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CHAPTER 1

INTRODUCTION

The topic of this thesis lies at the intersection of algebraic geometry and number
theory; what immediately follows is a brief summary of mathematical work in these
subjects relevant to the proof of the main result of this thesis.

The first study on the genus of a surface is attributed to B. Riemann. In his 1857
work on abelian functions, he established what is known as Riemann’s inequality:
that, for any finite integral linear combination D of points on a Riemann surface S,
it holds that

[(=D) = deg(D) — gs + 1;

with I(—D) the dimension over the complex numbers C of the meromorphic functions
of S of degree at least that of the coefficient of —D at each point of S, deg(D) the sum
of the coefficients that appear in D, and gs the non-negative integer known today as
the genus of S [29]. Later, G. Roch is credited with establishment in 1865 of what is

known as the Riemann-Roch theorem, which, with the previous notation, states that
I(—D) =deg(D) —gs —1+1(D—-W),

with WV a finite integral linear combination of points on § that is attached to a special
type of function, called a differential of S [30].

In 1882, R. Dedekind and H. Weber developed the ideal theory on Riemann sur-
faces, which permitted a purely algebraic interpretation of the theorem of Riemann
and Roch. In place of the meromorphic functions on a Riemann surface was a finite

extension of the field C(X) of algebraic functions [8]. In 1936, H.K. Schmidt extended



the Riemann-Roch theorem to an arbitrary field in place of C [33].

Zeta functions were essential to the early study of algebraic geometry and number
theory. E. Artin is credited with the invention in 1921 of the zeta function of a
curve over a finite field and, in certain cases, proof of what is called the “Riemann
hypothesis” for curves over finite fields, which states that each zero of the zeta function
of a curve over a finite field must have real part equal to one-half [1]. In 1934, H. Hasse
established the Riemann hypothesis for curves over finite fields with genus equal to
one [13]. A. Weil is credited with noting in 1940, and later proving, the validity of
the Riemann hypothesis for all curves over finite fields [39, 40]. Based upon a method
of S.A. Stepanov [35], a concise proof of Weil’s claim was established by E. Bombieri
in 1973 [4].

Part of the early development of modern number theory appears in class field
theory, which has its roots in the theorem of L. Kronecker and H. Weber, first stated
in 1853: that any abelian extension of the rational numbers is contained in a cyclo-
tomic extension of the rational numbers [20]. The first proof of the Kronecker-Weber
theorem is credited to D. Hilbert in 1897 [16]. In 1900, D. Hilbert published a list of
23 fundamental problems in mathematics, the ninth of which called for the establish-
ment of a reciprocity law for number fields that would later become the foundation of
class field theory [17]. The early developments of the reciprocity law, which applied
to number fields, are credited to E. Artin [2], T. Takagi [36], and H. Hasse [12], in
the years from 1920 to 1927. Later, between the years 1931 and 1935, the reciprocity
law was developed for curves over finite fields by F.K. Schmidt [32], H. Hasse [14],
and E. Witt [41].

Let us introduce some definitions and notation. Let F, be a finite field. Let z be
an element that is transcendental over F,. A finite extension of the field of rational
functions F,(z) is called a congruence function field. Let K denote a congruence

function field. Let Fx denote the field of constants of K. Let gx denote the genus of



K. Let hy denote the class number of K.
This thesis is devoted to establishment of the following result. Let F' be a fixed
choice of congruence function field. Let K be a finite abelian extension of F'. It holds

that

lnhK

lim 1.

JK—0 (K IHUFK’ -

The proof of this result is divided into three sections. In Chapter 2, a lower bound is

established as Theorem 1:

Theorem 1. Let K be a congruence function field. It holds that

Inh
liminf — K >,
gr—oc g In |Fi|

The proof of Theorem 1 employs analytic methods to count divisors. In Chapter

3, an upper bound is established as Theorem 2:

Theorem 2. Let F' be a fized choice of congruence function field. Let K be a finite

abelian extension of F. It holds that

Inh
lim sup _nhk <1
gr—oo gr In|Fi|

The proof of Theorem 2 employs properties of zeta functions in conjunction with
ramification theory. In Chapter 4, the main result of this work is stated as a corollary
of Theorems 1 and 2, and a simple example is provided that demonstrates why the
arguments of Chapter 3 do not extend in general beyond the abelian case.

Work on this problem dates to a result of E. Inaba [18], which established, for a
fixed choice of natural number m, that among congruence function fields K with a
fixed choice of constant field F, and an element = of K that satisfies [K : F,(z)] < m,

T L S (1.1)
g =00 g In [IFy|

Furthermore, Inaba showed that among congruence fields K with a fixed choice of

constant field I,

Inh
liminf —K > 1, (1.2)
gr—oc g In|F,|



The work of Inaba depends upon an estimate for the number of integral divisors of
degree equal to 2gx and a bound for the value of the zeta function of K near one. M.
Madan and D. Madden [24] extended the work of Inaba by proving, for congruence

function fields K with a fixed choice of constant field F, and an element x of K, that

im Inhg
rg @) o g In [Fy|
9K
The result of Madan and Madden employs the basic mechanics of Inaba’s proof. S.
Gogia and I. Luthar [23] established a result similar to the equality (1.1) of Inaba.
Also, using methods similar to those of Inaba, M. Tsfasman [37] independently es-
tablished (1.2).

By use of an explicit formula for the genus obtained by D. Hayes [15], P. Lam-
Estrada and G. D. Villa-Salvador [21] established that the cyclotomic extensions K

of a fixed choice of rational congruence function field IF,(7) satisfy the relation

li In hK
im ——— =
gx—00 grc In |IFy|

The work of Lam-Estrada and Villa-Salvador employed a lower bound for the degree
of the different of a cyclotomic extension of a rational congruence function field. Each
cyclotomic extension of F,(T') is geometric, meaning that the field of constants of such
an extension is equal to F, [38].

By use of a result in class field theory that employs the idelic topology [3], G.
Frey, M. Perret, and H. Stichtenoth [10] obtained a lower bound for the degree of the
different of a finite, geometric, and abelian extension of a congruence function field.
As shown in the proof of Theorem 2, a much more simple proof is possible: one only
needs the density theorem of Cebotarev for totally split places in a Galois extension
of a congruence function field [38] and the result from global class field theory that
the Artin map of a finite, unramified, and abelian extension of a congruence function

field is trivial for principal divisors [19].



CHAPTER 2
THE LOWER BOUND

In this section is given the proof of Theorem 1. The proof proceeds as follows:

1. Count the number of monic and irreducible polynomials of a given degree with

coefficients in a finite field via Mobius inversion [25];

2. Estimate the number of places of a given degree for a congruence function field

via Mobius inversion and Riemann’s hypothesis [4];

3. Obtain a lower bound for the number of integral divisors of degree 2¢g via the

Riemann-Roch theorem [30].
Henceforth, let K be a congruence function field.

Lemma 1. Let © € K\Fg. For each m € N, let ¢)(m) be the number of monic

irreducible elements of F i [x] of degree in x equal to m. Let p be the Mébius function
[26]. It holds for each m € N that
1 m d
blm) = — ;u (%) Fxl”.

Proof. Let |Fg| = q. Let m € N. For each f € Fg[z], let d,(f) denote the degree of

f in . One has the identity of polynomials

xqm—x:H H f(z).

dlm  feFg|x]
f monic

f irreducible
dz(f)=d

By equation of degrees in x, one obtains that

¢" = dy(d).
dlm



By Mobius inversion [25], it follows that

wom) = =S u (%) o
dlm
0

Definition. Let Py be the collection of places of K [38]. Let B € Py with associated

valuation vy, valuation ring ¥y, and maximal ideal 3. The degree of P in K is defined

as di (B) = [Ip/P : Fxl.

Definition. Let 2 be a divisor of K, written as
A= H DRSO

PEPK

The degree in K of 2 is defined as
di(A) = ) vp()di(P).

PePK
Definition. Let s € C with Re(s) > 1. For each non-negative integer n, let A,
denote the number of integral divisors of K of degree in K equal to n. The zeta

function of K is defined as

o0 An
s) = :
CK( ) g |]FK|S
Lemma 2. Let x € K\Fg. Let Py denote the collection of places of Fi(x); let do

denote the degree function for the divisors of Fx(x). For each m € N, let

nm = [{p € Po | do(p) =m}| and Ny =[{P € Px | di(P) = m}|.
It holds for each m € N that |N,, — | < 4gx|Fx|? .

Proof. Let |[Fg| =q. Let s € C with Re(s) > 1. Let u = ¢~*. One may write

()= 11 (1 - q@{%) T ﬁ (1—u*) ™.

k=1



Application of the logarithmic derivative yields

k=1

Co(s)  d d | | - .
= 2 nels)) = & [Z—Nk (1n (1~ >>] =g} San |

Let {p(s) denote the zeta function of Fx(x). One has similarly

G 5y o
S ()

Thus

Cre(s)  ¢ls) o0 .
J— — _1 d . '
OO > (Zm e nd)) '
Let Pk (s) = (1—u)(1—qu)Ck(s). It is well-known [9] that there exist wy, ..., wa,, € C
with

29K

Pi(s) =] (1 = wiw).

i=1

Let po € Py be chosen with associated valuation v, defined for each f, g € Fx[z] as

e (f) — du(g) — du(f).

g
One obtains that

1! 1\ 1\
CO(S) - H (1 - qdo(p)s) - (1 B qdo(poo)s) H (1 o qu(p)s)

pelPy pePy

() ()

It follows that

(k(s)

PK(S) = CO(S) .

Thus

Cels)  Gols) _ d [m (CK“)ﬂ = L (P = & [Z In (1 —wm)]

Cels) Gols) ds |\ Go(s)

29K 29Kk oo

e’} 2g
= lnqz . ijzzlu = lnqz Zwlﬂum = lnqz <iw§”> u™.
i=1 m=1 \i=1

i=1 m=1



Therefore

—lnqi Zd(Nd—nd) lan<ZKw )

m=1 dlm

As this holds for all such s, it follows for each m € N that

29K

Zde—nd Z(JJ

Let m € N. By Mobius inversion [25], it follows that

= 3 () S
m— Nm = md|m u 7 iZIwi .

Thus
1 29K 29K m 29k
d d
N =l < 0 () et < S el < 30D
dlm dlm =1 d=1 i=1

By Riemann’s hypothesis, it follows for each i = 1, ..., 2¢ that |w;| = q: [4]. Therefore

S e RS 29Kq% g% —1
oD lel! = DTS Lt = M (L) < g
d=1 i=1 M= = qz —1
The result follows. O

Definition. Let Ck denote the group of divisor classes of K. Let C' € Ck. Let
A€ C. Let 2y, ...,2, be divisors that also lie in the class C'. For each ¢ = 1,...,n, let
r; € K* satisfy (z;) = 20,2071, The divisors 21y, ..., 2, are called linearly independent

if the elements z1, ..., z,, are linearly independent over [F.

Definition. Let Dy denote the group of divisors of K. For each 21 € Dy, let
L) ={x € K |vg(x) > vp(A) for all P € Px}.

Let I (1) = dimp,. Li(2A).

Lemma 3. Let C € Ck. Let Ng(C) denote the mazimal number of linearly indepen-

dent integral divisors of C'. Let A € C. It holds that Nk (C) = lx(A™1).



Proof. Let 2y, ...,20, € C be linearly independent and integral. Let 2 € C'. For each
i=1,...,n, let ;A" = (z;)x. Thus the elements 1, ..., z,, are linearly independent
over Fg. As the divisor 2; is integral for each i = 1, ..., n, it follows that the elements
Ty, . Ty lie in L (A7Y). Thus n < I (A7H).

Conversely, let m = [ (A™"). Let yi, ..., ym be a basis of Ly (A1) over Fx. Thus
for each i = 1,...,m there exists an integral 8; € D with (y;)x = B, L. Tt follows
that the divisors By, ...,8,, lie in C' and are linearly independent. O

UFK|NK(C)*1
[Frc|—1

Lemma 4. Let C' € Ck. The number of integral divisors in C' is equal to
Proof. Let 2 € C. Let B € C be integral. As 2,8 € C, it follows that B = () g2
for some a € K*. As B is integral, it follows that o € L (A7), Let |Fx| = ¢. By
the definition of I (2A~'), the number of non-zero elements of Ly (2A~') is equal to

¢'*@™) — 1. Furthermore, two elements «, § € K* satisfy (a)x = (8)x if, and only

if, a = af for some a € [}. It follows that the number of integral divisors in C' is

qu(er

q_1)_1' By Lemma 3, the result follows. =

equal to

Theorem 1. Let K be a congruence function field. It holds that

1
liminf — S
gx—o g In |Fg|

Proof. Let |[Fg| = q. Let C € Ck. Let Wg denote the canonical class. By the

Riemann-Roch theorem [30], it holds that
Nk(C) =dg(C) — gx + 1+ Ng(WxC™).
Suppose that dx(C) = 2¢gx. Once again by the Riemann-Roch theorem, it holds that
dg(CWY) = dg(C) — dxg (W) =295 — (295 — 2) = 2.

Let 2l € C. Let w be a non-zero Weil differential of K. Let (w)x be the divisor
associated with w. Each principal divisor of K is of degree zero [9]. By Lemma 3, it

follows that

NK(WKcil) = ZK(QL(UJ);{l) = dim]FK LK(Q[(W);(l) = dlm]FK{O} =0.



Thus

dg(C) — g + 14+ Ng(WrC ™) =dg(C) — g +1+0 =295 — g +1 =g + 1.

qNK(C)_l

By Lemma 4, the number of integral divisors in C' is equal to e Thus the

number of integral divisors of K of degree in K equal to 2gx is equal to hy (quilfl)
The place p, is the only place of Fg () that is not associated with a valuation
determined by degree in an irreducible element of Fylx]. As dy(ps) = 1, it follows

for each integer m > 2 that n,, = ¢(m). It may be assumed that gx > 1. Thus

Nag = ¥(29K). By Lemmas 1 and 2, it follows that

¢t -1 g 9K
hic \ =) 2 Voo 2 g — Agieg”™ = 0 (20x) — dgxc

29K
q 1 29
>l > (TK) q’| — 4grq’™

20k |29k v
d<2gK
29K
q
> 5 —— D, "= dgke’™
9K d|2g9K
d<2gK
29K 9K
q d
> = > ¢ —49rq™"
S (4gx + 2)q7%
> — — (49x +2)q¢°".
29K

Thus

hy > ¢—1 g — (4gx +2)¢7% ) .
T\t =1/ \ 2¢x

By basic calculus, if gk is large enough it holds for any prime power ¢ that

(q—1)got

hi >
k= 49K

As gk > 1 and g > 2, it follows that

In hg - In(qg — 1)

+1_i_ln4g;<>lnq—1+1 1 Indgyx

grklng = gklng gk 9xlng — gkxlng gk gklng
B 1+ 1Indgx 51 1+ 1Indgk
a grlng grln2 -

10



CHAPTER 3
THE UPPER BOUND

In this section is given the proof of Theorem 2. The proof proceeds as follows:

1. Establish the upper bound of Theorem 2 for those congruence function fields
with a condition on the growth of the genus via ramification theory [38] and

Riemann’s inequality [29];

2. Obtain an upper bound for the degree of a finite, abelian, geometric, and un-
ramified extension of a congruence function field via ramification theory [38],

Cebotarev’s density theorem [38] and global class field theory [19];

3. Obtain a lower bound for the degree of the different of a finite and abelian
extension of a congruence function field via higher ramification theory [38] and

the Hasse-Arf theorem [28];

4. Derive a contradiction for a sequence that violates the statement of Theo-
rem 2 via the Riemann-Roch theorem [30], Riemann’s hypothesis [4], and the

Riemann-Hurwitz formula [38].

Definition. Let F' be a congruence function field. Let p € Pr. Let K be a finite

extension of F'. Let {K|p} denote the collection of places of K that lie above p. Let

n(Klp) = [{K|p}|

Henceforth, let F' be a congruence function field, and let K be a finite extension

of F.

11



Definition. The ramification index of P|p is defined as e(Plp) = |vgp(K™*) /vgp(F)].
The relative degree of Blp is defined as f(*Plp) = [Jyu/PB : ¥, /p].

Henceforth, unless otherwise noted, let p € Pr, and P € {K|p}.
Lemma 5. [t holds that n(K|p) < [K : F].

Proof. By Riemann’s inequality [29], one has that
Lp(p~ D) 2 dp(p!) — g + 1= (gp + 1)dp(p) —gr +1 2 gp +1—gr +1=2.

By Lemma 3, there exists a € F\Fr and an integral 2 € Dy with (a)p = por 1!
and 2 relatively prime to p. Let B € Dx be integral with (a)x = Bt - - BB~
each of ay, ..., a, positive, and B relatively prime to each of By, ..., B,.. For P € {K|p},
one has that v,(«) > 0 if, and only if, v(a) > 0. It follows that {1, ..., B, } = {K|p}
and r = n(K|p). Also, one has for each i = 1,...,n(K|p) that a; = (gr + 1)e(Bilp).

By basic function field theory [9], this yields that

n(K|p)
(K Fre(o)] = dre (B - 'spzrgl(?g‘pp))) - Z a;d (Pi)
n(Klp) n(Klp) 4
= (gr+1) Z e(Pilp)dx (B) = (g7 +1) D mp)%

J ne
g + 1) d
- e Z (B p) (B Ip)
-1
Likewise, one obtains that [F : Fp(a)] = dp(p?" ) = (9r + 1)dp(p), Thus

n(K|p)

(97 +1)dr(p) Z e(Bilp) f(Bilp) = [K : F(o)][Fi : Fr]

= [K:Fr(a)][Fg(a): Fp(a)] = [K : Fp(a)]

= [K: FI[F:Fp(a)] = [K : Fl(gr + 1)dr(p)-

Therefore
n(Klp)
Y e(Bilp)f(Bilp) = [K : Fl.
i=1
In particular, it follows that n(K|p) < [K : F. O

12



Lemma 6. Let v € K\Fg. It holds that

Inh
lim sup _ e <1
[KFx@)] 9K 1H\FK|
9K

Proof. Let |[Fx| =q. Let C € Ck. By Riemann’s inequality [29], one obtains that

NK(C) > dK(C) —JK + 1.

Suppose that dx(C) =mn > 0. Thus

qNK(C) —1 S qu(C)*gKJrl 1 _ qn*QKJrl -1
qg—1 = qg—1 qg—1
By Lemma 4,
n—gk+1 __ 1
An Z th
qg—1
Let s € R with s > 1. One has
= A, = A, > gkt 11
k()= >y —n> ) hg—————0
n=0 q n=gg q n=gg q- 1 q
_hK iqngKJrl_l 1 _hKianrl_ll _hKC(S)
- s _ n— s s _ ns s >0 :
qI% = q 1 q( gK) qI% o q 1 q qIK

Let p be a place of Fi(z). Let P € {K|p}. The relative degree f(B|p) satisfies

dx (B) = f(Blp)do(p). Thus

1 1 1
L= gix(B)s 1= ¢ Fl)do(w)s =1- qlo®)s”

By Lemma 5, the set {K|p} is finite. Let {K|p} = {B1, ..., Bu(xp) }- Also by Lemma,
5, it holds that n(K|p) < [K : Fg(z)]. This yields that

n(Klp) n(Klp)

1 1oy 1 1 L\
11 S 11 T dE®hms ) =\ 7T ds

i=1 =1

1 [K:Fk(z)]
(1 o qu(p)S) ’
Therefore

1 -1 1 —[K:Fk ()] (K Fre ()]
)= 1T (1= ) < I (1 o) = o{s)H <R,

‘I‘GPK pG]P’()

v

13



It follows that

Co(s) < Cre((s) < Cols)!F T,

In particular, one has that 22 < (y(s)FFx@I-1  Application of the logarithm yields

qIK?
that
Inhg —grgslng < ([K: Fg(x)] — 1) Ino(s).
Also, let T' be transcendental over F5. As s > 1 and g > 2, it holds that

1 1

W) = Ty S T — 2

= (ry(1)(5)-

As q > 2, it follows that

In hg < a4 ([K : Fg(z)] — 1) Ino(s) - (K Fr(x)] — 1) InGryery (s)
grlng ~ grIng B gr In2 '

[K:Fg(x

Let ¢ € R with e > 0. Let s = 1+ 5. Let the quantity i I be chosen small

enough that

([K :Fg(x)] — 1) InGryr)(s) < €
Therefore
Inh K:TF — 1)1
nK§1+f+([ k()] )HCFQ(T)(S)<1+§+£:1+6.
gk Ing 2 g n2 2 e

Henceforth, let K be a finite and Galois extension of F'.

Definition. Let 0 € Gal(K|F). Let o(B) € Pk be defined, for each a € K, as

Vo) (@) = vps(0™ ().

Lemma 7. Each of the quantities e(B|p) and f(P|p) is independent of the choice of
P e {Klp}-

Proof. Let P' € {K|p}. Suppose that o(B) # P’ for all o € Gal(K|F). By Artin’s

approximation theorem [28], there exists o € K with vy () > 0 and, for each

14



o € Gal(K|F), vy (o(a)) > 0 and vgp(o(a)) = 0. Thus

Up(Ngjpar) = e(PBlp)vgp(Nrra) = e(Blp)vyp ( H 0(04))

o€Gal(K|F)

=e(Blp) Y. vplo(a) =0.

o€Gal(K|F)
Also,
vp(Npa) = e(P'|p)og (Ngjpa) = e(P'|p)oy H o(a)
oeCal(K|F)

=e(PBlp) Y vplo(a) = e(Bp)uy(a) > 0.

oeGal(K|F)
This is a contradiction. Thus there exists o € Gal(K|F') with o() = P’. Let o € F*

with v,(a) # 0. Thus

e(P'[p)vp(a) = vy (@) = vo (@) = vp(o (@) = vp(a) = e(PBlp)vp(a).

It follows that e(*P'|p) = e(P|p). Furthermore, as o(P) = F', it holds that o(dy) =

Yq. Thus o induces an isomorphism of Jy /P with Jg /P’ over ¥, /p. Therefore

F(Blp) = /B : /] = [ /B /] = F(BIp)-

Lemma 8. [t holds that [K : F| = n(K|p)e(B|p)f(Blp).

Proof. By Lemma 5, the set {K|p} is finite. Let {Klp} = {B1,....Buxp}- By
Lemma 7, it holds for each ¢ = 1,...,n(K|p) that e(P;|p) = e(P|p) and f(Pi|p) =
f(Bp). By the proof of Lemma 5, it follows that

n(K|p)

(K Fl =" e(®ilp) f(Bilp) = n(K]p)e(Blp) f(Blp).

i=1

15



Definition. The decomposition group of P|p is defined as

D(Blp) = {0 € Gal(K|F) | o(%) = B}.
Lemma 9. It holds that |D(B|p)| = e(PBlp) f(B]p).

Proof. The group D(B|p) is by definition the stabiliser of B for the action of Gal( K |F')
on {K|p}. By the proof of Lemma 7, Gal(K|F') acts transitively on {K|p}. Thus

[K : F]

IDEBIP) = o

By Lemma 8, the result follows. O

Definition. The inertia group of B|p is defined as
I(Blp) = {0 € Gal(K|F) | for each a € K, o(a) = o mod B}.

Lemma 10. [t holds that |I(B|p)| = e(Blp).

Proof. For o € Yy, let @ := a mod PB. The field Jy/P is a finite and Galois ex-
tension of ¥,/p [7]. In particular, there exists a € ¥y with Jg/P = ¥,/p(@). An
element of Gal(Jyg/B|Jy/p) is completely determined by its action on @. By Artin’s
approximation theorem [28], there exists o € K so that vg(a/ —a) > 0 and, for each
P € {K|p} with P’ # B, vy (a’) > 0. In particular, it follows that o’ € Yy and
o =a. Let

=11 @ -aa).

o€Gal(K|F)

By the definition of o/, it follows that f(7") € 9,[T]. Furthermore, if an element
o € Gal(K|F) is not contained in D(B|p), it follows that c~1(P) # PB. Also by the
definition of o/, it holds for such ¢ that vp(c(a’)) = vo-1(a’) > 0. Let f(T) :=

f(T) mod p. It follows for some non-negative integer n that

=1 1] (T-o(a)).

o€D(PBlp)

16



Let ¢ : D(B|p) — Gal(Jy/B|Yy/p) be defined for each o € D(P|p) and S € Iy as

7(8) = o(B). By the previous argument, each Galois conjugate of o’ over 9, /p is of

the form o(o’) for some o € D(PB|p). Thus ¢ is surjective. Also, by the definition of

I(*Blp), one obtains that the kernel of ¢ is equal to I(*B|p). By Lemma 9, it follows

that
1) = — PRI () (Blp) _ c(Ble)/(Flp)
|Gal(dqs /B0y /p)|  |Gal(Pp /Bl /p)|  [D/B : Jyp /1]
IRV
R

Lemma 11. Let E be a finite field that contains Fr. It holds that

n(EF|p) = ([E : Fr|,dr(p)).

Proof. Let P € Prp with Blp. As J,/p C J3/P and E C 9y /B, it follows that
(0p/p)E C U/ PB.

For the converse, let y € ¥y. By Artin’s approximation theorem [28], there exists
y" € EF with vgp(y" — y) > 0 and, for each P’ € {EF|p} with P’ # B, vp(y') > 0.
Let £ € E with E = Fp(§). Let m = [E : Fg|. One may write

y = Z @ifi
i=0

with ay,...,a,, € F. Also, EF is a finite and Galois extension of F' [7]. Let y'(!) =
v, y'?, ..., 4™ be the Galois conjugates of 4’ over F. By Cramer’s rule [22], it follows

for each 7 = 1, ..., m that
j=1
with ¢;1,....,tim € E. Let 0 € I(P|p). By the definition of I(B|p), it holds that

vp(o(€) =€) > 0. As & € E and vy is trivial on E, it follows that o(§) = . By
Lemma 10, this yields that e(Blp) = [I(P|p)| = 1. Furthermore, by the definition
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of v/, it follows for each j = 1,...,m that y'¥) € Yg. Thus one obtains for each

1 =1,...,m that

n
vp(ai) = vp(a;) = vy (Z ti,jy'(j)) > llgljign{vm(y'(j))} > 0.
j=1 ==

Therefore vy /P = (Vy/p)E. Let ¢ = |[Fp|. Let r = dp(p), s = dgp(B), and t =
F(PIp). Thus Fyen = FyFyn = F . Therefore digp(P)[E : Fr] = [dp(p), [E : Fg]].

As EF is a finite and Galois extension of F, it follows by Lemma 8 that

B [EF : F| B [E: Fgl B [E: Fgl B dr(p) B '
MEFR) = R TRl ORI SRR TORlR) e PN Fr)

O

Definition. The place p is said to split totally in K if e(Plp) = 1 and f(P|p) = 1.

The collection of places of F' that split totally in K is denoted by S(K|F).
Definition. K is called a geometric extension of F' if Fx = Fp.

Lemma 12. Let H be a finite, Galois, and geometric extension of F'. Let 9(H|F) =

ged{dp(p) | p € S(H|F)}. It holds that 9(H|F) = 1.

Proof. Let E be the extension of Fr that satisfies [E : Fr| = 0(H|F). Let p € S(H|F).
By the definition of 9(H|F), it follows that [E: Fg| | dp(p). Let P € {EF|p}. By

Lemma 11, one obtains that
n(EFp) = ([E:Fr],dr(p)) = [E: Fp].

The field EF is a finite and Galois extension of F' [7]. By Lemma 8, it holds that

_[EF:F]
e(Blp)f(Blp)

As [EF : F| = [E : Fg], it follows that p € S(EF|F).

n(EFp) =

Let Q € {EH|B}. Let | € Py so that Q € {EH|R}. As each of EF and H

is a finite and Galois extension of F, it follows by basic Galois theory that EH is a
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finite and Galois extension of F', and that the decomposition group D(Q|p) restricts
injectively onto the product of D(B|p) with D(2R|p) [7]. By Lemma 9, it holds that
[D(B[p)| = e(Plp)f(Blp) and [D(R[p)| = e(Rp)f(R[p). As p lies in both S(H|F)
and S(EF|F), it follows that each of the groups D(B|p) and D(R|p) is trivial. Thus
the group D(Q|p) is trivial. Once again by Lemma 9, one obtains that e(Q|p) = 1
and f(Qlp) = 1. Therefore p € S(EH|F).

Conversely, suppose that p € S(EH|F). By Lemma 9, it follows that e(Q|p) =1
and f(Q|p) = 1. With the previous notation, the definitions of ramification index
and relative degree yield that e(PB|p) = e(P|R)e(R|p) and f(P|p) = F(BIR) f(R]p).
Thus e(R|p) = 1 and f(R|p) = 1. Therefore p € S(H|F).

By the previous argument, it follows that S(EH|F) = S(H|F'). Let 6 denote
Dirichlet density. By Cebotarev’s density theorem, one obtains that §(S(H|F)) =
[H: F]™" and §(S(EH|F)) = [EH : F]~' [38]. Thus EH = H. As H is a geometric

extension of F| it follows that E = Fp. Therefore 0(H|F) = [E : Fp| = 1. O

Lemma 13. Let H be a finite, abelian, geometric, and unramified extension of F'. It

holds that [H : F| < hp.

Proof. Let M be the fixed field of the image of the Artin map of H|F in Gal(H|F)
[28]. By the definition of M, it holds that S(M|F) = Pp. By Cebotarev’s density
theorem, one obtains that §(S(M|F)) = [M : F]~' and §(Pr) = 1 [38]. Thus M = F.
By the Galois correspondence, the Artin map of H|F surjects onto Gal(H|F') [7].
Let the Artin map of H|F be written for each a € Dp as (A, H|F). Let o €
Gal(H|F). By the previous argument, there exists a € Dp with (a, H|F) = 0. By

Lemma 12, there exist py, ..., p,, € S(H|F) and integers ay, ..., a,, with

=1

Let n = dp(a). Let b = p{*---p%m. Thus (b, H|F) is trivial and dp(b) = 1. Therefore
(ab ", H|F) = (a,H|F) and dp(ab™™) = 0. Let Dp( denote the group of divisors
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of F' of degree equal to zero. By the previous argument, it follows that the Artin
map of H|F for Dp, surjects onto Gal(H|F). Let Pr denote the group of principal
divisors of F'. By global class field theory, the Artin map of H|F is trivial for Pr [19].
Therefore

[H : F| = |Gal(H|F)| < |Dpo/Pr| = hp.
]

Let F, denote the completion of I’ for p. Let p be identified with its unique

extension fo F}, [28].

Lemma 14. Let V be a finite extension of F,. Let P € {V|p}. It holds that {V|p} =

B. Furthermore, V is complete for the place *B.

Proof. Let n = dimp, V. If n = 1, the result is immediate. Let n € N with n > 1.

Let {o, ..., .} denote a basis of V over F},. For each m € N, let

n
Tm = E i mQ;
i=1

with @1, ..., nm € Fy. One has, for each element m € N, that

n
U () = U&B(Z Wi Qi) > 1r§ii<nn{v<p(ai,mozi)} = fgigln{vqs(ai,m) + v () }
i=1 == ==

> min {vg(a;,)} + min {vg(a;)} = min {e(Plp)vy(aim)} + 1rnin {vp(c)}

T 1<i<n 1<i<n 1<i<n <i<n

= e(Blp) min {vy(aim)} + @ignn{vm(%)}-

1<i<n

Thus if lim”

P @im =0 for each i = 1,...,n, then lim* . =, = 0.

m—o0 YMm
Conversely, suppose that there exists i € {1,...,n} so that {a;m}men is not con-
vergent to zero for p. Thus it may be assumed that there exists N € N so that, for

each m € N, vy(a;,,) < N. It follows for each m € N that

U ( » ) = vp(@m) — vp(aim) = vg(zm) — e(Blp)vp(aim) > vy (zm) — e(Blp)N.

Aim
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Thus lim® , 2= — (. It follows that the sequence {Z — aj} is convergent
, meN

M—00 a; m J#Z Aq,m

for %B. By induction, for each j € {1,...,n} with j # 4, there exists a; € F, so that

imP aj,m
11mm~>oo ai,m

= a;. Therefore

a; = Z —a; 0.
i
This is a contradiction. The result follows. O

Let Ky denote the completion of K for B. Let ‘B be identified with its unique

extension to K.
Lemma 15. The field Ky is a finite and Galois extension of F,.

Proof. Let K be identified with its image in K. As K is a finite and Galois extension
of I, it follows from basic Galois theory that KFj is a finite and Galois extension of

F, [7]. By Lemma 14, one obtains that K F} is complete for the place . Also, one
has that K C KF, C Ky. It follows that KF, = K. O

Definition. For each non-negative integer n, the nth ramification group of Blp is

defined as
Gn(Blp) = {0 € Gal(Kp|F,) | for each o € Vg5, vgp(o(a) —a) > n+1}.
Lemma 16. [t holds that |Go(B|p)| = e(Blp).

Proof. By Lemma 10, it suffices to show that |Go(P|p)| = |Z(P|p)|. By the definition
of the inertia group, it holds that I(B|p) C D(P|p). By the proof of Lemma 14, it
follows that each o € I(*B|p) extends continuously to an element 6 € Gal(Ky|F}).

Let o € K. Let {ap neny C K with lim* . __ «a, = a. This yields that

n—oo N

o(a) = lim o(ay,) = lim «, mod P = a mod P.
n— oo n—oo

Thus ¢ € Go(mhﬂ)
Conversely, let n € Go(*Blp). By the definition of Go(*B|p), it holds that n|x €
I(B|p). Therefore the elements of I(P|p) and Go(P|p) are in one-to-one correspon-

dence. 0
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Definition. A jump in the ramification of B|p is a non-negative integer n so that
Gn(Blp) # Gni1(Blp). Let E(P|p) be the number of jumps in the ramification of
Blp. Let asp)y be the differential exponent for PB|p [38].

Henceforth, let each n € Gal(Kg|F,) be identified with 7|k.

Lemma 17. Each of the quantities k(B|p) and oy is independent of the choice of
P e {Klp}-

Proof. Let n be a non-negative integer. Let o € Gal(K|F). Let n € G,(c(B)|p). Let
B € Vq. As 0(Vdq) = Uy, it holds that o(f) € Vo). Thus

vp(0 0o (8) — B) = vp(0 10(8) — 07'0(8)) = v (00 (8) — 9(8)) = m + 1.

This implies that G,(c(R)[p) = ¢G.(P|p)o~!. In particular, one obtains that
|G (a(B)|p)] = oG (Blp)o~t| = |G.(Blp)|. It follows that the jumps in the ram-
ification of Pp are the same as the those in the ramification of o(P)|p. By the
proof of Lemma 7, Gal(K|F) acts transitively on {K|p}. It follows that |G, (B|p)| is
independent of the choice of 9 € {K|p}. This establishes the result for k(B|p).

By ramification theory [38], it holds that

o0

agp = Y _(IGi(Blp)| - 1).
=0
By the previous argument, the result also follows for auy. O

Henceforth, let K be a finite and abelian extension of F.
Lemma 18. [t holds that Ky|F, is finite and abelian.

Proof. As Gal(K|F) is abelian, so must D(B|p) also be abelian. By Lemma 15, one
has that Ky is a finite and Galois extension of F},. Also, by the proof of Lemma 14,
Gal(Kp|Fp) is isomorphic to D(*B|p). The result follows. O

Lemma 19. The group Go(B|p) is independent of the choice of B € {K|p}.
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Proof. By the proof of Lemma 17, one has for each o € Gal(K|F') that Go(a(P)|p) =
oGo(PBlp)o~!. As Gal(K|F) is abelian, it follows that oGy (B|p)o~! = Go(Blp). By

the proof of Lemma 7, Gal(K|F') acts transitively on {K|p}. The result follows. O
Lemma 20. It holds that agy > 1k(B|p)e(Blp).

Proof. Let the jumps in the ramification of B|p be denoted by 71 (B|p), ..., 7kppp) (BP)-
Let n1(Blp) = r(Plp) + 1. Also, for each m = 2,..,k(Blp), let n,(Plp) =
T (BPp) — 71 (P|p). By Lemma 18, it holds that Ky is a finite and abelian ex-
tension of F,. By the Hasse-Arf theorem [28], it follows for each m = 1,..., k(B|p)

that |Go(B|p)| ) P (B19)G 01 (Blp)|. By ramification theory [38], it follows that

>
BN
b
=2

A

gl = T (BIP) (IGrpiey) (Blp)| — 1)

3
[

ol
—~
48
=
=

T (BI9) |G 1) (BIP)| (1 = 1G ey (BIP) )

1
BRilng
=

(V4
N = N

T (BIP) G (1, o31)) (B D)

3
Il

k(Bp)|Go(Blp)|.

By Lemma 16, the result follows. O
Lemma 21. [t holds that e(B|p) < [9,/p|FFIP.

Proof. By Lemma 15, it holds that Ky is a finite and Galois extension of F,. Let
n € Gal(Kg|F,). The field g/ is a finite and Galois extension of 9J,/p [7]. Let
mo € Gal(Jyp/B|Yy/p) be defined for each a € Vg as 7y( mod P) = n(a) mod P.
Let myp be prime for . Let 1)y be defined for each o € Go(*Blp) as (o) = %‘
By ramification theory, the map vy induces an injection of Go(PB|p)/G1(B|p) into
(V/PB)* [38]. Let 7 € Gal(dp/B|Vy/p). By the proof of Lemma 10, there exists

n € Gal(Ky|F}) so that 79 = 7. Let 0 € Go(*Blp). By Lemma 18, it holds that Ky is
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an abelian extension of F},. Thus one obtains that

oot (2T N nlolm)) ol
(n(e) mod ) = i (P72 o 1) = 2EERD o gy — IR o

By Lemma 14, it holds that 8 = {Ky|p}. It follows that the element 7(7y) is prime
for B. Also by ramification theory, the map )y is independent of the choice of
prime element for B [38]. This yields that 7(¢o(0) mod ) = y(0) mod B. By
the Galois correspondence [7], it follows that the image of ¢y lies in (J,/p)*. Thus
Go(Blp)/Gr(Blp)| < [(Dp/p)*] < [9,/p.

Let n be a positive integer. Once again, let n € Gal(Kyg|F,). Let 7, be defined
for each o € P" as 7, (a mod P" ™) = n(a) mod P"*1. As before, let my be prime
for B. Let 1, be defined for each o € G,(Blp) as ¥,(0) = % — 1. By rami-
fication theory, v, induces an injection of G,(Blp)/G.1(Blp) into P /P [38].
Let n € Gal(Ky|F,). Let 0 € G,,(B|p). As in the previous argument, one obtains
that 7, (¥, (0) mod P") = 4, (o) mod P"!. By the Galois correspondence [7],

it follows that the dimension over ¥,/p of the image of v, is at most one. Thus

|Gn(Blp)/Gri1(Blp)| < |Yp/p|. Therefore
Th(Plp)

(Go(Blp)l = [T 1G:(Blp)/Gisa (Flp)|
k(;\p)

= T 1Gemcen (Blp) /G pipn1(Flp)]

m=1

< 11, /p)
By Lemma 16, the result follows. O

Lemma 22. Let D g denote the different of K over F'. Let Hy|p denote the mazimal

unramified extension of F' in K. It holds that

(@ rctr) > (K : F]

> W(IB[K:F]—IH [HK‘F:F}).

Proof. By Lemmas 7 and 17, each of the quantities e(Bp), f(B|p), £(B|p), and cugpy

is independent of the choice of B € {K|p}, for each p € Pr. Thus one may write
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e(Blp) = e(Klp), f(Blp) = F(Klp), k(Blp) = k(K|p), and agy = axyp. Let the
collection of places of F' that ramify in K be denoted by R(K|F'). By Lemmas 8, 20,

21, and the definition of the degree of a place, it follows that

k(Dkir) = Z Z akpdr(P) = Z Z agppf(K[p)dr(p)

pER(K|F) Be{K|p} PER(K|F) Pe{K|p}
= Z n(Klp)agpf(K|p)dr(p)

PER(K|F)

1
>3 (Kp)k(K|p)e(K|p) f(K|p)dr(p)

PER(K|F)

K: F

- S kK tr)
PER(K|F)

K F

K : F]
> .
~ 2In|Fg| pe}%}gm I e(Kp)

By Lemma 19, the group Go(PB|p) is independent of the choice of P € {K|p}, for
each p € Pr. Thus one may write Go(*B|p) = Go(K|p). Let

Grk|F) = H Go(K|p).

peEPFR

By ramification theory [38], the fixed field of Grk|r) is equal to Hir. By Lemma

16 and the Galois correspondence [7], it follows that

> Ine(Klp) =Y In|Go(Klp)| <H |Go(K|p) ) > In

peR(K|F) pePp pePp

H GO(KHJ)'

pEPR

= ID‘GR(K|F)‘ =1In [K : HK|F] = lIl[K : F] —In [HK|F . F] .
The result follows. O

Lemma 23. Let a € Dg. Let a be identified with its image in Dgg. It holds that

d]EK(a) = dK(a).

Proof. By the definition of the degree function, it suffices to prove the claim for

each p € Px. By Lemma 5, it holds that the set {EK|p} is finite. Let {EK|p} =
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{PB1, ... Bu@xkpp) }- Let p be identified with its image in Dgg. In EK, one has the

equality p = PEFP) . -‘BZ(((E"K“‘ES ¥ By the proof of Lemma 5, it follows that

n

dexc(p) = dixe (RPP - T W) = NN EK [p)e (i [p) darc ()

— L Y BB = P B K] = dilp).

=1

O

Lemma 24. Let a € Dg. Let a be identified with its image in Dgy. It holds that

Z]EK(Cl) = ZK(CI).

Proof. Let ELg(a) = {D s i | for each i, a;, € Eand z; € Li(a)}. Let y €
ELk(a). One may write
Y= Z@ixi
i=1
with ay,...,a, € E and 21, ...,2, € Lg(a). Let p € Pg. Let P € {EK|p}. By the

proof of Lemma 11, it holds that e(*B|p) = 1. It follows that

vp(y) = vy <Z am) > min {vp(a;x;)} = min {vg(a;) +vp(z)} = min {vp(r;)}

— 1<i<n 1<i<n 1<i<n
1=

= min {vp(21)} = vy(a) = vy (a).

Thus ELK(CL) C L]EK((I)
For the converse, let y € Lgx(a). Let n = [E : Fgl]. Let € € E with E = Fg(§).

One may write
Y= Z ;€'
i=1

with a1, ...,a, € E. Also, EK is a finite and Galois extension of K [7]. Let y = 3",
y@ ..., y™ be the Galois conjugates of y over K. By Cramer’s rule [22], one may

write, for each i =1, ..., n,

n
a; = Zti,jy(j)
j=1

26



with t;1,....t;, € E. As a € Dg, one obtains for each j = 1,...,n that Uqg(y(j)) >

vgp(a). As e(Plp) = 1, it follows for each ¢ = 1,...,n that

vp(as) = vy (Z ti,jy(j)> = Ugp (Z tijyV ) > f;ljlgn{vm(y(j))} > vg(a) = vp(a).

Thus LEK(CI) C ELK(Cl)
By the previous argument, it follows that Lgk(a) = ELk(a). By basic function
field theory, the field of constants of EK is equal to E [38]. Therefore lgx(a) =

Lemma 25. Let E be a finite field that contains Fg. It holds that gpx = gk -

Proof. Let a € Dk be chosen to satisfy dx(a) > max{2gx — 2,2grgx — 2}. Let a be
identified with its image in Dgg. By the Riemann-Roch theorem [30], it follows that
Z]EK(Ql_l) = CZ]EK(Q[) —grx + 1 and ZK(QL_I) = CZK(QL) — gk + 1. By Lemmas 23 and

24, result follows. O

Theorem 2. Let F' be a fized choice of congruence function field. Let K be a finite

abelian extension of F. It holds that

h
lim sup Sl <1

grc—oo g I |F| —
Proof. Consider a sequence { K, },eny with K, a finite and abelian extension of F' for
each n € N and unbounded sequence of genera {gx, }nen. Furthermore, suppose that
there exists 6 € R with § > 0 and, for each n € N,

Inh K.
Sl S N~ (N
Let x € F\Fp. As Fr is algebraically closed in F', it follows that x is transcendental
over Fr. As Fy|Fp is algebraic, it follows that x is transcendental over Fy. In

particular, one obtains that © € K\Fg. By Lemma 6, there exists ¢ € R with € > 0

and, for each n € N,
(K, : Fr, (2)]
gK'n.

> E.
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Let s € C and n € N. It is well-known [9] that there exist wy, ..., wa,, € C with

29K,

P, (s) = [] (0 — wilFx,|™).

i=1
By Riemann’s hypothesis, one has for each i = 1, ..., 29, that |w;| = |F,|2 [4]. Also,
it is well-known that Pk, (0) = hg, [9]. Thus

29K,

i=1

29Ky,

=1

hk, = Pk, (0) = | Pk, (0)| =

29K,

1 29 n
< [T+ ki) = (14 1Fe )

i=1
It may be assumed, for each n € N, that gk, > 0. Application of the logarithm yields

that
In fug 2in (1 + \FKnli)
n <
gr, In |Fe, | — In |Fg,|

It follows that the sequence {|Fg,|}, oy is bounded. Thus the field

E=]]Fx,

neN
is finite.
Once again, let n € N. By basic function field theory [38], one obtains that

[EK,, : E(z)] = [K, : Fk,(x)]. By Lemma 25, it holds that grk, = gk,. Thus one

obtains the inequality
[EF:E(2)] gek,
£ ~ [EK, : EF]

As K, is a finite and abelian extension of F', it follows by basic Galois theory that
EK,, is a finite and abelian extension of EF' [7]. In particular, it holds that EK,, is a
finite and separable extension of EF. Thus one may define the different of EK,, over
EF; let this be denoted by Dk, gr. As Fr and Fg, are contained in E, it follows
by basic function field theory that the field of constants of each of EF and EK,, is

equal to E [38]. Thus EK, is a geometric extension of EF. Let Hgg,gr denote the
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maximal unramified extension of EF' in EK,,. By the Riemann-Hurwitz formula [38]

and Lemmas 13 and 22, one obtains that

JEK. 1 1
[EK,:EF| [EK, EF] 9%~ T 3EK,  EF] L (Dsrcajer)
1
> S
2 JEF + 3 [EK, : EF] dex, (DEk,[EF)
> grr — 1+ I E| (In [EK,, : EF] — In[Hgk, gr : EF])

1
> -1+ ——(In[EK,, : EF| — Inhgp).
Z JEF +4ln\E\(n[ | —Inhgr)

It follows that the sequence {[EK, : EF]}, y is bounded. However, it also holds that

[EK, : EF] > mg;(n

As the sequence of genera {gk, }nen is unbounded, this is a contradiction. The result

follows. O
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CHAPTER 4
CONCLUSIONS

One obtains as a corollary of Theorems 1 and 2 the main result of this work.

Corollary. Let F' be a fized choice of congruence function field. Let K be a finite
abelian extension of F. It holds that

lnhK

lim 1.

JK—00 (K In UFK’ -
The following example demonstrates that Lemma 6 may not be applied to establish
the previous Corollary in the case of a finite, tamely ramified [38], and geometric tower

of extensions of a rational congruence function field so that each step in the tower is

a Kummer extension [11].

Example. Let p € N be a prime number. Let ¢ = p?>. Let zy be an element

transcendental over [F,. For each n € N, let
P = (2, + 1P — 1 and F, = F,(z0, 21, ..., T0).

Also, let Fy(x¢) = Fy. Let p € Pg, be chosen with associated valuation v, defined for

each f,g € F,[xo] as

f
0 (L) =4 - duto)
One may write 257" = zof () with f(z0) € Fy[xo]. As f has constant term equal to

one, it holds for a place P € {F|p} that

(p+ 1)?1213(351) = U&B(xlfﬂ) = Um(xof(xo)) = 21213(950) + U&B(f(xo)) = 21213(950) = ¢(Blp).

By Lemma 8, it follows that e(B|p) = p+ 1 = [F; : Fy]. By basic function field

theory, any constant extension of Fy is unramified [38]. Futhermore, as ¢ = p?, the
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field IF, contains the p + 1st roots of unity. Therefore Fj is a finite, geometric and
tamely ramified Kummer extension of Fy [38]. Also, as e('Blp) = p + 1, it follows
that vg(z1) = 1. Thus one may repeat this argument inductively, which implies for
each n € N that F), is a finite, tamely ramified, and geometric extension of Fj, as
well as a Kummer extension of Fj,_;. It is now shown that lim, ,. gr, = oo and
liminf,,_ % > 0.

n

Let poo € Pp, be chosen with associated valuation v, defined for each f, g € Fy[z]

as
1\ —q d
Upoo E = duy(9) — duy (f)-
Let n € N. Let y, = -2 Let P € {F,_1[po}. Thus y2t! = =1l € 1493 By

Kummer’s theorem [38], it follows that B splits completely in F,,. Let N;(F},) denote
the collection of places of F,, of degree equal to one. By the previous argument,
one obtains that Ny(F,) > [F, : Fy]. Also, by Riemann’s hypothesis, one has that
IN\(F,)) — (¢4 1)| < 2gp,q2 [4]. This yields that

SRl -+ (p+1)"—(g+1)

2q% Qq%

Ni(F,) — (¢+1)
2q

gF, =

(S

Thus liminf, . gr, = 00.

Let n € N. Let p € Py, be ramified in F,,. Let B € {F,|p}. Foreachi =0,...,n—1,
let P; € Pp, be chosen with P € {F,|B;}. As p is ramified in F),, there exists
i € {0,...,n — 1} so that ; is ramified in Fj;;. By Kummer theory [38], it follows
that x; € 9B;. Therefore z; modP; = 0 € F,. Thus z;_; mod P,—; € F,. As
q = p?, it follows that xffll mod P,_; € F,. This yields that z;_5 mod P, » € F,.
By induction, one obtains that xy mod p € F,. In particular, there exists a € F, for

which p is associated with the valuation v, defined for each f, g € F [zo — o] as

Vs (g) = d@o-o)(f) = d(zo-a)(9)-

It follows that dg,(p) = 1, and that the number of places of Fy that ramify in F,

cannot be greater than ¢. Also, as Fjy is a field of rational functions, it follows that
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r, = 0. Let R(F,|Fy) denote the collection of places of Fy that ramify in F,,. As F,
is a finite, separable and tamely ramified extension of Fy, it follows by ramification

theory [38], the Riemann-Hurwitz formula [38] and the proof of Lemma 5 that

1
gr, =1+ [Fn : Fo] (gFO - 1) + §an (©Fn|Fo)
1

—1- (R By Y Y (@Blp) — s ()

PER(Fn|Fo) Pe{Fnlp}

Z Z e(Blp)dr, (B)

PER(Fn|Fo) Pe{Fnlp}

S1-[Fc Rl Y Y B (Blp)dn )

PER(Fn|Fo) Pe{Fnlp}

:1—[Fn:F0]+[F7127:E)] Z dp,(p)

N =

PER(Fn|Fo)
. [Fn : Fo]
SRV R S
PER(Fn|Fo)
<1+4[F,: F) (3—1).
Thus liminf,_, . EnBo] ), [

n

In general, the asymptotic relationship between class number and genus remains
an open problem. It is worthy of note that the proof of the main result of this
work is similar to the original proof of the classical Brauer-Siegel theorem [6], which
states, for finite normal extensions K of Q with class number hg, regulator Rx, and

discriminant dy, that
lim ———F =
ly‘{;‘fgﬁo In\/|dk|

For example, one may notice that the lower bound of Theorem 1 is effective, whereas

the upper bound of Theorem 2 is ineffective and established by uniqueness of a certain

limit point using the value of a zeta function near one.
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