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1 Introduction

1.1 History of The Problem

Riemann’s theorem about removable singularities states that if f is holomorphic
in Q\ {a} (Qis an open set in C) and f is bounded in D’'(a,r) (the punctured disk
with radius r and center a) for some r > 0, then f has a removable singularity at a.
Riemann’s theorem raises a question: How can we characterize removable singularities
for “good” (analytic, harmonic, etc.) functions?

In 1945 L. Ahlfors [1] introduced the set function 7 (“analytic capacity”), and he
proved that a compact set K “is removable for bounded analytic functions”, (that is
for all open sets U O K and all bounded analytic functions f on U \ K) if and only
if v(K)=0.

The definition of v is purely analytic. So the question arises: What is a geometric
characterization of sets with vanishing analytic capacity?

It is not difficult to show that if compact K is thick enough, i.e. if its Hausdorff
dimension dim(K) is strictly more than 1 then v(K) > 0. If K is too small, i.e.
dim(K) < 1 (then of course m;(K) = 0) or even dim(K) = 1 but m;(K) = 0 then
v(K) = 0 (mg denotes the - dimensional Hausdorff measure of K).

In 1959 A. G. Vitushkin [17] gave an example of a compact set K such that
mq(K) > 0 but v(K) = 0 (Vitushkin’s example was quite complicated but J. Garnett

[6] and L. D. Ivanov [8] found a much simpler one).



In 1967 Vitushkin conjectured that v(K) = 0 if and only if m; (me(K)) = 0 for
almost every direction 6, where my denotes the orthogonal projection from the plane
to the line Ly = {x + iy : xcos(#) + ysin(h) = 0}.

Vitushkin’s conjecture was confirmed [3] in case when 0 < m;(K) < oo .

In case when m;(K) = oo, P. Mattila [10], P. Jones and T. Murai [9] showed that
Vitushkin’s conjecture is not right.

M. Melnikov conjectured in 1995 that v(K) > 0 (this includes the case 7 = 00)
if and only if K supports a nontrivial positive measure with linear growth and finite
Menger curvature [11].

Melnikov proved the “if” part of his own conjecture in the same article and the
“only if” part was proved by X. Tolsa in 2003 [14].

As for harmonic functions, a theorem of Carleson [2] states that if K is a compact
subset of R? (d > 2) then K is removable for harmonic functions satisfying a Lip,
condition (0 < a < 1) if and only if my_o.4(K) = 0.

Carleson’s result fails for a = 1: N. X. Uy [16] gave an example of a compact
subset of R? that is removable for Lip; harmonic functions in spite of having positive
(d — 1)-dimensional Hausdorff measure. N. X. Uy noted that for d = 2 the existence
of such a compact set follows from the existence of a set of positive length that is
removable for bounded holomorphic functions. Uy used the above-mentioned exam-
ple of Garnett in the 2-dimensional case and he generalized this example in higher
dimensional Euclidean spaces.

D. Ullrich showed in 1990 [15] that K is removable for harmonic functions in the

Zygmund class if and only if mg_1(K) = 0.



When 0 < a < 1 then Lip, coincides with the Besov space A2 (see definition
below) and the Zygmund class coincides with the Besov space AJ™™.

All these facts indicate that Carleson-Ullrich’s theorem may have generalizations
in more general Besov spaces. This dissertation consists of research done in this
direction. We study removable sets for harmonic functions in Besov spaces.

The main result of this dissertation is:

Consider «, p, ¢ such that (2—1%)+ <a<2,1<p<o0,1<qg<oo,and a
compact K C R% We fix the number 8 = (a — 2)p’ + d where % -+ ]l) = 1. Then:

i) If there exists v < ( such that m,(K) = 0 then K is A}, —removable;
it) If there exists v > (3 such that m,(K) > 0 then K is not A?% —removable. (See

a,loc

the definitions below.)

1.2 Preliminaries

In this section we state basic definitions and theorems which are instrumental in
our research. We start with notations: R? denotes d-dimensional Euclidean space, Z
the set of all integers, N the set of all natural numbers, R the set of all real numbers,
C the set of complex numbers.

We denote by A; the “area” of the unit sphere in R

Definition 1.2.1. By g we always denote the Green function [7] which is defined in
R? as
—1 .
@ 70

—00, if x =0,



when d > 2,

Snlz|, if z #£0,
—00, if x =0,

when d = 2 and

when d = 1.

Definition 1.2.2. The Fourier transform of f € L* (Rd) is

A~

fe) = [ @y da.

For the further use, we need to make following
Remark 1.2.1. For all d € N, it is true that §(§) = —ﬁ in R4\ {0}.

Theorem 1.2.1. Suppose that u is a finite positive measure on RY with compact
support K. Let w = pu* g, where g is the Green’s function (see definition 1.2.1). Then

u is subharmonic, and Au = p in the sense of distributions (so that u is harmonic in

R\ K) [7].

We denote by mg(E) the §—dimensional Hausdorff measure of E C R%. We state

a special case of Frostman’s lemma in Euclidean spaces:

Lemma 1.2.1. Suppose that K is a compact subset of R? and mg(K) > 0. Then

there exist a probability measure p supported on K and a finite constant C' such that

pu(B(x,r)) < Cr?



for allz € RY, r > 0.

Definition 1.2.3. Suppose p is a measure in RY. We denote by p, the function

pir () = p(B(x, 7).
The next theorem is known as Hardy’s inequality [4].

Theorem 1.2.2. Ify >0, 1 < g <oo, h:(0,00) — (0,00) then

[ ([ roa) ar< (8 [Tretherar

1.3 Basics About Besov Spaces
S = S(RY) will be the Schwarz space of rapidly decreasing functions, with dual

S’ the space of tempered distributions. We will set

SO:{fGS: FOdt =0, PyeNd},
R4

SO

Soz{f:fESO}:{fES:%(O):(),VENd}.

The dual of S is

S,=8/5 =8P

where P is the space of all polynomials.

For each n € Z, the notation A,, will refer to the annulus

A, ={EeR: 2" < g < 2nH)



Choose 1y € C*°(R?) such that 1)y > 0 on A while 1)y = 0 on R\ Ay. For n € Z

define

Un(€) = ©o(277€)

(so that 1, vanishes off A,,), and now define ®,, € S by

z o %(f)
MO ==

It follows that @, vanishes off A,, || ®,]1 = ||Po|l1, Pp(x) = 279Dy (272),

P
1, (z) de = —2(0) = 0, N¢,
[t = G220 =0, 9 €

so @, € Sy, (hence ®,, * f is defined for f € §)) and i D, (6) =1 (€ e R4\ {0}).

n=—oo

Note that 3. ®,(0) = 0.

Since 1 — > d,, is smooth and has compact support we can choose ¥ € S such
n=0
that U = 1 — 3. ®,; note that ¥ vanishes off B(0,1) (the ball with center at the
n=0

origin and radius 1).

Now W + > ®, =1 in all of R%, and in fact it is easy to show that

n=0
p=Txp+ Yy Pxo,
n=0

with convergence in S, for all ¢ € S. It follows that

F=Uxf+) O xf
n=0



in &' for all f € & (Statements about convergence in S’ and S| refer to the weak*

topology).

Typically when we write f = i fn below it will be understood that we mean
convergence in S and that fn vanishes off A,,.

Similarly, the notation f = F + i fn will be taken to imply convergence in &,

n=0

that f, vanishes off A, and that F' vanishes off B(0,1).
Note that f, and F will always be infinitely differentiable, since f, and F are

distributions with compact support.

Definition 1.3.1. Suppose that —co < o < 00 and p € [1,0], q € [1,00). The

homogeneous Besov space f\g’q = f\g»q(Rd) is the space of tempered distributions f € S}

such that f = > f, where

n=—oo

supp < fn> cC A,

and

[e.e]

> @ fally)” < co.

n=—oo

If ¢ = oo this condition becomes 2"*|| f,|l, < C for alln € Z.

Definition 1.3.2. Suppose that —oco < a < o0 and 1 < p < oo, 1 < q < oo. The

inhomogeneous Besov space AP? = AP9(R?) is the space of tempered distributions

f €S8 such that f =F + Y. f,, where

n=0

supp (F) C {5€Rd el < 1}, supp (fn) C A,



and

11, + (Z (2"“anHp)q) < 00.

n=0

If ¢ = oo this condition becomes F' € LP and 2"*| f.||, < C for all n € N.

We will let Ay = A% and A, = A

Norms in AP and AP? are introduced by formulas:
(6% (6%

1

(z <2"a||<1>n*f||p>q>q 1< q< oo
T

n=—oo

sup 2"(|®@,, * f/|,, if ¢ = o0,
nez
and
1
s £l + (S @elonn 1)) it1sg <o
1f llapq = =0
N0 Sl sup 2@, g = oo,
ne
correspondingly.

With respect to those norms Besov spaces are Banach spaces [12].
Note: We will be considering only the case o > 0; in this case if f is in AP or

f\gq it followes that f is locally integrable (see Lemma 2.2.3 below).

Definition 1.3.3. Lipschitz space (homogeneous) Lipt, (0 < o < 1) is the subspace

OfC(Rd)/C with norm
1 llzig = sup L& =W,

syek |z —yl®
zF#y



Definition 1.3.4. Lipschitz space (inhomogeneous) Lip, (0 < o < 1) is the subspace

of C(R?) with norm

1l = [l + sup L =W

Definition 1.3.5. We say that f € Zyg® (homogeneous Zygmund class) if f : R —

C s a continuous function satisfying
|f(z —h) =2f(z) + f(z+ h)| < C|h|

for all h € R

Definition 1.3.6. We say f € Zyg (the Zygmund class) if f : R? — C is bounded,

measurable and satisfies
|f(z —h) =2f(x) + f(z + h)| < C|h|

for all h € RY.

The next theorem, which belongs to the folklore [12], gives relationships among

Besov spaces, Lipschitz spaces and the Zygmund class:

Theorem 1.3.1. Lip}, = A, and Lip, = Ay when 0 < a < 1; Zyg°® = Ay and

Zyg = Aq.

In addition to this theorem we note well known facts: Lip} C Zyg°® (Lip;y C Zyg)

but Lipi # Zyg® (Lipy # Zyg).



Definition 1.3.7. The Poisson kernel in R? is the function P, defined by
_ Yy d
Py (2) = pa = ([@eR%y>0),

(y? + [af?) >

where pq is chosen so that [, Py(z)dx = 1.

The Poisson integral of f is the function in Rff“l defined by

Plfl(z,y) = f » Py(z)

where RE™ is the upper half space of R4+

R = {(z,y) : 2 € R,y > 0}.

Definition 1.3.8. If u(z,y) is a function in R and y > 0 then for 1 < p < 0o we

have
my,p(u) = (/ |U(Iay)|p dl‘) )
]Rd
and
my, o (u) = sup [u(z,y)|
z€R
for p = o0.

We define the finite difference Ay f by

Apf(x) = flx+h) = flz),

10



and we define higher-order difference operators by induction:
ALf=Anf, A= AR(ALS).

Theorem 1.3.2. [12] Suppose that « >0, p € [1,00], q € [1,00), k € Z, and k > «a.
Let u=P[f]. The following are equivalent:
(i) f € Az,
. AR flp\ ¢ F
(1) (Jeo (5H1)" )" < o0,

1

q 1

00 ykmy,p<ak;:) d !
(i14) (fo <_ o L] <oeo,

. X .. . o 00 ykmy,p<DBu) 7 dy a
() If B is any multi-index with || = k then | [~ —=a— o <o

yOL

4 q
o ykmy,p<g’:};> d
! :
() | [, — | | <ooforj=1,..d

When q = oo then (ii), (i), (iv), and (v) should be interpreted as:

g 1ALl
1') sup ,
= AT
Ok u
o wtmy, (59)
(i7i") sup ————% < o0,
y>0 ye
km, , (D%u
(ZU’) Sup w < OO;
y>0 ye
Ak u
) s v, (5) -
p < oo forj=1,..,d.
y>0 ye

Theorem 1.3.3. [12] Suppose that « >0, p € [1,00], q € [1,00), k € Z, and k > «a.
Let u=P[f]. The following are equivalent:
() f € ARY,

. Ak fl,\ ¢ ‘
(13) f € L? and <f|h|§1 (%) %) < 00,

11



b (2%0) 2 .
(i4i) f € LP and (fol (WM) %) < 00,

Fm, 8u) \ ¢ a
() f € LP and if § is any multi-index with |B| = k then (fl (M> ﬂ) <

0 ye y

00,

q 1
y* y,p< >

(v) feLP and | [ S CE DAY < oo forj=1,..,d

0 - . A

Y

When q = oo then (ii), (i), (iv), and (v) should be interpreted as:

Ak
(17') f € LP and supw < 00,
o ||
k O
ymy ., <3 k)
(iii') f € LP and sup ————2 < o0,
y>0 ye
*m, , (D"u
(') f € LP and supw < 00,
y>0 Yy
yFm,, (&Z)
) ox”
(") f e LP and sup ——= < o0 forj=1,...,d.
y>0 ye

The following theorem is known as the Besov Embedding Theorem [12]:

Theorem 1.3.4. ]flgpgrgooandazﬁ%—]%—%then

AR C A

and
Ara c A
for all q € [1,00].
The next two lemmas will be very useful for us in the future [12].

Lemma 1.3.1. f € AP? if and only if DY(f) € /O\Z’zh| where —oo < a < 00, 1 <p <

00, 1 <q< oo andy € N

12



Lemma 1.3.2. If f € A2? then DV(f) € AZ’fM where —c0 < a < 00, 1 < p <

00, 1 <q< oo andy € N

Before we state the theorem about duals of the Besov spaces [12], we need to
introduce the next notations.
Suppose h € AP ’O?, and f € AP where as always below p’ and ¢’ are the conjugate

exponents to p and ¢, respectively. Note that

/Rd(q)n x [)(x)( P x h)(z)dz =0

when [n—m| > 1, because the (distribution) Fourier transforms have disjoint support.
Similarly

/Rd(q’ b 1) (@) (@ B (x) do = / (@, # [) (2) (© 1) () dz = 0

R4

for n > 1. We define a linear functional A, : A2¢ — C by a formula

() = [ (@ P h) @) do+ [

R4

/(CIDU*f)( ) (o * h)(z dx+ZZ/ (©, % f)(2)(Ppyj * B)(z) da.

j=—1n=1

(P * f)(z)(V x h)(x) d:B—l—/ (U f)(x)(Pg * h)(z) dz

R4

The norm closure of the Schwarz space in A%¢ we denote by A7{ and observe that

AP? = APT except when ¢ = oo

Theorem 1.3.5. Suppose a €R, 1 <g<oo, 1<p<oo. If)e€ (AZ’%)* then there

exists h € A’i';f' with A = Ap.

13



An atomic decomposition of distributions from Besov spaces, introduced by M.

Frazier and B. Jawerth [5], plays a very important role in our research.

Definition 1.3.9. An (a,p) —atom a(x), (—o0o < a < 00, 0 < p < 00) is a function

satisfying, for some cube Q C R?, the following conditions:

(¢) supp (a) € 3Q,

(i0) |D7a(x)| < QIF % if | S K, and a € R

(#41) [gaxVa(x)dx =0 if |y| < N,

where K > ([a] + 1), and N > max ([d <% - 1)+ —al, —1) are fized integers.
Here x, = max(x,0), [z] is the greatest integer in x, and 3Q is the cube in R?

concentric with Q) but with side length three times of Q. If N = —1 then a(x) is not

required to have any vanishing moments.

We note that if @« > 0 and p > 1 then we may take N = —1 so that condition (i)
may be ignored.

We write ag for an atom satisfying the definition 1.3.9 for a given cube (), and
adopt the convention that whenever () appears as a summation index, the sum runs
only over dyadic cubes. We also need for future use the following notations: Fix
1 € § satisfying supp (@@) - {f eRe: ¢ < 7r}, Jpa@"(x) dz = 0 if [n| < N, and

(&) >c>0if 1/2 < |¢] < 2 (N is the fixed integer above). For each v € Z and

k= (k... kq) € Z% set

Qui=1{z=(21,...,20) ER":1 k27" <; < (k; + 1)27", i=1,...,d} (1.1)

14



and define

vol(z) = QT P (2 — k) if Q= Qui. (1.2)

Definition 1.3.10. We call a function m an («, p)-molecule if there exist yu € Z and

a point o € R? such that
|D"m(z)| < oh(—a-+nl) (14 22 — o) ™M1 if || < K

and

/ x'"m(z)dr =0 if |n] < N,
R4
where M > N + 10d and K, N are as above.

Suppose ¥ € S satisfies: supp <\i/> C{¢: €] <7} and \if(é) >C>0if ¢ <1

Then the following decomposition result is true [5].

Theorem 1.3.6. Let —oco < a < 00, 0 < p,q < 0.

a) Each f € AP9 can be decomposed as follows:

) fO) =2 sV —k)+ 2 > seiel),
kezd v=01(Q)=2""
where the Yq’s are defined by (1.2), or
i) f= 2 s+ X sQug
kezZd v=01(Q)=2-"

where the ag’s are (o, p)-atoms, and the by, ’s satisfy supp by C 3Qox and |[D"by(x)] < 1

if In] < K. In both cases the convergence is in S, and

SAS)
=

(Z ysk’p> + Z |sql” < Ol fllapa

kez v=0 \U(Q)=2

15



with C' independent of f.

b) Conversely, suppose f = 3 ) za sk + D070 g)=a—v SQMq, where each
mq s an (a,p)-molecule concentrated on @, and each my satisfies |D" my(x)| <
(1+ |z — k)™M if |n| < K, for some sufficiently large M.

Then

1

IlfHa,p,qSC(ZISk!”) +CID | D sel

kezd v=0 \l(Q)=2"V

RIS

The next theorems on Besov spaces are crucial for our purpose to characterize
removable sets for harmonic functions in Besov spaces. Theorem 1.3.7 is an unpub-
lished result of D. Ullrich and by courtesy of the author we are providing the proofs

in this thesis.

Definition 1.3.11. Suppose f is a locally integrable function. For r > 0 we define:

S, f(x) = f(z) / F(a +1€) do(€)

where o s the rotation-invariant probability measure on S, the sphere of radius 1.

Lemma 1.3.3. Suppose that k > g 18 an integer. There exists C' > 0 such that for

any f € C*(R?) we have

d 35
A 1- 4 o f
1l < CIAIL k(Zn@nZ) |
i=1 i

16



Proof. We observe that we are using Holder’s inequality and Plancherel’s theorem.

~

Vi@l [ S / oy @I
d ~
A > loit) )
:/ |f(:c)]d:zc—|—/d S d
B(0,A) RI\B(0,A) z:: m‘k

d
d oF pad
< 01A2||f||2—|—02 (Z HWH2> A k-‘rz.
=1 ?

X

Let
1
k

d ok f
Cr (S 1540

A:
Crllfl2

Theorem 1.3.7. Suppose that 0 < o < 2. Then f € f\gq if and only if

) q
/ (IISTpr> dr_
0 re r

which for ¢ = oo should be taken to mean that % 1s bounded for 0 < r < oo.

;
Proof. We consider only the case 1 < g < o0o; the case ¢ = oo is very similar.

Assume that f € AP9. Note that

S, f(x) = f(z) - / f(x+r€) do(€)

17



_ ! /S (f(x+7rE) = 2f(x) + f(z — 1)) do(€)

——3 [ Ats(@) doc).

Therefore

1.1l < [ 18311, do(h).

so that Holder’s inequality gives

15,2 < C / 1A2, £ do(h),

and an integration in polar coordinates shows that:

[ ISl dr / [ 12,118 dor(h
0 ro — rog
AZ )Y 1 )
:C’/ /(H rh p) do(h)r? 1 dr
o S\l ) e )
1Az ) ah
:C’/ < P < 00.
o Ul ) TR

To finish the proof of the first part we use theorem 1.3.2.

To prove the second part it is sufficient to show that there exists 6 > 0 and C' > 0

such that for all integers n we have

120 5 fllp < ClIS fllp, (2770 <7 <27"9).

18



We will prove this in case n = 0; the general case follows by dilation.

From the definition of ||f]|° ., it follows that

p7q7a

o ® (15,11, \* dr\°
< -
Hpr,q,oz — C (/(; ( ro r )

which is enough for the proof.

We have:

where

where in turn

It is clear that J is smooth, and well-known that J(r) — 0 as r — oco. (We are
assuming that d > 1 here; in the case d = 1 there is nothing to prove, because
Sef = —AT’Q“f). So there exists § > 0 such that [J(r)| <1 (r>2).
This implies that |1,.(§)| > 1 (§ <r < 26,€ € Ay).

Now let NV be an integer larger than %. Since J is smooth all its partial derivatives

are locally bounded; it follows from the quotient rule and the fact that |v,| > 1 that

9% By(¢)
€7 v, (€)

‘SC (0 <r <20, £ €hy)

19



whenever 3 is a multi-index with |3] < N. Since all our functions are supported in

Ay it follows from Lemma 1.3.3 that there exists ¢, € L' such that

and

ells <C (6 <7 < 26).

This shows that

f*q)O:d)r*(STf)a

so that

1o * fllp < @rllallSefllp < CUSHfllp (6 <1 < 26).

That is exactly the inequality we need for n = 0. O
Theorem 1.3.7 plus a little argument gives the corresponding result for A7

Theorem 1.3.8. Suppose that 0 < a < 2. Then f € AP? if and only if f € LP and

which for ¢ = oo should be taken to mean that % 18 bounded for 0 < r < 1.

20



Lemma 1.3.4. Ifd > 2 then

Ty = =P, i x| <

Sp(g)(z) =

0, otherwise,

where A, is the “area” of the unit sphere in R%.

When d = 2 we have

5—;(111\7’\ —In|z|), if |z| <,

0, otherwise,

and when d = 1 we have

e[ =r), if o] <,

otherwise.

=

Proof. We just give a proof when d > 2; d = 2 and d = 1 are similar. The fact
that S.(g)(z) = 0 for |z| > r is clear since g is harmonic in R¢\ {0}. Note that
Sr-(g9) = g — g * 0, where o, is the rotation-invariant probability measure on rS, the
sphere of radius r. It is clear that o, % ¢g is radial since o, and g are both radial

(rotation invariant).
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Therefore, in B(0,r) the function o, % ¢ is radial and harmonic, so it must be

constant since it satisfies the mean value property; for |x| < r we have

_p2d
orxg(x) =0, % g(0) = /Sg(rg) do(&) = m
Thus S,(g9)(z) = g(z) — 0, x g(z) = m(ﬂ—d — |z, 0

Lemma 1.3.5. S,(g)(z) = 4= [y t'"1po(x)dt where

1, if |z] <t,
1y (z) =

0, otherwise.

Proof. We consider the case when d > 2. The cases d = 1 and d = 2 are very similar.
If || > r it is clear that [ t'~“1p(x)dt = 0. If [z <7 then 4= [t~ A p ) (x)dt =

Ail f‘; tliddt = Wim (T’Qid - |$|27d). ]
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2 Conditions of Non-Removability

2.1 Local Besov Spaces
Definition 2.1.1. We say that a distribution f belongs to local Besov space and write

fe A2 if for all p € C° we have pf € AP,

a,loc

The next proposition gives an equivalent definition of local Besov spaces:

Theorem 2.1.1. Suppose 0 < a <2, and 1 < p < oo. Then f € NPT if and only if

a,loc

ferr (Rd) and for any compact K C R? there exists C' > 0 such that

loc

(/K |Aif(:c)!pd:c>p <Clh* (0<|n| <1).

Proof. We adopt the common convention that the letter C' denotes a constant , the

value of which may vary from line to line. The “only if” part is trivial so we focus on

the “if” part. Assume f € L (R?) and for any compact K C R? there exists C' > 0
such that

(/K |Aif(a:)|ﬂda;>p < Clhl* (0 < |h] < 1).

Suppose ¢ € C° (Rd); let K = supp(¢), K1 = U,cx B(x,2). We know that

An(@f) = (An) (T f) + PALS.

Applying that formula twice shows that

A (0f) = (A7) (Tanf) + 2(And) (ThALf) 4+ OAL S
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Since ¢ has compact support and the function f is locally integrable everywhere it

would be enough to give an LP—norm estimate of

(AFO)f +2(810)(ALS) + OGS

in order to have an LP—norm estimate of A?(¢f). By Theorem 1.3.3 (i7'), it is enough
to show that [|AZ(of)], < C|h|*.
If |h| > 1 then

ARGl < 4lléfll, = C < Clhl™.

So we only need to consider the case 0 < |h| < 1.

In this case we have

1

1(A%0) fllp < A7 8]loo (/ !f|p> T <o <o,
Ky

since ¢ € C°(RY) and 0 < a < 2. Also, it is easy to see that

loa2fl, < C ( / rAzﬂp)” < Ol
K
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Thus we have the (Ay¢)(Apf) term left to evaluate. We observe that A f = (19, f —

Thf) = (Tnf — f) s0

Nonf = (onf —mnf) + (tnf — f)
=AY f+2(mf — f)

or Apf —30gf = —3A7 f. Now assume that 2~ < [h| < 27V Then
1
HAthLp(Kl) < HAhf - §A2thLP(K1)
1 1
+ H§A2h.f - ZA4hf||LP(K1)
_l_ .
+ 127V Agvaap f — 27N Agnp fll o i)

+ 2_N||A2Nhf||LP(K1)

1 _ _
= SIAL vy + -+ 27 A Fllirac + 27V 1 Agvn lloriy)-
Since 2V |h| < 2, we can easily estimate the last term:

27| Aown Iy < 20l f oy = ClA|
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Now we estimate the other terms:

1 _

SR ey + -+ 27N AS o F vy
1 a 1 a —N|oN—-11 |«

<C §|h| +Z|2h| + -+ 2727 A

— C|h|a (1 + 204—1 + 22(04—1) N 2(N—1)(a—1))
p

Clh|%, if0<a<l,

IN

{ ON|h|* < C|h|log (#) ifa=1,

C|h|2Ne=1) < C|n| if a > 1.
\

Adding in the last term shows that

(

C|h|™ + |hl, if0<a<l,

180 f e = Y ONIf < Clnl (1+10g (1)) i =1,

C|h|2N=1) < C|h| if a > 1.
\

Since supp(Ap¢p) C K1, ||Andlleo < C|h|, 0 < a < 2, and |h| < 1, it follows that

1(And) (Anf)llp SCIAIARS Lo )

(

Clhle + |hl, if0<a<l,

=P eml (1+10g (1)) ifa=1,

Ch| if a>1.
\

< Chle.

26



Now we give a more general definition of local Besov spaces:

Definition 2.1.2. Suppose  is an open set in R We say that a distribution f in

Q belongs to local Besov space with respect to Q0 and write f € AP (Q) if for all

a,loc

p € CX(Q) we have of € A1,
It is easy to see that an analog of Theorem 2.1.1 is true:

Theorem 2.1.2. Suppose 0 < o < 2, and 1 < p < oo. Then f € AVT (Q) if and

a,loc

only if f € LY (Q) and for any compact K C Q there exists C > 0 and 6 > 0 such

loc

that

( / \Aif(m)\pdm)” <O, (0< |l <9).
K

We state some propositions which give relationships between local and global

Besov spaces.

Proposition 2.1.1. Forall0 <a <2, 1 <g< o0 and1 <p < oo we have

AP, D,
qugAq

a,loc”

. o0 -1 A —1
Proof. Say f € AP, f= > f,. Since ( > fn) has compact support, > f, €

n=—oo n=—oo n=—oo

C> (RY) C Lj,.. Also C> (R?) c AP4  (R?) (this follows from the definition of local

a,loc

Besov spaces since C2° (R?) C A2 (R?)). On the other hand because o > 0 we

have > || full, < co. Since ) f, € AR4 it follows from Proposition 3.1.1 below that
n=1 n=0

> p,q
ZO fn € A O
n=
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Proposition 2.1.2. If a; < ay than

APY(Q) C AP, ()

asg,loc aq,loc

forall1 < g <oo0,1<p<oo and any open set Q C R?.
Proof. The proof easily follows from the fact that A%? C AP when oy < ap [11]. [

Proposition 2.1.3. Say Q is an open subset of R and K a compact subset of ).

Then K is AP? (Q) removable if and only if it is AP (R?)-removable.

a,loc a,loc

P4 (Q)-removable. Let u €

Proof. For the non-trivial direction, say K is not AJ9, .

AP (Q), v harmonic in Q \ K, u not harmonic in €. Then Au # 0, supp(Au) C K

a,loc

(where Aw is the distribution Laplacian of u). Since Au has compact support and
the Green function g belongs to L}, there exists well defined v = (Au) * g. Then v
is harmonic in R?\ K but not in R%, because Av = Au. To finish the proof we only
need to show v € AL] (RY).

Fix oy € C®(Q), ¢o = 1 on a neighborhood of K. Suppose ¢ € C®(R?). Then
v = e + (1 — @o)v but p(1 — po)v € CX(RY) C AP4(R?) and A(u —v) =0 in
Qsou—veC®Q). Hence ppo(v —u) € CX(R?Y) C AP4(R?). On the other hand,

the fact that u € AZ? (Q) implies that ppou € AP4(RY) since ppy € C(£2). Thus

a,loc

v = v + (1 — o)v = YPou + Yo(v — u) + (1 — po)v € ALI(RY),

which implies that v € AP (R?). O

a,loc
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The previous propositions tell us that distributions from homogeneous and inho-
mogeneous Besov spaces are similar locally. Because of this, we will study removable

compact sets for harmonic functions in local Besov spaces.

2.2 Borderline Cases
Before we move towards the general case 0 < a < 2, we are going to discuss

borderline cases.

Lemma 2.2.1. If u is a tempered distribution and ji has compact support then p €
C>=(RY) [4].
Corollary 2.2.1. Ify >0 then A, C C' (R, A, C C (R?).

. 00 —1
Proof. If f € A, then f = > f,, but the previous lemma implies that >  f, €

n—=—oo n=—oo

C>(RY), f, € C*(R?) (n € N). On the other hand Y || full < 00 since v > 0,

n=1

which implies the second part of this corollary. The proof of the first part is very

similar. [
Corollary 2.2.2. Ify > 2 then A, C C? (RY), A, C C? (RY).

Proof. The proof easily follows from Lemma 1.3.1, Lemma 1.3.2 and the previous

corollary. 0
Lemma 2.2.2. Suppose a > 2 + ;—j and 1 < p < oo. Then f\goo - CQ(Rd).

Proof. We know that /O\g’oo C /O\af a by Theorem 1.3.4. The proof follows from the

previous corollary. O

Theorem 2.2.1. Suppose a > 2 + % and 1 < p < oo. Then K is /O\g’oo—removable if

and only if K° =0 (K° is the interior of K ).
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Proof. If K° # () then there exists f € O (]Rd) such that f # 0 and supp(f) C K.
To prove the second part we observe that since o > 2 + %, any tempered distribution
from /igoo has continuous second order derivatives by the previous corollary and since

interior of K is empty it follows that K is [D\g’oo—removable. O

An analogous result holds for non-homogeneous Besov spaces too. We can state

in general:

Theorem 2.2.2. Suppose a > 2 + % and 1 < p < oo. Then K is A0 —removable if

and only if K° = ().

Corollary 2.2.3. Suppose o > 2 + %, 1 <g<ooandl < p < oo. Then K 1s

AP —removable if and only if K° = ().

a,loc

Proof. The proof easily follows from the fact that A?? < AP?° when o > 0. O

a,loc a,loc

The next result considers the case when o > 2 but it gives only sufficient condition.

We start with next

Lemma 2.2.3. Suppose a > 0 and 1 < p < oo. Then:
(1) AG>™ C L7

(ii) Ap> C P

loc*

Proof. (i) Suppose f € Ab> and f = F+ > f,, then F' € L? and || f,||, < C27"*
n=0

oo
which implies ) || fn|[, < oo since 0 < a.

n=0

(77) Suppose [ € /DX{“”OO, and f = > fu. Then i fn € C® and > f, € L, so
n=0 n=0

1=—00

Apee C P O

loc*
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Theorem 2.2.3. Suppose « > 2 and 1 < p < oo. If myg(K) = 0 then K is AP7°

a,loc

remouvable.

Proof. Say f € AP | f harmonic in R\ K, mg(K) = 0. Then Af € LI  Af =0

a,loc? loc?

a.e., so Af =0. m

Corollary 2.2.4. Suppose a > 2,1 <qg<ooc and1<p<oo. Ifmy(K) =0 then K

y p,q
18 A%loC remouvable.

Proof. The proof easily follows from the fact that A?? < A% when a > 0. O

a,loc a,loc

The converse of this theorem is true in the case when o = 2 but in the general

case we do not know the answer.

Lemma 2.2.4. Suppose 1 < p < oo. If f € LP then fxg € AL™ where g is the Green

function (see definition 1.2.1).

Proof. We know that A(f xg) = f € /DV&’OO so by Theorem 1.3.2 we have f x g €

Apee. O

Theorem 2.2.4. Suppose K is a compact subset of R and 1 < p < oo. If my(K) > 0

then K is not Ay —removable.

Proof. Since mq(K) > 0 there exists f € L, such that [, f(z)dx = 1 and supp(f) C

K. Then by Lemma 2.2.4 f* g € Ay;7.. So K is not Ay ;7 —removable. O

Now we turn our attention to the lower bound of the parameter a.

Lemma 2.2.5. g € /O\gfoi for any p € [1, 00].
Y
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Proof. We consider the case when d > 2. The other cases are very similar to prove.

By Lemma 1.3.4

T (= P, it el <

Sr(9)(x) =

0, otherwise

Since 2 — z% < 2 we may use Theorem 1.3.7 to finish the proof:

1Sygllb - CIB(O,T) 2] 2=

@—p — F2=p

r

< 2 dpra-(=

=C
[l

Corollary 2.2.5. Suppose o = 2 — z% and p € [1,00|. Then K is /O\g’oo—removable if

and only if K = (.

Recall that if v; < v, then /O\z’oo C /O\z’oo and /O\g’oo C AP which implies

2,loc 1,loc ~,loc?

Corollary 2.2.6. Suppose a < 2 — 1% and 1 < p < oo. Then K is Azﬁc_ removable

if and only if K = ().

So the only interesting case is a > 2 — z%'
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2.3 Constructing Functions in Besov Spaces Using Measures

Proposition 2.3.1. Suppose that  is a measure on R? and there exists a constant

C > 0 such that T[Tlfd < C for 0 <r <1 (u is given by definition 1.2.3). Then

1Sy (w)||, < Cr® for 0 <r <1, where u= % g (g is the Green’s function,).

Proof. 1t is clear that

1 " 1 " 1 T
Sp(u) = pxSy(g) = p* —/ oy dt | = —/ kL o dt = —/ 'y dt
A ’ Al 0 ’ A 0

1Jo 1

and so, by Minkowski’s inequality,

1S, (), < / 0 ], dt

0

=C / e gt
0

= Cr®.
OJ

Proposition 2.3.2. Suppose p € [1,¢], ¢ € [1,00), 0 < a < 2, and p is a measure

q .
on R, If fooo (%) % < 00 then g e AP,

Proof. We know that S,(uxg) = = [y ' uedt. So [|S,(uxg)ll, < C [y 7| puell dt.

Suppose foo <M>q 4r < 50. Then Theorem 1.2.2 implies:
0 roat+d=2 r . WL p €s:
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S d 00 q
/ (H (ﬂ*g)Hp) — < C/ 0 1 (/ tl_dHHt“pdt) dr
0 re r 0

< [ e s
0
> (uell,

- C/o (,r.aer 2) e

< 0.

Thus by Theorem 1.3.7 we have p* g € f\gﬂ. ]

Proposition 2.3.3. Suppose p is a measure on R%, 0 < o < 2. Ifp € [1,00], q €

q
[1,00), and fol (rllffdu_pz) 4 < 0o then px g € AR,

The proof is exactly the same as of Proposition 2.3.2. To prove the converse of

Propositions 2.3.1 and 2.3.2 we need next

Lemma 2.3.1. Suppose p is a measure on R and o > 0. If |||, > Mrite=2 for

some M >0 and r > 0 then there exists C' > 0 such that ||Sa, (g * )|, > CMre.

Proof. We are considering the case d > 2. Cases d = 1 and d = 2 are very similar.

We know that

—(d_’ll)Al (7’2_d — |:c|2_d) . ifr <,

0, otherwise.
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where A; is the area of the unit sphere. This implies that

1 1 1 1
|Sar(g9) ()] > d—1)A, (rd—Q - <2r>d—2) - Cm

when |z| <. Then

1520 (9 * 1)llp = 1152-(9) *
C

m”lB(Om) * pu|

A%

= Cr 2|,
> Crfd+2+d72+o¢M
= CMr®.
O

Corollary 2.3.1. Suppose i is a measure in R? supported on the compact set K and
a > 0. If for any M > 0 there exists r > 0 such that ||u.||, > Mr?=2T® then for any

M, > 0 there exists 1y > 0 such that ||Sy, (1 * g)||, > Mir®
Proof. This is clear from the previous lemma. O

Corollary 2.3.2. Suppose p is measure in R? supported on the compact set K. If

q
fo (JJ;%”&) = 00 then fo (%) & = 0o where u = p* g.
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Proof.

/1 1S ()ll,\* dr >C/1 s llpr=2\ " ar
0 ro ro 0 re T

. 1 4
since f% (M;Q”&) & < 0. O

2.4 [ and Non-Removable Sets

Theorem 2.4.1. Suppose i is a probability measure supported on a compact set
K Cc R

(i) [fr‘lf‘,;Q‘lfd < C for some constant C > 0 when 0 <r <1,1<p<ooand0 < a < 2,
then px g € AP and % g has a non-removable singularity on K.
(ii)]ff01<r‘l¥’f+”@>q%<oo O0<a, 1<p<oo, 1<qg<0)then uxge AR and

W * g has a non-removable singularity on K.

Proof. (i) We have already shown in proving Proposition 2.3.1 that under given con-

ditions we have || * S,.(g)||, < Cr®. By Theorem 1.3.7 it follows that p* g € AR>.
On the other hand |p * g(x)| = | [ga 9(z — y)du(y)| < C’W (when |z

is big enough) which shows that p % g(x) — 0 when |z| — co. But p * ¢ is harmonic

outside of K and A (u*g) = p* Ag = pu* 09 = p # 0 (as a distribution). Therefore

i * g cannot be extended to a harmonic function in R%.
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(ii) We know from proposition 2.3.3 that p* g € A?? and an argument similar to the

final argument of part (i) finishes the proof. ]
Similarly we can prove the following

Theorem 2.4.2. Suppose y is a probability measure supported on a compact set
o0 q o
KCRd-]ffo <,,|(|ﬁ+”ﬂ>%<OO(1§(1<OO,0<Oz<2)then,u>x<g€/\g’qand

W * g has a non-removable singularity on the K.
Now we can characterize non removable singularities for A?*°—spaces:

Theorem 2.4.3. Suppose K is a compact subset of R, 0 < a < 2, and 1 < p < 0.

If mg(K) > 0, where 8 = (o« — 2)p +d, then K is not AL> removable.

Proof. Lemma 1.2.1 implies that there exists a probability measure p supported on

the K such that |||l < CrP. Since ||u. ||y = Créu(K), we have
el < Nl Nl < Ot = Cpptoee=2),

or

lpeellp < ero=?4

Note that (p—1)f+d = (p—1) (v = 2)p’ + d)+d = (p—1)p' (@ —2) +dp = (a—2+d)p

since (p — 1)p’ = p. Now we apply Theorem 2.4.1 which finishes the proof. O

It follows that if mg(K) > 0 then K is not AP removable.

a,loc

Corollary 2.4.1. Suppose 0 < a < 2,1 < g < o0, and 1 < p < oco. If there exists

v > 3 such that m.(K) > 0 then K is not A> —removable.

a,loc
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Proof. There exists 0 < oy < 2 such that v = (a3 — 2)p’ 4 d. Since § < 7 we have
a < aq which implies that AP < AP?  We apply the previous theorem to finish

aq,loc a,loct

the proof. n
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3 Conditions of Removability

3.1 Duality in Besov Spaces
Proposition 3.1.1. Suppose p € S (Rd). Then for any 0 < a, 1 < p < o0, and

1 < g < oo there ezists C = C(a, @) such that

1o llpga < ClIf

p?q7a

for all f € APA.

Proof. Suppose [ is a distribution from AP9. Then the first part of theorem 1.3.6
implies that f can be presented as f = > spby + >, >  Ssgag, where the ag’s
hez v=01(Q)=2""

are (a,p)-atoms, and the by’s satisfy supp(by) C 3Qox and |D"b(x)| < 1if |n| < K.

The convergence is in ', and

SRS
Q=

(ZISkI”) {2 D Isel < Ol fllp.g.e

kezd v=0 \l(Q)=2""
with C independent of f. Since p € S and K is a fixed positive integer it is clear that

there exists A such that || D" (%{”“) loo <1 when |n| < K. Since 0 < v and 1 < p we

pag
A

paq

and so )

do not worry about vanishing moments for is an atom. We write ¢ f

o
as of = > Ask%”“ + > Y Asg™E. So we can use the second part of theorem
kezs v=01(Q)=2

1.3.6 to conclude that ||¢f||pqa < C|f

p?q7a ‘ D
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Lemma 3.1.1. Suppose f is a tempered distribution. Then f € AP if and only if

a,loc

for any open bounded set ) € R there exists f € AP such that f = fin Q.

Proof. Suppose f € AP and Q is an open, bounded set in R?. Consider a function

1 € C°(RY) such that 1 (z) = 1 when z € Q. Then by Proposition 3.1.1 we can take

f= 1.
To prove the second part, assume that f is a tempered distribution and v is an
arbitrary function from C°(R¢). Consider a bounded open set @ € R? such that

supp(?)) € €. Then there exists fe AP with f = f in Q. So by Proposition 3.1.1
fo = fueAns. O

Lemma 3.1.2. There exists C' > 0 such that for any function h € LP which satisfies

~

the condition supp (h) C A, we have ||g * h[, < C272"||h]|,.
Proof. Let us consider a function ¢q € S such that ¢y € C2° and ¢y(§) = ﬁ when
€ € Ag. We define @, (z) = 272" 4y, (2"z). Then

_2—2n

—1
An _ 2—2n+nd—nd ~ 9—n — —
on(§) SDO( 5) 47r2272n’£‘2 47r2]£|2’

(& €eA,).

So ¢, coincides with ¢ on the annulus A,, (see the remark on page 4). Thus

g * hlly = llen * 2lly < lenllallbll, < C27 ol 2], < C272"| Al

[]

Lemma 3.1.3. Suppose f € AP? where —o0 < a < 00, 1 < p < o0, 1 < g < o0.

Then (S,g) * f € AVL,.
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Proof. W ((S.g) * f) = (S.g) x (¥ x f) € LP, since S,g € L' and ¥ * f € LP.

And

15 ((Srg) * ) llp = [15-(g * (P * )]

< Cllg * (P * f)lp

But supp (®,, * f)* C A™ which by Lemma 3.1.2 implies that

lg * (@n 5 f)llp < C272| Dy 5 £

So

WE

(22D, % ((S,9) x )T < C Y (@10, % f],)" < oc.
n=>0

i
o

]

Proposition 3.1.2. If f € AP9 (1 <p<o0, 1 <qg<oo, a€R)and f has compact

support then g x f € AU, ..

Proof. By Lemma 3.1.1, we need to show that if €2 is a bounded open set then there
exists h € AVY, with h = g f in Q.

It is clear that for any r > 0 there exists C, > 0 such that g(x) = S,g(z) + C,
for |z| < 7. Since ) is bounded and f has compact support, if 7 is large enough then
fxg=f=*(Sg+C,) in Q. But f*C, is constant, so there exists 1y € C° with
fxg= f*S,g+1 in Q. Since by Lemma 3.1.3 fxS,g € AD{, and ¢ € A1, we have

frgeAt,, =
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Theorem 3.1.1. Suppose K is a compact subset of R, 1 <p < oo, 1 <q<oo. K is

not AP -removable if and only if there exists h € AP, such that h # 0, supp(h) C K.

a,loc

p,q
a,loc

-removable. So there exists f € AP? such that f

a,loc

Proof. Suppose K is not A
is harmonic in R?\ K but not harmonic in R%. Let h = Af. Then it is clear that
supp(h) C K, h # 0 and h € AP7,,.

To prove the other half of this theorem, assume that there exists h € AP, such

that supp(h) € K, h # 0. Let f = g* h. Then Af = h, so f is harmonic in R? \ K,

not harmonic in R¢, and by Proposition 3.1.1 we have f € A?? O

a,loct

The next theorem is an unpublished result of D. Ullrich and by courtesy of the

author we are providing the proof.

Theorem 3.1.2. Suppose K is a compact subset of R, a < 0,1 < p < oo and
1 < q < o0. Then the following are equivalent:

(a) If h € AP and supp(h) C K then h = 0;

(b) For any € > 0 there ezists 1. € A’i/’aq, such that 1. = 1 on a neighborhood of K

and [[Qcllp g—a <€

Proof. First we show that (b) implies (a): Suppose h € AP? and supp(h) C K.
Consider any ¢ > 0 and v, € A’i,’of’, such that ¢ = 1 on a neighborhood of K and

|Vellpr ., —a < €. For any ¢ € C°, we have ¢.p = ¢ on a neighborhood of supp(h), so

c
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from Proposition 3.1.1 follows that

[(hy 0)| = [{hs ep)|
< Hth,q,aHwe@Hp’,q’ﬁa
< Cl[hllpgolltelly g, —a

< Cl[hlp.g.a€.

Since € is an arbitrary positive number, this implies that (h,¢) = 0 for all ¢ €
C>(R?), which means h = 0.

To prove the second part of this theorem we assume that (a) is right and (b) is
false, which will lead us to contradiction. Suppose there exists M > 0 such that for
any 1) € A”*7 and 1) = 1 on a neighborhood of K we have 1]l —~a = M. Note that
this implies K # ().

Let X = {¢ € Aii/(’f/ :peS and v is constant in a mneighborhood of K} )
Fix z € K. Define A : X — C by A\(¢) = ¢(x).

It is clear that [A(¢))| < 35||¢||y ¢,—a for all ¥ € X. The Hahn-Banach theorem [4]
implies that A extends to A” ;3:0 with the same norm. By Theorem 1.3.5 there exists
f € AP such that (f, ) = A(¢) for any ¢ € A’i/’a%. Hence (f, ) = ¢(x) (z € K, ¢ €
X).

Now A # 0 implies that f # 0. We need to show that supp(f) € K. This is
equivalent of showing that (f, ) = 0 for all p € C°, supp(p) C R\ K.

But supp(p) € R\ K implies that ¢ = 0 in a neighborhood of K, so ¢ € X and

(f,0) = p(x) =0. 0
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Theorem 3.1.3. Suppose K is a compact subset of RY and o < 2. K is APY

a,loc”

’or
7q
—Q) €

removable if and only if for any € > 0 there exists . € A} = 1 on a neighborhood

Of K? and ”¢E“P'7¢I'72—Q <€

Proof. This follows from theorems 3.1.1 and 3.1.2. O

3.2 [ and Removable Sets

We will prove the following lemma and theorem in case when d = 2. They can
be generalized in higher dimensional Euclidean spaces easily and the proof is very
similar.

We introduce following notations: @Q),, = [—2”*1, 2"*1] X [—2”*1, 2”*1}, forn € Z.

By A°) n € Z, we denote @, \ Qn_1-

Proposition 3.2.1. There exists C > 0 such that for any h = > h, where

n=—oo

Q=

supp(h) C A and ( > (2‘“”th\|p)q) <o (1l <p<oo 1 <qg< o0 we

n=—oo

have

(e ( > <2a”||hnup>q> < oo.

n=—0oo

Proof. Since A, = {&:2n71 < [¢] < 271} it is clear that
A, CA), JUATUAY JUAS .

So hx ®, = (hy—1+ hy + Ayt + hppo) * @,. Because of this

1P Pollp < 1 Pully ([1rn—llp + Vnllp + [[Pnsally + [1rnsallp)

= [1%ollx (1Pn—llp + nllp + Nensally + hnsallp) -
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All of this implies:

[e.9]

||h||;7q,oc = ( Z (2" Py * (hpp1 + P + g1 + hn+2)||p)q)

n=—oo

= ( > @ ol (Ihu-tllp + Ihally + ensall, + IIhn+zllp))q>

n=—oo

< [[ ol ( > @™ IE A+ el + |17+ IIhn+2||Z))>

n=—oo

1
> 7
= 4| Do ( Z T P ||+ 27 B ||+ 29" [Py || + Qq”"‘llhnHIIZ))

n=—oo

3 00 %
< 4Pl D ( > (2na”hn+i”p)q>

t=—1 \n=-—o00

Q|

= 4| @o[l1 (27 + 1+ 27 +277) ( > @”"th!lp)q)

n=—0oo

Thus we take C' = 4||®g||; (2% + 1 + 27 + 272%) and we are done. O

Lemma 3.2.1. Assume Q = [—r,r|x[—=r,7], f(x) = L (2), g(z1,22) = f(x1) f(22).
Then there ezists C' > 0 such that || f % ©,]|, < C’2‘”2§HQDO||p if n > —logs(r) and

1f # @], < Cr2v || ], if n < —loga(r).

Proof. We know that f(€) = % We also know that ||®,]]1 = || Po]l1, [|Pnlle =
2™ Po| s | Pnllp, = QﬁHq)oHp for all n € Z. Let us introduce a function ¢ such that
Po(§) € C® and ¢o(&) = ﬂié when & € Ay. We define ¢,(§) = 27"%(27"¢) when

n € N. Since (7,9,)"(€) = e 27¢d,,(£) we have an equality

f * (I)n = (_Trq)n - T—rq)n) * ©n
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which implies that

1 ¢ @y = | (= — 7, B0) % ol
< Clienlil[®nll,
= C27"|¢oll1]|Pnllp

= 272 ||,

This finishes the first part of the lemma. The second part is easy:
1S Pullp < ([ f1[11Pnll, < Cr207[| o1

]

Theorem 3.2.1. Suppose _z% <a< i, l<p<oo, 1 <q<oo. Then homogeneous
Besov space /O\g’q contains the characteristic function of a d-dimensional cube Q) and

there exists C' > 0 such that

o —a+4d
1ol ga < CUQ)™™

|

where [(Q) is the length of cube Q. If ¢ = co then we may assume —5 < a <

/

hS]
SRl

Proof. Recall that we are considering the case when d = 2 and we are using following

notations: Q = [_T7 T] X [_T7 T]? f(.’I?) = 1[—r,r](‘r)7 g(Il,SL’2> = f(xl)f(x2> If f =
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i fo (fu=f*®,) then g = i gn Where

) = Fue)alwn) + 3 ulen) i) + i) fule).

It is clear that

supp (gn) € (Supp (fa) x |J supp (f%)) U (( |J supp (fi)) X supp (fn)) C A7

1=—00 1=—00

By proposition 3.2.1 it is enough to show that >~ (2" gn|l,)? < C’Z(Q)_aq“?d.

n=—oo

By N we denote the greatest integer which is smaller or equal to — log,(r) (2 <

2 < 2N,
> @ gall) = Y (2"a|!fn(&?1)fn(fcz)+lz (fn(m)fz(xz)+f¢(w1)fn(ﬂf2))\|p>
< > (Z”O‘IZ (QanHpri”p))
N n q 0o n q
=21 ) (2”“ > (anIIprz-Hp)) +20 ) (2”“ > (an”prin))
n=-—oo 1=—00 n=N+1 1=—00
N n q o0 n q
=21 ) (2"“!\fn|!p > Hfz-Hp> +20 ) (2”“an||p > Hfin> :
n=—oo i=—00 n=N+1 1=—00
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Let us estimate the last two terms separately:

n=-—00 1=—00 1=—00

N n q n _ q
> <2mean > Hfin) < (To‘flanp > 25’7“”@0Hp>

M= 11+

< 3 (2@lslc2ir)
n=—o00

N n n\4q

<Crt Y (22l

< Or2agN (0277 )a

_ CT(Q—Oé—%)q

gat
= Cr 9ty

Note that the series are convergent when o + z% >0ora> ;72 (d=2).

Now we estimate the second term:

> <2mufn||p§n2 ||fz~up>q— > (ZMW”H” <§: b Hﬁup»q

n=N+1 1=—00 n=N+1 i=—00 1=N+1
0o N _ n . e
< > (1 (X o+ 3 o))
n=N+1 i=—o00 i=N+1
> =1 n q
<0 Y (2l (rr 27027
n=N+1
o n - n q
< 3 (22w (md 4272
n=N-+1

<C 2V oy (rrd +272v )
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We can see that last series converges when oo — 1 + z% <0Oora< %. [
We have an analogous result for the non-homogeneous Besov spaces:

Theorem 3.2.2. If _z% < a< 110 then for any 1 < p < o0, 1 < ¢ < o0, a non
homogeneous Besov space AP contains a characteristic function of a d-dimensional

cube and there exist C' > 0 (depends on «, p, q) such that

d

I1elpga < € (HQ)F +1Q)™*)

|

If ¢ = 0o then we may assume —<5 < a <

SR

/

3

Proof. This proof is just a simple modification of the previous proof. m

Based on this theorem we are giving a criterion of removabality property of a

compact set for harmonic functions in Besov spaces when the parameter « is between

2— L1 and 2:
P

Theorem 3.2.3. Suppose K is a compact subset of R*, 1 < p < 0o and 2 — 2% <

a < 2. Ifmg(K) =0, where B = (o — 2)p" + d, then K is APP—removable.

Proof. We note that since 2 — z% <a<2then0 <2—-ac< 1% and the previous

! o/
theorem implies that A5 ” contains characteristic functions of d—dimensional cubes.

Let € > 0. Since mg(K) = 0 there exists covering of K by disjoint cubes Q1, Q2, . .., @n
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such that >~ 1(Q;)? < e. Then by theorem 3.2.2 we have:

=1

H]'Uz‘llei P/,q/72*a S H]'U?:lQi ;’,q’,Zfa

p Z 1,
=1
< (Zz@-)ﬁ +> I,
i=1 i=1
= (Zn:“Q")d) Y uQu e
=1

n
i=1

[¢]
p’,q/,Q—Oc

The first term of this sum we can make less then § because when a < 2 then § =
(a —2)p" +d < d and so my(K) < mg(K). Similarly the second term can be made

less than § since mg(K) = 0. By applying theorem 3.1.3 we finish the proof. O]

The previous result characterizes removable singularities in a special range of
parameter «. Next we are giving characterization of singularities in a larger range of

a but the required condition is stronger.

Proposition 3.2.2. There exist A > 0 and C > 0 such that for any finite set of

disjoint dyadic cubes Q = {Q1,Q2, ..., Qn} wherel(Q;) =274 (t; e N, i =1,...,n),

n

we can construct a function f =Y b; with properties:
i=1

() f

(ZZ) Supp<b2) - AQHZ = 17 e n,

Uil @i — L,

(idd) | D"(b:)]|oo < C2ME =1, n for |n| < 2.

Proof. We denote by F,, (m € N) the set of cubes from 2 with side length equal
to 27™. We choose A; € N and let F,, be the family of dyadic cubes of side length

equal to 27" which are within A; cubes of a cube in F,,. This means that @) is in
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F,, if there exist maximum A; cubes of side length 27" such that their union is a
connected subset of R? and this group contains () and at least one cube from F,,,. We
choose a map f : F,, — F,, such that: if Q € ), then f(Q) is a cube in F,, which is
within A; cubes from @ and in case when @) € F,, we make f(Q) = Q. For Q; € Q
we introduce the notation Q; = Uges-1(@)@- It is clear that Q:NQy =0 if Q; and

@y are different cubes from F,,, and we have Uger,, @ = Uy, €

Let us consider p € C such that supp(p) € B(0,1), p(z) > 0 when z € B(0,1)

d
and [p.p(z) de = 1. We define p,,(z) = (%) P (2;;?) and ¥, = Y. 1g * pp, for
QEFm
any m € N. If F}, is empty then we assume that ¢, = 0.
It is clear that v, = 1 on Q; if Q); € F,,. Now we show that if we choose A; big

enough then

1D (Yo )lloe < 27 (In] < 2). (3-3)

Indeed ¥, = h * pyy, where ||h|lo = 1 and D"(¢y,,) = h* D"(p,,,) but D"(p,,)(x) =
om \ 4 [ gm\ 17 g ) ) ) N
(A—1> (A—1> D"p (A—1> . The change of variables implies that || D"(p,,)|| = (A_l) ||D"p||; <
C A, Mominl when In| < 2.
So we choose A; € N such that C’Al_‘nl < 1 when 1 < |n| < 2 and we have
1D () |lse < |2 llso || D7 (pr)||1 < 277 (when n = 0 the inequality is trivial). We

take A = A; + 1.

We will define f by induction: f_ 1 =0, fo =1v0,..., frx1 = fx +Ura1(1— fr). So

L= firn=1=fi—ter1(1=fi) = (L= Prp) (1= fi) = (1= ry1) (L= g) ... (1 —ho).
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Welet 1 — f = (1—1yp)...(1 =) where k" is the biggest natural number such that

there exists a cube in  with side length 27*. We define b; = p,, * 15,(1 = fi1), i =

1,...,n where 27% = [(Q;). It is easy to see that f = > b; and supp(b;) C AQ;, i =
i=0

1,...,n. Since ¢, (r) = 1 when z € Uger,, @ it follows that f|,» o, =1 and

D'(f)l =D =f)l =1 >, [[Dv -y

m+nz+-+np=n j=1

where 71,79, ..., m are multi-indices. So n, € N4 ... n, € N2 It follows from equa-

tion 3.3 and an elementary combinatorial argument that

k
|ID"(1 — fi)] < Z Hgklm\ — 9kln] Z 1< C2"l(k 4+ 1) |n| < 2.

ntetne=n j=1 Nt nE=n

Hence

1D (Bi)lloe = 11 Y DT (L = foum1) (1, * 10)) [l

QeQ;

< OZ HD"’J(l - fti_l)HDn_w(pti * 1Qi)

w<n

<C Z 2(ti*1)|w|tin|2ti|n*w‘

w<n

o0

Based on the previous proposition, we prove
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Theorem 3.2.4. Suppose K is a compact subset of R, 1 <p < oo, 1 <¢q< o0 and
0 < a < 2. If there exists v € R such that v < 3 where § = (a—2)p' +d, (§+% =1)

P

and m.(K) = 0 then K is AY _-removable.

a,loc

Proof. We observe that A is a fixed number as in the previous proposition. Let us
consider arbitrary e > 0. Since m.(K) = 0 there exists a covering of K by dyadic
disjoint cubes Q1,Qo, ..., Q, such that 2%12_7“ < € where 27% = [(Q;),t; € N,i =
1,...,n (Recall that @ is a d-dimensional cube and (@) is its side length). By the
Proposition 3.2.2 there exists f = ibi such that:
(1) flx =1
(17) supp(b;) C AQ;, i =1,...,n,
(id) | D7 (b;)]| s < C2MEt™ 5 =1, . nfor |n| < 2.

) M+2
We define s; = m (1 + \/E) (M is as in definition 1.3.10) and we define

a; by the formula

Then it is easy to see that:
(1) supp(a;) C AQ;
(d g, _ _M—
(i) | Das ()0 < 2= 0H1) (1 9t — o )™M swhen Jn] < 2.

Since max ({d (% — 1) —a} ,—1) = —1 when 0 < a < 2 it follows that a;,7 =
+

P’ _

1,...,nisa(2—a,p’)-molecule and we can use theorem 1.3.6 to estimate || f||, ,, , =
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(D= Siaz‘Hgi’p/,Q,a as follows:

n
11 2o S C D lsil?
i=1
—C Z (tzplz—ti(d-‘r(a—Z)p’))
i=1
n
-cy (tzp/thi(a—w)gfwti)

i=1
n
<C Z 9=t
i=1

< (.

In proving this inequality we are using the fact that without loss of generality we may
assume [(Q;) = 27% i =1,...,n so small that tprZ_t"(ﬁ_V) < 1 since 3 > 7. By using

theorem 3.1.3 we finish the proof. O

3.3 Summary

The following questions need to be investigated: Suppose K C R?, is a compact,
0 <a<2 ,1<p<oo and mg(K) = 0. In this case, is it true that K is
AL c—removable? Or if mg(K) > 0 is it true that K is not A}, .—removable?

In case when o« > 2 + § we know complete answer and when 2 < a < 2 + §
we only know a partial answer. The following questions still remain open: Suppose
mq(K) > 0 (d is the dimension of the Euclidean space where K is located).What can
we say about AP? —removability of K7 How does the exact answer to this question

a,loc

depend on the parameters «, p, and ¢?
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It seems that the Hausdorff measure is not giving exact characterization of K to
answer those questions and we might need more subtle measure-geometric character-

ization of K.
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