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CHAPTER 1

INTRODUCTION

1.1 Definitions and Notations

For convenience, we list some notations that are used in this thesis.

Rn: n-dimensional Euclidean space, n ≥ 1, R = R1

U : An open subset of Rn

Ω: A bounded subset of Rn

T, T0: A bounded time variable, 0 ≤ T, T0 < ∞
Q0 = [0, T0)× R: An unbounded subset in R2

Q̄0: The closure of Q0

∂Q: The boundary of Q0

Q = [0, T0)× Ω: A bounded subset of Rn

B(x, r): A closed ball with center x and radius r > 0

Ck(U) = {u : U → R| u is k-times continuously differentiable}
C1,k(U) = {u : [0, T ) × U → R| u is continuous in t and k-times continuously

differentiable in x ∈ U}
C∞(U) = {u : U → R| u is infinitely differentiable} = ∩∞k=0C

k(U) (We say u is

smooth provided u is infinitely differentiable.)

C∞
c (U) = {u : U → R| u ∈ C∞(U) with compact support. The support of a

function is denoted by supp u}
C∞

0 (U) = {u : U → R| u is infinitely differentiable and u vanishes at infinity}
Ċ1(U) = {u : Ū → R| u is continuous and vanish on the boundary of U}
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Lp(U) = {u : U → R| u is Lebesgue measurable, ‖u‖Lp(U) < ∞}, where

‖u‖Lp(U) =
( ∫

U

|u|pdx
) 1

p
(1 ≤ p < ∞)

Lp
loc(U) = {u : U → R| u ∈ Lp(V ) for each V ( U}

S2,2(U): Sobolev Space with k = 2 and p = 2

S1,2
2 (U): Sobolev Space with time t involved, t = 1, k = 2, and p = 2

S1,2
0 (U): The closure of C∞

0 (U) in S1,2(U)

Ṡ1,2
2 (U): The closure of Ċ1(U) in S1,2

2 (U)

ei = (0, . . . , 0, 1, 0, . . . , 0) = ith standard coordinate vector

Dαu(x) :=
∂|α|u(x)

∂xα1
1 · · · ∂xαn

n

= ∂α1
x1
· · · ∂αn

xn
u, where |α| = α1 + · · ·+ αn

F(U) : σ-algebra

Py: Probability measure with respect to y = (s, w), the initial point of a process

Ey: The expectation with respect to the probability measure Py, where y = (s, w)

is the initial point of a stochastic process

Zit: One-dimensional Brownian motion, i = 1, 2, ...

X: A stochastic process X(t, w), with t ∈ [0, T0] and w ∈ Ω

Constants: We use the letter C and K to denote any constant that can be explicitly

computed in terms of known quantities.

There are two types of definitions in this thesis, mathematics definitions and

finance definitions. We present these definitions in the order they appear respectively.

All of these definitions are from [2], [4], [9] [13], and [16].

Definition 1.1 If U is a given set, then a σ-algebra F on U is a family of subsets

of U with the following properties:

(i) ∅ ∈ F

(ii) F ∈ F ⇒ F C ∈ F , where F C = U\F is the complement of F in U
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(iii) A1, A2, ... ∈ F ⇒ A := ∪∞i=1Ai ∈ F

The σ-algebra obtained by beginning with closed intervals and adding everything

else necessary in order to have a σ-algebra is called Borel σ-algebra of subsets of [0, 1]

and the sets in this σ-algebra are called Borel sets.

Definition 1.2 A probability measure P on a measurable space (Ω,F) is a function

P : F → [0, 1] such that

(a) P(∅) = 0, P(Ω) = 1

(b) If A1, A2, ... ∈ F and {Ai}∞i=1 is disjoint (i.e. Ai ∩ Aj = ∅ if i 6= j) then

P
( ∞⋃

i=1

Ai

)
=

∞∑
i=1

P(Ai) .

The triple (Ω,F ,P) is called a probability space.

Definition 1.3 Let (Ω,F ,P) be a probability space. A random variable is a real-

valued function X defined on Ω with the property that for every Borel subset B of R,

the subset of Ω given by

{X ∈ B} = {ω ∈ Ω; X(ω) ∈ B}

is in the σ-algebra F .

Let X be a random variable on a probability space (Ω,F ,P). The distribution

measure of X is the probability measure µX that assigns to each Borel subset B of R

the mass µX(B) = P{X ∈ B}.

Definition 1.4 Let X be a random variable on a probability space (Ω,F ,P). The

the expectation (or expected value) of X is defined to be

E[X] :=

∫

Ω

X(ω) dP(ω)

This definition makes sense if X is integrable, i.e., if

E[|X|] =

∫∫

Ω

|X(ω)| dP(ω) < ∞

3



Definition 1.5 Let Ω be a nonempty set. Let T be a fixed positive number, and

assume that for each t ∈ [0, T ] there is a σ-algebra Ft. Assume further that if s ≤ t,

then every set in Fs is also in Ft. Then we call the collection of σ-algebras Ft, 0 ≤
t ≤ T , a filtration.

Definition 1.6 Let (Ω,F ,P) be a probability space, let T be a fixed positive number.

A stochastic process is a parametrized collection of random variables

{Xt}t∈T

assuming values in Rn.

Definition 1.7 Let Ω be a nonempty sample space equipped with a filtration Ft, 0 ≤
t ≤ T . Let Xt be a collection of random variables indexed by t ∈ [0, T ]. We say

this collection of random variables is an adapted stochastic process if, for each t, the

random variable Xt is Ft-measurable.

Definition 1.8 Let (Ω,F ,P) be a probability space, let T be a fixed positive number,

and let Ft, 0 ≤ t ≤ T , be a filtration of sub-σ-algebras of F . Consider an adapted

stochastic process Xt, 0 ≤ t ≤ T . Assume that for 0 ≤ s ≤ t ≤ T and for every

nonnegative, Borel-measurable function f , there is another Borel-measurable function

g such that

E[f(Xt)|Fs] = g(Xs)

Then we say that the Xt is a Markov process.

Definition 1.9 A stopping time τ is a random variable taking values in [0,∞] and

satisfying

{τ ≤ t} ∈ Ft, for all t ≥ 0 .

Let U ⊂ Rn be open. Then the first exit time

τU := inf{t > 0; Xt /∈ U}

is a stopping time in Ft.

4



Definition 1.10 A (time-homogeneous) Itô diffusion is a stochastic process Xt(ω) =

X(t, ω) : [0,∞)× Ω → Rn satisfying a stochastic differential equation of the form

dXt = b(Xt) dt + σ(Xt) dZt, t ≥ s; Xs = x

where Zt is m-dimensional Brownian motion and b : Rn → R, σ : Rn → Rn×m satisfy

the condition:

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ D|x− y|; x, y ∈ Rn

where |σ|2 =
∑ |σij|2.

Definition 1.11 For a bounded Borel function f ∈ Rn, the Itô diffusion satisfies the

strong Markov property if

Ex[f(Xτ+h)|Fτ ] = Ex[f(Xh)] for all h ≥ 0 ,

where τ is a stopping time with respect to F , and τ < ∞.

Definition 1.12 Let {Xt} be a (time-homogeneous) Itô diffusion in Rn. The (in-

finitesimal) generator A of Xt is defined by

Af(x) = lim
t↓0

Ex[f(Xt)]− f(x)

t
; x ∈ Rn

The set of functions f : Rn → R such that the limit exists at x is denoted by

DA(x), while DA denotes the set of functions for which the limit exists for all x ∈ Rn.

If f ∈ C2
0(Rn), then f ∈ DA and

Af(x) =
∑

i

bi(x)
∂f

∂xi

+
1

2

∑
i,j

(σσT )i,j(x)
∂2f

∂xi∂xj

Definition 1.13 Define the performance function Ju(y) to be

Ju(y) = Ey
[ ∫

T

0

fu(Yt)dt + g(YT · χ{T<∞})
]

where f : R× Rn × U → R and g : R× Rb → R are given continuous functions.
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Definition 1.14

Φ(y) := sup
u(t,ω)

{Ju(y)} = Ju∗(y)

A family A of admissible controls are controls contained in the set of all F (m)-adapted

process {u(t)} with values in U . If such a control u∗ exists, it is called an optimal

control and Φ is called the optimal performance or the value function.

Definition 1.15 Functions u(t, ω) of the form u(t, ω) = u0(t,Xt(ω)) for some func-

tion u0 : Rn → U ⊂ Rm. If u does not depend on the starting point y = (s, x), and the

value at time t only depends on the state of the system at this time. Then, u(t, ω) are

called Markov controls, because with such u, the corresponding process Xt becomes an

Itô diffusion, in particular a Markov process, denoted by u(Yt) = u(t,Xt).

Definition 1.16 Let (Ω,F ,P) be a probability space. A family {fj}j∈J of real mea-

surable functions fj on Ω is called uniformly Py-integrable if

lim
M→∞

(
sup
j∈J

{ ∫

{|gj |>M}
|fj|dP

})
= 0 .

Definition 1.17 We say that a function u(t, x) satisfies a polynomial growth con-

dition on Q if, for some constants C, k, |u(t, x)| ≤ C(1 + |x|)k when (t, x) ∈ Q. The

class of u in C1,2 which satisfies a polynomial growth condition on Q is denoted by

C1,2
p .

Definition 1.18 In the domain Q0, if the boundary data are imposed at the final

time T :

u(T, x) = g(x), x ∈ R

such data at a fixed time T are called Cauchy data.

Definition 1.19 Define the standard mollifier ξ ∈ C∞(Rn) by

ξ(x) :=





C exp
(

1
|x|2−1

)
, if |x| < 1;

0, if |x| ≥ 1,

the constant C > 0 selected so that

∫

Rn

ξ dx = 1.

6



Definition 1.20 Suppose u, v ∈ L1
loc(U), and α is a multi-index. We say that v is

the weak α-derivative of u, written Dαu = v if

∫

U

ζv dx = (−1)|α|
∫

U

uDαζ dx

for all test functions ζ ∈ C∞
c .

Definition 1.21 The Sobolev space

Sk,p(U)

consists of all locally summable functions u : U → R such that for each multiplier α

with |α| < k, Dαu exists in the weak sense and belongs to Lp(U).

If time t involves, denote it by St,k
p (U).

Definition 1.22 The Steklov average υδ of a function υ for a nonzero constant δ is

defined by

υδ(X) =
1

δ

∫ t+δ

t

υ(s, x) ds

For δ > 0, υδ gives an average of υ over later times, and for δ < 0, it gives an

average over earlier times.

Definition 1.23 The payoff is the cash realized by the holder of an option or other

derivative at the end of its life.

Definition 1.24 Deadweight cost/loss is the extent to which the value and impact

of a tax, tax relief or SUBSIDY is reduced because of its side-effects.

Definition 1.25 In finance, hedge is a trade designed to reduce risk. Hedge ratio is

the ratio of the size of a position in a hedging instrument to the size of the position

being hedged.
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Definition 1.26 Forward contract is a contract that obligates the holder to buy or

sell an asset for a predetermined delivery price at a predetermined future time.

Futures contract is a contract that obligates the holder to buy or sell an asset for

a predetermined delivery price during a specified future time period. The contract is

marked to market daily.

1.2 Problems and Results

There are a lot of academic research papers in finance, most of which study Corpo-

ration Risk Management problems. The purpose of risk management nowadays is

not just reducing any risk that any corporation has. In 1990’s, some people raised

the idea of coordinating risk, for example, Schrand and Unal(1998), [15]. At that

time, finance analysts discussed much details about the importance of hedging in risk

management, but not a few of them questioned the mathematical part.

Froot, Scharfstein, and Stein (1993), [6] presented a paper about solving for the

optimal hedging strategy of risk management, in which they not only introduced the

model of hedging the wealth of a firm but also illustrated that a corporation can

hedge a ratio of its’ total wealth. The authors answered the question logically and

deduced the optimal hedge ratio h∗ of one variable and two variables, if linear hedging

strategies are considered. It also introduced the idea of non-linear hedging strategy

and gave the corresponding optimal hedge ratio result. We start from their important

research outcomes and develop the content of Chapter 2 in this thesis.

We notice that there was one important assumption in Froot, Scharfstein, and

Stein (1993), [6]: all the processes are non-stochastic processes. However, this raise

a question to us: What if the process is stochastic? Can we find any solution of

maximizing the expected profit function if there is an optimal stochastic hedge pro-

cess? We studied one paper of stochastic optimal control problems written by Huang
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and Liu (2007), [8], in which the dynamic programming (the HJB Equation) method

was applied. Based on this paper, we present the existence of a weak solution of the

HJB Equation on an unbounded domain with a free boundary condition problem and

develop the required theoretical proof in Chapter 3.

This thesis is mainly about the mathematical theory and computation about de-

riving the hedge ratio for the non-stochastic n-dimension case in single period and

showing the existence of a weak solution to the HJB Equation if a stochastic process

is considered. In Chapter 2, we derive the multinational risk management coordi-

nation, mainly when a company changes the investment opportunities, we solve for

the optimal hedge ratio in two periods. Then, in Chapter3 we develop a stochastic

optimization model with a controlled Markov process, and apply the dynamic pro-

gramming (the Hamilton-Jacobi-Bellman (HJB) Equation), a generally used stochas-

tic optimization method in stochastic control theory to prove that if there exists an

optimal hedge process h∗, the corresponding HJB Equation with a free boundary

condition has a weak solution on an unbounded domain. The last part of this thesis

is the conclusion, in which we summarize the thesis and give conclusions.

1.2.1 Background Introduction

Froot, Scharfstein, and Stein (1993), [6] presented the steps of finding the optimal

hedging model with changing investment and financing opportunities of linear hedging

strategies (i.e. forward sales or purchases) situation for one variable case. They

introduced the hedging decision model:

w = w0(h + (1− h)ε) (1.1)

where w0 is the initial wealth of a company, h is the hedge ratio, and ε is the return

rate of the investment.

9



The expected profit function P (w) is defined as:

P (w) = max
I
{θ f(I)− I − C(e)} (1.2)

where I is the total investment, θ = α(ε − ε̄) + 1, α is a measure of the correlation

between investment opportunities and the risk to be hedged, f(I) is the product

function, and C(e) is the dead weight cost.

The question in the paper was finding an optimal hedging policy h∗ so that the

expected profits P would be maximized:

max
h

E[P (w)] (1.3)

The following result was derived:

h∗ = 1 + α
E[fIPww/θfII]

w0P̄ww

, (1.4)

where P̄ww = E[Pww].

Then, the coordinating investment opportunities for multinational companies’ risk

management strategy of two variables were introduced. There were two investments

in the model, home investment IH and abroad investment IA. The expected profits

P (w) was given by

P (w) = fH(IH) + θ fA(IA)− IH − γ IA − C(e) (1.5)

where θ = α(ε − ε̄) + 1, γ = β(ε − ε̄) + 1. Here ε is the home currency price of the

foreign currency, and 0 ≤ α, β ≤ 1 are parameters indexing the sensitivity of foreign

revenues and foreign investment costs to the exchange rate.

Using similar arguments to develop h∗ of one variable, the optimal hedge ratio h∗

was solved as follows:

h∗ = 1 +
E[(αγ − βθ)fA

I Pww/θ fA
II]

w0P̄ww

− β
E[IAPww]

w0P̄ww

, (1.6)

10



where

Pww =
θ fH

IIf
A
IICee

Cee(γ2fH
II − θ fA

II)− θ fH
IIf

A
II

< 0 (1.7)

After studied this paper, we are very interested in two problems:

• Extending the idea of finding the optimal hedge ratio h0∗ to n dimension, where

n ≥ 2 in period zero and period one;

• Changing the non-stochastic processes to stochastic processes and solving for

the corresponding optimal hedge control.

Assume that in Chapter 2, only linear hedging strategies and non-stochastic pro-

cesses are considered. We first develop the multinational risk management model to

n variables of single period in Chapter 2. We also find that the hedge ratio h1∗ of n

variables can be calculated in period one if we treat random variables as functions.

Two n = 2 cases are presented to check that our model can be calculated, one of

which was given in Froot, Scharfstein, and Stein (1993), [6] with slight change.

1.2.2 Stochastic Optimal Control Model

Since we consider changing some non-stochastic processes in [6] to stochastic pro-

cesses, we are thinking of the stochastic optimal control theory. We found that Huang

and Liu (2007), [8] applied the HJB Equation method in stochastic control theory to

one finance problem:

Given the initial wealth W0− > 0 and the prior (M0− , V (0−)), choose the number

N ∈ F0 of news updates, the news accuracies αε, αν ∈ F0, and an optimal trading

strategy to maximize the expected utility function at the terminal wealth WT ,

max
N,αε,αν ,θ

E[u(WT )],

subject to the stochastic process of Wt with initial condition W0 and u(W ) is a power

function, increasing and concave.
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The value function is

J(W,M, t; αν) = max
θ

E[u(WT )|Wt = W,Mt = M ].

and the corresponding HJB Equation is:

Jt + max
θ
{1

2
θ2σSJWW + θ(µ0 + µ1M − r)JW + θσSσM1(t)JWM}

+ rWJW +
1

2
σM(t)2JMM + (g0 + g1M)JM = 0

with the terminal condition

J(W,M, T ; αν) = u(W ).

The authors found a solution of this HJB Equation, that is the value function

J(W,M, t; αν) with the stochastic optimal trading strategy.

The difference of our model is that, instead of maximizing the expected utility

function u(W ), our problem is maximizing the expected profit function P (W ) at the

terminal time T0. Then, the boundary condition is not a fixed boundary but a free

boundary. To solve a free boundary problem, we studied another paper, Muthuraman

and Kumar (2008), [12], which is about solving the free-boundary (stopping time)

problems in finance.

With these two papers, we set up our model as follows:

Given the initial wealth w0 > 0 of a company, choose an optimal hedging strategy

h(t) ∈ U to maximize the expected profit function P (Wt) at a terminal time T0,

Φ(y) = sup
h∈U

{E0,w0 [P (W h
T0

)}

subject to

dWt = w0

[
((1− ht)rW + htµW ) dt + htσW dZ1t

]

and initial wealth W (0) = w0 > 0.

12



If Φ ∈ C2
0(Q0), the HJB Equation will be

sup
h∈U

{LhΦ(y)} = 0

with the terminal condition Φ(T0, w) = P (w) on {T0} × [m,M ], m, M > 0.

In Chapter 3, we prove that there exists a weak solution of the HJB Equation on

an unbounded domain Q0 = [0, T0)×R with a free boundary condition P (w) in three

sections.

First, prove the existence of a solution to the HJB Equation with a smooth and

bounded boundary condition g(w) on Q0.

Second, there exists a sequence of the solutions Φn of the HJB Equation convergent

in some vector space V with proper norm. Then, the limit of the convergent sequence

can be defined as a weak solution of the HJB Equation on a bounded set Q.

Finally, extend the weak solution from Q to Q0.

13



CHAPTER 2

MULTINATIONAL RISK MANAGEMENT - COORDINATING

CORPORATION INVESTMENT

In the Financial Risk Management field, when a multinational corporation has sales

and production opportunities in a number of different countries, there are many

factors involved in the product function, which also affect the expected profit. If the

total investments I of the corporation contains not only the internal funds w, but also

some external funds e, the corporation needs to apply some derivative tools, such as

linear hedging strategies forward and futures contract to hedge the total wealth w so

that it could coordinate the risk. There are two sections in this chapter, Section 2.1

is about the single period case and Section 2.2 is the multi period case. In addition,

we present n = 2 to illustrate that the optimal hedge ratio h∗ can be calculated in

each section. When n = 2, the single period example was given in [6].

We assume that all the processes in this chapter are non-stochastic processes.

2.1 The Financial Environment - Single Period

In the first section of Chapter 2, we establish a model of solving the optimal hedge

ratio of the total wealth w0 to maximize the expected profit for n variables, which is

applied to some multinational corporations around the world.

Suppose that a multinational corporation has sales and production opportunities

in a number of different countries. More than one factor complicate the hedging prob-

lem for multinational corporations, for example, the random exchange rate between

countries, the random stock market price in different countries, the random price of

14



goods in different countries, and so on. As a consequence, it is meaningful to build

and solve an n variable mathematical model to find an optimal hedging strategy, with

which the expected profit of a multinational company can be maximized.

2.1.1 Construction of the n Variables Model

To set up the model, we need to make some necessary assumptions. First, we as-

sume that the financial market is complete, and we use the right superscription 0 to

represent period zero in this section.

Assume that the multinational company can invest at n different locations in

period zero with the investments (I0)T = (I0
1 , I0

2 , ..., I0
n), and cov(I0

i , I0
j ) = 0 for each

i 6= j.

f(I0) : Rn → Rn

are the product functions from n locations in period zero, that is

I0 7→ (f1(I
0), ..., fn(I0)).

Define the net present value of investment expenditures

F : Rn → R,

given by

F(I0) = (θ0)T · f(I0)− (γ0)T · I0 (2.1)

For all 1 ≤ j ≤ n, let

(θ0)T = {θ0
1, ..., θ0

n}, θ0
j = α0

j (ε
0
j − ε̄j

0) + 1,

(γ0)T = {γ0
1 , ..., γ0

n}, γ0
j = β0

j (ε
0
j − ε̄j

0) + 1

where ε0
j , representing the home currency price of the foreign currency, is a random

variable, with the mean ε̄j
0, the variance (σ0

j )
2 for all 1 ≤ j ≤ n, and cov(εi, εj) = 0

for i 6= j.
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0 ≤ α0
j , β0

j ≤ 1 are parameters indexing the sensitivity of foreign revenues and

foreign investment costs to the exchange rate in period zero.

Also assume that for each 1 ≤ j ≤ n, the jth product function fj : Rn → R have

the first order derivative function:

Dfj =
(∂fj

∂I1

,
∂fj

∂I2

, ...,
∂fj

∂In

)

where
∂fj

∂Ii

> 0 for all 1 ≤ i, j ≤ n.

The corresponding first order derivative function in a matrix form is

Df(I0) =




∂f1(I0)

∂I0
1

∂f1(I0)

∂I0
2

· · · ∂f1(I0)
∂I0

n

∂f2(I0)

∂I0
1

∂f2(I0)

∂I0
2

· · · ∂f2(I0)
∂I0

n

...
...

. . .
...

∂fn(I0)

∂I0
1

∂fn(I0)

∂I0
2

· · · ∂fn(I0)
∂I0

n




For all j = 1, ..., n, each component of the second derivative functions is a Hessian

matrix given by,

D2fj(I
0) =




∂2fj(I
0)

∂(I0
1 )2

∂2fj(I
0)

∂I0
2∂I0

1
· · · ∂2fj(I

0)

∂I0
n∂I0

1

∂2fj(I
0)

∂I0
1∂I0

2

∂2fj(I
0)

∂(I0
2 )2

· · · ∂2fj(I
0)

∂I0
n∂I0

2

...
...

. . .
...

∂2fj(I
0)

∂I0
1∂I0

n

∂2fj(I
0)

∂I0
2∂I0

n
· · · ∂2fj(I

0)

∂(I0
n)2




with
∂2fj

∂Ii∂Ij

< 0 for all i, j.

Let the external funds e1 in period zero be

e1 = (γ0)T · I0 − w1,

then all the deadweight costs C(e1) are defined as:

C(e1) : R→ R

with Ce1 > 0 and Ce1e1 > 0.
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Using the product function f(I0), the investments I0 at n locations, and the dead

weight cost function C(e1), we define the profits function P (w1) to be

P (w1) = max
I0
{F(I)− C(e1)} = max

I0
{(θ0)T · f(I0)− (γ0)T · I0 − C(e1)} (2.2)

In P (w1), w1 is the amount of liquid assets in period zero, where w0 is the initial

total wealth of the corporation, and w1 is defined to be a function of the random

variable ε0
j . Thus, w1 is also a random variable, and the issue of hedging the total

wealth arises. If we consider the linear hedging strategies such as forward and futures

contract, the hedge ratio h0 = {h0
1, ..., h

0
n} of w1 appears. And we define

w1 = w0(h
0
1ε

0
1 + h0

2ε
0
2 + · · ·+ h0

nε
0
n)

with

h0
1 + · · ·+ h0

n = 1

Once we give all the necessary definitions and assumptions, the problem now be-

comes: A corporation needs to adjust the hedging strategy to determine the hedge

ratio h0, which will get the expected profit E[P (w1)] maximized, and the correspond-

ing hedge ratio will be the optimal hedge ratio and denoted by h0∗. As noted above,

if P (w1) is a concave function, the random fluctuation in ε0
j will reduce expected

profits. In addition, only when Pw1w1 < 0 for all w1, hedging part of the total wealth

could raise average the profits.

The goal of this section is to solve for the optimal hedge ratio h0∗ at period zero.

To fulfill this purpose, we will find the first order condition of P (w1). After we obtain

the first order condition of P (w1), compute the second order derivative Pw1w1 , and

show that Pw1w1 < 0, which is a concave function. Then, use the Implicit Theorem to

solve for
∂I∗

∂εj

, 1 ≤ j ≤ n as a vector. In addition, we apply the method of covariance

in probability to gain cov(P, ε) = 0, which gives us linear equation systems. Finally,

we can solve for the optimal hedge ratio h0∗ in period zero.
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2.1.2 Risk Management for Multinationals in Period Zero, n ≥ 2

We start from the first order condition of the profit function P (w1), and notice that

we can write the first order condition of P (w1) directly with respect to I0
j as follows:

∂

∂I0
j

(
F(I0)− C(e1)

)
= 0, 1 ≤ j ≤ n,

that is,

∂

∂I0
j

(
F(I0)− C(e1)

)
=

∂

∂I0
j

(
(θ0)T · f(I0)− (γ0)T · I0 − C(e1)

)

= (θ0)T · ∂

∂I0
j

f(I0)− (γ0)T · ∂

∂I0
j

I0 − Ce1

(
(γ0)T · ∂

∂I0
j

I0 − 0
)

= (θ0)T · (Df(I0) · ej

)− (1 + Ce1)(γ
0)T · ej

= 0

In general, the first order condition of P (w1) is, for all 1 ≤ j ≤ n,

(θ0)T ·Df(I0) · ej = γ0
j (1 + Ce1) (2.3)

and the matrix form is given by:

(Df(I0))T · θ0 = (1 + Ce1) γ0 . (2.4)

We can also obtain the following expression from 2.4,

1 + Ce1 =
1

γ0
j

(
(θ0)T ·Df(I0) · ej

)
(2.5)

which will be used later in this section.

Denote the first order condition of P (w1) as

(I0
∗
)T = (I0∗

1 , I0∗
2 , ..., I0∗

n )

Compute the Hessian matrices D2fj(I
0∗) for each component fj (1 ≤ j ≤ n), and

by assumption of I0, we have the following lemma:
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Lemma 2.1 D2fj(I
0∗) is symmetric for all 1 ≤ j ≤ n.

Proof. Since all the n investments are independent to each other, i.e. cov(I0
i , I0

j ) = 0

for i 6= j, the Hessian D2fj(I
0∗) are symmetric for all 1 ≤ j ≤ n.

As a consequent, the tensor defined by

D2f(I0
∗
)
(dI0

∗

dw1

)
(2.6)

is symmetric, and assume it is negative definite.

Proposition 2.1 (i) Pw1 = Ce1.

(ii) Pw1w1 = (θ0)T ·D2f(I0
∗
)
(dI0

∗

dw1

)
· dI0

∗

dw1

− Ce1e1

(
(γ0)T · dI0

∗

dw1

− 1
)2

Proof. At the first order condition (I0
∗
)T , compute the first and second order deriva-

tive functions of P (w1), where

P (w1) = (θ0)T · f(I0∗)− (γ0)T · I0∗ − C(e1)

The first order derivative is:

Pw1 = (θ0)T ·Df(I0
∗
) · dI0

∗

dw1

− (γ0)T · dI0
∗

dw1

− Ce1

(
(γ0)T · dI0

∗

dw1

− 1
)

= (Df(I0
∗
)T · θ0)T · dI0

∗

dw1

− (1 + Ce1)(γ
0)T · dI0

∗

dw1

+ Ce1

=
(
Df(I0

∗
)T · θ0 − (1 + Ce1)γ

0
)T · dI0

∗

dw1

+ Ce1

= Ce1

(2.7)

where the first order condition gives

Df(I0
∗
)T · θ0 = (1 + Ce1) γ0

Apply the product rule to

Pw1 = (θ0)T ·Df(I0
∗
) · dI0

∗

dw1

− (γ0)T · dI0
∗

dw1

− Ce1

(
(γ0)T · dI0

∗

dw1

− 1
)

(2.8)
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Then, the second order derivative function of P (w1) follows:

Pw1w1 = (θ0)T ·
(dI0

∗

dw1

)T

D2f(I0
∗
) · dI0

∗

dw1

+ (θ0)T ·Df(I0
∗
) · d2I0

∗

dw2
1

− (γ0)T · d2I0
∗

dw2
1

− Ce1e1

(
(γ0)T · dI0

∗

dw1

− 1
)2 − Ce1

(
(γ0)T · d2I0

∗

dw2
1

)

= (θ0)T ·D2f(I0
∗
)
(dI0

∗

dw1

)
· dI0

∗

dw1

− Ce1e1

(
(γ0)T · dI0

∗

dw1

− 1
)2

(2.9)

Proposition 2.2 Suppose that the tensor D2f(I0
∗
)
(dI0

∗

dw1

)
is negative definite, then

the second order derivative function Pw1w1 < 0 and P (w1) is a concave function.

Proof. Since the tensor D2f(I0
∗
)
(dI0

∗

dw1

)
is negative definite, it is clear that the inner

product
〈
D2f(I0

∗
)
(dI0

∗

dw1

)
,
dI0

∗

dw1

〉
< 0.

Then the first term of Pw1w1 in 2.9 is negative, and Ce1e1 > 0, then

Pw1w1 = (θ0)T ·D2f(I0
∗
)
(dI0

∗

dw1

)
· dI0

∗

dw1

− Ce1e1

(
(γ0)T · dI0

∗

dw1

− 1
)2

< 0

Thus, P (w1) is a concave function.

There is a vector
dI0

∗

dw1

in Pw1w1 , and we can solve for this vector in order to

simplify Pw1w1 .

Theorem 2.3 Suppose that Ce1e1 > 0, and γ0
j > 0 for all 1 ≤ j ≤ n. Then

dI0
∗

dw1

= −Ce1e1

(
(θ0)T ·D2f(I0

∗
)− Ce1e1(γ

0 · (γ0)T )
)−1 · γ0 (2.10)

Proof. To solve for the vector
dI0

∗

dw1

, we apply the Implicit Theorem to the first order

condition of P (w1) with respect to w1, then

(θ0)T ·D2f(I0
∗
)
(dI0

∗

dw1

)
= Ce1e1 · γ0 · ((γ0)T · dI0

∗

dw1

− 1
)
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Simplify and group the vector,

(θ0)T ·D2f(I0
∗
)
(dI0

∗

dw1

)
− Ce1e1 · (γ0 · (γ0)T ) · dI0

∗

dw1

= −Ce1e1 · γ0

Since Ce1e1 > 0 and γ0
j > 0 for all 1 ≤ j ≤ n, the matrix Ce1e1(γ

0 · (γ0)T ) is

symmetric and positive definite, then −Ce1e1(γ
0 · (γ0)T ) is negative definite.

Define a matrix

A0 := (θ0)T ·D2f(I0
∗
)− Ce1e1(γ

0 · (γ0)T ) (2.11)

which is symmetric and negative definite.

Since θ0 and γ0 are random variables with probability, A0 is almost invertible. If

A0 is symmetric and negative definite, A−1
0 is also symmetric and negative definite.

Therefore, the vector is solved as

dI0
∗

dw1

= −Ce1e1

(
(θ0)T ·D2f(I0

∗
)− Ce1e1(γ

0 · (γ0)T )
)−1 · γ0

= −Ce1e1 A−1
0 · γ0

Proposition 2.4 Let A0 be the matrix 2.11 defined in Theorem 2.3. The vector
dI0

∗

dw1

is also given by the Equation 2.10 in Theorem 2.3, then the second derivative function

Pw1w1 is

Pw1w1 = −Ce1e1 − C2
e1e1

(γ0)T ·A−1
0 · γ0 (2.12)

Proof. The vector
dI0

∗

dw1

= −Ce1e1A
−1
0 · γ0 in Theorem 2.3, then:
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Pw1w1 = (θ0)T ·D2f(I0
∗
)
(dI0

∗

dw1

)
· dI0

∗

dw1

− Ce1e1

(
(γ0)T · dI0

∗

dw1

− 1
)2

=
(dI0

∗

dw1

)T(
(θ0)T ·D2f(I0

∗
)
) · dI0

∗

dw1

− Ce1e1

(
(γ0)T · dI0

∗

dw1

· (γ0)T · dI0
∗

dw1

− 2(γ0)T · dI0
∗

dw1

+ 1
)

=
(dI0

∗

dw1

)T

· ((θ0)T ·D2f(I0
∗
)− Ce1e1(γ

0 · (γ0)T )
) · dI0

∗

dw1

− Ce1e1

(
1− 2(γ0)T · dI0

∗

dw1

)

= (−Ce1e1A
−1
0 · γ0)T ·A0 · (−Ce1e1A

−1
0 · γ0)− Ce1e1

(
1− 2(γ0)T · (−Ce1e1A

−1
0 · γ0)

)

= C2
e1e1

(γ0)T · (A−1
0 )

T ·A0 ·A−1
0 γ0 − Ce1e1 − 2C2

e1e1
(γ0)T ·A−1

0 · γ0

= −Ce1e1 − C2
e1e1

(γ0)T ·A−1
0 · γ0

Thus, Pw1w1 is simplified as Equation 2.9.

Theorem 2.5 Suppose that Ce1e1 > 0 and γ0
j > 0 for all 1 ≤ j ≤ n. Then

∂I0
∗

∂ε0
j

= A−1
0 ·

{
Ce1e1(β

0
j I

0∗
j −w0h

0
j) · γ0 +

(β0
j

γ0
j

((θ0)T ·Df(I0
∗
) · ej)− α0

jDf(I0
∗
)
)
· ej

}

(2.13)

Proof. Similar to Theorem 2.3, we apply the Implicit Theorem to the first order

condition of P (w1):

(θ0)T ·Df(I0
∗
) · ej = γ0

j (1 + Ce1)

with respect to ε0
j , for all 1 ≤ j ≤ n.

That is

(θ0)T · (D2f(I0
∗
) · ej

) · ∂I0
∗

∂ε0
j

+ α0
je

T

j ·Df(I0
∗
) · ej = β0

j (1 + Ce1)

+ γ0
j Ce1e1

(
(γ0)T · ∂I0

∗

∂ε0
j

+ β0
j I

0∗
j − w0h

0
j

) ⇒

(θ0)TD2f(I0
∗
) · ∂I0

∗

∂ε0
j

− Ce1e1(γ
0 · (γ0)T ) · ∂I0

∗

∂ε0
j

= Ce1e1(β
0
j I

0∗
j − w0h

0
j) · γ0

+ (1 + Ce1)β
0
j · ej − α0

jDf(I0
∗
) · ej ⇒
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(
(θ0)T ·D2f(I0

∗
)− Ce1e1(γ

0 · (γ0)T )
)
· ∂I0

∗

∂ε0
j

= Ce1e1(β
0
j I

0∗
j − w0h

0
j) · γ0

+
(β0

j

γ0
j

(
(θ0)T ·Df(I0

∗
) · ej

)− α0
jDf(I0

∗
)
)
· ej

Then, the vector
∂I0

∗

∂ε0
j

is as follows:

∂I0
∗

∂ε0
j

= A−1
0 ·

{
Ce1e1(β

0
j I

0∗
j −w0h

0
j) · γ0 +

(β0
j

γ0
j

((θ0)T ·Df(I0
∗
) · ej)− α0

jDf(I0
∗
)
)
· ej

}

We have gained the vectors and matrices that are needed to maximize the expected

profit function E[P (w1)] in period zero with the hedge ratio h0T
= (h0

1, ..., h
0
n) at

the vector (I0
∗
)T = (I0∗

1 , ..., I0∗
n ). The process of maximizing E[P (w1)] will give the

solution of the optimal hedge ratio h0∗.

Remember in Section 2.1, we assume that the covariance between distinct εi and

εj is 0, i.e. cov(ε0
i , ε

0
j) = 0, i 6= j.

Lemma 2.2 [14][Appendix] If x and y are normally distributed, and a(x) and b(y)

are differentiable functions, then

cov(a(x), b(y)) = Ex[ax]Ey[by]cov(x, y) (2.14)

We also need

Pw1 = Ce1

and

Pw1w1 = −Ce1e1 − C2
e1e1

(γ0)T · A−1
0 · γ0

to solve for the optimal hedge ratio h0∗.
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Theorem 2.6 Suppose that all the assumptions in this section are satisfied. Also

assume that at I0
∗
, P (w1) is maximized and cov(ε0

i , ε
0
j) = 0 for i 6= j. Then, for all

1 ≤ j ≤ n, h0∗
j , the jth component of the optimal hedge ratio

h0∗ = {h0∗
1 , h0∗

2 , ..., h0∗
n }

is given by

h0∗
j =

E[Pw1 ]

(σ0
j )

2w0Eε0j
[Pw1w1 ]

+ β0
j

Eε0j
[I0∗

j Pw1w1 ]

w0Eε0j
[Pw1w1 ]

−
Eε0j

[
Ce1e1(γ

0)T ·A−1
0 · (β0

j

γ0
j
((θ0)T ·Df(I0

∗
) · ej)− α0

jDf(I0
∗
)
) · ej

]

w0Eε0j
[Pw1w1 ]

(2.15)

Proof. Since w1 = w0(h
0
1ε

0
1 + · · ·+ h0

nε
0
n), then for all 1 ≤ j ≤ n,

∂ w1

∂ h0
j

= w0ε
0
j

If order to maximize E[P (w1)], we require the corresponding first order condition:

E
[
Pw1 ·

∂w1

∂h0
j

]
= 0 (2.16)

for all 1 ≤ j ≤ n.

By the definition of covariance between two random variables and Equation 2.14,

we derive the first order condition 2.16, and obtain:

E
[
Pw1 ·

∂w1

∂h0
j

]
= E[Pw1 · w0ε

0
j ] = w0E[Pw1 · ε0

j ] = 0 ⇔

E[Pw1 · ε0
j ] = E[Pw1 ] · E[ε0

j ]− cov(Pw1 , ε
0
j) = 0 (since E[ε0

j ] = 1) ⇔

E[Pw1 ]− Eε0j
[Pw1ε0j

] · Eε0j
[ε0

j ] · cov(ε0
j , ε

0
j) = 0 ⇔

E[Pw1 · ε0
j ] = E[Pw1 ]− Eε0j

[Pw1ε0j
] · (σ0

j )
2 = 0.

Since Pw1 = Ce1 ,

Eε0j
[Pw1ε0j

] = Eε0j
[(Pw1)ε0j

] = Eε0j
[(Ce1)ε0j

] = Eε0j

[
Ce1e1 ·

∂e1

∂ε0
j

]
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that is,

E[Pw1 ]− (σ0
j )

2Eε0j

[
Ce1e1 ·

∂e1

∂ε0
j

]
= 0 (2.17)

By the definition of the external funds e1, we have the derivative of e1 with respect

to ε0
j as following:

∂e1

∂ε0
j

= (γ0)T · ∂I0
∗

∂ε0
j

+ β0
j I

0∗
j − w0h

0
j

for all 1 ≤ j ≤ n.

Put it into Equation 2.17,

E[Pw1 ]− (σ0
j )

2Eε0j

[
Ce1e1((γ

0)T · ∂I0
∗

∂ε0
j

+ β0
j I

0∗
j − w0h

0
j)

]
= 0

Simplify and rearrange it,

E[Pw1 ]−(σ0
j )

2Eε0j

[
Ce1e1((γ

0)T · ∂I0
∗

∂ε0
j

)
]−(σ0

j )
2Eε0j

[Ce1e1β
0
j I

0∗
j ]+(σ0

j )
2Eε0j

[Ce1e1w0h
0
j ] = 0

for all 1 ≤ j ≤ n.

Replace the vector
∂I0

∗

∂ε0
j

in Equation 2.13, Equation 2.17 becomes

E[Pw1 ]− (σ0
j )

2Eε0j

[
Ce1e1(γ

0)T ·A−1
0 · (Ce1e1(β

0
j I

0∗
j − w0h

0
j) · γ0

+
(β0

j

γ0
j

((θ0)T ·Df(I0
∗
) · ej)− α0

jDf(I0
∗
)
) · ej)

]

− (σ0
j )

2β0
j Eε0j

[Ce1e1I
0∗
j ] + (σ0

j )
2w0h

0
jEε0j

[Ce1e1 ] = 0

Expand every term of the left hand side of this equation,

E[Pw1 ]− (σ0
j )

2 Eε0j

[
C2

e1e1
(γ0)T ·A−1

0 · (β0
j I

0∗
j ) · γ0

]
+ (σ0

j )
2 w0 h0

j Eε0j

[
C2

e1e1
(γ0)T ·A−1

0 · γ0
]

− (σ0
j )

2
β0

j

γ0
j

Eε0j

[
Ce1e1(γ

0)T ·A−1
0 · ((θ0)T ·Df(I0

∗
) · ej) · ej

]

+ (σ0
j )

2 α0
j Eε0j

[
Ce1e1(γ

0)T ·A−1
0 ·Df(I0

∗
) · ej

]

− (σ0
j )

2 β0
j Eε0j

[
Ce1e1I

0∗
j

]
+ (σ0

j )
2w0h

0
jEε0j

[
Ce1e1

]
= 0

25



Put all the coefficients out of the expectations, and group those terms involved in

h0
j together,

E[Pw1 ]− (σ0
j )

2 β0
j Eε0j

[
I0∗
j C2

e1e1
((γ0)T ·A−1

0 · γ0)
]

− (σ0
j )

2
β0

j

γ0
j

Eε0j

[
Ce1e1((θ

0)T ·Df(I0
∗
) · ej)((γ

0)T ·A−1
0 · ej)

]

+ (σ0
j )

2 α0
j Eε0j

[
Ce1e1((γ

0)T ·A−1
0 ·Df(I0

∗
) · ej)

]− (σ0
j )

2β0
j Eε0j

[Ce1e1I
0∗
j ]

= −(σ0
j )

2 w0 h0
j Eε0j

[
C2

e1e1
(γ0)T ·A−1

0 · γ0
]− (σ0

j )
2 w0 h0

j Eε0j

[
Ce1e1

]

Rearrange and group some of the terms of both sides,

E[Pw1 ] + (σ0
j )

2 β0
j Eε0j

[
I0∗
j (−Ce1e1 − C2

e1e1
(γ0)T ·A−1

0 · γ0)
]

− (σ0
j )

2
β0

j

γ0
j

Eε0j

[
Ce1e1(γ

0)T ·A−1
0 · ((θ0)T ·Df(I0

∗
) · ej) · ej

]

+ (σ0
j )

2 α0
j Eε0j

[
Ce1e1(γ

0)T ·A−1
0 ·Df(I0

∗
) · ej

]

= (σ0
j )

2 w0 Eε0j

[− Ce1e1 − C2
e1e1

(γ0)T ·A−1
0 · γ0

]
h0

j

Since

Pw1w1 = −Ce1e1 − C2
e1e1

(γ0)T ·A−1
0 · γ0

then, the above equation is,

E[Pw1 ] + (σ0
j )

2 β0
j Eε0j

[
I0∗
j Pw1w1

]

− (σ0
j )

2 Eε0j

[
Ce1e1(γ

0)T ·A−1
0 · (β

0
j

γ0
j

((θ0)T ·Df(I0
∗
) · ej)− α0

jDf(I0
∗
)) · ej

]

= (σ0
j )

2 w0 Eε0j

[
Pw1w1

]
h0

j

When the first order condition of E
[
P (w1)

]
is zero, it will be maximized. We

denote the corresponding hedge ratio h0 by

h0∗ = {h0∗
1 , h0∗

2 , ..., h0∗
n }
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Finally, we solve h0∗
j in the above equation for all 1 ≤ j ≤ n, and we gain

h0∗
j =

E[Pw1 ]

(σ0
j )

2 w0 Eε0j

[
Pw1w1

] + β0
j

Eε0j

[
I0∗
j Pw1w1

]

w0 Eε0j

[
Pw1w1

]

−
Eε0j

[
Ce1e1(γ

0)T ·A−1
0 · (β0

j

γ0
j
((θ0)T ·Df(I0

∗
) · ej)− α0

j Df(I0
∗
)
) · ej

]

w0 Eε0j

[
Pw1w1

]

2.1.3 When n = 2, The Optimal Hedge Ratio h0∗

In this section, we calculate n = 2 case. In [6], the authors presented a similar

example for n = 2.

When n = 2 in period zero, (I0)T = (I0
1 , I0

2 ) and

P (w1) = max
I0
{θ0

1f1(I
0
1 ) + θ0

2f2(I
0
2 )− γ0

1I
0
1 − γ0

2I
0
2 − C(e1)}

with the following settings,

w1 = w0(h
0
1ε

0
1 + h0

2ε
0
2), h0

1 + h0
2 = 1, e1 = γ0

1I
0
1 + γ0

2I
0
2 − w1

θ0
j = α0

j (ε
0
j − ε̄j

0) + 1, γ0
j = β0

j (ε
0
j − ε̄j

0) + 1, ε0
j ∼ N

(
ε̄j

0, (σ0
j )

2
)
, j = 1, 2

Df1(I1) =
∂f1(I

0
1 )

∂I0
1

, and Df2(I2) =
∂f2(I

0
2 )

∂I0
2

,

D2f1(I
0
1 ) =

∂2f1(I
0
1 )

∂(I0
1 )2

and D2f2(I
0
2 ) =

∂2f2(I
0
2 )

∂(I0
2 )2

We will solve for the optimal hedge ratio h0∗ in the following steps:

Step 1:

Obtain the first order condition of P (w1) with respect to I0

θ0
1

∂f1(I
0
1 )

∂I0
1

= (1 + Ce1)γ
0
1 , θ0

2

∂f2(I
0
2 )

∂I0
2

= (1 + Ce1)γ
0
2

Step 2:
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Compute Pw1 and Pw1w1 at I0
∗
. Notice that from Equation 2.7, we have Pw1 = Ce1 .

Differentiate Pw1 in 2.8, Pw1w1 follows:

Pw1w1 = θ0
1

(∂2f1(I
0∗
1 )

∂(I0
1 )2

(dI0∗
1

dw1

)2
)
+θ0

2

(∂2f2(I
0∗
2 )

∂(I0
2 )2

(dI0∗
2

dw1

)2
)
−Ce1e1

(
γ0

1

dI0∗
1

dw1

+γ0
2

dI0∗
2

dw1

−1
)2

Step 3:

Solve for the vector
dI0

∗

dw1

and simplify Pw1w1 .

Apply the Implicit Theorems to the first order condition in Step 1 and get,

θ0
1

(∂2f1(I
0∗
1 )

∂(I0∗
1 )2

dI0∗
1

dw1

)
− γ0

1Ce1e1

(
γ0

1

dI0∗
1

dw1

+ γ0
2

dI0∗
2

dw1

− 1
)

= 0

θ0
2

(∂2f2(I
0∗
2 )

∂(I0∗
2 )2

dI0∗
2

dw1

)
− γ0

2Ce1e1

(
γ0

1

dI0∗
1

dw1

+ γ0
2

dI0∗
2

dw1

− 1
)

= 0

Similarly, the matrix A0 is:

A0 =




θ0
1D

2f1(I
0∗
1 ) 0

0 θ0
2D

2f2(I
0∗
2 )


− Ce1e1




(γ0
1)

2 γ0
1γ

0
2

γ0
2γ

0
1 (γ0

2)
2




The vector
dI0

∗

dw1

is given by




dI0∗
1

dw1

dI0∗
2

dw1


 = −Ce1e1A

−1
0 ·




γ0
1

γ0
2




Simplify Pw1w1 as

Pw1w1 = −Ce1e1 − C2
e1e1

(
γ0

1 γ0
2

)
·A−1

0 ·




γ0
1

γ0
2




Step 4:

Solve for the vector
∂I0

∗

∂εj

for j = 1, 2.
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Again, we differentiate the first order condition in Step 1 with respect to ε1,

θ0
1

(∂2f1(I
0∗
1 )

∂(I0∗
1 )2

· ∂I0∗
1

∂ε0
1

)
+ α0

1

∂f1(I
0∗
1 )

∂I0∗
1

= β0
1(1 + Ce1) + γ0

1Ce1e1

(
γ0

1

∂I0∗
1

∂ε0
1

+ β0
1I

0∗
1 + γ0

2

∂I0∗
2

∂ε0
1

− w0h
0
1

)

θ0
2

(∂2f2(I
0∗
2 )

∂(I0∗
2 )2

· ∂I0∗
2

∂ε0
1

)
= 0(1 + Ce1) + γ0

2Ce1e1

(
γ0

1

∂I0∗
1

∂ε0
1

+ β0
1I

0∗
1 + γ0

2

∂I0∗
2

∂ε0
1

− w0h
0
1

)

Write this in the vector and matrix form:

[
θ0
1

(
∂2f1(I0

∗
)

∂(I0∗
1 )2

0

)
+ θ0

2

(
0 0

) ]



∂I0∗
1

∂ε01

∂I0∗
2

∂ε01


 + α0

1

∂f1(I
0∗)

∂I0∗
1

= β0
1(1 + Ce1) + γ0

1Ce1e1

( (
γ0

1 γ0
2

)



∂I0∗
1

∂ε01

∂I0∗
2

∂ε01


 + β0

1I
0∗
1 − w0h

0
1

)

[
θ0
1

(
0 0

)
+ θ0

2

(
0 ∂2f2(I0

∗
)

∂(I0∗
2 )2

) ]



∂I0∗
1

∂ε01

∂I0∗
2

∂ε01




= 0(1 + Ce1) + γ0
2Ce1e1

( (
γ0

1 γ0
2

)



∂I0∗
1

∂ε01

∂I0∗
2

∂ε01


 + β0

1I
0∗
1 − w0h

0
1

)

Then, the vector is




∂I0∗
1

∂ε01

∂I0∗
2

∂ε01


 = A−1

0 · Ce1e1

{
(β0

1I
0∗
1 − w0h

0
1)




γ0
1

γ0
2


 + (1 + Ce1)




β0
1

0


− α0

1




∂f1(I0∗
1 )

∂I0∗
1

0




}

= A−1
0 ·

{
Ce1e1(β

0
1I

0∗
1 − w0h

0
1)




γ0
1

γ0
2




+
[β0

1

γ0
1

(
θ0
1Df1(I

0∗
1 ) + θ0

2Df2(I
0∗
2 )

) ·




1

0




]
·




1

0


− α0

1




∂f1(I0∗
1 )

∂I0∗
1

0




}

For j = 2, differentiate the first order condition with respect to ε2,

θ0
1

(∂2f1(I
0∗
1 )

∂(I0∗
1 )2

· ∂I0∗
1

∂ε0
2

)
= 0(1 + Ce1) + γ0

2Ce1e1

(
γ0

1

∂I0∗
1

∂ε0
2

+ β0
2I

0∗
2 + γ0

2

∂I0∗
2

∂ε0
2

− w0h
0
2

)
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θ0
2

(∂2f2(I
0∗
2 )

∂(I0∗
2 )2

· ∂I0∗
2

∂ε0
2

)
+ α0

2

∂f2(I
0∗
2 )

∂I0∗
2

= β0
2(1 + Ce1) + γ0

2Ce1e1

(
γ0

1

∂I0∗
1

∂ε0
2

+ β0
2I

0∗
2 + γ0

2

∂I0∗
2

∂ε0
2

− w0h
0
2

)

The vector and matrix form is,

[
θ0
1

(
∂2f1(I0∗

1 )

∂(I0∗
1 )2

0

)
+ θ0

2

(
0 0

) ]



∂I0∗
1

∂ε02

∂I0∗
2

∂ε02




= 0(1 + Ce1) + γ0
1Ce1e1

( (
γ0

1 γ0
2

)



∂I0∗
1

∂ε02

∂I0∗
2

∂ε02


 + β0

2I
0∗
2 − w0h

0
2

)

[
θ0
1

(
0 0

)
+ θ0

2

(
0

∂2f2(I0∗
2 )

∂(I0∗
2 )2

) ]



∂I0∗
1

∂ε02

∂I0∗
2

∂ε02


 + α0

2

∂f2(I
0∗
2 )

∂I0∗
2

= β0
2(1 + Ce1) + γ0

2Ce1e1

( (
γ0

1 γ0
2

)



∂I0∗
1

∂ε02

∂I0∗
2

∂ε02


 + β0

2I
0∗
2 − w0h

0
2

)

The corresponding vector when j = 2 is given by



∂I0∗
1

∂ε02

∂I0∗
2

∂ε02


 = A−1

0 ·
{

(β0
2I

0∗
2 − w0h

0
2)Ce1e1




γ0
1

γ0
2


 + (1 + Ce1)




0

β0
2


− α0

2




0

∂f2(I0∗
2 )

∂I0∗
2




}

= A−1
0 ·

{
Ce1e1(β

0
2I

0∗
2 − w0h

0
2)




γ0
1

γ0
2




+
[β0

2

γ0
2

(
θ0
1Df1(I

0∗
1 ) + θ0

2Df2(I
0∗
2 )

) ·




0

1




]
·




0

1


− α0

2




0

∂f2(I0∗
2 )

∂I0∗
2




}

Step 5:

Finally, solve for the optimal hedge ratio h0∗ = {h0∗
1 , h0∗

2 }.
Pw1 = Ce1 and Pw1w1 = −Ce1e1 − C2

e1e1
(γ0)T ·A−1

0 · γ.

w1 = w0(h
0
1ε

0
1 + h0

2ε
0
2), then for j = 1, 2,

∂w1

∂h0
j

= w0ε
0
j
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max
h

E[P (w1)] requires that the first order condition equations

E
[
Pw1 ·

∂w1

∂h0
1

]
= 0

E
[
Pw1 ·

∂w1

∂h0
2

]
= 0

Apply Lemma 2.14 and the definition of covariance with respect to h0
1, we obtain

E
[
Pw1 ·

∂w1

∂h0
1

]
= E[Pw1 · w0ε

0
1] = w0E[Pw1 · ε0

1] = 0 ⇔

E[Pw1 · ε0
1] = E[Pw1 ] · E[ε0

1]− cov(Pw1 , ε
0
1) = 0 (since E[ε0

1] = 1) ⇔

E[Pw1 ]− Eε01
[Pw1ε01

] · Eε01
[ε0

1] · cov(ε0
1, ε

0
1) = 0 ⇔

E[Pw1 · ε0
1] = E[Pw1 ]− Eε01

[Pw1ε01
] · (σ0

1)
2 = 0

Notice that

Eε01
[Pw1ε01

] = Eε01
[(Pw1)ε01

] = Eε01
[(Ce1)ε01

] = Eε01

[
Ce1e1 ·

∂e1

∂ε0
1

]

then,

E[Pw1 ]− (σ0
1)

2Eε01

[
Ce1e1 ·

∂e1

∂ε0
1

]
= 0 (∗)

By the definition of e1, the derivative of e1 with respect to ε1 is

∂e1

∂ε0
1

= γ0
1

∂I0∗
1

∂ε0
1

+ γ0
2

∂I0∗
2

∂ε0
1

+ β0
1I

0∗
1 − w0h

0
1

Plug it into the equation (∗), then

E[Pw1 ]− (σ0
1)

2Eε01

[
Ce1e1

(
γ0

1

∂I0∗
1

∂ε0
1

+ γ0
2

∂I0∗
2

∂ε0
1

+ β0
1I

0∗
1 − w0h

0
1

)]
= 0

That is,

E[Pw1 ]−(σ0
1)

2Eε01

[
Ce1e1

(
γ0

1

∂I0∗
1

∂ε0
1

+γ0
2

∂I0∗
2

∂ε0
1

)]−(σ0
1)

2Eε01
[Ce1e1β

0
1I

0∗
1 ]+(σ0

1)
2Eε01

[Ce1e1w0h
0
1] = 0
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Use the vectors
∂I0

∗

∂ε0
1

from Step 4, then

E[Pw1 ]− (σ0
1)

2Eε01

[
Ce1e1

(
γ0

1 γ0
2

)
·A−1

0

(
Ce1e1(β

0
1I

0∗
1 − w0h

0
1)




γ0
1

γ0
2




+
β0

1

γ0
1

(
θ0
1D

2f1(I
0∗
1 ) + θ0

2D
2f2(I

0∗
2 )

)



1

0


− α1

∂f1(I
0∗
1 )

∂I0∗
1




1

0




) ·




1

0




]

− (σ0
1)

2β0
1Eε01

[Ce1e1I
0∗
1 ] + (σ0

1)
2w0h

0
1Eε01

[Ce1e1 ] = 0

Expand and simplify,

E[Pw1 ]− (σ0
1)

2β0
1Eε01

[
I0∗
1 Ce1e1

(
γ0

1 γ0
1

)
·A−1

0 Ce1e1




γ0
1

γ0
2




]

+ (σ0
1)

2w0h
0
1Eε01

[
Ce1e1

(
γ0

1 γ0
2

)
·A−1

0 ·




γ0
1

γ0
2




]

− (σ0
1)

2β0
1

γ0
1

Eε01

[
Ce1e1

(
γ0

1 γ0
2

)
·A−1

0 ·
((

θ0
1D

2f1(I
0∗
1 ) + θ0

2D
2f2(I

0∗
2 )

)



1

0




)
·




1

0




+ (σ0
1)

2α0
1

∂f1(I
0∗
1 )

∂I0∗
1




1

0




]
− (σ0

1)
2β0

1Eε01
[Ce1e1I

0∗
1 ] + (σ0

1)
2w0h

0
1Eε01

[Ce1e1 ] = 0

E[Pw1 ]− (σ0
1)

2β0
1Eε01

[
I0∗
1 Ce1e1

(
γ0

1 γ0
1

)
·A−1

0 Ce1e1




γ0
1

γ0
2




]

− (σ0
1)

2β0
1

γ0
1

Eε01

[
Ce1e1

(
γ0

1 γ0
2

)
·A−1

0 ·
((

θ0
1D

2f1(I
0∗
1 ) + θ0

2D
2f2(I

0∗
2 )

)



1

0




)
·




1

0




+ (σ0
1)

2α0
1

∂f1(I
0∗
1 )

∂I0∗
1




1

0




]
− (σ0

1)
2β0

1Eε01
[Ce1e1I

0∗
1 ]

= −(σ0
1)

2w0h
0
1Eε01

[
Ce1e1

(
γ0

1 γ0
2

)
·A−1

0 ·




γ0
1

γ0
2




]
+ (σ0

1)
2w0h

0
1Eε01

[Ce1e1 ]
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E[Pw1 ] + (σ0
1)

2β0
1Eε01

[
I0∗
1

(− Ce1e1 − Ce1e1

(
γ0

1 γ0
1

)
·A−1

0 Ce1e1




γ0
1

γ0
2




)]

− (σ0
1)

2β0
1

γ0
1

Eε01

[
Ce1e1

(
γ0

1 γ0
2

)
·A−1

0 ·
((

θ0
1D

2f1(I
0∗
1 ) + θ0

2D
2f2(I

0∗
2 )

)



1

0




)
·




1

0




+ (σ0
1)

2α0
1

∂f1(I
0∗
1 )

∂I0∗
1




1

0




]
= (σ0

1)
2w0h

0
1Eε01

[
− Ce1e1 − Ce1e1

(
γ0

1 γ0
2

)
·A−1

0 ·




γ0
1

γ0
2




]

E[Pw1 ] + (σ0
1)

2β0
1Eε01

[
I0∗
1 Pw1w1

]
− (σ0

1)
2Eε01

[
Ce1e1

(
γ0

1 γ0
2

)
·A−1

0 ·

(β0
1

γ0
1

(
θ0
1D

2f1(I
0∗
1 ) + θ0

2D
2f2(I

0∗
2 )

)



1

0




)
·




1

0


 + (σ0

1)
2α0

1

∂f1(I
0∗
1 )

∂I0∗
1




1

0




]

− (σ0
1)

2β0
1Eε01

[Ce1e1I
0∗
1 ] = (σ0

1)
2w0h

0
1Eε01

[
Pw1w1

]

Similarly, we need
∂e1

∂ε0
2

= γ0
1

∂I0∗
1

∂ε0
2

+ γ0
2

∂I0∗
2

∂ε0
2

+ β0
2I

0∗
2 − w0h

0
2 to solve h0

2.

E[Pw1 ]− (σ0
2)

2Eε02
[Ce1e1(γ

0
1

∂I0∗
1

∂ε0
2

+ γ0
2

∂I0∗
2

∂ε0
2

+ β0
2I

0∗
2 − w0h

0
2)] = 0

Then,

E[Pw1 ]− (σ0
2)

2Eε02
[Ce1e1(γ

0
1

∂I0∗
1

∂ε0
2

+ γ0
2

∂I0∗
2

∂ε0
2

)]− (σ0
2)

2Eε02
[Ce1e1β

0
2I

0
2 ] + (σ0

2)
2Eε02

[Ce1e1w0h
0
2] = 0

Again,

E[Pw1 ]− (σ0
2)

2Eε02

[
Ce1e1

(
γ0

1 γ0
2

)
·A−1

0

(
Ce1e1(β

0
2I

0∗
2 − w0h

0
2)




γ0
1

γ0
2




+
β0

2

γ0
2

(
θ0
1D

2f1(I
0∗
1 ) + θ0

2D
2f2(I

0∗
2 )

)



0

1


− α2

∂f2(I
0∗
2 )

∂I0∗
2




0

1




) ·




0

1




]

− (σ0
2)

2β0
2Eε02

[Ce1e1I
0∗
2 ] + (σ0

2)
2w0h

0
2Eε02

[Ce1e1 ] = 0
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E[Pw1 ]− (σ0
2)

2β0
2Eε02

[
I0∗
2 Ce1e1

(
γ0

1 γ0
1

)
·A−1

0 Ce1e1




γ0
1

γ0
2




]

+ (σ0
2)

2w0h
0
2Eε02

[
Ce1e1

(
γ0

1 γ0
2

)
·A−1

0 ·




γ0
1

γ0
2




]

− (σ0
2)

2β0
2

γ0
2

Eε02

[
Ce1e1

(
γ0

1 γ0
2

)
·A−1

0 ·
((

θ0
1D

2f1(I
0∗
1 ) + θ0

2D
2f2(I

0∗
2 )

)



0

1




)
·




0

1




+ (σ0
2)

2α0
2

∂f2(I
0∗
2 )

∂I0∗
2




0

1




]
− (σ0

2)
2β0

2Eε02
[Ce1e1I

0∗
2 ] + (σ0

2)
2w0h

0
2Eε02

[Ce1e1 ] = 0

E[Pw1 ]− (σ0
2)

2β0
2Eε02

[
I0∗
2 Ce1e1

(
γ0

1 γ0
1

)
·A−1

0 Ce1e1




γ0
1

γ0
2




]

− (σ0
2)

2β0
2

γ0
2

Eε02

[
Ce1e1

(
γ0

1 γ0
2

)
·A−1

0 ·
((

θ0
1D

2f1(I
0∗
1 ) + θ0

2D
2f2(I

0∗
2 )

)



0

1




)
·




0

1




+ (σ0
2)

2α0
2

∂f2(I
0∗
2 )

∂I0∗
2




0

1




]
− (σ0

2)
2β0

2Eε02
[Ce1e1I

0∗
1 ]

= −(σ0
2)

2w0h
0
2Eε02

[
Ce1e1

(
γ0

1 γ0
2

)
·A−1

0 ·




γ0
1

γ0
2




]
+ (σ0

2)
2w0h

0
2Eε02

[Ce1e1 ]

E[Pw1 ] + (σ0
2)

2β0
2Eε02

[
I0∗
2

(− Ce1e1 − Ce1e1

(
γ0

1 γ0
1

)
·A−1

0 Ce1e1




γ0
1

γ0
2




)]

− (σ0
2)

2β0
2

γ0
2

Eε02

[
Ce1e1

(
γ0

1 γ0
2

)
·A−1

0 ·
((

θ0
1D

2f1(I
0∗
1 ) + θ0

2D
2f2(I

0∗
2 )

)



0

1




)
·




0

1




+ (σ0
2)

2α0
2

∂f2(I
0∗
2 )

∂I0∗
2




0

1




]
= (σ0

2)
2w0h

0
2Eε02

[
− Ce1e1 − Ce1e1

(
γ0

1 γ0
2

)
·A−1

0 ·




γ0
1

γ0
2




]
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E[Pw1 ] + (σ0
2)

2β0
2Eε02

[
I0∗
2 Pw1w1

]
− (σ0

2)
2Eε02

[
Ce1e1

(
γ0

1 γ0
2

)
·A−1

0 ·

(β0
2

γ0
2

(
θ0
1D

2f1(I
0∗
1 ) + θ0

2D
2f2(I

0∗
2 )

)



0

1




)
·




0

1


 + (σ0

2)
2α0

2

∂f2(I
0∗
2 )

∂I0∗
2




0

1




]

− (σ0
2)

2β0
2Eε02

[Ce1e1I
0∗
1 ] = (σ0

2)
2w0h

0
2Eε02

[
Pw1w1

]

As a consequence, we solve the optimal hedge ratio h0∗ for n = 2, which is

h0∗
1 =

E[Pw1 ]

(σ0
1)

2w0Eε01
[Pw1w1 ]

+ β0
1

Eε01
[I0∗

1 Pw1w1 ]

w0Eε01
[Pw1w1 ]

−

Eε01

[
Ce1e1

(
γ0

1 γ0
2

)
·A−1

0 ·
(

β0
1

γ0
1

(
(θ0

1Df1(I
0∗
1 ) + θ0

2Df2(I
0∗
2 )) ·




1

0




)) ·




1

0




]

w0Eε01
[Pw1w1 ]

+ α0
1

Eε01

[
Ce1e1

∂f1(I0∗
1 )

∂I0∗
1

(
γ0

1 γ0
2

)
·A−1

0 ·




1

0




]

w0Eε01
[Pw1w1 ]

h0∗
2 =

E[Pw1 ]

(σ0
2)

2w0Eε02
[Pw1w1 ]

+ β0
2

Eε02
[I0∗

2 Pw1w1 ]

w0Eε02
[Pw1w1 ]

−

Eε02

[
Ce1e1

(
γ0

1 γ0
2

)
·A−1

0 ·
(

β0
2

γ0
2

(
(θ0

1Df1(I
0∗
1 ) + θ0

2Df2(I
0∗
2 )) ·




0

1




)) ·




0

1




]

w0Eε02
[Pw1w1 ]

+ α0
2

Eε02

[
Ce1e1

∂f2(I0∗
2 )

∂I0∗
2

(
γ0

1 γ0
2

)
·A−1

0 ·




0

1




]

w0Eε02
[Pw1w1 ]

In [6], h0
1 = h, h0

2 = 1 − h, ε0
1 = 1, ε0

2 = ε, θ0
1 = 1 and θ0

2 = θ, γ0
1 = 1 and γ0

2 = γ.

Replace the corresponding θ and γ in the optimal hedge ratio, we achieve the result

in [6].
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The financial meaning of this optimal hedge ratio h0∗ is that the multinational

corporation can use some linear hedge strategy, such as forward and futures to hedge

partial of its total wealth w1 in period zero so that it could maximize the expected

profit E[P (w1)]. For detailed financial explanations, please refer to the paper [6].

2.2 The Financial Environment - Period One to Period Two

2.2.1 Introduction of the Model in Period One

In Section 2.1, we derive the optimal hedge ratio h0∗ in period zero, which is single

period. We will solve a second period formula for the optimal hedge ratio from period

one to period two.

When a firm invests from period zero to period one and has an optimal hedge

ratio h0∗ in period zero. Then, the total wealth w1 is a random variable depending

on h0∗. Similarly, the total investments I1
∗

is a random variable too. Assume that all

the conditions in previous section are satisfied, then all the models in period zero are

the same as in period one, for example, the product function f and deadweight cost

function C. Please notice that in period one, all these functions are random variables.

The net present value of investment expenditures is:

F(I1) = (θ1)T · f(I1)− (γ1)T · I1 (2.18)

where (I1)T = (I1
1 , I1

2 , ..., I1
n) is the total investment, a random variable in period one,

and f(I1) : Rn → Rn are the product functions from n locations in period one with

I1 7→ (f1(I
1), ..., fn(I1))

We use the right superscription 0 to represent period zero in Section 2.1. All the

superscriptions are updated to 1 for period one in this section.

Similarly, we have

(θ1)T = {θ1
1, ..., θ1

n}, θ1
j = α1

j (ε
1
j − ε̄j

1) + 1,
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(γ1)T = {γ1
1 , ..., γ1

n}, γ1
j = β1

j (ε
1
j − ε̄j

1) + 1

for all 1 ≤ j ≤ n, and ε1
j , which is defined in Section 2.1.

For each 1 ≤ j ≤ n, the jth product fj : Rn → R satisfies

Dfj =
(∂fj

∂I1

,
∂fj

∂I2

, ...,
∂fj

∂In

)

and D2fj is weakly negative definite.

Similarly, the corresponding first and second order derivative matrices are

Df(I1) =




∂f1(I1)

∂I1
1

∂f1(I1)

∂I1
2

· · · ∂f1(I1)
∂I1

n

∂f2(I1)

∂I1
1

∂f2(I1)

∂I1
2

· · · ∂f2(I1)
∂I1

n

...
...

. . .
...

∂fn(I1)

∂I1
1

∂fn(I1)

∂I1
2

· · · ∂fn(I1)
∂I1

n




and

D2fj(I
1) =




∂2fj(I
1)

∂(I1
1 )2

∂2fj(I
1)

∂I1
2∂I1

1
· · · ∂2fj(I

1)

∂I1
n∂I1

1

∂2fj(I
1)

∂I1
1∂I1

2

∂2fj(I
1)

∂(I1
2 )2

· · · ∂2fj(I
1)

∂I1
n∂I1

2

...
...

. . .
...

∂2fj(I
1)

∂I1
1∂I1

n

∂2fj(I
1)

∂I1
2∂I1

n
· · · ∂2fj(I

1)

∂(I1
n)2




, j = 1, .., n

The external funds e2 in period one is also a random variable, given by

e2 = (γ1)T · I1 − w2,

All the deadweight loss function in period one is

C(e2) : R→ R, with Ce2 > 0, Ce2e2 > 0

In period one, the profit function P is the same as in period zero,

P (w2) = max
I1
{F(I1)− C(e2)} = max

I1
{(θ1)T · f(I1)− (γ1)T · I1 − C(e2)} (2.19)

where w2 = w1(h
1
1ε

1
1 + h1

2ε
1
2 + · · ·+ h1

nε1
n), and w1 is a random variable in period zero.

Then, P (w2) has random values in period one.
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Similarly to the period zero and as noted above, if P (w2) is a concave function,

the random fluctuation in ε1
j , 1 ≤ j ≤ n, will reduce expected profits. And only when

Pw2w2 < 0 for all w2, the hedging could raise average profits.

We apply all the results in Section 2.1 to all the lemmas, propositions, and theo-

rems in this section.

2.2.2 n Variables Hedge Ratio Optimization in Period One

P (w2) are random variables, when we compute the first order condition of P (w2), we

treat it as a function, then for all 1 ≤ j ≤ n,

∂

∂I1
j

(
F(I1)− C(e2)

)
= 0,

that is,

(θ1)T · (Df(I1) · ej

)− (1 + Ce2)(γ
1)T · ej = 0

We write it as

(θ1)T ·Df(I1) · ej = γ1
j (1 + Ce2). (2.20)

And the matrix form is: (Df(I1))T · θ1 = (1 + Ce2)γ
1

Denote the first order condition as (I1
∗
)T = (I1∗

1 , I1∗
2 , ..., I1∗

n ), then I1 = I1
∗
,

P (w2) is maximized.

The tensor D2f(I1
∗
)
(dI1

∗

dw2

)
is weakly negative definite. This is because when we

treat each entry of the Hessian matrix D2fj(I
1∗) as a function, the Hessian matrices

are symmetric and D2fj < 0 for all 1 ≤ j ≤ n.

Proposition 2.7 If we treat P (w2) as a function, then

(i) Pw2 = Ce2

(ii) Pw2w2 = (θ1)T ·D2f(I1
∗
)
(

dI1
∗

dw2

)
· dI1

∗

dw2
− Ce2e2

(
(γ1)T · dI1

∗

dw2
− 1

)2

Moreover, Pw2w2 < 0, and P (w2) is a concave function.
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Proof. Since P (w2) = (θ1)T · f(I1∗)− (γ1)T ·I1∗−C(e2) at (I1
∗
)T , treat it as a function

so that we can apply the product rule and the first order condition of P (w2), then we

get

Pw2 = (θ1)T ·Df(I1
∗
) · dI1

∗

dw2

− (γ1)T · dI1
∗

dw2

− Ce2

(
(γ1)T · dI1

∗

dw2

− 1
)

= (Df(I1
∗
)T · θ1)T · dI1

∗

dw2

− (1 + Ce2)(γ
1)T · dI1

∗

dw2

+ Ce2

=
(
Df(I1

∗
)T · θ1 − (1 + Ce2)γ

1
)T · dI1

∗

dw2

+ Ce2

= Ce2

Similarly, treat the first order derivative function Pw2 as a function, and derive

the second derivative of P (w2), where

Pw2 = (θ1)T ·Df(I1
∗
) · dI1

∗

dw2

− (γ1)T · dI1
∗

dw2

− Ce2

(
(γ1)T · dI1

∗

dw2

− 1
)

then,

Pw2w2 = (θ1)T ·
(dI1

∗

dw2

)T

D2f(I1
∗
) · dI1

∗

dw2

+ (θ1)T ·Df(I1
∗
) · d2I1

∗

dw2
2

− (γ1)T · d2I1
∗

dw2
2

− Ce2e2

(
(γ1)T · dI1

∗

dw2

− 1
)2 − Ce2

(
(γ1)T · d2I1

∗

dw2
2

)

= (θ1)T ·D2f(I1
∗
)
(dI1

∗

dw2

)
· dI1

∗

dw2

− Ce2e2

(
(γ1)T · dI1

∗

dw2

− 1
)2

By the assumption, we have
〈
D2f(I1

∗
)
(dI1

∗

dw2

)
,
dI1

∗

dw2

〉
< 0, and Ce1e1 > 0, which

means that Pw2w2 < 0.

Similarly to Section 2.1.2, we need to solve for the vector
dI1

∗

dw2

. Again, we treat

C(e2), Ce2 , Ce2e2 as functions.

Theorem 2.8 Treat C(e2) as a function, Ce2e2 > 0, and γ1
j > 0 for all 1 ≤ j ≤ n,

then

dI1
∗

dw2

= −Ce2e2

(
(θ1)T ·D2f(I1

∗
)− Ce2e2(γ

1 · (γ1)T )
)−1 · γ1
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Proof. The proof is the same as Theorem 2.3, and all the random variables in period

one are treated as functions so that we can get the derivative functions. First, we

have

(θ1)T ·D2f(I1
∗
)
(dI1

∗

dw2

)
= Ce2e2 · γ1 · ((γ1)T · dI1

∗

dw2

− 1
)

⇒

(θ1)T ·D2f(I1
∗
)
(dI1

∗

dw2

)
− Ce2e2 · (γ1 · (γ1)T ) · dI1

∗

dw2

= −Ce2e2 · γ1

Let

A1 := (θ1)T ·D2f(I1
∗
)− Ce2e2(γ

1 · (γ1)T ) (2.21)

Since Ce2e2 > 0 and γ1
j > 0 for all 1 ≤ j ≤ n, the matrix Ce2e2(γ

1 · (γ1)T ) is

symmetric and weakly positive definite, then −Ce2e2(γ
1 · (γ1)T ) is weakly negative

definite, so as A1.

Similarly, θ is a random variable with probability, so A1 is almost invertible. We

have,

dI1
∗

dw2

= −Ce2e2

(
(θ1)T ·D2f(I1

∗
)− Ce2e2(γ

1 · (γ1)T )
)−1 · γ1

= −Ce2e2 ·A−1
1 · γ1

(2.22)

If A1 is symmetric and weakly negative definite, A−1
1 is also symmetric and weakly

negative definite.

Proposition 2.9 Let A1 be the matrix 2.21 defined in Theorem 2.8. The vector
dI0

∗

dw2

is also given by the Equation 2.22, then the second derivative function Pw2w2 is

Pw2w2 = −Ce2e2 − C2
e2e2

(γ1)T ·A−1
1 · γ1 (2.23)
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Proof. P (w2) can be viewed as a function, then we have

Pw2w2 = (θ1)T ·D2f(I1
∗
)
(dI1

∗

dw2

)
· dI1

∗

dw2

− Ce2e2

(
(γ1)T · dI1

∗

dw2

− 1
)2

=
(dI1

∗

dw2

)T(
(θ1)T ·D2f(I1

∗
)
) · dI1

∗

dw2

− Ce2e2

(
(γ1)T · dI1

∗

dw2

· (γ1)T · dI1
∗

dw2

− 2(γ1)T · dI1
∗

dw2

+ 1
)

=
(dI1

∗

dw2

)T

· ((θ1)T ·D2f(I1
∗
)− Ce2e2(γ

1 · (γ1)T )
) · dI1

∗

dw2

− Ce2e2

(
1− 2(γ1)T · dI1

∗

dw2

)

= (−Ce2e2A
−1
1 · γ1)T ·A1 · (−Ce2e2A

−1
1 · γ1)− Ce2e2

(
1− 2(γ1)T · (−Ce2e2A

−1
1 · γ1)

)

= C2
e2e2

(γ1)T · (A−1
1 )

T ·A1 ·A−1
1 γ1 − Ce2e2 − 2C2

e2e2
(γ1)T ·A−1

1 · γ1

= −Ce2e2 − C2
e2e2

(γ1)T ·A−1
1 · γ1

which is as asserted.

Similar to the vector
dI1

∗

dw2

, we can calculate the vectors
∂I1

∗

∂ε1
j

for all 1 ≤ j ≤ n by

viewing all the random variables in period one as functions.

Theorem 2.10 If Ce2e2 > 0 and γ1
j > 0 for all 1 ≤ j ≤ n. Then,

∂I1
∗

∂ε1
j

= A−1
1 ·

{
Ce2e2(β

1
j I

1∗
j −w1h

1
j)·γ1+

(β1
j

γ1
j

((θ1)T ·Df(I1
∗
)·ej)−α1

jDf(I1
∗
)
)·ej

}
(2.24)

Proof. Apply the method of the proof of Theorem 2.8 and view every random variables

as functions, we have the vector

∂I1
∗

∂ε1
j

= A−1
1 ·

{
Ce2e2(β

1
j I

1∗
j − w1h

1
j) · γ1 +

(β1
j

γ1
j

((θ1)T ·Df(I1
∗
) · ej)− α1

jDf(I1
∗
)
) · ej

}

Next, we will solve for the optimal hedge ratio h1∗ = {h1∗
1 , ..., h1∗

n } in period one

to maximize E[P (w2)] at I1
∗

= {I1∗
1 , ..., I1∗

n } if cov(ε1
i , ε

1
j) = 0, i 6= j. Notice that

since we take the expectation of P (w2), it becomes a function, then we can find the

derivative of E[P (w2)].
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Theorem 2.11 Suppose that all the assumptions in this section are satisfied. Also

assume that at I1
∗
, P (w2) is maximized and cov(ε1

i , ε1
j) = 0 for i 6= j. Then, the

optimal hedge ratio

h1∗ = {h1∗
1 , h1∗

2 , ..., h1∗
n }

where h1∗
j are given by

h1∗
j =

E[Pw2 ]

(σ1
j )

2w1Eε1j
[Pw2w2 ]

+ β1
j

Eε1j
[I1∗

j Pw2w2 ]

w1Eε1j
[Pw2w2 ]

−
Eε1j

[
Ce2e2(γ

1)T ·A−1
1 · (β1

j

γ1
j
((θ1)T ·Df(I1

∗
) · ej)− α1

jDf(I1
∗
)
) · ej

]

w1Eε1j
[Pw1w1 ]

(2.25)

for all 1 ≤ j ≤ n.

Proof. The proof is also similar to the proof of Theorem 2.6. Notice that w1 here is

not a constant but a random variable depending on ε0
j .

Since w2 = w1(h
1
1ε

1
1 + · · ·+ h1

nε1
n),then for all 1 ≤ j ≤ n,

∂w2

∂h1
j

= w1ε
1
j

For all 1 ≤ j ≤ n, we need

E
[
Pw2 ·

∂w2

∂h1
j

]
= 0

Apply Lemma 2.14, and notice that w1 is a random variable, not like w0, a constant

number, so we can not put it out of the expectation, then

E
[
Pw2 ·

∂w2

∂h1
j

]
= E[Pw2 · w1ε

1
j ] = E[w1Pw2 · ε1

j ] = 0 ⇔

E[w1Pw2 · ε1
j ] = E[w1Pw2 ] · E[ε1

j ]− cov(w1Pw2 , ε
1
j) = 0 (since E[ε1

j ] = 1) ⇔

E[w1Pw2 · ε1
j ] = E[w1Pw2 ]− Eε1j

[w1Pw2ε1j
] · Eε1j

[ε1
j ] · cov(ε1

j , ε
1
j) = 0 ⇔

E[w1Pw2 · ε1
j ] = E[w1Pw2 ]− Eε1j

[w1Pw2ε1j
] · (σ1

j )
2 = 0

Since Pw2 = Ce2 ,

Eε1j
[w1Pw2ε1j

] = Eε1j
[w1(Pw2)ε1j

] = Eε1j
[w1(Ce2)ε1j

] = Eε1j

[
w1Ce2e2 ·

∂e2

∂ε1
j

]
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By the definition of e2, for all 1 ≤ j ≤ n, we have

∂e2

∂ε1
j

= (γ1)T · ∂I1
∗

∂ε1
j

+ β1
j I

1∗
j − w1h

1
j

Then,

E[w1Pw2 ]− (σ1
j )

2Eε1j

[
w1Ce2e2((γ

1)T · ∂I1
∗

∂ε1
j

+ β1
j I

1∗
j − w1h

1
j)

]
= 0

which can be expanded as:

E[w1Pw2 ]− (σ1
j )

2Eε1j

[
w1Ce2e2((γ

1)T · ∂I1
∗

∂ε1
j

)
]

− (σ1
j )

2Eε1j
[w1Ce2e2β

1
j I

1∗
j ] + (σ1

j )
2Eε1j

[(w1)
2Ce2e2h

1
j ] = 0

(2.26)

The vector
∂I1

∗

∂ε1
j

has been solved in Theorem 2.10, which is given in Equation 2.24,

then plug this vector into the above equation to get

E[w1Pw2 ]− (σ1
j )

2Eε1j

[
w1Ce2e2(γ

1)T ·A−1
1 · (Ce2e2(β

1
j I

1∗
j − w1h

1
j) · γ1

+
(β1

j

γ1
j

((θ1)T ·Df(I1
∗
) · ej)− α1

jDf(I1
∗
)
) · ej)

]

− (σ1
j )

2β1
j Eε1j

[w1Ce2e2I
1∗
j ] + (σ1

j )
2h1

jEε1j
[(w1)

2Ce2e2 ] = 0

Expand each term of left hand side of the equation:

E[w1Pw2 ]− (σ1
j )

2Eε1j
[w1C

2
e2e2

(γ1)T ·A−1
1 · (β1

j I
1∗
j ) · γ1] + (σ1

j )
2h1

jEε1j
[(w1)

2C2
e2e2

(γ1)T ·A−1
1 · γ1]

− (σ1
j )

2
β1

j

γ1
j

Eε1j
[w1Ce2e2(γ

1)T ·A−1
1 · ((θ1)T ·Df(I1

∗
) · ej) · ej]

+ (σ1
j )

2α1
jEε1j

[w1Ce2e2(γ
1)T ·A−1

1 ·Df(I1
∗
) · ej]

− (σ1
j )

2β1
j Eε1j

[w1Ce2e2I
1∗
j ] + (σ1

j )
2h1

jEε1j
[(w1)

2Ce2e2 ] = 0

Rewrite the equation and group all terms having the optimal hedge ratio h1
j to-

gether,

E[w1Pw2 ]− (σ1
j )

2β1
j Eε1j

[w1I
1∗
j C2

e2e2
((γ1)T ·A−1

1 · γ1)]

− (σ1
j )

2
β1

j

γ1
j

Eε1j
[w1Ce2e2((θ

1)T ·Df(I1
∗
) · ej)((γ

1)T ·A−1
1 · ej)]

+ (σ1
j )

2α1
jEε1j

[w1Ce2e2((γ
1)T ·A−1

1 ·Df(I1
∗
) · ej)]− (σ1

j )
2β1

j Eε1j
[w1Ce2e2I

1∗
j ]

= −(σ1
j )

2h1
jEε1j

[(w1)
2C2

e2e2
(γ1)T ·A−1

1 · γ1]− (σ1
j )

2h1
jEε1j

[(w1)
2Ce2e2 ]
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Rearrange and group some terms of the equation,

E[w1Pw2 ] + (σ1
j )

2β1
j Eε1j

[w1I
1∗
j (−Ce2e2 − C2

e2e2
(γ1)T ·A−1

1 · γ1)]

− (σ1
j )

2
β1

j

γ1
j

Eε1j
[w1Ce2e2(γ

1)T ·A−1
1 · ((θ1)T ·Df(I1

∗
) · ej) · ej]

+ (σ1
j )

2α1
jEε1j

[w1Ce2e2(γ
1)T ·A−1

1 ·Df(I1
∗
) · ej]

= (σ1
j )

2Eε1j
[(w1)

2(−Ce2e2 − C2
e2e2

(γ1)T ·A−1
1 · γ1)]h1

j

Since Pw2w2 = −Ce2e2 − C2
e2e2

(γ1)T ·A−1
1 · γ1, the above equation becomes

E[w1Pw2 ] + (σ1
j )

2β1
j Eε1j

[w1I
1∗
j Pw2w2 ]

− (σ1
j )

2Eε1j
[w1Ce2e2(γ

1)T ·A−1
1 · (β

1
j

γ1
j

((θ1)T ·Df(I1
∗
) · ej)− α1

jDf(I1
∗
)) · ej]

= (σ1
j )

2Eε1j
[(w1)

2Pw2w2 ]h
1
j

Similarly, when the first order condition of E
[
P (w2)

]
under the hedge ratio h1 is

zero, it will be maximized, and the corresponding hedge ratio is the optimal hedge

ratio h1∗.

Solve h1
j for all 1 ≤ j ≤ n, and we obtain,

h1∗
j =

E[w1Pw2 ]

(σ1
j )

2Eε1j
[(w1)2Pw2w2 ]

+ β1
j

Eε1j
[w1I

1∗
j Pw2w2 ]

Eε1j
[(w1)2Pw2w2 ]

−
Eε1j

[
w1Ce2e2(γ

1)T ·A−1
1 · (β1

j

γ1
j
((θ1)T ·Df(I1

∗
) · ej)− α1

jDf(I1
∗
)
) · ej

]

Eε1j
[(w1)2Pw2w2 ]

(2.27)

We conclude that if the product function, total wealth, total investment, and

the profit function keep the same for period one, and these random variables can be

treated as functions, then the optimal hedge ratio can be calculated. In the next

section, we will present n = 2 case similar to Section 2.1.3.
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2.2.3 The Optimal Hedge Ratio of n = 2 in Period One

In period one with the case n = 2 , we can calculate the optimal hedge ratio h1∗ =

{h1∗
1 , h1∗

2 } with some assumptions.

Let (I1)
T

= (I1
1 , I

1
2 ), and F(I0) = θ1

1f1(I
1
1 , I

1
2 ) + θ1

2f2(I
1
1 , I

1
2 )− γ1

1I
1
1 − γ1

2I
1
2 −C(e2).

w2 = w1(h
1
1ε

1
1 + h1

2ε
1
2) = w0(h

0
1ε

0
1 + h0

2ε
0
2)(h

1
1ε

1
1 + h1

2ε
1
2), h1

1 + h1
2 = 1,

e2 = γ1
1I

1
1 + γ1

2I
1
2 − w2

θ1
1 = α1

1(ε
1
1 − ε̄1

1) + 1, θ1
2 = α1

2(ε
1
2 − ε̄2

1) + 1

γ1
1 = β1

1(ε
1
1 − ε̄1

1) + 1, γ1
2 = β1

2(ε
1
2 − ε̄2

1) + 1

ε1
j ∼ N(ε̄1

j , (σ
1
j )

2), j = 1, 2

Df(I1) =




∂f1(I1)

∂I1
1

∂f1(I1)

∂I1
2

∂f2(I1)

∂I1
1

∂f2(I1)

∂I1
2


 ,

D2f1(I
1) =




∂2f1(I1)

∂(I1
1 )2

∂2f1(I1)

∂I1
2∂I1

1

∂2f1(I1)

∂I1
1∂I1

2

∂2f1(I1)

∂(I1
2 )2


 and D2f2(I

1) =




∂2f2(I1)

∂(I1
1 )2

∂2f2(I1)

∂I1
2∂I1

1

∂2f2(I1)

∂I1
1∂I1

2

∂2f2(I1)

∂(I1
2 )2




Step 1:

The first order condition of P (w2) with respect to I1 is given by

θ1
1

∂f1(I
1)

∂I1
1

+ θ1
2

∂f2(I
1)

∂I1
1

= (1 + Ce2)γ
1
1 θ1

1

∂f1(I
1)

∂I1
2

+ θ1
2

∂f2(I
1)

∂I1
2

= (1 + Ce2)γ
1
2

Step 2:

Same as the example in Section 2.1.3, we have Pw2 = Ce2 .

Pw2w2 = θ1
1

(∂2f1(I
1∗)

∂(I1
1 )2

(dI1∗
1

dw2

)2
+

∂2f1(I
1∗)

∂(I1
2 )2

(dI1∗
2

dw2

)2
)

+ θ1
2

(∂2f2(I
1∗)

∂(I1
1 )2

(dI1∗
1

dw2

)2

+
∂2f2(I

1∗)
∂(I1

2 )2

(dI1∗
2

dw2

)2
)
− Ce2e2

(
γ1

1

dI1∗
1

dw2

+ γ1
2

dI1∗
2

dw2

− 1
)2

Step 3:
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Solve for
dI1

∗

dw2

and simplify Pw2w2 .

θ1
1

(∂2f1(I
1∗)

∂(I1∗
1 )2

dI1∗
1

dw2

+
∂2f1(I

1∗)
∂I1∗

1 ∂I1∗
2

dI1∗
2

dw2

)
+ θ1

2

(∂2f2(I
1∗)

∂(I1∗
1 )2

dI1∗
1

dw2

+
∂2f2(I

1∗)
∂I1∗

1 ∂I1∗
2

dI1∗
2

dw2

)

− γ1
1Ce2e2

(
γ1

1

dI1∗
1

dw2

+ γ1
2

dI1∗
2

dw2

− 1
)

= 0

θ1
1

(∂2f1(I
1∗)

∂I1∗
2 ∂I1∗

1

dI1∗
1

dw2

+
∂2f1(I

1∗)
∂(I1∗

2 )2

dI1∗
2

dw2

)
+ θ1

2

(∂2f2(I
1∗)

∂I1∗
2 ∂I1∗

1

dI1∗
1

dw2

+
∂2f2(I

1∗)
∂(I1∗

2 )2

dI1∗
2

dw2

)

− γ1
2Ce2e2

(
γ1

1

dI1∗
1

dw2

+ γ1
2

dI1∗
2

dw2

− 1
)

= 0

Let

A1 = θ1
1D

2f1(I
1∗) + θ1

2D
2f2(I

1∗)− Ce2e2




(γ1
1)

2 γ1
1γ

1
2

γ1
2γ

1
1 (γ1

2)
2




then, 


dI1∗
1

dw2

dI1∗
2

dw2


 = −Ce2e2A

−1
1 ·




γ1
1

γ1
2




and so

Pw2w2 = −Ce2e2 − C2
e2e2

(
γ1

1 γ1
2

)
·A−1

1 ·




γ1
1

γ1
2




Step 4:

Solve for
∂I1

∗

∂εj

, j = 1, 2.

For j = 1, we have,

θ1
1

(∂2f1(I
1∗)

∂(I1∗
1 )2

· ∂I1∗
1

∂ε1
1

+
∂2f1(I

1∗)
∂I1∗

1 ∂I1∗
2

· ∂I1∗
2

∂ε1
1

)
+ θ1

2

(∂2f2(I
1∗)

∂(I1∗
1 )2

· ∂I1∗
1

∂ε1
1

+
∂2f2(I

1∗)
∂I1∗

1 ∂I1∗
2

· ∂I1∗
2

∂ε1
1

)

+ α1
1

∂f1(I
1∗)

∂I1∗
1

= β1
1(1 + Ce2) + γ1

1Ce2e2

(
γ1

1

∂I1∗
1

∂ε1
1

+ β1
1I

1∗
1 + γ1

2

∂I1∗
2

∂ε1
1

− w0(h
0
1ε

0
1 + h0

2ε
0
2)h

1
1

)

θ1
1

(∂2f1(I
1∗)

∂I1∗
2 ∂I1∗

1

· ∂I1∗
1

∂ε1
1

+
∂2f1(I

1∗)
∂(I1∗

2 )2
· ∂I1∗

2

∂ε1
1

)
+ θ1

2

(∂2f2(I
1∗)

∂I1∗
2 ∂I1∗

1

· ∂I1∗
1

∂ε1
1

+
∂2f2(I

1∗)
∂(I1∗

2 )2
· ∂I1∗

2

∂ε1
1

)

+ α1
1

∂f1(I
1∗)

∂I1∗
2

= 0(1 + Ce2) + γ1
2Ce2e2

(
γ1

1

∂I1∗
1

∂ε1
1

+ β1
1I

1∗
1 + γ1

2

∂I1∗
2

∂ε1
1

− w0(h
0
1ε

0
1 + h0

2ε
0
2)h

1
1

)
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Write it in a vector form:

[
θ1
1

(
∂2f1(I1

∗
)

∂(I1∗
1 )2

∂2f1(I1
∗
)

∂I1∗
1 ∂I1∗

2

)
+ θ1

2

(
∂2f2(I1

∗
)

∂(I1∗
1 )2

∂2f2(I1
∗
)

∂I1∗
1 ∂I1∗

2

) ]



∂I1∗
1

∂ε11

∂I1∗
2

∂ε11


 + α1

1

∂f1(I
1∗)

∂I1∗
1

= β1
1(1 + Ce2) + γ1

1Ce2e2

((
γ1

1 γ1
2

)



∂I1∗
1

∂ε11

∂I1∗
2

∂ε11


 + β1

1I
1∗
1 − w0(h

0
1ε

0
1 + h0

2ε
0
2)h

1
1

)

[
θ1
1

(
∂2f1(I1

∗
)

∂I1∗
2 ∂I1∗

1

∂2f1(I1
∗
)

∂(I1∗
2 )2

)
+ θ1

2

(
∂2f2(I1

∗
)

∂I1∗
2 ∂I1∗

1

∂2f2(I1
∗
)

∂(I1∗
2 )2

) ]



∂I1∗
1

∂ε11

∂I1∗
2

∂ε11


 + α1

1

∂f1(I
1∗)

∂I1∗
2

= 0(1 + Ce2) + γ1
2Ce2e2

( (
γ1

1 γ1
2

)



∂I1∗
1

∂ε11

∂I1∗
2

∂ε11


 + β1

1I
1∗
1 − w0(h

0
1ε

0
1 + h0

2ε
0
2)h

1
1

)

Then, the vector is




∂I1∗
1

∂ε11

∂I1∗
2

∂ε11


 = A−1

1 · Ce2e2

{
(β1

1I
1∗
1 − w1h

1
1)




γ1
1

γ1
2


 + (1 + Ce2)




β1
1

0


− α1

1




∂f1(I1
∗
)

∂I1∗
1

∂f1(I1
∗
)

∂I1∗
2




}

= A−1
1 ·

{
Ce2e2(β

1
1I

1∗
1 − w1h

1
1)




γ1
1

γ1
2




+
[β1

1

γ1
1

(
θ1
1Df1(I

1∗) + θ1
2Df2(I

1∗)
) ·




1

0




]
·




1

0


− α1

1




∂f1(I1
∗
)

∂I1∗
1

∂f1(I1
∗
)

∂I1∗
2




}

For j = 2, again, we have,

θ1
1

(∂2f1(I
1∗)

∂(I1∗
1 )2

· ∂I1∗
1

∂ε1
2

+
∂2f1(I

1∗)
∂I1∗

1 ∂I1∗
2

· ∂I1∗
2

∂ε1
2

)
+ θ1

2

(∂2f2(I
1∗)

∂(I1∗
1 )2

· ∂I1∗
1

∂ε1
2

+
∂2f2(I

1∗)
∂I1∗

1 ∂I1∗
2

· ∂I1∗
2

∂ε1
2

)

+ α1
2

∂f2(I
1∗)

∂I1∗
1

= 0(1 + Ce2) + γ1
2Ce2e2

(
γ1

1

∂I1∗
1

∂ε1
2

+ β1
2I

1∗
2 + γ1

2

∂I1∗
2

∂ε1
2

− w0(h
0
1ε

0
1 + h0

2ε
0
2)h

1
2

)

θ1
1

(∂2f1(I
1∗)

∂I1∗
2 ∂I1∗

1

· ∂I1∗
1

∂ε1
2

+
∂2f1(I

1∗)
∂(I1∗

2 )2
· ∂I1∗

2

∂ε1
2

)
+ θ1

2

(∂2f2(I
1∗)

∂I1∗
2 ∂I1∗

1

· ∂I1∗
1

∂ε1
2

+
∂2f2(I

1∗)
∂(I1∗

2 )2
· ∂I1∗

2

∂ε1
2

)

+ α1
2

∂f2(I
1∗)

∂I1∗
2

= β1
2(1 + Ce2) + γ1

2Ce2e2

(
γ1

1

∂I1∗
1

∂ε1
2

+ β1
2I

1∗
2 + γ1

2

∂I1∗
2

∂ε1
2

− w0(h
0
1ε

0
1 + h0

2ε
0
2)h

1
2

)
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[
θ1
1

(
∂2f1(I1

∗
)

∂(I1∗
1 )2

∂2f1(I1
∗
)

∂I1∗
1 ∂I1∗

2

)
+ θ1

2

(
∂2f2(I1

∗
)

∂(I1∗
1 )2

∂2f2(I1
∗
)

∂I1∗
1 ∂I1∗

2

) ]



∂I1∗
1

∂ε12

∂I1∗
2

∂ε12


 + α1

2

∂f2(I
1∗)

∂I1∗
1

= 0(1 + Ce2) + γ1
1Ce2e2

( (
γ1

1 γ1
2

)



∂I1∗
1

∂ε12

∂I1∗
2

∂ε12


 + β1

2I
1∗
2 − w0(h

0
1ε

0
1 + h0

2ε
0
2)h

1
2

)

[
θ1
1

(
∂2f1(I1

∗
)

∂I1∗
2 ∂I1∗

1

∂2f1(I1
∗
)

∂(I1∗
2 )2

)
+ θ1

2

(
∂2f2(I1

∗
)

∂I1∗
2 ∂I1∗

1

∂2f2(I1
∗
)

∂(I1∗
2 )2

) ]



∂I1∗
1

∂ε12

∂I1∗
2

∂ε12


 + α1

2

∂f2(I
1∗)

∂I1∗
2

= β1
2(1 + Ce2) + γ1

2Ce2e2

( (
γ1

1 γ1
2

)



∂I1∗
1

∂ε12

∂I1∗
2

∂ε12


 + β1

2I
1∗
2 − w0(h

0
1ε

0
1 + h0

2ε
0
2)h

1
2

)

Finally, the vector with respect to ε1
2 is given by




∂I1∗
1

∂ε12

∂I1∗
2

∂ε12


 = A−1

1 ·
{

(β1
2I

1∗
2 − w1h

1
2)Ce2e2




γ1
1

γ1
2


 + (1 + Ce2)




0

β1
2


− α1

2




∂f2(I1
∗
)

∂I1∗
1

∂f2(I1
∗
)

∂I1∗
2




}

= A−1
1 ·

{
Ce2e2(β

1
2I

1∗
2 − w1h

1
2)




γ1
1

γ1
2




+
[β1

2

γ1
2

(
θ1
1Df1(I

1∗) + θ1
2Df2(I

1∗)
) ·




0

1




]
·




0

1


− α1

2




∂f2(I1
∗
)

∂I1∗
1

∂f2(I1
∗
)

∂I1∗
2




}

Step 5:

Solve for the optimal hedge ratio h1∗ = {h1∗
1 , h1∗

2 }.
Again, Pw2 = Ce2 and Pw2w2 = −Ce2e2 − C2

e2e2
(γ0)T ·A−1

1 · γ.

Since w2 = w0(h
0
1ε

0
1 + h0

2ε
0
2)(h

1
1ε

1
1 + h1

2ε
1
2) = w1(h

1
1ε

1
1 + h1

2ε
1
2, for j = 1, 2

∂w2

∂h1
j

= w0(h
0
1ε

0
1 + h0

2ε
0
2)ε

1
j = w1ε

1
j

It requires that the first order conditions of E[P (w2)] are zero,which are

E
[
Pw2 ·

∂w2

∂h1
1

]
= 0
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E
[
Pw2 ·

∂w2

∂h1
2

]
= 0

Similarly to the example in Section 2.1.3, we have

E
[
Pw2 ·

∂w2

∂h1
1

]
= E[Pw2 · w1ε

1
1] = E[w1Pw2 · ε1

1] = 0 ⇔

E[w1Pw2 · ε1
1] = E[w1Pw2 ] · E[ε1

1]− cov(w1Pw2 , ε
1
1) = 0 (since E[ε1

1] = 1) ⇔

E[w1Pw2 ]− Eε11
[w1Pw2ε11

] · Eε11
[ε1

1] · cov(ε1
1, ε

1
1) = 0 ⇔

E[w1Pw2 · ε1
1] = E[w1Pw2 ]− Eε11

[w1Pw2ε11
] · (σ1

1)
2 = 0.

Since

Eε11
[w1Pw2ε11

] = Eε11
[w1(Pw2)ε11

] = Eε11
[w1(Ce2)ε11

] = Eε11
[w1Ce2e2 ·

∂e2

∂ε1
1

]

then

E[w1Pw2 ]− (σ1
1)

2Eε11
[w1Ce2e2 ·

∂e2

∂ε1
1

] = 0 (∗∗)

Also by definition, we have

∂e2

∂ε1
1

= γ1
1

∂I1∗
1

∂ε1
1

+ γ1
2

∂I1∗
2

∂ε1
1

+ β1
1I

1∗
1 − w1h

1
1

Then, (∗∗) is

E[w1Pw2 ]− (σ1
1)

2Eε11
[w1Ce2e2(γ

1
1

∂I1∗
1

∂ε1
1

+ γ1
2

∂I1∗
2

∂ε1
1

+ β1
1I

1∗
1 − w1h

1
1)] = 0

Rewrite it as:

E[w1Pw2 ]− (σ1
1)

2Eε11

[
w1Ce2e2(γ

1
1

∂I1∗
1

∂ε1
1

+ γ1
2

∂I1∗
2

∂ε1
1

)
]

− (σ1
1)

2Eε11
[w1Ce2e2β

1
1I

1∗
1 ] + (σ1

1)
2Eε11

[w1Ce2e2w1h
1
1] = 0

From Step 4, we have
∂I1

∗

∂ε1
1

, then,

E[w1Pw2 ]− (σ1
1)

2Eε11

[
w1Ce2e2

(
γ1

1 γ1
2

)
·A−1

1

(
Ce2e2(β

1
1I

1∗
1 − w1h

1
1)




γ1
1

γ1
2




+
β1

1

γ1
1

(
θ1
1D

2f1(I
1∗) + θ1

2D
2f2(I

1∗)
)



1

0


− α1Df(I1

∗
)




1

0




) ·




1

0




]

− (σ1
1)

2β1
1Eε11

[w1Ce2e2I
1∗
1 ] + (σ1

1)
2h1

1Eε11
[(w1)

2Ce2e2 ] = 0
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E[w1Pw2 ]− (σ1
1)

2β1
1Eε11

[
w1I

1∗
1 Ce2e2

(
γ1

1 γ1
1

)
·A−1

1 Ce2e2




γ1
1

γ1
2




]

+ (σ1
1)

2h1
1Eε11

[
(w1)

2Ce2e2

(
γ1

1 γ1
2

)
·A−1

1 ·




γ1
1

γ1
2




]

− (σ1
1)

2β1
1

γ1
1

Eε11

[
w1Ce2e2

(
γ1

1 γ1
2

)
·A−1

1 ·
((

θ1
1D

2f1(I
1∗) + θ1

2D
2f2(I

1∗)
)



1

0




)
·




1

0




+ (σ1
1)

2α1
1Df(I1

∗
)




1

0




]
− (σ1

1)
2β1

1Eε11
[w1Ce2e2I

1∗
1 ] + (σ1

1)
2h1

1Eε11
[(w1)

2Ce2e2 ] = 0

E[w1Pw2 ]− (σ1
1)

2β1
1Eε11

[
w1I

1∗
1 Ce2e2

(
γ1

1 γ1
1

)
·A−1

1 Ce2e2




γ1
1

γ1
2




]

− (σ1
1)

2β1
1

γ1
1

Eε11

[
w1Ce2e2

(
γ1

1 γ1
2

)
·A−1

1 ·
((

θ1
1D

2f1(I
1∗) + θ1

2D
2f2(I

1∗)
)



1

0




)
·




1

0




+ (σ1
1)

2α1
1Df(I1

∗
)




1

0




]
− (σ1

1)
2β1

1Eε11
[w1Ce2e2I

1∗
1 ]

= −(σ1
1)

2h1
1Eε11

[
(w1)

2Ce2e2

(
γ1

1 γ1
2

)
·A−1

1 ·




γ1
1

γ1
2




]
+ (σ1

1)
2h1

1Eε11
[(w1)

2Ce2e2 ]

E[w1Pw2 ] + (σ1
1)

2β1
1Eε11

[
w1I

1∗
1

(− Ce2e2 − Ce2e2

(
γ1

1 γ1
1

)
·A−1

1 Ce2e2




γ1
1

γ1
2




)]

− (σ1
1)

2β1
1

γ1
1

Eε11

[
w1Ce2e2

(
γ1

1 γ1
2

)
·A−1

1 ·
((

θ1
1D

2f1(I
1∗) + θ1

2D
2f2(I

1∗)
)



1

0




)
·




1

0




+ (σ1
1)

2α1
1Df(I1

∗
)




1

0




]
= (σ1

1)
2h1

1Eε11

[
(w1)

2(−Ce2e2 − Ce2e2

(
γ1

1 γ1
2

)
·A−1

1 ·




γ1
1

γ1
2


)

]
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E[w1Pw2 ] + (σ1
1)

2β1
1Eε11

[
w1I

1∗
1 Pw2w2

]
− (σ1

1)
2Eε11

[
w1Ce2e2

(
γ1

1 γ1
2

)
·A−1

1 ·

(β1
1

γ1
1

(
θ1
1D

2f1(I
1∗) + θ1

2D
2f2(I

1∗)
)



1

0




)
·




1

0


 + (σ1

1)
2α1

1Df(I1
∗
)




1

0




]

− (σ1
1)

2β1
1Eε11

[w1Ce2e2I
1∗
1 ] = (σ1

1)
2h1

1Eε11

[
(w1)

2Pw2w2

]

Similarly, for ε1
2, the derivative function is

∂e2

∂ε1
2

= γ1
1

∂I1∗
1

∂ε1
2

+ γ1
2

∂I1∗
2

∂ε1
2

+ β1
2I

1∗
2 − w1h

1
2

which is need to solve for h1
2.

E[w1Pw2 ]− (σ1
2)

2Eε12
[w1Ce2e2(γ

1
1

∂I1∗
1

∂ε1
2

+ γ1
2

∂I1∗
2

∂ε1
2

+ β1
2I

1∗
2 − w1h

1
2)] = 0

Then,

E[w1Pw2 ]− (σ1
2)

2Eε12

[
w1Ce2e2(γ

1
1

∂I1∗
1

∂ε1
2

+ γ1
2

∂I1∗
2

∂ε1
2

)
]

− (σ1
2)

2Eε12
[w1Ce2e2β

1
2I

1
2 ] + (σ1

2)
2Eε12

[Ce2e2(w1)
2h1

2] = 0

Replace the vector
∂I1

∗

∂ε1
2

, we have

E[w1Pw2 ]− (σ1
2)

2Eε12

[
w1Ce2e2

(
γ1

1 γ1
2

)
·A−1

1

(
Ce2e2(β

1
2I

1∗
2 − w1h

1
2)




γ1
1

γ1
2




+
β1

2

γ1
2

(
θ1
1D

2f1(I
1∗) + θ1

2D
2f2(I

1∗)
)



0

1


− α2Df(I1

∗
)




0

1




) ·




0

1




]

− (σ1
2)

2β1
2Eε12

[w1Ce2e2I
1∗
2 ] + (σ1

2)
2h1

2Eε12
[(w1)

2Ce2e2 ] = 0
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E[w1Pw2 ]− (σ1
2)

2β1
2Eε12

[
w1I

1∗
2 Ce2e2

(
γ1

1 γ1
1

)
·A−1

1 Ce2e2




γ1
1

γ1
2




]

+ (σ1
2)

2h1
2Eε12

[
(w1)

2Ce2e2

(
γ1

1 γ1
2

)
·A−1

1 ·




γ1
1

γ1
2




]

− (σ1
2)

2β1
2

γ1
2

Eε12

[
w1Ce2e2

(
γ1

1 γ1
2

)
·A−1

1 ·
((

θ1
1D

2f1(I
1∗) + θ1

2D
2f2(I

1∗)
)



0

1




)
·




0

1




+ (σ1
2)

2α1
2Df(I1

∗
)




0

1




]
− (σ1

2)
2β1

2Eε12
[w1Ce2e2I

1∗
2 ] + (σ1

2)
2h1

2Eε12
[(w1)

2Ce2e2 ] = 0

E[w1Pw2 ]− (σ1
2)

2β1
1Eε12

[
w1I

1∗
2 Ce2e2

(
γ1

1 γ1
1

)
·A−1

1 Ce2e2




γ1
1

γ1
2




]

− (σ1
2)

2β1
2

γ1
2

Eε12

[
w1Ce2e2

(
γ1

1 γ1
2

)
·A−1

1 ·
((

θ1
1D

2f1(I
1∗) + θ1

2D
2f2(I

1∗)
)



0

1




)
·




0

1




+ (σ1
2)

2α1
2Df(I1

∗
)




0

1




]
− (σ1

2)
2β1

2Eε12
[w1Ce2e2I

1∗
1 ]

= −(σ1
2)

2h1
2Eε12

[
(w1)

2Ce2e2

(
γ1

1 γ1
2

)
·A−1

1 ·




γ1
1

γ1
2




]
+ (σ1

2)
2h1

2Eε12
[(w1)

2Ce2e2 ]

E[w1Pw2 ] + (σ1
2)

2β1
2Eε12

[
w1I

1∗
2

(− Ce2e2 − Ce2e2

(
γ1

1 γ1
1

)
·A−1

1 Ce2e2




γ1
1

γ1
2




)]

− (σ1
2)

2β1
2

γ1
2

Eε12

[
w1Ce2e2

(
γ1

1 γ1
2

)
·A−1

1 ·
((

θ1
1D

2f1(I
1∗) + θ1

2D
2f2(I

1∗)
)



0

1




)
·




0

1




+ (σ1
2)

2α1
2Df(I1

∗
)




0

1




]
= (σ1

2)
2h1

2Eε12

[
(w1)

2(−Ce2e2 − Ce2e2

(
γ1

1 γ1
2

)
·A−1

1 ·




γ1
1

γ1
2


)

]
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E[w1Pw2 ] + (σ1
2)

2β1
2Eε12

[
w1I

1∗
2 Pw2w2

]
− (σ1

2)
2Eε12

[
w1Ce2e2

(
γ1

1 γ1
2

)
·A−1

1 ·

(β1
2

γ1
2

(
θ1
1D

2f1(I
1∗) + θ1

2D
2f2(I

1∗)
)



0

1




)
·




0

1


 + (σ1

2)
2α1

2Df(I1
∗
)




0

1




]

− (σ1
2)

2β1
2Eε12

[w1Ce2e2I
1∗
1 ] = (σ1

2)
2h1

2Eε12

[
(w1)

2Pw2w2

]

Finally, we achieve the optimal hedge ratio h1∗ = {h1∗
1 , h1∗

2 }, where

h1
1 =

E[w1Pw2 ]

(σ1
1)

2Eε11
[(w1)2Pw2w2 ]

+ β1
1

Eε11
[w1I

1∗
1 Pw2w2 ]

Eε11
[(w1)2Pw2w2 ]

−

Eε11

[
w1Ce2e2

(
γ1

1 γ1
2

)
·A−1

1 ·
(

β1
1

γ1
1

(
(θ1

1Df1(I
1∗) + θ1

2Df2(I
1∗)) ·




1

0




)) ·




1

0




]

Eε11
[(w1)2Pw2w2 ]

+ α1
1

Eε11

[
w1Ce2e2

(
γ1

1 γ1
2

)
·A−1

1 ·Df(I1
∗
) ·




1

0




]

Eε11
[(w1)2Pw2w2 ]

h1
2 =

E[w1Pw2 ]

(σ1
2)

2Eε12
[(w1)2Pw2w2 ]

+ β1
2

Eε12
[w1I

1∗
2 Pw2w2 ]

Eε12
[(w1)2Pw2w2 ]

−

Eε12

[
w1Ce2e2

(
γ1

1 γ1
2

)
·A−1

1 ·
(

β1
2

γ1
2

(
(θ1

1Df1(I
1∗) + θ1

2Df2(I
1∗)) ·




0

1




)) ·




0

1




]

Eε12
[(w1)2Pw2w2 ]

+ α1
2

Eε12

[
w1Ce2e2

(
γ1

1 γ1
2

)
·A−1

1 ·Df(I1
∗
) ·




0

1




]

Eε12
[(w1)2Pw2w2 ]

In this section, we compute the optimal hedge ratio h1∗ for n = 2 in period one,

if the concrete model is given, and any linear hedging strategy is considered, it is

feasible to calculate the optimal hedge ratio h1∗ in period one.
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CHAPTER 3

Stochastic Optimization Application of Risk Coordination

In Chapter 2, we discuss the situation that when a company has n different locations,

it is possible to find the optimal hedge ratio h0∗ and h1∗ with linear hedging strategies

so that the expected profit function is maximized. However, all the processes in

Chapter 2 are non-stochastic processes. If we consider all the stochastic processes,

whether there exists any (weak) solution of the stochastic optimal control problem.

To study this problem, we construct a stochastic model and apply the method of

dynamic programming (the HJB Equation).

3.1 Introduction of Stochastic Optimal Control Problem

3.1.1 Construction of The Stochastic Model

First, suppose that a company has a similar investment pattern in Chapter 2, that

is, the company has initial wealth w0, a positive constant, and it acquires external

funds Lt from some risk-free asset with interest rate rL, a constant. Then, the com-

pany invests the total liquid asset, which is the sum of Wt and Lt to some project.

Our problem is if there exists an optimal stochastic control h∗, the expected profit

E[P (Wt)] can be maximized under h∗. We also need the following assumptions and

definitions.

Denote the domain

Q0 = [0, T0)× R
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and

Q = [0, T0)× Ω ( Q0

where Ω is a bounded set in R with compact support.

Denote T0 as a bounded stopping time on [0,∞) such that when t = T0, the profit

function P is maximized.

Let the initial wealth w0 > 0 be a constant, and denote y = (0, w0) as the initial

point when t = 0.

Let Xt be the predictable stock price and follow a stochastic process

dXt = (µ0 + µ1 Xt) dt + ρ σX dZ1t +
√

1− ρ2 σX dZ2t (3.1)

Let the external funds Lt follow the process

dLt = rLdt (3.2)

Let h = h(t, w) = ht be a Markov control process and h ∈ U , a compact Borel

set in R and |ht| ≤ 1. This is equivalent to say that at time t, h is the corresponding

hedge ratio of the total wealth of the company.

Let the total wealth of a company be Wt and follow

dWt = w0

[
((1− ht)rW + ht µW ) dt + ht σW dZ1t

]
(3.3)

Then, the total investments Kt is given by

dKt = dWt + dLt =
(
w0(1− ht)rW + w0 ht µW + rL

)
dt + w0 ht σW dZ1t (3.4)

Here µ0, µ1, ρ, σX, rL, w0, µW , and σW are all constants.

Let pt be the unit price and follow the process

dpt = (p0 + p1 Xt) dt + σp dZ1t (3.5)
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Let the payoff function be

f : [0, T0]× R→ R

with f ∈ C2(Q0), f
′ > 0, f ′′ < 0, and define the deadweight loss to be

D : [0, T0]× R→ R

with D ∈ C2(Q0), D
′ > 0, D′′ > 0.

Finally, we define the profit function P (Wt) to be

P (Wt) = max
Kt

{pt · f(Kt)−Kt −D(Lt)} (3.6)

Define the performance function Jh(y) to be

Jh(0, w0) = E0,w0
[
P (W h

T0
)
]

Jh(y) = Ey
[
P (W h

T0
)
] (3.7)

Then, the value function Φ(y) with the optimal control h∗ can be defined as

Φ(y) = sup
h
{Jh(y), h(y) Markov control} = Jh∗(y), (3.8)

subject to




dWt = (w0(1− ht) rW + w0 ht µW + rL) dt + w0 ht σW dZ1t

W (0) = w0 > 0

with a boundary condition

Φ(T0, w) = P (w) =





w, [m,M ]

0, Otherwise
(3.9)

The problem is that for each initial point y = (0, w0) ∈ Q0, find a number Φ(y)

and a Markov control h∗ = h∗(t, w) ∈ A such that

Φ(y) = sup
h∈U

{Jh(y)} = Jh∗(y)

where the supremum is taken over a given family of admissible controls, contained in

the set of a Markov process {ht} with values in U .
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Definition 3.1 For the Markov control h̄(t, w) ∈ U and Φ ∈ C2
0(Q0), denote the

linear parabolic differential operator Lh̄ by

(Lh̄Φ)(t, w) := Φt(t, w)+
(
w0(1−h̄) rW +w0 h̄ µW +rL

)
Φw(t, w)+

1

2
(w0 h̄ σW )2Φww(t, w)

(3.10)

For notation convenience, let

σh̄ = w0 h̄ σW , ah̄ =
1

2
(σh̄)2,

and

bh̄ = w0(1− h̄) rW + w0 h̄ µW + rL.

Then, Equation 3.10 can be written as

(Lh̄Φ)(t, w) := Φt(t, w) + bh̄Φw(t, w) + ah̄Φww(t, w) (3.11)

and similarly, the HJB Equation in our model is

sup
h∈U

{(LhΦ)(t, w)} = 0 (3.12)

3.1.2 Methodology Background: Hamilton-Jacobi-Bellman Equation

Our model is in fact a stochastic control problem. The general used method in stochas-

tic control theory is the dynamic programming method, also called the Hamilton-

Jacobi-Bellman Equation method. We have studied Huang and Liu (2007), [8] about

the HJB Equation in financial mathematics. In that paper, the authors applied the

HJB Equation method to solve a stochastic optimization problem:

Given the initial wealth, choose the number of news updates, the news accuracies,

and an optimal trading strategy to maximize the expected utility function at the

terminal wealth subject to the stochastic process of the total wealth with initial

condition and the utility is a power function, increasing and concave.
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Based on this idea, we develop our stochastic model and try to apply the HJB

Equation method. In Stochastic Differential Equations (SDE) theory, it is necessary

to know if there exists a solution of the given SDE with a boundary condition on a

domain. In addition, Stochastic Control Theory requires that the value function is

a solution of the HJB Equation. That is, we need to prove that we can apply the

HJB Equation to our stochastic control problem, then prove the existence of a weak

solution to the corresponding HJB Equation if an optimal hedge control exists.

In this section, we will introduce the Hamilton-Jacobi-Bellman Equation method

in Stochastic Control Theory. There are some basic theorems in the Stochastic Con-

trol Theory from Øksendal, 2005, [13], Chapter 11:

Notice that G is a fixed domain in R× Rn.

Theorem 3.1 [13][11.2.1 (The Hamilton-Jacobi-Bellman (HJB) equation (I))] De-

fine

Φ(y) = sup{Ju(y); u = u(Y ) = u(t,Xt) Markov control} .

Suppose that Φ ∈ C2(G) ∩ C(Ḡ) satisfies

Ey
[
|Φ(Yτ )|+

∫ α

0

|LvΦ(Yt)| dt
]

< ∞

for all bounded stopping times τ ≤ τG, all y ∈ G, and all v ∈ U . Moreover, suppose

that an optimal Markov control u∗ exists and that ∂G is regular for Y u∗
t . Then

sup
v∈U

{f v(y) + (LvΦ)(y)} = 0 for all y ∈ G (3.13)

and

Φ(y) = g(y) for all y ∈ ∂G . (3.14)

The supremum in ( 3.13) is obtained if v = u∗ where h∗(y) is optimal. In other

words,

f(y, u∗(y)) + (Lu∗(y)Φ)(y) = 0 for all y ∈ G . (3.15)
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Theorem 3.2 [13][11.2.2 (The HJB (II) equation - a verification theorem)] Let φ be

a function in C2(G) ∩ C(Ḡ) such that, for all v ∈ U ,

f v(y) + (Lvφ)(y) ≤ 0; y ∈ G (3.16)

with boundary values

lim
t→τG

φ(Yt) = g(YτG
) · χ{τG<∞} a.s. Py (3.17)

and such that {φ−(Yτ ); τ stopping time, τ ≤ τG} is uniformly Py-integrable for all

Markov controls u and all y ∈ G.

Then

φ(y) ≥ Ju(y) for all Markov controls u and all y ∈ G . (3.18)

Moreover, if for each y ∈ G we have found u0(y) such that

fu0(y)(y) + (Lu0(y)φ)(y) = 0 (3.19)

and {φ(Y u0
τ ); τ stopping time, τ ≤ τG} is uniformly Py-integrable for all y ∈ G

then u0 = u0(y) is a Markov control such that

φ(y) = Ju0(y)

and hence if u0 is admissible, then u0 must be an optimal control and φ(y) = Φ(y).

Theorem 3.3 [13][11.2.3] Let

ΦM(y) = sup{Ju(y); u = u(Y ) Markov control}

and

Φa(y) = sup{Ju(y); u = u(t, ω) F (m)
t − adapted control}.

Suppose there exists an optimal Markov control u0 = u0(Y ) for the Markov control

problem (i.e. ΦM(y) = Ju0(y) for all y ∈ G) such that all the boundary points of G
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are regular with respect to Y u0
t and that ΦM is a bounded function in C2(G) ∩ C(Ḡ)

satisfying

Ey
[
|ΦM(Yα)|+

∫ α

0

|LuΦM(Yt)| dt
]

< ∞ (3.20)

for all bounded stopping times τ ≤ τG, all adapted controls h and all y ∈ G. Then

ΦM(y) = Φa(y) for all y ∈ G .

Notice that all the three basic theorems of the HJB Equation method require

that the domain G be a bounded set in [0, T ) × Rn, and the boundary conditions

are smooth and bounded on the boundary of G. Theorem 3.1 shows that if there

is any optimal Markov control, the solution Φ(y) of the HJB Equation 3.13 reach

the supremum zero with the optimal Markov control. Also, the supremum of the

performance function Ju(y) can be achieved, which is Φ(y). Theorem 3.2 describes

that if the HJB Equation 3.13 has a solution φ(y) with the supremum is zero, the

corresponding Markov control is the optimal control and the solution is the value

function Φ(y). Theorem 3.3 extends the Markov control to any adapted control for

the HJB Equation.

In our model, the domain is not a bounded domain, or the boundary condition is

not a fixed boundary. Therefore, we will show that the HJB Equation can be applied

to our model, which is, if there exists an optimal Markov control h∗, there is a weak

solution of the HJB Equation 3.12 on Q0 = [0, T0) × R with the given boundary

condition 3.9.

3.2 Existence of A Weak Solution to The Stochastic HJB Equation

3.2.1 The Necessary Condition of The HJB Equation with Domain

Q0 = [0, T0)× R

In the following sections, all the notations and definitions are from Section 3.1.
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Let g(w) ∈ C∞
0 ({T0} × R) ∩ L2(R) be a smooth and bounded function vanishing

at infinity, then we have a lemma:

Lemma 3.1 [7][Lemma 4.1] Suppose that g(w) ∈ C∞
0 (R) and satisfies for some C >

0 and β > 0, |g(w)| + |g′(w)| + |g′′(w)| ≤ C(1 + |w|β), and bh̄(t, w), σh̄(t, w) are

continuous in both t and w. Also suppose that

|bh̄(t, w)|2 + |σh̄(t, w)|2 ≤ C̄(1 + |w|2) ,

then

lim
δ→0

1

δ

[
Et−δ,w0 [P (W (t + δ))]− g(w)

]
= bh̄(t, w)g′(w) +

1

2
(σh̄(t, w))2g′′(w) .

The proof is given in [7], Lemma 4.1, using Itô Lemma.

Theorem 3.4 [5][Theorem 6.1] Assume that:

(i) bh̄(t, w), σh̄(t, w) are continuous and satisfy that there exists a constant C such

that for all (t, w) ∈ Q̄0, |bh̄(t, w)|+ |σh̄(t, w)| ≤ C(1 + |w|).

(ii) bh̄(t, ·), σh̄(t, ·) are C2 for each t ∈ [0, T0], moreover, bh̄
w, σh̄

w are bounded on

Q0 = [0, T0) × R and the partial derivatives bh̄
w, bh̄

ww, σh̄
w, σh̄

ww satisfy for some

constant C, β,

|bh̄
w(t, w)|+ |bh̄

ww(t, w)|+ |σh̄
w(t, w)|+ |σh̄

ww(t, w)| ≤ C(1 + |w|β)

with (t, w) ∈ Q0

(iii) g(w) ∈ C∞
0 (R) is bounded.

Then Φ(y) = Ey
[
P (WT0

)
]
, y = (0, w0) is a solution in C1,2

p (Q̄0) of the homogeneous

backward equation

Lh̄Φ(t, w) := Φt + bh̄Φw + ah̄Φww = 0, (3.21)

where bh̄, ah̄ are the same in Equation 3.11 and with the Cauchy data

lim
t↑T0

Φ(t, w) = g(w), w ∈ R.
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The proof is given in [5], Theorem 6.1 or [7], Chapter 3, §11. Theorem 1.

Remark 3.1 This is the existence theorem of the homogeneous backward equation

with the boundary of Cauchy data in [3]. With this theorem, we can state and prove

the theorem for the necessary condition of the stochastic HJB Equation 3.12 with the

boundary of Cauchy data g(w), which is smooth and bounded on Q0.

The following lemma and Dynkin’s Formula in[13] are used in our proof.

Lemma 3.2 [13][Equation 7.2.6] Let H ⊂ R be a measurable set and let τH be the

first exit time from H for an Itô diffusion Xt. Let α be another stopping time, f be

a bounded continuous function on R and put

η = f(XτH
)χ{τH<∞} , τα

H = inf{t > α; Xt /∈ H}

then,

θαη · χ{α<∞} = f(Xτα
H
)χτα

H<∞ (3.22)

Theorem 3.5 [13][Theorem 7.4.1 (Dynkin’s Formula)] Let f ∈ C2
0(R). Suppose τ is

a stopping time, Ex[τ ] < ∞. Then

Ex[f(Xτ )] = f(x) + Ex
[ ∫ τ

0

Af(Xs) ds
]

(3.23)

Theorem 3.6 Let Φ(y) be the value function defined in Equation 3.8.

Suppose that Φ ∈ C2
0(Q0) and

Ey
[ ∫ τ

0

|LhΦ(Wt)|dt + |Φ(Wτ )|
]

< ∞

for all bounded stopping time τ ≤ T0, all y ∈ Q0 and all h ∈ U .

Moreover, suppose that there exists an optimal Markov control h∗, then the HJB

Equation 3.12

sup
h̄∈U

{(Lh̄Φ)(y)} = 0, for all y ∈ Q0 ,
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and

Φ(y) = g(w),∀ y ∈ ∂Q0 = {T0} × R . (3.24)

The supremum is obtained if h̄ = h∗(y), where h∗(y) is optimal, that is

(Lh∗(y)Φ)(y) = 0, for all y ∈ Q0 .

Proof. We first show that when h∗ exists, the supremum of 3.12 is obtained and the

boundary condition 3.24 is satisfied.

When h∗ = h∗(y) is optimal,

Φ(y) = Jh∗(y) = Ey
[
P (W h∗

T0
)
]

Then, by Theorem 3.4, we have

(Lh∗(y)Φ)(y) = 0, for all y ∈ Q0 .

If y ∈ ∂Q0 = {T0} × R, then

Φ(y) = Φ(T0, w) = Ey
[
P (WT0

)
]

= ET0,w
[
P (WT0

)
]

= P (WT0
) = g(w) .

Next, we will show that

(Lh̄Φ)(y) ≤ 0, for all y ∈ Q0 .

Fix y = (s, w) ∈ Q0 and choose a Markov control h ∈ U .

Choose Qt0 ⊂ Q0 with the form Qt0 = {(r, z) ∈ Q0; r < t0}, where s < t0 < T0.

In our model, t0 is the first exit time of Qt0 , and 0 < T0 < ∞.

By the definition of performance function,

Jh(y) = Ey
[
P (W h

T0
)
]
.
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Then, apply the strong Markov property and formula 3.22 to get

Ey[Jh(Wt0)] = Ey
[
EWt0 [P (W h

T0
)]
]

= Ey
[
Ey[θt0

(
P (W h

T0
)
)∣∣Ft0 ]

]

= Ey
[
Ey[P (W h

T0
)
∣∣Ft0 ]

]

= Ey
[
P (W h

T0
)
]

= Jh(y)

That is, Jh(y) = Ey
[
Jh(Wt0)

]
.

Assume an optimal control h∗(y) = h∗(r, z) exists and let

h(r, z) =





h̄, if (r, z) ∈ Qt0

h∗(r, z), if (r, z) /∈ Qt0

where h̄ ∈ U is arbitrary. Thus, we have

Φ(Wt0) = Jh∗(Wt0) = Jh(Wt0).

Since Φ(y) is the supremum of Jh(y), then

Φ(y) ≥ Jh(y) = Ey
[
Jh(Wt0)

]
= Ey

[
Φ(Wt0)

]
.

Also because Φ ∈ C2
0(Q0), by Dynkin’s formula,

Ey
[
Φ(Wt0)

]
= Φ(y) + Ey

[ ∫ t0

0

(Lh̄Φ)(Wr)dr
]

Therefore,

Φ(y) ≥ Ey
[
Φ(Wt0)

]
= Φ(y) + Ey

[ ∫ t0

0

(Lh̄Φ)(Wr)dr
]

which is

Ey
[ ∫ t0

0

(Lh̄Φ)(Wr)dr
]
≤ 0 .

Finally, we get

Ey
[
(Lh̄Φ)(Wr)dr

]

Ey[t0]
≤ 0, for all such Qt0 .

Since (Lh̄Φ)(·) is continuous at y, and let t0 ↓ s, we get (Lh̄Φ)(y) ≤ 0. Done.
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Theorem 3.6 states the necessary condition of the HJB Equation 3.21, similar to

Theorem 3.1 from [13], we need to prove a verification theorem of the HJB Equa-

tion 3.12, which is also the sufficient condition.

Theorem 3.7 Let φ(y) ∈ C2
0(Q0) be a function such that, for all h̄ ∈ U ,

sup
h̄∈U

{(Lh̄φ)(y)} = 0, for all y ∈ Q0

with boundary values

lim
t→T0

φ(Wt) = g(WT0
) · χ{T0<∞}, a.s. Py

and such that {φ−(Wt0); t0 stopping time, t0 ≤ T0} is uniformly Py-integrable for all

Markov controls h and all y ∈ Q0.

Then φ(y) ≥ Jh(y) for all Markov controls h and all y ∈ Q0.

Moreover, if for each y ∈ Q0, we have found ĥ such that

(Lĥφ)(y) = 0

and {φ(W ĥ
t0
); t0 stopping time, t0 ≤ T0} is uniformly Py-integrable for all y ∈ Q0,

then ĥ = ĥ(y) is a Markov control such that

φ(y) = J ĥ(y)

and if ĥ is admissible, then ĥ is an optimal control and φ(y) = Φ(y).

Proof. First, show that φ(y) ≥ Jh(y) for all Markov controls h and all y ∈ Q0.

For each h̄ ∈ U, y ∈ Q0, we have (Lh̄)Φ(y) ≤ 0 in Q0.

Let h be a Markov control in U , and apply Dynkin’s formula to get

Ey
[
φ(WTR

)
]

= φ(y) + Ey
[ ∫

TR

0

(Lh̄φ)(Wr)dr
]

≤ φ(y)

where

TR = min
{
T0, inf{t > 0; |Wt| ≥ R}}

65



for all R < ∞.

Since lim
t→T0

φ(Wt0) = g(WT0
) ·χ{T0<∞} < ∞, and φ−(WT0

) is uniformly Py-integrable

for all Markov controls h and all y ∈ Q0, Fatou’s lemma gives

φ(y) ≥ lim inf
R→∞

Ey
[
φ(WTR

)
]

≥ Ey
[
φ(WT0

)
]

= Jh(y).

Now, if (Lĥφ)(y) = 0 and {φ(W ĥ
t0
); t0 stopping time, t0 ≤ T0} is uniformly Py-

integrable for all y ∈ Q0, we obtain the equality part of the statement.

Again, Dynkin’s formula gives

Ey
[
φ(WTR

)
]

= φ(y) + Ey
[ ∫ TR

0

(Lĥφ)(Wr)dr
]

= φ(y)

Since

Ey
[ ∫ τ

0

|LhΦ(Wt)|dt + |Φ(Wτ )|
]

< ∞

for all τ < T0 and all y ∈ Q0, by Dominate Convergence Theorem,

φ(y) = Ey
[
φ(W ĥ

TR
)
]

= lim
R→∞

Ey
[
φ(W ĥ

TR
)
]

= Ey
[

lim
R→∞

φ(W ĥ
TR

)
]

= Ey
[
φ(W ĥ

T0
)
]

= J ŷ(y)

By the definition of admissible and value function, ĥ is an optimal control and

φ(y) = Φ(y) is the value function.
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3.2.2 Existence of A Weak Solution to The HJB Equation with L2

Boundary Condition on Q = [0, T0)× Ω

Remark 3.2 The boundary conditions in Theorem 3.6 and Theorem 3.7 require that

g(w) ∈ C∞
0 (R), but in our model, the boundary condition is Φ(T0, w) = P (w), where

P (w) is not continuous on {T0} × R. Thus, we want to find a sequence of functions

gn(w) ∈ C∞
0 (R) such that gn(w) converges to P (w) in L2(Ω) as n → ∞. And this

can be done by using mollifiers. For detail definitions and proofs of mollifiers, please

see [1], Chapter 2.

Consider Q = [0, T0) × Ω, a bounded set defined at the beginning of Section 3.1,

and let S1,2
2 (Ω) be the Sobolev space with time t = 1 and k = 2, p = 2.

Given constants 0 < m, M < ∞, and let Ω = (m − 1,M + 1). P (w) is given by

Equation 3.9:

P (w) =





w, w ∈ [m, M ]

0, w /∈ [m, M ],

then P (w) ∈ L2(Ω).

Let ξ be the standard mollifier, and for all n = 1, 2, ..., set

ξn(w) := nlξ(nw)

then

∫

R
ξn dx = 1 and supp (ξn) ⊂ B(0, 1

n
), where B(0, 1

n
) is a closed ball with center

0 and radius 1/n.

Definition 3.2 [1] If g̃ ∈ L1
loc(Ω), define its mollification

gn := ξn ∗ g̃ ∈ Ωn,

which is

gn(x) =

∫

Ω

ξn(x− y) g̃(y) dy =

∫

B(0, 1
n

)

ξn(y) g̃(x− y) dy

for x ∈ Ωn.
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Theorem 3.8 [1][Theorem 2.18 (Properties of mollifiers)]

(i) gn = ξn ∗ g̃ ∈ C∞(Ωn).

(ii) If supp g ( Ω, and if 1
n

< dist(supp g, ∂Ω), then gn ∈ C∞
0 (Ω).

(iii) If g̃ ∈ C(Ω), then gn → g̃ uniformly on compact subsets of Ω.

(iv) If 1 ≤ p < ∞ and g̃ ∈ Lp(Ω), then gn ∈ Lp(Ω), and

‖gn‖Lp ≤ ‖g̃‖Lp and lim
1
n
→0+

‖gn − g̃‖Lp = 0.

Lemma 3.3 [17][§2.1] If g̃ is a function from Ω to R, and g̃ ∈ Lp(Ω) , where Ω is

an open subset of R, then g̃ ∈ L1
loc(Ω), that is, g̃ is integrable on each compact subset

of Ω.

Remark 3.3 Let g̃(w) = P (w), by the definition of P (w) in our model, P (w) ∈
L2(Ω̄). Then, P (w) ∈ L1

loc(Ω). Suppose that there is a sequence of functions gn(w) ∈
C∞

0 (Ω), and all the properties of mollifiers follow. Then,

gn(w) → P (w) in L2(Ω)

Next, we show that the weak derivative of P (w) exists on Ω and denote it by

DαP .

Proposition 3.9 Ω is a bounded set of R. Suppose that P, P̃ ∈ L2(Ω), and α is

a multi-index number. If there is a sequence {gn} ⊂ C∞
0 (Ω) such that gn → P and

Dαgn → P̃ in L2(Ω), then P̃ = DαP .

Proof. Since P and P̃ are in L2(Ω), by Lemma 3.3, P and P̃ are locally integrable,

that is P, P̃ ∈ L1
loc(Ω).

Given a sequence {gn} ⊂ C∞
0 (Ω), and gn → P and Dαgn → P̃ in L2(Ω), they also

converge in L1
loc(Ω). Using integration by parts, we have

(−1)|α|
∫

Ω

gnD
αζ dx =

∫

Ω

Dαgnζ dx
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Let n →∞, then

(−1)|α|
∫

Ω

PDαζ dx =

∫

Ω

P̃ ζ dx

Therefore, P̃ = DαP .

If gn ∈ C∞
0 (Ω), gn ∈ L2(Ω) for all n = 1, 2, ... by Theorem 3.8, Dαgn, P and DαP

are in L2(Ω). Then, DαP ∈ L2(Ω), α = 1, 2, which gives P ∈ S1,2(Ω).

By Theorem 3.6, and Theorem 3.7, we know that for any boundary function

g(w) ∈ C∞
0 (R), there exists an optimal Markov control h∗ such that Φ(y) = Jh∗(y)

on Q0. However, the boundary condition P (w) in Equation 3.9 is not continuous on

R. To show the existence of a weak solution to the HJB Equation on Q0, we consider

a bounded domain Q with the boundary condition P (w).

The idea is to find a sequence of solutions {Φn}∞n=1 of the HJB Equation 3.12

with the corresponding boundary conditions gn(w) and the optimal control h∗n such

that when gn(w) converges to P (w) in L2(Ω), the sequence of solutions {Φn}∞n=1 is a

Cauchy sequence, which converges weakly to some function in some vector space V

with proper norm on it. Thus, the limit of {Φn}∞n=1 in V can be defined as a weak

solution of the HJB Equation 3.12 with the boundary condition P (w) on Q.

Define a vector space V , the set of all φ ∈ L2(Q), Dφ ∈ L2(Q), φ(t, ·) ∈ L2(ω(t))

for all t ∈ [0, T0], and the norm on it is defined by

‖φ‖2
V =

∫∫

Q

|Dφ|2 dx dt + sup
t∈[0,T0]

∫

ω(t)

φ2 dx (3.25)

which is finite. We will use this vector space and the norm 3.25 from Lieberman,

[11] for the following statements and proofs, and we will show that the solutions Φn

converges weakly in V (Q) when gn(w) → P (w) in L2(Q).

Write Ċ1 for the set of all functions in C1(Q̄) which vanish on ∂Q and V0 for the

closure of Ċ1 in the norm of V .
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We also define a weak solution of the backward parabolic equation 3.21 if φ ∈ V0

and
∫∫

Q(τ)

(φt + (ahD2φ + bhDφ))ϕdx dt =

∫∫

Q(τ)

fϕ dx dt =⇒
∫

ω(τ)

φϕdx−
∫∫

Q(τ)

φϕt dx dt−
∫∫

Q(τ)

(ahDφ + bhφ)Dϕ dx dt

=

∫∫

Q(τ)

fϕ dx dt−
∫

∂Q

gϕ dx

(3.26)

for all ϕ ∈ Ċ1 and almost τ ∈ [0, T0]. We may set ϕ ∈ Ṡ1,2
2 (Q), which means ϕ is the

limit in S1,2
2 (Q) of Ċ1 functions.

Claim that all the solutions Φn are in the vector space V . To show this claim, we

need the Maximum Principle for Linear Parabolic Equations.

Theorem 3.10 (Maximum Principle) [18][Theorem 8.1.4] Let Q = [0, T0)×Ω be

bounded in Q0, φ ∈ C2(Q) ∩ C(Q̄) satisfy Lφ = f ≤ 0 in Q, then

sup
Q

φ(t, x) ≤ sup
∂Q

φ+(t, x)

where φ+ = max{φ, 0}.

Theorem 3.11 [18][Theorem 8.1.7] Let bh̄ be bounded in Q = [0, T0) × Ω, φ ∈
C2(Q) ∩ C(Q̄) satisfy Lφ = f in Q, then

sup
Q

|φ| ≤ sup
∂Q

|φ|+ C sup
Q

|f |

Lemma 3.4 Q = [0, T0)×Ω is a bounded subset of Q0 and ω(t) ⊂ Ω when t ∈ [0, T0].

If Φn is a solution of Equation 3.21

Lh̄Φ(t, w) := Φt + bh̄Φw + ah̄Φww = 0

then Φn are in V (Q) for all n = 1, 2, ....
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Proof. To show that Φn ∈ V (Q) for all n = 1, 2, ..., we check that Φn ∈ L2(Q),

DΦn ∈ L2(Q), as well as Φn(t, ·) ∈ L2(ω(t)) for all t ∈ [0, T0] and for all n. In

addition, the norm 3.25 on Q is finite.

Since Φn is a solution of Equation 3.21 for each n in the classical sense, for each

multi-index α ≤ 2 and t ≤ 1, the weak derivatives (Φn)w, (Φn)ww, and (Φn)t exist for

each n.

Next, show that for each n, Φn ∈ L2(Q), (Φn)w ∈ L2(Q), and Φn(t, ·) ∈ L2(ω(t)).

Since Φn satisfy Equation 3.21 for each n, by Maximum Principle 3.10 and The-

orem 3.11, we have

sup
Q

|Φn| ≤ sup
∂Q

|Φn|,

with f = 0 in Equation 3.21.

Notice that Φn(T0, w) = gn(w), where gn(w) ∈ L2(Ω) for each n, then
∫∫

Q

|Φn|2 dw dt =

∫
T0

0

∫

Ω

|Φn|2 dw dt

≤
∫

T0

0

∫

Ω

|Φn(T0, w)|2 dw dt

≤
∫

T0

0

∫

Ω

|gn(w)|2 dw dt

< ∞,

that is Φn ∈ L2(Q) for each n, and similarly, (Φn)w ∈ L2(Q).

For Φn(t, ·), fix t ∈ [0, T0). Since Φn are solutions of Equation 3.21, Φn are

continuous and differentiable in the variable t. Φn are bounded in the variable t and

ω(t) ⊂ Ω is compact, then ω(t) is a bounded subset of R. Thus, we have

∫

ω(t)

(Φn)2 dw < ∞

for all t ∈ [0, T0). Thus, Φn(t, ·) ∈ L2(ω(t)).

The norm of Φn on V (Q) is given by Equation 3.25:

‖Φn‖2
V =

∫∫

Q

|(Φn)w|2 dw dt + sup
t∈[0,T0]

∫

ω(t)

(Φn)2 dw
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Since (Φn)w ∈ L2(Q), the first part of the norm is finite, and we need to show

that the second part of the norm is finite too.

We have already gained that Φn(t, ·) ∈ L2(ω(t)) for all t ∈ [0, T0], if we can show

that,

∫

ω(t)

(Φn)2 dw is increasing, then its supremum appears when t is close to T0.

On the other hand, when t ∈ [0, T0), we apply the fact that Φn are solutions of

Equation 3.21 in the classical sense, which can induce that the second part of the

norm is finite.

Write (Φn)t + bh̄(Φn)w + ah̄(Φn)ww = 0 as

(Φn)t = −bh̄(Φn)w − ah̄(Φn)ww

Then, take the inner product with Φn and apply integration by parts:

∂

∂t
(Φn, Φn) = −bh̄((Φn)w, Φn)− ah̄((Φn)ww, Φn)

= −bh̄

∫
(Φn)wΦn − ah̄

∫
(Φn)wwΦn

= −bh̄(Φn)2
∣∣
∂Q

+ bh̄

∫
(Φn)(Φn)w − ah̄(Φn)wΦn

∣∣∣
∂Q

+ ah̄

∫
(Φn)2

w

(3.27)

Notice that

ah̄ =
1

2
(w0h̄σW )2 > 0

When t = T0, since Φn ∈ C2
0(Q), Φn = 0 on the boundary of Q, then

bh̄

∫
(Φn)wΦn = bh̄(Φn)2

∣∣
∂Q
− bh̄

∫
(Φn)(Φn)w

2bh̄

∫
(Φn)wΦn = bh̄(Φn)2

∣∣
∂Q

= 0

Then, the inner product 3.27 at t = T0 will be

∂

∂t

∫

ω(t)

(Φn)2 dw
∣∣∣
t=T0

= ah̄

∫
(Φn)2

w > 0

which gives

∂

∂t

∫

ω(t)

(Φn)2 dw
∣∣∣
t=T0

> 0
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Let ε > 0, for t ∈ (T0 − ε, T0],

∫

ω(t)

(Φn)2 dw is increasing, which means that

sup
(T0−ε,T0]

∫

ω(t)

(Φn)2 dw ≤ sup
t=T0

∫

ω(t)

(Φn)2 dw < ∞

Second, show that when t ∈ [0, T0 − ε
2
), the supremum of the above integral is

finite too.

For each n = 1, 2, ..., since Φn are classical solutions of Equation 3.21 with the

boundary condition gn(w) ∈ C∞
0 , by regularity, Φn ∈ C1,2(Q) for all n. That is, Φn

is bounded on the interval t ∈ [0, T0 − ε
2
) for each n.

Thus,

∫

ω(t)

(Φn)2 dw is bounded on t ∈ [0, T0 − ε
2
), and so

sup
t∈[0,T0− ε

2 )

∫

ω(t)

(Φn)2 dw < ∞

Consequently, for t ∈ [0, T0], the second part of the norm on V is finite and we

have

Φn ∈ V (Q)

for all n = 1, 2, ...

The next step is to prove that {Φn}∞n=1 in Lemma 3.4 is a Cauchy sequence in

V (Q), which is equivalent to show that, for any n, m > 0,

‖Φn − Φm‖V → 0, as n,m →∞.

To show {Φn}∞n=1 is Cauchy, we need the following estimate:

Theorem 3.12 Let Q be a bounded subset of Q0 and let φ be a solution of the Back-

ward Parabolic Equation 3.21 with a boundary function g(w) ∈ C∞
0 (Ω)∩L2(Ω). ah̄, bh̄

are constants and if there are positive constants λ, Λ, and κ such that

λ ≤ |ah̄| ≤ Λλ,
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|bh̄| ≤ κλ,

then there is a constant C depending only on λ and κ, such that

‖φ‖V ≤ CeCT0(‖Lh̄φ‖L2 + ‖g‖L2) (3.28)

Proof. Choose τ ∈ (0, T0) and δ ∈ (τ, T0). Let X = (t, w) denote a point in Q.

Set η ∈ Ṡ1,2
2 ((δ, T0)×Ω) with η(X) = 0 if t = δ or t = T0, and set ϕ = ηδ, υ = ηt.

Then by calculation, we get

ϕt = (ηδ)t = (ηt)δ = υδ

and so,

∫

Q

φϕt dX =

∫

Q

φυδ dX

=

∫

Ω

∫
T0

0

φ(X)
1

δ

∫ t+δ

t

υ(s, w) ds dt dw

=

∫

Ω

∫
T0+δ

δ

1

δ

∫ s

s−δ

φ(X) υ(s, w) dt ds dw

=

∫

Ω

∫
T0+δ

δ

φ−δ(X) υ(s, w) ds dw

=

∫

Q

φ−δ(X)υ(X) dX

For any η ∈ Ṡ1,2
2 , it vanishes for t < δ, and υ(s, w) = 0 for s < δ and s > T0.

Apply the integration by parts, the above result becomes

∫

Q

φϕt dX =

∫

Q

φ−δ υ dX =

∫

Q

φ−δ ηt dX = −
∫

Q

φ−δt η dX

where φ−δt is the derivative with respect to t of φ−δ.

Since η ∈ Ṡ1,2
2 ((δ, T0)×Ω), and η(X) = 0 if t = δ, t = T0, by the definition of the

weak solution 3.26 in V with φ−δ, we have

∫

ω(τ)

φ−δ η dw −
∫∫

Q

φ−δ ηt dw dt−
∫∫

Q

(ah̄Dφ + bh̄φ)−δDη dw dt

=

∫∫

Q

f−δ η dw dt−
∫

∂Q

g η dw
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−
∫∫

Q

(ah̄Dφ + bh̄φ)−δDη dw dt =

∫∫

Q

f−δ η dw dt +

∫∫

Q

φ−δ ηt dw dt

∫∫

Q

(ah̄Dφ + bh̄φ)−δ Dη dw dt = −
∫∫

Q

f−δ η dw dt +

∫∫

Q

φ−δt η dw dt

∫

Q

(ah̄Dφ + bh̄φ)−δ Dη dX = −
∫

Q

(Lh̄φ)−δ η dX +

∫

Q

φ−δt η dX

Next, we will show the above result is still true if we replace η by φ−δχ(t), where

χ(t) = 1, t > T0 − τ

χ(t) = 0, t < T0 − τ,

with the idea of cutting function.

Fix n, a sufficiently large integer, and define a continuous function zn, which is

linear on (T0 − τ, T0 − τ + 1
n
) ∪ (T0 − 1

n
, T0), is 0 on (−∞, T0 − τ) ∪ (T0,∞), and is 1

on (T0 − τ + 1
n
, T0 − 1

n
).

Let ηn = φ−δ zn, which is an admissible test function, we can take the limit as

n →∞, then η → φ−δ and we infer that

∫

Q(τ)

(ah̄Dφ + bh̄φ)−δ Dφ−δ dX = −
∫

Q(τ)

(Lh̄φ)−δ φ−δ dX +

∫

Q(τ)

φ−δt φ−δ dX

where Q(τ) = (T0 − τ, T0)× Ω.

Denote ω(τ) = {T0 − τ} × Ω, and ω(T0) = {T0} × Ω.

Integrate the above expression with respect to t, and the second term of the right

hand side of the expression is

∫

Q(τ)

φ−δt φ−δ dX =
1

2

∫

ω(T0)

φ−δ(X)2 dw − 1

2

∫

ω(τ)

φ−δ(X)2 dw

Let δ → 0, then

∫

Q(τ)

(ah̄Dφ+ bh̄φ) DφdX = −
∫

Q(τ)

(Lh̄φ) φ dX +
1

2

∫

ω(T0)

φ(X)2 dw− 1

2

∫

ω(τ)

φ(X)2 dw

1

2

∫

ω(τ)

φ2 dw +

∫

Q(τ)

(ah̄Dφ + bh̄φ)Dφ dX = −
∫

Q(τ)

(Lh̄φ)φ dX +
1

2

∫

ω(T0)

g2 dw
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1

2

∫

ω(τ)

φ2 dw+

∫

Q(τ)

ah̄(Dφ)2 dX+

∫

Q(τ)

bh̄φDφ dX = −
∫

Q(τ)

(Lh̄φ)φ dX+
1

2

∫

ω(T0)

g2 dw

Since λ ≤ ah̄ ≤ Λλ and |bh̄| ≤ κλ, both imply that

∫

ω(τ)

φ2 dw +

∫

Q(τ)

|Dφ|2 dX ≤ C
( ∫

Q

(Lh̄φ)2 dX +

∫∫

Q(τ)

φ2 dw dt +

∫

ω(T0)

g2 dw
)
.

Set H(τ) =

∫

ω(τ)

φ2 dw, and K = C(‖Lh̄φ‖2
L2+‖g‖2

L2), then consider the inequality

H(τ) ≤ C

∫
T0

T0−τ

H(t)dt + K,

Apply Gronwall’s inequality to get

∫
T0

T0−τ

H(t)dt ≤ K

C
(eCτ − 1)

thus,

‖φ‖2
V ≤ CeCT0(‖Lh̄φ‖2

L2 + ‖g‖2
L2)

Using Estimate 3.28, we have the following theorem:

Theorem 3.13 Suppose that gn(w) → P (w) in L2(Q) as n → ∞, and P (w) is

defined in Equation 3.9. Also suppose that with each boundary function gn(w), n =

1, 2, ..., Equation 3.21 has a solution Φn(y) for all n = 1, 2, ..., then we have

(i) {Φn}∞n=1 is a Cauchy sequence in V (Q).

(ii) Φn converges to some function in V (Q).

Proof. Apply Estimate 3.28 in Theorem 3.12. Since Lh̄ is a linear operator, for

n,m > 0, we have

‖Φn − Φm‖V (Q) ≤ CeCT0
(‖Lh̄(Φn − Φm)‖L2 + ‖gn − gm‖L2

)
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Also because Lh̄Φn = 0 for all n = 1, 2, ...,

‖Φn − Φm‖V (Q) ≤ C eCT0(‖gn − gm‖L2)

It is clear that the boundary conditions {gn}∞n=1 is a Cauchy sequence in L2(Q),

thus {Φn}∞n=1 is Cauchy in V (Q).

Since V is a Banach space, it is complete, and Φn is a Cauchy sequence in V (Q),

Φn converges to some function in V (Q).

We define a weak solution to our HJB Equation 3.12 in V (Q) as follows:

Definition 3.3 If there exists an optimal Markov control process h∗, and if the HJB

Equation 3.12 with the boundary condition P (w) has a weak solution in V (Q), then

we define a weak solution of the HJB Equation to be the limit function of {Φn}∞n=1

in V (Q) in Theorem 3.13. And denote it by Φ on Q.

Remark 3.4 For each smooth and bounded function gn, Φn is the corresponding

solution of the HJB Equation 3.12 on Q. If the boundary function is P (w) ∈ L2(Q),

the corresponding weak solution of the HJB Equation on Q is Φ.

3.2.3 Extension of A Weak Solution to The HJB Equation from Q to

Q0

The domain Q of the HJB Equation in Theorem 3.13 is a bounded subset in an

unbounded domain Q0. Thus, we need to extend the weak solution Φ of the HJB

Equation 3.12 from Q to Q0 = [0, T0)×R. In order to achieve this goal, we will prove

one extension theorem in the vector space V .

We need Poincarè’s Inequality in the proof of the extension theorem:
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Lemma 3.5 (Poincaré’s Inequality, [18], 1.3.4) Let p = 2 and Ω ⊂ R be a

bounded domain. If φ ∈ S1,2
0 (Ω), then

∫

Ω

|φ|2 dx ≤ C

∫

Ω

|Dφ|2 dx (3.29)

Consider a compact subset QR = [0, T0) × [−R, R], where Q ⊂ QR. That is

Ω = [m,M ] ( [−R,R]. Then, the following theorem will extend a function in V (Q)

to V (Q0).

Theorem 3.14 Suppose that QR is a bounded set of Q0 = [0, T0) × R, and ΦR ∈
V (QR) is a weak solution of the HJB Equation 3.12 with PR(w). Then there exists a

bounded linear operator

E : V (QR) → V (Q0)

such that for each ΦR ∈ V (QR):

(i) EΦR = ΦR a.e. in QR,

(ii) EΦR has support within QR,

(iii) ‖EΦR‖V (Q0) ≤ C‖ΦR‖V (QR), where the constant C is independent of R.

Proof. Fix k > 0 be a sufficiently large constant, and suppose that ΦR ∈ V (QR).

Define a function Φ̃R as

Φ̃Rk
=





ΦR(t, w), if w ∈ [−R, R];

2ΦR(t, R)− ΦR(t, 2R− w), if w ∈ (−R− k,−R) ∪ (R, R + k).

which extends ΦR from QR = [0, T0)× [−R,R] to QRk
= [0, T0)× (−R−k, R+k) and

keeps it continuous and differentiable at two endpoints R and −R.

Fix a time variable t ∈ [0, T0), and when w ∈ (R, R + k), we get

lim
w→R+

Φ̃Rk
= 2ΦR(t, R)− ΦR(t, 2R−R) = ΦR(t, R),
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then the function Φ̃Rk
is continuous at w = R.

Similarly, check (Φ̃−
Rk

)w|w→R− = (Φ̃+
Rk

)w|w→R+ , which is

(Φ̃−
Rk

)w|w→R− = (ΦR)w(t, R), (Φ̃+
Rk

)w|w→R+ = −(ΦR)w(t, 2R−R)·(−1) = (ΦR)w(t, R)

When w = −R, the same results follow.

Define a smooth cutting function χk on R, where χk(w) = 0 if w > R + k

or w < −R − k, χk(w) = 1 if w ∈ [−R, R], and χk(w) is a smooth function, if

w ∈ (−R− k,−R) ∪ (R, R + k). Then, ‖(χk)w‖L2 ≤ C.

Let ˜̃ΦRk
= χkΦ̃Rk

on Q0.

Next, we will show that the norm of ˜̃ΦRk
in V (Q0)) is bounded by some constant

times the norm of ΦR in V (QR).

Claim:

‖Φ̃Rk
‖V (QRk

) ≤ C1‖ΦR‖V (QR)

Consider a bounded set QR+
k

= [0, T0)× (R− k, R + k), then

‖Φ̃Rk
‖V (Q

R+
k

) ≤ ‖Φ̃R‖V ([0,T0)×(R−k,R)) + ‖Φ̃R‖V ([0,T0)×(R,R+k))

= ‖ΦR(t, w)‖V ([0,T0)×(R−k,R)) + ‖2ΦR(t, R)− ΦR(t, 2R− w)‖V ([0,T0)×(R,R+k))

≤ ‖ΦR‖V ([0,T0)×(R−k,R)) + ‖ΦR‖V ([0,T0)×(R−k,R))

≤ 2‖ΦR‖V ([0,T0)×(R−k,R))

≤ C2‖ΦR‖V (QR)

where C2 is independent of R.

Similarly, we can show that on the bounded set QR−
k

= [0, T0)× (−R−k,−R+k),

the same inequality follows,

‖Φ̃Rk
‖V (Q

R−
k

) ≤ C2‖ΦR‖V (QR)

Therefore,

‖Φ̃Rk
‖V (QRk

) ≤ C1‖ΦR‖V (QR)
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Next, prove that the norm of ˜̃ΦRk
in V (Q0) is bounded by some constant multiplies

the norm of ΦR in V (QR), and the constant only depends on k, but is independent of

R, which is,

‖ ˜̃ΦRk
‖V (Q0) ≤ C‖ΦR‖V (QR)

By the definition of ˜̃Φ on Q0, the norm in V (Q0) is:

‖ ˜̃ΦRk
‖V (Q0) = ‖χkΦ̃Rk

‖V (QRk
)

≤ ‖χkΦ̃Rk
‖V ([0,T0)×(−R−k,−R)) + ‖ΦR‖V (QR) + ‖χkΦ̃Rk

‖V ([0,T0)×(R,R+k))

≤ ‖ΦR‖V (QR) +

∫∫

[0,T0)×(−R−k,−R)

|(χkΦ̃Rk
)w|2 dw dt + sup

t∈[0,T0)

∫

ω(t)

(χkΦ̃R)2 dw

+

∫∫

[0,T0)×(R,R+k)

|(χkΦ̃Rk
)w|2 dw dt + sup

t∈[0,T0)

∫

ω(t)

(χkΦ̃R)2 dw

≤ ‖ΦR‖V (QR)

+

∫∫

[0,T0)×(−R−k,−R)

|(χk)wΦ̃Rk
|2 dw dt +

∫∫

[0,T0)×(−R−k,−R)

|χk(Φ̃Rk
)w|2 dw dt

+ sup
t∈[0,T0)

∫

ω(t)

(Φ̃Rk
)2 dw

+

∫∫

[0,T0)×(R,R+k)

|(χk)wΦ̃Rk
|2 dw dt +

∫∫

[0,T0)×(R,R+k)

|χk(Φ̃Rk
)w|2 dw dt

+ sup
t∈[0,T0)

∫

ω(t)

(Φ̃Rk
)2 dw

≤ ‖ΦR‖V (QR)

+ C3

∫∫

[0,T0)×(−R−k,−R)

|Φ̃Rk
|2 dw dt +

∫∫

[0,T0)×(−R−k,−R)

|(Φ̃Rk
)w|2 dw dt

+ C3

∫∫

[0,T0)×(R,R+k)

|Φ̃Rk
|2 dw dt +

∫∫

[0,T0)×(R,R+k)

|(Φ̃Rk
)w|2 dw dt

+ 2 sup
t∈[0,T0)

∫

ω(t)

(Φ̃Rk
)2 dw

Since ΦR is a weak solution of the HJB Equation 3.12 on a bounded set QR, then

the weak derivatives of ΦR exist and it is clear that (ΦR)w belongs to L2(Ω). Then,

ΦR ∈ S1,2(Ω).
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Apply Poincaré’s inequality 3.29 to

∫∫

[0,T0)×(−R−k,−R)

|Φ̃Rk
|2 dw dt and

∫∫

[0,T0)×(R,R+k)

|Φ̃Rk
|2 dw dt

Since n = 1 and S1,2
0 (Ω) = S1,2(Ω) in our model, and Ω ⊂ R. Then, on the set

[0, T0)× (−R− k,−R), we have

∫∫

[0,T0)×(−R−k,−R)

|Φ̃Rk
|2 dw dt =

∫
T0

0

∫

(−R−k,−R)

|Φ̃Rk
|2 dw dt

≤ C4

∫
T0

0

∫

(−R−k,−R)

|(Φ̃Rk
)w|2 dw dt

≤ C4

∫∫

[0,T0)×(−R−k,−R)

|(Φ̃Rk
)w|2 dw dt

Similarly,

∫∫

[0,T0)×(R,R+k)

|Φ̃Rk
|2 dw dt ≤ C4

∫∫

[0,T0)×(R,R+k)

|(Φ̃Rk
)w|2 dw dt

on the set [0, T0)× (R, R + k).

Then,

‖ ˜̃ΦRk
‖V (Q0) ≤ ‖ΦR‖V (QR)

+ C3C4

∫∫

[0,T0)×(−R−k,−R)

|(Φ̃Rk
)w|2 dw dt +

∫∫

[0,T0)×(−R−k,−R)

|(Φ̃Rk
)w|2 dw dt

+ C3C4

∫∫

[0,T0)×(R,R+k)

|(Φ̃Rk
)w|2 dw dt +

∫∫

[0,T0)×(R,R+k)

|(Φ̃Rk
)w|2 dw dt

+ 2 sup
t∈[0,T0)

∫

ω(t)

(Φ̃Rk
)2 dw

≤ C5‖ΦR‖V (QR) + C5(

∫∫

[0,T0)×(−R−k,−R)

|(Φ̃Rk
)w|2 dw dt + sup

t∈[0,T0)

∫

ω(t)

(Φ̃Rk
)2 dw)

+ C5(

∫∫

[0,T0)×(R,R+k)

|(Φ̃Rk
)w|2 dw dt + sup

t∈[0,T0)

∫

ω(t)

(Φ̃Rk
)2 dw)

= C5‖ΦR‖V (QR) + C5‖Φ̃Rk
‖V (Q

R−
k

) + C5‖Φ̃Rk
‖V (Q

R+
k

)

≤ C5‖ΦR‖V (QR) + C1‖ΦR‖V (QR)

≤ C‖ΦR‖V (QR)

where C depends on k, but is independent of R.
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Define the linear operator E := ˜̃ΦRk
, and by the definition of ˜̃ΦRk

, we get EΦR =

ΦR a.e. in QR and has support within QR.

By this extension theorem, we achieve a similar extension of the weak solution to

the HJB Equation 3.12 from QR to Q0.

Theorem 3.15 Suppose that all the assumptions of Theorem 3.14 are satisfied, and

if {ΦR} are weak solutions of the HJB Equation 3.12 with the boundary conditions

PR(w), then {EΦR} is uniformly bounded and there exists a subsequence of {EΦR}
that converges in V (Q0).

Proof. Consider the linear operator EΦR on Q0, and from Theorem 3.14, we have

‖EΦR‖V (Q0) ≤ C‖ΦR‖V (QR)

≤ C(C ′eC′T0(‖Lh̄ΦR‖L2 + ‖PR(w)‖L2))

≤ CC ′eC′T0‖PR(w)‖L2

By the definition of the boundary function PR(w), it is an L2(QR) function, which

means it is finite. Let ‖PR(w)‖L2 ≤ C ′′, we have

‖EΦR‖V (Q0) ≤ CC ′eC′T0C ′′ ≤ K

where K is some constant, a uniform bound.

Since V is a Banach space, it is complete, when R →∞, there exist a subsequence

of {EΦR} such that the subsequence converges in V (Q0).

We have proved that the linear operator E on Q0 is bounded by some constant,

as R → ∞, then we extend a weak solution ΦR of the HJB Equation 3.12 from QR

to Q0. Consequently, we define a weak solution of the HJB Equation 3.12 on Q0:
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Definition 3.4 If an optimal Markov control h∗ exists and the boundary function at

time T0 is given by Equation 3.9 on Q0, we define the limit of the subsequence of

{EΦR} in V (Q0) in Theorem 3.15 to be a weak solution of the HJB Equation 3.12,

and denote it by Ψ.

Remark 3.5 1. If an optimal Markov control h∗ exists, there could be several weak

solutions of the HJB Equation 3.12.

2. Assume that an optimal Markov control h∗ exists, then we can show that there

exists a weak solution Ψ in Definition 3.4. It is interesting to know if a weak

solution in Definition 3.4 can give an optimal hedge control h∗.
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CHAPTER 4

CONCLUSIONS

Froot, Scharfstein, and Stein (1993), [6] introduced and presented finding the optimal

hedge ratio to maximize the expected profit of a corporation for n = 1 and n = 2

in period zero if hedging strategies are linear. In [6], the authors not only gave an

optimal hedge ratio, but also discussed the detailed financial meaning of each term

in the result. With the results [6], we develop the optimal hedge ratio problem to

a general n variable case when similar linear hedging strategies (forward or futures

contract) are considered. In addition, we also find that the optimal hedge ratio can

be calculated in period one if all the elements in the model keep the same, and treat

the new random variables as functions. We compute the n = 2 case in our model for

period zero and period one.

In Chapter 2, we assume that all the processes are not stochastic processes, which

is not always the real situation in the world. In fact, we find that if we consider

stochastic processes, it is more realistic in finance. However, if the control process,

the investment process, and the product process involve any stochastic process, we

have to show that the corresponding stochastic differential equations have solutions

in weak sense. We studied Huang and Liu (2007), [8], and Øksendal, [13] of the HJB

Equation Method. The difference in our model is that instead of utility functions, we

study profit functions, which are more complicated and have free boundary conditions.

Thus, in Chapter 3, we present the following result: If there exists an optimal Markov

control h∗, the HJB Equation 3.12 has a weak solution Ψ in the domain Q0 = [0, T0)×
R with the boundary condition P (w), which is a free boundary.
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We develop the existence of a weak solution to the HJB Equation in three parts.

First, if the boundary condition g(w) is smooth and bounded on Q0, the HJB Equation

has a solution on Q0. Second, if gn(w) → P (w) in L2(Ω), then there exists a weak

solution Φ of the HJB Equation in V (Q). Finally, the weak solution Φ of the HJB

Equation 3.12 can be extended from a bounded domain Q to Q0.

There are some interesting questions we would like to study in the future. For

example, we now only solve the existence of a weak solution of the HJB Equation

on Q0, but we are interested in the uniqueness of the solutions. Moreover, we also

wonder if there is a weak solution of the HJB Equation on Q0, the corresponding

hedge control h0 is an optimal hedge control. In addition, we have the question that

whether we can extend the hedge control to any adapted control. We hope that we

can obtain these conjecture proved in the near future.
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