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CHAPTER 1

Introduction

The Korteweg-de Vries (KdV) equation is a nonlinear partial differential equa-

tion. This equation remains the focus of active mathematical research mainly for two

important reasons. Firstly, it has a very rich and interesting mathematical theory

behind it; secondly, it models many physical phenomena such as waves on shallow

water surfaces, gas dynamics, hydromagnetic, plasma physics, blood flow in arteries,

and so on.

1.1 Historical background

The KdV equation is named after the two Dutch mathematicians Diederik Jo-

hannes Korteweg and Gustav de Vries. Under the supervision of Korteweg, de Vries

wrote his doctoral dissertation and presented at the university of Amsterdam on De-

cember 1, 1894. This was where they introduced this famous equation for the first

time. It was their effort to give a theoretical treatment of John Scott Russell’s obser-

vation of the solitary wave in 1834 [39]. During these 60 years, further investigations

were undertaken by Airy [1], Boussinesq [4], and Rayleigh [38] to understand the

phenomenon observed by Russell.

The model that Korteweg and de Vries derived for the propagation of waves in

one direction on the free surface of a shallow canal was

∂η

∂t
=

3

2

√
g

l

∂

∂x

(
2

3
αη +

1

2
η2 +

1

3
σ

∂2η

∂x2

)

where l is the normal depth of the canal, η is the surface elevation above the equilib-
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rium level, α is arbitrary constant, g is acceleration due to gravity, ρ the density of

fluid, T is the surface tension [27], and σ = l3 − T l

ρg
. This was the original version of

the KdV equation. Using the transformation

t′ =
1

2

√
g

lσ
t, x′ = − x√

σ
, u = −1

2
η − 1

3
α,

one obtains the standard KdV equation

ut + 6uux + uxxx = 0. (1.1)

The active life of the KdV equation began in 1960 when Gardner and Morikawa

[15] derived it again in an analysis of collisionless hydromagnetic waves. The results

of Fermi, Pasta, and Ulam [14] while exploring the heat transfer in crystal lattices

with nonlinear interaction motivated Zabusky and Kruskal [49] to study the KdV

equation. Similarly, Shen [41], Miura [33], Taniuti and Wei, Su and Gardner ([18]),

and other researchers have shown that KdV equation models diverse wave phenomena

in the theory of solids, liquids, gases, and plasmas.

In the last four decades, many researchers have devoted their time to the con-

struction of exact solutions of the KdV equation. Zabusky and Kruskal were the

first to give a name solitons to describe particle-like solitary waves that can collide

and preserve their identities after the collision [49]. Many methods, including per-

turbation techniques, inverse scattering transform, the Bäcklund transform, and the

Lax method, were devised to study the solitonic behavior of a wide class of nonlinear

equations such as Schrödinger, Boussinesq, Burgers, KdV, and modified KdV(mKdV)

equations. For the KdV equation given in (1.1), we assume the travelling wave solu-

tion of the form u(x, t) = f(x− vt), and finally obtain a soliton solution

u(x, t) =
v

2
sech2 (x− vt− x0)

which represents a single hump of elevation v
2

travelling with velocity v to the right

without changing its shape , where the propagation speed is proportional to the wave

amplitude, with larger waves moving faster.
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Kawahara equation is a fifth order generalized KdV equation named after the

Japanese mathematician Takuji Kawahara. He published a paper “Oscillatory Soli-

tary Waves in Dispersive Media” on 1971 [21] and investigated the steady solutions

of

ft +
3

2
ffx + αfxxx − βfxxxxx = 0 (1.2)

on the basis of numerical calculation and concluded that both oscillatory and solitary

wave solutions are possible to exist. This type of fifth order equation was also ob-

tained in the following two cases. Kakutani and Ono [21] showed that when the angle

φ between the propagation direction of a magneto-acoustic wave in a cold collision-

free plasma and the external magnetic field becomes a critical angle, the third order

derivative term in the KdV equation vanishes and is replaced by the fifth order deriva-

tive term, so that as the propagation nears the critical angle, one may obtain, with

proper re-scalling, an equation with both third order and fifth order derivative terms.

Hasomoto [21] also obtained such an equation for shallow water waves near a critical

value of the surface tension when the effect of surface tension is taken into account.

The complex KdV equation does not have a long history, but this equation has

recently attracted a tremendous amount of attention because of its solutions which

blow up in finite time. This equation is found to be more sophisticated than its real

counterpart. Since the complex KdV is equivalent to a system of two nonlinearly

coupled equations, the conservation laws no longer allow the deduction of global

bounds and does not lead to the global boundedness of the L2-norm of its solutions.

Many researchers also studied complex-valued Burgers and KdV-Burgers equations

to see the effect of dispersion and dissipation on the solutions of complex KdV. We

remark that the study of complex-valued Burgers and KdV-Burgers equations can be

justified both physically and mathematically. Physically, these complex equations do

arise in the modeling of several physical phenomena ([24],[28],[29]). Mathematically,

these equations exhibit some remarkable features and admit solutions with much

3



richer structures than those of their real-valued ones.

1.2 Literature review

There is a large body of literature on the study of smoothing properties of initial

value problems (IVP) and initial-boundary-value problems (IBVP) of the real-valued

KdV equation. Consider the initial value problem





ut + ux + uux + uxxx = 0, x ∈ R orT, t > 0,

u(x, 0) = u0(x), x ∈ R orT,
(1.3)

where T is a periodic domain. The hierarchy of infinite conservation laws provides

global time bounds for its solutions in any Sobolev space Hk with k ≥ 0. In fact,

the recent work of Kenig et al.[23] showed that the equation (1.3) posed on real line

is locally well-posed for any initial datum u0 ∈ Hk(R) with k > −3
4
, and that the

periodic IVP for the real KdV is locally well-posed for u0 ∈ Hk(T) with any k > −1
2
.

Collinder et al. [10] strengthened the local well-posedness for the periodic IVP to

include the case k = −1
2
, and also showed that the global well-posedness follows from

the local well-posedness through successive iterations.

The IBVP of the KdV equation has also received a considerable amount of atten-

tion as compared to the IVP. The KdV equation on the half line fits well with the

laboratory studies, wherein the waves are generated by a wave-maker at the left end

[3]. However, it is difficult to implement numerical methods in unbounded domains.

Therefore, the use of a finite interval with a suitable set of boundary conditions is

an alternative choice, and such two-point boundary-value problems can still be used

to model the laboratory studies of waves generated by a wavemaker at the left end

which propagate down the channel before the waves reach the other end of the chan-

nel. Bona et al. [3] studied the local and global well-posedness of IBVP for the real

4



KdV equation





ut + ux + uux + uxxx = 0, x ∈ (0, 1), t > 0,

u(x, 0) = u0(x),

u(0, t) = h1(t), u(1, t) = h2(t), ux(1, t) = h3(t)

(1.4)

defined in the bounded domain [0, 1], and established that the IBVP is locally well-

posed for any u0 ∈ Hk and (h1, h2, h3) ∈ H
(1+k)

3 × H
(1+k)

3 × H
k
3 with k ≥ 0. They

also solved the global well-posedness of (1.4) for u0 ∈ Hk, k ≥ 0 and more regular

boundary data.

The Kawahara equation, a fifth order KdV equation, has been studied analyti-

cally and numerically by many mathematicians ( see [7],[9],[19],[20],[22],[37],[44]). In

general, it is difficult to compute solutions of the fifth-order KdV equations numer-

ically, due to the fifth-order term. In [40], Shen proposed the dual-Petrov-Galerkin

algorithm for third and higher odd-order differential equations that involves an inno-

vative choice of test and trial functions, which allow free integration by parts without

generating boundary terms. This algorithm is equivalent to spectral-Galerkin approx-

imation in weighted spaces. Numerical experiments involving the usual third-order

KdV equation





αut + βux + γuux + uxxx = 0, x ∈ (−1, 1), t ∈ (0, T ],

u(x, 0) = u0(x), x ∈ (−1, 1),

u(−1, t) = g(t), u(1, t) = ux(1, t) = 0, t ∈ [0, T ]

(1.5)

in [40] indicate that the dual-Petrov-Galerkin algorithm is very accurate and efficient.

In a recent work [16], Goubet and Shen studied the IBVP for the third-order KdV

equation 



ut − βux + uux + uxxx = 0, x ∈ (−1, 1), t > 0,

u(x, 0) = u0(x),

u(−1, t) = u(1, t) = ux(1, t) = 0

(1.6)

5



in a functional framework based on the dual-Petrov-Galerkin method. More precisely,

they established the existence and uniqueness of solutions to this IBVP in weighted

Sobolev spaces.

The dual-Petrov-Galerkin algorithm was recently further developed and imple-

mented for a fifth-order KdV equation




αut + µux + γuux + βuxxx − uxxxxx = 0, x ∈ (−1, 1), t ∈ (0, T ],

u(x, 0) = u0(x), x ∈ (−1, 1),

u(−1, t) = g(t), ux(−1, t) = h(t), u(1, t) = ux(1, t) = uxx(1, t) = 0, t ∈ [0, T ]

(1.7)

in [48] where α ≥ 0, µ, γ, and β are rescaled parameters depending on the physical

parameters and scaling. The authors applied the above-mentioned algorithm and

provided a rigorous error analysis and demonstrated the effectiveness of the algorithm

by computing some challenging solitary and oscillatory-solitary waves.

The study of solutions of the Kawahara and modified Kawahara equations on

the whole real line in Sobolev spaces of negative indices was recently carried out by

Chen, Li, Miao, and Wu [9]. They established the local well-posedness of the IVP for

Kawahara equation




ut + uux + αuxxx + βuxxxxx = 0, x, t ∈ R
u(x, 0) = u0(x)

(1.8)

in Hk(R) with k > −7
4

and the local well-posedness for the modified Kawahara

equation 



ut + u2ux + αuxxx + βuxxxxx = 0, x, t ∈ R
u(x, 0) = u0(x)

(1.9)

in Hk(R) with k ≥ −1
4
, and have improved the existing low regularity well-posedness

results.

As given in the historical background, complex-valued Burgers, KdV-Burgers, and

other complex-valued partial differential equations have recently attracted a good deal

6



of attention. A lot of effort has been devoted to the important issue of whether or not

their solutions can blow up in a finite time. In 1987, B. Birnir studied the solutions of

the complex KdV equation represented by Weierstrass P-function, and proved that

they blow up in finite time as a second order pole. He used the inverse scattering

transform to study these singularities (see [5] and [6]). In [2], J. Bona and F. Weissler

presented some criteria to imply that the solutions of nonlinear, dispersive evolution

equations lose regularity in finite time. The papers of Yuan and Wu ([45],[46],[47])

treated the complex KdV and KdV-Burgers equations as systems of two nonlinearly

coupled equations and clarified how the potential singularities of the real part are

related to those of the imaginary part. In [47], the solution of the form

u(x, t) =
∞∑

k=1

ak(t)e
ikx (1.10)

was studied to the IVP of the complex KdV equation

ut + 2uux + uxxx = 0

defined in the periodic domain T = [0, 2π], where u0 is assumed to have the form

u0(x) =
∞∑

k=1

a0ke
ikx. (1.11)

The authors showed that there is no regular global series solution if the first initial

mode a = a1(0) of the initial datum u0(x) satisfies a ≥ 6. Very recently, Y. Li [30]

obtained simple explicit formulas for finite time blow-up solutions of the complex

KdV equation through Darboux transform. In fact, he constructed a solution

u(x, t) = i +
8 exp(−12(t− 1) + i(8t + 2x))

[exp(−12(t− 1) + i(8t + 2x)) + 1]2
, (1.12)

of the complex KdV equation

ut − 6uux + uxxx = 0

in periodic case. When t = 0, u(x, 0) ∈ C∞ and t = 1, finite-time blow up is developed

with two singularities at x = 3
2
π − 4 and x = 5

2
π − 4.
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The IVP of the complex Burgers equation





ut − 6uux − νuxx = 0, x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R,
(1.13)

can be solved explicitly through the Hopf-Cole transform, and the solution is given

by

u(x, t) = −3

∫∞
−∞

x−y
t

exp
[
− |x−y|2

2νt
− 1

2ν

∫ y

−∞ u0(s) ds
]
dy

∫∞
−∞ exp

[
− |x−y|2

2νt
− 1

2ν

∫ y

−∞ u0(s) ds
]
dy

. (1.14)

The singularities of the solution u in (1.14) correspond to the zeros of v in the Cole-

Hopf transformation u = −2vx

v
. For ν = 1, the equation (1.13) has a global smooth

solution u if u0 ∈ L1(R) and
∫
R |=(u0)| ≤ 2π. But, for δ > 0, there exists a smooth

compactly supported u0 with
∫
R |u0| < 2π + δ such that the solution blows up. The

continuity argument can also be used to show that u develops a singularity whenever

u0 ∈ L1(R) satisfies | ∫R=(u0)| > 2π and
∫
R=(u0) is not of the form 2π + 4kπ, where

k is an integer. More about this may be found in [36].

As one may expect, the behavior of solutions to the complex KdV-Burgers equa-

tions is more sophisticated due to the presence of the nonlinearity, dispersion and

dissipation. In [47], Yuan and Wu showed the finite-time bound for the L2-norm of

its solutions and remarked that either increasing dissipation or decreasing L2-norm

of the initial datum lengthens the time. In the same paper, they bound the Sobolev

norm ‖u(·, t)‖Hk(k ≥ 1) in terms of ‖u(·, t)‖L2 . This result implies that any possible

finite-time singularity must develop in the L2-norm. In another paper (see [45]), the

authors proved that when the dissipation dominates, such as in the case when ν is

comparable to the size of the initial data, the solution is then global in time and de-

cays exponentially for large time. In addition, extensive numerical experiments were

performed to reveal the blowup structures.

There are several examples that show the significant differences between the real-

valued and complex-valued solutions. One important example is the Navier-Stokes

8



equations. It remains open as to whether or not classical solutions of the 3D incom-

pressible Navier-Stokes equations can develop finite-time singularities. However, Li

and Sinai [31] recently showed that the complex solutions of the 3D Navier-Stokes

equations corresponding to large parameter family of initial data blow up in finite

time. Their work motivated the study of Poláčik and Šverák [36] on the complex-

valued solutions of the Burgers equation, as mentioned before.

1.3 Statement of problems and results

This dissertation is aimed at studying two important issues. The first is to study

the solution of the Kawahara equation

ut + uux + βuxxx − uxxxxx = f, (1.15)

in weighted Sobolev spaces, where β is related to the Bond number in the presence

of surface tension and β = 0 corresponds to the critical Bond number 1
3

(see [43]).

Attention will be focused on IBVP of (1.15) in the spatial domain I = (−1, 1)

with the boundary and initial conditions





u(−1, t) = g(t), ux(−1, t) = h(t), u(1, t) = ux(1, t) = uxx(1, t) = 0, t ≥ 0,

u(x, 0) = u0(x), x ∈ I.

(1.16)

Since (1.15) and (1.16) can be reformulated as an equivalent problem with homoge-

neous boundary conditions, it will be assumed that g(t) = h(t) ≡ 0. In fact, through

the transform

u(x, t) = v(x, t) + B(x, t)

with

B(x, t) = −(x− 1)3

4
(2g(t) + h(t))− (x− 1)4

16
(3g(t) + 2h(t)),

(1.15) and (1.16) can be converted into an IBVP with homogeneous boundary con-

9



dition 



vt + Bxv + (v + B)vx + βvxxx − vxxxxx = −Bt −BBx − βBxxx,

v(−1, t) = vx(−1, t) = v(1, t) = vx(1, t) = vxx(1, t) = 0.

In principle, this homogeneous problem can be studied in a similar fashion as (1.15)

and (1.16).

The goal here is to build a theory similar to that of Goubet and Shen, cited

earlier, on the existence and uniqueness of solutions to the IBVP (1.15) and (1.16)

in weighted Sobolev spaces. Their approach [16] will be followed, but the situation

here is more complicated. The dispersive part consists of two terms βuxxx − uxxxxx

and its corresponding weak formulation fails to be coercive for β ≤ − 3
80

(see Section

3.2 for more details). For β > − 3
80

, the IBVP (1.15) and (1.16) is shown to possess

a unique global solution for u0 in weighted Sobolev spaces with increasing regularity

(Theorem 3.5). If, in addition, the L2-norm of u0 is small, then the solution in these

weighted Sobolev spaces decay exponentially in time.

The IBVP (1.15) and (1.16) is also studied numerically to complement the the-

oretical results. In fact, the numerical solutions of a slightly more general problem

than (1.15) and (1.16) will be studied. This problem involves two parameters β1 and

β2, and the existence and uniqueness theory applies to the case when

β1 > − 3

80
β2. (1.17)

The solutions of the general problem will be computed corresponding to β1 and β2

in different ranges and plotted their standard L2-norms and weighted L2-norms. The

graphs show that a solution corresponding to β1 and β2 violating (1.17) may not exist

for all time and thus the IBVP (1.15) and (1.16) with β violating the condition may

not be globally well-posed. Comparisons are also made between the weighted Sobolev

norms and the standard Sobolev norms.

The second aim is to study the solutions of complex-valued Burgers and KdV-

Burgers equations. This work addresses the blow up for complex-valued Burgers

10



equation

ut − 6uux − νuxx = 0 (1.18)

and the global regularity issue on solutions of the complex KdV-Burgers equations

ut − 6uux + αuxxx − νuxx = 0, (1.19)

where ν ≥ 0 and α ≥ 0 are parameters and u = u(x, t) is a complex-valued function.

Attention will be focused on the spatially periodic solutions, namely x ∈ T = [0, 2π],

and we supplement (1.18) and (1.19) with a given initial data

u(x, 0) = u0(x), x ∈ T. (1.20)

The first major result is for the complex Burgers equation (1.18), and it asserts

that for any sufficiently large time T , there exists an explicit smooth initial data u0

such that its corresponding solution blows up at t = T (Theorem 4.3). This result

was partially motivated by a recent paper of Poláčik and Šverák [36], in which the

complex-valued Burgers equation on the whole line was shown to develop finite-time

singularities for compactly supported smooth data. Their proof takes advantage of

the explicit solution formula obtained via the Hopf-Cole transform. The finite-time

singular solutions constructed in this paper assume the form

u(x, t) =
∞∑

k=1

ak(t) eikx (1.21)

and correspond to the initial data u0(x) = a eix. It will be emphasized that solutions

of the form (1.21) are locally well-posed in the usual Sobolev space Hk with a suitable

index k (see Theorem 4.1 for more details). For any T ≥ T0 (a fixed number depending

only on ν), one obtains a lower bound for |ak(T )| through a careful observation of

the pattern that ak(t)s exhibit, and the finite time singularity of (1.21) in L2 then

follows if one takes a as appearing in u0 to be sufficiently large. This result reveals a

fundamental difference between the real-valued solutions of the Burgers equation and

11



their complex counterparts. The diffusion in the case of complex-valued solutions no

longer dissipates the L2-norm, which can blow up in a finite time. However, if one

knows that the L2-norm of a complex-valued solution is bounded, then there would

be no finite-time singularity (Theorem 4.2).

I also explore the conditions under which solutions of (1.18) are global in time. A

simple example of the global solutions of (1.18) corresponds to the initial data

u0(x) = a0e
ix with |a0| < 1, provided ν and α satisfy a suitable condition, say

ν2 + 4α2 ≥ 9 (see Theorem 4.5). For general initial data of the form

u0(x) =
∞∑

k=1

a01 eikx

with |a01| < 1, (1.19) possesses a unique local solution (1.21) with ak(t) given by a

finite sum of terms that can be made explicit through an inductive relation. To show

the convergence of (1.21) for large time, it is necessary to estimate |ak(t)|, and the

approach is to count the total number of terms that it contains. This counting problem

is closely related to the number of nonnegative integer solutions to the equation

j1 + 2j2 + 3j3 + · · ·+ kjk = k

for a fixed integer k > 0. Using a result by Hardy and Ramanujan [17], one may

establish the global regularity of (1.21) under a mild assumption (see Theorem 4.4).

In addition, ‖u(·, t)‖Hk decays exponentially in t for large t for any k ≥ 0.

Inspired by a recent work of Sinai on the Navier-Stokes equations [42], a study is

undertaken for the series solution of (1.19) that can be written as

u(x, t) =
∑

k∈Z\{0}

c(k, t)

|k|γ eikx, (1.22)

where γ > 1 is a real number, and c(k, t) is bounded uniformly in terms of k and t.

If T > 0 and R0 = sup
k∈Z\{0}

|c(k, 0)| satisfy

R0

√
T ≤ C(γ)

√
ν

12



for some suitable constant C(γ), it is shown that u in (1.22) is a classical solution of

(1.19) on [0, T ] (Theorems 4.6, 4.7 and 4.8). This is achieved through three major

steps. The first step establishes the existence of c(k, t) such that

û(k, t) =
c(k, t)

|k|γ

solves the Fourier transform of the complex KdV-Burgers equation. The second step

verifies that u in (1.22) is a weak solution, in the distributional sense, while the third

step proves the bound

|c(k, t)| ≤ C

|k|γ+l

where l > 0 is any fixed integer. A combination of the last two steps especially implies

that u in (1.22) is a classical solution.

1.4 Organization of the dissertation

The organization of this dissertation is as follows. The second chapter is dedicated

to relevant notation and definitions. The main work of this dissertation will be

presented in the third and fourth chapters.

The third chapter is divided into different sections and subsections. Section 3.2

focuses on a weak formulation of the stationary and linearized equation

βuxxx − uxxxxx = f

and establishes the existence and uniqueness of solutions to this formulation with any

f in a weighted L2-space (Theorem 3.1). In particular, the solution operator is shown

to be the generator of a contraction semi-group. Section 3.3 presents the existence

and uniqueness results for the full IBVP (3.1) and (3.2) (Theorems 3.5). Section 3.5

contains the numerical results.

The fourth chapter is devoted to the study of solutions of complex-valued Burgers

and KdV-Burgers equations. It is divided into three primary sections. The second

13



section focuses on the complex Burgers equation, and presents Theorems 4.1, 4.2, and

4.3. The third section details the global regularity results concerning the complex

KdV-Burgers equations for two types of series solutions of the form (1.21) and (1.22).

14



CHAPTER 2

Preliminaries

In this chapter, we briefly discuss some of the preliminaries to get equipped with

the necessary spaces and inequalities that we require for our study in the next two

chapters. The detail of the definitions and inequalities given below can be found in

[12], [13], and [35].

2.1 Notations and definitions of some spaces

Standard notations, and the definitions of some important spaces, will be dis-

cussed in this section.

Definition 2.1 (Norm and Normed Space) Let X be a vector space over R or

C. A norm is a function x 7→ ‖x‖ from X to [0,∞) such that

• ‖x + y‖ ≤ ‖x‖+ ‖y‖

• ‖λx‖ ≤ |λ|‖x‖

• ‖x‖ = 0 ⇔ x = 0,

and the vector space X equipped with a norm ‖ · ‖ is called a normed vector space.

Definition 2.2 (Banach Space and Hilbert Space) A normed vector space that

is complete with respect to its norm is called a Banach space. An inner product space

that is complete with respect to the norm ‖x‖ =
√

x · x is called a Hilbert space.
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Definition 2.3 (Lp Space) The Lp-norm of a function on X, 0 < p < ∞, is defined

by

‖f‖Lp(X) =

(∫

X
|f |pdx

) 1
p

and the Lp space is a space of funtions defined as

Lp(X) = {f : X→ C such that ‖f‖Lp(X) < ∞}.

Assume U ⊂ Rn is open and 0 ≤ γ ≤ 1. A Lipschitz continuous function is a

real-valued function on U satisfying

|u(x)− u(y)| ≤ C|x− y| (x, y ∈ U).

If u satisfies

|u(x)− u(y)| ≤ C|x− y|γ (x, y ∈ U)

for some constant C, then u is said to be Hölder continuous with exponent γ.

Definition 2.4 (Hölder Space) The Hölder space Ck,γ(Ū) is a Banach space that

consists of those functions u that are k-times continuously differentiable, and whose

k-th partial derivatives are bounded and Hölder continuous with exponent γ, i.e.

Ck,γ(Ū) = {u : ‖u‖Ck,γ(Ū) =
∑

|α|≤k

‖Dαu‖C(Ū) +
∑

|α|≤k

[Dαu]C0,γ(Ū) < ∞},

where ‖u‖C(Ū) = sup
x∈U

|u(x)| and [u]C0,γ(Ū) = sup
x6=y

( |u(x)− u(y)|
|x− y|γ

)
.

Definition 2.5 (Sobolev Space) The Sobolev space W k,p(U) consists of all locally

summable functions u : U → R such that, for each α with |α| ≤ k, Dαu exists in the

weak sense and belongs to Lp(U). If u ∈ W k,p, then

‖u‖W k,p(U) =


 ∑

|α|≤k

∫

U

|Dαu|pdx




1
p

(1 ≤ p ≤ ∞).

1. If p = 2,W k,2(U) = Hk(U); therefore, if f ∈ Hk(U) then Dkf ∈ L2(U). When

k = 0, H0(U) is the usual L2 space.

16



2. The closure of C∞
c (U) in W k,p(U) is denoted by W k,p

0 (U). Thus, u ∈ W k,p
0 (U)

if and only if there exist functions um ∈ C∞
c (U) such that um → u in W k,p(U).

We interpret W k,p
0 (U) as consisting of those functions u ∈ W k,p(U) such that

Dαu = 0 on ∂U for all |α| ≤ k − 1.

3. If s ∈ R, the Sobolev space Hs(R) is defined via the Fourier transform in the

standard fashion. The function f is in Hs(R) if

‖f‖Hs(R) = C

∫

R
(1 + k2)s|f̂(k)|2dk < ∞.

4. Let X be a Banach space with norm ‖·‖. The following are the spaces involving

time.

Definition 2.6 The space Lp(0, T ;X) consists of all functions u : [0, T ] → X

with

‖u‖Lp(0,T ;X) :=

(∫ T

0

‖u(t)‖pdt

) 1
p

< ∞ for 1 ≤ p < ∞ and

‖u‖L∞(0,T ;X) := ess sup
0≤t≤T

‖u(t)‖ < ∞.

Definition 2.7 The space C([0, T ];X) comprises all continuous functions

u : [0, T ] → X with

‖u‖C([0,T ];X) := max
0≤t≤T

‖u(t)‖ < ∞.

2.2 Some elementary inequalities

Several inequalities are used in this dissertation. Some of them are as follows.

1. Cauchy’s Inequality ab ≤ a2

2
+

b2

2
. (a, b ∈ R)

2. Cauchy’s Inequality with ε ab ≤ εa2 +
b2

4ε
. (a, b ∈ R+, ε > 0)
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3. Young’s Inequality Let 1 < p, q < ∞,
1

p
+

1

q
= 1, then

ab ≤ ap

p
+

bq

q
. (a, b > 0)

4. Young’s Inequality with ε Let 1 < p, q < ∞,
1

p
+

1

q
= 1, then

ab ≤ εap +
bq

(εp)
q
p q

. (a, b > 0, ε > 0)

5. Hölder’s Inequality Assume 1 < p, q < ∞,
1

p
+

1

q
= 1, then

if u ∈ Lp(U), v ∈ Lq(U),

∫

U

|uv|dx ≤ ‖u‖Lp(U)‖v‖Lq(U).

6. Minkowski’s Inequality Assume 1 ≤ p < ∞, u, v ∈ Lp(U), then

‖u + v‖Lp(U) ≤ ‖u‖Lp(U) + ‖v‖Lp(U).

7. Interpolation Inequality for Lp-norms Assume 1 ≤ s ≤ r ≤ t ≤ ∞ and

1

r
=

θ

s
+

(1− θ)

t
. Suppose u ∈ Ls(U) ∩ Lt(U). Then u ∈ Lr(U), and

‖u‖Lr(U) ≤ ‖u‖θ
Ls(U)‖u‖1−θ

Lt(U).

8. Cauchy-Schwartz Inequality |x · y| ≤ |x||y|. (x, y ∈ Rn)

9. Gagliardo-Nirenberg-Sobolev Inequality Assume 1 ≤ p < n. There

exists a constant C depending only on p and n such that

‖u‖Lp∗(Rn) ≤ C‖Du‖Lp(Rn), (u ∈ C1
c (Rn))

where p∗ =
np

n− p
is the Sobolev conjugate of p.

10. General Sobolev Inequality Let U be a bounded open subset of Rn with a

C1 boundary. Assume u ∈ W k,p(U). If k < n
p

then u ∈ Lq(U) where
1

q
=

1

p
− k

n
.

In addition,

‖u‖Lq(U) ≤ C‖u‖W k,p(U).
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11. Gronwall’s Inequality(differential form) Suppose f(t) is a non-negative,

absolutely continuous function on [0, T ] whose derivative is bounded according

to

df

dt
≤ g(t)f(t) + h(t)

for some non-negative functions g(t) and h(t). Then f(t) is bounded pointwise

in time according to

f(t) ≤ exp

(∫ t

0

g(r)dr

)(
f(0) +

∫ t

0

h(s)ds

)

for all 0 ≤ t ≤ T .

12. Gronwall’s Inequality(integral form) Suppose f(t) is a non-negative,

summable function on [0, T ] which satisfies the integral inequality

f(t) ≤ C + K

∫ t

0

f(s)ds

for all t in [0, T ] where C and K are positive constants. Then

f(t) ≤ C exp(Kt).

At last, we state a theorem called the Fixed Point Theorem (or Contraction

Mapping Principle). This theorem is useful in showing the existence and uniqueness

of solutions of a given differential equation.

Definition 2.8 (Contraction Mapping) Let X be a Banach space. If G : X→ X

satisfies

‖G(u)−G(v)‖ ≤ c‖u− v‖

for all u and v ∈ X with 0 < c < 1, then G is called a contraction mapping.

Theorem 2.1 (Contraction Mapping Principle) Let X be a Banach space and

G : X → X a contraction mapping. Then there exists a unique u ∈ X such that

G(u) = u.
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CHAPTER 3

The Kawahara equation in weighted Sobolev spaces

3.1 Overview

Fifth-order Korteweg-de Vries type equations

ut − uxxxxx = F (x, t, u, ux, uxx, uxxx)

arise naturally in modeling many wave phenomena. In particular, the Kawahara

equation

ut + uux + βuxxx − uxxxxx = f (3.1)

has been derived to model magneto-acoustic waves in plasmas [21] and shallow water

waves with surface tension [19]. In this equation, β is either negative, zero, or positive,

and is related to the Bond number in the presence of surface tension. If β > 0, a

solitary wave of depression or elevation appears. For β < 0, solutions of (3.1) exhibit

highly oscillatory behaviors, and β = 0 corresponds to the critical Bond number 1
3

(see [43]).

For application and computational purposes, it is better to study the initial and

boundary-value problems rather than pure initial-value problems. So, the attention

will be focused on the initial- and boundary-value problem (IBVP) of (3.1) in the

spatial domain I = (−1, 1) with the boundary and initial conditions given by





u(−1, t) = g(t), ux(−1, t) = h(t), u(1, t) = ux(1, t) = uxx(1, t) = 0, t ≥ 0,

u(x, 0) = u0(x), x ∈ I.

(3.2)
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For application purpose, one can consider an example of waves generated by a

wavemaker naturally set on a semi-infinite interval, and (3.1) and (3.2) serve as a good

approximate model before the waves reach the right boundary. For computational

purpose, one must reduce the problem in an infinite domain to a finite domain. As

explained in the section 1.3, (3.1) and (3.2) can be reformulated as an equivalent

problem with homogeneous boundary conditions. Henceforth, it will be assumed

that g(t) = h(t) ≡ 0. First, the weak formulation of the stationary linear equation

will be explained, and then shown the existence and uniqueness of solutions of this

weak formulation in suitable weighted spaces.

3.2 Weak formulation of the stationary linear equation

In this section, a weak formulation of the boundary-value problem for the sta-

tionary equation




βuxxx − uxxxxx = f, x ∈ (−1, 1),

u(−1) = u(1) = ux(−1) = ux(1) = uxx(1) = 0
(3.3)

is presented, and a theory on the existence and uniqueness of solutions to this for-

mulation is established. First, some notations are introduced, and some Hardy-type

inequalities are discussed.

3.2.1 Notations

The following notations will be used for some weighted Sobolev spaces. For the

non-negative weight ω, define

I = (−1, 1),

H(I) = L2
ω =

{
u ∈ L1

loc(I) :

∫

I

u2(x) ω(x) dx < ∞
}

,

V (I) =
{
u ∈ H2

0 (I) : uxx ∈ L2
ω′

}
,

W (I) =

{
u ∈ V (I) : uxxx ∈ L2

ω2

ω′

}
, (3.4)
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where Hk(I) is the usual L2 based Sobolev space and Hk
0 (I) denotes the completion

of C∞
0 (I) under Hk-norm. In addition, denote the inner product in H by (·, ·)H .

For the purpose of eliminating boundary terms, we choose ω(x) =
1 + x

1− x
.

Correspondingly, ω′(x) =
2

(1− x)2
, ω′′(x) =

4

(1− x)3
, ω′′′(x) =

12

(1− x)4
, and

ω2(x)

ω′(x)
=

(1 + x)2

2
.

3.2.2 Hardy-type inequalities

In this section, some density results and Hardy-type inequalities in weighted

Sobolev spaces will be discussed. The following lemma explains these relations in

detail.

Lemma 3.1 The space V , endowed with the norm ‖uxx‖L2
ω′

, and W endowed with

the norm ‖uxxx‖L2
ω2

ω′
are Hilbert spaces. The embedding relations

C∞
0 ↪→ W ↪→ V ↪→ H

are dense and continuous, and the following Hardy type inequalities hold:

∫

I

u2

(1− x)6
dx ≤ 4

25

∫

I

u2
x

(1− x)4
dx,

∫

I

u2
x

(1− x)4
dx ≤ 4

9

∫

I

u2
xx

(1− x)2
dx ∀u ∈ V,

(3.5)

r2

∫

I

u2
xx

(1− x)2
dx−(2r+3qr−q2)

∫

I

u2
x

(1− x)4
dx+(1−5q+20r)

∫

I

u2

(1− x)6
dx ≥ 0 (3.6)

for any real number r and q, and

∫

I

u2
xx

(1− x)2
dx ≤

∫

I

u2
xxx(1 + x)2dx ∀u ∈ W. (3.7)

The general form in (3.6) is very useful and can be tailored for special needs. For

example, by letting (r, q) = (1
2
, 3

2
) and (r, q) = (1

2
, 1), one has

∫

I

u2
x

(1− x)4
dx ≤ 1

4

∫

I

u2
xx

(1− x)2
dx +

7

2

∫

I

u2

(1− x)6
dx,

∫

I

u2
x

(1− x)4
dx ≤ 1

6

∫

I

u2
xx

(1− x)2
dx + 4

∫

I

u2

(1− x)6
dx,
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respectively. The proof of this lemma follows the ideas of Goubet and Shen [16] and

Shen [40].

Proof of Lemma 3.1.

First of all, ‖uxx‖L2
w′

and ‖uxxx‖L2
w2

w′
are clearly norms in V and W , respectively.

To show that C∞
0 is dense in V , it suffices to show C∞

0 (I)⊥ = {0}. To this end, let

u ∈ C∞
0 (I)⊥, namely

∫

I

uxxφxxω
′(x)dx = 0 for all φ ∈ C∞

0 .

Since ω′(x) =
2

(1− x)2
, one obtains by integration by parts the identity

∂xx

(
uxx(1− x)−2

)
= 0,

which implies

uxx = a(1− x)3 + b(1− x)2.

Therefore, for some constants c and d,

u(x) =
1

20
a(1− x)5 +

b

12
(1− x)4 + c(1− x) + d.

The boundary conditions u(±1) = ux(±1) = uxx(1) = 0 imply that a = b = c = d =

0, which is to say that u = 0. Similar arguments show that C∞
0 is dense in H and in

W .

Now the inequalities (3.5), (3.6) and (3.7) will be proved. Since C∞
0 are dense in

W , V and H, it suffices to prove them for u ∈ C∞
0 . To prove (3.5), for any number a,

0 ≤
∫

I

(
u

1− x
+ aux

)2
1

(1− x)4
dx

=

∫

I

u2

(1− x)6
dx + 2a

∫

I

uux

(1− x)5
dx + a2

∫

I

(ux)
2

(1− x)4
dx.

Integration by parts in the second term lead to

2a

∫

I

uux

(1− x)5
dx = −5a

∫

I

u2

(1− x)6
dx.
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Taking a = 2
5

yields the first inequality in (3.5). Similarly, one can show

∫

I

u2
x

(1− x)4
dx ≤ 4

9

∫

I

u2
xx

(1− x)2
dx for all u ∈ V .

To prove (3.6), it suffices to consider

0 ≤
∫

I

(
u

(1− x)2
+

qux

(1− x)
+ ruxx

)2
1

(1− x)2
dx

= (1− 5q + 20r)

∫

I

u2

(1− x)6
dx− (2r + 3qr − q2)

∫

I

u2
x

(1− x)4
dx + r2

∫

I

u2
xx

(1− x)2
dx.

In particular, when q = 3
2

and r = 1
2
, one has

0 ≤ 7

2

∫

I

u2

(1− x)6
dx−

∫

I

u2
x

(1− x)4
dx +

1

4

∫

I

u2
xx

(1− x)2
dx.

Inequality (3.7) is obtained by considering

0 ≤
∫

I

(
uxxx(1 + x) +

uxx

1− x

)2

dx

=

∫

I

u2
xxx(1 + x)2dx + 2

∫

I

1 + x

1− x
uxxuxxxdx +

∫

I

u2
xx

(1− x)2
dx

and integrating by parts in the second term.

To see that V ↪→ H, one applies (3.5) to obtain

‖u‖2
H =

∫

I

u2(x)ω(x)dx ≤ C

∫

I

u2

(1− x)6
dx ≤ C

∫

I

u2
xx

(1− x)2
dx = C‖u‖2

V .

This concludes the proof of Lemma 3.1.

3.2.3 Weak formulation

Consider the boundary-value problem for the linear fifth-order equation




βuxxx − uxxxxx = f, x ∈ (−1, 1),

u(−1) = u(1) = ux(−1) = ux(1) = uxx(1) = 0.
(3.8)

For u ∈ V , v ∈ W , consider a bilinear form defined in V ×W by

a(u, v) =

∫

I

uxx(−β(vω)x + (vω)xxx) dx, (3.9)
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then the weak formulation of (3.8) using dual-Petrov-Galerkin method is:

a(u, v) = (f, v)H , for f ∈ H. (3.10)

Now, the existence and uniqueness of solutions to the weak formulation (3.10) will

be established.

3.2.4 Existence and uniqueness of weak formulation

The goal of this subsection is to solve the equation (3.10) for f ∈ H, and define

an unbounded operator A by setting Au = f . Before stating the main theorem that

guarantees the existence and uniqueness of such solutions, the following two lemmas

will be given. The proof of the theorem relies on these lemmas.

Lemma 3.2 (The general version of Lax-Milgram Theorem) Let W ⊂ V be

two Hilbert spaces with W being dense and continuously embedded in V . Let a(u, v)

be a bilinear form on V ×W satisfying

a(u, v) ≤ M‖u‖V ‖v‖W ∀u ∈ V, v ∈ W (3.11)

a(v, v) ≥ m‖v‖2
V ∀v ∈ W, (3.12)

where M > m > 0 are two constants. Then, for any f ∈ V ′, there exists u ∈ V such

that

a(u, v) = (f, v) ∀v ∈ W.

If u is also known to be in W , then u is unique.

This general version of Lax-Milgram theorem is due to J.L. Lions [32].

Lemma 3.3 If ‖uxxxxx(1 + x)3‖L2(I) < ∞, then

∫

I

u2
xxxx(1 + x)4dx ≤ 1

4

∫

I

u2
xxxxx(1 + x)6dx. (3.13)
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Proof. For u satisfying ‖uxxxxx(1 + x)3‖L2(I) < ∞, we consider

0 ≤
∫

I

(
uxxxx(1 + x)2 + uxxxxx(1 + x)3

)2
dx

=

∫

I

u2
xxxx(1 + x)4dx +

∫

I

u2
xxxxx(1 + x)6dx +

∫

I

2uxxxxuxxxxx(1 + x)5dx

= −4

∫

I

u2
xxxx(1 + x)4dx +

∫

I

u2
xxxxx(1 + x)6dx, (3.14)

which implies (3.13).

The next work is to state and prove the main theorem of this section [25].

Theorem 3.1 For any β > − 3
80

and for any f ∈ H, there exists a unique solution

u ∈ W such that

a(u, v) = (f, v)H ∀v ∈ W. (3.15)

As a consequence, one can define an operator A: D(A) → H by

Au = f, where D(A) = {u ∈ W, Au ∈ H}.

Proof. It suffices to show that a(u, v) as defined in (3.9) verifies the conditions of

Lemma 3.2. This can be checked directly. For u ∈ V and v ∈ W , one can write

a(u, v) =

∫

I

uxx(−βvxω − βvω′ + vxxxω + 3vxxω
′ + 3vxω

′′ + vω′′′)dx

with ω′′ =
4

(1− x)3
and ω′′′ =

12

(1− x)4
. The terms on the right can be bounded as

follows.

−β

∫

I

uxxvxωdx ≤ 16

27

√
2 |β|

(∫

I

2u2
xx

(1− x)2
dx

)1/2 (∫

I

v2
x

(1− x)4
dx

)1/2

≤ 32

81
|β|‖u‖V ‖v‖V ,

−β

∫

I

uxxvω′ dx ≤ 4
√

2 |β|
(∫

I

2u2
xx

(1− x)2
dx

)1/2 (∫

I

v2

(1− x)6
dx

)1/2

≤ 16

15
|β|‖u‖V ‖v‖V ,

(3.16)
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∫

I

uxxvxxxωdx ≤
(∫

I

u2
xxω

′dx

)1/2 (∫

I

v2
xxx

ω2

ω′
dx

)1/2

= ‖u‖V ‖v‖W ,
∫

I

uxxvxxω
′dx ≤ ‖u‖V ‖v‖V ,

∫

I

uxxvxω
′′dx ≤

(∫

I

2u2
xx

(1− x)2
dx

)1/2 (∫

I

8v2
x

(1− x)4
dx

)1/2

≤ 4

3
‖u‖V ‖v‖V ,

∫

I

uxxvw′′′dx ≤
(∫

I

2u2
xx

(1− x)2
dx

)1/2 (∫

I

72v2

(1− x)6
dx

)1/2

≤ 8

5
‖u‖V ‖v‖V .

Here, Hardy inequalities of Lemma 3.1 have been applied. According to (3.7),

‖v‖V ≤ 2‖v‖W ∀v ∈ W

and one has thus verified (3.11) with M = 1184
405
|β|+ 91

5
.

To prove (3.12), let v ∈ W and integrate by parts to obtain

a(v, v) =

∫

I

vxx(−βvxω − βvω′ + vxxxω + 3vxxω
′ + 3vxω

′′ + vω′′′)dx

=
3

2
β

∫

I

v2
xω

′dx− 1

2
β

∫

I

v2w′′′dx

+
5

2

∫

I

v2
xxω

′dx− 5

2

∫

I

v2
xω

′′′ dx +
1

2

∫

I

v2ω(5)dx. (3.17)

For β ≥ 0, one applies (3.5) to obtain

3

2
β

∫

I

v2
xω

′dx− 1

2
β

∫

I

v2w′′′dx ≥ 3β

∫

I

v2
x

(1− x)2
dx− 8

3
β

∫

I

v2
x

(1− x)2
dx

=
1

3
β

∫

I

v2
x

(1− x)2
dx.

Since ω′′′ =
12

(1− x)4
and ω(5) =

240

(1− x)6
, one has, for β ≥ 0,

a(v, v) ≥ 1

3
β

∫

I

v2
x

(1− x)2
dx + 5

∫

I

v2
xx

(1− x)2
dx− 30

∫

I

v2
x

(1− x)4
dx + 120

∫

I

v2

(1− x)6
dx.

After ignoring the first term and applying (3.6) with r = 0.4 and q = 1, one obtains

a(v, v) ≥ 0.2

∫

I

v2
xx

(1− x)2
dx = 0.1‖v‖2

V .
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In the case when β < 0, apply (3.5) to obtain

3

2
β

∫

I

v2
xω

′dx− 1

2
β

∫

I

v2w′′′dx ≥ 3β

∫

I

v2
x

(1− x)2
dx

≥ 12β

∫

I

v2
x

(1− x)4
dx ≥ 16

3
β

∫

I

v2
xx

(1− x)2
dx.

Thus, for β < 0,

a(v, v) ≥
(

5 +
16

3
β

) ∫

I

v2
xx

(1− x)2
dx− 30

∫

I

v2
x

(1− x)4
dx + 120

∫

I

v2

(1− x)6
dx.

Applying (3.6) with r and q satisfying

1− 5q + 20r = 4(2r + 3qr − q2) > 0,

we have

a(v, v) ≥
(

5 +
16

3
β − 30r2

2r + 3qr − q2

) ∫

I

v2
xx

(1− x)2
dx.

In order for a to be coercive, β has to satisfy

β >
15

16

(
6r2

2r + 3qr − q2
− 1

)
=

15(16q2 − 18q + 5)

32(5q − 2)
.

The optimal range β > − 3
80

is reached when r = 1
10

and q = 11
20

, and

a(v, v) ≥
(

1

5
+

16

3
β

) ∫

I

v2
xx

(1− x)2
dx = γ‖v‖2

V

where

γ =
1

10
+

8

3
β. (3.18)

Lemma 3.2 then implies the existence of u ∈ V satisfying (3.15).

Now, the uniqueness of u is established. If there are u1 ∈ V and u2 ∈ V satisfying

(3.15), then

a(u1 − u2, v) = 0 for all v ∈ W. (3.19)

According to Lemma 3.1, C∞
0 is densely embededd in V , there is a sequence vn ∈ C∞

0

such that

vn → u1 − u2 in V .
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Since vn ∈ C∞
0 ⊂ W , one obtains by (3.19) that,

γ‖vn‖2
V ≤ a(vn, vn) = a(u1 − u2, vn) + a(vn − (u1 − u2), vn)

≤ M‖vn − (u1 − u2)‖V ‖vn‖W . (3.20)

Furthermore, for any v ∈ W ,

a(vn, v) = a(vn − (u1 − u2), v) ≤ M‖vn − (u1 − u2)‖V ‖v‖W → 0 as n →∞.

In particular, for any v ∈ C∞
0 ,

a(vn, v) =

∫

I

(vn)xx

(
− β(vω)x + (vω)xxx

)
dx

=

∫

I

(
β(vn)xxx − (vn)xxxxx

)
vω dx → 0 as n →∞. (3.21)

Letting

β(vn)xxx − (vn)xxxxx = fn (3.22)

and choosing v = fn in (3.21), one has

‖fn‖2
H =

∫

I

f 2
n ω dx → 0 as n →∞. (3.23)

The identities in (3.22) and (3.23) allow us to show that

‖vn‖2
W ≤ C‖vn‖V (‖vn‖V + ‖fn‖H). (3.24)

Combining (3.20) and(3.24) yields

γ‖vn‖2
V ≤ C‖vn − (u1 − u2)‖V ‖vn‖

1
2
V (‖vn‖V + ‖fn‖H)

1
2 .

Letting n →∞, one has vn → 0 in V and consequently

‖u1 − u2‖V ≤ ‖vn‖V + ‖vn − (u1 − u2)‖V → 0 as n →∞.

That is, u1 = u2 in V .

To obtain (3.24), It is used the fact that if u is smooth and satisfies

βuxxx − uxxxxx = f
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with the homogeneous boundary condition, then

‖u‖2
W ≤ C‖u‖V (‖u‖V + ‖f‖H). (3.25)

Lets prove this fact. Noting that
ω2

ω′
=

(1 + x)2

2
and integrating by parts, one has

‖u‖2
W =

∫

I

u2
xxx

ω2

ω′
dx = −1

2

∫

I

uxxuxxxx(1 + x)2 dx +
1

2

∫

I

u2
xx dx. (3.26)

Obviously,

1

2

∫

I

u2
xx dx ≤

∫

I

2u2
xx

(1− x)2
dx = ‖u‖2

V . (3.27)

By Hölder’s inequality, the first term is bounded by

1

2

∫

I

uxxuxxxx(1 + x)2 dx ≤ ‖u‖V

(
1

8

∫

I

u2
xxxx(1 + x)4(1− x)2 dx

)1/2

.

Applying the inequality in Lemma 3.3, one finds

1

8

∫

I

u2
xxxx(1 + x)4(1− x)2 dx ≤ 1

2

∫

I

u2
xxxx(1 + x)4 dx ≤ 1

8

∫

I

u2
xxxxx(1 + x)6 dx.

Since uxxxxx = βuxxx − f and

1

2

∫

I

(βuxxx − f)2(1 + x)6dx ≤ β2

∫

I

u2
xxx(1 + x)6dx +

∫

I

f 2(1 + x)6dx

≤ 16β2

∫

I

u2
xxx(1 + x)2dx + 16

∫

I

f 2 1 + x

1− x
dx,

we find

1

2

∫

I

uxxuxxxx(1 + x)2 dx ≤ 4
√

2|β|‖u||V ‖u‖W + 2‖u‖V ‖f‖H

≤ 1

2
‖u‖2

W + C‖u‖2
V + 2‖u‖V ‖f‖H (3.28)

Putting together (3.26), (3.27) and (3.28), (3.25) is concluded.

This uniqueness of u allows us to show that u ∈ W . Since C∞
0 is dense in H,

Lets assume without loss of generality that f ∈ C∞
0 . Because of the uniqueness, the

corresponding solution u is smooth and satisfies

βuxxx − uxxxxx = f

with the homogeneous boundary condition. Therefore, u ∈ W by (3.25). This com-

pletes the proof of Theorem 3.1.
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3.3 The full initial-and boundary-value problem

This section focuses on the full initial- and boundary-value problem

ut + uux + βuxxx − uxxxxx = 0, x ∈ (−1, 1), t > 0,

u(±1, t) = ux(±1, t) = uxx(1, t) = 0, t > 0, (3.29)

u(x, 0) = u0(x), x ∈ (−1, 1).

Its solutions are studied at two regularity levels: mild solutions and strong solutions.

For this purpose, one first examines the operator A defined in Theorem 3.1. One

shows that −A is an infinitesimal generator of a contraction semi-group e−At by

using Hille-Yoshida theorem. First, lets discuss semigroup theory and state Hille-

Yosida theorem.

3.3.1 Semi-group theory and Hille-Yosida theorem

This section gives a brief introduction of semigroup theory and Hille-Yosida the-

orem [13]. Semigroup theory is useful to solve the above full IBVP for the Kawahara

equation.

Let X be a Banach space with the norm ‖ · ‖.

Definition 3.1 A one-parameter family {T (t)}0≤t≤∞ of bounded linear operators

from X into X is a semigroup on X if

1. T (0) = I, where I is the identity operator on X.

2. T (t + s) = T (t)T (s) for every t, s ≥ 0 (the semigroup property).

3. The mapping from [0,∞) into X is continuous.

Remark 3.1 {T (t)}0≤t≤∞ is a contraction semigroup if, in addition,

‖T (t)‖ ≤ 1 (t ≥ 0).
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Assume {T (t)}0≤t≤∞ is a contraction semigroup on X. The domain of the linear

operator A is denoted by D(A) and is defined by

D(A) = {x ∈ X : lim
t→0

T (t)x− x

t
exits}.

The linear operator A : D(A) → X is called the infinitesimal generator of the con-

traction semigroup if

Ax = lim
t→0

T (t)x− x

t
, x ∈ D(A).

Remark 3.2 The domain D(A) is dense in X and A is a closed operator.

Now, lets define the resolvent set and a resolvent operator.

Definition 3.2 Let A be a closed linear operator on X, with domain D(A). The

resolvent set ρ(A) of A is the set of all λ for which (λI − A) is invertible. The

resolvent operator Rλ : X→ X is defined by

Rλx = (λI − A)−1x for x ∈ D(A), λ ∈ ρ(A).

It is clear, by the Closed Graph Theorem [13], that Rλ is a bounded linear operator.

Now, one may ask: which operators generate contraction semigroup? The follow-

ing theorem gives the answer to this question.

Theorem 3.2 (Hille-Yosida) Let A be a closed, densely-defined linear operator on

X. Then A is the generator of a contraction semigroup {T (t)}0≤t≤∞ if, and only if

(0,∞) ⊂ ρ(A) and ‖Rλ‖ ≤ 1

λ
for λ > 0.

The contribution of this section to the operator defined in the last section can be

summerized in the following theorem. This result is required to write the full IBVP

in the integral form.

Theorem 3.3 Let H, A and D(A) be defined as in the previous section. Then −A

is an infinitesimal generator of a contraction semigroup e−At.
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Proof. We apply the Hille-Yosida Theorem (see [34]). It suffices to show that A is

closed, D(A) is dense in H and ‖(λI + A)−1f‖H ≤ 1
λ
‖f‖H for any λ > 0. A is closed

can be established by showing that A−1 is one-to-one. D(A) is dense in H since

C∞
0 ⊂ D(A). For f ∈ H, let u = (λ + A)−1f . Then (λ + A)u = f and

(f, u)H = ((λ + A)u, u)H = λ‖u‖2
H + (Au, u)H .

Since (Au, u)H = a(u, u) ≥ 0, we obtain that ‖u‖H ≤ 1
λ
‖f‖H . This concludes the

proof.

3.3.2 Mild solutions

Before giving the definition of mild solutions, lets define the bilinear form on

V × V as

B(u, v) = (uv)x, (u, v) ∈ V × V.

Let T > 0.

Definition 3.3 A mild solution of the IBVP (3.29) is a function u ∈ C([0, T ]; H) ∩
L2(0, T ; V ) satisfying

du

dt
+ Au = −B(u, u) in V ′ (3.30)

u(0) = u0. (3.31)

Since −A is the generator of the semigroup e−At , (3.30) and (3.31) can be written

in the integral form

u(t) = e−Atu0 −
∫ t

0

e−A(t−s)B(u, u)(s) ds.

3.3.3 Bilinear estimates

In the proof of theorem given in the next subsection, the following bilinear esti-

mate will be used.
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Lemma 3.4 For any (u, v) ∈ V × V ,

‖B(u, v)‖V ′ ≤ C‖u‖H‖v‖1/2
H ‖v‖1/2

V ,

where C is a constant independent of u and v.

Proof. Let ψ ∈ V . one obtains by integrating by parts

(B(u, v), ψ)H =

∫

I

(uv)xψω dx = −
∫

I

uvψxω dx−
∫

I

uvψω′ dx. (3.32)

By the first inequality in Lemma 3.1,

∫

I

u(x)v(x)ψx(x)ω(x)dx =

∫

I

u(x)ω1/2ψx(x)ω′(x)v(x)
ω1/2

ω′
dx

≤ ‖u‖H‖ψx(1− x)−2‖L2 sup
x∈I

∣∣∣∣v(x)
ω1/2

ω′

∣∣∣∣

≤ C‖u‖H‖ψ‖V sup
x∈I

∣∣∣∣v(x)
ω1/2

ω′

∣∣∣∣ .

To complete the estimate, one writes

∣∣∣∣v(x)
ω1/2

ω′

∣∣∣∣
2

=
1

4
v2(x)(1 + x)(1− x)3

=
1

2

∫ x

−1

v(y)vy(y)(1 + y)(1− y)3 dy − 1

4

∫ x

−1

v2(y)(1− y)2(2 + 4y) dy.

It is clear that these integrals are bounded by C(‖v‖H‖v‖V + ‖v‖2
H). Therefore,

∫

I

u(x)v(x)ψx(x)ω(x)dx ≤ C‖u‖H‖ψ‖V ‖v‖1/2
H ‖v‖1/2

V .

The second term in (3.32) can be bounded similarly. In fact,

∫

I

uvψω′ dx ≤ C‖u‖H‖v‖H sup
x∈I

|ψ(x)ω′(x)ω−1(x)|.

To show that sup
x∈I

|ψ(x)ω′(x)ω−1(x)| ≤ C, note that

ω′(x)ω−1(x) = 2(1− x)−1(1 + x)−1

and show that

ψ2(x)

(1− x)4
∈ W 1,1(I) and

ψ2(x)

(1 + x)4
∈ W 1,1(I).
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Then the embedding W 1,1(I) ⊂ L∞(Ī) leads to the conclusion. By the first inequality

in Lemma 3.1, ∫

I

ψ2(x)

(1− x)4
dx ≤ 4

∫

I

ψ2(x)

(1− x)6
dx ≤ 32

225
‖ψ‖2

V .

In addition,

∂x

(
ψ2(x)

(1− x)4

)
=

2ψ(x)ψx(x)

(1− x)4
+

4ψ2(x)

(1− x)5

and ∫

I

2ψ(x)ψx(x)

(1− x)4
dx ≤ C‖ψ(1− x)−3‖L2‖ψx(1− x)−2‖L2 ≤ C‖ψ‖2

V ,

∫

I

4ψ2(x)

(1− x)5
dx ≤ C‖ψ(1− x)−3‖2

L2 ≤ C‖ψ‖2
V .

Therefore,
ψ2(x)

(1− x)4
∈ W 1,1(I) and similarly

ψ2(x)

(1 + x)4
∈ W 1,1(I). This concludes the

proof of Lemma 3.4.

3.3.4 Existence and uniqueness of mild solution

In this subsection, it will be shown that IBVP (3.29) has a unique local (in time)

mild solution for any initial data u0 ∈ H [25].

Theorem 3.4 Let β > − 3
80

and let u0 ∈ H. Then there exists T = T (‖u0‖H)

such that the initial- and boundary-value problem (3.29) has a unique mild solution

u satisfying

u ∈ C([0, T ]; H) ∩ L2(0, T ; V ).

In addition, u obeys the bound

‖u(t)‖2
H + γ

∫ t

0

‖u(τ)‖2
V dτ ≤ ‖u0‖2

H +

∫ t

0

‖u(τ)‖3
H‖u(τ)‖V dτ, (3.33)

where γ is as defined in (3.18).

Proof. To prove this theorem, one applies the contraction mapping principle to the

integral equation

u(t) = e−Atu0 −
∫ t

0

e−A(t−s)B(u, u)(s) ds. (3.34)
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To this end, let X = C([0, T ]; H) ∩ L2(0, T ; V ) and define, for u ∈ X,

‖u‖X = sup
t∈[0,T ]

‖u(t)‖H + ‖u‖L2(0,T ;V ).

Let R = ‖u0‖H and B2R = {u ∈ X, ‖u‖X ≤ 2R}.One shows that the right side of

(3.34), denoted by G(u), defines a contraction mapping from B2R to B2R.

Let u ∈ B2R. G(u) satisfies

d

dt
G(u) + AG(u) = −B(u, u)

and one obtains after taking the inner product of this equation with G(u) in H,

d

dt
‖G(u)‖2

H + 2a(G(u), G(u)) = −2(B(u, u), G(u))H .

According to the proof of Theorem 3.1 and the bilinear estimate in Lemma 3.4,

2a(G(u), G(u)) ≥ 2γ‖G(u)‖2
V ,

2|(B(u, u), G(u))H | ≤ 2‖B(u, u)‖V ′‖G(u)‖V ≤ γ‖G(u)‖2
V + C‖u‖3

H‖u‖V .

Therefore,

‖G(u)‖2
H + γ

∫ t

0

‖u(τ)‖2
V dτ ≤ ‖u0‖2

H + C

∫ t

0

‖u(τ)‖3
H‖u(τ)‖V dτ.

If we choose T > 0 such that R2 + 16C
√

TR4 < 2 min(1, γ)R2, then

‖G(u)‖X < 2R.

To show G is a contraction, first note that

G(u)−G(v) = −
∫ t

0

e−A(t−s)(B(u− v, u) + B(v, u− v))ds.

A similar process as in the estimate of ‖G(u)‖H yields

‖G(u)−G(v)‖2
H + γ

∫ t

0

‖G(u)−G(v)‖2
V ds

≤
∫ t

0

(‖u− v‖2
H‖u‖H‖u‖V + ‖v‖2

H‖u− v‖H‖u− v‖V )ds

≤ C
√

T‖u− v‖2
X(‖u‖2

X + ‖v‖2
X).
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If T is further restricted to 4C
√

TR2 < min(1, γ), then

‖G(u)−G(v)‖X ≤ ν‖u− v‖X ,

where ν2 = (4C
√

TR2)/ min(1, γ) < 1. Applying the contraction mapping principle

completes the proof of this theorem.

3.3.5 Strong solution

Now, the solutions of the IBVP (3.29) are studied in a stronger sense and establish

the global existence and uniqueness of such solutions. To this end, define

H1(I) = {u ∈ H(I), ux ∈ H(I)} and V1(I) = {u ∈ V (I), ux ∈ V (I)} .

Lets prove the following estimates that will be used to show the global regularity

of solutions of the full IBVP.

Lemma 3.5 The constants C in the bounds are absolute constants.

1) For any u ∈ V , ∣∣∣∣
∫

I

u2uxωdx

∣∣∣∣ ≤ C‖u‖L2‖u‖H‖u‖V . (3.35)

2) For any u ∈ H and v ∈ V ,

∣∣∣∣
∫

I

(uvx)xvω dx

∣∣∣∣ ≤ C‖u‖H‖v||2V . (3.36)

Proof. Integrating by parts and applying Hölder’s inequality, one has

∫

I

u2uxωdx ≤ ||u‖L2‖u‖H sup
x∈I

|uxω
1/2|. (3.37)

To bound sup
x∈I

|uxω
1/2|, apply (3.5) in Lemma 3.1 to obtain

u2
x(x)ω(x) = 2

∫ x

−1

uxuxx
1 + x

1− x
dx +

∫ x

−1

2u2
x

(1− x)2
dx

≤ 16‖ux(1− x)−2‖L2‖uxx(1− x)−1‖L2 + 8‖ux(1− x)−2‖L2

≤ C‖u‖2
V .
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Inserting this bound in (3.37) yields (3.35). The bound in (3.36) can be established

similarly. In fact,

∫

I

(uvx)xvω dx = −
∫

I

uv2
xω dx−

∫

I

uv vxw
′ dx

≤ C‖u‖H‖v‖V sup
x∈I

|vx|+ C‖u‖H‖v‖V sup
x∈I

|vω−1/2|. (3.38)

The bound for sup
x∈I

|vω−1/2| can be obtained as in Lemma 3.4,

sup
x∈I

|vω−1/2| ≤ C‖v‖V .

Also, the bound for sup
x∈I

|vx| can be estimated as follows.

v2
x(x) = 2

∫ x

−1

vxvxx dx ≤ 16

∫ x

−1

|vx|
(1− x)2

|vxx|
(1− x)

dx

≤ 16‖vx(1− x)−2‖L2 ‖vxx(1− x)−1‖L2

≤ 16

3
‖v‖2

V .

Inserting these bounds in (3.38) leads to (3.36).

Theorem 3.5 Assume β > − 3
80

and u0 ∈ H1(I) ∩ L2(I). Let T > 0 be arbitrarily

fixed. Then the IBVP (3.29) has a unique solution u satisfying

u ∈ C([0, T ]; H1 ∩ L2) ∩ L2(0, T ; V1).

Furthermore, if the L2-norm of u0 is small in the sense that

‖u0‖L2(I) ≤ Cγ (3.39)

for some suitable constant C, then ‖u(t)‖H and ‖ux(t)‖H decay exponentially in time

[25].

Proof. Since u0 ∈ H, Theorem 3.4 asserts the existence of a local solution u satisfying

u ∈ C([0, T ]; H) ∩ L2(0, T ; V ). (3.40)
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Thanks to u0 ∈ L2(I), u obeys the global a priori bound

‖u(t)‖L2(I) ≤ ‖u0‖L2 for all t > 0. (3.41)

This can be established by first noticing that smooth solutions of (3.30) satisfy

‖u(t)‖2
L2 +

∫ t

0

u2
xx(0, τ)dτ = ‖u0‖2

L2

and then going through a limiting process. We now apply (3.41) to show that, for

t ≤ T ,

‖u(t)‖H ≤ C(T )‖u0‖H , (3.42)

where C(T ) is a constant depending only on T . Taking the inner product of (3.30)

with u in H and applying Lemma 3.5, one obtains

d

dt
‖u‖2

H + 2γ‖u‖2
V ≤ C‖u‖L2‖u‖H‖u‖V . (3.43)

Inserting the inequality

C‖u‖L2‖u‖H‖u‖V ≤ γ‖u‖2
V +

1

4
C2γ−1‖u‖2

L2‖u‖2
H

in (3.43) and applying Gronwall’s inequality, one obtains (3.42). If ‖u0‖2
L satisfies

(3.39), (3.41) and (3.42) imply

d

dt
‖u‖2

H + (2γ − C‖u0‖L2) ‖u‖2
V ≤ 0,

where ‖u‖H ≤ ‖u‖V has been used. Consequently, ‖u(t)‖H decays exponentially in

time.

Lets further show that, for some constant C depending only on T ,

‖ux(t)‖H ≤ C(T )‖u0x‖H . (3.44)

To prove (3.44), start with the equation

dv

dt
+ Av = −(uv)x
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that v = ux satisfies. Taking then the inner product with v in H and applying Lemma

3.5, one obtains

d

dt
‖v‖2

H + 2γ‖v‖2
V ≤ C‖u‖H‖v‖2

V .

The desired inequality then follows from Gronwall’s inequality. This concludes the

proof of Theorem 3.5.

3.4 More general problem

Finally I want to remark that Theorem 3.4 and Theorem 3.5 can be easily ex-

tended to a slightly more general problem than (3.29). In fact, the following corollaries

can be established by modifying the proofs of Theorem 3.4 and Theorem 3.5.

Corollary 3.1 Let L > 0 and J = (−L,L). Let β2 > 0 and consider

ut + uux + β1uxxx − β2uxxxxx = 0, x ∈ J, t > 0,

u(±L, t) = ux(±L, t) = uxx(L, t) = 0, t > 0, (3.45)

u(x, 0) = u0(x), x ∈ J.

Assume u0 ∈ H(J) and

L2β1 > − 3

80
β2. (3.46)

Then there exists T = T (‖u0‖H(J)) such that the IBVP (3.45) has a unique mild

solution u satisfying

u ∈ C([0, T ]; H(J)) ∩ L2(0, T ; V (J)).

In addition, u obeys the bound

‖u(t)‖2
H + µ

∫ t

0

‖u(τ)‖2
V dτ ≤ ‖u0‖2

H +

∫ t

0

‖u(τ)‖3
H‖u(τ)‖V dτ,

where µ = 5
14

β2 + 8
3
L2 min(0, β1).
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Corollary 3.2 Consider the IBVP (3.45). Assume β1 and β2 satisfying (3.46) and

u0 ∈ H1(J) ∩ L2(J). Let T > 0 be arbitrarily fixed. Then the IBVP (3.45) has a

unique solution u satisfying

u ∈ C([0, T ]; H1(J) ∩ L2(J)) ∩ L2(0, T ; V1(J)).

Furthermore, if the L2-norm of u0 is small in the sense that

‖u0‖L2(J) ≤ Cγ

for some suitable constant C, then ‖u(t)‖H and ‖ux(t)‖H decay exponentially in time.

3.5 Numerical results

This section studies numerically the behavior of solutions of (3.45) with L = 1 and

for β1 and β2 in different ranges. The numerical scheme is the dual Petrov-Galerkin

algorithm that has previously been developed in [40] and [48]. The results presented

here clearly indicate that solutions of (3.45) with β1 and β2 violating (3.46) may not

exist for all time.

First, lets compute the solution of the Kawahara equation

ut + uux +
1

M2
uxxx − 1

M4
uxxxxx = 0, x ∈ (−1, 1), t ∈ [0, 100] (3.47)

with zero boundary data and with the initial datum

u(x, 0) = uex(x, 0), (3.48)

where

uex(x, t) =
105

169
sech4

[
M

2
√

13

(
x− 36t

169

)]
(3.49)

is an exact soliton solution of (3.47) before it hits the right boundary.

In the table 3.1 below, listed are the L2−errors at different times with two different

time steps with M = 200 and number of modes, N = 1000 in the dual-Petrov-Galerkin
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Time L2− error with ∆t = 1.0E − 4 L2−error with ∆t = 2.0E − 4 Rate

0.5 3.44E-7 1.374E-6 3.99

1.0 5.926E-7 2.358E-6 3.98

2.0 1.104E-6 4.389E-6 3.98

4.0 2.147E-6 8.494E-6 3.96

Table 3.1: L2-errors for solitary wave solutions in the Kawahara equation

scheme. Table 3.1 clearly indicates that the Crank-Nicholson-leap-frog scheme is of

second-order in time.

In Fig. 3.1, the computed and exact solutions for the above mentioned Kawahara

equation are plotted. The computed and exact solutions are virtually indistinguish-

able.

In (3.47), β1 = 1/M2 and β2 = 1/M4 and they trivially satisfy the condition

(3.46). Corollary 3.2 assesses that the IBVP given by (3.47) and (3.48) has a global

solution. Fig 3.2 shows the plots of the standard norms ‖u(·, t)‖L2 and the weighted

norms ‖u(·, t)‖L2
ω

as functions of t by taking M = 200, N = 1000, and time step

∆t = 0.001.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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t=0 t=4

Figure 3.1: solitary wave solutions in the Kawahara equation.

The solution of (3.47) and (3.48) is the solitary wave given by (3.49) and its
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standard L2-norm remains a constant before it hits the right boundary. Its L2-

norm starts decaying after it reaches the boundary. The weighted L2-norm decays

exponentially after the time when the wave hits the right boundary.
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0.45

Figure 3.2: Left: ‖u(·, t)‖L2 vs. t, Right: ‖u(·, t)‖L2
ω

vs. t

Second, we examine the solution of the Kawahara equation

ut + uux + β1 uxxx − β2 uxxxxx = 0, x ∈ (−1, 1), t ∈ [0, 10],

u(x, 0) = uex(x, 0)
(3.50)

where β1 = −0.01 and β2 = 1/M4, and the boundary conditions are set to be homo-

geneous. It is clear that β1 and β2 violate (3.46) when

M ≥
(

15

4

)1/4

≈ 1.3916,

and the existence and uniqueness theory presented in the previous section does not

cover this case. To see how the solution behaves, lets choose M = 200 and plot both

the L2-norm ‖u(·, t)‖L2 and the weighted L2-norm ‖u(·, t)‖L2
ω
. The graphs in Fig. 3.3

clearly show that both norms quickly grow in time after an initial decay. This is an

indication that the IBVP (3.45) may not be globally well-posed when the condition

(3.46) is not met.
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vs. t
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CHAPTER 4

Complex-valued Burgers and KdV-Burgers equations

4.1 Overview

The model problem for this chapter is the IVP of the complex-valued KdV-

Burgers equations 



ut − 6uux + αuxxx − νuxx = 0,

u(x, 0) = u0(x),
(4.1)

where ν ≥ 0 and α ≥ 0 are parameters and u = u(x, t) is a complex-valued function.

Attention will be focused on the spatially periodic solutions, namely x ∈ T = [0, 2π].

This equation reduces to the complex Burgers and complex KdV equations under

the following situation.

1. If α = 0 in (4.1), the equation reduces to the IVP of the complex Burgers

equation 



ut − 6uux − νuxx = 0, x ∈ T, t > 0

u(x, 0) = u0(x), x ∈ T.
(4.2)

2. If ν = 0, the equation (4.1) becomes the complex KdV equation





ut − 6uux + αuxxx = 0, x ∈ T, t > 0

u(x, 0) = u0(x), x ∈ T.
(4.3)

The next section of this chapter is devoted to the blowup for the complex Burgers

equation and the other two sections describe the regularity issue of complex KdV-

Burgers equation under certain conditions, and the Lax pairs, respectively.
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4.2 Blow up for the complex Burgers equation

This section presents three major results. The first one is a local existence and

uniqueness result on solutions of the form

u(x, t) =
∞∑

k=1

ak(t) eikx (4.4)

to the complex-valued KdV-Burgers type equation

ut − 6uux + ν(−∆)γu + α uxxx = 0, (4.5)

which reduces to the complex Burgers equation when γ = 1 and α = 0. The fractal

Laplacian (−∆)γ is defined through Fourier transform,

̂(−∆)γu(ξ) = |ξ|2γ û(ξ).

The second result asserts that if the L2-norm of a solution of (4.5) is bounded on [0, T ],

then all higher derivatives are bounded and no singularity is possible on [0, T ]. The

third result is a blowup result for the complex Burgers equation (4.2) in a periodic

domain T= [0, 2π]. It states that for any sufficiently large T > 0, there exists an initial

data u0 such that its corresponding solution u blows up at t = T . This solution can

be represented by (4.4) and the blowup is in the L2 sense. But before the analytical

treatment, lets discuss some computation results for the blow up.

4.2.1 Numerical solutions

In this subsection, we present some results from our numerical experiments per-

formed on the complex Burgers equation. We employed the dual-Petrov-Galerkin

algorithm developed by Jie Shen to find the solutions of the equation

ut + βuux − νuxx = 0,

where β = 2. The initial data are of the form

u0(x) = a1 exp (2πix) + a2 exp (4πix) + a3 exp (6πix)
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having three modes a1, a2, and a3. Appropriate modifications have been made in

the algorithm to suit the complex equation. Fixing the values of the modes at a1 =

2, a2 = 4, and a3 = 6 and taking ν = 0.3, the solutions are computed for different

time steps. The following graphs show the solution u(x, t) vs. x in different times.

The solid curve represents the real part of u and the dotted curve represents the

imaginary part of u.
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Figure 4.1: Left: u(x, t) vs. x ; Right: u(x, t) vs. x
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Figure 4.2: u(x, t) vs. x

In figure 4.1, and 4.2 we plot the real and imaginary parts of u at times t =

0.001, 0.0015, and 0.002 by taking the mesh number n = 256, and time step ∆t =

47



10−6. The plots clearly show that both real and imaginary parts of the solution

u(x, t) quickly lose their shapes and their peaks become unbounded. Both spatial

and temporal scales are refined again to n = 512, and ∆t = 10−7 and solutions at

different times t = 0.001, 0.002, and 0.0025 are plotted (Figures 4.3 and 4.4). Similar

results are observed and one may suspect a possible singularity in u. These results

motivated me to study the blow up solutions of complex Burgers equation rigorously.
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Figure 4.3: Left: u(x, t) vs. x; Right: u(x, t) vs. x
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4.2.2 Local well-posedness

For any s ∈ R, the homogeneous Sobolev space H̊s(T) and the inhomogeneous

Sobolev space Hs(T) are defined in the standard fashion. In particular, a function of

the form

u(x, t) =
∞∑

k=1

ak eikx

is in H̊s(T) if

‖u‖H̊s(T) ≡
∞∑

k=1

k2s |ak|2 < ∞,

and in Hs(T) if

‖u‖Hs(T) ≡
∞∑

k=1

(1 + k2)s |ak|2 < ∞.

Clearly, L2(T) can be identified with H0(T).

This subsection establishes the following major result.

Theorem 4.1 Consider (4.5) with γ > 1
2
. Let s > 1

2
. Assume u0 ∈ Hs(T) has the

form

u0(x) =
∞∑

k=1

a0k eikx. (4.6)

Then there exists T = T (‖u0‖Hs) such that (4.5) with the initial data u0 has a unique

solution u ∈ C([0, T ); Hs) ∩ L2([0, T ); H̊s+γ) that assumes the form

u(x, t) =
∞∑

k=1

ak(t) eikx.

Proof. The existence of such a solution follows from the Galerkin approximation. Let

N ≥ 1 and denote by PN the projection on the subspace {eix, e2ix, · · · , eiNx}. Let

uN(x, t) =
N∑

k=1

aN
k (t) eikx

where aN
k (t) satisfies

d

dt
aN

k (t) = 3ik
∑

k1+k2=k

aN
k1

(t) aN
k2

(t) + iα k3 aN
k (t)− νk2γ aN

k (t),

aN
k (0) = aN

0k ≡ a0k. (4.7)
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Here 1 ≤ k1 ≤ N and 1 ≤ k2 ≤ N . From the theory of ordinary differential equations,

one knows that (4.7) has a unique local solution aN
k (t) on [0, T ]. Lets derive some a

priori bounds for uN(x, t). Clearly, uN(x, t) solves

∂tu
N = 6PN(uNuN

x ) + αuN
xxx − ν(−∆)γuN , uN(x, 0) = PN u0.

Lets now show that

d

dt
‖uN‖2

Hs + ν‖uN‖2
Hs+γ ≤ C(ν, s)‖uN‖

6γ−2
2γ−1

Hs . (4.8)

It follows from the equation

d

dt
aN

k (t) + νk2γaN
k (t)− iαk3 aN

k (t) = 3ik
∑

k1+k2=k

aN
k1

(t) aN
k2

(t)

that, after omitting the upper index N for notational convenience,

d

dt

N∑

k=1

k2s |ak(t)|2 = −2ν
N∑

k=1

k2(s+γ) |ak(t)|2 − 6
N∑

k=1

k2s+1 I
(

āk

∑

k1+k2=k

ak1 ak2

)
,

where I denotes the imaginary part. To bound the nonlinear term on the right,

denoted by J , first, notice that the summation over k1 + k2 = k is less than twice the

summation over k1 + k2 = k with k1 ≤ k2 and 2k2 ≥ k. Thus,

J ≤ 6
N∑

k=1

k2s+1 |ak|
∑

k1+k2=k

|ak1| |ak2|

≤ 12
N∑

k=1

ks+ 1
2 |ak|

∑

k/2≤k2≤k

(2k2)
s+ 1

2 |ak1| |ak2|.

Applying Hölder’s inequality and Young’s inequality for series,

J ≤ 12

[
N∑

k=1

k2s+1|ak|2
] 1

2




N∑

k=1


 ∑

k/2≤k2≤k

(2k2)
s+ 1

2 |ak1| |ak2|



2


1
2

≤ 12

[
N∑

k=1

k2s+1|ak|2
] 1

2
[

N∑

k2=1

k2s+1
2 |ak2|2

] 1
2 N∑

k1=1

|ak1|.

≤ 12
N∑

k=1

k2s+1|ak|2
[

N∑

k1=1

|k1|2s|ak1|
] 1

2
[

N∑

k1=1

k−2s
1

] 1
2

≤ C(s)‖uN‖2

H̊s+1
2
‖uN‖Hs . (4.9)
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Thus, one obtains

d

dt
‖uN‖2

Hs + 2ν‖uN‖2
H̊s+γ ≤ C(s)‖uN‖2

H̊s+1
2
‖uN‖Hs . (4.10)

By Hölder’s inequality

‖uN‖
H̊s+1

2
≤ ‖uN‖

1
2γ

H̊s+γ
‖uN‖1− 1

2γ

Hs ,

one has

J ≤ C(s)‖uN‖
1
γ

H̊s+γ
‖uN‖3− 1

γ

Hs ≤ ν‖uN‖2
H̊s+γ + C(ν, s) ‖uN‖

6γ−2
2γ−1

Hs . (4.11)

(4.10) and (4.11) yield (4.8). With these bounds at our disposal, the existence of a

solution u of the form (4.4) is then obtained as a limit of uN as N →∞.

Lets now turn to the uniqueness. Assume (4.5) has two solutions u1 and u2

satisfying

u1, u2 ∈ C([0, T ); Hs) ∩ L2([0, T ); H̊s+γ).

Then their difference w = u1 − u2 satisfies

wt + ν(−∆)γw + αwxxx = 6wu1x + 6u2wx.

Applying the same procedure as in the derivation of (4.10), one finds that, for s > 1
2
,

d

dt
‖w‖2

Hs + 2ν‖w‖2
H̊s+γ ≤ C(s) ‖w‖2

Hs(‖u1‖H̊1 + ‖u2‖H̊1).

The fact that u1, u2 ∈ L2([0, T ); H̊s+γ) with s+γ > 1 and an application of Gronwall’s

inequality yields the uniqueness. This completes the proof of Theorem 4.1.

4.2.3 Boundedness of Hk-norm

In the case when γ ≥ 1, one can actually show that no finite-time singularity

is possible if we know that the L2-norm is bounded a priori. In fact, the following

theorem states that the L2-norm controls all higher-order derivatives.
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Theorem 4.2 Let T > 0 and let u be a weak solution of (4.5) with γ ≥ 1 on the time

interval [0, T ]. If we know a priori that u ∈ L∞([0, T ]; L2) ∩ L2([0, T ]; H̊γ), namely

M0 ≡ sup
t∈[0,T ]

‖u(·, t)‖2
L2 + ν

∫ T

0

‖Λγu(·, t)‖2
L2 dt < ∞, (4.12)

then, for any integer k > 0,

Mk ≡ sup
t∈[0,T ]

‖u(k)(·, t)‖2
L2 + ν

∫ T

0

‖Λk+γu(·, t)‖2
L2 dt < ∞.

Proof. Lets start with the case k = 1. It is easy to verify that

d

dt
‖ux(·, t)‖2

L2 + 2κ‖Λγux‖2
L2 = I1 + I2, (4.13)

where

I1 = 2

∫
|ux|2R(ux) dx,

I2 = 2

∫
R(u ux uxx) dx.

Here R denotes the real part. By the Gagliardo-Nirenberg type equalities,

|I1| ≤ 2‖ux‖2
L2‖ux‖L∞

≤ C‖u‖γ1

L2 ‖ux‖2
L2 ‖Λ1+γu‖1−γ1

L2 ,

|I2| ≤ C‖u‖L∞ ‖ux‖L2 ‖uxx‖L2

≤ C‖u‖
1
2

L2 ‖ux‖
3
2

L2 ‖uxx‖L2

≤ C‖u‖
1
2
+γ2

L2 ‖ux‖
3
2

L2 ‖Λ1+γu‖1−γ2

L2

where

γ1 =
2γ − 1

2γ + 2
and γ2 =

γ − 1

γ + 1
.

By Young’s inequality,

|I1| ≤ ν

2
‖Λ1+γu‖2

L2 + Cν
− 1−γ1

1+γ1 ‖u‖
2γ1

1+γ1

L2 ‖ux‖
4

1+γ1

L2 ,

|I2| ≤ ν

2
‖Λ1+γu‖2

L2 + Cν
− 1−γ2

1+γ2 ‖u‖
1+2γ2
1+γ2

L2 ‖ux‖
3

1+γ2

L2 .
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Inserting these inequalities in (4.13) and integrating with respect to t yields

sup
t∈[0,T ]

‖ux(·, t)‖2
L2 + ν

∫ T

0

‖Λ1+γu‖2
L2 dt

≤ C(ν)M
γ1

1+γ1
0

∫ T

0

‖ux‖
4

1+γ1

L2 dt + C(ν) M
1+2γ2
2+2γ2
0

∫ T

0

‖ux‖
3

1+γ2

L2 dt,

where M0 is specified in (4.12). By (4.12) and the Gagliardo-Nirenberg type inequality

‖ux‖L2 ≤ C‖u‖1− 1
γ

L2 ‖Λγu‖
1
γ

L2 ,

one obtains ∫ T

0

‖ux‖2γ
L2 dt ≤ CMγ

0 .

Therefore,

sup
t∈[0,T ]

‖ux(·, t)‖2
L2 + ν

∫ T

0

‖Λ1+γu‖2
L2 dt

≤ C(ν)M
4γ2+3γ−1

4γ+1

0 sup
t∈[0,T ]

‖ux(·, t)‖
−8γ2+6γ+8

4γ+1

L2

+ C(ν)M
4γ2+3γ−1

4γ

0 sup
t∈[0,T ]

‖ux(·, t)‖
−4γ2+3γ+3

2γ

L2 (4.14)

When γ > 3
4
, 4γ2 + γ − 3 > 0 and consequently

−8γ2 + 6γ + 8

4γ + 1
< 2 and

−4γ2 + 3γ + 3

2γ
< 2.

(4.14) then implies that

sup
t∈[0,T ]

‖ux(·, t)‖2
L2 + ν

∫ T

0

‖Λ1+γu‖2
L2 dt ≤ M1,

where M1 is a constant depending on γ, ν and M0 alone. L2-bounds for higher-order

derivatives can be obtained through iteration. This completes the proof of Theorem

4.2.

4.2.4 Finite-time blow up

The following theorem details the finite-time blowup solution for the complex

Burgers equation.
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Theorem 4.3 For every sufficiently large T > 0, there exists an initial data u0 of

the form

u0(x) = a eix (4.15)

such that the corresponding solution u of (4.2) blows up at t = T in the L2-norm,

namely

‖u(·, T )‖L2(T) = ∞. (4.16)

For u0 given by (4.15), the local existence and uniqueness result of the subsection

4.2.2 asserts that the corresponding solution u can be written as

u(x, t) =
∞∑

k=1

ak(t) eikx

before it blows up. The idea is to choose large a such that

‖u(·, T )‖2
L2 =

∞∑

k=1

|ak(T )|2 = ∞.

Lets attempt to find an explicit representation for ak(t). It is easy to verify the

following iterative formula

a1(t) = a e−νt, ak(t) = 3ik e−νk2 t

∫ t

0

eνk2 τ
∑

k1+k2=k

ak1(τ) ak2(τ) dτ, k = 2, 3, · · · .

(4.17)

To see the pattern in ak(t), lets calculate the first few of them explicitly:

a1(t) = a e−νt, (4.18)

a2(t) = −ia2 ν−1
[−3e−2νt + 3e−4νt

]
, (4.19)

a3(t) = −a3 ν−2

[
9e−3νt − 27

2
e−5νt +

9

2
e−9νt

]
, (4.20)

a4(t) = ia4 ν−3

[
−27e−4νt + 54e−6νt − 27

2
e−8νt − 18e−10νt +

9

2
e−16νt

]
, (4.21)

a5(t) = a5 ν−4

[
81e−5νt − 405

2
e−7νt +

405

4
e−9νt +

135

2
e−11νt − 135

4
e−13νt

−135

8
e−17νt +

27

8
e−25νt

]
,
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a6(t) = −ia6 ν−5

[
−243e−6νt + 729e−8νt − 2187

4
e−10νt − 729

4
e−12νt

+243e−14νt +
81

2
e−18νt − 243

8
e−20νt − 243

20
e−26νt +

81

40
e−36νt

]
.

The following lemma summarizes the pattern exhibited by ak(t)’s.

Lemma 4.1 For any t > 0,

a1(t) = a b1(t), a2(t) = ia2 b2(t), a3(t) = −a3 b3(t), a4(t) = −ia4 b4(t) (4.22)

and more generally, for k = 4n + j with n = 0, 1, 2, · · · and j = 1, 2, 3, 4,

ak(t) = a4n+j(t) = ij−1 a4n+j b4n+j(t), (4.23)

where b4n+j(t) > 0 for any t > 0.

Remark 4.1 A special consequence of this lemma is that all terms in the summation

in (4.17) have the same sign and thus

|ak(t)| = 3keνk2t

∫ t

0

eνk2τ
∑

k1+k2=k

|ak1(τ)| |ak2(τ)| dτ. (4.24)

Proof of Lemma 4.1. The identity (4.23) can be shown through induction. For n = 0,

(4.23) is just (4.22). By (4.17), a1(t) = a e−νt and

a2(t) = 6i a2e−4νt

∫ t

0

e4ντ b2
1(τ) dτ = ia2b2(t),

where b2(t) = 6e−4νt
∫ t

0
e4ντ b2

1(τ) dτ > 0. Similarly, a3(t) = −a3 b3(t) and a4(t) =

−ia4 b4(t) for some b3(t) > 0 and b4(t) > 0.

Lets now consider the general case. Without loss of generality, lets prove (4.23)

with k = 4n + 1. Assume (4.23) is true for all k < 4n + 1. By (4.17),

ak(t) = 3ik e−νk2 t

∫ t

0

eνk2 τ
∑

k1+k2=k

ak1(τ) ak2(τ) dτ.

Noticing that ak1(τ) ak2(τ) with k1 + k2 = 4n + 1 assumes two forms

a4n1(τ) a4n2+1(τ) and a4n1+2(τ) a4n2−1(τ)
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where n1 ≥ 0, n2 ≥ 0 and n1 + n2 = n, one concludes by the inductive assump-

tions that ak1(τ) ak2(τ) must be of the form −i akbk1,k2(τ) for some positive function

bk1,k2(τ) > 0. Therefore,

ak(t) = a4n+1(t) = ak bk(t)

with

bk(t) = 3k e−νk2 t

∫ t

0

eνk2 τ
∑

k1+k2=k

bk1,k2(τ) dτ > 0 for any t > 0.

This completes the proof of Lemma 4.1.

Proof of Theorem 4.3. Without loss of generality, set ν = 1. Assume

T ≥ T0 ≡
∞∑

k=2

1

k2
ln

3k − 3

2k − 3
(4.25)

and choose a such that

A ≡ a e−T > 1

One proves by induction that

|ak(T )| ≥ Ak for k = 1, 2, 3, · · · (4.26)

which, in particular, yields (4.16). Obviously,

|a1(T )| = a e−T = A ≥ 1.

To prove (4.26) for k ≥ 2, recall (4.24), namely

|ak(t)| = 3ke−k2t

∫ t

0

ek2τ
∑

k1+k2=k

|ak1(τ)| |ak2(τ)| dτ.

Therefore, for t ≥ t2 ≡ 1
4

ln 3,

|a2(t)| = 6e−4t

∫ t

0

e4τa2
1(τ) dτ =

3

2
A2(1− e−4t) ≥ A2.

For k = 3, if t ≥ t3 ≡ t2 + 1
9
ln 2,

|a3(t)| = 9e−9t

∫ t

0

e9τ2|a1(τ)| |a2(τ)| dτ

≥ 9e−9t

∫ t

t2

e9τ2|a1(τ) a2(τ)| dτ

≥ 2A3 (1− e−9(t−t2)) ≥ A3.
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More generally, for any t ≥ tk = tk−1 + 1
k2 ln 3k−3

2k−3
,

|ak(t)| = 3ke−k2t

∫ t

0

ek2τ (|a1(τ)| |ak−1(τ)|+ |a2(τ)| |ak−2(τ)|

+ · · ·+ |ak−2(τ)||a2(τ)|+ |ak−1(τ)| |a1(τ)|) dτ

≥ 3ke−k2t

∫ t

tk−1

ek2τ (|a1(τ)| |ak−1(τ)|+ |a2(τ)| |ak−2(τ)|

+ · · ·+ |ak−2(τ)||a2(τ)|+ |ak−1(τ)| |a1(τ)|) dτ

≥ 3k(k − 1)

k2
(1− e−ν k2(t−tk−1))Ak ≥ Ak.

If T ≥ T0 as defined in (4.25), then tk < T for any integer k ≥ 1, and thus

|ak(T )| ≥ Ak.

This completes the proof of Theorem 4.3.

Lets state and prove a few specific properties for ak(t).

Proposition 4.1 Assume u0 is given by (4.6). For each k ≥ 1, ak(t) is of the form

ak(t) =
k2∑

m=k

αk,me−mνt, (4.27)

where the complex-valued coefficients αk,m satisfy

k2∑

m=k

αk,m = 0 for k ≥ 2, (4.28)

αk,m =
3ik

k2 −m

∑

k1+k2=k

∑
m1+m2=m

αk1,m1αk2,m2 for k ≤ m < k2. (4.29)

The indices k1, k2, m1 and m2 in the summation above obey

1 ≤ k1 ≤ k − 1, 1 ≤ k2 ≤ k − 1, k1 ≤ m1 ≤ k2
1 and k2 ≤ m2 ≤ k2

2.

Proof. The case in (4.28) is a consequence of the fact that ak(0) = 0 for k ≥ 2. (4.27)

follows from a simple induction. Obviously, a1(t) = a e−νt. Fix k and assume (4.27)

is valid for all integers up to k. Then, for k1 ≥ 1, k2 ≥ 1, k1 +k2 = k+1, k1 ≤ m1 ≤ k2
1
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and k2 ≤ m2 ≤ k2
2,

ak+1(t) = 3i(k + 1)
∑

k1+k2=k+1

∑
m1,m2

αk1,m1αk2,m2e
−ν(k+1)2 t

∫ t

0

eν((k+1)2−(m1+m2)) τ dτ

=
∑

k1+k2=k+1

∑
m1,m2

3i(k + 1) αk1,m1αk2,m2

ν((k + 1)2 − (m1 + m2))

(
e−ν(m1+m2)t − e−ν(k+1)2t

)
.

Since m1 + m2 ≤ k2
1 + k2

2 ≤ (k1 + k2)
2 = (k + 1)2, this proves (4.27) with (4.29).

Proposition 4.2 Assume that u0 is given by (4.6).

1) Let k ≥ 1 be an integer. Then

αk,k =

(
3i

ν

)k−1

ak and αk,k+2 = −k

2
αk,k; (4.30)

2) Let k ≥ 1 be an integer. Then, for n = 1, 3, 5, · · · ,

αk,k+n = 0;

3) Let k ≥ 1 be an integer and let k2 > m > U(k) ≡ k2 − 2k + 2. Then

αk,m = 0. (4.31)

Proof. Letting m1 = k1 and m2 = k2 in (4.29), we find

αk,k =
∑

k1+k2=k

αk1,k1αk2,k2

3ik

ν(k2 − k)
=

3i

ν(k − 1)

∑

k1+k2=k

αk1,k1αk−k1,k−k1 .

A simple induction allows us to obtain the expression for αk,k. To show αk,k+2 =

−k
2
αk,k, we set m = k + 2 in (4.29) to obtain

αk,k+2 =
3ik

ν(k2 − k − 2)
(α1,1 αk−1,k+1 + α2,2 αk−2,k + α2,4 αk−2,k−2

+ · · · + αk−2,k−2 α2,4 + αk−2,k α2,2 + α1,1 αk−1,k+1). (4.32)

Inserting the inductive assumptions such as

αk−1,k+1 = −k − 1

2
αk−1,k−1, αk−2,k = −k − 2

2
αk−2,k−2, α2,4 = −α2,2
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in (4.32), one obtains

αk,k+2 =
3ik

ν(k2 − k − 2)

[
−k

2

k−1∑

k1=1

αk1,k1 αk−k1,k−k1 + α1,1 αk−1,k−1

]

= −k

2

k2 − k

k2 − k − 2

3ik

ν(k2 − k)

k−1∑

k1=1

αk1,k1 αk−k1,k−k1

+
3ik

ν(k2 − k − 2)
α1,1 αk−1,k−1

= −k

2

k2 − k

k2 − k − 2
αk,k − k

2

−2

k2 − k − 2
αk,k = −k

2
αk,k.

To show αk,k+1 = 0, we set m = k + 1 to obtain

αk,k+1 =
3ik

ν(k2 − (k + 1))
(α1,1 αk−1,k + α2,2 αk−2,k−1 + · · ·+ αk−1,k α1,1) ,

which equals zero after inserting the inductive assumptions.

To prove (4.31), it suffices to notice in (4.29) that the second summation is over

m1 +m2 = m with k1 ≤ m1 ≤ k2
1 and k2 ≤ m2 ≤ k2

2. Thus, m = m1 +m2 ≤ k2
1 +k2

2 =

(k1 + k2)
2 − 2k1k2 ≤ k2 − 2(k − 1) and αk,m with U(k) < m < k2 is equal to zero.

This completes the proof of Proposition 4.2.

4.3 Complex KdV-Burgers equation

Lets consider the initial-value problem for the complex KdV-Burgers equation




ut − 6uux + αuxxx − νuxx = 0, x ∈ T, t > 0,

u(x, 0) = u0(x), x ∈ T,
(4.33)

and study the global regularity of its series-type solutions of the two forms given in

the following two subsections.

4.3.1 Special series-type solutions

Lets consider the solutions of the equation (4.33) of the type

u(x, t) =
∞∑

k=1

ak(t)e
ikx. (4.34)
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Suppose that the initial data u0 is of the form

u0(x) =
∞∑

k=1

a0k eikx (4.35)

and is in Hs with s > 1
2
. According to Theorem 4.1, (4.33) has a unique local solution

u ∈ C([0, T ); Hs) of the form (4.34) for some T > 0. To study the global regularity of

(4.34), lets explore the structure of ak(t) and obtain the following two propositions.

Proposition 4.3 If (4.34) solves (4.33), then ak(t) can be written as

ak(t) =
∑

k≤h≤k2, k≤l≤k3

ak, h, l e
−(νh−αil)t (4.36)

where ak, h, l consists of a finite number of terms of the form

C(α, ν, k, h, l, j1, · · · , jk) aj1
01 aj2

02 · · · ajk

0k (4.37)

with j1, j2 ,· · · , jk non-negative integers satisfying

j1 + 2j2 + · · ·+ kjk = k. (4.38)

Proof. If (4.34) solves (4.33) , then ak(t) solves the ordinary differential equation

d

dt
ak(t) + (νk2 − αik3)ak(t)− 3ik

∑

k1+k2=k

ak1(t) ak2(t) = 0.

The equivalent integral form is given by

ak(t) = e−(νk2−αik3)t

[
a0k + 3ik

∫ t

0

e(νk2−αik3)τ
∑

k1+k2=k

ak1(τ) ak2(τ) dτ

]
. (4.39)

It is easy to show through an inductive process that ak is of the form (4.36). In

addition, for k ≤ h < k2 and k ≤ l < k3, the term in (4.37) with fixed j1, j2, · · · , jk

satisfying

j1 + 2j2 + · · ·+ kjk = k

can be expressed as

C(α, ν, k, h, l, j1, · · · , jk) aj1
01 aj2

02 · · · ajk

0k

=
3ik

ν(k2 − h)− iα(k3 − l)

∑
m1+n1=j1

· · ·
∑

mk+nk=jk

C(α, ν, k1, h1, l1,m1, · · · ,mk1)

×C(α, ν, k2, h2, l2, n1, · · · , nk2) am1+n1
01 am2+n2

02 · · · amk+nk
0k (4.40)
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where the indices satisfy

1 ≤ k1 ≤ k, 1 ≤ k2 ≤ k, k1 + k2 = k,

k1 ≤ h1 ≤ k2
1, k2 ≤ h2 ≤ k2

2, h1 + h2 = h,

k1 ≤ l1 ≤ k3
1, k2 ≤ l2 ≤ k3

2, l1 + l2 = l,

m1 + n1 = j1, m2 + n2 = j2, · · · , mk + nk = jk.

(mr = 0 for r > k1 and nr = 0 for r > k2)

m1 + 2m2 + · · ·+ k1mk1 = k1, n1 + 2n2 + · · ·+ k2nk2 = k2.

When h = k2 and l = k3,

C(α, ν, k, k2, k3, j1, j2, · · · , jk) =





1 for (j1, j2, · · · , jk) = (0, 0, · · · , 1),

−C(α, ν, k, h, l, j1, j2, · · · , jk) otherwise,
(4.41)

for some h < k2 and l < k3. To illustrate these formulas, lets list ak for k = 1, 2, 3,

a1(t) = a01 e−(ν−iα)t,

a2(t) =
6i

2ν − 6αi
a2

01 e−(2ν−2αi)t +

[
a02 − 6i

2ν − 6αi
a2

01

]
e−(4ν−8iα)t,

a3(t) =
108a3

01

(2ν − 6αi)(6ν − 24αi)
e(−3ν+3αi)t

+

[
18ia01a02

4ν − 18αi
− 108a3

01

(2ν − 6αi)(4ν − 18αi)

]
e(−5ν+9iα)t

+

[
a03 − 18ia01a02

4ν − 18αi
+

108a3
01

(2ν − 6αi)(4ν − 18αi)
− 108a3

01

(2ν − 6αi)(6ν − 24αi)

]

× e(−9ν+27αi)t.

Proposition 4.4 Let k ≥ 1 be an integer. Let U(k) = k2 − 2k + 2 and V (k) =

k3 − 3k2 + 3k. The coefficients ak,h,l in (4.36) have the following properties

(1) For k ≤ h < k2 and k ≤ l < k3,

ak,h,l =
3ik

ν(k2 − h)− iα(k3 − l)

∑

k1+k2=k

∑

h1+h2=h

∑

11+12=l

αk1,h1,l1αk2,h2,l2 (4.42)
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(2) For h = k2 and l = k3,

ak,k2,k3 = ak(0)−
∑

k≤h<k2

∑

k≤l<k3

ak,h,l (4.43)

(3) For U(k) < h < k2 or V (k) < l < k3,

ak,h,l = 0. (4.44)

Proof. (4.42) follows from a simple induction. (4.43) is obtained by setting t = 0

in (4.36). To show (4.44), one notices that the second summation in (4.42) is over

h1 + h2 = h with k1 ≤ h1 ≤ k2
1 and k2 ≤ h2 ≤ k2

2 while the third summation is over

l1 + l2 = l with k1 ≤ l1 ≤ k3
1 and k2 ≤ l2 ≤ k3

2. Thus,

h = h1 + h2 ≤ k2
1 + k2

2 = k2 − 2k1 k2 ≤ k2 − 2(k − 1) = U(k),

l = l1 + l2 ≤ k3
1 + k3

2 = k3 − 3k k1 k2 ≤ k3 − 3k(k − 1) = V (k).

That means, ak,h,l = 0 if U(k) < h < k2 and V (k) < l < k3.

Theorem 4.4 Consider (4.33) with ν > 0. Assume u0 ∈ Hs(T) with s > 1
2

can be

represented in the form (4.35) with

|a0k| ≤ 1, k = 1, 2, · · · (4.45)

If there is the uniform bound

|C(α, ν, k, h, l, j1, · · · , jk)| ≤ C0(α, ν) (4.46)

for all k ≥ 1, k ≤ h < k2, k ≤ l < k3 and (j1, j2, · · · , jk) satisfying (4.38), then

(4.33) has a unique global solution u given by (4.34). In addition, for any s ≥ 0,

there are T0 > 0 and δ > 0 such that for any t ≥ T0,

‖u(·, t)‖Hs <
C(α, ν, s)

1− e−νt
e−δνkt (4.47)

where C is a constant depending only on α, ν and s.
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The proof of Theorem 4.4 involves a classical problem in number theory, namely

the number of integer solutions (j1, j2, · · · , jk) to the equation defined in (4.38) for a

given positive integer k. This problem is not as simple as it may look like. An upper

bound and asymptotic approximation for the number of non-negative solutions are

given by G.H. Hardy and S. Ramanujan [17], as stated in the following lemma.

Lemma 4.2 Let k > 0 be an integer and let Nk denote the number of nonnegative

solutions to the equation

j1 + 2j2 + · · ·+ kjk = k.

Then, for some constant C1,

Nk <
C1

k
e2
√

2 k.

In addition, Nk has the following asymptotic behavior:

Nk ∼ 1

4
√

3k
eπ
√

2k
3 , as k →∞.

Proof of Theorem 4.4. Applying (4.45) and (4.46), one obtains the following bound

for ak, h, l in (4.36)

|ak, h, l| ≤ C0(α, ν) Nk ≤ C2

k
e2
√

2 k,

where C2 = C0C1 and Lemma 4.2 has been used. Therefore

|ak(t)| ≤
∑

k≤h≤k2

∑

k≤l≤k3

|ak,h,l| e−νht

≤ C2 (k2 − 1) e2
√

2
√

k e−νkt

1− e−νt
. (4.48)

For any fixed t > 0, we can choose K = K(ν) and 0 < M = M(ν) < 1 such that

|ak(t)| ≤ C2

1− e−νt
Mk for k ≥ K.

Therefore, u represented by (4.34) converges for any t > 0. In addition, u(·, t) ∈ Hs

for any s ≥ 0. To see the exponential decay of ‖u(·, t)‖Hs for large time, choose
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T0 = T0(ν, s) such that for any t ≥ T0 and k ≥ 1

(1 + k2)s|ak(t)|2 ≤ C2 Mk
1

e−δ νkt

1− e−νt
,

where M1 > 0 and δ > 0 are some constants. This bound then implies (4.47). This

completes the proof of Theorem 4.4.

Finally, a special case is considered for which (4.34) is global in time.

Theorem 4.5 Consider (4.33) with ν and α satisfying ν2 + 4α2 ≥ 9. If

u0(x) = a01 eix with |a01| < 1,

then (4.33) has a unique global solution, which can be represented by (4.34). In

addition, for any s ≥ 0, u(·, t) ∈ Hs for all t ≥ 0.

Proof. One proves by induction that, for any t > 0,

|ak(t)| ≤ |a01|k, k = 1, 2, · · · . (4.49)

Obviously, |a1(t)| ≤ |a01|. To prove (4.49) for k ≥ 2, recall (4.39), namely

ak(t) = 3ik e−(νk2−αik3)t

∫ t

0

e(νk2−αik3)τ
∑

k1+k2=k

ak1(τ) ak2(τ) dτ.

Since ν2 + 4α2 ≥ 9, one has

|a2(t)| ≤
∣∣∣∣

3

2ν − 4αi

∣∣∣∣ |a01|2
(
1− e−(4ν−8αi)t

) ≤ |a01|2

and more generally,

|ak(t)| ≤
∣∣∣∣

3(k − 1)

ν k − αi k2

∣∣∣∣ |a01|k
(
1− e−(ν k2−αi k3)t

)
≤ |a01|k.

It is then clear that (4.34) converges in Hs with s ≥ 0 for any t ≥ 0. This completes

the proof of Theorem 4.5.
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4.3.2 Fourier series-type solutions

This subsection is devoted to full series solutions to the initial-value problem for

the complex KdV-Burgers equation (4.33). Suppose that the initial data u0 is of the

form

u0(x) =
∑

k 6=0

c0(k)

|k|γ eikx (4.50)

and write its corresponding solution u = u(x, t) as the series

u(x, t) =
∑

k 6=0

û(k, t) eikx.

Then the coefficient û(k, t) satisfies

û(k, t) = e(−νk2+iαk3)tû0(k) + 3ik

∫ t

0

e(−νk2+iαk3)(t−s)
∑

j 6=0,j 6=k

û(j, s) û(k − j, s) ds

and, if û(k, t) =
c(k, t)

|k|γ , then

c(k, t) = e(−νk2+iαk3)tc0(k)

+3i k|k|γ
∫ t

0

e(−νk2+iαk3)(t−s)
∑

j 6=0,j 6=k

c(j, s)

|j|γ
c(k − j, s)

|k − j|γ ds. (4.51)

The goal here is to rigorously establish the existence and uniqueness of such solutions

and to understand if they solve (4.33) in the classical sense. Lets first define the

functional framework.

For γ ≥ 0 and 0 < T ≤ ∞, define Xγ,T to be the functional space of periodic

functions g = g(x, t) on T× [0, T ] whose fourier coefficient ĝ(k, t) satisfies

ĝ(k, t) =
c(k, t)

|k|γ for k ∈ Z \ {0}

with

‖c‖ ≡ sup
0≤t≤T

sup
k∈Z\{0}

|c(k, t)| < ∞.

It is easily verified that Xγ,T equipped with the norm

‖g‖Xγ,T
= ‖c‖
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is a Banach space. When T = ∞, we write Xγ for Xγ,∞.

With the functional setting at our disposal, lets define the series solution.

Definition 4.1 Let γ > 1 and T > 0. Assume u ∈ Xγ,T has the form

u(x, t) =
∑

k 6=0

û(k, t) eikx with û(k, t) =
c(k, t)

|k|γ .

Then u is called a series solution of (4.33) if c(k, 0) = c0(k) and c(k, t) satisfies (4.51)

for t ∈ [0, T ].

In this subsection, three theorems are given to guarantee the existence and unique-

ness of the series solutions and to show that they are indeed the classical solutions.

To prove these theorems, lets start with a lemma.

Lemma 4.3 For any γ > 1 and any integer k 6= 0,

∑

j 6=0,j 6=k

1

|j|γ|k − j|γ ≤
C(γ)

|k|γ ,

where C(γ) is a constant independent of k.

Proof. Without loss of generality, let k > 0 and split the sum into three parts,

∑

j 6=0,j 6=k

1

|j|γ|k − j|γ =
−1∑

j=−∞

1

|j|γ|k − j|γ +
k−1∑
j=1

1

|j|γ|k − j|γ +
∞∑

j=k+1

1

|j|γ|k − j|γ .

Obviously, for γ > 1,

−1∑
j=−∞

1

|j|γ|k − j|γ ≤
C(γ)

|k|γ and
∞∑

j=k+1

1

|j|γ|k − j|γ ≤
C(γ)

|k|γ .

The middle part can be bounded as follows.

k−1∑
j=1

1

|j|γ|k − j|γ ≤ 2
∑

1≤j≤[ k
2 ]

1

|j|γ|k − j|γ =
2

|k|γ
∑

1≤j≤[ k
2 ]

1

|j|γ|1− j
k
|γ ≤

C(γ)

|k|γ .

The last summation is bounded uniformly in k via a comparison with a suitable

integral. This completes the proof of Lemma 4.3.
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The following theorem establishes the existence and uniqueness of the series solu-

tions.

Theorem 4.6 Consider the initial-value problem for the complex KdV-Burgers equa-

tion (4.33). Let γ > 1 and assume u0 ∈ Xγ has the form (4.50). If R0 ≡ ‖u0‖Xγ and

T > 0 satisfy

C(γ)
√

T R0 <
√

ν

for some suitable constant C = C(γ), then (4.33) has a unique series solution

u ∈ Xγ,T . In addition,

‖u‖Xγ,T
< 2R0.

Proof. The approach of the proof is the method of successive approximation. For

each k ∈ Z \ {0}, define for n = 1, 2, · · · ,

c(0)(k, t) = e(−νk2+iαk3)tc0(k),

c(n)(k, t) = e(−νk2+iαk3)tc0(k)

+3i k|k|γ
∫ t

0

e(−νk2+iαk3)(t−s)
∑

j 6=0,j 6=k

c(n−1)(j, s)

|j|γ
c(n−1)(k − j, s)

|k − j|γ ds.

It suffices to show, for some θ ∈ (0, 1),

‖c(n)‖ ≤ 2R0, (4.52)

‖c(n) − c(n−1)‖ ≤ θ‖c(n−1) − c(n−2)‖. (4.53)

One proves (4.52) by induction. Assume (4.52) holds for all n ≤ m. Then

|c(m+1)(k, t)| ≤ e−νk2t R0 +
C

ν
|k|γ−1(1− e−ν|k|2t) ‖c(m)‖2

∑

j 6=0,j 6=k

1

|j|γ|k − j|γ .

Applying Lemma 4.3 and the inductive assumption, one has

|c(m+1)(k, t)| ≤ e−νk2t R0 +
C(γ)

ν
|k|−1(1− e−ν|k|2t) R2

0. (4.54)

It is easily verified that, for any k 6= 0 and t ≥ 0,

|k|−1 (1− e−ν|k|2t) ≤ (ν t)
1
2 .
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Consequently,

‖c(m+1)‖ ≤ R0 +
C(γ)

ν
1
2

T
1
2 R2

0.

If

T
1
2 R0 <

ν
1
2

C(γ)
, (4.55)

then

‖c(m+1)‖ ≤ 2R0.

To prove (4.53), consider the difference

|c(n)(k, t)− c(n−1)(k, t)| = 3|k|γ+1 e−νk2t

×
∫ t

0

eνk2s
∑

j 6=0,j 6=k

|c(n−1)(j, s)c(n−1)(k − j, s)− c(n−2)(j, s)c(n−2)(k − j, s)|
|j|γ|k − j|γ ds.

Writing

c(n−1)(j, s) c(n−1)(k − j, s)− c(n−2)(j, s) c(n−2)(k − j, s)

= [c(n−1)(j, s)− c(n−2)(j, s)] c(n−1)(k − j, s)

+ c(n−2)(j, s) [c(n−1)(k − j, s)− c(n−2)(k − j, s)]

and estimating as in the proof of (4.52), one obtains

|c(n)(k, t)− c(n−1)(k, t)| ≤ C(γ)

ν
1
2

t
1
2 R0‖c(n−1) − c(n−2)‖.

When (4.55) is satisfied, then

‖c(n) − c(n−1)‖ ≤ θ‖c(n−1) − c(n−2)‖

with

θ =
C(γ)

ν
1
2

T
1
2 R0 < 1.

Inequalities (4.52) and (4.53) allow to construct the limit of c(n)(k, t) as

c(k, t) = c(1)(k, t) +
∞∑

n=1

(
c(n+1)(k, t)− c(n)(k, t)

)
.
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Going through a simple limiting process, one can show that c(k, t) satisfies (4.51). In

addition, by letting m →∞ in (4.54), one obtains

|c(k, t)| ≤ e−νk2t R0 +
C(γ)

ν
|k|−1 R2

0, (4.56)

which forms the basis for further regularity estimates. This completes the proof of

Theorem 4.6.

One now proves that for any t > 0, the series solution u = u(x, t) in Theorem

4.6 is actually a classical solution. Lets divide this process into two steps. First, lets

show that it is a weak solution in the standard distributional sense.

Theorem 4.7 Assume the conditions of Theorem 4.6 and let u be the series solution

obtained there. Then u is a weak solution in the sense that

∫ T

0

∫

T
u (φt − 6uφx + αφxxx − νφxx) dx dt−

∫

T
u0(x)φ(x, 0) dx = 0

for any φ ∈ C∞
0 (T× [0, T )).

Proof. Recall that

u(x, t) =
∑

k 6=0

û(k, t)eikx with û(k, t) =
c(k, t)

|k|γ .

Let N > 0 be an integer. Consider

uN(x, t) =
∑

|k|≤N,k 6=0

û(k, t) eikx.

To derive the equation for uN , multiply (4.51) by
1

|k|γ and differentiate with respect

to t to get

d

dt
û(k, t) = (−νk2 + iαk3) û(k, t) + 3i k

∑

j 6=0,j 6=k

û(j, t) û(k − j, t).

Multiplying this equation by eikx and summing over |k| ≤ N (k 6= 0), one has

∂tuN − 6uN (uN)x + α(uN)xxx − ν(uN)xx = RN , (4.57)
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where RN is given by

R(x, t) = 3
∑

|k|≤N,k 6=0

(ik)eikx
∑

|j|>N

û(j, t) û(k − j, t).

Multiplying (4.57) by φ ∈ C∞
0 (T× [0, T )) yields

∫ T

0

∫

T

uN (φt − 6uNφx + αφxxx − νφxx) dxdt

−
∫

T

u0(x)φ(x, 0) dx =

∫ T

0

∫

T

RNφ dxdt.

Since uN(·, t) → u(·, t) in L2 uniformly for t ∈ [0, T ], one obtains by letting N →∞
∫ T

0

∫

T
u (φt − 6uφx + αφxxx − νφxx) dxdt

−
∫

T
u0(x)φ(x, 0) dx = lim

N→∞

∫ T

0

∫

T
RNφ dxdt. (4.58)

To show the limit on the right is zero, lets use the basic inequality

∫

T
RNφ dx ≤

(∫

T
R2

N(x, t) dx

) 1
2
(∫

T
φ(x, t) dx

) 1
2

and show ‖RN‖L2 → 0. This can be done as follows. Because of the bound

∫

T
R2

N(x, t) dx ≤ C




N∑

k=1

k2
∑

|j|>N

1

|j|2γ|j − k|2γ
+

−1∑

k=−N

k2
∑

|j|>N

1

|j|2γ|j − k|2γ




for some constant C, it suffices to consider

N∑

k=1

k2
∑
j>N

1

|j|2γ|j − k|2γ
≤ 1

(N + 1)2γ

N∑

k=1

k2

(N − k + 1)2γ

∑
j≥N+1

1

(1 + j−N−1
N−k+1

)2γ
.

The last summation can be bounded as in

∑
j≥N+1

1

(1 + j−N−1
N−k+1

)2γ
≤ 1 +

∫ ∞

0

1

(1 + x
N−k+1

)2γ
dx = 1 +

N − k + 1

2γ − 1
.

Thus,

N∑

k=1

k2
∑
j>N

1

|j|2γ|j − k|2γ
≤ C(γ)

(N + 1)2γ

N∑

k=1

k2

(N − k + 1)2γ−1
≤ C(γ)

N4γ−4
.

For γ > 1, it approaches zero as N →∞. It then follows from (4.58) that u satisfies

the weak formulation. This completes the proof of Theorem 4.7.

70



The following theorem asserts the regularity of u.

Theorem 4.8 Assume the conditions of Theorem 4.6 and let u be the series solution

obtained there. Then, for any t0 > 0 and nonnegative integer m,

u ∈ C1([t0, T ); Hm). (4.59)

In particular, this regularity result with Theorem 4.7 implies that u is a classical

solution of the complex KdV-Burgers equation (4.33).

Proof. Obviously u ∈ L2([0, T ); L2). Fix t ∈ (0, T ). Inserting the simple inequality

e−νk2t ≤ 1

|k| e
−νt for any k ∈ Z \ {0}

in (4.56), one finds

c(k, t) =
c̃(k, t)

|k| (4.60)

with

|c̃(k, t)| ≤ R̃0 for all k 6= 0 and 0 < t < T .

Then u(x, t) can be represented as

u(x, t) =
∑

k 6=0

c̃(k, t)

|k|γ+1
eikx.

In particular, u(·, t) ∈ H1(T). An iterative process will allow to show

c(k, t) =
c̃(k, t)

|k|m , u(x, t) =
∑

k 6=0

c̃(k, t)

|k|γ+m
eikx. (4.61)

for any positive integer m, where c̃ may not be the same as in (4.60). Thus u(·, t) ∈
Hm(T). To show the regularity of u in t, lets turn to (4.51), which implies that c(k, t)

is differentiable in t and

d

dt
c(k, t) == (−νk2 + iαk3) c(k, t)− i k|k|γ

∑

j 6=0,j 6=k

c(j, t)c(k − j, t)

|j|γ |k − j|γ .
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It then easily follows from (4.61) and Lemma 4.3 that

∣∣∣∣
d

dt
c(k, t)

∣∣∣∣ ≤
C

|k| .

This together with u(·, t) ∈ Hm(T) guarantee (4.59). This completes the proof of

Theorem 4.8.

4.4 The Lax pairs and Darboux transformation for finite-time blow up

The combination of the Lax pairs and Darboux transformation can lead one to

find the blowup solution of the complex-valued equations in the context. These two

mathematical terms will be briefly introduced and an example will be given to show

how their combination leads to finding the blowup solution of complex KdV equation.

4.4.1 The Lax pairs

In 1968, Lax developed a method for solving nonlinear partial differential equa-

tions. We consider the initial-value problem for u(x, t) which satisfies the following

nonlinear equation 



ut = N(u)

u(x, 0) = f(x)
(4.62)

where u ∈ Y∀t, Y is an appropriate functional space, and N : Y→ Y is a nonlinear

operator involving x or derivatives with respect to x. To express the equation (4.62)

in operator form, Lax found two linear nonconstant differential operators L and M

such that 



Lφ = λφ

φt = Mφ
(4.63)

where L and M depend on an unknown function u(x, t) [11]. L describes the spec-

tral (scattering) problem, with φ the usual eigenfunction, and M describes how the
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eigenfunction evolve in time. One obtains

∂L
∂t

φ =
∂

∂t
(Lφ)− L

∂φ

∂t

=
∂

∂t
(λφ)− LMφ

=
∂λ

∂t
φ + λ

∂φ

∂t
− LMφ

=
∂λ

∂t
φ + λMφ− LMφ

=
∂λ

∂t
φ + MLφ− LMφ

Thus, the spectral parameter λ is constant if, and only if

∂L

∂t
+ (LM −ML) = 0. (4.64)

The equation (4.64) is known as the Lax equation and L and M are called the

Lax pairs. This equation contains the nonlinear equation for correctly chosen L and

M . The nonlinear equation (4.62) can be expressed as a Lax equation (4.64), and if

Lφ = λφ for t ≥ 0 and x ∈ R, then
∂λ

∂t
= 0, and φ satisfies

∂φ

∂t
= Mφ.

There is no systematic way of finding operators L and M that satisfy the above

conditions. The main difficulty is how to check for a given PDE whether or not it

has a Lax equation, and if so, how to find the Lax pairs L and M .

Example 4.1 L = −∂xx + u, and M = −4∂xxx + 6u∂x + 3ux are the Lax pairs of the

standard complex KdV equation

ut − 6uux + uxxx = 0. (4.65)

To show this, we simply follow the routine work.

4.4.2 The Darboux transformation

In 1882, G. Darboux studied the eigenvalue problem of a linear second order

partial differential equation, known as the Schrödinger equation given by

φxx + u(x)φ = λφ, (4.66)
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where u is a given function. If u(x) and φ(x, λ) are two functions satisfying (4.66)

and f(x) = φ(x, λ0) is the solution of (4.66) for λ = λ0, where λ0 is fixed, then U and

Φ defined by

U = u− 2(ln(f))xx and Φ(x, λ) = φx − fx

f
φ(x, λ)

satisfy

Φxx + UΦ = λΦ.

The transformation (u, φ) → (U, Φ) is called the Darboux transformation.

Finding Darboux transformation of a given equation is not an easy process. The

following example gives the Darboux transformation of the standard complex KdV

equation.

Example 4.2 Let u be a solution of the standard complex KdV equation, and φ be a

solution to the Lax pair for a particular u and λ. The transformation

U = u− 2∂xx(ln(φ)), Ψ = ψx − (∂x(ln(φ)))ψ,

where ψ solves the Lax pair at u and an λ, is the Darboux transformation of the the

standard KdV equation.

In fact, ut − 6uux + uxxx = 0 is the integrability condition of the Lax pairs

−φxx + uφ = λφ

φt = −4φxxx + 6uφx + 3uxφ (4.67)

discussed in example 4.1. The first equation is a Schrödinger equation, so the trans-

formation Ψ hold the first equation Ψxx + UΨ = λΨ invariant. U and Ψ also satisfy

second equation as well. Therefore U = u− 2∂xx(ln(φ) is another solution of KdV.

4.4.3 Blowup of complex KdV equation

Using the Lax pairs and Darboux transformation of the complex KdV equation,

Y. Charles Li [30] derived a simple explicit formula for the solution of the complex
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KdV in periodic domain that blows up in finite time. Consider the periodic boundary

condition

u(x + 2π, t) = u(x, t).

For any complex constant a = ar + iai, where ar and ai are real and imaginary part

of a, u(x, t) = a is a solution of (4.65). By using the Laplace transform, the Lax pair

(4.67) has two independent solutions at u = a and λ = a + k2, for any k ∈ Z. These

solutions are given by

ψ1 = exp(ωt + ikx) and ψ2 = exp{−(ωt + ikx)}

where ω = 6iak + 4ik3. The real part and imaginary parts of ω are given by

ωr = −6aik and ωi = 6ark + 4k3.

The next solution φ of (4.67) can be obtained by the linear combination of these

two solutions, as in

φ = c1ψ1 + c2ψ2 = c1 exp(ωt + ikx) + c2 exp{−(ωt + ikx)}.

where c1 and c2 are two arbitrary complex constants. Let
c1

c2

= exp(ρ + iγ) with ρ

and γ two arbitrary real constants. To use the Darboux transformation, lets evaluate

∂2
x(ln(φ)). Now,

∂x(ln(φ)) = ik

(
exp(2ωt + 2ikx + ρ + iγ)− 1

exp(2ωt + 2ikx + ρ + iγ) + 1

)
and

2∂2
x(ln(φ)) = −8k2 exp(2ωt + 2ikx + ρ + iγ)

(exp(2ωt + 2ikx + ρ + iγ) + 1)2 .

Applying the Darboux transformation, one obtains

U = a + 8k2 exp(2ωt + 2ikx + ρ + iγ)

(exp(2ωt + 2ikx + ρ + iγ) + 1)2 .

The choice k = 1, a = i, ρ = 12, and γ = 0 gives the explicit formula for the solution

of the complex KdV

u(x, t) = i + 8
exp(−12(t− 1) + i(8t + 2x))

[exp(−12(t− 1) + i(8t + 2x)) + 1]2
.
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When t = 0, u(x, 0) is C∞. When t = 1, the solution u(x, 1) develops two singularities

at x = 3
2
π − 4 and x = 5

2
π − 4.

This idea of finding explicit formula for the blow up solutions may be useful for

other complex-valued equations as well. The main difficulty is to find Lax pairs and

the Darboux transformation for the specific equation.
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CHAPTER 5

Conclusions

The main objectives of this dissertation are to study the solutions of the Kawahara

equation in weighted Sobolev spaces, prove that the solution of the complex Burgers

equation blows up in finite time, and show the regularity of solutions of complex

KdV-Burgers equation for suitable initial data.

The presence of higher order terms in the Kawahara equation makes it difficult

to solve. In this work, the weak formulation of the dispersive part of the IBVP of

Kawahara equation is first considered and shown that the formulation possesses a

unique solution for β > − 3
80

. Using this result, the full IBVP is solved in weighted

Sobolev spaces and proved that the solutions are well-posed globally in time and if

the L2-norm of u0 is small, then the solutions in these weighted Sobolev spaces decay

exponentially in time. Two numerical experiments are performed to complement

the theoretical observations: first one satisfying the condition on β and second one

voilating the condition. Numerical results show that the solutions may not be globally

well-posed if the condition on β is not met. The theoretical treatment of this problem

is still open. This work opens door to study the solutions of several integrable and

non-integrable fifth-order KdV type equations.

Motivated by the fact that complex KdV has solutions that blows up in finite time,

the solution of complex-valued Burgers equation is investigated for potential singular-

ities. The work in this dissertation asserts that the spatially periodic solutions of the

IVP of the complex Burgers equation blows up in finite time for an explicit smooth

initial data. The special series type and Fourier series type solutions of the complex
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KdV-Burgers equation are studied to find the conditions under which they are regu-

lar for all time. The main results examine how the dispersion and dissipation should

interact and what condition that the initial data should satisfy for the complex KdV-

Burgers equation to have a unique global solution. This dissertation produces some

significant results related to complex-valued Burgers and KdV-Burgers equations and

directs one to think for several open problems concerning these equations.
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