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1 Introduction

1.1 History of The Problem

Riemann’s theorem about removable singularities states that if f is holomorphic

in Ω \ {a} (Ω is an open set in C) and f is bounded in D′(a, r) (the punctured disk

with radius r and center a) for some r > 0, then f has a removable singularity at a.

Riemann’s theorem raises a question: How can we characterize removable singularities

for “good” (analytic, harmonic, etc.) functions?

In 1945 L. Ahlfors [1] introduced the set function γ (“analytic capacity”), and he

proved that a compact set K “is removable for bounded analytic functions”, (that is

for all open sets U ⊃ K and all bounded analytic functions f on U \K) if and only

if γ(K) = 0.

The definition of γ is purely analytic. So the question arises: What is a geometric

characterization of sets with vanishing analytic capacity?

It is not difficult to show that if compact K is thick enough, i.e. if its Hausdorff

dimension dim(K) is strictly more than 1 then γ(K) > 0. If K is too small, i.e.

dim(K) < 1 (then of course m1(K) = 0) or even dim(K) = 1 but m1(K) = 0 then

γ(K) = 0 (mβ denotes the β- dimensional Hausdorff measure of K).

In 1959 A. G. Vitushkin [17] gave an example of a compact set K such that

m1(K) > 0 but γ(K) = 0 (Vitushkin’s example was quite complicated but J. Garnett

[6] and L. D. Ivanov [8] found a much simpler one).
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In 1967 Vitushkin conjectured that γ(K) = 0 if and only if m1 (πθ(K)) = 0 for

almost every direction θ, where πθ denotes the orthogonal projection from the plane

to the line Lθ = {x+ iy : x cos(θ) + y sin(θ) = 0}.

Vitushkin’s conjecture was confirmed [3] in case when 0 < m1(K) <∞ .

In case when m1(K) =∞, P. Mattila [10], P. Jones and T. Murai [9] showed that

Vitushkin’s conjecture is not right.

M. Melnikov conjectured in 1995 that γ(K) > 0 (this includes the case γ = ∞)

if and only if K supports a nontrivial positive measure with linear growth and finite

Menger curvature [11].

Melnikov proved the “if” part of his own conjecture in the same article and the

“only if” part was proved by X. Tolsa in 2003 [14].

As for harmonic functions, a theorem of Carleson [2] states that if K is a compact

subset of Rd (d ≥ 2) then K is removable for harmonic functions satisfying a Lipα

condition (0 < α < 1) if and only if md−2+α(K) = 0.

Carleson’s result fails for α = 1: N. X. Uy [16] gave an example of a compact

subset of Rd that is removable for Lip1 harmonic functions in spite of having positive

(d− 1)-dimensional Hausdorff measure. N. X. Uy noted that for d = 2 the existence

of such a compact set follows from the existence of a set of positive length that is

removable for bounded holomorphic functions. Uy used the above-mentioned exam-

ple of Garnett in the 2-dimensional case and he generalized this example in higher

dimensional Euclidean spaces.

D. Ullrich showed in 1990 [15] that K is removable for harmonic functions in the

Zygmund class if and only if md−1(K) = 0.
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When 0 < α < 1 then Lipα coincides with the Besov space Λ∞,∞α (see definition

below) and the Zygmund class coincides with the Besov space Λ∞,∞1 .

All these facts indicate that Carleson-Ullrich’s theorem may have generalizations

in more general Besov spaces. This dissertation consists of research done in this

direction. We study removable sets for harmonic functions in Besov spaces.

The main result of this dissertation is:

Consider α, p, q such that (2 − d
p′

)+ < α < 2, 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, and a

compact K ⊂ Rd. We fix the number β = (α− 2)p′ + d where 1
p′

+ 1
p

= 1. Then:

i) If there exists γ < β such that mγ(K) = 0 then K is Λp,q
α,loc−removable;

ii) If there exists γ > β such that mγ(K) > 0 then K is not Λp,q
α,loc−removable. (See

the definitions below.)

1.2 Preliminaries

In this section we state basic definitions and theorems which are instrumental in

our research. We start with notations: Rd denotes d-dimensional Euclidean space, Z

the set of all integers, N the set of all natural numbers, R the set of all real numbers,

C the set of complex numbers.

We denote by A1 the “area” of the unit sphere in Rd.

Definition 1.2.1. By g we always denote the Green function [7] which is defined in

Rd as

g(x) =


−1

(d−2)A1|x|d−2 , if x 6= 0,

−∞, if x = 0,
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when d > 2,

g(x) =


−1
2π

ln |x|, if x 6= 0,

−∞, if x = 0,

when d = 2 and

g(x) =
1

2
|x|

when d = 1.

Definition 1.2.2. The Fourier transform of f ∈ L1
(
Rd
)

is

f̂(ξ) =

∫
Rd
f(x)e−2πiξ·x dx.

For the further use, we need to make following

Remark 1.2.1. For all d ∈ N, it is true that ĝ(ξ) = − 1
4π2|ξ|2 in Rd \ {0}.

Theorem 1.2.1. Suppose that µ is a finite positive measure on Rd with compact

support K. Let u = µ∗g, where g is the Green’s function (see definition 1.2.1). Then

u is subharmonic, and ∆u = µ in the sense of distributions (so that u is harmonic in

Rd \K) [7].

We denote by mθ(E) the θ−dimensional Hausdorff measure of E ⊂ Rd. We state

a special case of Frostman’s lemma in Euclidean spaces:

Lemma 1.2.1. Suppose that K is a compact subset of Rd and mθ(K) > 0. Then

there exist a probability measure µ supported on K and a finite constant C such that

µ (B(x, r)) ≤ Crθ
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for all x ∈ Rd, r > 0.

Definition 1.2.3. Suppose µ is a measure in Rd. We denote by µr the function

µr(x) = µ(B(x, r)).

The next theorem is known as Hardy’s inequality [4].

Theorem 1.2.2. If γ > 0, 1 ≤ q <∞, h : (0,∞)→ (0,∞) then

∫ ∞
0

r−γ−1

(∫ r

0

h(t)dt

)q
dr ≤

(q
r

)q ∫ ∞
0

rq−γ−1h(r)q dr.

1.3 Basics About Besov Spaces

S = S(Rd) will be the Schwarz space of rapidly decreasing functions, with dual

S ′, the space of tempered distributions. We will set

S0 =

{
f ∈ S :

∫
Rd
f(t)tγdt = 0, γ ∈ Nd

}
,

so

Ŝ0 =
{
f̂ : f ∈ So

}
=

{
f ∈ S :

∂γf

∂xγ
(0) = 0, γ ∈ Nd

}
.

The dual of S0 is

S ′0 = S ′/S⊥0 = S ′/P

where P is the space of all polynomials.

For each n ∈ Z, the notation An will refer to the annulus

An = {ξ ∈ Rd : 2n−1 < |ξ| < 2n+1}.
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Choose ψ0 ∈ C∞(Rd) such that ψ0 > 0 on A0 while ψ0 = 0 on Rd \A0. For n ∈ Z

define

ψn(ξ) = ψ0(2−nξ)

(so that ψn vanishes off An), and now define Φn ∈ S by

Φ̂n(ξ) =
ψn(ξ)∑∞

j=−∞ ψj(ξ)
.

It follows that Φ̂n vanishes off An, ‖Φn‖1 = ‖Φ0‖1, Φn(x) = 2ndΦ0(2nx),

∫
Rd
xγΦn(x) dx =

∂γΦ̂n

∂xγ
(0) = 0, γ ∈ Nd,

so Φn ∈ S0, (hence Φn ∗ f is defined for f ∈ S ′0) and
∞∑

n=−∞
Φ̂n(ξ) = 1 (ξ ∈ Rd \ {0}).

Note that
∞∑

n=−∞
Φ̂n(0) = 0.

Since 1 −
∞∑
n=0

Φ̂n is smooth and has compact support we can choose Ψ ∈ S such

that Ψ̂ = 1 −
∞∑
n=0

Φ̂n; note that Ψ̂ vanishes off B(0, 1) (the ball with center at the

origin and radius 1).

Now Ψ̂ +
∞∑
n=0

Φ̂n = 1 in all of Rd, and in fact it is easy to show that

φ = Ψ ∗ φ+
∞∑
n=0

Φ ∗ φ,

with convergence in S, for all φ ∈ S. It follows that

f = Ψ ∗ f +
∞∑
n=0

Φn ∗ f
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in S ′ for all f ∈ S ′ (Statements about convergence in S ′ and S ′0 refer to the weak∗

topology).

Typically when we write f =
∞∑

n=−∞
fn below it will be understood that we mean

convergence in S ′0 and that f̂n vanishes off An.

Similarly, the notation f = F +
∞∑
n=0

fn will be taken to imply convergence in S ′,

that f̂n vanishes off An, and that F̂ vanishes off B(0, 1).

Note that fn and F will always be infinitely differentiable, since f̂n and F̂ are

distributions with compact support.

Definition 1.3.1. Suppose that −∞ < α < ∞ and p ∈ [1,∞], q ∈ [1,∞). The

homogeneous Besov space Λ̊p,q
α = Λ̊p,q

α (Rd) is the space of tempered distributions f ∈ S ′0

such that f =
∞∑

n=−∞
fn where

supp
(
f̂n

)
⊂ An

and
∞∑

n=−∞

(2nα‖fn‖p)q <∞.

If q =∞ this condition becomes 2nα‖fn‖p ≤ C for all n ∈ Z.

Definition 1.3.2. Suppose that −∞ < α < ∞ and 1 ≤ p ≤ ∞, 1 ≤ q < ∞. The

inhomogeneous Besov space Λp,q
α = Λp,q

α (Rd) is the space of tempered distributions

f ∈ S ′ such that f = F +
∞∑
n=0

fn, where

supp
(
F̂
)
⊂
{
ξ ∈ Rd : |ξ| ≤ 1

}
, supp

(
f̂n

)
⊂ An
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and

‖F‖p +

(
∞∑
n=0

(2nα‖fn‖p)q
) 1

q

<∞.

If q =∞ this condition becomes F ∈ Lp and 2nα‖fn‖p ≤ C for all n ∈ N.

We will let Λ̊α = Λ̊∞,∞α and Λα = Λ∞,∞α .

Norms in Λ̊p,q
α and Λp,q

α are introduced by formulas:

‖f‖◦α,p,q =


(

∞∑
n=−∞

(2nα‖Φn ∗ f‖p)q
) 1

q

if 1 ≤ q <∞,

sup
n∈Z

2nα‖Φn ∗ f‖p, if q =∞,

and

‖f‖α,p,q =


‖Ψ ∗ f‖p +

(
∞∑
n=0

(2nα‖Φn ∗ f‖p)q
) 1

q

if 1 ≤ q <∞,

‖Ψ ∗ f‖p + sup
n∈N

2nα‖Φn ∗ f‖p if q =∞,

correspondingly.

With respect to those norms Besov spaces are Banach spaces [12].

Note: We will be considering only the case α > 0; in this case if f is in Λp,q
α or

Λ̊p,q
α it followes that f is locally integrable (see Lemma 2.2.3 below).

Definition 1.3.3. Lipschitz space (homogeneous) Lip◦α (0 < α ≤ 1) is the subspace

of C(Rd)/C with norm

‖f‖Lip◦α = sup
x,y∈R
x 6=y

|f(x)− f(y)|
|x− y|α

.
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Definition 1.3.4. Lipschitz space (inhomogeneous) Lipα (0 < α ≤ 1) is the subspace

of C(Rd) with norm

‖f‖Lipα = ‖f‖∞ + sup
x,y∈R
x 6=y

|f(x)− f(y)|
|x− y|α

.

Definition 1.3.5. We say that f ∈ Zyg◦ (homogeneous Zygmund class) if f : Rd →

C is a continuous function satisfying

|f(x− h)− 2f(x) + f(x+ h)| ≤ C|h|

for all h ∈ Rd.

Definition 1.3.6. We say f ∈ Zyg (the Zygmund class) if f : Rd → C is bounded,

measurable and satisfies

|f(x− h)− 2f(x) + f(x+ h)| ≤ C|h|

for all h ∈ Rd.

The next theorem, which belongs to the folklore [12], gives relationships among

Besov spaces, Lipschitz spaces and the Zygmund class:

Theorem 1.3.1. Lip◦α = Λ̊α and Lipα = Λα when 0 < α < 1; Zyg◦ = Λ̊1 and

Zyg = Λ1.

In addition to this theorem we note well known facts: Lip◦1 ⊂ Zyg◦ (Lip1 ⊂ Zyg)

but Lip◦1 6= Zyg◦ (Lip1 6= Zyg).
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Definition 1.3.7. The Poisson kernel in Rd is the function Py defined by

Py(x) = pd
y

(y2 + |x|2)
d+1
2

(x ∈ Rd, y > 0),

where pd is chosen so that
∫

Rd Py(x) dx = 1.

The Poisson integral of f is the function in Rd+1
+ defined by

P[f ](x, y) = f ∗Py(x)

where Rd+1
+ is the upper half space of Rd+1:

Rd+1
+ = {(x, y) : x ∈ Rd, y > 0}.

Definition 1.3.8. If u(x, y) is a function in Rd+1
+ and y > 0 then for 1 ≤ p <∞ we

have

my,p(u) =

(∫
Rd
|u(x, y)|p dx

) 1
p

,

and

my,∞(u) = sup
x∈R
|u(x, y)|

for p =∞.

We define the finite difference ∆hf by

∆hf(x) = f(x+ h)− f(x),
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and we define higher-order difference operators by induction:

∆1
hf = ∆hf, ∆k+1

h f = ∆h(∆
k
hf).

Theorem 1.3.2. [12] Suppose that α > 0, p ∈ [1,∞], q ∈ [1,∞), k ∈ Z, and k > α.

Let u = P[f ]. The following are equivalent:

(i) f ∈ Λ̊p,q
α ,

(ii)
(∫

Rd

(
‖∆k

hf‖p
|h|α

)q
dh
|h|d

) 1
q

<∞,

(iii)

(∫∞
0

(
ykmy,p

(
∂ku

∂yk

)
yα

)q

dy
y

) 1
q

<∞,

(iv) If β is any multi-index with |β| = k then

(∫∞
0

(
ykmy,p(Dβu)

yα

)q
dy
y

) 1
q

<∞,

(v)

∫∞0
ykmy,p

(
∂ku

∂xk
j

)
yα


q

dy
y


1
q

<∞ for j = 1, ..., d.

When q =∞ then (ii),(iii),(iv), and (v) should be interpreted as:

(ii′) sup
h6=0

‖∆k
hf‖p
|h|α

<∞,

(iii′) sup
y>0

ykmy,p

(
∂ku
∂yk

)
yα

<∞,

(iv′) sup
y>0

ykmy,p

(
Dβu

)
yα

<∞,

(v′) sup
y>0

ykmy,p

(
∂ku
∂xkj

)
yα

<∞ for j = 1, ..., d.

Theorem 1.3.3. [12] Suppose that α > 0, p ∈ [1,∞], q ∈ [1,∞), k ∈ Z, and k > α.

Let u = P[f ]. The following are equivalent:

(i) f ∈ Λp,q
α ,

(ii) f ∈ Lp and
(∫
|h|≤1

(
‖∆k

hf‖p
|h|α

)q
dh
|h|d

) 1
q

<∞,
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(iii) f ∈ Lp and

(∫ 1

0

(
ykmy,p

(
∂ku

∂yk

)
yα

)q

dy
y

) 1
q

<∞,

(iv) f ∈ Lp and if β is any multi-index with |β| = k then

(∫ 1

0

(
ykmy,p(Dβu)

yα

)q
dy
y

) 1
q

<

∞,

(v) f ∈ Lp and

∫ 1

0

ykmy,p

(
∂ku

∂xk
j

)
yα


q

dy
y


1
q

<∞ for j = 1, ..., d.

When q =∞ then (ii),(iii),(iv), and (v) should be interpreted as:

(ii′) f ∈ Lp and sup
h6=0

‖∆k
hf‖p
|h|α

<∞,

(iii′) f ∈ Lp and sup
y>0

ykmy,p

(
∂ku
∂yk

)
yα

<∞,

(iv′) f ∈ Lp and sup
y>0

ykmy,p

(
Dβu

)
yα

<∞,

(v′) f ∈ Lp and sup
y>0

ykmy,p

(
∂ku
∂xkj

)
yα

<∞ for j = 1, ..., d.

The following theorem is known as the Besov Embedding Theorem [12]:

Theorem 1.3.4. If 1 ≤ p ≤ r ≤ ∞ and α = β + 1
p
− 1

r
then

Λp,q
α ⊂ Λr,q

β

and

Λ̊p,q
α ⊂ Λ̊r,q

β

for all q ∈ [1,∞].

The next two lemmas will be very useful for us in the future [12].

Lemma 1.3.1. f ∈ Λ̊p,q
α if and only if Dγ(f) ∈ Λ̊p,q

α−|γ| where −∞ < α <∞, 1 ≤ p ≤

∞, 1 ≤ q ≤ ∞ and γ ∈ Nd.
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Lemma 1.3.2. If f ∈ Λp,q
α then Dγ(f) ∈ Λp,q

α−|γ| where −∞ < α < ∞, 1 ≤ p ≤

∞, 1 ≤ q ≤ ∞ and γ ∈ Nd.

Before we state the theorem about duals of the Besov spaces [12], we need to

introduce the next notations.

Suppose h ∈ Λp′,q′

−α and f ∈ Λp,q
α where as always below p′ and q′ are the conjugate

exponents to p and q, respectively. Note that

∫
Rd

(Φn ∗ f)(x)(Φm ∗ h)(x) dx = 0

when |n−m| > 1, because the (distribution) Fourier transforms have disjoint support.

Similarly

∫
Rd

(Ψ ∗ f)(x)(Φn ∗ h)(x) dx =

∫
Rd

(Φn ∗ f) (x) (Ψ ∗ h) (x) dx = 0

for n ≥ 1. We define a linear functional λh : Λp,q
α → C by a formula

λh(f) =

∫
Rd

(Ψ ∗ f)(x)(Ψ ∗ h)(x) dx+

∫
Rd

(Φ0 ∗ f)(x)(Ψ ∗ h)(x) dx+

∫
Rd

(Ψ ∗ f)(x)(Φ0 ∗ h)(x) dx

+

∫
Rd

(Φ0 ∗ f)(x)(Φ0 ∗ h)(x) dx+
1∑

j=−1

∞∑
n=1

∫
Rd

(Φn ∗ f)(x)(Φn+j ∗ h)(x) dx.

The norm closure of the Schwarz space in Λp,q
α we denote by Λp,q

α,0 and observe that

Λp,q
α = Λp,q

α,0 except when q =∞.

Theorem 1.3.5. Suppose α ∈ R, 1 ≤ q ≤ ∞, 1 ≤ p ≤ ∞. If λ ∈
(
Λp,q
α,0

)∗
then there

exists h ∈ Λp′,q′

−α with λ = λh.
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An atomic decomposition of distributions from Besov spaces, introduced by M.

Frazier and B. Jawerth [5], plays a very important role in our research.

Definition 1.3.9. An (α, p)−atom a(x), (−∞ < α <∞, 0 < p ≤ ∞) is a function

satisfying, for some cube Q ⊆ Rd, the following conditions:

(i) supp (a) ⊆ 3Q,

(ii) |Dγa(x)| ≤ |Q|
α
d
− 1
p
− |γ|

d if |γ| ≤ K, and x ∈ Rd

(iii)
∫

Rd x
γa(x) dx = 0 if |γ| ≤ N,

where K ≥ ([α] + 1)+ and N ≥ max

(
[d
(

1
p
− 1
)

+
− α],−1

)
are fixed integers.

Here x+ = max(x, 0), [x] is the greatest integer in x, and 3Q is the cube in Rd

concentric with Q but with side length three times of Q. If N = −1 then a(x) is not

required to have any vanishing moments.

We note that if α > 0 and p ≥ 1 then we may take N = −1 so that condition (iii)

may be ignored.

We write aQ for an atom satisfying the definition 1.3.9 for a given cube Q, and

adopt the convention that whenever Q appears as a summation index, the sum runs

only over dyadic cubes. We also need for future use the following notations: Fix

ψ ∈ S satisfying supp (ψ̂) ⊆
{
ξ ∈ Rd : |ξ| ≤ π

}
,
∫

Rd x
ηψ(x) dx = 0 if |η| ≤ N, and

ψ̂(ξ) ≥ c > 0 if 1/2 ≤ |ξ| ≤ 2 (N is the fixed integer above). For each ν ∈ Z and

k = (k1, . . . , kd) ∈ Zd, set

Qνk =
{
x = (x1, . . . , xd) ∈ Rd : ki2

−ν ≤ xi < (ki + 1)2−ν , i = 1, . . . , d
}

(1.1)
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and define

ψQ(x) = |Q|
α
d
− 1
pψ(2νx− k) if Q = Qνk. (1.2)

Definition 1.3.10. We call a function m an (α, p)-molecule if there exist µ ∈ Z and

a point x0 ∈ Rd such that

|Dηm(x)| ≤ 2µ( d
p
−α+|η|) (1 + 2µ|x− x0|)−M−|η| if |η| ≤ K

and ∫
Rd
xηm(x) dx = 0 if |η| ≤ N,

where M ≥ N + 10d and K, N are as above.

Suppose Ψ ∈ S satisfies: supp
(

Ψ̂
)
⊆ {ξ : |ξ| ≤ π} and Ψ̂(ξ) ≥ C > 0 if |ξ| ≤ 1.

Then the following decomposition result is true [5].

Theorem 1.3.6. Let −∞ < α <∞, 0 < p, q ≤ ∞.

a) Each f ∈ Λp,q
α can be decomposed as follows:

i) f(·) =
∑
k∈Zd

skΨ(· − k) +
∞∑
ν=0

∑
l(Q)=2−ν

sQψQ(·),

where the ψQ’s are defined by (1.2), or

ii) f =
∑
k∈Zd

skbk +
∞∑
ν=0

∑
l(Q)=2−ν

sQaQ,

where the aQ’s are (α, p)-atoms, and the bk’s satisfy supp bk ⊆ 3Q0k and |Dηbk(x)| ≤ 1

if |η| ≤ K. In both cases the convergence is in S ′, and

(∑
k∈Zd
|sk|p

) 1
p

+

∑
ν=0

 ∑
l(Q)=2−ν

|sQ|p


q
p


1
q

≤ C‖f‖α,p,q,

15



with C independent of f.

b) Conversely, suppose f =
∑

k∈Zd skmk +
∑∞

ν=0

∑
l(Q)=2−ν sQmQ, where each

mQ is an (α, p)-molecule concentrated on Q, and each mK satisfies |Dη mk(x)| ≤

(1 + |x− k|)−M−|η| if |η| ≤ K, for some sufficiently large M.

Then

‖f‖α,p,q ≤ C

(∑
k∈Zd
|sk|p

) 1
p

+ C

∑
ν=0

 ∑
l(Q)=2−ν

|sQ|p


q
p


1
q

.

The next theorems on Besov spaces are crucial for our purpose to characterize

removable sets for harmonic functions in Besov spaces. Theorem 1.3.7 is an unpub-

lished result of D. Ullrich and by courtesy of the author we are providing the proofs

in this thesis.

Definition 1.3.11. Suppose f is a locally integrable function. For r > 0 we define:

Srf(x) = f(x)−
∫
S

f(x+ rξ) dσ(ξ)

where σ is the rotation-invariant probability measure on S, the sphere of radius 1.

Lemma 1.3.3. Suppose that k > d
2

is an integer. There exists C > 0 such that for

any f ∈ Ck
c (Rd) we have

‖f̂‖1 ≤ C‖f‖1− d
2k

2

(
d∑
i=1

‖∂
kf

∂xki
‖2

) d
2k

.
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Proof. We observe that we are using Hölder’s inequality and Plancherel’s theorem.

∫
Rd
|f̂(x)| dx =

∫
B(0,A)

|f̂(x)| dx+

∫
Rd\B(0,A)

|f̂(x)| dx

=

∫
B(0,A)

|f̂(x)| dx+

∫
Rd\B(0,A)

(
d∑
i=1

|xi|k
)
|f̂(x)|

d∑
i=i

|xi|k
dx

≤ C1A
d
2‖f‖2 + C2

(
d∑
i=1

‖∂
kf

∂xki
‖2

)
A−k+ d

2 .

Let

A =


C2

(
d∑
i=1

‖∂kf
∂xki
‖2

)
C1‖f‖2


1
k

.

Theorem 1.3.7. Suppose that 0 < α < 2. Then f ∈ Λ̊p,q
α if and only if

∫ ∞
0

(
‖Srf‖p
rα

)q
dr

r
<∞

which for q =∞ should be taken to mean that ‖Srf‖p
rα

is bounded for 0 < r <∞.

Proof. We consider only the case 1 ≤ q <∞; the case q =∞ is very similar.

Assume that f ∈ Λ̊p,q
α . Note that

Srf(x) = f(x)−
∫
S

f(x+ rξ) dσ(ξ)

= f(x)−
∫
S

f(x+ rξ) + f(x− rξ)
2

dσ(ξ)

17



= −1

2

∫
S

(f(x+ rξ)− 2f(x) + f(x− rξ)) dσ(ξ)

= −1

2

∫
S

∆2
rξf(x) dσ(ξ).

Therefore

‖Srf‖p ≤ C

∫
S

‖∆2
rhf‖p dσ(h),

so that Hölder’s inequality gives

‖Srf‖qp ≤ C

∫
S

‖∆2
rhf‖qp dσ(h),

and an integration in polar coordinates shows that:

∫ ∞
0

(
‖Srf‖p
rα

)q
dr

r
≤ C

∫ ∞
0

∫
S
‖∆2

rh‖qp dσ(h)

rαq
dr

r

= C

∫ ∞
0

∫
S

(
‖∆2

rhf‖p
|rh|α

)q
1

|rh|d
dσ(h)rd−1 dr

= C

∫
Rd

(
‖∆2

hf‖p
|h|α

)q
dh

|h|d
<∞.

To finish the proof of the first part we use theorem 1.3.2.

To prove the second part it is sufficient to show that there exists δ > 0 and C > 0

such that for all integers n we have

‖Φn ∗ f‖p ≤ C‖Srf‖p, (2−nδ ≤ r ≤ 2−n+1δ).
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We will prove this in case n = 0; the general case follows by dilation.

From the definition of ‖f‖◦p,q,α it follows that

‖f‖◦p,q,α ≤ C

(∫ ∞
0

(
‖Srf‖p
rα

)q
dr

r

) 1
q

,

which is enough for the proof.

We have:

Ŝrf = νrf̂ ,

where

νr(ξ) = 1−
∫
S

eirh·ξ dσ(h) = 1− J(r|ξ|),

where in turn

J(r) =

∫
S

eirζ1 dσ(ζ).

It is clear that J is smooth, and well-known that J(r) → 0 as r → ∞. (We are

assuming that d > 1 here; in the case d = 1 there is nothing to prove, because

Srf = −∆2
rf
2

). So there exists δ > 0 such that |J(r)| < 1
2

(r > δ
2
).

This implies that |νr(ξ)| ≥ 1
2

(δ ≤ r ≤ 2δ, ξ ∈ A0).

Now let N be an integer larger than d
2
. Since J is smooth all its partial derivatives

are locally bounded; it follows from the quotient rule and the fact that |νr| ≥ 1
2

that

∣∣∣∣∣ ∂β∂ξβ Φ̂0(ξ)

νr(ξ)

∣∣∣∣∣ ≤ C (δ ≤ r ≤ 2δ, ξ ∈ A0)
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whenever β is a multi-index with |β| ≤ N . Since all our functions are supported in

A0 it follows from Lemma 1.3.3 that there exists φr ∈ L1 such that

φ̂r =
Φ̂0

νr

and

‖φr‖1 ≤ C (δ ≤ r ≤ 2δ).

This shows that

f ∗ Φ0 = φr ∗ (Srf),

so that

‖Φ0 ∗ f‖p ≤ ‖φr‖1‖Srf‖p ≤ C‖Srf‖p (δ ≤ r ≤ 2δ).

That is exactly the inequality we need for n = 0.

Theorem 1.3.7 plus a little argument gives the corresponding result for Λα
p,q :

Theorem 1.3.8. Suppose that 0 < α < 2. Then f ∈ Λp,q
α if and only if f ∈ Lp and

∫ 1

0

(
‖Srf‖p
rα

)q
dr

r
<∞

which for q =∞ should be taken to mean that ‖Srf‖p
rα

is bounded for 0 < r ≤ 1.
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Lemma 1.3.4. If d > 2 then

Sr(g)(x) =


−1

A1(d−2)
(r2−d − |x|2−d), if |x| ≤ r,

0, otherwise,

where A1 is the “area” of the unit sphere in Rd.

When d = 2 we have

Sr(g)(x) =


−1
2π

(ln |r| − ln |x|), if |x| ≤ r,

0, otherwise,

and when d = 1 we have

Sr(g)(x) =


1
2
(|x| − r), if |x| ≤ r,

0, otherwise.

Proof. We just give a proof when d > 2; d = 2 and d = 1 are similar. The fact

that Sr(g)(x) = 0 for |x| > r is clear since g is harmonic in Rd \ {0}. Note that

Sr(g) = g − g ∗ σr where σr is the rotation-invariant probability measure on rS, the

sphere of radius r. It is clear that σr ∗ g is radial since σr and g are both radial

(rotation invariant).
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Therefore, in B(0, r) the function σr ∗ g is radial and harmonic, so it must be

constant since it satisfies the mean value property; for |x| < r we have

σr ∗ g(x) = σr ∗ g(0) =

∫
S

g(rξ) dσ(ξ) =
−r2−d

A1(d− 2)
.

Thus Sr(g)(x) = g(x)− σr ∗ g(x) = −1
A1(d−2)

(r2−d − |x|2−d).

Lemma 1.3.5. Sr(g)(x) = 1
A1

∫ r
0
t1−d1B(0,t)(x)dt where

1B(0,t)(x) =


1, if |x| < t,

0, otherwise.

Proof. We consider the case when d > 2. The cases d = 1 and d = 2 are very similar.

If |x| > r it is clear that
∫ r

0
t1−d1B(0,t)(x)dt = 0. If |x| < r then 1

A1

∫ r
0
t1−d1B(0,t)(x)dt =

1
A1

∫ r
|x| t

1−ddt = −1
A1(d−2)

(
r2−d − |x|2−d

)
.
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2 Conditions of Non-Removability

2.1 Local Besov Spaces

Definition 2.1.1. We say that a distribution f belongs to local Besov space and write

f ∈ Λp,q
α,loc if for all ϕ ∈ C∞c we have ϕf ∈ Λp,q

α .

The next proposition gives an equivalent definition of local Besov spaces:

Theorem 2.1.1. Suppose 0 < α < 2, and 1 ≤ p ≤ ∞. Then f ∈ Λp,∞
α,loc if and only if

f ∈ Lploc
(
Rd
)

and for any compact K ⊂ Rd there exists C > 0 such that

(∫
K

|∆2
hf(x)|p dx

) 1
p

≤ C|h|α (0 < |h| ≤ 1).

Proof. We adopt the common convention that the letter C denotes a constant , the

value of which may vary from line to line. The “only if” part is trivial so we focus on

the “if” part. Assume f ∈ Lploc
(
Rd
)

and for any compact K ⊂ Rd there exists C > 0

such that (∫
K

|∆2
hf(x)|p dx

) 1
p

≤ C|h|α (0 < |h| ≤ 1).

Suppose φ ∈ C∞c
(
Rd
)

; let K = supp(φ), K1 =
⋃
x∈K B(x, 2). We know that

∆h(φf) = (∆hφ)(τhf) + φ∆hf.

Applying that formula twice shows that

∆2
h(φf) = (∆2

hφ)(τ2hf) + 2(∆hφ)(τh∆hf) + φ∆2
hf.
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Since φ has compact support and the function f is locally integrable everywhere it

would be enough to give an Lp−norm estimate of

(∆2
hφ)f + 2(∆hφ)(∆hf) + φ∆2

hf

in order to have an Lp−norm estimate of ∆2
h(φf). By Theorem 1.3.3 (ii′), it is enough

to show that ‖∆2
h(φf)‖p ≤ C|h|α.

If |h| > 1 then

‖∆2
h(φf)‖p ≤ 4‖φf‖p = C ≤ C|h|α.

So we only need to consider the case 0 < |h| ≤ 1.

In this case we have

‖(∆2
hφ)f‖p ≤ ‖∆2

hφ‖∞
(∫

K1

|f |p
) 1

p

≤ C|h|2 ≤ C|h|α,

since φ ∈ C∞c (Rd) and 0 < α < 2. Also, it is easy to see that

‖φ∆2
hf‖p ≤ C

(∫
K

|∆2
hf |p

) 1
p

≤ C|h|α.
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Thus we have the (∆hφ)(∆hf) term left to evaluate. We observe that ∆2
hf = (τ2hf −

τhf)− (τhf − f) so

∆2hf = (τ2hf − τhf) + (τhf − f)

= ∆2
hf + 2(τhf − f)

= ∆2
hf + 2∆hf,

or ∆hf − 1
2
∆2hf = −1

2
∆2
hf. Now assume that 2−N ≤ |h| < 2−N+1. Then

‖∆hf‖Lp(K1) ≤ ‖∆hf −
1

2
∆2hf‖Lp(K1)

+ ‖1

2
∆2hf −

1

4
∆4hf‖Lp(K1)

+ · · ·

+ ‖2−N+1∆2N−1hf − 2−N∆2Nhf‖Lp(K1)

+ 2−N‖∆2Nhf‖Lp(K1)

=
1

2
‖∆2

hf‖Lp(K1) + · · ·+ 2−N‖∆2
2N−1hf‖Lp(K1) + 2−N‖∆2Nhf‖Lp(K1).

Since 2N |h| < 2, we can easily estimate the last term:

2−N‖∆2Nhf‖Lp(K1) ≤ 2|h|‖f‖Lp(K2) = C|h|

where K2 =
⋃
x∈K1

B(x, 1).
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Now we estimate the other terms:

1

2
‖∆2

hf‖Lp(K1) + · · ·+ 2−N‖∆2
2N−1hf‖Lp(K1)

≤ C

(
1

2
|h|α +

1

4
|2h|α + · · ·+ 2−N |2N−1h|α

)
= C|h|α

(
1 + 2α−1 + 22(α−1) + · · ·+ 2(N−1)(α−1)

)

≤



C|h|α, if 0 < α < 1,

CN |h|α ≤ C|h| log
(

1
|h|

)
, if α = 1,

C|h|α2N(α−1) ≤ C|h| if α > 1.

Adding in the last term shows that

‖∆hf‖Lp(K1) =



C|h|α + |h|, if 0 < α < 1,

CN |h|α ≤ C|h|
(

1 + log
(

1
|h|

))
, if α = 1,

C|h|α2N(α−1) ≤ C|h| if α > 1.

Since supp(∆hφ) ⊂ K1, ‖∆hφ‖∞ ≤ C|h|, 0 < α < 2, and |h| ≤ 1, it follows that

‖(∆hφ)(∆hf)‖p ≤C|h|‖∆hf‖Lp(K1)

≤ |h|



C|h|α + |h|, if 0 < α < 1,

C|h|
(

1 + log
(

1
|h|

))
, if α = 1,

C|h| if α > 1.

≤ C|h|α.
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Now we give a more general definition of local Besov spaces:

Definition 2.1.2. Suppose Ω is an open set in Rd.We say that a distribution f in

Ω belongs to local Besov space with respect to Ω and write f ∈ Λp,q
α,loc(Ω) if for all

ϕ ∈ C∞c (Ω) we have ϕf ∈ Λp,q
α .

It is easy to see that an analog of Theorem 2.1.1 is true:

Theorem 2.1.2. Suppose 0 < α < 2, and 1 ≤ p ≤ ∞. Then f ∈ Λp,∞
α,loc(Ω) if and

only if f ∈ Lploc (Ω) and for any compact K ⊂ Ω there exists C > 0 and δ > 0 such

that (∫
K

|∆2
hf(x)|p dx

) 1
p

≤ C|h|α, (0 < |h| ≤ δ).

We state some propositions which give relationships between local and global

Besov spaces.

Proposition 2.1.1. For all 0 < α < 2, 1 ≤ q ≤ ∞ and 1 ≤ p ≤ ∞ we have

Λ̊p,q
α ⊆ Λp,q

α,loc.

Proof. Say f ∈ Λ̊p,q
α , f =

∞∑
n=−∞

fn. Since

(
−1∑

n=−∞
fn

)∧
has compact support,

−1∑
n=−∞

fn ∈

C∞
(
Rd
)
⊂ Lploc. Also C∞

(
Rd
)
⊂ Λp,q

α,loc

(
Rd
)

(this follows from the definition of local

Besov spaces since C∞c
(
Rd
)
⊂ Λp,q

α

(
Rd
)
). On the other hand because α > 0 we

have
∞∑
n=1

‖fn‖p <∞. Since
∞∑
n=0

fn ∈ Λp,q
α , it follows from Proposition 3.1.1 below that

∞∑
n=0

fn ∈ Λp,q
α,loc.
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Proposition 2.1.2. If α1 < α2 than

Λp,q
α2,loc

(Ω) ⊂ Λp,q
α1,loc

(Ω)

for all 1 ≤ q ≤ ∞, 1 ≤ p ≤ ∞ and any open set Ω ⊂ Rd.

Proof. The proof easily follows from the fact that Λp,q
α2
⊂ Λp,q

α1
when α1 < α2 [11].

Proposition 2.1.3. Say Ω is an open subset of Rd and K a compact subset of Ω.

Then K is Λp,q
α,loc(Ω) removable if and only if it is Λp,q

α,loc(Rd)-removable.

Proof. For the non-trivial direction, say K is not Λp,q
α,loc(Ω)-removable. Let u ∈

Λp,q
α,loc(Ω), u harmonic in Ω \K, u not harmonic in Ω. Then ∆u 6= 0, supp(∆u) ⊆ K

(where ∆u is the distribution Laplacian of u). Since ∆u has compact support and

the Green function g belongs to L1
loc, there exists well defined v = (∆u) ∗ g. Then v

is harmonic in Rd \K but not in Rd, because ∆v = ∆u. To finish the proof we only

need to show v ∈ Λp,q
α,loc(Rd).

Fix ϕ0 ∈ C∞c (Ω), ϕ0 = 1 on a neighborhood of K. Suppose ϕ ∈ C∞c (Rd). Then

ϕv = ϕϕ0v + ϕ(1− ϕ0)v but ϕ(1− ϕ0)v ∈ C∞c (Rd) ⊂ Λp,q
α (Rd) and ∆(u− v) = 0 in

Ω so u − v ∈ C∞(Ω). Hence ϕϕ0(v − u) ∈ C∞c (Rd) ⊂ Λp,q
α (Rd). On the other hand,

the fact that u ∈ Λp,q
α,loc(Ω) implies that ϕϕ0u ∈ Λp,q

α (Rd) since ϕϕ0 ∈ C∞c (Ω). Thus

ϕv = ϕϕ0v + ϕ(1− ϕ0)v = ϕϕ0u+ ϕϕ0(v − u) + ϕ(1− ϕ0)v ∈ Λp,q
α (Rd),

which implies that v ∈ Λp,q
α,loc(Rd).
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The previous propositions tell us that distributions from homogeneous and inho-

mogeneous Besov spaces are similar locally. Because of this, we will study removable

compact sets for harmonic functions in local Besov spaces.

2.2 Borderline Cases

Before we move towards the general case 0 < α < 2, we are going to discuss

borderline cases.

Lemma 2.2.1. If µ is a tempered distribution and µ̂ has compact support then µ ∈

C∞(Rd) [4].

Corollary 2.2.1. If γ > 0 then Λγ ⊆ C
(
Rd
)
, Λ̊γ ⊆ C

(
Rd
)
.

Proof. If f ∈ Λ̊γ then f =
∞∑

n=−∞
fn, but the previous lemma implies that

−1∑
n=−∞

fn ∈

C∞
(
Rd
)
, fn ∈ C∞(Rd) (n ∈ N). On the other hand

∞∑
n=1

‖fn‖∞ < ∞ since γ > 0,

which implies the second part of this corollary. The proof of the first part is very

similar.

Corollary 2.2.2. If γ > 2 then Λγ ⊆ C2
(
Rd
)
, Λ̊α ⊆ C2

(
Rd
)
.

Proof. The proof easily follows from Lemma 1.3.1, Lemma 1.3.2 and the previous

corollary.

Lemma 2.2.2. Suppose α > 2 + d
p

and 1 ≤ p ≤ ∞. Then Λ̊p,∞
α ⊆ C2(Rd).

Proof. We know that Λ̊p,∞
α ⊆ Λ̊α− d

p
by Theorem 1.3.4. The proof follows from the

previous corollary.

Theorem 2.2.1. Suppose α > 2 + d
p

and 1 ≤ p ≤ ∞. Then K is Λ̊p,∞
α −removable if

and only if K◦ = ∅ (K◦ is the interior of K).
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Proof. If K◦ 6= ∅ then there exists f ∈ C∞c
(
Rd
)

such that f 6= 0 and supp(f) ⊆ K.

To prove the second part we observe that since α > 2 + d
p
, any tempered distribution

from Λ̊p,∞
α has continuous second order derivatives by the previous corollary and since

interior of K is empty it follows that K is Λ̊p,∞
α −removable.

An analogous result holds for non-homogeneous Besov spaces too. We can state

in general:

Theorem 2.2.2. Suppose α > 2 + d
p

and 1 ≤ p ≤ ∞. Then K is Λp,∞
α,loc−removable if

and only if K◦ = ∅.

Corollary 2.2.3. Suppose α > 2 + d
p
, 1 ≤ q ≤ ∞ and 1 ≤ p ≤ ∞. Then K is

Λp,q
α,loc−removable if and only if K◦ = ∅.

Proof. The proof easily follows from the fact that Λp,q
α,loc ⊂ Λp,∞

α,loc when α > 0.

The next result considers the case when α > 2 but it gives only sufficient condition.

We start with next

Lemma 2.2.3. Suppose α > 0 and 1 ≤ p ≤ ∞. Then:

(i) Λp,∞
α ⊆ Lp;

(ii) Λ̊p,∞
α ⊆ Lploc.

Proof. (i) Suppose f ∈ Λp,∞
α , and f = F +

∞∑
n=0

fn, then F ∈ Lp and ‖fn‖p ≤ C2−nα

which implies
∞∑
n=0

‖fn‖p <∞ since 0 < α.

(ii) Suppose f ∈ Λ̊p,∞
α , and f =

∞∑
i=−∞

fn. Then
−∞∑
n=0

fn ∈ C∞ and
∞∑
n=0

fn ∈ Lp, so

Λ̊p,∞
α ⊆ Lploc.
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Theorem 2.2.3. Suppose α > 2 and 1 ≤ p ≤ ∞. If md(K) = 0 then K is Λp,∞
α,loc

removable.

Proof. Say f ∈ Λp,∞
α,loc, f harmonic in Rd \K, md(K) = 0. Then ∆f ∈ Lploc, ∆f = 0

a.e., so ∆f = 0.

Corollary 2.2.4. Suppose α > 2, 1 ≤ q ≤ ∞ and 1 ≤ p ≤ ∞. If md(K) = 0 then K

is Λp,q
α,loc removable.

Proof. The proof easily follows from the fact that Λp,q
α,loc ⊂ Λp,∞

α,loc when α > 0.

The converse of this theorem is true in the case when α = 2 but in the general

case we do not know the answer.

Lemma 2.2.4. Suppose 1 ≤ p ≤ ∞. If f ∈ Lp then f ∗g ∈ Λ̊p,∞
2 where g is the Green

function (see definition 1.2.1).

Proof. We know that ∆(f ∗ g) = f ∈ Λ̊p,∞
0 so by Theorem 1.3.2 we have f ∗ g ∈

Λ̊p,∞
2 .

Theorem 2.2.4. Suppose K is a compact subset of Rd and 1 ≤ p ≤ ∞. If md(K) > 0

then K is not Λp,∞
2,loc−removable.

Proof. Since md(K) > 0 there exists f ∈ Lp, such that
∫

Rd f(x) dx = 1 and supp(f) ⊆

K. Then by Lemma 2.2.4 f ∗ g ∈ Λp,∞
2,loc. So K is not Λp,∞

2,loc−removable.

Now we turn our attention to the lower bound of the parameter α.

Lemma 2.2.5. g ∈ Λ̊p,∞
2− d

p′
for any p ∈ [1,∞].
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Proof. We consider the case when d > 2. The other cases are very similar to prove.

By Lemma 1.3.4

Sr(g)(x) =


−1

A1(d−2)
(r2−d − |x|2−d), if |x| ≤ r,

0, otherwise

.

Since 2− d
p′
< 2 we may use Theorem 1.3.7 to finish the proof:

‖Srg‖pp
r

(2− d
p′ )p
≤ C

∫
B(0,r)

|x|(2−d)p dx

r
(2− d

p′ )p

≤ Cr
(2−d)p+d−(2− d

p′ )p

= C

Corollary 2.2.5. Suppose α = 2− d
p′

and p ∈ [1,∞]. Then K is Λ̊p,∞
α −removable if

and only if K = ∅.

Recall that if γ1 < γ2 then Λ̊p,∞
γ2,loc

⊂ Λ̊p,∞
γ1,loc

and Λ̊p,∞
γ ⊂ Λp,∞

γ,loc, which implies

Corollary 2.2.6. Suppose α ≤ 2− d
p′

and 1 ≤ p ≤ ∞. Then K is Λp,∞
γ,loc− removable

if and only if K = ∅.

So the only interesting case is α > 2− d
p′
.
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2.3 Constructing Functions in Besov Spaces Using Measures

Proposition 2.3.1. Suppose that µ is a measure on Rd and there exists a constant

C > 0 such that
‖µr‖p
rα−2+d < C for 0 < r ≤ 1 (µr is given by definition 1.2.3). Then

‖Sr(u)‖p < Crα for 0 < r ≤ 1, where u = µ ∗ g (g is the Green’s function).

Proof. It is clear that

Sr(u) = µ∗Sr(g) = µ∗
(

1

A1

∫ r

0

t1−d1B(0,t) dt

)
=

1

A1

∫ r

0

t1−dµ∗1B(0,t) dt =
1

A1

∫ r

0

t1−dµt dt

and so, by Minkowski’s inequality,

‖Sr(u)‖p ≤
∫ r

0

t1−d‖µt‖p dt

≤ C

∫ r

0

t1−dtd−2+α dt

= C

∫ r

0

t−1+α dt

= Crα.

Proposition 2.3.2. Suppose p ∈ [1,∞], q ∈ [1,∞), 0 < α < 2, and µ is a measure

on Rd. If
∫∞

0

(
‖µr‖p
rα+d−2

)q
dr
r
<∞ then µ ∗ g ∈ Λ̊p,q

α .

Proof. We know that Sr(µ∗ g) = 1
A1

∫ r
0
t1−dµt dt. So ‖Sr(µ∗ g)‖p ≤ C

∫ r
0
t1−d‖µt‖p dt.

Suppose
∫∞

0

(
‖µr‖
rα+d−2

)q
dr
r
<∞. Then Theorem 1.2.2 implies:
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∫ ∞
0

(
‖Sr(µ ∗ g)‖p

rα

)q
dr

r
≤ C

∫ ∞
0

r−αq−1

(∫ r

0

t1−d‖µt‖p dt
)q

dr

≤ C

∫ ∞
0

rq−αq−1(r1−d‖µr‖p)q dr

= C

∫ ∞
0

( ‖µr‖p
rα+d−2

)q
dr

r

<∞.

Thus by Theorem 1.3.7 we have µ ∗ g ∈ Λ̊p,q
α .

Proposition 2.3.3. Suppose µ is a measure on Rd, 0 < α < 2. If p ∈ [1,∞], q ∈

[1,∞), and
∫ 1

0

(
‖µr‖p
rα+d−2

)q
dr
r
<∞ then µ ∗ g ∈ Λp,q

α .

The proof is exactly the same as of Proposition 2.3.2. To prove the converse of

Propositions 2.3.1 and 2.3.2 we need next

Lemma 2.3.1. Suppose µ is a measure on Rd and α > 0. If ‖µr‖p > Mrd+α−2 for

some M > 0 and r > 0 then there exists C > 0 such that ‖S2r(g ∗ µ)‖p > CMrα.

Proof. We are considering the case d > 2. Cases d = 1 and d = 2 are very similar.

We know that

Sr(g)(x) =


−1

(d−1)A1

(
r2−d − |x|2−d

)
, if x ≤ r,

0, otherwise.
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where A1 is the area of the unit sphere. This implies that

|S2r(g)(x)| ≥ 1

(d− 1)A1

(
1

rd−2
− 1

(2r)d−2

)
= C

1

rd−2

when |x| ≤ r. Then

‖S2r(g ∗ µ)‖p = ‖S2r(g) ∗ µ‖p

≥ C

rd−2
‖1B(0,r) ∗ µ‖p

= Cr−d+2‖µr‖p

≥ Cr−d+2+d−2+αM

= CMrα.

Corollary 2.3.1. Suppose µ is a measure in Rd supported on the compact set K and

α > 0. If for any M > 0 there exists r > 0 such that ‖µr‖p ≥ Mrd−2+α then for any

M1 > 0 there exists r1 > 0 such that ‖Sr1(µ ∗ g)‖p > M1r
α

Proof. This is clear from the previous lemma.

Corollary 2.3.2. Suppose µ is measure in Rd supported on the compact set K. If∫ 1

0

(
‖µr‖p
rd−2+α

)q
dr
r

=∞ then
∫ 1

0

(
‖Sr(u)‖p

rα

)q
dr
r

=∞ where u = µ ∗ g.
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Proof.

∫ 1

0

(
‖Sr(u)‖p

rα

)q
dr

r
≥ C

∫ 1

0

(
‖µ r

2
‖pr−d+2

rα

)q
dr

r

= C

∫ 1

0

( ‖µ r
2
‖p

rα−2+d

)q
dr

r

= C

∫ 1
2

0

(
‖µr‖p
rα−2+d

)q
dr

r

=∞,

since
∫ 1

1
2

(
‖µr‖p
rα−2+d

)q
dr
r
<∞.

2.4 β and Non-Removable Sets

Theorem 2.4.1. Suppose µ is a probability measure supported on a compact set

K ⊂ Rd.

(i) If ‖µr‖p
rα−2+d ≤ C for some constant C > 0 when 0 < r ≤ 1, 1 ≤ p ≤ ∞ and 0 < α < 2,

then µ ∗ g ∈ Λp,∞
α and µ ∗ g has a non-removable singularity on K.

(ii) If
∫ 1

0

(
‖µr‖p
rα−2+d

)q
dr
r
< ∞ (0 < α, 1 ≤ p ≤ ∞, 1 ≤ q < ∞) then µ ∗ g ∈ Λp,q

α and

µ ∗ g has a non-removable singularity on K.

Proof. (i) We have already shown in proving Proposition 2.3.1 that under given con-

ditions we have ‖µ ∗ Sr(g)‖p ≤ Crα. By Theorem 1.3.7 it follows that µ ∗ g ∈ Λp,∞
α .

On the other hand |µ ∗ g(x)| = |
∫

Rd g(x− y)dµ(y)| ≤ C µ(K)

(|x|−diam(K))d−2 (when |x|

is big enough) which shows that µ ∗ g(x)→ 0 when |x| → ∞. But µ ∗ g is harmonic

outside of K and ∆ (µ ∗ g) = µ ∗∆g = µ ∗ δ0 = µ 6= 0 (as a distribution). Therefore

µ ∗ g cannot be extended to a harmonic function in Rd.
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(ii) We know from proposition 2.3.3 that µ ∗ g ∈ Λp,q
α and an argument similar to the

final argument of part (i) finishes the proof.

Similarly we can prove the following

Theorem 2.4.2. Suppose µ is a probability measure supported on a compact set

K ⊂ Rd. If
∫∞

0

(
‖µr‖p
rα−2+d

)q
dr
r
< ∞ (1 ≤ q < ∞, 0 < α < 2) then µ ∗ g ∈ Λ̊p,q

α and

µ ∗ g has a non-removable singularity on the K.

Now we can characterize non removable singularities for Λp,∞
α −spaces:

Theorem 2.4.3. Suppose K is a compact subset of Rd, 0 < α < 2, and 1 ≤ p ≤ ∞.

If mβ(K) > 0, where β = (α− 2)p′ + d, then K is not Λp,∞
α removable.

Proof. Lemma 1.2.1 implies that there exists a probability measure µ supported on

the K such that ‖µr‖∞ ≤ Crβ. Since ‖µr‖1 = Crdµ(K), we have

‖µr‖pp ≤ ‖µr‖p−1
∞ ‖µr‖1 ≤ Cr(p−1)β+d = Crp(α+d−2).

or

‖µr‖p ≤ crα−2+d.

Note that (p−1)β+d = (p−1) ((α− 2)p′ + d)+d = (p−1)p′(α−2)+dp = (α−2+d)p

since (p− 1)p′ = p. Now we apply Theorem 2.4.1 which finishes the proof.

It follows that if mβ(K) > 0 then K is not Λp,∞
α,loc removable.

Corollary 2.4.1. Suppose 0 < α < 2, 1 ≤ q ≤ ∞, and 1 ≤ p ≤ ∞. If there exists

γ > β such that mγ(K) > 0 then K is not Λp,q
α,loc−removable.
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Proof. There exists 0 < α1 < 2 such that γ = (α1 − 2)p′ + d. Since β < γ we have

α < α1 which implies that Λp,∞
α1,loc

⊂ Λp,q
α,loc. We apply the previous theorem to finish

the proof.
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3 Conditions of Removability

3.1 Duality in Besov Spaces

Proposition 3.1.1. Suppose ϕ ∈ S
(
Rd
)
. Then for any 0 < α, 1 ≤ p ≤ ∞, and

1 ≤ q ≤ ∞ there exists C = C(α, ϕ) such that

‖ϕf‖p,q,α ≤ C‖f‖p,q,α

for all f ∈ Λp,q
α .

Proof. Suppose f is a distribution from Λp,q
α . Then the first part of theorem 1.3.6

implies that f can be presented as f =
∑
k∈Zd

skbk +
∞∑
ν=0

∑
l(Q)=2−ν

sQaQ, where the aQ’s

are (α, p)-atoms, and the bk’s satisfy supp(bk) ⊆ 3Q0k and |Dηbk(x)| ≤ 1 if |η| ≤ K.

The convergence is in S ′, and

(∑
k∈Zd
|sk|p

) 1
p

+

∑
ν=0

 ∑
l(Q)=2−ν

|sQ|p


q
p


1
q

≤ C‖f‖p,q,α,

with C independent of f. Since ϕ ∈ S and K is a fixed positive integer it is clear that

there exists A such that ‖Dη
(
ϕbk
A

)
‖∞ ≤ 1 when |η| ≤ K. Since 0 < α and 1 ≤ p we

do not worry about vanishing moments for
ϕaQ
A

and so
ϕaQ
A

is an atom. We write ϕf

as ϕf =
∑
k∈Zd

Ask
ϕbk
A

+
∞∑
ν=0

∑
l(Q)=2−ν

AsQ
ϕaQ
A
. So we can use the second part of theorem

1.3.6 to conclude that ‖ϕf‖p,q,α ≤ C‖f‖p,q,α.
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Lemma 3.1.1. Suppose f is a tempered distribution. Then f ∈ Λp,q
α,loc if and only if

for any open bounded set Ω ∈ Rd there exists f̃ ∈ Λp,q
α such that f = f̃ in Ω.

Proof. Suppose f ∈ Λp,q
α,loc and Ω is an open, bounded set in Rd. Consider a function

ψ ∈ C∞c (Rd) such that ψ(x) = 1 when x ∈ Ω. Then by Proposition 3.1.1 we can take

f̃ = fψ.

To prove the second part, assume that f is a tempered distribution and ψ is an

arbitrary function from C∞c (Rd). Consider a bounded open set Ω ∈ Rd such that

supp(ψ) ∈ Ω. Then there exists f̃ ∈ Λp,q
α with f = f̃ in Ω. So by Proposition 3.1.1

fψ = f̃ψ ∈ Λp,q
α .

Lemma 3.1.2. There exists C > 0 such that for any function h ∈ Lp which satisfies

the condition supp ˆ(h) ⊂ An, we have ‖g ∗ h‖p ≤ C2−2n‖h‖p.

Proof. Let us consider a function ϕ0 ∈ S such that ϕ̂0 ∈ C∞c and ϕ̂0(ξ) = −1
4π2|ξ|2 when

ξ ∈ A0. We define ϕn(x) = 2−2n+ndϕ0(2nx). Then

ϕ̂n(ξ) = 2−2n+nd−ndϕ̂0

(
2−nξ

)
=

−2−2n

4π22−2n|ξ|2
=
−1

4π2|ξ|2
, (ξ ∈ An).

So ϕ̂n coincides with ĝ on the annulus An (see the remark on page 4). Thus

‖g ∗ h‖p = ‖ϕn ∗ h‖p ≤ ‖ϕn‖1‖h‖p ≤ C2−2n‖ϕ0‖1‖h‖p ≤ C2−2n‖h‖p.

Lemma 3.1.3. Suppose f ∈ Λp,q
α where −∞ < α < ∞, 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞.

Then (Srg) ∗ f ∈ Λp,q
α+2.
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Proof. Ψ ∗ ((Srg) ∗ f) = (Srg) ∗ (Ψ ∗ f) ∈ Lp, since Srg ∈ L1 and Ψ ∗ f ∈ Lp.

And

‖Φn ∗ ((Srg) ∗ f) ‖p = ‖Sr(g ∗ (Φn ∗ f))‖p

≤ C‖g ∗ (Φn ∗ f)‖p

But supp (Φn ∗ f)∧ ⊂ An which by Lemma 3.1.2 implies that

‖g ∗ (Φn ∗ f)‖p ≤ C2−2n‖Φn ∗ f‖p.

So

∞∑
n=0

(
2n(α+2)‖Φn ∗ ((Srg) ∗ f)‖

)q ≤ C
∞∑
n=0

(2nα‖Φn ∗ f‖p)q <∞.

Proposition 3.1.2. If f ∈ Λp,q
α (1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, α ∈ R) and f has compact

support then g ∗ f ∈ Λp,q
α+2,loc.

Proof. By Lemma 3.1.1, we need to show that if Ω is a bounded open set then there

exists h ∈ Λp,q
α+2 with h = g ∗ f in Ω.

It is clear that for any r > 0 there exists Cr > 0 such that g(x) = Srg(x) + Cr

for |x| < r. Since Ω is bounded and f has compact support, if r is large enough then

f ∗ g = f ∗ (Srg + Cr) in Ω. But f ∗ Cr is constant, so there exists ψ ∈ C∞c with

f ∗ g = f ∗Srg+ψ in Ω. Since by Lemma 3.1.3 f ∗Srg ∈ Λp,q
α+2 and ψ ∈ Λp,q

α+2 we have

f ∗ g ∈ Λp,q
α+2,loc.
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Theorem 3.1.1. Suppose K is a compact subset of Rd, 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞. K is

not Λp,q
α,loc-removable if and only if there exists h ∈ Λp,q

α−2 such that h 6= 0, supp(h) ⊆ K.

Proof. Suppose K is not Λp,q
α,loc-removable. So there exists f ∈ Λp,q

α,loc such that f

is harmonic in Rd \ K but not harmonic in Rd. Let h = ∆f. Then it is clear that

supp(h) ⊆ K, h 6= 0 and h ∈ Λp,q
α−2.

To prove the other half of this theorem, assume that there exists h ∈ Λp,q
α−2, such

that supp(h) ⊆ K, h 6= 0. Let f = g ∗ h. Then ∆f = h, so f is harmonic in Rd \K,

not harmonic in Rd, and by Proposition 3.1.1 we have f ∈ Λp,q
α,loc.

The next theorem is an unpublished result of D. Ullrich and by courtesy of the

author we are providing the proof.

Theorem 3.1.2. Suppose K is a compact subset of Rd, α < 0, 1 ≤ p ≤ ∞ and

1 ≤ q ≤ ∞. Then the following are equivalent:

(a) If h ∈ Λp,q
α and supp(h) ⊆ K then h = 0;

(b) For any ε > 0 there exists ψε ∈ Λp′,q′

−α such that ψε = 1 on a neighborhood of K

and ‖ψε‖p′,q′,−α < ε.

Proof. First we show that (b) implies (a): Suppose h ∈ Λp,q
α and supp(h) ⊆ K.

Consider any ε > 0 and ψε ∈ Λp′,q′

−α such that ψε = 1 on a neighborhood of K and

‖ψε‖p′,q′,−α < ε. For any ϕ ∈ C∞c , we have ψεϕ = ϕ on a neighborhood of supp(h), so
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from Proposition 3.1.1 follows that

|〈h, ϕ〉| = |〈h, ψεϕ〉|

≤ ‖h‖p,q,α‖ψεϕ‖p′,q′,−α

≤ C‖h‖p,q,α‖ψε‖p′,q′,−α

≤ C‖h‖p,q,αε.

Since ε is an arbitrary positive number, this implies that 〈h, φ〉 = 0 for all ϕ ∈

C∞c (Rd), which means h = 0.

To prove the second part of this theorem we assume that (a) is right and (b) is

false, which will lead us to contradiction. Suppose there exists M > 0 such that for

any ψ ∈ Λp′,q′

−α and ψ = 1 on a neighborhood of K we have ‖ψ‖p′,q′,−α ≥M. Note that

this implies K 6= ∅.

Let X =
{
ψ ∈ Λp′,q′

−α : ψ ∈ S and ψ is constant in a neighborhood of K
}
.

Fix x ∈ K. Define λ : X→ C by λ(ψ) = ψ(x).

It is clear that |λ(ψ)| ≤ 1
M
‖ψ‖p′,q′,−α for all ψ ∈ X. The Hahn-Banach theorem [4]

implies that λ extends to Λp′,q′

−α,0 with the same norm. By Theorem 1.3.5 there exists

f ∈ Λp,q
α such that 〈f, ψ〉 = λ(ψ) for any ψ ∈ Λp′,q′

−α,0. Hence 〈f, ψ〉 = ψ(x) (x ∈ K,ψ ∈

X).

Now λ 6= 0 implies that f 6= 0. We need to show that supp(f) ⊆ K. This is

equivalent of showing that 〈f, ϕ〉 = 0 for all ϕ ∈ C∞c , supp(ϕ) ⊆ Rd \K.

But supp(ϕ) ⊆ Rd \K implies that ϕ = 0 in a neighborhood of K, so ϕ ∈ X and

〈f, ϕ〉 = ϕ(x) = 0.
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Theorem 3.1.3. Suppose K is a compact subset of Rd and α < 2. K is Λp,q
α,loc-

removable if and only if for any ε > 0 there exists ψε ∈ Λp′,q′

2−α, ψε = 1 on a neighborhood

of K, and ‖ψε‖p′,q′,2−α < ε.

Proof. This follows from theorems 3.1.1 and 3.1.2.

3.2 β and Removable Sets

We will prove the following lemma and theorem in case when d = 2. They can

be generalized in higher dimensional Euclidean spaces easily and the proof is very

similar.

We introduce following notations: Qn =
[
−2n−1, 2n−1

]
×
[
−2n−1, 2n−1

]
, for n ∈ Z.

By A�n, n ∈ Z, we denote Qn \Qn−1.

Proposition 3.2.1. There exists C > 0 such that for any h =
∞∑

n=−∞
hn where

supp(ĥ) ⊂ A�n and

(
∞∑

n=−∞
(2αn‖hn‖p)q

) 1
q

< ∞ (1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞) we

have

‖h‖◦p,q,α ≤ C

(
∞∑

n=−∞

(2αn‖hn‖p)q
) 1

q

<∞.

Proof. Since An = {ξ : 2n−1 ≤ |ξ| ≤ 2n+1} it is clear that

An ⊂ A�n−1 ∪ A�n ∪ A�n+1 ∪ A�n+2.

So h ∗ Φn = (hn−1 + hn + hn+1 + hn+2) ∗ Φn. Because of this

‖h ∗ Φn‖p ≤ ‖Φn‖1 (‖hn−1‖p + ‖hn‖p + ‖hn+1‖p + ‖hn+2‖p)

= ‖Φ0‖1 (‖hn−1‖p + ‖hn‖p + ‖hn+1‖p + ‖hn+2‖p) .
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All of this implies:

‖h‖◦p,q,α =

(
∞∑

n=−∞

(2nα‖Φn ∗ (hn−1 + hn + hn+1 + hn+2)‖p)q
) 1

q

≤

(
∞∑

n=−∞

(2nα‖Φ0‖1(‖hn−1‖p + ‖hn‖p + ‖hn+1‖p + ‖hn+2‖p))q
) 1

q

≤ ‖Φ0‖

(
∞∑

n=−∞

(2qnα4q(‖hn−1‖qp + ‖hn‖qp + ‖hn+1‖qp + ‖hn+2‖qp))

) 1
q

= 4‖Φ0‖

(
∞∑

n=−∞

(2qnα‖hn−1‖qp + 2qnα‖hn‖qp + 2qnα‖hn+1‖qp + 2qnα‖hn+2‖qp)

) 1
q

≤ 4‖Φ0‖1

3∑
i=−1

(
∞∑

n=−∞

(2nα‖hn+i‖p)q
) 1

q

= 4‖Φ0‖1(2α + 1 + 2−α + 2−2α)

(
∞∑

n=−∞

(2αn‖hn‖p)q
) 1

q

.

Thus we take C = 4‖Φ0‖1(2α + 1 + 2−α + 2−2α) and we are done.

Lemma 3.2.1. Assume Q = [−r, r]×[−r, r] , f(x) = 1[−r,r](x), g(x1, x2) = f(x1)f(x2).

Then there exists C > 0 such that ‖f ∗ Φn‖p ≤ C2−n2
n
p′ ‖Φ0‖p if n > −log2(r) and

‖f ∗ Φn‖p ≤ Cr2
n
p′ ‖Φ0‖p if n ≤ −log2(r).

Proof. We know that f̂(ξ) = sin(2πrξ)
πξ

. We also know that ‖Φn‖1 = ‖Φ0‖1, ‖Φn‖∞ =

2n‖Φ0‖∞, ‖Φn‖p = 2
n
p′ ‖Φ0‖p for all n ∈ Z. Let us introduce a function ϕ such that

ϕ̂0(ξ) ∈ C∞c and ϕ̂0(ξ) = 1
πξ

when ξ ∈ A0. We define ϕ̂n(ξ) = 2−nϕ̂0(2−nξ) when

n ∈ N. Since (τrΦn)∧(ξ) = e−2πrξΦ̂n(ξ) we have an equality

f ∗ Φn = (−τrΦn − τ−rΦn) ∗ ϕn
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which implies that

‖f ∗ Φn‖p = ‖ (−τrΦn − τ−rΦn) ∗ ϕn‖p

≤ C‖ϕn‖1‖Φn‖p

= C2−n‖ϕ0‖1‖Φn‖p

= C2−n2
n
p′ ‖Φ0‖p.

This finishes the first part of the lemma. The second part is easy:

‖f ∗ Φn‖p ≤ ‖f‖1‖Φn‖p ≤ Cr2
n
p′ ‖Φ0‖1.

Theorem 3.2.1. Suppose − d
p′
< α < 1

p
, 1 < p <∞, 1 ≤ q <∞. Then homogeneous

Besov space Λ̊p,q
α contains the characteristic function of a d-dimensional cube Q and

there exists C > 0 such that

‖1Q‖◦p,q,α ≤ Cl(Q)−α+ d
p

where l(Q) is the length of cube Q. If q =∞ then we may assume − d
p′
≤ α ≤ 1

p
.

Proof. Recall that we are considering the case when d = 2 and we are using following

notations: Q = [−r, r] × [−r, r] , f(x) = 1[−r,r](x), g(x1, x2) = f(x1)f(x2). If f =
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∞∑
n=−∞

fn (fn = f ∗ Φn) then g =
∞∑

n=−∞
gn where

gn(x1, x2) = fn(x1)fn(x2) +
n−1∑
i=−∞

(fn(x1)fi(x2) + fi(x1)fn(x2)) .

It is clear that

supp (ĝn) ⊆

(
supp (fn)×

n⋃
i=−∞

supp (fi)

)⋃((
n⋃

i=−∞

supp (fi)

)
× supp (fn)

)
⊂ A�n.

By proposition 3.2.1 it is enough to show that
∞∑

n=−∞
(2nα‖gn‖p)q ≤ Cl(Q)−αq+

qd
p .

By N we denote the greatest integer which is smaller or equal to − log2(r) (2N ≤

1
r
< 2N+1).

∞∑
n=−∞

(2nα‖gn‖p)q =
∞∑

n=−∞

(
2nα‖fn(x1)fn(x2) +

n−1∑
i=−∞

(fn(x1)fi(x2) + fi(x1)fn(x2)) ‖p

)q

≤
∞∑

n=−∞

(
2nα

n∑
i=−∞

(2‖fn‖p‖fi‖p)

)q

= 2q
N∑

n=−∞

(
2nα

n∑
i=−∞

(‖fn‖p‖fi‖p)

)q

+ 2q
∞∑

n=N+1

(
2nα

n∑
i=−∞

(‖fn‖p‖fi‖p)

)q

= 2q
N∑

n=−∞

(
2nα‖fn‖p

n∑
i=−∞

‖fi‖p

)q

+ 2q
∞∑

n=N+1

(
2nα‖fn‖p

n∑
i=−∞

‖fi‖p

)q

.
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Let us estimate the last two terms separately:

N∑
n=−∞

(
2nα‖fn‖p

n∑
i=−∞

‖fi‖p

)q

≤
N∑

n=−∞

(
2nα‖fn‖p

n∑
i=−∞

2
i
p′ r‖Φ0‖p

)q

≤
N∑

n=−∞

(
2nα‖fn‖pC2

n
p′ r
)q

≤ Crq
N∑

n=−∞

(
2nαr2

n
p′ 2

n
p′
)q

≤ Cr2q2
N
(
α+2 1

p′

)
q

= Cr
(2−α− 2

p′ )q

= Cr−qα+ q2
p .

Note that the series are convergent when α + 2
p′
> 0 or α > −2

p′
(d = 2).

Now we estimate the second term:

∞∑
n=N+1

(
2nα‖fn‖p

n∑
i=−∞

‖fi‖p

)q

=
∞∑

n=N+1

(
2nα‖fn‖p

(
N∑

i=−∞

‖fi‖p +
n∑

i=N+1

‖fi‖p

))q

≤
∞∑

n=N+1

(
2nα‖fn‖p

(
N∑

i=−∞

Cr2
i
p′ +

n∑
i=N+1

C2−i2
i
p′

))q

≤ C
∞∑

n=N+1

(
2nα‖fn‖p

(
rr
−1
p′ + 2−n2

n
p′
))q

≤ C
∞∑

n=N+1

(
2nα2−n2

n
p′
(
rr
−1
p′ + 2−n2

n
p′
))q

≤ C
(

2Nα2−N2
N
p′
(
rr
−1
p′ + 2−N2

N
p′
))q

≤ Cr
(−α+1− 1

p′+1− 1
p′ )q

= Cr
(2−α− 2

p′ )q

= Cr−qα+ q2
p .
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We can see that last series converges when α− 1 + 1
p′
< 0 or α < 1

p
.

We have an analogous result for the non-homogeneous Besov spaces:

Theorem 3.2.2. If − d
p′
< α < 1

p
then for any 1 ≤ p ≤ ∞, 1 ≤ q < ∞, a non

homogeneous Besov space Λp,q
α contains a characteristic function of a d-dimensional

cube and there exist C > 0 (depends on α, p, q) such that

‖1Q‖p,q,α ≤ C
(
l(Q)

d
p + l(Q)−α+ d

p

)

If q =∞ then we may assume − d
p′
≤ α ≤ 1

p
.

Proof. This proof is just a simple modification of the previous proof.

Based on this theorem we are giving a criterion of removabality property of a

compact set for harmonic functions in Besov spaces when the parameter α is between

2− 1
p′

and 2:

Theorem 3.2.3. Suppose K is a compact subset of Rd, 1 ≤ p ≤ ∞ and 2 − 1
p′
<

α < 2. If mβ(K) = 0, where β = (α− 2)p′ + d, then K is Λp,p
α −removable.

Proof. We note that since 2 − 1
p′
< α < 2 then 0 < 2 − α < 1

p′
and the previous

theorem implies that Λp′,p′

2−α contains characteristic functions of d−dimensional cubes.

Let ε > 0. Sincemβ(K) = 0 there exists covering ofK by disjoint cubesQ1, Q2, . . . , Qn
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such that
n∑
i=1

l(Qi)
β < ε. Then by theorem 3.2.2 we have:

‖1∪ni=1Qi
‖p′,q′,2−α ≤ ‖1∪ni=1Qi

‖p′ + ‖
n∑
i=1

1Qi‖◦p′,q′,2−α

≤

(
n∑
i=1

l(Qi)
d

) 1
p′

+
n∑
i=1

‖1Qi‖◦p′,q′,2−α

≤ C

( n∑
i=1

l(Qi)
d

) 1
p′

+
n∑
i=1

l(Qi)
(α−2)p′+d


The first term of this sum we can make less then ε

2
because when α ≤ 2 then β =

(α − 2)p′ + d ≤ d and so md(K) ≤ mβ(K). Similarly the second term can be made

less than ε
2

since mβ(K) = 0. By applying theorem 3.1.3 we finish the proof.

The previous result characterizes removable singularities in a special range of

parameter α. Next we are giving characterization of singularities in a larger range of

α but the required condition is stronger.

Proposition 3.2.2. There exist A > 0 and C > 0 such that for any finite set of

disjoint dyadic cubes Ω = {Q1, Q2, . . . , Qn} where l(Qi) = 2−ti , (ti ∈ N, i = 1, . . . , n),

we can construct a function f =
n∑
i=1

bi with properties:

(i) f |∪ni=1Qi
= 1,

(ii) supp(bi) ⊂ AQi, i = 1, . . . , n,

(iii) ‖Dη(bi)‖∞ ≤ C2ti|η|t
|η|
i , i = 1, . . . , n for |η| ≤ 2.

Proof. We denote by Fm (m ∈ N) the set of cubes from Ω with side length equal

to 2−m. We choose A1 ∈ N and let F̃m be the family of dyadic cubes of side length

equal to 2−m which are within A1 cubes of a cube in Fm. This means that Q is in
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F̃m if there exist maximum A1 cubes of side length 2−m such that their union is a

connected subset of Rd and this group contains Q and at least one cube from Fm. We

choose a map f : F̃m → Fm such that: if Q ∈ F̃m then f(Q) is a cube in Fm which is

within A1 cubes from Q and in case when Q ∈ Fm we make f(Q) = Q. For Qi ∈ Ω

we introduce the notation Q̃i = ∪Q∈f−1(Qi)Q. It is clear that Q̃i ∩ Q̃k = ∅ if Qi and

Qk are different cubes from Fm, and we have ∪Q∈FmQ̃ = ∪Q∈F̃mQ.

Let us consider p ∈ C∞c such that supp(p) ⊆ B (0, 1), p(x) > 0 when x ∈ B (0, 1)

and
∫

Rd p(x) dx = 1. We define pm(x) =
(

2m

A1

)d
p
(

2mx
A1

)
and ψm =

∑
Q∈F̃m

1Q ∗ pm, for

any m ∈ N. If Fm is empty then we assume that ψm = 0.

It is clear that ψm = 1 on Qi if Qi ∈ Fm. Now we show that if we choose A1 big

enough then

‖Dη(ψm)‖∞ ≤ 2m|η| (|η| ≤ 2). (3.3)

Indeed ψm = h ∗ pm where ‖h‖∞ = 1 and Dη(ψm) = h ∗Dη(pm) but Dη(pm)(x) =(
2m

A1

)d (
2m

A1

)|η|
Dηp

(
2mx
A1

)
. The change of variables implies that ‖Dη(pm)‖1 =

(
2m

A1

)|η|
‖Dηp‖1 ≤

CA
−|η|
1 2m|η| when |η| ≤ 2.

So we choose A1 ∈ N such that CA
−|η|
1 ≤ 1 when 1 ≤ |η| ≤ 2 and we have

‖Dη(ψm)‖∞ ≤ ‖h‖∞‖Dη(pm)‖1 ≤ 2m|η| (when η = 0 the inequality is trivial). We

take A = A1 + 1.

We will define f by induction: f−1 = 0, f0 = ψ0, . . . , fk+1 = fk +ψk+1(1− fk). So

1−fk+1 = 1−fk−ψk+1(1−fk) = (1−ψk+1)(1−fk) = (1−ψk+1)(1−ψk) . . . (1−ψ0).
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We let 1− f = (1−ψ0) . . . (1−ψk′) where k′ is the biggest natural number such that

there exists a cube in Ω with side length 2−k
′
. We define bi = pti ∗ 1Q̃i(1− fti−1), i =

1, . . . , n where 2−ti = l(Qi). It is easy to see that f =
n∑
i=0

bi and supp(bi) ⊂ AQi, i =

1, . . . , n. Since ψm(x) = 1 when x ∈ ∪Q∈FmQ it follows that f |∪ni=1Qi
= 1 and

|Dη(fk)| = |Dη(1− fk)| = |
∑

η1+η2+···+ηk=η

k∏
j=1

Dηj(1− ψj)|

where η1, η2, . . . , ηk are multi-indices. So η1 ∈ Nd, . . . , ηk ∈ Nd. It follows from equa-

tion 3.3 and an elementary combinatorial argument that

|Dη(1− fk)| ≤
∑

η1+···+ηk=η

k∏
j=1

2k|ηj | = 2k|η|
∑

η1+···+ηk=η

1 ≤ C2k|η|(k + 1)|η|, |η| ≤ 2.

Hence

‖Dη(bi)‖∞ = ‖
∑
Q∈Q̃i

Dη ((1− fti−1)(pti ∗ 1Q)) ‖∞

≤ C
∑
ω≤η

‖Dω(1− fti−1)||Dη−ω(pti ∗ 1Qi)‖∞

≤ C
∑
ω≤η

2(ti−1)|ω|t
|η|
i 2ti|η−ω|

≤ Ct
|η|
i 2ti|η|, |η| ≤ 2

Based on the previous proposition, we prove
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Theorem 3.2.4. Suppose K is a compact subset of Rd, 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ and

0 < α < 2. If there exists γ ∈ R such that γ < β where β = (α−2)p′+d, (1
p

+ 1
p′

= 1)

and mγ(K) = 0 then K is Λp,q
α,loc-removable.

Proof. We observe that A is a fixed number as in the previous proposition. Let us

consider arbitrary ε > 0. Since mγ(K) = 0 there exists a covering of K by dyadic

disjoint cubes Q1, Q2, . . . , Qn such that
n∑
i=1

2−γti < ε where 2−ti = l(Qi), ti ∈ N, i =

1, . . . , n (Recall that Q is a d-dimensional cube and l(Q) is its side length). By the

Proposition 3.2.2 there exists f =
n∑
i=1

bi such that:

(i) f |K = 1;

(ii) supp(bi) ⊂ AQi, i = 1, . . . , n,

(iii) ‖Dη(bi)‖∞ ≤ C2|η|tit
|η|
i , i = 1, . . . , n for |η| ≤ 2.

We define si =
t2i

2ti(d/p
′−2+α)

(
1 +
√
d
)M+2

(M is as in definition 1.3.10) and we define

ai by the formula

siai(x) = bi(x), i = 1, . . . , n.

Then it is easy to see that:

(i) supp(ai) ⊂ AQ;

(ii) |Dηai(x)|∞ ≤ c2
ti

(
d
p′−(2−α)+|η|

)
(1 + 2ti |x− xQi|)

−M−2
when |η| ≤ 2.

Since max

([
d
(

1
p
− 1
)

+
− α

]
,−1

)
= −1 when 0 < α < 2 it follows that ai, i =

1, . . . , n is a (2−α, p′)-molecule and we can use theorem 1.3.6 to estimate ‖f‖p
′

p′,p′,2−α =
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‖
∑n

i=1 siai‖
p′

p′,p′,2−α as follows:

‖f‖p
′

p′,p′,2−α ≤ C
n∑
i=1

|si|p
′

= C

n∑
i=1

(
t2p
′

i 2−ti(d+(α−2)p′)
)

= C

n∑
i=1

(
t2p
′

i 2−ti(β−γ)2−γti
)

≤ C
n∑
i=1

2−γti

≤ Cε.

In proving this inequality we are using the fact that without loss of generality we may

assume l(Qi) = 2−ti , i = 1, . . . , n so small that t2p
′

i 2−ti(β−γ) < 1 since β > γ. By using

theorem 3.1.3 we finish the proof.

3.3 Summary

The following questions need to be investigated: Suppose K ⊂ Rd, is a compact,

0 < α < 2, , 1 ≤ p ≤ ∞, and mβ(K) = 0. In this case, is it true that K is

Λp,q
α,loc−removable? Or if mβ(K) > 0 is it true that K is not Λp,q

α,loc−removable?

In case when α > 2 + p
d

we know complete answer and when 2 ≤ α ≤ 2 + p
d

we only know a partial answer. The following questions still remain open: Suppose

md(K) > 0 (d is the dimension of the Euclidean space where K is located).What can

we say about Λp,q
α,loc−removability of K? How does the exact answer to this question

depend on the parameters α, p, and q?
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It seems that the Hausdorff measure is not giving exact characterization of K to

answer those questions and we might need more subtle measure-geometric character-

ization of K.
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