CONFORMALLY INVARIANT SYSTEMS OF DIFFERENTIAL
OPERATORS ASSOCIATED TO TWO-STEP NILPOTENT
MAXIMAL PARABOLICS OF NON-HEISENBERG TYPE

By
TOSHIHISA KUBO

Bachelor of Science in Mathematics
University of Central Oklahoma
Edmond, Oklahoma, USA
2003

Master of Science in Mathematics
Oklahoma State University
Stillwater, Oklahoma, USA

2005

Submitted to the Faculty of the
Graduate College of
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
DOCTOR OF PHILOSOPHY
May, 2012



COPYRIGHT (©
By
TOSHIHISA KUBO
May, 2012



CONFORMALLY INVARIANT SYSTEMS OF DIFFERENTIAL
OPERATORS ASSOCIATED TO TWO-STEP NILPOTENT
MAXIMAL PARABOLICS OF NON-HEISENBERG TYPE

Dissertation Approved:

Dr. Leticia Barchini

Dissertation Advisor

Dr. Anthony C. Kable

Dr. Roger Zierau

Dr. K.S. Babu

Dr. Sheryl A. Tucker
Dean of the Graduate College

11



TABLE OF CONTENTS

Chapter
1 Introduction

2 Conformally Invariant Systems and the (), Systems
2.1 Conformally Invariant Systems. . . . . . . .. .. ... .. ... ...
2.2 A Specialization on a g-manifold and g-bundle . . . . . ... ... ..
2.3 A g-manifold Ny and g-bundle £_, . . . .. .. ... ... ... ...
24 Useful Formulas . . . . . .. .. .. . o
2.5 The Q Systems . . . . . . . ..
2.6 Technical Lemmas . . . . . . ... ... ... ...

2.7 The € Systems and Generalized Verma Modules . . . . .. ... ..

3 Parabolic Subalgebras and Z-gradings
3.1  k-step Nilpotent Parabolic Subalgebras . . . . . . ... .. ... ...
3.2 Maximal Two-Step Nilpotent Parabolic q of Non-Heisenberg type
3.3 The Simple Subalgebras [, and L, . . . .. ... ... ... ... ...

3.4 Technical Facts on the Highest Weights for [, [,,, g(1), and 3(n) . . .

4 The 2; System
4.1 Normalizations . . . . . . . . . .

4.2 The €y System . . . . . ..

5 Irreducible Decomposition of [ ® 3(n)

5.1 TIrreducible Decomposition . . . . . .. ... ..o

iv

Page

10
13
17
19
25
28

32
32
36
41
43

48
48
49

54



5.2 Technical Results . . . . . . . . . . . . 56

5.3 Proof of Theorem 5.1 . . . . . . .. .. ... ... ... ... ... 60
6 Special Constituents of [® 3(n) 68
6.1 Special Constituents . . . . . . . . .. . ... ... ... ... ... 68
6.2 Types of Special Constituents . . . . . . .. ... ... .. ... ... 70
6.3 Technical Results . . . . . .. ... ... ... .. 79
7 The (), Systems 89
7.1 Covariant Map 7o . . . . . . . .. 89
7.2 The Qoly(ute+ Systems . . . . . ... 93
7.3 Special Values . . . . . . . . ... 96

8 The Homomorphisms between (Generalized Verma Modules induced

by the (2; System and {2, Systems 106
8.1 The Standard Map between Generalized Verma Modules . . . . . .. 107
8.2 The Homomorphism ¢q, induced by the €y System . . . . . ... .. 111
8.3 The Homomorphisms ¢q, induced by the {25 Systems . . . . . . . .. 112
83.1 TheType2 Case . . . . . . . . . . . 113

8.3.2 The Positive Integer Special Value Case . . .. .. ... ... 115

8.3.3 The V(u+e,) Case for B, (i) for3<i<n—-1 . ....... 122
BIBLIOGRAPHY 138
A Reducibility Points 141
A.1 Verma modules and Generalized Verma Modules . . . . . . . .. ... 141
A.2 Jantzen’s Criterion . . . . . . . . .. ... ... 144
A.3 Necessary Conditions of the Reducibility of My(©;) . . .. ... ... 149
A.4 Reducibility Criteria for Simply-Laced Case . . . ... ... .. ... 151
A5 Reducibility Points of M;(©,) for Exceptional Algebras . . . . . . .. 156



A5l
A5.2
Ab.3
Ab5A4
A5.5

B Dynkin Diagrams and Extended Dynkin Diagrams

C Basic Data

D Lists of Positive Roots for Exceptional Algebras

vi

176

183

198



LIST OF TABLES

Table Page
6.1 Highest Weights for Special Constituents (Classical Cases) . . . . . . 74
6.2 Highest Weights for Special Constituents (Exceptional Cases) . ... 75
6.3 The Roots y, €,, and €,, (Classical Cases) . . .. .. ... ... ... 75
6.4 The Roots p, €,, and €,, (Exceptional Cases) . ... ... ... ... 76
6.5 Types of Special Constituents . . . . . . .. ... ... .. ... ... 78
7.1 Line Bundles with Special Values . . . . .. ... .. ... .. .... 104

7.2 The Generalized Verma Modules corresponding to £(soAq) in Table 7.1 105

8.1 The Homomorphism g, for the Non-Heisenberg Case . . . . . . . .. 137
AL e 158
A2 e 171
A3 172
A e 174
AD e 175

vil



LIST OF FIGURES
Figure Page
B.1 The Dynkin diagrams . . . . . . . . .. .. ... .. ... ... 177

B.2 The Dynkin diagrams with the multiplicities of the simple roots in the
highest root of g . . . . . . . . ..o 179

B.3 The extended Dynkin diagrams with v the highest root of g

viil



CHAPTER 1
Introduction

The main work of this thesis concerns systems of differential operators that are equiv-
ariant under an action of a Lie algebra. We call such systems conformally invariant.
To explain the meaning of the equivariance condition, suppose that V — M is a vec-
tor bundle over a smooth manifold M and g is a Lie algebra of first-order differential
operators that act on sections of V. A linearly independent list Dy,..., D, of linear
differential operators on sections of V is called a conformally invariant system if, for
each X € g, there are smooth functions Cff (m) on M so that, for all 1 <1i < n, and

sections f of V, we have
([X, DiJsf)(m) = Z Cji (m)(Djef)(m), (1.0.1)

where [X, D;] = XD;—D;X, and the dot « denotes the action of differential operators
on smooth functions. (See Definition 2.1.4 for the precise definition.)

A typical example for a conformally invariant system of one differential operator
is the wave operator [ = 88—;% + 88—;% + 86—;% - 68—221 on the Minkowski space R*!. If X is
an element of g = s0(4,2) acting as a first-order differential operators on sections of
an appropriate line bundle over R*! then there is a smooth function C* on R?*! so

that

(X,0] = C*00.

An important consequence of the definition (1.0.1) is that the common kernel of
the operators in the conformally invariant system Dy, ..., D, is invariant under a Lie

algebra action. The representation theoretic question of understanding the common



kernel as a g-module is an open question (except for a small number of very special
examples).

The notion of conformally invariant systems generalizes that of quasi-invariant
differential operators introduced by Kostant in [19] and is related to a work of Huang
([8]). It is also compatible with the definition given by Ehrenpreis in [6]. Confor-
mally invariant systems are explicitly or implicitly presented in the work of Davidson-
Enright-Stanke ([5]), Kable ([12], [13]), Kobayashi-Orsted ([16], [17], [18]), Wallach
([25]), among others. Much of the published work is for the case that M = G/Q with
Q = LN, N abelian. The systematic study of conformally invariant systems started
with the work of Barchini-Kable-Zierau in [1] and [2]

Although the theory of conformally invariant systems can be viewed as a geometric-
analytic theory, it is closely related to algebraic objects such as generalized Verma
modules. It has been shown in [2] that a conformally invariant system yields a ho-
momorphism between certain generalized Verma modules. The classification of non-
standard homomorphisms between generalized Verma modules is an open problem.

The main goal of this thesis is to build systems of differential operators that satisfy
the condition (1.0.1), when M is a homogeneous manifold G/Q with ) a maximal
two-step nilpotent parabolic subgroup. This is to construct systems Dy, ..., D, acting
on sections of bundles Vi — G/Q over G/Q in a systematic manner and to determine
the bundles V, on which the systems are conformally invariant. The method that we
use is different from one used by Barchini-Kable-Zierau in [1]. The systems that we
build yield explicit homomorphisms between appropriate generalized Verma modules.
We show that the most of those homomorphisms are non-standard.

To describe our work more precisely, let G be a complex, simple, connected,
simply-connected Lie group with Lie algebra g. It is known that g has a Z-grading
g=@)__,0(j) so that g = g(0) © P,.,0(j) = [ @ n is a parabolic subalgebra of g.

Let @ = Ng(q) = LN. For a real form g, of g, define Gy to be an analytic subgroup



of G with Lie algebra g. Set Q9 = Ng,(q). Our manifold is M = Gy/Qo and we
consider a line bundle £_; — Go/Qy for each s € C.

It is known, by the Bruhat theory, that Go/Q)y admits an open dense submanifold
NoQo/Qo. We restrict our bundle to this submanifold. The systems that we study
act on sections of the restricted bundle.

To build systems of differential operators we observe that L acts by the adjoint
representation on g(1) with a unique open orbit. This makes g(1) a prehomogeneous
vector space. Our construction is based on the invariant theory of a prehomogeneous
vector space. It is natural to associate L-equivariant polynomial maps called covariant
maps to the prehomogeneous vector space (L,Ad,g(1)). To define our systems of
differential operators, we use covariant maps that are associated to g(1). We denote
the covariant maps by 7. Each 7, can be thought of as giving the symbols of the

differential operators that we study. For 0 < k < 2r, the maps 7, are defined by

7t g(1) = a(—r + k) ® g(r) (1.0.2)

1
X = Had(X)kwo,

where wy is a certain element in g(—r + k) ® g(r). (See Definition 2.5.1.)
Let

g-r+k)@gr)=Vie---aV, (1.0.3)

be the irreducible decomposition of g(—r + k) ® g(r) as an L-module. Covariant

map 7 induces an L-equivariant linear map 7y

T P*(g(1))) with V}* the

dual of an irreducible constituent V; of g(—r + k) @ g(r) and P*(g(1)) the space of

polynomials on g(1) of degree k. We define differential operators from 7|y (Y™). For
Y* e Vi, let Qi (Y™) denote the k-th order differential operators that are constructed
v (Y7).

We say that a list of differential operators Dy, ..., D, is the )

from 7,

vr system if it is



equivalent (in the sense of Definition 2.1.5) to a list of differential operators

(Y7, .. (YD), (1.0.4)

n

where {Y",..., Y’} is a basis for V" over C. By construction the {|y- system

consists of dime(V;) operators.

It is not necessary for the €2 vy system to be conformally invariant; the conformal
invariance of the operators (1.0.4) strongly depends on the complex parameter s for

the line bundle £_,. Then we say that the

v system has special value sq if the
system is conformally invariant on the line bundle L,,. The special values for the
case that dim([n,n]) = 1 for ¢ = [@n are studied by Barchini-Kable-Zierau in [1] and
[2], and myself in [20].

In this thesis we consider a more general case; namely, ¢ = [ @ n is a maximal
parabolic subalgebra and n satisfies the condition that [n, [n,n]] = 0 and dimc¢/([n, n]) >
1. We call such parabolic subalgebras maximal two-step nilpotent parabolic subal-
gebras of non-Heisenberg type. In this case we have r = 2 in (2.5.6). Therefore the
Q. systems for k > 5 are zero. The main results of this thesis are Theorem 4.2.5
and Theorem 7.3.6, where the special values of the (2; system and {2y systems for
the parabolic subalgebras are determined. We also classify the non-standard homo-
morphisms between the generalized Verma modules that arise from our systems of
differential operators.

We may want to remark that, although the special value of s for the €2; system
is easily found by computing the bracket [X, ;(Y;*)], it is in general not easy to find

the special values for the {2y systems by a direct computation. (See Section 5 of [1].)

In this thesis, to find the special value for the 2 v system, we use two reduction
techniques to compute the special values. First, in order to show the equivariance
condition (1.0.1) for D; = Qy(Y;*) with Y;* € V', it is enough to compute [X, Qy(Y;)]

at the identity e. Furthermore, we show that it is even sufficient to compute only

[Xh, Q2(Y;*)] at e, where X, and Y;* are a highest weight vector of g(1) C g and a



lowest weight vector of V', respectively. These two techniques significantly reduce
the amount of computations.

We now outline the contents of this thesis. In Chapter 2 we study conformally
invariant systems of differential operators. We recapitulate Section 2 of [2] in Section
2.1. In Sections 2.2 and 2.3 we specialize the theory of conformally invariant systems
to the situation that we are interested in. Two useful formulas on differential operators
will be shown in Section 2.4. In Section 2.5, the general construction of the €
systems is given. Section 2.6 discusses two technical lemmas on the €2 systems, and
in Section 2.7, we describe a relationship between the €2 systems and generalized
Verma modules.

The aim of Chapter 3 is to study the Z-grading g = @;:,rg(j) on g and a
maximal two-step nilpotent parabolic subalgebra ¢ of non-Heisenberg type. We begin
this chapter by classifying the k-step nilpotent parabolic subalgebras in Section 3.1.
In Section 3.2 and Section 3.3, we study a maximal two-step nilpotent parabolic
subalgebra q of non-Heisenberg type and the associated 2-grading g = @?:72 g9(y) =
s @g(-1)@ldg(l) djn) of g.

In Chapter 4, we construct the €2y system and find the special value of the system.
In Section 4.1, we fix normalizations for root vectors. The normalizations play an
important role to construct the system. In Section 4.2 we show that the special value
sy of s for the 2 system is s; = 0. This is done in Theorem 4.2.5.

To build the 25 systems, we need to find the irreducible constituents V* of [*®3(n)*

so that 75|y« # 0. In Chapters 5 and 6, we show preliminary results to find such
irreducible constituents. In Chapter 5 we decompose [ ® 3(n) into the direct sum
of the irreducible constituents. We first summarize our main decomposition results,
Theorem 5.1.3, in Section 5.1. Section 5.2 contains preliminary results and technical

lemmas that are used to prove the theorem. The proof for Theorem 5.1.3 is given

in Section 5.3. In Chapter 6, by using the decomposition results, we determine



the candidates of the irreducible constituents V* so that 7|y« # 0. We call such
constituents special. In Section 6.1 we define the special constituents. We then classify
such constituents in Section 6.2. In Section 6.3 we collect the technical results on the

special constituents, which are used to find the special values for the )y systems.

In Chapter 7, we build the €2, systems and find their special values. First, it is

shown in Section 7.1 that the covariant maps 75 and the induced linear maps 7oy«
for certain special constituents V* are non-zero. We then construct the {25 systems in
Section 7.2, and in Section 7.3, we find their special values. This is done in Theorem
7.3.6.

In Chapter 8, we determine whether or not the homomorphisms ¢q, that are
induced by the €2 systems between appropriate generalized Verma modules are stan-
dard for £k = 1,2. In Section 8.1 we review the well-known results on the standard
map between generalized Verma modules. Technical results to determine the stan-
dardness of the maps g, are also shown in this section. We then determine the
standardness of ¢, and ¢q, in Section 8.2 and Section 8.3, respectively.

In this thesis we also have the appendices. In Appendix A, as an {2, system that

is conformally invariant on the line bundle Ly, induces the reducibility of a scalar

50
generalized Verma module U(g) ®u(q) C—s,, to support the results for the special
values for the €y systems, we show the reducibility points for the scalar generalized
Verma modules for g exceptional algebras. To determine the reducibility we use a
criterion due to Jantzen. (See Section A.2.)

In Appendices B, C, and D, we collect miscellaneous useful data. Namely, Ap-
pendix B contains the Dynkin diagrams with the multiplicities of the simple roots in
the highest root of g and extended Dynkin diagrams. Appendix C summarizes the
useful data for the parabolic subalgebras under consideration such as the roots for

[, g(1), and 3(n). In Appendix D we include the lists of the positive roots for the

exceptional algebras.
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CHAPTER 2
Conformally Invariant Systems and the (), Systems

The purpose of this chapter is to study conformally invariant systems of differential
operators, that are the main objects of this thesis. In particular, we define systems

of differential operators of order k, which we call the €2} systems.

2.1 Conformally Invariant Systems

The aim of this section is to introduce the definition of conformally invariant systems.
Suppose that V' and W are finite dimensional complex vector spaces and C*°(R™, V')
is the space of smooth V-valued functions on R™. A linear map D : C*(R",V) —
C>*(R™, W) is called a differential operator if it is of the form

Deh=>"T, (ﬁ-h> (2.1.1)

o=k N9

for some k € Zso and all h € C*(R", V), where T, are smooth functions from R”
to Homg (V, W), and multi-index notation is being used. Here, the dot « denotes the
action of differential operators on smooth functions.

Now let M be a smooth manifold, and let pry, : V — M and pry : W —
M be smooth vector bundles over M of finite rank with pr;, and pry, the bundle
projections. For each p € M, there exists an open neighborhood U of p so that the
local trivializations pry,'(U) =2 U x V and pry,; (U) & U x W hold. Then a linear
map D from smooth sections of V to smooth sections of W is called a differential

operator if in each local trivialization D is of the form of (2.1.1). The smallest

integer k£ with |a] < k in (2.1.1), for which T, # 0, is called the order of D. We



denote by D(V) the space of differential operators on the smooth sections of V. Note
that we regard smooth functions f on M as elements in D(V) by identifying them
with the multiplication operator they induce.

Let go be a real Lie algebra and X(M) be the space of smooth vector fields on M.

Definition 2.1.2 [2, page 790] A smooth manifold M is called a go-manifold if

there is an R-linear map wp : go — C°(M) @ X(M) so that
(X, Y]) = [mar (X)), ma (V)]
for all XY € go.

For each X € go, we write mp(X) = mo(X) + m1(X) with mo(X) € C*(M) and
m(X) € X(M).

Definition 2.1.3 [2, page 791| Let M be a go-manifold. A wvector bundle V. — M
is called a go-bundle if there is an R-linear map 7wy : go — D(V) that satisfies the

following properties:

(B1) We have my([X,Y]) = [my(X), 7p(Y)] for all X,Y € go.

(B2) In D(V), [my(X), f] = m(X)ef for all X € gy and f € C>(M).
Now we introduce the definition of conformally invariant systems.

Definition 2.1.4 [2, page 791] Let V — M be a go-bundle. A conformally invari-
ant system on 'V with respect to my is a list of differential operators D+, ..., D, €

D(V) so that the following two conditions hold:

(S1) At each point p € M, the list Dy, ..., Dy, is linearly independent over C.

(S2) For each X € g, there is a matriz C(X) in M,xm(C®(M)) so that
[mo(X),Di] = Cii(X)D;

in D(V).



The map C : go — Myxm(C(M)) is called the structure operator of the confor-

mally tnvariant system.

If g is the complexification of gy then g-manifolds and g-bundles are defined by

extending the gg-action C-linearly.

Definition 2.1.5 [2, page 792] Two conformally invariant systems D1, ..., D, and

D}, ..., Dl are said to be equivalent if there is a matriv A € GL(n,C>*(M)) so that
j=1
for1 <i<n.

Definition 2.1.6 [2, page 793] A conformally invariant system Dy, ..., D, is called

reducible if there is an equivalent system D}, ..., D! and an m < n such that the
system D1, ..., D! is conformally invariant. Otherwise we say that Dy, ..., D, is
irreducible.

The case that M is a homogeneous manifold is of our particular interest. In
Section 2.2 and Section 2.3, we will specify the g-manifold and g-bundle that we will

work with.

2.2 A Specialization on a g-manifold and g-bundle

In this section we shall introduce the specializations on a smooth manifold M and a
vector bundle ¥V — M, as in Section 5 of [2].

Let G be a complex, simple, connected, simply-connected Lie group with Lie
algebra g. Such G contains a maximal connected solvable subgroup B. Write b = hpu
for its Lie algebra with h the Cartan subalgebra and u the nilpotent subalgebra. Let
q D b be a parabolic subalgebra of g. We define Q = Ng(q), a parabolic subgroup
of G. It follows from Section 8.4 of [24] that @) is connected. Write @ = LN for the

Levi decomposition of () with L the Levi subgroup and N the nilpotent subgroup.

10



It is known, see Corollary 7.11 of [15], that the Levi subgroup L is the commuting
product L = Z(L)°Lgs, where Z(L)° is the identity component of the center of L and
L is the semisimple part of L.

Let go be a real form of g and let Gy be the analytic subgroup of G with Lie algebra
go. Define Qg = Ng,(q) C @, and write Qp = LoNy. We will work on M = Gy/Qq
for a class of maximal parabolic )y that will be specified in Chapter 3.

Next, we need to specify a vector bundle V on M. To this end we recall the
bijection between the standard parabolic subalgebras and the subsets of simple roots.
Let A = A(g,h) be the set of roots of g with respect to h. We denote by AT the
positive system so that u = @ .+ 9o With g, the root spaces for a. We write 1I for
the set of simple roots.

Observe that the parabolic q contains the fixed Borel subalgebra b. Therefore, it

is of the form

1=hoPa.

Q€=

with AT € = C A. Each subset = can be described in terms of a subset S C II of

simple roots. Indeed,
E=ATU{a € Al|acspan(I1\S)},

where IT\ S is the complementary subset of S inIl. If Ag = {a € A | « € span(IT\S)}

then = = Ag U (AT\Ag). Then q may be written as
q=Ion (2.2.1)

with

b P g. and n= P g (2.2.2)

a€Ag a€AH\Ag
The subalgebras [ and n are called the Levi factor and the nilpotent radical, respec-

tively. The Lie algebra [ is reductive and n is a nilpotent ideal in .
Now we state the well-known fact that there exists a one-to-one correspondence

between the standard parabolic subalgebras q and subsets of II.

11



Theorem 2.2.3 There exists a one-to-one correspondence between parabolic subal-
gebras q containing b and the subsets S of the set of simple roots 11. The parabolic

subalgebra qs corresponding to the subset S is of the form (2.2.1) with (2.2.2).

Since our parabolic @)y will be maximal, by Theorem 2.2.3, there exists the cor-
responding simple root oy € II so that q = qq,). Call A the fundamental weight
of ag. The weight ), is orthogonal to any roots o with g, C [I,[]. Hence it expo-
nentiates to a character x, of L. As x, takes real values on Ly, for s € C, character
X~° = |xq|7° is well-defined on Lj. Let C,-: be the one-dimensional representation
of Ly with character x~°. The representation xy~° is extended to a representation of
Qo by making it trivial on Ny. Then it deduces a line bundle £_; on M = G/Qo
with fiber C, .

The group Gy acts on the space

C)(ZO(GO/Q()a (CX_S>

= {F € C®(Gy,Cy~) | Fgq) = x*(¢7")F(g) for all ¢ € Qo and g € Gy}

by left translation. The action 7, of go on C7°(Go/Qo, Cy-s) arising from this action
is given by

(. (V)+F)(9) = LF(esp(-1V)g)]

for Y € go. This action is extended C-linearly to g and then naturally to the universal
enveloping algebra U(g). We use the same symbols for the extended actions.

Let Ny be the nilpotent subgroup opposite to Ny. By the Bruhat theory, the
subset NyQo is open and dense in Gy. Then the restriction map C’;"(GO/QO, Cy-:) —
C*°(Np, C,-+) is an injection, where C*°(Ny, C,-) is the space of the smooth functions
from Ny to C,—s. Then, for u € U(g) and F € CP(Go/Qo, Cy—s), we let f = Fly,

and define the action of U(g) on the image of the restriction map by
Ts(w)ef = (my(w)eF)|x,- (2.2.4)

12



The line bundle £_; — Go/Q restricted to N, is the trivial bundle Ny x Cy-s — N,.
By slight abuse of notation, we refer to the trivial bundle over Ny as £_,. Then in
practice our manifold M will be M = N, and our vector bundle will be the trivial
bundle. In the next section we shall show that N, and the trivial bundle £_; are a

g-manifold and g-bundle with the action 7y, respectively.

2.3 A g-manifold N; and g-bundle £_,

Here we prove that with the linear map ¢ defined in (2.2.4),
(1) the manifold N is a g-manifold, and

(2) the trivial bundle £_; is a g-bundle.

Let #t and q be the complexifications of the Lie algebras of Ny and Qy, respectively;
we have the direct sum g = n®q. For Y € g, write Y = Y5+ Y] for the decomposition

of Y in this direct sum. Similarly, write the Bruhat decomposition of ¢ € NyQ as

g =1(g)q(g) with @i(g) € Ny and q(g) € Qp. For Y € gg, we have
d _
Yy = En(exp(zsy))}tzo, (2.3.1)

and a similar equality holds for Y;. Define a right action R of U(f) on C*°(Ny, C,-s)
by
_ d , _
(R(X)of) (n) = %f(nexp(tX))}tzo (2.3.2)

for X € iy and f € C*°(Np, C,-s). Observe that, by definition, the differential dx of

X is dx = Aq.
Proposition 2.3.3 We have
(m(V)ef) (1) = —sg(Ad(A~)Y)g) F(7) — (R((Ad(A~ )Y )e)e)(0)  (2.3.4)

forY € g and f in the image of the restriction map C°(Go/Qo, Cy—s) — C*(Np, Cy-s).

13



Proof. Suppose that f = F|y, for some F' € C(Go/Qo, Cy-s). If g 'n € NyQo then
we have

(g- /() =F(g'n) = x"*(alg”"'n)"") f(@i(g~'n)). (2.3.5)

Observe that if g is close enough to the identity then g='n € NyQo by the openness of

NoQo. By replacing g by exp(tY) in (2.3.5) with Y € gy and differentiating at t = 0,

we have
R
X~ (alexp(—tY ﬁ)fl)f(ﬁ(exp(—tY)ﬁ))h:O
X (alexp(—4)) Yo F() + 5 FRexp(~1Y 7)) i
X (alexp(~tAd 1Y) lemy f() + 4 F(AR(exp(~tAd )Y )] cy

- —sAq<<Ad<n*1>Y>q)f<ﬁ> — (R((AA(R)Y)e)of) ().

Note that the equality (2.3.1) is used from line three to line four. Now the proposed

formula is obtained by extending the action C-linearly. |

Equation (2.3.4) implies that the representation 7, extends to a representation of
U(g) on the whole space C*(Ny, C,-s). Moreover, it also shows that for all Y € g,
the linear map 7,(Y) is in C°(Ny) @ X(Ny). Therefore, with this linear map 7, No
is a g-manifold.

Next, we show that the linear map 74 gives £_, the structure of a g-bundle. As
7 is a representation of g, the condition (B1) of Definition 2.1.3 is trivial. Thus it
suffices to show that the condition (B2) holds. Since £_, is the trivial bundle of N

with fiber C, -, the space of smooth sections of £_; is identified with C>(Ny, C,-s).

Proposition 2.3.6 In D(L_;) we have
([ms(Y). f)(7) = = (R((Ad(a™")Y)s)=f) ()
forY € gand f € C*(Ny). In particular, the trivial bundle L _, with 7, is a g-bundle.
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Proof. Take h € C*(Ny, C,-). Since [75(Y), f] = 7s(Y)f — frs(Y) in D(L_y), the

operator [m4(Y), f] acts on h by

([rs(Y), floh) () = (ms(Y)e(fR)) () — f(7) (ms(Y)eh) (). (2.3.7)

It follows from Proposition 2.3.3 that the first term evaluates to

(m(Y)o(f1) (7)) = —sAg ((Ad(™1)Y)q) f(R)A(R) — (R((A(A™")Y)s)e(fR))(7)
(2.3.8)

with

(R((Ad(™H)Y)s)(/h)) (1)
= (R((Ad(n")Y)a)of) (R)h(R) + f(n)(R((Ad(R™")Y )z)eh)(R).

Similarly, the second term evaluates to

F(@)(ms(Y)eh) () = —sAq ((Ad(R™)Y)q) f(R)1(R) — f(7) (R((A(R™)Y)z)oh) (7).
(2.3.9)
Now the proposed equality is obtained by substituting (2.3.8) and (2.3.9) into (2.3.7).

In the next section we are going to construct systems of differential operators on
L_. The systems of operators will satisfy several properties of conformally invariant

systems. To end this section we collect those properties here.

Definition 2.3.10 [2, page 806] A conformally invariant system Dy, ..., D,, on the
line bundle L_, is called Ly-stable if there is a map c : Ly — GL(n, C(Ny)) such

that

l- Dl = Zc<l)jiDj7

j=1
where the action [ - D; is given by (2.5.10).
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It is known that there exists a semisimple element Hy € [, so that ad(Hy) has
only integer eigenvalues on g with g(1) # {0}, [ = g(0), n = @,.,0(j), and n =
D,-08(—J), where g(j) is the j-eigenspace of ad(Hy) (see for example [15, Section
X.3)).

Definition 2.3.11 [2, page 804] A conformally invariant system Dy, ..., Dy, is called
homogeneous if C(H,) is a scalar matriz, where C' is the structure operator of the

conformally invariant system (see Definition 2.1.4).

Proposition 2.3.12 [2, Proposition 17] Any irreducible conformally invariant sys-

tem is homogeneous.

Define
D(L_)"={D eD(L_,) | [rs(X),D] =0 for all X € n}.

Observe that in the sense of [2, page 796], the g-manifold N is straight with respect
to the subalgebra n of g ([2, page 799]). Then we state the definition of straight
conformally invariant systems specialized to the present situation. For the general

definition see p.797 of [2].

Definition 2.3.13 We say that a conformally invariant system Dy, ..., D,, is straight
if Dy € D(L_g)" for j=1,...,m.

In general, to show that a given list Dy, ..., D,, of differential operators on N, is
a conformally invariant system, we need check (S2) of Definition 2.1.4 at each point
of Ny. Proposition 2.3.14 below shows that in the case Dy, ..., D,, in D(£_,)", it

suffices to check the condition only at the identity e.

Proposition 2.3.14 [2, Proposition 13] Let Dy,...,D,, be a list of operators in
D(L_,)". Suppose that the list is linearly independent at e and that there is a map
b:g— gl(m,C) such that

m

([me(Y), Dilef) (e) = D b(Y);i(Djef) e)

Jj=1
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forallY € g, f € C®(Ny,Cy~s), and 1 <i <m. Then Dy,..., Dy, is a conformally
invariant system on L_s. The structure operator of the system is given by C(Y)(n) =

b(Ad(n1)Y) for alln € Ny and Y € g.

2.4 Useful Formulas

In this section we are going to show two formulas that will be helpful, when we study
the conformal invariance of certain systems of differential operators on Ny in Chapter

4 and Chapter 7.

Proposition 2.4.1 ForY € g, X €, and f € C*°(Ny,C,-+), we have
([ms(Y), R(X)]ef) () = (R((AAR™)Y)q, X])of) () + sAq ([Ad(RT)Y, X]q) (7).

Proof. Since [m4(Y), R(X)] = 7m(Y)R(X) — R(X)ms(Y), it suffices to consider the
contributions from each term. By Proposition 2.3.3, the contribution from 74 (Y ) R(X)

18

(m(V)R(X))ef) () (2.4.2)

= —sAq((Ad(@™)Y)q) (R(X)ef) () — ((R((Ad(R™ )Y )s) R(X))=f)) (7).

To obtain the contribution from R(X)m(Y'), observe that

d

(ROOm(Y)of) (1) = = (ma(Y o) (2 exp( X))o,

By applying Proposition 2.3.3, differentiating with respect to t, and setting t = 0, the

contribution from this term is

(RX)7m(Y)ef) (1) = sAq ([X, Ad(7™")Y]q) f(7) — sAq (Ad(R™1)Y)q) (R(X)ef) ()
+ (R(X,Ad(@ )Y Ta)ef) (R) — (R(X)R((AA(RH)Y)a))ef) (7).
(2.4.3)
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Since R([X, (Ad(n"1)Y)s]) = R(X)R((Ad(n~1)Y)s) — R((Ad(n1)Y)s) R(X), it fol-
lows from (2.4.2) and (2.4.3) that ([m,(Y), R(X)]ef)(n) evaluates to

([rs(Y), R(X)]ef) (R) = (2.4.4)
(R(X, (Ad(R™HY)a])of)(7) — (R(X, Ad(a™)YTa)ef) () + sAq([Ad(R™)Y, X]g) f (7).
As Ad(r 1Y = (Ad(n Y)Y )i + (Ad(71)Y), and X € i, we have

(X, Ad(R™)Y s = [X, (Ad(m )Y )s] + [X, (Ad(R™)Y) s

Now the proposed formula follows from substituting this into the second term of the

right hand side of (2.4.4). |
Proposition 2.4.5 ForY € g, X1, X, € 1, and f € C*°(Ny, C,-+), we have

([ms(Y), R(X1)R(X2)]ef) ()
= (R([(Ad(@™)Y)q, XiJa) R(X2)ef) () + (R(X1) R([(Ad(7™)Y)g, X2ls)ef) (7)
+ (R([AA(R™)Y, Xu]q, Xola)ef) () + sAq([Ad(R™H)Y, Xu]q) (R(X2)ef)(7)

+sAq([Ad(RT)Y, Xaq) (R(X1)of)(R) + sAq([[Ad(R™)Y, X1], Xolg) f (7).
Proof. Observe that [m,(Y), R(X;)R(X)] is the sum of two terms
[ (Y), RX1)R(Xp)] = [ (Y), R(X1)]|R(X2) + R(X1)[ms(Y), R(X2)].
The contribution from the first term is

([ms(Y), R(X1)]s(R(X2)ef)) ()
= (R([(Ad(A)Y)q, XuJa)o(R(X2)ef)) () + sAq ([Ad(R )Y, Xi]q) (R(X2)ef) (7).
(2.4.6)
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The second term evaluates to

(RX)[m(Y), R(X2)]f) ()

= & (fra(Y), ROG))of) (R exp(tX0) oo

= —(R([X1, Ad( )Yy, Xofa)of) () + (R(X1)R([(A(R™1)Y)q, Xo]s)of)(7)

— sAq([[X1, Ad(R™)Y], Xoq) f (1) + sAg([Ad(n )Y, Xolg) (R(X1)f) ().

Now the proposed formula follows from adding this to (2.4.6). |

2.5 The 2, Systems

The purpose of this section is to construct systems of differential operators in D(L£_,)"
in a systematic manner.

We start with a Z-grading g = @;:#g(j) on g with g(1) # 0. It is known that
g(0) is reductive (see for instance [15, Corollary 10.17]). By construction, q = g(0) ®
D,-,08(j) is a parabolic subalgebra. Take L to be the analytic subgroup of G with
Lie algebra g(0). Vinberg’s Theorem ([15, Theorem 10.19]) shows that the adjoint
action of L on g(1) has only finitely many orbits; in particular, L has an open orbit
in g(1). Such a space is called prehomogeneous. In the theory of prehomogeneous
vector spaces, it is natural to associate certain maps called covariant maps to a
prehomogeneous vector space. To define our systems of differential operators, we use
covariant maps that are associated to prehomogeneous vector space (L, Ad, g(1)). We
denote the covariant maps by 7, and define them below. These maps can be thought

to give symbols of a class of differential operators that we will study. We would like

to acknowledge that the construction of 7 as in this thesis was suggested by Anthony

Kable.

Definition 2.5.1 Let g = )__, 8(j) be a graded complex simple Lie algebra with
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g(1) #0. Then, for 0 < k < 2r, the map 1 on g(1) is defined by

T 9(1) — g(—?“ +k)®g(r)

with wo = Y- ca(gry) X—y @ Xy, where X, are root vectors for v; and A(g(r)) is

the set of roots a so that g, C g(r).

Here, we mean by ad(X)*w, that X acts on the tensor product diagonally via the
action ad(-)". Observe that since X € g(1) and [g(1), g(r)] = 0, we have ad(X)* X =
0 for all v; € A(g(r)). Therefore, ad(X)*wy = > ad(X)M(X_,,) ® X,

When g(1) and g(—r + k) ® g(r) are viewed as affine varieties, the maps 7, are
indeed morphisms of varieties. We shall check in Lemma 2.5.4 that these maps are
L-equivariant. This will show that 7, satisfy the definition of covariant maps.

To simplify a proof for Lemma 2.5.4, we first show that wg in Definition 2.5.1 is

independent of a choice of a basis for g(r).

Lemma 2.5.2 IfY),...,Y,, is a basis for g(r) and Y*,...,Y." is the dual basis for

m

g(—r) with respect to the Killing form k then wy = > (Y;  Y;*).

Proof. It A(g(r)) = {",...,Vm} then each Y; may be expressed by Y; = > a;; X,
for a; € C. Let [a;] be the change of basis matrix and set [b;,] = [a;]~!. Define
V=31 b X, fori=1,...,m. Since Y ", a;bs; = 055 and k(X,,, X_,) = 0y
with d;; the Kronecker delta, it follows that s (Y;, Y}*) = d;;. Thus {Y}",..., Y, } is the
dual basis of {Y7,...,Y,,}. Hence,

Z Y @Yi) Z stiaﬂ (X ® X)) = Z(Xf'ys ® X,).
i=1

rs=1 i=1 s=1

Corollary 2.5.3 Let g = @'__ g(j) be a graded complex simple Lie algebra with

j=-r

g(1) # 0 and G be a complex analytic group with Lie algebra g. If L is the analytic
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subgroup of G with Lie algebra g(0) and wq is as in Definition 2.5.1 then, for alll € L,
(Ad(l) ® Ad(l))wo = wo.

Proof. 1f g € L then {Ad(1)X,, | v; € A(g(r))} forms a basis for g(r). It also holds
that {Ad()X_, | 75 € A(g(r))} is the dual basis for g(—r) with respect to the Killing

form. Now the assertion follows from Lemma 2.5.2 [ |

Now we show that 7, are L-equivariant.

Lemma 2.5.4 Let g = @;z_rg(]’) be a graded complex simple Lie algebra with
g(1) # 0 and G be a complex analytic group with Lie algebra g. If L is the ana-
lytic subgroup of G with Lie algebra g(0) then, for alll € L, X € g(1), and for

0 <k <2r, we have
T(Ad(1)X) = (Ad(]) ® Ad(1))m(X). (2.5.5)
Proof. For |l € L, we have

m(Ad(1)X) = lad(Ad(l)(X ) wo

k!
—a 2 A0, © X,
Y €AGM)
:% 3 Ad()(ad(X)FAAIT)X ) © X,
Y €AG(MN))
= (Ad(l) ® Ad()) (% > ad(X)MAdITHX,) @ Ad(l‘lﬂXw))

1 EAGM)

= (Ad(l) ® Ad(])) <%ad(X)kw0)

= (Ad(l) ® Ad(1))me(X).

Note that Corollary 2.5.3 is applied from line four to line five. |

Now we are going to build the systems of differential operators in D(£_,)" that
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we study. It is useful to observe that 7, : g(1) — g(—r + k) ® g(r) = W are L-
equivariant polynomial maps of degree k. Here, by a polynomial map we mean a
map for which each coordinate is a polynomial in g(1). Therefore the maps 75 can
be thought of as elements in (P*(g(1)) ® W)L, where P*(g(1)) denotes the space of
homogeneous polynomials on g(1) of degree k. Then the isomorphism (P*(g(1)) ®
W)L = Homp (W*,P*(g(1))) yields the L-intertwining operators 7, that are given
by

F (Y (X) = Y (r(X)), (2.5.6)

where W* is the dual module of W with respect to the Killing form. For each Y* €
W*, we have 7,(Y*) € PF(g(1)) = Sym"(g(—1)). We define differential operators
in D(L_,)" from 7(Y*). This is done as follows. Let o : Sym*(g(—1)) — U(n)
be the symmetrization operator. Identify U(n) with D(£_,)* by making n act on

C*(Ny, C,-+) via right differentiation R. Then we have a composition of linear maps
W* 5 PH(g(1)) = Sym® (g(—1) > U(@) 5 D(L_)"
For Y* € W*, we define a differential operator Q4 (Y*) € D(L_,)" by
0 (Y*) = Rooo7p(Y™).

As we will work with irreducible systems we need to be a little more careful
with our construction; in particular, we need to take an irreducible constituent of

g(—r 4+ k)* @ g(r)*. Let
g-r+k)@glr)=Vid oV,
be the irreducible decomposition of g(—r + k) ® g(r) as an L-module, and let
g(—r+k)yegr)=Ve oV

*

be the corresponding irreducible decomposition of g(—r + k)* @ g(r)*, where g(7)*

are the dual spaces of g(j) with respect to the Killing form. For each irreducible
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constituent V* of g(—r + k)" ® g(r)", there exists an L-intertwining operator 7y|v- €

Homy (V}*, P*(g(1))) given as in (2.5.6). Then we define a linear operator €

v
Vr = D(L_,)" by
Q

Vj*:ROO'O%k Vj*.

Since, for Y* € V", we have ()

v (Y7) = Qi (Y™) as a differential operator, we simply

write (;(Y™) for the differential operator arising from Y™ € V.

Definition 2.5.7 Letg = D)__, 9(j) be an r-graded complex simple Lie algebra with
g(l) #0, and q = @;zog(j) be the parabolic subalgebra of g associated with the r-

grading. If V* is an irreducible constituent of g(—r + k)* @ g(r)* so that 7

v+ 18 not
identically zero then a list of differential operators Dy, ..., D, € D(L_,)" is called the
O,

v+ system if it is equivalent to a list of differential operators

QY. .. (YD), (2.5.8)

where {Y{, ..., Y5} is a basis for V* over C.

Each Qy|w+ system is also simply referred to as an € system. We want to remark
that the construction of the €2 systems might require additional modification to
secure the conformal invariance. See Section 6 in [1] and Section 3 in [20] for the

modification for the 23 systems of the Heisenberg parabolic subalgebra.

It is important to notice that it is not necessary for the €2 systems to be confor-
mally invariant; their conformal invariance strongly depends on the complex param-

eter s for the line bundle £_;. So, we give the following definition.

Definition 2.5.9 Let V* be an irreducible constituent of g(—r+k)*®g(r)*. Then we

say that the €

v+ system has spectal value sq if the system is conformally invariant

on the line bundle L.
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The goal of this thesis is to find the special values of the €2; system and the €2,
systems of a maximal two-step nilpotent parabolic subalgebra of non-Heisenberg type.

This is done in Chapter 4 and Chapter 7.

To finish this section we define an action of Ly on D(L£_4)" so that the linear

operator Qly« : V* — D(L_,)" is an Lg-intertwining operator. This will allow that

the Qk

v+ system is Lo-stable (see Definition 2.3.10). As on p.805 of [2], we first define

an action of Ly on C*(Ny, C,-) by

(- (@) =x"(O)f ).

This action agrees with the action of Ly by the left translation on the image of the
restriction map C°(Go/Qo, Cy—s) — C°(Ny, Cy—). In terms of this action we define

an action of Ly on D(L_g) by
(I-D)ef =1-(De(I"" - f)). (2.5.10)

One can check that we have [ - R(u) = R(Ad(l)u) for [ € Ly and u € U(n); in
particular, this action stabilizes the subspace D(£_,)". With the adjoint action of Ly
on U(n), the linear isomorphism U (1) S D(L_¢)" is Lo-equvariant. It is clear that
each map in V* ey PH(g(1)) = Sym*(g(—1)) <= U(R) is Lo-equivariant with respect
to the natural actions of Ly on each space, which are induced by the adjoint action of
Lo on g. Therefore, with the Lg-action (2.5.10), the operator Qv+ : V* — D(L_ )"
is an Ly-intertwining operator.

Now we summarize the properties of the €2

v+ system.

Remark 2.5.11 It follows from the definition and the observation above that the

Q

v+ system satisfies the following properties:

v+ system satisfies the condition (S1) of Definition 2.1.4.
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2. When the €,

v+ system is conformally invariant then it is an irreducible, straight,

and Lg-stable system. By Proposition 2.3.12, it is also a homogeneous system.

2.6 Technical Lemmas

The aim of this section is to show two technical lemmas that will be used in Section
7.3. For D € D(L_;), we denote by Dj the linear functional f +— (Def)(n) for
f € C>=(Ny, C,-:). A simple observation shows that (D;Ds)z = (D1)7Ds for Dy, Dy €
D(L_,); in particular, if (Dq)z = 0 then [Dy, Do]z = —(D2):D;.

Lemma 2.6.1 Suppose that V* is an irreducible constituent of g(—r + k)* ® g(r)*.
Let X1,Xo € g and Y{,..., Y € V*. If m(X1)e = 0 and if [7(X;), Qe(Y)]e €
spanc{Q(Y)e | j=1,...n} for all i = 1,2 then

[7s(X1), [ms(X2), U (Y)]], € spanc{Q%(Y)e, ..., Q(Y;)e}- (2.6.2)
Proof. Observe that [ms(X1), [1s(X2), Qi (Y,5)]] is

s (X1) [ (X2), (Vi) = [ms(X2), (V)]s (X0). (2.6.3)

Since, by assumption, we have 74(X1). = 0, the first term is zero at e. By assumption,
[Ts(X2), Qk(Y;")]e is a linear combination of Q4 (Y)e, ..., Q(Y,). over C. So it may

be written as
n

[ms(Xa2), Qe (Yy)]e = Zathk(Yj*)e
j=1
with aj € C. Then, at the identity e, the second term in (2.6.3) evaluates to

- Zathk’ i e7rs Xl)
Since (m3(X1)2%(Y]"))e = ms(X1)2(Y]") = 0, we obtain

(X)), [7(X2), 0 Zaﬂm om(X1)

— Z e [me(X1) Q% (Y] )]e-

J=1
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Now the proposed result follows from the assumption that [m(X7), Qx(Y;")]e is a linear

combination of (2 (Y}"). over C. |

We call

@gaandu[ @g -

AT(1) A+ (1)

where AT () is the set of positive roots in [.

Lemma 2.6.4 Suppose that g(1) is irreducible and that V* is an irreducible con-
stituent of g(—r + k)* ® g(r)*. Let X}, be a highest weight vector for g(1) and Y,* be

a lowest weight vector for V*. If
e (Xn), Qi (Y)")]e = spanc{Qu(Y{)e, ., Qi (Y)e} (2.6.5)
with {YY,...,Y.,*} a basis for V* then, for any X € g(1) and Y* € V*,
[7s(X), 2 (Y7)]e € spanc{Q(Y7)e, - ., Q(Yy)e}-
Proof. Set E' = spanc{Qx(Y{)e, ..., Q(Y,5)e}. We first show that for each X € g(1),
s (X), 2(Y))]e € E. (2.6.6)

Observe that since (L, g(1)) is assumed to be irreducible, the L-module g(1) is given
by g(1) = U(u)X,. Then, as 7, is linear on g(1), it suffices to show that (2.6.6)
holds when X = 4y - X} with 4 a monomial in U(u). This is done by induction
on the order of ug. Indeed, the proof is clear once we show that (2.6.6) holds for
X =7 -X,=|Z,X;] with Z € u,.

By the Jocobi identity, the commutator [r4([Z, X3]), Q% (Y;)] is
[7s([Z, X)), (Y))] = [1s(2), [ms(X), (Y]] = [ms(Xn), [75(2), (V)] (2.6.7)
By the [-equivariance of the operator € : V* — D(L_,)", it follows that
[7:(2), (Y] = u([Z,Y]7)).
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Since Z € 1y and Y}* is a lowest weight vector, we have Q4([Z,Y}*]) = 0, and so is the

second term of the right hand side of (2.6.7). Thus we have
[ (2, X)), e (Y)]e = [m:(2), [ms(Xn), (Y]] e- (2.6.8)
Now, by hypotheses and the [-equivariance of {2, it follows that

[Ws(Xh)7 Qk(n*)]ea [WS(Z)7 ka(}/l*)]e € k.

As Z € i, by Proposition 2.3.3, we have 7,(Z). = 0. Thus, by Lemma 2.6.1, we
obtain [ms(Z), [7(X4s), %(Y;")]]e € E, and so, by (2.6.8), [ms([Z, X4]), U(Y]")]. € E.

Next we show that for any X € g(1) and Y* € V*,
[ms(X), Qe (Y")]e € E. (2.6.9)

Once again since V* is irreducible, it is given by V* = U(w)Y;*. As before, it is
enough to show that (2.6.9) holds for Y* = Z - Y;* with Z € u;. Since (2 -Y)") =
[1s(Z), Qx(Y;")], by the Jacobi identity, the commutator [ms(X), Qx(Z - Y] is

Ta(X), Qu(Z - Y7)) = [l 2), [ (X), (V7)) = [[mal2), (X)), Q0 (V7)) (2:6.10)

We showed above that [m4(X), Qx(Y;*)]e € E. Since 15(Z). = 0 and [75(Z), Q(Y,")]. €

E, by Lemma 2.6.1, the first term of the right hand side of (2.6.10) satisfies
[ms(Z), [ms(X), (Y )]le € E.

Moreover, as [ms(Z), m5(X)] = ms([Z, X]) with [Z, X] € g(1), by what we have shown

above, the second term satisfies
[[7s(Z), ms(X)], (Y]] € E.

Hence, [ms(X), Q(Z - Y*)]. € E. |
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2.7 The (), Systems and Generalized Verma Modules

To conclude this chapter, we show that conformally invariant € systems induce
non-zero U(g)-homomorphisms between certain generalized Verma modules. The
main idea is that conformally invariant ) systems yield finite dimensional simple
[-submodules of generalized Verma modules, on which n acts trivially.

In general, to describe the relationship between conformally invariant systems on
a go-bundle V — M and generalized Verma modules, we realize generalized Verma
modules as the space of smooth distributions on M supported at the identity. How-
ever, in our setting that the vector bundle V is a line bundle £_, it is not necessary
to use the realization. Thus, in this section, we are going to describe the relationship
without using the realization. For more general theory on the relationship between
conformally invariant systems and generalized Verma modules, see Sections 3, 5, and
6 of [2].

A generalized Verma module U(g) ®yq) W is a U(g)-module that is induced
from a finite dimensional simple [-module W on which n acts trivially. See Section
A.1 for more details on generalized Verma modules. In this section we parametrize
those modules as

My[W] = U(g) @ue) W-

We first observe that the differential operators in D(£_,)" can be described in
terms of elements of M, [CsAq], where C,y, is the g-module derived from the Q-
representation (x*®, C). By identifying My[C,,,] as U(n) ® C,y,, the map My[C,y,] —

U(n) given by u ® 1 — w is an isomorphism of vector spaces. The composition
M,[Cqy] = UF) B D(L_)" (2.7.1)

is then a vector-space isomorphism.
Let W* be an irreducible constituent of g(—r + k)* ® g(k)* so that the Lg-

intertwining operator Qg |y~ : W* — D(L_)" is not identically zero. For Y* € W*,
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if we(Y™) = wi|w+(Y™) denotes the element in U (n) that corresponds to 4 (Y*) =
Qilw+(Y*) in D(L_5)" via right differentiation R in (2.7.1) then the linear operator

wi|w+ : W* — U(n) is L-equivariant. Indeed, for [ € L and Y* € W*, we have
wk(l : Y*) = Ad(l)wk(Y*),

where the action [ - Y* is the standard action of L on W* which is induced from the

adjoint action of L on W.
Define
MW" ={ve My[W]| X-v=0forall X €n}.

The following result is the specialization of Theorem 19 in [2] to the present situation.

Theorem 2.7.2 If D = Dy, ..., D,, is a straight Ly-stable homogeneous conformally
invariant system on the line bundle L_g, and if w; denotes the element in U(W) that

corresponds to D; for j =1,...,m via right differentiation R then the space
F(D) =spanc{w; ® 1| j=1,...,m}
is an L-invariant subspace of My[Cyy |".
If the Q|w+ system is
Qilw= = Q(YY), ... (Yy),
where {Y7*,...,Y*} is a basis of W*, then the space F(|w+) is given by
F(Qulw+) = spanc{wp(Y) @ 1] =1,...,m} C My[Cyy,].

Corollary 2.7.3 If the Q|w+ system is conformally invariant on the line bundle Ly,

then F'(Q|w~) is an L-invariant subspace of Mq[C_g» "

Proof. By Remark 2.5.11, if the Q|w+ system is conformally invariant then it is
a straight, Lg-stable, and homogeneous system. Now this corollary follows from

Theorem 2.7.2. [ |
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Now suppose that the |y~ system is conformally invariant over L, . Then, by
Corollary 2.7.3, it follows that F(2|w+) is an L-invariant subspace of My[C_,» ]".

On the other hand, there exists a vector space isomorphism
F(Q|w+) = W@ C_y,, (2.7.4)

that is given by wi(Y]) ® 1 — Y ® 1. It is clear that the vector space isomorphism
is L-equivariant with respect to the standard action of L on the tensor products
F(Q|w-) CUm) @ C_,y, and W* ® C_y,,. In particular, since W* is an irreducible
L-module, if W* has highest weight v then F'(Q|w ) is the irreducible L-module with
highest weight v —so). ' Moreover, as F'(Q|w+) C My[C_g5,]" the nilradical n acts
on F(Q|w+) trivially. Therefore the inclusion map ¢ € Homy, (F(Q|w+), My[C_y»,])
induces a non-zero U (g)-homomorphism ¢q, € Homy(qg) . (My[F(Q|w+)], Mg[C_s»,])

of generalized Verma modules, that is given by

PQy,

My[F(Qlw+)] = My[C_gyn,] (2.7.5)

u® (we(Y)®1) = u-o(wp(Y) ®1).

If F(Qp|w+) = C_g», then the map in (2.7.5) is just the identity map. However,

Proposition 2.7.6 below shows that it does not happen.

Proposition 2.7.6 Let W* be an irreducible constituent of g(—r + k)* @ g(r)* with
k=1,...,2r, so that Qglw- : W* — D(L_,)" is not identically zero. If the Q|w+

system is conformally invariant on the line bundle Ly, then F(Q|w-) # C_g»,

Proof. Observe that if v is the highest weight for W* then F(€|w+) has highest
weight v — soAq. If F(Q|w+) = C_y», then v = 0, and so the irreducible constituent
W C g(—r+k)®g(r) would have highest weight 0. It is known that if v is the highest

weight for g(r) then the highest weight of any irreducible constituent of g(—r+k)®g(r)

1See Section 3.2 for the details of what we mean by a highest weight of a finite dimensional

representation of reductive group L.
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is of the form +n with 7 some weight for g(—r+k) (see for instance [21, Proposition
3.2]). Thus, the highest weight 0 for W must be of the form 0 = v+ (—v). However,
—~v cannot be a weight for g(—r + k) for any & = 1,...,2r, since only g(—r) has
weight —~. Therefore F'(Q|w+) # C_gx,- |

Corollary 2.7.7 Under the same hypotheses for Proposition 2.7.6, the generalized

Verma module My[C_»,] is reducible.

Proof. If v is the highest weight for W* then, by the proof for Proposition 2.7.6, it

follows that F'(Q|w+) # C_g»,. Now this corollary follows from (2.7.5). [ ]

31



CHAPTER 3
Parabolic Subalgebras and Z-gradings

It has been observed in Section 2.5 that the Z-grading g = @)__, g(j) on g and
the parabolic subalgebra q play a role to construct the 2 systems. In this chapter
we study those in detail for q a maximal two-step nilpotent parabolic subalgebra of
non-Heisenberg type. The {2; system and the €2, systems of those parabolics will be

studied in Chapter 4 and Chapter 7, respectively.

3.1 k-step Nilpotent Parabolic Subalgebras

We shall later construct the 2; system and the (2, systems of a maximal two-step
nilpotent parabolic q. To do so, in this section we classify the k-step nilpotent
parabolic subalgebras q by the subsets of simple roots. This is done in Proposition
3.14.

Let v be any nonzero Lie algebra. Put to = t, t; = [v,t], and v, = [v,t;_4] for
k € Z-o. We call vy the k-th step of ¢ for k£ € Z>(,. The Lie algebra v is called
nilpotent if v, = 0 for some k, and it is called k-step nilpotent if t;,_; # 0 and
t, = 0. In particular, if [v,t] = 0 then v is called abelian, and if dim([t,t]) = 1 then
t is called Heisenberg. Note that v is Heisenberg if and only if its center 3(t) is one-
dimensional. If the nilpotent radical n of a parabolic subalgebra q = [ @ n is k-step
nilpotent (resp. abelian or Heisenberg) then we say that q is a k-step nilpotent
(resp. abelian or Heisenberg) parabolic.

If =73 jcnMat € Y cn Za then we say that |m,| are the multiplicities of

a in B. Proposition 3.1.4 below determines k-step nilpotent parabolic subalgebras
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gs by the sum of the multiplicities of the simple roots of S C II in the highest
root. Although it is a well-known fact, we include a proof in this thesis, since we
couldn’t find one in the literature. To prove the proposition it is convenient to show
two technical lemmas, namely, Lemma 3.1.2 and Lemma 3.1.3. In Lemma 3.1.2 and
Lemma 3.1.3, the subalgebras [ and n are assumed to be the Levi factor and the

nilpotent radical of qg with S = {«y,,. .., ®;, }, respectively.

Remark 3.1.1 [t is easily shown by the Jacobi identity and the induction on k that
we have [l,ng] C ng for each k. In particular, if « + 5 € A with a € A(l) and
B € Aln) then a+ 8 € A(ny), where A(l) and A(ny) are the subsets of roots that

contribute to | and ny, respectively.

Lemma 3.1.2 Suppose that (3 is a root in A and let m;; be the multiplicity of a;, in
B If Y ma; =k then 8 € Alng_y).

Proof. For f € A, it is well known that there exists an ordered set Og = {aq, ..., as}
of simple roots so that 8 = >, , oy having the property that each ordered partial
sum is a root (see for instance [9, Corollary 10.2A]). Note that some of the roots in
Op belong to S and others are in II([) = A(l) N IL

We prove this lemma by induction on the sum, Z;Zl m;;, of the multiplicities of
aj; in S. When 77 m,;, = 1, we have Og NS = {ay} for some a;, € S C A(n).

J

Write ¢ = 2?21 ap. If ap = a; then § = a, € A(n) = A(ng). If oy, # oy then since

each partial sum is a root, we have Z?:_f ay € A(I). Since [[,ng] C ny, it follows that

h h—1
0= ZO@ = ZO&t +ap € A(ﬂg).
t=1 t=1

Since each sum Y7, o for d > h is a oot and all o for t > h are in A([), by Remark

3.1.1, we conclude that

B=0+ap+-+a, € Ang).
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Now we assume that the proposed statement holds for £k —1 > Z;Zl m;; > 1. Let
Z;:1 m;, = k. There are two cases, o, € S or a € II(I). If ay € S then the sum of
the multiplicities of the simple roots in S contributing to g — ay is equal to £ — 1.
By induction hypothesis, we have § — ags € A(ng_2). Therefore, = (8 — a;) + a; €
A([n,ng—2]) = A(ng-1).

When «; € II([), let oy be the largest root in the order of Og so that oy € S. Then
the sum of the multiplicities of the simple roots from S in the root Zizl ay is equal
to k. Assuming as before, we conclude that 30 a, € A(nz_1). Now, once again,

since each sum Y7, ay for d > [ is a root and all o, for t > [ are in A(I), by Remark

3.1.1, we conclude that

!
B=> ai+ap+-+ o, € Almy).
t=1

Lemma 3.1.3 If € A(ng) and m;; are the multiplicities of oy, in 3 then Z;Zl mi, >

k+1.

Proof. We prove it by induction on k. Observe that if 8 € A(n) = AT\A(I) then
there exists a;; € S so that the multiplicity of ;; in § is non-zero, because we would
have 8 € A(l), otherwise. Thus the case k = 0 is clear. We then assume that this
holds for k = 1. Let 5 € A(nj41). Since n41 = [y, n], the root § may be written as
p =+ B" with g’ € A(n;) and 8” € A(n). Denoting by m;; () the multiplicities of

a;; in 3, we have

> omi(8)=> m (B +8") =Y mi(B)+ Y mi ()= (1+1)+1=1+2
Jj=1 Jj=1 j=1 j=1
By induction the lemma follows. |

We remark that if the highest root v is v = ) . maa then for any root § =

Y acr My, it follows that n, < m, for all a € I1.
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Proposition 3.1.4 Let g be a complex simple Lie algebra with highest root v, and
qs = | & n be the parabolic subalgebra of g that is parametrized by S with S =
{aiy, ..., ;. } CII. Then n is k-step nilpotent if and only if k = m;, +m;, +---+m,_,

where m;; are the multiplicities of oy, in .

Proof. First we show that if k = Z;zl m;,; then n is k-step nilpotent. If k = Z;zl m;
then, by Lemma 3.1.2, we have v € A(ny_1); in particular, ng_; # 0. If ny # 0 then
there would exist 3 € A(ng). If n;; are the multiplicities of o;; in 3 then, by Lemma
3.1.3, it follows that

zr:nij >k+1>k.

j=1

This contradicts the remark above. Therefore n, = 0, and so n is k-step nilpotent.
Conversely, suppose that n is k-step nilpotent. If 2;21 m;; = [ then, as we showed

above, n is [-step nilpotent. Hence, | = k. [ |

To finish this section we introduce subdiagrams of Dynkin diagrams that associate
to parabolics qg and classification types of them. First, Theorem 2.2.3 shows that
there exists a bijection between the standard parabolics qg and the subsets S of
simple roots. This allows us to associate qg to subdiagrams of Dynkin diagrams. The
subdiagrams that associates to qg are obtained by deleting the nodes of the Dynkin
diagram of g that correspond to the simple roots in S, and the edges in incident on
them. We call such subdiagrams deleted Dynkin diagrams. With the multiplicities
of simple roots in the highest root of g in hand, by Proposition 3.1.4, we can also see
the number of steps of nilradical n of qg from the deleted Dynkin diagram. Example
3.1.5 below describes the deleted Dynkin diagram of a given parabolic qg¢ and how
we read the diagram. For simplicity, we depict deleted Dynkin diagrams by crossing

out the deleted nodes.
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Example 3.1.5 Take g = sl(6,C). The set of simple roots 11 is 1T = {ay, ag, sz, g, a5}
with Dynkin diagram

e '®) ®) 0. O .
a (6%) ag Oy (67

Choose S = {as,au}. Then the deleted Dynkin diagram of parabolic subalgebra qs

corresponding to the subset S is

Moreover, Figure B.2 in Appendiz B shows that the multiplicity of each simple root
in the highest root of g of type A, is 1, so this parabolic qs is a two-step nilpotent

parabolic.

In later sections we often refer to parabolic subalgebras qg by their corresponding
subset S of simple roots. To this end, we are going to define classification types of
parabolics qg. In Definition 3.1.6 below, we mean by classification type T of g type
A,, B, C,, D,, Eg, E7, Eg, Fy, or Gs.

Definition 3.1.6 If g is a complex simple Lie algebra of classification type T and S
1s a subset of 11 of simple roots then we say that a parabolic subalgebra qs of g is of

type T(S)7 or type T<i17 R 7Zk) ZfS = {ah” .- 7aik}'

For example, the parabolic subalgebra qg¢ in Example 3.1.5 is of type A5(2,4).
Any maximal parabolic subalgebra is of type 7 (i) for some a; € II. In this thesis we
use the Bourbaki conventions [4] for the labels of the simple roots (see Figure B.1 in

Appendix B for the labels).

3.2 Maximal Two-Step Nilpotent Parabolic q of Non-Heisenberg type

The aim of this section is to study the 2-grading g = @52_2 g(7) on g, that is induced

from a maximal two-step nilpotent parabolic subalgebra g of non-Heisenberg type.
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Assume that g has rank greater than one and that o, is a simple root, so that the
parabolic subalgebra q = q(q,; = [ @ n parameterized by a4 is a maximal two-step
nilpotent parabolic with dim([n,n]) > 1. Let (-,-) be the inner product induced on
h* corresponding to the Killing form k. Write ||a||*> = (o, a) for « € A. The coroot
of ais ¥ = 2a/{a, a).

Recall from Section 2.2 that A\, denotes the fundamental weight for oyg. As A(l) =
{a e A| o € span(IT\{ag})} and A(n) = AT\A(I), we have

=0 if g e Al

{Aq: B)
>0 if e An).

Observe that if Hy, € b is defined by w(H, Hy,) = A(H) for all H € b and if

2

H, =—H
T a2

(3.2.1)

then 5(H,) is the multiplicity of o in 8. In particular, it follows from Proposition
3.1.4 that for § € A*, 5(H,) only can assume the values of 0, 1, or 2. Therefore,
if g(j) denotes the j-eigenspace of ad(H,) then the action of ad(H;) on g induces a
2-grading

g=0(-2)0g(-1)©9(0) © (1) Da(2)
with parabolic subalgebra

q=9(0)@a(l) @a(2).

Here we have [ = g(0) and n = g(1) @ g(2). The subalgebra n, the opposite of n, is
given by

n=g(-1) ®g(-2).

Observe that L acts on each of the subspaces g(j) via the adjoint representation.

The goal of this section is to show that g(j) are irreducible L-modules for j # 0.

37



Via the Killing form, g(—1) and g(—2) are dual to g(1) and g(2), respectively. Thus,
we will show that g(1) and g(2) are L-irreducible; hence, so are true for g(—1) and
9(=2).

The following proposition is well known. However, since the argument used in the

proof will be referred in the proof for Corollary 3.2.3 below, we give a proof.

Proposition 3.2.2 Assume that g is a graded complex semisimple Lie algebra with

9=6D,;90), and let q = g(0)BD,-, 8(j) with g(1) # 0. Then g(1) is g(0)-irreducible

if and only iof q s a maximal parabolic.

Proof. We first show that if q is not maximal then g(1) is not g(0)-irreducible. Under
this assumption there are at least two distinct simple roots in IT\A(g(0)), say /4
and 2. Let X and Xz, be root vectors for 5 and [s, respectively. If U(g(0))
denotes the universal enveloping algebra of g(0) then ¢(g(0))Xs, and U(g(0))Xp, are
two g(0)-submodules of g(1). Since 5; and [ are simple, U(g(0)) Xz, # U(g(0))X4s,.
Hence g(1) is reducible.

To prove the converse, as g(0) = 3(g(0)) ® g(0)ss and the center 3(g(0)) acts by
scalars on g(1), it suffices to show that g(1) is an irreducible g(0)ss-module. As in [9,

Corollary 10.2A] we write § € A* as
5:@i1+"'—|—06in

with a;; € II (not necessarily distinct) in such a way that each partial sum o, + - -+ay,
is a root. If ¢ is maximal then there exists unique simple root 8 € II\A(g(0)). Each
root § € A(g(1)) is of the form

d=oay +-F+o, + L+, + 0+,

where the sum a;, + -+ + @, = g is a root with a;; € A(g(0)). Let X,, and Xz be

root vectors for o and 3, respectively. If X is a root vector for a;; then

0 # ad(Xy)ad(X,-1) - - - ad( X1 )ad (X )ad(Xe, ) X
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is a non-zero element in (U(g(0)ss)X5) N gs. Since 6 € A(g(l)) is arbitrary, it is
followed that g(1) = U(g(0)ss) X 3. We quote the Theorem of the Highest Weight to

conclude that g(1) is g(0)ss-irreducible with lowest weight £. [

Let [ = 3(I) @ l5s be the decomposition of [, that corresponds to L = Z(L)°Lss
with Z(L)° the identity component of the center of L and Ly, the semisimple part of
L. We say that a weight v € h* is a highest weight of a finite dimensional L-module
V if vy, is a highest weight of V' as an Ls-module, where b, = b N[ A lowest

weight of a finite dimensional L-module is similarly defined.

Corollary 3.2.3 Ifq=g(0)®g(1) ®g(2) is the mazimal two-step nilpotent parabolic
of non-Heisenberg type determined by g then g(1) is the irreducible L-module with

lowest weight a.

Proof. Observe that since a root vector for «y is an element of g(1), we have g(1) # 0.

As Ad(L) preserves g(1), Proposition 3.2.2 implies that g(1) is L-irreducible. [

Next we show that g(2) is the irreducible L-module with highest weight 7. Since
the argument of the proof works for general r-grading g = @’__, g(j), we give the

proof in the general setting.

Proposition 3.2.4 Assume that g = @)__, 9(j) is a graded compler simple Lie
algebra with n = @;Zlg(j). If the positive system AT is chosen so that At =
AT(g(0)) UA(n) and v is the highest root of g with respect to AT then g(r) is the

irreducible g(0)-module with highest weight ~y.

Proof. As g is simple and + is the highest root with respect to AT,
g =U(g)Xy =U@)U(g(0))X,).

Observe that since X, € g(r) and g(r) is g(0)-stable, we have U(g(0))X, C g(r). On
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the other hand, as n = @;_r 9(7), it follows that

r—1

U@a(r) ¢ € o).

j=-r

As g = D)__, 9(j), this shows that U(g(0)) X, D g(r). |

Corollary 3.2.5 Ifq=g(0)®g(1)®g(2) is the mazimal two-step nilpotent parabolic
of non-Heisenberg type determined by g then g(2) is the irreducible L-module with

highest weight .

Proof. Observe that v is the highest root of g for AT = A*T([)UA(n). Now, as Ad(L)

preserves g(2), Proposition 3.2.4 implies that g(2) is L-irreducible. |

To conclude this section we show that 3(n) = g(2) and 3(n) = g(—2), where 3(n)
and 3(n) are the centers of n and n, respectively. Because of the identification of g(—j)
with g(j)* via the Killing form, it suffices to show that 3(n) = g(2). The following

technical lemma will simplify the expositions.

Lemma 3.2.6 Ifq=g(0) ®g(1) ® g(2) is a mazximal two-step nilpotent parabolic of

non-Heisenberg type with n = g(1) & g(2) then 3(n) Ng(1) = {0}.

Proof. One can easily check that 3(n) is an -module by using the Jacobi identity
and the fact that n is an [F-module. Therefore the intersection 3(n) N g(1) is an I-
submodule of g(1). The irreducibility of g(1) from Corollary 3.2.3 then forces that
3(n)Ng(l) = {0} or g(1). However, the second is impossible; otherwise, we would

have
[n,n] = [g(1),8(1)] =0,

contrary to [n,n] # 0. Therefore, 3(n) Ng(1) = {0}. |
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Lemma 3.2.7 If q=g(0) ® g(1) ® g(2) is a mazimal two-step nilpotent parabolic of

non-Heisenberg type with n = g(1) ® g(2) then 3(n) = g(2).

Proof. Since g(2) C 3(n), it suffices to show the other inclusion. Take X € 3(n).
Since n = g(1) @ g(2), there exist X; € g(j) for j = 1,2 so that X = X; + X». Since

X, X5 € 3(n), we have for any Y € n,
Y, Xa] = [V, Xh] + [V, Xo] = [V, X] = 0.

Thus X; € 3(n) Ng(1). Lemma 3.2.6 then concludes that X; = 0, and so we have

X = X, € g(2). Since X € 3(n) is arbitrary, this yields that 3(n) C g(2). |

Now, since [ = g(0), g(2) = 3(n) and g(—2) = 3(n), we write the 2-grading

g=@@;__,9(j) as
g=s3m)@g(-1)®lDdg(l)D3s(n) (3.2.8)

with parabolic subalgebra

qg=I[dg(1l) D 3(n). (3.2.9)

3.3 The Simple Subalgebras [, and [,

The purpose of this section is to study the structure of the Levi subalgebra [ =
3(I) @ ;. The material of this section will play a role in Chapter 5 and Chapter 6
when we decompose [ ® 3(n) into L-irreducible subspaces.

The center 3(I) is of the form 3(I) = (0, ¢y ker(a). Since g has rank greater than
one and II(l) = IT\{ag}, 3(l) is non-zero and one-dimensional. It is clear from (3.2.1)
that H, is an element of 3([). Therefore we have 3(I) = CH,.

Next we consider the structure of ;5. Observe that the Dynkin diagram of g can be

extended by attaching the lowest root —v to the diagram. If g is not of type A,, then
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there is exactly one simple root, that is connected to —+ in the extended diagram (see
Figure B.3 in Appendix B). Let ., denote such a unique simple root. It is easy to see
that qqo,) is the Heisenberg parabolic of g; that is, the two-step nilpotent parabolic
with dim([n,n]) = 1. Hence, if q(q,} is a maximal two-step nilpotent parabolic with
dim([n,n]) > 1 then a, € I(l) = II\{ay}. If we delete the node corresponding to
oy then we obtain one, two, or three subgraphs with one subgraph containing c.,.
This implies that the subalgebra [, is either simple or the direct sum of two or three
simple subalgebras with only one simple subalgebra containing the root space g,., for
a.,. The three subgraphs occur only when q is of type D, (n — 2). So, if q is not of
type D,,(n — 2) then there are at most two subgraphs. In this case we denote by [,
(resp. [,,) the simple subalgebra of [ whose subgraph in the deleted Dynkin diagram
contains (resp. does not contain) the node for c,. Thus the Levi subalgebra [ may
decompose into

[=CH,® L, @, (3.3.1)

Then, for the rest of this chapter, we assume that ¢ is not of type D, (n —2), so that
the Levi subalgebra [ can be expressed as (3.3.1). Recall from Definition 3.1.6 that
if g is of type T then we say that the parabolic subalgebra q determined by «; € 11
is of type T (i). Then the parabolic subalgebras q under consideration are given as

follows:

and

Es(3), Eg(5), E7(2), E7(6), Es(1), Fy(4). (3.3.3)

Note that in type A, the nilradical n of any maximal parabolic subalgebra is abelian.
Write II([,) = {a € Il | @ € A(l)} and II([,,) = {a € Il | @ € A(l,,)}. Example
3.3.4 below exhibits the subgraphs for [, and [, of q of type Bs(3) with II([,) and
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II([,,). One can find those data in Appendix C for each maximal parabolic subalgebra

in (3.3.2) or (3.3.3).

Example 3.3.4 Let q be the parabolic subalgebra of type Bs(3) with deleted Dynkin
diagram

o) O X O0——0 .
&3] %) (o7} Oy Qs

Figure B.3 in Appendiz B shows that a, = . Therefore, the subgraph for L, is

(€51 (6%)

and that for L, is

O0—0
Oy Qs

with II(1,) = {a1, e} and (1) = {ou, as}.

Remark 3.3.5 [t is clear from the extended Dynkin diagrams that (7y,c.,) > 0 and

(v, ) = 0 for any other simple roots a.. In particular, (c,y) =0 for all a € II(1,,,).

3.4 Technical Facts on the Highest Weights for [, [,,, g(1), and 3(n)

In this section we summarize technical lemmas on the L-highest weights for L, [,
g(1), and 3(n). These technical facts will be used in later computations.

Proposition 3.2.4 shows that 3(n) has highest weight ~, which is the highest root of
g. We denote by &, &, and p the highest weights for [, [,,,, and g(1), respectively.
In Appendix C we give the explicit values for these highest weights for each of the
parabolic subalgebras under consideration. We remark that all these highest weights
are indeed roots in A*. Observe that the highest weights &, and &, of [, and [,
respectively, are also the highest roots of [, and [, as simple algebras; in particular,
the multiplicities of a € II([,) (resp. a € I(l,,)) in &, (resp. &,,) are all strictly

positive.
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Lemma 3.4.1 If aq is the simple oot that determines q = (@ g(1) 3(n) then &, +aq

and §ny + g are roots.

Proof. We only prove that &, + a4 € A; the other assertion that &,, + oy € A can
be proven similarly. It suffices to show that (&,,aq) < 0, since both &, and oy are
roots. For o € II we observe that (o, aq) < 0 if « is adjacent to aq in the Dynkin
diagram and (a, oq) = 0 otherwise. An observation on the deleted Dynkin diagrams
shows that there exists a unique simple root ay, in II(L,) that is adjacent to ag. Since
& is the highest root for [, as a simple algebra, the multiplicity of ay, in &, is strictly

positive. Thus (&, aq) < 0. |

Lemma 3.4.2 If&,, &, 1, and ~y are the highest weights of L, 1., g(1), and 3(n),

respectively, then the following hold:
(1) y—& € A, but v — &, ¢ A.
(2) v —p€A.

(3) N—gmﬂ_fméA-

Proof. To prove v — &,, ¢ A, we recall a well-known fact that if n and m are the
largest non-negative integers so that v — n&,, € A and v + mé&,, € A, respectively,
then (v,¢y,) is given by (7,&.) = n —m (see for instance [9, Section 9.4]). Observe
that the roots in A(l,,) are orthogonal to 7; in particular, (v, ¢,.,) = 0. Thus, we have
n=m. As §,, € AT and v is the highest root, v+ &,, ¢ A. Therefore, n = m = 0,
which concludes that v — &, is not a root. To prove v — &, € A, it suffices to show
that (v,&,) > 0, since both v and &, are roots. Write &, in terms of simple roots
in TI(I,). Observe that each o € II(l,) has positive multiplicity m, in &,. As v is
orthogonal to « for any a € II(L,)\{a,}, we have (v,&,) = mq, (v, a,) > 0.

To prove the assertion (2), we show that (u,vy) > 0. Since, for o simple and

a # ., we have (a,v) = 0 and (a.,7) > 0, it suffices to show that the multiplicity
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Ng. of oy in g is ne, > 0. Observe that the root § = >y a belongs to A(g(1)).
The multiplicity of ., in 6 is one. As g(1) is an irreducible L-module with highest
weight p, the root 6 is of the form 6 = p — Zaeﬂ([) co with ¢, non-negative integers.
Therefore p = 6 + ZQGH(I) Catr, and 80 ng, =1+ cq, > 0.

Next we show that p — &,, € A. The other assertion in (3) is proven in a similar
manner. It suffices to show that (u,&,,) > 0. We write p as

= Z Moo + Z ngtwg  with m,,ng € Zxo, (3.4.3)
OLEH([»}/) ﬁeH([n’y)

where w, and ws are the fundamental weights of o € II([,) and 8 € II(l,), re-
spectively. The root &,, is an integer combination of simple roots in II([,,) of the

form

Eny = Z mgf  with mg € Z.
BEI(lny)

Then (wy, &,y) = 0 for all a € II(L,), and (@gs,&,,) > 0 for all 5 € II(l,,,). It follows
from Lemma 3.4.1 that [, acts on g(1) nontrivially. Thus, there exists 5 € II(l,,,)
so that ng # 0 in (3.4.3), and so we obtain (u,&,,) > ngmg > 0.

When g is not simply laced then there are two root lengths in A. A root « is called
long or short accordingly. The following technical lemma will simplify arguments
concerning the long roots later. We regard any root as a long root, when g is simply

laced.
Lemma 3.4.4 Suppose that o € A is a long root. For any € A, the following hold.
(1) If p —a € A then (B,a) = 1.
(2) If B+« € A then (B,a) = —1.
(3) If B a € A then BFa ¢ A.
(4) B+2a ¢ A.
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Proof. Assume that f—a € A. Since « is a long root, we have 1 > ||f—a||?/||«|]* > 0.

Thus,
which implies that
1817 v 1EiTs
0< <(B,a") <1+ 75 < 2.
[laef[? [laef[?

Therefore (5,a¥) = 1. Part (2) may be shown similarly, and (3) and (4) follow
from (1) and (2) with the fact that (5,a") = pas — ¢a.p, Where p,s = max{j €

Zso| B —ja€ A} and qop = max{j € Z>o |  + ja € A}. |

Lemma 3.4.5 If &, &y, 1, and vy are the highest weights of L, L, g(1), and 3(n),

respectively, then the following hold:
(1) v —p+&n €A
(2) 7= p—&uy €A
(3) If &, is a long root then v — pu £ &, ¢ A.

Proof. Lemma 3.4.2 shows that v — u € A. Then in order to prove (1), it is enough
to show that (., —p) < 0. It follows from Remark 3.3.5 that (£,,,7) = 0. On the

other hand, we have (§,,, 1) > 0 by the proof for (3) of Lemma 3.4.2. Therefore,

<€n’y>’}/ - M> = <€n'ya'-)/> - <£n'y;,u> < 0.

When &, is a long root of g, the assertion (2) follows from (1) and Lemma 3.4.4.
The data in Appendix C shows that &, is a long root unless q is of type B,(n — 1).
If q is of type B,(n — 1) then we have v = &1 + ¢, p = €1 + €5, and &,, = €,,. Thus
V= by & A

To show (3), observe that, by Lemma 3.4.2, we have v —&,, p—&, € A. Since &,

is assumed to be a long root, it follows from Lemma 3.4.4 that (y,&)) = (u, &) = 1.
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Therefore (y — p,&Y) = 0, which forces that

Iy = £ & = Iy — pll* + ll:11%. (3.4.6)

Since v — pu is a root, we have ||y —p|| # 0. As &, is assumed to be a long root, (3.4.6)
implies that (y —p) £ &, ¢ A. [

Remark 3.4.7 Direct observation shows that &, is a long root, unless q is of type
C,(1). If q is of type C,, (i) then the data in Appendiz C shows vy = 2e1, jt = €1+ €441,

and & =¢e1—¢;. Thusy —p+& & A, buty—p—¢§, € Al
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CHAPTER 4

The (); System

The aim of this chapter is to determine the complex parameter s; € C for the line
bundle £_; so that the 2; system of a maximal two-step nilpotent parabolic ¢ of
non-Heisenberg type is conformally invariant on L;,. The special value is given in

Theorem 4.2.5.

4.1 Normalizations

The purpose of this section is to fix normalizations for root vectors. In the next
section we are going to construct the {2; system and determine its special value of s.

To do so, it is essential to set up convenient normalizations.
If o, 8 € A then define
Pap =max{j € Z>o | f — ja € A} and
Gop =max{j € Zso | B+ ja € A}. (4.1.1)
In particular, we have
(B,0") = Pas — o (4.1.2)
It is known that we can choose X, € g, and H, € § for each a € A in such a way

that the following conditions hold (see for instance [7, Sections I11.4 and IIL.5]). The

reader may want to notice that our normalizations are different from those used in
[1].
(H1) For each a € AT, {X,, X 4, Hy} is an sl(2,C) triple; in particular,

[Xo, X_o| = Ha.
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(H2) For each o, f € A", [Hy, Xp| = B(Ha)Xp.
(H3) For aw € A we have k(X,, X_o) = L.
(H4) For o, f € A we have 5(H,) = (a, ).
(H5) For o, f € A with a + 8 # 0, there is a constant N, 5 so that
[Xo, X5] = NagXoss ifa+BeA,
Nap =0 ifa+8¢A.
(H6) If an, an, 3 € AT with oy + ag + a3 = 0 then

Na17a2 = Na27a3 = Na37al'

(H7) If a, f € A and oo + B € A then
1
NogN_g_p = _WQ(HQ).

In particular, N, s is non-zero if a + 8 € A.

We call the constants IV, g structure constants.

4.2 The ; System

In this section we shall build the €2; system and determine its special value. As we

have observed in Section 2.5, we use the covariant map 7; and the associated L-

intertwining operators 71|+, where V* are irreducible constituents of g(—1)* ® g(2)*.

By Definition 2.5.1, the covariant map 7, is given by

7 g(1) = g(—1) ® 3(n)

X — ad(X)wo
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with wy = ZWGA(‘%(“)) X, ®X,,. It is clear that 7 is not identically zero. Indeed, if
X = X, with p the highest weight for g(1) then

T1 (XH) = ad(X“)wo

= Z NM-WXM—W@X’YJ
Ap(3(n)

with A,(3(n)) = {v; € AG(n)) | p —; € A}. By Lemma 3.4.2, we have p—v € A
with « the highest weight for 3(n), so A,(3(n)) # 0. Since the vectors X, ® X,
for v; € A,(3(n)) are linearly independent, we have 71(X,) # 0.

For each irreducible constituent V* of g(—1)* ® 3(n)*, there exists an associated

L-intertwining operator 71|y~ € Homp (V*,P1(g(1))) so that, for all Y* € V*,

Tl (Y)(X) = Y (1 (X))

Observe that the duality for V* is defined with respect to the Killing form . More-

over, via the Killing form s, we have g(—1)* ® 3(n)* = g(1) ® 3(n). Thus, if
Y*=X,®X_,, with a € A(g(1)) and v, € A(3(n)) then Y*(7(X)) is given by
Y*(7-1<X)) = Z K(Xa,ad(X)X_«,j)li(X_%,X«,j), (421>
Vi €AG(n))

as 1 (X) = ZyjeA(g(n)) ad(X)X_,, ® X,,.

Now we wish to determine all the irreducible constituents V* of g(1) ® 3(n), so

that 7|y~ are not identically zero. Observe that P*(g(1)) = Sym'(g(—1)) = g(—1)

and that g(—1) is an irreducible L-module, as q is a maximal parabolic. Thus, if

71|y+ is not identically zero then V* = g(—1). Proposition 4.2.2 below shows that the

converse also holds.

Proposition 4.2.2 Let V* be an irreducible constituent of g(1) ® 3(n). Then 7

V*

~Y

is not identically zero if and only if V* = g(—1).
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Proof. First observe that g(—1) is an irreducible constituent of g(1) ® 3(n). Indeed,
since 7 is linear, we have 71(g(1)) = g(1) as an L-module; in particular, g(1) is an
irreducible constituent of g(—1) ® 3(n). Therefore g(—1) = g(1)* is an irreducible
constituent of g(1) ® 3(n) = (g(—1) ® 3(n))*.

To prove 7i|g—1) is a non-zero map, it suffices to show that 71 |q—1)(Y™) # 0 for

some Y* € g(—1) C g(1) ® 3(n). To do so, consider a map

71:g(—1) = g(1) ® 3(n)

X — ad(X)cDo

with @y = Z%eA(é(n)) X,, ® X_,,. This is a non-zero L-intertwining operator. Thus
T1(g(—1)) 2 g(—1) as an L-module, and 7;(X_,) is a weight vector with weight —«
for all & € A(g(1)). As g(1) has highest weight p, the lowest weight for g(—1) is —p.

Now we set

Cu = Z N_ oy Ny,
1 E€AL(3(n))

with A,(3(n)) = {% € AG(n)) | % —p € A} By Lemma 3.4.2, it follows that
v — pu € A; in particular, A,(3(n)) # 0. The normalization (H7) in Section 4.1
N,

shows that N_ A

< 0 for all v, € A,(3(n)). Therefore ¢, # 0. Then define

122947

Y, € g(—1) by means of

* 1 = 1
Y} = —Tl(X_,u) = Z N—u,'th’Yt—M ® X—’Yt'

Cu W)

We claim that 7|g—1)(Y;*)(X) # 0. By (4.2.1), the polynomial 7y[g—1)(Y;*)(X) is

Tilo(-1 (Y7 (X) = Y7 (n (X))
_ 1 > N k(X ad(X) X JR(X .y, X))

W)
SEAGM)

1
= Z N*M:’Yt’%(X’Yt*Nvad(X)X*’Yt)‘

W)
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Write X = ZaeA(g(l)) NaXa, Where 1, € n* is the coordinate dual to X, with respect

to the Killing form . Then,

- . 1
Til-n) (V)N (X) = — Z Ny (X, ad(X) X))
K 1E€AL(3(n))

1
= - Z Ny Nabi(Xny—ps ad(Xa) X,
B aen(a(1))
1E€AL(3(n))

1

- Z Ny Ny
m
V€A (3(n))

:77/"/

= k(X X_,). (4.2.3)
Hence 7|1 (¥}") (X) # 0. =

Since only g(—1) contributes to the construction of the ; systems, we simply

refer to the Q; system as the Oy |y_1) system.

As we observed in Section 2.5, the operator Q [g—1) : g(—1) — D(L_,)" is obtained

via the composition of maps

71l R a

o(=1) "5 PHe(1) = o(=1) S U(@) = DL)"
By (4.2.3), we have 71 |g—1)(Y;")(X) = (X, X_,). Therefore,
Ql(YE*) = R(Xfu)-

Now, for all & € A(g(1)), set

52



Since both € [g—1) and 7, are Lo-intertwining operators and g(—1) = U(I)X_,, for

any a € A(g(1)), we obtain
0 (Yon) = caR(X_0) (4.2.4)

with some constant ¢,. Then, for A(g(1)) = {a1,...,an}, the ; system is given by

The following theorem shows that the €2; system is conformally invariant on L.

Theorem 4.2.5 Let g be a complex simple Lie algebra, and let q be a mazimal two-
step nilpotent parabolic subalgebra of non-Heisenberg type. Then the )y system is

conformally invariant on L_g if and only if s = 0.

Proof. By Remark 2.5.11, we only need to show that the condition (S2) in Definition

2.1.4 holds if and only if s = 0. By Theorem 2.4.1,

([rs(Y), R(X_q,)]of) (7)

= (R((Ad(@)Y)q, X_a,]5)ef) () + sAq ([Ad(RTH)Y, X, Jq) f(7)

for any Y € g and any f € C(Ny, C,-s). Hence, the condition (S2) holds if and

only if s = 0. |

23



CHAPTER 5

Irreducible Decomposition of [ ® 3(n)

Our next goal is to construct the €2y systems and to find their special values. To

do so, we need to detect the irreducible constituents V* of I* @ 3(n)* so that Ta|y- is
not identically zero. (see Section 2.5 for the general construction of the €, systems).
In this chapter and the next one, we shall show preliminary results to find such

irreducible constituents.

5.1 Irreducible Decomposition of [, ® 3(n)

We continue with q = [Gg(1)®3(n) a maximal two-step nilpotent parabolic subalgebra
of non-Heisenberg type listed in (3.3.2) or (3.3.3), and @ = LN = Ng(q). The Levi
subgroup L acts on [ ® 3(n) C g ® g via the standard action on the tensor product
induced by the adjoint representation on [ and 3(n). As L is complex reductive, this

action is completely reducible. Since [ = 3(I) ® [, & [,,, with 3(I) = CH,, we have
(®3(n) = (CH;®3(n) @ (I, ®3(n) & (I, ®3(n)). (5.1.1)

It is clear that CH, ® 3(n) = 3(n) = g(2) as an L-module. Thus, by Corollary 3.2.5,
CH,®3(n) is L-irreducible. It is also easy to show that [,,, ®3(n) is L-irreducible. Let
L., (resp. L,,) be the analytic subgroup of L with Lie algebra [, (resp. [,,). As in

Section 3.2, we call a weight v for a finite dimensional L-module V' a highest weight

for V' if the restriction v|,,, onto by, is a highest weight for V' as an Ls-module.

Proposition 5.1.2 Suppose that l,,, # 0. If &, and 7y are the highest weights of [,

and 3(n), respectively, then l,, ® 3(n) is the irreducible L-module with highest weight
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Eny T -

Proof. First we observe that L, acts trivially on 3(n). By Corollary 3.2.5, we have
3(n) = g(2) = U(l;s)X,. By the observation made in Remark 3.3.5, it follows that
a L vforall a € A(l,,). Thus 3(n) = U(l,)X,. Hence L, acts trivially; in particular,
the irreducible L-module 3(n) is L,-irreducible. On the other hand, it is clear that L,
acts on [, trivially. Therefore the representation (L, Ad®Ad, [,,, ®3(n)) is equivalent
to (L, X Ly, Ad®Ad, I, ® 3(n)), where ® denotes the outer tensor product. Since

[,, and 3(n) have highest weight &, and v, respectively, the lemma follows. [

Now we focus on the decomposition of [, ® 3(n) into irreducible L-submodules.
As noted in the proof for Lemma 5.1.2, the subgroup L, acts trivially on [, ® 3(n).
Hence we study [, ® 3(n) as an L,-module. For A\ € h* with (\,a") € Zs( for all
a € II(l,), we will denote by V(A) the irreducible constituent with highest weight
Alp,, where b, = hNL,. For classical algebra g, we use the standard realization of the

roots ¢;, the dual basis of the standard orthonormal basis for R”.

Theorem 5.1.3 The L-module [, ® 3(n) is reducible. If V(X) denotes the irreducible
representation of L with highest weight |y then the irreducible decomposition of

[, ®3(n) is given as follows.
1. B,(i), 3<i<n:

[, ®3(n)
V(E,+7) V() @ VI(E + (61 +€3)) ifi =3

VE,+7) V()@ V(E, +(e1+e) @V(E +(e2+e3) f4<i<n
2. Cp(i), 2<i<n—1:

[, ®3(n)
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V(fv +v)eV(y) e V(fv + 2e3)

Ve +7) 0 V() @ VI(§ + (2 + ) ®VI(E + (61 + €2))

3. Dy(i), 3<i<n-—3:

[, ®3(n)

V(& +7v)oV(y) @ V(g + (e1+e3))

Vi, +7)@d V()@ V(E + (e1+)) ®VI(E + (62 +¢e3))

4. All exceptional cases (Fg(3), Fs(5), E7(2), E7(6), Es(1), Fy(4)):

L®sm) =V +7)@ V()@ VI(E + ),

where g is the following root contributing to 3(n):

Eg(3)
Es(5)

E7(2)

S % = a1 + ae + 2ai3 + 3y + 205 + a

"% = a1 + as + 2ai3 + 3y + 205 + a

"% = a1 + 200 + 3as + day + 3as + 206 + a7

"% = a1 + 200 + 2a3 + day 4 3as + 206 + a7

D% = 201 + 3 + 4das + 6ay + das + dag + 27 + ag

S Y = a1 + 200 + dag + 2ay.

5.2 Technical Results on [, ® 3(n)

ifi=2

if3<i<n-1

ifi=3

ifa<i<n-—3

In general, the study of tensor product decomposition of irreducible finite dimen-

sional representations is complicated. Techniques from representation theory and

algebraic geometry have been used to study the problem (See for instance [21]). In

our setting [, = V(&) and 3(n) = V/(7), the standard techniques suffice to decompose
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V(&) ® V() under L,-action. We have already observed that this action is com-
pletely reducible. The goal is to find all the constituents and their multiplicities. To
this end, it is enough to study V(&) ® V() as an [,-module.

Our main technique is to analyze the character formula for [,®3(n) = V(&,) @V (v)
as an [,-module. We will freely use the standard notions of dominant weights and
regular weights. When we say that v is A(l,)-dominant (resp. A(l,)-regular), we
mean that (v,a) > 0 (resp. (v,a) # 0) for all @ € A*(L,). For V(\), the finite
dimensional [,-module with highest weight Ay, and a weight v € h*, we denote
by my(v) the multiplicity v|,, in V()); that is, the dimension of the weight space
VN, in V(A).

A weight v is either A(l,)-regular or not. If v is A([,)-regular then no nontrivial
element w in the Weyl group W (l,) of [, fixes v. Otherwise, there is w # 1 in W(l,) so
that wv = v. Hence, if v is a A([,)-regular weight then there is a unique w, € W(l,)
so that w,v is A(l,)-dominant. We will write d(v) = w,v. Define

0 if some w # 1 in W((,) fixes v

sgn(v) =
(=1)!w)  otherwise, where w, € W(L,) so that w,v = d(v),

where [(w,) is the length of w,. We denote by p(l,) half the sum of positive roots
in A*(l,). Then if x, (resp. xy) is the character for V() (resp. V(X)) then the

character formula for the character x,x for the [,-module V(\) ® V(X)) is

oo = ) ma()sen(N X 4 p(L)Xaovr v o) (5.2.1)
MeA(V (X))

where A(V(X)) is the set of the weights for V' (A). This character formula is due to

Klimyk [14, Corollary]. Among the standard facts, we use the following to analyze
(5.2.1):

(I) The constituent V(A + \') occurs exactly once in V() ® V(X'). Moreover, if vy
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and vy are highest weight vectors of V' (\) and V' ()\'), respectively, then vy @ vy
is a highest weight vector of V(A) @ V/(X).

(IT) If A" is the highest weight of some irreducible constituent of V' (A) ® V()\’) then

A" is of the form A" = X 4 v for some weight v of V/(\).

(III) If all weights of V(\) have multiplicity one then each irreducible constituent of
V(A) ® V(X') has multiplicity one.

The unique irreducible constituent V(A 4+ X') is called the Cartan component of
V(A)®@V(X) (see for instance [21, page 1230]). In our setting [,®3(n) = V(&,)@V (v),
the weights &, and ~ are roots. By Fact (I) the highest weights of the irreducible

constituents of [, ® 3(n) are of the form &, + v; with v; € A(3(n)).

The character formula (5.2.1) is particularly simple when II([,) consists solely of

long roots. We obtain a couple of results under this assumption.

Lemma 5.2.2 Suppose that TI(L,) consists solely of long roots of g. If &, + ~y; is not

A(ly)-dominant then sgn(&, + v; + p(ly)) = 0.

Proof. We show that there exists a € II(l,) so that s, fixes &, +7; + p([,). Since
(p(1,),a") =1 for all a € II(L,), it suffices to show that (&, + ~;, ") = —1 for some
a € II(L,). Under our hypothesis &, + v; is not A(l,)-dominant. Hence there exists
a € II(L,) so that (£, +;,a") < 0. On the other hand, since &, is the highest weight

of [, it follows that (¢,,a") > 0. We have
(yj,a") < —(&,a") <0, (5.2.3)

and 7; + @ € A. Since II(l,) contains only long roots, Lemma 3.4.4 shows that
(7j, @) = —1. Then (5.2.3) forces (¢, ") = 0, since (&, a") is an integer. Therefore

(& +7,a") = -1 u
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Remark 5.2.4 If &, + v, is A(L,)-dominant then &, + v; + p(L,) is A(L,)-dominant

and A(L,)-regular. Hence, we have sgn(&, +v; + p(l,)) = 1.

Proposition 5.2.5 Suppose that I1(L,) consists solely of long roots of g. Then V (&,+

;) s an irreducible constituent of L, ® 3(n) if and only if &, + v, is A(ly)-dominant.

Proof. One of the directions is obvious. We then show that V (&, +7;) is an irreducible
constituent if &, +7; is A(l,)-dominant. By Klimyk’s character formula, the character
X¢, X~ is of the form

Xe X = Y my(y)sen(& + 2+ p(h)) Xttt ) -p(1)- (5.2.6)

Y €AG(n))
Since the weights of 3(n) are roots of g, they have multiplicity one. Thus m.(v;) =1
for all 7; € A(3(n)). Moreover, Lemma 5.2.2 and Remark 5.2.4 show that
1 if &+, is A([,)-dominant

sgn(&y +7; + p(Ly)) =
0 otherwise.

Thus (5.2.6) is reduced to
Xe Xy = D Xeytys (5.2.7)

where the sum runs over all v; € A(3(n)) so that &, +~; is A([,)-dominant. Now the

proposed assertion follows. [ |

Corollary 5.2.8 If II(L,) consists solely of long roots of g then V() occurs in the

decomposition of [, ® 3(n) into irreducibles.

Proof. By Lemma 3.4.2, we have v — ¢, € A(3(n)). Thus there exists v; € A(3(n)) so
that &, + v; = 7. Since 7 is A([,)-dominant, the corollary follows from Proposition
5.2.5. -

Remark 5.2.9 Theorem 5.1.3 shows that V(v) in fact occurs in [, ® 3(n) in every

case.
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5.3 Proof of Theorem 5.1.3

In the previous section we have shown that the character formula (5.2.1) is simple,
when II([,) consists solely of long roots. Then in order to prove Theorem 5.1.3, we

consider two cases, namely,
Case 1: II([,) consists solely of long roots.
Case 2: II([,) contains at least one short root.

When g is simply laced, we regard any roots as long roots. Direct observation shows

that the parabolic subalgebras g in (3.3.2) and (3.3.3) are then classified as follows:
Case 1: B, (i), D,(i), Es(3), Es(5), E7(2), E7(6), Es(1)
Case 2: C,(1), Fy(4)
We start by proving Theorem 5.1.3 for parabolic subalgebras q in Case 1.

Proof. [Proof for Theorem 5.1.3 for Case 1] Let I' be the set of all roots v; € A(3(n))
so that &, + v; is A([,)-dominant. It follows from Fact (III) and Proposition 5.2.5
that the character xe, x, is of the form
XXy = ) Xeytoy- (5.3.1)
v €L
Moreover, Fact (I) and Corollary 5.2.8 show that V' (&, + ) and V() occur in the
decomposition. Therefore (5.3.1) might be expressed as
Xey Xy = Xeyty T Xy + Z Xe, 4 -
Y EP\{7 7 =€}
It remains to identify the roots in I'\ {7, 7y—¢,}. This is done in a case by case fashion.

We include the computation for type Fg(3). Other cases may be handled similarly.
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The parabolic subalgebra q of type Eg(3) corresponds to the deleted Dynkin dia-

o@Ino

(0751 Qs Qg (673 Q.

gram

The subgraph corresponding to [ is

So the simple subalgebra [, is isomorphic to sl(5, C). Write the fundamental weights
of sl(5,C) corresponding to as, oy, as, o as wy, wy, ws, wy, respectively. The
[,-module 3(n) has highest weight . As (v, q;) = §;2 with §; 5 the Kronecker delta
for all © = 2,4,5,6, we have 3(n) = V(w;). Thus, the adjoint representation [, on
3(n) is equivalent to the standard representation of s[(5,C) on C®. We then identify
the weights of the adjoint action of [, on 3(n) with those of the standard action of
51(5,C) on C%; that is,
A(3(n)) = {e1,€9,€3,64,65}-

In terms of the fundamental weights we have
€1 =W, €E2=—W+ W2, €E3= W+ W3 &= —Ws+Wy, E5= Wy

The highest weight &, of [, is & = w; + wy. Therefore, the weights v, € A(3(n))
that make &, + v; A(l,)-dominant are v; = w;, —twy, or —w; + ws. Here, we have
g’y +w = f'y +, 5'\/ + (_w4) =w1 =7, and g’y + (_wl + w2) = S'y + % with Yo the

root in A(3(n)) listed in Theorem 5.1.3. |

We next show Theorem 5.1.3 for parabolic subalgebras q in Case 2, namely, C,, ()
for 2 <i<n-—1, and Fy(4).

Proof. [Proof for Theorem 5.1.3 for Case 2] The character formula of the tensor
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product (5.2.6) is of the form

Xe X = D Seu(&y + 75 4 p(4) X, 4 0(0)—olt)- (5.3.2)
EAGH)

Here, we use the fact that m.,(v;) = 1 for y; roots in 3(n). Our strategy is to first find
all 7; € A(3(n)) so that & +~; is A(l,)-dominant. We then consider the contributions
from roots «; with &, + 7; not A(l,)-dominant. The case C,,(i) for 2 <7 <n —11is
demonstrated first. Later, we handle the Fy(4) case.

Let q be of type C,(7) for 2 < i <n — 1. The deleted Dynkin diagram is

O . O X O - Oe—20
o a1 oy (0788 Qpn—1 0Oy

and the subgraph corresponding to [, is

O O O . O (5.3.3)
o5l Qg Qs Q1.

The data in Appendix C shows that
AT(L) =g s [ 1<) <k <)

and

AGM) ={e;+ep | 1<j<k<i}U{2;|1<j<i)

We have &, = 1 —¢; and v = 2¢1. If I is the set of all v; € A(3(n)) so that &, + 7,
is A(l,)-dominant then, by Remark 5.2.4, the character x¢ x, may be written as
XeXo = D Xevwy, + D s80(&y + 75 + p(1))Xa(e, +ytpt)—p(tr)- (5:3.4)
V€L Y €AGM)NT

One can see by direct computation that

p

{7,e1 + €2,2e5} ifi =2

I'= {v,e1 + e, 61+ 3,60 + €3} ifi=3

{7,61+ 69,61 +¢€i,60+e3,60+¢;} fd4<i<n—1.
\
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When 7 = 2, we have I' = A(3(n)), and so, xe, X is

Xey Xy = Z Xéytv; = Xeyty T Xeyt+(e1+e2) T Xey+(2e2)-
Y€

Since &, = €1 — €9, we have &, + (61 + €2) = 26y = 7. When ¢ = 3, it follows that
A(3(n)\I' = {2e2,2e3}. Since we have s.,_, (& +2e2+ p(L,)) = &, + 252+ p(1,) and
Sey—ey(&y + 283+ p(L,)) = &, + 2e5 + p(1,), both weights are not A([,)-regular and do

not contribute to the character. Therefore, when i = 3,

Xey Xy = Z Xty = X&yty T Xy t(ertea) T Xey+(e1+es) T Xy +(eates)-
V€L

Since &, = €1 — €3, we have &, + (g1 + €3) = 2e1 = 7.
If 4 <i<n—1then vy, € A(3(n))\I is
g1 +epfor3 <k <i—1,
€2+5kfor4§k§i—1,
g tepfor3<r<k<u,or
2¢e, for 2 <r <4,
An observation shows that, for each v; € A(3(n))\I' with ; # 2e3, there exists

w € W(l,) with w # 1 so that w fixes & + v; + p([,). Indeed, it is clear from (5.3.3)

that [, is of type A;_1. Thus p([,) is given by

p(l) = (#)53. (5.3.5)

If

Sep_1—ep, When vy =&y +ep, 60+
Se,_1—e, Wheny; =¢, +¢;
Seq—es when 7; = 2¢e9

S, 5—e, When y; =2 ford <r <i—1

Se; 1—e; When 7y; = 2¢g;
\
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then w(&, +v; + p(l,)) =&, +v; + p(L,). Therefore sgn(&, + v, + p(l,)) = 0 for such
iR

Now suppose that v; = 2e3. We first show that &, 4+ 2e3 + p(l,) is A(L,)-regular.
By (5.3.5), we have

i—1

)es + (i g 1)63 +y (#)@ + (- “; 1)52-. (5.3.6)

1 .
(z~|2— )€1+(z 3

The coefficients of €5 and &; with s # ¢ in (5.3.6) are different. Since roots in A™(,)
are of the form e, — ¢; with s < ¢, this shows that the weight &, + 25 + p(l,) is
A(ly)-regular. The reflection s.,_., conjugates &, + 25+ p([,) to the A([,)-dominant
weight

Seg—e3 (57 +2e3+p(ly)) =&, + (62 +e3) + P([v)'

Thus sgn(&, + v, +p(ly)) = =1 and d(&, +7; +p(ly)) = & + (e2+¢€3) + p(1,); we have

sgn(&y + %5+ (L)) Xd(g, +vs+o(0))—p(1y) = —Xé,+(eates)-

Hence,

Xe Xy = D Xeviy + DO s8n(& + 75+ p(1)Xa(e, +y+0(0)—0(0)

V€T Y €EAGEM)\D
= Z Xey+v; — Xéy+(e2tes) (5.3.7)
v;€l

with I' = {7,e1 + e9,61 + &;,62 + 3,69 + &;} for 4 <i <n — 1. Then we obtain

XeXa = D Xevtny — Xeyt(eates)
v; €l

= X&y+y T Xey+(e14e2) T Xéy+(e14e:) T X&y+(eates) T Xe&y+(eatei) = X&y+(eates)

= Xé&y+y T Xeyt(erten) T Xeyt(ertes) T Xey+(eater)-

Since &, = €1 —¢;, we have &, + (g1 + &;) = 251 = 7.
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Next we consider the case that q is of type Fy(4). The deleted Dynkin diagram is

O—O0—70—

Qg Qg a3 Oy

and the subgraph corresponding to [, is

O. O0—=0
(071 (6D) 3.

The simple subalgebra [, is isomorphic to so(7,C). If we write the fundamental
weights of [, = s0(7, C) corresponding to oy, o, a3 as wy, ws, ws, respectively, then
the highest weights &, for [, and v for 3(n) are written in terms of the fundamental
weights as &, = wy and 7 = w;; we have [, = V(wy) and 3(n) = V(w;). Therefore
the adjoint action of [, on itself (resp. on 3(n)) is equivalent to the standard action
of 50(7,C) on A?C7 (resp. on C7). We then identify the [,-module [, ® 3(n) as
the s0(7,C)-module (A*C") ® (C7), and consider the irreducible decomposition of
(A’CT) ® (C7).

Let AT be the standard choice of a positive system of s0(7,C) and p be half the

sum of the positive roots; that is,
A+ = {81 + £92,&2 + £3,&1 + 53} U {81,82,53}

and

—55 +35 +15
P—21 22 23-

If
I'={n e A(C") | @y +n is dominant}

with A(C7) the set of weights for C” then the character X, X, for (A2C7) @ (C7) =
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V(ws) @ V(wy) is

Xwo X1 = Z Moy (W)Sgn(w2 + 1+ p)Xd(w2+77+p)*p
neA(CT)

= Z SgH(WQ + n + p)Xd(w2+n+p)—p
n€A(CT)

= Z Xwwatn Z Sgn(wz +n+ p)Xd(wﬁ,Hp),p.
nel’ nEA(CTH\I'

We need determine the contributions from 7 € A(C")\I'. The weights for C”

under the standard action of so(7,C) are
A(C") = {=ey, £e9, £e3,0}.
In terms of the fundamental weights @, ws, and w3, we have
€1 =W, €E9= —wWi+ Wy, E3= —Ty+ 2003.
Therefore, the weights for C” may be written in terms of the fundamental weights as
A(CY) = {+wy, +(~w1 + @2), £(—ws + 2m3),0}.

If n is a weight for C7 so that @y + 7 is A(l,)-dominant then 7 must be

N = wy, Wy — We, —Ws + 23, or 0. (5.3.8)

Thus,

A((C7)\P = {_wl, —w1 + W, Wy — 2@3} = {—81, €2, —63}.

Observe that when n = —e; or &9, there exists a Weyl group element w € W of
50(7,C) that fixes wy+n+p. Indeed, for either case n = —e; or g9, the root reflection

Seq_e, fiX€S Wy + 1 + p, as wy = 1 + 9. Thus sgn(ws + 1+ p) = 0 when n = —¢; or

€. On the other hand, when n = —e3, we have
7 5 1
Wy — &3+ p= 561 + 562 — 563. (539)

66



The coefficients of ¢, and &; with s # ¢ in (5.3.9) are different. Since roots in A*
are of the form ¢, + ¢, with s < t or &4, this shows that the weight wy — 3 + p is

A(l)-regular. The reflection s., conjugates wy —e3+ p to the A(l,)-dominant weight

7 ) 1
833(132 — &3+ p) = 551 + 552 + 553.

Thus sgn(wwy — 3+ p) = —1 and d(wy — €3 + p) — p = €1 + £ = wo; we have
Sgn(w2 — &3+ p)Xd(wz—E;g-‘,-p)—p = ~Xws-

Hence,

XeosXeos = D Xewain T D S80(@2 + 1+ p)Xa(ws o)

ner nEA(CTI\I
= E Xwa+n — Xwa-
nel’

By (5.3.8), we have I' = {w;, wy — ws, —wy + 2w3,0}. Therefore,

Xwa Xwy = Z Xwo+n — Xwe
nel’

= Xwotw T Xwo+(w1—w2) + Xwa+(—w2+2w3)-

We have wy+wy = &, +7, we+ (w1 —w2) = wy =7, and wy+ (—wa+2w3) = &, 4+

with 7o the root in A(3(n)) in Theorem 5.1.3. This completes the proof. [
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CHAPTER 6
Special Constituents of [ ® 3(n)

In this chapter, by using the decomposition results in Chapter 5, we shall determine
the candidates of the irreducible constituents of [® 3(n) that will contribute to the 2,
systems; that is, the irreducible constituents V' (v) so that 72|y (,)- are not identically

Zero.

6.1 Special Constituents
Given V(v), an irreducible constituent in [ ® 3(n), we build an L-intertwining map
Tolv () € Homp(V(v)*, P*(g(1)))

with V(v)* the dual of V(v) with respect to the Killing form x. From 7|y (-, we
construct operator Qsly )« : V(v)* — D(L_,)". To do so, it is necessary to determine
which irreducible constituents V' (v) have property that 75|y« # 0.

We start by observing the vector space isomorphism P2(g(1)) = Sym?(g(1))*.
With the natural L-action on P?(g(1)) and Sym?(g(1))*, this vector space isomor-
phism is L-equivariant. Thus, if 7 |V(V)* is a non-zero map then V(v) is an irreducible
constituent of Sym?(g(1)) C g(1) ® g(1); in particular, by Fact (II) in Section 5.2, v
is of the form v = p + € for some € € A(g(1)), where p is the highest weight of g(1).

One can see from the decompositions in Theorem 5.1.3 that V() is an irreducible
constituent of [ ® 3(n) for any g under consideration. By Lemma 3.4.2, we have

v = p + € for some € € A(g(1)). Now we claim that 7|y, is identically zero. It is
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well-known that
g(1) ® g(1) = Sym*(g(1)) ® A*(g(1)) (6.1.1)

as an L-module. Since each weight for g(1) is a root of g, by Fact (III) in Section 5.2,

the L-module decomposition (6.1.1) is multiplicity free.

Proposition 6.1.2 The L-module V() is an irreducible constituent of A*(g(1)).

Proof. Define a linear map ¢ : 3(n) — A%(g(1)) by means of

p(W)= > ad(W)X_5A X

BeA(s(1))
By using an argument similar to that for Lemma 2.5.4, one can show that ¢ is L-
equivariant. Then, since 3(n) = V() as an irreducible L-module, it suffices to show
that ¢ is a non-zero map. Write A,(g(1)) = {8 € A(g(1)) | v — B8 € A}. By
Lemma 3.4.2, we have v — p € A. Hence A,(g(1)) # 0. By writing ' = v — 8 for
B € Ay (g(1)), ¢(X,) is given by
p(X)= D ad(X)X sAXg= ) Ny sXgAXp
Ben(s(1)) BeA(a(1))

Observe that for each 5 € A,(g(1)), we have y— € A,(g(1)). Moreover, by Property

(H6) of our normalizations in Section 4.1, it follows that N, _g = —N, _s. Therefore,
N, _sXg NXg+ Ny_pXgA\Xg =2N,_3Xg N Xp. (6.1.3)

Since N, _5 # 0 for 5 € A,(g(1)), equation (6.1.3) is non-zero. On the other hand, if
B e Ay (g(1)) and n € A,(g(1)) is so that n # 3,5 then Xz A Xz and X, A Xg are

linearly independent. Hence, ¢(X,) # 0. [

Definition 6.1.4 An irreducible constituent V (v) of [3(n) is called special if v #
and there exists € € A(g(1)) so that v = p+ €, where p and v are the highest weights

for g(1) and 3(n), respectively.
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Proposition 6.1.5 Let V(v) be an irreducible constituent of [ @ 3(n). Then 7:2“/(”)*

is not identically zero only if V(v) is a special constituent of [ @ 3(n).

Proof. At the beginning of this section we observed that if 75|y (- 7# 0 then v must
be of the form v = p + € for some ¢ € A(g(1)). Then V(v) is either a special
constituent or V() (by Lemma 3.4.2, v satisfies the form). However, by Proposition
6.1.2, it follows that 75|y (y)+ is identically zero. Therefore, V(v) must be a special

constituent. [ |

We will show in Chapter 7 that the converse of Proposition 6.1.5 also holds for

certain special constituents (see Proposition 7.1.6).

6.2 Types of Special Constituents

The aim of this section is to determine and classify all the special constituents of
[® 3(n). Such a classification will play a role in the explicit construction of the
systems. We use the decomposition results in Chapter 5 for the rest of this chapter.
The parabolic subalgebra q under consideration is assumed to be one in (3.3.2) or
(3.3.3).

Since [ ® 3(n) = (CH; ® 3(n)) & (I ® 3(n)) and CH,; ® 3(n) = V(7), it suffices
to consider [, ® 3(n) = ([, ® 3(n)) @ (L, ® 3(n)). We start by observing that, by

Proposition 5.1.2, [, ® 3(n) = V(&y + 7).

Proposition 6.2.1 Suppose that [, # 0. Then the irreducible constituent V (&, +7)

1S special.

Proof. We need to show that &, +v = u+  for some 5 € A(g(1)). This is precisely

the statement (1) of Lemma 3.4.5. [

We next investigate the Cartan component V (&, +7v) of [, ® 3(n) = V(&) @ V(7).
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Lemma 6.2.2 The Cartan component V (&, + ) of I, ® 3(n) is not special.

Proof. Lemma 3.4.5 and Remark 3.4.7 show that &, +~v—p ¢ A(g(1)), which implies

that &+~ # p+ 0 for all B € A(g(1)). [

We determine all the special constituents of [, ®3(n) in two steps. First we assume
that g is a classical algebra, and then consider the case that g is an exceptional algebra.

For classical cases the parabolic subalgebras q under consideration are of type
B,(i) 3 <i<mn),Chi) (2<i<n-—1),or D,(i) 3<1i<mn-—23). It wil be
convenient to write € A(g(1)) in terms of the fundamental weights of [, and [,,,.
It is clear from the deleted Dynkin diagrams that, for each of the cases, II(l,) and
II(l,,) are given by

o) ={a, [ 1 <r<i—1}

and

(b)) = {aips | 1 < s <n—i},

where «; are the simple roots with the standard numbering. By using the standard
realizations of roots, we have a,, = ¢, — ¢,y for 1 <r <1 — 1, ajis = €15 — Cirs1

forl1<s<n-—i—1, and

p

En if g is of type B,

An = § 2¢, if g is of type C,

€n_1+ &, if gisof type D,.
\

The data in Appendix C shows that A(g(1)) is

Ae(1)) =
{ejter|1<j<iandi+1<k<n}U{eg |1<j<i} ifqisof type B,(i)

{ejter|1<j<iandi+1<k<n} if q is of type C,, (i) or D, (i).
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Since we have two simple algebras [, and [,,,, we use the notation @, for the funda-
mental weights of «,. € II([,) and @, for those of ;s € II([,,). Direct computation

then shows that each 5 € A(g(1)) is exactly one of the following form:
( .

@1+ Y s s,
B=19 (~w + 1) + S e, with 1 <7 < i — 2, or (6.2.3)

n—i ~ ~

— W1+ D) M
\

for some m, € Z.
Proposition 6.2.4 Let V(v) be an irreducible constituent of L, ® 3(n).

1. If q is of type B,(i) (3 <i<n) or D,(i) (3 <i<n—3) then V(v) is a special

constituent if and only if v = 2¢,.

2. If q is of type Cp(1) (2 < i < n—1) then V(v) is a special constituent if and

only if v = &1 + &5.

Proof. Suppose that q is of type B, (i), C,(i), or D, (7). By Definition 6.1.4, we need
to find all v of the form v = pu+ g for some 5 € A(g(1)). Here p, the highest weight
for g(1), is

€1+ Eit1 if q is of type B, (i) with i # n, C,(7), or Dy (1)

ILL =
€1 if q is of type B,(n).

We write 1 in terms of the fundamental weights of [, and [,; that is,

wy + @y if q is of type B, (i) with i # n, C,(i), or D, (1)
= (6.2.5)
w1 if q is of type B,(n),

where w; and w; are the fundamental weights of oy = 1 — &9 and ;11 = €;41 — €449,

respectively. As [,, acts trivially on both [, and 3(n), the highest weight v for a
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constituent V(v) C [, ® 3(n) is of the form

i—1
vV = anw]' for n; S ZZO' (626)

j=1
If there exists 8 € A(g(1)) so that v = p +  then (6.2.5) and (6.2.6) imply that

B =v — u is of the form

5 (ny — 1wy + 23;12 njw; —wy if q is of type B, (i) with i # n, C,(7), or D, (7)
(ny — Dy + 22;12 n;w; if q is of type B,(n)
(6.2.7)

for n; € Z>p. On the other hand, we observed that the root 8 must be one of the
forms in (6.2.3). Then observation shows that if 5 satisfies both (6.2.3) and (6.2.7)

then 8 must be

w, — @y or (—wy +wy) — oy if q is of type B, (i) with i # n, C, (i), or D,(7)
wy or (—w + wy) if q is of type B,(n).
Therefore v = u + B is v = 2w; or wy, which shows that v = 2e; or 1 + 9. As
& = e1 — ¢ for q of type B, (i), Cy(i), or D,(i), Theorem 5.1.3 shows that both
V(2¢1) and V(g1 +¢€2) occur in [, ® 3(n). Now the assertions follow from the fact that
the highest root v of g is v = €1 + &9 if g is of type B, or D,,, and v = 2¢; if g is of

type C,. [ |

If g is an exceptional algebra then the parabolic subalgebras q under consideration

are

Es(3), Es(5), Er(2), Er(6), Es(1), and Fy(4). (6.2.8)

Lemma 6.2.9 If q is of exceptional type as in (6.2.8) then V(& + ) in Theorem

5.1.3 is a special constituent.

Proof. This is done by a direct computation. The roots e, in A(g(1)) so that &+ =

i+ €, are given in Table 6.4 below. |
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Proposition 6.2.10 There ezists a unique special constituent in I, @ 3(n).

Proof. 1f q is of classical type then this proposition follows from Proposition 6.2.4.
For q of exceptional type, by Theorem 5.1.3, the tensor product [, ® 3(n) decomposes
into

L @3(n) =V(& +7) e Viy) @ V(g + )
with 79 € A(n) as in Theorem 5.1.3. Then Lemma 6.2.2 and Lemma 6.2.9 show that

V (&, 4+ 7o) is the unique special constituent. [

Since the weight ¢ € A(g(1)) so that p + € is the highest weight of a special

constituent will play a role later, we introduce the notation related to e.

Definition 6.2.11 We denote by €, the root contributing to g(1) so that V(ju + €,)
is the special constituent of [, ® 3(n). Similarly, we denote by €, the root for g(1) so

that V(p + €ny) = Ly ® 3(n).

In Table 6.1, Table 6.2, Table 6.3, and Table 6.4 we summarize the results of this
section. Table 6.1 and Table 6.2 contain the highest weight of each special constituent
occurring in [®3(n) for each parabolic q of classical algebras and exceptional algebras.
Table 6.3 and Table 6.4 list the roots , €,, and €, for each q. A dash indicates that

no special constituent exists for the case.

Table 6.1: Highest Weights for Special Constituents (Classical Cases)

Type Vip+e) V(i €n)
Bn(i), 3<i<n—2 2e1 e1+ &+ Eip1 + Eigo
B,(n—1) 2e1 €1+éey+ e,
Bn(n) 2e1 —
Cn(i), 2<i<n-1 €1+ &9 2e1 4 211
D,(i), 3<i<n-—3 2e1 €1+ €2+ €i11 + Eixo
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Table 6.2: Highest Weights for Special Constituents (Exceptional Cases)

Vip+e) Vi +en)
a1 + 200 + 203 + 4oy + 3as 4+ 20 2001 4+ 209 + 2a3 + 3ay + 2a5 + ag
20&1 + 2052 + 30&3 + 40&4 + 20&5 + ap oq + 20[2 + 20&3 + 30&4 + 2055 + 20(6

2001 + 209 + 4dog + bay + das + 3ag + 207 —
20(1 + 30&2 + 40&3 + 6054 + 4055 + 20(6 + oy 20(1 + 2@2 + 30&3 + 40&4 + 30&5 + 2056 + 2057
201 + 4o 4 Hag + 8ay + Tas + 6ag + 4y + 2as -

20[1 + 4052 + 60(3 + 20&4 —

Table 6.3: The Roots p, €,, and €,, (Classical Cases)

Type p €y €ny

B,(i), 3<i<n—2 e+ €1 —€i41 €2+ Eipo
Bn(n—1) e1+en  €1—¢€n €9
B,.(n) £1 €1 —

Cn(i), 2<i<n—1 e1+e41 €2—¢€i11 €1+ &1

Dpn(i), 3<i<n—3 e +€41 €1 —€iy1 €2+ Eigo
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Table 6.4: The Roots p, €,, and €,, (Exceptional Cases)

Type €y €ny

Es(3) g + a3 + 20 + as + o )+ ag + a3+ ay
Es(5) oy + ag + as + 204 + as s + oy + a5 + ag
E.(2) o1 + g + 203 + 200 + o + g + ap —

E;(6) a1+ g + 2a3 + 3oy + 205 + o a1+ a3+ ag + a5+ ag + oy
Es(1) o1+ as + 2as + 3ay + 3as + 3o + 207 + ag —

Fy(4) a1+ 200 + 3z + ay —

with

Es(3): p=0aq +as+ az+ 2a4 + 205 + ag

Es(5) : p =01+ as+ 2a3 + 204 + a5 + ag

E:(2) : p=0a1+ as+2a3 + 3ay + 3as + 2a6 + az

E;(6) : p=aq + 209 + 2a3 + 304 + 205 + g + a7

Es(1) : p=aq + 3as + 3az + bay + 4as + 3o + 207 + ag

Fi(4): p =01 + 205+ 3az + ay
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By Proposition 6.1.5, only special constituents could contribute to the construc-

tion of the {25 systems. Next we want to show that 7

v+« # 0 when V is a special
constituent. An observation on the highest weights for the special constituents will
simplify the argument. We classify them by their highest weights and call them type

la, type 1b, type 2, and type 3.

Definition 6.2.12 We say that a special constituent V (v) of [ ® 3(n) is of
1. type 1a if v = p+ € is not a root with € # v and both p and € are long roots,
2. type 1b if v = i+ € is not a root with € # p and either p or € is a short root,
3. type 2 if v =+ e = 2u is not a root, or
4. type 3 if v = p+ € is a root,

where p is the highest weight for g(1) and € = €, or €, is the root in A(g(1)) defined
in Definition 6.2.11.

Example 6.2.13 The following are examples of each type of special constituents:
1. type la: V(p+ €,y) for type Bo(n —1) (n+ ey = (614 €,) + (61 — €n))
2. type 1b: V(i + €4y) for type By(n — 1) (p+ €y = (1 + £5) + (£2))
3. type 2: V(i + €ny) for type Cn(i) (1 + €ny = 2(g1 + €441) = 2p1)
4. type 3: V(u+e,) for type Cy (i) (,u +e,=c1+ 52)

Table 6.5 summarizes the types of special constituents for each parabolic subagle-
bra q. One may want to observe that almost all the special constituents are of type
la. We regard any roots as long roots, if g is simply laced. A dash indicates that no

special constituent exists in the case.
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Table 6.5: Types of Special Constituents

Type Vip+ 67) Vi + Env)

Bu(i), 3<i<n—2 Typela  Type la
Bn(n—1) Type la Type 1b

B, (n) Type 2 —
Cn(i),2<i<n—-1 Type3 Type 2

D,(i), 3<i<n—3 Type la Type la

Es(3) Type la Type la
E(5) Type la  Type la
E;(2) Type la -
E;(6) Type la  Type la
Es(1) Type la -
Fy(4) Type 2 -

Remark 6.2.14 [t is observed from Table 6.3 and Table 6.4 that we have pte ¢ A,

unless V(i + €) is of type 3.

Remark 6.2.15 Table 6.5 shows that when V (u + €) is a special constituent of type
la, the parabolic subalgebra q is of type B,(i) (3 <i <n—1), D,(i), E¢(3), Es(5),
E;(2), E7(6), or Es(1). The data in Appendixz C shows that when q is of type B, (i)
for 3 < i < n—1, the simple root g = €; — €;41 that parametrizes q is a long root
and A(3(n)) contains solely long roots. Since we regard any roots as long roots for g
simply laced, it follows that when V(1 + €) is of type 1a, the simple root aq and any

root v; € A(3(n)) are all long roots.
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6.3 Technical Results

In this section we collect technical results on the special constituents, so that certain
arguments will go smoothly in Chapter 7. The weight vectors X, and the structure

constants /N, g are normalized as in Section 4.1.

Lemma 6.3.1 Let V(u+e€) be a special constituent [Q3(n) of type 1a, and o € A™(I).

Ife+ae A then p—aeA.

Proof. We show that (i, ) > 0. Since p + € is the highest weight of an irreducible

[-module, it is A([)-dominant. Thus,
(€, a) = (u,a) + (e,a) > 0. (6.3.2)

Observe that, as p + € is of type 1la, € is a long root of g. Since a + € is assumed to
be a root, Lemma 3.4.4 implies that (o, €”) = —1; in particular, (¢, a) < 0. Now, by
(6.3.2), we have

(u, ) > —(e,a) > 0.

Lemma 6.3.3 Let V(u+€) be a special constituent of [® 3(n) of type 1a. Then, for

a € AT(I) with « + € € A, we have
ad(X,)ad(Xare) Xy, =0
for all v; € A(3(n)).

Proof. If (o + €) —v; ¢ A then there is nothing to prove. So we assume that (o +
€)—v; € Aand pu+ (a+¢€) —v; € A. Since p + € is assumed to be of type la, the

root p is long. Lemma 3.4.4 then implies that

((a+e)—y,n")=-1 (6.3.4)
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By Remark 6.2.14, we have (¢, u) = 0. Thus (6.3.4) becomes

(o, 1) = (5, p7) = —1. (6.3.5)

Since 1 is the highest weight for g(1), v, € A(3(n)), and a € A*(1), neither y+ a nor
7vj + v is a root. Then, as yu is a long root, (6.3.5) holds if and only if («, 4¥) = 0 and
(7j, 1Y) = 1. On the other hand, since o + € is a root by hypothesis and by Lemma
6.3.1, 4 — « is a root. In particular, by Lemma 3.4.4, (o, u¥) = 1. Now we have

(a, 'y =1 and (a, ') = 0, which is a contradiction. |

For any ad(h)-invariant subspace W C g and any weight v € h*, we write
AW)={ae AW) |v—ae A}.

In Chapter 7, we will construct the Qs]y (4« systems and find their special values,
when V (11+¢€) is of either type la or type 2. When we do so, the roots 8 € A, 1(g(1))
and 7; € A,4e(3(n)) will play a role. Therefore, for the rest of this section, we shall
show several technical results about those roots, so that certain argument will become
simple.

First of all, we need check that A, .(g(1)) and A,;.(3(n)) are not empty. It is
clear that A, (g(1)) # 0, since u, € € A,4(g(1)). Moreover, Lemma 6.3.6 below

shows that when V(i + €) is of type 2, we have A, 4 (g(1)) = {1}

Lemma 6.3.6 IfV (u+e) is a special constituent of [23(n) of type 2 then A, 1+(g(1)) =

{u}.

Proof. First we claim that p has the maximum height among the roots 5 € A(g(1)).
As g(1) is the irreducible L-module with highest weight u, any root 8 € A(g(1)) is

of the form 3 = p1 =3~y o With na € Zsg. Then if ht(x) and ht(53) denote the

80



heights of p and 3, respectively, then

ht (12) Zna>ht

aell(l
Now as V(1 + €) is of type 2, by definition, we have p+ € =2pu. If 5 € Ay,(g(1))
then 2u—p € A(g(1)). In particular, the height ht(2u—f) satisfies ht(u) > ht(2u—_).
If =p— Zaen([) nea with n, € Zs( then

ht(p) > ht(2u — 8) = 2ht(p) — ht(8) = 2ht(u + 3 ma=ht(p) + Y na

a€elII(l) a€elII(l)

This forces that 3,y 7 = 0. Therefore 8 = p. |
Lemma 6.3.7 If V(u+ ¢€) is a special constituent of | @ 3(n) then A,4.(3(n)) # 0.

Proof. By Fact (II) in Section 5.2, the highest weight p + € of V(u+€) C [ ® 3(n) is
of the form

N &+ i V(pte Cl®sn
Bt €=

ny +Y" iV (n+e€) =1, ®3(n)

for some +/,7" € A(3(n)), where &, and &, are the highest weights for [, and [,

respectively. Then we have v, 7" € A,4(3(n)). [

The following simple technical lemma will simplify an argument in later proofs.

Lemma 6.3.8 Let a, (3,0 € A with o, 5#9. Ifa+ ¢ A anda+ 5 —3§ € A then
the following hold:

(1) a— 0, =86 € A, and
(2) Ngoa—6Na,—5 = Naps—sNp _s.

Proof. For the first assertion, we show that « —§ € A. Suppose that « — 0 ¢ A, so

(v, 0) < 0. By hypothesis, we have («, ) > 0. Thus it follows that
<Oé+ﬁ—5,0(> = <Oé,0(> + <ﬁ705> - <(5,0é> > 0.
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Therefore, f — 6§ = (o + f — 0) — o is a root. Now let X,, X3, and X_;5 be the root
vectors of «, 3, and —d, respectively, normalized as in Section 4.1. Since g — 6 € A,
we have N _s # 0 (see Property (H7) in Section 4.1). Moreover, the conditions that
B—9,a+5—06 € Aimply that N, s_s # 0. On the other hand, we have [X,, X_5] =0
by assumption, and [X,, X3] = 0 by hypothesis. So it follows from the Jacobi identity
that
0 = [Xp, [Xa, Xsl] = [Xa, [Xg, Xo5l] = Nag-sNs,—sXars-5 # 0,

which is absurd. Therefore a—9 € A. Since it may be shown similarly that f—0 € A,
we omit the proof.

Observe that the condition a+8 ¢ A implies that ad(X,)ad(X3) = ad(Xs)ad(X,)
by the Jacobi identity. Therefore, ad(X,)ad(Xz)X_5 = ad(Xz)ad(X,)X_5, which
implies that

Nga-5Na,~5 = Na,g—sNp,—s-

Lemma 6.3.9 Let W be any ad(h)-invariant subspace of g with A, +(W)\{u, e} # 0.
If V(u+ €) is a special constituent of [ ® 3(n) of type 1a, type 1b, or type 2 then, for
any § € A (W)\{p, €}, we have 6 —p, § —e € A.

Proof. If V(i + €) is of type la, type 1b, or type 2 then, by definition, x4 € is not a

root. Then this lemma simply follows from Lemma 6.3.8 [ |

Remark 6.3.10 A direct observation shows that if V(i + €) is a special constituent
of type 1a then A, (g(1))\{u, e} # 0.

Lemma 6.3.11 If V(u + €) is a special constituent of | ® 3(n) of type 1a then, for

any o € A,ic(9(1)) and any v; € A,ye(3(n)), we have v; —a € A.

Proof. By Lemma 6.3.8, we have v; — p,7;, — € € A. So, let a # p1,e. We show that

(7j,a) > 0. Observe that since a € A(g(1)) and v; € A(3(n)), we have v, + o ¢ A.
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Thus (yj,a) > 0. Since a € A, (g(1))\{p, €} and v; € A,1(3(n)), by Lemma
6.3.9, we have p — a, e —y; € A. Then we first claim that if (y;,a) = 0 then
(p—a) + (e — ;) € A. Since V(u + €) is assumed to be of type la, both p and €
are long roots. Thus, by Lemma 3.4.4, (v;, 1") = (a,€”) = 1; in particular, (v;, i),
(a,€) > 0. By Remark 6.2.14, we have (u,e) = 0. Then,

(=o€ =) = —(u,7;) — (o, €) <O0.

Therefore, as p1 — a, € —y; € A, it follows that (1 — a) + (¢ — ;) € A. On the other

hand, since (i, €) = 0 and (7;, ) is assumed to be 0, we have

(e = @) + (e = )II*

= [l + el [ =+ el * + 111" = 2o, 1) — 2(e,€) = 2075, 1) — 2{75, €).

For v = a,v; and { = p, €, by Lemma 3.4.4, we have (v,(") = 2(v,()/||¢|]* =1, as u

and € are long roots. Therefore, 2(v, () = ||(||?, and so,

10 = @) + (e = )I* = lled I* + [l = il = T]el

Since p and € are assumed to be long roots, this shows that ||(z—a) + (e —;)||* < 0,

which contradicts that (u — a) + (e — ;) is a root. Hence, (v;,a) > 0. |

Lemma 6.3.12 If V(u + €) is a special constituent of | ® 3(n) of type 1a or type 2

then, for any ~; € A;HrE(?) (n)),
Aure(a(1)) € Ay (g(1)).
In particular, A, (g(1)) # 0 for any v; € Apye(3(n)).

Proof. 1f V(i + €) is of type la then the assertion follows from Lemma 6.3.11. If
V(i + €) is of type 2 then Lemma 6.3.6 implies that A, .(g(1)) = {¢}. Now this

lemma follows from Lemma 6.3.9 by taking 6 = v; € A,1(3(n)). [
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If V(i +€) is a special constituent of [ ® 3(n) then, for 5 € A, we write

0(F) = (u+e) -5

Lemma 6.3.13 If V(i + €) is a special constituent of | ® 3(n) of type 1a or type 2

then, for any v; € Aute(3(n)),

Ay (a(1)) # 0.

Proof. Since v; € A,4(3(n)), we have (u+¢€) —v; € A. As V(u+ ¢€) is assumed to
be of type la or type 2, by definition, it follows that u + ¢ ¢ A. Thus, by Lemma

6.3.8, we have y —v; € A and € —7; € A. Then,
0(v;) —p=(n+e)—v—p=e—7 €A

that is, 1 € Ag(y,y(a(1)). [

Lemma 6.3.14 If V(i + €) is a special constituent of type 1a or type 2 then

Z NIJ’HE_FYJ N_Nﬁfy‘] —€N€7—’Yj N—€7’Yj > 07

Vi €Au+e(3(n))

where Ny g are the structure constants for o, B € A, defined in Section 4.1.

Proof. 1t follows from Property (H7) of our normalizations in Section 4.1 that

Qe—y; (L + Dppe—ry;)
NIME_WJ'N_MWJ'_GZ — 9 e ||,u||2

and

Qe,—y; (1 + De—y;)
€75 N—E,’Y]‘ = - — 2 2 ||€| |2

In particular, by (4.1.1) in Section 4.1, we have N, N_, . _« <0and N, N_.,, <
0. By Lemma 6.3.7 and Lemma 6.3.9, A, (3(n)) # 0 and v, — e € A for any

v € Aute(3(n)). Therefore, for all v; € A, 4(3(n)), we have

N,

1E=Y;

N_M77j _6N

67_’Yj

N_cy, > 0.

84



Lemma 6.3.15 If V(u + €) is a special constituent of type 1a then, for any o €
Apre(g())\{p, e} and any v; € Ayie(3(n)),

(X Xaul = [Xoy), Xau] = 0.

Proof. We show that —v; +« — p and 6(v;) + o — p are neither zero nor roots. First
of all, if —y;4+a—p = 0 then v; = p—a € A(l), which contradicts that v, € A(3(n)).
Next, if 6(vy;) + o — po = 0 then since §(v;) + @ — p = € + a — ;, we would have
a+ € =1; € A. On the other hand, as V(u + €) is assumed to be of type la, € is a
long root. As v € A, (g(1))\{x, €}, by Lemma 6.3.9, we have o — € € A. Then, by
Lemma 3.4.4, it follows that o + ¢ ¢ A, which is a contradiction.

To show v; + o — p is not a root, observe that, by Lemma 3.4.4, we have
(y+a—pp)=-1+1-2=-2

Thus, if —v; + o — p € A then (—v; + o — ) + 2 would be a root. However, since
p is a long root, it is impossible. The fact that 6(v;) + o — p ¢ A can be shown in a

similar manner. [ ]

Lemma 6.3.16 If V(u + €) is a special constituent of type 1a then, for any o €

Apre(@())\{p, €} and any v; € Ayie(3(n)),
Pu—ja—p =0 and Gy a—p =1,

where po g and qo 5 are the constants defined in (4.1.1) in Section 4.1. In particular,
we have

[l =l
Ny auN- (). ~(@—p) = _TJ' (6.3.17)

Proof. Observe that, by Lemma 6.3.11, (o — p) + (u — 7j) = 75 — v is a root. As
V(@ + €) is assumed to be of type la, p is a long root. By Remark 6.2.15, the root v;
is also a long root. Therefore u — v; is a long root. Now the first part of the lemma
follows immediately from Lemma 3.4.4, and the second follows from Property (HT7)

in our normalizations in Section 4.1. [ |
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Lemma 6.3.18 If V(u+e€) is a special constituent of type 1a or type 2 then, for any

a € Apye(g(1)) and any v; € Apie(3(n)),
No,—v; N-o(v;),0(0) = Noa),—; N-0(v),a-

Proof. Observe that, by Property (H3) in Section 4.1, we have x(X,, X_,) = 1 for

all @ € A. Thus, N_g(,).6(a) = 5([X_6(,),» Xo(a)]: Xa—r,). Then, we have

N—O(’yj),e(a) = K([X—e('yj'),a X@(a)]a Xa—'yj)

1

= v FllX-00): Xow), [Xa, X))
057_7]'
1

= N F‘:([Xf’y]w [X—H(Vj)uxﬁ(a)]]uXa)'
@, =75

Since V' (u + €) is assumed to be of type la or type 2, we have (—v;) + (—0(v;)) =

—(pn+e . us, | X_~., X g, = 0. Hence, by the Jacobi1 identity,
A. Th X%X(%) 0. H by the Jacobi identi

1
N_o(v))0(a) = N w([ Xy, [XZo0v,), Xol]s Xa)
@, =75
1
= v Al X0 [X s Xo@]], Xo)
o, —;
1
=5 V008N .00)- (6.3.19)
@, =5

We have N_, ga) = —No(a),—y; Moreover, since —0(v;) + (0(a) — ;) + a = 0,
by Property (H6) of our normalizations, it follows that N_g(,)6a)—;, = —N-6(y,).a-

Therefore, by (6.3.19), we have
No,—v; N-o(v;),0(a) = N-b(3),0(0)—7; N=,,6(0) = No(a),—; N-0(3;).a-

Lemma 6.3.20 If V(u + €) is a special constituent of type 1a then, for any o €

Are(8())\ {1, €} and any v; € Auic(3(n)), we have the following:

(1) Nay—y;Ny—a = Ny—y, Na—piy—r,;, and
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(2) N-(3).000) N-00).00) = N-003,),000 N~(u=),~(a-1)

Proof. By Lemma 6.3.9, we know that a — p € A. Therefore, it holds that X, =

(1/Na—ppu)[Xa—p, X,]. Then we have
1

[Xo X)) = (X

a—p

N X/LLX*’YJ‘]'

Q—ppt

By Lemma 6.3.15, it follows that [X_, , X,_,] = 0, and the Jacobi identity gives

1
[)(aa)(fvﬁ = N H)(a7u7)(u]v)(va
o[,
1
= N [)(afuaLXﬁvj(*yJ]
o[,
N, _
- ﬁNa—uvu—an—w-

Note that Lemma 6.3.11 is applied to have o« — v; € A from line two to line three.

Since [Xq, X_,] = No,—, Xa—r,, We obtain

N,
Ny_, = "1 N (6.3.21)

U T N, T
Since, by Property (H6) of our normalizations, we have No_, , = N, _, Now State-
ment (1) follows from multiplying both sides of (6.3.21) by N, _,. Since Statement

(2) may be shown similarly, we skip the proof. [

Lemma 6.3.22 Let q be a two-step nilpotent parabolic subalgebra of non-Heisenberg
type, listed in (3.3.2) or (3.3.3), and a4 be the simple root that parametrizes the

parabolic subalgebra q. If V(u + €) is a special constituent of type 1a then, for any
o € Apy(9(D))\{ts €} and any 75 € Ay (5(w),

[lol|
Na 5, Nyt ~aN-0(3).6(0) N-b(@) 6s) = Nysem, Ne,oy =

(6.3.23)
Proof. By Lemma 6.3.20, we have

Naﬁw NuﬁaN—G(vj)ﬁ(a)N—f)(a)ﬁ(u) = NH’*'YJ‘ Na*u,ufw N—f)(vj)ﬂ(u)N—(u—w),—(a—u)

= Ny~ N-6(7;),000) No—ps—; N (u=3),~ (a—p)
Il
= Ny Noop o =5
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Note that (6.3.17) is applied from line two to line three. Since —6(v;)+0(p)+(pn—7;) =
0 with O(u) = (u + €) — u = €, by Property (H6) of our normalizations, we have

N_o(4),0(u) = Ney—r,;- By Lemma 6.3.8 with a = u, 8 =€, and § = v, it follows that
N,

G,Mf’y‘j

N

=5

=N, Ne, ;. Therefore,

H€—75 €,
Nuv—w N—9(7j),9(u) = Nm—w Ne,u—“/j = Nu,e—”/j NE;-“/]' .

Remark 6.2.15 shows that v; and oy are long roots, when V(4 ¢) is of type la. Since

w is assumed to be a long root, the root p—7; is a long root. Thus ||u—";|1* = ||ayl|?.
Hence,
i = ll?
No—; Ny—aN-0;) 0@y N-0(2).00) = Ny N-v) 00~
[l
= Nmefw Ne,fw 2q :
|
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CHAPTER 7

The (2, Systems

We continue with q = [Gg(1)®3(n) a maximal two-step nilpotent parabolic subalgebra
of non-Heisenberg type, listed in (3.3.2) or (3.3.3). In this chapter, by using the
preliminary results from Chapter 6, we shall determine the complex parameter sy € C
for the line bundle £_; so that the {2, systems are conformally invariant on L,,. This

is done in Theorem 7.3.6.

7.1 Covariant Map 7

As we have observed in Section 2.5 and as we have done in Section 4.2 for the

system, to construct the €2y

v+ system, we use the covariant map 75 and the associated

L-intertwining operator 7y|y+, where V* is an irreducible constituents of I* ® 3(n)* =

9(0)* ® g(2)*. The purpose of this section is to show that the covariant map 7 is not

identically zero, and also that the L-intertwining operators 7»|y+ are not identically

zero for certain irreducible constituents V. We keep on using the normalizations from
Section 4.1.
We start by showing that 7 is not identically zero. The covariant map 7 is given

by

7 g(1) = 1@ 3(n)

1
X — 5 ad (X )%wo

with wy = > Y EAGM)) X, ® X,,. The following technical lemma will make a certain

argument simpler in later proofs.
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Lemma 7.1.1 If V(u+ €) is a special constituent of type 1a or type 2 then
7o(X, + Xe) = a, ad(X),) ad(X) wo, (7.1.2)
where ay e = 1+ 0, with i, the Kronecker delta.
Proof. 1t is clear that (7.1.2) holds if p+ € is of type 2. Indeed, if € = p then we have
79(2X,,) = 47(X,,) = 2ad(X,,)*wo.

If i+ € is of type la then, by definition, p + € ¢ A and both p and e are long roots.
Thus, in the case, ad(X,) ad(X.) = ad(X) ad(X,,). Moreover, by Lemma 3.4.4, we
have ad(X,)?X_,, = ad(X.)?X_,, = 0 for any v; € A(3(n)). Hence,

To(X, + Xo) = (1/2)(2 ad(X,) ad(X,)) wo = ad(X,) ad(X) wo.
|

Proposition 7.1.3 Let q be a maximal two-step nilpotent parabolic subalgebra of
non-Heisenberg type listed in (3.3.2) or (3.3.3). Then the covariant map T is not

wdentically zero.

Proof. To prove that 7, is not identically zero, it suffices to show that there exists a
vector X € g(1) so that 7(X) # 0. Observe that, for each q under consideration,
[® 3(n) has at least one special constituent V(i + €) of type la or type 2 (see Table
6.5). Therefore, A(g(1)) always contains a root € so that V(u + €) is such a special
constituent. Then, to prove this proposition, we show that 75(X, + X¢) # 0, where
X, and X, are root vectors for p1 and e, respectively, with p + € the highest weight
for a special constituent of type la or type 2.

Let p + € be the highest weight of a special constituent of type la or type 2. By
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Lemma 7.1.1 we have

(X, + X)) = a,, ad(X,) ad(X,) wo

=au Y, ad(X,)ad(X,) X_, @ X, (7.1.4)

with a, . = 14 6,.. If there were a root v; € A(3(n)) such that e — v, = —p then
i+ €=, €A, which contradicts the assumption that p + € is of type la or type 2.
By Lemma 6.3.9, if y+ € —v; € A then € —; € A. Then, for all v; € A(3(n)),

NyeenyNe oy Xypery, ifp+e—7 €A
ad(Xu)ad(Xe)X_ﬁyj: M€= ViR Yi J

0 otherwise.

Therefore, we have
nX+X)=a, Y ad(X,)adX) X_, @ X,
7 €AGM)

= Qe Z Nype—ry Ne,—; Xpge—r; © X,
V5 €A e (3(n))

Since {X,ye—y, ® X5, | 75 € Apre(3(n))} is a linearly independent set, this shows that
TQ(X“+X€) 7é0 ]

Next we identify irreducible constituent V' (v)* so that 7|y(,) is not identically
zero. In Section 6.1, we observed that, given an irreducible constituent V' (v)*, the

L-intertwining operator 72|y ()~ € Homp(V (v)*, P?(g(1))) is given by
Talv ) (V) (X) = Y (12(X)), (7.1.5)

where P?(g(1)) is the space of polynomials on g(1) of degree 2. By Proposition 6.1.5,
we know that if 75|y ()~ is not identically zero then V(v) is a special constituent of
[® 3(n). We now show that the converse of Proposition 6.1.5 also holds, when the

special constituent V' (v) is of type la or type 2. If | € L and Z € [ then we denote the
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action of the group and its Lie algebra on X,® X, by [-(X,®X,,) and Z-(X,®X,,),

respectively.

Proposition 7.1.6 If V(u+ €) is a special constituent of L ® 3(n) of type 1a or type
2 then the following hold:

1. The vector 15(X,, + X.) is a highest weight vector for V(p + ¢).

2. The L-intertwining operator To|v (e is not identically zero.

Proof. We have shown that in the proof for Proposition 7.1.3 that (X, + X.) # 0.
Moreover, Lemma 7.1.1 gives that 7(X, + X¢) = a,. ad(X,) ad(X )wy with a,. =

140, Forl e L, we have [ - wy = wy (see Corollary 2.5.3) and so
l-17(X, + X)) =a,.ad(Ad()X,) ad(Ad(])X,) wp.
By replacing [ by exp(tZ) with Z € [, differentiating, and setting ¢ = 0, we obtain
Z-1(Xu+ Xe) = aye (ad([Z, X,)]) ad(X.) + ad(X,,) ad([Z, X])) wo. (7.1.7)
In particular, if Z = H € b in (7.1.7) then
H - 1(Xy + Xo) = (n+ ) (H) (X, + Xo).

Therefore (X, + X.) is a weight vector with weight p+e. To show that 7 (X, + X,)
is a highest weight vector, we replace Z in (7.1.7) by X, with o € A™([). Since p is

the highest weight for g(1), we have
Xo - 1(X, + Xo) = aye ad(X,) ad([Xa, Xe]) wo.

If 1+ € is of type 2 then, as e = p in the case, clearly X, - (X, + X.) = 0. The case
that p + € is of type la follows from Lemma 6.3.3.

To prove the second statement, it is enough to show that there exist Y* € V(u+e€)*
and X € g(1) so that 7(Y™*)(X) # 0. Let Y;* be a lowest weight vector for V(1 + €)*.
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Observe that if Y}, is a highest weight vector for V' (u + €) then Y;*(Y},,) # 0. Since

72(X,, + X.) is a highest weight vector for V(1 + ¢€), we have

7:2‘V(u+6)*(yg*>(Xu + Xe) = }/2*(72()(# + Xe)) # 0.

7.2 The Q|y(uteo- Systems

Proposition 7.1.6 shows that the L-intertwining operator 72|y (44~ is not identically
zero, when V(u + €) is a special constituent of [ ® 3(n) of type la or type 2. In
this section, we thus construct the Qs|y (41~ system corresponding to irreducible
constituents V' (u + €) of type la or type 2. Here it may be helpful to recall some
notation introduced in Section 6.3. For any ad(h)-invariant subspace W C g and any

weight v € h*, we write
AW)={ace AW) |v—aec A}

Recall from Section 6.3 that when V(u + €) is a special constituent of [ ® 3(n), we
write
0(6) = (n+¢) = 5.

As indicated in Section 2.5, the L-intertwining operator 7|y (,4¢)+ yields a system
of differential operators. We have denoted such operators by Qv (4.0~ (Y™) with Y* €
V(p+e€)*, where Qo|v(utex = V(p+e)* = D(L_,)" is U([)-equivariant. Because of such
equivariance, the system is totally determined, once Qs|v (4o« (Y;*) is constructed,
where Y;* is a lowest weight vector in V' (u + €)*.

The first step is to explicitly describe Y,* € V(u + €)*. Observe that we have a

non-zero map
Tp:g(—1) = [®3(n)

- 1
X = éad(X>2@0
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with @y = Z%eA(a(n)) X,, ® X_,,. One checks, as in the proofs for Lemma 2.5.4 and
Proposition 7.1.3, that 7, is a non-zero L-equivariant map. Moreover, if V(i + €) is

a special constituent of type la or type 2 then, as in Lemma 7.1.1,
To(X_y+ X o) =a,.ad(X_,) ad(X_.) @

with a, . = 14+6,.. Arguing as in Proposition 7.1.6, we can show that 7»(X_,+X_,)

is a lowest weight vector for V(i + €)* with lowest weight —p — €. Thus,

Y =ad(X_,)ad(X_¢)wo
- Z N e N-en X o) @ X, (7.2.1)
V€A1 (3(n))
is a lowest weight vector for V(u + €)*. Observe that, by Lemma 6.3.9, we have
v —e€ Afor v, e Ay (3(n)).
For Y;* as in (7.2.1), we have

. 1
VX)) =5 D N N hil(X g, ad(X)2X R X))

YEAu+e(3(n))
1 €A(3(n))

1
=3 > NopmeNoeni(X gy, ad(X)?X_,). (7.2.2)

V€At (3(n))

Write X =37 A1) TaXa and let 3 € Ay c(3(n)). Then,

K(X_g(%), ad(X)QX_%) = Z Uanﬁ"&(X—e(%); [X,Ba [ch X—%H)
a,BeA(g(1))

= Z nanﬁﬁ([X—O(%)?XB]? [XOHX—%])
a,BeA(g(1))

= Z NansNa,—vN-0(3),85(Xs-0(1), Xa—r.)-
acAy, (g(1))
BEAg (v, (8(1))
Observe that, by Lemma 6.3.12 and Lemma 6.3.13, the sets A, (g(1)) and Ag(,,)(g(1))
are non-empty. By the normalization (H3) in Section 4.1, if x(Xg_g(y,), Xa—ry,) # 0

then 8 — 0(v;) = v — o. Thus k(Xp_g(y,), Xa—,) = 0 unless = (u+¢€) —a = 0(a).
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Therefore,

/Q(X_g(%),ad<X)2X,%) = Z 77a775Naﬁ%N—B(%)vﬁ"i(Xﬁ—e(%)7XO‘*%)
€Ay, (a(1))
BEAy (4, (8(1))
- Z NO‘y*'Yt N—G('yt),é(a)nane(a)

€Ay, (9(1))NA 4 (g(1))

= Z Na’_%N_g(%)ﬂ(a)li(X, X_a)/i(X, X_g(a)).

€A ,te(g(1))

(7.2.3)

Lemma 6.3.12 is used in line three to show that A, (g(1))NA,+e(g(1)) = A,+c(g(1)).
Hence, by (7.2.2) and (7.2.3), Ta|v(ute (Y,)(X) = Y (12(X)) is

Tolv v (V) (X)

1

= 9 Z (Nfu,vreNfemeaﬁ%N—B(%)ﬁ(a))ﬁ(xa X_a)K(X, X—G(a))-
a€lpte(9(1))
TEA te(3(n))

Now, via the composition of maps
Vit e MM P2 g(1) - Sym?(g(~1)) % U(m) B DL,

for Y;* € V(4 €)*, the second-order differential operator Qy(Y}*) € D(L_)" is given
by

. 1
L) =5 D (Vo Noco) Voo N o) RO RIX g00) ™
a€lpte(9(1))
V€A u+e(3(n))

where "ab™ = (1/2)(ab+ba). By Lemma 6.3.18, no symmetrization is needed. There-

fore we obtain

. 1
BY) =3 > (NopmmeNoer) (Na i Nopir).000) ) RIX_a) R(X _p(a)).

a€lpte(g(1))
V€A e (3(n))

(7.2.4)
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7.3 Special Values of the )|y, Systems

In this section we determine the special values of the line bundle £_g for which the
Qv (ute)+ system is conformally invariant, under the assumption that V(u + €) is a
special constituent of type la or type 2.

Choose a basis of weight vectors Y{,...,Y,* for V(i + €)* and let Y;* = Y} be
a lowest weight vector. We study Q(Y7"),...,Q2(Y,"). To show that the list of
differential operators Qo (Y(*), ..., Qo(Y") is conformally invariant on the bundle £_;,

n

we need to prove that in D(L_,)",

7, (X), (V)] € spancee () {Qa(Y7), .., %a(Y;)) (7.3.1)

n

for all X € g and all i. By Proposition 2.3.14, (7.3.1) holds if
[ms(X), Q2(Y")]e € spanc{Q(Y))e, -+, Qa(Y,)e} (7.32)

holds for all X € g and all i. Here, for D € D(L_;), D5 denotes the linear functional
[+ (Def)(n) for f € C®(Np,C,-s). We show that a simplification of (7.3.2) implies

(7.3.1).

Proposition 7.3.3 Let V(u+e¢)* be the dual module of a special constituent V (114 €)
of L ® 3(n) with respect to the Killing form. Suppose that the operator Qv (uqo«
V(p+e)* = D(L_y)" is non-zero. If Xy, is a highest weight vector for g(1) and if we
have

[ma(Xn), 2(Y;7)]e € spanc{Qa(Y{)e, -, Qa(Y,))e}

for a lowest weight vector Y;* and a basis {Y\", ..., Y, } for V(u4-e€)* then the Qa|v (ute)r

system is a conformally invariant system.

Proof. By Remark 2.5.11, the Q|y (44~ system satisfies the condition (S1) of Defini-
tion 2.1.4. We need to prove that (7.3.2) holds for all X € g = n@®[®n. Note that, by
definition, we have Qy(Y;*) € D(L_)". Hence (7.3.2) holds for X € # trivially. The
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Lg-equivariance of sy (u4.¢)« shows that (7.3.2) holds for X € [. Furthermore, Lemma
2.6.4 established (7.3.2) when X € g(1). Now we handle the case when X € 3(n).
If X € 3(n) then, since 3(n) = [g(1), g(1)], it is of the form X = [X;, X;] for some

X1, X3 € g(1). Then, by the Jacobi identity, we have

[WS(X)7 QQ(K*)]

= [ma(X1), [me(X2), Qo (¥7)]] = [me(Xa), [ma(X1), Q2 (Y]]

By Proposition 2.3.3, we have 74(X;). = 0 for j = 1,2. It follows from Lemma 2.6.4

that for j = 1,2 and all ¢, we have
|:7TS<Xj>, QQ(Y*)]Q € SpanC{Qg(Yl*)e, e QQ(Y*)E}.
Therefore, by Lemma 2.6.1,

[ms(X), Q2(Y;)]e
= [ms(X1), [ms(X2), Qa(Y)]]e — [m:(X2), [ms(X1), Qa(Y)]]e

€ spang{Qa (Y )e, - .., Qa(Yi0). ).

Proposition 7.3.4 If u is the highest weight for g(1) and o, 5 € A(g(1)) then

[7s(Xw), R(X ) R(X )]

= R([[Xy, Xoo], Xoplle 4 5Ag ([Xp, Xoa]) R(Xp)e + sAq([ X, X p]) R(X e

Proof. This simply follows by substituting ¥ = X,, X; = X_,, and Xy = X_3 in

Proposition 2.4.5, and evaluating at n = e. |

If V(i + €) is a special constituent of [ ® 3(n) of type la or type 2 then we write

Clue) = Y NueyNopn—eNe s Nocr,. (7.3.5)

YEA +e(3(n))

By Lemma 6.3.14, we have C'(u,€) # 0.
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Theorem 7.3.6 Let g be a complex simple Lie algebra and let q be a maximal two-
step nilpotent parabolic subalgebra of non-Heisenberg type, listed in (3.3.2) or (3.3.3).
If Y} is the lowest weight vector defined in (7.2.1) for the dual module V(i + €)* of a
special constituent V(u+ €) of type 1a or type 2 with respect to the Killing form, and

if o 1s the simple root that parametrizes q then the following hold:

1. If V(u+€) is of type 1a then

| |”

(6,0, 2007 = 18

[Apre(a(D))]
2

O, €)(s + s9)R(X_)., (7.3.7)

with sg = — 1, where |A,4(9(1))] is the cardinality of A,+c(g(1)).
2. If V(u+e€) is of type 2 then

X200 = Lo DR 0. @39

Proof. We start by showing that (7.3.7) holds. It follows from (7.2.4) that

[WS(XM)agzZ(YE*)]e (739)
1
- 5 (N—um—eN—e,vt ) (Na,—'yt NfG('yt),(?(a) ) [WS(Xu)a R(X—Q)R(Xfe(a))]e'
a€A4e(9(1))
Y EAL+e(3(n))

We use Proposition 7.3.4 to compute [7,(X,,), R(X_a)R(X_g(a))]e. This is

[7TS<XM)7 R(X—Q)R(Xfe(a))]e

= R([Xp; Xoal, Xopia)))e + 5Aq([Xpus Xoa] ) R(Xp(a) Je 4 5Aq ([Xps Xot(0]) R(X ).

We consider the contributions from each term in (7.3.9), separately. Recall here that,
as we defined in Section 3.2, our parabolic subalgebra ¢ is parametrized by the simple
root oy € II and that ), is the fundamental weight for oy,

First we study the contribution from the second term. It is

S
15 = D) Z (N—Mﬁt—eN—em)(Noc,—%N—O(%)ﬂ(a)))‘q([Xw X—a])R(X—O(a))e-

a€lpte(g(1))
V€A e (3(n))
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As g(1) is the 1-eigenspace of ad(H,) with H, defined in (3.2.1), the set A(g(1)) is

2008 _

[l 2

Alg(1)) ={BeA]

(7.3.10)

Therefore, by the normalization (H4) in Section 4.1, for 8 € A(g(1)), we have

2

A(H5) = (A, 8) = 1%l

Thus
| el

Aa([Xu Xoa]) = 70 (7.3.11)

with d,,, the Kronecker delta. So the contribution from this term is

s
T; = ) Z (N—u,%—eN—em)(Na,—%N—G(%),G(a))Aq([Xm X—a])R(X—G(a))e

a€Ate(g(1))
V€A u+e(3(n))

s||oxg |
B 4q Z (N‘“%—EN—W ) (Nm—% Nﬁ(w)ﬂ(u))R(Xfa(u) )e

YEAp+e(3(1))
_ sllagl” N N N, _. N, R(X
- T Z ( — Yt —€ —67%)( M=t 67)“'_'7t> ( _5)6‘

V€A +e(3(n))

We showed in Lemma 6.3.8 that N, _, N¢ ,—, = N, e~ Ne.—+,. Hence,

sl [

== > (NepmeeNoer) (N, Neyn )JR(X o)
V€A ute(3(n))
8| agl[?
- 4q Z (N_/’L”yt_eN_efyi)(N,U«,E—’VzNe,—'\{t)R(X_€>e
Y E€EAu+e(3(n))
|| cxg
- 4 Z <N'u’€7’ytNi“”’f*eva*%N*G,%)R(Xfe)e
Y E€Au+e(3(n))
|| cxg

= O R ).

The same argument shows that the contribution from the third term is

S
T3 = ) Z (N—um—EN—a%)(Noc,—%NfG(%),G(a)))‘q([X/uXfO(a)])R(X—a)e

a€lpte(a(l))
V€A +e(3(n))

2
S|
_ soF o, ..
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Now we consider the contribution from the first term. It is

1
T = 9 Z (Nfu,'yreNfem)(Naﬁ%N—O(%)ﬁ(a))R(HXw X_al, X—H(a)])e-

a€lpte(g(1))
V€A L+e(3(n))

We claim that if o = € or p then [[X,, X_.], X_g(a)] = 0, where 6(«) denotes 0(a) =
(u+€) —a. If @ = € then, by Remark 6.2.14, [X,,, X_,] = [X,,X_ =0. fa=p
then

(X, Xl Xoog] = [[Xpu, Xop], X = e(H) X = 0.

Note that Remark 6.2.14 is applied to obtain e€(H,) = (¢, ) = 0. Moreover, by
Remark 6.3.10, we have A, .(g(1))\{x, €} # 0. The contribution from T is

1
T = 9 Z (N*MfYt*EN*Q’Yt)(Na»*'YtN_G('Yt)’e(a))R([[Xl“X*a]7X_‘9(a)])e

a€Apye(g(1))
V€A +e(3(n))

1
= 9 Z (N—Mﬁt—eN—em)(Na,—%N—G(Vt),O(a))R(HXw X—a]»X—G(a)])e

(XEAN+6(Q(1))\{H’76}
Yt 6A,u+6 (3(n))

- Z (N ppiye—eN e ) (N~ N3 6(0)) (Nps,~a Npi—at,~0(0) ) B(X ).

a€Ate(9(1)\{pe}
YEA i+ (3(n))

1
=5 > (N-pri—eN=ey) (Na,—3: N-o(34),0(0)) (N, —a N-6(a) 0 ) (X —¢)e

€A pe(9(1)\{p.e}
’YtEA,u+e(3(n))

= (N—um—eN—em)(NOQ—%Nu,—aN—Q(%)ﬂ(oc)N—G(a)ﬁ(u))R<X—6)e‘
a€Ate(a(1)\{n,e}
V€A u+e(3(n))
Note that, from line three to line four, we use that N,_o o) = N_o(a),0(u), a8 (1t —

a) + (—0(a)) + 0(p) = 0 (see Property (H6) in Section 4.1). By Lemma 6.3.22, we

have

Na,—7Np—a N-g(+),0(0) N-6(a) 6(1) = Np,e—ye Ne—,
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Therefore,

1
T, = 5 Z (Nﬁu,%feNfe;yt)(Na,f%NuﬁaN—t‘)(’Yt),@(a)N—f)(a)ﬁ(#))R(X*e)e
a€Ate(8(1))\ {10}
Y EAu+e(3(n))
- H%HZ N N N N, R(X
- 4 Z ( — MYt —€ —e,%)( M€=Vt 67—%) ( _6)6
OteA,uvLe(g(l))\{NvE}
V€A ute(3(n))
_ [|ag]? N N N. .. N R(X
o 4 Z ( M€=t —HYt—€ €=t —€ ’Yt) ( 76)6
a€Ate(8(1))\{ 1€}
’YteAu+e(5(n))
gl R(X
oY R,
a€Apte(8(1)\{pe}
ol e o a (a()] — 2 R(X
= Ol )| Aure(g(1))] = 2)R(X-)e.

Hence, we obtain

[WS(XM)7 QQ(YI*)]e =T +T15+ 15

[lexg

5 —Clw, €)(s+ w — DR(X_)e.

Now we are going to prove the equation (7.3.8). If V(u + €) is of type 2 then
i+ € = 2p; in particular, 6(u) = (2p) — p = p. By Lemma 6.3.6, Ay, (g(1)) = {u}.
Thus, (7.2.4) becomes

Qz(Yl*) -5

(]

(N—un/t—eN—em ) (NO«—% N—G(%),G(a))R(X—a)R(X—G(a))

OZGAQH (9(1))
YtE€A2,(5(n))

(Nfu;yruNfum ) (N,LL i N=o(7).0( ))R(X*M)R(X—G(M))
V€2, (3(n))

1
9 (N =N =7 ) (N = N-p), )R<Xfu)2- (7.3.12)
Ve €A2, (3(n))

Since (—=0(v¢)) + p+ (1 — 1) = 0, we have N_g(y,)n = Ny ju—,. Thus,
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(Vo) N Nt ) R
— Y Vi) Mo N RY 2
(N NN Vo R
_ %cw, WR(X ) (7.3.13)

Therefore,

(X0, Q)] = 500, )X, BOX )

It follows from (7.3.11) that A\g([X,, X_,]) = ||aq]|?/2. Then, by Proposition 7.3.4
with a = 8 = u, we have
[me(X), RX0)"le = R([X Xo], X))o + 250 ([X, X ) R(X )
2
o}
= —p(Hy)R(X_p)e + 25 - %R(X—u)e
= (slloll* = [lul*) R(X-)e-

Observe that Table 6.5 shows that a special constituent of type 2 occurs only when q
is of type B,(n), type C,(i) or Fy(4). Appendix C and Appendix D show that when

q is of these types, we have [|u||? = ||ay|]?. Therefore,
(7 (X0) RIX-)%]e = (sllag]* = [l P)R(X_p)e = [lag][*(s = D) R(X_p)e.

Hence, we obtain

(3,0, 27 )]e = 5C 0 m)ma(X,), ROX ),
s o s~ 0,
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To emphasize the fundamental weight A\;, we write £(—s)\;) for the line bundle
L 5. Now, by combining Proposition 7.3.3 and Theorem 7.3.6, we conclude the

following.
Corollary 7.3.14 Under the same hypotheses in Theorem 7.3.6, we have:

1. IfV(pu+e)* is of type 1a then the Qaly (ute+ system is conformally invariant on

the line bundle L(sa)q), where sy is the constant given in Theorem 7.3.6.

2. If V(u+€)* is of type 2 then the Qv (ute+ system is conformally invariant on
the line bundle L(—\,).

Proof. This corollary follows from Proposition 7.3.3 and Theorem 7.3.6. |

As we defined in Definition 6.2.11, we denote by V(x4 €,) the special constituent
of [® 3(n) so that V(u +¢€,) C [, ® 3(n), and denote by V(u + €,,) the special
constituent so that V(i + €,,) = [, ® 3(n). See Table 6.5 for the types of V(i +€,)
and V(p + €,,) for each case. Table 7.1 below summarizes the line bundles L£(so\q)
on which the €25 systems are conformally invariant. Here, a dash indicates that there
does not exist the special constituent V(p + €,,). When q is of type B,(n — 1), the
special constituent V' (u + €,,) is of type 1b, and when q is of type C,, (i), the special
constituent V'(u +¢€,) is of type 3. Therefore, we put a question mark for these cases
in the table.

By Corollary 2.7.7, if an {25 system is conformally invariant over the line bundle
L(s9Aq) then the generalized Verma module M,[C_y ] = U(g) u(q) Csn, is Te-
ducible. Table 7.2 summarizes the generalized Verma modules that correspond to the

line bundles in Table 7.1.
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Table 7.1: Line Bundles with Special Values

Parabolic subalgebra q

Dol (ptey)r

QQ |V(H+€n'y)*

Ba(i),3<i<n-—2

B,(n—1)

L({(n—i—1N)

£(3)
L(=\)

?
L((n—1i—1)X\)
L(As3)
L(As)
L(2X2)
LX)
L(3M\)
L(=\)

L(A\)

?

L(=X)
L(Ni)
£(2\s)
£(2)\s)

L(3X6)
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Table 7.2: The Generalized Verma Modules corresponding to £(sp)q) in Table 7.1

Parabolic subalgebra ¢

Dol (tey)”

DoV (uenn)*

Bn(i),3<i<n-—2

Bn(n—1)

My[C_ian]
M, [C—éan}
My[Cy,]

?
Mg[Cni-1)a,]
My[C_\]

Mq [(C_/\i]
?
Mq [(CM]
Mq [(C*)\i]
MCI [C—ka]
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CHAPTER 8

The Homomorphisms between Generalized Verma Modules induced by

the (2; System and (), Systems

By [2], attached to the |y~ system conformally invariant on the line bundle £(soAq),
there is a non-zero U(g)-homomorphism ¢q, : U(g) Qug) F(Qlw+) — U(G) Su(q
C_son,» Where F(Qplw-) is a finite dimensional simple [-submodule occurring in
(U(9) ®u(q)Cspr,)" (see Section 2.7). The aim of this chapter is to determine whether
or not the homomorphisms ¢q, are standard for k£ = 1, 2, when q is a maximal two-

step nilpotent parabolic subalgebra of non-Heisenberg type.

It is important to recall that there are irreducible constituents W of g(—2+k)®g(2)
with & = 1,2 so that the systems under consideration consist of dimc¢ (W) dif-
ferential operators. As in Section 2.7, for a basis {Y},...,Y:} of W* we write
Qe(Y7), ., (Y,) for the system of operators. Each 2;(Y}*) acts on the space of
smooth sections I'(Gy/Qo, L(—5sAq)) for the line bundle £(—s)\;) by right differentia-
tion. Indeed, if o : Sym(n) — U(n) is the symmetrization map then there are elements
wi(Y}) € o(Sym”*(n)) so that Qu(Y;)ef = R(wi(Y]))ef for f € T(Go/Qo, L(—sA)).
If W* has highest weight v and if the system Q|w~ = Q(Y7), ..., Q(Y,}) of differ-

ential operators is conformally invariant on the line bundle L£(s¢)q) then
F(Qilw+) = spanc{wp(Y) @ 1] j=1,...,m} (8.0.1)

is the simple l-submodule of My[C_s,]" = (U(g) ®u(q) C—ser,)" With highest weight

v — soAq. Then the inclusion map ¢ € Homy, (F/(Q|w+), Mq[C_s,»,]) induces a non-
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zero U(g)-homomorphism g, € Homyy(g) 1, (My[F(Qlw+)], Mg[C_s;»,]) between gen-

eralized Verma modules, that is given by

PQ

Mq[F(Qk|W*)] _f Mq[(c—so)\q] (802)

u® (we(Y*) @ 1) = u- t(wp(Y*) ®1).

We want to determine whether or not the maps ¢q, are standard. To do so, it is
convenient to parametrize generalized Verma modules by their infinitesimal charac-

ters. Therefore, for the rest of this chapter, we write
Ma[F(Q%|w+)] = My(v — s0Aq + p)

and

Mq[(cfsokq] = Mq(_SO)‘q +p),

where p is half the sum of the positive roots. Then (8.0.2) is expressed by

My (v = $0Aq + p) = My(—soAq + p) (8.0.3)

U v u-u(v)

with v = w(Y™*) ® 1.

8.1 The Standard Map between Generalized Verma Modules

In this section we first recall the notion of the standard maps between generalized
Verma modules. We then show when the standard map of the generalized Verma
modules in (8.0.3) is zero. This is done in Proposition 8.1.6.

For n € h*, let M (n) be the (ordinary) Verma module with infinitesimal character
1. Write

Pr={Ceb" | (¢, a") €14 Zs for all a € II(I)}.
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For 7,{ € P/, suppose that there exists a non-zero U(g)-homomorphism ¢ :
M(n) — M(C). If K(n) is the kernel of the canonical projection pr, : M(n) — My(n)
then, by Proposition 3.1 in [22], it follows that ¢(K(n)) C K(¢). Thus the map ¢

induces a U(g)-homomorphism @ : My(n) — My(¢) so that the diagram

M () — M(¢)

My () =% My(C)

commutes. The map ¢gyq is called the standard map from M,(n) to M,(¢). These
maps were first studied by Lepowsky [22]. Of course pgy could be zero. Note that
since dim Homyg) (M (n), M(¢)) < 1, the standard maps ¢4 are uniquely determined
up to scalar multiples. Not every homomorphism between generalized Verma modules
is standard and the classification of all homomorphisms between generalized Verma

modules is an open problem.

If v =—(1—sp)aq with 1 — sy € 1+ Z>( then one can show that the standard
map @siq from My(—(1—s9)og — SoAg+p) to My(—soAq+ p) is non-zero by computing
¢sta(1@vT), where 1® v is a highest weight vector of M, (—(1— so)og — SoAq + p) for
weight —(1 — sg)ag — SoAq- To prove it, we will use the following well-known result.

(See for example [10, Proposition 1.4].)

Proposition 8.1.1 Given A € h* and o € 11, suppose that n = (A+p, ") € 1+Z>y.
If 1®@v™ is a highest weight vector of weight X in M(X + p) then X" - (1®v") is a

highest weight vector of weight —na + .

Observe that, since My(v — soAq + p) = U(F) Ru(q) F () and My(—soAq + p) =
U(9) Du(q) C—songs if v and 1_g5, are highest weight vectors for F'(€2,) and C_g»,,
respectively, then 1®w;, and 1®1_g,, are highest weight vectors for Mq(v — soAq +p)

of weight v — sgAq and for My(—soAq + p) of weight —s¢\;, respectively.
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Proposition 8.1.2 If 1 — sy € 1 + Z>q then the standard map psq from Mq(—(1 —

S0)Qq — SoAq + p) to My(—soAq + p) maps
1®@u, — cXi;jO @1 gz, 70
for some non-zero constant c. In particular, the standard map pgq is non-zero.

Proof. Write n. = 1 — sy and denote by 1 ® 1_,,4,-s, @ highest weight vector for
M (—nag—soAg+p) of weight —nog —soAq. Observe that since (A, o) = (p, ag) = 1,
we have n =1 — 59 = (=50 + p, ). Hence —noy — soAq + p = 5q,(—50Aq + p). By
hypothesis, we have n =1 — sy € 14 Z>(. It then follows from Proposition 8.1.1 that

the map ¢ : My(—nag — soAq + p) = My(—soAq + p) is given by
P(1 ® 1onag—sor,) = X2 ®1

with ¢ # 0. As aq € INI(I), if pr_g\ 4, : M(=s0Aq + p) = My(—s0Aq + p) is the
canonical projection then pr_,, . (X", ®1) # 0. Then the universal property of
My(—nog — soAq + p) in the relative category O7 (see for example Section 9.4 in [10])
guarantees that pr_, |0 factors through a non-zero map @y : My(—noy — soAg+

p) = My(—s0Aq + p). [ ]

In order to determine if ¢y is non-zero in a more general setting, we will use the

following theorem by Lepowski.

Theorem 8.1.3 [22, Proposition 3.3] Let n, ¢ € P;", and assume that M(n) C M ().
Then the standard map pgq from Mq(n) to Mq(Q) is zero if and only if M (n) C M (s4()

for some a € II(1).

Theorem 8.1.3 reduces the existence problem of the non-zero standard map @y

between generalized Verma modules to that of the non-zero map between appropriate
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Verma modules. It is very well-known when a non-zero U (g)-homomorphism between
Verma modules exists. To describe the condition efficiently, we first introduce the

definition of a link of two weights.

Definition 8.1.4 (Bernstain-Gelfand-Gelfand) Let A\, € b* and [(y,...,0; € AT.
Set g = 6 and §; = sp, -+ - 55,0 for 1 < i <t. We say that the sequence (B1,...,[B)

links 0 to \ if
(1) 0, = X\ and
(2) <5i*17ﬁi\/> € Zzo fOT’ 1 <0<t

Theorem 8.1.5 (BGG-Verma) Let A\, 0 € b*. The following conditions are equiva-

lent:

1. M(X) € M(9)

2. L(\) is a composition factor of M(J)

3. There exists a sequence (1, ..., 5) with B; € AT that links 0 to ),
where L(\) is the unique irreducible quotient of M ().

It is important to observe that if there is a non-zero U(g)-homomorphism (not
necessarily standard) from My(n) to My(¢) then M(n) C M((). Indeed, if there exists
a non-zero U(g)-homomorphism f : Mq(n) — M,(¢) then M,(n)/ker(f) is embedded
into M,(¢). Observe that, as L(n) is a unique irreducible quotient of M (n), it is also
a unique irreducible quotient of M,(n) and so of M;(n)/ker(f). In particular, via the
embedding My(n)/ ker(f) — My(¢), the irreducible quotient L(n) is a composition
factor of My(¢). Since the composition factors of My(¢) are those of M((), this
shows that L(() is a composition factor of M ({). Now it follows from Theorem 8.1.5
that M(n) C M(({). Taking into account Theorem 8.1.5 and this observation, in our

setting, Theorem 8.1.3 is equivalent to the following proposition.
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Proposition 8.1.6 Let M,(v—soA\q+p) and My(—soAq+p) be the generalized Verma
modules in (8.0.3). Then the standard map from My(v—soAg+p) to My(—soXq+p) is

zero if and only if there exists o € II(I) so that —a— soAq+ p is linked to v — soAq+ p.

Proof. First observe that since there exists a non-zero U (g)-homomorphism ¢q, from
My(v — soAq + p) to My(—soAq + p), by the observation right above this proposition,
we have M (v —soA\q+p) C M(—soAq+p). Therefore, by Theorem 8.1.3 and Theorem
8.1.5, the standard map from M, (v — soAq + p) to My(—s9Aq+ p) is zero if and only if
there exists a € II(I) so that s,(—soAq + p) is linked to v — soA\g + p. As (A\g,a¥) =0
and (p,a”) = 1 for a € II(l), we have s,(—soAq + p) = —a — soA\q + p. Now this

proposition follows. [ |

8.2 The Homomorphism ¢q, induced by the (2; System

In this section we show that the map ¢q, that is induced by the €2y system is standard
when ¢ is a maximal two-step nilpotent parabolic subalgebra of non-Heisenberg type.
We keep the notation from Section 8.1.

The Q; system is R(X_,,), ..., R(X_,,,) for A(g(1)) = {a, ..., a,}. Thissystem
is conformally invariant on the line bundle L(sp\q) with sp = 0. It yields a finite
dimensional simple Fsubmodule F(;) in (U(g) ®u Co)" = My(p)". Since —ay is
the highest weight of g(—1) = W*, the simple [-module F'(€2;) has highest weight
v — SoAq = —0y. Therefore the inclusion map F(£2;) < M,(p) induces a non-zero

U(g)-homomorphism g, : My(—aq + p) = My(p).

Proposition 8.2.1 If q is a mazximal two-step nilpotent parabolic subalgebra of non-
Heisenberg type then the standard map @sq from My(—aq + p) to My(p) is non-zero.

Moreover, there exists ¢ # 0 so that puq(1 @ vy) = cX_o, ® 1o.

Proof. This follows from Proposition 8.1.2 with sy = 0. |
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Theorem 8.2.2 If q is a maximal two-step nilpotent parabolic subalgebra of non-

Heisenberg type then the map ¢q, is standard.

Proof. Since ¢q, (1 @ v,) = 1- v, = v, to prove that pq, is standard, by Proposition
8.2.1, it suffices to show that v, = cX o, ® 1o with some non-zero constant c. To
do so, as vy is a highest weight vector for F'(£2;), we show that X_, ® 1 is a
highest weight vector for F'(€2;). Since the €y system is R(X_,,),..., R(X_,,,) for
A(g(1)) = {a1,...,ap}, it is clear that the elements wi(X_,,) € o(Sym'(#)) = @
that correspond to R(X_,;) under R are w;(X_,;) = X_,,. Then it follows from
(8.0.1) that
F(Q) =spanc{X_, ® 1o | @ € A(g(1))}.

Therefore X_,, ® 1o is a highest weight vector for F'(€2;). [ ]

8.3 The Homomorphisms ¢, induced by the (), Systems

In this section, by using the results in Table 7.1, we determine whether or not the
homomorphisms ¢gq, that are induced by the €2, systems are standard, when q is a
maximal two-step nilpotent parabolic subalgebra of non-Heisenberg type, listed in
(3.3.2) or (3.3.3). The results are summarized in Table 8.1 at the end of this section.

Recall from Definition 6.2.12 that we classify the special constituents V' (p + €) as
type la, type 1b, type 2, and type 3. If we observe Table 6.5 and Table 7.1 then we

see that each ]y 440+ System satisfies exactly one of the following:
1. The special constituent V(i + ¢€) is of type 2.
2. The special value sy is a positive integer.
3. The parabolic q is of type B, (i) for 3<i<n—1and V(u+e¢) =V(u+e¢,).

We shall consider these three cases separately.
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8.3.1 The Type 2 Case

We first study the homomorphism attached to the special constituent V(u + €) of

type 2. By Table 6.5, we consider the following three cases:
1. V(u+€,) for B,(n),
2. V(u+€yy) for Co(i) (2<i<n-—1), and
3. V(u+e,) for Fy(4).

If V(pu+e) is a type 2 special constituent then, by definition, we have V (u+e) = V(2pu).
Thus, V(pu+e€)* =V (2u)* = V(—2a4). Therefore v in (8.0.3) is v = —2a,. Moreover,
by Theorem 7.3.6, the ]y (a,)+ system is conformally invariant on the line bundle

L(—Ag). Thus sy = —1. Therefore we have ¢q, : My(—2aq + A\g + p) = My(Aq + p).

Proposition 8.3.1 If q is the maximal two-step nilpotent parabolic subalgebra of type
B, (n), Cp(i) for2 <i <n—1, or Fy(4) then the standard map @sq from My(—20q +
Ag +p) to My(Aq+ p) is non-zero. Moreover, there exists ¢ # 0 so that @sq(1 @ vy) =

CXan ® 1)\q .
Proof. This follows from Proposition 8.1.2 with sy = —1. [ |

Observe that if Y;* is the lowest weight vector for V' (2u)* defined in (7.2.1) then,
by (7.3.12) and (7.3.13), the differential operator Qy(Y;*) is

() = LC(n RIX )"

where C(u, p1) is the constant defined in (7.3.5). Therefore, the element wy(Y}*) in

o(Sym?(n)) that corresponds to €(Y;*) under R is
1
w(¥7) = 50 wX2,. (8.3.2)

In particular, the simple [-submodule F(€s |y (2,)+) of My(Aq+p)" = (U(9) Ru(q) qu)n

has lowest weight X? & 1, with p the highest weight for g(1).
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Theorem 8.3.3 Let q be a mazimal two-step nilpotent parabolic subalgebra of non-
Heisenberg type, listed in (3.3.2) or (3.5.83). If the special constituent V(u + €) is of

type 2 then the map pq, s standard.

Proof. In order to prove that ygq, is standard, by Proposition 8.3.1, it suffices to
show that Xzaq ® 1, is a highest weight vector for F(Qs|v (). Since F(Qalv(2,)+)
has highest weight v — soA\q = =204 + Ag, it is enough to show that X%aq ® 1y, is in
F(Qs|v(au)+). We know that a lowest weight vector for F'(Qq|v(2,)+) is X3M® 1,,. This
will allow us to show that X2, ® 1y, is in F(Qalv(z)-). We do so in a case-by-case

manner. Recall that we have to consider the following three cases:

1. V(u+e,) for B,(n),
2. V(p+eny) for Cp(i) (2<i<n—1), and

3. V(pu+e,) for Fy(4).
We start with the case V(u + €,) for B,(n). In the standard realization of the
roots we have u = €1, ag = o, = €5, and
AT()={e; —er |1 <j<k<n}
(see Appendix C). Thus,

X2, 01, =X?_ ©l,, and X*, @1, =X’ ®1,,.

—e1

A direct computation shows that

X2 . (X2, ®1,,)=2N; X2 ®1,,.

E1—En €1—€En,—€1° " —&n

L.

m

—En

Therefore, X2, ® 1), = X2, ® 1y, is in F(Qafy)-) since X, ,
Next, we handle the case that V(u + €,,) for C, (i) for 2 < i < n — 1. In the

standard realization of the roots we have p = €1 + €41, g = a; = &, — €;41, and

A*(l) = A*(L,) U A*(L,,) with

AT(L) ={e;—er |1 <)<k <i}
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and

ATl ={ejter|i+1<j<k<n}U{2;|i+1<j<n}

(see Appendix C). Thus,

X2, 0L, =X y®L, and X2 ®1, = X7 ® 1y,.

€i—€it1)

A direct computation shows that

2 2 2 2 2 2
X61—€iX28i+1 ) (X—(81+Ei+1) ® 1>‘i) = 4N2€i+1,—(€1+€i+1)N51—Ei,—(€1—8i+1)X—(5i—8i+1) ® 1/\i'

Therefore, X%aq ® 1y, = X?

—(ei—€it1

) X 1)\2. is in F(Q2’V(2#)*).
For the last case that V(u + €,) for Fy(4), observe that we have p = ay + 2as +

3as + ay and ag = ay (see Appendix C). Thus,
X2, @ Ly, = X2 (0 tsas 305 ran) @ Ly and X2, @1, = X2, @1y,

The roots in A™([) are the positive roots in which ay has multiplicity zero. Therefore

as and a; + 2as + 2a3 are in A*([). A direct computation shows that

2 2 2
XagXa1+2a2+2a3 : (X—(a1+2a2+3043+a4) ® 1)\4)

2 2 2
= 4Noc1+20¢2+20c3,—(a1+2a2+3a3+a4)Nag,—(a3+a4)X—a4 ® 1/\4‘
Therefore, X%aq ® 1y, = X2, ®@1,, is in F(Qa|vu-)- [

8.3.2 The Positive Integer Special Value Case

Next we handle the case that the special value sj is a positive integer.

Theorem 8.3.4 Let q be a mazimal two-step nilpotent parabolic subalgebra of non-
Heisenberg type, listed in (3.3.2) or (3.3.3). If the special value sy is a positive integer
then the standard map from Mq(v —soAq+p) to My(—soAq+p) is zero. Consequently,

the map pq, is non-standard.
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Proof. By Proposition 8.1.6, to show that the standard map is zero, it suffices to
show that there exists o € II(I) so that —a — so\q + p is linked to v — soAq + p. We
achieve it by a case-by-case observation. By Table 7.1, the following are the cases

under consideration:
L. V(i + €,y) for B, (i) 3<i<n—2)
2. V(p+e,) and V(p+ €,y) for D, (7) (3 <i<n—3)
3. V(p+ey) and V(u + €,,) for Eg(3)
4. V(p+ey) and V(p + €,) for Eg(5)
5. V(p+e€,y) for E7(2)

6. V(u+ey) and V(u+ €,,) for E7(6)

\]

. V(p+e€,) for Eg(1)

Our strategy is to first observe that the highest weight v for V(i 4 €)* is of the
form
v=-28—-ad —a
for some § € A(g(1)) and o/, o € TI(I). We then show that the sequence (¢, ) links
—a" — 5o\ + p to (=28 — o/ — ") — soAq + p. Since the argument that shows that
(o, B) links —a” — soAq + p to (=28 — o/ — ) — soAq + p is the same for each case,
we will describe the detail of the computation only for the case V(1 + €,,) of B, (%)

and omit the computation for other cases.

L. V(p+ €ny) for B, (i) for 3 <i <n — 2: Since, by Table 7.1, the special value

Sp is so = 1, we want to show that there is a € TI(I) so that —a — \; + p is linked to
v — \i + p. First we find the highest weight v for V(u + €,,)*. Observe that we have
AT(l) = A*T(L,) UAT(L,,) with

AT(L) ={e—er|1<j<k<i}
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and

AT(Ly) ={ejter|i+1<j<k<n}U{e|i+1<j<n}
in the standard realization of the roots (see Appendix C). Since
AGm) ={ej+te|1<j<k<il},

the simple [Fmodule 3(n) has lowest weight €;,_; + &;. As V(p + €,y) = Ly ® 3(n), we

have
V(i +eny)" =Ly @3(n)"
Since [, has highest weight ;11 + €;42, this shows that the highest weight v for
V(i + €,)* is
V= (it1+Eiy2) — (6im1+ &) = —€in1 — & + &1 + Eira
Observe that
—€im1 — & + it FEipo = —2(g; — €i1) — (€im1 — &) — (€41 — €it2)

with €; — ;41 € A(g(l)) and €,_1 — &, €i+1 — €ig2 € H([) (see Appendix C) Now we
claim that (g;_1 —&;,6; — €;41) links —(g;41 — €i42) = Ni +p to —2(g; —€441) — (8521 —
Ei) — (61'4_1 — 6i+2) — )\Z + pP. This is to show that
Sei—eip1Seia—ei(—(Eir1—Eia) =it p) = =2(gi—€is1) — (€im1—63) — (Eir1 —Eipa) —Aitp
with
(—(€iy1 — €ir2) = X +p, (gic1 — &) ") € Zxg
and
<S€i—1—€i(_(5i+1 - 5i+2) - >\z + p), (Ei — €i+1)v> S ZZO
(See Definition 8.1.4). Observe that, as ;-1 —¢&; € II(I), we have (\;, (g;-1—¢;)") = 0.

Since (p, (g;i—1 —&;)¥) = 1, it follows that
(—(gip1 — €ir2) = Xi +p, (€im1 — €i)v> =1¢€ Z>o.
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Thus,
Sei 1—ei(—(Eit1 — €ig2) — N+ p) = —(6im1 — &) — (Eit1 — €iv2) — Ai +p.
Next, as ; — ;41 is the simple root that determines the parabolic g, we have (\;, (g; —
giy1)") = 1. Since (p, (g, — €i+1)") = 1, it follows that
(Sei1—es(— (€1 = €i2) = Xi + ), (85 — €i41)”)
= (—(eim1 — &) — (gip1 — €ip2) = X+ p, (60 — €i11)Y)
- 2 S ZZO‘
Therefore,
Sei—eit1 881'71—51'(_(624-1 - €i+2) - >‘Z + p)
= SEi—€i+1(_(€i—1 - Ei) - (52'-1—1 - 5i+2) - >\z + P)

= —2(e; — €ip1) — (gim1 — &) — (Eip1 — Eiv2) — i + .

2. V(p+e,) and V(u + €,,) for D, (i) for 3 <i <n — 3: We start with V (u+e,).

Since, by Table 7.1, the special value sg is so = n —i — 1, we want to show that there
is a € TI(I) so that —av — (n — i — 1)\; + p is linked to v — (n —i — 1)\; + p. By Table
6.1, we have p1 + €, = 2¢;. Observe that if a; =€; —€;11 and w; = $4, 84, * * Sa, for
1 < j <i—1 then the longest element wy of the Weyl group of type A; ; may be

expressed as wy = w;_1w;—s - --wi. Since V(u + €,) is an [,-submodule of [, ® 3(n)

with [, of type A;_1, the highest weight v for V(i +¢,) is
vV = —U}O(281) = —261‘.
We have
—2e; = —2(gi — €n-1) — (En-1 —&n) — (En—1+¢n)

with e; —e,-1 € A(g(1)) and &,_1 — €p, €n1 + &, € II(I) (see Appendix C). Then a
direct computation shows that (e,_1—&,,e;—€,_1) links —(e,_1+&,)—(n—i—1)\;+p

to =2, — (n —i— 1)\ + p.
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Next we consider V(u + €,,). Since, by Table 7.1, the special value s¢ is sy = 1,
we want to show that there is o € TI([) so that —a— A\; + p is linked to v — \; + p. As
for the case for V(i + €,,) of B, (i), the highest weight v for V(i + €,4)* of D, (i) is

V=—6_1—& + &1 +¢E42
= —2(&‘ - €i+1) - (51'71 - €i) - (5i+1 - 5z‘+2)
with €; — ;41 € A(g(1)) and &;_1 — &4, €i11 — €42 € T([) (see Appendix C). A
direct computation shows that (g,_1 — €;,&; — £;41) links —(g;41 — €i402) — \j + p to

(_51‘—1 —&; + €1 + 5i+2) — )\1 + p-

3. V(n+e€y) and V(p + €,4) for Eg(3): We start with V(i + €,). Since, by Table

7.1, the special value sq is sg = 1, we want to show that there is a € II(I) so that

—a — A3 + p is linked to v — A3 + p. By Table 6.2, we have
,Uz—’—E'y :a1+2a2+2a3+4a4+3a5+2a6.

As V(pu+e,) is a simple [,-submodule of [, ® 3(n), if wy is the longest element of the

*

Weyl group of [, then, by using LiE, the highest weight v for V(1 + €,)* is given by

v =—wo(oq + 209 + 203 + day + 3as + 2a)
= —2a3 — a1 — Qy.
with ag € A(g(1)) and ay, oy € II(l). Now a direct computation shows that (aq, as)
links —ay — A3 + p to (—2a3 — a1 — ay) — A3 + p.

Next we consider V(u + €,,). Since, by Table 7.1, the special value s¢ is sy = 2,
we want to show that there is a € II([) so that —a — 23 + p is linked to v — 2A3 + p.
Observe that [,, has highest weight o; (see Appendix C) and 3(n) has lowest weight
a1 + ag + 203 + 204 + a5, Since V(i + €,4)* = [, ® 3(n)*, the highest weight v for
Vit )" is

v=(a1) — (a1 + as + 2a3 + 2a4 + a5)

= —2(a3 + ) — as — as
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with ag+ay € A(g(1)) and aq, a5 € II(I). A direct computation shows that (ag, as+

ay) links —az — 2A3 4+ p to (—2(a3 + ay) — @ — as) — 23 + p.

4. V(p+e€,) and V(i + €,) for Eg(5): We start with V(1 +€,). Since, by Table

7.1, the special value sq is sp = 1, we want to show that there is a € II(I) so that

—a— A5 + p is linked to v — A5 + p. By Table 6.2, we have
p+ €y = 200 + 2090 + 3z + 4oy + 205 + .

As V(pu+e,) is a simple [,-submodule of [, ® 3(n), if wy is the longest element of the
Weyl group of [, then, by using LiE, the highest weight v for V(i + €,)* is given by
vV = —w0(2a1 —+ 20[2 + 3043 + 4044 + 2(1/5 —+ 046)

= —2045 — g4 — (.
with a5 € A(g(1)) and ay, o € II(l). Now a direct computation shows that (auy, as)
links —ag — A5 + p to (—2a5 — gy — ag) — A5 + p.

Next we consider V(u + €,,). By Table 7.1, the special value sg is sp = 2, we
want to show that there is a € II(I) so that —a — 25 + p is linked to v — 2X5 + p.
Observe that [,, has highest weight o (see Appendix C) and 3(n) has lowest weight
a9 + a3 + 20 + 205 + ap. Since V(i + €,4)* = [,y ® 3(n)*, the highest weight v for
V(i + €ny)* is

v=(og) — (a2 + a3 + 2a4 + 205 + )
= —2(ag + a5) — s — g
with ay + a5 € A(g(1)) and g, az € II(I). A direct computation shows that (ag, ay+

as) links —ag — 2X5 + p to (—2(ay + a5) — s — az) — 2X5 + p.

5. V(u+€,) for E7(2): Since, by Table 7.1, the special value s is so = 2, we want

to show that there is o € II(I) so that —a—2Xy + p is linked to v — 2\, + p. By Table

6.2, we have

pt ey = 201 + 2ai0 + 4az + bay + das + 3o + 2a7.
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As V(p+€,) is a simple [,-submodule of [, ® 3(n), if wy is the longest element of the

Weyl group of [, then, by using LiE, the highest weight v for V(u + €,)* is given by
v = —wo (201 + 209 + dag + Say + das + 3o + 2007)

= —2(a + ay) — az — as

with as + a4 € A(g(1)) and a3, as € II(I). Now a direct computation shows that

(Oég, Qo + Oé4> links —Q5 — 2)\2 + P to (—2(062 + 044) — (g — a5) — 2)\2 + pP-

6. V(n+€y) and V(i + €,4) for E7(6): We start with V(i + €,). Since, by Table

7.1, the special value sg is sp = 1, we want to show that there is a € TI(I) so that

—a — Xg + p is linked to v — A\g + p. By Table 6.2, we have
M‘i‘ﬁy = 201 + 3as + 4das + 6y + das + 20 + 7.

As V(pu+e,) is a simple [,-submodule of [, ® 3(n), if wy is the longest element of the

Weyl group of [, then, by using LiE, the highest weight v for V(u + €,)* is given by

V= —w0(2a1 + 30&2 + 4043 + 60&4 + 40(5 + 2@6 + Oé7>

= —20é6 — 05 — Q7

with ag € A(g(1)) and sz, a7 € II(l). Now a direct computation shows that (as, ag)
links —ay — Ag + p to (=206 — a5 — a7) — Ag + p.

Next we consider V(p + €,,). By Table 7.1, the special value sg is sp = 3, we
want to show that there is o € TI([) so that —a — 3\ + p is linked to v — 3\ + p.
Observe that [,, has highest weight a7 (see Appendix C) and 3(n) has lowest weight
Qg + a3 + 204 + 205 + 206 + 7. Since V(p + €,4)* = [, ® 3(n)*, the highest weight

v for V(i + €ny)* is

v=(ar) — (a2 + a3 + 204 + 205 + 206 + av7)

= —2(ay + a5 + o) — 2 — a3

121



with ay + a5 + ag € A(g(1)) and aq, asz € II(I). A direct computation shows that

(g, ay + a5 + ag) links —az — 3Ag + p to (—2(ay + a5 + ag) — ag — az) — 3Xe + p.

7. V(p+€,) for Eg(1): Since, by Table 7.1, the special value sq is sg = 3, we want

to show that there is v € TI(I) so that —a— 3A\; + p is linked to v — 3\, + p. By Table
6.2, we have
A+ €y = 20 + dag + daz + 8oy + Tas + 6o + 4oy + 20s.

As V(pu+e,) is a simple [,-submodule of [, ® 3(n), if wy is the longest element of the
Weyl group of [, then, by using LiE, the highest weight v for V(1 + €,)* is given by
v =—wy(20q + 4das + bas + 8ay + Tas + 6ag + dar + 2aig)

= —2(@1 + Qa3 + Oé4) — (g — Oy
with a; + az + oy € A(g(1)) and ay, a5 € 1I(I). Now a direct computation shows

that (g, @ + ag + ay) links —as — 3\ + p to (—2(a1 + ag+ay) — as — as) — 33X + p.

8.3.3 The V(1 +¢,) Case for B, (i) for 3<i<n-—1

Now we consider the case V(u + ¢€,) of B, (i) for 3 <i < n — 1. By Table 7.1, the
special value s is so = n —i — (1/2) for 1 <i <n —1 (note that when i =n — 1,
we have sg = 1/2 =n — (n— 1) — (1/2)). By the same argument used for the case

V(p+ey)* of D,(i) in the proof of Theorem 8.3.4, the highest weight v for V' (p+€,)*

is v = —2¢;. Therefore we have
©a, t My(—2¢; — (n—1—(1/2))\i + p) = My(—(n —i—(1/2))\; +p). (8.3.5)
We first show that the standard map (44 is non-zero.

Proposition 8.3.6 If q is the maximal two-step nilpotent parabolic subalgebra of type
B, (i) with 3 < i < n—1 then the standard map pgq from My(—2¢;—(n—i—(1/2)) i+

p) to Mq(—(n—i—(1/2))\i + p) is non-zero.
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Proof. By Proposition 8.1.6, to prove this proposition, it suffices to show that there is
no « € II(I) so that —a— (n—1i—(1/2))\; + p is linked to —2¢; — (n —i— (1/2))\; + p.
For simplicity we write

0(1) = =(n—i—(1/2))Xi + p.

Since ¢; = Z;L:l o with «; simple roots in the standard numbering, we want to show
that there is no a € I1(I) so that —a+4(i) is linked to —2¢;+46(i) = =237, a;+0(3).
Suppose that such o/ € II([) exists. Let (fi,...,5n) be a link from —a’ 4 (i) to

-2 Z;L:z a; + 6(i). Without loss of generality, we assume that for all j =1,...,m,

<85j—1 e 851(_0/ + 6@))7 Bj\/> # 0.

(If 7 = 1 then set sg, = e, the identity.) By the property (2) in Definition 8.1.4, this

means that we assume that
(s, 55, (=’ + (1)), B)) € 1+ Zxo (8.3.7)

for all j =1,...,m. Observe that it follows from the property (2) in Definition 8.1.4
that any weight linked from —a’ + §(4) is of the from
(= naa) =o' + 6(i) with ng € Zs. (8.3.8)

a€ll

We have AT = AT([)UA(g(1)) UA(3(n)), where AT(T), A(g(1)), and A(3(n)) are the
sets of the positive roots in which a; has multiplicity zero, one, and two, respectively.

As (B1,..., Bp) is a link from —a’ + (i) to =237, a; + 6(i), we have
S5, Sp(—a +8(i)) = =2 En: a; + 8(0). (8.3.9)
=i
If 5; € AT(1) for all j then we would have
-2 iaj +0(i) = sg,, -+ 5, (—a’ + 8(i))
=i

= (= > ko) — o/ +4(i)

a€elII(l)
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for some k, € Z>o. This implies that
—20; — 2 z”: aj = Z ko) — . (8.3.10)
j=i+1 aell(l
This is absurd, because, as II(I) = II\{«; } and o’ € II(I), the simple root «; does not
contribute to the right hand side of (8.3.10). Thus, there must exist at least one f;
n (51,...,0n) with 8; € A(g(1)) UA(3(n)).

Now we show that any §; in (f1,...,5,) cannot belong to A(g(1)) U A(3(n)).
First, suppose that there exists 5, in (f51,..., 5n) with 8, € A(3(n)). Observe that
A(3(n)) consists of the positive roots €; + ¢, for 1 < j < k < (see Appendix C). So
B, is B, = €5+ & for some 1 < s < t < 4. Since each g, = Z?:z a; with a; simple

roots, the positive root 8, = ¢, 4+ ¢; with 1 < s <t <17 can be expressed as
=cs+¢& = Za] —|—22a3
If c=(sp,_, sp(—a’+4(i)),5)) then
S, sp (=0 +0()) = sp,_, -+ 55, (=’ +6(i)) — ¢f,
= 5p,_, - Sg(—a/ + (7)) — ¢( Za]qLQZQJ (8.3.11)
Observe that, by (8.3.8), sg, , - sg,(—a’ 4 0()) is of the form

Spy s (—a +0(0) = (=) mea) = +6(i) (8.3.12)

a€ll
for some m, € Zs,. Moreover, as sg,, ---sp (—a’ + 0(i)) is a weight linked from

sg, - sp (—a’ +0(7)), the weight sg,, ---s5,(—a’ + (7)) is of the form

sg, - 5p (—a/ + (i Zm a)+ ss. 8 (—a’ +0(1)) (8.3.13)

acll
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for some m!, € Z>y. By combining (8.3.11), (8.3.12), and (8.3.13), we have

Spn 55 (=0 +0(3))

= (=D maa) + 55, 55 (—a’ +6(3)

a€ll
t—1 n
=(— Zm’aa) + 85,48 (—a’ + (i) — C(Z o+ 2 Zaj)
acll j=s j=t
t—1 n
— (—Zm;a) - (—Zmaa) —C<ZO(J' +2Zaj) —a +46(7)
acll a€ll j=s j=t

with mg, m!, € Z>o. By (8.3.7), we have
¢=(sg_, - sp (=’ +0(i), ) € 1 + L.

Therefore, by (8.3.14), the weight sg,, - - - sp,(—’ 4+ 6(i)) is of the form

t—1 n
Sﬁm"'Sm(—a/—l—é(i)) = _Znaa_ Zaj _2Zaj _O‘,_}'é(i)
Jj=s Jj=t

a€cll

for some n, € Z>(. By (8.3.9), this implies that

n t—1 n
2204]- = Znaa+2aj —l-QZozj +d.
Jj=i =s j=t

a€ll J=
Since s < t < i, we then have

t—1

O:Znaa+2aj+22n:aj—l—a’—22n:aj
s j=t j=i

a€cll j=

Daen e+ 3y 23 s tal i<

ZaEH Mo + Zz;i a; + o if t =1.

(8.3.14)

(8.3.15)

This is a contradiction, because, as n, € Zsg, (8.3.15) cannot be zero. Therefore no

B in (B1,- .., Bm) is a root in A(3(n)).

Next we suppose that there exists §, in (f51,..., 8n) with £, € A(g(1)).

There

are long roots and short roots in A(g(1)). We handle these cases separately. We first

suppose that 3, is a long root in A(g(1)). The long roots in A(g(1)) are ¢; £ ¢, for
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1<j<iandi+1<k<n (see Appendix C). The roots €, & ¢ may be expressed
in terms of simple roots as
6j+6k=Zal+Zozl ZO([‘FO[Z—FZO([—FQZOQ—FQO%
1=j 1=k I=it+1

and

j— &k = Z&l ZO&[ ZO([‘FO&,—FZOQ

l=i+1

We show that if §, = ¢; &+ ¢ then (sg._, - -- 351(—a +9(2)),8Y) ¢ Z. Observe that

since a,, is the only short simple root, the coroot (g; + £5)" can be expressed as

(g5 +en)”

i1
:(Zal—i-oz, Zal—i-?zal-i-?@n

l=i+1

i—1
20y,
2.
Z||6]+6k||2 |I8J+€Ls||2 lesﬁ&fll2 Z||6]+6k||2 |lej + exl?

—Zal +a) + Z o —|—22al +a).

l=i+1

Similarly, we have

i —er)” Zal+a +Zal

l=i+1

Now observe that, as A; is the fundamental weight for «;, for a € II, we have

(6(1), @) = (=(n =i — (1/2))X; + p,a”)
—n+i+(3/2) fa=w
_ (8.3.16)

1 otherwise.
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Thus,
(6(4), (g5 + 1))

Zal +a)f + Z a) +2Zal +aY)

= Z<5(i),a7> +(6(1), o) + i (6(1), 00') + 2Z<5(i),0@v> +(3(1), o)

=(i—-1-@G-1))+(-n+i+3/2)+(k—-1—-0)+2n—1—-(k—-1))+1
=n—k+i—j+(3/2).
Similarly,
(6(i), (ej —er)) = —n+k+i—j+(1/2).

Hence, for 8, = ¢; & ¢, we have (§(i), 5)) ¢ Z. Now, by (8.3.12), we have

<85r71'..851< Oé+5 Zma —()é—l—(S()ﬁ;/)
= _Zma BV> < (Z),ﬂ:)

with m, € Z. Since mq, (o, 8Y), (., 5)) € Z and (§(¢), ) ¢ Z, this shows that

<S/3r—1 e 851(_0/ + 5(7’))7 ﬁ?y> ¢ L.

Next we suppose that g, is a short root in A(g(1)). The short roots in A(g(1)) are

g;j for 1 < j < (see Appendix C). Thus 3, is 8, = ¢ for some 1 <[ <. Since ¢; is of

the form e, = > 77, a;, (8.3.9) forces that [ = 4; otherwise, sg,, -~ s5,(—a’+0(4)) would

have a contribution from some «; € Il with 1 < j <i—1. Thus §, = ¢, => "

Jj=t
Since f3, is a short root, the coroot 3" = (3_7_; @;)" can be expressed as
n n 20 n—1 20 20 n—1
st () = e - 2o B e a2 B
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It then follows from (8.3.16) that

n

(0(1).8) = (=(n =i = (1/2)Ai +p. (D))

=(—=(n—1i—(1/2))\i + p,2a) +2 Z of 4 ay)
= 2—(n—i—(1/2)\ + p, ) +2Z (n—i—(1/2)\; + p,a))

+ (= —i—(1/2)Ai + p,ay)
=2(—n+1i+(3/2))+2(n—1—-10)+1

= 2.

Thus, by (8.3.12), we have

<85r—1"'3,31( a+5 /6\/ = Zma _a+5()57\"/>
a€ll
Zma —a,B) + (8.3.17)
a€ll
with m, € Zso. Thus, as 8, = Y77 aj, if d = (=3 cpmac — o, B)) + 2 then

sg, - Sp (—a/ +0(7)) is of the form
S, Sp (=0 +0(i)) = s5,_, -+ 55, (= +0(i dZ%

By (8.3.12) and (8.3.13), we have

S, - 5p,(—/ +8(0) Zm o) + sg. -+ s, (—a’ +0(1))
a€cll
_ZmIaOC)—i_Sﬁrfl'”Sﬁl( o +5 dz%
a€cll
S+ S 43— 0
a€ll acll Jj=i

with mg, m/, € Z. Therefore, sg, -+ s5 (—a’+ d(i)) can be expressed as

S, - Sp(—a’ + (i Znaa—dz%—(x + (1)

a€ll
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for some n, € Z>o. By (8.3.9), this implies that

QZn:aj = Znaa—i—dzn:ozj—i—o/. (8.3.18)
j=i ~i

acll j=i

By comparing the coefficients of a; in the both sides, we have
Mo, +d = 2. (8.3.19)

By (8.3.7) and (8.3.17), we have d = (= > ymaea — o/, 3)) +2 € 1+ Z>,. Since

Na; € Z>0, (8.3.19) forces that
d=2ord=1.

If d = 2 then (8.3.18) becomes
ZZaj = Znaa—i—ZZozj + .
j=i a€ll J=i

Therefore,

> naa+ao =0, (8.3.20)

which is a contradiction, because as o/ € II and k, € Z>o, the left hand side of

(8.3.20) cannot be zero. If d = 1 then, since d = (=) .y max — ', 3Y) + 2, we have

(—Zmaa—a',ﬁ;/}—kQ:l.

acll

Thus,
O mea+d,8)) =1 (8.3.21)

a€ll
Observe that, as 3, = ¢; in the standard realization, if («, ) # 0 for a € II then «

must be a = g;_1 — &; in I(l) or a = &; — ;41 in II\II(l). Since (g;_1 — &;,¢)) = —2,
(e; — €it1,8)) = 2, and o € II(I), the left hand side of (8.3.21) is
<Z Mmao + O/, 57\’/> = Me;_1—¢; <€i—1 — & 6;/> + Me;—e;41 <E’i — Eit1, 5;/> + <CY/, 5;/>
a€ll

= —2Me,_,—¢, + 2m, - 250/,61‘71*82‘

—E&it+1

= 2(m€¢*€z’+1 —Mei_1—ei — 50/,82'71751')7
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where 0/, ¢, is the Kronecker delta. As m.,_., ., m.,_,_,, and do ., ,_., are inte-
gers, this shows that (3~ .y maa+a’, BY) # 1, which contradicts (8.3.21). Therefore,
no B, in (B1,. .., Bm) is a short root in A(g(1)). Hence there is no link from —a/ +0(7)

to =2 7 o+ 0(i). |
Now we are going to show that the map
pas t My(—25; — (n— i = (1/2)A + p) = My(—(n— i — (1/2))\s + p)

is standard. First recall that we have My(—2¢; — (n — i — (1/2))\; + p) = U(g) ®
F(Q|v(jse,)+ ), where F(Qs|v(use,)+) is the finite dimensional simple [-submodule of
My(—(n — i — (1/2))A; + p) induced by the Qs|y (e )« system. If v, is a highest
weight vector for F(Qsay(je,)+) then pg,(1 ® vy) = 1 - v, = v4. On the other hand,
if 1 ® v is a highest weight vector for M(—2e; — (n —i — (1/2))\; + p) with weight
—2¢,—(n—i—(1/2))\; and pr : M(—(n—i—(1/2))\i+p) = My(—(n—i—(1/2))Xi+p) is
the canonical projection then puq(1®wvy) = (prow)(1®v™), where ¢ is an embedding
of M(—2¢; — (n —i— (1/2))\; + p) into M(—(n —i — (1/2))\; + p). Note that, by
Proposition 8.3.6, we have (prop)(1®@v") = pua(l ®vy) # 0. We want to show that
vy, is a scalar multiple of (proy)(1®wv*). Moreover, since My(—(n—i—(1/2))\;+p) =
UM) @ C_(n_i—(1/2))x+p as an [-module and since F'(sv (j4e,)+) is an [-submodule of

My(—(n —i—(1/2))X\; + p), we have
Up = up @ 1_(ni—(1/2)\ (8.3.22)
and
(prop)(1@v") =a®@ 1 (ni/) (8.3.23)

for some up, @ € U(n)\{0}. Hence, to show that vy, is a scalar multiple of (prop)(1®
vT), it suffices to show that uy, in (8.3.22) is a scalar multiple of @ in (8.3.23).
Observe that since v, = up ® 1_(,—i—(1/2))5, 15 a highest weight vector for the

simple [-submodule F(Qsy(yqe,)) of UM) @ C_p_i—(1/2))r,4p, for all a € II([), we
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have X, - (up ® 1_(n—i—1/2)»,) = 0. Therefore ad(X,)(us) = 0 for all a € II(I).
Moreover, as F'(€2]y (ute,)-) has highest weight —2¢; —(n—i—(1/2))A; and is spanned
by the elements of the form u® 1_,—;—(1/2))x, With u € o(Sym?(n)), it follows that wuy,
is in o(Sym?(f1)) with weight —2¢;, where ¢ : Sym(i) — U() is the symmetrization

map.

Definition 8.3.24 For u € U(n), we say that u satisfies Condition (H) if u satisfies

the following conditions:
(1) u € o(Sym*(w)),
(2) u has weight —2¢;, and
(3) ad(Xy)(u) =0 for all o € TI(T).

It follows from the observation made before Definition 8.3.24 that u, € U(n) in
(8.3.22) satisfies Condition (H). Our first goal is to show that any element in U(n)

that satisfies Condition (H) is a scalar multiples of wy,.

Lemma 8.3.25 For any € AT(I) UA(3(n)), we have 2¢; — B ¢ A™.

Proof. This lemma follows from a direct observation (see Appendix C for A*([) =

AF(L) U A (1) and A3(n))). .

We write u = @ ca+ 8o for the nilradical of b = h @ u and we denote by it the
opposite nilradical of u. Recall that, as n is the nilradical of the parabolic subalgebra

q=I[®n, we have n C u.

Lemma 8.3.26 If u is in Sym? (i) with weight —2¢; then u is of the form

AXEQ + Z BkX_(ei"‘ek)X_(Ei—Ek)

k=i+1

for some constants A and By. In particular, we have u € Sym?(n).
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Proof. If u € o(Sym?(u1)) with weight —2¢; then u is of the from

u=Y csX pX aeip

for some constants cg, where the sum runs over the roots 5 € AT = AT([)UA(g(1))U
A(3(n)) so that 2¢; — f € A*. By Lemma 8.3.25, the roots § must be in A(g(1)).
Thus if Ao, (g(1)) = {5 € A(g(1)) | 2¢; — 5 € A} then

u = Z CﬂX—ﬁX—Qai-F,B'
BeA2:,(a(1))

By Appendix C, we have
Alg(l))={egjtep|1<j<iandi+1<k<n}U{g|1<j<i}.
Thus,

Ao, (9(1)) = {6 € Alg(1)) | 26s — B € A}

={e;ter|i+1<k<n}U{eg}
Therefore u is of the form

u= Y XX aig

BeA2e, (8(1))
= Céinai + Z Ceiter X —(eiter) X—(z5—e) T Z Cei—er X —(ei—ex) X —(ei+ex)
k=it+1 k=i+1
= C€z‘Xzei + Z (C€i+€k + CEi_Ek)X—(€i+€k)X_(5i_5k)'
k=i+1

If A=c., and By = cc,4¢, + C;—¢, then u can be expressed as

—ep
u = AX%EZ + Z BkX—(ai-i-ak)X—(ai—ak)-
k=i+1

Proposition 8.3.27 If u € U(n) satisfies Condition (H) then u is a scalar multiple

of up,.
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Proof. We will show that any vector u that satisfies Condition (H) is of the form

uo = X2 4+ Y 0 X e X (er—c)), (8.3.28)

j=it1

e Neeon e ) New —e
b =2(-1)"" e e ) TS o =1, n— 1 (8.3.29
J ( ) g N5k75k+1»7(€i+5k)N€"’*(€i+€n) ( )

2N, _..
by = — e (8.3.30)
Nen —(eiten)

If u satisfies Condition (H) then u € o(Sym?(f)) C o(Sym?(ii)) and has weight —2¢;.

Thus it follows from Lemma 8.3.26 that « is of the from

u=AX2, Z BiX (eiren) X —(eimep) (8.3.31)

k=i+1

for some constants A and By. Now observe that, by the condition (3) in Definition
8.3.24, we have ad(X,)(u) = 0 for all a € II([). Therefore, as €; — ;11 and ¢, are in

() for j =i+1,...,n— 1, we have

ad (X,

gj—€i+1

J(u) =0 and ad(X )(u)=0
for j=i+1,...,n—1. By (8.3.31), this means that for j =i+ 1,...,n — 1,

ad(X.,_.,,,)(AX2,, Z BiX (cienX—(eiep)) =0

k=i+1
and
a’d(Xen)(AXEEi + Z BkX_(5i+5k)X_(ai_€k)) =0,
k=i+1
which are

Bj ad(Xej—6j+1)(X—(sz-—iraj)X—(Ei—sj)) + Bj+1 ad(XEj—5j+l)(X_(€i+5j+1)X_(5i_5j+l)> =0

and

Aad(X.,)(X2.) 4 By ad(Xe, (X420 X—(es—cn)) = 0.

By solving the system of linear equations, we obtain B; = bjA for j = i+1,...,n with
b; in (8.3.29) and (8.3.30). Therefore, by (8.3.28) and (8.3.31), we get u = Au,. M
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By Proposition 8.3.27, to prove that ¢q, in (8.3.5) is standard, it suffices to show
that @ in (8.3.23) satisfies Condition (H). As (pro¢)(1®v") = ® 1_(_i—1/2)); 18
a highest weight vector with weight —2¢; — (n — i — (1/2))\;, one can easily see that
u satisfies the conditions (2) and (3) in Definition 8.3.24. So we want to show that u

is in o(Sym?(n)). To do so we need to show several technical lemmas.

Lemma 8.3.32 No polynomial in Sym"(n) for r > 3 has weight —2¢;.

Proof. Observe that the simple root oy = «a; has multiplicity > 1 in the roots 8 €
A(n). Therefore a; has multiplicity greater than or equal to r < 3 in the weights for
any polynomials in Sym"(n). Since o; has multiplicity 2 in —2¢; = =23, o, no

polynomial in Sym"(n) has weight —2¢;. [ |

Corollary 8.3.33 Any non-zero polynomials in Sym”(u) with weight —2¢; for r > 3

have contributions from root vectors X _,, for a € AT(I).

Proof. Since A(u) = AT(l) U A(n), this is an immediate consequence of Lemma

8.3.32. =
Lemma 8.3.34 Ifu € U(u) has weight —2¢; then u can be expressed as

u=AX 4+ > BiX_(chepXo(qep + Y u'X_, (8.3.35)

k=i+1 aEAT(I)

for some constants A and By, and some elements u® € U(u).

Proof. 1t

U, (1) = {u € U(u) | u has degree at most r}

then U(1) = |2, U.(1t) and U1 (1) /U, (1) = Sym"*!(i1). We show this lemma by
induction on the degree r for U, (it). First observe that since —2¢; ¢ A, the element u
cannot be in U, (1) = 1. Thus if u € Us(i) then u € Sym?(u) = Uy () /u. Therefore,

by Lemma 8.3.26, if u € Uy(ut) then u = AX%Q + ZZ:Z‘H By X (e, 4+e0) X —(ci—e,,) for
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some constants A and By. Now assume that this lemma holds for v € U,.(u) for
3 < r < t, and suppose that u € U;1(u). By Corollary 8.3.33, any polynomials in
Uy (1) /Uy (1) = Sym“t ! (1) with weight —2¢; have contributions from root vectors in
[. By permuting the root vectors, in U1 (1t), those polynomials can be expressed as
(some polynomial in U (1)) + Z v X _,
a€A*(I)
with some v* € Uy (u). Therefore the element u € U1 (1) is of the form
u=p+ Z v X_,
acAT(I)
for some p,v* € U;(u). By the induction hypothesis, the polynomial p € U (1) can be
expressed as
p=AX>_ + Z Br X _(c;1e) X —(ei—ep) T Z 1w X_q
k=i+1 aEAT (1)
for some constants A and By, and some elements 4* € U1 (1t). If u® = a* 4+ v* then

u is of the form in (8.3.35). By induction, this lemma follows. [

Now we are ready to show that the map g, in (8.3.5) is standard. Recall that
if 1 ® v is a highest weight vector for M(—2e; — (n —i — (1/2))\; + p) with weight
—2¢;—(n—i—(1/2))\; and pr : M(—(n—i—(1/2))\i+p) = My(—(n—i—(1/2))\;+p) is
the canonical projection then g (1®wvy) = (prog)(1®v™), where ¢ is an embedding
of M(—2¢; — (n—1— (1/2))\; + p) into M(—(n —i— (1/2))\; + p). By Proposition

8.3.6, we have (pro ¢)(1 @ vT) = puq(1 @ vy) # 0.

Theorem 8.3.36 If q is the maximal two-step nilpotent parabolic subalgebra of type
By(i) for 3 < i < n — 1 then the map @q, induced by the Qo|v(ute,)- system is

standard.

Proof. Observe that, as M(—(n—i—(1/2))Ai+p) = UU) @ C_(n—i—(1/2))x,» the vector

o(1 ®@v") is of the form p(1 ® vt) = v/ @ 1_(,_i_(1/2))», for some v’ € U(ii). Since
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o(l®wv") has weight —2¢; — (n —i — (1/2))\;, the element v’ has weight —2¢;. Thus,
by Lemma 8.3.34, we have
u=AX"_ + Y BiX_crepX_(qoen+ Y u'X_,
k=i+1 acA+(l)
for some constants A and By, and some elements u® € U(u). Observe that X_.,,
X_(5i+5k)7 and X_(gi_gk) are not in [. Thus, ifu = AXEEi—i_ZZ:H—l BkX_(5i+5k)X_(5i_5k)
then

Spstd(l X Uh) = (pl“ o} (p)(l ® U+) =u® 1—(n—i—(1/2))/\1-' (8337)

Clearly we have @ € o(Sym?(@1)). Moreover, as (pro ¢)(1 ® v™) is a highest weight
vector for weight —2¢; — (n — i — (1/2))\;, the element @ satisfies the conditions (2)
and (3) in Definition 8.3.24; hence, it satisfies Condition (H). Thus, by Proposition
8.3.27, there exists a constant ¢ so that @ = cuy, with uy, in (8.3.22). By Proposition
8.3.6, we have @ # 0; thus ¢ # 0. Since ¢o,(1 ® vp) = vh = up ® 1_(n_i—(1/2)x,, it
follows from (8.3.37) that ¢q,(1 ® vs) = (1/¢)@sta(l @ vp). [

In Table 8.1 below we summarize the classification on the maps pq,.
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Table 8.1: The Homomorphism ¢q, for the Non-Heisenberg Case

Parabolic subalgebra q | Qv (e, ) Qo |v (utens)
Bn(i),3<i<n-—2 standard non-standard
Bn(n—1) standard ?
Bp(n) standard —
Cn(i),2<i<n-—1 ? standard

non-standard
non-standard
non-standard
non-standard
non-standard
non-standard

standard

non-standard
non-standard
non-standard

non-standard
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APPENDIX A
Reducibility Points

By Corollary 2.7.7, if an € system is conformally invariant over the line bundle
L, then the corresponding generalized Verma module is reducible. Then, in this
appendix, to support our results in Table 7.1, we shall show all the parameters of
t € C for which the generalized Verma modules of q listed in (3.3.3) are reducible.
We achieve it in Theorem A.5.1.

Here we recall some notation. For any ad(h)-invariant proper subspace V' C g, we
denote by A(V) the set of roots « so that g, C V. We write AT(V) = AT N A(V).
If g =1®nis a standard parabolic of g then let II(l) and W () denote the simple
system of AT (I) and the Weyl group of A([), respectively. We identify T ([) with the
subgroup of the Weyl group W of g generated by {s, | « € TI([)}. We write 3(I) for

the center of I. Let p denote half the sum of positive roots of g.

A.1 Verma modules and Generalized Verma Modules

The aim of this section is to review on the Verma modules and the generalized Verma
modules. We start by defining the Verma modules. For A € h*, let C, be the one-

dimensional ¢ (b)-module defined by

H-1=XH)1l foral Heb

X-1=0 forall X €u,

where b = h@u with u = @, o+ go- The Verma module M () with highest weight
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A — p is the left U(g)-module given by
M(X) = U(g) @uw) Cr)p.

We denote by L(\) its unique irreducible quotient.

Let O be the BGG category and O, be the full subcategory of O consisting of
the modules of O with generalized infinitesimal character A. For module M of O we
denote by [M] its formal character. The formal character of Verma module M ()) is

given by

where D is the Weyl denominator, namely, D = e” [] c+(1 —€™®), and e* is the
Z-valued function on h* that takes the value one at A and zero elsewhere. If W) is
the integral Weyl group of A then {[M (wA)] : w € W} and {[L(w])] : w € W, } form
Z-bases for the Grothendieck group K(O,).

Fix q a parabolic subalgebra containing b and write ¢ = [ & n. For applications
of q to representation theory, the relative category O is often used. The basis of the
corresponding Grothendieck group K(O9) is given by generalized Verma modules.
These modules are defined as follows.

Define

Pr={\ebh*| (N a’) €1+ Zs for all a € TI(I)}.

For v € P/, let V(v — p) be the irreducible finite dimensional (l)-module with
highest weight v — p.! Extend V(v — p) to be a U(q)-module by letting n act trivially.
Then define the generalized Verma module M, () with highest weight v — p by

means of

My(v) = U(g) Qu) V(v —p).

1See Section 3.2 what we mean by a highest weight of a finite dimensional representation of

reductive algebra [.
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It is clear that M, (v) is a highest weight ¢/(g)-module. So it follows from the universal
property of the Verma module M (v) that M;(v) is a quotient of M (v); in particular,
L(v) is its unique simple quotient. The formal character of My(v) is given by
] =7 3 (e
weW (1
where [(w) is the length of w € W ().
Define
Pf()={ ebh*| (\a)=1forall a €lll)}. (A.1.1)

It is easy to see that dim(E(v — p)) = 1 if and only if v € P{"(1). In this case the
generalized Verma module M,(v) is called a scalar generalized Verma module

due to Boe [3].

In Section A.2, we shall state a criterion due to Jantzen that determines whether
or not a given generalized Verma module is irreducible. To conclude this section we
summarize some technical results so that the criterion can be introduced easily.

We start by simple necessary and sufficient conditions on the irreducibility of

generalized Verma modules. Set A;" = {v € b* | (v,a") € Zs, for all a € TI(I)}.

Theorem A.1.2 [10, Theorem 9.12] Let v € b* with v — p € A", Then if (v,5Y) ¢

Zq for all B € A(n) then My(v) is irreducible. The converse also holds if v is regular.
Remark A.1.3 Our convention on My(\) is different from [10] by the p-shift.

In order to state Jantzen’s criterion we need introduce extra notation. For A € h*,

define

=D > (-

weW (I)

with D the Weyl denominator. It is clear from the definition of Y (\) that we have

Y () = [M,(\)] if A € P". Moreover Y(A) has the following properties.
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Proposition A.1.4 [23, Corollary 2.2.10] We have the following properties:
(1) If X € b* is A(l)-singular then Y (\) = 0.
(2) For A € b* and w € W(I) we have Y (\) = (—=1)"™Y (w)).
As we defined in Section 5.2, a weight A € bh* is said to be A(l)-dominant if
(A, ) >0 for all & € AT(I), and A([)-regular if (A\,a") # 0 for all « € A(I). If X € h*
is not A(I)-regular then we say that X is A(I)-singular. The following corollary then

shows that the converse of Proposition A.1.4 (1) holds if A is an integral A(l)-regular

weight.

Corollary A.1.5 If X € b* satisfies (A, ) € Z\{0} for all o« € A(l) then Y (\) # 0.

Proof. If (A\,a") € Z\{0} for all &« € A([) then there exists w € W(I) so that wA is

an element of P". By Proposition A.1.4 (2), we have

Y () = (1Y (wA) = (=)@ [ (w)] £ 0.

A.2 Jantzen’s Criterion

The purpose of this section is to introduce the irreducibility criterion due to Jantzen
for generalized Verma modules. We only state a specialization for scalar generalized
Verma modules of maximal parabolic subalgebra q. If V' is an ad(h)-invariant proper
subspace of g then we write p(V') for half the sum of positive roots in A(V').

Let g be a complex simple Lie algebra with rank greater than one, and let q be
the maximal parabolic subalgebra of g = [ @® n determined by a simple root o4 € II.
As g has rank greater than one and q is a maximal parabolic subalgebra determined
by aq, the center 3(I) = ﬂaen\{aq} ker(c) has dimension one. Since 3([)* = C)\; with

Aq the fundamental weight of ay, the set P;"(1) defined in (A.1.1) becomes

P{(1) = {th +p(1) | € C}.
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Therefore, if

Oy =tA\;+ p(l) witht e C

then any scalar generalized Verma modules of ¢ may be parametrized by ¢t € C as
Mq(©;) = U(g) Ru(q) Cor—p (A.2.1)

with infinitesimal character ©;. Moreover, since p(n) = p — p(I), we have p(n) € 3(I)*
and so p(n) = cyAq for some ¢y € C. Thus the scalar generalized Verma module

M,(©,) may be expressed as

My(©;) =U(g) Qu(q) Cre—co)r

q

with infinitesimal character
O = (t — co)\g + p.

Observe that the weight 2p(n) is integral and (p(n), ) > 1, so it follows that ¢y €

%Z>0 - (% + ZZO) U (1 + Zzo).

In [11] Jantzen introduced a very powerful criterion that determines whether or
not given generalized Verma module is irreducible. Although the criterion works for
any generalized Verma modules, we only state here the specialization of the criterion
to the present situation. For the general statement of Jantzen’s criterion see for
instance Satz 3 of [11] or Theorem 9.13 of [10].

If

Si={Be€Am)|(0,8") €1+ Zxo}

then Jantzen’s criterion for scalar generalized Verma modules of a maximal parabolic
subalgebra q reads as follows. This specialization of the criterion is from [23, Theorem

2.2.11].
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Theorem A.2.2 (Jantzen’s criterion) [11, Satz 3] Let q be a mazimal parabolic sub-
algebra. Then the scalar generalized Verma module Mq(©,) is irreducible if and only
if

> Y (s5(61)) = 0. (A.2.3)

To use Jantzen’s criterion we need to determine whether or not » ;¢ Y (s5(©1))
is zero. Then it is useful to know when terms Y'(s3(0;)) cancel out in (A.2.3).
Proposition A.2.4 below deals with this issue. For w € W we say that w is an odd

(resp. even) element if its length [(w) is an odd (resp. even) integer.

Proposition A.2.4 Let 5, € S; and assume that Y (s3,(0)) # 0. Then Y (sp,(0:))
cancels out in (A.2.3) if and only if there exists B € S\{fo} with Y (s3(0:)) # 0 so

that sz,(0;) and s3(©;) are conjugate by an odd element of W ().

Proof. 1f s5,(0;) and s3(0;) are conjugate by an odd element of W([) then, by Propo-
sition A.1.4, Y (s3,(0;)) cancels out. Then suppose that Y (sg,(0;)) cancels out in
(A.2.3). Then there exist fi,...., 3, € S; with Y (s4,(0:)) # 0, so that

Y (55,(00) + 3 ¥ (55,(61)) = 0. (A.25)

i=1

Since Y (sg,(0:)) # 0, by Proposition A.1.4, the weights sg,(0,) are all A([)-regular.
Thus we have (s3,(0;:),a") € Z\{0} for all & € A([). This implies that for each
i =0,...,n, there exists w; € W(I) so that w;(ss,(0:)) € P If \i = wi(s5,(0y))

then it follows from Proposition A.1.4 that (A.2.5) becomes

(-1 ) + Z )@y ();) = 0. (A.2.6)

Moreover, by combining the same terms, (A.2.6) may be written as

moY (\g) + Z myY (Ay,) = 0 (A.2.7)

146



with my, ..., m, some integers. Since A\, and \;, are elements in P[", we have Y/(\,) =

[My(Ag)] and Y (\;,) = [My(N;,)] for all k =1,...,r. Thus (A.2.7) is
mo[Mq(Aq)] + ka[Mq()‘ik)] = 0. (A.2.8)

Since [My(A\q)] and [My(N;,)] for k =1,...,r are linearly independent, by (A.2.8), we
obtain that my =0 for all k =0,...,r.

If E={8¢e{Bf,....0.} | ws(sp(©r)) = Ay}, where wg is the element of W (I)
such that wg(s3(0;)) € P, then my may be expressed as

o = (~1)/0) 37 (1)
BeE

Since we have my = 0, there exists § € E such that (—1)"®0) 4+ (—1)iws) = 0,
Moreover, we have wy(sg,(0r)) = Ay = ws(s5(0;)) with wg,ws € W(I). So sz,(0:)
and s5(©;) are W ([)-conjugate. If those are conjugate by an even element of W (I)
then Proposition A.1.4 implies that Y (sz,(©;)) + Y (s5(0:)) # 0. On the other hand,
by the equality (—1)4®0) 4 (—1)1®s) = 0 and the condition wy(sg,(0;)) = ws(s5(O;)),
we have

(= 1)V (wo(55,(01))) + (= 1)V (ws(55(04))) = 0,
which is, by Proposition A.1.4, equivalent to

Y (5, (©1)) + Y (55(0)) = 0.

This is a contradiction. Therefore sg,(©;) and s5(©;) are conjugate by an odd element

of W(I). [

To complete this section we give a couple of technical statements that will be used

in later sections. Observe that parabolic subalgebra ¢ is the one corresponding to the

subset II\{ap} = {a € IT | (A\q, ") = 0}.
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Lemma A.2.9 Let 51,52 € A. If s5,(0;) and s3,(0;) are W(I)-conjugate then

(1,81 2000 _ (g, gy 2000,

[l |2 [l |2
Proof. Write sg,(0;) = wsg,(0;) with w € W(I). Then, by applying 2(-, Aq)/||al]?

for both sides of sg, (0;) = wsgz,(0;), we obtain

(A.2.10)

Since the Weyl group action preserves the inner product and W (I) acts on A, trivially,

we have (wsg,(0;), Aq) = (58,(01), Aq). Therefore, (A.2.10) is

2(55(00), Aa) _ 2(58, (1), Aa)

logl? [l ?

(A.2.11)

Now the proposed equation follows from s,(0;) = ©; — (0, a¥)a for a € A. |

Proposition A.2.12 Let 5y € S; with Y (s5,(0:)) # 0. Assume that By, ..., By are
all the weights in S,\{Bo} that satisfy both Y (sp,(0;)) # 0 and

©, ) 2o da) _ g gy 2000 )

[l |2 [l |2

If k is even then My(©y) is reducible.

Proof. Set E = {fo,51,-..,0c}. By Lemma A.2.9, there is no § € S;\E with
Y (s5(0:)) # 0 so that s5(0;) is W (I)-conjugate to sz, (0;) for ; € E. Therefore,
by Proposition A.2.4, the term Y (sg,(0;)) with 8; € E cancels out in (A.2.3) if and
only if there exists 3; € E\{f;} so that sz,(0,) and s3,(0;) are W ([)-conjugate by an
odd element of W (I).

If £ is even then since E contains an odd number of elements and we have
Y (s5,(0:)) # 0 for all §; € E, there exists 3; € E so that Y(sg,(0;)) does not

cancel out. Now Jantzen’s criterion concludes that M;(0;) is reducible. |

Proposition A.2.12 gives a sufficient condition on M,(©;) to be reducible. However,

in general, it takes time to find out all the weights (1, .. ., Bx that satisfy the conditions
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in the hypothesis. If g is simply laced and if q is a maximal two-step nilpotent
parabolic of non-Heisenberg type then we can check the reducibility of M;(©,) more

efficiently. It will be achieved in Section A.4.

A.3 Necessary Conditions of the Reducibility of M,(©;)

Although Jantzen’s criterion is very powerful, it is in general not easy to determine
whether or not (A.2.3) is zero. The purpose of this short section is to introduce a
couple of statements that reduce the number of parameters ¢t € C for M,(©;) that
need to be checked by Jantzen’s criterion for certain parabolics q. Hereafter, we
assume that ¢ = [ n is a maximal two-step nilpotent parabolic subalgebra of non-
Heisenberg type with n = g(1) @ 3(n). Note that the decomposition (3.3.1) of [ is

irrelevant, the case that q is of type D, (n — 2) is included.

We begin this section with a technical lemma that will be used later. Observe that

a(1) = {8 € A* | B(H,) = 1} and 3(n) = {8 € A* | B(H,) = 2} with H, = 2 H,

llag > 77 A

in (3.2.1).

Lemma A.3.1 Let q = [ & g(1) & 3(n) be a mazimal parabolic subalgebra of non-

Heisenberg type. For € A(n), we have (A, ) = %, 1, or2.

Proof. Since n = g(1) @ 3(n), we have

200, 8) |1 5 €A(e(1))

a2

ol 2 if g€ A(3(n)).
Thus, the lemma is obvious when ||]1* = [|ag||? or [|B]]* = 2||ay]|*. I 2[|8]]* = |]ay?
then, by inspection, such f is always in A(g(1)), and hence (A, ) = 2. [ |

Proposition A.3.2 Let q = [ @ g(1) & 3(n) be a mazimal parabolic subalgebra of

non-Heisenberg type. If My(©y) is reducible then t € 7.
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Proof. Observe that (©, — p,a’) = 0 € Zx( of all a € II(I). If M(©,) is reducible
then, by Theorem A.1.2, there exists fy € A(n) with (O, 5)) = ((t —co)N\q+p, By) =
k € Z~o. Hence,

k_ Vv
t: <p,/80>+c()7

Ay, By
where k — (p, 8)) € Z and ¢y € 3Z~o. By Lemma A.3.1, we have (A, 3)) = 1/2, 1,

or 2. Therefore ¢t € %Z. [ |

An irreducible [-submodule F' of a generalized Verma module is called a leading
[-type if n acts on it trivially. Suppose that F' is a leading [-type of M (©;) that is
not isomorphic to C;_cy)y,- If we write h = CH, @ b, with by, a Cartan subalgebra
of the semisimple part of [ then the highest weight of F' has the form z\; + v with
z € Cand v L A\;. On the other hand, a highest weight vector of F' is of the form
u® 1 with u € U;(n) for some j, and as we observed in Section 3.2, H; = WHM

induces the 2-grading on g and acts by —1 or —2 on n. Therefore we have

2

Q(t — CO)
a2 e

u®1)

(—m+ A(Hy,)) (u® 1)

with some m € 1 + Zx(, which is equivalent to

H,\q'(U@l):(—

% Mool (t — o)) Ag(Hy,)(u @ 1),

This shows that the highest weight of F' is of the form

2
oo el

2 Al

Ag) + (t = co)Aq-

[\

Proposition A.3.3 Let q = [ & g(1) @ 3(n) be a mazimal parabolic subalgebra of

non-Heisenberg type. If M(©,) is reducible then t > 0.

Proof. Observe that if M,(©;) is reducible then there exists a leading I-type F in

My(©,), that is not isomorphic to Cg—_cys,- Then we have Homyq) (U(g) Quqg
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F,My(©¢)) # 0. In particular, these two generalized Verma modules have the same
infinitesimal character. By the above observation, there exist a constant m € 1+ Zx
and a weight v with v L A, so that the infinitesimal character of F'is of the form
(v — mTk)‘q) +(t—co)Aq+p=— mTk)‘q) +tAq + (1) with k = [lag||?/[[Aq][*. There-
fore, the weights (v — ZEX) +tAq + p(I) and O, are W-conjugate, which in particular
implies that

mk
1 = ZEN) + g + O = 1O
By expanding the both sides and solving for ¢, one obtains that

_ mk 1 9
t= 1 +mk;||)\q||2(||y|| +2<u,p([)>)>0.

By combining Proposition A.3.2 and Proposition A.3.3, we conclude the following

statement.

Proposition A.3.4 Let q=[®g(1)®3(n) be a mazimal parabolic subalgebra of non-

Heisenberg type. Then My(©,) is reducible only if t € %Z>0 =(14+Z>o) U (% + Z>0).

A.4 Reducibility Criteria for Simply-Laced Case

In this section we specialize g to be simply laced, and show that in this case a simple
condition on the heights of roots significantly reduces the number of cases, for which
we need to apply Jantzen’s criterion. This is done in Theorem A.4.10, Theorem
A.4.15, and Corollary A.4.17.

Let g be a complex simple simply laced Lie algebra. We denote by ht(a) the
height of o for @ € A and by ht(l) the largest value of the heights of o € A(l). We
continue to call u and ~y the highest weights of g(1) and 3(n), respectively.

First we prove a couple of useful properties on the heights of o € A.

Lemma A.4.1 If g is simply laced then {(p,a") = ht(«) for all a« € A.
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Proof. Since g is simply laced, the map o — oV is linear. Therefore for > m;a; € A

with a; € II, we have

(P, (Zmiai)v> = Zmi<P, Oé;/> = Zmi = ht(Zmiai).

Lemma A.4.2 [f g is simply laced then, for a € A,

(

ht(a) if o € A1)
(Ona”) = q (t—co) + ht()  ifa € Alg(1))

2(t —co) + () if a € A(3(n)).

Proof. Observe that A(l), A(g(1)), and A(3(n)) are the sets of roots « so that
2(\g, @)/||ag||* = 0,1,2, respectively. Since g is simply laced, by the equal-length

property of roots, we have

(

0 ifaeA(l)

Apa’) =41 ifae Ag(l))

2 ifa € A(3(n)).

\

Now this lemma simply follows from the fact that ©; = (¢t — ¢)A\; + p and Lemma
A4, [

Observe that S; = {8 € A(n) | (©4,5") € 1+ Z>o}. By Proposition A.3.4, we

need only consider the reducibility of M,(©;) for t € 1Z,.

Lemma A.4.3 If g is simply laced then, fort € %Z>O, the set Sy is determined as

follows:

1. Ift —co ¢ Z then
Sy ={p € A(3(n)) | ht(B) > 2¢co — 2t}.
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2. Ift —co € Z then

Se=A{B € Ala(1)) | ht(B) > co —t} U{B € A(3(n) | ht(B) > 2co — 2t}
Proof. As ¢q € %Z>0, the proposed equalities follow from Lemma A.4.2. [ |

Proposition A.4.4 Suppose that g is simply laced and let o € A(l) and § € S;.
Then (s3(©;), ") =0 if and only if B — a € A and ht(a) = (O, 5Y).

Proof. By Lemma A.4.2, we have (O, a¥) = ht(a). Then it follows that (sz(0;), ") =
ht(a) — (O, BY){(B,a"). Since g is simply laced, by Lemma 3.4.4, we have (8,a") €
{=1,0,1}. Observe that (0;,3Y) € 1 + Z>q as f € S;. Thus, if (5,a") = —1, or 0
then

(s5(0:),a") = ht(a) — (B, B7)(8,a”) = ht(a) # 0.
If (8, ") = 1 then we have (sg(0;),a") = ht(a) — (O, V). Therefore (s3(0;),a") =
0 if and only if (8, ") =1 and ht(a) = (6, 5Y). As g is simply laced, the condition

(B,a") =1 1is equivalent to § — a € A. [

Proposition A.4.5 Suppose that g is simply laced and let € S;. If (©, ) > hi(l)
then Y (s3(©:)) # 0.

Proof. If o € A(I) then since (O, 8Y) > ht(l), we have (O, ") # ht(a). Then it
follows from Proposition A.4.4 that (sz(0;),a") # 0. So, we have (s3(0;),a") €

Z\{0}. Now Corollary A.1.5 concludes that Y (s5(0;)) # 0. |

Proposition A.4.6 Suppose that g is simply laced and let 5 € S,, for some m €
2. If (O, BY) > ht(l) then f € S, and Y (s5(0;)) # 0 for all t € m + Zx.

Proof. There are two cases, namely, § € A(g(1)) or € A(3(n)). We only prove the
case 5 € A(g(1)), since the other case may be proven similarly. If ¢ € m + Z> then

co —m > c¢o — t. On the other hand, since 8 € A(g(1)) N S,,, Lemma A.4.3 implies
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that ht(8) > ¢g — m. Therefore we obtain ht(/) > ¢y — t. Hence, by Lemma A.4.3,

B € S;. Moreover, by Lemma A.4.2,
(0, 8Y) = (t — co) + ht(B) > (m — co) +ht(B) = (O, B) > ht(1).
Now Proposition A.4.5 concludes that Y (ss(0;)) # 0. |

Here is a technical lemma that will be used in the proof for Theorem A.4.10 below.

Observe that ¢ is the constant so that p(n) = co,.

Lemma A.4.7 Suppose that g is simply laced and that (©.,~") > hi(l) for some
t > 0. If ht(y) — ht(u) + ht(l) > co then 3(t — co) + 2ht(y) > ht(u).

Proof. By Lemma A.4.2, (©;,7Y) = 2(t — ¢p) + ht(7). Therefore, we have
3t — o) + 2ht(7) = bt(7) + (£ — o) + (O1,1"). (A.48)

On the other hand, since (O;,~") > ht(I) with ¢ > 0 and ht(v) — ht(u) + ht(l) > co,

it follows that
ht(y) + (£ — o) + (@7") > ht(7) — co+he(0) > W), (AA9)
The proposed inequality now follows by combining (A.4.8) and (A.4.9). |

The next theorem is our main tool for simply-laced cases to reduce the reducibility

parameter ¢ for which Jantzen’s criterion needs to be applied.

Theorem A.4.10 Let g be a complex simple simply laced Lie algebra, and q be a
mazximal parabolic subalgebra of non-Heisenberg type. Suppose that ht(vy) — ht(u) +
h() > co. If (©,7) > hi(l) and v € S, for some m € 1Zso then My(©,) is

reducible for allt € m + Z>y.

Proof. By Proposition A.4.6, we have v € Sy and Y (s,(0;)) # 0 for all t € m + Zx.
We show that Y (s,(0;)) does not cancel out in (A.2.3). If Y(s,(0;)) cancels out
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then, by Proposition A.2.4, there exists 5 € S;\{7} so that s3(0;) is W ([)-conjugate
to s,(0;). Thus, by Lemma A.2.9,

2<77 )‘q>
[l [?

Since v € A(3(n)), we have 2229 = 2. By Lemma A.4.2, the left hand side of

2(8, Aq)

[lowlI?

(©17") = (6, 8") (A.4.11)

[lexall

|
(A.4.11) is then 4(t — ¢o) + 2ht(7). Hence,

2(8, Aq)

[l [?

At — co) + 2ht(y) = (6, 8Y) (A.4.12)

If B € A(3(n)) then (A.4.12) is
4(t — co) + 2ht(y) = 4(t — co) + 2ht(B),

which says ht(y) = ht(3). Since v is the unique highest root of g, we obtain g = ~.
However, it contradicts the choice of 8 € S\{7}. If 8 € A(g(1)) then, by Lemma
A42, (A412) is

4(t — ¢o) + 2ht(y) = (t — co) + ht(5). (A.4.13)

By solving (A.4.13) for ht(/), one obtains that
ht(B) = 3(t — co) + 2ht(7). (A.4.14)

Then, it follows from Lemma A.4.7 and (A.4.14) that ht(/5) > ht(u), which contradicts
the choice of § € A(g(1)). Therefore there is no such g € S;\{~v}. Hence, Y (s,(©;))

does not cancel out in (A.2.3), and so M,(0,) is reducible by Jantzen’s criterion. W

Here is a version of Theorem A.4.10 for the highest weight u for g(1). This theorem

shows the reducibility of M,(©,) for some ¢, where Theorem A.4.10 cannot apply.

Theorem A.4.15 Let g be a complex simple simply laced Lie algebra, and q be a
mazximal parabolic subalgebra of non-Heisenberg type. Suppose that (O, p*) > hi(l)
for some t € 2Z-q. If p € Sy and ht(B) # 3(3(co — t) + hi(p)) for all B € S;NA(3(n))
then Mq(©,) is reducible.
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Proof. The argument of this proof is similar to that for Theorem A.4.10. First, by
Proposition A.4.5, Y (5,(©;)) # 0. Since 1 € Sy, the term Y (s,(©;)) occurs in (A.2.3).
We wish to show that Y'(s,(0;)) does not cancel out. If it does then, by Proposition
A.2.4, there exists 5 € S;\{u} so that s,(0©;) and s3(0;) are W([)-conjugate. Then,

as we obtain (A.4.12) in Theorem A.4.10, one can show that

2(8, M)

[l

If 5 € A(g(1)) then we would end up with § = p, which contradicts the choice of

(t = co) + ht(n) = (O, 5)

(A.4.16)

B € S\{n}. Now if 8 € A(3(n)) then, by Lemma A.4.2, (A.4.16) becomes
(t = co) + ht() = A(t — co) + 2t (5),

as 2(\q, B)/||ayl]? = 2, By solving the equation for ht(3) we obtain that

3(co — ¢) + ht(p)
5 .

ht(5) =

Therefore, if there is no 8 € S; N A(3(n)) with ht(8) = 3(3(co — t) + ht(x)) then the
term Y (s,(©;)) does not cancel out in (A.2.3). Now Jantzen’s criterion concludes

that M,(©,) is reducible. [

Corollary A.4.17 Let g be a complex simple simply laced Lie algebra, and q be a
mazimal parabolic subalgebra listed in (3.3.2) or (3.5.3). Suppose that (O, u") > hi(l)

for some t € 3Z~o. If p € Sy and 5(3(co — t) + ht(p)) ¢ Z then My(©,) is reducible.

A.5 Reducibility Points of M (©,) for Exceptional Algebras

Proposition A.3.4 shows that My(©;) is reducible only if ¢t € $Z.,, when q is a
maximal two-step nilpotent parabolic subalgebra of non-Heisenberg type. In this
section we shall determine all the values of ¢t € %Z>0 for which My(©,) is reducible

for g listed in (3.3.3), namely,
Eﬁ(?)), E6(5), E7<2), E7(6), Eg(l), or F4(4)
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Observe that since the deleted Dynkin diagrams for E4(3) and Eg(5) have symmetry,
it suffices to consider only Eg(3).
Now we are going to state the main theorem of this chapter. We mean by the

reducibility points of M (©;) all the values of ¢ for which M;(©,) is reducible.

Theorem A.5.1 If q is a maximal two-step nilpotent parabolic subalgebra listed in

3.3.8) then the reducibility points of My(Oy) are given as follows:
q

Type Reducibility Points

te 2+ZZO +ZZO

te (14 Z>o + Zi>g

) ( )U (3 )
(2) ( )U (5 )
Er(6): te (1+Zso)U(5+Zso)
(1) : te (14 Zs) U (5 +Zxo)
(4): t€(1+2Z0) U (5 +Zx0)

The proof is given by a case-by-case observation.

We start observing simply laced cases, namely, Es(3), E7(2), E7(6), or Eg(1),
since Theorem A.4.10, Theorem A.4.15, or Corollary A.4.17 can be applied. Table
A.1 below shows the required constants for those theorems, namely, constant ¢y, the
values of ht([), ht(u), and ht(y), for each case. Note that in [23] the constants 3 for
Eg for k = 2 on p. 105 and 7 for E; for k = 2 on p. 107 should read g and %,
respectively. Observe that ht(y) — ht(u) + ht([) > ¢y for each case.

Let m,, (resp. m,) be the least number in $Z-q so that (0, u") > ht(l) for all
t € my, + Zsq (resp. (O, 7Y) > ht([) for all ¢t € m, + Zs(). These values are required
to apply Theorem A.4.10, Theorem A.4.15, or Corollary A.4.17. In each case of q
simply laced, we shall often need to observe the heights of certain positive roots.
See Appendix C for the heights of positive roots; the lists of the positive roots for

exceptional algebras are summarized in the appendix.
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Table A.1:

Type ¢ ht(l) ht(u) ht(y)

E¢(3) 3 4 8 11
E.(2) 7 6 13 17
E:(6) ¥ 7 12 17
Eg(1) 2 11 22 29

We treat the cases t € 1 +Z>p and t € % + Z>( separately, since elements in S}

are different in those cases.

A5.1  Ey(3)

The deleted Dynkin diagram is

Lemma A.5.2 We have the following:
1. (O, ") > hi(Y) if and only if t > .
2. (04, ~Y) > ht(l) if and only if t > 1.
Proof. A direct computation using Lemma A.4.2. [ |

Lemma A.5.3 The set S; is determined as follows:

1. ]ft S 1+Z20 then

Se=A{B € A3(n)) [ ht(B) > 9 — 2t}.
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2. Ift € 3 + Lo then
Se={B € Ag(1)) | m(B) > (9/2) =t} U{L € A(3(n)) | ht(5) > 9 — 2t}.
Proof. This directly follows from Lemma A.4.3 with the value of ¢y in Table A.1. W

Theorem A.5.4 Let g be the complexr simple Lie algebra of type Eg and q be the
parabolic subalgebra of g determined by the simple root ag. For t € 1+ Zs, the
following hold:

1. My(©y,) is reducible if t € 2+ Z>.
2. My(©,) is irreducible if t = 1.

Proof. We use Theorem A.4.10 to prove this theorem. We start by checking that the
hypotheses in Theorem A.4.10 are satisfied. Observe from Table A.1 that we have
co =5, ht(l) = 4, ht(p) = 8, and ht(y) = 11. So ht(y) —ht(u) +ht(l) > ¢o. Moreover,
it follows from Lemma A.5.2 and Lemma A.5.3 that (©2,7Y) > ht(l) and v € S,.
Now Theorem A.4.10 concludes that My(©,) is reducible for t € 2 + Z,.

If ¢ =1 then direct verification shows that for all § € Sy there exists v € A(I) so
that (sg(01),a") = 0. Indeed, if ¢ = 1 then Lemma A.5.3 and the attached list of

the positive roots shows that

Si = {8 € AG(w) | ht(8) > 7}
={a; + as + 203 + 204 + a5 + o
a1 + ag + 203 + 204 + 205 + o
o1 + ag + 203 + 3oy + 205 + o

o1 + 20&2 + 20[3 + 3064 + 20(5 + 066}.

To show (sg(01),a") = 0, by Proposition A.4.4, it suffices to find a € A(I) so that

f—a € A and ht(a) = (01, 5"). Observe that if 5 € A(3(n)) then, by Lemma A.4.2,

159



(0, 8Y) =2(t —9/2) + ht(5). Thus, for all 5 € 5,

(01,87) =ht(B) - 7.

If

5o=a1+a2+2a3+2a4+a56A

then the desired o € A([) are found as follows:
1) =01+ as+2a3+ 204 + a5+ ag: If a = ag € A(l) then 5 — a = [y and
ht(a) =1 = (01, 5Y).

2) =1+ ag + 203 + 204 + 205 + a: If v = a5 + ag € A(l) then f— a = [y

and ht(a) =2 = (O, 8Y).

3) B =aq+ as+2a3 + 3ayg + 2a5 + ag: If @ = ay+as+ag € A(l) then f—a = S
and ht(a) = 3 = (O, 8Y).

4) 5:a1+2a2+2a3+3a4+2a5+a6: IfOé:Oé2+()é4+Oé5+0£6 € A([) then

f—a= [ and ht(a) =4 = (0, 57).
Therefore sp(01) is A([)-singular for all 5 € Sy, which implies that, by Proposition

A14,Y(s3(01)) =0 for all g € S;. Now the irreducibility of M,(©,) follows from

Jantzen’s criterion. [}

Theorem A.5.5 Let g be the complexr simple Lie algebra of type Eg and q be the
parabolic subalgebra of g determined by the simple root ag. For t € % + Z>q, the

following hold:
1. My(©y) is reducible if t € 3 + Zs.
2. My(©y) is irreducible if t = 5.

Proof. As Theorem A.5.4, the first part is shown by Theorem A.4.10. Indeed, the
data in Table A.1 say that ht(vy) —ht(u) 4+ ht(l) > ¢o. Using ht(y) = 11, Lemma A.5.2
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and Lemma A.5.3 show that (@%,7v> > ht([) and y € S3. Then by Theorem A.4.10,
M,(6y) is reducible for ¢ € £ + Z
If ¢ = § then St is the union of Ag(1))N S1 and A(3(n)) N S1. By Lemma A.5.3
and the attached list of positive roots, the weights of these are as follows:
S1NA(g(1) = {8 € A(g(1)) [ ht(5) > 4}
={a+ataz+astas
a1 + a3+ a4 + as + ag
o9+ as + 204 + a5
Qo + Q3 + a4 + a5 + Qg
a1+ ag + az + 204 + as
a1+ Qo + ag + g + a5 + o
g + a3 + 204 + as + o
o1+ g+ a3+ 204 + a5 +
Qs + asz + 204 + 205 + ag
ag + as + az + 2a4 + 205 + ag}

and

S1NAGM) ={8 € A((n) [ ht(3) > 8}
={a1 + as + 2a3 + 204 + 205 +
a1+ ag + 2a3 + 3oy + 205 +
ag + 209 + 2a3 + 3ay + 205 + g}

One can check that for all 5 € Sy there exists o € A(l) so that <55(€)%),av) =0,
as we did in the proof of Theorem A.5.4. Then, by Proposition A.1.4, we have
Y(s5(01)) = 0 for all 8 € S1. Now Jantzen’s criterion concludes that My(©y) is

irreducible.

161



A.5.2  E;(2)

The deleted Dynkin diagram is

o Qa3 Qyq s  ag Q.
Lemma A.5.6 We have the following:
1. (O, 1n”) > ht(l) if and only if t > 0.
2. (84,7) > hi(l) if and only if t > 3.
Proof. A direct computation using Lemma A.4.2. [ |
Lemma A.5.7 The set S; is determined as follows:
1. Ift € 14 Z>q then
Se={p e A(g(1)) | mt(B) > 7t} U{B € A(3(n)) | ht(5) > 14 — 2t}
2. Ift € 5 + Z>o then
St ={6 € A(3(n)) [ ht(B) > 14 — 2t}
Proof. This directly follows from Lemma A.4.3 with the value of ¢y in Table A.1. B

Theorem A.5.8 Let g be the complexr simple Lie algebra of type E; and q be the
parabolic subalgebra of g determined by the simple root an. Then My(©,) is reducible

forallt € 1+ Zxg.

Proof. The reducibility for ¢ € 2 + Zs( is shown by Theorem A.4.10 as Theorem
A5.4. If t = 1 then since ht(y) = 13, Lemma A.5.6 and Lemma A.5.7 show that
(©1,1Y) > ht(I) and p € S;. Moreover we have 1(3(co — 1) + ht(p)) = 2 ¢ Z.

Therefore, it follows from Corollary A.4.17 that M,(©;) is reducible. |
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Theorem A.5.9 Let g be the complexr simple Lie algebra of type E7 and q be the
parabolic subalgebra of g determined by the simple root as. For t € % + Z>q, the
following hold:

1. My(©y) is reducible if t € 5 + Zs.

2. My(©y) is irreducible if t = 5, 3.

Proof. The first part is shown by Theorem A.4.10 as Theorem A.5.4. If t = % or %
then direct verification as in the proof of Theorem A.5.4 shows that for all § € S;
there exists o € A([) so that (s3(©;),a") = 0. Therefore, by Proposition A.1.4, we
have Y(s(0;)) = 0 for all § € S;. Now Jantzen’s criterion concludes that M,(©;) is

irreducible if t = % or % ) [ |

A.5.3  Eq(6)

The deleted Dynkin diagram is

Qg

e) '9) I 9} & o)

a Q3 iy (073 O Q.

Lemma A.5.10 We have the following:

1. (O, 1) > ht(l) if and only if t >

N

2. (O4,vY) > hit(l) if and only if t >

N

Proof. A direct computation using Lemma A.4.2. [ |

Lemma A.5.11 The set S; is determined as follows:

1. ]ft € 1+Z20 then
5= {8 € AG() | M(B) > 13 - 21).
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2. Ift € 3 + Lo then
Se = {8 € A(g(1)) | m(B) > (13/2) =t} U{B € A(3(n)) | hi(B) > 13 — 2t}
Proof. This directly follows from Lemma A.4.3 with the value of ¢y in Table A.1. N

Theorem A.5.12 Let g be the complex simple Lie algebra of type E7 and q be the
parabolic subalgebra of g determined by the simple root ag. Then Mq(©y) is reducible

forallt € 1+ Zxy.

Proof. The reducibility for ¢ € 2 + Z>( follows from Theorem A.4.10 as Theorem
A.5.4. To prove the reducibility of M,(©;), we show that there exists £y € Sy with
Y (s5,(01)) # 0 so that Y (sg,(0©1)) does not cancel out in (A.2.3). If ¢ = 1 then, by
Lemma A.5.11,

S1={B € A(3(n)) | ht(B) > 11}.
Set

Bo = a1 + 20 + 203 + 4oy + 3as + 206 + ap € A(3(n)).

Since ht(fy) = 15, we have [y € S;. Observe that, by the list of the roots in
Appendix D, one can see that (3 is the unique root of its height. First we check
Y (s5,(01)) # 0. To do so, by Corollary A.1.5 and Proposition A.4.4, it suffices to
show that By — a ¢ A for all « € AT(l) of ht(a) = (01, 3y). Since ¢y = 13/2 and
Bo € A(3(n)) with ht(5y) = 15, Lemma A.4.2 shows that (©,y) = 4. There are

only three weights in A™([) of height 4, namely,

a1+ g+ a3+ oy
Q1+ a3z + a4 + Qs

a2+a3—|—a4+a5.

A direct computation shows that Sy — o ¢ A for all « € A*(I) above. Therefore

Y (s4,(01)) # 0.
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Now we wish to show that Y (sg,(©1)) does not cancel out in (A.2.3). If it does

then, by Proposition A.2.4 and Lemma A.2.9, there exists § € S1\{fo} so that

<®1,B(Y>M = (61,6V>M. (A.5.13)

[l [? [l [?
Observe that since fy, 8 € S1 C A(3(n)), we have 2(5y, A\g) /||ag][* = 2(8, A\g) /|| |> =
2. Then a direct computation using Lemma A.4.2 shows that (A.5.13) implies ht(3) =
ht(5y). Since [y is the unique root of its height, it implies § = [y. However, it
contradicts the choice of § € S1\{fo}. Therefore Y (s4,(01)) does not cancel out in

(A.2.3). Hence, by Jantzen’s criterion, My(©,) is reducible. [

Theorem A.5.14 Let g be the complex simple Lie algebra of type E7; and q be the
parabolic subalgebra of g determined by the simple root ag. Then Mq(©y) is reducible

fOT’ all t € % + ZZO‘

Proof. The reducibility for t € g—I—ZZO follows from Theorem A.4.10 as Theorem A.5.4.
For the case of t = 3 or 2, we show that there exists fy € S; with Y (s4,(0;)) # 0
so that Y (sg,(0;)) does not cancel out in (A.2.3), as we did in the proof of Theorem
A.5.12. Here we only show the case of t = %, since the other case can be shown

similarly.

Ift= % then, by Lemma A.5.11,

Sy ={B € A(g(1)) | ht(8) > 6} U {B € A3(n)) | ht(3) > 12}.

=

Set

Bo = a1 + 209 + 203 + 3y + 3as + 206 + a7 € A(j(ﬂ))

Since ht(8y) = 14, we have f, € S%. By the list of the positive roots in Appendix
D, one can see that 3y is the unique root of its height. A direct computation as
in the proof of Theorem A.5.12 shows that Y(s%(@%)) # 0. Now we are going to

show that Y(sp(@%)) does not cancel out in (A.2.3). Suppose the contrary. Then, by
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Proposition A.2.4 and Lemma A.2.9, there exists § € S1\{} so that

[l 2

2<ﬁ7/\CI>

[lewl[*

(A.5.15)

Ifgesin A(3(n)) then (A.5.15) implies ht(8) = ht(fy) as in the proof of Theo-
rem A.5.12. Since [y is the unique root of its height, it shows that 8 = Sy, which
contradicts the choice of 3 € Si\{fo}. If 8 € 51 N A(g(1)) then (A.5.15) implies
that ht(8) = 10, by a direct computation using Lemma A.4.2 with the facts that
200, \g)/||agl|? = 1 if 6 € A(g(1)) and 2(6, \g)/||aq||> = 2 if 6 € A(3(n)). It implies

that 35(6%) for B € Si\{Bo} is W (I)-conjugate to sg,(0O1) only if ht(5) = 10. There

1
2

are only two roots in A(g(1)) of height 10, namely,

a1+a2+2a3+3a4+2a5+a6

a1+a2+2a3+2a4+2a5+a6+a7.

By applying the same argument in the proof of Theorem A.5.4, one can show that
Y(s@(@%)) = 0 for those 8 € A(g(1)) of height 10. Therefore, by Proposition A.2.4,
Y(s3,(01)) does not cancel out in (A.2.3). Now Jantzen’s criterion concludes that
M,(© %) is reducible.

If t = 2 then one can show by the same argument as above that Y (sg,(© %)) does

not cancel out in (A.2.3) with 5y = oy + 2as + 3as + 4ay + 3as + 2a6 + 7. Then the

reducibility follows from Jantzen’s criterion. [ |

A.5.4  Eg(1)

The deleted Dynkin diagram is
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Lemma A.5.16 We have the following:

1. (O, 1) > ht(l) if and only if t >

N =

2. (O4,vY) > ht(l) if and only if t >

N |t

Proof. A direct computation using Lemma A.4.2. [ |

Lemma A.5.17 The set S; is determined as follows:
1. [ft el +ZZO then

Se={p € AG)) [ h(B) > 23 — 2t}
2. Ift € 3 + Lo then
St =18 € Alg(1)) | m(P) > (23/2) =t} U{B € A(3(n)) | hi(5) > 23 — 2t}
Proof. This directly follows from Lemma A.4.3 with the value of ¢y in Table A.1. W

Theorem A.5.18 Let g be the complex simple Lie algebra of type Eg and q be the
parabolic subalgebra of g determined by the simple root aq. Then Mq(©y) is reducible

fOT’ allt € 1+ ZZO'

Proof. The reducibility for ¢ € 3 + Z>( follows from Theorem A.4.10 as Theorem

Ab4. Ift =1 or 2 then set

Bo = 2ai1 4+ 3 + 4das + 6ay + das + 3ag + 200 +ag it =1
or

Bo = 201 + 3aig + das + 6ay + Has + dag + 207 + g if t = 2.

We have [, € S; for both cases that ¢ = 1 and t = 2. By the same argument as
in the proof of Theorem A.5.12, one can check that Y (sz,(©;)) # 0 and also that
Y (s5,(0)) does not cancel out in (A.2.3). Now Jantzen’s criterion concludes that

My(©;) is reducible if t = 1 or 2. |
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Theorem A.5.19 Let g be the complex simple Lie algebra of type Eg and q be the
parabolic subalgebra of g determined by the simple root a;. Fort € % + Z>g, we have

the following:
1. My(©y) is reducible if t € 5 + Zsq.
2. My(©y) is irreducible if t = 1,3.

Proof. Matumoto shows that Mq(@%) is irreducible in Section 4.6 in [23]. So we need
only consider t € % + Z>y. The reducibility for ¢ € % + Z>( follows from Theorem
A.4.10 as Theorem A.5.4. If t = g then Lemma A.5.16 and Lemma A.5.17 show that
<®%7MV> > ht(l) and p € S3. Since 2(3(co — 2) + ht(p)) = 2 ¢ Z, it follows from

Corollary A.4.17 that M,(© %) is reducible.
Now suppose that ¢t = % The author wants to emphasize that this case is different
from any other cases that we have had above; there are two nonzero terms in (A.2.3).

First, Lemma A.5.16 and Lemma A.5.17 show that we have (@g,/ﬂ) > ht(l) and

o€ Ss. Thus Y(s#(@%)) # 0 by Proposition A.4.5. On the other hand, set
Bo = 2ai; + 3 + 4as + 6ay + das + 3ag + 207 + as.

One can check that Y (sg,(© %)) # 0 by the same argument in the proof of Theorem
A.5.12. Moreover, direct verification as in the proof of Theorem A.5.4 shows that
Y(Sg(@%)) =0 forall g € S%\{u,ﬁo}.

Now we claim that Su(@%) and 350(@%) are conjugate by an odd element of W (I).
Observe that since Y(su(@%)) # 0 and Y(Sﬁo(@%>> # 0, by Proposition A.1.4, the
weights s,,(© 3 ) and sg,(© %) are A(l)-regular. We then achieve our claim by comput-
ing the A(l)-dominant weight v, (resp. vg,) that is W(I)-conjugate to sﬂ(@%) (resp.
sﬁo(@%)), via the following algorithm: Given A(l)-regular weight A € h*, compute
(A, af) for all oy € TI(I). If A is A(l)-dominant then nothing to do. If not then

there exist simple roots aj,,...,a;, € II([) so that (\,aj) < 0. Apply the simple
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reflections sq; ;... 8a;, t0 A If 8o, ... 84, (A) is A([)-dominant then we stop; oth-

j
erwise, apply the simple reflections s,, of a;, € II(I) with (sq;, ... 84, (A),aj,) <0
t0 Sa;, ---Sa;,(A). We keep these steps until the resulted weight sq; ..., Sa; (A)
is A(l)-dominant. For example, to find v,, we first compute <5M(@%),ay> for all
a; € II(I). In this case only ay makes it negative, so apply s,, to su(@%) and com-
pute (so@s#(@%),aﬁ for all o; € II(I).

By applying the above algorithm to su(@%) and sﬁo(@%), the A(I)-dominant

weights v, and v, are
533432555436535537385634375532365455335452(S,u(@g))

and
855483828435(360 (@g ))a

respectively, where s; = s,, for a; € II([). Moreover, a direct computation shows

that
838482558486838587888684878582865485838482(Su(@%))
= @% - ]_2(1/1 - 150./2 - 21043 - 30(1/4 - 24045 - ]_8(1/6 - 120./7 - 60[8
= 858483828455(850(@%)).
If wi = $35459555456535557535654575552565455535452 and Wy = S5S4835825485 then it

follows that s,(03) = w; 'wsy (550((9%)). Moreover, the built-in function length of LiE

3

3
shows that I(w; 'wy) = 21. Therefore s“(@%) and 350(9%) are conjugate by an odd
element of W ([). Now since Y(35(@%)) =0 forall 5 € S%\{u, Bo}, Proposition A.2.4

and Jantzen’s criterion conclude that My(© %) is irreducible. |

A55  Fy(4)

The deleted Dynkin diagram is



The constant ¢, in this case is % Observe that Theorem A.4.10, Theorem A.4.15,
or Corollary A.4.17 cannot be applied for this case, because g is not simply laced. So,
to compute (O, V) easily, we choose a specific realization of the root system. As in
[9, page 65], we realize h* as R and take a; = ey — €3, ap = €3 — €4, a3 = €4, and
oy = %(61 — €9 —eg — ey) with eq,...,e4 the standard orthonormal basis for R*. For
simplicity we denote by (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1) the orthonormal
basis ey, es, €3, €4 for h*, respectively. By using this realization, the weights in A1 (1),
A(g(1)), and A(3(n)) are listed as in Table A.2. A direct computation shows that we
have ©; = (t, g, %, %) in this realization. Then, the values of (©;,0") for 6 € A(n) are
obtained as in Table A.3.

Observe that S; = {6 € A(n) | (©4,6Y) € 1 4+ Z>o}. Then Table A.3 shows that

1€ Sy when t € 1 4 Zs, and that v4 € S, for all t € (5 + Zxo) U (1 + Zxo).

Theorem A.5.20 Let g be the complex simple Lie algebra of type Fy and q be the
parabolic subalgebra of g determined by the simple root ay. Then My(©y) is reducible

for allt € 1+ Z>o.

Proof. To prove this theorem we use Theorem A.1.2. Observe that we have (0, a") =
(p(1),a") # 0 for « € A(l). Thus it follows from Table A.3 that ©, is regular when
t € 1+Z>¢. Therefore, the converse statement of Theorem A.1.2 holds for ¢t € 14Zx,.
Now it is clear from Table A.3 that (©y,7)) € Zs¢ for all t € 1 + Z>o. Hence, by
Theorem A.1.2, M,(©,) is reducible if t € 1+ Zx. [

Lemma A.5.21 Fort € % + Z>g, we have the following:
1. Ift € 3 4+ Zso then Y (s,(0,)) # 0.
2. Ift € 5+ Z>o then Y (s,,(0,)) # 0.
Proof. We only prove (1), since (2) may be proven similarly. A direct computation
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Table A.2:

A+([) = {(07 17 _LO) A(g(l)) = {61 = (%7 _%7 _%7 _%) A(é(“)) = {71 = (1’ _170’0)

(0,0,1,—1) Bo= (3, -1 -1 1) 72 = (1,0,-1,0)
(0,0,0,1) Bs=(3,—%35—3) 73 =(1,0,0,-1)
(0,1,0,—1) Bi=(3,3,-1-3) 74 = (1,0,0,0)
(0,0,1,0) Bs=(3,-3,1,3) 75 = (1,0,0,1)
(0,1,0,0) Be= (34,11 v = (1,0,1,0)
(0,0,1,1) Br=(3,3.1-3) v=(1,1,0,0)},
(0,1,0,1) n= (33353}

(0,1,1,0)}

shows that s,(6;) = (4 —2,—-L + 1, —L =3 —L — 1) Then one can easily check

NIt
IS

that (s,(0:),a") € Z\{0} for all @ € A(l) if t € 3 + Z>,. Now this proposition is

concluded by Corollary A.1.5. [ |

Theorem A.5.22 Let g be the complex simple Lie algebra of type F, and q be the
parabolic subalgebra of g determined by the simple root ay. Then Mq(©,) is reducible

for allt € 1+ Zso.

We take care of the cases t € % +Zsp and t = %, % separately, because the proofs
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Table A.3:

(O, 5) (©1,7))
Bl t—=5 ||m| t—3
Bo| t—13 ||| t—3
Bs| t—35 || t—3
Ba| t+5 || 2t
Bs| t—5 ||| t+s
Bo| t+35 || t+3
Br| t+1 | 7| t+3

are slightly different for those cases.

Claim 1: Ift € 2 4 Zso then My(©,) is reducible.

Proof. First we show that M,(©,) is reducible when t € % + Z>p. It is clear from
Table A.3 and Lemma A.5.21 that we have 74 € S; and Y (s.,(0;)) # 0 for any
t € 1 + Z>o. Now suppose that there exists § € S;\{74} so that s,,(6;) and s5(O;)
are W (l)-conjugate. Then, by using the facts that (0, v)) = 2t and 74 € A(3(n)),

Lemma A.2.9 gives
2(6, A\q)

4t = (©,,6) B (A.5.23)

|lag
By using Table A.3, one can check that no 6 € A(n)\{v4} satisfies the equation
(A5.23) if t € % + Z>o. Therefore, by Lemma A.2.9 and Proposition A.2.4 that
Y (5,,(©¢)) does not cancel out in (A.2.3) for ¢ € I + Zso. Then Jantzen’s criterion
concludes that My(6,) is reducible if ¢ € I + Zq.

Ift = g then it is clear from Table A.3 and Lemma A.5.21 that we have u € Sg
and Y(su(@% )) # 0. Then, by using p instead of 74 in the above argument, one

can see that there is no § € S%\{u} so that 55(93) is W(l)-conjugate to Su(@§)~
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Therefore, by Proposition A.2.4 and Jantzen’s criterion, My(Os) is reducible. |

5
2

Claim 2. Ift = %,% then My(©,) is reducible.

Proof. We start from the case t = 2. By Table A.3 and Lemma A.5.21, we have

|

Ya € S3 and Y(sm(@%)) # 0. Now suppose that 0 is an element in Sg\{%} so that
55(@%) is W ([)-conjugate to 374(6)%). Then, as in Claim 1, by using the facts that

(O,7)) =2t and v4 € A(3(n)), it follows from Lemma A.2.9 that we have

2(0, Aq)

[l

6= (03,8") (A.5.24)

One can see from Table A.3 that only p and v from A(n)\{v4} satisfy (A.5.24). By
Table A.3, it is clear that y, 76 € S3 and Lemma A.5.21 shows that Y'(s,(©3)) # 0.
Moreover, a direct computation shows that (8%(9%), av) € Z\{0} for all a € A(I).
Therefore, by Corollary A.1.5, Y (s,,(© s )) # 0. Then Proposition A.2.12 concludes
that Mq(G%) is reducible.

The case t = % can be shown similarly. It follows from Table A.3 and Lemma

A.5.21 that we have 74 € 51 and Y(SM(@%)) # 0. Then one can see that only s and

~s5 satisfy the equation

It is clear from Table A.3 that (g, v5 € S%. Direct verification using Corollary A.1.5
shows that Y(s&j(@%)) # 0 and Y(s%(@%)) # 0. Now Proposition A.2.12 concludes
that Mq(@%) is reducible. |

A.6 The Special Values and The Reducibility Points

In this section we check that the generalized Verma modules that are corresponding
to the line bundles in Table 7.1 for g in (3.3.3) are reducible, by using the reducibility

points in Theorem A.5.1.
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By Corollary 2.7.7, if an )y system is conformally invariant over the line bundle
L(spAq) then the generalized Verma module M,[C_y,»,] = U(g) Qu(q) Cspn, is re-
ducible. Table A.4 summarizes the generalized Verma modules of q in (3.3.3) that
correspond to the line bundles in Table 7.1. Here, since the special values and the
reducibility points for q of type Eg(5) are the same as those for q of type Fs(3), we

only consider q of type Es(3).

Table A .4:

Type | Qolv(ute) | Q2lviren)
Eﬁ(?’) Mq[(C,,\S] MCI[C*2)\3]

MCI [C—Q/\z} -
Mq [(C*Ns] MCI [C*?’)\G]

)
)
) | M;[Csy,] -
) | Mq[Cy,] =

To find the corresponding the complex parameter ¢ for M,(©,), observe that the
generalized Verma modules M,(0;) = U(g) Qu(q) Ci—cyr, are parametrized by their
infinitesimal characters. Therefore, if ¢, is the complex parameter corresponding to
C_s5, then g is obtained by tg = cy—s¢. Table A.5 collects all the complex parameter
to for g in (3.3.3).

By Theorem A.5.1, the generalized Verma modules M,(0©;) at t = ¢, in Table A.5
are reducible. Hence, the special values in Table 7.1 for q in (3.3.3) do not contradict

Theorem A.5.1.

174



Table A.5:

Dolviurenr | Q2lvuten):

7 5
2 2

ot

—
=

7
2

wlg

=
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APPENDIX B

Dynkin Diagrams and Extended Dynkin Diagrams

This appendix collects Dynkin diagrams and the extended Dynkin diagrams for each
complex simple Lie algebra. We use the Bourbaki conventions [4] for the numbering
of the simple roots for exceptional algebras.

There are three figures in this appendix. Figure B.1 shows the Dynkin diagrams,
and Figure B.2 is the Dynkin diagrams with the coefficients of the simple roots in the

highest root. The extended Dynkin diagrams are shown in Figure B.3.
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Figure B.1: The Dynkin diagrams

O O o O O
a (%) Qp—1 Oy
(@) O L O——0
a (%) Qp—1 Op
(@) O O{:O
aq &%) Op_1 Qp
Qp—1
O
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a
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Figure B.2: The Dynkin diagrams with the multiplicities of the simple roots in the

highest root of g

e A,,n>2:
1 1 1 1
O O O O

e B,,n>3:
1 2 2 2
O O O0——=0

e C,,n>2
2 2 2 1
O O O<—0

e D, n>4
1
O

o
oo
Oi\
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Figure B.3: The extended Dynkin diagrams with v the highest root of g

Ap,n>2
-
O
a1 Q2 Op—1 Qp
B,,n>3
-
o I e O—=0
aq Qo Qp_1 Qp
Cp,mn>2:
-
O O<:O
a1 Q2 Op—_1 Qp
D,,n>4
- Op—1
I O
@) . QOé/n—Q
aq (6] \
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APPENDIX C

Basic Data

This appendix summarizes the following useful data for maximal two-step nilpotent

parabolic subalgebras q = [ @ g(1) @ 3(n) of non-Heisenberg type:

The deleted Dynkin diagrams

The simple root o, so that (7, a,) # 0, where  is the highest root of g

The subgraphs of [, [, [,—1, and [,, (if the subalgebras are non-zero)

The highest weights for g(1), 3(n), [, by, l,—1, and [, (if the subalgebras are

nON-Zero)

For the definitions for the deleted Dynkin diagrams and the simple root o, see
Section 3.1 and Section 3.3, respectively. Section 3.2 describes about the subspaces
g(1) and 3(n). The definitions for the simple subalgebras [, and [, of [ are given in
Section 3.3. If q is of type D,(n — 2) then we denote by [, (resp. [,) the simple
subalgebra of [ whose subgraph is the node for the simple root «a,,_1 (resp. ).

The sets of roots contributing to g(1), 3(n), [, Ly, l,—1, and [,, are also given for
classical algebras. For exceptional algebras one can easily read off such roots from
the lists of positive roots in Appendix D. If q is determined by aq € II then the roots
contributing for [, g(1), and 3(n) are the positive roots whose coefficients for o, are

0, 1, and 2, respectively.
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eB,(i),3<i<n-—-2:

1. The deleted Dynkin diagram:

a7 8% a1 oy O 7En ] ap_1 Qp

3. The subgraph for [,:

4. The subgraph for [,:

® jL=e1+ €1

e A(g(l))={ejtex|1<j<iandi+1<k<n}U{e|1<j<i}

e v=¢ + e

e AGM)) ={ejten |1 <j<k<i}
7L =V(E):

b 57261_61'

o AT(L) ={ej—en |1 <j <k <i}
8. Ly =V (&)
® {uy = €1t €igo

o At() = {ejte[i+1<j<k<n}Ufe i+ 1<j<n)
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eB,(n—1):
1. The deleted Dynkin diagram:

o O O

Qg Q9 On—2 Qp_1 On
2. oy =y
3. The subgraph for [,:
O O O O
aq Q2 a3 Qp—2
4. The subgraph for [,:
O
Qn
5. 9(1) =V(n)
e p=erte,

e A1) ={e; e 1<j<n-1}Ufe [1<j<n—1}

e v =¢ + e

e A(n)) ={ej+e|1<j<k<n-—1}
7L =V(E):

el =€ —é€n

o At(l)={e;j—ex |1 <j<k<n-—1}
8. Iy, = V(En):

L4 gn’y = €n

o AT(ly) = {en}
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e B,(n):

1. The deleted Dynkin diagram:

@) O O——=
a1 (6%} Op—1 Oy
2. oy =
3. The subgraph for L,:
O O O O
o5 Qg (0%} Qn—1

e i=2¢

o v =¢e1+ e

o AGn) ={e;te|1<j<k<n)
6. L, = V(&):

o, =e1—ey

o AT(l)={e;j—er |1 <j<k<n}

7. Ly =0
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e (C,(1),2<i<n-—1:

1. The deleted Dynkin diagram:

aq a1 oy (07N ] Qn_1 Qn

3. The subgraph for [,:

4. The subgraph for [,:

® jL=e1+ €1

e A(g(l))={ejtex|1<j<iandi+1<k<n}

* v =2e

o AG(n) ={e;+e|1<j<k<i}U{2e|1<)<i)
7. 1L =VI():

b 57261_61'

o AT(L) ={ej—en |1 <j <k <i}
8. Ly = V(En):
o gn’y = 26i+1

o At(l)={ejtep|i+1<j<k<n}U{2,;|i+1<j<n}
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eD,(i),3<i<n-—3:

1. The deleted Dynkin diagram:

3. The subgraph for [,:

aq &%) e%} Qi1
4. The subgraph for [,:
Qp_1
O
O— ... —JUp_2
Qi1 \O
Qp

® [L=¢€1F €11

e A(g(l))={ejtex|1<j<iandi+1<k<n}

0”)/2614‘62

e AGM)) ={ej+en |1 <j<k<i}
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7. L =VI(E):

.57261_61‘

e AT(l)={ej—ep |1 <j<k<i}
8. Ly = V(ény):

® {uy = €1t €igo

o AT(l,)={ejtex|i+1<j<k<n}
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D,(n—2):

1. the deleted Dynkin diagram:
Qp—1
/ O
@) @) Oy —
Qg Olp—3 ®\2O
an,
2. oy =
3. the subgraph for [:
O O O O
Qg Qg Qa3 On-3

4. the subgraph for [,,_1:

5. the subgraph for [,:

® L=e€ t€eph

e A(g(l))={ejxtex|1<j<n—-2and k=n-—1,n}

.’)/:€1+62

e A(3(n)) ={ej+ex|1<j<k<n-—2}

190



8. I, =V(&):

L4 57 = €1 — €n—2

e AT(l)={ej—ep |1 <j<k<n-—2}

9. [n,11 A+([n,1) = {en,l — en}

10. L AT(L,) = {en—1 +en}
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o E4(3) :

1. The deleted Dynkin diagram:

3. The subgraph for [,:

4. The subgraph for [,:

o v =01+ 209 + 203 + 3oy + 205 +
7. L, =V():

o =+ ast+as+ g
8. Ly = V(&)

L4 €n7 = 0
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o E4(5) :

1. The deleted Dynkin diagram:

3. The subgraph for [,:

4. The subgraph for [,:

o v =01+ 209 + 203 + 3oy + 205 +
7. L, =V():

o =t tazt oy
8. Ly = V(&)

L4 €n7 = O
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e E:(2):

1. The deleted Dynkin diagram:

O
aq Qg Qg O (o7 ar
2. ay =
3. The subgraph for [,:
'®) o) o) o) o) '9)
(673 (074

o v =2aq + 2ai5 + 33 + day + 3as + 206 +

6. L, =V(E,):

o =1 taztay+as+as+ay

7. Ly =0
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o E:(6) :

1. The deleted Dynkin diagram:

Q9
o) o) I o) &) o)
aq a3 Oy Q5 Qg ar
2. ay =
3. The subgraph for [,:
o)

4. The subgraph for [,,:

o v =2a; + 2ay + 3a3 + 4ay + 3as + 206 + o7

7. L =V(E):

[ ] 5,72041+O[2+20é3+2044+045

8. Ly = V(&ny):

i gn'y = Q7
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o Eg(1):

1. The deleted Dynkin diagram:

3. The subgraph for [,:

L] 7:2041—I—Sag+4a3+6a4+5a5+4a6+3a7+2a8

6. [, =V(&):

[ g,y:042+063+2Oé4+2065+2046+2047+048

7 by =0
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° F4 (4) .
1. The deleted Dynkin diagram:

a3 oy

Qg Qo

Qg ) Qs

[} 7:2(114—3(){24‘40(34‘20(4

6. [, =V():

[ 57:oz1—|—2052+2043

7. by =0
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APPENDIX D

Lists of Positive Roots for Exceptional Algebras

In this appendix the lists of the positive roots for exceptional algebras are collected.
The positive roots are given both in terms of simple roots and in a realization of the
root, system. The height of each positive root is also shown. These lists would be

useful, when we find the roots contributing for [, V', and 3(n).
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E(ji

® H:{%(61—62—€3—64-€5+\/§66),€1+€2,€2—61,63—62,64—63,65—64}

e Dynkin diagram:

4 A+ = {ei+6j}i<j§5u{ei_€j }j<i§5u{%(ieli62i63ie4i65+\/§eﬁ)}number of munus signs even

(36 postive roots)

A list of the postive roots:

Height 1: o %(el — €y —e3— €4 — €5+ \/366)
(0] €1+ e
Qa3 €2 — €1
Oy €3 — €2
Qs €4 — €3
QO €5 — €4
Height 2: a1 + as %(—61 + ey —e3 —eq — €5+ V/3eg)
oy + g e +es
s+ oy €3 — €1
oy + as €4 — €2
a5 + o €5 — €3
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Height 3:

Height 4:

Height 5:

Height 6:

Height 7:

a1+ ag + oy
Qo + O3 + Qy
a9 + ay + ax
Qg + oy + Qs

ay + o5 + g

o1 +ag + a3+ ay
o1+ ag +og + as
Qg + ag + ag + as
gy + oy + a5 + g

a3+ ag + a5+ ag

o1 + g + g + oy + O
a1+ asg + oy + a5+ ag
Qs + az + 204 + o

Qg + a3 + oy + a5 + g

a1+ g + ag + 20 + as
a1+a2+043+064+055+&6

@z + a3+ 204 + a5 + g

o1+ ag + 203 + 204 + a5

o1 + g+ ag + 20y + a5 + ag

a9 + a3 + 20 + 205 + g

200

%(_61 —egtes—eq4—e5+ \/§€6)
€o + €3
€1+ €4
€4 — €1

€5 — €2

%(61 + ey 4 e3 — ey — €5+ v/3eg)
H—er — ey —e3+es — €5+ v/3eq)
es + ey4
€1+ ex

€5 — €1

%(61 + ey —e3+e4—e5+ \/566)
%(—61 — €9 — €3 — €4+ €5+ \/§66)
es + ey

€o + €5

(el—eg+63+€4—65+\/§€6)

[Nl

%(€1+€2—33_e4+65+\/§€6

63+65

%(_61 +e9+e3+eq4—e5+ \/366)
%(el — €9 +e3—ey4+e5+ \/§GG>

€4+65



Height 8:

Height 9:

Height 10:

Height 11:

O[1+O[2+20[3+2044+0é5+046

a1+ ag + ag + 204 + 205 +

a1+ ag + 203 + 204 + 205 + g

a1+a2+2ag+3a4+2a5+a6

Qg —|—2042+20£3 +3C¥4+20&5 + o

201

s(—e1+ex+e3—es+ €5+ V/3eq)

%(61 —62—€3+€4+65+\/§€6)

%(—61 + €9 — €3 + ey + €5 + \/§€6)

1(—e1 — €3+ €3+ eq + e5 + V/3eq)

%(61+€2+€3+€4+65+\/§€6)



E72

1
o [I = {5(61—62—'--—66—|—\/§67),€1+€2,62—61,63—62,64—63,65—64,66—65}

e Dynkin diagram:

o AT

- {ei+€j}i<j§6U{ei_€j }j<i§6U{\/§e7}U{%(ielie2i' : 'i66+\/§67>}number of munus signs odd

(63 postive roots)

A list of the postive roots:

Height 1: o %(el — ey —e3—e4—e5 — e+ \/2e7)
o e+ e
(0% €2 — €1
(7 €3 — €3
Qs €4 — €3
Qg €5 — €4
oy €6 — €5
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Height 2:

Height 3:

Height 4:

Height 5:

a1+ ag
Qo + Oy
as + oy
oy + o
as + ag

a6+a7

a1+ a3+ oy
Qo + a3 + oy
Q9 + Qg + s
as + ay + aj
oy + a5 + Og

as + ag + ar

a1 + Qg + a3+ ay
a1+ a3+ oag+ o
Q9 + g + g + Qs
Qo+ g + a5 + O
a3+ oy + as + ag

a4 + a5 + ag + ar

aq + oo + as + ay + as
a1+ ag 4+ ayg + as + o
ag + az + 2a4 + as
Qg + oy + a5 + ag + oy
Qo + Q3 + 4 + a5 + Qg

a3 + oy + a5 + g +

203

s(—e1+ e —es— ey —es — e+ V2e7)

er + €3
€3 — €1
€4 — €9
€5 — €3
€g — €4

(—61—€2+€3—€4—65—€6—|—\/§67>

N

€9 + €3
€1+ ey
€4 — €1
€5 — €9

€6 — €3

Ler+ex+e3—es—es—eq+v/2er)
%(—61—62—63+64—€5—€6+\/§67)
€9 + €4
er + es
es — €1

€g — €2

%(€1+62_63+64_65_66+\/§€7)

(—61—62—63—64+€5—€6—|—\/§€7)

D=

es + €4
€1+€6
€2 + €5

€g — €1



Height 6:

Height 7:

Height 8:

Height 9:

Height 10:

ay + g + a3 + 204 + as
a1+ g + a3+ g+ as + o
a1+ a3+ g + a5 + ag + ar

Qg + a3+ 204 + a5 + ag

Qo + a3 + Qy + a5 + ag + ar

a1 + oo + 203 + 200 +
o1+ g + a3+ 204 + a5 + o
aq + oo + asg + ay + a5 + ag + ar
Qo + as + 204 + 205 + a4

a9 + a3 + 2004 + a5 + ag + af

o1 + g + 203 + 2004 + a5 + o
a1+a2+a3+2a4+2a5+a6
a1 + g + as 4+ 204 + a5 + ag +

a2+a3+2a4+2a5+a6+a7

a1+a2+2a3+2a4+2a5+a6
a1 + g + 203 + 2004 + a5 + ag +
a1 + g + a3 + 20y + 205 + ap + oy

a9 + a3 + 200 + 205 + 2006 + a7

a1 + as + 2a3 + 3y + 205 + ag

&1+062+2()é3+20[4+20{5+0[6+0[7

a1+ ag + ag + 204 + 205 + 206 + 7

204

(61—62+63+64—65—66+\/§€7)

N =

%(614‘62—63—64—'—65—664-\/567)
%(—61—62—63—64—65+66+\/§€7)
€3 + es

e + €6

%(—61 +62+63+64—65 —€6+\/§€7)

L1 —ex+e3—es+es— e+ V2er)
Ller+e2 —e3 —eg — €5+ eg + V/2e7)
(i el
e3 + eg

%(—614—624-63—644—65—66—1-\/567)
(61—62—63+€4+65—66+\/§€7)

(el—eg+63—e4—e5+66+\/§e7)

NI= N

64+€6

1(—e1+es—e3+es+es — e+ V2er)
%(—614—624‘63—64—854—664‘\/567)
%(61_62_63+€4_65+66+\/§€7)

és + €g

el—ez+63+e4+e5—66+\/§e7)

(_
(_€1+€2_63+64_65+66+\/§€7)

NI N

%(61—62—63—64—1—65—1-66—1-\/567)



Height 11:

Height 12:

Height 13:

Height 14:

Height 15:

Height 16:

Height 17:

a1 + 209 + 203 + 3o + 205 + g
a1 + ag + 203 + 20 + 205 + 206 + 7

a1+a2+2a3+3a4+2a5+a6+a7

a1 + 200 + 203 + 3ay + 205 + a6 +

041+C¥2+20(3+30é4+2045+2&6+0é7

aq + 20(2 + 20&3 + 30&4 + 20&5 + 2056 + oy

a1 + as + 2a3 + 3oy + 3as + 2a6 + a7

a1 + 209 + 203 + 3o + 3as + 206 + o7

a1 + 2009 + 203 + 4o + 3as + 206 + o7

a1 + 209 + 3ag + 4o + 3as + 20 + 7

2001 + 209 + 3y + 4oy + 3as + 20 + 7

205

%(@1+62+63+64+65_66+\/§€7)

N[= N

(—el+62—63—e4+e5+66+\/§e7)
(_

e1 — e+ e3 + ey —es + eq + V/2e7)

%(€1+62+63+64_€5+66+\/§67)

1(—e1— e+ e3—eq + €5 + e + V2er)

%(61+€2+€3—64+€5+66+\/§€7)

%(_61—62—e3+€4+65+66+\/§€7)
%(el+62—63—|—€4+€5+66+\/§e7)
Ler —ea+ e+ ey +es+ €6+ v2e)
%(_el+@2—|—63—|—€4+65+66+\/567)

\/567



Egi

1
o II={5(e1—ey—---—er+teg),e1+ey,ea—e1,e3—€2,64—€3,65—€4,6—C5,67—C6}

e Dynkin diagrams:

)

i A+ = {ei+€j}i<j§8u{ei_€j }j<i§8u{%(i€1i62i' ' 'i€7+68)}number of munus signs even

(120 postive roots)

A list of the postive roots:

Height 1: o %(61—62—63—64—65—66—€7+68)
Qo €1+ e
(0%} €2 — €1
Qay €3 — €2
Qs €4 — €3
g €5 — €4
ay €6 — €5
asg €7 — €6
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Height 2:

Height 3:

Height 4:

a1 + Qg
Qg + 0y
a3+ gy
Q4 + Qs
Qs + Qg
o + Q7

Q7 + Qg

a1+ ag + oy
Qo + (i3 + Qg
Qg+ oy + Qs
Qg+ oy + Qs
a4+ a5 + Qg
a5 + o + oy

Qe + a7 + Qg

) +ag+ag+ay
a1 + az + ag + as
Qo + a3+ ay + as
oy + ay + a5 + o
a3+ aq + a5 + ag
oy + a5+ ag + ar

a5 + g + a7 + Qg

1
5(_61—|—@2—63—64—65_66_‘97'}_68)

€1+ es3
€3 — €1
€4 — €9
€5 — €3
€g — €4
€7 — €5

%(_el—62+63—64—65_€6_67+68)

€2 + e3
e1+ ey
€4 — €1
€5 — €9
€g — €3
€7 — €4

%(61+@2+e3—64—€5—€6_€7+68)
%(_61_62—e3+e4—65—66—€7+68)
€s + €4
e1 +es
€ — €1
€g — €2

€7 — €3

207



Height 5: a1+ g+ s+ ag + as
oy + a3 + a4+ as + ag
a9 + a3 + 20y + ag
Qg + oy + as + ag + oy
Qo + Q3 + Qg + a5 + Qg
a3+ oy + as + ag + oy

a4 + as + ag + a7 + ag

Height 6: a1+ ag + ag + 204 + ag
a1+ g + a3+ g+ as + o
o1 + a3 + oy + a5+ g + p
Qo + a3 + 204 + a5 + g
Qg + g + Q5 + Qg + Q7 + g
Qg+ a3 + oy + a5+ e+ y

asz + oy + a5+ ag + ar + ag

Height 7 o+ o+ 2043 + 2044 + a5

041+042+053+2044+C¥5+Oé6

a1+ Qg + a3+ oy + as + ag + ar

oy + o3+ g+ a5 + o + ar + og

a9 + a3 + 200 + 205 +

Qg + a3 + 204 + a5 + o +

Qo + g + ay + as + ag + a7 + ag

208

N =

D=

N =

DO [

%(61+€2_€3+@4_65_66_€7+@8)

%(—61—62—63—64+€5—€6—€7+€8>

€3+ ey
€1+ €g
ez + €5
€g — €1

€7 — €9

(61—62+€3+€4—65—66—67+68)
(61+€2—63—64+€5—66—€7+68)

(—61—62—63—64—€5+66—67+68)

€3+€5
e+ ey
62+€6

€7 — €1

%(—61+€2+63+€4—65—€6—67+€8)
(61—62+63—64+65—€6—67+68)
(61+€2—€3—64—€5+€6—€7+€8)

%(—61—62—63—64—65—66+€7+68>

e4 + €5
63+€6

€a + e7



Height 8: a1+ ao + 203 + 204 + a5 + o
a1+ ag + ag + 204 + 205 +
oy + g + oz + 204 + a5 + ag + ar
o+ a9 +ag+ oy + a5+ ag + oy + g
g + g + 204 + 205 + a6 +
s + ag + 204 + a5 + ag + ar + ag
Height 9: o1 + oo 4+ 203 + 204 + 205 + o
o1 + ag + 203 + 2004 + a5 + ag + ap
a1+ o 4+ ag 4+ 204 + 205 + ag + ay
a1 + g + as + 20 + a5 + ag + ar + ag
a9 + as + 20y + 205 + 2066 + 7
g + a3 + 2004 + 205 + g + a7 + g
Height 10: a1 + ag + 203 + 3o + 205 + g
a1 + ag + 203 + 20 + 205 + ag +
a1 + g + asg + 204 + 205 + 200 + 7
oy + ag + as + 204 + 205 + g + a7 + g
a1 + oo + 203 + 2004 + a5 + ag + ap + ag
Qs + asz + 204 + 205 + 204 + a7 + ag
Height 11: a1 + 209 + 203 + 3ay + 205 + a
a1 + oo + 2a3 + 3o + 2005 + g + 7
a1 + ag + 203 + 2004 + 205 4 200 + 7
a1+ ag + 203 + 204 + 2005 + g + 7 + Qg
a1 + g + as + 204 + 205 + 206 + a7 + g

Qg9 + a3 + 204 + 205 + 20 + 2007 + g

209

1
5(—€1+62+63—€4+65—66—67+68)

%(el—62—63+€4+65_e6_67+e8)
T(er—ex+e3—es—e5+ e — €7+ es)
%(el+62—e3—€4—€5—€6+€7+e8)
ey4 + e
es + ey

%(_61_'_62—e3+e4—|—€5—66—€7+e8)
%(_614—624—63—64—€5+€6_67+68)
s(e1 —ex—e3+ e —e5 + e —er + eg)
%(el—62—|—63—€4—€5_€6+67+68)
€5 + eg
eq + e

N =

e1—ey+ezt+eqg+es—eg—er+eg)

(_
(—€1+62—63+€4—65+66—€7+68)

N

%(61—62—63—64+65+66—67+68)

N =

(61—62—63+€4—65—66+€7+68)
%(—61+62+€3—€4—65—66+€7+68)

65—|—67

%(€1+62+63+64+65—66—€7+68)

€1 —es+e3+eqs—e5+eg—er+eg)

D=

N

(_
(—e1+ex—e3—es+e5+eg—er+eg)
s(—e1+es—e3+es—es—eg+er+es)
%(61_62_63_€4+65_66+67+68)

€6+€7



Height 12:

Height 13:

Height 14:

Height 15:

Height 16:

a1 + 209 + 2a3 + 3oy + 205 + g + 7
a1 + ag + 2a3 + 3oy + 205 + 206 + 7
a1 + as + 2a3 + 3oy + 205 + ag + a7 + ag
a1+ ag + 203 + 204 + 205 + 2066 + 7 + Qg

a1 + g + a3 + 20y + 205 + 206 + 207 + g

o1 + 2009 + 203 4+ 3oy + 205 + 200 + 7
aq + ao + 203 + 3ay + 3as + 206 4+ a7
oy + 209 + 203 + 3oy + 205 + g + a7 + ag
a1+ ag + 203 + 3oy + 205 + 2066 + a7 + ag

a1 + ag + 203 + 2004 4 205 + 20 + 2007 + (g

a1 + 209 + 203 + 3au + 3as + 20 + 7
041+20&2+2043+3Oé4+20é5+2056+0é7+048
a1 + as + 203 + 3oy + 3as + 206 + a7 + ag

041+Oé2+2053+3Oé4+20(5+20[6+20é7+048

Oél+2062+2(13+4Oé4+3045+2046+047
oy + 209 + 203 + 3oy + 3as 4+ 204 + a7 + Qg
Oél+2052+26¥3+30é4+2045+20[6+20&7+O[8

a1 + as + 2a3 + 3y + 3as + 206 + 207 + g

a1 + 2009 + 3ag + 4oy + 3as + 206 + 7
oy + 200 + 203 + 4oy + 3as + 206 + a7 + o
a1 + 209 + 203 + 3oy + 3as + 206 4+ 207 + g

Oél+O[2+2043+3CY4+30(5+3(16+2047+018

210

%(61+€2+€3+64_€5+€6_67+68)

s(—e1 —es+e3—es+es+eg —er+ es)
1

3(—e1—ex+ez+eq—es —eg+er+eg)
%(—61+€2—€3—€4+€5—€6+€7+68)

1
5(e1—e2—e3—e4 —e5+ e+ e7 + eg)

T(er+es+e3—es+es+es—er+es)

—61—62—€3+64+65+€6—67+68)

D=
—

%(61+€2+63+€4—65—66+67+68)

NI N

(—e1 —ex+e3—eqg+e5—eg+er+es)
(_

€1+€2—63—64—€5+66+67+€8)

N[

(e1+ex—es+eqg+e5+e5—er+es)

%(61+62+€3—64+65—€6+67+68)

DO [

(—e1 —ex—eg+eqg+e5—eg+er+es)
(—er

—62+€3—€4—65+66+€7+68)

N =

(61—62+€3—|—64+65+66—67+68)

(e1+ex—e3+eqg+e5—es+er+es)

N N

%(61+€2+63—64—65+€6+67+68)

DO [

(—e1 —ex—e3+eq4—e5+eg+er+es)

s(—e1+es+e3+es+es+es —er+es)

(1 —ea+e3+es+e5 —eg+ er+eg)

N

s(er+es—e3+eqs—es+ e+ er+ es)

1
5(—61—62—63—€4+65+66+67+68)



Height 17:

Height 18:

Height 19:

Height 20:

Height 21:

Height 22:

Height 23:

Height 24:

2000 + 203 + 3ag + 4oy + 3as + 206 +
ay + 200 + 3ag + day 4 3as + 206 + a7 + g
oy + 20 + 203 + 4oy + 3as + 206 + 207 + g

aq + 209 + 203 + 3oy + 3as 4+ 3ag + 207 + Qg

2061 + 20&2 + 3@3 +4C¥4 + 30&5 + 2066 + oy + asg

aq + 209 + 3as + 4oy + 3as + 206 + 2007 + g

aq + 20(2 + 20&3 —|—40é4 + 30&5 + 3066 + 20(7 + og

20(1 + 20[2 + 30&3 + 40&4 + 3065 + 20(6 + 20[7 + ag

a1 + 20 + 3as + day + 3as + 3ag + 207 + ag

oy + 20(2 + 20(3 +40é4 +40é5 + 3@6 + 20(7 + og

20(1 + 20(2 + 30&3 + 40(4 + 3&5 + 30(6 + 2047 + ag

ay + 200 + 3ag + day + das + 3ag + 2ar + ag

2001 + 209 + 3ag + 4oy + das + 3ag + 2007 + g

oy + 20&2 + 3063 + 50[4 —|—40[5 + 3@6 + 20&7 + og

201 4+ 2ai9 + 3a3 + bay + das + 3ag + 207 4+ ag

ay + 3ag + 3as + day + das + 3ag + 207 + ag

2001 + 209 + 4ovg + bay + das + 3ag + 2007 + g

2041 + 30&2 + 30[3 + 50[4 + 4(15 + 3046 + 2067 —+ Qg

2041 + 3(1/2 —f- 40[3 + 50[4 —|— 4045 —I— 3046 —f- 2(1/7 —f- ag

211

€g — €7
%(—61+€2+€3+64+€5—66+67+€8>

(e1 —ea+e3+es—es+es+ er + es)

N[ =

%<€1+€2—63—€4+€5+€6+€7+68>

€g — €4
s(—e1+ e+ e3+eq—es+eg+er+es)

%(61—€2+€3—€4+€5+66+€7+68>
€g — €5
%(—61+62+€3—64+65+66—|—67+68)

%(61—62—63+€4+65+66+67+68>

€g — €4

T(—e1+es—e3+es+es+es+er+es)

€g — €3

%(—61—€2+63+€4+65+66+€7+68>

€g — €2

s(er+ex+e3+es+es+ e+ er +eg)

€g — €1

e; +eg

ez + eg



Height 25:

Height 26:

Height 27:

Height 28:

Height 29:

2041 —I— 30(2 + 40(3 —f- 60./4 + 40[5 + 30&6 —I— 20(7 + Qg

2041 + 30(2 + 40./3 + 60./4 + 50[5 + 30&6 + 20(7 + Qg

2041 + 30(2 + 40./3 + 60./4 + 50[5 + 4046 + 20(7 + Qg

2041 —|— 30(2 + 4(1/3 —|— 60./4 + 50[5 + 4046 —|— 30(7 + Qg

201 + 3as + 4dag + 6y + Has + dag + 3ar + 2a
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63—|—68

es + eg

65+68

66—|—68

67—|—68



F4Z

o Il ={es —e3,e3 — ey, 64, %(61 —ey—e3—ey4)}

e Dynkin diagram:

(651 (%) a3 Oy

o AT ={e;}U{e;+e}iciU{ei—ejtic; U{3(e1 teatestes)} (24 postive roots)

A list of the postive roots:

Height 1: o €2 — €3
Qo €3 — €4
Qs €4
oy %(61 —ey —e3— €y)
Height 2: a1+ as ey — €y
Qo + Q3 €3
a3 + oy %(61—62—63—1—64)
Height 3: a1+ oo + a3 €9
a9 + 203 es3+ ey
s + as + ay T(er —ex+e3 —ey)
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Height 4:

Height 5:

Height 6:

Height 7:

Height 8:

Height 9:

Height 10:

Height 11:

a1+a2+2a3
o1+ g+ s+ oy

012+2043+Ol4

ay + 20 + 2a
a1+a2+2a3+a4

Qo + 20./3 + 20[4

oy + 20(2 + 2@3 + oy

a1+ oo + 2043 + 20(4

oy + 20(2 + 3063 + Qy

a1 + 20&2 + 20./3 + 2@4

a1 + 200 + 3ag + 20y

a1 + 2a9 + das + 200

oy + 30&2 + 4C¥3 + 20(4

2&1 + 30(2 + 4&3 + 20&4
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ey + ey

(61 + e9 — €3 —64)

NI—= N

(e1 —ea+e3+ey)
ex +e3
%(61 + e —e3+ 64)

€1 — €3

%(61 + ()] + €3 — 64)

€1 — €3

%(61 —+ €9 + €3 + 64)

€1 — €4

€1

€1+ ey

e1 +e3

e+ e2



Ggi

o Il ={e; —ey,—2¢; + 62+ €3}

e Dynkin diagram:

(651 (%)

o AT = {61—62, —261+€2+€3, —e1+es, —€x+e3, 61—2€2+€3, —61—€2+263}

(6 postive roots)

A list of the postive roots:

Height 1: oy €1 — €2

Q9 —2e1 + e+ e3
Height 2: a1+ as —eq1 + e3
Height 3: 2001 + Qo —ey + €3
Height 4: 3aq + an e1 — 2eo + e3,
Height 5: 3a1 + 20 —e1 — ey + 2e3
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