time. This also implies

nB = B

(
4

π2
g′T 2

)

nL = L

(
4

π2
g′T 2

)
(1.21)



11

where B and L are baryon and lepton asymmetries respectively. Note that in SM

qLi =


 uLi

dLi


 B =

1

3
, L = 0

uRi, dRi

`Li =


 νLi

eLi


 B = 0, L = 1

νRi, eRi

Thus in Eq. (1.21)

B = 3× 1

3

∑
i

(2µqi + 2µui + 2µdi)

L =
∑

i

(2µli + 2µei) (1.22)

In high temperature plasma, quarks, leptons and Higgs interact via Yukawa and gauge

couplings and in addition, via the non perturbative sphaleron processes. In thermal

equilibrium all these processes yield constraints between various chemical potentials.

The effective interaction

OB+L = Πi (qLiqLiqLi`Li)

yields
∑

i

(3µqi + µli) = 0. (1.23)

Another constraint is provided by vanishing of total charge of plasma

∑
i


 31

3
2µqi + 34

3
µui

+3
(−2

3

)
µdi + (−1) 2µli + (−2) µei + 1

N
(1) µφ


 = 0

where we have used

Yq =
1

3
, Yu =

4

3
, Yd = −2

3
, Yl = −1, Ye− = −2, Yφ = 1

The above equation can be written as

∑
i

(
µqi + 2µui − µdi − µli − µei +

2

N
µφ

)
= 0. (1.24)
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Furthermore, invariance of Yukawa couplings q̄LiφdRi, etc gives

µqi − µφ − µdj = 0

µqi − µφ − µuj = 0

µli − µφ − µej = 0 (1.25)

When all Yukawa interactions are in equilibrium, these interactions establish equilib-

rium in different generations

µli = µl, µqi = µq etc.

Thus we obtain from Eqs (1.23) and (1.24)

µq = −1

3
µl

µq + 2µu − µd − µl − µe +
2

N
µφ = 0

giving

−4

3
µl + 2µu − µd − µe +

2

N
µφ = 0. (1.26)

Furthermore, Eqs. (1.25) implies

−1

3
µl − µφ − µd = 0

−1

3
µl − µφ − µu = 0

µl − µφ − µe = 0 (1.27)

Using the above equations, we can write (1.26) as

−4

3
µl + 2

(
−1

3
µl + µφ

)
−

(
−1

3
µl − µφ

)
− (−µl − µφ) +

2

N
µφ = 0.

Thus finally we can express µq, µu, µd, µe, and µφ in terims of µl.

µφ =
8

3
N

1

4N + 2
µl =

4N

6N + 3
µl

µd = −1

3
µl − µφ

= −1

3
µl − 4N

6N + 3
µl
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= −6N + 1

6N + 3
µl

µu = −1

3
µl + µφ

= −1

3
µl +

4N

6N + 3
µl

=
2N − 1

6N + 3
µl

µe = µl − µφ

= µl − 4N

6N + 3
µl

=
2N + 3

6N + 3
µl (1.28)

Hence from Eqs. (1.22)

B = N

{
−2

3
µl +

2N − 1

6N + 3
µl − 6N + 1

6N + 3
µl

}

= [−4N − 2 + 2N − 1− 6N − 1]
µl

6N + 3

= −N
(8N + 4)

3 (2N + 1)
µl

= −4N

3
µl (1.29)

L = N

(
2µl +

2N + 3

6N + 3
µl

)

=
14N2 + 9N

6N + 3
µl (1.30)

B − L = −8N2 + 4N + 14N2 + 9N

6N + 3
µl

= −22N2 + 13N

6N + 3
µl (1.31)

B

B − L
=

8N2 + 4N

22N2 + 13N

=
8N + 4

22N + 13

=
8Ng + 4nH

22Ng + 13nH

≡ a (1.32)

These relations hold for T À v. In general B/(B − L) is a function of v/T . For SM,

Ng = 3, nH = 1 so that a = 28/79.

Thus finally we obtain

YB( ≡ nB − nB̄

s
)
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= aYB−L =
a

a− 1
YL (1.33)

From the relation between entropy density and photon number density, s ' ηγ/7, we

find

YB = η
(ηγ

s

)
' 1

7
η

' 1

7
(6± 3)× 10−10.

It is this number we try to explain via underlying physical process and in the

context or realistic physical model. As mentioned earlier, there are several Baryon

Asymmetry mechanisms that undertake the task of explaining this number, we con-

centrate on the 3 most popular Leptogenesis ideas. In specific frameworks, we analyze

the mechanisms in details and derive interesting correlation with Leptogenesis and

the physics of neutrinos.



CHAPTER 2

LEPTOGENESIS IN MINIMAL LEFT-RIGHT

SYMMETRIC MODELS

2.1 Introduction

The discovery of neutrino flavor oscillations in solar, atmospheric, and reactor

neutrino experiments 13 may have a profound impact on our understanding of the

dynamics of the early universe. This is because such oscillations are feasible only if

the neutrinos have small (sub–eV) masses, most naturally explained by the seesaw

mechanism 14. This assumes the existence of super-heavy right–handed neutrinos Ni

(one per lepton family) with masses of order (108 − 1014) GeV . The light neutrino

masses are obtained from the matrix Mν ' MDM−1
R MD

T where MD and MR are

respectively the Dirac and the heavy Majorana right-handed neutrino (r.h.n) mass

matrices. The decay of the lightest right–handed neutrino N1 can generate naturally

an excess of baryons over anti-baryons in the universe 2 consistent with cosmological

observations. The baryon asymmetry parameter is an important cosmological ob-

servable constrained by Big Bang Nucleosynthesis and determined recently with high

precision by the WMAP experiment 11:

ηB ≡ nB

nγ

= (6.5+0.4
−0.3)× 10−10. (2.1)

The decay of N1 can satisfy all three of the Sakharov conditions 12 needed for suc-

cessful generation of ηB – it can occur out of thermal equilibrium, there is sufficient

C and CP violation, and there is also baryon number violation. The last condition

is met by combining lepton number violation in the Majorana masses of the right–

handed neutrinos with B + L violating interactions of the Standard Model arising

through the electroweak sphaleron processes 15. A compelling picture emerges, with

15
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the same mechanism explaining the small neutrino masses and the observed baryon

asymmetry of the universe. ηB appears to be intimately connected to the observed

neutrino masses and mixings.

A more careful examination of the seesaw structure would reveal that, although

there is an underlying connection, the light neutrino mass and mixing parameters

cannot determine the cosmological baryon asymmetry, when the seesaw mechanism

is implemented in the context of the Standard Model (SM) gauge symmetry. It is

easy to see this as follows. Without loss of generality one can work in a basis where

the charged lepton mass matrix and the heavy right–handed neutrino Majorana mass

matrix MR are diagonal with real eigenvalues. The Dirac neutrino mass matrix would

then be an arbitrary complex 3 × 3 matrix with 18 parameters (9 magnitudes and

9 phases). Three of the phase parameters can be removed by field redefinitions of

the left–handed lepton doublets and the right–handed charged lepton singlets. The

neutrino sector will then have 18 (= 15 + 3) parameters. 9 combinations of these will

determine the low energy observables (3 masses, 3 mixing angles and 3 phases), while

the lepton asymmetry (and thus ηB) would depend on all 18 parameters, leaving it

arbitrary.

In this section of the thesis we show that it is possible to quantitatively relate ηB

to light neutrino mass and mixing parameters by implementing the seesaw mechanism

in the context of a class of supersymmetric left–right models 10. We note that unlike

in the SM where the right–handed neutrinos appear as rather ad hoc additions, in the

left–right symmetric models they are more natural as gauge invariance requires their

existence. Supersymmetry has the well–known merit of solving the gauge hierarchy

problem. With the assumption of a minimal Higgs sector, it turns out that these

models predict the relation for the Dirac neutrino mass matrix, in a basis where the

charged lepton mass matrix is diagonal;

MD = c




me 0 0

0 mµ 0

0 0 mτ


 , (2.2)
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where c ' mt/mb is determined from the quark sector, leaving only the Majorana

mass matrix MR to be arbitrary. 3 phases in MR can be removed, leaving a total

of 9 parameters which determine both the low energy neutrino masses and mixings

as well as the baryon asymmetry. It then becomes apparent that ηB is calculable in

terms of the neutrino observables. There have been other attempts in the literature

to relate leptogenesis with low energy observables 16,17. Such attempts often make

additional assumptions such as MD = Mup (which may not be fully realistic), or

specific textures for lepton mass matrices.

While a lot has been learned from experiments about the light neutrino masses

and mixings, a lot remains to be learned. Our analysis shows that cosmology puts sig-

nificant restrictions on the light neutrino parameters. Successful baryogenesis requires

within our model that three conditions be satisfied: tan2 θ12 ' m1/m2, β ' α + π/2

and θ13 = (0.01− 0.07). Here θ12 and θ13 are elements of the neutrino mixing matrix,

mi are the light neutrino mass eigenvalues and α, β are the Majorana phases entering

in the amplitude for neutrinoless double beta decay. Future neutrino experiments will

be able to either confirm or refute these predictions.

The rest of the chapter is organized as follows. In Sec. 2.2 we review briefly

the minimal left–right symmetric model. In Sec. 2.3 we analyze leptogenesis in this

model. Here we derive constraints imposed on the model from the requirement of

successful leptogenesis. In Sec. 2.4 we calculate the lepton asymmetry parameter ε1

generated in the model in N1 decay. Sec. 2.5 summarizes the relevant Boltzmann

equations needed for computing the baryon asymmetry parameter. Sec. 2.6 provides

our numerical results for ηB. We devote Sec. 2.7 for Gravition discussion Finally, in

Sec. 2.7 we conclude.

2.2 Brief review of the minimal left-right symmetric model

Let us briefly review the basic structure of the minimal SUSY left–right sym-

metric model developed in Ref. 10. The gauge group of the model is SU(3)C ×
SU(2)L × SU(2)R × U(1)B−L. The quarks and leptons are assigned to the gauge

group as follows. Left–handed quarks and leptons (Q,L) transform as doublets
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of SU(2)L [Q(3, 2, 1, 1/3) and L(1, 2, 1,−1)], while the right–handed ones (Qc, Lc)

are doublets of SU(2)R [Qc(3∗, 1, 2,−1/3) and Lc(1, 1, 2, 1)]. The Dirac masses of

fermions arise through their Yukawa couplings to a Higgs bidoublet Φ(1, 2, 2, 0). The

SU(2)R × U(1)B−L symmetry is broken to U(1)Y by the VEV (vR) of a B − L = −2

triplet scalar field ∆c(1, 1, 3,−2). This triplet is accompanied by a left–handed triplet

∆(1, 3, 1, 2) (along with ∆̄ and ∆̄c fields, their conjugates to cancel anomalies). These

fields also couple to the leptons and are responsible for inducing large Majorana

masses for the νR. An alternative to these triplet Higgs fields is to use B − L = ±1

doublets χ(1, 2, 1,−1) and χc(1, 1, 2, 1), along with their conjugates χ̄ and χ̄c. In

this case non–renormalizable operators will have to be invoked to generate large νR

Majorana masses. For definiteness we shall adopt the triplet option, although our

formalism allows for the addition of any number of doublet Higgs fields as well. The

superpotential invariant under the gauge symmetry involving the quark and lepton

fields is

W = YqQ
T τ2Φτ2Q

c + YlL
T τ2Φτ2L

c + (fLT iτ2∆L + fcL
cT iτ2∆

cLc) . (2.3)

Under left–right parity symmetry, Q ↔ Qc∗, L ↔ Lc∗, Φ ↔ Φ†, ∆ ↔ ∆c∗, along

with WSU(2)L
↔ W ∗

SU(2)R
, WB−L ↔ W ∗

B−L and θ ↔ θ̄. As a consequence, Yq = Y†
q,

Yl = Y†
l , and f = f∗c in Eq. (3.7).∗ It has been shown in Ref. 10 that the hermiticity

of the Yukawa matrices (along with the parity constraints on the soft SUSY breaking

parameters) helps to solve the supersymmetric CP problem that haunts the MSSM.

Below vR, the effective theory is the MSSM with its Hu and Hd Higgs multi-

plets.† These are contained in the bidoublet Φ of the SUSY left-right model, but in

general they can also reside partially in other multiplets having identical quantum

numbers under the MSSM symmetry (such as the χ, χ doublet Higgs fields alluded

to earlier). Allowing for such a possibility, the superpotential of Eq. (3.7) leads to

the relations for the MSSM Yukawa coupling matrices

Yu = γYd, Y` = γYνD . (2.4)

∗We do not explicitly use these relations.
†The right-handed gauge bosons have masses of order vR ∼ 1014 GeV and thus

play no significant role in cosmology at T ∼ M1 ¿ vR.
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These relations have been called up–down unification 10. Here, the first relation of

Eq. (2.4) implies mt

mb
' γ tan β ≡ c where γ is a parameter characterizing how much

of Hu and Hd of MSSM are in the bidoublet Φ. The case of Hu,d entirely in Φ will

correspond to γ = 1 and tan β = mt/mb. At first sight the first of the relations in Eq.

(2.4) might appear phenomenologically disastrous since it leads to vanishing quark

mixings and unacceptable quark mass ratios. It was shown in the first paper of Ref.

10 that including the one–loop diagrams involving the gluino and the chargino and

allowing for a flavor structure for the soft SUSY breaking A terms, there exists a

large range of parameters (though not the entire range possible in the usual MSSM)

where correct quark mixings as well as masses can be obtained consistent with flavor

changing constraints.

It is the second of Eq. (2.4) that concerns us here. This relation would lead to

MD = cMl, with c ' mt/mb. The supersymmetric loop corrections for the leptonic

mass matrices are numerically small compared to similar corrections in the quark

sector, since no strongly interacting particles take part in these loops. Furthermore,

leptonic mixing angles are induced at tree level through the structure in the Majorana

neutrinos mass matrix, and any loop corrections to these will be subdominant. This

is especially true since two of the leptonic mixing angles are large to begin with. We

therefore ignore SUSY loop corrections to the lepton mass matrices.

One can thus go to a basis where the charged lepton and the Dirac neutrino mass

matrices are simultaneously diagonal. The heavy Majorana mass matrix MR = fvR

will then be a generic complex symmetric matrix. After removing three phases in

MR by field redefinitions, we are left with 9 parameters (6 magnitudes and 3 phases)

which determine the light neutrino spectrum as well as the heavy neutrino spectrum.

This in turns fixes the lepton asymmetry. The consequences of such a constrained

system for leptogenesis will be analyzed in the next section.

In principle the ∆(1, 3, 1, +2) Higgs field can also acquire a small VEV of order

eV 18. In this case the seesaw formula would be modified, as will the calculation of the

lepton asymmetry 18. We will assume such type II seesaw contributions proportional

to 〈∆〉 are zero in our analysis. This is consistent with the models of Ref. 10.
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Leptogenesis in the context of more general left-right symmetric models has been

analyzed in Ref. 19.

2.3 Leptogenesis in left-right symmetric framework

The SU(2)R × U(1)B−L symmetry is broken down to U(1)Y by the VEV

〈∆c〉 = vR ∼ 1014 GeV . At least some of the right-handed neutrinos have masses

below vR. We thus focus on the neutrino Yukawa coupling in the context of MSSM.

The SU(2)L × U(1)Y invariant Yukawa interactions are contained in the MSSM su-

perpotential

W = lHdY` ec + lHuYνD νc +
1

2
νcT CMRνc

︸ ︷︷ ︸, (2.5)

where l stands for the left-handed lepton doublet, and (ec, νc) denote the conjugates

of the right-handed charged lepton and the right–handed neutrino fields respectively.

Hu, Hd are the MSSM Higgs fields with VEVs vu, vd. Ml = Y` vd, MD = YνD vu and

MR are respectively the charged lepton, the Dirac neutrino, and the Majorana r.h.n

mass matrices. Then one can generate light neutrino masses by the seesaw mechanism

14

Mν = −MDM−1
R MD

T . (2.6)

There is mixing among generations in both MR and MD, the light neutrino mixing

angles will depend on both of these mixings. Within the SM or MSSM where MD is

an arbitrary matrix, the structure of the right-handed neutrino mass matrix can not

be fully determined even if the light matrix Mν were to be completely known from

experiments. As noted in Sec. 2, in the minimal version of the left-right symmetric

model one has

MD = cMl = c diag(me,mµ,mτ ) (2.7)

where c ' mt

mb
. Here we have already gone to a basis where the charged lepton mass

matrix is diagonalized. In the three family scenario, the relations between the flavor

eigenstates (νe, νµ, ντ ) and the mass eigenstates (ν1, ν2, ν3) can be expressed in terms
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of observables as

Mν = U∗Mdiag
ν U †, (2.8)

where Mdiag
ν ≡ diag(m1,m2,m3), with mi being the light neutrinos masses and U

being the 3 × 3 mixing matrix which we write as U = UPMNS.P . We parameterize

UPMNS
20 as

UPMNS =




Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3




=




c12c13 s12c13 s13e
−ıδ

−s12c23 − c12s13s23e
ıδ c12c23 − s12s13s23e

ıδ c13s23

s12s23 − c12s13c23e
ıδ −c12s23 − s12s13c23e

ıδ c13c23


 (2.9)

where cij ≡ cos θij, sij ≡ sin θij and δ is the Dirac CP violating phase which appears

in neutrino oscillations. The matrix P contains two Majorana phases unobservable

in neutrino oscillation, but relevant to neutrinoless double beta decay 21:

P =




eıα 0 0

0 eıβ 0

0 0 1


 . (2.10)

Combining Eq. (3.21) with the seesaw formula of Eq. (3.18) and solving for the

right-handed neutrino mass matrix we find

MR = c2Ml M
−1
ν Ml

=
c2m2

τ

m1




me

mτ
0 0

0 mµ

mτ
0

0 0 1


 UPMNSP 2




1 0 0

0 m1

m2
0

0 0 m1

m3


 UT

PMNS




me

mτ
0 0

0 mµ

mτ
0

0 0 1


 .(2.11)

This enables us to establish a link between high scale parameters and low scale ob-

servables.

We define a small expansion parameter ε as

ε =
mµ

mτ

' 0.059,

in terms of which we have

me = aeε
3mτ ,

m1

m3

= a13ε, θ13 = t13ε, θ23 =
π

4
+ t23ε. (2.12)
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Here ae, a13, t13 and t23 are . θ(1) parameters with ae = 1.400. These expansions

follow from low energy data assuming the picture of hierarchical neutrino masses.

We find that the requirement of generating adequate baryon asymmetry places

significant constraints on the neutrino mixing parameters. Specifically, the following

expansions

m1

m2

= tan2 θ12 + a12ε and β = α +
π

2
+ bε, (2.13)

where a12 and b are . θ(1) parameters are required. To see this, we note that the

CP asymmetry parameter ε1 generated in the decay of N1 is too small, of order

ε1 ∼ ε6

8π
∼ 2 × 10−9 if a12 or b are much greater than 1. This is because the heavy

neutrino masses would be strongly hierarchical in this case, M1 : M2 : M3 ∼ ε6 :

ε2 : 1. This can be altered to a weak hierarchy M1 : M2 : M3 ∼ ε4 : ε2 : 1 by

observing that the elements of the 2-3 block of MR of Eq. (2.11) are all proportional

to {m1

m2
e2iβ cos2 θ12 + e2iα sin2 θ12} and by demanding this quantity to be of order ε.

Eq. (2.13) is just this condition. ε1 ∼ ε4

8π
∼ 10−6 in this case, which can lead to

acceptable baryon asymmetry, as we show.

An immediate consequence of Eq. (2.13) is that neutrinoless double beta decay

is suppressed in the model. The effective mass relevant for this decay is found to be

mββ = |
∑

i

U2
eimi| ' |m2e

2iαε(a12c
2
12 − 2ibs2

12) + m3s
2
13e

−2iδ|. (2.14)

This is of the order m3ε
2 ∼ 10−4 eV, which would be difficult to measure. This ampli-

tude is small because of a cancelation between the leading contributions proportional

to m1 and m2 (see Eq. (2.13)).

In terms of these expansions, the r.h.n mass matrix becomes

MR =




A11ε
5 A12ε

3 A13ε
2

A12ε
3 A22ε

2 A23ε

A13ε
2 A23ε A33


 , (2.15)

where

A11 =
M◦ε a2

ee
2ıα cos 2θ12

cos2 θ12
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A12 = −M◦ε aee
2ıα tan θ12√
2

A13 =
M◦ε aee

2ıα tan θ12√
2

A22 =
M◦ε
2

{
a13 − a12e

2ıα cos2 θ12 − 2ıbe2ıα sin2 θ12 + 2eı(2α+δ)t13 tan θ12

}

A23 =
M◦ε
2

{
a13 + a12e

2ıα cos2 θ12 + 2ıbe2ıα sin2 θ12

}

A33 = −M◦ε e2ıα

{
t13e

ıδ tan θ12 + ıb sin2 θ12 − a13e
−2ıα

2
+

a12 cos2 θ12

2

}
. (2.16)

Here we defined M◦ = c2m2
τ

m1
. This hierarchical mass matrix is diagonalized by a series

of rotations U1, U2 and U3 such that;

(KU3U2U1)MR(KU3U2U1)
T =




|M1| 0 0

0 |M2| 0

0 0 |M3|


 (2.17)

where K = diag(k1, k2, k3) with ki = e−ıφi/2 being phase factors which make each

r.h.n masses Mi real, Mi = |Mi|eφi . V = (KU3U2U1)
T is the matrix that diagonalizes

MR. The unitary matrix U1 is given by

U1 =




1 0 −A13

A33
ε2

0 1 0

A?
13

A?
33

ε2 0 1


 . (2.18)

Similarly, U2 and U3 are unitary matrices with off-diagonal entries given by

(U2)23 = −A23

A33

ε , (U3)12 = −

(
A12 − A13A23

A33

)
ε

A22 − A2
23

A33

. (2.19)

The mass eigenvalues are found to be

M1 = M◦k2
1ε

5
(
2a13a

2
ee

2ıα sin2 θ12

)

× (
2t213e

2ı(α+δ) sin2 θ12 + (a12 + 2ıb + (a12 − 2ıb) cos 2θ12)a13 cos2 θ12

)−1

M2 = M◦k2
2ε

3e2ıα
(
a13(a12 + 2ıb + (a12 − 2ıb) cos 2θ12) + 2t213e

ı(δ+α) tan2 θ12

)

× (−a13 + ıbe2ıα + e2ıα(a12 cos2 θ12 − ıb cos 2θ12) + 2eıδt13 tan θ12

)−1

M3 =
M◦k2

3ε

2

(
a13 − ıbe2ıα − e2ıα(a12 cos2 θ12 − ıb cos 2θ12 + 2t13e

ıδ tan θ12)
)
.(2.20)

We use these results in the next section to determine ε1.
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2.4 CP violation and lepton asymmetry

Now that we have developed our framework, we can turn attention to the eval-

uation of the CP asymmetry ε1 generated in the decay of the lightest r.h.n N1. This

arises from the interference between the tree-level and one-loop level decay ampli-

tudes.∗ In a basis where the r.h.n mass matrix is diagonal and real, the asymmetry

in the decay of Ni is given by 22

εi = − 1

8πυ2 (M †
DMD)ii

∑
j=2,3

Im[(M †
DMD)ij]

2

[
f

(
M2

j

M2
i

)
+ g

(
M2

j

M2
i

)]
(2.21)

where f(x) and g(x) represent the contributions from vertex and self energy cor-

rections respectively. For the case of the non-supersymmetric standard model with

right-handed neutrinos, these functions are given by 22

fnon−SUSY (x) =
√

x

[
−1 + (x + 1) ln

(
1 +

1

x

)]
, gnon−SUSY (x) =

√
x

x− 1
,(2.22)

while for the case of MSSM plus right-handed neutrinos, they are given by

fSUSY
(x) =

√
x ln

(
1 +

1

x

)
, gSUSY

(x) =
2
√

x

x− 1
. (2.23)

Here υ is the SM Higgs doublet VEV, υ ' 174 GeV. For the case of MSSM, υ in Eq.

(2.21) is replaced by υ sin β. Hereafter, for definiteness in the numerical evaluation

of the Boltzmann equations, we assume the SM scenario. However, our result should

be approximately valid for the MSSM case as well.∗ Assuming a mass hierarchy

M1 ¿ M2 < M3 in the right-handed neutrino sector i.e., (x À 1), which is realized

in our model, see Eq. (2.15), the above formula is simplified to the following one:

ε1 = − 3

16πυ2(M †
DMD)11

∑

k=2,3

Im[ (M †
DMD)2

1k ]
M1

Mk

. (2.24)

∗We will assume M1 ¿ M2 < M3. In this case, even if the heavier right-handed
neutrinos N2 and N3 produce lepton asymmetry, it is usually erased before the decay
of N1.∗The function f + g in MSSM is twice as big compared to the SM. However this
is compensated by the factor 1

g∗
that appears in ηB which in MSSM is half of the SM

value.
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ε1 depends on the (1,1), (1,2) and (1,3) entries of M †
DMD. These quantities can be

related to the light neutrino mass and mixing parameters measurable in low energy

experiments. In the basis where MR is diagonal, these elements are

(M †
DMD)11 = (cmτ )

2
(
V31V

∗
31 + V21V

∗
21ε

2 + a2
eV11V

∗
11ε

6
)

(M †
DMD)12 = (cmτ )

2
(
V31V

∗
32 + V21V

∗
22ε

2 + a2
eV11V

∗
12ε

6
)

(M †
DMD)13 = (cmτ )

2
(
V31V

∗
33 + V21V

∗
23ε

2 + a2
eV11V

∗
13ε

6
)
, (2.25)

where V = KU3U2U1 is the unitary matrix diagonalizing MR. Straightforward calcu-

lations give, to leading order in ε,

(M †
DMD)11 = 8a2

ec
2m2

τ ε
4 cos2 θ12 sin2 θ12(a

2
13 + t213 tan2 θ12)

× 1/
{
8t413 sin4 θ12 + 32a13t

2
13b cos2 θ12 sin4 θ12 sin 2(α + δ)

+ a13 cos4 θ12[4a13(a
2
12 − b2) cos 2θ12 + a13(a

2
12 + 4b2)(3 + cos 4θ12)

+ 16a12t
2
13 sin2 θ12 cos 2(α + δ)]

}
(2.26)

(M †
DMD)2

12 = 2a2
ec

4m4
τ ε

6 tan2 θ12e
−ı(φ1−φ2)e−2ı(2α+δ)

{
4(a2

13 − t213) cos 2θ12 − 2t13 sin 2θ12

(2a13e
ı(2α+δ) − (a12 + 2ıb)e−ıδ) + 4(a2

13 + t213) + t13 sin 4θ12e
−ıδ(a12 − 2ıb)

}2

× 1/
{
[ıbeıδ − a13e

−ı(2α+δ) + a12e
−ıδ cos2 θ12 − ıbe−ıδ cos 2θ12 + 2t13 tan θ12]

2

× [3a12a13 − 2ıa13b + 4t213e
−2ı(α+δ) + 4 cos 2θ12(a12a13 − t213e

−2ı(α+δ)) +

a13(a12 + 2ıb) cos 4θ12]
2
}

(2.27)

(M †
DMD)2

13 = 2a2
ec

4m4
τ ε

4 sin2 θ12e
−ı(φ1−φ3)(a13 cos θ12 + e−ı(2α+δ)t13 sin θ12)

2

× 1/
{
a13 cos2 θ12(a12 − 2ıb + (a12 + 2ıb) cos 2θ12) + 2t213 sin2 θ12e

−2ı(α+δ)
}2
(2.28)

These analytical expressions have been checked numerically. In Figure (1) we have

plotted |ε1| as function of θ13 for fixed values of other observables. The solid line in

Fig (1) which corresponds to the exact numerical evaluation agrees very well with the

dashed line corresponding to the analytical expressions.

From Figure (1), it is apparent that θ13 is constrained in the model from cosmol-

ogy. If ε1 < 1.3× 10−7, the induced baryon asymmetry would be too small to explain
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observations. As can be seen from Figure (1), θ13 should lie in the range 0.01− 0.07

for an acceptable value of ε1. This result does not change very much with variations

in the other input parameters. Electroweak sphaleron processes 15 will convert the

induced lepton asymmetry to baryon asymmetry. The ratio of baryon asymmetry to

entropy YB is related to the lepton asymmetry through the relation 23:

YB = C YB−L =
C

C − 1
YL (2.29)

where C =
8Nf+4Nϕ

22Nf+13Nϕ
, Nf = 3 and Nϕ = 1, 2 in the case of the SM and MSSM

respectively. In either case C ∼ 1
3
. In Eq. (2.29), YB = nB

s
with s = 7.04 nγ.

There has been considerable interest in obtaining approximate analytical ex-

pression for baryon asymmetry 24,25. In order to estimate this, the dilution factor,

often referred to as the efficiency factor κ that takes into account the washout pro-

cesses (inverse decays and lepton number violating scattering) has to be known. As

an example, κ = (2 ± 1) × 10−2
(

0.01 eV
em1

)1.1±0.1

has been suggested in Ref. 24 from

which ηB ' 0.96 × 10−2εN1κ has been calculated. In our work we solve the cou-

pled Boltzmann equations numerically to estimate the baryon asymmetry without

referring to the efficiency factor.

2.5 Numerical Boltzmann equations

In this section we set up the Boltzmann equations for computing the baryon

asymmetry ηB generated through the out of equilibrium decay of N1. In our model the

right-handed neutrino masses are not independent of the CP asymmetry parameter

ε1. Therefore a self consistent analysis within the model is required.

In the early universe, at temperature of order N1 mass, the main thermal pro-

cesses which enter in the production of the lepton asymmetry are the decay of the

lightest r.h. neutrino,∗ its inverse decay, and the lepton number violation scattering,

∆L = 1 Higgs exchange plus ∆L = 2 r.h.n exchange 26. The production of the lepton

asymmetry via the decay of the r.h.n is an out-of-equilibrium process which is most

efficiently treated by means of the Boltzmann equations (BE).

∗In our analysis we stick to the case where the asymmetry is due only to the decay
of the lightest r.h. neutrino N1.
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Figure 2.1. Plots for CP asymmetry parameter ε1 using analytical (dotted) and nu-
merical (solid) results as a function of the neutrino oscillation angle θ13.
The input parameters used are a12 = 1, b = 1, ∆m2

¯ = 2.5× 10−5 eV 2,
∆m2

a = 5.54 × 10−3 eV 2 and {δ, α} = {π/4, π/4}. Our model requires
|ε1| & 1.3 × 10−7 to successfully generate an adequate number for the
BA. This criterium happens to be satisfied only in the region for which
0.01 . θ13 . 0.07, this interval is not too sensitive to variations in the
input parameters.
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The first BE which describes the evolution of the abundance of the r.h. neutrino

and which corresponds to the source of the asymmetry is given by†

dYN1

dz
= − z

Hs(z)

(
YN1

Y eq
N

− 1

) (
γ

D1
+ γ

S1

)
, (2.30)

where z = M1

T
. Here s(z) is the entropy density and γ

D1
, γ

S1
are the interaction rates

for the decay and ∆L = 1 scattering contributions, respectively.

The second BE relevant to the lepton asymmetry is given by

dYB−L

dz
= − z

s(z)H(M1)

[
ε1γD1

(
YN1

Y eq
N

− 1

)
+ γ

W

YB−L

Y eq
L

]
, (2.31)

where ε1 is the CP violation parameter given by Eq. (2.21) and γ
W

is the washout

factor which is responsible for damping of the produced asymmetry, see Eq. (2.49)

below. In Eqs. (2.30) and (2.31), Y eq
i is the equilibrium number density of a particle

species i, which has a mass mi, given by

Y eq
i (z) =

45

4π4

gi

g∗

(
mi

M1

)2

z2K2

(
miz

M1

)
, (2.32)

where gi is the particle internal degree of freedom (g
Ni

= 2, g
`
= 4). At temperatures

far above the electroweak scale one has g∗ ' 106.75 in the standard model, and

g∗ ' 228.75 in MSSM. H, the Hubble parameter evaluated at z = 1, and s(z), the

entropy density, are given by

H =

√
4π3g∗

45

M2
1

MP

, s(z) =
2π2g∗

45

M3
1

z3
, (2.33)

where MP = 1.22× 1019 GeV . We also have

γ
Sj

= 2γ(1)
tj

+ 4γ(2)
tj

. (2.34)

The decay reaction density γ
Dj

has the following expression:

γ
Dj

= neq
Nj

K1(z)

K2(z)
ΓNj

, (2.35)

†In this section we follow the notation of the first paper of Ref. 16 to which we
refer the reader for further details.
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where Kn(z) are the modified Bessel functions. ΓNj
of the r.h.n Nj is the tree level

total decay rate defined as

ΓNj
=

(λ†λ)jj

8π
Mj, (2.36)

where

neq
Ni

(T ) =
giTmi

2π2
K2

(mi

T

)
. (2.37)

We used the definition λ = MD/υ. We define the reaction density γ(i) of any process

a + b → c + d by

γ(i) =
M4

1

64π4

1

z

∫ ∞

(Ma+Mb)2

M2
1

dx σ̂(i)(x)
√

x K1

(√
xz

)
, (2.38)

where σ̂(j)(x) are the reduced cross sections for the different processes which con-

tribute to the Boltzmann equations. For the ∆L = 1 processes involving the quarks,

we have

σ̂
(1)
tj = 3αu

3∑
α=1

(
λ∗αjλαj

) (
x− aj

x

)2

, (2.39)

σ̂
(2)
tj = 3αu

3∑
α=1

(
λ∗αjλαj

) (
x− aj

x

)[
x− 2aj + 2ah

x− aj + ah

+
aj − 2ah

x− aj

ln

(
x− aj + ah

ah

)]
,(2.40)

where

αu =
Tr(λ†uλu)

4π
' m2

t

4πv2
, aj =

(
Mj

M1

)2

, ah =

(
µ

M1

)2

, (2.41)

µ is the infrared cutoff which we set to 800 GeV 26,27. For the ∆L = 2 r.h.n exchange

processes, we have

σ̂
(1)
N =

3∑
α=1

3∑
j=1

(
λ∗αjλαj

) (
λ∗αjλαj

)
A

(1)
jj +

3∑
α=1

3∑
n<j,j=1

Re (λ∗αnλαj) (λ∗αnλαj) B
(1)
nj(2.42)

σ̂
(2)
N =

3∑
α=1

3∑
j=1

(
λ∗αjλαj

) (
λ∗αjλαj

)
A

(2)
jj +

3∑
α=1

3∑
n<j,j=1

Re (λ∗αnλαj) (λ∗αnλαj) B
(2)
nj(2.43)

where

A
(1)
jj =

1

2π

[
1 +

aj

Dj

+
ajx

2D2
j

− aj

x

(
1 +

x + aj

Dj

)
ln

(
x + aj

aj

)]
, (2.44)

A
(2)
jj =

1

2π

[
x

x + aj

+
aj

x + 2aj

ln

(
x + aj

aj

)]
, (2.45)
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B
(1)
nj =

√
anaj

2π

[
1

Dj

+
1

Dn

+
x

DjDn

+
(
1 +

aj

x

) (
2

an − aj

− 1

Dn

)
ln

(
x + aj

aj

)
(2.46)

+
(
1 +

an

x

) (
2

aj − an

− 1

Dj

)
ln

(
x + an

an

)]
,

B
(2)
nj =

√
anaj

2π

{
1

x + an + aj

ln

[
(x + aj)(x + an)

ajan

]
+

2

an − aj

ln

(
an(x + aj)

aj(x + an)

)}
,(2.47)

and

Dj =
(x− aj)

2 + ajcj

x− aj

, cj = aj

3∑
α=1

(
λ∗αjλαjλ

∗
αjλαj

)

64π2
. (2.48)

Finally, γ
W

that accounts for the washout processes in the Boltzmann equations is

γ
W

=
3∑

j=1

(
1

2
γ

Dj
+

YNj

Y eq
Nj

γ(1)
tj

+ 2γ(2)
tj
−

γ
Dj

8

)
+ 2γ

(1)
N + 2γ

(2)
N . (2.49)

Here, we emphasize the so-called RIS (real intermediate states) in the ∆L = 2 interac-

tions which have to be carefully subtracted to avoid double counting in the Boltzmann

equations. This corresponds to the term −1
8
γ

Dj
in Eq. (2.49). For more details see

Refs. 24,28 and the first paper of Ref. 29.

2.6 Results and discussion

We are now ready to present our numerical results. First we make several

important remarks. Even though our model is supersymmetric, we have considered

in our BE analysis only the SM particle interactions. This is a good approximation

(see footnote 7). The authors in Ref. 27 have demonstrated that SUSY interactions

do not significantly change the final baryon asymmetry. Furthermore, we have not

included in our analysis the effects of renormalization group on the running masses

and couplings. The first paper of Ref. 29 has studied these effects. This paper has

also included finite temperature effects and ∆L = 1 scattering processes involving

SM gauge bosons, which we have ignored in our analysis. This should be a good

approximation since it is believed that these effects are significant in the weak washout

regime and our model parameters seem to favor the strong washout regime with

m̃1 =
(M†

DMD)11
M1

' 0.1 eV . Scattering processes involving gange bosons have also been

studied in Ref. 28 in the context of resonant leptogenesis where they have been shown

to be significant.
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Our next step is to put this model to the test and check its predictions. In order

to compute the value of the baryon asymmetry we proceed to numerically solve the

Boltzmann equations. We scan the parameter space corresponding to the parameters

a12, b, the oscillation angle θ13, the CP phase δ and the Majorana phase α. In order

to automatically satisfy the oscillation data, we input the following light neutrino

parameters:

∆m2
¯ = 2.5× 10−5eV 2, ∆m2

a = 5.54× 10−3eV 2, sin θ12 = 0.52. (2.50)

Using hierarchical spectrum, we see that the masses m1, m2 and m3 are fixed. On

the other hand we consider maximal mixing in the 2-3 sector of the leptonic mixing

matrix, i.e θ23 = π
4

+ t23ε with t23 being zero ( t23 ∼ θ(1) has minimal impact on ηB).

The CP phase δ and the Majorana phase α are allowed to vary in the intervals [0, 2π]

and [0, π] respectively. We remind the reader that the second Majorana phase β is

related to α through β ' α + π
2

+ bε. θ13 will be allowed to vary in the interval [0;

0.2] as it is bounded from above by reactor neutrino experiments.

In Figure (2), for a given set of input parameters, we illustrate the different

thermally averaged reaction rates Γ
X

=
γ

X

neq
N1

contributing to BE as a function of

z = M1

T
.

All rates at z = 1 fulfill the out of equilibrium condition (i.e. ΓX . H(z = 1)),

and so the expected washout effect due to the ∆L = 2 processes will be small. The

parameters chosen for this illustration are: δ = π/2, α = π/2, a12 = 0.01, b = 0.9,

cmτ = mt

(
mτ

mb

)
= 135 GeV and θ13 = 0.02. Eq. (2.50) fixes the light neutrino masses

to be: m1 = 0.00271292 eV , m2 = 0.00688186 eV and m3 = 0.0380442 eV . For this

choice we obtain | ε1 |' 2× 10−7. The calculated r.h.n masses in this case are

M1 = 9× 109 GeV , M2 = 8.7× 1011 GeV , M3 = 2.6× 1014 GeV . (2.51)

The mass of the lightest r.h.n is consistent with lower bound derived in Ref. 29, M1 ≥
2.4×109 GeV, for hierarchical neutrino masses assuming that one starts with zero N1

initial abundance (which is what we assumed in our calculation). This mass is also

in accordance with the upper bound found in Ref. 30 following a model independent
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study of the CP asymmetry, and the bound derived in Ref. 24 based on the estimation

of νR production and the study of the asymmetry washout.

Figure (3) represents the solution of the BE, N1 abundance and the baryon

asymmetry both as functions of z for the same set of parameters mentioned above.

The final baryon asymmetry, in terms of the baryon to photon ratio, is (see dark,

solid curve in Fig. (3) for z À 1)

ηB ' 6.03× 10−10. (2.52)

This number is inside the observational range of Eq. (2.1). Our codes were tested to

reproduce the results in the first paper of Ref. 16 before being applied to this model.

2.7 Gravitino Problem

Leptogenesis scenario assumes the existence of heavy right handed neutrinos

which are thermally generated with sufficiently adequate abundance, during the re-

heating phase occurring right after inflation. Therefore, the reheating temperature

TRH can not be much lower than 109 GeV, a bound on the right handed neutrino mass

30 necessary for the success of thermal Leptogenesis. This is already in conflict with

a stringent upper bound on TRH , which may be as low as 106 − 107 GeV, required

to avoid large Gravitino abundance which would upset the good predictions of BBN

31. In Supersymmetry, the Gravitino is the superpartner of the Graviton; with mass

of order natural SUSY scale; 1 TeV, therefore, the Gravitino is expected to be in the

range of 100GeV ≤ m3/2 ≤ 10 TeV. A combination of data and calculations of several

light elements abundance leads to the following recent upper bound 32

TRH ≤ (1.9− 7.5)107 GeV,

which has been derived for m3/2 ∼ 100 GeV. The standard thermal Leptogenesis with

normal hierarchical r.h neutrino seems to be at odds with the constraint above; one

has to invoke the BA in such way that these tensions are avoided. Thus M1 < TRH is

required, which for gravitino mass in the range 300 GeV to 3 TeV is in conflict with

the predictions of Eq. (2.51).
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There are several ways around this problem. (i) In gauge mediated SUSY

breaking scenario the gravitino is the lightest SUSY particle with mass in the range

10−4 eV < m3/2 < 100 GeV . For mg̃ < 100 MeV, there are no cosmological or

astrophysical problems. In such a scenario the axion can serve as the dark matter.

(ii) In anomaly mediated SUSY breaking scenario, the gravitino mass is enhanced

by a loop factor compared to the squark masses and is naturally of order 100 TeV.

Such a gravitino would decay with a shorter lifetime without affecting big bang nu-

cleosynthesis. The gaugino is a natural dark matter candidate in this case. (iii) The

gravitino itself can be the LSP and dark matter with a mass of order 100 GeV, in

which case it does not decay 33. Other solutions include changing the dynamics of

the leptogenesis process by invoking (iii) non–thermal leptogenesis 34, (iv) resonant

leptogenesis 28,35, or (v) soft leptogenesis 36. In the following two chapters we invoke

Baryon Asymmetry via Resonant and Soft Leptogenesis. Especially, Our predictive

inverted neutrino hierarchy involving two nearly degenerate r.h.n, allows for the self-

energy contribution to the CP asymmetry to be resonantly enhanced, while the r.h.n

masses are low enough to be compatible with the reheating temperature bound. It

will be shown that baryon asymmetry can be maximized as long as M (4−7)106 GeV

or above9.



34

0.01 0.1 1 10 100
z = M1 �T

0.0001

10

1. ´ 106

1. ´ 1011

1. ´ 1016

1. ´ 1021

G
X
�
H

 H
z

=
1L H HzL

�������������������������������
H Hz = 1L

GDL = 2
�������������������������������
H Hz = 1L

GDL = 1
�������������������������������
H Hz = 1L

GD1
�������������������������������
H Hz = 1L

Figure 2.2. Various thermally averaged reaction rates ΓX contributing to BE nor-
malized to the expansion rate of the Universe H(z = 1). The
straight greyed line represents H(z)/H(z = 1), the dashed line is for
ΓD1/H(z = 1), the dotted-dashed line represents Γ∆L=1/H(z = 1)
processes and the red curve represents Γ∆L=2/H(z = 1).
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2.8 Conclusion

An attractive feature of the seesaw mechanism is that it can explain the origin of

small neutrino masses and at the same time account for the observed baryon asymme-

try in the universe by the out of equilibrium decay of the super-heavy right handed

neutrinos. It is then very tempting to seek a link between the baryon asymmetry

parameter ηB induced at high temperature and neutrino mass and mixing parame-

ters observable in low energy experiments. No quantitative connection can be found

between them in the SM. There have been several attempts in the literature 16,37,38

to establish a relationship between the two. In this paper we have addressed this

question in the context of a class of minimal left–right symmetric models.

In the models under consideration the minimality of the Higgs sector implies

that Ml and MD (charged lepton and Dirac neutrino mass matrices) are proportional.

As a result, the entire seesaw sector (including the heavy right–handed neutrinos and

the light neutrinos) has only 9 parameters. This is the same number as low energy

neutrino observables (3 masses, 3 mixing angles and 3 phases). As a result we are

able to link the baryon asymmetry of the universe to low energy neutrino observables.

This feature is unlike the SM seesaw which has too many arbitrary parameters. Our

numerical solution to the coupled Boltzmann equations shows that this constrained

system with Ml ∝ MD leads to an acceptable baryon asymmetry. The requirement

of an acceptable baryon asymmetry restricts some of the light neutrino observables.

We find that tan2 θ12 ' m1/m2, 0.01 . θ13 . 0.07 and β ' α + π/2 are needed for

successful baryogenesis. Future neutrino oscillation experiments can directly probe

into the dynamics of the universe in its early stages.



CHAPTER 3

BARYON ASYMMETRY VIA SOFT

LEPTOGENESIS

3.1 Introduction

In this chapter we analyze lepton asymmetry induced in the right handed sneu-

trino ν̃R1 − ν̃†R1 mixing and decay through WR exchange in a class of SUSYLR mod-

els. Usual soft leptogenesis scenario requires small B−term and relatively low heavy

neutrino mass. We include the effect of SUSY breaking contribution on the break-

ing parameters; and compute r.h.n soft parameters to show that Soft Leptogenesis

mechanism implemented in SUSYLR framework leads to adequate baryon number

asymmetry in the universe. We employ Renormalization Group Equations analysis

and show that one achieve this result with natural values of Soft breaking parameters;

B ∼ 100 GeV . In this class of models; Mν̃R1
∼ MWR

∼ (109 − 1010) GeV, is not

required to be small as originally proposed. There is no excessive CP violation in

these models even when we assume universality of parameters.

3.1.1 Soft Leptogenesis, a brief review

Recently, soft Supersymmetry breaking effects have been utilized to explain the

Baryon Asymmetry via the ”Soft leptogenesis” mechanism 39,40. In these models;

lepton number violation occurs in the decay of the heavy right handed neutrino and

sneutrino, νc → Lφ†, ν̃c → Lφ̃†, etc. CP asymmetry needed for Leptogenesis the

mixing of ν̃c − ν̃c† trough soft supersymmetric breaking terms. The relevant super-

potential is given by;

W = YD`νcHu +
1

2
MRνcνc (3.1)

37
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which generates small neutrino masses via the seesaw mechanism. Here, the light

neutrino masses are obtained from the matrix Mν ' MDM−1
R MD

T where MD =

YD 〈Hu〉 and MR are respectively the Dirac and the heavy Majorana right-handed

neutrino (r.h.n) mass matrices. In supersymmetric models with seesaw mechanism,

Soft SUSY breaking effect involving ν̃c, should be taken into account for the study of

Leptogenesis. The corresponding soft SUSY breaking Lagrangian is;

−Lsoft = m̃2ν̃c†ν̃c + (
1

2
BMRν̃cν̃c + AYD

˜̀̃νcH + h.c.) (3.2)

The parameters A and B in Eq. (3) are complex in general. Their presence will

introduce mixing and CP−violation in the ν̃c − ν̃c† system, analogous to the well

known Ko −K
o

system (see appendix A.2 for details). Successful Soft Leptogenesis

can occurs even with one family of neutrinos, so we focus on that case. The mass

matrix of the ν̃c − ν̃c† system is given by,

m2
ν̃c−ν̃c† =

( |MR|2 BMR

B∗M∗
R |MR|2

)
(3.3)

Since the r.h.n mass MR is much larger than the SUSY breaking scale B, diagonliza-

tion of the mass matrix of Eq. (4) will lead to the mass eigenstates Ñ± = 1
2
(ν̃c± ν̃c†)

with masses eigenvalues,

M± ' M1(1± |B|
2M1

) , (3.4)

The mass and width difference of the two sneutrino mass eigenstates are given by

∆m = |B|, ∆Γ =
2|A|Γ
MN

. (3.5)

After Sphaleron effect takes place the final Baryon asymmetry (BA) is determined to

be;

nB

s
' −10−3 d

[
4Γ|B|

4|B|2 + Γ2

] |A|
M1

sin φ . (3.6)

φ is a CP inducing phase desired to be of order 1; O(1), it would in general be con-

tained in the trilinear or bilinear couplings of r.h.n. d is an efficiency parameter,

often referred to as dilution factor. In general, it depends on the production mech-

anism for the r.h. sneutrino. Soft leptogenesis can be successful for rather low ν̃R1
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Figure 3.1. Interfering Ñ− decay amplitudes for the fermionic final states. The blob
in the diagram contains a sum of all possible intermediate states. The
mixing between the two states Ñ− and Ñ+ leads to CP violation.

masses which is favored from the Gravitino point of view, however, unconventionally

suppressed B−term of order θ(1) GeV is required for this picture to succeed.

Supersymmetric left–right (SUSYLR) models based on the SU(3)C×SU(2)L×
SU(2)R × U(1)B−L gauge group naturally includes r.h.n and implements seesaw for

neutrino masses. In left–right models, parity symmetry imposes hermiticity on the

Yukawa matrices and constrains the Soft breaking parameters in a way that helps solve

the supersymmetric CP problem that hunts MSSM, leading to vanishing EDM, while

allowing sufficient CP violation in ν̃R mixing. It is therefore interesting to analyze the

idea of Soft leptogenesis in the context of Left–Right symmetry. Here, we study the

effect of the interactions of the SU(2)R gauge boson WR on the generation of the the

primordial lepton asymmetry via the Soft leptogenesis mechanism. B − L violation

occurs when Left–Right symmetry is broken by the VEV vR of the B − L = −2

triplet scalar field ∆c(1, 1, 3,−2), which gives Majorana masses to the r.h sneutrino

and, lepton number is violated in their decays: νR → Lφ†, νR → Lcφ and ν̃R1 → ẽRud̄

as well as ν̃R1 → ẽ∗Rūd, where this later is mediated by the right handed gauge boson

WR. We show that ν̃R1 decay through WR exchange can dominate the traditional

νR → Lφ† frequently used decay to explain BA. Further more, by RGE analysis we
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show that the requirement of unconventionally small B−term is no longer needed, in

addition, we use RGE running and SUSY breaking effect to naturally account for the

complex O(1) phase as dictated by the scenario success. The mass of r.h sneutrino

can be ∼ MWR
∼ (109 − 1010) GeV .

The rest of the chapter is organized as follows. In Sec. 3.2 we review the

minimal left–right symmetric model. In Sec. 3.3 we analyze leptogenesis in this

model. Here we review RGE and discuss their running effect of the soft breaking

parameters in the model from the requirement of successful soft leptogenesis. In Sec.

3.4 we calculate the main two loop amplitude responsible for the mixing of ν̃c − ν̃c†.

In Sec. 3.5 we analyze SUSY breaking effect on these parameters. we calculate

the lepton asymmetry parameter ε1 generated in the model in ν̃R1 decay. Sec. 3.6

provides our numerical results for ηB. Finally, in Sec. 3.7 we conclude.

3.2 The minimal left-right symmetric model

Let us briefly review the basic structure of the minimal SUSY left–right sym-

metric model developed in Ref. 10. The gauge group of the model is SU(3)C ×
SU(2)L × SU(2)R × U(1)B−L. The quarks and leptons are assigned to the gauge

group are listed in the table.

Left–handed quarks and leptons (Q,L) transform as doublets of SU(2)L [Q(3, 2, 1, 1/3)

and L(1, 2, 1,−1)], while the right–handed ones (Qc, Lc) are doublets of SU(2)R

[Qc(3∗, 1, 2,−1/3) and Lc(1, 1, 2, 1)]. The Dirac masses of fermions arise through

their Yukawa couplings to a Higgs bidoublet Φ(1, 2, 2, 0). The SU(2)R × U(1)B−L

symmetry is broken to U(1)Y by the VEV (vR) of a B − L = −2 triplet scalar field

∆c(1, 1, 3,−2). This triplet is accompanied by a left–handed triplet ∆(1, 3, 1, 2) (along

with ∆̄ and ∆̄c fields, their conjugates to cancel anomalies). These fields also couple

to the leptons and are responsible for inducing large Majorana masses for the ν̃R. An

alternative to these triplet Higgs fields is to use B−L = ±1 doublets χ(1, 2, 1,−1) and

χc(1, 1, 2, 1), along with their conjugates χ̄ and χ̄c. In this case non–renormalizable

operators will have to be invoked to generate large neutrino Majorana masses. For

definiteness we shall adopt the triplet option, although our formalism allows for the
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TABLE 3.1. Particle assignment in SUSYLR gauge group
SU(3)C × SU(2)L × SU(2)R × U(1)B−L.

SU(3)c SU(2)L SU(2)R U(1)B−L

Q 3 2 1 −1
3

L 1 2 1 −1
3

Qc 3 1 2 -1

Lc 1 1 2 +1

∆ 1 3 1 +2

∆̄ 1 3 1 -2

∆c 1 1 3 -2

∆̄c 1 1 3 +2

Φ 1 2 2 0

addition of any number of doublet Higgs fields as well. Also, in order to keep the

model general one has to allow for a number of singlet fields S(1, 1, 1, 0), for simplicity

we only we assume one singlet. The most general superpotential and soft breaking

terms invariant under the gauge symmetry are

W = ihQ(QT τ2ΦaQ
c) + ihL(LT τ2ΦaL

c) + if(LT τ2∆L) + ifc(L
cT τ2∆

cLc)

+ M∆ Tr
(
∆∆̄

)
+ M∆c Tr

(
∆c∆̄c

)
+ MΦa Tr

(
ΦT

a τ2Φaτ2

)

+ µ∆S Tr
(
∆∆̄

)
+ µ∆cS Tr

(
∆c∆̄c

)
+ µΦaS Tr

(
ΦT

a τ2Φaτ2

)

+
1

6
YSS3 + 1

2
MSS2 + LSS , (3.7)

and the corresponding soft breaking terms;

−LSB = 1
2

(
MG

3 g̃g̃ + MG
L W̃LW̃L + MG

R W̃RW̃R + MG
1 B̃B̃ + h.c.

)

+
[
iAQQ̃T τ2ΦaQ̃c + iALL̃T τ2ΦaL̃c + iAf L̃

T τ2∆L̃

+ iAfcL̃c
T
τ2∆

cL̃c + A∆S Tr
(
∆∆̄

)
+ A∆cS Tr

(
∆c∆̄c

)

+ AΦaS Tr
(
ΦT

a τ2Φaτ2

)
+

1

6
ASS + h.c.

]
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+
[
B∆ Tr

(
∆∆̄

)
+ B∆c Tr

(
∆c∆̄c

)
+ BΦa Tr

(
ΦT

a τ2Φaτ2

)
+ 1

2
BSS2 + h.c.

]

+
[
m2

QQ̃T Q̃∗ + m2
QcQ̃c

†
Q̃c + m2

LL̃T L̃∗ + m2
LcL̃c

†
L̃c

+ m2
∆ Tr

(
∆†∆

)
+ m2

∆̄ Tr
(
∆̄†∆̄

)
+ m2

∆c Tr
(
∆c †∆c

)
+ m2

∆̄c Tr
(
∆̄c †∆̄c

)

+ m2
Φa

Tr
(
Φ†

aΦa

)
+ m2

S | S |2
]
, (3.8)

Under left–right parity symmetry,

Q ↔ Qc∗, L ↔ Lc∗, Φa ↔ Φ†
a, ∆ ↔ ∆c∗ (3.9)

WSU(2)L
↔ W ∗

SU(2)R
, WB−L ↔ W ∗

B−L, and θ ↔ θ̄ (3.10)

By demanding parity invariance from this theory, we also find the following relations

among the parameters 41,42:

µΦa = µ∗Φa
M∆ = M∗

∆c MΦa = M∗
Φa

MS = M∗
S

hQ = h†Q hL = h†L f = f ∗c µ∆ = µ∗∆c

LS = L∗S MG
1 = MG∗

1 MG
L = MG∗

R MG
3 = MG∗

3

gL = gR B∆ = B∗
∆c BΦa = B∗

Φa
BS = B∗

S,

where gL and gR are the SU(2)L and SU(2)R coupling constants, respectively, and MG
i

are the gauge group masses. The correspondences, hQ = h†Q, hL = h†L, and f = f ∗c in

the above relations are very important feature of Left–Right symmetry. It has been

shown in Ref. 10 that the hermiticity of the Yukawa matrices (along with the parity

constraints on the soft SUSY breaking parameters) helps solve the supersymmetric

CP problem that haunts the MSSM. These constraints also lead to zero EDM at the

νR scale. In fact, EDM for the neutron and electron is only induced by RGE, but

remains close to the current experimental limit. Notice that our B−term for r.h.n is

contained in the term Afc(L̃c
T
τ2∆

cL̃c), so in general Afc would induce r.h.n B−term.

We will discuss this in great detail in the following section.

Below vR, the effective theory is the MSSM + r.h.n with its Hu and Hd Higgs

multiplets. These are contained in the bidoublet Φa of the SUSY left-right model, but

in general they can also reside partially in other multiplets having identical quantum
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numbers under the MSSM symmetry (such as the χ, χ doublet Higgs fields alluded

to earlier) ∗.

3.3 ν̃R decay mediated by SU(2)R gauge boson WR

The left-right supersymmetric potential SU(2)R×U(1)B−L symmetry is broken

down to U(1)Y by the VEV 〈∆c〉 = vR ∼ MWR
. We assume the right-handed neutrino

νR1 has masse below vR. We focus on a single generation sneutrino and discuss the

effect of RGE running on the soft leptogenesis mechanism. With SM gauge symmetry,

the effective superpotential involving r.h.n below vR is;

W = (f ij
d h1d̃

∗
Riq̃Lj + f ij

u h2ũ
∗
Riq̃Lj + f ij

l h1ẽ
∗
Ril̃Lj + f ij

ν h2ν̃
∗
Ril̃Lj + ... + h.c.).

+(µh1h2 +
1

2
M ij

ν ν̃∗Riν̃
∗
Rj + h.c.) (3.11)

and the analogous soft breaking Lagrangian

−Lsoft = (Aij
d h1d̃

∗
Riq̃Lj + Aij

u h2ũ
∗
Riq̃Lj + Aij

l h1ẽ
∗
Ril̃Lj + Aij

ν h2ν̃
∗
Ril̃Lj + ... + h.c.).

+(Bµh1h2 +
1

2
Bij

ν M ij
ν ν̃∗Riν̃

∗
Rj + h.c.) (3.12)

These parameters satisfy the boundary condition at vR, Ad = Au = AQ. Mixing

between the sneutrino ν̃R1 and anti-sneutrino ν̃†R1 in the Soft Lagrangian is introduced

via the soft SUSY breaking terms, giving a source for the CP violation in the ν̃R1−ν̃†R1

system in a similar way it happens in the K0 − K0 system. θ(1) non-vanishing CP

inducing phase φ would in general be contained in A−term or B−term of r.h.n. It is

this CP violation that is considered to be source of lepton number asymmetry. After

sphaleron effect take place, the final baryon number to entropy ratio is determined

to be

nB

s
= −10−3 d

[
4Γ|Bν |

4|Bν |2 + Γ2

] |Aν |
M1

sin φ . (3.13)

∗Allowing for such a possibility, the superpotential of Eq. (3.7) leads to the re-
lations for the MSSM Yukawa coupling matrices fu = γfd, and, f` = γfνD These
relations have been called up–down unification 10. Here, the first relation implies
mt

mb
' γ tan β ≡ c where γ is a parameter characterizing how much of Hu and Hd of

MSSM are in the bidoublet Φ. The case of Hu,d entirely in Φ will correspond to γ = 1
and tan β = mt/mb. The consequences of such relations on Baryon asymmetry have
been analyzed in the context of thermal Leptogenesis 7. Leptogenesis in the context
of more general left-right symmetric models has been analyzed in Ref. 19
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M1 is the lightest r.h.n mass and the decay width Γ =
(M†

DMD)11
4πυ2 M1. d is efficiency

factor; often referred to as a dilution factor, which takes into account the washout pro-

cesses (inverse decays and lepton number violating scattering).∗ The determination

of the dilution factor involves the integration of the full set of Boltzmann equations.

A simple approximated solution which has been frequently used is given by 43

d =





√
0.1 κ exp

(−4
3

4
√

0.1 κ
)

, κ & 106

0.24(κ ln κ)−3/5 , 10 . κ . 106

1/(2κ) , 1 . κ . 10

1 , 0 . κ . 1

(3.14)

where the parameter κ, which measures the efficiency in producing the asymmetry,

characterizes the wash-out effects due to the inverse decays and lepton number vio-

lating scattering processes together with the time evolution of the system, is defined

as the ratio of the thermal average of the νR1 decay rate and the Hubble parameter

at the temperature T = M1,

κ =
Γ

H
, where H =

√
4π3g∗

45

M2
1

Mpl

(3.15)

Mpl ' 1.22× 1019 GeV is the Planck mass and, g∗ is the effective degree of freedom.

ν̂R → ẽ+ud̄(ẽ−ūd)

As we pointed out before; once one considers Left–Right symmetry, a lepton number

violating decay arises via the SU(2)R gauge boson WR as it is indicated in the figure

(1). If we call Γ2 the decay width of the process ν̂R → ẽ+ud̄(ẽ−ūd) and, Γ1 =

(Y †ν Yν)11
8π

M1, being the decay width of νR → Lφ†(Lcφ), then Γ2 become the leading

lepton violating decay and Γ2 dominates if Γ2 ≥ Γ1. In this case, BA will mainly be

driven by decays such as ν̂R → ẽ+ud̄. Given that

Γ2 '
9G2

F M4
wL

192π3

M5
1

M4
wR

, (3.16)

∗Recently there has been considerable effort in obtaining semi analytical expres-
sions for the efficiency so one does not have to solve Boltzmann equations every time.
For e.g; see 24,25. Rigorous derivations, however, have to include flavor effects on
leptogenesis 43.
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Figure 3.2. Diagrams Contributing to Leptogenesis: The lightest ν̂R decay diagrams
via SU(2)R gauge boson exchange that appear in Left–Right models,
corresponding to ν̂R → ẽ+ud̄(ẽ−ūd). The lepton asymmetry can arise
through ν̃R1 − ν̃†R1 mixing and decay.
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the condition translate into

(Y †
ν Yν)11 . 1.55× 10−4

(
M1

MwR

)4

(3.17)

On the other hand, if 0 . (Γ2/H) . 1, the dilution parameter d can enhanced to

equal 1, which puts a constraint on the mass M1. A natural value for Γ2 follows from

SUSY breaking scale and preferred to be Γ2 ∼ 100 GeV. For optimal efficiency, i.e,

Γ2 ∼ H ∼ 100 GeV, we find M1 ' 6.92×109 GeV. From Eq. (3.16) we then compute

MwR
∼ 4.45× 1010 GeV. The condition on the Dirac Yukawa coupling in Eq. (3.17)

can be easily realized in Left–Right symmetry in way that is not in conflict with light

neutrinos masses. Working a basis where the charged lepton mass matrix is diagonal

M` = D`, there is mixing among generations in both MR and MD, where MD = vYν ,

the light neutrino mixing angles will depend on both of these mixings. While there is

some arbitrariness in the forms for MD and MR, one simple possibility consistent with

Soft Leptogenesis is as follows. As noted before, due left-right symmetry and assuming

the existence of two or more bidoublet Φa, the dirac mass matrix is hermitian and

can be diagonlized as MD = UDU † and r.h.n mass matrix as MR = V DRV T , where

U and V are unitary matrices. One can then generate light neutrino masses via the

seesaw mechanism ∗ 14

Mν = MDM−1
R MD

T . (3.18)

Employing Eq. (3.18) to solve for Mν ,

Mν = UDU †V ∗D−1
R V †U∗DUT (3.19)

we explicitly make the simple choice U = V ∗, so that Mν becomes Mν = UDD−1
R DUT ,

where D ≡ diag(d1, d2, d3) and DR ≡ diag(M1,M2,M3). Mν is then found to be,

Mν = U




d2
1/M1 0 0

0 d2
2/M2 0

0 0 d2
3/M3


 UT (3.20)

∗In principle the ∆(1, 3, 1, +2) Higgs field can also acquire a small VEV . θ(eV ).
In this case the seesaw formula would be modified 18, as will the calculation of the
lepton asymmetry. We will assume such type II seesaw contributions proportional to
〈∆〉 are zero in our analysis. This is consistent with the models of Ref. 10.
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In the three family scenario, the relations between the flavor eigenstates (νe, νµ, ντ )

and the mass eigenstates (ν1, ν2, ν3) can be expressed in terms of observables as

Mν = U∗
PMNSMdiag

ν U †
PMNS, (3.21)

where Mdiag
ν ≡ diag(m1,m2,m3), with mi being the light neutrinos masses and

UPMNS being the 3× 3 mixing matrix, we simply chosen U such that U∗ = UMNPS.

We get the following identity;




m1 0 0

0 m1 0

0 0 m3


 =




d2
1/M1 0 0

0 d2
2/M2 0

0 0 d2
3/M3


 (3.22)

In a basis where the r.h.n mass matrix is diagonal, the Dirac mass matrix is

M̂D = MDV ∗ = MDU = MDU∗
PMNS. The condition of Eq. (3.17) then reads

(M̂ †
DM̂D)11 = D2

11 = m1M1 . 1.16× 10−2 GeV2, (3.23)

therefore, the lepton number violating right handed sneutrino decay via the SU(2)R

gauge boson dominance can be easily realized, as long as m1 . 1.67×10−3 eV, which

is consistent with neutrino experiments.

It was concluded before that in order for Soft leptogenesis to succeed, the value

of M1 has to be very small; much smaller than the value naturally predicted by seesaw

of (109 −1010)GeV. Seesaw scale is also favorable by the traditional thermal leptoge-

nesis, however, it makes M1 borderline compatible with bounds derived on reheating

temperature as imposed by Gravitino production, but not conclusively excluded 31.

Furthermore, it is believed that the Soft bilinear coupling has to be significantly be-

low the MSUSY for this mechanism to provide viable leptonic asymmetry. In the

following we show that the above requirements do not hold in Left–Right symme-

try. In fact, Soft leptogenesis can proceed in Left-Right model with natural values of

M1 ∼ (109 −1010)GeV and natural scale for the bilinear coupling B ∼ Γ ∼ 100 GeV.

Also, by employing SUSY breaking effects on the running of RGE, we are able to

naturally generate the θ(1) complex phase that drives leptogenesis.
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3.4 Computing the two loop amplitude leading to ν̃c − ν̃c† mixing

In our analysis in the previous section, we have left out an important detail,

the A-term appearing in Eq (3.13) was conveniently assumed to have the right order

of magnitude for our estimate of Baryon Asymmetry to have the right order. Since

we are introducing a new decay; ν̃c → ecũcdc(ecucd̃c), to be the potentially dominant

decay, leading to adequate baryon asymmetry, such statement has to enforced by

computing the corresponding decay amplitude exactly. Our idea is that the mixing

ν̃c − ν̃c† in Left-Right symmetry is introduced and mediated by the SU(2)R gauge

boson (WR). The Feynman Diagram leading to this picture has been depicted in Fig

(3.4).

A = −g3
Rm1/2Mλ

f√
2
(3× 3)

∫ ∫
d4k

(2π)4

d4q

(2π)4

× Tr

[
k/

(
1+γ5

2

)

k2 −m2
` + ıε

(k/ + p/ + Mλ)

(k + p)2 −M2
λ + ıε

q/
(

1−γ5

2

)

q2 −m2
d + ıε

(k/ + p/ + Mλ)
(

1+γ5

2

)

(k + p)2 −M2
λ + ıε

× Mλ

(
1−γ5

2

)

(k + p)2 −M2
λ + ıε

]
1

(k + p− q)2 −m2
ũc + ıε

(3.24)

= M1/2Nf

∫ ∫
d4k

(2π)4

d4q

(2π)4

× k(k + p).q(k + p)− (k.q)(k + p)2

(k2 −m2
e + ıε)(q2 −m2

d + ıε) [(k + p)2 −M2
λ + ıε]

3
[(k + p− q)2 −m2

ũc + ıε]
.

The 8-dimensional integral has to be done, notice the topology of our denomi-

nator with 6 propagators. The small masses can be set to zero, i.e, m2
e = m2

d = m2
ũc ,

without introducing any infrared divergence. The denominator then takes the form;

Den = (k2 + ıε)
[
(k + p− q)2 + ıε

] [
(k + p)2 −M2

λ + ıε
]3

(q2 + ıε), (3.25)

we carry out the d4q-integral first, but to do this, the denominator has to be sim-

plified to become of the form Den = qn − f (k, p, Mλ, ıε). First we employ Feynman

parametrization on the denominator;

1

a b c d3
=

Γ(6)

2

∫ 1

0

dX1

∫ 1

0

dX2

∫ 1

0

dX3

∫ 1

0

dX4
X2

4δ (1−X1 −X2 −X3 −X4)

(aX1 + bX2 + cX3 + dX4)
6 ,

(3.26)
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where a = (k2 + ıε), b = (q2 + ıε), c = ((k + p− q)2 + ıε) , d = ((k + p)2 −M2
λ + ıε)

3

and p2 = M2
ν̃c . After manipulating a shift on the momentum q, the d4q part of Eq

(3.24) becomes of regular form;

J =

∫ +∞

−∞

d4q

(2π)4

1

[q4 + f (k, p,Mλ, ıε)]
6 , (3.27)

for which we can use the known dimensional regularization formulas. We are able to

perform the d4k integral part of Eq (3.24) in similar fashion. The resulting quantity

after integrating out q and k takes the form;

A =
6√

2(16π2)2
fg3

Rm1/2Mλ

∫ 1−X3−X4

0

dX1

∫ 1−X4

0

dX3

∫ 1

0

dX4
X3X

2
4

(1−X1 −X4)
7

1

A4

×


ln Λ2 − ln

(
B2p2

A2
− C

A

)
− −p2

2

(
1− B

A

) (
1− 2B

A

)
(

B2p2

A2 − C
A

) − −p4

6
B
A

(
1− B

A

)3

(
B2p2

A2 − C
A

)2 − 11

6




(3.28)

where A, B, C are functions of Xi’s, Mλ and ıε as follows;

A = 1 +
X2

3

(1−X1 −X4)
2 −

1 + X3

1−X1 −X4

B =
X2

3

(1−X1 −X4)
2 −

X3 + X4

1−X1 −X4

C = BM2
ν̃c + M2

λ

X4

1−X1 −X4

− ıε

1−X1 −X4

(3.29)

dXi integrals are carried our numerically and A ∝ χm1/2, where χ is order one

parameter. In table 3.2 we give an estimate of BA based on this numerical integration

and the running of soft parameters as we discuss below.

3.5 SUSYLR RGEs effect on Soft Leptogenesis

In order to generate a baryon asymmetry consistent with the observed number

of Eq. (2.1) one obtains the following constraints from Eq. (3.13):

A ∼ 1 TeV , M1 ∼ (109 − 1010) GeV, B ∼ Γ ∼ 100 GeV , and φ ∼ 1, (3.30)
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Figure 3.3. Two Loop Diagram Contributing to Leptogenesis: Feynman diagram
arising from ν̃c → ecũcdc decay, mediated by SU(2)R gaugino (labeled
λ). Our results are based on the computation of the corresponding
decay amplitude. The lepton asymmetry arises through the mixing of
ν̃c − ν̃c† .
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Figure 3.4. Two Loop Diagram Contributing to Leptogenesis: Feynman diagram
arising from ν̃c → ecd̃cuc decay, mediated by SU(2)R gauge boson, it
is simply the supersymmetric correspondent of the previous Feynman
amplitude. The lepton asymmetry arises through the mixing of ν̃c− ν̃c†
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assuming optimal efficiency from Eq. (3.14). It is our purpose in this paper to

accommodate for these constraints in a Left-Right symmetric framework. It is also

desirable to have sufficient BA where the Soft parameters and the r.h.n mass assume

their natural values.

Above υR, the breaking scale of B − L, the spectrum is that of Left-Right

Symmetry and the gauge group is SU(3)C × SU(2)L × SU(2)R × U(1)B−L. The full

set of one loop RGE Corresponding to the parameters



AQ AL Af Afc

A∆ A∆c AΦ AS

hQ hL f fc

B∆ Bc
∆ BΦ BS

µ∆ µc
∆ µΦ YS

g1 gL gR g3

MG
1 MG

L MG
R MG

3

M∆ M c
∆ MΦ MS

LS CS

(3.31)

Most of the RGEs for these parameters can be found in 41. In SUGRA, it is allowed

to set all A−terms to zero at Mpl, then soft breaking trilinear coupling like Afc would

be induced at υR. The evolution of Afc is given by

16π2 d

dt
Afc = Afc

[
6f †c fc + 2h†LhL + 2 Tr

(
f †c fc

)
+ µ∗∆cµ∆c − 9

2
g2
1 − 7g2

R

]

+ fc

[
12f †c Afc + 4h†LAL + 4 Tr

(
f †c Afc

)
+ 2µ∗∆cA∆c + 9g2

1M1 + 14g2
RMR

]

+
[
6fcf

†
c + 2hT

Lh∗L
]
Afc +

[
12Afcf †c + 4AT

Lh∗L
]
fc (3.32)

Above υR there is no B−term for r.h.n, but it will be induced by A−terms like Afc .

In SUSYLR there is a proportionality between A− and B−terms. In fact we can

approximately estimate Bind. The relevant term in this case is

−ÃLSB = iAfcL̃c
T
τ2∆

cL̃c + ... (3.33)

when ∆c acquires VEV we get the following term

ÃL = Afc ν̃cν̃c < ∆c >

≡ Bindν̃cν̃c (3.34)
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B−term is then estimated to be, Bind ' (AfcυR)/M1 = Afc/f c. From Eq (3.32),

setting Ai = 0 and analytically solving for Afc and finding its value at υR then

estimate Bind induced at υR;

Bind ' −(fc)11υR

16π2M1

{
9g2

1M
G
1 + 14g2

RMG
R

}
Log

(
Mpl

υR

)
, (3.35)

with υR =
MwR

gR
' 6.35 × 1010 GeV, Mpl ∼ 1018 GeV where g1, gR, M1 and MR

have natural values, it is possible to generate the right order of magnitude for the

r.h. sneutrino B−term of θ(50 − 100) GeV. It is not possible however to explain the

complex phase necessary for the Soft Leptogenesis, for that we employ supersymmetry

breaking effect which has to be included anyways, otherwise, the result would be

misleading. In the result section we numerically compute the B−term by including

all the RGEs that enter in the calculation of the soft breaking parameters in addition

to implementing SUSY breaking affect.

3.6 Symmetry breaking contribution to r.h.n B−term

In this section we analyze the effects of supersymmetry breaking on the bilinear

coupling B which have to be included to get the correct magnitude. It turns out that

the θ(1) phase needed has it’s origin from the F−term of ∆c. From Eq. (3.7), the

part of the superpotential of interest to us;

W = M∆c Tr
(
∆c∆̄c

)
+ µ∆cS Tr

(
∆c∆̄c

)
(3.36)

+
1

6
YSS3 + 1

2
MSS2 + LSS

For simplicity we denote X = S, a = LS, b = 1
2
MS, c = 1

6
YS and d = µ∆c . Then the

corresponding soft potential is

Vsoft = ãX + b̃X2 + c̃X3 + d̃X∆c∆̄c + M̃∆c∆c∆̄c

+ m2
X | X |2 + m2

∆c | ∆c |2 + m2
∆̄c | ∆̄c |2 (3.37)

where one can write the D−term

VD =
1

4
g2

B

(| ∆c |2 − | ∆̄c |2 )
(3.38)
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and

VF =

∣∣∣∣∣
∑

i

∂W

∂φi

∣∣∣∣∣

2

=
∣∣a + 2bX + 3cX2 + d∆c∆̄c

∣∣2 + |dX + M∆c |2 (| ∆c |2 + | ∆̄c |2 )

= |d|2 | X̂ |2 (| ∆c |2 + | ∆̄c |2) +
∣∣∣−a′ + b′X̂ + 3cX̂2 + d∆c∆̄c

∣∣∣
2

, (3.39)

where in the last step we shifted X by X = X̂ − M∆c/d and defined a′ =

− (
a− 2b

d
M∆c + 3c

d2 M
2
∆c

)
, b′ =

(
2b− 6c

d
M∆c

)
. In the supersymmetric limit;

< X̂ > = 0 and
〈
∆c∆̄c

〉
= a′/d (3.40)

∆c is of order the breaking scale of Left-Right symmetry; < ∆c >= υR, then < ∆̄c >=

υReıφ where φ = arg(a′/d) and |υR| =
∣∣a′

d

∣∣1/2
. Now if one includes SUSY breaking

that we parameterize by small εX , ε and ε̄ as follow

< X̂ > = εX (3.41)

∆c =

∣∣∣∣
a′

d

∣∣∣∣
1/2

+ ε

∆̄c =

∣∣∣∣
a′

d

∣∣∣∣
1/2

eıφ + ε̄ eıφ ,

with this, after computing D − term and F−term Eq. (3.37) and the potential

become;

Vsoft = ã′X̂ +

∣∣∣∣
a′

d

∣∣∣∣
1
2

eıφ

(
M̃∆c −M∆c

d̃

d

)
(ε + ε̄) + h.c. (3.42)

V = 2 |a′d| |εX |2 +

∣∣∣∣∣b
′εX +

∣∣∣∣
a′

d

∣∣∣∣
1
2

eıφ (ε + ε̄)

∣∣∣∣∣

2

+ g2
B

∣∣∣∣
a′

d

∣∣∣∣ (Re(ε− ε̄))2

+

[
ã′εX +

∣∣∣∣
a′

d

∣∣∣∣
1
2

eıφ

(
M̃∆c −M∆c

d̃

d

)
(ε + ε̄) + h.c.

]
(3.43)

where ã′ =
(
ã− 2b̃M∆c

d
+ 3c̃ (M∆c

d
)2 + d̃

∣∣a′
d

∣∣ 1
2 eıφ

)
. Minimizing this potential with

respect to εX and (ε + ε̄), i.e, solving for ∂V
∂εX

= ∂V
∂(ε+ε̄)

= 0 we find;

ε∗X = ε1
X + ε2

X + ε3
X (3.44)
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where upon expressing everything in term of the notation of Eq. (3.36);

ε1
X =

(
MS − YSM∆c

µ∆c

)(
B∆c − M∆cA∆c

µ∆c

)
×

{
2 |µ∆c |

∣∣∣∣LS − MSM∆c

µ∆c

+
YSM2

∆c

2µ2
∆c

∣∣∣∣
}−1

(3.45)

ε2
X = −

(
CS − BSM∆c

µ∆c

+
YSM2

∆c

2µ2
∆c

)
×

{
2 |µ∆c|

∣∣∣∣LS − MSM∆c

µ∆c

+
YSM2

∆c

2µ2
∆c

∣∣∣∣
}−1

(3.46)

ε3
X =

A∆c

2µ∆c |µ∆c | × exp

{
ı arg

(
LS − MSM∆c

µ∆c

+
YS

2

M2
∆c

µ2
∆c

)}
(3.47)

ε + ε̄ is not of interest to this calculation of the B−term contribution coming from

SUSY breaking; therefore we do not write its solution. It turns out, however, that ε∗X

which is a complex quantity, enters the contribution of F∆c−term to the r.h. sneutrino

B−term at υR. We therefore compute ε∗X at υR from the running of RGEs. We find

the F− term for ∆c to be;

|F∆c |2 = −f

2
ν̃Rν̃R

µ∗∆cε∗X
|µ∆c | 12

∣∣∣∣LS − MSM∆c

µ∆c

+
YS

2

M2
∆c

µ2
∆c

∣∣∣∣
1
2

× exp

{
ı arg

(
− LS

µ∆c

+
MSM∆c

µ2
∆c

− YS

2

M2
∆c

µ3
∆c

)}
(3.48)

and so finally

B =
f

2

µ∗∆cε∗X
|µ∆c | 12

∣∣∣∣LS − MSM∆c

µ∆c

+
YS

2

M2
∆c

µ2
∆c

∣∣∣∣
1
2

e


−ı arg

„
− LS

µ∆c
+

MSM∆c

µ2
∆c

−YS
2

M2
∆c

µ3
∆c

«ff

(3.49)

The ε∗X parameter appearing in B carries just the right order of the complex phase

alluded to earlier as required for the soft leptogenesis. In the next section we show the

result of numerical computation of RGEs and the effect of SUSY breaking discussed

in this section.

3.7 Numerical result and estimation of BA

In This section, we report the result of our analysis in the table 3.2 and display a

particular case in the figure 3.5, where the A-term is found to be between 700 GeV −
− 1 TeV . We have taken into account all RGEs that enter the calculation of the

B−term and A−terms for the r.h. sneutrino. Below, we write down some of the

RGEs not available in the literature.
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•Soft breaking terms below vR

16π2 d

dt
Al = Al

{
−9

5
g2
1 − 3g2

2 + 3Tr(f †dfd) + Tr(f †l fl)

}

+ 2fl

{
−9

5
g2
1M1 − 3g2

2M2 + 3Tr(f †dAd) + Tr(f †l Al)

}

+ 4(flf
†
l Al) + 5(Alf

†
l fl) + 2(flf

†
νAν) + (Alf

†
νfν), (3.50)

16π2 d

dt
Aν =

[
Aν

{
−3

5
g2
1 − 3g2

2 + 3Tr(f †ufu) + Tr(f †νfν)

}

+2fν

{
−3

5
g2
1M1 − 3g2

2M2 + 3Tr(f †uAu) + Tr(f †νAν)

}

+4(fνf
†
νAν) + 5(Aνf

†
νfν) + 2(fνf

†
l Al) + (Aνf

†
l fl)

]
, (3.51)

16π2 d

dt
Bν =

[
2(Bνf

∗
ν fT

ν ) + 2(Bνfνf
†
ν ) + 4(Mνf

∗
ν AT

ν ) + 4(Aνf
†
νM

T
ν )

]
(3.52)

•The soft parameter corresponding the the linear term in singlet field S

16π2 d

dt
CS =

[
CS

{
1
2
YSY ∗

S + 3µ∆µ∗∆ + 3µ∆cµ∗∆c + 8µΦµ∗Φ
}

+ LS

{
6µ∗∆A∆ + 6µ∗∆cA∆c + 2YSAS + 16µ∗ΦAΦ

}
(3.53)

+ MS

{
2(YSMSBS) + 6(µ∗∆M∆B∆) + 6(µ∗∆cM∆cB∆c) + 16(µ∗ΦMΦBΦ)

}]

•Yukawa Couplings

16π2 d

dt
fl =

[
fl

{
−9

5
g2
1 − 3g2

2 + 3Tr(fdf
†
d) + Tr(flf

†
l )

}

+3(flf
†
l fl) + (flf

†
νfν)

]
, (3.54)

16π2 d

dt
fν =

[
fν

{
−3

5
g2
1 − 3g2

2 + 3Tr(fuf
†
u) + Tr(fνf

†
ν )

}

+3(fνf
†
νfν) + (fνf

†
l fl)

]
. (3.55)
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Figure 3.5. Dependence of BA on B−term: Two cases are shown above, depending
on the choice of A−term and Γ2. In both cases M1 = 6.9 × 109GeV,
for which the dilution is enhanced (d = 1).

3.8 Conclusion

Soft Leptogenesis is an attractive mechanism to explain the baryon asymmetry.

In this paper we have addressed this question in the context of a class of minimal left–

right symmetric models. We analyze lepton asymmetry induced in the right handed

sneutrino ν̃R1 − ν̃†R1 mixing and decay due to soft SUSY breaking parameters in a

class of minimal left–right symmetric models (SUSYLR). Successful soft leptogenesis

scenario requires small B−term and relatively low heavy neutrino mass. We study

the effect of full RGE running on the breaking parameters; this combined with the

contribution SUSY breaking we compute r.h.n soft parameters and show that Soft

Leptogenesis mechanism can indeed be fully implemented in SUSYLR framework

leading to adequate baryon number asymmetry in the universe. We also discuss the

benefits of working in the context of Left-Right Symmetry.
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TABLE 3.2. Result: The left column of the table gives input values of the parameters
at the Gut scale, where the right column shows the result of the Soft
parameters at vR following RGE running. The final estimation for the
BA is also given.

Input of model at MGut = 1018GeV Output at vR =
MwR

gR
= 6.35 1010GeV

g1 = g2 = gR = gL ' 0.7

MG
1 = MG

2 = MG
L = MG

R = 300GeV | BAf

ind |= (Af )11vR

M1
∼ 50GeV, φ = 0

M∆ ∼ M∆c ∼ MS ∼ MΦ ' vR

µ∆ = µ∗∆c ∼ µΦ ∼ YS ' θ(1) ε∗X = −211.804− 355.125ı

(hL)ii ' mli/(v × Cosβ), (hL)ij,i6=j ∼ 0

(hQ)33 ' mt/(v × Sinβ), (hQ)ij,i,j 6=3 ∼ 0 | BF∆c

ind |∼ 100GeV, φ = θ(1)

tan(β) = 20, fij = (f ∗c )ij =
MRij

vR

(AL)ij = A0(hL)ij, (AQ)ij = A0(hQ)ij M1 = 6.92× 109GeV

(Af )ij = A0fij, (Afc)ij = A0f
c
ij d ∼ 1 for 0 . (Γ2/H) . 1

A∆ = A∗
∆c = A0µ∆, AΦ = A0µΦ, AS = A0YS Γ2 ∼ 100 GeV

B∆ = B0M∆, B∆c = B0M∆c A ∼ 1 TeV

BΦ = B0MΦ, BS = B0MS, LS ∼ v2
R, CS = C0LS

A0 ∼ (300− 500)GeV, B0 = C0 ∼ 100GeV nB/s ' 1× 10−10

(universality condition)

me,µ,τ,t = {0.35 10−3; 75.67 10−3; 1.22; 82.43}GeV



CHAPTER 4

PREDICTIVE MODEL OF INVERTED

NEUTRINO MASS HIERARCHY AND

RESONANT LEPTOGENESIS

4.1 Introduction

A lot has been learned about the pattern of neutrino masses and mixings over

the past decade from atmospheric 44 and solar 45 neutrino oscillation experiments.

When these impressive results are supplemented by results from reactor 46, 47 and

accelerator 48 neutrino oscillation experiments, a comprehensive picture for neutrino

masses begins to emerge. A global analysis of these results gives rather precise deter-

mination of some of the oscillation parameters 49, 50:

|∆m2
atm| = 2.4 · (1+0.21

−0.26

)× 10−3 eV 2 , sin2 θ23 = 0.44 · (1+0.41
−0.22

)
,

∆m2
sol = 7.92 · (1± 0.09)× 10−5 eV 2 , sin2 θ12 = 0.314 · (1+0.18

−0.15

)
,

θ13
<∼ 0.2 . (4.1)

While these results are impressive, there are still many important unanswered ques-

tions. One issue is the sign of ∆m2
atm = m2

3−m2
2 which is presently unknown. This is

directly linked to nature of neutrino mass hierarchy. A positive sign of ∆m2
atm would

indicate normal hierarchy (m1 < m2 < m3) while a negative sign would correspond

to an inverted mass hierarchy (m2
>∼ m1 > m3). Another issue is the value of the

leptonic mixing angle θ13, which currently is only bounded from above. A third issue

is whether CP is violated in neutrino oscillations, which is possible if the phase angle

δ in the MNS matrix is nonzero. Forthcoming long baseline experiments 48, NOνA

51, T2K 52 and reactor experiments double CHOOZ and DaiBay will explore some

58



59

or all these fundamental questions. Answers to these have the potential for revealing

the underlying symmetries of nature.

While there exists in the literature a large number of theoretical models for

normal neutrino mass hierarchy, such is not the case with inverted hierarchy. A large

number of models for inverted hierarchy based on symmetries 53–55 that were proposed

a few years ago are now excluded by the solar and Kamland data, which proved that

θ12 is significantly away from the maximal value of π/4 predicted by most of these

models. As a result, there is a dearth of viable inverted neutrino mass hierarchy

models. In this chapter, we attempt to take a step towards remedying this situation.

Here we suggest a class of models for inverted neutrino mass hierarchy based

on S3 × U(1) symmetry. S3 is the non-Abelian group generated by the permutation

of three objects, while the U(1) is used for explaining the mass hierarchy of the

leptons. This U(1) symmetry is naturally identified with the anomalous U(1) of

string origin. In our construction, the S3 permutation symmetry is broken down to

an Abelian S2 in the neutrino sector, whereas it is broken completely in the charged

lepton sector. Such a setup enables us to realize effectively a νµ ↔ ντ interchange

symmetry in the neutrino sector (desirable for an inverted hierarchical spectrum),

while having non-degenerate charged leptons. The U(1) symmetry acts as leptonic

Le−Lµ−Lτ symmetry, which is also desirable for an inverted neutrino mass spectrum.

The breaking of S2 symmetry in the charged lepton sector enables us to obtain θ12

significantly different from π/4.

Interestingly, we find that the amount of deviation of θ12 from π
4

is determined

by θ13 through the relation

sin2 θ12 ' 1

2
− tan θ13 cos δ . (4.2)

When compared with the neutrino data, the relation (4.2) implies the constraints (see

Fig. 1):

θ13 ≥ 0.13 , 0 ≤ δ ≤ 43o . (4.3)

At the same time, the model gives

sin2 θ23 ' 1

2
(1− tan2 θ13) , (4.4)
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which is very close to 1/2. These predictions will be tested in forthcoming experi-

ments.

Our models have the right ingredients to generate the observed baryon asym-

metry of the universe via resonant leptogenesis. The U(1) symmetry which acts on

leptons as Le − Lµ − Lτ symmetry guarantee that two right–handed neutrinos are

quasi-degenerate. This feature leads to a resonant enhancement in the leptonic CP

asymmetry, which in turn admits low right–handed neutrino masses, as low as few

TeV. With such light right-handed neutrinos (RHN) generating lepton asymmetry,

there is no cosmological gravitino problem when these models are supersymmetrized.

The class of neutrino mass models and leptogenesis scenario that we present here

will work well in both supersymmetric and non-supersymmetric contexts. However,

since low energy SUSY has strong phenomenological and theoretical motivations, we

stick here to the supersymmetric framework for our explicit constructions.

4.2 Predictive Framework for Neutrino Masses and Mixings

In order to build inverted hierarchical neutrino mass matrices which are pre-

dictive and which lead to successful neutrino oscillations, it is enough to introduce

two right–handed neutrino states N1,2. Then the superpotential relevant for neutrino

masses is

Wν = lT YνNhu − 1

2
NT MNN , (4.5)

where hu denotes the up–type Higgs doublet superfield, while Yν and MN are 3 × 2

Dirac Yukawa matrix and 2× 2 Majorana mass matrix respectively. Their structures

can be completely determined by flavor symmetries. In order to have predictive

models of inverted hierarchy, the Le−Lµ−Lτ ≡ L symmetry can be used 53–56. This

symmetry naturally gives rise to large θ23 and maximal θ12 angles. At the same time,

the mixing angle θ13 will be zero. In order to accommodate the correct solar neutrino

mixing angle, the L-symmetry must be broken. The pattern of L-symmetry breaking

will determine the relations and predictions for neutrino masses and mixings. As a

starting point, in the neutrino sector let us impose µ−τ symmetry S2: l2 → l3, l3 → l2,

which will lead to maximal νµ−ντ mixing, consistent with atmospheric neutrino data.
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The leptonic mixing angles receive contributions from both the neutrino sector

and the charged lepton sector. As an initial attempt let us assume that the charged

lepton mass matrix is diagonal. We will elaborate on altering this assumption in the

next subsection.

For completeness, we will start with general couplings respecting the S2 sym-

metry. Therefore, we have

N1 N2

Yν =

l1

l2

l3




α 0

β′ β

β′ β




,

N1 N2

MN =
N1

N2


 −δN 1

1 − δ
′
N


 M .

(4.6)

Note that setting (1, 2) element of Yν to zero can be done without loss of generality.

This can be achieved by proper redefinition of N1,2 states. The couplings α, β and

(1, 2), (2, 1) entries in MN respect L symmetry, while the couplings β′, δN and δ
′
N

violate it. Therefore, it is natural to expect that |β′| ¿ |α|, |β|, |δN |, |δ ′N | ¿ 1.

Furthermore, by proper field redefinitions all couplings in Yν can be taken to be real.

Upon these redefinitions δN and δ
′
N entries in MN will be complex.

Integration of the heavy N1,2 states leads to the following 3 × 3 light neutrino

mass matrix:

mν =




2δ
′
ν

√
2
√

2
√

2 δν δν√
2 δν δν




m
2

,
(4.7)

where

m =
〈h0

u〉2
M(1− δNδ

′
N)

√
2α

(
β + β′δ

′
N

)
,

δν =

√
2

α

2ββ′ + β2δN + (β′)2δ
′
N

β + β′δ ′N
, δ

′
ν =

α√
2

δ
′
N

β + β′δ ′N
. (4.8)

The entries δν , δ
′
ν in (4.7) are proportional to the L-symmetry breaking couplings

and therefore one naturally expects |δν |, |δ ′ν | ¿ 1. These small entries are responsible

for ∆m2
sol 6= 0, i.e. for the solar neutrino oscillation. The neutrino mass matrix
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is diagonalized by unitary transformation UT
ν mνUν = Diag (m1,m2, 0), were Uν =

U23U12 with

U23 =




1 0 0

0 1√
2

− 1√
2

0 1√
2

1√
2




, U12 '




c̄ − s̄eiρ 0

s̄e−iρ c̄ 0

0 0 1


 ,

(4.9)

where c̄ = cos θ̄, s̄ = sin θ̄ and

tan θ̄ ' 1± 1

2
κ , κ =

|δν |2 − |δ ′ν |2
|δ∗ν + δ ′ν |

. (4.10)

The phase ρ is determined from the equation

|δν | sin(ων − ρ) = |δ ′ν | sin(ω
′
ν + ρ) , ων = Arg(δν) , ω

′
ν = Arg(δ

′
ν) , (4.11)

and should be taken such that

|δν | cos(ων − ρ) + |δ ′ν | cos(ω
′
ν + ρ) < 0 . (4.12)

This condition ensures ∆m2
sol = m2

2 −m2
1 > 0 needed for solar neutrino oscillations.

For ∆m2
atm and the ratio ∆m2

sol/|∆m2
atm| we get

|∆m2
atm| ' |m|2 ,

∆m2
sol

|∆m2
atm|

' −2
(
|δν | cos(ων − ρ) + |δ ′ν | cos(ω

′
ν + ρ)

)
= 2

∣∣∣δ∗ν + δ
′
ν

∣∣∣ .

(4.13)

With no contribution from the charged lepton sector, the leptonic mixing matrix

is Uν . From (4.9), (4.10) for the solar mixing angle we will have sin2 θ12 = 1
2
± κ

4
. In

order to be compatible with experimental data one needs κ ≈ 0.7. On the other hand

with |δν | ∼ |δ ′ν | and no specific phase alignment from (4.13) we estimate |δν | ∼ |δ ′ν | ∼
10−2. Thus we get the expected value κ ∼ 10−2, but with the θ12 mixing angle nearly

maximal, which is incompatible with experiments. This picture remains unchanged

with the inclusion of renormalization group effects. Therefore, we learn that it is hard

to accommodate the neutrino data in simple minded inverted hierarchical neutrino

mass scenario. In order for the scenario be compatible with the experimental data

we need simultaneously
∣∣∣δ∗ν + δ

′
ν

∣∣∣ =
∆m2

sol

2|∆m2
atm|

' 0.016 ,
|δν |2 − |δ ′ν |2
|δ∗ν + δ ′ν |

= ∓(0.52− 0.92) . (4.14)



63

Therefore, one combination of δν and δ
′
ν must be ∼ 50-times larger than the other.

This is indeed unnatural and no explanation for these conditions is provided at this

stage. To make this point more clear let’s consider the case with δν = 0∗. In this

case from (4.13) we have |δ ′ν | ' 0.016. Using this in (4.10) we obtain sin2 θ12 ≥ 0.496,

which is excluded by the neutrino data (4.1).

Summarizing, although the conditions in (4.14) can be satisfied, it remains a

challenge to have a natural explanation of these hierarchies. This is a shortcoming

of the scenario. Below we present a possible solution to this conundrum which looks

attractive and maintains predictive power without fine tuning.

4.2.1 Improved θ12 with θ13 6= 0

Let us now include the charged lepton sector in our studies. The relevant

superpotential is

We = lT YEechd , (4.15)

where YE is 3× 3 matrix in the family space. In general, YE has off–diagonal entries.

Being so, YE will induce contributions to the leptonic mixing matrix. We will use this

contribution in order to fix the value of θ12 mixing angle. It is desirable to do this in

such a way that some predictivity is maintained. As it turns out, the texture

YE =




0 a′ 0

a λµ 0

0 0 λτ


 ,

(4.16)

gives interesting predictions. In the structure (4.16) there is only one unremovable

complex phase and we leave it in (1,2) entry. Thus, we make the parametrization

a′ = λµθee
iω, while all the remaining entries can be taken to be real. In order to

get the correct value of the electron mass for θe ¿ 1, we should take the coupling

a = λe/θe. For finding the unitary matrix which rotates the left–handed charged

∗This case is realized within the model with S3×U(1) flavor symmetry presented
in section 4.4.
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Figure 4.1. Correlation between θ12 and θ13 taken from Fogli et al. Three sloped
curves correspond to θ12− θ13 dependance (for three different values of
CP phase δ) obtained from our model according to Eq. (4.22)

lepton states, upon diagonalization of YE, we need to diagonalize the product YEY †
E.

Namely, with UeYEY †
EU †

e =
(
Y diag

E

)2

, it is easy to see that

Ue =




c seiω 0

−se−iω c 0

0 0 1


 ,

(4.17)

where c ≡ cos t, s ≡ sin t and tan t = −θe . Finally, the leptonic mixing matrix takes

the form

U l = U∗
e Uν , (4.18)

where Uν = U23U12 can be derived from Eq. (4.9). Therefore, for the corresponding

mixing elements we get

U l
e3 = − s√

2
e−i(ω+ρ) , |U l

e2| =
1√
2

∣∣∣∣c−
s√
2
e−i(ω+ρ)

∣∣∣∣ , |U l
µ3| =

c√
2

. (4.19)
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Comparing these with those written in the standard parametrization we obtain the

relations

s13 = − s√
2

, ω + ρ = δ + π , (4.20)

s12c13 = |U l
e2| , s23c13 = |U l

µ3| . (4.21)

Using (4.20) and (4.19) in (4.21) leads to the prediction:

sin2 θ12 =
1

2
−

√
1− tan2 θ13 tan θ13 cos δ ,

sin2 θ23 =
1

2

(
1− tan2 θ13

)
. (4.22)

Since the CHOOZ bound is s13
<∼ 0.2, the first relation in (4.22), with the help of the

solar neutrino data provides an upper bound for the CP violating phase: δ <∼ δmax ≈
48o. However, this estimate ignores the dependence of θ12 on the value of θ13 in the

neutrino oscillation data. Having θ13 6= 0, this dependence shows up because one

deals with three flavor oscillations. This has been analyzed in Ref. 50 and is shown

in and Fig. 1 (borrowed from Ref. 50) along with the constraints arising from our

model. We have shown three curves corresponding to (4.22) for different values of δ.

Now we see that maximal allowed value for δ is δmax ' 43o. Moreover, for a given

δ we predict the allowed range for θ13. In all cases the values are such that these

relations can be tested in the near future. An interesting result from our scenario is

that we obtain lower and upper bounds for θ13 and δ respectively

θ13 ≥ 0.13 , 0 ≤ δ ≤ 43o . (4.23)

Finally, the neutrino-less double β-decay parameter in this scenario is given by

mββ ' 2
√

∆m2
atm tan θ13

√
1− tan2 θ13√
1 + tan2 θ13

. (4.24)

We have neglected the small contribution (of order ∆m2
solar/∆m2

atm) arising from

the neutrino mass matrix diagonalization. Since the value of θ13 is experimentally

constrained (<∼ 0.2), to a good approximation we have mββ ≈ 2
√

∆m2
atm tan θ13.

Using this and the atmospheric neutrino data (4.1) we find mββ
<∼ 0.02 eV. Knowledge

of θ13-dependence on δ (see Fig. 1) allows us to make more accurate estimates for the
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(i)

(ii)

Figure 4.2. Curves (i) and (ii) respectively show the dependence of
mββ√
∆m2

atm

’s low and

upper bounds on CP violating phase δ. The shaded region corresponds
to values of mββ and δ realized within our model.

range of mββ for each given value of δ. The dependence of mββ on δ is given in Fig.

2. We have produced this graph with the predictive relations (4.22), (4.24) using the

neutrino data 50. Combining these results we arrive at

0.011 eV <∼ mββ
<∼ 0.022 eV . (4.25)

As we see the predicted range, depending on the value of δ, is quite narrow. Future

measurements of CP violating phase δ together with a discovery of the neutrino-less

double β-decay will be another test for the inverted hierarchical scenario presented

here.

4.3 Resonant Leptogenesis

Neutrino mass models with heavy right–handed neutrinos provide an attractive

and natural framework for explaining the observed baryon asymmetry of the universe

through thermal leptogenesis 57. This mechanism takes advantage of the out-of-

equilibrium decay of lightest right-handed neutrino(s) into leptons and the Higgs

boson. In the scenario with hierarchical RHNs, a lower bound on the mass of decaying

RHN has been derived: MN1 ≥ 109 GeV 58. The reheating temperature can not be
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much below the mass of N1. In low energy SUSY models (with m3/2 ∼ 1 TeV)

this is in conflict with the upper bound on reheating temperature obtained from

the gravitino problem 59. This conflict can be naturally avoided in the scenario of

‘resonant leptogenesis’ 5, 60. Due to the quasi-degeneracy in mass of the RHN states,

the needed CP asymmetry can be generated even if the right–handed neutrino mass

is lower than 109 GeV.

Our model of inverted hierarchical neutrinos involves two quasi-degenerate RHN

states and has all the needed ingredients for successful resonant leptogenesis. This

makes the scenario attractive from a cosmological viewpoint as well. Now we present

a detailed study of the resonant leptogenesis phenomenon in our scenario.
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The CP asymmetry is created by resonant out of equilibrium decays of N1, N2

and is given by 60

ε1 =
Im(Ŷ †

ν Ŷν)
2
21

(Ŷ †
ν Ŷν)11(Ŷ

†
ν Ŷν)22

(M2
2 −M2

1 ) M1Γ2

(M2
2 −M2

1 )
2
+ M2

1 Γ2
2

, (4.26)

with a similar expression for ε2. The asymmetries ε1 and ε2 correspond to the decays

of N1 and N2 respectively. Here M1,M2 are mass the eigenvalues of the matrix MN in

(4.6), while Ŷν = YνUN is the Dirac Yukawa matrix in a basis where RHN mass matrix

is diagonal. The tree–level decay width of Ni is given as Γi = (Ŷ †
ν Ŷν)iiMi/(8π). The

expression (4.26) deals with the regime M2 −M1 ∼ Γ1,2/2 (relevant for our studies)

consistently and has the correct behavior in the limit M1 → M2
60. From (4.6) we

have

UT
NMNUN = Diag (M1,M2) , UN ' 1√

2


 1 − eir

e−ir 1


 ,

(4.27)

with

M2
2 −M2

1 = 2M2
∣∣∣δ∗N + δ

′
N

∣∣∣ , tan r =
Im

(
δN − δ

′
N

)

Re
(
δN + δ

′
N

) . (4.28)

Introducing the notations
α

β
= x ,

β′

β
= x′ , (4.29)

we can write down the appropriate matrix elements needed for the calculation of

leptonic asymmetry:

(Ŷ †
ν Ŷν)11 =

1

2
β2

(
2 + x2 + 2(x′)2 + 4xx′ cos r

)
,

(Ŷ †
ν Ŷν)22 =

1

2
β2

(
2 + x2 + 2(x′)2 − 4xx′ cos r

)
,

Im(Ŷ †
ν Ŷν)

2
21 = −1

4
β4

(
2− x2 − 2(x′)2 + 4xx′ cos r

)2
sin 2r . (4.30)

In terms of these entries the CP asymmetries are give by

ε1 =
Im(Ŷ †

ν Ŷν)
2
21

(Ŷ †
ν Ŷν)11

|δ∗N + δ
′
N |

16π|δ∗N + δ
′
N |2 + (Ŷ †

ν Ŷν)2
22/(16π)

, ε2 = −ε1(1 ↔ 2) . (4.31)
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We have five independent parameters and in general one should evaluate the lepton

asymmetry as a function of x, x′, |δN |, |δ ′N | and r. Below we will demonstrate that

resonant decays of N1,2 can generate the needed CP asymmetry.

It turns out that for our purposes we will need |δ∗N + δ
′
N | ¿ 1. This, barring

precise cancelation, implies |δN |, |δ ′N | ¿ 1. From the symmetry viewpoint and also

from further studies, it turns out that
∣∣x′

x

∣∣ ¿ 1 is a self consistent condition. Taking

these and the results from the neutrino sector, to a good approximation we have

β2 =

√
∆m2

atmM√
2x〈h0

u〉2
, atm2| ' 6 · 10−3 (4.32)

and

ε1 ' ε2 ' Im(Ŷ †
ν Ŷν)

2
12

(Ŷ †
ν Ŷν)11

|δ∗N + δ
′
N |

16π|δ∗N + δ
′
N |2 + (Ŷ †

ν Ŷν)2
11/(16π)

'

− (2− x2)2

2(2 + x2)
β2 |δ∗N + δ

′
N |

16π|δ∗N + δ
′
N |2 + (2 + x2)2β4/(64π)

sin 2r , (4.33)

where in the last expression we have ignored x′ contributions. This approximation

is good for all practical purposes. The combination |δ∗N + δ
′
N | is a free parameter

and since we are looking for a resonant regime, let us maximize the expression in

(4.33) with respect to this variable. The maximum CP asymmetry is achieved with

|δ∗N + δ
′
N | = (Ŷ †

ν Ŷν)11/(16π). Plugging this value back in (4.33) and taking into

account (4.30), (4.32) we arrive at

ε̄1 ' ε̄2 ' − (2− x2)2

2(2 + x2)2
sin 2r , (4.34)

where ε̄1,2 indicate the maximized expressions, which do not depend on the scale of

right–handed neutrinos. We can take these masses as low as TeV! The expression in

(4.34) reaches the maximal values for x ¿ 1 and x À 1. However, the final value

of x will be fixed from the observed baryon asymmetry. The lepton asymmetry is

converted to the baryon asymmetry via sphaleron effects 61 and is given by nB

s
'

−1.48 · 10−3(κ
(1)
f ε1 +κ

(2)
f ε2), where κ

(1,2)
f are efficiency factors given approximately by

62

κ
(1,2)
f =

(
3.3 · 10−3 eV

m̃1,2

+

(
m̃1,2

0.55 · 10−3 eV

)1.16
)−1

,
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with m̃1 =
〈h0

u〉2
M1

(Ŷ †
ν Ŷν)11 , m̃2 =

〈h0
u〉2

M2

(Ŷ †
ν Ŷν)22 . (4.35)

In our model, with
∣∣x′

x

∣∣ ¿ 1 we have

m̃1 ' m̃2 '
√

∆m2
atm

2
√

2x
(2 + x2) ' 0.017 eV × 2 + x2

x
. (4.36)

This also gives κ
(1)
f ' κ

(2)
f ≡ κf and as a result we obtain

nB

s

∣∣∣
ε=ε̄

' 1.48 · 10−3κf (x)
(2− x2)2

(2 + x2)2
sin 2r . (4.37)

With sin 2r = 1 in order to reproduce the experimentally observed value
(

nB

s

)exp
=

9·10−11 we need to take x = 3.8·10−5, x = 5.3·104, x =
√

2−0.0047 or x =
√

2+0.0047.

For these values of x we have respectively

∣∣∣δ∗N + δ
′
N

∣∣∣
ε=ε̄

' 2 + x2

32
√

2πx

√
∆m2

atmM

〈h0
u〉2

'

(
6 · 10−7 , 6 · 10−7 , 3.2 · 10−11 , 3.2 · 10−11

)× 1 + tan2 β

tan2 β

M

106GeV
(4.38)

(fixed from the condition of maximization). The MSSM parameter tan β should not

be confused with Yukawa coupling in (4.32)). Note that these results are obtained

at the resonant regime |M2 − M1| = Γ1,2/2. If we are away from this point, then

the baryon asymmetry will be more suppressed and we will need to take different

values of x. In Fig. 4.3 we show
∣∣δ∗N + δ

′
N

∣∣− x dependence corresponding to baryon

asymmetry of 9 · 10−11. The curves are constructed with Eqs. (4.32), (4.33). We

display different cases for different values of the mass M and for two values of CP

violating phase r. For smaller values of r the ‘ovals’ shrink indicating that there is less

room in
∣∣δ∗N + δ

′
N

∣∣− x plane for generating the needed baryon asymmetry. We have

limited ourselves to
∣∣δ∗N + δ

′
N

∣∣ <∼ 0.1. Above this value the degeneracy disappears and

the validity of our expression (4.26) breaks down∗. Also, in this regime the inverted

mass hierarchical neutrino scenario becomes unnatural. The dashed horizontal line

in Fig. 4.3 corresponds to this ‘cut–off’. This limits cases with larger masses [case

(d) in Fig. 4.3, of M = 1011 GeV]. The sloped dashed cut–off lines appear due to

∗There will be another contributions to the CP asymmetry, the vertex diagram,
which would be significant in the non-resonant case.
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the requirement that the Yukawa couplings be perturbative (α, β <∼ 1). As one can

see from (4.32), for sufficiently large values of M , with x À 1 or x ¿ 1, one of the

Yukawa couplings becomes non-perturbative.

As we see, in some cases (especially for suppressed values of r) the degeneracy

in mass between N1 and N2 states is required to be very accurate, i.e.
∣∣δ∗N + δ

′
N

∣∣ ¿ 1.

In section 4.4 we discuss the possibility for explaining this based on symmetries.

4.4 Model with S3 × U(1) Symmetry

In this section we present a concrete model which generates the needed textures

for the charged lepton and the neutrino mass matrices. It also blends well with

the leptogenesis scenario investigated in the previous section. We wish to have an

understanding of the appropriate hierarchies and the needed zero entries in the Dirac

and Majorana neutrino couplings. Also, the values of masses MN1,2 ' M <∼ 108 GeV

and their tiny splitting must be explained. Note that one can replace L = Le−Lµ−Lτ

symmetry by other symmetry, which will give approximate L. For this purpose the

anomalous U(1) symmetry of string origin is a good candidate 63. However, in our

scenario the charged lepton sector also plays an important role. In particular, the

structure (4.16) is crucial for the predictions presented above. We wish to understand

this structure also by symmetry principles. For this a non Abelian discrete flavor

symmetries can be very useful 64, 65, 66. Therefore, in addition, we introduce S3

permutation symmetry. The S3 will be broken by two steps S3 → S2 → 1. Since in

the neutrino sector we were using S2 symmetry, we will arrange for that sector to feel

only the first stage of breaking, i.e. S2 will be unbroken in the neutral lepton sector.

Thus, the model we present here is based on S3 × U(1) flavor symmetry. The

S3 permutation group has three irreducible representations 1, 1′ and 2, where 1′ is

an odd singlet while 1 and 2 are true singlet and doublet respectively. With doublets

denoted by two component vectors, it is useful to give the product rule
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


x1

x2




2

×




y1

y2




2

= (x1y1 + x2y2)1 ⊕ (x1y2 − x2y1)1′ ⊕




x1y2 + x2y1

x1y1 − x2y2




2
(4.39)

where subscripts denote the representation of the corresponding combination. The

other products are very simple. For instance 1× 1 = 1, 1′ × 1 = 1′, etc.

As far as the U(1) symmetry is concerned, a superfield φi transforms as

U(1) : φi → eiQiφi , (4.40)

where Qi is the U(1) charge of φi. The U(1) symmetry will turn out to be anomalous.

The anomalous U(1) factors can appear in effective field theories from string theory

upon compactification to four dimensions. The apparent anomaly in this U(1) is

canceled through the Green-Schwarz mechanism 67. Due to the anomaly, a Fayet-

Iliopoulos term −ξ
∫

d4θVA is always generated 68 and the corresponding DA-term

has the form 69

g2
A

8
D2

A =
g2

A

8

(
−ξ +

∑
Qi|φi|2

)2

, ξ =
g2

AM2
P

192π2
TrQ . (4.41)

In SUSY limit one of the VEVs should set DA-term to be zero.

For S3×U(1) breaking we introduce the MSSM singlet scalar superfields ~S, ~T ,X,

where vector symbols will denote S3 doublets. The transformation properties - the

S3 ‘membership’ and U(1) charges - of these and other fields are given in Table 4.1.

In the table we do not display MSSM pair of higgs doublet superfields hu, hd, noting

that they are invariant under S3 × U(1).

Further we will use the following VEV configuration:

〈~S〉 = (0, V ) , 〈~T 〉 = Ṽ · (1, i) , 〈X〉 = VX . (4.42)

These structures can be obtained in verious simple ways. With ξ, QX < 0, in Eq.

(4.41) the VEV of the scalar component of X is fixed as VX =
√

ξ/QX . The direction

for ~T can be obtained from its bi-linear coupling with some neutral singlet Y 65.

Namely with superpotential coupling Y ~T 2, the F-flatness condition gives the solution
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TABLE 4.1. Transformation properties under S3 × U(1).

~S ~T X ec
1 ~e c l1 ~l N1 N2

S3 2 2 1′ 1′ 2 1′ 2 1 1

U(1) 0 0 −1 4− n −n n + 2 n −(n+1) 2m−(n + 1)

in (4.42) and 〈Y 〉 = 0. Similarly with couplings Y ′
(

~S2 − V 2
)

we get VEV solution

for ~S given in (4.42) and 〈Y ′〉 = 0. We just mentioned this simple minded examples

in order to demonstrate that desirable VEVs can be obtained self-consistently (of

course many other possibilities can be discussed).

Further we will use the following parametrization

VX

MPl

∼ V

MPl

≡ ε . (4.43)

All non renormalizable operators that we consider below will be cut off by appropriate

powers of the Planck scale MPl
and therefore in those operators the powers of ε will

appear. The operators cut off with a different scale cut off can be obtained by

integration of some vector like states and should be discussed separately.

Let is start with charged fermion sector. We will use the following operators:

1

M2∗

(
~l · ~S

)
1

(
~e c · ~S

)
1

hd+
1

M2

Pl

~l·~e c·~S2hd+
X2

M3

Pl

l1~e
c·~Shd+

X4

M3

Pl

ec
1
~l·~Shd+

X6

M6

Pl

l1e1hd ,

(4.44)

where in the first operator the singlet 1-channel is indicated. This is crucial for our

construction. Also, it is important that in first two terms ~S appears quadratically and

not linearly. This can be easily insured by the reflection symmetry: ~S → −~S, ec
1 →

−ec
1, l1 → −l1, X → −X (this will be compatible also with the neutrino sector).

With this, all couplings are invariant. Moreover, the first operator is not cut off by

the Planck scale. This needs some justification. In Fig. 4.4 is shown one possibility
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how this coupling can be obtained. Indeed with L, Ec states in 1 representation of

S3 and masses∼ M∗ we get first coupling of (4.44).

Substituting appropriate VEVs in (4.44) and taking into account that ~l =

(l2, l3), ~e c = (ec
2, ec

3), for the charged lepton mass matrix we obtain

ec
1 ec

2 ec
3

l1

l2

l3




ε6 ε3 0

ε4 ε2 0

0 0 1


 ,

(4.45)

which nearly has the structure of (4.16). Only difference is the (1,1) entry which does

not change any of our analysis. From (4.45) we get λe : λµ : λτ ∼ ε6 : ε2 : 1, which is

compatible with the observed hierarchies for ε ∼ 0.2. It is remarkable that with this

value we get the (1,2) mixing s ∼ ε ∼ 0.2 needed for accommodating neutrino data

and have robust predictions discussed in sect. 4.2.1.

Now we turn to the neutrino sector. With transformation properties given in

Table 4.1, and for

m,n : Integer and m > 0 , m > n + 1 , (4.46)

the Yukawa couplings have the form

N1 N2

l1

~l




ε ε2m+1

0
~T

M ′ ε
2m−1


 hu ,

N1 N2

N1

N2


 0 1

1 ε2m


 ε2(m−n−1)MR .

(4.47)

Note that since ε is coming from the VEV of X -the odd S3 singlet, the product ~l · ~T
in (4.47) should be taken in 1′ channel. Using this fact and the VEV configuration

for ~T given in (4.42) for the Dirac Yukawa matrix we obtain
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Yν =




ε ε2m+1

0 ε̃ε2m−1

0 − iε̃ε2m−1




,
(4.48)

where ε̃ ∼ Ṽ /M ′. Making proper rotation of N1,2 states to set (1,2) entry of matrix

(4.48) to zero and at the same time performing phase redefinitions we will arrive to

the form of (4.6) with

M = MRε2(m−n−1) , α ∼ ε , β ∼ ε̃ε2m−1 ,
∣∣∣δ∗N + δ

′
N

∣∣∣ ∼ ε2m . (4.49)

Moreover we have ∣∣∣δ∗ν + δ
′
ν

∣∣∣ ∼ ε2

√
2ε̃

. (4.50)

For ε̃ ∼ 1 (indicating that the cut off M ′ is not too large) and ε ∼ 0.2 we get the right

magnitude for ∆m2
sol/∆m2

atm. Furthermore, by proper selection of the integers m

and n, from (4.49) we can get desirable mass for the right handed neutrinos and the

desired degeneracy as well. All these will insure the success of resonant leptogenesis.



76

4.5 Conclusions

In this chapter we have presented a new class of models which realize an inverted

spectrum for neutrino masses. These models predict definite correlation between

neutrino mixing angles θ12 and θ13. Deviation of θ12 from π/4 is controlled by value

of θ13. Our results are given in Eqs. (4.22)-(4.25) and plotted in Figs. 4.2.1, 4.2.

We have presented concrete models based on an S3 permutation symmetry

augmented with a U(1) symmetry acting on the three flavors.

Our models can naturally lead to resonant leptogenesis since two right-handed

neutrinos are quasi degenerate. The predictions of our model are testable in forth-

coming experiments.
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Figure 4.3. Resonant leptogenesis for inverted mass hierarchical neutrino scenario.
In all cases nB

s
= 9 × 10−11 and tan β ' 2. Curves (a), (b), (c), (d)

correspond respectively to the cases with M = (104, 106, 109, 1011) GeV
and r = π/4. The curves with primed labels correspond to same values
of M , but with CP phase r = 5 ·10−5. Bold dots stand for a maximized
values of CP asymmetry [see Eq. (4.38)]. The ‘cut off’ with horizon-
tal dashed line reflects the requirement

∣∣δ∗N + δ
′
N

∣∣ <∼ 0.1. Two sloped
dashed lines restrict low parts of the ‘ovals’ of M = 1011 GeV, insuring
the Yukawa coupling perturbativity.

L

~e
c

~S ~S

hd
~l

L E
c

E
c

Figure 4.4. Diagram generating the first operator of Eq. (4.44)



CHAPTER 5

SUMMARY AND CONCLUSIONS

In this thesis I have presented the findings of research topics I have pursued

during my Ph. D. study which primarily consist of explaining the Baryon Asymmetry

in the universe. The Baryon Asymmetry problem in physics refers to the apparent fact

that matter in the universe which have been observed are overwhelmingly matter as

opposed to anti-matter, no helium atom (or larger atom) made of anti-matter, either

in nature, or created synthetically, has ever been scientifically observed. Neither the

standard model of particle physics, nor the theory of general relativity provide an

obvious explanation for why this should be so. The challenges to the physics theories

are then to explain how to produce this preference of matter over antimatter, and also

the size of this asymmetry. An important quantifier is the asymmetry parameter,

ηB ≡ nB

nγ

=
nB − nB

nγ

= (6.5+0.4
−0.3)× 10−10. (5.1)

There are competing theories to explain this phenomena, various Baryogenesis

via Leptogenesis scenarios have been presented in the course of the last 40 years.

We concentrate on three of the most popular mechanisms; realized in different ways:

Baryogenesis via Leptogenesis, Soft Leptogenesis, and Resonant Leptogenesis. In the

second chapter, we compute the Baryon Asymmetry induced in the decay of right–

handed neutrinos in a class of minimal left–right symmetric models (LRSUSY). In

these models, which assume low energy supersymmetry, the Dirac neutrino mass

matrix has a determined structure, namely;

MD = c




me 0 0

0 mµ 0

0 0 mτ


 , (5.2)
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where c ' mt/mb is determined from the quark sector. As a result, lepton asymmetry

is calculable in terms of measurable low energy neutrino parameters. By numeri-

cally solving the Boltzmann equations we show that adequate Baryon Asymmetry is

generated in these models in complete agreement with recent NASA high precision

measurements. Furthermore, we make predictions on the light neutrino oscillation

parameters, which can be tested in next generation neutrino experiments.

In the third chapter, we discuss a more recent idea; Baryon Asymmetry via

Soft Leptogenesis. We introduce the effect of the interactions of the SU(2)R gauge

boson WR on the generation of the BA. B − L violation occurs when LRSUSY is

broken by the VEV vR of the B − L = −2 triplet scalar field ∆c(1, 1, 3,−2), which

gives Majorana masses to the r.h sneutrino, and lepton number is violated in their

decay ν̃R1 → ecdũc, mediated by the right handed gauge boson WR. We show that

this decay dominate the traditional process νR → Lφ† which drives Leptogenesis. We

conclude that the requirement of unconventionally small B−term is no longer needed.

In addition, we employ RGE and SUSY breaking effect to naturally account for the

complex order 1 phase as dictated by the success of the scenario. The mass of r.h

sneutrino can be Mν̃ ∼ MWR
∼ (109 − 1010) GeV .

In the fourth chapter we turn our attention to Neutrino Physics, and its possible

connection to Leptogenesis. We present a predictive model of inverted neutrino mass

hierarchy based on Le −Lµ −Lτ combined with an S2 permutation symmetry in the

neutrino sector. Our analysis shows an interesting correlation between the mixing

angles: sin2 θ12 = 1
2
−

√
1− tan2 θ13 tan θ13 cos δ, predicting θ13 ≥ 0.13, and 0 ≤

δ ≤ 45o. Since the model involves two quasi-degenerate right handed neutrinos, it is

natural to question its vitality with respect to Resonant Leptogenesis. We conclude

that our predictive model of inverted neutrino hierarchy has all the ingredients to

account for a viable Baryon Asymmetry, which makes the model even more attractive

from Cosmology point of view as well. In this case, the degeneracy in mass between

N1 and N2 states is required to be very accurate, i.e.
∣∣δ∗N + δ

′
N

∣∣ ¿ 1. In section 4.4,

it is discussed how this possibility is realized based on symmetries.
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APPENDIX A

A.1 Basic Thermodynamics of The Expanding Universe

Many important calculations in Cosmology are done via the Boltzman equa-

tions. To employ this tool for the purpose of computing the Baryon Asymmetry, it is

necessary to understand the thermodynamics of the early universe. In this appendix,

we briefly review some basic thermodynamics of the early expanding universe, in

which many particles are relativistic and in thermal equilibrium. First of all, the

equilibrium density of particles of type i with momenta in a range d3p centered on p

is given by

gi
d3p

2π3
fi(p) , (A.1)

where gi is the number of degrees of freedom and fi(p) is the Fermi-Dirac or Bose-

Einstein distribution function:

fi(p) =
1

exp
(

Ei

T
− µi

T

)± 1
. (A.2)

Here, Ei is the energy Ei ≡
√

p2 + m2
i , µi is the chemical potential of the particle

i, and the plus (minus) sign is for fermions (bosons). The number density ni, energy

density ρi and pressure pi of particle i are then given by the following equations:

ni =
gi

2π3

∫
fi(p)d3p , (A.3)

ρi =
gi

2π3

∫
Eifi(p)d3p , (A.4)

pi =
gi

2π3

∫
p2

3Ei

fi(p)d3p . (A.5)
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T À mi T ¿ mi

fermion boson

ni = 3
4
gi

(
ζ(3)
π2

)
T 3 ni = gi

(
ζ(3)
π2

)
T 3 ni = gi

(
miT
2π

)3/2
exp

(−mi

T

)

ρi = 7
8
gi

(
π2

30

)
T 4 ρi = gi

(
π2

30

)
T 4 ρi = mini

pi = 1
3
ρi pi = 1

3
ρi pi = Tni (¿ ρi)

TABLE A.1. The number density ni, energy density ρi and pressure pi of the par-
ticle i, which is thermal equilibrium, in the limits of T À mi and
T ¿ mi. Where the following assumptions have been made: |µi| ¿ T
and |µi| < mi (no Bose-Einstein condensation).

In Table A.1, shows these important cosmological quantities for the relativistic (T À
mi) and non-relativistic (T ¿ mi) limits.

Because the energy density of a non-relativistic particle is exponentially sup-

pressed compared with the relativistic one, the total energy density of the radiation

ρrad is given by the following simple form:

ρrad =
π2

30
g∗(T )T 4 , (A.6)

where

g∗(T ) ≡
∑

mi ¿ T

i = boson

gi +
7

8

∑

mj ¿ T

j = fermion

gj . (A.7)

If there are particles which have different temperatures from that of the photon T ,

another factor (Ti/T )4 should be multiplied in the above expression. (For example,

at T ¿ MeV, neutrinos have temperature Tν = (4/11)1/3T for mν ¿ Tν .)

The mechanisms of leptogenesis discussed in this thesis work at temperatures

far above the electroweak scale T À 100 GeV, where all the MSSM particles are

expected to be in thermal equilibrium. In this case, we obtain

g∗ = 228.75 for MSSM . (A.8)
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In the expanding universe (comoving volume) , it is useful to scale the densities

by the entropy to account for the expansion. We introduce the entropy density s,

which is defined by

s ≡ ρ + p

T

=
4

3 T
ρ =

2π2

45
g∗(T )T 3 . (A.9)

The entropy per comoving volume sR3 is conserved as long as no entropy production

takes place. Thus it is quite useful to take the ratio nX/s when we calculate some

number density of the particle species X. For example, if some X-number is conserved,

the ratio of the X-number density to the entropy density remains a constant value

nX

s
= const , (A.10)

as long as there is no entropy production, since both nX and s scales as R−3 as the

universe expands. As another example, if the X-particle is in thermal equilibrium and

relativistic (T À mX), the ratio is given by

neq
X

s
=

45ζ(3)

2π4

gX

g∗(T )

(
×3

4
for fermion

)
, (A.11)

where the temperature (or time) dependence only comes from g∗(T ). For a massless

thermal photon γ, the density distribution, given by equation (A.1), is

nγ =
2

π2
T 3. (A.12)

Far above their mass scales the massive particles are in thermal equilibrium. There-

fore, the phase space distribution function is given by

f eq
i = e−

Ei
T , (A.13)

where again Ei =
√

p2 + m2
i , and the equilibrium density distribution becomes

neq
i = gi

∫
d3pi

(2π)3
f eq

i (A.14)
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In terms of the dimensionless variables x =

√
p2+m2

i

T
and Z = mi

T
, equation (A.14)

can be rewritten as

neq
i = gi

T 3

2π2

∫ ∞

Z

xe−x
√

x2 − Z2dx

= gi
T 3

2π2
Z2K2(Z) (A.15)

where K2(Z) is modified Bessel function of the second type. As Z → 0, z2K2(Z) → 2.

In this limit, the density distribution of massive particles is similar to that of with

relativistic particles, and the approximation that at a temperature above their mass

scale all particles are in thermally equilibrium is a valid assumption. As the Universe

expands the temperature drops (Z increases). Therefore, the density distribution of

all particles get diluted and is governed by the Boltzmann transport equations. K0
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A.2 FRW Universe and Boltzmann transport equations

The expansion of the Universe dilutes the number densities of all types of par-

ticles even in the absence of interactions at a rate

dni

dt
= −3

Ṙ

R
ni = −3Hni (A.16)

where R(t) is scale factor in Freedman Robertson and Walker (FRW) Universe and Ṙ

is derivative with respect to time. H is Hubble expansion factor. Thus in the absence

of any interaction the Boltzmann transport equation for the given particle species i

of density ni is

dni

dt
+ 3Hni = 0. (A.17)

Now we scale out the effect of the expansion of the Universe by considering the

evolution of the number of particles in a comoving volume. This can be done by

dividing the number density of the particle species i with its entropy density, i.e.

Yi =
ni

s
. (A.18)

Using the conservation of entropy per comoving volume (sR3 = constant), equation

(A.18) can be written as

dni

dt
+ 3Hni = sẎ = 0. (A.19)

As the Universe expands the momentum pi of the particle species i falls as 1/R

and thus also the temperature T . Under rescaling the momenta of massless particles

remain unchanged. So they keep themselves in equilibrium with the thermal plasma.

Above the mass scale of any massive particle it will behave as a massless one. Below

its mass scale the interaction rate decreases in comparison to the Hubble expansion

rate and hence it falls out of equilibrium because it needs several collision times to

keep it in equilibrium with the thermal photons. The departure of the density of any

species i from its thermal equilibrium value can be predicted by solving the Boltzmann

transport equations.
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For simplicity, let’s consider the decay a massive species i to a set of particles

Y . As a result the equation (A.19 becomes

dni

dt
+ 3Hni = −

∑
i↔Y

[
ni

neq
i

γ(i → Y )− nY

neq
Y

γ(Y → i)

]
,

where

γ(i → Y ) =

∫
dΠidΠY (2π)4δ4(pi − pY )f eq

i |A(i → Y )|2.

In equation (A.2), dΠ = 1
2E

d3p
(2π)3

. If we neglect CP -violation then |A(i → Y )|2 =

|A(Y → i)|2. Using (A.14) the above equation (A.2) simplifies to

dni

dt
+ 3Hni = −ΓD(ni − neq

i ),

where we have used

ΓD =
1

2Ei

∫
d3pY

(2π)32EY

(2π)4δ4(pi − pY )|A|2.

Note that in the above simplification we have assumed nY = neq
i and it is true because

the decay products Y are massless till the later epochs of our interest. Substituting

Z = Mi/T and Yi = ni/s in equation (A.2) we get

dYi

dZ
= − ΓD

ZH(Z)
(Yi − Y eq

i )

= −D(Yi − Y eq
i ). (A.20)

Considering the 2 ↔ 2 scatterings involving the species i equation (A.20) can be

extended to

dYi

dZ
= −(D + S)(Yi − Y eq

i ),

where S = Γs/ZH. This is the final Boltzmann equation for the evolution of any

species i due to its decay and scatterings.
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A.3 CP Violation in Neutral K-Meson System

Let |K0〉 and |K0〉 be the stationary states of the K0-meson and its antipar-

ticle K
0
, respectively. Both states are eigenstates of the strong and electromagnetic

interaction Hamiltonian, i.e.

(Hst + Hem) |K0〉 = m0|K0〉 and (Hst + Hem) |K0〉 = m0|K0〉 (A.21)

where m0 and m0 are the rest masses of K0 and K
0
, respectively. The K0 and K

0

states are connected through CP transformations. For stationary states, T, which is

time reversal operator, does not alter them with the exception of an arbitrary phase.

In summary, one gets

CP |K0〉 = eiθCP |K0〉 and CP |K0〉 = e−i θCP |K0〉
T |K0〉 = ei θT |K0〉 and T |K0〉 = ei θT |K0〉

(A.22)

where θ’s are arbitrary phases and it follows that

2 θCP = θT − θT .

by assuming CPT |K0〉 = TCP |K0〉.
If strong and electromagnetic interactions are invariant under CPT transforma-

tion, which is assumed here (see section 2 of chapter 1), it follows that m0 = m0.

Next, we introduce a new interaction, V , violates strangeness conservation.

Through such interactions, the K-mesons can decay into final states with no

strangeness (|∆S| = 1) and K0 and K
0

can oscillate to each other (|∆S| = 2).

Thus, a general state |ψ(t)〉 which is a solution of the Schrödinger equation

i
∂

∂t
|ψ(t)〉 = (Hst + Hem + V ) |ψ(t)〉 (A.23)

can be written as

|ψ(t)〉 = a(t)|K0〉+ b(t)|K0〉+
∑

f

cf(t)|f〉
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where a(t), b(t) and cf(t) are time dependent functions. For a new interaction which is

much weaker than strong and electromagnetic interactions, perturbation theory and

the Wigner-Weisskopf method can be applied to solve equation the the Schrödinger

equation above. We obtain

i
∂

∂t




a(t)

b(t)


 = Λ




a(t)

b(t)


 =

(
M − i

Γ

2

)



a(t)

b(t)


 (A.24)

where the 2 × 2 matrices M and Γ are often referred to as the mass and decay

matrices.

The elements of the mass matrix are given as

Mij = m0 δij + 〈i|V |j〉+
∑

f

P

(〈i|V |f〉〈f|V |j〉
m0 − Ef

)
(A.25)

where P stands for the principal part and i = 1, 2 denotes K0(K
0
). Let us split

the Hamiltonian V into the known weak interaction part Hweak and a hypothetical

superweak interaction, Hsw, i.e. V = Hweak + Hsw. Since ordinary weak interactions

do not produce a direct K0-K
0

transition, the second term of equation A.25 applies

only for the superweak interaction for i 6= j. The third term is dominated by the

weak interaction since the second order superweak interaction must be negligible. It

follows that

Mij = m0 δij + 〈i|Hsw|j〉+
∑

f

P

(〈i|Hweak|f〉〈f|Hweak|j〉
m0 − Ef

)
. (A.26)

Note that the sum is taken over all possible intermediate states common to K0 and

K
0

for i 6= j.

The elements of the decay matrix are given by

Γij = 2 π
∑

f

〈i|Hweak|f〉〈f|Hweak|j〉δ(m0 − Ef ) (A.27)

The sum is taken over only real final states common to K0 and K
0

for i 6= j.

Since Γij starts from second order, the superweak Hamiltonian can be neglected. If
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Hamiltonians are not Hermitian, transition probabilities are not conserved in decays

or oscillations, i.e. the number of initial particles is not identical to the number of

final particles. This is also referred as break down of unitarity. From here on, the

hermiticity of all Hamiltonians will be assumed.

If V is Hermitian and invariant under T, CPT or CP transformations, the mass

and decay matrices must satisfy the following conditions;

T :

∣∣∣∣M12 − i
Γ12

2

∣∣∣∣ =

∣∣∣∣M∗
12 − i

Γ∗12

2

∣∣∣∣
CPT : M11 = M22, Γ11 = Γ22

CP :

∣∣∣∣M12 − i
Γ12

2

∣∣∣∣ =

∣∣∣∣M∗
12 − i

Γ∗12

2

∣∣∣∣ , M11 = M22, Γ11 = Γ22

where equations A.22, A.26 and A.27 are used. It follows that

• if M11 6= M22 or Γ11 6= Γ22 :

CPT and CP are violated

• if sin (ϕΓ − ϕM) 6= 0 :

T (or unitarity) and CP are violated .

(A.28)

where ϕM = arg (M12) and ϕΓ = arg (Γ12).

Note that CP is not conserved in both above cases; i.e. CP violation in the mass

and decay matrices cannot be separated from CPT violation or T violation.

Solutions of equation A.24 for initially pure K0 and K
0

states are given by

|K0(t)〉 = [ f+(t)− 2 εCPT f−(t) ] |K0〉+
(
1− 2 εT

)
e− i ϕΓf−(t) |K0〉, (A.29)

leading to

|K0(t)〉 =
1√
2

(
|KS〉 e− i λS t

+ |KL〉 e− i λL t
)

(A.30)

and

|K0(t)〉 =
(
1 + 2 εT

)
ei ϕΓ f−(t) |K0〉+

[
f+(t) + 2 εCPT

f−(t)
] |K0〉 (A.31)

=
1 + 2 εT√

2
ei ϕΓ

× [ (
1 + 2 εCPT

) |KS〉 e− i λS t − (
1− 2 εCPT

) |KL〉 e− i λL t
]
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where

f±(t) =
1

2

(
e− i λS t ± e− i λL t

)
.

The parameters λS and λL are eigenvalues of Λ, and KS and KL are the corre-

sponding eigenstates given by

|KS〉 = 1√
2

[
( 1 − 2 εCPT ) |K0〉 + ( 1 − 2 εT ) e− i ϕΓ |K0〉

]

|KL〉 = 1√
2

[
( 1 + 2 εCPT ) |K0〉 − ( 1 − 2 εT ) e− i ϕΓ|K0〉

]
.

(A.32)

They have definite masses and decay widths given by λS and λL as

λS(L) = mS(L) − i
ΓS(L)

2

with

mS(L) =
M11 + M22

2
+(−)<

(√
Λ12 Λ21

)

=
M11 + M22

2
−(+) |M12|

and

ΓS(L) =
Γ11 + Γ22

2
−(+) 2=

(√
Λ12 Λ21

)

=
Γ11 + Γ22

2
+(−) |Γ12|

where we used

ϕΓ − ϕM = π − δϕ, |δϕ| ¿ 1

and

|Λ22 − Λ11| ¿ 1

which are derived from empirical facts, mL > mS, ΓS > ΓL and small CP violation.

The two CP violation parameters εT and εCPT are given by

εT =
∆m ∆Γ

4 ∆m2 + ∆Γ2

(
1 + i

2 ∆m

∆Γ

)
δϕ

εCPT =
i 2 ∆Γ

4 ∆m2 + ∆Γ2

(
1 + i

2 ∆m

∆Γ

)
(Λ22 − Λ11) .
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As seen from the statements A.28, εT 6= 0 implies CP and T violation, and

εCPT 6= 0 means CP and CPT violation. It should be noted that both εT and εCPT

do not depend on any phase convention. The phase of εT is given by the KS-KL mass

and decay width differences which are not related to CP violation. This phase is often

referred to as “superweak” phase:

φsw = arg (εT ) = tan−1

(
2 ∆m

∆Γ

)
.

If we assume that ordinary weak interactions conserve CPT, i.e. Γ11 = Γ22, the

phase of the CP and CPT violation parameter εCPT is given by

arg (εCPT ) = φsw +
π

2
.
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A.4 Bessel Functions

When evaluating reaction densities according to Eq (A.6), one encounters the

modified Bessel functions, it will be useful to summarize some formulae for Bessel

functions. Modified Bessel functions with different indices are related via recursion

relations,

xKν−1(x) + xKν+1(x) = 2νKν(x) , (A.33)

Kν−1(x)−Kν+1(x) = 2
d

dx
Kν(x) . (A.34)

For integer index Bessel functions have the following series representation

Kn(x) =
1

2

n−1∑

k=0

(−1)k (n− k − 1)!

k!
(z

2

)n−2k
+ (A.35)

+ (−1)n+1

∞∑

k=0

(z

2

)n+2k

k!(n + k)!

[
ln

(x

2

)
− 1

2
ψ(k + 1)− 1

2
ψ(n + k + 1)

]
,

where ψ denotes the derivative of the logarithm of the Gamma function

ψ(x) =
d

dx
ln Γ(x) . (A.36)

For integer argument it reads

ψ(n) = −γE +
n−1∑

k=1

1

k
, (A.37)

where γE = 0.577216 is Euler’s constant. Hence, the leading terms of the series are

given by

K0(x) = ln

(
2

x

)
− γE + . . . , (A.38)

Kn(x) =
(n− 1)!

2

(
2

x

)n

+ . . . , for n ≥ 1 . (A.39)

The asymptotic expansion of modified Bessel functions reads

Kν(x) =

√
π

2x
e−x

∞∑

k=0

1

k!(2x)k

Γ
(
ν + k + 1

2

)

Γ
(
ν − k + 1

2

) , (A.40)
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i.e. to leading order all Bessel functions have the same asymptotic behaviour,

Kν(x) =

√
π

2x
e−x + . . . .
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A.5 Loop Integrals

A trick commonly used to combine propagators denominator is the Feynman

formula that introduces the Feynman parameters;

1

A1A2 . . . An

=

∫ 1

0

dX1 . . . dXnδ
(∑

Xi − 1
) (n− 1)!

[X1 + A1X2A2 + . . . + XnAn]n

(A.41)

The most simplest case is that of two denominators, which is straightforward to check;

1

A1A2

=

∫ 1

0

dX
1

[XA1 + (1−X)A2]
2 (A.42)

A more general formula in which some of the denominators have powers, such as

encountered in Eq (3.24), is as follows;

1

Am1
1 Am2

2 . . . Amn
n

=

∫ 1

0

dX1 . . . dXnδ
(∑

Xi − 1
) ∏

Xmi−1
i

[
∑

XiAi]
P

mi

Γ(m1 + . . . + mn)

Γ(m1) . . . Γ(mn)

(A.43)

This formula is true even when the mi are not integers. In the following we give a

list of d−dimensional integral, some of which have been used in carrying out the

integration in Eq (3.24):

∫
ddk

(2π)d

1

(k2 −Q)n =
(−1)nı

(4π)d/2

Γ
(
n− d

2

)

Γ(n)

(
1

Q

)n− d
2

(A.44)

∫
ddk

(2π)d

k2

(k2 −Q)n =
(−1)n−1ı

(4π)d/2

d

2

Γ
(
n− d

2
− 1

)

Γ(n)

(
1

Q

)n− d
2
−1

(A.45)

∫
ddk

(2π)d

(k2)2

(k2 −Q)n =
(−1)n−1ı

(4π)d/2

d(d + 2)

4

Γ
(
n− d

2
− 1

)

Γ(n)

(
1

Q

)n− d
2
−2

(A.46)

∫
ddk

(2π)d

kνkν

(k2 −Q)n =
(−1)n−1ı

(4π)d/2

gµν

2

Γ
(
n− d

2
− 1

)

Γ(n)

(
1

Q

)n− d
2
−1

(A.47)
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A.6 Mathematica Code

In this appendix we would like to highlight some aspects of numerical solution

to Boltzmann Equation (BE). Remind the first and second BE from Eq (2.30, 2.31)

as follows;

dYN1

dz
= − z

Hs(z)

(
YN1

Y eq
N

− 1

) (
γ

D1
+ γ

S1

)
, (A.48)

dYB−L

dz
= − z

s(z)H(M1)

[
ε1γD1

(
YN1

Y eq
N

− 1

)
+ γ

W

YB−L

Y eq
L

]
, (A.49)

which have to be simultaneously solved for z where z = M1

T
. The difficulty here is in

integrating over x the reaction densities γ(i);

γ(i) =
M4

1

64π4

1

z

∫ ∞

(Ma+Mb)2

M2
1

dx σ̂(i)(x)
√

x K1

(√
xz

)
, (A.50)

where σ̂(i)(x) is in general a complicated function of x, see Eq (2.40, 2.42, 2.43).

Notice the dependence of the Bessel function over the parameter z. Carrying out

the integration analytically is very difficult. However, the integration can be done

numerically and interpolate the γ(i)’s to obtain a smooth function of z, then proceed

to solve A.48, A.49 by using the interpolated functions of the γ(i)(z). The integrand

is highly oscillatory due to the decayed oscillation feature of Bessel functions, but

NIntegrate command of Mathematica 5.2 can very well handle the singularities if

the correct settings for AccuracyGoal, integration Method and maximum number

of recursive subdivisions (MaxRecursion) are properly chosen. Usually, specifying a

high value for the WorkingPrecision, i.e, how many digits of precision should be

maintained in internal computations, by itself sets the other options to optimum

values. The code originally written is Mathematica was independently checked by

a second Maple 9 code to ensure the validity of the final solution. Below we make

available the Mathematica notebook we constructed, it includes helpful comments at

every step toward the final NDSolve execution.
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