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CHAPTER I 
 

 

INTRODUCTION 

 

Selenium an Essential Trace Element  

The understanding that selenium (Se) is an essential trace element has come from 

research over the past several decades. A historical year was marked in 1957, for Se to be 

recognized as an essential trace element as a result of being a component of Factor 3 

which prevented liver necrosis in rats (Schwarz and Foltz 1957). Later in 1973, a 

graduate student from University of Wisconsin discovered that Se is part of glutathione 

peroxidase (GSH-Px) (Rotruck, Pope et al. 1973) and in 1985, phospholipid 

hydroperoxide glutathione peroxidase (PLGSH-Px) was identified as a second Se 

containing enzyme (Ursini, Maiorino et al. 1985). These two enzymes generally 

characterize the biochemical functions of Se such that the presence or absence of Se 

affects the underlying mechanism by which Se contributes to redox balance. In animals, 

Se deficiency resulted into pathological conditions manifested as defective growth, 

hepatic necrosis, myocardial degeneration and muscular dystrophy (Hoekstra 1975).  

Deficiency of Se induces, as a result of a high level of free radicals, reactions 

contributing to pathological conditions such as diabetes, cardiovascular disease, 

hypertension and related complications (Sunde 2006). Se is an essential component of the 
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antioxidant enzyme GSH-Px, which functions to catalyze a reaction that scavenges 

reactive hydrogen peroxide and lipid hydro peroxide and converts them to less reactive 

end products (Puri 2002).   

However, before Se was identified as an essential element, it was well known for 

its chronic toxic effects throughout history. Short term exposure to excess Se in animals 

resulted in abnormal posture, unsteady gait and eventual death while chronic exposure 

resulted in  “blind staggers”, and  “alkali disease” of livestock as a result of eating highly 

seleniferous plants (James and Shupe 1984). According to these authors, “blind staggers” 

is characterized by blindness, weakened legs and paralysis while “alkali disease’ is 

manifested by dullness, anorexia, weight loss, ataxia, and dystrophic hooves” (James and 

Shupe 1984). Humans living in Se excess areas also developed changes in their 

integumentary system manifested as dermatitis, hair loss and nail changes (Yang, Wang 

et al. 1983). These changes were observed at an intake greater than 16 times the optimal 

level for the recommended dietary allowance (RDA) (Yang, Wang et al. 1983). As a 

result, early research on Se focused on toxic manifestations of excess Se intake. Current 

research, however, also includes focus on Se deficiency and the resulting 

pathophysiological conditions after Se was identified as an essential nutrient for 

balancing the reduction and oxidation (redox) system in the host (Rahul and Geeta 2007). 

The emerging evidence is promising in supporting the importance of Se in chronic 

diseases and its impact on the immune system (Rahul and Geeta 2007).   

 

Selenium in the Immune System 

Overview of the Immune System 
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  The body fights disease organisms, cancers, and foreign substances by its immune 

system. The immune system is generally divided into two interactive parts named as 

innate or non-specific immunity and adaptive or specific/acquired immunity (Parkin and 

Cohen 2001).  

Innate cellular immunity includes cellular elements consisting of macrophages, 

leukocytes, natural killer cells (NKC) and dendritic cells (Delves and Roitt 2000) (Fig.1). 

The innate immunity also includes some components with recognition molecules such as 

C - reactive protein, serum amyloid protein and mannose-binding protein as acute phase 

proteins and helps activates the complement system for phagocytosis and cell lysis 

(Delves and Roitt 2000). These molecules help to distinguish host cells from invaders and 

facilitate phagocytosis and removal of the intruder. Secretions of pro-inflammatory 

cytokines (IL-1, IL-6, IL-12; TNFα,) leukotrienes, prostaglandins and reactive oxidative 

species (ROS) are increased by stimulated phagocytic cells (Ryan-Harshman and Aldoori 

2005). The NKC lyse cancerous cells and pathogen-infected cells in response to 

macrophage-driven cytokines and interferons which help to arrest infections (Delves and 

Roitt 2000). The dendretic cells (DCs) are also activated by interferon-γ (IFNγ) and serve 

as antigen-presenting cells and activate naive T cells to initiate immune responses in the 

absence of formulated immunological memories of the antigen (Ryan-Harshman and 

Aldoori 2005).   

Adaptive immunity is a defense system that strengthens innate immunity (Fig.1.1) 

(Parkin and Cohen 2001). When infection occurs for the second time, the B and T 

memory cells quickly activate the immune system (Parkin and Cohen 2001). The T 

lymphocytes represent the major portion of the cells of specific immunity (Delves and 
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Roitt 2000). T lymphocytes originate in bone marrow and mature in thymus while B 

lymphocytes originate and mature in bone marrow (Delves and Roitt 2000). Both types of 

lymphocytes have receptors that differentiate self from non self and identify antigens 

specific to infective agents (Delves and Roitt 2000).  On the other hand, humoral 

immunity is facilitated by antibodies secreted in B- cells and this immunity is highly 

protective against extracellular pathogens (Albers, Antoine et al. 2005) . The antibodies 

bind with antigen on the surface of pathogens and facilitate destruction by macrophages 

(Albers, Antoine et al. 2005). 

Fig.1.1: Overview of the Immune System (Wintergerst, Maggini et al. 2007) 

 

 The role of Selenium in immune function  

The immune system is dependent upon several processes which include 

production of reactive oxidative molecules (i.e. protection against microbial pathogens), 

organized and coordinated functions of adhesion molecules and production of soluble 

mediators such as eicosanoids and cytokines and receptors (McKenzie, S. Rafferty et al. 

1998). Se likely influences these immune processes at all stages as it is important for 
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optimum function of both the innate and adaptive immune systems (McKenzie, S. 

Rafferty et al. 1998). The production of ROS is important for microbicidal activity of 

immune cells, such as neutrophils, as released in the respiratory burst reaction 

(McKenzie, Arthur et al. 2002; Arthur 2003). Excessive production of ROS, however, is 

lethal. In small amounts, the ROS help to attack microbial agents by generating 

inflammation, but excessive and prolonged generation of these reactive species may 

cause damage to the host (McKenzie, Arthur et al. 2002; Arthur 2003; McKenzie, 

Beckett et al. 2006). The antioxidant system of the host is used as a defense against 

excessive ROS.  

The first evidence on the role of Se in immune function was derived, in 1959, 

from a study in dogs injected with 
75

Se which incorporated the isotope into a leukocyte 

protein (Hoffmann 2007). The protein which was observed then was later identified to be 

cytoplasmic glutathione peroxidase (cGSH-Px) (Rotruck, Pope et al. 1973). In sheep and 

in humans, Se has been found to be concentrated in tissues such as spleen, liver and 

lymph nodes which are involved in immune response (Spallholz 1990).  

The finding in 1973 that Se was required for the activity of the selenoenzyme 

cGSH-Px provided some insight into a mechanism by which Se exerted its biological 

functions including its impact on the immune system. cGSH-Px detoxifies harmful ROS 

such as organic hydroperoxides, as well as hydrogen peroxide, which are produced 

during cellular respiration (Spallholz 1990; Sunde 1990; Arthur, Bermano et al. 1996; 

Foster 1997; Rayman 1997). Other types of GSH-PXs, as well as other selenoenzymes 

and selenoproteins also play preventive roles against oxidative damage to cells in the 

body (Spallholz 1990).  
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 Throughout the 1970's and the 1980's, there was  marked  progress in research on  

the immunostimulatory effects of Se, as summarized by Spallholz (Spallholz 1990). 

Research in the 1980’s demonstrated the immunological protective roles of Se through 

modulation of antibody and complement production. Research has shown that Se 

intensifies immunological responses to several types of immunogens such as tetanus 

toxoid, typhoid toxin and sheep red blood cells (Spallholz 1990). On the other hand, 

when Se was deficient in the host, it has been associated with failure of neutrophil 

responses, reduction of neutrophil numbers, reduced antibody production to sheep red 

blood cells, enhanced H2O2 discharge by phagocytes, decreased  antibody titers to 

bacterial and mycotic antigens and decreased natural killer cell activity (McKenzie, 

Beckett et al. 2006). Se supplementation as sodium selenite in drinking water (2.5µg of 

Se/ml), on the other hand,  boosted the immunity from vaccination against malaria by 

increasing antibody-producing B-cell numbers and T-cell dependent antibody production 

with elevated concentration of Se in neutrophils and GSH-Px activity in lymphocytes 

(Desowitz and Barnwell 1980). In some instances, however, toxic levels of Se 

supplements have been shown to decrease immunity (Spallholz 1990), which probably 

indicates the need for an optimal dose of Se for enhanced stimulation of the immune 

system.  

The current studies also show that adequate dietary Se is essential for both innate 

and adaptive immune responses (Wang, Wang et al. 2009). Se deficiency affects several 

immune response pathways including impairment of leukotriene B4 synthesis, which 

assists in neutrophil migration to inflammatory sites (Arthur 2003). Similarly, a decrease 

in the humoral immune response (immunoglobulin production) was shown in Se 
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deficiency both in rats and humans (Arthur 2003). For example, in Se deficiency, markers 

of the humoral immune system such as IgM, IgG and IgA titers were decreased in rats, 

while IgG and IgM titers were found to be lower in humans (Arthur 2003).  

Overall, the role of Se, as an essential nutrient, for immune response is well 

recognized both in animals and humans (McKenzie, S. Rafferty et al. 1998; Arthur 2003). 

The GSH-Px facilitates the antioxidant function of Se to minimize harmful effects of 

lipid hydroperoxides and hydrogen peroxide (Arthur 2000). Different peroxidases 

function in different parts of cells and tissues (Arthur 2000; Pfeifer, Conrad et al. 2001). 

For example, the GSH-Px functions in the extracellular space, the cell cytosol and in cell 

membranes as in the gastrointestinal tract and influences the immune response of the 

host. In addition, the thioredoxin reductase (TR) (Miller, Walker et al. 2001), and 

selenoprotein P and W also provide antioxidant functions (McKenzie, Arthur et al. 2002; 

McKenzie, Beckett et al. 2006). All selenoproteins with antioxidant functions have roles 

in the immune system (McKenzie, Arthur et al. 2002).  As these selenoproteins are 

present in all cells, it may be possible that Se affects cellular activities through 

antioxidant functions and regulation of the redox-active proteins (McKenzie, Beckett et 

al. 2006). Thus, Se has a role in the control of several metabolic functions and specific 

processes that enhance the immune system. The specific immune challenges, however, 

determine which functions of Se will be involved in the immune response.  

From the studies discussed above, information on the specific dose of Se 

recommended to promote optimal immune response is lacking.  After the first study on 

the role of Se in the immune system in 1959, several studies were undertaken to establish 

the relationship between Se and immune response both in animal and human studies. 
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Most of the studies used different chemical forms and doses of Se which made it difficult 

to interpret results and draw conclusions. This study, as part of an experimental study on 

selenium and bone, thus, has assessed the immune response of mice stimulated by low 

dose and slow release lipopolysaccharide (LPS) and supplemented with dietary Se to 

investigate the effect of different doses of dietary Se supplementation as sodium selenate 

on immune response.   

We used slow-release Lipopolysaccharide (E. coli Serotype 0127) pellets to 

provide a consistent dose of LPS for 28 days (Innovative Research of America, Sarosota, 

FL) and these pellets were implanted using the method of Smith et al (Smith, Lerner et al. 

2006). This provided low grade inflammation and we measured selected inflammatory 

and immune markers in mice supplemented with dietary Se. Based upon the evidence 

outlined above, Se modulates inflammation in several ways. Accordingly, several studies 

have been carried out to assess the extent to which Se down-regulates excessive 

inflammatory responses to prevent further impacts of inflammation. Most of these studies 

used high grade inflammation models and to our knowledge, no prior study has been 

carried out to assess the impact of Se on low grade inflammation. Therefore, the purposes 

of this study were first to determine if increasing levels of Se prevented LPS-induced 

alterations in numbers of selected immune cells and in biochemical markers and secondly 

if these effects of Se were associated with alterations in expression of  selected pro-

inflammatory cytokines.   
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Overall Objective 

The overall objective of this study was to assess selected immune markers in 

response to dietary Se supplementation and to low grade chronic inflammation stimulated 

by low dose slow - release LPS in an in vivo experiment.  

Specific Objectives 

1. Assess plasma IL-12, IFNγ and IgG2a as markers of changes in macrophage 

activation, as well as Th-1, and B-cell responses in plasma samples.  

2. Measure GSH-Px activity in plasma collected from mice with or without slow 

release LPS and supplemented with dietary Se.   

3. Determine the plasma total antioxidant capacity (TAC) in mice with or without 

slow release LPS and supplemented with dietary Se.  

4. Measure bone marrow lymphocyte proliferation to detect change in the number 

of total T-cells, T-helper cells and B-cells in mice stimulated with time-release 

LPS and supplemented with dietary Se compared to dietary equivalent groups 

not implanted with LPS. 

Hypothesis 

There will be significant differences in plasma concentration of inflammatory 

biomarkers (IgG, IFNγ and IL-12) and oxidative stress markers (GSH-Px and TAC) in 

mice supplemented with different dietary Se concentrations and stimulated with time-

release LPS.   

Statement of the Problem 

Se works by promoting both the innate and acquired immune systems (Brown and 

Arthur 2001). The selenoproteins are very important in regulating antioxidant and redox 
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systems thereby influencing membrane integrity and guarding against DNA damage 

(Arthur 2003). The antioxidant effect of Se is mediated through GSH-Px. It plays a role 

by removing free radicals produced during normal metabolism and oxidative stress. Se 

deficiency leads to decreased activity of GSH-Px and reduced ability to produce 

respiratory burst reactions by neutrophils and macrophages, which are important in 

killing microbes (Arthur 2003). The role of Se in up-regulating IL-2 receptors which are 

required for effective cellular and humoral immune responses also is well documented 

(Arthur 2003). Overall, the existing body of literature consistently indicates that Se has a 

role in maintaining the immune system.  However, this evidence does not indicate the 

actual threshold of Se concentration required for optimum immune system function 

beyond its classical antioxidant functions. Considering this as a gap in knowledge, this 

study was carried out to investigate the role of dietary Se supplementation in mice 

stimulated by LPS and to identify the Se dose that enhances immune response.  No 

previous study, to our knowledge, has examined the immune response of Se to low grade 

chronic inflammation.  

Significance of the Study 

The results of this study add knowledge in the field of Se and immunity. The 

findings support that the supplemental dietary Se enhances immune response. 

Accordingly, it is recommended that another animal study be carried out to refine doses. 

This study will also add knowledge on the host’s immunological response to high Se 

intakes.   
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Organization of the Dissertation 

 

The dissertation is organized first by giving an introduction on Se as an essential 

trace element in the first chapter. The second chapter presents a literature review with a 

detailed account of the metabolism of the Se in the physiological system and includes 

physiological functions, requirements, excretion, health impacts of deficiency, dietary 

sources, methods for assessment of selenium status and specific roles of Se in the 

immune system. The third chapter presents study design and methods used to assess 

impacts of Se supplementation on the immune system. The following chapters present the 

results of the study in the form of two manuscripts. These chapters address the 

immunostimulatory effects of dietary Se assessed by pro-inflammatory cytokines, plasma 

Se, total antioxidant capacity and GSH-Px as markers of inflammation and change in 

numbers of peripheral white blood cells and T and B - cells in bone marrow. The 

summary and conclusion chapter is followed by bibliography and appendices.  
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CHAPTER II 

 

    

 LITERATURE REVIEW 

 

Metabolism of Selenium 

 

Se, as a trace element, is classified as metalloid and stands in the same group with 

oxygen, sulfur and tellurium (Suzuki 2005). Se can be found in metallic form, inorganic 

forms, such as selenate and selenite and organic forms such as selenocysteine and 

selenomethionine (Suzuki 2005). Selenocysteine (SeCys) and selenomethionine (SeMet) 

are the most common organic forms found in plant and animal sources of foods  (Fig.2.1) 

as selenoenzymes and other proteins (Foster 1997; Suzuki 2005).  Selenite and selenate 

are also found  in foods and water, although the drinking water contain insignificant 

amount of Se (Foster 1997; Suzuki 2005). The SeCys is present in the selenoproteins as 

an amino acid residue in both plants and animals foods, while SeMet is present as SeMet 

residue in general protein without being differentiated from methionine (Met) and exists 

freely to the Met pool (Suzuki and Ogra 2002). 

SeCys doesn’t exist freely because it contains free selenol (-SeH) and is therefore 

too highly reactive to exist in a free form. In plants, Se is accumulated in different non-

reactive forms of amino acids such as SeMet, methyl selenocysteine (MeSeCys) and γ-
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glutamyl-Se-methyl-selenocysteine (Suzuki and Ogra 2002). Plants accumulating Se are 

divided based on the type of Se accumulated (Suzuki 2005).  

For example, broccoli accumulates selenate, while cucumbers and grain accumulate 

SeMet. Plants such as onion and garlic accumulate MeSeCys.   

Selenium as a Component of Proteins 

Se incorporates  into proteins as SeCys or SeMet (Ogra, Ishiwata et al. 2004). The 

SeMet from dietary sources can be incorporated into proteins without  discrimination 

between SeMet and Met (Ogra, Ishiwata et al. 2004). SeCys incorporated into proteins is 

not from dietary sources but is endogenously formed from selenide (Suzuki 2005). 

Proteins which contain SeCys are called selenoproteins while proteins containing SeMet 

are referred to as Se-containing proteins (Sunde 2000; Suzuki 2005). Generally, Se in 

these proteins is part of the gene product as a form of SeCys and SeMet residue which 

makes it different from other metals (Burk, Hill et al. 2003). For example, other trace 

elements such as copper and zinc attach to their proteins once the primary structures of 

the proteins are translated, while Se incorporates into protein as the amino acid SeCys 

during the translation of the primary structure (Burk, Hill et al. 2003; Suzuki 2005) .  

SeCys incorporates into proteins (Burk, Hill et al. 2003; Squires and Berry 2008) 

and is encoded by a UGA codon in the selenoprotein mRNA (Squires and Berry 2008).  

Most of the selenoproteins are in the form of enzymes playing a catalytic role in 

oxidation reduction reactions with SeCys available at their active site (Hatfield and 

Gladyshev 2002). There is a structural similarity between SeCys and cysteine (Cys) 

except that SeCys contains Se in place of sulfur in cysteine (Copeland 2003).  

Absorption and Transport of Selenium 
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Several chemical forms of Se present in foods are well absorbed (Swanson, 

Patterson et al. 1991). The usual absorption rate ranges from 50 to 100%.  SeMet, the 

major dietary form, is more than 90% absorbed by a mechanism similar to that used by 

Met (Swanson, Patterson et al. 1991). Not much is known about the absorption of 

selenocysteine but it is assumed to be better absorbed than inorganic Se (Panel on Dietary 

Antioxidants and Related Compounds.  Food and Nutrition Board. Institute of Medicine 

2000). Selenate absorption uses a mechanism common to sulphate, depending on the Na+ 

gradient, and absorption is maintained by the Na+/K+ ATPase (Navarro-Alarcon and 

Cabrera-Vique 2008). Selenate is absorbed almost completely but some amount gets lost 

to urine before it incorporates into the tissues. On the other hand, selenite absorption is 

said to be less consistent, due to interactions in the gut, but is well retained in the system 

once absorbed compared to selenite (Panel on Dietary Antioxidants and Related 

Compounds.  Food and Nutrition Board. Institute of Medicine 2000). Transporters for Se 

across membranes are unknown. SeMet uses the same transportation mechanism used by 

Met.  

Metabolic Pathways for Conversion of Se to a Common Intermediate: Selenide 

Diet contains different chemical forms of Se and all converge into a common 

active intermediate for the synthesis of SeCys to be part of SeCystRNA and then to 

SeCys UGA codon for synthesis of selenoprotein  (Glass, Singh et al. 1993). Inorganic 

forms of Se (selenite and selenate) are reduced by glutathione (GSH) and thioredoxin 

reductase (TR) to selenide (Hatfield 2001; Suzuki 2005). Selenate and selenite are 

transported using bicarbonate and phosphate buffer systems. Selenite is directly taken up 

by red blood cells (Suzuki, Shiobara et al. 1998) , while selenate ions are taken up by 
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hepatocytes (Kobayashi, Ogra et al. 2001). Selenite is readily reduced to selenide, in red 

blood and intestine cells, and released into the blood stream (bound to albumin) to be 

transported to liver (Shiobara and Suzuki 1998). The reduced form of these inorganic 

forms of Se then is utilized by liver to synthesize selenoprotein P, which is Se transport 

protein and GSH-Px to be released back into the blood stream (Suzuki, Ishiwata et al. 

1999). 

Fig.2.1: Differences in Metabolic Pathways for Selenite and Selenate (Suzuki 2005) 

 

 

On the other hand, organic forms of Se (SeCys and SeMet), as selenoaminoacids, 

are transformed to selenide by the lyase reaction (Schomburg, Schweizer et al. 2004). Β-

lysate transforms SeCys directly to selenide while SeMet transforms to selenide by a 

trans-selenation pathway in the cells (Fig.2.1). When there is excessive Se intake, the C-

Se bond is cleaved at the γ position by γ-lyase of SeMet which results in selenide for 

synthesis of selenoproteins (Okuno, Kubota et al. 2001). 
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Fig.2.2: Metabolic Pathways for Selenium (Suzuki 2005) 

 

Synthesis of SeCys occurs during protein synthesis  and converts to selenide for 

the formation of selenophosphate, which is used for the synthesis of selenoproteins (Low, 

Harney et al. 1995; Zeng 2009).  Selenophosphate synthetase is utilized to catalyze this 

reaction using ATP (Sunde and Evenson 1987). As dietary SeCys or SeMet couldn’t 

directly be used for selenoproteins formation, the amino acid serine serves as a donor of 

carbon skeleton for SeCys (Sunde and Evenson 2002). Serine gets esterified to the 3’ 

terminal adenosine of tRNAsec UCA to produce Ser-tRNAsec UCA by seryl-tRNA 

synthases (Hatfield, Choi et al. 1994). As a second step, selenocysteine synthase 

catalyzes a reaction that helps to substitute the serine-OH with -SeH from 

selenophosphate to produce selenocysteine-tRNASec UCA resulting in synthesis of  

SeCys (Tormay, Wilting et al. 1998). Degradation of SeCys is catalyzed by 
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selenocysteine lyase which releases elemental Se that converts to selenide to complete the 

cycle  (Mihara, Kurihara et al. 2000).   

SeMet  doesn’t have a specific codon but uses the same AUG codon used by Met 

(Fig: 2.2) (Butler, Beilstein et al. 1989) to be incorporated into general proteins until 

degraded and released to be converted by trans-selenation or direct γ-lyase  pathways to 

selenide (Fig.2.1) The concentration of SeMet in the general body protein is proportional 

to the concentration of Se in the food.  

Mammalian Selenoproteins  

In 1973 the first SeCys containing protein in mammals was recognized (Rotruck, 

Pope et al. 1973). Since 1973, more types of selenoglutathione peroxidases (GSH-Px) 

have been identified (Hatfield and Gladyshev 2002) and characterized. Of these, the 

GSH-Pxs protect cells against oxidative damage by reducing hydrogen peroxide and 

hydro-peroxides (Flohé and Brigelius-Flohé 2006). The phospholipid glutathione 

peroxidases (PLGSH-Px), also function in the reduction of phospholipid (Flohé and 

Brigelius-Flohé 2006), cholesterol, and cholesteryl ester hydroperoxides to prevent  cell 

membrane lipid peroxidations. The PLGSH-Px also has another structural function in 

male spermatozoa and this may be the reason for male infertility seen in Se deficiency 

(Maiorino, Roveri et al. 2006). The three thioredoxin reductases are also selenoproteins 

(Mustacich and Powis 2000; Lu, Berndt et al. 2009). These enzymes reduce thioredoxin 

and help to maintain cellular thiol redox status  (Lu, Berndt et al. 2009) .  

Other selenoproteins include the family of deiodinases which are involved in 

thyroid hormone metabolism (Bianco and Larsen 2006). There are three iodothyronine 

deiodinases. Types I and II help for conversion of T4 to T3, while the Type III enzyme 



 

  17 
 

inactivates T3 (Bianco and Larsen 2006).  Selenophosphate synthetase 2 (SPS2), is also a 

selenoprotein which synthesizes the Se donor for SeCys biosynthesis (Low, Harney et al. 

1995; Guimarães, Peterson et al. 1996). Other types of selenoproteins which participate 

in defending against oxidation include selenoprotein-W, selenoprotein-P and methionine 

sulfoxide reductase. Selenoprotein P also serves to transport Se to peripheral tissues 

(Burk and Hill 2005) 

Selenium Concentration in the Body 

 The total Se content of the human body is estimated to range  from 13-23 mg, 

based on cadaver studies (Sunde 2000). Using stable isotope methodology, in US 

subjects,  total body Se was estimated to reach 30 mg (Swanson, Patterson et al. 1991). 

About 61% of Se is stored in muscle, liver, blood, and kidneys and this proportion rises 

to 91% if the skeletal system is included (Sunde 2000). On the other hand, cells that have 

higher concentration of Se are the immune cells, erythrocytes and platelets (Sunde 2000). 

Normal levels of Se in the body are reported to be 0.1– 0.34 mg/L (1.27–4.32 μmol/L) for 

white blood cells; 0.04–0.6 mg/L (0.51–7.6 μmol/L) in serum; 0.03 mg/L (<0.38 μmol/L) 

in urine and  < 0.4 μg/g (0.01 μmol/L) in hair (Ogra, Ishiwata et al. 2004). The National 

Health and Nutrition Examination Survey (NHANES) III  for US young adults 19-30 

years of age reported the mean serum Se concentration to be 127 and 124 µg/L for males 

and females respectively (Panel on Dietary Antioxidants and Related Compounds.  Food 

and Nutrition Board. Institute of Medicine 2000). The European adults from different 

countries have different values (Rayman 2000) which ranged from 86 µg/L in Sweden, 

France, and Italy to 43 µg/L in Serbia. Values for adults in New Zealand are reported to 
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range from 62- 69 µg/L (Chen, Yang et al. 1980). Individuals in low Se areas like in 

China have plasma Se concentration of 11–16 µg/L.   

Excretion of Selenium 

After Se is absorbed from the intestine, it is excreted mainly into urine (Sunde 

2000). Dietary intake influences the amount of Se excreted in the urine when consumed 

at physiological doses. If dietary intake is excessive, Se tends to be exhaled out into 

breath in addition to the urinary route (McConnell and Roth 1966). Before excretion, Se 

is methylated sequentially to produce monomethylated Se and trimethylselenonium as 

urinary and dimethylselenide as expiratory metabolites (Sunde 2000). The concentrations 

of the two urinary metabolites differ by the Se intake: at lower dietary Se intake, 

monomethylated Se is mostly excreted while at high level of dietary Se intake, the 

trimethylated form is predominantly excreted (Itoh and Suzuki 1997). The 

monomethylated Se in urine is now characterized to be a selenosugar (Se-methyl-N-

acetylgalactosamine) (Fig.6) (Kobayashi, Ogra et al. 2002). Overall, Se is regulated at 

physiological levels by urinary excretion unlike by absorption for other trace elements 

like iron.  

Physiological Functions of Selenium 

Se is present in the host as selenoenzymes and selenoproteins, as discussed above. 

The detailed functions of these enzymes and proteins, thus, characterize the functions of 

Se as presented below.   

GSH-Px 

GSH-Px was described, in 1973, as the first selenoprotein with clear metabolic 

functions (Mills 1957; Rotruck, Pope et al. 1973).  The GSH-Px enzymes are classified 



 

  19 
 

into three forms namely cytosolic, phospholipid and extracellular glutathione peroxidases 

(c-GSH-Px, p-GSH-Px and e-GSH-Px) and have differences in structural, kinetic, 

immunological and electrophoretic properties (Maddipati and Marnett 1987; Jotti, 

Maiorino et al. 1994). 

The GSH-Px enzymes are known as antioxidants and play a major role in 

protecting cells and tissues from damage by free radicals. This function makes GSH-Px 

indispensable for survival of cells (Michiels, Raes et al. 1994). Both intracellular and 

extracellular GSH-Pxs are effective in reducing hydrogen peroxide and other organic 

hydroperoxides to prevent injury to cell membranes (Combs and Combs 1984). The 

GSH-Px has been used as a major indicator of Se status at physiological doses. The 

justification for using GSH-Px  as a marker for Se is related to the linear relationship 

between whole blood GSH-Px and plasma Se when the concentration of Se is below 100 

µg/L (Rea, Thomson  et al. 1979). When Se is depleted at experimental and clinical 

levels the plasma GSH-Px activity is reduced in humans and small animals. In addition, 

both experimental and clinical Se depletion have been shown to reduce tissue, blood, and 

plasma GSH-Px activity in both humans and rats (Takahashi, Newburger et al. 1986; 

Avissar, Whitin et al. 1989). The different GSH-Pxs are also known by specific numbers 

and the most well characterized ones are presented below.  

GSH-Px-1:  This enzyme is abundantly found in all tissues and contains about 

50% of the body Se (Esworthy, Ho et al. 1997).  The SeCys is the active moiety of GSH-

Px enzyme and (Chambers, Frampton et al. 1986). GSHPx-1 is necessary for the 

detoxification of hydrogen peroxide and other hydroperoxides in the host. Research on 

GSH-Px knockout mice showed increased risk of being affected by  peroxides generated 
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from paraquat toxicity and increased virulence of coxsackie virus in infected mice 

(Cheng, Ho et al. 1998; Beck, Handy et al. 2004), indicating the role of this enzyme in 

detoxifying ROS that led to increased susceptibility to toxins and pathogens.  

GSH-Px-2: This enzyme was first identified from human liver DNA but later 

obviously functions in preventing the damage to the intestine from external peroxides. 

GSH-Px-3: This enzyme is excreted by kidney cells in humans and accounts for  

20% of selenoproteins (Burk, Early et al. 1998). It is  also predominantly available  in 

milk and may  be the source of Se in the milk (Avissar, Slemmon et al. 1991). The high 

level of this enzyme in the kidneys seems to be for protecting kidney cells from damage 

by ROS, as an excretory organ.  

GSH-Px-4: Is commonly found in sperm and testis (Ursini, Heim et al. 1999). The 

reason may be due to the need to reduce the high level of hydroperoxides being generated 

during spermatogenesis as a substitute for glutathione in case of shortage (Sunde 2000). 

More so, it is believed to be part of the structural protein of the sperm to maintain 

integrity. Deficiency of this enzyme was found to be associated with increased breakage 

of sperm mid-piece leading to male infertility (Yant, Ran et al. 2003). 

Selenoprotein P 

Selenoprotein P was first recognized in the plasma of rats and constituted about 

50- 60 % of plasma Se (Burk and Hill 2005).  Selenoprotein P is secreted by the liver  

(Burk and Hill 2005). Patients with liver disease tend to have decreased plasma 

concentration of selenoprotein P (Sunde 2000). During Se deficiency, the level of 

selenoprotein P is  reduced to about 5-10% of the control level (Persson-Moschos, Huang 

et al. 1995), which signifies the importance of dietary Se in regulating selenoprotein P.  
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Synthesis of selenoprotein P is given a higher rate of priority compared to other 

selenoproteins and declines less rapidly than GSH-Px when the exogenous Se supply is 

limited (Burk and Hill 1993). There is a suggestion that selenoprotein P can be used as a 

marker for Se in individuals with adequate Se intake as the level of senenoprotein P 

correlates with plasma Se level (Persson-Moschos, Huang et al. 1995). Selenoprotein P 

also serves to transport Se in blood (Motsenbocker and Tappel 1982). Selenoprotein P 

gene knockout mice showed decreased level of Se in testis and brain with increased level 

of urinary Se excretion which seems consistent with the transport role of the 

selenoproteins P.    

Selenoprotein W 

Selenoprotein W is predominant in the muscle and is believed to have antioxidant 

function as it binds with glutathione, though its functions are not well characterized 

(Beilstein, Vendeland et al. 1996). The discovery of selenoprotein W came from the 

investigation of the factor involved as the cause of white muscle disease in Se deficient 

sheep as deficiency of this factor led to the disease (Beilstein, Vendeland et al. 1996). 

Selenophosphate Synthetase-2 

Selenophosphate synthetase (SPS2) is a selenocysteine containing selenoprotein 

that plays a role in providing active Se for the synthesis of SeCys in mammals. SPS2 is 

essential for selenoprotein biosynthesis (Xu, Carlson et al. 2007). 

Iodothyronine Deiodinases 

Iodothyronine deiodinases are required for metabolism of thyroid hormones 

(Larsen and Berry 1995). Thyroxine 5’- deiodinase-1 (DI-1), or Type 1, is abundantly 

present in liver and converts thyroxin (T4) to triiodothyronine (T3) that circulates in 
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plasma (Larsen and Berry 1995).  When Se is deficient, the activity of DI-1 decreases and 

results in  lower level of circulating T3 (Larsen and Berry 1995). Deiodinases Type II and 

Type III (DI-2 and DI-3) are present in different types of tissues of the body. DI-2 and 

DI-3 are present in brain, pituitary, brown adipose tissue, placenta and skin with major 

roles of producing T3 in these tissues (Sunde 1997). DI-3 plays a role in deiodination of 

T4 and T3 into inactive forms, thus avoiding high levels of T3 and T4 in the body  (Sunde 

1997). 

 Thioredoxin Reductase (TR) 

Mammalian TRs are selenoenzymes which catalyze reduction of intracellular 

molecules thereby contributing to antioxidant defense systems in the cells (Sun, Wu et al. 

1999). TR-1 is located in the cytosol and nucleus, while TR-2 is present in the 

mitochondria (Sunde 1997). When Se is deficient in rats, the TR activity is less affected 

than GSHPx-1 activity but more affected than selenoportein P (Sunde 1997). The 

discovery that elucidated the role of TR in reducing vitamin E and dehydroascorbate to 

the ascorbate radical further  substantiated the ways by which  Se serves as an antioxidant 

(May, Qu et al. 1998) and perhaps as an anticarcinogen also. 

The Relationship of Se with Selenoproteins 

The selenoproteins represent the largest portion of body Se and are regulated by 

the SeCys pool (Sunde 1997). The effect of Se level on selenoprotein function was 

studied in rats and showed differential expression of selenoproteins based on the body’s 

Se status (Lei, Evenson et al. 1995). Liver GSH-Px-1 activity in Se deficient male rats 

showed a decrease of 1-7 % compared to Se adequate animals (Lei, Evenson et al. 1995). 
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Severity of Se deficiency leads to significantly lower levels of mRNA  for  GSH-Px -1 

and of  GSH-Px-1 protein (Hatfield, Berry et al. 2006) . 

When weanling rats fed Se deficient diet were supplemented with graded dietary 

Se, the liver GSH-Px-1 and its mRNA showed a sigmoid response with increased level of 

dietary Se intake (Sunde, Evenson et al. 2005). The study showed, when Se intake is 

higher than 0.1µg Se/g diet, the Se status fails to regulate both GSH-Px-1 activity and its 

mRNA. In contrast, the liver GSH-Px-4 activity decreased only to 40% of the Se 

adequate level  and reached a plateau at 0.05 µg Se/g diet while the mRNA for liver 

GSH-Px-4 remained not  significantly affected by Se intake (Sunde, Evenson et al. 2005). 

The activity of plasma GSH-Px-3 was also reduced in these deficient rats to 7- 8% of the 

level in Se adequate rats and reached  to a plateau at 0.07µg Se/g diet (Sunde, Evenson et 

al. 2005). Other studies also demonstrated that liver TR, DI-1 and selenoprotein P 

activities in Se deficiency decreased to 5-10% of the Se adequate level (Hadley and 

Sunde 2001).  

 In sum, these studies show obvious differences in level of selenoproteins by Se 

status. When Se is deficient, there will be reduced synthesis of protein, leading to 

decreased levels of selenoproteins (Sunde 1997). Factors other than Se deficiency such as  

age, pregnancy, lactation, and gender may also affect  transcription of selenoproteins  and 

these factors  need to be considered when Se status is evaluated using selenoproteins 

(Sunde, Evenson et al. 2005). Considering the progress in the sequencing of the human 

genome and the current scientific advancement, mRNA evaluation of selenoproteins 

might be the preferred approach in evaluating Se status in the future. 
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Effect of Selenium on Immune Response  

Modulation of the immune system by Se involves various processes in the 

immune system and the following mechanisms have been identified as the most probable 

ways by which Se affects the  immune system (McKenzie, Beckett et al. 2006).   

1) Detoxification of excessive ROS such as organic hydroperoxides and hydrogen 

peroxide; 

2) Regulation of eicosanoid synthesis pathways, which leads to favorable 

synthesis of leukotriene (pro-inflammatory property) and prostacyclin (prevents 

platelet aggregation) over thromboxane (promotes platelet aggregation) and 

prostaglandins (immune suppressant); 

3) Decreasing expression of pro inflammatory cytokines and adhesion molecules, 

and, 

4) Increasing IL-2 receptor expression for enhanced activities by lymphocytes, 

natural killer and lymphokine activated killer cells. 

The Function of Selenoenzymes as Peroxynitrite Reductases  

Guarding cells against oxidative damage is likely one of the mechanisms by 

which Se modulates immune response in the host (Sies, Klotz et al. 2002). Under normal 

circumstances, the innate phagocytic cells produce nitric oxide (NO) which serves as a 

microbicidial agent. However, in an oxidative environment, the superoxide produced by 

neutrophils and phagocytes reacts with NO and produces peroxynitrite (ONOO) which is 

toxic to tissues and damages DNA (Sies, Klotz et al. 2002). Several in vitro experiments 

have demonstrated the value of selenocysteine and selenomethionine in the cell culture to 

prevent plasmid DNA from being damaged by ONOO (Sies, Klotz et al. 2002).   
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The Role of Se in Eicosanoid Metabolism 

The metabolites of arachidonic acid such as leukotrienes, thromboxane, 

prostaglandins and lipoxin are considered as eicosanoids (Yu-Zhang, Reddy et al. 2000). 

Se as part of GSH-Px, modulates eicosanoid metabolism. (Sies, Klotz et al. 2002). Se 

most obviously seems to exert  anti-inflammatory effects as it blocks the release of  

inflammatory mediators, organoperoxides, which support the secretion of leukotrienes 

(Fig.2.3)  (d’Alessio, Moutet et al. 1998).  The capacity of selenoenzymes for blocking 

 5- and 15- lipoxygenase enzymes, which convert arachidonic acid to the 5-

hydroperoxyeicosatetraenoic acid (precursor of leukotriene) is considered an anti-

inflammatory function of Se (Tolando, Jovanović et al. 2000). In addition, TR, which is 

one of the selenoenzymes, helps to convert selenite to selenide which reduces availability 

of selenite to block the activity of lipoxygenase (Tolando, Jovanović et al. 2000). This 

adds to the anti-inflammatory function of Se (d’Alessio, Moutet et al. 1998). On the other 

hand when Se is deficient, it leads to reduced levels of leukotriene B4 which  impairs 

functions of phagocytes (Tolando, Jovanović et al. 2000). This may lead to decreased 

levels of phagocytosis causing an increase in virulence of pathogens as a result of 

weakened first line immune system. 
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Fig. 2.3: The Effects of Selenium on the Production of Eicosanoids (Calder, Field et al. 

2002) 

 

 

 

 

 



 

  27 
 

Impact of Se on Adhesion Molecules and Cytokines 

Increased levels of inflammatory cytokines induce production of adhesion 

molecules (d’Alessio, Moutet et al. 1998). Among the cytokines, tumor necrosis factor-α 

(TNF-α) and interleukin-1 (IL-1) stimulate up-regulation of the adhesion molecules as 

demonstrated in an inflammatory condition (d’Alessio, Moutet et al. 1998). Evidence 

consistently shows that  Se deficiency  up-regulates expression of adhesion molecules 

through regulation of pro-inflammatory cytokines (Tolando, Jovanović et al. 2000). Se 

deficient cells show higher levels of constitutive expression of adhesion molecules 

(Tolando, Jovanović et al. 2000). On the other hand, Se supplementation of deficient cells 

decreases the expression of adhesion molecules (d’Alessio, Moutet et al. 1998). For 

example, a study on human endothelial cells with a GSH-Px mimic showed reduced  

expression of intercellular adhesion molecule-1 and vascular adhesion molecule-1 

(d’Alessio, Moutet et al. 1998). Use of GSH-Px analogs also prevented expression of P-

selectin, E-selectin and release of IL-8 stimulated by TNFα and IL-1 in these cells 

(d’Alessio, Moutet et al. 1998). Such functions of Se are beneficial to down-regulate 

excessive inflammatory response in order to minimize tissue and organ damage if 

uncontrolled. 

Effects of Se on Humoral and Cell-mediated Immunity  

Se deficient rats showed a slight decrease in the production of IgG fractions, but 

with no effect on production of IgA (Bauersachs, Kirchgessner et al. 1993). However, 

production of IgM was markedly lowered and was even more lowered by vitamin E 

deficiency (Bauersachs, Kirchgessner et al. 1993) and partial improvement of IgA and 

IgM production resulted from Se supplementation (Bauersachs, Kirchgessner et al. 1993). 



 

  28 
 

Supplementation of Se at 120 µg/kg diet to cows showed increased levels of IgG in cows 

and their calves (Finch and Turner 1996). Poultry fed on a Se rich diet (1ppm) also 

demonstrated improved antibody response to salmonella and aflatoxin vaccination 

(Hegazy and Adachi 2000) supporting the role of Se in immune defense. 

Se supplementation also improved cell mediated immune response in many 

studies. For example, candidacidal activity of neutrophils was lowered and survival 

against staphylococcus aureus infection was reduced in Se deficient rats (Boyne, Arthur 

et al. 1986). After 64 days  post infection of mice with  parasite Trypanosoma cruzi  and 

supplementation with different  doses of Se (at 0 ppm, 2 ppm, 4 ppm, 8 ppm, or 16 ppm 

as sodium selenite) in drinking water (Davis, Brooks et al. 1998) the total death in the Se 

un-supplemented group of mice was 100% (Davis, Brooks et al. 1998). Of the mice 

supplemented with 4 and 8 ppm, only sixty percent survived  while survival among the 

group fed with 16 ppm was reported to be 20% (Davis, Brooks et al. 1998). This study 

supports the role of Se in improving immune response by decreasing the virulence and 

associated oxidative stress by the pathogen, though 8 ppm and 16 ppm were reported to 

be toxic doses.   

Effects of Se on Interleukin-2 Receptor and Lymphocytes  

Se increases the function of both T and B - lymphocytes by up-regulating IL-2 

receptor (R) α and β subunits both in mice and humans (Kiremidjian-Schumacher, Roy et 

al. 1992; Kiremidjian-Schumacher, Roy et al. 1994). Increased high affinity of IL-2 R 

augments proliferation and differentiation of cytotoxic effector cells (Kiremidjian-

Schumacher, Roy et al. 1994). Supplementation of Se in humans (200 µg/day for eight 

weeks) resulted in an increased activity of cytotoxic T-cells and natural killer cells by 
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118% and 82% respectively (Kiremidjian-Schumacher, Roy et al. 1994). The activity of 

suppressor T-cells, however, was down-regulated in these subjects (Kiremidjian-

Schumacher, Roy et al. 1994). A study conducted in rats with supplemental doses of 

selenite in water (0.5 ppm, 2.0 ppm or 5.0 ppm), showed enhanced  natural killer cells 

response in mice supplemented with 0.5 and 2.0 ppm selenite (Koller, Exon et al. 1986  ) 

However, the natural killer cell activity in rats supplemented with 5.0 ppm group was 

identical with that of  the un - supplemented group (Koller, Exon et al. 1986  ). This may 

be due to immune inhibitory effects of high level Se in mice. The synthesis of antibody 

showed no significant increase in all groups and was even lower in the group which 

received 5.0 ppm Se (Koller, Exon et al. 1986  ). When human lymphocyte cells in culture 

were treated with a high dose of selenite (0.8 µg/ml), it resulted in an inhibitory effect on 

natural killer cells activity and lymphokine activated killer cell activities (Nair and 

Schwartz 1990). This finding was attributed to inhibitory effects of toxic Se 

concentration (Nair and Schwartz 1990). This study also showed inhibited proliferation 

of lymphocytes to T-cell mitogens with Se concentration in the  range of  0.5-1.0 ug/ml 

(Nair and Schwartz 1990). 

The role of Se in  cellular immunity was further elaborated in a study carried out 

in uremic patients  (Bonomini, Forster et al. 1995). The uremic patients had lower plasma 

Se compared to control groups. The uremic patients were supplemented with 500 µg of 

Se three times per week for three months followed by 200 µg/day for the next three 

months (Bonomini, Forster et al. 1995). The result showed increased response to delayed-

type hypersensitivity (to phytohemoagglutinin) in the group supplemented with Se after 6 

months (Bonomini, Forster et al. 1995; Kiremidjian-Schumacher, Roy et al. 1996)  
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compared to their baseline and placebo group. This study, however, didn’t show any 

change in lymphocyte number and sub - populations (Bonomini, Forster et al. 1995) . 

Requirements of Selenium 

Methods used to assess nutrient requirements for other nutrients may be 

inappropriate to determine Se requirement due to the  presence of the unregulated SeMet 

pool which reflects SeMet intake other than Se status (Sunde 1997). On the other hand, 

selenoenzyme expression is regulated by Se status and, for this reason, a biochemical 

approach (instead of dietary intake or tissue concentration or balance studies) was used to 

determine the RDA for Se intake. In 1980, an initial estimated safe and adequate daily 

dietary intake was extrapolated for humans (50 to 200 µg Se/d) from animal experiments 

that assessed Se status  using the activity of  GSH-Px (Panel on Dietary Antioxidants and 

Related Compounds.  Food and Nutrition Board. Institute of Medicine 2000) . 

The Food and Nutrition Board of the US Institute of Medicine (FNB) in 2000 

evaluated the level of Se that plateaued the plasma GSH-Px-3 for Chinese men and 

adjusted the requirement for North American males to 52 µg Se/d (Table. 2.1). The data 

from New Zealand was evaluated by the FNB and the plasma GSH-Px activity increase 

between the group who consumed 38 µg Se/d was found to be not different from the 

group who consumed 68 µg Se/d and the Estimated Average Intake (EAR) was suggested 

to be 38 µg Se/d. The Adequate Intake for Se varies according to age (Table.2.1). Based 

on level of Se concentration in breast milk, 15 and 20 µg Se/d is calculated for under six 

months and 6-12 months old infants respectively. The RDA during pregnancy is 60µg 

Se/d based on fetal transfer and Se excretion in milk (Table 2.1). The recommendations 
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for Se intake in the rest of the world are lower than the United States of America which 

recommends 55 µg Se/d (Table 2.1).  

Table.2.1: Selenium Intake for Healthy US and Canadian Populations (Panel on Dietary 

Antioxidants and Related Compounds.  Food and Nutrition Board. Institute of Medicine 

2000)  

 

 

 

AI: Adequate Intake; RDA: Recommended Dietary Allowance 

 

The World Health Organization (WHO) recommended Se intake based on Se 

needed to achieve two-thirds of maximum achievable GSHPx-3 activity (World Health 

Organization 1996). With adjustment for inter-individual variations, 40 µg/d and 30 µg/d 

were proposed for adult males and females respectively which is in line with typical Se 

consumption worldwide (Table.2.2) (World Health Organization 1996). The New 

Zealand study used 67% of maximum GSH-Px-3 activity and calculated Se intake of 39 

µg/d which was similar to what WHO recommended.  

 

 

 

 

 

 

 

Age  group 

in years   

0-6 

months 

7-12 

months 

1-3  4-8  9-13  14-18  19-30 31-50 51-70 >70 Pregnancy Lactation 

AI µg/day 15 20           

RDA 

µg/day 

  20 30 40 55 55 55 55 55 60 70 
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Table.2.2: Recommended Nutrient Intake of Selenium (µg/day) (FAO/WHO 2001) 

 

 
 

Dietary Sources of Selenium 

Se content of food varies depending on the concentration of Se in the soil. The 

concentration of Se in cereals and grains varies from < 0.1 to > 0.8 µg Se/g and fruits and 

vegetables  typically have < 0.1µg Se/g (World Health Organization 1996). Foods grown 

in areas where Se is deficient have much lower levels of Se/g compared to food grown in  

seleniferous areas (World Health Organization 1996). Se content of livestock also 

depends on Se content of the food they consume. Concentration of Se in organ meats and 

sea foods  ranges from 0.4 to 1.5 µg Se/g. Muscle meats contain 0.1 to 0.4 µg Se/g and 

dairy products contain 0.1 to 0.3 µg Se/g (World Health Organization 1996). In the 

United States most livestock are supplemented with inorganic Se and animal foods have 

higher levels of Se as selenoproteins (World Health Organization 1996). Generally, 
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drinking water has insignificant amount of Se, but well water in seleniferous areas may 

contain higher Se content.  

Selenium Toxicity 

Se was known for its toxicity in early days due to its manifestations in livestock. 

This was attributed to high levels of Se in soil and plants(Subcommittee on Laboratory 

Animal Nutrition. National Research Council 1995). The minimum dietary requirement 

for rats is said to be 0.1 µg Se/g diet (Sunde 2006). Dietary concentration above 2 µg 

Se/g diet are considered toxic as it is 20 times more than the minimum requirement 

(Sunde 2006). Inorganic Se and selenoaminoacids have increased bioavailability and 

could be toxic, if consumed in excess, as opposed to methylated forms 

 (trimethylselenonium chloride, dimethylselenide) which are less toxic. The hydrogen 

selenide is the most toxic form compared to all other forms of Se. The body doesn’t have 

a homeostatic mechanism to decrease Se absorption  even under chronic toxic intake 

(Hatfield 2001).  In South Dakota and Wyoming of the United States, a study revealed 

that Se intake was as high as 724 µg/d with no evidence of toxicity (Sunde 2006). Se 

intake lower than 800 µg Se/d  in humans  has not been found to be toxic (Goldhaber 

2003). Higher levels (50 times higher than the standard 10µg/L) of inorganic Se in well 

water resulted in increased Se in urine in humans but not in blood (Valentine, Faraji et al. 

1988). Blood Se concentration in this study did not reflect the exposure to increased Se 

intake (Valentine, Faraji et al. 1988).  

Chronic Se toxicity is much more common than acute toxicity. Se intake in grams 

leads to severe gastrointestinal and neurological problems, renal failure, myocardial 

infarction and respiratory distress (Sunde 2006). Selenosis in humans is associated with 
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altered nail structure and loss of nail and hair (Panel on Dietary Antioxidants and Related 

Compounds.  Food and Nutrition Board. Institute of Medicine 2000). An average 

consumption of 1.26 mg Se/d also leads to changes in structure of finger nails as a 

measure of chronic exposure to high Se intake (Yang and Wang 1994). When Se is 

consumed at 3.2 mg to 6.7 mg/d for longer periods it leads to lesions in gastrointestinal 

and nervous system (Sunde 1997). Based on studies in seleniferous regions in China 

(Yang and Wang 1994), FNB proposed a no-observed adverse effect level (NOAEL) of 

800 µg Se/d .  

 

Health Consequences of Selenium Deficiency 

 

Manifestations of Se deficiency are species specific. In mouse, deficiency causes 

degeneration of muscle and organs such as liver and pancreas and reproductive failure in 

male rodents due to defects in sperm production (Sunde 2006). When rats were fed Se, 

vitamin E and sulfur amino acid deficient diets it caused liver necrosis (Subcommittee on 

Laboratory Animal Nutrition. National Research Council 1995), which may be due to 

excessive tissue damage from free radicals. Se deficiency in swine resulted in cardiac 

problems characterized by mulberry heart, while deficiency produced white muscle 

disease in lambs and gizzard myopathy in turkeys (Panel on Dietary Antioxidants and 

Related Compounds.  Food and Nutrition Board. Institute of Medicine 2000) . In cattle, 

Se deficiency resulted in muscle myopathy and reproductive system problems, 

manifested as reproductive failure in bulls and retention of placenta in cows (Sunde 

2006). Chickens with severe Se deficiency manifested with symptoms related to 

exudative diathesis secondary to degeneration of capillary beds (Sunde 2006) . The 

reasons for these species specific manifestations of Se deficiency are not clear. 
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 In humans, Keshan disease is characterized as the major Se deficiency disease in 

children and is manifested as cardiomyopathy and occurred in China where Se deficiency 

was prevalent (Li, Wang et al. 1985). This disease was also compounded  with an 

infection from a  virulent coxsackie virus when Se was deficient in the host (Chen, Yang 

et al. 1980). Coxsackie virus has been isolated from Keshan disease patients suggesting 

that Se influences the degree to which the pathogen could be virulent.  

   Kashin-Beck disease was also identified in areas where Se was severely deficient. 

It is a disease of cartilage and is common in preadolescents and adolescent children 

(Yang, Ge et al. 1988). Se supplementation, however, didn’t avert the disease condition 

indicating coexistence of other mineral deficiencies that may play roles in the causation 

of  Kashin-Beck disease (Moreno-Reyes, Mathieu et al. 2003).    

Patients on total parenteral nutrition without Se supplement are prone to Se 

deficiency based on a study report from New Zealand on a patient that underwent total 

parenteral nutrition  (van Rij, Thomson et al. 1979).  The patient developed dry flaky skin 

and bilateral muscular myalgia and pain with a great drop of plasma Se from 25 µg/L to 

9µg/L after surgery and TPN. Similarly, in the US, muscle pain and cardiomyopathy  

were reported in patients receiving TPN (Sunde 2006). These patients were found to have 

low plasma Se, GSH-Px-1 activity and high markers of tissue damage (Sunde 2006) .  

Selenium and iodine deficiency interact and lead to the development of endemic 

myxedematous cretinism manifested by goiter and lowered intelligence and neurological 

disorders (Sunde 2006). Se supplementation alone leads to aggravation of the disease due 

to activation of deiodinases, which increased synthesis of thyroid hormone causing 
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further iodine deficiency, if iodine is not supplemented (Vanderpas, Contempre et al. 

1993).   

Interaction of Selenium with other Nutrients 

Se interacts with other nutrients that affect cellular redox status. Nutrients which 

play roles in the antioxidant system are several. For example, copper and zinc are part of 

superoxide dismutase and iron is a component of catalase (Hatfield 2001). Se also 

interacts with vitamin E in minimizing lipid peroxidation (Sword, Pope et al. 1991) and 

with vitamin C as TR catalyzes regeneration of the reduced form of vitamin C from its 

oxidized form, dehydroascorbic acid (Burk 2002).  

The role of Se in iodine metabolism makes it an important nutrient in thyroid 

hormone synthesis and this shows significant interactions between these nutrients (Sunde 

1997).  The effect of iodine deficiency is exacerbated with concomitant Se deficiency. Se 

dependent enzymes iodothyronine deiodenases are important for conversion of T4 to its 

biologically active form of T3 (Bianco and Larsen 2006).  

Methods of Selenium Assessment 

The possible roles of selenoproteins as biomarkers of Se status are under 

investigation. Of these proteins, iodothyronine deiodinase seems to have a potential role 

as a biomarker for thyroid hormone metabolism taking the T4:T3 ratio. At the same time 

this marker could be utilized as a  functional marker of Se status (Gibson 2005). 

Investigations also showed that selenoproteins were found not to respond equally to 

changes in Se status (Arthur 1999). Arthur suggested possible markers that could indicate 

Se status and these are plasma or whole blood Se concentration, plasma GSH-Px-3 

activities, erythrocyte GSH-Px-1 activities, selenoperoxidase activities, plasma  

selenoprotein P and thyroid hormone levels as discussed above. 
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Plasma Se 

Protein bound Se is associated to α and β - globulins of lipoproteins. Plasma and 

serum Se concentrations are comparable and both reflect short term changes in Se intake, 

mainly of SeMet compared to inorganic forms of Se (Levander, Sutherland et al. 1981). 

SeMet is not subject to homeostatic control as this form of Se incorporates into tissue 

proteins in place of methionine (Burk and Levander 1999). Plasma Se values less than 

0.1µmol/L are associated with depletion and with clinical features  of deficiency (Tereda, 

Nakada et al. 1996). There are no universally agreed upon cut-off values for plasma Se 

(Gibson 2005). Cut-off points suggested by Thomson is only for assessment of the 

adequacy of Se (Thomson 2004). Plasma or serum Se are measured more accurately 

using inductively coupled plasma mass spectrometry (ICP-MS) (Gibson 2005). Plasma 

Se is said to be affected by Se intake, age, puberty, pregnancy and lactation, prematurity, 

smoking and chronic diseases in humans (Gibson 2005). Due consideration must be 

given to these factors while interpreting results. 

Whole Blood Se 

Whole blood Se is stable and is used as an index of long term Se intake (Gibson 

2005). The whole blood Se changes after a period of depletion (months), which makes 

the relationship of current Se intake with whole blood concentration a bit difficult to 

associate (Gibson 2005). As a result, criteria for interpretation of the values of whole 

blood Se have not yet been established. Whole blood Se could also be assessed using 

AAS and ICP-MS, though the analysis is said to be difficult. Factors affecting plasma Se  

affect concentration of Se in whole blood as well (Gibson 2005) 

Erythrocytes and Platelet Se 
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Erythrocyte Se is mostly related with the hemoglobin, while only 15% is 

associated with its glutathione peroxidase. This too reflects long term Se status. For 

people consuming stable intakes of Se, positive correlation was seen between 

erythrocytes, plasma and dietary intake (Lane, Dudrick et al. 1981) Erythrocyte Se is 

lower in disease conditions that affect absorption of Se and it responds slowly to Se 

supplementation compared to plasma Se. The longer period required for the synthesis of 

erythrocyte and the limited transferability of hemoglobin-bound Se contributed to slow 

response of erythrocytes to Se supplementation (Nève 1995). The type of Se used for 

supplementation determines the rate of response by erythrocytes. The erythrocytes 

response to supplementation with inorganic Se is slower than SeMet, even though SeMet 

is not subject to homeostatic regulation (Thomson, Ong et al. 1985). Determination of 

erythrocyte Se is not highly recommended due to problems with measurements. 

Information on factors affecting erythrocyte Se concentration is lacking but associations 

exist between chronic diseases affecting Se absorption, long term low Se intake, genetic 

diseases such as sickle cell anemia and Down’s syndrome (Neve 1999) 

Urinary Se 

Se excretion in urine helps to regulate homeostasis of Se in the body and it is  the 

major excretory pathway for Se (50 - 60%), while the remaining gets excreted via feces 

(Levander and Burk 1994). Urinary excretion correlates well with dietary intake and 

plasma Se such that dietary Se intake can be roughly estimated to equal twice as much as 

urinary Se (Thomas 1998). Urinary Se excretion is lower in females, pregnant women 

and aged people (Gibson 2005) and reduction of Se in the aged population is associated 

with reduction in muscle mass (Glover 1967). Urinary Se is used as an index of toxicity 
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and the allowable maximum  concentration is at 1.3 µmol/L (Hojo 1981). Fasting urine 

samples are preferred for measurement of urinary Se at the population level (Gibson 

2005). Fluorometric method is commonly used but the AAS method can also be used 

(Gibson 2005). 

GSH-Px 

Se status could be assessed through the measurement of individual selenoproteins 

in blood (Gibson 2005). GSH-Px-1 activity in erythrocytes is used to assess Se status in 

individuals when Se intake is below the threshold (1.15 µmol/L) and it correlates with 

whole blood or erythrocyte Se level (Duffield, Thomson et al. 1999). This would mean 

that the activity GSH-Px-1 is dependent on Se status but when Se concentration is above 

“threshold” value, correlation doesn’t exist and this makes it complicated to use it as 

marker of Se status (Gibson 2005).  GSH-Px-1 activity in platelets is also considered as a 

sensitive indicator as platelets contain significantly higher concentration of Se than any 

other tissues (Gibson 2005). However, separation of platelets is difficult, even though the 

response to Se supplementation is found to be faster, due to their rapid - turnover.  

GSH-Px-3 contains 12% of the Se in plasma (Xia, Hill et al. 1989). GSH-Px-3 is 

measured more accurately than other GSH-Pxs (Xia, Hill et al. 1989). Strong correlation 

has been identified between plasma Se and GSH-Px-3 activity (Thomson, Ong et al. 

1985), and  plasma Se and GSH-Px-3 are said to be good measures of Se status (Burk and 

Levander 1999). Plasma GSH-Px-3 activity increases following supplementation and this 

is not dependent on the type of Se used for supplementation (Gibson 2005). GSH-Px -3 is 

also used in population studies where Se status is low, like the erythrocytes and platelets 

GSH-Px (Lane, Dudrick et al. 1981). GSHPx-3 is more stable at -80C than GSH-Px-1 
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activity. Enzyme-linked immunosorbant assay (ELISA) kits are also used, provided 

heparin is used as anticoagulant (Gibson 2005). 

Selenoprotein P 

Two thirds of plasma Se is present as selenoprotein P. It is present in different 

tissues and is secreted into plasma by the liver (Burk and Levander 1999). Selenoprotein 

P is said to be more sensitive to Se deficiency than plasma GSH-Px-3 activity (Duffield, 

Thomson et al. 1999). Response to Se supplementation by selenoprotein P is higher than 

GSH-Px-3 (Chen, Yang et al. 1980) and selenoprotein P and plasma Se correlates 

positively with Se status  (Gibson 2005). Optimal level for plasma selenoprotein P is yet 

to be defined (Gibson 2005). Selenoprotein P could be measured by competitive 

radioimmunoassay using 
75

Se labeled human selenoprotein P (Xia, Hill et al. 1989).  

Hair and Toe Nail Se 

Hair Se is found to have a relationship with whole blood Se (Yang, Wang et al. 

1983) and hair also shows a positive response to Se supplementation (Gibson 2005). 

Elevated hair Se concentration is found in areas with overexposure to Se (Yoshizawa, 

Willett et al. 1998). Concentration of hair Se can be measured using AAS or instrumental 

neutron activation analysis (INAA). Concentration of hair Se, however, could be 

confounded by use of Se containing shampoos. Toenail concentration of Se reflects long 

term exposure as Se incorporates as the toe nail grows (Gibson 2005). The correlation of 

toe nail with serum and whole blood Se concentrations makes it a good marker of Se in 

cohort studies (Yoshizawa, Willett et al. 1998). Methods used for determination of hair 

Se can be used to measure toe nail concentration of Se as well (Gibson 2005). 

Multiple Indices 
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For individuals with low Se status, the measurement of total Se and GSH-Px-3 in 

plasma is recommended (Gibson 2005). For those having adequate Se status, Se status 

could be assessed by  total Se in plasma and erythrocytes as a marker of current and 

longer term status respectively (Gibson 2005). When blood collection is limiting, analysis 

of toenail Se is recommended as a marker of long term Se status. When Se status is 

studied as a risk factor  for disease, interaction of Se with other antioxidants nutrients, 

polyunsaturated fats, heavy metals and iodine status must be investigated to rule out any 

confounding effects of these nutrients (Gibson 2005). 
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 CHAPTER III 
 

 

 

METHODOLOGY 
 

Experimental Design and Animals 

The study is a 4 x 2 factorial design (four diet groups with LPS and placebo 

groups) and the following diagram shows the randomization procedure used in the study 

(Fig. 3.1). The study was approved by the Institutional Animal Care and Use Committee 

(IACUC) of Oklahoma State University (OSU). To demonstrate effects of Se in a 

relatively short time, second generation selenium-deficient animals were used.  Forty-one 

timed-pregnant C57/BL6 mice (Harlan, Indianapolis, IN) were fed Se-deficient (modified 

AIN-93G) diets for the final 5-6 days of gestation. Animals were housed in an 

environmentally controlled animal care facility and delivered their litters approximately 

5-6 days after arrival.  The dams continued to receive the pre delivery Se-deficient diets 

for the three weeks of lactation. At 24 days of age, pups were weaned. Weanling male 

mice were randomly assigned to one of the four dietary treatments and were fed until 

they reached 120 days of age. 
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Fig. 3.1: Flowchart of Randomization 

 

 

 

Diet was provided daily and water bottles and bedding were changed on a weekly 

basis. The basal Se depletion diet (Torula yeast-based, approximately 0.02 mg Se/kg diet) 

was purchased commercially and other diets were prepared commercially or in-house by 

adding 0.2, 2.0 or 4.0 mg Se/kg of diet as sodium selenate. Mice were fed ad libitum 

(approximately 5g diet/day/mouse). At 90 days of age, mice were randomly assigned 

within diet groups to implantation of placebo pellet (implantation as a vehicle only) or 

time-release LPS (E.coli Serotype 0127:B8) pellet to produce an inflammatory stress.  

The LPS dose was 0.1 µg/g body weight. Treatments remained (time-release LPS or 
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placebo pellet) for 28 days and mice continued to be fed their respective diets throughout 

the 28 days until necropsy. Necropsy was carried out at the 28
th

 day post LPS or placebo 

implantation. At necropsy, mice were anesthetized with ketamine/xylazine at the dose of 

0.15 ml/10g mouse weight prior to blood collection and tissue harvesting. All tissues and 

specimens were properly labeled, packaged and stored at appropriate temperature for 

analysis.  

Necropsy  

In preparation for necropsy, necessary surgical instruments and bottles were 

autoclaved and all preparations for tissue harvests and collection of blood were organized 

prior to the day of necropsy. Mice allocated for each day of necropsy underwent 12 h 

fasting. Weight was recorded at 12 h prior to necropsy. On the day of necropsy each 

mouse was injected with ketamine/xylazine at the dose of 0.15 ml/10g mouse and bone 

density was measured using Piximus instrument. Blood was collected from carotid artery 

collection. A drop of whole blood was used to make a blood smear for the WBC 

differential count. For total white blood cells, a dilution of blood was done by adding 

0.025 ml of whole blood to 0.475 ml of diluting fluid (2% acetic acid with 1% crystal 

violet), mixed and stored at room temperature until counted. The remaining blood was 

kept in EDTA coated centrifuge tubes on ice for up to 2 -3 hours until the end of 

necropsy. On completion of necropsy each day, blood was centrifuged for 20 minutes at 

4000 rpm and plasma was separated, aliquoted and stored at -80
0
.  

On a sub-sample from each diet group, (six mice per group), the right femur from 

each mouse was flushed to collect bone marrow. The right femur was lightly crushed and 

flushed with normal saline using 21 gauge needles and the cell suspension was kept on 



 

  45 
 

ice in conical tubes until processed by addition of fluorescent antibodies for 

flowcytometer reading.  

Laboratory Analysis 

Flowcytometry Analysis  

  The number of bone marrow lymphocytes and total T and B cells population for 

all mice treated with time - release LPS and fed with different concentrations of dietary 

Se were compared to dietary equivalent placebo groups. The bone marrow suspension 

was centrifuged each day after necropsy and cells were then immunostained by adding 

fluorochrome and conjugated primary antibodies (CD3, B220, CD4, CD31, LY-C6) with 

appropriate dilution to assay tubes and incubated for 1 hr at room temperature. Cells were 

rinsed and resuspended with PBS and analyzed using a florescence activated cell sorter 

(FACS) flow cytometer at a rate of 286 cells per second using a single argon ion laser 

tuned at 488 nm. Data were analyzed using Summit version 4.3 Build 2445 (Dako 

Colorado, Inc., Fort Collins, CO). All antibodies mentioned above and reagents were 

used at final concentrations recommended by manufacturers 

Determination of Total and Differential Leucocyte Counts 

Determination of the total leucocyte count was made using the method of Schalm 

et al. (Schalm, Jain et al. 1975). The differential white blood cell count was determined 

from a thin smear done on a clean slide for each mouse. The smear was set to dry and 

fixed until stained for counting (Wright’s stain). Counting was done using an objective 

light microscope. A longitudinal counting method was used to count 100 cells. The type 

of cell counted in these 100 cells was used to set percentages for neutrophils, 

lymphocytes, monocytes, eosinophils and basophils cells. The absolute number for each 
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type of cell was calculated by multiplying the total WBC counts by the percentage of 

each cell type.   

Plasma Immunoglobulin: IgG2a 

  Plasma level of IgG2a was assayed using an immunperoxidase Assay (ICL, Inc., 

Portland, OR). Samples were diluted 1:4000 in two stages. First we mixed 5 µL of 

samples with 100µL of 1x diluent provided in the kit and vortexed for 10 – 15 seconds. 

The second dilution was made by mixing 5µl of the first dilution with 1000µl of diluent. 

Pre-diluted IgG2a calibrator (100µL) was pipetted into a anti-mouse IgG2a ELISA micro 

plate in duplicate followed by 100 µL of samples in the remaining wells. The plate was 

incubated for one hour for maximum binding. After the incubation, the solution was 

decanted and washed four times with wash solution followed by addition of 100µL of 

pre-diluted Enzyme Antibody Conjugate to each well. The plate was incubated in the 

dark at room temperature for 20 minutes and then washed and blotted four times. Next 

100 µL of 3,3’, 5, 5’,- Tetramethylbenzidine (TMB) substrate solution was pipetted into 

each well and incubated in the dark at room temperature for 10 minutes. After 10 minutes 

100 µL of stop solution was added to each well and absorbance was determined at 450nm 

using a microplate reader.    

Plasma Cytokine 

 IFNγ 

Plasma IFNγ was measured using an ELISA kit and the protocol provided by the 

manufacturer (BD Biosciences; San Jose, CA). Pre-diluted standards (50 µL) were 

pipetted in duplicate followed by samples of the same amount in the remaining wells. 

The plate was incubated for two hours for maximum binding at room temperature. After 
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the incubation, the solution was decanted and washed five times with wash solution 

provided in the kit. Following this, 100 µL of pre diluted detector solution was added to 

each well and incubated at room temperature for one hour. The plate was then washed 

and blotted five times. Next 100 µL of TMB substrate solution was pipetted into each 

well and incubated in the dark at room temperature for 30 minutes. After 30 minutes 

50µL of Stop Solution was added to each well and absorbance was determined at 450nm 

and 570 nm using a calibrated plate reader and change in reading between the two wave 

lengths was obtained for analysis.    

IL-12p70 

Plasma IL-12p70 was measured using an ELISA kit with the assay protocol 

provided by the manufacturer (R&D Systems, Inc., Minneapolis, MN). Pre-diluted assay 

diluent (50 µL) was pipetted to each well followed by 50µl standard and control in 

duplicate and samples in the remaining wells. The plate was incubated for two hours for 

maximum binding at room temperature. After the incubation, the solution was decanted 

and washed five times with wash solution provided with the kit and blotted.  Following 

this, 100 µL of conjugate was added to each well and the plate was covered and 

incubated at room temperature for one hour. The plate was then washed and blotted five 

times. Next, 100 µL of TMB substrate solution was pipetted into each well and the plate 

was incubated in the dark at room temperature for 30 minutes. After 30 minutes 100µL of 

stop solution was added to each well and tapped gently for mixing. Absorbance was 

determined at 540 nm and 570 nm using calibrated plate reader and difference in readings 

was obtained for analysis.   
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Plasma Total Antioxidant Capacity (TAC) 

Antioxidant assay kit was used to measure TAC in plasma samples (Cayman 

Chemical Company, Ann Arbor, MI). The assay procedure was done in accordance with 

the manufacturer’s protocol. The assay measured the ability of antioxidants in the plasma 

samples to inhibit oxidation of 2, 2´-azino-di (3-ethylbenzothiazoline sulphonate) ABTS 

to ABTS•+ by metmyoglobin. The TAC of samples preventing oxidation of ABTS was 

compared to the Trolox standard (water soluble tocopherol analog) and quantified as 

millimolar Trolox equivalents. For the assay, 10 µL of pre-reconstituted Trolox 

standards, 10µl of metmyoglobin and 150 µl of chromogen were pipetted into a micro-

plate followed by 10 µl of samples, 10 µl of metmyoglobin and 150 µl of chromogen in 

each remaining wells. The reaction was initiated by adding 40 µl of hydrogen peroxide to 

all wells followed by incubation of the covered plate at room temperature
 
for five minutes 

on a shaker. Absorbance was read at 405 nm using a calibrated plate reader.   

Plasma GSH-Px 

Plasma GSH-Px was measured using a kinetic enzyme assay as per the protocol 

provided by the manufacturer (Oxford Biomedical Research, Inc. Oxford, MI). The assay 

was carried out at room temperature and the spectrophotometer was set at 340 nm. The 

spectrophotometer was zeroed at 340 nm using deionized water. Prior to the assay, each 

sample was diluted 1:10 using assay buffer provided in the kit.  An appropriate volume of 

assay buffer, pre-diluted NADH reagent and sample were pipetted into the cuvette and 

placed in the spectrophotometer followed by addition of tert-butyl hydroperoxide and 

mixed by pipetting. The enzyme activity was measured at A340 for three minutes. The 

GSH-Px coupled reduction of tert-butyl hydroperoxide from the oxidation of NADPH by 
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glutathione reductase and concomitant oxidation was monitored in a spectrophotometer 

with the decrease in absorbance at 340 nm. For each reading, the rate of decrease in A 

340 /minute was calculated and the net rate for sample was calculated by subtracting the 

rate from water blank. The net A340/min for each sample was then converted to NADPH 

consumed. One unit of GSH-Px is expressed as the amount of GSH-Px needed to oxidize 

1 μmol of NADPH per min. The value for each sample then was corrected for dilution 

factors and expressed as GSH-Px uM/mL.  

Clinical Analysis  

A Biolis 24i clinical chemistry analyzer was used to determine plasma 

concentrations of ALT, ALP and ALB. Kits were purchased from Carolina Liquid 

Chemistries Corp. and the manufacturer’s instructions were followed. 

 

Statistical Analysis 
 

 Statistical analysis was done using SAS version 9.2 (SAS Institute, Cary. NC, USA). 

Two-way ANOVA was performed using PROC GLM followed by post hoc analysis with 

Fisher’s least significant differences test for means separation when F values were 

significant. Data are presented as mean ± SE and α was set at 0.05.  
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CHAPTER IV 
 

 

THE EFFECTS OF DIETARY SELENIUM AND LOW GRADE 

INFLAMMATION ON SELECTED IMMUNE CELL POPULATIONS IN 

C57BL/6 MICE 

Abstract 

Selenium (Se) as a nutrient has many beneficial functions related to its nutritional, 

biochemical and molecular properties. Se is important for adequate immune response. In 

this study, dams were fed a Torula yeast-based Se depletion diet for the final week of 

gestation and throughout lactation. At 24 days of age, pups were weaned to the depletion 

diet or to diets with 0.2, 2 or 4 mg of added Se (as sodium selenate)/kg of diet. These 

diets were fed for 14 weeks. Four weeks before necropsy lipopolysaccharide (LPS) time-

release pellets (0 or 0.1 μg/g body weight) were implanted subcutaneously. At necropsy, 

plasma Se was significantly lower in pups fed the depletion diet than in those fed the 

three Se-supplemented diets. Mean body weight was not significantly different by LPS 

(p<0.06). Interaction affected peripheral differential counts of white blood cells. Mice fed 

4 mg Se added/kg diet with LPS showed a significant lower numbers of lymphocytes 

compared to other groups. Peripheral neutrophil numbers were significantly higher for 

mice fed 4 mg Se added/kg diet with LPS and lower for mice fed 0.2 mg Se added/kg diet 

and with placebo.  

LPS introduced a significant (p<0.05) increase in number of T- helper cells (CD4+)
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 (0.534x10
6
/mL vs 0.906x10

6
/mL, B-cells (B220+) (2.53x10

6
/mL vs 3.35x10

9
/L), and 

monocytes (CD31neg LY-C6
hig

 ) (0.765 x10
6
/mL vs 0.088 x 10

6
/mL) compared to 

placebo groups. In addition T-cell numbers were greater with increasing Se intake 

(p<0.02). Although the immune response is dependent upon several other factors, our 

study showed that Se supplementation tended to increase T-cell numbers in response to 

low grade inflammation induced by LPS. Further understanding of the mechanisms by 

which dietary Se affects these immune cell populations will contribute to knowledge of 

using Se supplementation to affect T-cell mediated immune response. 

Introduction 

 

The importance of selenium (Se) in human health is well documented (Rayman 

2002). The functions of Se are exerted by the selenoproteins and 25 of these have been 

characterized in humans (Kryukov, Castellano et al. 2003). Most of these selenoproteins, 

of glutathione peroxidase (GSH-Px) and thioredoxin reductase (TR) are the major ones, 

have antioxidant functions. Se as  part of GSH-Px and TR (Prabhu, Zamamiri-Davis et al. 

2002) plays an important role in balancing oxidation reduction (Redox) status in cells 

when at physiologic doses. Excess Se intake is linked with increased production of 

reactive oxygen species (ROS) leading to oxidative stress (Yang, Shen et al. 2000; Shen, 

Yang et al. 2001). Adequate dietary Se regulates nuclear factor kappa beta (NF-ĸβ) by 

modulating its effect on mitogen-activated protein kinases (MAPKs) (Park, Park et al. 

2000), thus it is involved in stress-induced signaling pathways including inflammatory 

responses. Based on this information, it is suggested that Se may antagonize 

inflammatory response via MAPKs signaling. As GSH-Px and TR are expressed by most 
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cells including immune cells (Bainbridge 1976; Behne and Wolters 1983; Gromer, Eubel 

et al. 2005), it may be one of the ways by which Se influences the immune response. 

Under normal circumstances, the host’s immune response to pathogen invasion 

relies on cell mediated (Type 1) and humoral (Type 2) immunity. Type 1 immune 

response depends on differentiation of T-helper (Th) cells, (Ho and Glimcher 2002) 

which are important for both inflammatory and cytotoxic responses. Th-cells activate 

both macrophages and CD8+ T- cells for pathogen clearing (Ho and Glimcher 2002). The 

Th- cells are also important for generation of Type 2 immunity through stimulation of the 

B - cells to produce immunoglobulins  (Ho and Glimcher 2002). Type 2 immune 

response is also very important to neutralize pathogens and contain parasitic infestations 

(Ho and Glimcher 2002) . 

Type 1 and Type 2 immune responses are directed by the two subsets of CD4+ T-

helper cells: the Type 1 Th-cell (Th-1) and Type 2 Th-cell (Th-2) (Mosmann and 

Coffman 1989). Th-1 cells produce IFN-γ, TNF-α and lymphotoxin responsible for 

delayed type hypersensitivity responses, while Th-2 cells produce IL-4, IL-5 ,IL-10 and 

IL-13 which enhance B - cell proliferation and allergic responses. INF-γ is the hallmark 

of Th-1 cytokines, while IL-4 is a marker for Th-2 cells (Ho and Glimcher 2002). The 

outcome of T- cell differentiation is dependent upon cytokine medium, type of antigen 

presenting cells, route of antigen presentation and type of stimulatory markers (Ho and 

Glimcher 2002). The cytokine environment is important in determining differentiation of 

Th-cells, because cytokines are important for initiation and proliferation of both subsets 

of Th-cells (Ho and Glimcher 2002). Several nutrients also play roles in the 

differentiation of T- cells, of which Se is a key nutrient. 
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At the cellular level, it was demonstrated that Se has effects on different 

components of the immune system including innate, cell-mediated and humoral 

responses (Huang, Rose et al. 2011). Cell culture studies showed that Se stimulates 

immune properties at supra-physiological doses. Deficiency of Se, on the other hand, 

negatively affects leukocyte proliferation in response to mitogens. This alteration in 

immune response, as a result of Se deficiency, was evidenced by clinical features such as 

increased vulnerability to infection and lowered resistance to tumor-related antigens 

(Peretz, Neve et al. 1991). In our study, mice fed with graded dietary Se were challenged 

with low dose, timed release lipopolysaccharide (LPS) one month prior to necropsy with 

the hypothesis that Se would impact low grade inflammation by down-regulating 

excessive production of pro-inflammatory cytokines and preventing excessive tissue 

damage.  

Stimulants such as free radicals and oxidative stress enhance inflammation by 

activating nuclear factor-kappa B (NF-κB) pathway (Barnes and Karin 1997). NF-κB is a 

membrane-bound  transcriptional factor that is phosphorylated when induced by ROS and 

then translocated to the nucleus to up-regulate production of inflammatory cytokines 

(Barnes and Karin 1997). This cytokine mileau then determines the Th-cell 

differentiation into the specific sub types of Th-cells. Se down-regulates excess 

production of pro-inflammatory cytokines. For example, Se supplementation results in a 

significant decrease in the bacterial endotoxin- induced expression of TNF-α by blocking 

the mitogen-activated protein kinase (MAPK) pathway (Kim, Johnson et al. 2004). On 

the other hand, when Se is low, the high level of TNF-α may enhance activation of NF-

κB and increase C-reactive protein (CRP) production by liver cells. When Se is adequate, 
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it prevents NF-κB activation by increasing GSH-Px and this attenuates inflammation by 

down regulating ROS, which is a stimulator of NF-κB. GSH-Px inhibits translocation of 

NF-κB by preventing phosphorylation of  IκB-α which is an inhibitory subunit bound to 

NF-κB when inactive (Kretz-Remy and Arrigo 2001).  

The biochemical form of glutathione (GSH) in the host also affects the immune 

response. For example, mice depleted of GSH showed hampered Th-1 response and 

functions of antigen-presenting cells, which are major players in immune response 

(Peterson, Herzenberg et al. 1998). When the level of reduced GSH is higher due to 

increased dietary Se intake (0.8-1.0 mg/kg) it showed Th-1-skewing (up-regulation of 

IFN-γ secretion) with activation of naive CD4+ T-cells (Hoffmann, Hashimoto et al. 

2010). CD4+ T-cell differentiation was not, however, affected in mice with Se intake of 

0.25 mg/kg (Hoffmann, Hashimoto et al. 2010). This shows that dietary Se, when present 

above physiologic level, modulates GSH levels and influences CD4+ cell proliferation 

and differentiation during inflammation.  

Change in the number of B-cells was also observed in mice with Se 

supplementation. For example, the B-cell number in spleens of mice fed with low level of 

Se-Met (0.02 mg/kg), adequate (0.2 mg/kg) or high Se (2 mg/kg) in the diet for 50 days 

showed differences (Vega, Rodríguez-Sosa et al. 2007). Vega and colleagues observed 

that spleen cells of mice fed low Se-Met had reduced numbers of B-cells when compared 

to mice fed adequate Se-Met. Mice fed with 2.0 mg Se/kg diet showed increased B- cells 

in their spleens compared to mice that consumed 0.2 mg Se/kg (control) diet.    

Se also exerts its immune enhancing effect by up-regulating IL-2 receptor 

expressed both by T and B lymphocytes. The response of these cells to IL-2 then results 
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in increased numbers of lymphocytes, enhanced cytotoxic effect of killer cells and 

production of immunoglobulin (Ig) by B-cells  to respond to inflammatory conditions 

(Kiremidjian-Schumacher, Roy et al. 1996). The level of Se that is required to exert these 

immune functions has been variable as reported by Spalholz (Spallholz 1990). In our 

study we investigated different doses of dietary Se intake on T-cells, Th-cells and B- 

cells, lymphocytes, granulocytes and monocytes in mice challenged with LPS. 

Methods 

Mice and diets: Forty-one timed-pregnant C57BL/6 mice (Harlan, Indianapolis, 

IN) were fed Se-deficient (modified AIN-93G) diets for the final 5-6 days of gestation.  

Animals were housed in an environmentally controlled animal care facility and delivered 

their litters approximately 5-6 days after arrival.  The dams continued to receive Se 

depletion diets for the 24 days of lactation. At 24 days of age, pups were weaned and 

randomly assigned to one of four dietary groups (Table 4.1) which they were fed until 

120 days of age. Diet was provided daily and water bottles and bedding on a weekly 

basis.   

Mice were fed ad libitum (approximately 5g diet/day).  At 90 days of age, mice 

within each dietary treatment group were randomly assigned to be implanted with a time-

release pellet that was a placebo (0 µg/g/d) or that released 0.1 µg/g/body weight of time-

release LPS (E.coli Serotype 0127:B8) to produce a very low grade inflammatory stress.  

Treatment was maintained (time-release LPS or placebo pellet) for 28 days and the mice 

continued to be fed their respective diets throughout the study. 

Collection of Blood Sample from Mice 

About 0.5 ml of blood was collected from carotid artery. Out of the total blood 

collected, 0.25 µL was put into a micro tube with 475 µL blue stain solution for 
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leukocyte counts. The remaining blood was added to a tube containing anticoagulant and 

kept on ice until centrifuged at 4,000 revolutions per minute (rpm) for 10 min to separate 

the plasma for determination of the immune biomarkers.  

Determination of Total and Differential Leucocyte Counts 

Determination of the total leucocyte count was made using the method of Schalm 

et al. (Schalm, Jain et al. 1975). The differential white blood cell count was determined 

from a thin smear done on a clean slide for each mouse. The smear was set to dry and 

fixed until stained for counting (Wright’s stain). Counting was done using an objective 

light microscope. A longitudinal counting method was used to count 100 cells. The type 

of cell counted in these 100 cells was used to set percentages for neutrophils, 

lymphocytes, monocytes, eosinophils and basophils cells. The absolute number for each 

type of cell was calculated by multiplying the total WBC counts by the percentage of 

each cell type.   

Plasma Se 

Plasma Se was analyzed using an inductively coupled plasma mass spectrometer 

(ICP-MS) (Elan 9000, Perkin Elmer, Norwalk, CT). All plasma samples were diluted 50 

fold (40 μl diluted with 1.96 ml) with 0.1% HNO3 (GFS Chemicals, Powell, OH) in 

deionized water (Milli-Q, Advantage A10, Millipore). Standard solutions of Se were 

prepared by dilution of certified standard solutions (Perkin Elmer, Norwalk, CT). Diluted 

working standards were prepared immediately prior to their use by diluting an 

intermediate stock standard solution. All samples and standards were spiked with 4 μg/L 

gallium as an internal standard. Quality control samples (Utak Laboratories, Inc., 
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Valencia, CA) were utilized in order to verify that performance was within recommended 

ranges. 

Flow Cytometry  

Antibodies used for flowcytometric analysis included peridinin chlorophyll protein 

(PerCP)-anti-CD4 and fluorescein isothiocyanate (FITC)- FITC-anti-CD3, phycoerythrin 

(PE)-anti-B220, FITC-anti LY6C, and allophycocyanin (APC) - anti CD31 (Sigma-

Aldrich Co., St. Louis, MO).   

Cell suspension: The bone marrow suspension was centrifuged after necropsy and 

cells were collected after aspirating supernatant. Cells were resuspended by adding 

phosphate buffered saline (PBS) and were immunostained by adding fluorochrome 

conjugated primary antibodies (CD3, B220, CD4, LY6C and CD31) with appropriate 

dilution to assay tubes and incubating for 1 hr at room temperature. Cells were rinsed and 

resuspended with PBS and counted using a FACScan flow cytometer at a rate of 286 

cells per second using a single argon ion laser tuned at 488 nm. Data were analyzed using 

Summit version 4.3 Build 2445 (Dako Colarado, Inc., Fort Collins, CO). All antibodies 

and reagents listed above were used at final concentrations recommended by 

manufacturers of the flow cytometer. 

Plasma IgG2a 

Plasma level of IgG2a was assayed using an immunoperoxidase Assay kit (ICL, 

Inc., Portland, OR). Samples were diluted (1:4000) with 1x diluent provided and all 

procedures were followed as per the protocol provided by the manufacturer.  

Plasma cytokines  
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Plasma IFNγ was measured using an ELISA protocol provided by the 

manufacturer (BD Biosciences; San Jose, CA).      

Statistical Analysis 

 All statistical tests for comparison of means were performed using SAS version 

9.2 (SAS Institute, Cary, NC, USA). The GLM procedure tested the main effects of 

dietary Se concentration and of LPS on proliferation of B cells, T-cells, T-helper cells 

and myeloid populations. A least square means post hoc test was used to identify the 

means that differed. Differences were considered significant at p < 0.05.  

Results 

Body and thymus weight 

There was no statistically significant difference in body and thymus weight by Se 

intake or LPS at necropsy (p >0.05, Table 4.2), however thymus weight tended to be 

higher for LPS (0.050g) compared to placebo group (0.043g). 

Plasma Se 

Plasma Se of mice from different experimental diets at necropsy showed 

significant differences by diets supplemented with Se ( 0.0; 0.2; 2.0 and 4.0 mg Se/kg 

diet) (p<0.03). Mice fed the Torula yeast Se-deficient diet with no added Se had 

significantly lower plasma Se compared with other groups (Table 4.3). However, plasma 

Se was not significantly affected by LPS. 

Total White Blood Cells and Differential Counts 

Total white blood cell count was not statistically affected by either dietary Se or 

LPS (Table 4.4). However, mice implanted with LPS pellets that consumed diets with 

added Se of 4 mg/kg had a significantly (p<0.0001) lower number of lymphocytes 

compared to all other groups. Number of neutrophils were significantly (p<0.001) higher 
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in mice fed diet with 0.2 mg Se/ kg and 4 mg Se /kg diets. No alteration in monocytes 

was observed by dietary Se or LPS. 

 

Bone marrow T and B cells  

Bone marrow Th-cells, T and B cells, lymphocytes, granulocytes and monocytes 

were analyzed using a flow cytometer and means with SEM are presented for each group 

of mice. Th-cells, B-cells and monocytes showed a significant increase with LPS as 

presented in Table 4.5 and 4.6, while granulocytes increased significantly with LPS 

compared to placebo in mice fed 2.0 mg Se/kg diet only. T-cells were significantly 

affected by dietary Se (p<0.02), and were significantly higher in mice fed the 4.0 mg  

Se/kg diet compared to other groups. 

Cytokines and IgG2a Response 

 

 Neither Se intakes nor LPS stimulation significantly affected plasma IgG2a, IFNγ or IL-

12p70 levels (p>0.05) (Table 4.7).  

 

Discussion 

 

An effective immune system is dependent on availability of key nutrients with 

antioxidant functions (Haddad 2002). Se is one of these nutrients and stimulates both 

innate and acquired immune responses due to its effect on cytokine production and 

regulation of ROS (Bhaskaram 2002; Rayman 2002). Se exerts its immune function 

through its regulatory action on redox balance (GSH-Px and TR) by effectively 

scavenging ROS (Thomson 2004; Sakr, Reinhart et al. 2007). Se also influences 

production of cytokines for effective immune response, (Regina 1999; Arthur, McKenzie 
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et al. 2003) and improves T-cell proliferation and immunity secondary to vaccine 

(McKenzie, S. Rafferty et al. 1998).  

Se supplementation in humans showed increased proliferation of lymphocytes 

secondary to live polio vaccine virus and a greater clearance of the virus (Broome, 

McArdle et al. 2004; Pagmantidis, Méplan et al. 2008). The increase in lymphocyte 

numbers was associated with protective activity of GSH-Px and TR reducing free radicals 

that could destroy immune cells and preventing lipid peroxidases that lead to immune 

suppression secondary to metabolites of arachidonic acid (Daria, Cesare et al. 2008).  The 

reported increases in leucocyte numbers with Se supplementation, however, were not 

consistent, as an experiment with aged mice showed only two thirds of mice had 

improved lymphocyte proliferation. This might be due to individual specific needs and 

difference in metabolic rate (Brown, Pickard et al. 2000) 

In our study, we tested if dietary Se influenced immune responses to low grade 

inflammation induced by slow release LPS. Mice were fed varied concentrations of 

dietary Se for 90 days prior to stimulation by LPS for 28 days and tested for bone marrow 

immune cells, plasma cytokines and immunoglobulin levels. We used a torula-based Se 

depletion diet containing no added Se, as the basal diet similar to other experiments done 

in rodents (Knight and Sunde 1988; Cheng, Ho et al. 1997; Gomez, Solana et al. 2002). 

The deficient diet was well below daily requirements for rodents (0.1 mg/kg) 

(Subcommittee on Laboratory Animal Nutrition. National Research Council 1995). As 

the degree of immune response depends on the level of Se (Musik, Koziol-Montewka et 

al. 1999) and dose of inflammatory stimulants, in our study  mice were fed with deficient 

Se, 0.2 mg Se/kg, 2.0 mg Se/kg and 4.0 mg Se/kg diets.   
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The results of our study were consistent with the notion ( in humans) that Se must 

be taken above the physiologic level to enhance immunity (Kiremidjian-Schumacher, 

Roy et al. 1994). Our results showed a shift to an increased number of T-cells (CD3+) 

with the highest dietary Se, even though the total number of lymphocytes was not 

increased. This supports the preferential effect of Se in enhancing T-cells for immune 

response (Arthur, McKenzie et al. 2003). Although T-cells are not the only type of 

immune cells affected by Se level (Safir, Wendel et al. 2003; Kim, Johnson et al. 2004; 

Hoffmann 2007), they are important for further differentiation into Th-cells to enhance a 

variety of immune responses. The effect of low Se intake on T-cells indicates the 

importance of Se for T-cells proliferation for optimum immune response.  

When plasma cytokines levels and IgG2a were analyzed, our results showed no 

difference by Se intake and LPS, despite the increase in bone marrow early blast cells, 

and monocyte numbers by LPS and T-cells by Se intake. In contrast to our finding, a 

study by Yusuke in dendritic cells which  investigated the effect of low dose LPS 

(1ng/ml) on IL-12 production (at early stages of infection), showed increased IFNγ and 

induced IL-12 production (Saito, Yanagawa et al. 2006). This may be due to the effect of 

LPS on TNFα and IFN γ production at initial stage of inflammation leading to increased 

IL-12 production. The reason for the absence of a difference with LPS in the production 

of IL-12p -70, in our study, may be due to the difference in the timing of collecting blood 

samples. In our study, blood samples were collected four weeks after initiation of 

inflammation, when the acute inflammatory response had already leveled off.   

 In conclusion, Se supplementation increased plasma Se level and number of bone 

marrow T-cells, while LPS increased production of bone marrow Th-cells, B-cells and 
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monocytes. Interactions between Se and LPS affected numbers of peripheral lymphocytes 

and neutrophils. It may be interesting to investigate the effect of Se on other immune 

molecules that take part in polarization of Th-cells to gain knowledge on possible role of 

Se in disease conditions that skew the polarization balance to the pro-inflammatory side.  

 

Table 4.1:  Composition of Diets by Added Se (mg/kg diet) 

 

  

 

 

 

 

 

Added Se Se 0.00 mg/kg Se 0.2mg/kg  Se 2.0 mg/kg Se 4.0 mg/kg 

Formula                                       g/kg 
 

Torula Yeast 340.0 340.0 340.0 340.0 

L-Cystine 3.0 3.0 3.0 3.0 

Dextrose, 

Monohydrate 

399.02 399.02 399.02 399.02 

Sucrose 100.0 100.0 100.0 100.0 

Soybean Oil 60.0 60.0 60.0 60.0 

Cellulose 50.0 50.0 50.0 50.0 

Mineral Mix  35.0 35.0 35.0 35.0 

Vitamin Mix AIN-93-

VX 

10.0 10.0 10.0 10.0 

Choline Bitartrate 2.5 2.5 2.5 2.5 
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Table 4.2: Body and Thymus Weight of Mice Fed Supplemental Se with or without LPS 

 (Mean ±SE) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Added  Se 

(mg/kg diet) 

Pellet n Body Weight (gm) n Thymus Weight (gm) 

0.0 Placebo 10 25.7±0.2 10 0.04± 0.00 

0.0 LPS 8 24.1±0.5 8 0.05± 0.00 

0.2 Placebo 11 26.0±1.2 11 0.04± 0.00 

0.2 LPS 10 25.1±0.2 10 0.05± 0.00 

2.0 Placebo 11 25.7±0.6 11 0.05± 0.00 

2.0 LPS 10 26.1±0.7 10 0.05± 0.00 

4.0 Placebo 10 24.8±0.3 10 0.04± 0.00 

4.0 LPS 9 25.3±0.4 10 0.05± 0.00 

                                

Treatment 

Means 

     

Added Se      

0.0  18 25.0±0.3 18 0.05±0.00 

0.2  21 25.5±0.3 21 0.05±0.00 

2.0  21 25.9±0.4 21 0.05±0.00 

4.0  19 25.0±0.3 20 0.05±0.00 

LPS       

  Placebo  42 25.6±0.2 42 0.043 ±0.00 

  LPS  37 25.0±0.3 38 0.050 ±0.00 

                                                 

P Values 

     

  Se   0.13  0.86 

  LPS   0.06  0.06 

  Se * LPS   0.28  0.39 
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Table 4.3: Plasma Se of Mice Fed Supplemental Se with and without LPS 

(Mean±SE) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Means with superscripts not sharing a common letter are significantly different 

 

 

 

 

 

 

 

Added Dietary Se 

(mg/kg diet) 

Pellet n Plasma Selenium 

(mg/L) 

0.0  Placebo 5 0.096 ± 0.030 

0.0 LPS 5 0.103 ± 0.005 

0.2 Placebo 5 0.222 ± 0.052 

0.2 LPS 4 0.223 ± 0.050 

2.0 Placebo 4 0.166 ± 0.060 

2.0 LPS 5 0.250 ± 0.040 

4.0 Placebo 5 0.188 ± 0.030 

4.0 LPS 5 0.206 ± 0.031 

                               

Treatment Means 

   

Added Se    

  0.0  10 0.099 ± 0.026
b
 

  0.2  9 0.222 ± 0.033
a
 

  2.0  9 0.212 ± 0.030
a
 

  4.0  10 0.197 ± 0.020
a
 

LPS     

  Placebo  19 0.168 ± 0.022 

  LPS  19 0.193 ± 0.023 

                                                 

P Values 

   

  Se   <0.03 

  LPS     0.39 

  Se * LPS     0.79 
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Table 4.4: Total White Blood Cells (WBC) and Differential Counts of Mice Fed 

Supplemental Se with or without LPS (Mean ± SE) 

Means with superscripts not sharing a common letter are significantly different 

 

 

 

 

 

 

Added 

Dietary 

Se (mg/kg 

diet) 

Pellet n Total 

WBC  

(1 10
6
/mL) 

Lymphocytes 

(1 x10
6
/mL) 

Neutrophils 

(1 x10
6
/mL) 

Monocytes 

(1 x10
6
/mL) 

0.0 Placebo 10 4.58 ± 0.47 3.73±0.34
a
 0.685 ±0.015

bc
 0.090± 0.020 

0.0 LPS 8 4.38 ± 0.31 3.54 ± 0.28
a
 0.606 ± 0.061

bc
 0.149± 0.002 

0.2 Placebo 11 3.72 ± 0.38 3.25 ± 0.33
a
 0.370 ± 0.053

d
 0.075± 0.015 

0.2 LPS 10 4.01 ± 0.33 3.14 ± 0.27
a
 0.647 ± 0.056

bc
 0.098± 0.020 

2.0 Placebo 11 4.40 ± 0.32 3.77 ± 0.29
a
 0.526 ± 0.034

cd
 0.086± 0.020 

2.0 LPS 10 4.12 ± 0.32 3.27 ± 0.26
a
 0.638 ±0.064

bc
 0.010 ±0.002 

4.0 Placebo 10 4.71 ± 0.27 3.80± 0.21
a
 0.760 ± 0.061

b
 0.093± 0.003 

4.0 LPS 10 3.67 ± 0.25 2.11± 0.15
b
 1.480 ± 0.012

a
 0.042± 0.019 

                               

Treatment 

Means 

      

Added Se       

  0.0  18 4.50±0.29 3.60±0.21 0.660±0.06 0.112±0.02 

  0.2  21 3.90±0.23 3.20±0.19 0.510±0.05
 
 0.870±0.01 

  2.0  21 4.23±0.23 3.52±0.19 0.580±0.05 0.940±0.01 

  4.0  20 4.19±0.23 2.96±0.19 1.120±0.52 0.680±0.01 

LPS        

  Placebo  42 4.34±0.19 3.63 ±0.15 0.578±0.040 0.086±0.011 

  LPS  38 4.02±0.15 2.99 ±0.15 0.862±0.073 0.095±0.010 

                                                 

P Values 

      

  Se   0.36 <0.068  <0.0001 0.13 

  LPS   0.20 <0.002       <0.0001 0.45 

  Se * LPS   0.27 <0.020       <0.0001 0.09 
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Table 4.5: Number of T helper-cells, T-cells and B-cells in Bone Marrow of Mice Fed 

Supplemental Se with and without LPS (Mean ±SE) 

 

Means with superscripts not sharing a common letter are significantly different 

 

 

 

 

 

Added 

Dietary Se 

(mg/kg diet) 

Pellet n T- helper Cells 

(1 x10
6 

/mL) 

T- Cells 

(1 x10
6
/mL) 

B - Cells 

(1 x10
6 

/mL) 

0.0 Placebo 6 0.54 ± 0.09 0.27 ± 0.04 3.40± 0.23 

0.0 LPS 6 0.65 ± 0.08 0.31 ± 0.06 3.17 ± 0.52 

0.2 Placebo 6 0.54 ± 0.09 0.31 ± 0.02 2.76 ± 0.45 

0.2 LPS 6 0.64 ± 0.05 0.32 ± 0.06 3.98 ± 0.51 

2.0 Placebo 5 0.29 ± 0.01 0.13 ± 0.05 1.86 ± 0.21 

2.0 LPS 6 1.12 ± 0.28 0.60 ± 0.01 3.84 ± 0.80 

4.0 Placebo 6 0.69 ± 0.01 0.52 ± 0.01 2.14 ± 0.30 

4.0 LPS 6 1.26 ± 0.29 0.92 ± 0.02 2.38 ± 0.49 

                               

Treatment 

Means 

     

Added Se      

  0.0  12 0.595±0.059 0.289±0.036
b
 3.29±0.27 

  0.2  12 0.634±0.148 0.313±0.071
b
 3.43±0.38 

  2.0  11 0.685±0.189 0.366±0.089
b
 2.85±0.49 

  4.0  12 0.975±0.174 0.722±0.144
a
 2.26±0.28 

LPS       

  Placebo  23 0.534 ±0.091
b
 0.306 ±0.056 2.53±0.12

 b
 

  LPS  24 0.906 ±0.112
 a
 0.539 ± 0.082 3.35±0.31

a
 

                                                 

P Values 

     

  Se     0.20 <0.02        0.09 

  LPS   <0.01 <0.09       <0.02 

  Se * LPS     0.15   0.14         0.12 
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Table 4.6: Numbers of Bone Marrow Early blasts, Lymphocytes, Granulocytes and 

Monocytes in Mice Fed Supplemental Se with or without LPS (Mean ± SE) 

 

Means with superscripts not sharing a common letter are significantly different 

 

 

 

 

 

                                       Lymphocytes 

(CD31mid LY-6Cneg) 
Granulocytes (CD31 

neg LY-6C med)  

Monocytes (CD31neg 

LY-6C hig)  

Added 

Dietary Se 

(mg/kg 

diet) 

Pellet n (1 x10
6
/mL) (1 x10

6
/mL) (1 x10

6
/mL) 

0.0  Placebo 6 1.46 ± 0.39 0.296 ± 0.045
b
 0.992 ± 0.127 

0.0 LPS 6 1.35 ± 0.28 0.253 ± 0.051
bc

 0.872 ± 0.141 

0.2 Placebo 6 1.56 ± 0.25 0.257 ± 0.039
bc

 0.833 ± 0.098 

0.2 LPS 6 1.61 ± 0.30 0.355 ± 0.034
ab

 1.210 ± 0.147 

2.0 Placebo 5 0.71 ± 0.07 0.154 ± 0.025
c
 0.553 ± 0.084 

2.0 LPS 6 1.69 ± 0.29 0.452 ± 0.071
a
 1.320 ± 0.189 

4.0 Placebo 6 1.03 ± 0.21 0.224 ± 0.044
bc

 0.683 ± 0.139 

4.0 LPS 6 1.01 ± 0.20 0.324 ± 0.068
ab

 1.250 ± 0.341 

                               

Treatment 

Means 

     

Added Se      

  0.0  12 1.40±0.15 0.274±0.033 0.933±0.092 

  0.2  11 1.59±0.19 0.311±0.029 1.041±0.106 

  2.0  12 1.20±0.21 0.303±0.057 0.938±0.152 

  4.0  12 1.02±0.14 0.274±0.041 0.966±0.196 

LPS       

  Placebo  23 1.19±0.13 0.233±0.025 0.765±0.090
b
 

  LPS  24 1.42±0.11 0.346±0.025 1.160±0.088
a
 

                                                 

P Values 

     

  Se   0.104    0.86   0.95 

  LPS   0.180  <0.003 <0.003 

  Se * LPS   0.079  <0.014   0.08 



 

  68 
 

Table 4.7: Plasma Levels of Pro-inflammatory Cytokines and IgG2a in Mice Fed 

Supplemental Se with and without LPS (Mean ±SE) 

Means with superscripts not sharing a common letter are significantly different 

 

Added 

Dietary Se 

(mg/kg diet) 

Pellet n IgG2a(ng/mL) IFNγ (ng/mL) IL-12(ng/mL) 

0.0  Placebo 5 7.93±2.23
b
 3.55±1.20  33.20±6.61  

0.0 LPS 6 9.63±1.92
b
 2.95±0.86 29.50±3.96 

0.2 Placebo 6 11.48±1.27
b
 1.52±0.16  25.84±2.75 

0.2 LPS 6 7.98±1.12
bc

 2.50±0.36  33.50±8.20 

2.0 Placebo 5 10.60±2.67
bc

 2.57±0.37 23.94±5.06  

2.0 LPS 6 11.53±1.29
bc

 2.72±0.49 24.24±7.28 

4.0 Placebo 6 5.12±1.46
c
 3.92±0.75 30.37±6.17 

4.0 LPS 6 14.59±1.37
a
 1.81±0.30 26.89±5.00 

                               

Treatment 

Means 

     

Added Se      

0.0  11 8.85±1.41 3.19±0.67  31.35±3.72  

0.2  12 9.73±0.96 1.94±0.25  29.67±4.28  

2.0  11 11.06±1.42 2.96±0.29  24.10±4.37  

4.0  12 9.85±1.72 2.87±0.50  28.63±3.82  

LPS       

  Placebo  23 8.82  ± 1.06 2.96±0.38  28.53±2.62  

  LPS  24 10.93 ± 0.85 2.99±0.30  28.53±3.04  

                                                 

P Values 

     

  Se     0.63 0.41 0.66 

  LPS     0.08 0.40 0.96 

  Se * LPS   <0.01 0.14 0.74 
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CHAPTER V 
 

 

THE EFFECT OF DIETARY SELENIUM SUPPLEMENTATION AND 

LOW GRADE INFLAMMATION ON PLASMA GLUTHATHIONE 

PEROXIDASE, SELENIUM AND TOTAL ANTIOXIDANT CAPACITY IN 

C57BL/6 MICE  

Abstract 

Selenium is an important component of glutathione peroxidase (GSH-Px) enzyme. The 

level of GSH-Px activity is dependent on adequacy of Se in the host. We examined the 

level of plasma GSH-Px activity in mice fed different concentrations of dietary selenium 

(Se) and challenged with Lipopolysaccharide (LPS) in an experimental study. Plasma 

GSH-Px and Total Antioxidant Capacity (TAC) were assessed using commercially 

available kits while ICP-MS was used to measure plasma Se. The effect of graded dietary 

Se intake in mice on body composition and biochemical markers were also investigated. 

Liver function tests were also performed using a clinical analyzer. GSH-Px and TAC 

were significantly increased by dietary Se.  

GSH-Px activity increased in mice from 34.1 mU/L in the Se 0.0 mg/kg diet group to 

1024.8 mU/L in the Se 4mg/kg diet group (p<0.0001). Mice in the 0.2 mg/kg and 

2.0mg/kg diet groups showed GSH-Px activity of 851.5 mU/L and 909.1mU/L 

respectively. The TAC changed from 6.18 mM in mice fed 0 mg/kg Se added to diet to 

7.62mM in mice fed 4.0mg/kg Se added to diet (p<0.001). Significant changes in plasma 

Se were observed with dietary Se level (p<0.03). Moreover, a significant increase 
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(p<0.036) in plasma alkaline phosphatase (ALP) activity by dietary Se was observed. 

Future studies are recommended to demonstrate the interaction of Se with other 

antioxidant minerals such as copper and zinc to determine the minimum dose of Se 

required to increase the activity of GSH-Px enzymes that enhance immune response in 

chronic immunosuppressive conditions.  

Introduction 

The trace mineral Se is an essential nutrient in life.  Se as selenocysteineis is a 

major part of selenoproteins (Sunde 1997). Some selenoproteins have enzymatic 

properties and play a role in the cellular reduction-oxidation (redox) system (Sunde 

1997). For example, thioredoxinreductase (TR), which is one of the selenoenzymes,  

helps to reduce nucleotides in DNA synthesis and helps to regulate the intracellular redox 

state (Allan, Lacourciere et al. 1999). Selenium dependent gluthathione peroxidases are 

important for the reduction of hydrogen peroxide and hydroperoxidases into harmless 

byproducts such as water and alcohol (Diplock 1994; Sunde 1997).  This redox function 

helps to maintain membrane integrity and further limits oxidation of lipids, lipoproteins 

and DNA leading to cardiovascular diseases and other chronic diseases. 

 The effects of Se supplementation seem to depend on the baseline level of Se in 

the host. The lower the baseline level the better is the response, as demonstrated in a 

study from Australia in patients with autoimmune thyroiditis (Moncayo, Moncayo et al. 

2005). Although the range for normal level of plasma Se is wide, 40-140 µg/L, maximal 

activities of GSH-Px are exerted at Se concentration of 100 - 114 µg/L (Thomson, 

McLachlan et al. 2005). On the contrary, if the level of Se is above 200 μg/L, it may 

induce pro-oxidant adverse effects. Se, through its activated GSH-Px enzymes, 
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neutralizes effects of oxidative stress induced by various inflammatory agents (Ryan-

Harshman and Aldoori 2005). Studies in vitro indicated that Se influences inflammation 

as a result of viral, bacterial or stress stimulation (Maehira, Luyo et al. 2002). For 

example, in severe inflammatory response, the production of reactive oxygen species 

increases and leads to  severe tissue damage (Galley, Davies et al. 1996). In such 

situations, if the host’s plasma Se is low, more damage to tissues and organs is expected 

(Sakr, Reinhart et al. 2007). On the contrary, Se supplementation, in severe inflammatory 

situations, resulted in reduced tissue damage and better clinical outcomes in an 

observational study (Angstwurm, Schottdorf et al. 1999). A multicenter, randomized 

controlled trial study also confirmed this finding that Se supplementation decreased 

mortality in patients with severe sepsis (Zamamiri-Davis, Lu et al. 2002).  

Such anti-inflammatory effects of Se are also attributed to its immune boosting 

effect. Se supplementation significantly decreased the bacterial endotoxin 

lipopolysaccharide (LPS) induced tumor necrosis factor alpha (TNFα) and 

cyclooxygenase 2 (COX-2), by inhibiting MAP kinase pathways (Vunta, Belda et al. 

2008).  On the other hand, when Se level is low, high levels of TNFα increased activation 

of NFκB (Vunta, Belda et al. 2008). TNFα  induces production of adhesion molecules 

like  intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 

(VCAM-1), and endothelial leukocyte adhesion molecule-1 (E-selectin), necessary for 

pro-inflammatory response by recruiting immune cells (Zhang, Yu et al. 2002). In an 

vitro study using human umbilical vein endothelial cells, Se supplementation (as sodium 

selenite), in a dose dependent manner, also inhibited TNFα stimulated expression of 

adhesion molecules (Zhang, Yu et al. 2002). This study suggested that higher level of Se 
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may inhibit NF-κB via GSH-Px and attenuate inflammation. When the level of GSH-Px 

is high, it decreases the levels of ROS and IκB-α phosphorylation and consequently the 

translocation of NF-κB to the nucleus (Lun, Zhang et al. 2006). GSH-Px also conserves 

degradation of  IκB-α and prolongs its  half-life which keeps NF- κB in its inactive  form 

(Kretz-Remy and Arrigo 2001). Based on this current knowledge, the present study 

investigated plasma Se, GSH-Px, and Total Antioxidant Capacity (TAC) in mice fed 

graded dietary Se and challenged with LPS.  

Moreover, as the liver is the major detoxifying organ, our study also examined 

key proteins that illustrate liver functions in mice under low grade inflammatory stress 

induced by low levels of LPS. For this study we selected, aminotransaminase (ALT), 

alkaline phosphatase (ALP) and albumin (ALB) levels, as these proteins are related in the 

LPS detoxification pathways. 

ALT, a marker of liver function, is synthesized mainly by liver and catalyzes 

transamination reaction between alanine and ketoglutarate leading to the formation of 

pyruvate and glutamate (Welch 1972; Alexis and Papaparaskeva-Papoutsoglou 1986).  

This role, makes ALT an important enzyme in glucose metabolism (Philip 1973). ALT is 

also used in clinical diagnosis of liver function in humans and is known to rise during 

viral infections, other liver diseases, toxicity and in diseases  related to muscle and celiac 

disease (Chen, Huang et al. 2007). Recent findings indicated that ALT is up-regulated by 

LPS (Lun, Zhang et al. 2006) and for this reason we have evaluated level of ALT in mice.  

ALB, is a protein synthesized by liver and its production is affected in cases of 

liver diseases. Studies have shown that physiologic levels of circulating ALB facilitates 

the interaction of LPS with LPS binding protein (LBP) and CD14 for recognition of 
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pathogens by TLR- 4 for  immune response (Gioannini, Zhang et al. 2002). An in vitro 

experiment, with treatment of exogenous graded ALB, showed an increase in pro-

inflammatory gene expression through activation of NF-κB (Drumm, Gassner et al. 2001; 

Drumm, Bauer et al. 2002).   

Alkaline phosphatase (ALP) is present naturally in different organisms and 

mammalians (Millan and 2006). Most of the ALP enzymes are homodimers and contain 

three metal ions (two zinc and one magnesium) at each catalytic site. ALP plays a 

catalytic role in hydrolyzing monoesters of phosphoric acid and transphosphorylation 

reactions. ALP can also dephosphorylate various phosphorylated substrates including 

endotoxins such as LPS (Poelstra, Bakker et al. 1997). LPS, as a product of gram 

negative bacteria, contains two phosphate groups and ALP has been found to attenuate 

LPS induced inflammation in rats (Poelstra, Bakker et al. 1997). Thus, our study 

investigated plasma Se, GSH-Px, total antioxidant capacity (TAC), ALB, ALP and ALT 

in mice fed graded dietary Se and challenged with LPS.  

 

Methods 

Mice and diets 

 Forty-one timed-pregnant C57BL/6 mice (Harlan, Indianapolis, IN) were fed Se-

deficient (modified AIN-93G) diets for the final 5-6 days of gestation.  The animals were 

housed in an environmentally controlled animal care facility and delivered their litters 

approximately 5-6 days after arrival. The dams continued to receive the pre delivery Se-

depleted diet for the three weeks of lactation.  At 24 days pups were weaned and 

randomly assigned to one of the four dietary groups (Table 5.1) which they were fed until 
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120 days of age. Diet was provided daily and water bottles and beddings on a weekly 

basis.  Mice were fed ad libitum (approximately 5 g diet/day/mice).  At 90 days of dietary 

treatment, mice within each diet group were assigned to 0 or 0.1µg/g/d of time-release 

LPS (E.coli Serotype 0127:B8) pellet to produce a very low grade inflammatory stress.  

Treatment was maintained (time-release LPS or placebo pellet) for 28 days and the mice 

continued to be fed their respective diets throughout the study. 

Plasma GSH-Px 

Plasma GSH-Px was measured using a kinetic enzyme assay as per the protocol 

provided by the manufacturer (Oxford Biomedical Research, Inc. Oxford, MI). The assay 

was carried out at room temperature and the spectrophotometer was set at 340 nm. The 

spectrophotometer was zeroed at 340 nm using deionized water. Appropriate volume of 

assay buffer, pre diluted NADH reagent and the sample were pipetted into a cuvette and 

placed in the spectrophotometer followed by addition and mixing of tert-butyl 

hydroperoxide by pipetting. GSH-Px enzyme activity was measured at A340 for three 

minutes.  

Total Antioxidant Capacity (TAC) 

Antioxidant assay kit was used to measure TAC in plasma samples (Cayman 

Chemical Company, Ann Arbor, MI). The assay procedure was done in accordance with 

the manufacturer’s protocol. The assay measured the ability of antioxidants in the 

samples of plasma in inhibiting oxidation of 2, 2´-azino-di (3-ethylbenzothiazoline 

sulphonate) ABTS to ABTS•+ by Metmyoglobin.  The TAC of samples preventing 

oxidation of ABTS was compared to the Trolox standard (water soluble tocopherol 

analog) and quantified as millimolar Trolox equivalents.  

 



 

  75 
 

Plasma Se 

Plasma Se was analyzed by Inductively Coupled Plasma Mass Spectrometer 

(ICPMS) (Elan 9000, Perkin Elmer, and Norwalk, CT). All plasma samples were diluted 

50 fold (40 μl diluted to 1.96 ml) with 0.1% HNO3 (GFS Chemicals, Powell, OH) in 

deionized water (Milli-Q, Advantage A10, Millipore, France). Standard solutions of Se 

were prepared by dilution of certified standard solutions (Perkin Elmer, Norwalk, CT). 

Diluted working standards were prepared immediately prior to their use by diluting an 

intermediate stock standard solution. All samples and standards were spiked with 4 μg/L 

gallium as an internal standard. Quality control samples (Utak Laboratories, Inc., 

Valencia, CA) were utilized in order to verify method performance was within the 

recommended ranges. 

Clinical Analyzer 

A Biolis 24i clinical chemistry analyzer was used to determine plasma level of ALT, 

ALP and ALB. The necessary kits were purchased from Carolina Liquid Chemistries 

Corp. and manufacturer’s instructions were strictly followed.  

 

Statistical Analysis 

 All statistical tests for comparison of means were performed using SAS version 

9.2 (SAS Institute, Cary, NC, USA). GLM procedure tested the main effects of diet and 

LPS on GSH-Px, TAC, ALT, ALP and ALB. A least square means post hoc test was used 

to identify the means that differed. Differences were considered significant at p< 0.05.  

Results 

GSH-Px Activity 
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 When mice in different dietary Se groups were compared, the group that 

consumed no added dietary Se showed significantly lower GSH-Px activity than the other 

three dietary Se groups containing 0.2, 2.0 and 4.0 mg Se /kg of diet (p<0.0001, see 

Table:5.2). The diet with 0.2 mg Se added/kg  represented the control diet. 

Plasma Se 

Plasma Se of mice from different experimental diets at necropsy showed 

significant differences by dietary Se concentration (p<0.03). Mice on no added dietary 

had significantly lower plasma Se level compared to other groups (Table 5.3). However, 

plasma Se was not significant by LPS. 

Plasma TAC  

Results of plasma TAC in mM/L are presented in Table 5.4 below. Although the 

TAC values are found in a narrow range (5.46 – 8.85 mM/L), statistically significant 

difference (p<0.0001) was observed by dietary Se. The slight decrease in TAC values for 

mice in the Se deficient group indicates the role of dietary Se in enhancing plasma TAC 

values in the remaining dietary Se groups.  

Plasma ALT, ALP and ALB 

There was a significant difference (p<0.03) in plasma ALP by dietary Se, after 

120 days of dietary treatment (Table 5.5). The mice receiving 0.02 mg/kg and 2.0 mg/kg 

had significantly higher levels of ALP activity compared to other groups. No differences 

were observed in plasma ALT and ALB based on either Se or LPS. 

Discussion 

Se is considered an essential element at the level of 0.1 mg/kg diet for animals 

(Clement 1998; Chen and Berry 2003). Se provides additional benefits (cancer prevention 
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and immune boosting) in animals at the range of 1-5 mg/kg diet (Clement 1998).  In our 

experiment, we fed mice diets with added Se concentration (0.2, 2.0 and 4.0 mg/kg diet). 

This was done taking into consideration the enhanced effect of Se supplementation on Se 

dependent antioxidant enzymes and TAC.  

 In our study, we found that GSH-Px, TAC and plasma Se in mice increased with 

dietary Se intake. Mice that consumed Se deficient diet in our study (0.0mg/kg) showed 

significantly lower levels of these biomarkers (p<0.05), which is in line with earlier work 

on the effect of long term Se deficiency in rats (Wu, Huang et al. 2003).  In their study 

the Se deficient rats  showed significantly lower TAC, but with an increase after one 

month of Se supplementation (Wu, Huang et al. 2003). Another study also showed an 

increase in TAC of rat heart muscle with Se supplementation (Danesi, Malaguti et al. 

2006). The TAC assay in our study measured the ability of antioxidants in the samples of 

plasma in inhibiting oxidation of ABTS to ABTS•+ by Metmyoglobin.  Plasma Se 

correlated with GSH-Px (r = 0.32; p<0.05) and the GSH-Px correlated with TAC level as 

well (r = 0.55; p<0.0005, data not shown). This signifies the role of plasma Se in 

increasing both GSH-Px and TAC levels in the plasma. TAC reflects the collective 

contribution of both enzymatic and non-enzymatic antioxidant molecules. It includes the 

contribution of each antioxidant molecule’s capacity of reducing the potency of free 

radicals. A significant effect of Se on plasma ALP was also observed in our study. The 

activity of ALP was significantly lower in the 0.2 and 4.0 groups than in the deficiency 

and 2.0 mg Se/kg diet groups. The reason for the differences in ALP was unclear.  
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Table 5.1:  Composition of Diets by Added Se (mg/kg diet) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Added Se Se 0.00 

mg/kg 

Se 

0.2mg/kg  

Se 2.0 

mg/kg 

Se 4.0 mg/kg 

Formula                                        g/Kg 
 

Torula Yeast 340.0 340.0 340.0 340.0 

L-Cystine 3.0 3.0 3.0 3.0 

Dextrose, 

Monohydrate 

399.02 399.02 399.02 399.02 

Sucrose 100.0 100.0 100.0 100.0 

Soybean Oil 60.0 60.0 60.0 60.0 

Cellulose 50.0 50.0 50.0 50.0 

Mineral Mix  35.0 35.0 35.0 35.0 

Vitamin Mix AIN-

93-VX 

10.0 10.0 10.0 10.0 

Choline Bitartrate 2.5 2.5 2.5 2.5 
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Table 5.2:  Plasma GSH-Px Activity in Mice Fed Supplemental Se with and without LPS 

(Mean ± SE) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Means with superscripts not sharing a common letter are significantly different 

 

 

 

 

 

 

Added Dietary Se 

(mg/kg diet) 

Pellet n Plasma GSH-Px 

mU/mL 

0.0 Placebo 5 32.5 ± 11.6 

0.0 LPS 5 36.6 ± 5.4 

0.2 Placebo 5 937.5 ± 148.4 

0.2 LPS 5 725.4 ± 139.3 

2.0 Placebo 5 977. 4 ± 100.5 

2.0 LPS 5 880.8 ± 144.1 

4.0 Placebo 5 1039.2 ± 161.9 

4.0 LPS 5 1010.4 ± 165.9 

                               

Treatment Means 

   

Added Se    

  0.0  10 34.1 ± 89.2
b
 

  0.2  10 851.5 ± 89.1
a
 

  2.0  10 909.1 ± 89.1
a
 

  4.0  10 1024.8 ± 89.1
a
 

LPS    

Placebo  20 765.24±106.2 

LPS  20 638.10±107.6 

                                                

P Values 

   

  Se   <0.0001 

  LPS     0.36 

  Se * LPS     0.74 
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Table 5.3: Plasma Selenium Level in Mice Fed Supplemental Se with and without 

LPS  

 

 

  

 

 

 

 

 

 

 

 

 

 

 
Means with superscripts not sharing a common letter are significantly different 

 

 

 

 

 

 

 

Added Dietary Se 

(mg/kg diet) 

Pellet n Plasma Selenium 

(mg/L) 

0.0  Placebo 5 0.096 ± 0.030 

0.0 LPS 5 0.103 ± 0.005 

0.2 Placebo 5 0.222 ± 0.052 

0.2 LPS 4 0.223 ± 0.050 

2.0 Placebo 4 0.166 ± 0.060 

2.0 LPS 5 0.250 ± 0.040 

4.0 Placebo 5 0.188 ± 0.030 

4.0 LPS 5 0.206 ± 0.031 

                               

Treatment Means 

   

Added Se    

  0.0  10 0.099 ± 0.026
b
 

  0.2  9 0.222 ± 0.033
a
 

  2.0  9 0.212 ± 0.030
a
 

  4.0  10 0.197 ± 0.020
a
 

LPS     

  Placebo  19 0.168 ± 0.022 

  LPS  19 0.193 ± 0.023 

                                                 

P Values 

   

  Se   <0.03 

  LPS     0.39 

  Se * LPS     0.79 
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Table 5.4:   Plasma Total Antioxidant Capacity in Mice Fed Supplemental Se with and 

without LPS (Mean ±SE) 

 

 

 

 

 

 

 

 

 

 

 

 

Means with superscripts not sharing a common letter are significantly different 

 

 

 

 

 

 

 

Added Dietary Se 

(mg/kg diet) 

Pellet n Plasma TAC (mM/L) 

0.02  Placebo 5 6.58± 0.46 

0.02 LPS 5 5.46± 0.93 

0.2 Placebo 5 7.91± 0.52 

0.2 LPS 5 8.02± 0.32 

2.0 Placebo 5 8.39 ±0.69 

2.0 LPS 5 8.85 ±0.39 

4.0 Placebo 5 8.48 ±0.38 

4.0 LPS 5 8.28 ±0.38 

                               

Treatment Means 

   

Added Se    

  0.02  10 6.18 ± 0.36
b
 

  0.2  10 7.27 ± 0.36
a
 

  2.0  10 7.46 ± 0.36
a
 

  4.0  10 7.62 ± 0.36
a
 

LPS    

Placebo  20 7.29±0.22 

LPS  20 7.10±0.32 

                                                 

P Values 

   

  Se   <0.001 

  LPS     0.62 

  Se * LPS     0.49 
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Table 5.5: Plasma Albumin, Alkaline phosphatase and Alanine transaminase in Mice Fed 

Supplemental Se with and without LPS (Mean ± SE) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Means with superscripts not sharing a common letter are significantly different 

 

Added Dietary 

Se (mg/kg diet) 

Pellet n ALB mg/dL ALP mg/dL ALT mg/dL 

0.0  Placebo 6 2.59 ± 0.11 4.5 ± 0.99 11.8 ± 1.05 

0.0 LPS 6 2.53 ± 0.84 4.3 ± 1.54 11.7± 0.95 

0.2 Placebo 6 2.55 ± 0.08 2.5 ± 1.02 9.5 0 ± 0.99 

0.2 LPS 6 2.65 ± 0.11 2.5 ± 0.62 11.6 ± 1.50 

2.0 Placebo 6 2.57 ± 0.11 4.2 ± 1.08 11.3 ± 0.56 

2.0 LPS 6 2.27 ± 0.32 5.2 ± 0.70 13.3 ± 2.81 

4.0 Placebo 6 2.63 ± 0.06 1.7 ± 0.61 11.2 ± 2.88 

4.0 LPS 6 2.48 ± 0.07 3.2 ± 0.79 13.2 ± 1.19 

                              

Treatment 

Means 

     

Added Se      

  0.0  12 2.56±0.65 4.4±0.68
a
 11.8±1.19 

  0.2  12 2.60±0.57 2.5±0.68
b
 10.6±1.26 

  2.0  12 2.57±0.06 4.7±0.68
a
 12.3±1.19 

  4.0  12 2.54±0.04 2.4±0.68
b
 12.2±1.19 

LPS      

Placebo  24 2.58±0.04 3.21±0.50 10.95±0.78 

LPS  23 2.48±0.88 3.79±0.50 12.48±0.85 

                                                 

P Values 

     

  Se   0.95 <0.036 0.73 

  LPS   0.77 0.40 0.22 

  Se * LPS   0.61 0.50 0.88 
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CHAPTER VI  
 

 

SUMMARY AND CONCLUSIONS  

 

Summary 

 

Se, as an important element for optimum immune function, works by promoting 

both the innate and acquired immune systems (Brown and Arthur 2001). The 

selenoproteins are very important in regulating antioxidant and redox systems thereby 

influencing membrane integrity and thus guarding against DNA damage  (Arthur 2003). 

The antioxidant effect of Se is mediated through GSH-Px, which plays an antioxidant 

role by removing free radicals produced during normal metabolism and oxidative stress. 

Se deficiency leads to decreased levels of GSH-Px and reduced ability of producing 

respiratory burst reaction by neutrophils and macrophages, which is important in killing 

the microbes (Arthur 2003). The role of Se in up regulating IL-2 receptors for effective 

cellular and humoral immune responses  is well documented (Arthur 2003). Overall, the 

existing body of literature consistently indicated that Se has a role in maintaining the 

immune system. However, this evidence does not indicate the actual threshold of Se 

concentration required for optimum immune system function beyond its classical 

antioxidant functions. 

 In our study, dams were fed a Torula-yeast based Se depletion diet for the final 

week of gestation and through lactation. At 23 days, pups were weaned to the depletion
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diet or to diets with 0.2, 2 or 4 mg/kg added Se.  Se was added as sodium selenate for 14 

weeks. Four weeks before necropsy, lipopolysaccharide (LPS) time-release pellets (0 or 

0.1μg/g body weight/d) pellets were implanted subcutaneously. At necropsy the bone 

marrow from femur was flushed with saline, labeled with fluorochrome conjugated 

primary antibodies (CD3, B220, CD4, CD31 and LY-C6) and analyzed by flow 

cytometry (FACS). LPS introduced a significant (p<0.05) increase in number of T- helper 

cells (CD4+) (0.534x10
6
/mL vs 0.906x10

6
/mL, B-cells (B220+) (2.53x10

6
/mL vs 

3.35x10
9
/L), and monocytes (CD31neg LY-C6

hig
 ) (0.765 x10

6
/mL vs 0.088 x 10

6
/mL) 

compared to placebo groups. In addition T-cell numbers were greater with increasing Se 

intake (p<0.02).  

Plasma GSH-Px and TAC were significantly increased by Se intake (p<0.001). 

GSH-Px activity increased in mice from 34.1 mU/L in the Se depletion group to 1024.8 

mU/L in the group fed with 4 mg/kg added dietary Se (p < 0.0001). Mice in the 0.2 

mg/kg and 2.0mg/kg diets showed GSH-Px activity of 851.5 mU/L and 909.1 mU/L 

respectively. The TAC was also shown to change from 6.18 mM in mice fed the 

depletion diet to7.62 mM in mice fed diet with 4.0 mg Se added /kg diet (p< 0.001). 

Statistically significant change was also observed in plasma Se by dietary Se 

concentration (p< 0.03).  

In sum, plasma Se and GSH-Px activities increased with added dietary Se. The 

GSH-Px activity plateaued after 0.2 mg added Se/kg diet and looked unlikely to increase 

further with any increase in the concentration of dietary Se. The increased GSH-Px 

activity by dietary Se was expected to down-regulate inflammation. However, the 

differential WBC count increased for mice fed 2 mg/kg and 4 mg kg diets, even though 
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the total white blood cells showed no significant difference among the groups. This could 

be as a result of the additional inflammatory effect of very high Se intake.  The bone 

marrow immune cells such as monocytes, Th-cell and B-cell also increased in numbers in 

response to the low grade inflammatory model used in our study despite the difference in 

Se intake. The difference in monocyte count between peripheral and bone marrow was 

unclear but may be that all cells produced in bone marrow may not be released 

peripherally as expected. Our study also observed null difference in the inflammatory 

markers assessed due to either Se or LPS. We found significant negative correlation 

between TAC and level of IL-12 and IFNγ in the plasma (r = - 0.36 and r = - 0.31) 

respectively. The relatively higher level of TAC in all groups compared to Se deficient 

group might have contributed to down- regulating the production of these cytokines in 

addition to the low grade of inflammation used in our study. Overall, Se selectively 

affected T-cells even in this low grade inflammation model. The observed difference in 

the subset of leukocytes in bone marrow cells by LPS was expected although the 

difference may not be as high as with a high grade inflammation model with increased 

production of cytokines.   

Conclusion  

The hypothesis that Se can affect the immune system is supported by a consistent 

body of scientific evidence. Surprisingly though, limited knowledge exists on the use of 

Se as an immune enhancing therapy clinically. The possibility that Se supplementation 

can boost immunity warrants further well-planned clinical trials.  
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Research Needs 

Well-designed experimental research in animal models is necessary to establish the 

active metabolite of Se that is important for immune response. Some of the suggested 

areas of research are mentioned below.  

 Experimental Studies: Randomized experimental studies using defined Se-

compounds with specific endpoints in the immune system are warranted. This 

may generate evidence for the type of Se compound which is more effective in 

boosting the immune system. 

 Chemical forms of Se Compounds: Methods are needed to characterize the 

chemical forms of Se present in biological tissues. These would help to formulate 

the appropriate chemical form of Se for supplementation for clinical trials to 

enhance the immune system.  

 Doses of Se:  A better understanding is required to identify the doses of different 

chemical forms of Se for effective immune enhancement. The studies should also 

determine the minimal effective dose and assess safety. 
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