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ABSTRACT 

 

The Pollard walk line transect is the most frequently used technique for assessing the 

relative abundance of butterflies, but the abundance estimates it provides are vulnerable 

to biases due to interspecific and interbehavioral differences in butterfly detectability.  

Distance sampling has reduced detectability biases for a variety of taxa, including birds, 

marine mammals, and plants, but has rarely been utilized for studies of butterfly 

communities.  We performed distance sampling along line transects to assess 

detectability of grassland butterflies.  Analyses of distance data using Program Distance 

revealed substantial variation in butterfly detectability among species and among 

different behaviors.  Surprisingly, there were no effects of habitat structure on butterfly 

detectability in areas that varied in their fire and grazing regime.  Substantial variation in 
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butterfly detectability may be a factor in many butterfly research and monitoring projects 

worldwide.  Program Distance generates abundance estimates that account for differences 

in detectability.  Therefore, we recommend that biologists consider supplementing line 

transect sampling with distance sampling for butterfly monitoring and research. 

 

1. Introduction 

 

Accurate estimation of abundance is a goal of many ecological studies of 

populations and natural communities.  A major challenge to accurate estimation of 

abundance is bias due to differences in detectability among species, habitats, and 

observers (Burnham and Anderson 1984, Buckland et al. 2001, Dennis et al. 2006).  

Variation in detectability can lead to spurious conclusions about spatial and/or temporal 

trends in abundance.  Various forms of distance sampling have proven useful for 

accounting and correcting for these biases, thus enhancing accuracy of abundance 

estimates.   Line transect distance sampling, developed primarily by vertebrate ecologists 

(Gates et al. 1968, Burnham and Anderson 1984, Buckland et al. 2001), involves 

recording the distance of each study organism from the transect line at the moment the 

organism is first seen.  These distances are used to model the declining probability of 

detecting an organism as its distance from the transect line increases.  The resulting 

mathematical model, known as a detection function, can then be used to develop robust 

estimates of population density and absolute abundance. 

 Distance sampling has been used widely in studies of abundance of birds 

(Marsden 1999, Diefenbach et al. 2003, Norvell et al. 2003), mammals (Corn and Conroy 
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1998, Zerbini et al. 2007), herpetofauna (Swann et al. 2002, Mazerolle et al. 2007), plants 

(Buckland et al. 2007), and darkling beetles (Parmenter et al. 1989, Crist and Wiens 

1995), but has seldom been used to assess abundance of butterfly populations (but see 

Pocewicz et al. 2009).  For the last two decades, the Pollard walk line transect (Pollard 

and Yates 1993) has been the most commonly used technique for assessing relative 

abundance of butterflies in ecological research (Collier et al. 2006, Rudolph et al. 2006) 

as well as monitoring (Brown and Boyce 1998, 2001, Powell et al. 2007).  This sampling 

technique consists of recording the numbers of each butterfly species seen within a set 

distance on either side while slowly walking a pre-determined transect route (Pollard and 

Yates 1993).  Sampling via the Pollard walk line transect is rapidly learned, requires no 

special equipment, and provides data that can be used to generate an index of relative 

abundance for each species at each site.   

 However, abundance estimates generated from Pollard walk line transect data are 

vulnerable to bias due to differences in detectability among species (Dennis et al. 2006).  

An analysis of 19 years of data from the British Butterfly Monitoring Scheme revealed 

significant correlations between indices of abundance derived from Pollard walk line 

transects and various species traits such as wingspan, visual apparency, and typical adult 

behavior (Dennis et al. 2006).  Those findings strongly imply detectability bias due to 

those species traits.  Studies that use Pollard walk line transect data to compare the 

abundance of a single species across space or time are also be subject to detectability bias 

(Brown and Boyce 1998, Dennis et al. 2006, Kery and Plattner 2007).  For instance, 

sparse cover of 0.05-m tall plants in heavily grazed grasslands is unlikely to obscure 

butterflies from observers, whereas dense cover of grasses 2-m tall might reduce butterfly 
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detectability substantially, thus lowering the number of butterflies observed.  

Unfortunately, if such variation in detectability occurs, the researcher obtaining data via 

the Pollard walk line transect is unable to correct for this bias.  Therefore, alternative 

sampling methods for butterflies that account and correct for detectability bias are needed 

(Dennis et al. 2006, Kery and Plattner 2007). 

 One partial solution to variable detectability is to record only butterflies seen 

within a short distance (often 2.5 m) of the observer, under the assumption that all 

butterflies so close to the observer will be detected, regardless of species traits or habitat 

structure.  The use of a narrow strip, while likely reducing detectability bias, may not 

eliminate them completely.  For example, some small, dull-colored species may be 

difficult to detect at distances as short as 2 meters.  Restricting sampling to such narrow 

strips also might greatly reduce the number of butterflies detected relative to unlimited 

strip widths (Brown and Boyce 1998).  This would be especially problematic with studies 

that seek to assess the abundance of rare species. 

 Some have advocated the use of line transect distance sampling for estimating 

butterfly abundance, due to the potential for distance sampling to account for 

detectability bias, and its use of an operationally unrestricted strip width, which might 

increase the number of butterflies observed per unit effort when compared to the Pollard 

walk line transect (Brown and Boyce 1998, Powell et al. 2007).  However, no literature 

has demonstrated the ability of line transect distance sampling to account for detection 

bias among butterfly species.  Although studies of  Lycaeides melissa samuelis (Brown 

and Boyce 1998) and Speyeria idalia (Powell et al. 2007) used line transect distance 

sampling to generate estimates of population density, neither study tested for effects of 
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individual behavior on detectability, nor did they demonstrate a significant effect of 

habitat structure on detectability.  Therefore, a compelling case for using distance 

sampling for studies of butterfly communities in heterogeneous environments has yet to 

be made. 

 In this paper, we examine variation in butterfly detectability and the 

corresponding role of distance sampling in generating abundance estimates that account 

for variable detectability.  Our specific objectives were: (1) to determine if butterfly 

species differ significantly in their detectability; (2) to assess the relationship between 

butterfly size and detectability; (3) to examine the effect of butterfly behavior on 

detectability; and (4) to determine the influence of grassland vegetation structure on 

butterfly detectability.  By achieving these objectives, we hope to provide scientists with 

a better understanding of the utility of distance sampling for butterfly research and 

monitoring projects.  We predicted that butterfly species would differ in their 

detectability, and that these differences would be biologically meaningful.  Furthermore, 

we predicted that individual butterfly behavior would affect detectability.  Lastly, we 

predicted that high structured grassland vegetation would reduce butterfly detectability 

relative to low structured vegetation. 

 

2. Methods 

 

2.1. Study design and treatments  
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In 2006 and 2007, we collected distance data on all butterfly species observed at 

four tallgrass prairie sites managed by the Missouri Department of Conservation in 

southwestern Missouri, U.S.A. (Figure 1).  Each site was divided into two pastures, with 

one managed with rotational fire and ungrazed by cattle, and one managed with rotational 

fire and cattle grazing (Fuhlendorf and Engle 2004).  Prescribed burns were performed in 

March of 2006 and 2007.  The result of this management was a variable grassland mosaic 

where habitat structure varies from recently burned or burned and grazed to undisturbed 

prairie (Fuhlendorf and Engle 2001, Fuhlendorf et al. 2006). 

 

2.2. Butterfly sampling 

 

We performed line transect distance sampling to assess the detectability and 

abundance of all butterfly species during five sampling periods in 2006 (May 22-26, June 

5-9, June 27-30, July 17-20, and September 6-9) and four sampling periods in 2007 (June 

5-11, June 25-27, July 23-26, and September 20-22).  During each period, we sampled at 

least one transect route in each prairie management unit (mean transect length = 662 m, 

standard deviation = 289 m).  The management units ranged from 14 to 37 ha. Transect 

routes were straight, and were placed systematically at the center of each unit.  All 

portions of each transect route were at least 50 m from unit boundaries (to avoid edge 

effects) and 50 m from the nearest transect route (to minimize repeat sightings).   

Butterfly sampling was performed during weather conditions appropriate for 

butterfly flight (temperature > 20 ºC, cloud cover < 70%, wind < 20 km/hr).  During 

sampling, an observer walked the transect at 2 km/hr and recorded butterflies seen within 
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the 180º field-of-view spanning from the observer’s left to the observer’s right.  Each 

butterfly was identified to the species level if possible and its behavior (e.g. flying, 

nectaring, perching, etc.) when first detected was recorded.  If we deemed that a butterfly 

was less than 5 m from the transect line, we visually estimated the perpendicular distance 

between the butterfly’s location and the transect line.  For butterflies ≥5 m from the 

transect, we used Bushnell Yardage Pro© laser rangefinders to measure the perpendicular 

distance between the butterfly’s location and the transect line.  These rangefinders can 

estimate distances from 5 to 200 m, and are accurate to +/- 1.0 m (Bushnell Performance 

Optics ® 2004).  Butterfly nomenclature follows that in Opler et al. (2010). 

 

2.3. Assessing vegetation structure 

 

To test our predictions about the effects of vegetation structure on butterfly 

detectability, we compared butterfly detectability between two vegetation structures:  (1) 

low structured grassland (due to recent fire and intense grazing), and (2) high structured 

grassland (due to little or no recent fire or grazing).  Vegetation structure was quantified 

in June of 2006 and 2007 at approximately 100 sampling points per prairie management 

unit by biologists from the Missouri Department of Conservation (MDC).  At each 

sampling point, MDC biologists placed upright a 0.10 m wide x 2.0 m tall cover board, 

and from 4 m away they assessed the percent visual obstruction in twenty 0.1-m vertical 

strata.  Values from the sampling stations were averaged to obtain the mean percent 

visual obstruction for each prairie management unit (Harrell and Fuhlendorf 2002).  

Intensely grazed prairie management units had mean percent visual obstruction of 12.6%, 
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whereas ungrazed prairie units had mean percent visual obstruction of 23.5%.  Analyses 

of variance support these differences at p < 0.001, indicating that these grassland types 

differed in habitat structure.   

 

2.4. Analyzing distance data 

 

In this study, we examined the effects of species, behavior, and habitat structure 

on butterfly detectability.  We used distance sampling to generate estimates of effective 

strip width, a summary measure of detectability that can be compared among species, 

behaviors, habitats, and other factors (Brown and Boyce 1998, Forcada and Hammond 

1998, Focardi et al. 2002).  Effective strip width is defined as the distance x at which the 

number of individuals detected beyond x is equal to the number that one failed to detect 

within distance x (Buckland et al. 2001, p.53).  Increasing effective strip width indicates 

increasing detectability of a set of objects, i.e.  a species that is frequently detected at 

great distances from the transect line has a greater effective strip width than a species 

seldom detected at such distances.   

 To estimate effective strip width, we modeled detection functions using the 

Conventional Distance Sampling analysis engine of Program Distance 5.0, release 2 

(Thomas et al. 2006).  For each butterfly species, we pooled observations of the same 

behavior from multiple sites that shared the same habitat structure, and used the pooled 

observations to estimate the detection function and corresponding effective strip width 

for that dataset.  Development of robust and accurate detection functions becomes more 

likely with a sample size of at least 60 observations (Buckland et al. 2001), therefore we 
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limited our detection function modeling to datasets that met this sample size requirement, 

except in the case of Cercyonis pegala, with 57 and 56 observations in low structured and 

high structured grassland respectively. 

For each dataset, we modeled detection functions from 12 general model types, 

which consisted of each of the possible combinations of four key functions (half normal, 

uniform, hazard rate, and negative exponential) and three adjustment types (cosine, 

simple polynomial, and hermite polynomial).  For each of the 12 general model types, 

Program Distance reported the specific model with the lowest Akaike Information 

Criterion (AIC) value (Burnham and Anderson 2002).  Of those 12 specific models, we 

selected the final model based on AIC values and Chi-square goodness of fit tests, as well 

as verifying that the detection function model closely matched the distribution of distance 

data when both were plotted together on a frequency histogram (Buckland et al. 2001).  

After selecting a detection function for each dataset, we recorded the effective strip 

width, plus its standard error and 95% confidence interval. 

Sixty percent of butterflies observed in our study were flying when first detected, 

whereas only 25% were nectaring and 12% were perching.  When including observations 

from all grassland management units, regardless of their vegetation structure, we 

observed at least 60 flying individuals of the following species:  C. pegala, Colias 

eurytheme, Cupido comyntas, Danaus plexippus, Euptoieta claudia, Papilio polyxenes, 

Phyciodes tharos, Precis coenia, and S. idalia.  For most species, the rarity of behaviors 

observed other than flying made it impossible for us to model the detection functions of 

those behaviors effectively.  However, we were able to compare effective strip widths 
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among multiple behaviors for four species: C. comyntas, P. tharos, P. coenia, and S. 

idalia.  

For our analysis of the effects of habitat structure on detectability, we made 60 or 

more observations of flying butterflies in each of the two habitat structure categories for 

the following species:  S. idalia, C. pegala; P. tharos, and C. comyntas.  To be able to 

meet the 60 observation criterion for Colias philodice, C. eurytheme, and Pontia 

protodice, we pooled distance observations from these species, which we suspect are 

similar in their detectability because of their similar size, shape, behavior, and brightness 

of color.  Such pooling of similar species is an accepted practice for the analysis of 

distance sampling data (Marsden 1999, Alldredge et al. 2007). 

 

2.5. Statistical analyses  

 

We compared effective strip widths among species, among behaviors and 

between habitat structures for each species, using Z tests with α = 0.05 (Buckland et al. 

2001).  We performed linear regression using SPSS 15.0 (SPSS 2006) to examine the 

effects of wingspan on 1) detectability of flying butterflies and 2) interhabitat variation in 

detectability (calculated as the percent difference in ESW for a taxon among low and 

high structured grassland). 

 

3. Results 

 

3.1. Interspecific variation in detectability 
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In low structured and high structured grasslands, C. comyntas and P. tharos did 

not differ significantly in effective strip width; therefore, they did not differ in 

detectability.  However, these species were much more difficult to detect than C. pegala, 

S. idalia, and the three pierids (Table 1).  C. pegala was more difficult to detect than the 

three pierids and S. idalia in low structured grassland.  In high structured grasslands, C. 

pegala was more difficult to detect than S. idalia but not the three pierids.  Lastly, the 

three pierids were more difficult to detect than S. idalia in low structured grassland, but 

not in high structured grassland (Table 1). 

 When we expanded our analysis to include species with at least 60 observations 

regardless of grassland vegetation structure, we once again found that many species 

differed from one another in their detectability (Table 2).   The magnitude of the 

differences was often large.  For instance, the effective strip width of Danaus plexippus 

was more than 8 times greater than that of C. comyntas or P. tharos. 

 

3.2. Relationships between butterfly wingspan and detectability 

 

In low structured grassland (Figure 2a), there was a linear relationship between 

butterfly wingspan and detectability (r2 = 0.828, n = 5 taxa, p = 0.020), with effective 

strip width increasing as wingspan increased, as indicated by the equation 

 

effective strip width (m) = -4.674 + 0.238*wingspan (mm).                (1.1) 
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In high structured grassland (Figure 2b), there was a similar significant relationship, (r2 = 

0.821, n = 5 taxa, p = 0.022), represented by the equation  

 

effective strip width (m) = -3.275 + 0.188*wingspan (mm).                 (1.2) 

 

When considering observations from the full range of variation in grassland structure 

(Figure 2c), wingspan again was a useful predictor of butterfly detectability (r2 = 0.887, n 

= 9 species, p < 0.001), as represented by the equation 

 

  effective strip width (m) = -3.537 + 0.183*wingspan (mm) .                (1.3) 

 

3.3. Effects of behavior on butterfly detectability  

 

Individual behavior affected the detectability of four of the five taxa examined 

(Table 3).  Flying individuals of C. comyntas were detected at significantly greater 

distances than perching individuals.  Flying individuals of the three pierids and S. idalia 

and were more easily detected than nectaring individuals.  For P. tharos, all three 

behaviors differed significantly in effective strip width, with nectaring individuals the 

easiest to detect and flying individuals the most difficult (Table 3).  We failed to find 

evidence of an effect of behavior on the detectability of Precis coenia. 
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3.4. Variation in butterfly detectability between different vegetation structures  

  

Grassland structure did not affect detectability for any of the five taxa examined 

(Table 1).  However, we found a positive relationship between butterfly wingspan and the 

degree of interhabitat variation in detectability exhibited by each taxon at p = 0.10 (r2 = 

0.532, n = 5). 

 

4. Discussion 

 

4.1. Overview 

 

Our study demonstrates that butterfly detectability in grassland is strongly 

dependent on butterfly size, moderately dependent on behavior of individual butterflies, 

but independent of or at most weakly dependent on variation in grassland vegetation 

structure.  In most cases, the number of individuals observed were well above the 

guideline of 60 observations recommended by the developers of Program Distance 

(Buckland et al. 2001), providing evidence that the differences in detectability we found 

are robust.  Given our results together with many examples demonstrating the importance 

of using distance sampling for other taxa (Buckland et al. 2001, Norvell et al. 2003), we 

find it surprising that no one has examined its utility to the study of butterfly 

communities.   

 

4.2. Interspecific variation in detectability 
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As we had predicted, there was substantial interspecific variation in detectability, 

and there was a strong positive relationship between wingspan and detectability.  For 

example, S. idalia, which has a median wingspan of 92 mm (Opler 1998), was detectable 

at distances approximately seven times greater than C. comyntas, which has a median 

wingspan of only 25 mm (Opler 1998).  That the effective strip widths of these species 

differed so much is biologically significant as well as statistically significant, because it is 

evidence that sampling methods that do not correct for differential detectability may 

produce highly biased estimates of butterfly abundance.  Our data support previous 

research (Brown and Boyce 1998, Dennis et al. 2006) that found Pollard walk line 

transects are prone to produce biased estimates of the relative abundance of each species; 

biased estimates are particularly problematic for studies of butterfly community 

composition (Dennis et al. 2006). 

 In contrast, distance sampling enables one to estimate differences in detectability 

and to adjust population estimates accordingly, because of the inverse relationship 

between effective strip width and population density, as seen in the equation:   

 

D = n / (L·2·esw)                                                                                     (1.4) 

 

where D = the estimate of population density, 

n = the number of individuals observed while walking a transect, 

L = the length of the transect, 
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and esw = the effective strip width on each side of the transect line (Burnham and 

Anderson 1984, Buckland et al. 2001). 

 Butterfly wingspan is not the only factor that leads to interspecific variation in 

detectability.  Morphological characteristics such as color and brightness of color can 

influence detectability, as can behavioral characteristics such as the amount of time spent 

flying, the speed of the flight, and the height of the flight (Gaston et al. 1995, Dennis et 

al. 2006).  In our study, three pierids (P. protodice, C. philodice, and C. eurytheme) were 

detected at greater distances than those predicted by our regression model.  Their bright 

colors (white, yellow, and yellow/orange respectively) contrasted well with the green 

prairie vegetation, and may have been an important reason that these species were more 

detectable than larger but more dull-colored species, C. pegala and Euptoieta claudia.  

More research using distance sampling is needed to further elucidate the influences of 

butterfly morphology on detectability.   

Distance sampling is likely to be within the budget of most butterfly researchers, 

as it adds little cost beyond that incurred by sampling via the Pollard walk line transect.  

Laser rangefinders suitable for distance sampling are available for $140.  Program 

Distance, the software required for analyzing distance data is available free on the 

Internet, as are some excellent manuals for learning how to use the software.  Recording 

distances in the field requires little additional time.  Learning how to use the software can 

consume much time; enrolling in a Program Distance training session to expedite 

learning might be worth the fee.   

 

4.3. Interbehavioral variation in detectability 
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For four taxa, individual butterfly behavior had moderate effects on the distance 

at which an individual was detected.  It is difficult for us to generalize about the effects of 

certain behaviors on detectability, as their effects were species-dependent.  For instance, 

though nectaring individuals of two taxa (S. idalia and the Family Pieridae) were more 

difficult to detect than flying individuals, the reverse was true for P. tharos.  We 

speculate that small, low-flying species such as P. tharos that are difficult to detect when 

in flight may become easier to detect when nectaring on bright colored flowers because 

the flowers draw the attention of the observer.  We propose that this hypothesis be tested 

in the field. 

In their analysis of data from the United Kingdom’s Butterfly Monitoring 

Scheme, which uses the Pollard walk line transect, Dennis et al. (2006) demonstrated that  

behavioral traits of species were correlated with abundance estimates for those species.  

From this, they inferred Pollard walk line transect data are subject to detectability biases. 

Our findings suggest that Pollard walk line transect data are also subject to bias not only 

due to species traits, but also due to variation in the behavior of individuals within a 

species.  Because the relative frequencies of butterfly behaviors vary spatiotemporally 

(Scott 1986, Kemp and Rutowski 2001, Devries et al. 2008), failure to account for 

behaviorally-mediated detectability variation can bias interspecific and intraspecific 

comparisons of abundance.  For instance, one can imagine two sites in southwestern 

Missouri with equal population density of S. idalia, but at one site most individuals are 

nectaring, whereas at the other most butterflies are flying in search of sparse nectar 

sources and/or mates.  Given that scenario, our findings lead us to predict that the number 
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of butterflies observed at the former site via the Pollard walk line transect will be biased 

downward due to the lower detectability of nectaring butterflies relative to flying ones. 

To our knowledge, this study is the first to use distance sampling to test for and 

demonstrate the effects of individual behavior on butterfly detectability.  As our research 

was conducted using only a few species in one vegetation type, much additional research 

is necessary to discern whether or not this phenomenon is widespread geographically and 

taxonomically.   

 

4.4. Why did habitat structure fail to affect detectability? 

 

  Habitat structure is often an important source of detectability bias in ecological 

studies (Buckland et al. 2001, Focardi et al. 2002, Somershoe et al. 2006).  However, we 

failed to find an effect of habitat structure on detectability of five butterfly taxa, even 

though the structural differences involved are known to have major effects on other 

ecological factors, such as bird community composition (Fuhlendorf et al. 2006).  In our 

case, it appears that the taller grasses and forbs of high structured grassland failed to 

obstruct our view of butterflies in flight.  Therefore, we tentatively conclude that for the 

taxa we studied, habitat structure of Missouri tallgrass prairies with minimal woody plant 

cover has little effect on butterfly detectability, and is not an important source of bias for 

Pollard walk data collected there.  We are aware of only one study that has used distance 

sampling to examine the effects of habitat structure on butterfly detectability.  In a study 

of the L. melissa samuelis in oak savannahs of Wisconsin, USA, there was no effect of 

percent shrub cover on butterfly detectability (Brown and Boyce 1998).   
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In finding a positive relationship between butterfly wingspan and the degree of 

interhabitat variation in detectability, we provided some evidence suggesting that such 

variation is greater for very large species than for small species.  If this is verified by 

further research, choosing a methodology that detects and corrects for detectability bias 

due to habitat structure will be more important for a large species like S. idalia (with a 

wingspan of 92 mm) than smaller species. 

 We suspect that interhabitat variation in butterfly detectability is likely to be more 

pronounced when comparing observations among plant communities that differ more 

starkly than the two different grassland structures described in our study; for instance, 

when comparing butterfly abundances between grasslands and shrublands, or among 

grasslands, shrublands, and forests, as in recent studies (Hogsden and Hutchinson 2004, 

Waltz and Covington 2004, Poyry et al. 2005).  For such studies in the future, we suggest 

that investigators consider using distance sampling to recognize and correct for 

differences in detectability that might exist.   

 

4.5. Conclusions 

 

In our study, distance sampling revealed variation in butterfly detectability due to 

species differences and individual behavior.  Our findings support those of Dennis et al. 

(2006) and Kery and Plattner (2007), lending further evidence that Pollard walk line 

transects are subject to detectability biases.  Given the high degree of interspecific 

variation in detectability we found, we conclude sampling methods that fail to account for 
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this bias that will be especially problematic for butterfly community studies that seek to 

compare abundances among species.   

Fortunately, the algorithms built into Program Distance allow one to generate 

abundance estimates that have been adjusted to account for detectability biases.  We 

recommend research to compare butterfly abundance estimates obtained via distance 

sampling with estimates derived from capture-mark-recapture (Watt et al. 1977) and 

mixed approaches such as those that combine Pollard walk line transects with capture-

mark-recapture (Gross et al. 2007).  However, given the variation in butterfly 

detectability that has been demonstrated, and the known robustness of estimates 

generated by distance sampling (Burnham et al. 1979, Buckland 2006), we recommend 

that biologists who estimate butterfly abundance consider using distance sampling to 

reduce sampling bias caused by variation in detectability. 
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Table 1.  Effective strip width (ESW) for distance data from butterflies in flight, compared among species and between two levels of 
grassland structure.  There are no significant within-row differences.  Species are listed in order of their wingspan, from smallest to 
largest. 
 
 

Scientific Name Low structured grassland  High structured grassland 
 

ESW1   
(m) S.E.2

95% C.I.
 

3

N 
  

ESW  
(m) 

 
S.E. 

95% C.I. 
N 

Lower Upper Lower Upper 
 
Cupido comyntas 2.2a 0.3 1.9 2.9 116  2.0a 0.3 1.4 2.7 104 

 
Phyciodes tharos 2.3a 0.3 1.9 2.9 142  2.0a 0.2 1.7 2.4 194 

 
Cercyonis pegala 7.1b 0.9 5.6 9.2 57  6.4b 1.1 4.6 8.9 56 

 
 three pierid species4

 
 11.8c 1.9 8.6 16.1 65  10.1bc 2.2 6.5 15.7 60 

 
Speyeria idalia 17.6d 1.6 14.6 21.1 64  14.0c 1.7 11.1 17.7 220 

 
 
                                                 
1 Effective strip widths in the same column that do not share any letters are different at the p < 0.05 level as determined by Z tests. 

2 S.E. = standard error of effective strip width (m) 

3 C.I. = 95% confidence interval of effective strip width (m) 

4 Colias eurytheme, Colias philodice, and Pontia protodice 
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Table 2. Effective strip width (ESW) of butterfly species observed flying in a structurally diverse set of grasslands.  Species are listed 
in order of their wingspan, from smallest to largest. 
 
Scientific Name Median 

Wingspan (mm) 
ESW5 S.E. 6 95% C.I. 7 N   

Lower Upper 
Cupido comyntas 25    2.0a 0.2 1.8 2.4 289  

Phyciodes tharos 36    1.9a 0.1 1.7 2.1 547  

Precis coenia 54    5.7b 0.6 4.6 7.1 162  

Colias eurytheme 58 10.5c 2.0 7.2 15.2 108  

Cercyonis pegala 62   7.0b 1.0 5.3 9.2 112  

Euptoieta claudia 62   6.0b 0.8 4.5 8.0 65  

Speyeria idalia 92   13.9cd 1.2 11.7 16.5 402  

Papilio polyxenes 95   12.5cd 1.7 9.5 16.4 74  

Danaus plexippus 106 16.7d 1.5 14.0 20.0 71  
 
 
 
 
 
 
 
 
                                                 
5 Effective strip widths  that do not share any letters are different at the p < 0.05 level as determined by Z tests. 
 
6 S.E. = standard error of effective strip width (m) 
 
7 C.I. = 95% confidence interval of the effective strip width (m) 
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Table 3. Effective strip width (ESW) of butterfly species engaging in different behaviors observed in a structurally diverse set of 
grasslands. Species are listed in order of their wingspan, from smallest to largest. 
 
 
Scientific Name FLYING  NECTARING  PERCHING 

 
ESW
8

S.E.
 (m) 

9 N   
 

ESW  
(m) 

S.E. N 
  

ESW  
(m) 

S.E. N 

 
Cupido comyntas 
 

2.0a 0.2 289     
 

1.5b 0.1 128 

 
Phyciodes tharos 1.9b 0.1 547  2.9a 0.3 166  2.3a 0.1 153 

 
Precis coenia 
 

5.7a 0.6 147  
 

4.3a 
 

0.5 
 

49 
 

   

 
Family Pieridae  
(three pierid species10

 
) 12.6a 1.8 189  7.9b 1.4 55 

 

   

 
Speyeria idalia 
 

13.9a 1.2 402  9.7b 0.8 118 
 

   

 
 

                                                 
8 Effective strip widths in the same row that do not share any letters are different at the p < 0.05 level as determined by Z tests.  
 
9 S.E. = standard error of effective strip width (m) 
 
10 Colias eurytheme, Colias philodice, and Pontia protodice 
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a) 
 

 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
Figure 1.  Maps showing (a) the location of Missouri within the U.S.A., and (b) the 
locations of study sites in southwestern Missouri.   

 

● Taberville 

    ●Niawathe 
●Bethel 

●Wah’kon-Tah 
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Figure 2.  Effective strip width (ESW) regressed over butterfly wingspan for observations 
from a) low structured grassland vegetation, b) high structured vegetation, and c) all 
grassland vegetation structures.  Vertical bars represent standard errors of effective strip 
width. 
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ABSTRACT 

 

Although the larvae of many butterflies are known to be host plant specialists, much less 

is known about the dietary preferences of adult butterflies.  We tested predictions that 

tallgrass prairie butterfly species would vary in their nectar use, and that prairie 

specialists would use nectar sources selectively whereas habitat generalists would not.  

We performed our study in four tallgrass prairies in southwestern Missouri, USA, in 2006 

and 2007.  During each sampling period, butterflies differed significantly in their choice 

of nectar sources. All butterfly species were selective.  Speyeria idalia, a prairie specialist 
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of conservation concern, showed strong selectivity for three different nectar sources over 

the course of each summer.  Multiple butterfly taxa, including two imperiled species (S. 

idalia and Atrytone arogos), were highly selective in early June for Echinacea pallida.  In 

late July, most butterfly taxa were selective for Liatris pycnostachya.  Our findings 

demonstrate the important role that a few subdominant forbs play in conservation of 

tallgrass prairie butterfly communities.  We urge grassland managers and restoration 

ecologists to consider applying practices that promote subdominant forbs to ensure the 

presence of nectar sources that are vital to prairie specialist butterflies.   

 

1.  Introduction 

 

The primary focus of native grassland management research has been upon 

studying the factors that impact biomass production of the dominant forage grasses used 

by livestock (Fuhlendorf and Engle 2001, Holechek et al. 2001).  This is problematic, 

because grassland forbs, legumes, and flowering woody plants provide many ecosystem 

functions, including serving as food sources for myriad insect species, including 

grassland butterflies (Daily 1997, Kearns et al. 1998).  In contrast to the focus on 

graminoids in native grassland management research, butterfly ecologists have focused 

attention on subdominant flowering plants for decades.  Many studies have examined the 

food preferences of butterfly larvae, and there are numerous examples of larval 

specialization for plants from a single family, genus, or species (Ehrlich and Raven 1965, 

Gilbert and Singer 1975).  The diets of adult butterflies have received much less 

attention, however (New 1997, Baz 2002).  Most butterflies are known to feed on nectar 
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(Boggs 1987), but there is disagreement as to whether most butterflies are nectar source 

generalists (Sharp et al. 1974, Scott 1986, Shreeve 1992) or nectar source specialists 

(Wiklund and Ahrberg 1978, Loertscher et al. 1995, Tiple et al. 2009).  This remains 

contentious due to the dearth of butterfly natural history information; complete lists of 

nectar sources exist for only a few butterfly species, and the relative importance of nectar 

sources is known for even fewer (Baz 2002, Stefanescu and Traveset 2009).  Solving this 

problem has important implications to butterfly ecology.  If nectar source generalization 

is the norm, adult nutritional needs of most species might easily be met by habitats with a 

copious supply of nectar-producing forbs, legumes, and woody plants, regardless of the 

species composition of those nectar sources.  However, if instead most butterflies are 

nectar source specialists, then nectar source species composition at a given site is likely 

to be an important factor in determining butterfly species composition and abundance 

(Tiple et al. 2009).  

A second important question is whether or not rare butterflies have more 

specialized dietary preferences than common species, as some have proposed (Loertscher 

et al. 1995, Baz 2002, Hardy et al. 2007).   If nectar source specialization is characteristic 

of rare butterflies but not common butterflies, nectar source availability would be 

implicated as an important determinant of butterfly rarity (Tudor et al. 2004).  

Additionally, because nectar source availability can impact butterfly longevity (Hill 

1992), fecundity (Jervis and Boggs 2005), dispersal ability (Brower et al. 2006), and 

abundance (Schultz and Dlugosch 1999), efforts to conserve butterfly populations will be 

improved by greater understanding of nectar source use, availability, and specialization.   



 

36 
 

Tallgrass prairie, one of the most endangered ecosystems in North America 

(Ricketts 1999), is home to 80 butterfly species (Opler and Krizek 1984).  The majority 

of these butterfly species are habitat generalists that occur in numerous ecosystems.  

However, a few are largely or entirely restricted to prairie; most of these prairie 

specialists are imperiled (Schlicht and Orwig 1998, Heitzman and Heitzman 2006, 

Schlicht et al. 2007).  The elimination of 98% of pre-Columbian tallgrass prairie is the 

primary cause of historic declines of prairie-specialist butterfly populations (Opler 1991, 

Swengel 1996).  However, prairie specialists are often absent from remaining prairies 

with apparently suitable habitat.  Insufficient supplies of nectar limited grassland 

butterfly populations in Oregon (Schultz and Dlugosch 1999) and in Sweden (Bergman et 

al. 2008), and might also limit tallgrass prairie butterfly populations (Ross 2001, 

Shepherd and Debinski 2005).  Unfortunately, little is known regarding the relative 

importance of nectar sources used by tallgrass prairie butterflies, and even less is known 

regarding the effects of nectar supply on the dynamics of these butterfly species.  

Therefore, it is critical that we develop a greater understanding of the role of prairie forbs 

and legumes in providing nectar for imperiled species, as well as the importance of these 

plants in supporting pollinator communities.   

 A paradox exists in grassland ecology. Grasslands evolved with fire and grazing 

pressure (Axelrod 1985, Anderson 2006), yet the few existing studies on prairie 

butterflies suggest that these species are sensitive to fire and grazing (Swengel 1996, 

1998; Vogel et al. 2007). Our resolution of this paradox is limited by our incomplete 

understanding of prairie butterfly nectar source preferences and the importance of rare 

plants in the conservation of these species.  Our conservation-oriented goal for this paper 
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is to help resolve this knowledge gap by studying nectar source use of prairie butterflies. 

Our specific objectives are to: 1) assess the relative availability of nectar sources; 2) test 

the prediction that tallgrass prairie butterfly species differ in their use of nectar sources; 

3) test the prediction that tallgrass prairie butterfly species are nectar source specialists; 

and (4) test the prediction that prairie-specialist butterfly species use nectar sources 

selectively, whereas habitat-generalist butterfly species do not. 

 

2. Methods 

 

2.1.  Study design and treatments   

 

We performed our field research at four conservation areas managed by the 

Missouri Department of Conservation (MDC) in southwestern Missouri:  Taberville 

Prairie, Wah’Kon-Tah Prairie, Niawathe Prairie, and Bethel Prairie (BPCA) (Figure 1).  

The first three are native tallgrass prairie remnants, whereas BPCA was reseeded with 

native tallgrass prairie grasses and forbs in the late 1990s after decades of heavy grazing 

and invasion of non-native forage species (David Darrow, personal communication).  

Each conservation area was split into two management units (for a total of four paired 

replications), with one unit managed with grazing and patch fires (one third of the area 

burned each year with free roaming livestock among all patches known as patch burning) 

(Fuhlendorf and Engle 2004), and one unit with the patch fires but not grazing.  While the 

treatments represent a disturbance gradient, our focus for this study is not on evaluating 

the treatments but instead focusing on the relationship between nectar sources and 
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butterflies.  An earlier descriptive study at Wah’Kon-Tah Prairie reported that Asclepias 

tuberosa and A. syriaca were important nectar sources for S. idalia (Ross 2001), but we 

know of no other publications on butterfly/nectar source relations in the central tallgrass 

prairie region. 

 

2.2. Surveys of nectar plant use by butterflies 

 

In the context of butterfly nectaring, we define nectar source “use” as the 

proportion of visitations to a plant species out of all visitations (Baz 2002).  “Selectivity”, 

referred to as “electivity” by some ecologists (Jacobs 1974, Singer and Stireman 2005), is 

use of nectar sources that is disproportionate to the relative availability of those nectar 

sources (Ezzeddine and Matter 2008).  Selectivity for a nectar source implies that it is 

particularly desirable to butterflies due to the volume and/or nutrient contents of the 

nectar (Ezzeddine and Matter 2008); along with nectar source use, selectivity serves as a 

measure of nectar source specialization. 

We studied nectar plant use during three periods in 2006 (June 5-9, June 27-30, 

and July 17-20) and 2007 (June 5-11, June 25-27, and July 23-26) while simultaneously 

assessing butterfly abundance at each site using line transect distance sampling (Chapter 

1 of this document).  We chose these periods because they are important phases in the 

flight season of S. idalia, our focal butterfly species, with early June the period of initial 

emergence of males, late June the period of peak abundance (due to presence of 

numerous males and females), and late July a period with numerous females but very few 

males (Kopper et al. 2001). Transect routes were straight, were placed systematically at 
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the center of each burn unit, and their lengths were proportional to the size of each burn 

unit.  Each transect route was at least 50 m from unit boundaries and 50 m from the 

nearest transect route to minimize repeat sightings of the same individuals.   

 We assessed nectar source use between 8:00 and 18:30 CST, during weather 

conditions appropriate for butterfly activity (temperature > 20 ºC, cloud cover < 70%, 

wind < 20 km/hr) (Pollard and Yates 1993).  When we observed nectaring, we recorded 

the butterfly species and the species of the nectar source. Butterfly nomenclature follows 

that in Opler et al. (2010).  Each butterfly species was designated as a habitat generalist 

or prairie specialist based on habitat characterizations from the literature (Opler and 

Krizek, 1984; Scott, 1986; Ries et al., 2001; Shepherd and Debinski 2005, Vogel et al. 

2007).   

 

 

2.3. Surveys of floral resource availability 

 

 During early June and late June sampling periods of 2006, we assessed floral 

resource availability by counting the flowering stems of each nectar-producing species 

within 0.5-m x 2.0-m quadrats spaced every 20 m for the length of each butterfly transect 

route.  In late July 2006 and all three sampling periods of 2007, we counted flowering 

stems within strip transects in order to sample a larger proportion of each site.  Each strip 

transect was 4 m wide, equal in length to the corresponding butterfly transect (mean 

transect length = 662 m, standard deviation = 289 m), and was centered on each butterfly 

transect route.  Floral resource surveys were performed within a few hours of butterfly 
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sampling.  We consulted Hilty (2009, 2010) to ascertain which plant species produce 

nectar.  Later, we calculated the relative availability of each nectar source by dividing the 

number of flowering stems of that species by the number of flowering stems of all nectar 

sources.  Plant nomenclature is from the USDA PLANTS database (USDA, NRCS. 

2010). 

   

2.4. Statistical analyses 

 

We tested for interspecific differences in nectar source use using chi-square tests 

(Ezzeddine and Matter 2008).  To obtain sufficient expected frequencies in chi square 

contingency tables, data from both years of the study were pooled for each sampling 

period.  We tested for selectivity of butterfly taxa that we observed nectaring at least 10 

times during a sampling period (Duffy and Jackson 1986).  When we failed to meet this 

sample size criterion for hesperiid species, we pooled data from all hesperiids.  We also 

pooled data from the remaining butterfly species that failed to meet the 10 observation 

criterion (referred to henceforth as “other butterflies”).  Under the null hypothesis of no 

selectivity, a nectar source’s true proportion of use (po) will be equal to its true proportion 

of availability (pa).  To compare proportion of use to proportion of availability, we 

calculated Bonferroni-adjusted confidence intervals for each proportion using the 

formulae 

 

Po – Zα/2k √(Po (1- Po)/no) ≤ po ≤ Po + Zα/2k √(Po (1- Po)/ no)                 (1.5) 

and  
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Pa – Zα/2k √(Pa (1- Pa)/ na) ≤ pa ≤ Pa + Zα/2k √(Pa (1- Pa)/ na)                (1.6) 

where Po = the observed proportion of use, Pa = the observed proportion of availability, 

Zα/2k is the upper standard normal table value with a probability of α/2k, α = 0.05, k = the 

number of nectar-producing plant species tested, no = number of butterflies observed 

nectaring on any nectar source, and na = number of stems observed of all nectar-

producing species (Byers et al. 1984).  When confidence intervals for true proportion of 

use and true proportion of availability did not overlap, these proportions were 

significantly different, indicating selectivity.  When proportion of use was greater than 

proportion of availability, the butterfly taxon in question exhibited selectivity for that 

nectar source; when proportion of use was less than proportion of availability, that 

butterfly taxon exhibited selectivity against that nectar source.   

 

3. Results 

 

3.1. Availability of nectar sources 

 

Though seldom used by butterflies in our study, Erigeron strigosus was the most 

abundant nectar source in early June of 2006 and 2007, with 47% and 39% of all 

flowering stems respectively (Table 1).  The second and third most abundant nectar 

sources were Rudbeckia hirta and Tephrosia virginiana in 2006, and Mimosa 

quadrivalvis and Orbexilum pedunculatum in 2007.  Some nectar sources used by 

butterflies were far less abundant, including five species used multiple times by S. idalia:  

Echinacea pallida (with 4% and 7% of all flowering stems in 2006 and 2007 
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respectively), Verbesina helianthoides (with 1% each year), and three species never 

recorded within our nectar source transects (Asclepias purpurascens, A. syriaca, and A. 

tuberosa).   None of these five nectar sources were observed at BPCA during our 2 year 

study.  In late June, Pycnanthemum tenuifolium and R. hirta were the most abundant 

nectar sources.  Together, these species produced 78% and 48% of all flowering stems in 

2006 and 2007 respectively.  Monarda fistulosa, often used by S. idalia in late June, 

produced only 5% and 1% of all flowering stems in 2006 and 2007, and some other 

nectar sources used by S. idalia were even less abundant.  In late July, P. tenuifolium and 

R. hirta were once again the most abundant nectar sources.  Liatris pycnostachya, a 

frequently used nectar source, was far less abundant (producing only 8% of all flowering 

stems) (Table 1). 

 

3.2. Nectar source use and selectivity 

 

3.2.1. General observations 

In two years, we observed 1220 individuals of 40 butterfly species nectaring on 

47 plant species.  Speyeria idalia, with 261 observations, and Phyciodes tharos, with 204 

observations, were viewed nectaring more than any other species.  In contrast, 36 

butterfly species were observed nectaring fewer than 50 times. 

  

3.2.2. Early June 

In early June across the two sampling years, we observed 689 individuals of 32 

butterfly species nectaring on 25 plant species.  We observed 25 butterfly species 



 

43 
 

nectaring on E. pallida, eight nectaring on V. helianthoides, and all other nectar sources 

used by zero to four butterfly species. 

We found significant variation in nectar use among butterfly taxa in early June 

(chi square = 168.6, df = 9, p < 0.0001), with P. tharos (the most abundant habitat 

generalist of the region) using a more diverse set of nectar plants than S. idalia, 

hesperiids, and other butterflies.  We observed more individuals (134) of S. idalia 

nectaring than any other species, with 83% of them nectaring on E. pallida, and the 

remainder nectaring on seven other plant species (Table 2).  We observed 106 P. tharos 

nectaring on 14 plant species.  Echinacea pallida was the nectar source most frequently 

visited by P. tharos in early June 2006, and ranked third in early June 2007.  Hesperiids 

nectared almost exclusively on E. pallida, with 98% (179 of 183) using this plant in 2006 

and 84% (138 of 164) using it in 2007.  Two hesperiid species, Atrytone arogos (a prairie 

specialist) and Polites themistocles (a habitat generalist), were seen frequently enough in 

early June to permit analysis.  In the two years combined, 83% (45 of 54) of A. arogos 

and 90% (35 of 39) of P. themistocles used E. pallida.  When we pooled observations 

from other butterflies, we found they also used E. pallida more than any other nectar 

source.   

At BPCA, nectaring was rarely observed in early June of either year, with only 32 

individuals of six butterfly species nectaring on nine plant species.  We saw no S. idalia 

nectaring at BPCA, even though we saw 52 individuals engaged in other behaviors there.  

We observed one hesperiid nectaring, as opposed to the 346 hesperiids we saw nectaring 

at the other three sites, and observed no A. arogos whatsoever at BPCA.  All 13 

observations of P. tharos nectaring on E. strigosus were made at BPCA, even though P. 
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tharos and E. strigosus were abundant at the other three sites.  We failed to observe any 

butterflies nectaring on E. pallida or V. helianthoides, even though at the other three sites, 

we observed 522 and 50 butterflies nectaring on these species respectively. 

Phyciodes tharos, S. idalia, the hesperiids, and other butterflies showed 

significant selectivity toward one or more nectar sources (Table 3).  In 2006, these 

butterfly taxa were selective for E. pallida.  In 2007, P. tharos was selective for V. 

helianthoides, but the other butterfly taxa listed above were selective for E. pallida, as 

were A. arogos and P. themistocles.  Speyeria idalia was also selective for A. syriaca, a 

plant which was so uncommon at our sites that it was never detected during our nectar 

plant availability surveys.  In both years, all butterfly taxa exhibited selectivity against E. 

strigosus, the most abundant nectar source.  Most butterfly taxa also selected against R. 

hirta, M. quadrivalvis, A. millefolium, C. grandiflora, O. pedunculatum, and T. 

virginiana, even though these plant species were six of the 10 most abundant nectar 

sources of early June.   

  

3.2.3. Late June 

We observed fewer butterflies nectaring in late June of 2006 and 2007, with only 

191 individuals of 23 butterfly species nectaring on 14 nectar sources (Table 4).  More 

species (11) nectared on P. tenuifolium than any other, whereas 9 species nectared on E. 

pallida and R. hirta.   We found significant variation in nectar use among P. tharos, S. 

idalia, and other butterflies (chi square = 128.7, df = 6, p < 0.0001).  Phyciodes tharos 

exhibited selectivity for R. hirta in 2007. Speyeria idalia exhibited selectivity for M. 

fistulosa, but exhibited selectivity against three abundant species in 2007: E. strigosus, P. 
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tenuifolium, and R. hirta (Table 5).  Hesperiids were rarely seen nectaring in late June, 

with only 11 individuals of five species.  Five hesperiids used E. pallida, though 

approximately 95% of E. pallida inflorescences had already senesced and stopped 

producing nectar.  As in early June, few butterflies (21) were observed nectaring at 

BPCA, but eight of these were S. idalia.  

  

3.2.4. Late July  

In late July of 2006 and 2007, we observed 343 individuals of 25 species 

nectaring on 16 plant species.  More butterfly species (23) nectared on L. pycnostachya 

than on any other nectar source.  P. tenuifolium, Cephalanthus occidentalis, and Vernonia 

baldwinii were used by 16, 8, and 8 species respectively; all other nectar sources were 

used by five species or fewer.  As in early June, nectar use by P. tharos differed 

significantly from that of S. idalia, hesperiids, and other butterflies (p < 0.0001 for all 

three comparisons).  Phyciodes tharos used P. tenuifolium and R. hirta most often (Table 

6), exhibiting selectivity for P. tenuifolium in 2007 (Table 7).  Few S. idalia nectared on 

those plants; instead 78% used L. pycnostachya.  However, in contrast to early June, S. 

idalia and hesperiids also differed in nectar source use (chi-square = 19.5, df = 4, p < 

0.0007).  “Other butterflies” used many of the same nectar sources as the hesperiids, and 

in similar proportions.  In both years, S. idalia, the hesperiids, and other butterflies 

exhibited selectivity for L. pycnostachya (Table 7).  The hesperiids and other butterflies 

exhibited selectivity for C. occidentalis in 2006.  Multiple butterfly species exhibited 

selectivity against R. hirta and Sabatia campestris.  In contrast to the June sampling 
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periods, BPCA had more nectaring butterflies (100) than any of the other three sites, 

including 8 hesperiid species. 

 

4. Discussion 

 

 If most butterflies are nectar source generalists, as some ecologists have suggested 

(Sharp et al. 1974, Shreeve 1992), then they will use nectar sources in proportion to 

availability, and co-occurring butterfly species will seldom differ in nectar source use and 

selectivity.  In tallgrass prairies of southwestern Missouri we found the opposite trends.  

All butterfly taxa, including habitat generalists and prairie specialists, used nectar sources 

disproportionate to availability, and co-occurring taxa frequently differed in nectar source 

use and selectivity.  In sum, all of these taxa exhibited nectar source specialization.  

Given the phylogenetic diversity of the butterfly taxa we studied, with 6 families 

represented (Nymphalidae, Hesperiidae, Pieridae, Papilionidae, Lycaenidae, and 

Satyridae), we suspect that nectar source specialization is characteristic of many tallgrass 

prairie butterfly species.  Our findings, when considered along with studies of nectar use 

in other regions (Loertscher et al. 1995, Baz 2002, Tudor et al. 2004, Erhardt and Mevi-

Schutz 2009), support the premise that nectar source specialization is a common feature 

of butterfly communities.  

 Our study provided mixed results regarding the hypothesis that habitat specialist 

butterflies exhibit nectar source specialization to a greater degree than do habitat 

generalist butterflies (Hardy et al. 2007).   Phyciodes tharos, a habitat generalist, used at 

least five nectar sources during each sampling period when 40 or more observations were 
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made.  It was the only butterfly to frequently use two of the most abundant nectar 

sources: Erigeron strigosus and R. hirta.  These nectar sources occur in a variety of 

habitats across most of the continental United States (USDA, NRCS. 2010); the ability of 

P. tharos to obtain sustenance from such common, wide-ranging species might play a 

large role in allowing P. tharos to occupy a variety of ecosystems from the Rocky 

Mountains to the Atlantic Coast (Opler and Krizek 1984).  As predicted, two prairie-

specialist butterflies (S. idalia and Atrytone arogos) exhibited much stronger levels of 

nectar source specialization.  During each sampling period (early June, late June, late 

July), S. idalia strongly favored a single, rare nectar source, but used a few others as well. 

The preferred nectar source changed through time, from E. pallida in early June, to 

Monarda fistulosa in late June, and to Liatris pycnostachya in late July.  Atrytone arogos 

also exhibited strong nectar source specialization; it nectared almost exclusively on E. 

pallida and V. helianthoides during its June flight period, even though these forbs were 

much less abundant than other nectar sources.  However, contrary to what theory had led 

us to predict, a habitat generalist (Polites themistocles) was as selective as A. arogos for 

preferred nectar sources. Others (Royer 1988, Iftner et al. 1992, Bouseman et al. 2006) 

have observed P. themistocles using a wide variety of nectar sources, as one might 

predict based on its broad distribution and its occupation of a variety of habitats.   

A potential consequence of nectar source specialization is increased likelihood 

that a butterfly species will be limited in abundance and distribution by availability of 

preferred nectar sources (Tudor et al. 2004).  Though we found S. idalia at all four sites, 

population densities were lowest at Bethel Prairie Conservation Area (BPCA) (Chapter 3 

of this document), the site where we failed to observe nectar sources E. pallida and V. 
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helianthoides.  Additionally, the abundance of S. idalia was positively correlated with 

that of E. pallida (Chapter 3 of this document). We found A. arogos at all three sites that 

had flowering stems of E. pallida and V. helianthoides, but not at BPCA.  We suspect 

that the absence of those preferred nectar sources might have played an important causal 

role in the apparent absence of A. arogos at BPCA.  The inter-site variation in 

distribution of A. arogos cannot be explained by distribution of the larval host plants, as 

A. arogos larvae feed on Andropogon gerardii and Schizachyrium scoparium (Dole et al. 

2004), dominant grasses at all four study sites and most tallgrass prairies range-wide 

(Sims 1999).   

Other studies offer evidence as to the importance of the genus Echinacea as a 

nectar source to A. arogos.  In the northern prairie states of Iowa, Minnesota, and North 

Dakota, 32 of 43 nectaring individuals of A. arogos used E. angustifolia, whereas the 

next most-visited nectar source was the exotic thistle Carduus nutans (Swengel and 

Swengel 1999).  In our 3 year study of grazed prairies in the Flint Hills of Kansas, where 

flowering stems of Echinacea spp. occur in very low density (much lower than at our 

three southwestern Missouri that had E. pallida), 5 of 9 A. arogos nectared on Echinacea 

spp. (Moranz et al., unpublished manuscript).  During butterfly inventories of 27 tallgrass 

prairies in eastern Kansas, seven A. arogos were observed nectaring at four sites; all 

seven were on E. pallida (R. Moranz, unpublished data).  Lastly, the peak abundance of 

A. arogos in southwestern Missouri is synchronous with the peak abundance of E. pallida 

(Ross 2001).  Due to the high frequency with which prairie populations of A. arogos use 

Echinacea spp. as nectar sources, we speculate the distribution of A. arogos within the 
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central grasslands of North America is strongly correlated with the distribution of 

Echinacea spp., and we consider this an important topic for further research. 

Every publication we found that presented data or anecdotal accounts of nectar 

use by imperiled hesperiids in tallgrass prairie provided evidence that Echinacea spp. are 

frequently used nectar sources, though none of these publications assessed selectivity.  

Problema byssus is said to prefer Echinacea and Asclepias species in Missouri (Heitzman 

and Heitzman 2006).  In one central Missouri study, P. byssus was recorded using only E. 

pallida and E. purpurea (Clinebell 2003).  In the northern plains, 12 of 13 nectaring 

observations of Hesperia ottoe and 190 of 354 observations of H. dacotae (a candidate 

for listing under the federal Endangered Species Act) were on Echinacea angustifolia 

(Swengel and Swengel 1999).  In southwestern Minnesota, E. angustifolia was the 

primary nectar source used by H. dacotae and other butterfly species with similar flights 

(Selby 2006).   Given the high degree of selectivity for E. pallida shown by hesperiids in 

our study, and the numerous studies that have reported Echinacea spp. as the nectar 

source most frequently used by hesperiids, we propose that Echinacea spp. serve as 

keystone species (Power et al. 1996) in the central grasslands of North America.   

Grassland vegetation research has often focused on the dominant grasses, with 

little attention given to subdominant forbs.  For instance, some studies of the effects of 

fire and/or grazing on grasslands have collected data on plant functional groups rather 

than species (Coppedge et al.1998, Harrell et al. 2001, Cummings et al. 2007).  Such data 

are easier to collect than species composition data, and have been particularly useful for 

understanding the habitat relations of grassland birds, which appear to respond to 

functional groups and vegetation structure more than species composition (Winter et al. 
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2005, Fuhlendorf et al. 2006).  However, when considered on their own merit, data on 

plant functional groups are not enough to advance our understanding of butterfly/habitat 

relations, because they include little information on the nectar resources used by 

butterflies.   Similarly, Whittaker plot sampling (Shmida 1984, Stohlgren et al. 1995) and 

other standard methods of sampling plant community composition can provide useful 

information for butterfly ecologists, but are insufficient on their own.  Plant community 

sampling methods typically indicate presence and/or percent cover of each species, yet in 

our experience, the cover of nectar sources such as E. pallida and L. pycnostachya is 

often so low that differences in abundance among sites are not detected with these 

methods.  Given the importance of subdominant forbs to grassland butterflies, we 

recommend that grassland vegetation researchers devote more effort to studying their 

ecology.  

Some attempts to restore grasslands have focused on establishing dominant 

grasses, and have devoted little money and effort into establishing subdominant forbs 

(but see Helzer and Steuter 2005). We suspect that those restoration attempts are unlikely 

to be valuable for butterfly conservation if key nectar sources are absent.  One might 

predict restorations that seek to maximize plant species richness increase the likelihood of 

species-rich butterfly communities.  In some regions, butterfly species richness has been 

shown to be positively correlated with plant species richness (Thomas and Mallorie 1985, 

Hawkins and Porter 2003).  However, in one study that encompassed all of California, 

path analysis revealed that plant species richness at a moderate spatial scale had only 

weak causal effects on butterfly species richness (Hawkins and Porter 2003).  We suspect 

that providing ample quantities of preferred nectar sources (as well as larval host plants) 
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is more important for the conservation of prairie-specialist butterflies than is maximizing 

plant species richness, though more research is needed. 

 We, like others before us (Dennis et al. 2006), recommend that land managers 

seeking to conserve imperiled prairie butterflies should consider maintaining or 

enhancing the abundance of preferred, native nectar sources throughout the flight season 

of each focal butterfly species.  For butterflies having a short flight season of 2 to 3 

weeks, such as northern populations of A. arogos, this could be done with a single nectar 

source, such as E. pallida.   In contrast, longer-lived butterflies such as S. idalia need a 

seasonal succession of nectar sources (Ross 2001; this study).  However, maintaining 

populations of these plants is not enough to ensure their utility to butterflies:  conditions 

need to be appropriate for them to flower and produce nectar.  Land managers should 

seek information on the effects of management practices on flowering, as some practices 

are not conducive.  For example, mowing tallgrass prairie hayfields in southwestern 

Missouri in early July delays the flowering of Liatris pycnostachya until after the annual 

brood of S. idalia adults have died (Raymond Moranz, pers. obs.).  Cattle grazing, the 

primary land use in tallgrass prairie (Fuhlendorf and Engle 2004), decreases the 

abundance of E. pallida and L. pycnostachya when the stocking rate of cattle is high 

(Drew 1947; Chapter 3 of this document). 

In conclusion, tallgrass prairie butterflies often exhibited significant selectivity for 

nectar sources, supporting the hypothesis that prairie butterflies are nectar source 

specialists rather than nectar source generalists.  Our findings also highlight the 

conservation importance of providing preferred nectar sources to prairie butterflies.  E. 

pallida stands out as a keystone resource for butterflies in tallgrass prairies of 
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southwestern Missouri, as all butterfly taxa selected for it during our study.  This nectar 

source appears to be particularly important to imperiled, prairie-specialist butterfly 

species such as A. arogos and S. idalia. Long-lived butterflies, such as S. idalia, should 

be provided with a succession of preferred nectar sources throughout their flight season. 
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Table 1.  Relative availability of nectar sources during six time periods.  Values shown 
are percentages of total of all flowering stems during each period. 
 EARLY JUNE LATE JUNE LATE JULY 
Plant Scientific Name 2006  2007  2006  2007  2006  2007  
Achillea millefolium 3.2 6.5 0.5 0.6   
Amorpha canescens 4.3 1.8  4.1   
Baptisia alba   0.5 0.3 0.6  
Castilleja coccinea 0.9      
Ceanothus americanus 2.2 0.1  3.4   
Cephalanthus occidentalis     0.4  
Coreopsis grandiflora 0.5 6.7  1.8   
Coreopsis palmata 0.1      
Dalea candida   0.3 1.0   
Dalea purpurea   0.3 1.2   
Diodea teres     1.9 2.1 
Echinacea pallida 3.9 6.7 0.5 4.2   
Erigeron strigosus 47.0 38.9 2.0 10.2 0.5 0.6 
Eryngium yuccifolium   0.6  2.8 1.9 
Eupatorium perfoliatum      0.8 
Eupatorium serotinum     0.1  
Euphorbia corollata   0.2 0.8 3.3 2.5 
Helenium flexuosum   0.5 1.1 0.5 0.2 
Helianthus mollis     0.7 0.7 
Hypericum perforatum   0.8  0.2  
Leucanthemum vulgare  0.7     
Liatris pycnostachya     7.4 7.8 
Linum sulcatum   0.7  8.9 1.0 
Medicago lupulina    0.8   
Mimosa quadrivalvis 4.5 17.1  0.8   
Monarda fistulosa 0.2  4.8 1.0   
Orbexilum pedunculatum 4.3 10.2     
Parthenium integrifolium 3.2 1.9  2.1   
Penstemon tubaeflorus 0.4 1.0     
Physostegia virginiana   0.1 1.2   
Polygala sanquinea    8.6  7.7 
Ptilimnium nuttallii   5.7 2.8 1.7 6.2 
Pycnanthemum tenuifolium  0.4 52.2 23.2 45.6 20.9 
Ratibida pinnata   0.4   0.3 
Rudbeckia hirta 12.3 1.5 25.9 25.2 20.1 23.7 
Ruellia humilis 0.5  0.9 1.1 2.2  
Sabatia campestris      8.9 
Salvia azurea      0.2 
Silphium integrifolium      1.4 
Solidago missouriensis      1.4 
Stylosanthes biflora  0.1  0.7 0.5 3.3 
Tephrosia virginiana 11.7 2.7  0.2   
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 EARLY JUNE LATE JUNE LATE JULY 
Plant Scientific Name 2006  2007  2006  2007  2006  2007  
Teucrium canadense   0.3 0.3   
Tradescantia ohiensis  1.4  0.1   
Verbesina helianthoides 1.0 1.0 2.0 1.9  0.4 
Vernonia baldwinii     1.2 6.3 



 

 

Table 2.  The number of butterflies observed using each nectar source in early June of 2006 and 2007. 
 
 

 

Phyciodes 
 tharos 

(habitat generalist)  

Speyeria 
 idalia 

(prairie specialist)  

Atrytone  
arogos 

(prairie specialist)  

 
Polites 

themistocles 
(habitat generalist) 

 other  
hesperiid  

spp. 
 

other  
butterfly 

 spp. 

Nectar sources 2006 2007  2006 2007  2006 2007  2006 2007  2006 2007  2006 2007 
Achillea millefolium  3               1 
Amorpha canescens 9             1  4  
Asclepias purpurascens    3              
Asclepias syriaca     5             
Asclepias tuberosa    1 1             
Leucanthemum vulgare  1                
Coreopsis grandiflora 3 10   1             
Echinacea pallida 17 11  41 70  5 40  5 30  169 68  32 34 
Erigeron strigosus 1 12         2   3   2 
Mimosa quadrivalvis  2                
Monarda fistulosa    4 3            1 
Orbexilum pedunculatum  1              2 4 
Parthenium integrifolium                 8 
Rhus glabra  1                
Rudbeckia hirta 8 3  1      1   1   1 1 
Stylosanthes biflora  1                
Tephrosia virginiana                2  
Teucrium canadense  1            1    
Tradescantia sp. 1                 
Verbesina helianthoides 4 17   4  1 8   1  1 10  3 4 
three other plant species                1 2 
TOTAL 43 63  50 84  6 48  6 33  171 83  45 57 
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Table 3.  Butterfly selectivity for nectar sources in early June of 2006 and 2007.  "+" indicates butterflies selected nectar source more 
often than expected based on its availability. "-" indicates butterflies selected nectar source less often than expected based on its 
availability. "ns" indicates test failed to find significant evidence of selectivity for or against that nectar source. All tests conducted 
with α = 0.05. 
 

 

Phyciodes 
 tharos 

(habitat  
generalist)  

Speyeria 
 idalia 

(prairie  
specialist)  

Atrytone  
arogos 
(prairie  

specialist)  

 
Polites 

themistocles 
(habitat 

generalist) 

 
Other 

 hesperiid 
spp. 

 
other  

butterfly 
spp. 

Nectar sources 2006 2007  2006 2007  2006 2007  2006 2007  2006 2007  2006 2007 
Achillea millefolium   ns   -   ns   ns   -    ns 
Amorpha canescens  ns            -     
Asclepias purpurascens     ns              
Asclepias syriaca      +             
Asclepias tuberosa     ns              
Coreopsis grandiflora  ns  ns    -   ns   ns   -   - 
Echinacea pallida  +  ns   +  +   +   +   +  +   +  + 
Erigeron strigosus  -  -  - -   -   -  -  -  -  - 
Mimosa quadrivalvis   -   -   -   -  - -   - 
Monarda fistulosa     ns  ns             
Orbexilum pedunculatum  -   -   ns   ns   -    ns 
Parthenium integrifolium                  + 
Rudbeckia hirta  ns  ns   -          -   -  
Tephrosia virginiana    -         -    ns  
Verbesina helianthoides  ns  +      +   ns    +   ns  ns 
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Table 4.  The number of butterflies observed using each nectar source in late June of 2006 and 2007. 
 
 

 

 
Phyciodes tharos 

(habitat generalist)  

Speyeria 
 idalia 

(prairie specialist)  

 
 

Hesperiids 
  

other  
butterfly spp. 

Nectar sources 2006 2007  2006 2007  2006 2007  2006 2007 
Amorpha canescens           7 
Baptisia alba        1    
Buchnera americana        1    
Coreopsis grandiflora  3          
Coreopsis palmata  2         1 
Echinacea pallida     2  2 3  2 6 
Helenium amarum     1       
Liatris pycnostachya          1  
Monarda fistulosa    17 48   1  5 4 
Polygala sanguinea           1 
Pycnanthemum tenuifolium 6   9 4     16 11 
Rudbeckia hirta 5 13      1  4 6 
Stylosanthes biflora           1 
Verbesina helianthoides  1      2   1 
TOTAL 11 19  26 55  2 9  28 38 
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Table 5.  Butterfly selectivity for nectar sources in late June of 2006 and 2007.  "+" indicates butterflies selected nectar source more 
often than expected based on its availability. "-" indicates butterflies selected nectar source less often than expected based on its 
availability. "ns" indicates test failed to find significant evidence of selectivity for or against that nectar source. All tests conducted 
with α = 0.05. 
 

 

 
Phyciodes tharos 

(habitat 
generalist)  

Speyeria 
 idalia 

(prairie 
specialist)  

other butterfly 
spp. 

Nectar sources 2006 2007  2006 2007  2006 2007 
Erigeron strigosus  ns   -   - 
Monarda fistulosa    +  +  ns ns 
Polygala sanguinea  ns       
Pycnanthemum tenuifolium ns ns  ns -  ns ns 
Rudbeckia hirta ns +   ns -  ns ns 
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Table 6.  The number of butterflies observed using each nectar source in late July of 2006 and 2007. 
 
 
 

 

 
Phyciodes 

tharos 
(habitat 

generalist)  

Speyeria 
 idalia 

(prairie 
specialist)  Hesperiids  

other 
butterfly spp. 

Nectar sources 2006 2007  2006 2007  2006 2007  2006 2007 
Baptisia alba        1    
Cephalanthus occidentalis    2   9 1  7 4 
Diodea teres          1  
Eryngium yuccifolium  2     2 1  1 6 
Eupatorium serotinum  1      4   1 
Helianthus mollis          4 1 
Liatris pycnostachya    24 12  25 21  24 34 
Pycnanthemum tenuifolium 5 27  1 1  8 25  16 11 
Rhus glabra           2 
Rudbeckia hirta 7 18     2 1  1 2 
Salvia azurea     1       
Silphium integrifolium        1   1 
Solidago missouriensis 1 6          
Stylosanthes biflora  1          
Vernonia baldwinii    1 4   3  1 6 
TOTAL 13 55  28 18  46 58  55 69 
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Table 7.  Butterfly selectivity for nectar sources in late July of 2006 and 2007.  "+" indicates butterflies selected nectar source more 
often than expected based on its availability. "-" indicates butterflies selected nectar source less often than expected based on its 
availability. "ns" indicates test failed to find significant evidence of selectivity for or against that nectar source. All tests conducted 
with α = 0.05. 
 

 

 
Phyciodes tharos 

(habitat 
generalist)  

Speyeria idalia 
(prairie 

specialist)  Hesperiids  
other butterfly 

spp. 
Nectar sources 2006 2007  2006 2007  2006 2007  2006 2007 
Cephalanthus occidentalis       +   +  
Eryngium yuccifolium           + 
Liatris pycnostachya  ns  + +  + +  + + 
Polygala sanguinea           - 
Pycnanthemum tenuifolium  ns +  - ns  - +  -  ns 
Rudbeckia hirta ns ns  - ns  - -  - - 
Sabatia campestris  -   ns   -   - 
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Figure 1.  Maps showing (a) the location of Missouri within the U.S.A., and (b) the 
locations of study sites in southwestern Missouri. 
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CHAPTER III 
 

A PRAIRIE BUTTERFLY PARADOX: 
THE EFFECTS OF FIRE, GRAZING AND SAMPLING PERIOD ON SPEYERIA 
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ABSTRACT 

The tallgrass prairie region of North America hosts a number of grassland-

obligate butterfly species. Paradoxically, though tallgrass prairie requires periodic 

disturbance to control woody plants, evidence suggests that some grassland-obligate 

butterfly species respond negatively to disturbance agents such as fire and grazing. For 

example, some prior studies of Speyeria idalia (regal fritillary) have shown strongly 

negative effects of dormant-season prescribed burning on this species. We examined the 

effects of time since fire, grazing and sampling period on the abundance of S. idalia at 
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four tallgrass prairie sites in southwestern Missouri, USA.  Each prairie site consisted of 

two pastures: one rotationally burned in early spring (with one-third burned each year) 

and grazed by yearling cattle from late April to August (also known as patch-burn 

grazing, or pyric herbivory), and one rotationally burned but not stocked with cattle.  

Butterfly population density was assessed via line transect distance sampling in three 

sampling periods of 2006 and 2007: early June, late June, and late July.  The availability 

of floral resources was measured simultaneous to butterfly sampling. Both years, S. idalia 

population density was dependent on time since fire.  In 2006, time since fire and 

sampling period interacted to impact population density.  In 2007, population density of 

S. idalia was a function of a three-way interaction of time since fire, grazing, and 

sampling period.  Grazing had consistent negative effects on abundance of S. idalia and 

two of its preferred nectar sources, Echinacea pallida and Liatris pycnostachya.  This 

was especially true in the most recently burned patches, which were grazed intensely, 

which is characteristic of pyric herbivory.  In ungrazed pastures, recent fire appeared to 

enhance abundance of S. idalia and its preferred nectar sources, particularly in late July. 

There was a strong positive correlation between abundance of S. idalia and E. pallida in 

early June and between S. idalia and L. pycnostachya in late July.  Rotational fire alone 

and pyric herbivory (rotational fire with grazing) can be compatible with S. idalia 

conservation, but S. idalia and its nectar sources appear to be sensitive to specific 

attributes of these disturbance regimes. 
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1. Introduction 

 

 North American prairies host multiple butterfly species which appear to be 

sensitive to disturbance, particularly fire (Swengel 1996).  Some of these disturbance-

sensitive species are restricted in their distribution to prairies, ecosystems dependent on 

disturbances such as fire and grazing (Anderson 2006).  We refer to the sensitivity of 

these butterfly species to the disturbances that maintain their habitat as the “prairie 

butterfly paradox”, and seek to better understand how these disturbance-sensitive species 

can persist in disturbance-dependent ecosystems.  As these butterfly species have become 

imperiled in recent decades (Schlicht and Orwig 1998), gaining a better understanding of 

the effects of disturbance on prairie-specialist butterflies has become increasingly 

important for efforts to conserve them. 

 Because of its large size, bright coloration, and its dependence on high-quality 

grasslands, Speyeria idalia (regal fritillary) serves as a flagship species for the 

conservation of prairie-specialist butterflies (Williams 2002, Russell et al. 2004).  Though 

habitat loss due to conversion to intensive agriculture and urban development is the 

primary cause for the imperiled status of S. idalia (Hammond 1995), a second factor 

often cited is grassland fire (Swengel 1996, Swengel 1998, Powell et al. 2007, Vogel et 

al. 2007).  S. idalia is non-migratory, and occupies prairie during the entire year.  It 

spends the dormant-season (fall-winter-early spring) in immature stages that are 

immobile (egg, pupa) or of limited mobility (larva) (Kopper et al. 2001).  Dormant-

season fire often kills immature stages of most prairie-specialist butterfly species, 

including S. idalia (Swengel 1996), and burning entire prairies has extirpated numerous 
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populations of S. idalia (Swengel 1996, Swengel and Swengel 2001a, Powell et al. 2007).  

In some cases, rotational burning (burning a different portion of a prairie each year) has 

also led to precipitous decreases in S. idalia abundance (Swengel and Swengel 2001a), 

though this has primarily been observed in small prairies (less than 30 ha) without 

controlled studies.  

 The negative responses to fire demonstrated by S. idalia and other prairie-

specialist invertebrates has led some to suggest that prairie fire was infrequent during the 

evolutionary history of these species (Schlicht and Orwig 1998, Nekola 2002).  Yet a vast 

body of evidence indicates otherwise, and removal of fire has already caused great losses 

of prairie to woody plant encroachment (Sauer 1950, Wright and Bailey 1982, Axelrod 

1985, Collins and Steinauer 1998, Briggs et al. 2002, Anderson 2006).  Since European-

Americans settled central North America, fire frequency has decreased (Steinauer and 

Collins 1996, Samson et al 2004), resulting in woody plant encroachment that has 

transformed millions of acres of prairie into woodlands and other ecosystems no longer 

suitable for some prairie specialist fauna (Coppedge et al 2001, Walker and Hoback 

2007).  Prescribed burning halts and reverses woody plant encroachment (Hartnett and 

Fay 1998), thus restores and maintains grassland habitat for prairie-specialists such as S. 

idalia.  In addition to maintaining grassland structure, fire can alter floral production of 

forbs, legumes, and woody plants (Hartnett and Fay 1998).  Rangewide, S. idalia adults 

take nectar from a variety of forbs and legumes (Iftner et al. 1992), but within a given 

area, they tend to specialize on a few preferred species (Heitzman and Heitzman 2006, 

Chapter 2 of this document).   If fire impacts floral production of key nectar sources, the 

distribution and abundance of S. idalia might be altered, given that nectar source 
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availability has been shown to affect distribution and abundance of other butterflies (Hill 

1992, Schultz and Dlugosch 1999).    

Like fire, grazing has been an important process in tallgrass prairie for thousands 

of years (Milchunas et al. 1988, Lauenroth et al. 1994, Knapp et al. 1999).  Although 

cattle grazing is currently the dominant land use on tallgrass prairie (Fuhlendorf and 

Engle 2004), grazing effects on these prairie-specialist butterflies have seldom been 

studied (but see Swengel and Swengel 2001a, Vogel et al. 2007).  Given that ungulates 

graze selectively on preferred plant species (Coppedge et al. 1998, Towne et al. 2005), 

they may preferentially consume nectar sources that would otherwise sustain adult 

butterflies through courtship, mating, and oviposition.  Alternatively, ungulates may 

preferentially consume other plant species, thereby enhancing nectar source abundance 

through competitive release.  

 Pyric herbivory, defined as the ecological interaction of fire and grazing, is 

believed to have been a widespread and frequent disturbance in the grasslands of pre-

Columbian America (Fuhlendorf et al. 2009).  With pyric herbivory, fire drives the 

spatiotemporal distribution of grazing animals; in turn, grazing impacts the occurrence 

and spread of fire.  Fire drives herbivory by stimulating many of the native prairie plant 

species to produce regrowth that is highly nutritious to large ungulates (Towne and 

Owensby 1984).  These ungulates graze very intensively in the recently burned grassland, 

and graze very lightly the adjacent unburned grassland (Coppedge and Shaw 1998, 

Fuhlendorf and Engle 2004).  This distribution of grazing increases heterogeneity of 

vegetation structure (Fuhlendorf and Engle 2004), which in turn enhances the diversity of 
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grassland bird communities (Fuhlendorf et al 2006).  However, the effects of pyric 

herbivory on prairie specialist butterflies are currently unknown.  

 Given the growing body of evidence suggesting that fire, grazing, and pyric 

herbivory were common disturbances in tallgrass prairie during much of prehistory, 

prairie-specialist butterflies such as S. idalia likely evolved with these disturbances as 

major selective forces.  The primary goal of our research was to examine how these 

disturbances impact S. idalia populations and flowering stem density of S. idalia’s nectar 

sources.  In this study, we compared prairies managed with rotational fire to prairies 

managed with pyric herbivory (rotational fire and cattle grazing).  Our specific objectives 

were to 1) examine the effects of time since fire, cattle grazing, and sampling period on 

the population densities of S. idalia and its nectar sources, and 2) assess the relationship 

between S. idalia and nectar source population densities.  We predicted that recent fire 

would reduce S. idalia density, but increase density of nectar sources. We also predicted 

that S. idalia density would increase with time since fire. 

 

2. Methods 

 

2.1 Study design and treatments   

 

We performed our field research at four sites managed by the Missouri 

Department of Conservation (MDC) in southwestern Missouri:  Taberville Prairie 

Conservation Area, Wah’Kon-Tah Prairie, Niawathe Prairie Conservation Area, and 

Bethel Prairie Conservation Area (BPCA) (Figure 1).  The first three sites are native 
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tallgrass prairie remnants.   In the 20th century, decades of heavy grazing and seeding of 

non-native pasture grasses had converted BPCA from tallgrass prairie into non-native 

pasture.  In the 1990s, the MDC applied herbicides to kill herbaceous vegetation at 

BPCA, and subsequently seeded BPCA with a mixture of tallgrass prairie grasses, forbs, 

and legumes in order to restore it to tallgrass prairie (David Darrow, personal 

communication).  Between 2000 and 2004, the four sites experienced similar 

management regimes of rotational burning, occasional haying, and in a few cases, light 

grazing by cattle.  In 2005, the MDC used fencing to divide each site into two pastures, 

one managed with grazing and rotational burning (also known as patch-burn grazing), 

and one managed with rotational burning only.  Pastures ranged from 60 to 105 ha in 

area.  Subsequently, the MDC divided each pasture into three burn units approximately 

equal in size; across the experiment, burn units were 20 to 34 ha in area (Figure 2).   This 

resulted in a split-plot experimental design, with grazing status (grazing or no grazing) as 

the main plot treatment, and time since fire (in years) as the subplot treatment.  Main plot 

and subplot treatments were assigned randomly.  Each year, the MDC added cattle to 

each of the four patch-burn grazing pastures between April 12 and May 3, and removed 

them between August 10 and August 17.  Cattle were mixed-breed (except for Holsteins 

only at the Taberville patch-burn grazing pasture in 2006) yearling steers and heifers, 

stocked at a density of 2.2 ha/animal unit, which is a moderate stocking density for the 

region (Brent Jamison, personal communication).  Cattle weighted an average of 261 kg 

when added to the pastures, and their average daily gain was 0.7 kg/head/day (Brent 

Jamison, personal communication).  Within each pasture, the MDC burned one unit in 

March 2005, a second unit in March 2006, and a third unit in March 2007, so that by 
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summer 2006, each pasture had one unit burned that year, a second unit burned the 

previous year, and one burned 2 years earlier (time since burn values were 0, 1, and 2 

years respectively).  Units burned the same year assampling are hereafter referred to as 

recently burned. 

 

2.2 Butterfly surveys  

 

 We sampled S. idalia populations during three periods in 2006 (June 5-9, June 27-

30, and July 17-20) and 2007 (June 5-11, June 25-27, and July 23-26).  These periods are 

important phases in the flight season of S. idalia, with early June the period of initial 

emergence of males, late June the time of peak abundance (due to males and females), 

and late July a period with numerous females but very few males (Kopper et al. 2001).  

During each sampling period, we estimated S. idalia population density in each burn unit 

using line transect distance sampling, as described in Chapter 1 of this dissertation.  

Sampling was conducted between 8:00 and 18:30 CST, during weather conditions 

appropriate for butterfly flight (temperature > 20 ºC, cloud cover < 70%, wind < 20 

km/hr) (Pollard and Yates 1993).  When S. idalia was seen nectaring, we recorded the 

species of the nectar source used by each individual. As described in Chapter 1 of this 

dissertation, we used Program DISTANCE, version 5.0, release 2 to convert the number 

of butterflies seen per unit distance walked to an estimate of population density for each 

burn unit (Thomas et al. 2010).   

 

2.3 Floral resource surveys 
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 During each butterfly sampling period of 2007, we assessed floral resources of 

experimental units by counting the number of flowering stems of each species of nectar-

producing forb and legume found within strip transects that were centered on each 

butterfly transect route.  Each strip transect was 4 m wide, and equal in length to the 

corresponding butterfly transect.  Floral resource surveys were performed within a few 

hours of butterfly sampling.   

   

2.4 Statistical analysis 

   

 Prior to statistical analyses, butterfly and nectar source densities were square root 

transformed in order to meet the assumption of homoscedasticity (Gotelli and Ellison 

2004).  For each year of the study (2006 and 2007), we used SAS 9.1.3 (SAS Institute 

Inc. 2007) to perform a separate analysis of variance for split-plot design with repeated 

measures (with sampling period as the repeated measure factor) in order to test the effects 

of grazing, time since fire, and sampling period on population density of S. idalia.  We 

used SAS’s SLICE function to test for simple effects (i.e., differences in levels of one 

factor when all other factors are held constant), and SAS’s DIFF function as the multiple 

comparison procedure.  

 Because the array of nectar sources in bloom changes greatly from early June to 

late June to mid July, we performed separate split-plot analyses of variance to text for 

treatment effects on the most frequently visited nectar sources of each sampling period: 

(1) Echinacea pallida in early June, (2) Monarda fistulosa in late June, and (3) Liatris 
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pycnostachya in late July (Moranz et al. 2010, unpublished manuscript).  For each time 

period of 2007, we also performed split-plot analysis of variance on the number of 

flowering ramets of all nectar sources combined.  For each sampling period of 2007, we 

used SPSS 15.0 (SPSS 2006) to correlate abundance of S. idalia with the abundances of 

(1) the most frequently visited nectar source, and (2) all nectar sources.     

  

3. Results         

 

3.1. Butterfly population density  

 

3.1.1. Main effects and interactions  

 We observed 1321 S. idalia during the two years, finding them at all pastures in 

both years of the study.  Population densities of S. idalia increased from 2006 to 2007 in 

grazed and ungrazed pastures, by 12% and 130% respectively.  All three factors (grazing, 

time since fire, and sampling period) significantly impacted S. idalia population density 

in each year of the study.  In 2006, time since fire and sampling period interacted 

significantly to impact density (F = 4.31, d.f. = 4, 38, P = 0.006), with the impact of time 

since fire becoming more negative as the summer progressed.  Time since fire and 

grazing had marginally interactive effects on population density (F = 2.81, d.f. = 2, 21, P 

= 0.082).  More definitively, grazing as a main effect reduced population density by 42% 

relative to ungrazed prairie (F = 7.24, d.f. = 1, 21, P = 0.014).   

 In 2007, all three factors (grazing, time since fire, and sampling period) interacted 

significantly in their effects on S. idalia population density (F = 5.74, d.f. = 4, 37, P < 
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0.001).  Time since fire had a positive effect on S. idalia density in grazed pastures, and a 

negative effect in ungrazed pastures.  Conversely, the effect of grazing depended on time 

since fire; it had very negative effects on recently burned patches, but weakly negative 

effects on patches burned 2 years prior.  The strength of the time since fire x grazing 

interaction depended on the sampling period, and was strongest in early June and late 

July.  Grazing (as a main effect) reduced S. idalia population density, but to a greater 

degree than in 2006:  density was reduced by 72% relative to ungrazed pastures.  As in 

2006, the importance of grazing as a main effect became greater as the summer 

progressed, with ungrazed pastures having higher densities than grazed pastures by 

factors of 1.6, 6.4, and 7.6 for early June, late June, and late July respectively. 

   

3.1.2. Simple effects 

Effect slicing and multiple comparison procedures revealed multiple simple 

effects in 2006 (Table 1A, B, C) and 2007 (Table 2A, B, C).  In early June 2006 (Table 

1A), time since fire increased S. idalia population density in grazed pastures, with 

patches burned 2 or more years prior having densities more than 5 times higher than 

recently burned patches.  We failed to find evidence of an effect of time since fire on 

population densities in ungrazed pastures in early June 2006.  In early June 2007, grazed 

pastures exhibited the same trend as in 2006, with patches burned 2 years prior having 

densities approximately 26 times higher than recently burned patches (Table 2A).  In 

ungrazed pastures, the opposite pattern was apparent, as recently burned patches had 

higher densities than patches burned 1 and 2 years earlier.  Grazing reduced densities in 

recently burned patches but not in patches burned in prior years. 
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In late June 2006 (Table 1B), we failed to find simple effects of grazing or time 

since fire on S. idalia density.  However, in late June 2007 (Table 2B), time since fire 

increased density in the ungrazed pastures, with patches burned 1 and 2 years earlier 

having densities approximately two times higher than those found in recently burned 

patches.  Grazed prairie had fewer S. idalia than ungrazed prairie at all three levels of 

time since fire (Table 2C). 

The effects of grazing and time since fire on density in late July were consistent 

from 2006 to 2007 (Tables 1C and 2C respectively).  Time since fire reduced density in 

ungrazed pastures, with recently burned patches having much higher densities than 

patches burned 1 or 2 years prior.  Grazing strongly reduced density in recently burned 

patches, but not in patches burned in prior years.  Densities were approximately 7 times 

higher and 45 times higher in ungrazed, recently burned prairie than grazed, recently 

burned prairie in 2006 and 2007 respectively.   

 

3.2. Nectar source density 

 

 In all three sampling periods of 2007, time since fire affected nectar source 

density (Table 3A, B, C).  However, the direction of the impact (positive or negative) 

depended on sampling period, grazing, and the nectar source in question.  One pattern 

was consistent in each of the three sampling periods: time since fire affected densities of 

all nectar sources in the grazed pastures, with the recently burned patches always having 

far lower densities than patches burned 1 year prior, and having densities lower than 

patches burned 2 years prior in two out of three sampling periods. Grazing either reduced 
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nectar source density or had no significant effect, depending on sampling period and time 

since fire.  

 In early June 2007, grazing and time since fire interacted to affect the flowering 

ramet density of all nectar sources (F = 5.08, d.f. = 2, 12, P = 0.025).  In grazed pastures, 

flowering ramet density in patches burned that spring was approximately 75% lower than 

in patches burned 1 and 2 years earlier (Table 3A).  In the ungrazed pastures, flowering 

ramet density was not affected by time since fire.  Grazing reduced nectar source density 

relative to ungrazed pasture in recently burned patches, but not in patches burned 1 or 2 

years earlier.   

We found Echinacea pallida within nectar source strip transects at three sites, but 

not at the Bethel Conservation Area (where we failed to see any ramets of this species 

during the study).  Grazing and time since fire had marginally interactive effects on 

flowering ramet density of E. pallida (F= 3.16, d.f. = 2, 12, P = 0.079).  In ungrazed 

pastures, there was a significant effect of time since fire, with much higher densities of 

flowering ramets in recently burned patches than in patches burned 2 years earlier (Table 

3A).  Grazed pastures failed to exhibit an effect of time since fire.  However, recently 

burned patches in grazed pastures had marginally lower densities of E. pallida flowering 

ramets than the analogous patches in ungrazed pastures.   

 In late June 2007, we failed to find evidence of an interaction between time since 

fire and grazing on density of all nectar sources.  However, time since fire (as a main 

effect) increased density of all nectar sources (F = 4.87, d.f. = 2, 13.7, p = 0.025), 

especially in grazed prairie, where densities in recently burned prairie were only 18% and 

24% as high as those in prairie burned 1 year and 2 years earlier respectively (Table 3B).  
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We found no differences in overall nectar source abundance between grazed and 

ungrazed pastures, and found no treatment effects on Monarda fistulosa abundance.  

Only 4 of 24 prairie patches had flowering ramets of M. fistulosa within our strip 

transects.   

 In late July 2007, we failed to find significant main effects or interactive effects 

on density of all nectar sources.  Time since fire as a simple effect increased density of all 

nectar sources in the grazed pasture, with recently burned and grazed prairie having 

densities only 37% of prairie burned 1 year earlier (Table 3C).  Time since fire and 

grazing interacted significantly (F = 7.09, d.f. = 2, 12, P = 0.009) to affect the density of 

flowering ramets of Liatris pycnostachya.  In ungrazed pastures, recently burned patches 

had much higher densities of this species than patches burned 1 or 2 years earlier (Table 

3C).  Grazing reduced the abundance of L. pycnostachya, but only in recently burned 

patches. 

 

3.3. Relationships between butterfly and nectar source population densities  

 

 In early June 2007, the population density of S. idalia was positively correlated 

with the flowering stem density of all nectar sources (Pearson’s r = 0.36, P = 0.041), but 

was correlated more strongly with the density of E. pallida (Pearson’s r = 0.47, P = 

0.006).  In late June 2007, S. idalia population density was correlated neither with density 

of all nectar sources nor with M. fistulosa density.  In late July 2007, once again there 

was no relationship between S. idalia population density and abundance of all nectar 
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source, but there was a strong positive correlation between densities of S. idalia and L. 

pycnostachya (Pearson’s r = 0.66, p < 0.001).    

4. Discussion 

  

 Our interest in the “prairie butterfly paradox” challenged me to learn more about 

the responses of S. idalia to the disturbances that are common in tallgrass prairie.  Prior 

studies have demonstrated that fire kills S. idalia immatures (Swengel 1996, Swengel 

1998), therefore we predicted that S. idalia population density would be locally reduced 

by fire.  We also predicted density of this species would increase with time since fire.   

However, we did not detect a reduction in S. idalia density attributable solely to recent 

fire.  Rather, we found complex population responses that were mediated by the 

interaction of time since fire with sampling period.  Either fire did not kill many S. idalia 

larvae, or recolonization of recently burned areas occurred much faster than anticipated.  

Given the high fuel loads in the tallgrass prairie experimental units after 2 years without 

major disturbance, early spring prescribed fires were uniform, leaving few unburned 

microsites within these units.  Because S. idalia immatures spend the winter and spring 

aboveground (Powell et al. 2007), we suspect that all or nearly all immatures within burn 

units were destroyed.  Yet, within a few months of burning experimental units, those 

units were recolonized by S. idalia adults, which presumably had emerged in adjacent 

units that had not been burned that spring.  During some sampling periods, particularly in 

late July of both years, population densities were highest in the recently burned units of 

the ungrazed pastures, implying that S. idalia found recently burned units more suitable 

than the grassland from which they had emerged.  The validity of our finding that the 



 

 87 

time since fire and sampling period have interactive effects on S. idalia density is 

bolstered by obtaining very similar results in 2006 and 2007, even though (1) fires were 

rotated to different experimental units, and (2) precipitation differed greatly between 

2006 and 2007 (with 2006 a drought year, and 2007 an unusually wet year).  The large 

change in density among sampling periods demonstrates that sampling during a single 

time period can lead to inaccurate conclusions regarding treatment effects on butterfly 

density. 

 Whereas previous studies (Swengel 1996, Swengel 1998, Powell et al. 2006, 

Vogel et al. 2007) had demonstrated negative effects of recent fire on S. idalia density, 

our study is the first to demonstrate a positive response of S. idalia density to recent fire.  

Why did S. idalia increase in response to recent fire in ungrazed pastures?  Our data 

suggest that the adult butterflies tracked the availability of nectar sources and were able 

to recolonize these areas as long as unburned areas were in close proximity.  Time since 

fire clearly affected nectar source density during multiple periods of S. idalia’s flight 

season.  Recent fire stimulated the blooming of Echinacea pallida and Liatris 

pycnostachya, the most frequently utilized nectar sources in early June and late July, 

respectively.  Due to the strong correlations between S. idalia density and density of these 

nectar sources, the enhanced blooming of these key floral resources appears to be the 

likely cause for high S. idalia density in recently burned patches during early June of 

2007 and late July of both years.  In contrast, Swengel (1996) sampled S. idalia early in 

its flight period (between June 14th and 19th), which might not have provided S. idalia 

adults with enough time to recolonize burned sites.  Sampling early in the flight season 

also precluded the Swengel (1996) study from observing the positive response of L. 
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pycnostachya flowering to fire (and the positive response of S. idalia populations to L. 

pycnostachya flowering).  This difference between our findings strengthens our argument 

that the timing of sampling can have important effects on the conclusions one makes 

concerning effects of fire on butterfly density. 

 Our findings also differ from studies that found negative effects of rotational fire 

on S. idalia density.  We  propose experimental scale as the primary explanation for 

differences between our findings and those of Swengel and Swengel (2001). Whereas our 

experimental prairies were 60 to 105 ha, the majority of prairies studied in their study 

were smaller than 30 ha.  They speculated that S. idalia populations in small prairies 

would be more vulnerable to extirpation via rotational fire, due to the higher chance that 

an entire cohort of immatures would be aggregated in the portion that gets burned.  We 

concur with that speculation, given the research on other taxa that has shown populations 

occupying small patches of habitat are more vulnerable to environmental stochasticity 

(Haddad 2009).  We speculate that the larger size of the prairies we studied permitted 

them to host larger, more widely dispersed populations of S. idalia, with more adults 

available to recolonize recently burned areas.   In another study in which burning reduced 

S. idalia abundance, 66% of the grassland landscape was burned in the year preceding the 

study, and 47% was burned in the first year of the study (Vogel et al. 2007).  In contrast, 

only 33% of each pasture was burned each year in our study.  We suspect that the 

relatively smaller burns and larger experimental units in our study reduced mortality 

enough to permit the population to better recolonize recently burned areas. 

 The design of our study does not enable me to conclude whether or not S. idalia 

populations were benefited or harmed at the pasture scale by rotational fire.  We 
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acknowledge S. idalia might have been even more abundant if these sites had not been 

burned at all between 2005 and 2007, due to the absence of fire-caused mortality of 

roughly 33% of the immatures each spring.  However, we observed an increase in 

population density from 2006 to 2007, which contradicts the expectation that rotational 

fire reduces S. idalia density.  Given the demonstrated importance of nectar availability 

to other butterflies (Schultz and Dlugosch 1999, Brower et al. 2006), and the strong 

positive correlations we found between density of S. idalia and two important nectar 

sources, fire-enhanced blooming of those nectar sources might increase survivorship and 

fecundity of S. idalia females enough to offset mortality of immatures caused by fire.   

 Our study is the first to examine the response of butterfly density to pyric 

herbivory, the fire-grazing interaction.  Relative to rotational fire without grazing, pyric 

herbivory reduced S. idalia density, in part by reducing density of important nectar 

sources in recently burned prairie (particularly E. pallida and L. pycnostachya).  Recently 

burned patches were grazed much more intensely than patches burned in previous years 

(Fuhlendorf and Engle 2004), thus had much less plant biomass, fewer flowering ramets 

of preferred nectar sources, and fewer S. idalia.  Treatment effects on S. idalia density 

were similar in 2006 and 2007, even though different herds of cattle were placed in the 

pastures each year and fire was rotated from one patch to another.  Though some nectar 

sources were trampled by cattle, we hypothesize the primary cause of reduced nectar 

source density in these patches was consumption by cattle.  Corroboration of this came 

from finding hundreds of ramets of E. pallida with their peduncles clipped off within the 

grazed pastures.  Even though white-tailed deer (Odocoileus virginianus) were observed 

at all of our sites, we have no evidence that they consumed E. pallida; of thousands of 
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flowering ramets observed in ungrazed pastures, we saw none with their peduncles 

clipped off.  It has long been recognized that cattle sometimes consume Echinacea spp. 

(Weaver and Fitzpatrick 1934, Beebe and Hoffman 1968, Eddy 1990); our study is the 

first to document a decline in butterfly density caused by grazing of this preferred nectar 

source. 

 We think that our findings would have been similar if pastures had been stocked 

with bison rather than cattle.  Although bison in large landscapes have been shown to be 

more selective for grass (Peden et al. 1974, Plumb and Dodd 1993) (and thus less likely 

to consume forb nectar sources), when grazing management variables are kept the same, 

bison and cattle have very similar effects on plant community composition (Towne et al. 

2005).  Pyric herbivory reduces differences in foraging behavior between bison and 

cattle, as both species select the recently burned patch and spend less time searching the 

entire pasture for preferred forage species (Coppedge and Shaw 1998, Fuhlendorf and 

Engle 2001, Fuhlendorf et al. 2009   

 Given the close linkage we demonstrated between population density of S. idalia 

and some of its nectar sources, we suspect that the effects of fire and pyric herbivory on 

S. idalia populations elsewhere would also be mediated by effects on nectar sources.  

Any study of fire and/or grazing treatment effects on S. idalia should simultaneously 

examine treatment effects on nectar sources.  We recommend against extrapolating our 

findings on S. idalia to the rare prairie skippers, some of which are slow to recolonize 

sites from which they’ve been extirpated (Panzer 2002). The effects of fire, grazing, and 

pyric herbivory on other prairie specialist butterfly species deserve empirical study. 
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In our study, burning one third of a grassland each year was compatible with 

short-term conservation of S. idalia, even in two grasslands that were isolated from other 

unburned grassland by at least 1 kilometer (Niawathe and Bethel).  However, the scale of 

burning is important to consider.  Prescribed burns in our study were 20 to 34 ha, and S. 

idalia recolonized the recently burned patches soon after emergence.  We suspect that S. 

idalia may completely recolonize large burn units (burn units over 400 ha) much more 

slowly, due to the long-distance dispersal that would be required to reach the patch 

interior.   This would be problematic if the fire return interval is shorter than the time it 

takes for S. idalia to fully recover to its pre-fire distribution and abundance.  At the other 

extreme, Swengel and Swengel (2001) have demonstrated that rotational burning of small 

prairies can quickly lead to extirpation of S. idalia.   

 Is cattle grazing compatible with the conservation of S. idalia?  It depends on 

one’s goal for S. idalia population size and the specific parameters of grazing 

management. We found that adding cattle to rotationally burned grassland reduced 

habitat quality for S. idalia adults, particularly in patches burned earlier the same year.  

However, S. idalia remained in all grazed pastures at the end of the study.  Adjusting any 

of the variables of grazing management (such as grazing species, breed, age, season, 

duration, and stocking density) is likely to alter the effects of pyric herbivory on S. idalia, 

given the influence those variables have on grazing intensity and selectivity (Milchunas 

et al. 1998, Holechek et al. 2001).  Stocking density is a particularly important factor to 

consider (Kruess and Tscharntke 2002, WallisDeVries et al. 2007).  In rotationally 

burned prairies of southwestern Missouri and areas with similar levels of primary 

productivity, heavier stocking density than those our study used could result in significant 
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reduction of nectar source availability in all patches, not just the most recently burned 

patch.  Using substantially lower stocking density would reduce grazing intensity within 

the recent burn patch, which in turn might increase abundance of E. pallida, L. 

pycnostachya, and perhaps other nectar sources in that patch.  However, with reduced 

grazing intensity also comes reduced biomass removal, increasing the likelihood that the 

forage there becomes decadent.  This in turn would cause grazing animals to spend more 

time foraging in other patches, where they might selectively forage for preferred nectar 

sources.  In addition to the uncertain impact it would have upon S. idalia density, 

reducing grazing density would diminish the among-patch structural heterogeneity that is 

an important objective of returning pyric herbivory to grasslands (Fuhlendorf and Engle 

2001, Archibald et al. 2005).   

 Because environmental heterogeneity is an important source of biodiversity 

(Christensen 1997, Wiens 1997), we concur with those (Fuhlendorf and Engle 2001, 

Swengel and Swengel 2001b, Brudvig et al 2007) who have recommended that 

grasslands be managed for heterogeneity.  We believe that managing sites with a variety 

of practices is particularly important for a habitat-specialist butterfly like S. idalia, which 

is so sensitive to disturbance.  Though rotational burning and pyric herbivory are 

effective tools for maintaining components of prairie ecosystems, they do not benefit all 

components (Brudvig et al 2007).  Given the extreme sensitivity of some invertebrate 

taxa to fire (Nekola 2002, Schlicht et al. 2009), maintaining small but permanent non-fire 

refugia (Swengel and Swengel 2007) in prairie landscapes should be strongly considered 

by prairie managers as long as practical alternatives to fire are available for limiting 

woody plant encroachment. 
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Table 1.  Effects of time since fire and grazing on 
Speyeria idalia population densities 
(individuals/ha) in 2006.  Different letters within a 
row indicate P < 0.05 for pairwise comparisons.  
 
Period and Treatment Time since fire (years) P (row) 
 0 1 2  
(A) Early June     

Ungrazed 4.8 6.5 8.3 0.771 
Grazed 2.4a 5.3ab 13.0b 0.066 
P (column) 0.400 0.433 0.474  

     
(B) Late June     

Ungrazed 3.2 11.8 7.0 0.250 
Grazed 0.1 3.2 4.9 0.232 
P (column) 0.175 0.080 0.526  

     
(C) Late July     

Ungrazed 14.2a  0.8b 1.1b 0.001 
Grazed 2.1 0.7 1.6 0.889 
P (column) 0.002 0.938 0.884  
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Table 2.  Effects of time since fire and grazing on Speyeria idalia population densities 
(individuals/ha) in 2007.  Different letters within a row indicate P < 0.05 for pairwise 
comparisons.   
 
Period and Treatment Time since fire (years) P (row) 
 0 1 2  
(A) Early June     

Ungrazed 21.7 9.0 7.0 0.067 
Grazed 0.5 8.9 13.9 0.009 
P (column) 0.001 0.808 0.252  

     
(B) Late June     

Ungrazed 11.4a 21.8b 25.1b 0.013 
Grazed 1.5 1.2 6.5 0.138 
P (column) 0.073 0.001 0.008  

     
(C) Late July     

Ungrazed 21.8a 5.6b 8.9b 0.009 
Grazed 0.4 2.3 2.0 0.647 
P (column) 0.001 0.367 0.132  
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Table 3.  Effects of time since fire and grazing on the abundance of floral resources (# of 
flowering ramets/ha) in 2007.  Different letters within a row indicate P < 0.05 for 
pairwise comparisons.   
 
Period and Treatment Time since fire (years) P (row) 
 0 1 2  
(A) Early June     

All Forbs and 
Legumes     

Ungrazed 3841 2681 2034 0.444 
Grazed 899a 3491b 3565b 0.018 
P (column) 0.026 0.498 0.273  

     
Echinacea pallida     

Ungrazed 625a 188ab 1b 0.029 
Grazed 25 248 50 0.421 
P (column) 0.059 0.786 0.643  

     
(B) Late June     

All Forbs and 
Legumes     

Ungrazed 3426 4788 5457 0.505 
Grazed 1433a 7780b 5982b 0.016 
P (column) 0.185 0.412 0.867  

     
Monarda fistulosa     

Ungrazed 0 0 380 0.150 
Grazed 72.5 8.7 0.0 0.767 
P (column) 0.482 0.812 0.086  

     
(C) Late July     

All Forbs and 
Legumes     

Ungrazed 2487 2655 2749 0.957 
Grazed 1941a 5185b 3101ab 0.042 
P (column) 0.577 0.073 0.600  

     
Liatris 
pycnostachya     

Ungrazed 608a 71b 215b 0.006 
Grazed 77 119 81 0.645 
P (column) 0.001 0.503 0.228  
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Figure 1.  Maps showing (a) the location of Missouri within the U.S.A., and (b) the 
locations of Speyeria idalia study sites in southwestern Missouri.  Three of the 
conservation areas (Taberville, Wah’kon-Tah, and Niawathe) are native, unplowed 
prairies, whereas Bethel Prairie Conservation Area has been plowed and restored to 
tallgrass prairie. 
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Figure 2.  Map showing the experimental design at the Taberville Prairie Conservation 
Area in southwestern Missouri.  Burn units denoted by the number 1 were burned in 
2005, number 2 in 2006, and number 3 in 2007.  Transects for butterfly and nectar source 
sampling are indicated by bold lines within each burn unit. 
 
 



 

  

VITA 
 

Raymond Andrew Moranz 
 

Candidate for the Degree of 
 

Doctor of Philosophy 
 
 
Dissertation:  THE EFFECTS OF ECOLOGICAL MANAGEMENT ON TALLGRASS 

PRAIRIE BUTTERFLIES AND THEIR NECTAR SOURCES 

 
 
Major Field:  Natural Resource Ecology and Management 
 
Biographical: 
 

Personal Data:  Born in Pittsburgh, PA 
 
Education: 
Bachelor of Science, Biological Sciences, Cornell University, Ithaca, NY, May 

1990 
Master of Science, Zoology, University of Florida, Gainesville, Florida, May 

2005 
Completed the requirements for the Doctor of Philosophy Natural Resource 

Ecology and Management at Oklahoma State University, Stillwater, 
Oklahoma in May 2010. 

  
 
Experience:  Research Specialist, Iowa State University 2008 to present 
 Graduate Research Associate Oklahoma State University 2004-

2008 
Fish and Wildlife Biologist, U.S. Fish and Wildlife Service, 2001-
2003 

    
 
Professional Memberships:  Society for Conservation Biology, Ecological 

Society of America, Society for Range Management, Lepidopterists’ 
Society



 

ADVISER’S APPROVAL:   Samuel D. Fuhlendorf 
 
 
 

 

Name: Raymond Andrew Moranz                                             Date of Degree: May, 2010 
 
Institution: Oklahoma State University                      Location: Stillwater, Oklahoma 
 
Title of Study: THE EFFECTS OF ECOLOGICAL MANAGEMENT ON TALLGRASS 

PRAIRIE BUTTERFLIES AND THEIR NECTAR SOURCES 
 
Pages in Study:    106                 Candidate for the Degree of Doctor of Philosophy 

Major Field: Natural Resource Ecology and Management 
 
Scope and Method of Study:   

The primary goal of my dissertation research was to learn how disturbance-
sensitive butterfly species can persist in disturbance-dependent prairie ecosystems.  I 
conducted three studies, all at the same four tallgrass prairies in southwestern Missouri.  
In Chapter 1, I examine the effects of habitat structure, butterfly species, and butterfly 
size on butterfly detectability, and the corresponding role of distance sampling in 
generating better estimates of abundance.  In Chapter 2, I examine nectar use and nectar 
source selectivity of tallgrass prairie butterflies. In Chapter 3, I examine the effects of 
time since fire, grazing and sampling period on the abundance of Speyeria idalia (an 
imperiled butterfly) and its nectar sources.  Each prairie had two pastures: one 
rotationally burned and grazed by cattle (also known as pyric herbivory), and one 
rotationally burned but not stocked with cattle.  Butterfly population density and floral 
resource availability were assessed in early June, late June, and late July of 2006 and 
2007.   
 
Findings and Conclusions:   

Analyses of distance data revealed substantial variation in butterfly detectability 
among species and among different behaviors, but not between different habitat 
structures.   I recommend that biologists supplement line transect sampling with distance 
sampling for butterfly research.  

Prairie butterfly taxa varied in use of nectar sources.  S. idalia showed strong 
selectivity for a different nectar source during each sampling period.  Multiple butterfly 
taxa were highly selective in for Echinacea pallida.  My findings demonstrate the 
important role that a few subdominant forbs play in conservation of tallgrass prairie 
butterflies.   

S. idalia and its nectar sources show complex responses to time since fire, 
grazing, and sampling period.  In 2007, S. idalia population density was a function of a 
three-way interaction of these factors.  Grazing reduced abundance of S. idalia and two 
preferred nectar sources, Echinacea pallida and Liatris pycnostachya, particularly in 
recently burned patches.  In ungrazed pastures, recent fire appeared to enhance 
abundance of S. idalia and its preferred nectar sources. 

 
 


	THE EFFECTS OF ECOLOGICAL MANAGEMENT ON TALLGRASS PRAIRIE BUTTERFLIES AND THEIR NECTAR SOURCES
	Master of Science in Zoology
	Submitted to the Faculty of the
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER I
	CHAPTER II
	CHAPTER III
	4. Discussion
	VITA
	Raymond Andrew Moranz
	Candidate for the Degree of
	Doctor of Philosophy
	Dissertation:  THE EFFECTS OF ECOLOGICAL MANAGEMENT ON TALLGRASS PRAIRIE BUTTERFLIES AND THEIR NECTAR SOURCES
	Major Field:  Natural Resource Ecology and Management
	Title of Study: THE EFFECTS OF ECOLOGICAL MANAGEMENT ON TALLGRASS PRAIRIE BUTTERFLIES AND THEIR NECTAR SOURCES

