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CHAPTER 1
INTRODUCTION

1.1 Definitions and Notations
For convenience, we list some notations that are used in this thesis.

R": n-dimensional Euclidean space, n > 1, R = R!

U: An open subset of R"

2: A bounded subset of R”

T, To: A bounded time variable, 0 < T, Ty < o0

Qo = [0,Ty) x R: An unbounded subset in R?

Qo: The closure of Q

0Q): The boundary of Qg

Q = [0,Tp) x ©: A bounded subset of R™

B(z,7): A closed ball with center z and radius r > 0

CHU) ={u:U — R| u is k-times continuously differentiable}

CH(U) = {u : [0,T) x U — R| u is continuous in ¢ and k-times continuously
differentiable in x € U}

C®(U) = {u : U — R| u is infinitely differentiable} = N ,C*(U) (We say u is
smooth provided wu is infinitely differentiable.)

CeU) ={u:U — R| u € C®U) with compact support. The support of a
function is denoted by supp u}

Ce(U) = {u: U — R| u is infinitely differentiable and u vanishes at infinity}

CY(U) = {u: U — R| u is continuous and vanish on the boundary of U}



LP(U) ={u: U — R| u is Lebesgue measurable, ||u||.rq, < 00}, where

fullror = ([ 1aPde)” (12 <0
U

LV (U)={u:U—R|ue LP(V) for each V C U}
S22(U): Sobolev Space with k=2 and p = 2
S32(U): Sobolev Space with time ¢ involved, ¢t = 1, k = 2, and p = 2
Sy(U): The closure of CS°(U) in SV2(U)
Sy*(U): The closure of CY(U) in Sy*(U)
e; = (0,...,0,1,0,...,0) = ' standard coordinate vector
Du(z) = 0lu() = 001 -+ 09mu, where |a = oy 4 -+ 4 ay

F(U) : o-algebra

PY: Probability measure with respect to y = (s, w), the initial point of a process

EY: The expectation with respect to the probability measure PY, where y = (s, w)
is the initial point of a stochastic process

Zi: One-dimensional Brownian motion, ¢ = 1,2, ...

X: A stochastic process X (t,w), with ¢ € [0,7p] and w € Q

Constants: We use the letter C' and K to denote any constant that can be explicitly

computed in terms of known quantities.

There are two types of definitions in this thesis, mathematics definitions and
finance definitions. We present these definitions in the order they appear respectively.

All of these definitions are from [2], [4], [9] [13], and [16].

Definition 1.1 If U is a given set, then a o-algebra F on U is a family of subsets

of U with the following properties:
(i) 0 e F

(it) F e F= F°eF, where ' = U\F is the complement of F' in U
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The o-algebra obtained by beginning with closed intervals and adding everything
else necessary in order to have a o-algebra is called Borel o-algebra of subsets of [0, 1]

and the sets in this o-algebra are called Borel sets.

Definition 1.2 A probability measure P on a measurable space (2, F) is a function

P:F — [0,1] such that
(a) P(0) =0, P(Q2) =1
(b) If Ay, As, ... € F and {A;}3°, is disjoint (i.e. A;NA; =0 ifi#j) then
P(GA,) - i]P’(Ai) .
i=1 i=1
The triple (2, F,P) is called a probability space.

Definition 1.3 Let (2, F,P) be a probability space. A random variable is a real-
valued function X defined on 0 with the property that for every Borel subset B of R,

the subset of Q) given by
{XeB}={we X(w) € B}

is in the o-algebra F.
Let X be a random wvariable on a probability space (0, F,P). The distribution
measure of X s the probability measure jiy that assigns to each Borel subset B of R

the mass pux(B) =P{X € B}.

Definition 1.4 Let X be a random variable on a probability space (2, F,P). The

the expectation (or expected value) of X is defined to be
E[X] :— / X (w) dP(w)
Q

This definition makes sense if X s integrable, i.e., if

BIXY) = [ ¥ ()] aP) < o



Definition 1.5 Let Q) be a nonempty set. Let T be a fixed positive number, and
assume that for each t € [0,T| there is a o-algebra Fy. Assume further that if s <'t,
then every set in Fy is also in F;. Then we call the collection of o-algebras Fy, 0 <

t <T, a filtration.

Definition 1.6 Let (2, F,P) be a probability space, let T be a fixed positive number.

A stochastic process is a parametrized collection of random variables

{Xi}er
assuming values in R™.

Definition 1.7 Let 2 be a nonempty sample space equipped with a filtration F;, 0 <
t < T. Let X; be a collection of random variables indexed by t € [0,T]. We say
this collection of random variables is an adapted stochastic process if, for each t, the

random variable X; is Fi-measurable.

Definition 1.8 Let (2, F,P) be a probability space, let T be a fixed positive number,
and let F;, 0 < t < T, be a filtration of sub-c-algebras of F. Consider an adapted
stochastic process Xy, 0 < t < T. Assume that for 0 < s < t < T and for every
nonnegative, Borel-measurable function f, there is another Borel-measurable function

g such that

Then we say that the X; is a Markov process.

Definition 1.9 A stopping time 7 is a random variable taking values in [0, 00] and
satisfying

{r<tyeF, forall t>0.

Let U C R™ be open. Then the first exit time
7, = inf{t > 0; X; ¢ U}

1S a stopping time in F;.



Definition 1.10 A (time-homogeneous) 1t6 diffusion is a stochastic process Xi(w) =

X(t,w) : [0,00) x Q — R" satisfying a stochastic differential equation of the form
dX; =b(Xy)dt +o(Xy)dZ;,, t>s; Xg=x

where Z; is m-dimensional Brownian motion and b : R" — R, o : R" — R™™ satisfy

the condition:
b(z) = b(y)| +]o(x) —o(y)| < Dl —yl; z,y €R"
where |o|? =Y |oy]?.

Definition 1.11 For a bounded Borel function f € R"™, the Ito diffusion satisfies the

strong Markov property if
E*[f(Xepn)| 7] = E*[f(Xn)]  forall h >0,
where T is a stopping time with respect to F, and T < 0.

Definition 1.12 Let {X;} be a (time-homogeneous) Ité diffusion in R™. The (in-

finitesimal) generator A of X; is defined by

Af(e) — tim Y = S )

;. reR”
t10 t

The set of functions f : R™ — R such that the limit exists at x 1s denoted by
D.(x), while D, denotes the set of functions for which the limit exists for all z € R".

If f € C3(R™), then f € D, and

9 0
450 = Sh 2+ LS ooty d

i?j

Definition 1.13 Define the performance function J*(y) to be

7o) =B [ [ P ol o)

where f :RxR*"x U — R and g : R x R® = R are given continuous functions.



Definition 1.14

D(y) := sup {J"(y)} = J* (y)

u(t,w)

A family A of admissible controls are controls contained in the set of all F™ -adapted
process {u(t)} with values in U. If such a control u* exists, it is called an optimal

control and ® is called the optimal performance or the value function.

Definition 1.15 Functions u(t,w) of the form u(t,w) = uo(t, X;(w)) for some func-
tion ug : R — U C R™. Ifu does not depend on the starting point y = (s,x), and the
value at time t only depends on the state of the system at this time. Then, u(t,w) are
called Markov controls, because with such u, the corresponding process X; becomes an

Ité diffusion, in particular a Markov process, denoted by u(Y;) = u(t, Xy).

Definition 1.16 Let (2, F,P) be a probability space. A family {f;};es of real mea-

surable functions f; on  is called uniformly PY-integrable if

lim (sup{/ |fj|dIP’}> =0.

Mmoo jes & Jlg;1>my
Definition 1.17 We say that a function u(t,z) satisfies a polynomial growth con-
dition on Q if, for some constants C, k, |u(t,z)| < C(1 + |z|)* when (t,z) € Q. The
class of u in CY? which satisfies a polynomial growth condition on Q is denoted by

1,2
Cp .

Definition 1.18 In the domain Qq, if the boundary data are imposed at the final
time T':

wT,z)=g(x), zeR
such data at a fixed time T are called Cauchy data.
Definition 1.19 Define the standard mollifier £ € C*(R") by

Cexp <\w\2;—1>’ if |x| < 1;
0, if |z > 1,

§(x) =

the constant C' > 0 selected so that / Edr = 1.
Rn



Definition 1.20 Suppose u, v € L, (U), and « is a multi-index. We say that v is

loc

the weak a-derivative of u, written D*u = v if

/Ugvdq:: (—1)“'/UuDa§dx

for all test functions ¢ € C°.

Definition 1.21 The Sobolev space
SEP(U)

consists of all locally summable functions v : U — R such that for each multiplier o
with |a| < k, D% exists in the weak sense and belongs to LP(U).

If time t involves, denote it by SL*(U).

Definition 1.22 The Steklov average vs of a function v for a nonzero constant ¢ is

defined by

1 t+0
vs(X) = 5/ v(s,x)ds
t

For 0 > 0, vs gives an average of v over later times, and for 6 < 0, it gives an

average over earlier times.

Definition 1.23 The payoft is the cash realized by the holder of an option or other

deriwative at the end of its life.

Definition 1.24 Deadweight cost/loss is the extent to which the value and impact

of a tax, tax relief or SUBSIDY is reduced because of its side-effects.

Definition 1.25 In finance, hedge is a trade designed to reduce risk. Hedge ratio is
the ratio of the size of a position in a hedging instrument to the size of the position

being hedged.



Definition 1.26 Forward contract is a contract that obligates the holder to buy or

sell an asset for a predetermined delivery price at a predetermined future time.
Futures contract is a contract that obligates the holder to buy or sell an asset for

a predetermined delivery price during a specified future time period. The contract is

marked to market dauly.

1.2 Problems and Results

There are a lot of academic research papers in finance, most of which study Corpo-
ration Risk Management problems. The purpose of risk management nowadays is
not just reducing any risk that any corporation has. In 1990’s, some people raised
the idea of coordinating risk, for example, Schrand and Unal(1998), [15]. At that
time, finance analysts discussed much details about the importance of hedging in risk

management, but not a few of them questioned the mathematical part.

Froot, Scharfstein, and Stein (1993), [6] presented a paper about solving for the
optimal hedging strategy of risk management, in which they not only introduced the
model of hedging the wealth of a firm but also illustrated that a corporation can
hedge a ratio of its’ total wealth. The authors answered the question logically and
deduced the optimal hedge ratio h* of one variable and two variables, if linear hedging
strategies are considered. It also introduced the idea of non-linear hedging strategy
and gave the corresponding optimal hedge ratio result. We start from their important
research outcomes and develop the content of Chapter 2 in this thesis.

We notice that there was one important assumption in Froot, Scharfstein, and
Stein (1993), [6]: all the processes are non-stochastic processes. However, this raise
a question to us: What if the process is stochastic? Can we find any solution of
maximizing the expected profit function if there is an optimal stochastic hedge pro-

cess? We studied one paper of stochastic optimal control problems written by Huang



and Liu (2007), [8], in which the dynamic programming (the HJB Equation) method
was applied. Based on this paper, we present the existence of a weak solution of the
HJB Equation on an unbounded domain with a free boundary condition problem and

develop the required theoretical proof in Chapter 3.

This thesis is mainly about the mathematical theory and computation about de-
riving the hedge ratio for the non-stochastic n-dimension case in single period and
showing the existence of a weak solution to the HJB Equation if a stochastic process
is considered. In Chapter 2, we derive the multinational risk management coordi-
nation, mainly when a company changes the investment opportunities, we solve for
the optimal hedge ratio in two periods. Then, in Chapter3 we develop a stochastic
optimization model with a controlled Markov process, and apply the dynamic pro-
gramming (the Hamilton-Jacobi-Bellman (HJB) Equation), a generally used stochas-
tic optimization method in stochastic control theory to prove that if there exists an
optimal hedge process h*, the corresponding HJB Equation with a free boundary
condition has a weak solution on an unbounded domain. The last part of this thesis

is the conclusion, in which we summarize the thesis and give conclusions.

1.2.1 Background Introduction

Froot, Scharfstein, and Stein (1993), [6] presented the steps of finding the optimal
hedging model with changing investment and financing opportunities of linear hedging
strategies (i.e. forward sales or purchases) situation for one variable case. They

introduced the hedging decision model:

w = wo(h+ (1 — h)e) (1.1)

where wy is the initial wealth of a company, h is the hedge ratio, and € is the return

rate of the investment.



The expected profit function P(w) is defined as:
P(w) =max{0 f(I) — 1 — C(e)} (1.2)
I

where [ is the total investment, 6 = a(e — €) + 1, « is a measure of the correlation
between investment opportunities and the risk to be hedged, f(I) is the product
function, and C'(e) is the dead weight cost.

The question in the paper was finding an optimal hedging policy hA* so that the

expected profits P would be maximized:

max E[P(w)] (1.3)

The following result was derived:

h =14 o B P05

(1.4)

wo Py
where P, = E[P,,].
Then, the coordinating investment opportunities for multinational companies’ risk
management strategy of two variables were introduced. There were two investments
in the model, home investment I” and abroad investment /“. The expected profits

P(w) was given by
Plw) = F7(I") + 0 A1) = 1" — 5 1" = C(e) (15)

where 0 = a(e —€) + 1, v = B(e — €) + 1. Here € is the home currency price of the
foreign currency, and 0 < «, § < 1 are parameters indexing the sensitivity of foreign

revenues and foreign investment costs to the exchange rate.

Using similar arguments to develop h* of one variable, the optimal hedge ratio h*

was solved as follows:

El(ay = 36 Pu/8 £3] _ ;B Pun)

R =1+
wonw wOwa

, (1.6)
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where
g fu Acee
Py, = . HfoUA —— <
Cee(’}/ fu - an) - QfoH

0 (1.7)

After studied this paper, we are very interested in two problems:

e Extending the idea of finding the optimal hedge ratio h®* to n dimension, where

n > 2 in period zero and period one;

e Changing the non-stochastic processes to stochastic processes and solving for

the corresponding optimal hedge control.

Assume that in Chapter 2, only linear hedging strategies and non-stochastic pro-
cesses are considered. We first develop the multinational risk management model to
n variables of single period in Chapter 2. We also find that the hedge ratio h'* of n
variables can be calculated in period one if we treat random variables as functions.

Two n = 2 cases are presented to check that our model can be calculated, one of

which was given in Froot, Scharfstein, and Stein (1993), [6] with slight change.

1.2.2 Stochastic Optimal Control Model

Since we consider changing some non-stochastic processes in [6] to stochastic pro-
cesses, we are thinking of the stochastic optimal control theory. We found that Huang
and Liu (2007), [8] applied the HJB Equation method in stochastic control theory to
one finance problem:

Given the initial wealth Wy- > 0 and the prior (My-,V(07)), choose the number
N € Fy of news updates, the news accuracies a.,a, € Fy, and an optimal trading

strategy to maximize the expected utility function at the terminal wealth W,

max E[u(WW,;)],

N,oe,a,0
subject to the stochastic process of W; with initial condition Wy and u(W) is a power

function, increasing and concave.

11



The value function is
JW,M,t;a,) = mGaXE[u(WT)|Wt =W, M, = M].
and the corresponding HJB Equation is:

1
Jy + rnéax{§92asJWW + 0(po + 1M — 1)y + 00504 () Jwar }
1
+ rWdy + §UM(t)2JMM + (90 + glM)JM =0

with the terminal condition
JW, M, T;a,) = u(W).

The authors found a solution of this HJB Equation, that is the value function

J(W, M, t; o) with the stochastic optimal trading strategy.

The difference of our model is that, instead of maximizing the expected utility
function u(W), our problem is maximizing the expected profit function P(W) at the
terminal time 7. Then, the boundary condition is not a fixed boundary but a free
boundary. To solve a free boundary problem, we studied another paper, Muthuraman
and Kumar (2008), [12], which is about solving the free-boundary (stopping time)
problems in finance.

With these two papers, we set up our model as follows:

Given the initial wealth wy > 0 of a company, choose an optimal hedging strategy
h(t) € U to maximize the expected profit function P(W;) at a terminal time T,

@ (y) = sup{E*"°[P(Wy )}
heU

subject to

th = Wy [((1 — ht)TW + ht,uw) dt + htO'W let]

and initial wealth W (0) = wo > 0.

12



If & € C2(Qo), the HIB Equation will be

ilelg{ﬁhfb(y)} =0

with the terminal condition ®(Ty, w) = P(w) on {Ty} x [m, M|, m, M > 0.

In Chapter 3, we prove that there exists a weak solution of the HJB Equation on
an unbounded domain @y = [0,7) X R with a free boundary condition P(w) in three
sections.

First, prove the existence of a solution to the HJB Equation with a smooth and
bounded boundary condition g(w) on Q.

Second, there exists a sequence of the solutions ®,, of the HJIB Equation convergent
in some vector space V' with proper norm. Then, the limit of the convergent sequence
can be defined as a weak solution of the HJB Equation on a bounded set Q).

Finally, extend the weak solution from @) to Q).

13



CHAPTER 2

MULTINATIONAL RISK MANAGEMENT - COORDINATING
CORPORATION INVESTMENT

In the Financial Risk Management field, when a multinational corporation has sales
and production opportunities in a number of different countries, there are many
factors involved in the product function, which also affect the expected profit. If the
total investments I of the corporation contains not only the internal funds w, but also
some external funds e, the corporation needs to apply some derivative tools, such as
linear hedging strategies forward and futures contract to hedge the total wealth w so
that it could coordinate the risk. There are two sections in this chapter, Section 2.1
is about the single period case and Section 2.2 is the multi period case. In addition,
we present n = 2 to illustrate that the optimal hedge ratio h* can be calculated in
each section. When n = 2, the single period example was given in [6].

We assume that all the processes in this chapter are non-stochastic processes.

2.1 The Financial Environment - Single Period

In the first section of Chapter 2, we establish a model of solving the optimal hedge
ratio of the total wealth wy to maximize the expected profit for n variables, which is
applied to some multinational corporations around the world.

Suppose that a multinational corporation has sales and production opportunities
in a number of different countries. More than one factor complicate the hedging prob-
lem for multinational corporations, for example, the random exchange rate between

countries, the random stock market price in different countries, the random price of

14



goods in different countries, and so on. As a consequence, it is meaningful to build
and solve an n variable mathematical model to find an optimal hedging strategy, with

which the expected profit of a multinational company can be maximized.

2.1.1 Construction of the n Variables Model

To set up the model, we need to make some necessary assumptions. First, we as-
sume that the financial market is complete, and we use the right superscription 0 to

represent period zero in this section.

Assume that the multinational company can invest at n different locations in
period zero with the investments (I°)" = (17, I3, ..., I})), and cov(I, I]) = 0 for each
i ],

f(1%) : R"” — R"

are the product functions from n locations in period zero, that is

I = (1%, .., fa(1%)).
Define the net present value of investment expenditures
F:R"—= R,
given by
F(I%) = (6")" - £(1°) — (")" - I° (2.1)
For all 1 <7 < n, let

(0°)" = {01, .... 0n}, 07 =al(j —&") +1,

) =00y =0 -0 +1
where e?, representing the home currency price of the foreign currency, is a random

variable, with the mean &°, the variance (09)? for all 1 < j < n, and cov(e;, €;) =0

for i # 7.

15



0 < af, B) <1 are parameters indexing the sensitivity of foreign revenues and
foreign investment costs to the exchange rate in period zero.
Also assume that for each 1 < j <n, the jth product function f; : R" — R have

the first order derivative function:

af; 9f; %)

Dfi = (311 oL, " oI,

a?>0foralll§z’,j§n.

The corresponding first order derivative function in a matrix form is

where

of1(1%  8A@Y . 8AI%
o19 o1y o190

0£0% 0f1% - 0f(I%

Afn(1%)  8fn(1®)  8fa(1%)
or? o1y 10

For all j = 1,...,n, each component of the second derivative functions is a Hessian

matrix given by,

?f%  2naY 9709
(19)2 018017 019019
210 2£a% o 92£(0%
. =
2?f1%  o2fa% 0 9209
o19019 919013 a(19)2
02 f;
with ! <0 for all 4, .
oL.01 J

Let the external funds e; in period zero be

er=(7")" 1

— W,
then all the deadweight costs C'(e;) are defined as:
Cle1):R—R

with C¢; > 0 and C, ., > 0.

16



Using the product function f(I°), the investments I at n locations, and the dead

weight cost function C'(e;), we define the profits function P(w;) to be
P(w) = max(F(I) — C(er)} = max{(6)7 - 61°) — (0 1°— C(er)} (22

In P(wy), w; is the amount of liquid assets in period zero, where wy is the initial

total wealth of the corporation, and w; is defined to be a function of the random

variable e?. Thus, w; is also a random variable, and the issue of hedging the total
wealth arises. If we consider the linear hedging strategies such as forward and futures

contract, the hedge ratio h® = {hY, ..., hY} of w; appears. And we define
wy = wo(h1e) + hoey + -+ + hney)

with

W4t 1 =1

Once we give all the necessary definitions and assumptions, the problem now be-
comes: A corporation needs to adjust the hedging strategy to determine the hedge
ratio h®, which will get the expected profit E[P(w;)] maximized, and the correspond-

ing hedge ratio will be the optimal hedge ratio and denoted by h®". As noted above,

0

; will reduce expected

if P(w;) is a concave function, the random fluctuation in e
profits. In addition, only when P, ,, < 0 for all wy, hedging part of the total wealth
could raise average the profits.

The goal of this section is to solve for the optimal hedge ratio h®" at period zero.
To fulfill this purpose, we will find the first order condition of P(w;). After we obtain

the first order condition of P(w;), compute the second order derivative P, .,, and

show that P,,,, < 0, which is a concave function. Then, use the Implicit Theorem to
*

solve for , 1 < j < nasavector. In addition, we apply the method of covariance

€j
in probability to gain cov(P,€) = 0, which gives us linear equation systems. Finally,

we can solve for the optimal hedge ratio h®" in period zero.

17



Risk Management for Multinationals in Period Zero, n > 2

2.1.2
We start from the first order condition of the profit function P(w;), and notice that
we can write the first order condition of P(w;) directly with respect to I} as follows:

0 (FI%) —C(e1)) =0, 1< j<m,

that is,
a%g(F(IO) —C(e) = a%Q((HO)T £(10) — (%) 1° — C(ey))
=) ) = G ST = (67t 0

o1
= ()" (DE(I%) - e;) = (1+Cel) (1) - ¢

=0

In general, the first order condition of P(wy) is, for all 1 < j <n,
(2.3)

(0°)" - DE(I) - e; =77 (1+ Ce,)

and the matrix form is given by:
(DF(I)"-0° = (1+C,))A°. (2.4)
We can also obtain the following expression from 2.4,
1+C,, = %((QO)T - Df(I°) - ej) (2.5)

which will be used later in this section.

Denote the first order condition of P(w;) as
(IO*)T - (I?*7 Ig*v e IS*)

Compute the Hessian matrices D2 f;(I°7) for each component f; (1 < j < n), and

by assumption of I°, we have the following lemma:

18



Lemma 2.1 D?f;(I°%) is symmetric for all 1 < j <n.

Proof. Since all the n investments are independent to each other, i.e. cov(I?, I?) =0

1) ¥
for i # j, the Hessian D2f;(I°") are symmetric for all 1 < j < n. [ |
As a consequent, the tensor defined by
L dI”
DA (1) (5 ) 2.6
) (5 (2.

is symmetric, and assume it is negative definite.

Proposition 2.1 (i) P,, =C,,.

_ Celel <(70)T go* B 1)2

' dw1

dr°” ) dr°”

' dw1

(i1) Poyun = (6°)7 - DA(10")

dw1

Proof. At the first order condition (I°*)7, compute the first and second order deriva-

tive functions of P(w;), where
P(wi) = (0")" - £(I°7) = (4°)" - I = C(en)

The first order derivative is:

dr°” dr°” dre”
Py, = (09" -DFI%) — — (49" —— = C, ()" —— —1
L= (6) (™) dw (") dw () dw )
dre” dr®”
= (DF(I°H™ . 007 . — — (1 +C.,) ()" - + C,,
(DE(I™)" - 67) dw ( )(7") dw 27
x r dI%
= (DE(I”)" - 6° — (14 C.,)Y°) - a Ce,
dw1

:Cel

where the first order condition gives

Df(I°")" .0 = (14 C.,)7°

Apply the product rule to

dr°” dr°” dr°”
O G () -1 (28)

dw1

P,, = (6°)" - Df(I°)

dw1 dw1

19



Then, the second order derivative function of P(w,) follows:

dI®"\ 7 dI°* d?1°” d?1°*
Payuy = (0°)7 (5 ) DA™Y - S+ (6°)7 - DEI) - S = (307 =
dro” 2 d?1°”
oNT oNT
_C.. RS G ( . _) 2.9
Cones (0~ G = 1" = Ca (0 o (29)
dIe*y dr°” dI®” 2
:HOT'D2f10*<_)'__ ()
( ) ( ) dwl dwl C 1€1 ((’Y ) dUJ1 )
|
Proposition 2.2 Suppose that the tensor D*f(1 )(d—> is megative definite, then
w1y

the second order derivative function P,,.,, <0 and P(w;) is a concave function.

o dI%”
Proof. Since the tensor D*f(I° )(d—

) is negative definite, it is clear that the inner
w1y

product

<D2f(I°*)(dIO*> iO*> <0,

dw1 ’ dw1

Then the first term of P, ,, in 2.9 is negative, and C,., > 0, then

o dIO"y A1 dr°” 2
Pasur = (0°) - D) (5—) - S = Coren (007 5= = 1) < 0
1w1 ( ) ( ) dw1 dwl 1 1((7 ) dwl )
Thus, P(w;) is a concave function.
[ |
: arer : .
There is a vector qun B Py w,, and we can solve for this vector in order to
Wy
simplify P, w, -
Theorem 2.3 Suppose that Ce e, > 0, and 7? >0 foralll < 5 < n. Then
dr” 0\T . 12¢ /(70" 0 oyry\~1 .0
d_w1 = —Ceye, ((9 ) -D f(I ) - 06181(7 ’ ('7 ) )) e (2'1())

0*

Proof. To solve for the vector Tu we apply the Implicit Theorem to the first order
w1

condition of P(w;) with respect to wy, then

« dI®” . dI%”
(") D) (G ) = Ceaes 2" (O G = 1)

dw1
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Simplify and group the vector,

(GO)T . sz(Io*)<£> _ Ce1e1 ) (70 . (,)/O)T> . Q _

—_Cee A
dw1 dw1 ver

Since Ce,e, > 0 and 79 > 0 for all 1 < j < n, the matrix Ce.e,(7° - (4%)7) is
symmetric and positive definite, then —Cl,., (7° - (7v°)7) is negative definite.

Define a matrix

Ag = (0°)" - D(I%) = Cee, (1° - (4°)") (2.11)

which is symmetric and negative definite.

Since #° and 7° are random variables with probability, A is almost invertible. If
Ay is symmetric and negative definite, A;' is also symmetric and negative definite.
Therefore, the vector is solved as

dre” * M)
T = ~Caaa ()7 - D) = Copn (- (00)7) "

- _06161 Aal : 70

d1e”
Proposition 2.4 Let Ay be the matrix 2.11 defined in Theorem 2.5. The vector ——

Wy
is also given by the Equation 2.10 in Theorem 2.3, then the second derivative function

Poiw, 18

Pw1w1 - _06181 - Ce2161 (70)T ’ Aal ' 70 (212)
0*

Proof. The vector qu = —Ceye; Ayt -7 in Theorem 2.3, then:
w1y
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P = (0°)" <I°*>(%) = Can ()7 =1
= (Y () D) S O () G 0 a0
= () (@ D) = (20 (0)) - o = Cure (1= 267 )
= (Coa AT )" Ag - (—Ceiey AT 7)) = Copey (1= 2(3°)" - (=Cpes At - 7Y))
G20 (AT - Age A = Cuney =208, (6 - A
= —Ceres = G0, (V)" - AT 7"

Thus, P, is simplified as Equation 2.9.

Theorem 2.5 Suppose that C,., > 0 and 7? >0 foralll <j<n. Then

o1°*

J 7j

o = Ag {6161(5010 —wph?) -1 (B—g((QO)T-Df(IO*)~ej)—a?Df(I°*)>-ej}

(2.13)

Proof. Similar to Theorem 2.3, we apply the Implicit Theorem to the first order

condition of P(w):

(6°)" - DE(I™) - e

with respect to e yforall 1 <j<n.

That is

- x o1°* . .
(6°)" - (D*(1°) - ;) - STt alel - DF(I”) - e
J
OC' (( O)T . or’” +ﬁ010* —w hO) =
etel D¢l it 07
. OI% o
0 TD2f IO . o 0, oNTy 7~
(VDAY - Fa = Caae 0 0°)) - G =
+(14C.,)B) - e; — aIDFIY) - e; =

22

=1+ Ce,)

= 630(1 + Cel)

Corer (BT} — wohf) -

0



. . N :
(") D*(I) = Cores 0+ (1)) - S = Coren (BL = woh) -5
J

-Gy o) o) - agpran) e

0*
— o is as follows:

8ej

Then, the vector

o1°* ~ . B ) )
o = AG {Cored (BT = wohf) 2"+ (5((6°)" - DEA") - ;) — aIDEI) ) - e}
J J

We have gained the vectors and matrices that are needed to maximize the expected
profit function E[P(w,)] in period zero with the hedge ratio h®" = (h? .. h0) at
the vector (I°")” = (IY",...,I°"). The process of maximizing E[P(w;)] will give the
solution of the optimal hedge ratio h°".

Remember in Section 2.1, we assume that the covariance between distinct ¢; and

€ is 0, i.e. cov(e],e)) =0,i# j.

Lemma 2.2 [1//[Appendiz] If x and y are normally distributed, and a(x) and b(y)

are differentiable functions, then

cov(a(z),b(y)) = Ey[as|Ey[by] cov(x, y) (2.14)

We also need

P, =0C.,
and

Pw1w1 = _06161 - 02 (70)T ’ A51 . 70

erel

to solve for the optimal hedge ratio h°".
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Theorem 2.6 Suppose that all the assumptions in this section are satisfied. Also
assume that at 1°°, P(wy) is mazimized and cov(e?,€)) = 0 for i # j. Then, for all

1 <5 <n, h?*, the 7" component of the optimal hedge ratio
h®" = {nY" hY, ... h}

15 given by

E[P,,] OEE? [Ig(‘)*mel]
(O—O)QwDEs? [Pwle J wOEE? [Pwl'wl]

J

0 _

0 2.15
By [Co 07 A3 (@7 - DRI - ) - atDE@®) 0]

wOEe? [Pw1W1]

Proof. Since wy = wo(hYe) + -+ h2eY), then for all 1 < j < n,

(9w1 0

J
If order to maximize E[P(w,)], we require the corresponding first order condition:

awl

E[P,, - a_hg

]=0 (2.16)
forall 1 <j<n.

By the definition of covariance between two random variables and Equation 2.14,
we derive the first order condition 2.16, and obtain:

3w1

E[P,, - Tl
J

} = E[P,, - woe?] = woE[P,, - 6?] =0&

E[P,, - €]] = E[P,,] - E[¢]] — cov(P,,,€)) = 0 (since E[e)] = 1) &
E[Py,] = Eo[Py,0] - Eolej] - cov(e), ¢]) = 0 &
B[Py, - €] = E[Py] = B[Py - (09 = 0.

€0 4w el
J J 1¢5

Since P,, = C,,,
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that is,
)
‘=9 (2.17)

C(OE., Jda
E[Pwl] (‘7]) Eej [06161 869-

By the definition of the external funds ey, we have the derivative of e; with respect

to €) as following:
361 0 810* 0
50 = )" 5 | — wohj
J

J

forall 1 <75 <n.

Put it into Equation 2.17,

, o1 .
E[P,,] = (07)" B [Ce,e, (47)" - 50 + 631 —wohj)] =0
J

Simplify and rearrange it,
B[Py, ] = (07) B [Ceyey (( )T-aI—O*)]—( 3V E[Cere, 87151+ (07) E o[ Cey e wohj]
w1 i € erer \\7Y 869 elel j e? erep YOIy

=0

forall 1 <j <n.

o1°”
in Equation 2.13, Equation 2.17 becomes

Replace the vector
J
E[Pwl] - (O—?)QEE(; [06161 (70)T ’ Aal ( erel (50[0 th?) ’ 70

3 o
N ((&7)" -

( )ﬁOEO[ 616115J

+ (G607 - DEI”) - e)) — alDEX) - )]

] + (U?)2w0h(])'Ee§? [06161] =0

Expand every term of the left hand side of this equation
E[P,,] = (07 Eo[CZ,(V")" - AGT- (B7L]7) - 7] + (07)? wo b B [CZ., (1°)" - Ag" - 9"]

()" 7% Eo[Cee,(1°)" - Ag- ((6°)" - DE(I™) - ¢)) - ]

(7°)" - Ag" - DE(I™) - ej]

[Corer 1] + (02 woh B [Core,] = 0
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Put all the coefficients out of the expectations, and group those terms involved in

0
h; together,

E[Py,] = (07)° 8) B [I]"C2,.,(4°)" - Agh -1")]

(])251

By 0[Cerer ((6°)" - DE(I™") - €;)((4°)" - A" - e))]

+ (U?)Q Oé? Ee? [06161((70)T : A(;l ’ Df(IO*) ' ej)] - (0?)25]()E52[ 6161130*]

€1€e1

= —(07)> wo h E, 0 [C2.. ()7 - AG" - 2°] — (09)% wo Eo[Ceye,]
Rearrange and group some of the terms of both sides,

E[Py,] + (07)° 8 Bo [} (=Cere, — €2, (1°)" - AT 1"

0

- ( y) '7] E 0 [06161 (70)T ’ Aal ’ ((QO)T ’ Df<IO*) ’ ej) ' ej]
J

+(07)? 0 Ea [Cerey (1) - Agt - DE(I”) - )]

€1€1 J

= (U?)z Wo Ee? [ - C(6161 02 ( )T ’ Aal : 70] ho

Since

Pwlwl = _06161 02 ( )T ’ Aal ' 70

erel

then, the above equation is,

E[Pwl] + (O-?)Q ﬁ? Ee? []]Q*Pwlwl}

(09 B [Coe (07 Agt - (Z2((0°)7 - DEI®) - ;) — aIDEI*) - o]

] .
J

= (05)" wo Bo [Py, | 1

J

When the first order condition of E[P(wl)} is zero, it will be maximized. We

denote the corresponding hedge ratio h® by

ho = {nY Ay, .., K0}
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Finally, we solve h?* in the above equation for all 1 < j < n, and we gain

EEO. [IJO* Pwlwl}

0 J
] + 6] wo E€§) [Pw1w1]

]
e? [Pw1w1
By [Cos(00)7 - Ayt (55((0°)7 - DEA) - ;) — 0 DEA”)) -]
Wo E€? [Puuwl]

2.1.3  When n = 2, The Optimal Hedge Ratio h®"

In this section, we calculate n = 2 case. In [6], the authors presented a similar
example for n = 2.

When n = 2 in period zero, (I°)” = (17, 1Y) and
P(wi) = max{6y i(IY) + 02.f2(13) = W = 7913 — Clen)}

with the following settings,
wy = wo(hYed + h9eY), hY + 1Y =1, ey = V1Y + 819 — wy

09 = () —&°) + 1,7 = 3)(e] —§°) + 1, € 0~ N(g°( ?)2),j:1,2

0 0
Dfi(11) = afal—gl), and D f5(1y) = 6%5252)’
P fr(1? 0* fo(13
21 = 5t and D2Aa(1g) = )

We will solve for the optimal hedge ratio h®" in the following steps:
STEP 1:
Obtain the first order condition of P(w;) with respect to I°

‘90 afl(lo)

D fa (19
i _ fa(13)

19

+ 6'61)7(1J ) ‘93 =(1+ 061)’73

STEP 2:
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Compute P, and P,,.,, at I°". Notice that from Equation 2.7, we have P,,, = C.,,.

Differentiate P,, in 2.8, P,,., follows:

PLUIY) A1V o o O f(IY) dIY A1V Iy N2
_ 0 1 1 0 2 2 _ _
Pa =03 TERT )+63( a(19)? (dw1)> Coues (W5 qwr 2 du; 1)

STEP 3:

0*
Solve for the vector

and simplify Py, ., -
w1

Apply the Implicit Theorems to the first order condition in Step 1 and get

(PO o (038 00—

—2
8([?*)2 dw1 dw w1 +72d w1
02 fo(197) dIY e ary
90 - OCe e 0oL 02 _ 1)=0
( (9(]0*) dw1 > t 1 <’Yl dw1 * T dw1 )

Similarly, the matrix Ay is:

0OD2 f, (1O 0 A0)2 040
Ag = 1 () * . (77) 172
0 03D f>(13") i (12)°
0*
The vector —— 1is given by
dw1
dry” 0
w Y
du Cou A |
drg 0
dwq 72

Simplify Py, ., as

0
_ M
Payir = ~Corn =, (o ) A"

STEP 4:

0*
Solve for the vector

for j =1,2.
€j
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Again, we differentiate the first order condition in Step 1 with respect to €,

O2fL (1Y) oI Of (1) o1 . o1y
0 1/, 1 0 1/ _ 30 0 0~"1 0 70 0~r2 0
91 ( 3([?*)2 86(1) > + oy a]?* ﬁl (1 + Cel) + v 06161 (”}/1 66(1) + 51 [1 + Y5 _86(1) ’ll)oh1>
92 fo(10) 91y a1 . oIy
0 2 /. 2 _ 0 0~"1 0 70 0~-"2 0
02 < 8([3*)2 86(1) ) 0(1 + Cel) + 72 Celel (71 66(1) + /81 .[1 + ’72 86?_ w0h1>

Write this in the vector and matrix form:

- 20 af (IO*)
0 o2 f (1°7) 0 :| 9e0 0 1
[91 ( 6(}9*)2 0 ) + 63 ( 00 ) 3131* + al—aff*
el
1
1"
9e0 -
= 0+ G+ ( (40 g ) | 2|+ - )
Be0
1
a1"
9 0 92 f>(1°7) ] o
[91 ( 0 0 ) + 0, ( 0 6(;8*)2 ) or8"
86(1)
1"
T *
90
1
Then, the vector is
r n 30 25.015")
A Con{ @ ) | s | ] =t |
o 7 0 0
ot
= Aal . {08161 (ﬁ?]? — woh(l))
0
Y2
of1(19")
/80 * * 1 1 0F
+ [CE DAY + eD (1)) - J. o )
71 0 0 0

For j = 2, differentiate the first order condition with respect to e,

(1Y) a1 a1
0 1 . 1 — 0 0-"1
01( 8(1?*)2 863 ) 0(1 +CE1) +’V2C€161 (71 668

0 70* 0013 0
+ 6715 +72_a 0 —wth)
€9
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02 fo(1Y7) oIy A fo(I37) or” . o1y
90< 2 ), 2) 0 2) _ 39(14C, 0066(01 070 092 h0>
2 (1Y) el + ay 19 By (1+ Ce) +75Ce,e; (M1 el + 021y + s e Wollg

The vector and matrix form is,

0 82f) 0 } deY
[91 ( ETSER > 6 < 00 ) o1”
aeg
1"
) *
) L ,0na)
0 0 9% £2(197) } 0y 0Y/2\52
[91 ( 00 ) + 67 ( 0 G ) R
ey
2
1"
60 *
= 051+ Ce,) +7§Celel( ( v > :Ioi + 0505 — woh3>
3]
2

The corresponding vector when j = 2 is given by

on 0 0 0

0€ — AL, { OIO* B 10 71 1 0 }

818* 0 (132 2 Wo 2)(76161 0 + ( + (761) 0 o2 6]5([3*)

€] 72 2 19"

"
= AG'{Cores (IS — wioh)

0
V2

59 . . 0 0 0

+ | ZEDAE) +BDLE) - | ]| | e, e |
Y2 1 1 ofa(I3 )
aI19*
STEP 5:

Finally, solve for the optimal hedge ratio h®" = {h?%" hJ"}.
Py, = C,, and Py, = —Core, — C2. (7°)"- At - 7.

ejel

wy = wo(he? + h3eY), then for j = 1,2,

hy =
J
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max E[P(w1)] requires that the first order condition equations

871]1 .
E[P,, - a—h?} =0

8w1 .
E[P,, - 8_h8] =0

Apply Lemma 2.14 and the definition of covariance with respect to h?, we obtain

8w1

E[P, - ——
o G

| = E[Py, - woe]] = woE[P,, - €] =0 <

E[P,, - €})] = E[P,,] - E[€)] — cov(P,,,€}) = 0 (since E[¢)] = 1) &
E[Py,] — Eg[Py,0] - Eglef] - cov(e, e)) = 0 <
E[P,, - €]] = E[Py,] = Eg[P,,0] - (07)" = 0

€] lF wiey

Notice that

E€(1) [Pw16(1)] = EE?[(Pwl)G(l)] = EE?[(Cel)E(l)] =Eo [C
then,

Oe
E[PIUI] - (U?)QEE? |:C€181 . 8 éi| - 0 (*)

By the definition of ey, the derivative of e; with respect to € is

861 00[?* 0810*

8_6(1’_%8 7280

+ B — woh
Plug it into the equation (x), then

Nb 0 OIY
P

E[P.,] - (0B |Corer (4 o O — wohd)] =0

That is,

0\2 Oa[?* 08[3* 2 0 70* 0\2 0
E[Po, |~ (09) B | Corer (1 G 4985 ) |~ (1) By [Core B )+ (09) Big Cor e o] =
1 1
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0*
from Step 4, then

Use the vectors

)
gl
E[Pwl] - (0?)2Ee? [06161 ( 7? ’Yg ) ’ Agl (06181 (6(1)[10 - wohtl)) 0
T2

Y . . 1 of (1) [ 1 1
2 0p2 £, (1) + 09D 1, (19°)) o f;ﬁoi ) ). ]
T 0 1

- (0?)2 ?Es(l) [06161]?*] + (U?)Qwoh(l)Ee(f [06161] =0

Expand and simplify,

R _ g
E[P,,] — (a})” (l)Ee(f [I? Cese, ( "N > Ay e o }
V2
gt
+ (O—?)2w0h(1]Ee(l) [06161 ( 7? ’73 ) ’ A(;l ) 0 :|
V2

0 . . 1
~ @[ (4 28 ) At (@020 + B0 Ra) ||
1 0

Of (1) [ 1 .
+ (o) | = @B [C 1] + (o) wohiEg Coe,] = 0
1 0

0
* ’Y

E[Pwl] - (0.5))2 ?Ee? [Ig C(6161 ( ’Y? ’Y? ) ’ Aalceuil Z :|
T2

/80 — * *
~ @By [Co (40 23 ) AT ((IDPAY) + D7)
1

0
af, (1 [ 1 .
+ (o} =5t | = (@2 BEg[Cere 1]
1 0
0
v
= _(ag)Qth?Ee? [06161 ( ’7? ’}/(2) ) ’ Aal ) Z + (U[l))Zthtl)Ee[l) [06161]

2



. _ T
E[Puu] + (0-?)2 ?Ee[l) |:I? ( - 06161 - 06161 ( ’Y? ’Y? > ’ AO 10@161 0 )}
T2

! . [T 1
@By [Can (0 8 ) Art (DG DR | ])-

1 0¢
1 0 0
Of I [ 1 _ m
e el = ] = @By [ = Con = Cune (a2 a9 )5t [ ] ]
1 0 75

-1

E[Pwl] T (U?)Zﬁ?EE? [I?*Pwlwl] - (U?>2Ee? [06161 ( ’}/? ’yg ) . AO .

0 N . 1 1 a [0* 1
(B2 ny) + o013 ) ) + (a2t
71 0 0 ; .

- (U?)Qﬂ?Eeg [Celel‘[{]*] = (U(l))2w0h(1)Ee? [Puhwl}

861 8[0* 8[0*
S- ilarl d == = 0 1 0 2
imilarly, we nee aeg 7 868 Y2 668

+ BT — wohY to solve hY.

012 001 0013 0 70* 0
E[P,,] = (03) Eeg [Cerer (M el + 72 el + B3 —wohy)] =0
2 2

Then,

o1 o1y
E[Puy] — (03 EglCoes (155 + % 5.5 = (03 EglCeres 53] + (03) By [Cerewoh) = 0
2 2

Again,
gt
ElPu] ~ (0B [Coe (44 23 ) A5 Con (18— wit) |
V2

> . . 0 Of2(18) [ 0 0
22 gop2 g, (107) 4 09D 1y (19°)) o J;2§03 ) ). ]
T2 1 2

- (Ug)zﬂgEeg [0616113*] + (08)2w0h8E63 [Cere] =0
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0
. _ T
E[Pun] - (03)2 gEeg |:Ig 06161 ( ’Y? ’Y? ) 'AO 106161 ]

75
"
+ (U(Q))Qwotheg [06161 ( ”Y? ”Yg ) ’ A51 ) 0 ]
Yo

0 * * O
- (Ug)z%Eeg Core ( 20 A ) A (DY) + 8D Ra) [ ] )
2

+ (0-(2]> Oé2 8][)*
2

1

]

0

E[Pwl] - (US)QﬁSEeg [13*06161 ( ’Y? ’Y? > ’ Aalcewl
T2

0
- @B [Cn (4 28 ) AT (D240 + 8D (D)
2

O fo (1Y 0 .
(a2 ] (o2 B g [, 1]

(0% *
227201 )
0
_ M
= _(Ug)Qwotheg [06161 ( ’Y? 73 ) ’ A01 ) 0
Y2

E[Pwl] + (08)2 gEeg |:]g* ( - Ce1e1 - 06161 < ")/(1) ”}/? > : Aalcelel

0 * * O
- (US)Q%Egg Core ( N ) CAG (D2 () + 03D fo(15)) )
2

af0) [ 0
+ (08)2a8 82503 ) } = (08)2w0h8E63 [ — Cere; — Cepey ( 0%
2 1

34
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Y2

1

70" 0 *
9 oa.fQ( 2 ) ] _ (0-3)2 SE€(2)[061€1]§ ] + (0'3)2100th58[06161] =0

| + (08)2wohdB g (e

1

73>'A01'



E[Pwl] + (O—S)QﬁgEeg [IS*PUHUH] o (US>2E68 [Celel ( ’7? ’78 ) ’ Aal

> * . 0 0 0 0
(Gornar)sanu) | )| |+ edra?e)
72 1 ] I X

— (09208 Bg[Core, IT) = (08 woh§Eeg | Puyus |

As a consequence, we solve the optimal hedge ratio h®* for n = 2, which is

o ElPu] By 1" Py ]
! (Ug)QMOEe? [Pwlwl] ' wOEe? [Pw1w1]
0 -0 -1 (B (rp0 0 0 0* 1 1
Eg|Coe ( 10 29 ) AT (Z(ODATT) + 08D LUL)) - 0 ))- 0 |
B wOEe(l) [Pw1w1]
E C C(’fl(lg*) 0 0 A—l 1
| Ve o0 Mo ) o 0
+ af
! wOEGSJ [Pwlwl]
0* E[P,,] o B 15" Py
M = o 2B Pore] P wo B[P,
(02) Wo eg[ wlwl] Wo 63[ w1w1]
0 0 -1 (B9 ((p0 0* 0 0* 0 0
Eeg |:C€1€1 Y1 V2 'Ao ’ (@((91[)][1([1 )+92Df2([2 )) . )) ’ . }
- oneg [Py
E O af2(1§)*) 0 0 A—l 0
alCon %5 (0 o8 ) 45" 1 ]
—l—ozg

wOEeg [Pw1w1]

m[6], =hh=1-h =1 =¢0"=1and ) =0,+) =1 and 7§ = ~.
Replace the corresponding 6 and v in the optimal hedge ratio, we achieve the result

in [6].
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The financial meaning of this optimal hedge ratio h®" is that the multinational
corporation can use some linear hedge strategy, such as forward and futures to hedge
partial of its total wealth w; in period zero so that it could maximize the expected

profit E[P(w;)]. For detailed financial explanations, please refer to the paper [6].

2.2 The Financial Environment - Period One to Period Two

2.2.1 Introduction of the Model in Period One

In Section 2.1, we derive the optimal hedge ratio h®" in period zero, which is single
period. We will solve a second period formula for the optimal hedge ratio from period
one to period two.

When a firm invests from period zero to period one and has an optimal hedge
ratio h®" in period zero. Then, the total wealth w; is a random variable depending
on h%". Similarly, the total investments I'* is a random variable too. Assume that all
the conditions in previous section are satisfied, then all the models in period zero are
the same as in period one, for example, the product function f and deadweight cost
function C. Please notice that in period one, all these functions are random variables.

The net present value of investment expenditures is:
F(I') = (@) £1) - ()" T (2.18)

where (I')” = (I{, I3, ..., I!) is the total investment, a random variable in period one,

and f(I') : R — R" are the product functions from n locations in period one with

' (Y, fo(TY)

We use the right superscription 0 to represent period zero in Section 2.1. All the
superscriptions are updated to 1 for period one in this section.

Similarly, we have

O ={61,...., 00}, 0 =al(e—¢")+1,

J JNTT
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(" ={n, -t v =8 —g")+1

forall 1 < j <n, and ejl-, which is defined in Section 2.1.

For each 1 < j < n, the jth product f; : R" — R satisfies

af; Of; %)

Dfj = (8[1 oL, "’ oI,

and D?f; is weakly negative definite.

Similarly, the corresponding first and second order derivative matrices are

o)  aa@y) . 8A0Y
o1t 11 11
ofo(M) 8f(H . 0f(H)
ofn@)  8fn(M) . Ofu(h)
oI} o1} oI}
and
ap 10 SO0 110 S NN o /10 &)
o(I})2 o101 o1torl
32]”,17'(111) 52fj1(11) . 62fj(Ill)
2 1
Dij(Il> _ 01; 015 o(I3) OILoI, . = 1) n
a1 710 ) B o 10 &)
aIloIL  BIlall a(1)2

The external funds ey in period one is also a random variable, given by

ex=(7")"-T!

— W2,
All the deadweight loss function in period one is
C(ez) :R—= R, with C, >0, Ce,e, >0
In period one, the profit function P is the same as in period zero,

P(w;) = max{F(I") — C(ez)} = max{(")" - £(I') = (7!)" - T' = Cea)}  (2.19)

where wy = wy(hje] + hies + -+ -+ hle), and wy is a random variable in period zero.

Then, P(ws) has random values in period one.
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Similarly to the period zero and as noted above, if P(w,) is a concave function,
the random fluctuation in 6]1-, 1 < j < n, will reduce expected profits. And only when
Pyyw, < 0 for all wy, the hedging could raise average profits.

We apply all the results in Section 2.1 to all the lemmas, propositions, and theo-

rems in this section.

2.2.2 n Variables Hedge Ratio Optimization in Period One

P(ws) are random variables, when we compute the first order condition of P(ws), we

treat it as a function, then for all 1 < j < n,

0 .
3—]}(1?(1 ) — Cle2)) =0,

that is,
(01)" - (DE(IY) ;) — (1+Cey)(7')" ;=0
We write it as
(0")" - DE(I") - e; = 7 (1 + C.y). (2.20)

And the matrix form is: (Df(I'))” -0 = (1 + C.,)*

Denote the first order condition as (I*")* = (11", 3", ..., I}"), then I* = I'"

P(ws) is maximized.
drt*

Wa

The tensor D*f (Il*)< ) is weakly negative definite. This is because when we

treat each entry of the Hessian matrix D?f;(I'") as a function, the Hessian matrices

are symmetric and D?f; < 0 for all 1 < j < n.
Proposition 2.7 If we treat P(wsy) as a function, then

(i) P, wy — Cez

dws dws dws

(ZZ) Pw2w2 = (91>T ' DQf(Il*) <£> 4 06262 ((VI)T NI G 1)2

Moreover, Py,u, <0, and P(ws) is a concave function.
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Proof. Since P(wy) = (017 -f(I¥") — (/)7 T — C(ey) at (IY7)7, treat it as a function

so that we can apply the product rule and the first order condition of P(ws), then we

get
drt” drt” drt”
P, = (@OHY" - DY) — — (4T — — C., hr.—— 1
.= (607 DEIY) - G = ()" G = G0 G- = 1)
drt” drt”
= (Df(I*")" -1 - —(1+C. )" C.
(DE)T-01)7 - o = (14 Ca)(0)T - =+ C
1*\7 1 nT dIl*
= (DE(T)"-0' — (1 + Ce, ') - +C.,
de

=C.,

Similarly, treat the first order derivative function P,, as a function, and derive

the second derivative of P(ws), where

P = 0 0r) - Sy oy )
then,
Py, = (61)" - (iz:)Tsz(Il*) . 35: + (0H)" - DE(IY) - djg; — ()T (ﬁ_ig
~ Con(0)7 S -1 = (0 )
=@y o) () e
By the assumption, we have <D2f(11*)<31;:> ii::> < 0, and C¢¢, > 0, which

means that P,,,, <0.

1*

Similarly to Section 2.1.2, we need to solve for the vector Tus Again, we treat
w2

C(e2), Cey,y Coye, as functions.

Theorem 2.8 Treat C(es) as a function, Ce,e, > 0, and v; > 0 for all 1 < j < n,

then
drt” 1

d_w2 - _06262 ((91)T ’ D2f(11*) - 06262(71 ) (VI)T)) ’ 71
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Proof. The proof is the same as Theorem 2.3, and all the random variables in period

one are treated as functions so that we can get the derivative functions. First, we

have
drt’ drt”
1T'D2f11* — AL IRV -1
(0" D) (G ) = Crses - (G G = 1)
=
@y (8 e 66 0,
dQUQ 262 d’LU2 262
Let
Ayi= (00" DY) = Cou (- (1)) (2:21)

Since Cee, > 0 and vj > 0 for all 1 < j < n, the matrix Ce,e, (7' - (71)7) is
symmetric and weakly positive definite, then —C,,., (7' - (v!)7) is weakly negative
definite, so as A;.

Similarly, 6 is a random variable with probability, so A; is almost invertible. We

have,

1*
W (07 D) = a0 (1)) 4!

dw, (2.22)

= _06262 : ‘Al_1 ’ ’71
If A, is symmetric and weakly negative definite, A; ' is also symmetric and weakly

negative definite.

dro”
Proposition 2.9 Let A; be the matrix 2.21 defined in Theorem 2.8. The vector Qo
W

s also given by the Equation 2.22, then the second derivative function Py, 1S

Pw2w2 = _06262 - 062262 (71)T ’ Afl ' 71 (223)

40



Proof. P(ws) can be viewed as a function, then we have

oo odIMN A drt” 2
P — T | D2f Il == ). o T | o 1
wawy = (07) ( )(dw2> duws Ceges ((7 ) dws )
dIt"\7 drt” drt” drt” drt”
— D2f11* ——C.., nwr =~ 1T__2 W =~
( ) ( )) (1102 (j 2€2 ((ﬂy ) (ilUQ (ﬂy ) (ilUQ (fy ) (1102
dIl* drt” drt”
— D2f11*_ e 1' INT S . 1_2 IT'_
(dw2> ( ) CQ 2(7 (fy ) )) de C’262( (7 ) dwg)

- (_OegegAl_l : 71)T : Al : (_CegegAl_l ' ’71) - 06262 (1 - 2(’71)T ’ (_O€2€2A1_1

DT(ATY AL AT = G, — 202 (V)T AT

_ 2
C eges

eges (

= —Ceye, — C? ( )T ) Al_l : 71

€2e2

which is as asserted.

[ |
1* 1*

Similar to the vector T we can calculate the vectors T forall 1 <j <n by
w9 Ej

viewing all the random variables in period one as functions.

Theorem 2.10 If Cepe, >0 and v >0 for all 1 < j <n. Then,

1
= A Coaea (B i) (f

J

ort”

B ((6")"-DE(I*")e;)—alDE(I™))-e; ) (2:24)

Proof. Apply the method of the proof of Theorem 2.8 and view every random variables

as functions, we have the vector

aIl* * ﬂl * *
S = AT {06262(5;1; —wihl) 4" + (ZL((6")" - DE(T™) - e;) — al DE(T™)) -ej}
J ]
|
Next, we will solve for the optimal hedge ratio h'* = {h{", ..., hl'} in period one

to maximize E[P(w,)] at I'" = {I}",..., I} if cov(e},€}) = 0,7 # j. Notice that
since we take the expectation of P(ws), it becomes a function, then we can find the

derivative of E[P(wy)].
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Theorem 2.11 Suppose that all the assumptions in this section are satisfied. Also

L€y =0 fori # j. Then, the

assume that at I, P(w,) is mazimized and cov(e}, €]

optimal hedge ratio

h'" = {p¥" Al .. B}

where hjl.* are given by

Eejl. [Ijl*szwz]
lee} [Pw2w2]

E[Py,]
(O-Jl')zlee]l [PwaQ}

1 _ 1

1 2.25
By [Clu () AT (07 DEAY) - ) — alDEI) - 22

leejl- [Pw1 w1]

forall1 < j<n.

Proof. The proof is also similar to the proof of Theorem 2.6. Notice that w; here is

0

not a constant but a random variable depending on ¢;.

Since wy = wy(hi€] + - -+ + hlel),then for all 1 < j < n,

For all 1 < 7 <n, we need

8w2} _0

E[Pw2 o

Apply Lemma 2.14, and notice that w; is a random variable, not like wy, a constant

number, so we can not put it out of the expectation, then

(9?1)2

E[P,, - a_h}

} = E[P,, - wleal‘] = E[w P, - E;] =0

E[w Py, - 6]1] = E[w,P,,] - E[¢}] — cov(w, P,,, ;) = 0 (since E[E;] =1 <

J 27 -]

E[w,P,, - €}] = E[w,P,,] — Eq (w1 P,, ] -Ea 6] - cov(e), €j) =0 &

J wa€; R

E[w Py, - €] = E[wi P,] — Ba[wi Py,a] - (07)* =0

wae; J

Since P,, = C.,,
862

By [11Pyet] = Bt [01(Poy)at] = B [w1(Cey)y] = By |01 Coe, - 5
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By the definition of ey, for all 1 < j < n, we have

de ort” .
o () G+ B wh)
j J
Then,
Il*
Bl Pou] — (03B 11 e (21)7 - S+ ALY — b)) =0
which can be expanded as:

2 T 811*

Elw1 Puy] = (0] B [01Cerer (1) - 5 1)
J (2.26)

- (U;)QEG} [wlC@ezﬁ}[]‘l*] + (gjl‘)zEe}le)QCezwhgl'] =0

1*

7 has been solved in Theorem 2.10, which is given in Equation 2.24,
€
J

then plug this vector into the above equation to get

The vector

E[wlpr] - (O-jl')QEe} [w106262 (71>T ’ Al ( ezez (61[1 - wlh ) !
e " ]
+ (7—1((01)T.Df(11 ) -e;) — aiDE(I')) - )]
J
- (Ujl)26]1E€; [w106262[]1*] ( ;)Qh]lEE} [(wl)chzez] =0
Expand each term of left hand side of the equation:

E[wiP,,] = (0})*Ea [wiCZ,.,(v1)" - AT (B1]7) -] + (0 *hiBa [(w1)*CE,., (7)) - AT ]
- (0;)27—§Ee; [w01Cese, (¥ - ATH - ((01)" - DE(IY) - €;) - ]
+ (0 0 EafwiCope, (v1)" - AT - DE(IY) - )]
(OB Balt1Cop 1] + (01 W B [(01)2Co] = 0
Rewrite the equation and group all terms having the optimal hedge ratio h} to-

gether,

E[w, Py,] — (07)°BjBalwi I; C2,e, (V)" - AT 9]

(0P By (6 D) - €)(41)7 A7 ve)]

J

+(0))?0jEa [w1Ceye, (7)) - AT - DE(IY) - €))] = (0])* B} B [wiCeye, I} ]

= —(07)*hjEa [(w1)*Ce,e, (7)™ - AT 4] = (07)*hjEa [(w1)*Ceye,

€2€e2
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Rearrange and group some terms of the equation,

E[wlpm]+(0’1)25}Ee;[w11}*(—0e2e2 Core, (V)" - AT )]

€2e2

= (0})" VJE w1 Ce, (V1) - AT ((01)7 - DE(TY) - ) - €]

J

(0} B w1 Crnes(7)" - A - DEIY) - )]

J

= (U;)2E6;[(w1)2<_06262 02 ( )T ’ Afl ’ ’Yl)]hl

€2e2 J

Since Py, = —Cege, — C2,0, (71" - A;'-+!, the above equation becomes

E[wlpw2] + (O-jl)26]1E€; [wl‘[jl*PU&wQ]
1
— (07)"Ea [wiCeye, (71)" - AT (ﬁ—’l((ﬁl)T -DE(IY) - e;) — a;DE(IY)) - ¢)]
J
= (U;)ZEE; [(w1)2Pw2w2]h‘]1'
Similarly, when the first order condition of E[P(ws)] under the hedge ratio h? is
zero, it will be maximized, and the corresponding hedge ratio is the optimal hedge

. *
ratio h'™.

Solve h; for all 1 < j < n, and we obtain,

1 E[wleQ] El[wll PwaQ]
" = GIPE [(w)? PWJ” Eo (1) Pone]
. ) ) (2.27)
B [11Craes(71)" - A (—;1<<91> DE(IY) - ¢) - alDE(IL")) - ]
B [(wl) wng]
|

We conclude that if the product function, total wealth, total investment, and
the profit function keep the same for period one, and these random variables can be
treated as functions, then the optimal hedge ratio can be calculated. In the next

section, we will present n = 2 case similar to Section 2.1.3.
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2.2.3 The Optimal Hedge Ratio of n = 2 in Period One

In period one with the case n = 2 , we can calculate the optimal hedge ratio h'*

{h!", i} with some assumptions.

Let (IY)" = (I}, 13), and F(I°) = 61 f1 (I}, 13) + 63 fo(I}. 13) = 1} = 1313 — Cea).

wy = wy(hie] + hies) = wo(he) + h3ed)(hier + hied), hi+hi=1,
2= A1} + 41} v

fi=ai(a—-a)+1, b=a(eg—-&)+1

n=p0l—a)+1l, n=05kc-&')+1

e; ~N(g, (0])?), 1=1,2

afi(Mt)  afaIh

of2(Ih)  8f2(I1)
oI} oI}
HAYH 82 (1) 8% fo(Th)
fl( ) 2hHaY)  82hadh) f2( ) 2f(Ih) 82 fo(Ih)
o1to1;} o(13)? o111} o(13)?
STEP 1:

The first order condition of P(wy) with respect to I' is given by

o Of1 (1) df>(I)
booll oI}

—rcy o200 @)

+ 02 o1 o1

= (1 + 062)'721

STEP 2:

Same as the example in Section 2.1.3, we have P,, = C,,.

O*f(IYY) dIf o O*f1 (1Y) AL} 2 O fo(IY) dI} |-

_ gl 1 2 1 1

Forun = 61( (I})? (dwg) - (13)? (dwg) ) +92< (1})? (dwg)
82f2(11*> d—]21* 2 1d111* 1d]21* 2
o (auy) )~ O )

N de Y2 dUJQ

STEP 3:
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1*

O fo(IV) dIy

Solve for 10, and simplify P, ., -
(TIPSR arf
O(IF)? dwy  OINOIY dws 2\ 0(IF)? dws
drl dr}”
_7106262<'71d W +'72d_2_1> 0

)

OIF oI} dw,

" (62f1<11*> UL TN (TR Rl
01y oI7 dwy, — O(137)2 dws 2NOIY oIV dwy — O(IF)% dws
d]l* d]l*
C’6262 (71 d 72 d Wy 1) = 0
Let
) ) (M)? M7
Ay = OID*A(IY) + 0D (1Y) = Cpey |
Y (1)
then,
dri” 1
dwi _ _06262A1,1 ) M
dI} 1
dws 72
and so
1
_ T
szwz = _08262 - 062262 ( ’711 ")/21 ) 'Al ! .
Y2
STEP 4:
|
Solve for , j=1,2.
€j

For 7 = 1, we have,

(D0 01 | Pt orp

) oA

Ph(I) afg*>

OI")*  Oeg  OI/0Iy  O¢ A(IF)2 el T AIFaIY el
A (1) oIv . I
+ aiTll* = B1(1+ Ce,) + 71 Ceges (”yl + 611 aé — wo(hY€Y + hYe9)hy )

(A0 OISR ol

) +05(82f2(11*) L

O’ fo(IY) o1}

)

AIFOIT el T (IF)? T Ol AIFOIF el T (1) Ol
Of (1) 1 . 0IF
=G = 00+ C) 28 Coses (0 1 + AL 0 2 — wol5e) + i)
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Write it in a vector form:

orf” 1%
[91 PRI AT ) gl [ 2RAY)  2HAY) } 9] 1900
L\ Tam: arfery 2\ e arrery o1y’ LaIr
Oeq
el *
=ﬁi(1+CeQ>+viO@eQ((% 721) 2| B — wo(0e) + hieh)hi)
2
Oet
or” 1+
[91 PAEY) PHIY) ) 4 gl [ PRI PRIV } ey +&10f1(1 )
L\ arFar™ o) 2\ arFer™  Ta(i)? orl” 1 oIy
Oel
ar”
1 *
_o(1+062)+7;(182€2<(711 7%) P B — (e + Wnt)
2
Oef
Then, the vector is
81111* A1 1 af1(1*")
€ _ * 1 1 1%
M AT Cun{ (B - i) P40 —ad| T
ol 1 0 of1(It7)
Bel T2 1L
ol
= AT {Con (B —wih})
1
72
3! . . 1 1 3)3({1*)
+ [ SO AT + oD LI)) |- —ab| T
71 0 0 8f81g1 )
2

For 7 = 2, again, we have,

91<02f1(1”) o
VA2 06
1 0fo(IV)
> ooIr

OITOIF  Deb PSE
o1

L 9e

+a =0(1 +Cy,) "‘72106262 ('7

2 £ (1% 1* 2. £ (1 1*
O f[TY) .812 > —i—@;(a S(I) _afl

— + B3y +
2

82f2<11*) ) 8121*>
de oI OIY  Oel

1*

ol
WL — wo(he) + Med)hs)

1
Oe;

2 1* 1*
o (Z00) o1

oIy oI 9k T O(IX)2 Db oLy oIy
0o(1" 0L | gy
n a;% = 31+ Coy) + 72 Cpes (7%—11 + 600 +
ol, de;
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: ) 92< .

82f2<11*) ) 8121* )
ded I(I37)2  Oel
1*

oI
15 — wolhe) + W) hb)
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L[ 22f1)  82f (1) L[ 821"
[91( GulE oI ol )+92( T

=0(1+C.,) + 7110@262( ( Al )

a1
86%
orL”
86%

82f2(11*) > :| BE%

oI a1k”

+ L = wo(he] + hSeD)h3 )

L 20  2Adth) L[ a2f0)
[81 ( oIy oI o(137)2 ) +02( a1y oI

:ﬂ21(1+062) +'7’2106262< ( 711 721 )

o1

82 f2 (Il *) i| 36%

(142 o1y

86%
or”
86%
ary”
Oed

+ B3~ wo(RS) + ASeB)h})

Finally, the vector with respect to €} is given by

orr” .
61 — * ryl
;If* =A {(ﬁ%@ — w1hy)Coye, +(1+C,)
Bl 7
"M
= AT {Con( B = wih})
1
Y2
B3 . \ 0 0
+ [—?(Ginl(Il ) + 63D fo(1')) - } .
V2 1 1
STEP 5:
Solve for the optimal hedge ratio h'* = {r}", hi"}.
Again, Pup = Oe? and Poywy = _08262 - 062262 (70)T ’ -Al_1 -

Since wy = wo(h{e) + hYed)(hiel + hied) = wy(hie] + hiel, for j

821)2

oh]

It requires that the first order conditions of E[P(wy)] are zero,which are

E [PwQ .

0.0 | 700y 1 1
= wo(hje] + hyey)e; = wie;

Ows
Ohl
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|=0

1 0f>(IM)

dfo(1*7)
oI

df2(I17)
ark”

1,2

o

0f>(I'")
orl”

Af2(I1")
ory”




Ow,
ohl

Similarly to the example in Section 2.1.3, we have

E[P,, - |=0

871}2

E[P,, - o

} = E[P,, -wie] = Ew,P,, - 1] =0 &
E[w, Py, - €] = E[w,P,,] - Elej] — cov(w; P,,,€}) = 0 (since E[e]] = 1) &

Elw, Py,] — Ea[wi Py,a] - Ea (1] - cov(eg, e) =0 &

E[w Py, - ] = Elw Py,] — Ea[wi P,,a] - (01)* = 0.

Since
862
Ee% [wlpume}] = Ee% [wl (Pw2>e%] = Ee} [11)1(062)6%] = Ee} [w106262 ) @]
1
then
1\2 des
BlwiPu,] = (01) B [01Cehe, - 551 =0 ()
1
Also by definition, we have
Oe oI oI1r .
L=ty T O —wihi

8_6% L Dl 2 Oel
Then, (xx) is

0L | 01

171* 1
1 86{ + Vs 86% + 6,1 _wlhl)] =0

E[wi Py,] — (U%)QE% [01Czes (Y

Rewrite it as:

oIl o1}
Elw,P,.| — (c1)°E [ .o (0 1945
[wl 2] (01) el [W1ley 2(71 86% + 7% 86% )

- (0%)2E6% [w10€2€25%]11*] + (U%)QEG% [w106262w1hﬂ =0

1*
From Step 4, we have ——, then,
Oe;
"
Bl Pl = (0B [01Cs (24 24 ) - AT ConsBLI =ity |
2

1 1 1
+ 5% (01D2 f1(I') + 03D fo(I'7)) — a, DF(TY) )- }

T 0 0 0

- (U%)ZﬁllEe% [wlc@ezlll*] + (U})thEe%le)QCeQBz] =0
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. _ T
E[wlpw2] - (0%)2ﬂ11Ee% |:wlIl1 06262 < ’Yll ’}/11 ) 'Al 10@262 ]

"
"
o [(00Ce (21 53 )-aT [ 7]
V2

B (01)25—11E [’w c o)L AT, ((91D2f () + 61D (11*)) 1 ) ) 1
1 711 el |W1lezen Y1 Ve 1 1 1 2 2 0 0

* 1 *
+ (0%)2Q%Df(11 ) ] - (U%)zﬁllEe% [7“0108262]11 } + (0%)2h%Ee%[(w1)208262] =0

0
gl
E[w1Pw2] - (O—%)QﬁllEe% |:w1]1l 06262 < ’711 ’711 ) ’ Al_lcezez L ]
T2

—(01)25—11E [wC’ I .Afl.((91D2f(11*)+91D2f(11*)) ! ) !
1 711 el | W1itezea |\ Y1 79 1 1 1 2 2

* 1 *
+(@)2adDEE) [ | | = ()28l i Conea ]

0
o0
= (M [0 Cos (of 24 ) oA | T | DB C
Y2
o
E[wlpwz] + (U%>2611Ee% [wllll ( - C16262 - 08262 < ’}/11 ’)/11 ) ’ A1_106262 L )}
Y2

_(01)25_11]3 [wo 11 .A—l.((91D2f(11*)+91D2f(11*)) ! ) L
1 ’Y% el [W1leses Y Ve 1 1 1 2 2

1 IR T
#obPalDE) || ] = (0B 0% = Con (5 4 ) ar | ]
0
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E[wleQ] + (UDZ 11Ee} [wllll*szwz:| - (O—%)2EE% |:w106262 ( ’711 ’721 ) ) lAl_1

1 1 1
(Lo opae | )| | eraie | ]
M 0 0 0

- (O’%)2B11E€% [wlc€2€2111*] = (O&)2h%Ee% [(w1)2pw2w2:|

Similarly, for €}, the derivative function is

662 8[1* 811*
a1 = ’V% 11 '721 21
3 3 3

+holy —wihy
which is need to solve for h}.

E[ P 1 2E C 18111* 18[21* 1[1* . hl =0
w1 'w2] - (02) € [wl eze2 (71 el + 7 Jel + 62 2 wy 2)] -
€2 €2

Then,

oIl o1k
Elw P, — (61)°E Coo (12 1945 ]
[wl 2} (02) a [ W1ley 2(71 86% + 7% 86% )

- (U%)2Ee% [wlce262 21121] + (U%)2Ee§ [08262 (w1)2h%] =0

1*
Replace the vector —-, we have
3
"
E[w1Pw2] - (U%)QE% |:w10€2€2 ( ’711 ’)/21 ) ‘Al_1 (06282 (621[21 - wlh%) .
72

! 0 0 0
+ 5—3(9}])2;3(11*) +6,D° f,(1')) — a,DE(TY) )- }
T 1 1 1

- (U%)Q 21Ee% [w106282[21*] + (U%)Qh;Eeéle)QC@%] =0
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. _ T
E[wlpw2] - (0%)2ﬂ21Ee§ |:wlI21 06262 < ’Yll ’}/11 ) 'Al 10@262 ]

OB [0 Cos (4f 24 ) AT
V2

)|

1
—(05)2%&; 01Cse, ( S ) AT ((OIDPAEY) + 03D (1)) 1

* O *
+ (0%)2Q§Df(11 ) ] - (05)2/821E6% [7“0108262]21 } + (0%)2h%Ee%[(w1)208262] =0

1
gl
E[w1Pw2] - (O—%)QﬁllEeé |:w1]2l 06262 < ’711 ’711 ) ’ Al_lcezez L ]
T2

1
-2 G (51 a3 ) AT (DA + 65D R())

1 1
* O *
+ (@)2aaDEI) [ | | = ()2 By [ Conea ]
1
"
= (B [0 Cos (o} 24 ) AT | T | OB C
V2
M
E[wlpwz] + (U%>2621Ee§ [wlIQI ( - C16262 - 08262 < ’}/11 ’)/11 ) ’ A1_106262 L )}
Y2

1 . . 0 0
-y [0 (21 ) AT (@A@Y 4 eptam) | )

|0 IR T
#(dPalDe) | | ] = (@B [0 = Cons (51 4 )| ]
1
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E[w1Pw2] + (U%>2ﬁ21E65 [w1[21*Pw2w2:| - (U%)2EE% |:w106262 ( ’711 ’721 ) ’ lAl_1

0 0 0
(Gowtaayeowtaey [ U ]) [ ) oo | ]
2 1 1

- (U%)2ﬁ2lE€§ [wlc€2€2111*] = (U;)2h%Ee% [(w1)2pw2w2:|

Finally, we achieve the optimal hedge ratio h'* = {h!", hi"} where

hy = Bl P, + 54 Eq (w1 ]i Py,
(U%)2Ee} [<w1>2pw2w2] Ee% [(w1)2pw2w2]

Ee%[wlcm(,yl 721)~A;1-(»’i—ii(winl(P*)+6;Df2<11*>>' 1) (1) |

1 0
) Bt [(01) o]
. L1
Ee% |:w10€262 ")/11 ")/21 : A]_ . Df(I ) . :|
0
1
+ oy Ee% [(01)2 Py,
hl _ E[wleQ] IEG% ['U)1[21*PW21U2]
2 (0P [(00)?Puyan) 2 Bs[(101)? Pagurs)

1

1 0 0
By [wiC.n. ( o ) A7 (Gen@y +appey- [ )| ]

B Ee%[(wl)QPw2w2]

1 1 -1 1* 0
Ee% |:w1062€2 Y1 V2 ’ Al ) Df(I ) ’ ) ]

+al
2 Ee%[(wl)Qszlm]

In this section, we compute the optimal hedge ratio h'* for n = 2 in period one,

if the concrete model is given, and any linear hedging strategy is considered, it is

feasible to calculate the optimal hedge ratio h'" in period one.
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CHAPTER 3

Stochastic Optimization Application of Risk Coordination

In Chapter 2, we discuss the situation that when a company has n different locations,
it is possible to find the optimal hedge ratio h®* and h'* with linear hedging strategies
so that the expected profit function is maximized. However, all the processes in
Chapter 2 are non-stochastic processes. If we consider all the stochastic processes,
whether there exists any (weak) solution of the stochastic optimal control problem.
To study this problem, we construct a stochastic model and apply the method of

dynamic programming (the HJB Equation).

3.1 Introduction of Stochastic Optimal Control Problem

3.1.1 Construction of The Stochastic Model

First, suppose that a company has a similar investment pattern in Chapter 2, that
is, the company has initial wealth wg, a positive constant, and it acquires external
funds L; from some risk-free asset with interest rate ., a constant. Then, the com-
pany invests the total liquid asset, which is the sum of W; and L; to some project.
Our problem is if there exists an optimal stochastic control A*, the expected profit
E[P(W})] can be maximized under h*. We also need the following assumptions and
definitions.
Denote the domain

Qo = [O,Tg) x R
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and
Q: [07T0> XQQQO

where () is a bounded set in R with compact support.
Denote Ty as a bounded stopping time on [0, 00) such that when ¢ = Tj, the profit

function P is maximized.

Let the initial wealth wy > 0 be a constant, and denote y = (0, w) as the initial
point when ¢t = 0.

Let X; be the predictable stock price and follow a stochastic process
dX, = (jo+ pu Xy) dt + pox dZy + /1 — p2 oy dZs (3.1)
Let the external funds L, follow the process
dL; = rpdt (3.2)

Let h = h(t,w) = hy be a Markov control process and h € U, a compact Borel
set in R and |h¢| < 1. This is equivalent to say that at time ¢, h is the corresponding

hedge ratio of the total wealth of the company.
Let the total wealth of a company be W; and follow
dW, = wy [((1 — hy)rw + hy ) dt + hy oy, let} (3.3)
Then, the total investments K; is given by
dK;, = dW,+dL, = (wo(l — hy)rw + wo hy piy + TL) dt + wo hy oy dZqy (3.4)
Here pg, w1, p, 0x, 7, wo, fyw, and oy, are all constants.
Let p; be the unit price and follow the process

dpt = (po + P1 Xt) dt + Op let (35)
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Let the payoff function be
F:00,T) xR =R
with f € C%(Qo), f' > 0, f” <0, and define the deadweight loss to be
D:[0,T)] xR—R
with D € C?*(Qy), D’ > 0,D" > 0.
Finally, we define the profit function P(W;) to be

P(W) = max{p; - f(K¢) — K¢ — D(Lo)} (3.6)

Define the performance function J"(y) to be
J™0,we) = E¥° [P(W})]
J'(y) = EY[P(Wy)]
Then, the value function ®(y) with the optimal control h* can be defined as

O(y) = s%p{Jh(y), h(y) Markov control} = J" (), (3.8)

subject to

th - (wo(l - ht) Tw + Wo ht How =+ TL) dt + Wo ht Ow let
W(O) =wy >0

with a boundary condition

w, [m, M]
O(Ty,w) = P(w) = (3.9)
0, Otherwise

The problem is that for each initial point y = (0,wg) € Qo, find a number ®(y)

and a Markov control h* = h*(t,w) € A such that

O(y) = sup{J"(y)} = J" (v)

heU

where the supremum is taken over a given family of admissible controls, contained in

the set of a Markov process {h;} with values in U.
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Definition 3.1 For the Markov control h(t,w) € U and ® € CZ(Qy), denote the
linear parabolic differential operator £ by

(Lh) (1, w) = By(t, w) + (wo(1— ) ry 1o o pig 472 ) B, w)—l—%(wo o ) 2D (1)

(3.10)
For notation convenience, let
3 7 R A
o' =wyhoy, a 25(0),
and
b = wo(1 — h) ry 4+ wo b pyy + 7.
Then, Equation 3.10 can be written as
(LhD)(t, w) = Dy (t, w) + by (£, w) + a" Py (t, w) (3.11)
and similarly, the HJIB Equation in our model is
sup{(L"®)(t,w)} = 0 (3.12)

helU

3.1.2 Methodology Background: Hamilton-Jacobi-Bellman Equation

Our model is in fact a stochastic control problem. The general used method in stochas-
tic control theory is the dynamic programming method, also called the Hamilton-
Jacobi-Bellman Equation method. We have studied Huang and Liu (2007), [8] about
the HJB Equation in financial mathematics. In that paper, the authors applied the
HJB Equation method to solve a stochastic optimization problem:

Given the initial wealth, choose the number of news updates, the news accuracies,
and an optimal trading strategy to maximize the expected utility function at the
terminal wealth subject to the stochastic process of the total wealth with initial

condition and the utility is a power function, increasing and concave.
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Based on this idea, we develop our stochastic model and try to apply the HIB
Equation method. In Stochastic Differential Equations (SDE) theory, it is necessary
to know if there exists a solution of the given SDE with a boundary condition on a
domain. In addition, Stochastic Control Theory requires that the value function is
a solution of the HJB Equation. That is, we need to prove that we can apply the
HJB Equation to our stochastic control problem, then prove the existence of a weak
solution to the corresponding HJB Equation if an optimal hedge control exists.

In this section, we will introduce the Hamilton-Jacobi-Bellman Equation method
in Stochastic Control Theory. There are some basic theorems in the Stochastic Con-

trol Theory from @Qksendal, 2005, [13], Chapter 11:

Notice that G is a fixed domain in R x R”.

Theorem 3.1 [13/[11.2.1 (The Hamilton-Jacobi-Bellman (HJB) equation (I))] De-
fine
O (y) = sup{J“(y); u=u(Y) =u(t,X;) Markov control} .

Suppose that ® € C*(G) N C(G) satisfies
B'[jo(v,)] +/ ra(v;)|at] < oo
0

for all bounded stopping times T < 74, all y € G, and all v € U. Moreover, suppose

that an optimal Markov control u* exists and that OG is reqular for Y, . Then

sup{f“(y) + (L*®)(y)} =0 forall ye G (3.13)

velU

and

O(y) =g(y) forall yedG . (3.14)

The supremum in ( 3.13) is obtained if v = u* where h*(y) is optimal. In other

words,

fly,u*(y) + (LY DD)(y) =0  forall yeG . (3.15)
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Theorem 3.2 [13][11.2.2 (The HJB (1) equation - a verification theorem)] Let ¢ be
a function in C?(G) N C(G) such that, for all v € U,

)+ (L9)(y) <0, yeG (3.16)
with boundary values

lim ¢(Y:) = 9(Yy) - Xfro<oo}  G.5. PY (3.17)

t—1a

and such that {¢~(Y,); T stopping time, T < 7¢} is uniformly PY-integrable for all
Markov controls u and all y € G.
Then
o(y) = J(y)  for all Markov controls u and all y € G . (3.18)

Moreover, if for each y € G we have found uy(y) such that

FroW (y) + (LWe)(y) = 0 (3.19)

and {p(Y"0); T stopping time, T < 15} is uniformly PY-integrable for all y € G

then ug = uo(y) is a Markov control such that

o(y) = J*(y)
and hence if ug is admissible, then ug must be an optimal control and ¢(y) = ®(y).
Theorem 3.3 [13][11.2.3] Let
D), (y) =sup{J“(y); u=u(Y) Markov control}

and

Do (y) = sup{J“(y); u=u(t,w) ]:t(m) — adapted control}.

Suppose there ezists an optimal Markov control ug = ug(Y') for the Markov control

problem (i.e. ®,(y) = J"(y) for all y € G) such that all the boundary points of G
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are reqular with respect to Y;"° and that ®,, is a bounded function in C*(G) N C(Q)
satisfying
Ey[yq)M(Ya)\ + / L5, (Y,)| dt] < oo (3.20)
0

for all bounded stopping times T < 74, all adapted controls h and all y € G. Then

(I)M(y) = (I)a(y) forall ye G .

Notice that all the three basic theorems of the HJB Equation method require
that the domain G be a bounded set in [0,7") x R", and the boundary conditions
are smooth and bounded on the boundary of G. Theorem 3.1 shows that if there
is any optimal Markov control, the solution ®(y) of the HJB Equation 3.13 reach
the supremum zero with the optimal Markov control. Also, the supremum of the
performance function J*(y) can be achieved, which is ®(y). Theorem 3.2 describes
that if the HJB Equation 3.13 has a solution ¢(y) with the supremum is zero, the
corresponding Markov control is the optimal control and the solution is the value
function ®(y). Theorem 3.3 extends the Markov control to any adapted control for
the HJIB Equation.

In our model, the domain is not a bounded domain, or the boundary condition is
not a fixed boundary. Therefore, we will show that the HJB Equation can be applied
to our model, which is, if there exists an optimal Markov control h*, there is a weak
solution of the HJB Equation 3.12 on @y = [0,7y) x R with the given boundary

condition 3.9.

3.2 Existence of A Weak Solution to The Stochastic HIB Equation

3.2.1 The Necessary Condition of The HJB Equation with Domain
QO - [07 TO) X R

In the following sections, all the notations and definitions are from Section 3.1.
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Let g(w) € C°({To} x R) N L3(R) be a smooth and bounded function vanishing

at infinity, then we have a lemma:

Lemma 3.1 [7/[Lemma 4.1] Suppose that g(w) € C3°(R) and satisfies for some C' >
0 and B> 0, [g(w)] + |g'(w)| + |¢"(w)] < C(L+ |wl?), and Bh(t,w), oh(t,w) are

continuous in both t and w. Also suppose that
V" (t, )P + [0 (8, w) P < C(L+ [wf)
then

g = (B30 [P(W (2 +8))] = gw)] = V(1 0)g/ () + 50" (1, 0) Py (w)

The proof is given in [7], Lemma 4.1, using It6 Lemma.

Theorem 3.4 [5/[Theorem 6.1] Assume that:
(i) V' (t,w), o (t,w) are continuous and satisfy that there exists a constant C' such
that for all (t,w) € Qo, |b"(t,w)| + |o"(t,w)| < C(1 + |w]).
(11) bh(t,-),ah(t,-) are C? for each t € [0,Tp], moreover, bi’v,aiﬁ are bounded on

Qo = [0,Tp) x R and the partial derivatives Wi bt ot ol satisfy for some

w?r Cww? w? ww

constant C, (3,
00, w) | + [l (8, w)| + |0l (8, w)| + ol (8, w)] < C(1+ w]?)
with (t,w) € Qo
(i1i) g(w) € C§°(R) is bounded.

Then ®(y) = EY[P(Wy,)], y = (0,wo) is a solution in Cy*(Qo) of the homogeneous

backward equation
LIt w) = B, + 0Dy, + a" Dy, = 0, (3.21)

where b, a" are the same in Equation 3.11 and with the Cauchy data

lim ®(t,w) = g(w), we R.

tTTy
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The proof is given in [5], Theorem 6.1 or [7], Chapter 3, §11. Theorem 1.

Remark 3.1 This is the existence theorem of the homogeneous backward equation
with the boundary of Cauchy data in [3]. With this theorem, we can state and prove
the theorem for the necessary condition of the stochastic HIB Equation 3.12 with the

boundary of Cauchy data g(w), which is smooth and bounded on Q.

The following lemma and Dynkin’s Formula in[13] are used in our proof.

Lemma 3.2 [13/[Equation 7.2.6] Let H C R be a measurable set and let T, be the
first exit time from H for an Ité diffusion X;. Let o be another stopping time, f be

a bounded continuous function on R and put

N = f(Xey)X{ru<oo} » Ty =inf{t >o; Xy ¢ H}
then,
O * X{a<oo} = f(Xrg ) Xrg<oo (3.22)

Theorem 3.5 [13][Theorem 7.4.1 (Dynkin’s Formula)] Let f € CZ(R). Suppose T is

a stopping time, E*[1] < co. Then

B (X)) = £+ B [ A7) s (3.23)

0

Theorem 3.6 Let ®(y) be the value function defined in Equation 3.8.

Suppose that ® € CZ(Qy) and
Ey[/ 1L (W) |dt + |@(W,)|| < oo
0

for all bounded stopping time T <Tp, all y € Qg and all h € U.
Moreover, suppose that there exists an optimal Markov control h*, then the HJB

Equation 3.12

sup{(L"®)(y)} =0, forall ye Qo ,
heU
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and

P(y) = g(w),Vy € 0Qo = {To} xR . (3.24)

The supremum is obtained if h = h*(y), where h*(y) is optimal, that is
(L"W)(y) =0,  forall yeQo .

Proof. We first show that when h* exists, the supremum of 3.12 is obtained and the
boundary condition 3.24 is satisfied.

When h* = h*(y) is optimal,
Oy) = J" (y) = BV [P(W;)]
Then, by Theorem 3.4, we have
(LY WD) (y) =0, forall ye Q.
If y € 0Qy = {Tp} x R, then
D(y) = ©(Ty,w) = EY[P(Wy,)] = EP" [P(Wy,)] = P(Wy,) = g(w) .

Next, we will show that

(Lh®)(y) <0, forall ye Q.

Fix y = (s,w) € @ and choose a Markov control h € U.
Choose @y, C Qo with the form @y, = {(r,2) € Qo; 1 < to}, where s < tg < Tp.
In our model, t; is the first exit time of @Q;,, and 0 < T < o0.

By the definition of performance function,

J"(y) = EY[P(W})].
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Then, apply the strong Markov property and formula 3.22 to get

That is, J"(y) = EV[J"(W,,)].

Assume an optimal control h*(y) = h*(r, z) exists and let

h, if (r,2) € Q4
h*(T, Z)? if (Ta Z) ¢ Qto

h(r,z) =

where h € U is arbitrary. Thus, we have
D(Wy,) = J" (W) = J"(Wy).
Since ®(y) is the supremum of J"(y), then
Oy) = J"(y) = B'[J"(W,,)] = B [@(W,,)].

Also because ® € CZ(Qy), by Dynkin’s formula,

B (o)) = o)+ B[ [ ()]

Therefore,

v(5) 2 B[] = o) + B[ [ (i

which is

o / to(ﬁhd))(Wr)dr} <0.

Finally, we get

B [(£70) (W, )]
Bty =0,

for all such @, .

Since (L"®)(-) is continuous at y, and let ¢, | s, we get (LF®)(y) < 0. Done. MW
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Theorem 3.6 states the necessary condition of the HJIB Equation 3.21, similar to
Theorem 3.1 from [13], we need to prove a verification theorem of the HJB Equa-

tion 3.12, which is also the sufficient condition.

Theorem 3.7 Let ¢(y) € C2(Qq) be a function such that, for all h € U,

sup{ (L") (1)} =0,  for all y € Qo

heU

with boundary values

lim ¢(Wt> = g(WTo) : X{To<oo}7 a.s. PY

t—Ty

and such that {¢—(Wy,); to stopping time, to < Ty} is uniformly PY-integrable for all
Markov controls h and all y € Q.
Then ¢(y) > J"(y) for all Markov controls h and all y € Qy.

Moreover, if for each y € Qgy, we have found h such that

(£9)(y) =0
and {qb(Wfé); to stopping time, to < Ty} is uniformly PY-integrable for all y € Qo,
then h = h(y) is a Markov control such that
oy) = 7"(v)
and if h is admissible, then h is an optimal control and o(y) = P(y).
Proof. First, show that ¢(y) > J"(y) for all Markov controls h and all y € Q.

For each h € U, y € Qo, we have (£")®(y) < 0 in Q.

Let h be a Markov control in U, and apply Dynkin’s formula to get

B[o(,)] = o) + B[ [ (o

< é(y)

where

Ty = min {Ty, inf{t > 0;|W;| > R}}
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for all R < oo.
Since tlim d(Wiy) = g(Wir) - X{rp<oey < 00, and ¢~ (W, ) is uniformly PY-integrable

for all Markov controls h and all y € )y, Fatou’s lemma gives

¢(y) > liminf B [¢(Wr,)]

> EY[¢(Wr, )]

= J"(y).

Now, if (£ﬁ¢)(y) =0 and {(b(Wt%); to stopping time, to < Ty} is uniformly PY-
integrable for all y € )y, we obtain the equality part of the statement.

Again, Dynkin’s formula gives

B [601,)] = o) + B[ [ (Woyma]

= ¢(y)
Since

Ey[/o LB, dt + | B(W)]| < oo

for all 7 < Ty and all y € @)y, by Dominate Convergence Theorem,

o(y) = BV [o(Wh )]

= lim EY [p(W} )]

R—o0

= EY[ lim ¢(W} )]

R—o00
= E'[o(77,)]
= J(y)
By the definition of admissible and value function, h is an optimal control and

o(y) = ®(y) is the value function.
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3.2.2 Existence of A Weak Solution to The HIB Equation with L2

Boundary Condition on @ = [0,7}) x €2

Remark 3.2 The boundary conditions in Theorem 3.6 and Theorem 3.7 require that
g(w) € C°(R), but in our model, the boundary condition is ®(Ty, w) = P(w), where
P(w) is not continuous on {To} x R. Thus, we want to find a sequence of functions
gn(w) € C(R) such that g,(w) converges to P(w) in L*(2) as n — oo. And this
can be done by using mollifiers. For detail definitions and proofs of mollifiers, please

see [1], Chapter 2.

Consider @ = [0,T) x Q, a bounded set defined at the beginning of Section 3.1,
and let S3(Q) be the Sobolev space with time t = 1 and k = 2, p = 2.
Given constants 0 < m, M < oo, and let Q = (m — 1, M + 1). P(w) is given by

Equation 3.9:

then P(w) € L*(Q).
Let £ be the standard mollifier, and for all n = 1,2, ..., set
En(w) = n'é(nw)

then /ﬁn dx =1 and supp (§,) C B(0, %), where B(0, %) is a closed ball with center
R

0 and radius 1/n.

Definition 3.2 [1] If g € L}, (), define its mollification

loc
gn =& x g €8y,

which 1s
n(x) = W —vy)gly)dy = 2(y) glx —y)d
gn(2) /6 (z —y) g(y) dy /(o,;)g () g(z —y) dy

for x € Q,.

67



Theorem 3.8 [1]/[Theorem 2.18 (Properties of mollifiers)]
(i) Gn =& %G € C=(Q).
(i1) If supp g C Q, and ZfT_lz < dist(supp g, 0R2), then g, € C3°(Q).
(111) If g € C(), then g, — g uniformly on compact subsets of .
(iv) If 1 <p < oo and g € LP(Q), then g, € LP(R2), and
lgallr < ] and  Jim (lgn = gl.r = 0.

Lemma 3.3 [17/[§2.1] If § is a function from Q to R, and g € LP(QY) , where  is

1

1oe(§2), that is, § is integrable on each compact subset

an open subset of R, then g € L
of Q.

Remark 3.3 Let g(w) = P(w), by the definition of P(w) in our model, P(w) €
L*(Q). Then, P(w) € L} .(Q). Suppose that there is a sequence of functions g,(w) €

loc

C3° (), and all the properties of mollifiers follow. Then,

gn(w) — P(w) in L*(Q)

Next, we show that the weak derivative of P(w) exists on 2 and denote it by
D“P.
Proposition 3.9 Q is a bounded set of R. Suppose that P, P € L*(Q), and o is

a multi-index number. If there is a sequence {g,} C C3°(Q2) such that g, — P and

D%g, — P in L*(Q), then P = D*P.

Proof. Since P and P are in L*(Q), by Lemma 3.3, P and P are locally integrable,
that is P, P € L}, (Q).

Given a sequence {g,} C C3°(Q?), and g, — P and D%g,, — P in L2(Q2), they also

1
loc

converge in L; (). Using integration by parts, we have

(—1)a|/ﬂgnDa§dx:/QDagnCdx
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Let n — oo, then
(—1)“|/PDaCdx = /Pgdx
Q Q

Therefore, P = D“P.

If g, € C(Q), g, € L2(Q) for all n = 1,2, ... by Theorem 3.8, D%,,, P and D*P
are in L?(Q). Then, D*P € L*(Q), a = 1, 2, which gives P € S?(Q).

By Theorem 3.6, and Theorem 3.7, we know that for any boundary function
g(w) € C5°(R), there exists an optimal Markov control h* such that ®(y) = J" (y)
on Qo. However, the boundary condition P(w) in Equation 3.9 is not continuous on
R. To show the existence of a weak solution to the HJB Equation on @)y, we consider
a bounded domain ) with the boundary condition P(w).

The idea is to find a sequence of solutions {®,}>, of the HJB Equation 3.12
with the corresponding boundary conditions g,(w) and the optimal control h¥ such
that when g, (w) converges to P(w) in L?*(f2), the sequence of solutions {®,}2, is a
Cauchy sequence, which converges weakly to some function in some vector space V'
with proper norm on it. Thus, the limit of {®,}>°, in V can be defined as a weak

solution of the HJB Equation 3.12 with the boundary condition P(w) on Q.

Define a vector space V, the set of all ¢ € L*(Q), D¢ € L*(Q), ¢(t,-) € L*(w(t))

for all t € [0,Tp], and the norm on it is defined by

||¢||3_//\D¢|2dxdt+ sup /()qﬁQda: (3.25)
Q w(t

+€[0,Tp)
which is finite. We will use this vector space and the norm 3.25 from Lieberman,
[11] for the following statements and proofs, and we will show that the solutions &,
converges weakly in V(Q) when g, (w) — P(w) in L*(Q).

Write C! for the set of all functions in C 1(Q) which vanish on 9Q and V; for the

closure of C! in the norm of V.
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We also define a weak solution of the backward parabolic equation 3.21 if ¢ € 1

and

/ (¢ + hD2q5+thgb))gpdxdt/ fodrdt =
Q(r)

/ qbgodx—// Py dz dt — // (a"Do+b"¢p)Dodrdt  (3.26)
://Q(T)fgpdxdt—/mggpdx

for all p € C' and almost 7 € [0, Ty]. We may set € S3(Q), which means ¢ is the

limit in Sy%(Q) of C! functions.

Claim that all the solutions ®,, are in the vector space V. To show this claim, we

need the Maximum Principle for Linear Parabolic Equations.

Theorem 3.10 (Maximum Principle) [18/[Theorem 8.1.4] Let Q = [0,Ty) x §2 be
bounded in Qy, ¢ € C*(Q)NC(Q) satisfy L& = f < 0 in Q, then

sup ¢(t7 ZL’) S sup ¢+ (t7 [L’)
Q 0Q

where ¢4 = max{¢,0}.

Theorem 3.11 [18][Theorem 8.1.7] Let b" be bounded in Q = [0,Ty) x Q, ¢ €
C*Q) N C(Q) satisfy Lo = f in Q, then

sup [¢| < sup [¢] + C'sup | f|
Q 2Q Q

Lemma 3.4 Q) = [0,7p) X is a bounded subset of Qo and w(t) C Q whent € [0, Tp).

If @, is a solution of Equation 3.21
LrO(t,w) =B, + 6Dy, + a" Dy = 0
then ®,, are in V(Q) for alln=1,2,....
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Proof. To show that ®, € V(Q) for all n = 1,2,..., we check that ®, € L*(Q),
D®, € L*(Q), as well as ®,(t,-) € L*(w(t)) for all ¢ € [0,7p] and for all n. In
addition, the norm 3.25 on @) is finite.

Since ®,, is a solution of Equation 3.21 for each n in the classical sense, for each
multi-index o < 2 and ¢ < 1, the weak derivatives (®,,)w, (®5)ww, and (P,,), exist for
each n.

Next, show that for each n, ®,, € L*(Q), (®,), € L*(Q), and ®,(t,-) € L*(w(t)).

Since ®,, satisfy Equation 3.21 for each n, by Maximum Principle 3.10 and The-

orem 3.11, we have

sup |®,| < sup |®,],
Q 0Q

with f = 0 in Equation 3.21.

Notice that ®,(Ty, w) = g, (w), where g,(w) € L*(Q) for each n, then

/ |®,|? dw dt = / /|<I’ |2 dw dt
/ /|<1> (T, w) 2 duw dt
/ /]gn )|? dw dt

< 00,

that is @, € L*(Q) for each n, and similarly, (®,,),, € L*(Q).
For ®,(t,-), fix t € [0,Tp). Since @, are solutions of Equation 3.21, ®, are
continuous and differentiable in the variable ¢. ®,, are bounded in the variable ¢ and

w(t) C Q is compact, then w(t) is a bounded subset of R. Thus, we have
/ (®,)? dw < oo
w(t)
for all t € [0,Tp). Thus, ®,(¢,-) € L*(w(t)).

The norm of ®, on V(Q) is given by Equation 3.25:

1P, ]2 = //\ Vool 2 dw dt + Sup/ (®,)? dw
te, 7o) Jw(t)
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Since (®,). € L*(Q), the first part of the norm is finite, and we need to show
that the second part of the norm is finite too.

We have already gained that ®@,(t,) € L*(w(t)) for all ¢t € [0, Tp], if we can show
that, / (®,)? dw is increasing, then its supremum appears when ¢ is close to Tp.
On thew((izcher hand, when t € [0,7,), we apply the fact that &, are solutions of
Equation 3.21 in the classical sense, which can induce that the second part of the

norm is finite.
Write (®,,); + b"(®)0 4 a"(Pp)ww = 0 as
(q)n)t = _bh(q)n)w - aﬁ(q)n)ww
Then, take the inner product with &, and apply integration by parts:
9 3 3
_(q)nu (Pn) = —b (((I)n)wa (I)n) —a ((q)n)wwa q)n)

ot
— / (®,) 0P, — a” / (D) Py (3.27)

Notice that

1 _
ah = 5(1U0h0'w)2 >0

When ¢ = Ty, since ®,, € C3(Q), ®,, = 0 on the boundary of @, then

bﬁ /(q)n)wq)n = bh(q)n)z{g,@ - bh/(q)N)(@n)w
2" / (®n)®n = V"(®,)?],, =0
Then, the inner product 3.27 at t = Ty will be

3l
— (®,)? dw
ot w(t)

t=1y

which gives
0

— [ (®)%dw| >0

t=T1y
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Let € > 0, for t € (Ty — &, Ty), / (®,)? dw is increasing, which means that
w(t)

sup / (®,)? dw < sup/ (®,)* dw < o0
w(t) w(t)

(To—=,Tp] =Ty

Second, show that when ¢ € [0,7j — §), the supremum of the above integral is
finite too.

For each n = 1,2,..., since ®,, are classical solutions of Equation 3.21 with the
boundary condition g,(w) € C§°, by regularity, ®, € CY%(Q) for all n. That is, @,
is bounded on the interval ¢ € [0,7; — 5) for each n.

Thus, /( )(@n)Q dw is bounded on t € [0, Ty — 5), and so

w(t
sup / (®,,)* dw < o0
te0,7-5) Jw(t)
Consequently, for ¢ € [0,7p], the second part of the norm on V is finite and we

have
o, € V(Q)

forallm =1,2,...

The next step is to prove that {®,}>°, in Lemma 3.4 is a Cauchy sequence in

V(Q), which is equivalent to show that, for any n, m > 0,
|, — Ppllv — 0, as n,m — oc.
To show {®,,}5°, is Cauchy, we need the following estimate:

Theorem 3.12 Let QQ be a bounded subset of Qo and let ¢ be a solution of the Back-
ward Parabolic Equation 3.21 with a boundary function g(w) € C2(Q)NLA(Q). a”, b

are constants and if there are positive constants A\, A, and k such that
A< Jah| < AN,
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"] < kA,

then there is a constant C' depending only on A and k, such that

lolly < Ce™ (L] .2 + llgll =) (3.28)

Proof. Choose 7 € (0,7p) and § € (1,Tp). Let X = (t,w) denote a point in Q.
Set n € Sy ((0,Ty) x Q) with n(X) =0if t = § or t = Ty, and set @ = 15, v = 7.

Then by calculation, we get

0= (Ms)e = (me)s = vs

and so,

/Qd>gpth:/ng§v5dX
:/Q/OTO qS(X)%/ttMU(s,w)dsdtdw
_ / /5 W% /S;qb(X)v(s,w)dtdsdw

:/Q/;ng_é()()v(s,w)dsdw
_ /Q 6 5(X)0(X) dX

For any n € S,”, it vanishes for t < 6, and v(s,w) = 0 for s < ¢ and s > Tj.

Apply the integration by parts, the above result becomes

/Q¢<Pth_/Q¢5UdX_/Q¢57kdX——/Q¢5tndX

where ¢_s; is the derivative with respect to ¢ of ¢_s.
Since i € S32((6, Tp) x Q), and n(X) = 0 if t = §, t = T}, by the definition of the

weak solution 3.26 in V' with ¢_s, we have

://Qf—mdwdt—/mgndw
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—//Q(ahD¢+bh¢)—6D77det://Qf—wdlUdtJr//Qqﬁ_mtdwdt
//Q(aﬁD¢+bB¢)5D7]dwdt:—//Qf577dwdt—|—//Q¢&ndwdt

[ (@ Do te)s Dyax =~ [ (ho)snix + [ 6snax
Q Q

Q
Next, we will show the above result is still true if we replace n by ¢_sx(t), where

xt)=1,t>Ty—1
x(t)=0, t<Ty—r,
with the idea of cutting function.

Fix n, a sufficiently large integer, and define a continuous function z,, which is
linear on (Ty — 7,7y — 7 + %) U (To — #To), is 0 on (—o0, Ty — 7) U (T, 00), and is 1
on (Ty —7+4 1,175 — 1).

Let 1, = ¢_s2,, which is an admissible test function, we can take the limit as
n — 0o, then n — ¢_5 and we infer that

| @pssio)sposax—- [
Q(71)

Q(7)

(L") 505 dX + / b5 d_5dX

Q(7)
where Q(7) = (Ty — 7,Tp) x Q.
Denote w(1) = {Ty — 7} x 2, and w(Tp) = {Tp} x Q.
Integrate the above expression with respect to ¢, and the second term of the right

hand side of the expression is

G_si p_sdX = % ¢_s(X)? dw — —/ ¢_s(X)? dw
Q(7) w

Let 6 — 0, then

/ (a"Dp+b"¢) DpdX = —/ (E%S)gbdX—i—l ¢>(X)2dw—1/ B(X)? dw
o) w(To) 2 Jom

Q(7) 2

. . . 1
- #? dw +/ (a"D¢ +b"¢)DpdX = —/ (Lro)pdX + —/ g% dw
2 w(r) Q(r) Q(r) 2 w(To)
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1/ ¢2dw+/ a’_"‘(ng)2dX+/ bB¢D¢dX:—/ (£B¢)¢dx+1/ g% dw
2 Jum) Q) Q) 2 Jos(ry

Q(7)

Since A < a" < AX and |b"| < kA, both imply that

gb2dw+/ |D¢|2dX§C’</(£h¢)2dX+// ¢2dwdt+/ gzdw>.
w(T) Q(r) Q Q(r) w(Ty)

Set H(7) = ¢? dw, and K = O(||£"¢||?,+]|g]/2), then consider the inequality

w(T)

To
H(T)SC/ H(t)dt + K,
To—T
Apply Gronwall’s inequality to get

/ H(t)dt < g(eCT Y

0
thus,
l6ll3 < Ce™ (| L7l + [lg]l32)

Using Estimate 3.28, we have the following theorem:

Theorem 3.13 Suppose that g,(w) — P(w) in L*(Q) as n — oo, and P(w) is
defined in Equation 3.9. Also suppose that with each boundary function g,(w), n =

1,2, ..., Equation 3.21 has a solution ®,(y) for alln = 1,2, ..., then we have
(i) {P,}22, is a Cauchy sequence in V(Q).
(ii) ®,, converges to some function in V(Q).

Proof. Apply Estimate 3.28 in Theorem 3.12. Since LM is a linear operator, for

n,m > 0, we have

1@ — Pinlvi) < Ce (ILM (P — Pin) |12 + lIgn = gimll12)
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Also because L£'®, =0 for alln =1,2, ...

Y

H(I)n - CbmHV(Q) < CGCTO(Hgn - gm||L2)

It is clear that the boundary conditions {g,}52, is a Cauchy sequence in L*(Q),
thus {®,}22, is Cauchy in V(Q).

Since V' is a Banach space, it is complete, and ®,, is a Cauchy sequence in V(Q),

®,, converges to some function in V(Q).

We define a weak solution to our HJB Equation 3.12 in V(Q) as follows:

Definition 3.3 If there exists an optimal Markov control process h*, and if the HJB
Equation 3.12 with the boundary condition P(w) has a weak solution in V(Q), then
we define a weak solution of the HJB Equation to be the limit function of {®,}>,

in V(Q) in Theorem 3.13. And denote it by ® on Q.

Remark 3.4 For each smooth and bounded function g,, P, is the corresponding
solution of the HIB Equation 3.12 on Q. If the boundary function is P(w) € L*(Q),

the corresponding weak solution of the HJB Equation on Q) is ®.

3.2.3 Extension of A Weak Solution to The HJB Equation from () to
Qo

The domain ) of the HJIB Equation in Theorem 3.13 is a bounded subset in an
unbounded domain ()y. Thus, we need to extend the weak solution ® of the HJB
Equation 3.12 from @ to Qo = [0,75) X R. In order to achieve this goal, we will prove
one extension theorem in the vector space V.

We need Poincare’s Inequality in the proof of the extension theorem:
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Lemma 3.5 (Poincaré’s Inequality, [18], 1.3.4) Let p = 2 and Q@ C R be a

bounded domain. If ¢ € Sy (Q), then

/|gz5|2dx < C/|D¢|2dx (3.29)

Consider a compact subset Qr = [0,7y) x [—R, R], where @ C Qz. That is

Q= [m,M] C [-R, R]. Then, the following theorem will extend a function in V(Q)

to V(QO)

Theorem 3.14 Suppose that Qr is a bounded set of Qo = [0,Ty) X R, and ® €
V(Qr) is a weak solution of the HIB Equation 3.12 with Py(w). Then there exists a

bounded linear operator

E:V(Qr) = V(Qo)
such that for each ®, € V(Qr):
(i) E®p = ®p a.e. in Qp,
(i) E®y has support within Q g,

(iii) || E®g|lvigy < Cl|®Prllvian, where the constant C is independent of R.

Proof. Fix k > 0 be a sufficiently large constant, and suppose that ®, € V(Qp).

Define a function ® R as

& O, (t,w), if we [-R, R];
R =
" | 20,44, R) — @a(t,2R —w), ifwe (—R—k —R)U(R,R+k).
which extends @, from @, = [0,Tp) x [-R, R] to Qx, = [0,T) x (—R—k, R+ k) and

keeps it continuous and differentiable at two endpoints R and —R.

Fix a time variable ¢t € [0,7}), and when w € (R, R + k), we get

lim &, =2®,(t,R) — ®x(t,2R — R) = Oy(t, R),

w—RT
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then the function ® r, 18 continuous at w = R.

Similarly, check (7 July—n- = (D% )ulyw—pt, Which is
(Prwlwn = (@)ut, R),  (F uluont = =(Pr)u(t, 2R—R)-(=1) = (®r)u(t, R)
When w = — R, the same results follow.

Define a smooth cutting function y; on R, where yx(w) = 0 if w > R+ k
or w < —R —k, xp(w) = 1if w € [-R,R], and xx(w) is a smooth function, if
w e (_R - k7 _R) U (R7R+ k) Then, ||(Xk)w||L2 < C.

Let Q:)Rk = Xk&)Rk on Q.

Next, we will show that the norm of o r, i1 V(Qo)) is bounded by some constant
times the norm of ®, in V(Qx).

Claim:
||éRk ||V(QR!€) S Cl ||¢R||V(QR)

Consider a bounded set @+ = [0,Tp) X (R — k, R+ k), then

H‘i)RkHv@ o S H‘i)RHV([o,TOMRfk,R)) + [P r v 0.1 (r.r )
Rk

= 19, W) lviomyx pr.my + [28r(t; B) = Pr(t, 2R = w)|lvqomy (s, pm)

< N @rllvio.roxr-r.mn + [|Pallviom «a-rry
< 2Pkl v, x -k
< Gol[®rllvion
where (5 is independent of R.
Similarly, we can show that on the bounded set QR;Z =10,T0)x (—R—k,—R+k),

the same inequality follows,

1@r,llvia, ) < Coll@allvian
k

Therefore,

1@r,[lviar,) < Cill®rllvien
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Next, prove that the norm of ® &, in V(Qo) is bounded by some constant multiplies
the norm of ® in V(Q5), and the constant only depends on k, but is independent of
R, which is,

1@, lviap < Cll®rllvien

By the definition of & on Qo, the norm in V(Qy) is:

[P, llvie) = HXk(I)RkHV(QRk>

< ||X/€CI)Rk||V([0>To)><<*R*kfR)) + ||(I)R||V(QR) + ||Xk<I)Rk||V([0,To)><(R,R+k))

< @ nllviay + / / (i o dewdt + sup / (xen)? duw
[0,T9) X (—R—k,—R) w(t)

t€(0,Tp)

+// |(Xk(i>Rk)w|2dwdt+ sup / (Xk(i)R)de
[0,Tg) x (R,R+k) t€[0,Ty) J w(t)

< 1®&llvan

+ // (k) a®n, P dwd + // (B, oo duw dt
[O,To)x(fRfk,fR) [O,To)x(fRfk,fR)

+ Sup/ (Dp,)? dw
w(t)

te[0,Tp)

+ // |(Xk)w<i>Rk\2dw dt + // |Xk(§>Rk)w\2dw dt
[0,T0)><(R,R+k) [0,T0)><(R,R+k)

+ Sup/ (éRk)de
w(t)

te[0,Tp)

< 1®&llvian

+03// |i>Rk|2dwdt+// (B, )o? duw dt

[0,T0) % (— R—k,—R) [0,T0) % (— R—k,—R)

+ (4 // |§>Rk|2dwdt+// |(<§Rk)w|2dwdt
[0,T0) % (R,R+K) [0,T0) (R, R+F)

+2 Sup/ (®p,)? dw
w(t)

t€[0,Tq)

Since ¢ is a weak solution of the HJIB Equation 3.12 on a bounded set (), then
the weak derivatives of @5 exist and it is clear that (®y), belongs to L?(2). Then,
., € S12(Q).

80



Apply Poincaré’s inequality 3.29 to

// @, |* dw dt and // D, [ dw dt
[0,T))x(—R—k,—R) [0,Ty) X (R,R+E)

Since n = 1 and S;*(Q) = S'2(Q) in our model, and Q € R. Then, on the set

[0,70) X (=R — k,—R), we have

// |<I>Rk|2dwdt:/ / By |2 du dt
[0,Tg) x(—R—k,—R) 0 (-R—k,—R)
Ty 5
< 04/ / |(<I>Rk)w|2dw dt
0 (—=R—k,—R)
<0y // (@, )|* dw dt
[0,T9) X (—R—k,—R)

Similarly,

// |§>Rk|2dwdt§04// (D, )l dw dt
[0,Ty) X (R,R+k) [0,T9) X (R,R+k)

on the set [0,7y) X (R, R+ k).
Then,

1@, [lvieoy < 1 ®allvian

+0304// |(<§Rk)w|2dwdt+// [(Dr, )l duw dt

[0,Ty)x(—R—k,—R) [0,Tg) X (—R—k,—R)

+0304// ’(i’Rk)dewdt—f—// |(éRk)w|2dwdt
[0,Tg) X (R, R+Fk) [0,Tg) X (R, R+Fk)

+2 sup / (Dp,)? dw
w(t)

te[0,Ty)

gc5|yq>R||V<QR)+c5(// (B ol dwrdt + sup/ (85 )% dw)
[0.T0) X (~ R—k,~ ) wl(t)

t€[0,Tq)

+ 05(// ]((i)Rk)dewdt—l— sup / (<’Iv>,;,lk)2 dw)
[0,T) x (R, R+k) te[0,Tp) Jw(t)

= Cs||Prllvign + C5||‘I)Rk||V(QR,> + O5||(I)Rk||V(QR+)
k k

< Csl|@rllvian + C1ll®rllvian
< Cl®@xllvian

where C' depends on k, but is independent of R.
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Define the linear operator E := (%Rk’ and by the definition of <:I3Rk, we get E®, =

®, a.e. in QY and has support within Q5.

By this extension theorem, we achieve a similar extension of the weak solution to

the HJB Equation 3.12 from @z to Q.

Theorem 3.15 Suppose that all the assumptions of Theorem 3.1} are satisfied, and
if {®r} are weak solutions of the HJB Equation 3.12 with the boundary conditions
Pr(w), then {E®,} is uniformly bounded and there exists a subsequence of {E®y}

that converges in V(Qy).

Proof. Consider the linear operator E®, on )y, and from Theorem 3.14, we have

IE®x[lveq < Cli®allven
< O(C'e” ™ (| LDl 2 + || Pr(w)]12))
< CC'e”™||Py(w)] 12
By the definition of the boundary function Py (w), it is an L*(Qy) function, which
means it is finite. Let ||Pr(w)]|,2 < C”, we have

|E® ||y, < CCe“™C" < K

where K is some constant, a uniform bound.
Since V' is a Banach space, it is complete, when R — oo, there exist a subsequence

of {E®y} such that the subsequence converges in V(Qy).

We have proved that the linear operator F on () is bounded by some constant,
as R — oo, then we extend a weak solution ®, of the HJB Equation 3.12 from Qp

to Qy. Consequently, we define a weak solution of the HJB Equation 3.12 on Qq:
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Definition 3.4 If an optimal Markov control h* exists and the boundary function at
time Ty is given by Equation 3.9 on Qy, we define the limit of the subsequence of

{E®,} in V(Qo) in Theorem 3.15 to be a weak solution of the HJIB Equation 3.12,
and denote it by V.

Remark 3.5 1. If an optimal Markov control h* exists, there could be several weak

solutions of the HJB Equation 3.12.

2. Assume that an optimal Markov control h* exists, then we can show that there
exists a weak solution V in Definition 3.4. It is interesting to know if a weak

solution in Definition 3.4 can give an optimal hedge control h*.
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CHAPTER 4

CONCLUSIONS

Froot, Scharfstein, and Stein (1993), [6] introduced and presented finding the optimal
hedge ratio to maximize the expected profit of a corporation for n = 1 and n = 2
in period zero if hedging strategies are linear. In [6], the authors not only gave an
optimal hedge ratio, but also discussed the detailed financial meaning of each term
in the result. With the results [6], we develop the optimal hedge ratio problem to
a general n variable case when similar linear hedging strategies (forward or futures
contract) are considered. In addition, we also find that the optimal hedge ratio can
be calculated in period one if all the elements in the model keep the same, and treat
the new random variables as functions. We compute the n = 2 case in our model for

period zero and period one.

In Chapter 2, we assume that all the processes are not stochastic processes, which
is not always the real situation in the world. In fact, we find that if we consider
stochastic processes, it is more realistic in finance. However, if the control process,
the investment process, and the product process involve any stochastic process, we
have to show that the corresponding stochastic differential equations have solutions
in weak sense. We studied Huang and Liu (2007), [8], and ©Qksendal, [13] of the HJB
Equation Method. The difference in our model is that instead of utility functions, we
study profit functions, which are more complicated and have free boundary conditions.
Thus, in Chapter 3, we present the following result: If there exists an optimal Markov
control h*, the HJB Equation 3.12 has a weak solution ¥ in the domain Qg = [0, Tp) X

R with the boundary condition P(w), which is a free boundary.
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We develop the existence of a weak solution to the HJB Equation in three parts.
First, if the boundary condition g(w) is smooth and bounded on @y, the HJB Equation
has a solution on Q. Second, if g,(w) — P(w) in L*(Q), then there exists a weak
solution ® of the HJB Equation in V(Q). Finally, the weak solution ® of the HJB

Equation 3.12 can be extended from a bounded domain @ to Q.

There are some interesting questions we would like to study in the future. For
example, we now only solve the existence of a weak solution of the HJB Equation
on (Jg, but we are interested in the uniqueness of the solutions. Moreover, we also
wonder if there is a weak solution of the HJB Equation on @)y, the corresponding
hedge control A" is an optimal hedge control. In addition, we have the question that
whether we can extend the hedge control to any adapted control. We hope that we

can obtain these conjecture proved in the near future.
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