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Abstract: Alteration in ecosystem processes following biological invasion is likely to 

occur if the invasive plant species exhibit different physical and physiological traits than 

those of the native species. The alteration of soil chemical properties has enormous 

potential for the modification of other plant species and microbial communities. 

Therefore, understanding plant-soil feedbacks by biological invasion may be a critical 

aspect of the restoration of native ecosystems. Two non-native plant species, Tamarix sp. 

(saltcedar) and Lespedeza cuneata (sericea lespedeza) were selected for the study. I 

conducted separate field and greenhouse studies to assess potential plant-soil feedbacks 

for each species. In field study, soil samples were collected 1) beneath non-native plants 

in highly invaded areas; 2) from areas where non-native plants have been removed 

(restoration areas); and 3) from adjacent native prairie. Soil was processed for abiotic 

(pH, N, P, K) and biotic (microbial communities) properties. My greenhouse study 

assessed plant-soil feedbacks indirectly through biomass production of different native 

and non-native plant species grown in soil collected from the same three sites as field 

study. Plants were grown for 16 weeks, at which time biomass production was 

determined. Percent root colonization by arbuscular mycorrhizal (AM) fungi was 

determined microscopically. Greater soil salinity, pH, nitrate-nitrogen, potassium, and 

phosphorus and greater soil microbial communities from Tamarix invaded sites were 

observed relative to native prairie sites. Greater nitrate-nitrogen and phosphorus were 

observed in soil from L. cuneata invaded sites compared to soil from native areas. The 

legacy of invasion persisted five years and a year after removal of Tamarix and L. 

cuneata respectively with similar trend in soil abiotic and biotic properties as in invaded 

sites. Both native and non-native plant species produced greater biomass in soils 

collected with a history of biological invasion, as compared to production in soil from 

native sites.  Different plant species showed different percentage of AM fungal root 

colonization when grown in soil with a history of biological invasion compared to soil 

from native areas. 
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CHAPTER I 

ASSESSING THE SPATIAL VARIABILITY OF SOIL ABIOTIC AND BIOTIC 

PROPERTIES FOLLOWING SALTCEDAR INVASION 

 

ABSTRACT 

 

Saltcedar (Tamarix sp.), a non-native facultative phreatophyte that increases soil salinity 

has invaded riparian zones of the western United States replacing dominant native tree 

species, particularly cottonwood (Populus sp.) and willow (Salix sp.). Saltcedar have 

been known to increase soil nutrients beneath the canopy. However, research focused on 

understanding the alteration of soil microbial communities following saltcedar invasion is 

scarce. Alteration in soil abiotic and biotic properties may lead to modification of native 

plant community composition. Effects of invasive species on ecosystem processes may 

be dependent on the spatial distribution of the invader. Therefore, a better understanding 

of environmental variables will benefit from spatial studies that take into account the 

footprint of individual invasive plants for successful site-specific restoration efforts. I 

conducted a field study to determine the spatial variability and footprint of saltcedar 

individuals on soil abiotic and biotic properties. I assessed soil salinity, soil nutrients, pH, 

soil microbial abundance, and the herbaceous plant community. To determine the 

footprint of saltcedar, I randomly selected twelve individual trees within the size class of 
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approximately 3 m diameter canopy. For each tree, six consecutive 1 m
2
 plots were 

established along a 6 m transect, starting at the base of the tree and expanding outward 

through dripline of saltcedar to outside the saltcedar canopy. I hypothesized that soil 

salinity and nutrients would be greater beneath the saltcedar canopy compared to areas 

outside the canopy. As a consequence, soil microbial biomass would be lowered. Due to 

the fertilizing effect of saltcedar, I hypothesized greater plant species richness would be 

present beneath the saltcedar canopy relative to areas outside the canopy. My results 

showed greater soil salinity beneath the saltcedar canopy. In fact, salinity was <4mmhos 

cm
-1

, lower than values reported in previous studies. Contrary to my hypotheses, all other 

measured variables were similar either beneath or outside the saltcedar canopy. This 

study indicates the footprint of saltcedar at an individual scale has minimal effects on soil 

abiotic and biotic properties.
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INTRODUCTION 

 

Several mechanisms have been identified by which non-native plants alter the physical, 

chemical, and biological properties of soils (Vitousek et al. 1987, Hobbie 1992, Daehler 

and Strong 1996, DiTomaso 1998, Kourtev et al. 2002, Ehrenfeld 2003). Non-native 

plant species can alter soil abiotic properties of the invaded environment by releasing 

compounds that alter the soil’s suitability for other species of plants (Dukes and Mooney 

2004), resulting in shifts in the plant community composition. For example, invasion by 

the non-native, nitrogen-fixing Myrica faya in Hawaii increases soil nitrogen promoting 

the growth of other introduced plants (Vitousek et al. 1987, Vitousek and Walker 1989, 

Adler et al. 1998). The exotic Mesembryanthemum crystallinum (ice plant) in California 

accumulates salt from throughout the rooting zone and reduces soil fertility (Vivrette and 

Muller 1977). A change in soil structure following invasion by Casuarina equisetifolia 

(Australian pine) has resulted in forests on some of Florida’s formerly treeless coastlines 

with increased erosion rates resulting from exclusion of native soil stabilizers such as 

Uniola paniculata (sea oats), Scaevola plumier (inkberry), and Coccoloba uvifera 

(seagrape) (Schmitz et al. 1997, Schmid et al. 2008).  

Despite the ubiquity of plant-mediated changes in soil physical and chemical properties, 

there has been little research documenting effects on soil biological properties following 

invasions (Vitousek et al. 1987, Kourtev et al 2002, Wolfe and Klironomos 2005, 

Hawkes et al. 2006). Invasion by non-native plant species could initiate a process of 
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changing the structure and function of the soil biota (Pinton et al. 2001, Kourtev et al. 

2002). Soil harbors a wide variety of micro- and macro-organisms such as mycorrhizae, 

nitrogen-fixing bacteria, pathogens, and nematodes.  Invasive plants can alter the soil 

microbial communities through release of root exudates or anti-microbial compounds, 

facilitation of symbiotic relationships between roots and soil microbes, or displacement 

of native plants having unique soil microbial communities (Wolfe and Klironomos 2005).  

Biological invasion can lead to potentially new, species-specific effects on ecosystem 

processes (Vitousek 1990, Levine et al. 2003, Dukes and Mooney 2004). As a 

consequence, effects of invasive species on ecosystem processes may be dependent on 

the spatial distribution of the invader. Therefore, a better understanding of environmental 

variables will benefit from spatial studies that take into account the footprint of individual 

plant species. The alteration of soil chemical properties has enormous potential for the 

modification of other plant species and microbial communities. Spatial heterogeneity of 

soil resources is an important feature of all plant communities, and the scale at which this 

heterogeneity is expressed can have important consequences for both plant community 

structure and ecosystem-level processes (Robertson et al. 1993, Robertson and Gross 

1994). Studies on shrubs have tended to compare soil nutrients under plant canopies with 

those in interspaces (Charley and West 1975, Burke et al. 1989). Differences in soil 

chemistry beneath and between shrubs in dry regions are well documented (Charley and 

West 1975, Charley and West 1977, Burke et al. 1989, Schlesinger et al. 1990, Hook et 

al. 1991), however, descriptions of small-scale heterogeneity of soil associated with plant 

invasions are lacking, yet equally important to analyze the influence of plant cover on 

soil abiotic and biotic properties. Soil chemistry can vary spatially around individual 
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plants (Jackson and Caldwell 1993a, 1993b) with large variations in pH, calcium, 

magnesium, potassium, sodium, clay, and organic matter occurring over relatively short 

distances (Raupach 1951). For example, in upland areas of North Wales, significant 

variations in soil calcium, phosphate, and potassium was found within 60 cm of the 

perennial Trifolium repens plants (Snaydon 1962). Similarly, variability in ammonium, 

nitrate, phosphate, and potassium within a meter of perennial plants, Artemisia tridentata 

and Pseudoroegneria spicata were recorded (Jackson and Caldwell 1993a). Study in New 

South Wales, Australia by Downes and Beckwith (1951) showed that within a distance of 

0.3 m, differences as great as 1 pH unit could occur and that difference determined the 

distribution of plant species with Stuartina sp. and Crassula sp. establishing in soils of 

pH 5.5 and Hordeum leporinum establishing in soils of pH 6. In addition, studies 

suggested that microbial biomass may vary at small (< 1 m) or large (> km) scales (Smith 

et al. 1994, Robertson et al. 1997).  

Alteration in ecosystem processes following biological invasion is likely to occur if the 

invasive plant species exhibit different physical and physiological traits than those of the 

native species. Saltcedar (Tamarix sp.) is a non-native facultative phreatophyte with an 

ability to exploit deep water tables and access water from either groundwater or vadose 

zone water (Brotherson and Field 1987, Busch and Smith 1995, Nippert et al. 2010). 

Saltcedar has invaded riparian zones of the western United States and northwestern 

Mexico replacing dominant native tree species, particularly Populus sp. (cottonwood) and 

Salix sp. (willow) (Frasier and Johnsen 1991, Glenn and Nagler 2005). Saltcedar, native 

to Eurasia (southern Europe, northern Africa, and eastern Asia) (Frasier and Johnsen 

1991) was introduced to the United States during the 1800s for the stabilization of stream 
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banks, to provide windbreaks, and as shade landscaping (Neill 1985). In the United 

States, over 6 million ha of riparian floodplains and wetlands are currently invaded by 

saltcedar (Stenquist 2000, Zavaleta 2000, Gaskin and Schaal 2002, Shafroth and Briggs 

2008). Saltcedar alters a wide range of characteristics within the invaded habitat such as 

native vegetation, wildlife habitat, flooding and erosion patterns, and fire frequency 

(DiTomaso 1998). Common control methods (mechanical, chemical, and biological) to 

reduce populations of saltcedar have been used to meet a wide range of goals, such as 

restoring native species in riparian communities, protecting habitat for endangered 

species, or improving stream water efficiency (Shafroth et al. 2005).  

Removal of invasive plants is the objective of restoration efforts. However, removal 

alone does not restore native ecosystem properties (Harms and Hiebert 2006). Thorough 

site evaluations are necessary for the appropriate and cost-effective restoration program 

(Shafroth et al. 2005). Restoration can be challenging due to site differences (Sudbrock 

1993, Shafroth et al. 2008). Therefore, understanding site-specific and spatial scale effect 

on abiotic and biotic variables is important for effective restoration efforts (Shafroth et al. 

2008).  

Saltcedar accumulates salts from the soil and exudes them through glands on both the 

adaxial and abaxial surfaces of leaves as well as on young stem surfaces (Decker 1961, 

Wilkinson 1966, Thomson et al. 1969, Berry 1970, Neill 1985, Sookbirsingh et al. 2010). 

Previous studies show that salt exudates from saltcedar cause salinization of the soil 

beneath their canopy relative to areas outside their canopy (Brotherson and Field 1987, 

Lesica and DeLuca 2004, Ladenburger et al. 2006, Yin et al. 2010). Lesica and DeLuca 

(2004) compared soil salinity beneath saltcedar to that of native vegetation. Paired 
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samples were taken within 30 m of each other. They found more than two times the 

salinity under saltcedar canopy relative to native vegetation. Ladenburger et al. (2006) 

compared soil salinity under the saltcedar canopy, interspaces of saltcedar, and under the 

canopy of native species. In addition, previous studies showed greater inorganic nitrogen 

and phosphate under saltcedar canopy compared to outside canopy thus showing 

fertilizing effect of saltcedar (Lesica and DeLuca 2004, Ladenburger et al. 2006, Yin et 

al. 2010). However, characterizing the footprint of saltcedar at an individual plant scale 

on soil abiotic and biotic properties is needed to better inform site-specific restoration 

efforts.  

The objectives of the study were to determine the spatial variability and footprint of 

saltcedar individuals on soil abiotic and biotic properties. Specifically, I quantified 1) soil 

salinity measured in terms of electrical conductivity (hereafter referred to as EC), 2) soil 

nutrients, 3) soil pH, 4) soil microbial biomass, and 5) herbaceous plant communities 

from 6 plots established beneath the saltcedar canopy and extended outside the canopy. 

Based on previous studies that have reported saltcedar alters soil chemistry, I 

hypothesized that soil under saltcedar canopy would have greater soil EC and soil 

nutrients as compared to soils outside the canopy. In addition, I hypothesized that 

herbaceous plant species richness under the saltcedar canopy would be greater compared 

to areas outside the canopy due to the fertilizing effect of saltcedar. I hypothesized that 

biomass of different major functional groups of soil microbial communities would be 

reduced under the saltcedar canopy due to salt excretions and nutrient accumulation 

compared to areas outside the canopy.  
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MATERIALS AND METHODS 

 

 

The study site was located adjacent to the Cimarron River, 17 km south of Ashland, 

Kansas, USA (37°11’19”N, 99°45’55”W). Saltcedar first invaded the site after a flood in 

1939 (Nippert et al. 2010). The site is situated over a shallow unconfined aquifer that is 

connected to the river (Nippert et al. 2010). The soil is coarse-textured. Common 

herbaceous species at the site are Bouteloua dactyloides (Nutt.) J.T. Columbus 

(buffalograss), Panicum virgatum L. (switchgrass), Schizachyrium scoparium (Michx.) 

Nash (little bluestem), Sorghastrum nutans (L.) Nash (indiangrass), Sporobolus asper 

(Michx.) Kunth (tall dropseed), and Sporobolus cryptandrus (Torr.) A. Gray (sand 

dropseed). Nomenclature of all species was based on USDA Plant Database (2012).  

I randomly selected twelve individual saltcedar trees that were approximately the same 

size (~3 m diameter canopy) and were isolated from the canopy of surrounding trees to 

avoid any influence from neighboring trees. For each individual tree, six contiguous 1 m
2
 

plots were placed along a 6 m long transect at every meter, from the base of the tree and 

extending outward through the dripline of the saltcedar into the area outside saltcedar 

canopy. To prevent potential interference from adjacent trees, transects were extended 

from the base of each tree in only one direction. Plant species richness was assessed in 

each plot and canopy cover of all plant species was determined using the modified 

Daubenmire 7 cover classes: 1 = < 1% cover, 2 = 1%-5%, 3 =6%-25%, 4 = 26%-50%, 5
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 = 51%-75%, 6 = 76%-95%, 7 = 96%-100%. Midpoints of cover classes were used to 

calculate Shannon species diversity (Magurran 1988, Hickman and Derner 2007). Plants 

were identified to species (if possible) or genus. All plant species were kept as voucher 

specimens at the Oklahoma State University, Department of Natural Resource Ecology 

and Management, Stillwater, Oklahoma.  

Soil samples were collected from 10 sampling points at 0-5 cm depth using a 15.70 cm
3
 

soil corer within the same plots as used for the vegetation study and were composited into 

one sample from each plot. A 50 g subsample of soil from each plot was analyzed 

separately for the determination of soil pH, salinity (in terms of electrical conductivity), 

nutrients (nitrate-nitrogen, ammonium-nitrogen, plant-available phosphorus, and 

potassium), and soil microbial biomass of major functional groups (total gram positive 

bacteria, total gram negative bacteria, arbuscular mycorrhizal (AM) fungi, and 

saprophytic fungi). Soils were dried at room temperature and sieved through a 2 mm 

sieve before testing pH, EC, and nutrients.  

Soil EC and pH were determined through 1:1 soil to water extraction method (Rhoades 

1982) using an Accumet AB 30 conductivity meter and Titralab 865, respectively. For 

nitrate-nitrogen and ammonium-nitrogen, soil samples were extracted with 1M KCl 

solution and analyzed using a LACHAT Quickchem 8000 Flow Injection Autoanalyzer 

(LACHAT 2000, Zhang and Kress 2001). Plant-available phosphorus and potassium 

were extracted with Mehlich III solution and analyzed using inductively coupled plasma 

emission spectroscopy (ICP) (Zhang and Kress 2001).   



10 
 

Based on results of soil EC, soil pH, and nutrient data that showed no significant 

differences among plots outside the canopy, soil microbial community composition was 

determined only for plots located at 1 m, 2 m, and 6 m along each transect. Soil microbial 

biomass was determined through phospholipid fatty acid analysis (PLFA) (Kourtev et al. 

2002, Batten et al. 2006, White and Rice 2009). Certain groups of microorganisms with 

different signature fatty acids are used to differentiate taxa or estimate bacterial or fungal 

biomass (Zelles 1999). Unknown fatty acids can be useful in estimating total soil 

microbial biomass. Microbial lipids were extracted from 5 g freeze-dried soil with a 

solvent system of methanol, chloroform, and a phosphate buffer. The soil-solvent mixture 

was separated by centrifugation and the supernatant was decanted. The centrifugation 

was repeated with the addition of 1:2 (v/v) chloroform-methanol and the supernatant was 

collected. Phosphate buffer was then added and the mixture separated overnight. The 

chloroform layer containing the lipids after phase separation was recovered and reduced 

by nitrogen flow at 60°C. Total extracted lipids were separated into neutral, glyco-, and 

polar lipids with chloroform, acetone, and methanol through silic acid chromatography. 

Phospholipid fatty acid (PLFA) analysis was performed using an Agilent 7890A gas 

chromatograph with an Agilent 5975C series mass selective detector.  

Fatty acid nomenclature used was that described by Frostegård et al. (1993): total number 

of carbon atoms: number of double bonds, followed by the position (ω) of the double 

bond from the methyl end of the molecule. Cis and trans isomers were indicated by c, 

and t, respectively. Anteiso- and isobranching were designated by the prefix a or i. Cy 

indicated cyclopropane fatty acids. The fatty acids i15:0, a15:0, i16:0, i17:0 were chosen 

to represent gram positive bacteria; 3-OH 14:0, 16:1ω7, cy17:0, 2-OH 16:0, 18:1ω9c, 
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cy19:0 for gram negative bacteria; 16:1ω5c for AM fungi, 18:2ω9,12c, 18:1ω9c for 

saprophytic fungi; 14:0, 15:0, 16:0, 17:0, 18:0, 20:0 for non-specific microbes (McKinley 

et al. 2005). The abundance of individual fatty acid was expressed as nmol g
-1

 dry soil.   

Statistical analysis Soil characteristics (EC, pH, ammonium-nitrogen, nitrate-nitrogen, 

phosphorus, potassium, and biomass of major functional groups within soil microbial 

communities) and plant species richness and species diversity were analyzed with one-

way ANOVA using General Linear Models (GLM) between each 1 m
2  

plot. Mean 

differences of soil characteristics were compared using least square differences (LSD) 

grouping. Mean soil characteristic values were presented for each plot. All data were 

analyzed using SAS for Windows, version 9.2 (SAS Institute Inc., Cary, NC, USA). A 

significance level of 0.05 was used for all statistical tests. 
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RESULTS 

 

 

Vegetation study The total herbaceous plant species richness and species diversity were 

similar in all plots either under the saltcedar canopy or outside the canopy with no 

statistical difference between plots (Fig. 1-1 and Fig. 1-2). The mean plant species 

richness and species diversity in all plots were approximately 6 and 1.2 per m
2
, 

respectively. Similar plant species were found in all the plots (Table 1-1). 

Soil properties Greater soil EC (approximately 590 µmhos per cm = 0.590 mmhos cm
-1

) 

was observed in the plot located under the saltcedar canopy compared to plots outside the 

canopy (Fig. 1-3). Soil pH was at around the neutral range (i.e., 7) in all plots with no 

statistical differences between plots (Fig. 1-4). ANOVA results showed that all measured 

soil nutrients (nitrate-nitrogen, ammonium-nitrogen, plant-available phosphorus, and 

potassium) were similar in all plots located either under the saltcedar canopy or outside 

the canopy (Figs. 1-5, 1-6, 1-7, 1-8). The results showed no alteration in biomass of any 

major functional group of the soil microbial communities (total gram positive bacteria, 

total gram negative bacteria, AM fungi, and saprophytic fungi) in plots under or outside 

the saltcedar canopy (Fig. 1-9).  
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DISCUSSION 

 

 

The footprint of saltcedar at the individual tree scale was not evident in soil chemical or 

biological properties with the exception of soil salinity. In the study area, no differences 

in any soil chemical or biological properties could be due to the density of saltcedar trees. 

EC was higher only directly beneath the saltcedar canopy, as compared to all plots 

beyond the canopy. 

Similar to previous studies (Lesica and DeLuca 2004, Ladenburger et al. 2006), the 

footprints of individual saltcedar on EC is greater beneath the canopy compared to areas 

beyond the canopy. However, the soil salinity level in this study was lower than those 

documented in other riparian sites (e.g., 12.8 mmhos cm
-1

 along the Colorado River) 

(Busch and Smith 1995). Therefore, results from my study indicate that saltcedar trees of 

approximately the same size (~3 m diameter canopy) increase soil salinity directly 

beneath the canopy, but do not alter soil salinity beyond the canopy. Importantly, soil 

salinity was not increased to a level (> 4 mmhos cm
-1

) that negatively affected plant 

species richness and diversity (US Salinity Laboratory Staff 1954, Lesica and DeLuca 

2004). The lower salt accumulation in this study (< 4 mmhos cm
-1

) beneath saltcedar 

probably reflects the relatively coarse texture of the soils allowing less accumulation of 

salts. Soil EC is negatively correlated with percent sand and positively correlated with 

percent clay and silt (Shafroth et al. 1998, Glenn et al. 2012).  
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Texture is strongly correlated with soil’s ability to adsorb or desorb chemical ions 

(exchange capacity) (Miller and Donahue 1995). Coarse-textured soils with their 

substantially larger particle size have less total surface area, and therefore fewer 

exchange sites for excess sodium binding (Miller and Donahue 1995, Sumner et al. 

1998). My results indicated similar soil pH and nutrients among plots beneath and 

beyond the saltcedar canopy. Thus, my results contradict previous studies with higher 

inorganic nitrogen and phosphorus and lower soil pH beneath saltcedar canopy as 

compared to areas beyond the canopy (Lesica and DeLuca 2004, Ladenburger et al. 2006, 

Yin et al. 2010). Soil texture is among the most important physical properties that 

influence many biogeochemical processes due to the ability of soils to retain water and 

nutrients (Jenny 1980, Schoenholtz et al. 2000). Fine-textured soils are positively 

associated water and nutrients holding capacities relative to coarse-textured soils (Silver 

et al. 2000, Sher and Marshall 2003, Brady and Weil 2008). In addition, coarse-textured 

soils have lower ability to hold water and nutrients due to large pore spaces between 

particles and low surface area relative to fine-textured soils (Brady and Weil 2008). Thus, 

the similarity in soil pH and nutrients among all plots might be due to similar soil texture 

(i.e., coarse-textured) in all plots.   

Excessive soil salinity is common in saltcedar invaded areas and might only be suitable 

for the growth of salt-tolerant plant species (Brotherson and Field 1987). However, in my 

study site, native plant species reestablishment may be less problematic after saltcedar 

control and removal due to lower soil EC (< 4 mmhos cm
-1

) compared to other sites in 

southwestern United States (12.8 mmhos cm
-1

 along the Colorado River) (Busch and 

Smith 1995). Lesica and DeLuca (2004) found that soils beneath the canopy of saltcedar 
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with EC <4 mmhos cm
-1

 increased the growth of native grass Agropyron smithii. 

Therefore, lower soil EC among all the plots under or outside the saltcedar canopy could 

be a possible reason for the similar plant species richness and species diversity in my 

study. My vegetation study therefore, agreed with previous studies that soil EC              

<4 mmhos cm
-1

 was not high enough to prevent vegetation growth.  

Restoration of saltcedar invaded areas need to ensure that plants other than saltcedar 

occupy after control methods have been implemented. Invasion by other non-native plant 

species following invasion by invasive species has been observed in various ecosystems 

(Adler et al. 1998, Yelenik et al. 2004). Undesirable plants, such as Lepidium latifolia 

(pepperweed), Kochia scoparia (kochia), Elaeagnus angustifolia (Russian-olive), or 

Centaurea spp. (knapweed) might recolonize the area after saltcedar eradication (Weeks 

et al. 1987, Shafroth et al. 2005). Revegetation following saltcedar removal is required 

for restoration of the invaded area. However, the presence of native plant species in the 

current study indicated that abiotic and biotic properties are still favorable for their 

growth, suggesting natural revegetation. My results therefore agree with Bay and Sher 

(2008) that native plant species may reestablish in saltcedar restoration sites over time 

without any revegetation efforts. Therefore, it is likely that saltcedar control in the current 

study area might not require a revegetation effort to encourage the return of native 

species. Dense canopy is associated with lower understory plant species richness in many 

riparian areas (Pabst and Spies 1998, Zimmerman et al. 1999). In my study, no reduction 

in herbaceous understory species was found which could be due to the scattered 

distribution and the small size class (i.e., ~ 3 m canopy) selected for my study.  
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Invasive plant species may bring about alterations in composition and function of soil 

microbial communities (Klironomos 2002, Kourtev et al. 2002, Ehrenfeld 2004, Reinhart 

and Callaway 2006). Despite the importance of soil microbes for ecosystem processes, 

very few studies have been published to date on saltcedar and soil microbes (Beauchamp 

et al. 2005, Meinhardt and Gehring 2012). Soil microbes may vary spatially (Smith et al. 

1994, Robertson et al. 1997, Aguilera et al. 1999). For example, Yannarell et al. (2011) 

provided evidence that invasive Lespedeza cuneata alters soil bacterial communities at 

the scale of sites while the fungal communities are altered at the individual plant scale. In 

my study, the similar abundance of major functional groups within the soil microbial 

communities could be due to similar soil pH, nutrients, and vegetation in all plots as 

physical, chemical, and biological factors all affect soil microbial communities (Grayston 

et al. 1998, Buyer et al. 1999, Gelsomino et al. 1999, Buyer et al. 2002, Cavigelli et al. 

2005). Invasive plant species are known to alter the community composition of 

arbuscular mycorrhizal (AM) fungi (Mummey and Rillig 2006), reduce the viability and 

infectivity of AM fungal spores (Roberts and Anderson 2001, Callaway et al. 2008), or 

reduce the AM fungal root colonization of native plant species (Roberts and Anderson 

2001, Stinson et al. 2006). Saltcedar is non-mycotrophic (Beauchamp et al. 2005) thus, 

dominance by such species can change the composition and function of mycorrhizal 

communities (Stinson et al. 2006, Wolfe et al. 2008). Saltcedar reduced ectomycorrhizal 

(EM) and AM fungal colonization of native cottonwoods in the presence of saltcedar in a 

study conducted in Arizona, US (Meinhardt and Gehring 2012). However, Yang et al. 

(2008) showed greater AM fungal infectivity in saltcedar in Northwest China. Hence, the 

alteration in AM fungal communities as mediated by saltcedar has not been found to be 
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consistent across sites. In my study, no footprint of saltcedar on biomass of major 

functional groups of soil microbial communities doesn’t preclude that saltcedar has no 

effect on composition or function of soil microbes. Diversity and composition of soil 

microbial communities in saltcedar invaded areas need to be assessed to detect any 

alteration.   

This study provided key details associated with restoration of saltcedar invaded areas 

including both the soil abiotic and biotic properties that are central for successful 

restoration. Soil salinity in this site seems less problematic than other riparian sites in 

southwestern United States (> 4 mmhos cm
-1

) for restoration efforts. My results 

suggested that if saltcedar at the size of about 3 m canopy is removed, the change in EC 

will not negatively affect the established herbaceous vegetation. These findings implied 

that the consequences for ecosystem properties of saltcedar invasion will largely depend 

on the site and abundance of saltcedar. Based on the parameters assessed in this study, I 

suggested that saltcedar removal in the current study site may restore native riparian 

properties. It is important to consider saltcedar density, native species presence, and soil 

chemical and biological properties for the successful restoration of saltcedar invaded 

areas.  
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TABLES 
Table 1-1 Plant species in different plots (Q1-Q6) with their origin. 

Plant Species Origin Q1 Q2 Q3 Q4 Q5 Q6 

Eriogonum annuum Native X X X X X X 

Astragalus sp. Native - - - - X X 

Cynodon dactylon Non-native X - - X X X 

Solanum rostratum Native X X X X X X 

Bouteloua dactyloides Native X X X X X X 

Conyza canadensis Native X X X X - X 

Prunus angustifolia Native X X X X X X 

Commelina sp.  Native X X - - - - 

Physalis pumila Native - - X - - - 

Aristida purpurea Native - - - - - X 

Calamovilfa gigantea Native X X X X X X 

Sorghastrum nutans Native X X X X X X 

Vernonia sp.  Native - X X X X - 

Bromus japonicus Non-native X X X X X X 

Poa pratensis Non-native - - X - X X 

Ambrosia bidentata Native - - X - X X 

Amorpha canescens Native X X X X X X 

Schizachyrium scoparium Native X X X X X X 

Coreopsis tinctoria Native - X X X X - 

Plantago sp. Native X - X X X X 

Distichlis spicata Native - - - - - X 

Sporobolus cryptandrus Native X X X X X X 

Carex sp. Native X X X X - - 
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Plant Species Origin Q1 Q2 Q3 Q4 Q5 Q6 

        

Bothriochloa laguroides Non-native X - - - - - 

Solanum elaeagnifolium Native - - - - - X 

Strophostyles leiosperma Native - X X X - X 

Bromus inermis Non-native X X X X X X 

Panicum virgatum Native X X X X X X 

Sporobolus asper Native X X X X X X 

Ambrosia psilostachya Native X X X X X X 

Artemisia ludoviciana Native X - X X - - 

Panicum capillare Native X X X X X X 

Unknown legume (UK4-I) 

 

X X X X X X 

Uknown brome (UK-II) 

 

X X X X X X 
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FIGURES 

 

 

 

Figure 1-1 Plant species richness (number of species/m
2
) with mean values and standard 

errors of 6 plots located at 1 m intervals starting from base of saltcedar trees near 

Ashland, Kansas, USA. Bars with the same letter are not statistically different (P≤0.05). 
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Figure 1-2  Shannon species diversity (H`/m
2
) with mean values and standard errors of 6 

plots located at 1 m intervals starting from base of saltcedar trees near Ashland, Kansas, 

USA. Bars with the same letter are not statistically different (P≤0.05). 
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Figure 1-3 Soil electrical conductivity (mmhos/cm) with mean values and standard errors 

of 6 plots located at 1 m intervals starting from base of saltcedar trees near Ashland, 

Kansas, USA. Bars with the same letter are not statistically different (P≤0.05). 
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Figure 1-4 Soil pH with mean values and standard errors of 6 plots located at 1 m 

intervals starting from base of saltcedar trees near Ashland, Kansas, USA. Bars with the 

same letter are not statistically different (P≤0.05). 
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Figure 1-5 Nitrate-nitrogen concentration (ppm) with mean values and standard errors of 

6 plots located at 1 m intervals starting from base of saltcedar trees near Ashland, Kansas, 

USA. Bars with the same letter are not statistically different (P≤0.05). 
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Figure 1-6 Ammonium-nitrogen concentration (ppm) with mean values and standard 

errors of 6 plots located at 1 m intervals starting from base of saltcedar trees near 

Ashland, Kansas, USA. Bars with the same letter are not statistically different (P≤0.05). 
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Figure 1-7 Plant-available phosphorus concentration (ppm) with mean values and 

standard errors of 6 plots located at 1 m intervals starting from base of saltcedar trees 

near Ashland, Kansas, USA. Bars with the same letter are not statistically different 

(P≤0.05).  
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Figure 1-8 Potassium concentration (ppm) with mean values and standard errors of 6 

plots located at 1 m intervals starting from base of saltcedar trees near Ashland, Kansas, 

USA. Bars with the same letter are not statistically different (P≤0.05). 
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Figure 1-9 Soil microbial biomass (nmol/g) of different communities (total gram positive 

bacteria, total gram negative bacteria, arbuscular mycorrhizal fungi, and saprophytic 

fungi) with mean values and standard errors of 3 plots located at 1 m (no filled bar), 2 m 

(light gray bar), and 6 m (dark bar) intervals starting from base of saltcedar trees near 

Ashland, Kansas, USA. Bars with the same letter within growth forms are not statistically 

different (P≤0.05). 
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CHAPTER II 

ASSESSING PLANT-SOIL FEEDBACKS FOLLOWING SALTCEDAR 

(TAMARIX SP.) INVASION 

 

ABSTRACT 

 

Saltcedar (Tamarix sp.) is a non-native facultative phreatophyte which has escaped 

intentional plantings and invaded river systems throughout southwestern USA, altering 

wildlife habitat, flooding patterns, and fire frequency. However, previous studies assessed 

effects of saltcedar focus on aboveground parameters, with little attention given to the 

belowground microbial communities. Understanding plant-soil feedbacks by saltcedar 

invasion may be a critical aspect of the restoration of native ecosystems. I conducted field 

and greenhouse studies to assess potential plant-soil feedbacks resulting from saltcedar 

invasion. In field study, soil samples were collected 1) beneath saltcedar trees in highly 

invaded areas; 2) from areas where saltcedar trees have been mechanically and 

chemically removed (restoration areas); and 3) from adjacent native prairie. Soil was 

processed for abiotic (pH, N, P, K, organic matter, and texture) and biotic (microbial 

communities) properties. Greenhouse study assessed plant-soil feedbacks indirectly 

through biomass production of six native and four non-native plant species grown in soil 

collected from the same three sites as field study. Plants were grown for 16 weeks, at 

which time biomass production was determined. Percent root colonization by arbuscular
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 mycorrhizal (AM) fungi was determined microscopically. I expected higher soil 

nutrients and lowered soil microbial composition in saltcedar invaded and saltcedar 

restoration sites due to fertilizing effect of saltcedar.  Additionally, all plant species 

would have greater biomass when grown in soil from saltcedar invaded and saltcedar 

restoration sites compared to soil from native sites. Greater soil salinity, pH, nitrate-

nitrogen, potassium, and phosphorus in soil and alteration in soil microbial communities 

from saltcedar invaded sites were observed relative to native prairie sites. The legacy of 

invasion persisted five years after removal of saltcedar with similar trend in soil abiotic 

and biotic properties as in saltcedar invaded sites. Both native and non-native plant 

species produced greater biomass in soils collected from saltcedar invaded or saltcedar 

restoration sites relative to production in soil from native sites.  However, all plant 

species (except Andropogoon gerardii, Sorghastrum nutans, and Spartina pectinata) 

grown in soil from saltcedar invaded or saltcedar restoration sites were less colonized by 

AM fungi than plants grown in soil from native prairie areas.
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INTRODUCTION 

 

 

Invading plant species can impose undesirable alterations to the structure and functioning 

of ecosystems and native biological diversity, therefore costing millions of dollars 

through direct losses or control efforts (Vitousek et al. 1997, Pimentel et al. 2000). Most 

biological invasion research has focused on aboveground features though invasion affects 

both above- and belowground properties (Bardgett and Wardle 2010, Inderjit and van der 

Putten 2010). Invasion of aboveground ecosystem components can affect belowground 

ecosystem components, and vice versa (Stinson et al. 2006, Wolfe et al. 2008, Bardgett 

and Wardle 2010, Inderjit and van der Putten 2010). For example, invasion by non-native 

Halogeton glomeratus causes salinization of the soil thus inhibiting the growth of native 

Ceratoides lanata in western North America (Harper et al. 1996, Kitchen and Jorgensen 

2001). In addition, the non-native grass, Bothriochloa bladhii in North America disrupted 

mutualistic associations between native grasses and arbuscular mycorrhizal (AM) fungi 

(Wilson et al. 2012). The process in which plants alter biotic and abiotic soil environment 

resulting in altered plant growth are conceptualized as plant-soil feedbacks (Bever et al. 

1997, Ehrenfeld et al. 2005). Plant-soil feedbacks have been proposed as important 

factors explaining biological invasion (Reinhart and Callway 2006, Kulmatiski et al. 

2008).  Positive plant-soil feedbacks develop if soil properties are altered following 

invasion which promote growth of the non-native plant, while negative plant-soil 
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feedbacks develop if growth of the non-native plant is reduced (Bever et al. 1997, Bever 

2003, Ehrenfeld et al. 2005). Callaway et al. (2004) provide evidence of positive plant-

soil feedbacks for non-native Centaurea maculosa, as they detected increased plant 

growth of the non-native when grown in soils from its invaded range in North America. 

Riparian areas, usually forming small parts of the landscape, enhance regional 

biodiversity (Sabo et al. 2005), and have been invaded by non-native species worldwide 

(Stohlgren et al. 1998). Tamarix spp. (Saltcedar) and Elaeagnus angustifolia (Russian 

olive), non-native riparian shrubs, have invaded and formed dense stands in many areas 

of southwestern US floodplains, altering the native plant communities (Frasier and 

Johnsen 1991, Friedman et al. 2005). Different control methods are in practice to remove 

saltcedar and Russian olive to restore these riparian areas (Katz and Shafroth 2003, 

Shafroth et al. 2005, Reynolds and Cooper 2011). However, restoration of invaded 

communities requires removal of the invader followed by subsequent active 

reestablishment of the native community (Kardol and Wardle 2010). Earlier restoration 

projects were usually focused on removal of non-native plants and their effects on native 

plant species and soil nutrients (Maron and Connors 1996, Pickart et al. 1998, Maron and 

Jefferies 2001). The effects of removal of invasive plant species on belowground 

properties has only occasionally been explored (Peltzer et al. 2009). Recently, studies 

recognized the importance of plant-soil feedbacks for ecosystem restoration (Suding et al. 

2004, Eviner and Hawkes 2008). Soil legacies following the removal of woody plant 

species may be persistent due to accumulation of nutrients around the plants (Schade and 

Hobbie 2005). High levels of nutrients in the soils might cause problems for native plant 

species, which are not able to grow under such nutrient enriched conditions (Huenneke et 
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al. 1990, Maron and Jefferies 1999). Greater soil nutrients may remain for several years 

and alter vegetation composition after non-native plants have been removed (Hughes and 

Denslow 2005, Marchante et al. 2009). Therefore, this legacy can create obstacles for 

restoration by facilitating re-invasion by the same or other non-native species, or prevent 

recovery of native plants (Vinton and Burke 1995, Maron and Connors 1996, Pickart et 

al. 1998, Maron and Jefferies 1999, Vinton and Goergen 2006). Therefore, an integrated 

understanding of plant-soil feedback is necessary for the restoration of invaded 

communities as invasive organisms may alter both above- and belowground ecosystem 

properties.  

Soil harbors a wide variety of micro- and macro-organisms. Invasive plants may alter soil 

microbial communities through root exudation, release of anti-microbial compounds, 

facilitation of symbiotic relationships between roots and soil microbes, and displacement 

of native plants having unique soil microbial communities (Klironomos 2002, Kourtev et 

al. 2002, Wolfe and Klironomos 2005, Reinhart and Callaway 2006). The common soil 

organisms that interact with plants are mycorrhizae, nitrogen-fixing bacteria, pathogens, 

and nematodes. Arbuscular mycorrhizal (AM) fungi form symbiotic associations with up 

to 80% of vascular plants enhancing their growth and survival (Smith and Read 2008). 

AM fungal hyphae play a pivotal role in the acquisition of mineral nutrients, specifically 

phosphorus and nitrogen, from the soil and their subsequent translocation to the plant 

(George et al. 1995, Hodge et al. 2001). These nutrients are acquired by AM hyphal 

networks (Leake et al. 2004, Selosse et al. 2006). In addition, AM fungi contributes to 

soil stability by the aggregation of soil particles, provides resistance to stress, drought, 

and soil pathogens (Augé 2001, Qiangsheng et al. 2006, Sikes et al. 2009, Wilson et al. 
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2009). Therefore, mycorrhizal mutualisms have effects on both ecosystem processes and 

plant communities, suggesting the potential for plant-soil feedbacks.  

Saltcedar (Tamarix sp.) is a non-native facultative phreatophyte (Brotherson and Field 

1987, Busch and Smith 1995) that has subsequently escaped intentional plantings and 

invaded river systems throughout southwestern USA, replacing native plant species 

(cottonwood (Populus sp.) and willow (Salix sp.)), altering wildlife habitat, flooding 

patterns, and fire frequency (Frasier and Johnsen 1991, DiTomaso 1998, Glenn and 

Nagler 2005). In the United States, over 6 million ha of riparian floodplains and wetlands 

have been invaded by saltcedar (Stenquist 2000, Zavaleta 2000, Gaskin and Schaal 2002, 

Shafroth and Briggs 2008). Saltcedar can tolerate a variety of environments ranging from 

desert to riparian areas (Horton et al. 2001, Yin et al. 2010). Therefore, saltcedar is 

known to be more tolerant of drought and salinity relative to native species such as 

cottonwood (Populus fremontii) and willow (Salix gooddingii) (Cleverly et al. 1997, 

Smith et al. 1998, Horton et al. 2001). Saltcedar has an ability to exploit deep water tables 

due to long tap roots and accesses water from either groundwater or the vadose zone 

(Brotherson and Field 1987, Busch and Smith 1995, Xu and Li 2006, Nippert et al. 2010). 

Saltcedar has the ability to excrete salts from glands on its leaves thus increasing soil 

salinity (Decker 1961, Wilkinson 1966, Thomson et al. 1969, Berry 1970, Neill 1985, 

Sookbirsingh et al. 2010). Studies have shown greater soil salinity under saltcedar canopy 

as compared to areas outside the canopy (Brotherson and Field 1987, Lesica and DeLuca 

2004, Ladenburger et al. 2006, Yin et al. 2010). Saltcedar contributes to greater nitrogen 

inputs into the soil due to greater leaf nitrogen concentrations (Tibbets and Molles 2005, 

Moline and Poff 2008). Saltcedar can grow on a variety of soil textures, from sands to 
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clays (Nagler et al. 2011) and resprouts readily after fires, which can reinforce its 

dominance over time (Busch 1995, Busch and Smith 1995). Mechanical, chemical, 

burning, and biological control methods have been applied to control saltcedar (Hart et al. 

2005, Shafroth and Briggs 2008, O’Meara et al. 2010). However, the legacy effects after 

saltcedar removal may cause problems for restoration of native plant communities. 

Therefore, examining how plant-soil feedbacks interact with saltcedar invasion and 

removal may be an important component for the restoration of saltcedar invaded 

ecosystems.  

My study investigated soil nutrients and major functional groups of the soil microbial 

communities of saltcedar invaded sites, sites following mechanical and chemical removal 

of saltcedar (hereafter referred to as saltcedar restoration sites), and adjacent native 

prairie sites. Field and greenhouse studies were conducted to assess plant-soil feedbacks 

associated with saltcedar invasion. The objectives of the field study were to assess 

potential differences in soil nutrients and biomass of soil microbial communities from 

sites with varying stages of saltcedar invasion (saltcedar invaded, saltcedar restoration, 

and native prairie). In general, I expected higher soil nutrients in saltcedar invaded sites 

due to fertilizing effect of saltcedar.  I hypothesized that soil microbial community 

composition would be lowered in saltcedar invaded sites as earlier studies have shown 

that invasive plant species can change the composition and function of soil microbes. Soil 

legacies may be persistent even after the removal of invasive plant thus, I hypothesized 

soil nutrients and soil microbial community composition would be more similar between 

soil from saltcedar restoration sites and saltcedar invaded sites, than in soils from the 

native prairie.  



44 
 

To assess how soil properties following saltcedar invasion and saltcedar restoration affect 

the growth of different plant species, I conducted a greenhouse experiment. The 

objectives of the greenhouse study were to assess plant-soil feedbacks indirectly through 

biomass production and AM fungal root colonization of six native plant species planted 

into three different soils collected from the same three sites as in the field study. I 

hypothesized plant-soil feedbacks function through reduction in AM fungal root 

colonization and plant growth would be enhanced in soils collected from saltcedar 

invaded and saltcedar restoration sites relative to native areas not invaded by saltcedar 

due to fertilizing effect of saltcedar. Soils experiencing alterations following plant 

invasions may exhibit greater risk of invasion by other non-native species as described by 

the invasional meltdown hypothesis (Simberloff and Von Holle 1999). To determine if 

invasion by saltcedar facilitates the growth of other non-native plant species as described 

by the invasional meltdown hypothesis, I also assessed biomass production and AM 

fungal root colonization of three non-native plant species. Due to the potential soil 

nutrient enrichment by saltcedar, I further hypothesized that both native and non-native 

species would produce greater biomass and exhibit reduced AM fungal root colonization 

in soil collected from saltcedar invaded and saltcedar restoration sites as compared to soil 

from native sites.
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MATERIALS AND METHODS 

 

 

Soil for the field and greenhouse studies were collected from the study site located 

adjacent to the Cimarron River, 17 km south of Ashland, Kansas, USA (37°11’19”N, 

99°45’55”W). Saltcedar, the predominant species in the site, first appeared after a flood 

in 1939 (Nippert et al. 2010). Common herbaceous species in the site are Bouteloua 

dactyloides (Nutt.) J.T. Columbus (buffalograss), Panicum virgatum L. (switchgrass), 

Schizachyrium scoparium (Michx.) Nash (little bluestem), Sorghastrum nutans (L.) Nash 

(indiangrass), Sporobolus asper (Michx.) Kunth (tall dropseed), and Sporobolus 

cryptandrus (Torr.) A. Gray (sand dropseed). Nomenclatures of all species were based on 

the USDA Plant Database (2012). Three replicates of three different soil sources  were 

selected: 1.  Saltcedar invaded “treatment” with no history of attempts to eliminate the 

saltcedar,  2.  Saltcedar restoration “treatment” in which saltcedars were removed through 

a clear cutting and a 1:4 ratio of herbicide (triclopyr) and diesel mix in 2005 

(Communicated by D. Arnold), and 3.  Native areas with no history of saltcedar invasion. 

All sites were located within 2 km of each other.  

Field Study: To examine soil nutrients and soil microbial community composition in 

each of the replicates of each of three different soil sources, I established a total of nine 

transects. Along each 10 m transect, soil was collected from the top 10 cm at 1 m 

intervals and homogenized. Soils were sieved through 2 mm sieve to remove large plant 



46 
 

roots and stones. A 50 g subsample of soil from each of the transects (n=9) were analyzed 

for pH, electrical conductivity, texture, soil nutrients (nitrate-nitrogen, ammonium-

nitrogen, plant-available phosphorus, and potassium), and soil microbial community 

composition. Soil electrical conductivity, pH, texture, and nutrients were tested at the 

Oklahoma State University Soil, Water and Forage Analytical Laboratory. Soil microbial 

community composition was determined using phospholipid fatty acid analysis (PLFA) 

(Kourtev et al. 2002, Batten et al. 2006, White and Rice 2009). Phospolipid fatty acids 

are signature molecules and can serve as an important indicator of microbial biomass. 

Soil samples sieved through a 2 mm sieve were freeze-dried for 8 hours and ground. 

Microbial lipids were extracted from 5 g freeze-dried soil with a solvent system of 

methanol, chloroform, and a phosphate buffer. The soil-solvent mixture was separated by 

centrifugation and the supernatant was decanted. The centrifugation was repeated with 

the addition of 1:2 (v/v) chloroform-methanol and the supernatant was collected. 

Phosphate buffer was then added and the mixture separated overnight. The chloroform 

layer containing the lipids after phase separation was recovered and reduced by nitrogen 

flow at 60°C. Total extracted lipids were separated into neutral, glyco-, and polar lipids 

with chloroform, acetone, and methanol through silic acid chromatography. Phospholipid 

fatty acid (PLFA) analysis was performed using an Agilent 7890A gas chromatograph 

with an Agilent 5975C series mass selective detector.  

Fatty acid nomenclature used was that described by Frostegård et al. (1993): total number 

of carbon atoms: number of double bonds, followed by the position (ω) of the double 

bond from the methyl end of the molecule. Cis and trans isomers were indicated by c, 

and t, respectively. Anteiso- and isobranching were designated by the prefix a or i. Cy 
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indicated cyclopropane fatty acids. The fatty acids i15:0, a15:0, i16:0, i17:0 were selected 

to represent gram positive bacteria; 3-OH 14:0, 16:1ω7, cy17:0, 2-OH 16:0, 18:1ω9c, 

cy19:0 for gram negative bacteria; 16:1ω5c for AM fungi, 18:2ω9,12c, 18:1ω9c for 

saprophytic fungi; 14:0, 15:0, 16:0, 17:0, 18:0, 20:0 for non-specific microbes (McKinley 

et al. 2005). Fatty acids are expressed as nmol g
-1

 dry soil.   

Greenhouse study: I collected soil from the three treatments described in my field study 

(saltcedar invaded, saltcedar restoration, and native prairie), with three replicate sites at 

each treatment. Soil was sieved through a 2 mm sieve and 600 g (dry weight) were placed 

into plastic pots (6 cm diameter X 25 cm deep). Native plant species common in mixed-

grass prairie were selected: Andropogon gerardii Vitman (big bluestem), Panicum 

virgatum L. (switchgrass), Schizachyrium scoparium (Michx.) Nash (little bluestem), 

Sorghastrum nutans (L.) Nash (indiangrass), Spartina pectinata Bosc ex Link (prairie 

cordgrass), and Sporobolus cryptandrus (Torr.) A. Gray (sand dropseed), to examine the 

growth performance as prairie restoration may require replanting with native plant 

species. Non-native plant species commonly invasive into native prairies were also 

selected: Bothriochloa ischaemum (L.) Keng (old world bluestem), Bromus inermis 

Leyss. (smooth brome), Cynodon dactylon (L.) Pers. (bermudagrass), and Lespedeza 

cuneata (Dum. Cours.) G. Don (sericea lespedeza), to examine if one non-native species 

facilitates the invasion by other non-native species as per the invasional meltdown 

hypothesis (Harmoney et al. 2004, Vinton and Goergen 2006, Weir et al. 2009, 

Simberloff and Von Holle 1999). The experimental design included 3 treatments 

(saltcedar invaded, saltcedar restoration, and native prairie) x 3 replicates of each 
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treatment x 10 plant species (6 native and 4 non-native species) x 7 replicate pots per soil 

source for a total of 630 pots.  

Seeds of all plant species were obtained from the Johnston Seed Company, Enid, 

Oklahoma. Seeds were germinated in vermiculite and seedlings at the second leaf stage 

were transplanted into pots filled with soil collected from each site. Pots were arranged in 

a randomized complete block design in a greenhouse maintained at 20-25°C. All pots 

were watered daily. Plants were harvested after 16 weeks. Roots were washed free of 

soil. Shoots and roots were oven-dried at 60ºC for 72 hours to determine shoot, root, and 

total dry weights. To measure the percentage of total root length colonized by AM fungal 

structures, roots of native and non-native plants species grown in soil from different 

treatments (saltcedar invaded, saltcedar restoration, and native prairie) were subsampled, 

stained with trypan blue and examined using a compound microscope. Percent AM 

fungal root colonization followed the magnified gridline intersect method (McGonigle et 

al. 1990).  

Statistical analysis For the field study, soil characteristics (EC, pH, inorganic 

ammonium-nitrogen, nitrate-nitrogen, plant-available phosphorus, potassium, and 

biomass of major soil microbial functional groups) were analyzed with one-way ANOVA 

using General Linear Models (GLM) with soil treatment as single factor. Mean 

differences of soil characteristics were compared using least square differences (LSD) 

grouping. Mean soil characteristic values were presented for each soil sources. All data 

were analyzed using SAS for Windows, version 9.2 (SAS Institute Inc., Cary, NC, USA). 

A significance level of 0.05 was used for all statistical tests. 
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Variables quantified in the greenhouse study (i.e., shoot, root, total biomass, and 

percentage AM fungal root colonization) were analyzed separately for each plant species 

with one-way ANOVA using GLM for soil treatment as fixed factor. For biomass and 

percentage AM fungal root colonization, the statistical differences among soil treatments 

were analyzed using LSD post hoc tests. All data were analyzed using SAS for Windows, 

version 9.2 (SAS Institute Inc., Cary, NC, USA). A significance level of 0.05 was used 

for all statistical tests.  
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RESULTS 

 

 

Field study: Soil abiotic properties have been altered following saltcedar invasion, and 

indicated that the legacy of invasion persisted five years after removal of saltcedar. Soil 

EC and pH were significantly greater in soil from saltcedar invaded sites as compared to 

soil from saltcedar restoration and native sites (Fig. 2-1, Fig. 2-2). The cations, sodium 

and magnesium were greater in saltcedar invaded sites compared to soil from saltcedar 

restoration and native sites (Fig. 2-3, Fig. 2-4). However, calcium was greater in saltcedar 

invaded sites and lower in native sites with intermediate value in soil from saltcedar 

restoration sites (Fig. 2-5). The soil nutrients, inorganic nitrate-nitrogen and potassium, 

were greater in saltcedar invaded and saltcedar restoration sites relative to native prairie 

areas (Fig. 2-6, Fig. 2-7). However, soil inorganic ammonium-nitrogen was not 

significantly different among any soil treatments (0.98-1.47 ppm). Soil inorganic 

phosphorus was significantly greater in saltcedar invaded and saltcedar restoration sites 

relative to native prairie sites (Fig. 2-8). Soil from saltcedar restoration sites had the 

greatest organic matter percent relative to soil from saltcedar invaded and native areas 

(Fig. 2-9). Regarding soil physical properties, the percentage of silt and clay were greater 

in saltcedar invaded and saltcedar restoration sites relative to soil from native areas, while 

a greater percentage of sand was observed in native prairie sites relative to soil from 

saltcedar invaded and saltcedar restoration sites (Fig. 2-10).  



51 
 

The results showed alteration in the biomass of major functional groups of soil microbial 

communities in areas invaded by saltcedar and the legacy persisted after the saltcedar 

removal. There were greater total bacterial, fungal, and total microbial biomass in 

saltcedar invaded and saltcedar restoration sites relative to soil from native sites (Fig. 2-

11). The biomass of major microbial groups, total gram positive bacteria, total gram 

negative bacteria, AM fungi, and saprophytic fungi were greater in soil from saltcedar 

invaded and saltcedar restoration sites relative to native prairie sites according to PLFA 

tests performed (Fig. 2-12).  

Greenhouse Study: I indirectly examined plant-soil feedbacks from the invasion of 

saltcedar and the legacy of the feedbacks five years after removal of saltcedar by growing 

different plant species into soil from saltcedar invaded, saltcedar restoration, and native 

sites. Biomass production of both native and non-native plant species increased when 

grown in soil from saltcedar invaded or saltcedar restoration sites relative to native prairie 

soil areas (Figs. 2-13, 2-14, 2-15). All plant species (except A. gerardii, S. nutans, and S. 

pectinata) grown in soil from saltcedar invaded or saltcedar restoration sites were less 

colonized by AM fungi than plants grown in soil from native prairie areas (Fig. 2-16).  
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DISCUSSION 

 

 

This study demonstrates that saltcedar invasion significantly alters soil abiotic and biotic 

characteristics and the legacy effect of the invasion persists even after the removal of 

saltcedar.  

Soil abiotic and biotic properties 

 

Soil salinity measured in terms of electrical conductivity (EC) was greater in soil invaded 

by saltcedar relative to saltcedar restoration and native prairie sites. Saltcedar may 

contribute to soil salinity by translocating salts from groundwater to surface and also 

from leaf exudates (Smith et al. 1998, Sookbirsingh et al. 2010). Salts are excreted via 

salt glands on leaves of saltcedar and assumed as one of the mechanisms to make soil 

saline thus excluding native cottonwood and willow (Brotherson and Field 1987, 

DiTomaso 1998). Saline soils have a high concentration of soluble salts and an EC 

greater than 4 mmhos cm
-1

 (US Salinity Laboratory Staff 1954). Previous studies have 

concluded that saltcedar does increase soil salinity (Lesica and DeLuca 2004, 

Landenburger et al. 2006, Yin et al. 2010). Similar to earlier studies, my results provide 

evidence that saltcedar is increasing salinity of the soil, however after saltcedar removal, 

the soil salinity is greatly reduced.  
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My results agreed with Carman and Brotherson (1982) that saltcedar invaded sites have 

greater sodium concentration compared to other cations, such as calcium and magnesium. 

The greater soil pH in soil invaded by saltcedar compared to soil from saltcedar 

restoration and native areas could be attributed to greater cations (Miller and Donahue 

1995, Brady and Weil 2008). In agreement with earlier studies that saltcedar increased 

nutrient availability (Lesica and DeLuca 2004, Ladenburger et al. 2006, Yin et al. 2010), 

my results showed greater soil nitrate-nitrogen, plant-available phosphorus, and 

potassium with saltcedar invasion relative to native prairie sites. My results also showed 

that five years after removal of saltcedar, a legacy effect persisted (i.e., soil nutrient 

availability remained high). Previous studies have shown greater nitrogen concentrations 

in saltcedar leaves relative to cottonwood leaves (Tibbets and Molles 2005, Moline and 

Poff 2008). In my study, increased nitrate-nitrogen in saltcedar invaded sites, could 

possibly be due to leaf secretions or leaf fall of saltcedar. In my study, greater potassium 

in soil from both saltcedar invaded and restoration sites relative to soil from native area 

could be due to greater sodium level, as sodium reduces potassium uptake (Grattan and 

Grieve 1999). However, I found no significant differences for ammonium-nitrogen 

among any soil sources, which could be due to increased ammonium uptake by plants 

(Maathuis 2009). My results supported previous studies that saltcedar enhanced 

phosphorus accumulation (Bagstad et al. 2006, Ladenburger et al. 2006, Yin et al. 2010) 

and persisted after the removal of saltcedar thus indicating a legacy effect. Saltcedar 

leaves have been reported to contain polyphenolic compounds (Sultanova et al. 2001) and 

such compounds have the potential to increase phosphorus availability through calcium 

chelation thereby resulting in the solubilization of calcium phosphate (Schlesinger 1997). 
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Similar to earlier studies (Stromberg 1998, Bagstad et al. 2006), greater clay content was 

found in soil from saltcedar invaded areas relative to the native prairie soil which could 

be due to high stem density of saltcedar thus induce settling of clays.  

Non-native plant species that have different functional attributes than native plants can 

influence composition and function of soil microbial communities (Ehrenfeld 2004, 

Reinhart and Callaway 2004, Batten et al. 2006, Hawkes et al. 2006, van der Putten et al. 

2007). In my study, the analysis of PLFA profiles indicated alteration of soil microbial 

communities in soil from saltcedar invaded and saltcedar restoration areas compared to 

soil from native prairie. The total bacterial, fungal, and microbial biomass were greater in 

the saltcedar invaded and saltcedar restoration soil sources compared to soil from native 

prairie which could be due to clay soils that have the capacity to preserve microbial 

biomass (Van Veen et al. 1984, Gregorich et al. 1991). There is evidence of host 

specialization, in which specific microbial communities, species, or strains associate with 

specific plant species (Bever 1994, Bais et al. 2006, Badri et al. 2009). Therefore, plant 

species can affect the composition and activity of the soil microbial community (Belnap 

and Phillips 2001, Kourtev et al. 2002, Carney and Matson 2006). For example, exotic 

grass invasion into a California grassland shifted the composition and abundance of the 

soil microbial community favoring ammonia-oxidizing bacteria (Hawkes et al. 2005). 

Studies showed that the least beneficial AM fungi are the most competitive (Bever 2002, 

Bennett and Bever 2009). Greater AM fungal biomass in my study could be due to AM 

fungal species that are less beneficial to the growth of plants. PLFA profiles only provide 

an index of soil microbial community structure with no information on specific species 
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and function therefore, detailed study on species of different soil microbial communities 

may provide effects of different microbial species on plant growth.  

Difference in AM fungal biomass was observed when saltcedar invaded and saltcedar 

restoration soil sources were compared to soil from native prairie. Alteration in the 

composition and abundance of the AM fungal community observed for several 

introduced plant species have been implicated as an important factor in successful 

invasions, for example, Asian knapweed (Centaurea maculosa) and garlic mustard 

(Alliaria petiolata) in North America (Marler et al. 1999, Roberts and Anderson 2001, 

Klironomos 2002). Hawkes et al. (2006) and Mummey and Rillig (2006) provided further 

evidence for the different composition of AM fungi in roots of native plants and non-

native plants. Therefore, examination on composition of AM fungi in soil from saltcedar 

invaded, saltcedar restoration, and native sites may provide detail information if saltcedar 

has altered the AM fungal species. Increased abundance of saprophytic fungi in the soil 

from saltcedar invaded and saltcedar restoration sites relative to soil from native sites 

might be due to increased decomposition rates of saltcedar (Bailey et al. 2001) thus 

reflecting the greater organic matter content (Hršelova et al. 1999).  

Greenhouse study 

 

Greenhouse data indicated greater biomass production by both native and non-native 

plants when planted into soil collected from saltcedar invaded or saltcedar restoration 

sites compared with soil collected from adjacent native prairie areas. The greater plant 

biomass in soil with a history of saltcedar invasion could possibly be due to higher soil 

nutrient availability as elevated concentrations of nitrate-nitrogen and phosphorus for 
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saltcedar invaded and saltcedar restoration soil sources were observed compared to soil 

from native prairie in my study. Lesica and DeLuca (2004) also found greater growth of 

native grass Agropyron smithii when grown in soils invaded by saltcedar due to greater 

inorganic nitrogen and phosphorus thus suggesting a fertilizing effect of saltcedar. 

Successful growth of non-native plants grown in soil from saltcedar invaded and 

saltcedar restoration sites showed that there would be equal chances for non-native 

species to recolonize as predicted by the invasional meltdown hypothesis (Adler et al. 

1998, Simberloff and Von Holle 1999, Hughes and Denslow 2005). In spite of above- 

and belowground biomass increasing in soil from saltcedar invaded or saltcedar 

restoration areas relative to soil from native prairie, percentage root colonization by AM 

fungi was significantly lowered for most native and non-native plants with the exception 

of native A. gerardii, S. nutans, and S. pectinata. The level of AM fungal colonization of 

plant roots and its effect on plant growth varies depending on the composition and 

abundance of the AM fungal species (van der Heijden et al. 1998) and the available 

nutrients (Sanders and Sheikh 1983, Blanke et al. 2005). A study of mycorrhizal 

responses to nitrogen enrichment with higher soil phosphorus availabilities showed 

decreased AM colonization (Sylvia and Neal 1990). In this 16 week greenhouse study, 

the lower biomass production of plants when grown in soil from native prairie does not 

preclude a mycorrhizal response as mycorrhizal colonization does not always increase 

plant biomass (Johnson et al. 2010). The plant biomass though not enhanced by the 

symbiosis, mycorrhizae can account for phosphorus uptake (Smith et al. 2003), increase 

in tiller production (e.g., Pascopyrum smithii) (Miller et al. 1987), protection from plant 
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pathogens (Fitter and Garbaye 1994, Newsham et al. 1995), or enhance drought tolerance 

(Ruiz-Lozano et al. 2001, Kaya et al. 2003).  

Conclusion 

 

In summary, saltcedar invasion had important consequences belowground through 

influences on soil nutrients and soil biota. The alteration in soil nutrients and major 

microbial functional groups lasted 5 years after removal of saltcedar, and might persist in 

soil as a long lasting legacy. The greenhouse results showed that if saltcedar is removed 

from the current study site, the vegetation can establish utilizing greater nutrients from 

saltcedar restoration areas with no legacy effects of soil salinity.  
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FIGURES 

 

 

 

Figure 2-1 Soil EC (mmhos/cm) with mean values and standard errors in three soil 

sources: native prairie, saltcedar restoration, and saltcedar invaded near Ashland, Kansas, 

USA. Bars with the same letter are not statistically different (P≤0.05).
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Figure 2-2 Soil pH with mean values and standard errors in three soil sources: native 

prairie, saltcedar restoration, and saltcedar invaded near Ashland, Kansas, USA. Bars 

with the same letter are not statistically different (P≤0.05).  
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Figure 2-3 Sodium concentration (ppm) with mean values and standard errors in three soil 

sources: native prairie, saltcedar restoration, and saltcedar invaded near Ashland, Kansas, 

USA. Bars with the same letter are not statistically different (P≤0.05). 
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Figure 2-4  Magnesium concentration (ppm) with mean values and standard errors in 

three soil sources: native prairie, saltcedar restoration, and saltcedar invaded near 

Ashland, Kansas, USA. Bars with the same letter are not statistically different (P≤0.05).  
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Figure 2-5 Calcium concentration (ppm) with mean values and standard errors in three 

soil sources: native prairie, saltcedar restoration, and saltcedar invaded near Ashland, 

Kansas, USA. Bars with the same letter are not statistically different (P≤0.05).  
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Figure 2-6 Nitrate-nitrogen concentration (ppm) with mean values and standard errors in 

three soil sources: native prairie, saltcedar restoration, and saltcedar invaded near 

Ashland, Kansas, USA. Bars with the same letter are not statistically different (P≤0.05). 

  

0

2

4

6

8

10

12

Native prairie Saltcedar restoration Saltcedar invaded

N
it

ra
te

-N
 (

p
p

m
) 

a 

a 

b 



75 
 

 

Figure 2-7 Potassium concentration (ppm) with mean values and standard errors in three 

soil sources: native prairie, saltcedar restoration, and saltcedar invaded near Ashland, 

Kansas, USA. Bars with the same letter are not statistically different (P≤0.05).  
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Figure 2-8 Phosphorus concentration (ppm) with mean values and standard errors in three 

soil sources: native prairie, saltcedar restoration, and saltcedar invaded near Ashland, 

Kansas, USA. Bars with the same letter are not statistically different (P≤0.05). 
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Figure 2-9 Soil organic matter percentage with mean values and standard errors in three 

soil sources: native prairie, saltcedar restoration, and saltcedar invaded near Ashland, 

Kansas, USA. Bars with the same letter are not statistically different (P≤0.05). 
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Figure 2-10 Percent soil particles with mean values and standard errors in three soil 

sources: native prairie (no filled bar), saltcedar restoration (light gray bar), and saltcedar 

invaded (dark bar) near Ashland, Kansas, USA. Bars with the same letter within sites are 

not statistically different (P≤0.05).  
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Figure 2-11 Total soil microbial biomass (nmol/g) with mean values and standard errors 

in three soil sources: native prairie (no filled bar), saltcedar restoration (light gray bar), 

and saltcedar invaded (dark bar) near Ashland, Kansas, USA. Bars with the same letter 

within growth forms are not statistically different (P≤0.05). 
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Figure 2-12 Soil microbial biomass (nmol/g) of different communities (total gram 

positive bacteria, total gram negative bacteria, arbuscular mycorrhizal fungi, and 

saprophytic fungi) with mean values and standard errors in three soil sources: native 

prairie (no filled bar), saltcedar restoration (light gray bar), and saltcedar invaded (dark 

bar) near Ashland, Kansas, USA. Bars with the same letter within growth forms are not 

statistically different (P≤0.05). 
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Figure 2-13 Aboveground plant dry weight (g) of native and non-native plants grown in 

native prairie (no filled bar), saltcedar restoration (light gray bar), and saltcedar invaded 

(dark bar) soil sources with mean values and standard errors near Ashland, Kansas, USA. 

Bars with the same letter for each species in native prairie, saltcedar restoration, and 

saltcedar invaded soil sources are not statistically different (P≤0.05). 
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Figure 2-14 Belowground plant dry weight (g) of native and non-native plants grown in 

native prairie (no filled bar), saltcedar restoration (light gray bar), and saltcedar invaded 

(dark bar) soil sources with mean values and standard errors near Ashland, Kansas, USA. 

Bars with the same letter for each species in native prairie, saltcedar restoration, and 

saltcedar invaded soil sources are not statistically different (P≤0.05). 
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Figure 2-15 Total plant dry weight (g) of native and non-native plants grown in native 

prairie (no filled bar), saltcedar restoration (light gray bar), and saltcedar invaded (dark 

bar) soil sources with mean values and standard errors near Ashland, Kansas, USA. Bars 

with the same letter for each species in native prairie, saltcedar restoration, and saltcedar 

invaded soil sources are not statistically different (P≤0.05).  
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Figure 2-16 Percentage arbuscular mycorrhizal (AM) fungal root colonization of native 

and non-native plants grown in native prairie (no filled bar), saltcedar restoration (light 

gray bar), and saltcedar invaded (dark bar) soils near Ashland, Kansas, USA. Bars with 

the same letter for each species in native prairie, saltcedar restoration, and saltcedar 

invaded soil sources are not statistically different (P≤0.05). 
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CHAPTER III 

 

ASSESSING PLANT-SOIL FEEDBACKS FOLLOWING LESPEDEZA CUNEATA 

(DUMONT) G. DON. (SERICEA LESPEDEZA) INVASION 

 

ABSTRACT 

 

Lespedeza cuneata (sericea lespedeza) is a nitrogen-fixing perennial legume, well known 

in the southern and midwestern United States as a highly invasive plant of grasslands and 

other habitats. Little is known about belowground alterations following L. cuneata 

invasion. Understanding potential plant-soil feedbacks may be a critical aspect of the 

restoration of native ecosystems. I conducted both field and greenhouse studies to assess 

plant-soil feedbacks. Field study assessed abiotic (N, P, K, organic matter, and soil pH) 

and biotic (vegetation and microbial communities) soil properties. Soil was collected 

from areas with: 1) vegetation dominated by L. cuneata; 2) L. cuneata removed using 

herbicide (restoration areas); and 3) non-invaded native prairie. Greenhouse study 

assessed plant-soil feedbacks indirectly through biomass production of six native and 

three non-native grasses planted into soil collected from the same areas as the field study. 

Plants were grown for 16 weeks, at which time total biomass was determined. Percent 

root colonization by arbuscular mycorrhizal (AM) fungi was determined microscopically. 

I hypothesized plant-soil feedbacks function through alterations in soil nutrients and 



86 
 

microbial communities following L. cuneata invasion. Non-native plants compared to 

native plants grown in soil from L. cuneata invaded areas compared to growth in soil 

from native areas would have greater biomass. I hypothesized that the legacy effect will 

persist after the removal of L. cuneata. My results indicated higher nitrate-nitrogen, lower 

soil organic matter, and lower pH in soil from L. cuneata invaded and L. cuneata 

restoration sites relative to native prairie. Phospholipid fatty acid analysis indicated lower 

AM fungal biomass in L. cuneata invaded and L. cuneata restoration sites relative to 

native prairie. The total plant species richness in native prairie and L. cuneata restoration 

sites was over twice that of L. cuneata invaded sites. All plant species (native and non-

native) produced greater total biomass when grown in soils with a history of L. cuneata 

invasion, as compared to production in soil from native prairie. All plants (except 

Panicum virgatum) grown in soils from L. cuneata invaded and L. cuneata restoration 

areas had lower AM fungal root colonization than plants grown in soil from native 

prairie.
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INTRODUCTION 

 

 

Biological invasion by non-native plants results in negative economic and environmental 

effects (Vitousek et al. 1997, Pimentel et al. 2000). Invading species alter the structure 

and functioning of ecosystems, as well as native biological diversity, with significant 

economic costs either through direct losses or control efforts (Vitousek et al. 1997, 

Pimentel et al. 2000). Most previous studies on biological invasion in terrestrial 

ecosystems focus on aboveground features, with little attention given to the belowground 

properties, although invasive organisms affect both above- and belowground properties 

(Bardgett and Wardle 2010, Inderjit and van der Putten 2010). In addition, biological 

invasion of aboveground ecosystem components can affect belowground ecosystem 

components, and vice versa (Stinson et al. 2006, Wolfe et al. 2008, Bardgett and Wardle 

2010, Inderjit and van der Putten 2010). For example, invasion by non-native nitrogen-

fixing Myrica faya in Hawaii increased soil nitrogen and thereafter enhanced the growth 

of introduced plants (Vitousek et al. 1987, Vitousek and Walker 1989, Adler et al. 1998). 

In addition, the non-native plant Alliaria petiolata in North America disrupted mutualistic 

associations between native tree seedlings and arbuscular mycorrhizal (AM) fungi 

(Stinson et al. 2006).  

Interactions between plants and their biotic and abiotic soil environment are 

conceptualized as plant-soil feedbacks (Bever et al. 1997, Ehrenfeld et al. 2005). Plant-
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soil feedbacks have gained attention as a mechanism that could explain biological 

invasion (Reinhart and Callway 2006, Kulmatiski et al. 2008). Plant-soil feedbacks have 

two phases: plants change soil properties and plants respond to these changes (Bever 

1994, Ehrenfeld et al. 2005). Plant-soil  feedbacks can be positive if the growth of the 

non-native plant increases with plant induced alterations in soil conditions or negative, if 

non-native plant growth is reduced following alterations in soil biotic or abiotic 

properties (Bever et al. 1997, Bever 2003, Ehrenfeld et al. 2005). Wilson et al. (2012) 

provide evidence of a negative indirect plant-soil feedback on native grasses 

(Andropogon gerardii and Schizachyrium scoparium) in sites invaded by non-native 

Bothriochloa bladhii or B. ischaemum.  

Restoration of communities invaded by invasive species requires removal of the invader, 

typically followed by subsequent active reestablishment of the native community (Kardol 

and Wardle 2010). Recent reviews have recognized the importance of interactions 

between plants and soils for ecosystem restoration (Suding et al. 2004, Eviner and 

Hawkes 2008). Most work on community-level restoration has focused on plants and 

belowground abiotic factors (e.g., nutrients) that directly affect plant communities 

(Maron and Connors 1996, Pickart et al. 1998, Maron and Jefferies 2001). However, 

recent work has recognized soil biota as key determinants of plant community properties 

(Wolfe and Klironomos 2005, Kardol et al. 2006). The effects of removal of invasive 

plant species on belowground properties has only occasionally been explored (Peltzer et 

al. 2009). Soil legacies after the removal of invasive plant species can be persistent and 

have been observed in areas cleared of nitrogen-fixing invaders (Marchante et al. 2009). 

For instance, nitrogen mineralization rates in South African fynbos (natural shrubland 
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vegetation) invaded by Acacia saligna or in coastal prairies invaded by Lupinus arboreus 

were not different from areas where the invaders had been removed (Maron and Jefferies 

1999, 2001, Yelenik et al. 2004). This legacy can potentially create obstacles for 

restoration by facilitating re-invasion by the same or other non-native species, or 

preventing recovery of native plants (Vinton and Burke 1995, Maron and Connors 1996, 

Pickart et al. 1998, Maron and Jefferies 1999, Vinton and Goergen 2006).  

Invasive plants with different physiological traits than local plants provide the 

mechanistic basis for feedback. The most frequently cited example is the invasion by the 

nitrogen-fixing species, Myrica faya into Hawaii which resulted in an increase in the 

amount of soil nitrogen, thus influencing nitrogen availability and subsequent invasion by 

other non-native plant species (Schizachyrium condensatum and Andropogon virginicus) 

(Vitousek et al. 1987, Vitousek and Walker 1989, Adler et al. 1998). Soils experiencing 

alterations following plant invasions may exhibit greater risk of invasion by other non-

native species as described by the invasional meltdown hypothesis (Simberloff and Von 

Holle 1999). High levels of nutrients in the soils might cause problems for native plant 

species which are not able to grow under such nutrient enriched conditions (Huenneke et 

al. 1990, Maron and Jefferies 1999). Other examples of this include the non-native 

nitrogen-fixing Acacia saligna invasion in fynbos of South Africa which enhanced 

secondary invasion by the weedy grass Ehrharta calycina (Adler et al. 1998, Yelenik et 

al. 2004). Therefore, an integrated understanding of plant-soil feedback with invasive 

plants is necessary to manage and restore communities invaded by invasive plant species.  

Invasive plants can alter the soil microbial communities through root exudation, release 

of anti-microbial compounds, facilitation of symbiotic relationships between roots and 



90 
 

soil microbes, and displacement of native plants having unique soil microbial 

communities (Wolfe and Klironomos 2005). Therefore, invasive species may bring about 

new interactions with soil microbial communities (Klironomos 2002, Kourtev et al. 2002, 

Reinhart and Callaway 2006). An alteration in soil microbial communities has been 

observed with the invasion of non-native nitrogen-fixing plants Acacia holosericea in 

Senegal and Falcataria moluccana in Hawaii (Allison et al. 2006, Remigi et al. 2008). 

Dominance by bacteria was observed after invasion of nitrogen-fixing Falcataria 

moluccana in Hawaii (Allison et al. 2006). Soil harbors a wide variety of micro- and 

macro-organisms. The profound effect of soil microbes on plant growth depends on the 

composition of various functional groups of soil organisms (e.g., bacteria, fungi, and 

nematodes) present in the system (Bever et al. 1997). Most vascular plants form 

mycorrhizal associations with arbuscular mycorrhizal (AM) fungi and many plants are 

highly dependent on this association for their growth and survival (Smith and Read 

2008). AM fungi can benefit plants by enhancing mineral uptake, specifically phosphorus 

and nitrogen, and by improving drought tolerance (George et al. 1995, Hodge et al. 2001, 

Qiangsheng et al. 2006). AM fungal hyphae extend into the soil surrounding the roots and 

this hyphal network increase uptake of nutrients and water, as well as increase soil 

structure (Marschner and Dell 1994, Wilson et al. 2009). Therefore, mycorrhizal 

mutualisms have effects on both ecosystem processes and plant communities, suggesting 

the potential for plant-soil feedbacks.  

Lespedeza cuneata (Dumont) G. Don. (sericea lespedeza) is a nitrogen-fixing perennial 

legume, well known in the southern and midwestern United States as a highly invasive 

plant of grasslands and other habitats (Eddy and Moore 1998, Brandon et al. 2004, 
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Cummings et al. 2007). It was introduced into the United States in 1896 from eastern 

Asia for the purposes of forage production, land reclamation, and erosion control 

(Brandon et al. 2004, Cummings et al. 2007). L. cuneata is common in highly disturbed 

habitats and quality remnant plant communities such as oak savannas and prairies 

(Brandon et al. 2004). Different invasive traits help explain invasion success of L. 

cuneata. For example, L. cuneata can produce five times as many seeds per plant relative 

to native congeners (Woods et al. 2009), and although palatable early in its phenology, L. 

cuneata in the later growth stages is avoided by grazers due to high phenolic polymers 

(lignin and tannin) production throughout the plant (Donnelly 1954, Hawkins 1955, 

Mosjidis et al. 1990). Other possible mechanisms for successful invasion by L. cuneata 

may include shading native vegetation, allelopathic effects on neighboring plants, and 

resistance to herbivory (Kalburtji and Mosjidis 1992, 1993, Eddy and Moore 1998, 

Dudely and Fick 2003, Brandon et al. 2004, Schutzenhoffer and Knight 2007, Allred et 

al. 2010). Common control methods to reduce populations of L. cuneata are mechanical, 

chemical, and fire/grazing management practices (Brandon et al. 2004, Cummings et al. 

2007). However, the legacy effects after L. cuneata removal may be similar to other 

nitrogen-fixing non-native plants (e.g., A. saligna in fynbos, L. arboreus in coastal 

prairies), and may lead to challenges for restoration. Therefore, examining how plant-soil 

feedbacks are influenced by L. cuneata invasion and L. cuneata removal may be an 

important component for the restoration of L. cuneata invaded ecosystems. 

My study investigated vegetation, soil nutrients, and soil microbial communities of L. 

cuneata invaded sites, sites following chemical removal of L. cuneata (hereafter referred 

to as L. cuneata restoration), and adjacent native prairie sites. Field and greenhouse 
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studies were conducted to assess plant-soil feedbacks associated with L. cuneata 

invasion. The objectives of the field study were to assess potential differences in plant 

species richness and canopy cover, soil nutrients, and biomass of soil microbial 

communities from sites with varying stages of L. cuneata invasion (L. cuneata invaded, 

L. cuneata restoration, and native prairie). In general, I expected greater plant biomass, 

reduced plant species richness, greater soil nitrogen availability, and altered soil 

microbial biomass in the L. cuneata invaded sites. I hypothesized that greater specific 

leaf area and canopy cover of L. cuneata would lead to reductions in native plant species 

survival, thereby reducing plant species richness. The nitrogen-fixing ability of L. 

cuneata would lead to increased soil nitrogen with a concomitant alteration in soil 

microbial biomass production. Soil legacies after the removal of non-native nitrogen-

fixing plants can be persistent thus, I hypothesized that soil nutrients and microbial 

communities would not change in L. cuneata restoration sites compared to L. cuneata 

invaded sites.  

Because restoration efforts may be hindered by alterations in soil properties, I assessed 

growth of native grass species planted into soil collected from L. cuneata invaded, L. 

cuneata restoration, and native sites. The objectives of this greenhouse study were to 

assess plant-soil feedbacks indirectly through biomass production and AM fungal root 

colonization of six native warm-season grasses planted into three different soils collected 

from the same three sites as examined in my previously described field study. To 

determine if L. cuneata facilitates the growth of other non-native plant species as 

described by the invasional meltdown hypothesis, I also assessed biomass production and 

AM fungal root colonization of three non-native plant species. I hypothesized that non-
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native plant species would produce greater biomass in soil collected from L. cuneata 

invaded and L. cuneata restoration sites compared to soil from native sites as those non-

native plants are able to grow under nutrient enriched conditions compared to native 

plants. Given that L. cuneata is of different functional form (i.e., nitrogen-fixing legume) 

than the dominant native grasses, invasion by L. cuneata could alter composition and 

function of soil microbial communities. Therefore, I hypothesized that both native and 

non-native species planted into soil from L. cuneata invaded and L. cuneata restoration 

sites would have lowered AM fungal root colonization compared to soil from native sites. 
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MATERIALS AND METHODS 

 

 

Soil for the field and greenhouse studies were collected  from pastures within the 

Oklahoma State University Range Research Station, about 21 km southwest of Stillwater, 

Oklahoma, USA (latitude: 36°N, longitude: 97°W). This study area has been burned 

historically to minimize the encroachment of eastern redcedar (Juniperus virginiana L.) 

(McCollum et al. 1999, Fuhlendorf and Engle 2004). Several hundred hectares within 

these pastures have been invaded by L. cuneata, while the rest of the area exists as a 

matrix of native tallgrass prairie within oak-cedar woodlands. Dominant tallgrass prairie 

grasses include Schizachyrium scoparium (Michx.) Nash (little bluestem), Andropogon 

gerardii Vitman (big bluestem), Sorghastrum nutans (L.) Nash (Indiangrass), Panicum 

virgatum L. (switchgrass), and Sporobolus asper (Michx.) Kunth (tall dropseed). 

Dominant forbs are Ambrosia psilostachya DC. (western ragweed) and Gutierrezia 

dracunculoides (DC.) S.F. Blake (common broomweed). Oak-cedar woodland include 

Quercus stellata Wang. (post oak), Q. marilandica Münch. (blackjack oak), and Celtis 

spp. (hackberry). Nomenclature of all species was based on USDA Plant Database 

(2012). Three replicates of three different soil sources  were selected: 1.  L. cuneata 

invaded “treatment” with more than 60% coverage and no history of attempts to 

eliminate the invasive,  2.  L. cuneata restoration “treatment” in which a foliar application 

of  PastureGard ® (1.75 liters per ha) was applied in June 2010, resulting in over 85% 
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removal of L. cuneata, and 3.  Native tallgrass prairie with no history of L. cuneata 

invasion.  All sites were located within 2 km of each other. Soil within all study sites was 

characterized as clay loam.  

Field study: Plant-soil feedbacks were evaluated by assessing plant species composition 

and soil chemical and biological components. To characterize the plant species richness 

and canopy cover in three replicates in each “treatment”, we established a total of nine 

transects. Along each 10 m transect, five 1 m
2
 quadrats were established at random 

points. Canopy cover for all plant species present was assessed using the Daubennmire 

method (Daubenmire 1959).  

Based on canopy coverage data, dominant plant species at the native sites were 

determined to be S. scoparium, while A. psilostachya was dominant in the L. cuneata 

restoration sites, and L. cuneata invaded sites were dominated by L. cuneata. Dominant 

plant species were identified for further assessment as they will drive ecosystem 

processes and are the major drivers of ecological properties according to “mass ratio 

hypothesis” (Grime 1998). Sampling of shoot and root biomass and arbuscular 

mycorrhizal (AM) fungal root colonization was targeted using the dominant species of 

each site. Aboveground biomass of the dominant plant species at three different random 

points was clipped by selecting corresponding plant along the same transect used for 

plant species composition estimates. Belowground biomass of the same plant was 

assessed by collecting roots using a 237.5 cm
3
 (5.5 cm diameter and 10 cm deep) soil 

corer and washing soil from the roots. Both above- and belowground components were 

dried in an oven at 60ºC for 3 days to determine dry weight. To determine AM fungal 

root colonization, three other random soil core samples of each dominant plant species on 
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the same transect were collected. Roots from these soil cores were washed free of soil 

with tap water. To measure the percentage of total root length colonized by AM fungal 

structures, roots were stained with trypan blue and examined under a compound 

microscope following the magnified gridline intersect method (McGonigle et al. 1990).  

To assess soil nutrient composition, a 10 m transect was established across each site (L. 

cuneata invaded, L. cuneata restoration, and native prairie). At each site, three transects 

were established, along which soil was collected from the top 10 cm at 1 m intervals and 

homogenized. Soils were sieved through 2 mm sieve to remove large plant roots and 

stones. A 50 g subsample of soil from each 10 m transect at each site was analyzed 

separately for the determination of soil pH, nutrients (nitrate-nitrogen, ammonium-

nitrogen, soil organic matter, total nitrogen, plant-available phosphorus, and potassium), 

and soil microbial biomass and community composition. Soil pH and nutrient analyses 

were conducted at the Oklahoma State University Soil, Water and Forage Analytical 

Laboratory. Soil samples were dried at room temperature, sieved through 2 mm sieve, 

and ground. Soil pH was determined through 1:1 soil to water extraction method using 

Titralab 865 pH electrode (Rhoades 1982). For nitrate-nitrogen and ammonium-nitrogen, 

soil samples were extracted with 1M KCl solution and analyzed using a LACHAT 

Quickchem 8000 Flow Injection Autoanalyzer (LACHAT 2000, Zhang and Kress 2001). 

Soil phosphorus and potassium were extracted with Mehlich III solution and analyzed 

using inductively coupled plasma emission spectroscopy (ICP) (Zhang and Kress 2001).   

Effects of L. cuneata soil feedback on soil microbial composition was determined using 

phospholipid fatty acid analysis (PLFA) (Frostegård et al. 1993, Kourtev et al. 2002, 

Batten et al. 2006, White and Rice 2009). Fatty acids are components of cell membranes 
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and generally constitute a relatively constant proportion of the biomass of an organism. 

Certain groups of microorganisms have different “signature fatty acids” and are used to 

differentiate different taxa or estimate bacterial or fungal biomass (Zelles 1999). Other 

fatty acids that cannot be distinguished between taxonomic groups can be useful in 

estimating total microbial biomass. Soil samples were sieved through 2 mm sieve and 

were freeze dried for 8 hours and ground. Microbial lipids were then extracted from 5 g 

freeze-dried soil with a solvent system that included methanol, chloroform, and a 

phosphate buffer. The soil-solvent mixture was separated by centrifugation and the 

supernatant was decanted.  The centrifugation was repeated with the addition of 1:2 (v/v) 

chloroform-methanol and the supernatant was collected.  Phosphate buffer was then 

added and the mixture separated overnight.  After phase separation, the chloroform layer 

containing the lipids was recovered and reduced by nitrogen flow at 60˚C.  Total 

extracted lipids were separated into neutral, glyco-, and phospholipids with chloroform, 

acetone, and methanol through silic acid chromatography. Phospholipid fatty acid 

(PLFA) analysis was performed using an Agilent 7890A gas chromatograph with an 

Agilent 5975C series mass selective detector.  

Fatty acid nomenclature used was that described by Frostegård et al. (1993): total number 

of carbon atoms: number of double bonds, followed by the position (ω) of the double 

bond from the methyl end of the molecule. Cis and trans isomers were indicated by c, 

and t, respectively. Anteiso- and isobranching were designated by the prefix a or i. Cy 

indicated cyclopropane fatty acids. The fatty acids i15:0, a15:0, i16:0, i17:0 were chosen 

to represent gram positive bacteria; 3-OH 14:0, 16:1ω7, cy17:0, 2-OH 16:0, 18:1ω9c, 

cy19:0 for gram negative bacteria; 16:1ω5c for AM fungi, 18:2ω9,12c, 18:1ω9c for 
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saprophytic fungi; 14:0, 15:0, 16:0, 17:0, 18:0, 20:0 for non-specific microbes (McKinley 

et al. 2005). Fatty acids are expressed as nmol g
-1

 dry soil.   

Greenhouse study: I collected soil from the three sites previously described in my field 

study (L. cuneata invaded, L. cuneata restoration, and native prairie), with three 

replicates in each site. Soil was sieved through a 2 mm sieve and 600 g (dry weight) was 

placed into plastic pots (6 cm diameter X 25 cm deep). Native warm-season grasses 

common in tallgrass prairie: Andropogon gerardii Vitman (big bluestem), Bouteloua 

dactyloides (Nutt.) J.T. Columbus (buffalograss), Panicum virgatum L. (switchgrass), 

Schizachyrium scoparium (Michx.) Nash (little bluestem), Sorghastrum nutans (L.) Nash 

(indiangrass), and Sporobolus asper (Michx.) Kunth (tall dropseed), were selected 

(Conant and Risser 1974, Anderson 2006) to assess plant-soil feedbacks indirectly 

through biomass production and AM fungal root colonization. Non-native plant species: 

Bothriochloa ischaemum (L.) Keng (old world bluestem), Bromus inermis Leyss. 

(smooth brome), and Cynodon dactylon (L.) Pers. (bermudagrass), were also selected for 

biomass production and AM fungal root colonization, as these species are invading into 

native prairies (Harmoney et al. 2004, Vinton and Goergen 2006, Weir et al. 2009) in this 

region. Nomenclature of all species was based on USDA (2012). The experimental 

design included 3 sites (L. cuneata invaded, L. cuneata restoration, and native prairie) x 3 

replicates of each site x 9 plant species (6 native and 3 non-native species, common in 

Central Great plains) x 10 replicate pots per soil source for a total of 810 pots. 

Seeds of all plant species were obtained from a local commercial seed company 

(Johnston Seed Company, Enid, Oklahoma). Seeds were germinated in vermiculite and 

seedlings at the second leaf stage were transplanted into pots filled with 600 g (dry 
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weight) soil collected from each site. Pots were arranged in a randomized complete block 

design in a greenhouse maintained at 20-25°C. Plants were harvested after 16 weeks. All 

pots were watered daily. Roots washed free of soil and shoots and roots were oven-dried 

at 60ºC for 72 hours to determine shoot, root, and total dry weights. To measure the 

percentage of total root length colonized by AM fungal structures, roots were 

subsampled, stained with trypan blue, and examined using a compound microscope. 

Percent AM fungal root colonization followed the magnified gridline intersect method 

(McGonigle et al. 1990).  

Statistical analysis For the field study, soil characteristics (pH, inorganic ammonium-

nitrogen, nitrate-nitrogen, soil organic matter, total nitrogen, plant-available phosphorus, 

potassium, and biomass of soil microbial communities) and plant species richness were 

analyzed with one-way ANOVA using General Linear Models (GLM) of the three soil 

sites (L. cuneata invaded, L. cuneata restoration, and L. cuneata non-invaded native 

prairie) with soil site as single factor. Mean differences of soil characteristics were 

compared using least square differences (LSD) grouping. Mean soil characteristic values 

were presented for each soil source. All data were analyzed using SAS for Windows, 

version 9.2 (SAS Institute Inc., Cary, NC, USA). A significance level of 0.05 was used 

for all statistical tests. 

Biomass and percentage AM fungal root colonization of dominant plant species in each 

soil types were analyzed with one-way ANOVA using GLM. I performed Canonical 

Correspondence Analysis (CCA) in Canoco for Windows 4.5 to evaluate differences in 

plant species composition among the three different soil sites (ter Braak and Šmilauer 

2002). Since the presence of L. cuneata was the primary factor distinguishing among 
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three soil sites (L. cuneata invaded, L. cuneata restoration, and native prairie), this 

species was excluded from the input data for multivariate tests. 

For the greenhouse study, shoot, root, total biomass, and percentage AM fungal root 

colonization were analyzed separately for each plant species with one-way ANOVA 

using GLM for soil source as fixed factor. For biomass and percentage AM fungal root 

colonization, the statistical differences among soil sites were analyzed using LSD post 

hoc tests. All data were analyzed using SAS for Windows, version 9.2 (SAS Institute 

Inc., Cary, NC, USA). A significance level of 0.05 was used for all statistical tests. 
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RESULTS 

 

 

Soil abiotic and biotic properties I assessed alterations in soil pH, soil nutrients and 

biomass of major functional groups of the soil microbial communities. Soil pH and soil 

nutrients of L. cuneata invaded and L. cuneata restoration sites were not significantly 

different from one another (Figs. 3-1 – 3-3). Soil pH was significantly greater in the soil 

from native prairie compared to L. cuneata invaded and L. cuneata restoration sites (Fig.  

3-1). Soil inorganic nitrate-nitrogen was greater in both L. cuneata invaded and L. 

cuneata restoration sites, compared to native prairie sites (Fig. 3-2). Soil inorganic 

phosphorus was significantly greater in L. cuneata invaded sites compared to native 

prairie sites, but soil from L. cuneata restoration sites was intermediate between the L. 

cuneata invaded and native sites (Fig. 3-3). However, soil inorganic ammonium-nitrogen 

and potassium were not significantly different among soils from any of the sites (2.54-3.5 

ppm for ammonium-nitrogen and 82-130 ppm for potassium). Percentage of soil organic 

matter, soil organic carbon, and total nitrogen were all significantly greater in native 

prairie sites compared to either L. cuneata invaded or L. cuneata restoration sites (Figs. 

3-4 – 3-6).  

The results showed alteration in the biomass of major functional groups of soil microbial 

communities in soil from L. cuneata invaded and L. cuneata restoration areas (Figs. 3-7 – 

3-8). Total fungal and microbial biomass were significantly greater in native prairie and 
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L. cuneata invaded sites compared to L. cuneata restoration sites, as determined by PLFA 

assessments (Fig. 3-7). However, both total bacterial and fungal biomass were not 

different between native prairie and L. cuneata invaded sites (Fig. 3-7). There was greater 

biomass of all major functional groups of soil microbial communities (total gram positive 

bacteria, total gram negative bacteria, AM fungi, and saprophytic fungi) in native prairie 

compared to L. cuneata restoration sites (Fig. 3-8). Biomass of total gram negative 

bacteria and AM fungi differed between native prairie and L. cuneata invaded sites (Fig. 

3-8). AM fungal biomass was greatest in native prairie sites compared to L. cuneata 

invaded or L. cuneata restoration sites (Fig. 3-8). Saprophytic fungal biomass was 

significantly lower in L. cuneata restoration sites compared to L. cuneata invaded and 

native prairie soils (Fig. 3-8).  

The total plant species richness of native prairie or L. cuneata restoration sites was more 

than twice that of L. cuneata invaded sites. Total plant species richness was highest in the 

native and lowest in the L. cuneata invaded sites with about 16 and 6 species per m
2
, 

respectively (Fig. 3-9). Plant species composition in different sites was evaluated using 

CCA. The first two canonical axes explained 83.3% and 100 % of variance of the species 

composition in three treatments, respectively (Fig. 3-10). Native prairie soil was at the 

left side of axis 1 and soil from L. cuneata restoration on the right side of axis. The 

second axis represented L. cuneata invaded soil on the upper axis. The plant species 

composition in L. cuneata restoration sites were different compared to native prairie. 

Non-native Bromus sp. was observed in L. cuneata restoration sites.  

In the field study, L. cuneata showed the greatest shoot and root dry weight and A. 

psilostachya had the lowest relative to S. scoparium (Fig. 3-11 – 3-12). However, 
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dominant species, S. scoparium in native prairie had the greatest percentage of root 

colonized by AM fungi with no differences between L. cuneata and A. psilostachya (Fig. 

3-13).  

Greenhouse Study I examined plant-soil feedbacks following L. cuneata invasion and L. 

cuneata restoration indirectly through biomass production and arbuscular mycorrhizal 

(AM) fungal root colonization of native and non-native grasses grown in soils from the 

different sites. Biomass production of both native and non-native grasses were increased 

when seedlings were grown in soil from L. cuneata invaded or L. cuneata restoration 

sites compared to soil collected from native prairie not invaded by L. cuneata (Fig. 3-14 –     

3-16). However, all plants (except P. virgatum) grown in soils collected from L. cuneata 

invaded and L. cuneata restoration sites were less colonized by AM fungi than plants 

grown in soil from native prairie sites (Fig. 3-17). 
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DISCUSSION 

 

 

Plant-soil feedbacks can operate through different pathways involving both abiotic and 

biotic processes. This study demonstrates that L. cuneata invasion significantly alters soil 

abiotic and biotic characteristics and the legacy effect of the invasion persists at least one 

year following the removal of L. cuneata.  

Soil abiotic and biotic properties 

 

The efficacy of restoration practices that remove non-native nitrogen-fixing plants will 

depend on how long elevated levels of nitrogen persist. My study indicated that the 

legacy effect of L. cuneata on soil properties is likely to remain for at least a year after 

removal of the non-native legume.  

The presence of non-native nitrogen-fixing plants has been shown to profoundly alter 

nitrogen cycling, differentially affect the growth of native and non-native plant species, 

and alter other soil properties (Vitousek et al. 1987, Vitousek and Walker 1989). My 

study is in agreement with earlier studies that non-native nitrogen-fixing plants increase 

available nitrogen in an ecosystem (Vitousek et al. 1987, Vitousek and Walker 1989, 

Yelenik et al. 2004); my results showed greater soil nitrate-nitrogen from L. cuneata 

invaded sites compared to native prairie. My results also showed that a year after removal 

of L. cuneata, the soil nitrogen availability was still much higher than native areas thus 
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indicating that invasion by L. cuneata alters soil nitrogen and subsequent removal does 

not immediately eliminate that legacy of invasion. Previous studies have shown that the 

alteration in soil properties induced by a non-native nitrogen-fixing species (e.g., Acacia 

longifolia), persists for several years after removal leaving a legacy of altered soil 

properties (Maron and Jefferies 1999, Maron and Jefferies 2001, Yelenik et al. 2004, 

Marchante et al. 2009). The greater soil nitrate-nitrogen in L. cuneata restoration sites 

might be due to increased decomposition of dead plant materials, leading to nitrogen 

mineralization, therefore, higher nitrate-nitrogen available in the soils (Knicker 2004). 

However, I found no significant differences for soil ammonium-nitrogen among any 

sites, which suggested that ammonium might be taken up by plants and microbes 

(Maathuis 2009). My results showed greater soil pH in the soil from native sites 

compared to L. cuneata invaded and L. cuneata restoration sites. Soil pH in L. cuneata 

invaded and L. cuneata restoration sites was about 5, in an acidic range. Plant phenolic 

compounds affect different soil properties and some functional groups of phenolic 

compounds may be the source of H
+  

after dissociation and thus lowered soil pH (Inderjit 

and Malik 1997, Brady and Weil 2008). L. cuneata contains phenolic compounds 

(Langdale and Giddens 1967). Therefore, low pH in L. cuneata invaded and L. cuneata 

restoration areas could be due to production of phenolic acids by L. cuneata. Soil from L. 

cuneata invaded sites had greater phosphorus than native prairie areas and a trend toward 

greater phosphorus concentrations (although not statistically significant P>0.05) in L. 

cuneata restoration soil sources. L. cuneata contains phenolic compounds thus, carboxyl 

or hydroxyl groups of phenolic acids might have enhanced phosphorus solubilization via 
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the chelation of Fe or Al (Ae et al. 1990, Heim et al. 2000) thus increasing the 

concentration in soil from L. cuneata invaded sites.  

Increased nitrogen availability can stimulate labile material decomposition but may retard 

decomposition of recalcitrant soil organic matter (Knorr et al. 2005). The greater 

percentage of soil organic matter and soil organic carbon in native prairie soil as 

compared to soil from L. cuneata invaded and L. cuneata restoration areas could be due 

to highly stabilized soil organic matter that is less susceptible to changes in 

mineralization rates (Anderson 1991). A possible explanation for reduced soil carbon in 

soil from L. cuneata invaded and L. cuneata restoration areas could be due to enhance 

soil organic matter decomposition through changes in nitrogen availability (Kirschbaum 

et al. 2008). The increasing distribution and abundance of non-native plant species is well 

documented with few studies addressing the consequences for carbon storage (Jackson et 

al. 2002, Bradley et al. 2006, Litton et al. 2006) thus, detailed studies may explain carbon 

storage with biological invasion. 

Non-native plant species have been reported to alter both the composition and functional 

properties of soil biota within 1 to 2 years of invasion (Ehrenfeld 2004). Two years 

following the invasion of Bromus tectorum in an arid grassland in Utah, significant 

changes in microbial community function occurred, as indicated by altered nitrogen 

cycling and shifts in soil community composition (Belnap and Phillips 2001, Evans et al. 

2001). In my study, the analysis of PLFA profiles indicated alterations of soil microbial 

communities of L. cuneata invaded and L. cuneata restoration sites, as compared to soil 

from native prairie. Total gram negative bacteria and AM fungal biomass were lower in 

L. cuneata invaded sites compared to native sites. No significant differences for total 
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fungal biomass and total soil microbial biomass were observed between L. cuneata 

invaded and native sites. However, total soil fungal biomass and total soil microbial 

biomass, and major functional groups of soil microbial communities (total gram positive 

bacteria, total gram negative bacteria, and saprophytic fungi) were lowered in soil from L. 

cuneata restoration areas. Herbicides used to control invasive plants may also exert 

effects on soil microbial communities (Weidenhamer and Calloway 2010, Gupta et al. 

2011). Baarschers et al. (1988) showed toxicity of triclopyr to fungi and bacteria in 

laboratory experiments. In my study, reduction in biomass of major functional groups of 

soil microbial communities (total gram negative bacteria, and saprophytic fungi) and total 

microbial biomass in L. cuneata restoration sites compared to L. cuneata invaded and 

native sites suggested negative impacts of herbicide used to remove L. cuneata. However, 

no significant difference was observed in biomass of total gram positive bacteria and AM 

fungi between L. cuneata invaded and L. cuneata restoration sites, which indicated that 

the herbicide triclopyr, used to remove L. cuneata in the present study had minimal or no 

effect at least one year post treatment. Herbicides other than triclopyr, such as glyphosate 

and alachlor in soil growing medium were not detrimental to AM fungi at recommended 

field application rates (Pasaribu et al. 2011). However, detailed study may explain the 

direct effect of triclopyr at various concentrations on AM fungi.  

Previous studies showed host specialization, in which specific microbial communities or 

species, or strain associate with specific plant species (Bever 1994, Bais et al. 2006, Badri 

et al. 2009). Therefore, plant species can impact the composition and activity of the soil 

microbial community (Belnap and Phillips 2001, Kourtev et al. 2002, Carney and Matson 

2006). Yannarell et al. (2011) observed different bacterial communities in L. cuneata 
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invaded sites from those of uninvaded areas and different fungal communities between 

native plants and L. cuneata.  

Although soil harbors a wide variety of micro- and macro-organisms, in this study I 

focused on soil microbial communities with an emphasis on arbuscular mycorrhizal 

(AM) fungi. Most vascular plants form mycorrhizal associations with AM fungi and 

many plants are highly dependent on this association for their growth and survival (Smith 

and Read 2008). AM fungi can benefit plants by enhancing mineral uptake, specifically 

phosphorus, nitrogen, and by improving drought tolerance (George et al. 1995, Hodge et 

al. 2001, Qiangsheng et al. 2006). Non-native plants can alter the mycorrhizal fungal 

community and composition (Reinhart and Callaway 2004, Batten et al. 2006, Hawkes et 

al. 2006), which may lead to positive feedback and subsequent spread of the non-native 

species (Bever et al. 1997, Bever 2002, 2003). Previous studies showed that alteration in 

the composition and abundance of the AM fungal community observed for several 

introduced plant species have been also implicated as an important factor in the 

successful invasion, for example, Centaurea maculosa (Asian knapweed), Alliaria 

petiolata (garlic mustard) in North America (Marler et al. 1999, Roberts and Anderson 

2001, Klironomos 2002).  

AM fungal hyphae extend into the soil surrounding roots increasing uptake of nutrients 

and water (Smith and Read 2008). AM fungi aid in both phosphorus and nitrogen 

acquisition (Hartnett and Wilson 2002, Govindarajulu et al. 2005). Experiments focusing 

on the individual or combined effects of nitrogen and phosphorus have indicated that AM 

fungal abundance and root colonization may demonstrate positive, negative, or even 

neutral responses to soil nutrients (Mosse and Phillips 1971, Bååth and Spokes 1989, 
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Sylvia and Neal 1990, Johnson 1993, Corkidi et al. 2002, Treseder and Allen 2002, 

Johnson et al. 2003). In my study, both nitrogen and phosphorus were in greater 

concentrations in L. cuneata invaded and L. cuneata restoration sites compared to native 

prairie sites and therefore a reduction in AM fungal biomass in L. cuneata invaded soil 

would be expected.  

Vegetation study  

 

A greater reduction in species richness in the L. cuneata invaded area might be due to L. 

cuneata shading other plant species as explained by earlier studies (Eddy and Moore 

1998, Brandon et al. 2004, Allred et al. 2010). One year following L. cuneata removal, I 

observed different plant species dominance in L. cuneata restoration sites relative to 

native sites. Through the results from CCA, the biplots showed different plant species 

composition between native and L. cuneata restoration sites. In native prairie sites, the 

plant species were more similar to native tallgrass prairie species such as Schizachyrium 

scoparium, Panicum virgatum, and Symphyotrichum ericoides. These common tallgrass 

prairie species were absent in L. cuneata restoration sites. However, removal of L. 

cuneata allowed the successful establishment of native forb species, Ambrosia 

artemisiifolia, A. psilostachya, Gutierrezia dracunculoides which presumably occurred 

due to increased soil nitrate-nitrogen available, similar to changes which occurred 

following removal of nitrogen-fixing Lupinus arboreus, which led high levels of 

ammonium and nitrate-nitrogen available to weedy grasses and forbs (Maron and 

Connors 1996). Non-native Bromus spp. also colonized L. cuneata restoration areas. 

Maron and Jefferies (1999) showed similar trends with re-invasion by non-native grasses 

after massive die-offs of the invasive nitrogen-fixing plant Lupinus arboreus. Although 
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annual forbs dominated areas after L. cuneata removal, presence of L. cuneata in these 

areas might be due to an abundant and long-lived seed bank of L. cuneata (Logan et al. 

1969, Woods et al. 2009). The lack of presence/dominance of native tallgrass species in 

L. cuneata invaded and L. cuneata restoration sites was most likely due to the absence of 

remnant native plants or nearby sources for dispersal, as L. cuneata has invaded this site 

for more than 20 years (personnel communication with J. Chris Stansberry, station 

superintendent at Oklahoma State University, Range Research Station, Stillwater, OK, 

USA). 

Both shoot and root dry weight were greatest for dominant L. cuneata in L. cuneata 

invaded site, as compared to A. psilostachya and S. scoparium in L. cuneata restoration 

and native sites respectively. Allred et al. (2010) also observed greater shoot dry weight 

of L. cuneata, as compared to native species, A. psilostachya and Andropogon gerardii. 

The greatest dry weight of L. cuneata could be due to extensive root system and greater 

total and specific leaf area, aiding in greater resource acquisition relative to native species 

(Joost and Hoveland 1986, Allred et al. 2010).  

When assessing effects of L. cuenata invasion in percentage AM fungal root 

colonization, L. cuneata showed significantly lower colonization relative to the native S. 

scoparium. The greater root colonization in S. scoparium might be explained by a variety 

of factors. First, perennial warm-season grasses such as S. scoparium, are obligate 

mycotrophs and respond positively to mycorrhizal fungi (Wilson and Hartnett 1998). 

Second, allelopathic compounds released by L. cuneata could be another potential factor 

for the reduced AM fungal root colonization of L. cuneata and the legacy effect on A. 

psilostachya. Roberts and Anderson (2001) showed that Alliaria petiolata (garlic 
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mustard) leachates negatively affected the germination of AM fungal spores and inhibited 

the AM fungal associations with Lycopersicum esculenteum (tomato). Therefore, the 

production of phytotoxic phenolic compounds through L. cuneata might have reduced 

AM root colonization in L. cuneata and the legacy of phenolic compounds on A. 

psilostachya.  

Greenhouse study 

 

The greenhouse study was conducted to examine potential plant-soil feedbacks through 

modifications of soil abiotic and biotic properties following L. cuneata invasion and L. 

cuneata removal. It was hypothesized that L. cuneata invaded soils would promote the 

growth of non-native grasses due to their ability to better utilize enhanced nitrogen 

availability compared to native grasses. Contrary to my hypothesis, examination of shoot- 

and root biomass on an individual plant basis showed growth of both native and non-

native grasses were significantly greater when grown in soil from L. cuneata invaded and 

L. cuneata restoration sites, as compared to their biomass when grown in soil from native 

prairie sites. This contradicts the common assumption that high levels of nutrients in the 

soils might facilitate the establishment of other non-native species relative to native 

species as predicted by the invasional meltdown hypothesis (Adler et al. 1998, Simberloff 

and Von Holle 1999, Hughes and Denslow 2005). For example, non-native nitrogen-

fixing Acacia saligna invasion enhanced secondary invasion by weedy grass Ehrharta 

calycina in the fynbos of South Africa (Yelenik et al. 2004). The greater nitrate-nitrogen 

in soil from L. cuneata invaded and L. cuneata restoration sites could have resulted in 

higher biomass of all grasses as compared to grasses grown in native prairie sites. 

Therefore, my study agreed with Vitousek and Walker (1989) and Hughes and Denslow 
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(2005) that plants grown in soil invaded by a nitrogen-fixing non-native species 

accumulated more biomass relative to plants grown in soil from native prairie.  

Although shoot and root biomass of plant species increased when grown in soils collected 

from L. cuneata invaded and L. cuneata restoration sites, compared to growth in soil 

from native sites, percent AM fungal root colonization of all the grasses was significantly 

greater when the plants were grown in native prairie areas compared to L. cuneata 

invaded and L. cuneata restoration sites, with the native P. virgatum being the only 

exception. The effect of root colonization by AM fungi on plant growth may vary 

depending on the composition and abundance of AM fungal species (van der Heijden et 

al. 1998) and the available soil nutrients (Reynolds et al. 2006). Therefore, one possible 

mechanism for the reduced AM fungal root colonization of all grasses in soil from L. 

cuneata invaded and L. cuneata restoration sites could be the result of a shift in AM 

fungal species by L. cuneata. As in previous studies, my results indicated that the level of 

AM fungal root colonization may vary depending on the available soil nutrients (Sanders 

and Seikh 1983, Blanke et al. 2005, Reynolds et al. 2006, Smith and Read 2008). The 

higher mycorrhizal colonization in native prairie is likely to be an interacting effect of 

lower soil nutrient availability relative to L. cuneata invaded and L. cuneata restoration 

sites. In my 16 week greenhouse study, the lower biomass production of plants when 

grown in soil from native prairie does not preclude a mycorrhizal effect as mycorrhizal 

colonization does not always increase plant biomass (Johnson et al. 2010). Even if plant 

biomass is not enhanced by the symbiosis, mycorrhizae can account for phosphorus 

uptake (Smith et al. 2003), increase in tiller production (e.g., Pascopyrum smithii) (Miller 

et al. 1987), protection from plant pathogens (Fitter and Garbaye 1994, Newsham et al. 
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1995), or enhance drought tolerance (Ruiz-Lozano et al. 2001, Kaya et al. 2003). In 

addition, allelopathic compounds released by non-natives has been reported to directly 

inhibit the ability of AM fungi to colonize native grasses, or indirectly reduce AM fungal 

colonization of native grasses (Callaway and Ridenour 2004, Abhilasha et al. 2008, 

Inderjit et al. 2008). L. cuneata has been shown to produce phytotoxic phenolic 

compounds that are phytotoxic to other plants and these compounds might influence 

microbial communities and their functioning as well. Studies examining allelopathic 

effect of L. cuneata on soil microbial community may provide information for successful 

restoration of L. cuneata invaded soils.  

Conclusion 

 

In summary, the nitrogen-fixing invasive L. cuneata can alter plant community 

composition and have important legacy effects through influences on soil nutrients and 

soil biota. My results suggest that after removal of L. cuneata and subsequent changes in 

soil nutrient availability and soil microbial community, more than a year is required 

before soil nutrients and soil microbial community to return to pre-invasion levels.  

The findings of this study have major implications for the restoration of native prairie 

systems since the impacts on soil nutrient enrichment persisted a year after removal of L. 

cuneata. Current restoration practices are almost exclusively focused on aboveground 

removal, while the soil abiotic and biotic properties are overlooked. 
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FIGURES 

 

 

  
 

Figure 3-1 Soil pH with mean values and standard errors in three soil sources: native 

prairie, L. cuneata restoration, and L. cuneata invaded at the Oklahoma State University 

Range Research Station, Stillwater, Oklahoma, USA. Bars with the same letter are not 

significantly different (P≤0.05).
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Figure 3-2 Nitrate-nitrogen concentration (ppm) with mean values and standard errors in 

three soil sources: native prairie, L. cuneata restoration, and L. cuneata invaded at the 

Oklahoma State University Range Research Station, Stillwater, Oklahoma, USA. Bars 

with the same letter are not significantly different (P≤0.05). 
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Figure 3-3 Phosphorus concentration (ppm) with mean values and standard errors in three 

soil sources: native prairie, L. cuneata restoration, and L. cuneata invaded at the 

Oklahoma State University Range Research Station, Stillwater, Oklahoma, USA. Bars 

with the same letter are not significantly different (P≤0.05). 
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Figure 3-4 Soil organic matter percentage with mean values and standard errors in three 

soil sources: native prairie, L. cuneata restoration, and L. cuneata invaded at the 

Oklahoma State University Range Research Station, Stillwater, Oklahoma, USA. Bars 

with the same letter are not significantly different (P≤0.05). 
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Figure 3-5 Soil organic carbon percentage with mean values and standard errors in three 

soil sources: native prairie, L. cuneata restoration, and L. cuneata invaded at the 

Oklahoma State University Range Research Station, Stillwater, Oklahoma, USA. Bars 

with the same letter are not significantly different (P≤0.05). 
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Figure 3-6 Total soil nitrogen percentage with mean values and standard errors in three 

soil sources: native prairie, L. cuneata restoration, and L. cuneata invaded at the 

Oklahoma State University Range Research Station, Stillwater, Oklahoma, USA. Bars 

with the same letter are not significantly different (P≤.05). 
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Figure 3-7 Total soil microbial biomass (nmol/g) with mean values and standard errors in 

three soil sources: native prairie (no filled bar), L. cuneata restoration (light gray bar), 

and L. cuneata invaded (dark bar) at the Oklahoma State University Range Research 

Station, Stillwater, Oklahoma, USA. Bars with the same letter within growth forms are 

not significantly different (P≤0.05). 
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Figure 3-8 Biomass (nmol/g) of soil microbial communities (total gram positive bacteria, 

total gram negative bacteria, arbuscular mycorrhizal fungi, and saprophytic fungi) with 

mean values and standard errors in three soil sources: native prairie (no filled bar), L. 

cuneata restoration (light gray bar), and L. cuneata invaded (dark bar) at the Oklahoma 

State University Range Research Station, Stillwater, Oklahoma, USA. Bars with the same 

letter within growth forms are not significantly different (P≤0.05). 
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Figure 3-9 Plant species richness (number of species/m
2
) with mean values and standard 

errors of three soil sources: native prairie, L. cuneata restoration, and L. cuneata invaded 

at the Oklahoma State University Range Research Station, Stillwater, Oklahoma, USA. 

Bars with the same letter are not significantly different (P≤0.05). 
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Figure 3-10 Biplots of the CCA ordinations of plant species (opened triangles) 

composition data with three soil sources (filled triangles) with native prairie on the left 

gradient of first axis and L. cuneata restoration on the right gradient of first axis and L. 

cuneata invaded on the upper second axis with 83.3% and 100% variation explained by 

first and second axes respectively. 
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Figure 3-11 Aboveground plant dry weight (g) of dominant plant species; Schizachyrim 

scoparium, Ambrosia psilostachya, and L. cuneata, in native prairie (no filled bar), L. 

cuneata restoration (light gray bar), and L. cuneata invaded (dark bar) soil sources 

respectively at the Oklahoma State University Range Research Station, Stillwater, 

Oklahoma, USA. Bars with the same letter are not significantly different (P≤0.05). 
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Figure 3-12 Belowground plant dry weight (g/cm
3
) of dominant plant species; 

Schizachyrim scoparium, Ambrosia psilostachya, and L. cuneata, in native prairie (no 

filled bar), L. cuneata restoration (light gray bar), and L. cuneata invaded (dark bar) soil 

sources respectively at the Oklahoma State University Range Research Station, 

Stillwater, Oklahoma, USA. Bars with the same letter are not significantly different 

(P≤0.05). 
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Figure 3-13 Percentage arbuscular mycorrhizal (AM) fungal root colonization of 

dominant plant species; Schizachyrim scoparium, Ambrosia psilostachya, and L. cuneata, 

in native prairie (no filled bar), L. cuneata restoration (light gray bar), and L. cuneata 

invaded (dark bar) soil sources respectively at the Oklahoma State University Range 

Research Station, Stillwater, Oklahoma, USA. Bars with the same letter are not 

significantly different (P≤0.05). 
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Figure 3-14 Aboveground plant dry weight (g) of native and non-native grasses grown in 

native prairie (no filled bar), L. cuneata restoration (light gray bar), and L. cuneata 

invaded (dark bar) soil sources at the Oklahoma State University Range Research Station, 

Stillwater, Oklahoma, USA. Bars with the same letter for each grass in native prairie, L. 

cuneata restoration, and L. cuneata invaded sites are not significantly different (P≤0.05). 
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Figure 3-15 Belowground plant dry weight (g) of native and non-native grasses grown in 

native prairie (no filled bar), L. cuneata restoration (light gray bar), and L. cuneata 

invaded (dark bar) soil sources at the Oklahoma State University Range Research Station, 

Stillwater, Oklahoma, USA. Bars with the same letter for each grass in native prairie, L. 

cuneata restoration, and L. cuneata invaded sites are not significantly different (P≤0.05). 
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Figure 3-16 Total plant dry weight (g) of native and non-native grasses grown in native 

prairie (no filled bar), L. cuneata restoration (light gray bar), and L. cuneata invaded 

(dark bar) soil sources at the Oklahoma State University Range Research Station, 

Stillwater, Oklahoma, USA. Bars with the same letter for each grass in native prairie, L. 

cuneata restoration, and L. cuneata invaded sites are not significantly different (P≤0.05). 
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Figure 3-17 Percentage arbuscular mycorrhizal (AM) fungal root colonization of native 

and non-native grasses grown in native prairie (no filled bar), L. cuneata restoration (light 

gray bar), and L. cuneata invaded (dark bar) soil sources at the Oklahoma State 

University Range Research Station, Stillwater, Oklahoma, USA. Bars with the same 

letter for each grass in native prairie, L. cuneata restoration, and L. cuneata invaded sites 

are not significantly different (P≤0.05). 
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