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CHAPTER 1

Introduction

1.1 Overview

A fundamental problem in number theory is to describe in as precise a manner as

possible the collection of algebraic number fields, meaning the extensions of finite

degree of the rational number field Q. For example, all the quadratic extensions

may be precisely described as Q(
√
d) where d ranges over all square-free integers not

equal to 1. One corollary of this is that there is a simple correspondence between

fields of positive discriminant Q(
√
d) and fields of negative discriminant Q(

√
−d).

Generalizing these simple statements to even just cubic fields is highly nontrivial. For

instance, the smallest negative discriminant of an extension of degree 3 of Q is −23,

corresponding to the polynomial x3 − x+ 1, while the smallest positive discriminant

is 49 corresponding to x3 − x2 − 2x + 1. Tables of discriminants of cubic fields,

both positive and negative, were calculated in the late nineteenth and early twentieth

century, and there was no apparent correlation between the two lists of positive and

negative discriminants. In [14] Ohno found a correspondence between these fields,

which was most easily explained in terms of class numbers of integral binary cubic

forms. This correspondence was stated as a conjecture which was later proved in [13]

by Nakagawa using class field theory.

The goal of this thesis is to investigate possible generalizations of this result to

the case of quadratic and cubic extensions of an arbitrary number field. It relies on

the work of Datskovsky and Wright in [5] where the original definitions are extended

to global fields of characteristic not equal to 2 or 3.
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In the second section of Chapter 1, we revise the original statements of the theorem

of Nakagawa when the base field is Q. We also state in simple terms a conjecture

that would generalize this result to any number field. The conjecture is shown as an

equation between Dirichlet series, considered as sums over number fields of degree at

most 3.

We present in Chapter 2 the basic definitions and notations for number fields,

binary cubic forms, zeta functions, and Dirichlet series. We also define the appropriate

Haar measures that are needed throughout this thesis.

In Chapter 3, we evaluate certain local integrals that play an important role in

the generalization process. These local integrals define the Dirichlet series of one of

the sides of our conjecture. We work under the assumption that 3 is unramified in

the given number field.

The calculation of the residues at its poles of the Dirichlet series mentioned above is

given in Chapter 4. We use a technique given by Datskovsky and Wright to accomplish

this. Based on this, we are able to give a justification for our conjecture.

In Chapter 5, we introduce additional definitions that allow us to decompose our

conjectured identity into a family of identities between sums over fields. Each side of

these identities corresponds to a special field. We also introduce some terminology

and review some basic facts of class field theory. They will be invoked in the last

chapter of this thesis.

We test numerically the validity of the conjecture in Chapter 6. In order to do

so, we make use of available tables of cubic and quadratic fields. We do this for

the quadratic imaginary field Q(i). This provides strong evidence for the proposed

identity. We also verify Nakagawa’s theorem.

Finally, in Chapter 7, we reduce both sides of our conjectured identity to sums

over characters of an idele class group. We proved some results mentioned in the first

chapter. Using the results from Chapter 5, we express these Dirichlet series as sums

2



containing only ideles.

1.2 Statement of results

In 1972, Shintani created the theory of zeta functions associated to the space of binary

cubic forms in the paper [17], and used that theory to establish the basic analytic

properties of two Dirichlet series

ξ1(s) =
∞∑
m=1

h1(m) + 1
3
h2(m)

ms
ξ2(s) =

∞∑
m=1

h(−m)

ms
(1.1)

where h(m) denotes the number of SL2(Z)-equivalence classes of integral binary cubic

forms of discriminant m, and, for m > 0, h1(m) and h2(m) denote the numbers of

classes of discriminant m with isotropy group of order 1 and 3, respectively. Shintani

showed that these Dirichlet series converge absolutely for Re(s) > 1, that they have

meromorphic continuations to the entire s-plane, and that they satisfy a functional

equation. In addition, he proved that they were holomorphic except for simple poles

at s = 1 and s = 5/6, and he gave formulas for the residues of the Dirichlet series

at these poles. With this information, Shintani was able to improve a theorem of

Davenport [7] on the mean-value of class-numbers of integral binary cubic forms, by

giving a more precise formula for the error term.

The functional equation that Shintani discovered actually expresses ξ1(1− s) and

ξ2(1− s) as linear combinations of the dual Dirichlet series

ξ̂1(s) =
∞∑
m=1

ĥ1(m) + 1
3
ĥ2(m)

ms
ξ̂2(s) =

∞∑
m=1

ĥ(−m)

ms

where the dual class-numbers are the numbers of SL2(Z)-equivalence classes of integral

binary cubic forms

Fx(u, v) = x1u
2 + x2u

2v + x3uv
2 + x4v

3

where the middle coefficients x2, x3 are both divisible by 3. This turns out to be the

natural dual lattice to the lattice of integral binary cubic forms.
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Datskovsky and Wright introduced adelic terminology and notation into Shintani’s

work in the papers [19, 5, 6, 4], and generalized Shintani’s results to the space of

binary cubic forms over an arbitrary global field of characteristic different from 2 and

3. In [5], it was observed in Proposition 4.1 that Shintani’s functional equation has a

natural diagonalization. To state this diagonalization, we write

ξ±(s) = ξ1(s)±
1√
3
ξ2(s) ξ̂±(s) = ξ̂1(s)±

1√
3
ξ̂2(s)

We define the associated gamma factors to be

r±(s) =
2s 33s

π2s
Γ(s)Γ

(
s

2
+

1

4
∓ 1

6

)
Γ

(
s

2
+

1

4
∓ 1

3

)
.

The diagonalized functional equations are then

r±(1− s)ξ±(1− s) = ±3 r±(s)ξ̂±(s)

for either choice of sign ±.

In [14], Ohno observed that these diagonalized functional equations would be

especially symmetric if there were an identity between the original Dirichlet series

and the dual Dirichlet series. This suggested an identity between class-numbers for

the lattice of integral forms and class-numbers for its dual lattice. By extensive

computation of class-numbers, Ohno verified numerically the conjecture that for the

original Shintani series (1.1)

ξ̂1(s) = 3−3sξ2(s) ξ̂2(s) = 31−3sξ1(s)

These identities imply that

ξ̂±(s) = ±3
1
2
−3s ξ±(s).

With that identity, the diagonalized functional equations become

ε±(1− s)ξ±(1− s) = ε±(s)ξ±(s)

4



where

ε±(s) =
2s 3

3
2
s

π2s
Γ(s)Γ

(
s

2
+

1

4
∓ 1

6

)
Γ

(
s

2
+

1

4
∓ 1

3

)
.

Ohno also proved by means of Shintani’s functional equation that his two conjectured

identities above are logically equivalent. Once Ohno’s conjecture was stated, work

on the truth of it was swift, and Nakagawa proved the conjecture in 1998 in [13].

Nakagawa’s proof is based partly on an idea of Scholz [16] relating the 3-class group

of quadratic fields Q(
√
d) to the 3-class group of Q(

√
−3d).

The research presented here is concerned with the generalization of Ohno’s con-

jecture and Nakagawa’s theorem to Shintani Dirichlet series for the space of binary

cubic forms over a number field k. Since the ring of integers o of the number field k

need not have class number 1, the direct generalization of Shintani’s Dirichlet series

to number fields is more easily expressed in terms of field extensions k′/k of degree

at most 3 than it is in terms of class-numbers of binary cubic forms. To explain this,

we first present an identity proved in [5] for Shintani’s original series. Let ζ(s) denote

Riemann’s zeta function, and ζk(s) the Dedekind zeta function of the number field k.

Let dk denote the absolute value of the discriminant of k/Q. For a field k of degree

at most 3 over Q, we define o(k) = 6 if k = Q and o(k) = [k : Q] otherwise. We also

define

Rk(s) =


ζ(s)3 if k = Q,

ζ(s)ζk(s) if [k : Q] = 2,

ζk(s) if [k : Q] = 3.

Then Shintani’s Dirichlet series are proved in [5] to be equal to

ξ1(s) = 2 ζ(4s)ζ(6s− 1)
∑

k tot. real

d−sk
o(k)

Rk(2s)

Rk(4s)

ξ2(s) = 2 ζ(4s)ζ(6s− 1)
∑

k complex

d−sk
o(k)

Rk(2s)

Rk(4s)

where the first series ranges over totally real k/Q of degree at most 3, and the sec-

ond series ranges over k/Q with one complex infinite place and degree at most 3.
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Nakagawa also provided a proof of this identity in [12].

We can directly use this terminology to state the generalization of Shintani’s series

to number fields k. First, the series range over the extensions k′/k of degree at most

3. Again we define o(k′) = 6 if k′ = k and o(k′) = [k′ : k] otherwise. Define dk′/k to

be the absolute norm of the relative discriminant of the extension k′/k, and put

Rk′(s) =


ζk(s)

3 if k′ = k,

ζk(s)ζk′(s) if [k′ : k] = 2,

ζk′(s) if [k′ : k] = 3.

To state the generalized Shintani series over a number field k, it remains to define

the notion of signature of an extension k′/k of degree less or equal to 3. For each real

place v (or real embedding) of k, either the places of k′ lying over v are either all real,

in which case we say αv(k
′/k) = +, or there is a unique complex place w lying over

v, and then we say αv(k
′/k) = −. This situation is unique to extensions of degree at

most 3. We call the vector α(k′/k) = (αv(k
′/k))v real the signature of k′/k. If r1 is

the number of real places of k, then there are 2r1 possible signatures; we denote the

set of such signatures by A. For each possible signature α of k, we denote the set of

extensions k′/k of degree at most 3 which have signature α by Kα. At last, we may

state the Shintani series for each signature α ∈ A as

ξα(s) = ζk(4s)ζk(6s− 1)
∑
k′∈Kα

d−sk′/k
o(k′)

Rk′(2s)

Rk′(4s)
(1.2)

where the sum ranges over all extensions k′ in Kα. (Note that the factor of 2 has

disappeared; in [19, 5] forms are considered equivalent relative to the group GL2

rather than SL2, and that accounts for the factor of 2.) Datskovsky and Wright

prove in [5] these series extend to meromorphic functions of s which are holomorphic

everywhere except for simple poles at s = 1 and s = 5/6. That paper also provides

precise expressions for the residues of these series at 1 and 5/6. Finally, that paper

6



also proves a functional equation expressing ξα(1− s) as linear combinations of dual

Dirichlet series ξ̂α(s).

By utilizing the adelic approach of [5], an expression nearly identical to equation

(1.2) may be derived for the dual Dirichlet series ξ̂α(s). (Note: To be consistent

with Nakagawa’s theorem and Shintani’s original notation, we modify the definition

of ξ̂α(s) in Datskovky-Wright by a constant factor, to be explained in Chapter 2.)

The only differences are due to new local factors at primes v lying over 3. These new

local factors were calculated for Q by Nakagawa in Lemma 3.6, p. 121, of [13]. In

order to give the formula for ξ̂α(s), we first need to define the splitting type of the

prime v of k in an extension k′ of degree at most 3:

Type (1): k′ ⊗k kv ∼= k3v , or k2v , or kv,

Type (2u): k′ ⊗k kv ∼= kv ⊕ F , or F , where F/kv is quadratic unramified,

Type (2r): k′ ⊗k kv ∼= kv ⊕ F , or F , where F/kv is quadratic ramified,

Type (3u): k′ ⊗k kv ∼= F where F/kv is cubic unramified,

Type (3r): k′ ⊗k kv ∼= F where F/kv is cubic ramified.

Then we use the technique of Datskovsky-Wright to prove the following:

Theorem 1.1 Let k be a number field of degree n in which 3 is unramified. Then

the dual Dirichlet series for each signature α over k may be expressed as

ξ̂α(s) = ζk(4s)ζk(6s− 1)
∑
k′∈Kα

d−sk′/k
o(k′)

Rk′(2s)

Rk′(4s)

∏
v|3

Tk′,v(s) (1.3)

7



where for each prime v | 3 we have qv = |3|−1v , and we define the rational functions

Tk′,v(s) =



q−4sv

1 + q1−2sv + 2q1−4sv

(1 + q−2sv )2
if v is of type (1) in k′,

q−4sv

1 + q1−2sv

1 + q−4sv

if v is of type (2u) in k′,

q−2sv

1 + q1−4sv

1 + q−2sv

if v is of type (2r) in k′,

q−4sv

1 + q1−2sv − q1−4sv

1− q−2sv + q−4sv

if v is of type (3u) in k′,

1 if v is of type (3r) in k′.

The proof of this theorem appears in Chapter 3. We expect that a similar theorem

holds when 3 is ramified in k, but we have not yet completed the necessary local

calculations.

The goal of this thesis is to relate the collection of dual Dirichlet series ξ̂α(s) to

the collection of original series ξα(s). Just as in Nakagawa’s theorem, it will emerge

that the proper generalization relates ξ̂α(s) to ξ−α(s), where the signature −α is the

negative of α in the sense that for each real place v of k we have αv = + if and only

if (−α)v = −. At the end of this introduction, we shall explain why this involution

should occur. Datskovsky and Wright proved that the series ξα(s) and ξ̂α(s) have

meromorphic continuations to the entire s-plane which are holomorphic except for

simple poles at s = 1 and s = 5/6, and they gave explicit formulas for the residues

of ξα(s) at 1 and 5/6. In order to test the relationship between ξ̂α(s) and ξα(s), in

Chapter 4 we use the results of Datskovsky-Wright to calculate similar formulas for

the residues of ξ̂α(s) at 1 and 5/6. Based on those formulas, we prove the following:

Theorem 1.2 Let k be a number field of degree n with r1 real places and r2 complex

places. For every signature α over k for which we have m real places v with αv = +,

the identity

ξ̂−α(s) = 3r2+m−3ns ξα(s)

8



is true at s = 1 and 5/6. Moreover, this is the only expression of the form 3A+Bs for

which this theorem is true.

Notice that this theorem makes no condition on whether 3 is ramified or not in k.

That led us to conjecture this generalization of the Ohno-Nakagawa identity:

Conjecture 1.1 (Generalized Ohno Conjecture) Let k be a number field of degree n

with r1 real places and r2 complex places. For every signature α over k for which we

have m real places v with αv = +, we have:

ξ̂−α(s) = 3r2+m−3ns ξα(s) (1.4)

To see how this is consistent with Nakagawa’s theorem, in that case we have

n = 1, r1 = 1 and r2 = 0. Then in this conjecture ξ+ corresponds to ξ1 in Shintani’s

notation, and ξ− corresponds to ξ2. For signature α = +, we have m = 1 and thus

ξ̂2(s) = 31−3s ξ1(s), while for α = − we have m = 0 and ξ̂1(s) = 3−3s ξ2(s). This is

precisely Nakagawa’s theorem.

The remainder of this thesis is dedicated to the reduction of this conjecture to

manageable pieces which we hope may be proved by class field theory and the ideas

of Nakagawa. First, by direct substitution of equations (1.2) and (1.3) into conjecture

(1.4), we see that a number of factors directly cancel out, leaving only

∑
k′∈K−α

d−sk′/k
o(k′)

Rk′(2s)

Rk′(4s)

∏
v|3

Tk′,v(s) = 3r2+m−3ns
∑
k′∈Kα

d−sk′/k
o(k′)

Rk′(2s)

Rk′(4s)
(1.5)

In examining this proposed identity, we see that the Euler products multiplying d−sk′/k

are all of the form
∑
a

ca
N(a)2s

where a ranges over the integral ideals of k, N(a) denotes

the absolute norm of a, and the coefficients ca are ordinary rational numbers. The

important point here is the factor 2 in the exponent. Since 3−3ns = N(3o)−3s for the

ideal generated by 3 in k, the difference must be made up in the norms of the relative

discriminants dk′/k. To be more precise, consider an extension k′1/k counted on the

left side of the identity with a corresponding term equal to a constant multiple of

9



(
dk′1/k N(a1)

2
)−s

. This may be ‘counteracted’ by a term
(
dk′2/k N(3o)3 N(a2)

2
)−s

on

the right side if and only if the ratio of norms of the relative discriminants dk′2/k/dk′1/k

is divisible by an odd power of N(3o). This is one suggestion that the conjectured

identity (1.5) may be split into a sequence of identities by restricting the fields k′

included in the summations on each side.

That idea is also promoted by the one of the key ideas of Nakagawa’s proof, which

in turn was based on a theorem of Scholz [16]. For an extension k′/k, let L/k be its

Galois closure. If k′/k has degree at most 3, then L/k contains a unique subextension

F = k(
√
δ) of degree at most 2, generated by the square root of the discriminant δ

of any generating element of k′ over k. We call F the resolvent field of k′/k. Note

that F = k if k′/k is trivial or a cyclic cubic extension. We define the dual resolvent

field to F to be F̂ = k(
√
−3δ). Thus, F and F̂ are subfields of the extension F (

√
−3)

obtained by adjoining the cube roots of unity to F . The relative discriminants of F/k

and F̂ /k are, up to multiplication by the square of an ideal of k, equal to δ and −3δ,

respectively. It will turn out that the odd power of 3 in the identity (1.5) will be

accounted by restricting the terms on the left to those extensions k′/k with resolvent

field equal to F̂ and the terms on the right to those k′/k with resolvent field F . This

motivates the following refined conjecture:

Conjecture 1.2 (Resolvent Field Identity) Let k be a number field of degree n with

r1 real places and r2 complex places. Let δ be a nonzero element of k, and define C (δ)

to be the set of extensions k′/k of degree at most 3 whose resolvent field is k(
√
δ). Let

m be the number of real embeddings of k for which the image of δ is a positive number.

Then, using the notation for Shintani’s series which we have previously developed, we

have the identity

∑
k′∈C (−3δ)

d−sk′/k
o(k′)

Rk′(2s)

Rk′(4s)

∏
v|3

Tk′,v(s) = 3r2+m−3ns
∑

k′∈C (δ)

d−sk′/k
o(k′)

Rk′(2s)

Rk′(4s)
(1.6)

Since the generalized Ohno conjecture is just the sum of all these resolvent field

10



identities for δ ranging over the nonzero elements of k modulo multiplication by

squares (we will denote this set by k×/k2), we may at least state:

Theorem 1.3 If the resolvent field identity is true for all nonzero δ in k, then the

generalized Ohno conjecture (1.4) is true for k.

For the one known case k = Q, we shall explain in detail why the converse is true,

thus proving:

Theorem 1.4 For k = Q, the resolvent field identity is true for all nonzero δ in Q.

The last part of this thesis is devoted to the analysis necessary to eventually

complete the proof of the resolvent field identity in terms of class field theory. For

nonzero δ ∈ k, the fields k′ ∈ C (δ) have Galois closure L containing F = k(
√
δ). If

[k′ : k] ≤ 2, then F = k′. If [k′ : k] = 3, then L is a cyclic cubic extension of F .

If k′/k is cyclic cubic, then L = k′ and F = k. If k′/k is noncyclic cubic, then L

is an S3-extension of k containing F , and L contains three cubic extensions of k all

conjugate to k′. Class field theory implies the abelian Galois extensions of a number

field F correspond to the open subgroups (and hence characters) of the idele class

group JF of F . Basic notation and statements of class field theory will be provided

in a later section. In this case, the cyclic cubic extensions L/F correspond bijectively

to the open subgroups of index 3 in the idele class group JF . These open subgroups

in turn correspond in a one-to-two way to nontrivial complex characters χ of JF

satisfying χ3 = 1. These observations will allow us to rewrite the resolvent field series

in Theorem 1.3 as a sum over idele class characters of order dividing 3.

To state this precisely, for any resolvent field F let X (F ) denote the group of

characters χ of the idele class group JF of F such that χ3 = 1 and also χ ◦NF/k = 1

if [F : k] = 2, where NF/k denotes the relative norm. If F = k, the latter condition

is omitted. The conductor of such a character is an integral ideal fχ in F . Let

N(fχ) denote the absolute norm of the conductor of χ. Then for the extension k′/k
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corresponding to the kernel of χ, we have dk′/k = dF/k N(fχ). The idele class character

χ induces a character on all prime ideals P of F where P - fχ. By abuse of notation,

we will write this character’s value as χ(P). For prime ideal factors of the conductor,

we will extend this definition by setting χ(P) = 0. Then we will prove:

Theorem 1.5 Let k be a number field, δ be a nonzero element of k, and F = k(
√
δ).

Then, using the notation we have previously developed for the collection C (δ) of ex-

tensions k′/k and for the character group X (F ), we have the identity

∑
k′∈C (δ)

d−sk′/k
o(k′)

Rk′(2s)

Rk′(4s)
=
d−sF/k
o(F )

∑
χ∈X (F )

N(fχ)−s
∏
P

(
1 + χ(P) N(P)−2s

)
(1.7)

where o(F ) = 3 if F = k and 1 otherwise, and the product is taken over all prime

ideals of F .

We also will produce a similar expression for the dual discriminant field series as

a sum over cubic characters of the idele class group JF̂ , although this is complicated

by the presence of the Euler factors Tk′,v for places v|3. The cubic characters of JF

and JF̂ are related to the cubic characters of the compositum FF̂ . Using the fact

that the compositum FF̂ contains the cube roots of unity, Scholz was able to use this

relationship to deduce a relationship between the three-class-numbers of F and F̂ in

[16]. The completion of our project and the proof of the generalized Ohno conjecture

at least for fields k where 3 is unramified would follow from refining Scholz’ ideas to

establish the resolvent field series identity for all nonzero δ in k. Our future research

will be directed toward providing this proof.
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CHAPTER 2

Basic notation and review of zeta functions of binary cubic forms

2.1 Notation for number fields and local fields

Our notation for number fields, local fields, adele rings and idele rings, etc., will be

fairly consistent with that presented in [19, 5, 6] and somewhat with Weil [18]. Let k

be a number field of degree n over the rational number field Q. For any place v of k,

we use kv to denote the completion of k at the place v. Let r1 and r2 be the numbers

of real and complex, respectively, places of k, i.e. places such that kv ∼= R and C,

respectively. Then r1 + 2r2 = n. These together form the set of infinite places of k,

and we shall write v | ∞ for these places.

For all local fields kv, we normalize the absolute value | · |v to be the modulus of

any additive Haar measure on kv. This means that µ(aU) = |a|vµ(U) for any open

subset U of kv, any Haar measure µ of kv, and any nonzero element a of kv. For real

places v, this means |x|v is the customary absolute value on R, while for complex

places v this means |x|v is the square of the usual absolute value on C.

For real places v, we choose the Haar measure dvx on kv such that
∫ 1

0
dvx = 1,

i.e. the usual Lebesgue measure on R. For complex places v, we choose dvx so that

the measure of the unit circle {x ∈ C : |x|v ≤ 1} is 2π. That means dvx is twice the

usual Lebesgue measure on C; the reason for this choice is that it is more convenient

for dvx to represent the differential form |dx ∧ dx| in integration formulas.

For any finite place v of k, we write v - ∞, and we denote the maximal compact

subring of kv by ov. The unique prime ideal of ov is denoted pv, and we choose a

generator of the principal ideal pv and name it πv, called a uniformizer of kv. The
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modulus qv of kv is the order of the finite field ov/pv. The additive Haar measure dvx

on kv is normalized so that
∫
ov
dvx = 1. The absolute value |a|v on kv is normalized

so that dv(ax) = |a|vdvx, which implies that |πv|v = q−1v .

If we work with a nonarchimedean local field K without reference to a global field

k, we shall denote the maximal compact subring by O, the unique prime ideal by P ,

a uniformizer by π, the modulus by q, the normalized Haar measure by dx, and the

normalized absolute value by | · |.

For any ring R (always commutative with identity), we denote the subgroup of

invertible elements by R×. Hence, for a field K, K× denotes the nonzero elements

of K. Thus, the unit subgroup of ov is denoted by o×v , and this is the same as the

subgroup of elements x satisfying |x|v = 1.

For a number field k, we denote the ring of adeles by A = Ak =
∏′

v kv and the

group of ideles by A×k =
∏′

v k
×
v , where these are restricted direct products in the

usual sense. The ideles correspond to units in the ring of adeles, but the restricted

product topology is not the same as the subspace topology. The idele norm |a|A of an

idele a ∈ A×k is the modulus of multiplication by a relative to any Haar measure on

the adeles Ak. This means |a|A =
∏

v |av|v, where av denotes the component of a at

the place v. For all x ∈ k× embedded along the diagonal in A×k , we have the product

formula |x|A = 1.

We choose for the Haar measure on the additive group of adeles Ak the restricted

tensor product measure dAx =
⊗

v dvxv, where x = (xv)v. The number field k embeds

along the diagonal as a discrete subgroup of A such that A/k is compact. With this

choice of measure, the induced measure of the quotient is
∫
A/k dAx = d

1/2
k , in terms

of the absolute value of the discriminant of k (see Prop. V.4.7 in [18]).

On the multiplicative group k×v of nonzero elements, we choose Haar measures

d×v x =
dvx

|x|v
if v is an infinite place, and for finite places we choose d×v x so that

the unit group o×v has measure 1. On the ideles A×k , we choose the Haar measure
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d×Ax =
⊗

v d
×
v xv. By Prop. V.4.9 of [18], the measure of the set C(m), the image in

A×k /k× of all ideles x satisfying 1 ≤ |x|A ≤ m, is ρk logm with

ρk =
2r1(2π)r2hkRk

ek
,

where hk is the class number of k, Rk is the regulator of k, and ek is the number of

roots of unity in k.

Let A1 denote the subgroup of ideles x with idele norm |x|A = 1. Then k× is

a subgroup of A1, and the quotient group A1/k× is compact. (See Theorem IV.4.6

in [18].) There is an embedding of the group of positive real numbers R+ into the

ideles A×, which we will denote z(t), satisfying |z(t)|A = t for all t ∈ R+. One such

embedding is defined as the idele z(t) = (zv(t))v where zv(t) = 1 for all finite places

v and zv(t) = t1/n for all infinite places v, with n = [k : Q]. Then we may decompose

the Haar measure for A× in the following way∫
A×
φ(x) d×Ax =

∫ ∞
0

(∫
A1

φ(z(t)x) d1Ax

)
dt

t
,

for any integrable function φ. Then the measure of A1/k× induced by d1Ax is ρk.

Finally, we introduce our notation for the Dedekind zeta function ζk(s). Let o = ok

denote the ring of integers of k, and for each integral ideal a of o let N(a) denote the

absolute norm of a, i.e. the cardinality of the quotient ring o/a. The Dedekind zeta

function is

ζk(s) =
∑
a

N(a)−s =
∏
p

(
1− N(p)−s

)−1
where the sum extends over all integral ideals a and the product extends over all

prime ideals p. Equivalently, this may be written as a product over all finite places

of v as

ζk(s) =
∏
v-∞

(1− q−sv )−1.

This zeta function converges locally uniformly for Re(s) > 1 and has a meromorphic

continuation to the entire s-plane which is holomorphic except for a simple pole at
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s = 1 with residue

Res
s=1

ζk(s) =
ρk

d
1/2
k

.

These facts and more may be found in VII.6 of [18].

2.2 Binary cubic forms

This notation is based on [17, 19, 5]. A binary cubic form is an expression Fx(u, v) =

x1u
3+x2u

2v+x3uv
2+x4v

3 where xj, 1 ≤ j ≤ 4 are the coefficients. We will generally

think of a four-dimensional vector x = (x1, x2, x3, x4) as a binary cubic form. The

module of binary cubic forms with coefficients in a ring R is denoted by VR. There is

a natural representation of the group G = GL2 on V given by

Fg·x(u, v) =
1

det g
Fx

(u, v)

a b

c d




for x ∈ V and g =

a b

c d

 ∈ G. We say two forms x, y are G-equivalent if y = g · x

for some g ∈ G.

The discriminant of the form x is a homogeneous polynomial P (x) of degree 4 (see

p. 35 in [5]). This polynomial satisfies P (g · x) = (det g)2P (x) for g ∈ G and x ∈ V .

A binary cubic form x is defined to be singular if and only if P (x) = 0. We denote

the hypersurface of singular forms in V by S, and the subset of nonsingular forms by

V ′. Both subsets are G-invariant.

Just as in Shintani [17], we define the bilinear form

[x, y] = x1y4 −
1

3
x2y3 +

1

3
x3y2 − x4y1

on V . For the involution gι = (det g)−1g on G, this form satisfies [g · x, gι · y] = [x, y]

for all x, y ∈ V and g ∈ G.

We next turn to binary cubic forms over a field K. The splitting field K(x) of a

binary cubic form x ∈ VK is the smallest extension of K (in a given algebraic closure
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of K) for which the form factors into linear factors defined over K(x). The splitting

field is either K, a quadratic or cubic cyclic extension of K, or an S3-extension of K.

The key connection between the space of binary cubic forms and field extensions of

K is the following fact:

Proposition 2.1 Two nonsingular binary cubic forms x, y ∈ VK are GK-equivalent

if and only if their splitting fields are the same K(x) = K(y).

When we wish to refer to the points of G and V defined over a ring R, we will

write GR and VR, for example, Gk, Vk, Gkv , Vkv , GA, VA, etc. We shall choose the

Haar measure dvx on Vkv to be simply the product of the four coordinate measures

dvxj and similarly for the measure dAx on VA.

We should point out that this choice is different from that of Datskovsky-Wright

[5], where the self-dual measure was chosen relative to a standard bi-invariant for on

VA. We are changing this choice so that the definition of the dual Dirichlet series

will be in agreement with the papers of Shintani, Ohno, and Nakagawa in the case of

k = Q.

For a local field K, we choose the invariant measure dg on g ∈ GK in the same

manner as in [5]. To review, we define UK to be the maximal compact subgroups

the orthogonal group O(2) if K ∼= R, the unitary group U(2) if K ∼= C, and the

group GO if K is nonarchimedean with maximal compact subring O. We define BK

to be the Borel subgroup of lower triangular matrices in GK . Then by the Iwasawa

decomposition GK = UKBK . We choose the invariant measure du on u ∈ UK so that

UK has measure 1. We define a right-invariant measure db on b ∈ Bk satisfying∫
BK

φ(b) db =

∫
K×

d×t1

∫
K×

d×t2

∫
K

dc φ(n(c)a(t1, t2))

where the Haar measures on K and K× are as previously defined and we use the

notation n(c) =

1 0

c 1

 and a(t1, t2) =

t1 0

0 t2

. Here φ is any integrable function
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on GK . Then the measure dg on GK is defined by∫
GK

φ(g) dg =

∫
UK

du

∫
BK

db φ(ub).

In the case of a nonarchimedean field K with maximal compact subring O, if φ is the

characteristic function of the maximal compact subgroup GO, then∫
GK

φ(g) dg =

∫
UK

du

∫
BO

db

=

∫
BO

db

=

∫
O×

d×t1

∫
O×

d×t2

∫
O

dc = 1,

by our choice of Haar measure on K and K×. This confirms this measure satisfies

the condition that GO has measure 1.

On the adelizations VA and GA, we take the invariant measures to be the restricted

product measures dAx =
⊗

v dvxv and dAg =
⊗

v dvgv. Then Vk is a discrete cocom-

pact subgroup of VA such that
∫
VA/Vk

dAx = d2k. On the quotient group GA/Gk, the

set F (m) of all points g with 1 ≤ | det g|A ≤ m has measure γk logm, where

γk =

(
2

π

)r1 hkRk

ek
d
3/2
k ζk(2).

(This constant comes from the volume calculation after Prop. 6.3, p. 528, in [19], and

the volume normalization on p. 66 in [5].)

Let G1
A denote the subgroup of all g ∈ GA with | det g|A = 1. Then Gk is a discrete

subgroup of GA with quotient G1
A/Gk of finite invariant volume. Define an embedding

w(t) of t ∈ R+ into GA by w(t) = a(z(
√
t), z(

√
t)), using the embedding z : R+ → A×

defined in the previous section. Then we have | detw(t)|A = t, and we may decompose

the invariant volume on GA as follow∫
GA/Gk

φ(g) dAg =

∫ ∞
0

(∫
G1

A/Gk

φ(w(t)g) d1Ag

)
dt

t
,

for integrable functions φ(g) on GA/Gk. With this definition, we see that the measure

of G1
A/Gk with respect to d1Ag is γk.
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Finally, we shall describe the orbits of nonsingular binary cubic forms over a local

field kv. By Proposition 2.1, these correspond to the possible splitting fields kv(x)

over kv. For a complex place v, there is only one such splitting field, namely, C, and

thus there is only one nonsingular orbit. For a real place v, the splitting field may be

R or C corresponding to whether the discriminant P (x) is positive or negative in kv.

For a finite place v, there are finitely many possible splitting fields kv(x) which we

group into five basic types:

Type (1): kv(x) = kv,

Type (2u): kv(x)/kv is quadratic unramified,

Type (2r): kv(x)/kv is quadratic ramified,

Type (3u): kv(x)/kv is cubic unramified,

Type (3r): kv(x)/kv is the Galois closure of a ramified cubic extension Kv/kv.

In the first four types, we abbreviate Kv = kv(x), while in the last type Kv is a

possibly non-Galois cubic extension whose Galois closure is kv(x). There is only one

orbit of each type (1), (2u) and (3u), while there may be more than one orbits of

types (2r) and (3r). We shall adopt the description of these given on pp. 35-36 in

[5]. In particular, for each orbit α we shall choose orbital representatives xα ∈ Vkv as

described in that paper. Those are arranged so that P (xα) is a relative discriminant

∆(Kv/kv) of Kv/kv. Occasionally, we shall use Av to denote the set of orbits Gkv\V ′kv .

2.3 Zeta functions of binary cubic forms and Dirichlet series

The adelic version of Shintani’s zeta function associated to the space (G, V ) of binary

cubic forms is

Z(ω,Φ) =

∫
GA/Gk

ω(det g)
∑
x∈V ′k

Φ(g · x) dAg,

where ω is a quasicharacter on A×k which is trivial on k× and Φ(x) is a Schwartz-Bruhat

function on the adelization VA. Here Gk is a discrete subgroup embedded along the
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diagonal in GA, and for every nonsingular form x ∈ V ′k the stabilizer subgroup Gk,x

is a finite subgroup of order 1, 2, 3 or 6, depending on the splitting field k(x) as

described in [5]. Here we shall simplify the notation because we will not be referring

to non-principal quasicharacters. We shall put ω(x) = |x|2sA , and define

Z(s,Φ) =

∫
GA/Gk

| det g|2sA
∑
x∈V ′k

Φ(g · x) dAg,

which is proved in [19] to be absolutely and locally uniformly convergent for Re(s) > 1,

and to have a meromorphic continuation to the entire s-plane which is holomorphic

except for simple poles at s = 1 and s = 5/6.

By rewriting the inner summation overGk-equivalence classes and then exchanging

summation and integration, we obtain

Z(s,Φ) =
∑

x∈Gk\V ′k

1

|Gk,x|

∫
GA

| det g|2sA Φ(g · x) dAg,

where x ranges over representatives of the Gk-equivalence classes of nonsingular forms

in V ′k . Assuming the Schwartz-Bruhat function Φ = ⊗vΦv is of product form, the

integral above has an Euler product∫
GA

| det g|2sA Φ(g · x) dAg =
∏
v

∫
Gkv

| det gv|2sv Φv(gv · x) dvgv.

For each place v, the form x belongs to one αv of finitely many orbits in V ′kv over kv.

Thus, there is an element gx,v ∈ Gkv such that xαv = gx,v ·x, using the standard orbital

representatives mentioned in Section 2.2 (see page 67 of [5]). Note that P (xαv) =

P (gx,v ·x) = (det gx,v)
2 P (x). Then the Euler factor may be rewritten by substitution

as ∫
Gkv

| det gv|2sv Φv(gv · x) dvgv =

∫
Gkv

| det gv|2sv Φv(gvg
−1
x,v · xαv) dvgv

= | det gx,v|2sv
∫
Gkv

| det gv|2sv Φv(gv · xαv) dvgv

=
|P (xαv)|sv
|P (x)|sv

∫
Gkv

| det gv|2sv Φv(gv · xαv) dvgv
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Note that for x ∈ V ′k we have |P (x)|A =
∏

v |P (x)|v = 1 by the product formula.

Also, if k′/k is an extension of degree at most 3 whose Galois closure is the splitting

field k(x) of x, then P (xαv) is the v-adic component of the adelic relative discriminant

∆(k′/k) as defined in [8], and so

∏
v

|P (xαv)|v = d−1k′/k

in terms of the absolute norm of the relative discriminant of k′/k. We introduce the

following notation for the local zeta functions of the space of binary cubic forms

Zαv(s,Φv) =

∫
Gkv

| det gv|2sv Φv(gv · xαv) dvgv.

Then returning to the Euler product, we have∫
GA

| det g|2sA Φ(g · x) dAg =
∏
v

∫
Gkv

| det gv|2sv Φv(gv · x) dvgv

= d−sk′/k

∏
v

Zαv(s,Φv).

In this notation, αv denotes the local orbit corresponding to the form x or its corre-

sponding extension k′/k of degree at most 3.

At this point, we are ready to convert the zeta function from a sum over orbits x ∈

Gk\V ′k to a sum over extensions k′/k of degree at most 3. We shall put o(k′/k) = |Gk,x|

in all cases where k(x)/k is a Galois extension of degree at most 3. When the splitting

field k(x)/k is an S3-extension, it is the Galois closure of any of three conjugate cubic

subextensions k′/k. We shall allow our series to include the same term for each of

those cubic subextensions, and to compensate we set o(k′) = o(k′/k) = 3 instead of

|Gk,x| = 1. With these conventions, we now have the following series expansion of the

adelic zeta function

Z(s,Φ) =
∑
k′/k

d−sk′/k
o(k′)

∏
v

Zαv(s,Φv). (2.1)

Again the local orbits αv depend on the local type of k′/k over v.
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The Euler products in (2.1) include factors for the infinite places v. Our next step

toward producing Shintani’s Dirichlet series is to factor out the local zeta functions for

the infinite places. This is where the signatures come into play. If v is a complex place,

there is only one nonsingular orbit. If v is a real place, there are two nonsingular orbits:

one for forms of positive discriminant and one for forms of negative discriminant. We

shall denote these choices by αv = + and − just as in the definition of signature

in Chapter 1.2. We write the signature as a vector α = (αv)v|∞ of these choices for

all infinite places, and we denote the set of signatures α by A (or A∞ if we wish to

emphasize that this is a choice of orbits at the infinite places). For α ∈ A∞, we define

Zα(s,Φ∞) =
∏
v|∞

Zαv(s,Φv).

where Φ∞ denotes the part of the Schwartz-Bruhat function Φ corresponding to the

infinite places of k. Thus, Φ∞ is a rapidly decreasing C∞-function on the real vector

space
∏

v|∞ kv of dimension n. As in Chapter 1.2, for each signature α, we define Kα

to be the collection of all extensions k′/k of degree at most 3 which have signature

α. Then at last we have the decomposition of the adelic zeta function as follows

Z(s,Φ) =
∑
α∈A∞

Zα(s,Φ∞) ξα(s,Φ0) (2.2)

with

ξα(s,Φ0) =
∑
k′∈Kα

d−sk′/k
o(k′)

∏
v-∞

Zαv(s,Φv) (2.3)

where Φ0 = ⊗v-∞Φv. Again, take note that the orbit αv for each finite place is

determined by the extension k′/k.

For each finite place v, the Schwartz-Bruhat function Φv is a locally constant

function of compact support on kv. Thus, ξα(s,Φ0) does turn out to be essentially a

Dirichlet series. To obtain Shintani’s series in particular, we make a standard choice of

these Schwartz-Bruhat functions at finite places, namely, Φv = Φ0,v, the characteristic
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function of the submodule Vov of all binary cubic forms with coefficients in ov, the

maximal compact subring of kv. With this choice, in the case of k = Q (or any field

k of class number 1) the sum over V ′Q in the definition of the zeta function Z(s,Φ)

reduces to a sum over V ′Z, the set of nonsingular integral binary cubic forms, and we

have the identity

Z(s,Φ) = Z∞(s,Φ∞) =

∫
GR/GZ

| det g|s
∑
x∈V ′Z

Φ∞(g · x) dRg,

exactly the zeta function defined by Shintani in [17]. Thus, the natural generalization

of Shintani’s Dirichlet series is

ξα(s) =
∑
k′∈Kα

d−sk′/k
o(k′)

∏
v-∞

Zαv(s,Φ0,v)

Datskovsky-Wright calculated these local integrals to be

Zαv(s,Φ0,v) = (1− q1−6sv )−1(1− q−2sv )−1 · (2.4)

(1 + q−2sv )2, if αv is of type (1),

1 + q−4sv , if αv is of type (2u),

1 + q−2sv , if αv is of type (2r),

1− q−2sv + q−4sv , if αv is of type (3u),

1, if αv is of type (3r),

where qv denotes the module of the finite place v.

2.4 Fourier transforms and the dual Dirichlet series

The analytic properties of Shintani’s Dirichlet series are derived by means of the

Poisson Summation Formula and the use of Fourier transforms. We will establish

our conventions for Fourier transform in this section and then review the functional

equation for the adelic zeta function defined in the previous section. Then we will ex-
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tract the dual Dirichlet series, which are the other components to the Ohno-Nakagawa

identity.

We have to define standard nontrivial additive characters 〈·〉v on the local fields

kv for all places v of k and the adelic additive character 〈x〉 =
∏

v〈xv〉v on adeles

x = (xv)v ∈ Ak. First, for Q, we choose standard additive characters on Q∞ = R and

Qp for any prime p as follows

〈x〉R = exp(2πi x)

〈x〉p = exp(−2πi {x}p)

where {x}p is defined as
∑−1

j=−m aj p
j ∈ Q in terms of the standard p-adic expansion

x =
∑∞

j=−m aj p
j with coefficients 0 ≤ aj ≤ p − 1. Note that all these characters

are trivial on Z. Also, if x ∈ Q, then by the theorem of partial fractions we have

x −
∑

p {x}p ∈ Z, where the sum extends over all prime numbers p. That proves

that the adelic character 〈x〉 = 〈x〉A =
∏

v〈xv〉v is trivial on Q embedded along the

diagonal in AQ.

To define the additive characters on extensions kv, we use the trace from kv to R

or Qp. Thus, for infinite places v, 〈x〉v = 〈Trkv/R(x)〉R, and for finite places v | p we

have 〈x〉v = 〈Trkv/Qp(x)〉p. For x ∈ k, we have

Trk/Q(x) =
∑
v|∞

Trkv/R(x)

and

Trk/Q(x) =
∑
v|p

Trkv/Qp(x)

for all finite primes p. This implies that the adelic additive character 〈x〉 =
∏

v〈xv〉v

on Ak is trivial on k embedded along the diagonal in Ak. As in Weil [18], Defn. VII.2.4,

we choose a differental idele δ = (δv)v such that, for all v | ∞ we have δv = 1 and, for
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all v - ∞ the largest ideal contained in the kernel of 〈·〉v is δ−1v ov. Then δvov is the

different of kv/Qp. By Prop. VII.2.6 in Weil [18], we have |δ|A = d−1k .

Using the measure dvx defined in Section 2.1, we define the Fourier transform on

Schwartz-Bruhat functions Φ on kv by

Φ̂(x) =

∫
kv

Φ(y)〈yx〉v dvy.

Then Φ̂ is also a Schwartz-Bruhat function on kv, and we have the inversion formula

Φ(x) = |δv|−1v
∫
kv

Φ̂(y)〈−yx〉v dvy.

Similarly, for an adelic Schwartz-Bruhat function Φ, we define

Φ̂(x) =

∫
Ak

Φ(y)〈yx〉A dAy,

with inversion formula

Φ(x) = dk

∫
Ak

Φ̂(y)〈−yx〉A dAy.

The self-dual measure on Ak would then be d
−1/2
k dAx.

To extend these concepts to the vector space V of binary cubic forms, we compose

the above-defined additive characters with the bilinear alternating form [x, y] on V

defined in Section 2.2. We use the notation

〈x, y〉 = 〈[x, y]〉

with subscripts v and A as needed. With Fourier transform for functions on Vkv

defined by

Φ̂(x) =

∫
Vkv

Φ(y) 〈x, y〉v dvy

we have the inversion formula

Φ(x) = |3|−1v |δv|2v
∫
Vkv

Φ̂(y) 〈x, y〉v dvy,
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due to the coefficients 1
3

in the bilinear form. A negative sign is not needed due to

the bilinear form being alternating. For the adelic Fourier transform Φ̂, we have

Φ(x) = d−2k

∫
VA

Φ̂(y) 〈x, y〉A dAy,

since the product formula implies |3|A = 1. It follows that the self-dual measure on

VA is d−2k dAx, where dAx is the measure chosen in Section 2.2.

In Theorem 6.1 of [19], Wright generalized Shintani’s proof for Q to establish the

functional equation

Z(s, Φ̂) = Z(1− s,Φ)

for the adelic zeta function defined in Section 2.3. In this functional equation Φ̂ is

defined relative to the self-dual measure on VA. To comply with our choice of measure,

we must replace Φ̂ by d−2k Φ̂, which gives the functional equation

Z(s, Φ̂) = d2kZ(1− s,Φ).

We next carry out the same unfolding process for Z(s, Φ̂) into Dirichlet series that

we did for Z(s,Φ) in Section 2.3. If Φ = ⊗vΦv has product form, then Φ̂ = ⊗vΦ̂v

also has product form, and in the end we find that

Z(s, Φ̂) =
∑
α∈A∞

Zα(s, Φ̂∞) ξα(s, Φ̂0)

with

ξ̂α(s, Φ̂0) =
∑
k′∈Kα

d−sk′/k
o(k′)

∏
v-∞

Zαv(s, Φ̂v)

with all the same notational conventions as in Section 2.3. We now again make the

choice that for all finite places v we have Φv = Φ0,v is the characteristic function

of Vov . Then the Fourier transform Φ̂0,v may be computed to be the characteristic

function of (δ−1v ov) × (3δ−1v ov) × (3δ−1v ov) × (δ−1v ov) ⊂ Vkv , or more briefly Φ̂0,v(x) =

Φ0,v(δv(x1,
1
3
x2,

1
3
x3, x4)), as mentioned on p. 69 in [5] (with a slight typographical
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error entering 3 instead of 1
3

as it should be). We would like to factor out the differental

element as much as possible. First we define Ψ0,v(x) = Φ0,v(x1,
1
3
x2,

1
3
x3, x4), so

that Φ̂0,v(x) = Ψ0,v(δvx). Note that

δv 0

0 δv

 · x = δvx by the definition of our

representation of GL2 on V . Then by changing variables in the integral defining the

local zeta function, we have

Zαv(s, Φ̂0,v) =

∫
Gkv

| det gv|2sv Φ̂0,v(gv · xαv) dvgv

=

∫
Gkv

| det gv|2sv Ψ0,v(

δv 0

0 δv

 gv · xαv) dvgv

= |δv|−4sv

∫
Gkv

| det gv|2sv Ψ0,v(gv · xα) dvgv

= |δv|−4sv Zαv(s,Ψ0,v).

Using the fact that
∏

v |δv|v = d−1k , we have, for this choice of Φv = Φ0,v for all finite

places v,

Z(s, Φ̂) = d4sk
∑
α∈A∞

Zα(s, Φ̂∞) ξ̂α(s)

with

ξ̂α(s) =
∑
k′∈Kα

d−sk′/k
o(k′)

∏
v-∞

Zαv(s,Ψ0,v).

This completes our definition of the dual Dirichlet series ξ̂α(s). It is our major goal

now to work out the relationship between ξ̂α(s) and ξα(s) conjectured in Chapter 1.2.

As a consequence of the functional equation for the adelic zeta function, we have

the relation ∑
α∈A∞

Zα(s, Φ̂∞) ξ̂α(s) = d2−4sk

∑
α∈A∞

Zα(1− s,Φ∞) ξα(1− s). (2.5)

Later, as needed, we shall review the known facts about the residues of these Dirich-

let series, and the functional equation satisfied by the local zeta functions at infinite
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places. In the next chapter, we calculate explicit expressions for Zαv(s,Ψ0,v), compa-

rable to those produced for Zαv(s,Φ0,v) in [5]. Note that if v is a finite place that does

not lie over the prime 3, then 3 is a unit in kv and it follows that Ψ0,v = Φ0,v. Thus,

in that case, the evaluation of the local zeta function is given by equation (2.4). In

the next chapter, we shall consider exclusively places v | 3.
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CHAPTER 3

Local integrals of a Fourier transform

3.1 Statement of the integral to be calculated

In this chapter, we address the problem of calculating for a finite place v the local zeta

function Zαv(s,Ψ0,v) as described at the end of Section 2.4. Since our work in this

chapter will be exclusively over a local field, we shall simplify our notation by letting

K be a nonarchimedean local field and using the notation of Sections 2.1 and 2.2. To

review, we denote by O, P , π, q, respectively, the maximal compact subring of O,

the unique prime ideal P of O, a uniformizer or any generator of P so that P = πO,

and the order of the finite field O/P , respectively. We normalize the absolute value

|a| for a ∈ K to be the modulus of multiplication by a with respect to any additive

Haar measure on K. Thus, |π| = q−1. We denote by dy the additive Haar measure

on K for which the measure of O is 1, and by dg the invariant measure on GK so

that GO has measure 1.

Our goal is to evaluate the local integral

Zα(s,Ψ0) =

∫
GK

| det g|2s Ψ0(g · xα) dg

where s is a complex number with Re(s) > 1, α is an orbit of nonsingular binary cubic

forms in VK , xα is the standard representative of α, and Ψ0(x) = Φ0(x1,
1
3
x2,

1
3
x3, x4)

where Φ0 is the characteristic function of the compact subset VO. Hence, Ψ0 is the

characteristic function of the subset O × 3O × 3O × O ⊂ VO. If 3 is a unit in K,

then Ψ0 = Φ0, and this evaluation was completed in [5]. Thus, in this chapter we

assume that K is a 3-field of characteristic not equal to 3. For the definition of Fourier
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transform given in Section 2.4 and a differental element δ ∈ K, we saw in that section

that

Zα(s, Φ̂0) = |δ|−4s Zα(s,Ψ0)

which explains how this integral arises as a Fourier transform. The result we will

prove in this chapter is the following:

Theorem 3.1 Assuming that 3 is a uniformizer of K, we have

Zα(s,Ψ0) = (1− q1−6s)−1(1− q−2s)−1 ·

q−4s(1 + q1−2s + 2q1−4s) if α is of type (1),

q−4s(1 + q1−2s) if α is of type (2u),

q−2s(1 + q1−4s) if α is of type (2r),

q−4s(1 + q1−2s − q1−4s) if α is of type (3u),

1 if α is of type (3r).

3.2 Reductions of the local integral

We begin with some simple reductions in this calculation. First, we writeGK = UKBK

using the Iwasawa decomposition defined in Section 2.2 of Chapter 2. For any u in

UK = GO, we have that u ·x is in VO if and only if x is in VO. Hence Φ0(u ·x) = Φ0(x)

for all x ∈ VK . The same holds for Ψ0. Then, considering the measure on GK defined

above, we have

Zα(s,Ψ0) =

∫
UK

du

∫
BK

db | det(ub)|2s Ψ0(ub · xα)

=

∫
UK

du | detu|2s
∫
BK

db | det b|2s Ψ0(u · (b · xα))

=

∫
UK

du ·
∫
BK

db | det b|2s Ψ0(b · xα)

=

∫
BK

db | det b|2s Ψ0(b · xα) .
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The last integral gives us a motivation to define, for any Schwartz-Bruhat function

Ψ, the integral transform

Iα(s,Ψ) =

∫
BK

db | det b|2s Ψ(b · xα) .

Since any b in BK can be written as b = n(y)a(t, u) for some y ∈ K and t, u in K×,

we can express this last integral as

Iα(s,Ψ) =

∫
K×

d×t

∫
K×

d×u

∫
K

dy |tu|2sΨ(n(y)a(t, u) · xα) .

Considering the operator D on the space of Schwartz-Bruhat functions defined by

DΨ = Ψ− a(π2, π) · Ψ, or more explicitly, (DΨ)(x) = Ψ(x)− Ψ(a(π−2, π−1) · x), we

conclude that

Iα(s,DΨ) = Iα(s,Ψ)−
∫
K×

d×t

∫
K×

d×u

∫
K

dy |tu|2s Ψ(a(π−2, π−1) · (n(y)a(t, u) · xα))

= Iα(s,Ψ)−
∫
K×

d×t

∫
K×

d×u

∫
K

dy |tu|2s Ψ(n(πy)a(π−2t, π−1u) · xα)

= Iα(s,Ψ)− |π|−1+6sIα(s,Ψ)

= (1− q1−6s) Iα(s,Ψ) ,

where we have made the substitutions y 7→ π−1y, t 7→ π2t, and u 7→ πu.

In particular, for Ψ = Ψ0 and putting Ψ1 = DΨ0 we obtain

Zα(s,Ψ0) = (1− q1−6s)−1 Iα(s,Ψ1) .

So in order to calculate the value of this zeta function explicitly, we simply need to

evaluate Iα(s,Ψ1). By definition,

Ψ1(x) = Ψ0(x)−Ψ0(π
−3x1, π

−2x2, π
−1x3, x4)

= Φ0(x1,
1
3
x2,

1
3
x3, x4)− Φ0(π

−3x1,
1
3
π−2x2,

1
3
π−1x3, x4) .

In other words, Ψ1 is the characteristic function of (O× 3O× 3O×O) \ (P 3× 3P 2×

3P ×O).
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In cases (1) and (2) we take xα = (0, 1, λ, µ). Case (1) corresponds to λ = 0 and

µ = 1 and so xα = (0, 1, 1, 0). The integral Iα(s,Ψ1) becomes now

Iα(s,Ψ1) =

∫
K×

d×t

∫
K×

d×u

∫
K

dy |t|2s−1 |u|2s Ψ1

(
0, t, 2y + u,

y(y + u)

t

)
.

Case (2) corresponds to λ = θ and µ = θ where O′ = O[θ] is the maximal compact

subring of a quadratic extension K ′ = K(θ) of K and so xα = (0, 1, θ + θ, θθ). If the

extension is unramified, case (2u), we take θ to be a unit not congruent to any unit in

O module π. For the ramified extension, case (2r), we take θ to be the uniformizer π.

Given this choice of xα we can write the integral Iα(s,Ψ1) for case (2), after making

an appropriate substitution, as

Iα(s,Ψ1) =

∫
K×

d×t

∫
K×

d×u

∫
K

dy |t|2s−1 |u|2s Ψ1

(
0, t,Tr(y + uθ),

N(y + uθ)

t

)
,

where Tr and N are the relative trace and norm, respectively, for the extension K ′

over K.

In case (3) we take xα = (1, θ + θ′ + θ′′, θθ′ + θθ′′ + θ′θ′′, θθ′θ′′) where O′ = O[θ]

is the maximal compact subring of a cubic extension K ′ = K(θ) of K. For case (3u)

we take θ to be a unit not congruent to any unit in O module π. For the case (3r) we

take θ to be the uniformizer π. For this choice of xα we can write Iα(s,Ψ1), following

a change of variables, as

Iα(s,Ψ1) =

∫
K×

d×t

∫
K×

d×u

∫
K

dy |t|−2s−1|u|6s

·Ψ1

(
t,Tr(y + uθ),

S(y + uθ)

t
,
N(y + uθ)

t2

)
,

where Tr, S, and N are the relative trace, second symmetric function, and norm,

respectively, for this cubic extension.

In the next section we will calculate the value of the integral Iα(s,Ψ1). By the

reductions done in this section we know that this will suffice to prove Theorem 3.1.

The calculation will be done assuming that 3 is a uniformizer in K, i.e. 3O = P .
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When that is the case, Ψ1 becomes the characteristic function of (O × P × P ×O) \

(P 3 × P 3 × P 2 ×O).

3.3 Evaluation of the local integral

Let us complete the task of evaluating Iα(s,Ψ0) for each of the possible types of α.

3.3.1 Type (1)

In the corresponding integral, since 2 is a unit, we can make the following change of

variables (t, u, y) 7→ (t/4, u, (y − u)/2) to obtain

Iα(s,Ψ1) =

∫
K×

d×t

∫
K×

d×u

∫
K

dy |t|2s−1 |u|2s Ψ1

(
0, t, y,

y2 − u2

t

)
.

The integral is nonzero only if

(
t, y,

y2 − u2

t

)
belongs to (P ×P ×O)\ (P 3×P 2×O)

and in this case its value is

Iα(s,Ψ1) =

∫
K×
|t|2s−1 d×t

∫
K×
|u|2s d×u

∫
K

dy .

The integral is therefore nonzero in the following cases:

(a) t ∈ P×, y ∈ P , y2 − u2 ∈ tO. These conditions imply that u2 ∈ P and so

u ∈ P = πO. Thus, the integral in this case becomes

I(a) =

∫
πO×
|t|2s−1 d×t

∫
P

|u|2s d×u
∫
P

dy

=q1−2s ·
∞∑
l=1

∫
πlO×
|u|2s d×u · q−1

=q−2s
∞∑
l=1

q−2sl

=
q−4s

1− q−2s
.
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(b) t ∈ π2O×, y ∈ P , y2 − u2 ∈ tO. Again as before, u2 ∈ P and so u ∈ P = πO.

Hence, the integral is now

I(b) =

∫
π2O×

|t|2s−1 d×t
∫
P

|u|2s d×u
∫
P

dy

=q2−4s ·
∞∑
l=1

∫
πlO×
|u|2s d×u · q−1

=q1−4s
∞∑
l=1

q−2sl

=
q1−6s

1− q−2s
.

(c) t ∈ πlO×, y ∈ πO×, y2 − u2 ∈ tO, l ≥ 3. From these conditions it follows

that (y − u)(y + u) ∈ P l ⊂ P . But P is a prime ideal so either y − u ∈ P

or y + u ∈ P . In the former case, since y + u = 2y − (y − u) ∈ πO×, we

conclude that y − u ∈ P l−1 and so u ∈ y + P l−1 = y(1 + P l−2). In the latter

case, since y − u = 2y − (y + u) ∈ πO×, we obtain that y + u ∈ P l−1 and so

u ∈ −y+P l−1 = −y(1+P l−2). This means that u ∈ y(1+P l−2)t−y(1+P l−2)

for a fixed y.

Before we continue we observe that according to the definition of the measures

given in Chapter 2, we have

d×u =
1

1− q−1
du

|u|
.

Moreover, since O×/(1 + P ) ∼= (O/P )× and (1 + Pm−1)/(1 + Pm) ∼= O/P for

m ≥ 2, we have that the measure d×u satisfies∫
1+Pm

d×u =
1

(q − 1)qm−1
m ≥ 1 .
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We can finally calculate the integral for this case.

I(c) =
∞∑
l=3

∫
πlO×
|t|2s−1 d×t

∫
πO×

dy

(∫
y(1+P l−2)

|u|2s d×u+

∫
−y(1+P l−2)

|u|2s d×u
)

=
∞∑
l=3

∫
πlO×
|t|2s−1 d×t ·

∫
πO×

dy · 2q−2s
∫
1+P l−2

|u|2s d×u

=
∞∑
l=3

q(1−2s)l · (1− q−1)q−1 · 2q−2s

(q − 1)ql−3

=2q1−2s
∞∑
l=3

q−2sl

=
2q1−8s

1− q−2s
.

Now, combining these results we obtain the desired result for type (1)

Iα(s,Ψ1) = I(a) + I(b) + I(c) =
q−4s(1 + q1−2s + 2q1−4s)

1− q−2s
.

3.3.2 Type (2u)

When K ′ = K(θ) is a unramified quadratic extension of K with maximal compact

subring O′ = O[θ], we have that θ is a unit and π is also a uniformizer of K ′. Hence,

y+ uθ is in (P ′)m if and only if both y and u are in P . The corresponding integral is

nonzero only if

(
t,Tr(y + uθ),

N(y + uθ)

t

)
is in (P ×P ×O) \ (P 3×P 2×O) and its

value is given by

Iα(s,Ψ1) =

∫
K×
|t|2s−1 d×t

∫
K×
|u|2s d×u

∫
K

dy .

The integral is nonzero for the following cases:

(a) t ∈ πO×, Tr(y+ uθ) ∈ P , N(y+ uθ) ∈ tO. Under these conditions, y+ uθ ∈ P ′

and so y ∈ P and u ∈ P . This integral was calculated above, type (1) case (a),

and its value is

I(a) =

∫
πO×
|t|2s−1 d×t

∫
P

|u|2s d×u
∫
P

dy

=
q−4s

1− q−2s
.
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(b) t ∈ π2O×, Tr(y + uθ) ∈ P , N(y + uθ) ∈ tO. With these conditions, as before,

y ∈ P and u ∈ P . We have already calculated this integral, type (1) case (b),

and we found that

I(b) =

∫
π2O×

|t|2s−1 d×t
∫
P

|u|2s d×u
∫
P

dy

=
q1−6s

1− q−2s
.

Hence, we have found the value of the integral for type (2u)

Iα(s,Ψ1) = I(a) + I(b) =
q−4s(1 + q1−2s)

1− q−2s
.

3.3.3 Type (2r)

When K ′ = K(θ) is a ramified quadratic extension of K with maximal compact

subringO′ = O[θ], we have that θ is a uniformizer ofK ′ and N(θ) is a uniformizer ofK.

Then N(y + uθ) is in Pm if and only |y| ≤ q−m/2 and |u| ≤ q−(m−1)/2. The associated

integral is nonzero only if

(
t,Tr(y + uθ),

N(y + uθ)

t

)
is in (P×P×O)\(P 3×P 2×O)

and this case it reduces to

Iα(s,Ψ1) =

∫
K×
|t|2s−1 d×t

∫
K×
|u|2s d×u

∫
K

dy .

The integral is nonzero for the following cases:

(a) t ∈ πO×, Tr(y + uθ) ∈ P , N(y + uθ) ∈ tO. These conditions imply that

|y| ≤ q−1/2 and |u| ≤ 1 and so y ∈ P and u ∈ O. Then the integral is

I(a) =

∫
πO×
|t|2s−1 d×t

∫
O

|u|2s d×u
∫
P

dy

=q1−2s ·
∞∑
l=0

∫
πlO×
|u|2s d×u · q−1

=q−2s
∞∑
l=0

q−2sl

=
q−2s

1− q−2s
.
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(b) t ∈ π2O×, Tr(y + uθ) ∈ P , N(y + uθ) ∈ tO. These conditions imply that

|y| ≤ q−1 and |u| ≤ q−1/2 and so y ∈ P and u ∈ P . Then the value of the

integral is already known, see type (1) case (b).

I(b) =

∫
π2O×

|t|2s−1 d×t
∫
P

|u|2s d×u
∫
P

dy

=
q1−6s

1− q−2s
.

Therefore, we have calculated the value of the integral for type (2r)

Iα(s,Ψ1) = I(a) + I(b) =
q−2s(1 + q−4s)

1− q−2s
.

3.3.4 Type (3u)

If K ′ = K(θ) is a unramified cubic extension of K with maximal compact subring

O′ = O[θ], then θ is a unit and π is a uniformizer of K ′. Thus, y + uθ is in (P ′)m if

and only if both y and u are in Pm. Additionally, we can assume that Tr(θ) = 0 and

S(θ) and N(θ) are units of K. And for any y and u in K, we have

Tr(y + uθ) = 3y

S(y + uθ) = 3y2 + u2 S(θ)

N(y + uθ) = y3 + yu2 S(θ) + u3 N(θ) .

The corresponding integral is nonzero only if

(
t,Tr(y + uθ),

S(y + uθ)

t
,
N(y + uθ)

t2

)
is in (O × P × P ×O) \ (P 3 × P 3 × P 2 ×O) and its value is

Iα(s,Ψ1) =

∫
K×
|t|−2s−1 d×t

∫
K×
|u|6s d×u

∫
K

dy .

Therefore, the integral is nonzero in the following cases:

(a) t ∈ O×, Tr(y + uθ) ∈ P , S(y + uθ) ∈ tP , N(y + uθ) ∈ t2O. The first and last

conditions implies that y+uθ ∈ O′ and so y ∈ O and u ∈ O. But to satisfy the
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third condition, we actually require u ∈ P . So the integral becomes

I(a) =

∫
O×
|t|−2s−1 d×t

∫
P

|u|6s d×u
∫
O

dy

=1 ·
∞∑
l=1

∫
πlO×
|u|6s d×u · 1

=
∞∑
l=1

q−6sl

=
q−6s

1− q−6s
.

(b) t ∈ πO×, Tr(y + uθ) ∈ P , S(y + uθ) ∈ tP , N(y + uθ) ∈ t2O. These conditions

imply that y + uθ ∈ P ′ and so y ∈ P and u ∈ P . With this the integral is now

I(b) =

∫
πO×
|t|−2s−1 d×t

∫
P

|u|6s d×u
∫
P

dy

=q2s+1 ·
∞∑
l=1

∫
πlO×
|u|6s d×u · q−1

=q2s
∞∑
l=1

q−6sl

=
q−4s

1− q−6s
.

(c) t ∈ π2O×, Tr(y + uθ) ∈ P , S(y + uθ) ∈ tP , N(y + uθ) ∈ t2O. With these

conditions we have y+ uθ ∈ P 2 and so y ∈ P 2 and u ∈ P 2. And the integral in

this case is given by

I(c) =

∫
π2O×

|t|−2s−1 d×t
∫
P 2

|u|6s d×u
∫
P 2

dy

=q4s+2 ·
∞∑
l=2

∫
πlO×
|u|6s d×u · q−2

=q4s
∞∑
l=2

q−6sl

=
q−8s

1− q−6s
.

(d) t ∈ π3O×, (Tr(y + uθ), S(y + uθ)) ∈ (P × tP ) \ (P 3 × tP 2), N(y + uθ) ∈ t2O.

The first and last conditions imply that y + uθ ∈ (P ′)2 and so y ∈ P 2 and
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u ∈ P 2. However, the remaining condition will be valid only if u ∈ π2O×. So

the integral becomes

I(d) =

∫
π3O×

|t|−2s−1 d×t
∫
π2O×

|u|6s d×u
∫
P 2

dy

=q6s+3 · q−12s · q−2

=q1−6s .

Putting together these partial results gives us the value of the integral for type

(3u)

Iα(s,Ψ1) = I(a) + I(b) + I(c) + I(d) =
q−4s(1 + q1−2s − q1−4s)

1− q−2s
.

3.3.5 Type (3r)

If K ′ = K(θ) is a ramified cubic extension of K with maximal compact subring

O′ = O[θ], then θ is a uniformizer of K ′ and N(θ) is a uniformizer of K. Hence,

N(y + uθ) is in Pm if and only if |y| ≤ q−m/3 and |u| ≤ q−(m−1)/3. Moreover, we

assume that Tr(θ) ∈ P , S(θ) ∈ P , and N(θ) ∈ πO×. For any y and u in K we have

Tr(y + uθ) = 3y + uTr(θ)

S(y + uθ) = 3y2 + 2yuTr(θ) + t2 S(θ)

N(y + uθ) = y3 + y2uTr(θ) + yu2 S(θ) + u3 N(θ) .

As before, the integral is nonzero only if

(
t,Tr(y + uθ),

S(y + uθ)

t
,
N(y + uθ)

t2

)
is in

(O × P × P ×O) \ (P 3 × P 3 × P 2 ×O) and its value is

Iα(s,Ψ1) =

∫
K×
|t|−2s−1 d×t

∫
K×
|u|6s d×u

∫
K

dy .

Therefore, to have a nonzero integral we have to consider following cases:

(a) t ∈ O×, Tr(y + uθ) ∈ P , S(y + uθ) ∈ tP , N(y + uθ) ∈ t2O. From these

assumptions, we conclude that |y| ≤ 1 and |u| ≤ q1/3, i.e. y ∈ O and u ∈ O.
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The integral reduces in this case to

I(a) =

∫
O×
|t|−2s−1 d×t

∫
O

|u|6s d×u
∫
O

dy

=1 ·
∞∑
l=0

∫
πlO×
|u|6s d×u · 1

=
∞∑
l=0

q−6sl

=
1

1− q−6s
.

(b) t ∈ πO×, Tr(y + uθ) ∈ P , S(y + uθ) ∈ tP , N(y + uθ) ∈ t2O. Using these

assumptions, we obtain |y| ≤ q−2/3 and |u| ≤ q−1/3, i.e. y ∈ P and u ∈ P . The

integral, which was calculated for type (3u) case (b), is

I(b) =

∫
πO×
|t|−2s−1 d×t

∫
P

|u|6s d×u
∫
P

dy

=
q−4s

1− q−6s
.

(c) t ∈ π2O×, Tr(y+uθ) ∈ P , S(y+uθ) ∈ tP , N(y+uθ) ∈ t2O. These assumptions

imply that |y| ≤ q−4/3 and |u| ≤ q−1, i.e. y ∈ P 2 and u ∈ P . So our integral is

I(c) =

∫
π2O×

|t|−2s−1 d×t
∫
P

|u|6s d×u
∫
P 2

dy

=q4s+2 ·
∑
l=1

∫
πlO×
|u|6s d×u · q−2

=q4s
∞∑
l=1

q−6sl

=
q−2s

1− q−6s
.

These results can be combined to get the integral for type (3r)

Iα(s,Ψ1) = I(a) + I(b) + I(c) =
1

1− q−2s
.

This concludes the evaluation of Iα(s,Ψ0) in all cases, and therefore completes the

proof of Theorem 3.1.
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3.4 Verification of a simple identity

In this section we use an identity which was shown to be true by Datskovsky and

Wright in order to verify the validity of Theorem 3.1. Consider any locally integrable

function φ on VK . By formula (2.4) on page 38 of [5] we have the following identity∫
VK

φ(x) dx =
∑
α

bKcα

∫
GK

| det g|2 φ(g · xα) dg ,

where the sum is taken over all the GK–orbits in VK , bK = q1−2e(1− q−1)(1− q−2), e

is the order of δ in K, and cα =
|P (xα)|
o(α)

where P (xα) is the discriminant of xα and

o(α) is the order of the stabilizer in GK of any x ∈ α. In particular, we can take φ to

be Φ̂0. The left hand side is simply∫
VK

Φ̂0(x) dx = |3| |δ|−2 Φ0(0) = |3| |δ|−2

by the Fourier inversion formula and our choice of the measure dx on VK . The right

hand side becomes ∑
α

bKcα Zα(1, Φ̂0) = bK |δ|−4
∑
α

cα Zα(1,Ψ0)

by the definition of the orbital zeta function.

These formulas are valid for any p–field whose characteristic is not 2 or 3. We

want to very the above identity for the kind of fields we have been considering in

this chapter, that is for 3–fields for which 3 is a uniformizer. Therefore, under these

assumptions using Theorem 3.1 and after canceling out common terms, the identity

we are trying to show reduces to∑
α

cα Zα(1,Ψ0) = b−1K |3| |δ|
2 = q−2(1− q−1)−1(1− q−2)−1 .

For convenience, we write α(j) to indicate that α is an orbit of type (j), where

j take the values 1, 2u, 3u, 2r, 3r. We recall that cα(1)
= 1/6, cα(2u)

= 1/2, and

cα(3u)
= 1/3. Moreover,∑

α(2r)

cα(2r)
=

1

q
and

∑
α(3r)

cα(3r)
=

1

q2
,
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where the sums are taken over all the orbits α of type (2r) and (3r), respectively.

Since |π| = q−1, the orbital zeta function of Ψ0 at 1 can be written by Theorem 3.1

and the definition of δ, as

Zα(1,Ψ0) = (1− q−5)−1(1− q−2)−1 ·

q−4(1 + q−1 + 2q−3) if α is of type (1),

q−4(1 + q−1) if α is of type (2u),

q−2(1 + q−3) if α is of type (2r),

q−4(1 + q−1 − q−3) if α is of type (3u),

1 if α is of type (3r).

We can now use all this information to calculate

∑
α

cα Zα(1,Ψ0) =
1

6
Zα(1)

(1,Ψ0) +
1

2
Zα(2u)

(1,Ψ0) +
1

3
Zα(3u)

(1,Ψ0)

+
1

q
Zα(2r)

(1,Ψ0) +
1

q2
Zα(3r)

(1,Ψ0)

=(1− q−5)−1(1− q−2)−1
[

1

6
· q−4(1 + q−1 + 2q−3) +

1

2
· q−4(1 + q−1)

+
1

3
· q−4(1 + q−1 − q−3) +

1

q
· q−2(1 + q−3) +

1

q2
· 1
]

=(1− q−5)−1(1− q−2)−1(q−2 + q−3 + q−4 + q−5 + q−6)

=q−2(1− q−5)−1(1− q−2)−1(1 + q−1 + q−2 + q−3 + q−4)

=q−2(1− q−1)−1(1− q−2)−1

which concludes the verification of the identity.
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CHAPTER 4

Residues of the Dirichlet series and generalizing Ohno-Nakagawa

In [5], formulas were calculated for the residues of the Dirichlet series ξα(s) at its

poles s = 1 and s = 5/6, but the calculation of the residue formulas for the dual

Dirichlet series ξ̂α(s) was left incomplete. The method of that paper required the

calculation of local integrals of a Schwartz-Bruhat function, which was completed for

nonarchimedean local fields for the characteristic functions Φ0, but not for its Fourier

transform Φ̂0. As we saw in the previous chapter, these new local integrals are more

difficult to calculate. We shall use instead the filtration method of [6] to calculate the

residues of the dual Dirichlet series, and thus our results in this chapter will be valid

for all number fields k, and not simply those where 3 is unramified.

At the end of this chapter, we shall use the complete set of residues of both ξα(s)

and ξ̂α(s) to deduce what the correct generalization of Ohno’s conjecture should be.

Our method will verify this conjecture at least at s = 1 and s = 5/6.

4.1 Filtrations of the Dirichlet series

It will be necessary to generalize the decomposition of the adelic zeta function given

in equation (2.2) on page 22. Instead of singling out just the infinite places, we shall

now allow an arbitrary finite set S of places of k to be distinguished. We shall assume

that S contains all infinite places as well as possibly some finite places. For a place

v of k, let Av denote the finite set of Gkv -orbits of nonsingular forms in Vkv . Let

AS =
∏
v∈S

Av. Then α = (αv) will denote a choice from AS, meaning a choice of an

orbit at each place in S. We will call these choices orbit vectors over S.
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Then just as in Section 2.3 of Chapter 2, assuming the Schwartz-Bruhat function

Φ = ⊗vΦv has product type and that Φv = Φ0,v for all finite places v /∈ S, the adelic

zeta function may be decomposed as

Z(s,Φ) =
∑
α∈AS

Zα,S(s,Φ) ξα,S(s)

where now

Zα,S(s,Φ) =
∏
v∈S

Zαv(s,Φv), (4.1)

Zαv(s,Φv) =

∫
Gkv

| det gv|2sv Φv(gv · xαv) dvgv

ξα,S(s) =
∑
k′∈Kα

d−sk′/k
o(k′)

∏
v/∈S

Zαv(s,Φ0,v).

Here xαv is the standard choice of representative for the chosen orbit αv of binary

cubic forms over kv (described in Prop. 2.1, p. 35 of [5]). Also, Kα denotes the set of

extensions k′/k of degree at most 3 so that k′⊗k kv corresponds to the choice of orbit

αv for each place v ∈ S. The choice of S is built into the choice of the orbit vector

α ∈ AS, but we will indicate S explicitly in the notation ξα,S because the technique

we wish to use in this chapter is to extend the distinguished set S of places until

relations between the various Dirichlet series are easier to detect.

In particular, suppose T is a finite set of places of k that contains S. We denote

the set of places in T which do not belong to S as T \ S. Then there is a natural

restriction mapping from orbit vectors in AT to orbit vectors in AS. We will generally

use α to denote a choice of orbits in AS and β to denote a choice of orbits in AT . If

βv = αv for all v ∈ S, we say β|S = α, meaning that β restricted to S agrees with α.

We can decompose the Dirichlet series ξα,S(s) in terms of the series ξβ,T (s) with
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β|S = α as follows

ξα,S(s) =
∑
k′∈Kα

d−sk′/k
o(k′)

∏
v/∈S

Zαv(s,Φ0,v)

=
∑
β|S=α

∑
k′∈Kβ

d−sk′/k
o(k′)

∏
v∈T\S

Zβv(s,Φ0,v)
∏
v/∈T

Zβv(s,Φ0,v)

where the β sum ranges over those β ∈ AT whose restriction to S is α, and we have

explicitly written the Euler product in terms of the local zeta integral factors. Recall

that for v /∈ T , βv is determined as the orbit corresponding to k′/k at v. Thus, it

should be kept in mind that for v /∈ T the orbit βv is a function of the extension k′/k.

Rearranging the above sum and product gives

ξα,S(s) =
∑
β|S=α

 ∏
v∈T\S

Zβv(s,Φ0,v)

 ξβ,T (s) (4.2)

This is the main filtration formula for the original Dirichlet series.

We can extend these ideas to the dual Dirichlet series as well and obtain the

formulas

ξ̂α,S(s) =
∑
k′∈Kα

d−sk′/k
o(k′)

∏
v/∈S

Zαv(s,Ψ0,v) (4.3)

=
∑
β|S=α

 ∏
v∈T\S

Zβv(s,Ψ0,v)

 ξ̂β,T (s) (4.4)

The main idea exploited in this chapter is that if the set of places T contains all

places lying over 3, then 3 is a unit for all v /∈ T , and therefore Ψ0,v = Φ0,v for all

v /∈ T . Consequently ξ̂β,T (s) = ξβ,T (s) for all β ∈ AT . Thus, the component series in

the two decompositions of ξα,S and ξ̂α,S(s) are the same, and the sole difference lies

in the finitely many local zeta function factors Zβv(s,Ψ0,v) for v ∈ T \ S.
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4.2 Poles and residues

First, let us review the slightly more general framework of the earlier papers of

Datskovsky-Wright. In [19, 4], it is proved that the adelic zeta function

Z(ω,Φ) =

∫
GA/Gk

ω(det g)
∑
x∈V ′k

Φ(g · x) dAg,

has a meromorphic continuation to the entire complex manifold Ωk of quasicharacters

ω on A×/k×. This continuation is holomorphic except for simple poles at ω = ω0,

ω2, χω1/3 and χω5/3 where χ is any character satisfying χ3 = 1. In this thesis, we are

restricting the quasicharacters to principal ones ω = ω2s = | · |2sA for complex s. Thus,

Z(s,Φ) =

∫
GA/Gk

| det g|2sA
∑
x∈V ′k

Φ(g · x) dAg,

is holomorphic in the entire s-plane with the exception of simple poles at s = 0, 1
6
, 5

6
,

and 1.

The decomposition (2.2) of the zeta function Z(s,Φ) in terms of the Dirichlet series

ξα(s) allows us to prove that the Dirichlet series have meromorphic continuations to

the entire s-plane which are holomorphic except for simple poles at s = 1 and s = 5/6.

Very general residue formulas are stated in Theorem 6.2, p. 71, in [5]. The measure

on GA used in that paper is not the tensor product measure defined in Section 2 of

Chapter 2. Thus, after tracing through the notation presented in [19, 5], we find the

following residue formulas

Res
s=1

ξα,S(s) =
ρk

2
√
dk
ρS ζk,S(2) cα [1 + bα] (4.5)

Res
s=5/6

ξα,S(s) =
ρk
6dk

ρS ζk,S

(
1

3

)
cα aα

where ρk and dk are defined in Chapter 2,

ρS =
∏
v∈S
v-∞

(1− q−1v ),

ζk,S(s) =
∏
v/∈S

(1− q−sv )−1, (partial Dedekind zeta function, analytically continued)
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and the aα =
∏

v∈S aαv , bα =
∏

v∈S bαv , and cα =
∏

v∈S cαv are constants describing

the structure of the orbit αv defined on pages 58, 61 and 38 of [5].

To describe aαv , bαv and cαv , suppose that the orbit αv corresponds to the local

extension k′w/kv of degree at most 3 (up to conjugacy) or equivalently the simple

algebra k′ ⊗k kv which has dimension 3 over kv. In [5], these extensions are classified

into five types: (1), (2u), (2r), (3u) and (3r), where the number is the degree of

the extension, and the letter indicates whether that extension is unramified or ram-

ified. Let ∆αv = ∆(k′w/kv) be the relative discriminant, which is an element of k×v

determined uniquely modulo multiplication by squares of units, and let o(αv) be the

number of automorphisms of k′⊗ kv over kv. For types (1), (2), and (3), respectively,

we have o(αv) = 6, 2, and 3 or 1, respectively, the last depending on whether the

local extension is Galois or not. Then from [5], page 38 and top of page 36, we have

cαv =
|∆αv |v
o(αv)

. (4.6)

On page 61 of [5], bαv is simply defined as 3, 1, 0, resp. for types (1), (2), (3), resp.

The definition of aαv is the most involved and is described in a chart on page 58 of

[5].

To obtain the residue formulas for the dual Dirichlet series ξ̂α,S(s), we choose a set

T of places that contains S and all finite places v | 3. Then, as we mentioned before,

for all orbit vectors β ∈ AT , we have ξ̂β,T (s) = ξβ,T (s). Our filtration formulas now

give the following relations among the residues of all these series, for r = 1 and 5/6:

Res
s=r

ξα,S(s) =
∑
β|S=α

 ∏
v∈T\S

Zβv(r,Φ0,v)

Res
s=r

ξβ,T (s) (4.7)

Res
s=r

ξ̂α,S(s) =
∑
β|S=α

 ∏
v∈T\S

Zβv(r,Ψ0,v)

Res
s=r

ξβ,T (s)

In the next sections, we shall use properties of the local zeta functions together with

these filtrations to calculate formulas for the residues of the dual Dirichlet series.
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4.3 Residue of the dual Dirichlet series at s = 1

In this section, we abbreviate εk =
ρk

2
√
dk

, all the factors in the residue at s = 1

that depend on k but on nothing else. The filtration formula (4.7) together with the

residue formulas (4.5) yield

Res
s=1

ξ̂α,S(s) =
∑
β|S=α

 ∏
v∈T\S

Zβv(1,Ψ0,v)

Res
s=1

ξβ,T (s)

=
∑
β|S=α

 ∏
v∈T\S

Zβv(1,Ψ0,v)

 εk ρT ζk,T (2) cβ [1 + bβ]

= εk ρT ζk,T (2)
∑
β|S=α

 ∏
v∈T\S

Zβv(1,Ψ0,v)

 cβ [1 + bβ].

Note that the local zeta function was shown in [5] to be holomorphic for Re(s) > 1/6,

and thus we can simply substitute s = 1 in the residue calculation.

By the organizing principle that a sum of products may be rearranged as a product

of sums, we will now manipulate the above residue formulas. Both cβ and bβ factor as

products over the places v ∈ T ; however, before factoring out the terms corresponding

to places in S, we must split the residue formula and then factor, using the facts that

ζk,T (s) = ζk,S(s)
∏
v∈T\S

(1− q−sv )

ρT = ρS
∏
v∈T\S

(1− q−1v )

cβ = cα
∏
v∈T\S

cβv

bβ = bα
∏
v∈T\S

bβv
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This leads to

Res
s=1

ξ̂α,S(s) = εk ρT ζk,T (2) ·{∑
β|S=α

 ∏
v∈T\S

Zβv(1,Ψ0,v)

 cβ +
∑
β|S=α

 ∏
v∈T\S

Zβv(1,Ψ0,v)

 cβbβ

}

= εk ρS ζk,S(2) ·{
cα
∑
β|S=α

 ∏
v∈T\S

(1− q−1v )(1− q−2v )cβv Zβv(1,Ψ0,v)

+

cαbα
∑
β|S=α

 ∏
v∈T\S

(1− q−1v )(1− q−2v )cβvbβv Zβv(1,Ψ0,v)

}

= εk ρS ζk,S(2) ·{
cα

∏
v∈T\S

[
(1− q−1v )(1− q−2v )

∑
βv∈Av

cβv Zβv(1,Ψ0,v)

]
+

cαbα
∏
v∈T\S

[
(1− q−1v )(1− q−2v )

∑
βv∈Av

cβvbβv Zβv(1,Ψ0,v)

]}
The sums that appear can be simplified by means of Fourier transform formulas

proved in [5]. Keeping in mind that we are using the measure such that Vov has

measure 1, the formula (2.4) on page 38 in [5], restated as Proposition 5.1 on page

52, implies that, for finite places v,

(1− q−1v )(1− q−2v )
∑
αv∈Av

cαvZαv(1,Ψ0,v) =

∫
Vkv

Ψ0,v(x) dvx .

Since Ψ0,v is the characteristic function of ov × 3ov × 3ov × ov ⊂ Vkv , the integral is

|3|2v. Thus, we have the first sum in the residue formula equal to

(1− q−1v )(1− q−2v )
∑
αv∈Av

cαvZαv(1,Ψ0,v) = |3|2v.

The other part of the residue at 1 involves Theorem 5.2, Proposition 5.2 and the

definition of the singular invariant distributions Σ3 from [5]. Assume throughout that

v is a finite place and kv is a p-field. Theorem 5.2 on page 61 says that

(1− q−1v )
∑
αv∈Av

cαvbαv Zαv(1,Ψ0,v) = Σ3(Ψ0,v)
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and the distribution Σ3 is defined on page 54 as

Σ3(Φv) = Σ3(2,Φv) =

∫
k×v

d×v t

∫
kv

dvx

∫
kv

dvy |t|2v Φv(0, t, x, y),

for Gov -symmetric functions Φv, where ov is the maximal compact subring in kv. Then

it is straightforward to evaluate

Σ3(Ψ0,v) =

∫
k×v

d×v t

∫
kv

dvx

∫
kv

dvy |t|2v Ψ0,v(0, t, x, y)

=

(∫
3ov

|t|2v d×v t
)
|3|v = |3|3v (1− q−2v )−1

Combining this with our earlier equation for Σ3(Ψ0,v) produces

(1− q−1v )
∑
αv∈Av

cαv bαv Zαv(1,Ψ0,v) = |3|3v (1− q−2v )−1.

This gives the second sum in our residue formula at 1 as

(1− q−1v )(1− q−2v )
∑
αv∈Av

cαv bαv Zαv(1,Ψ0,v) = |3|3v.

This leads to the full residue formula at s = 1:

Res
s=1

ξ̂α,S(s) = εk ρS ζk,S(2) cα ·
∏
v∈T\S

|3|2v ·

1 + bα
∏
v∈T\S

|3|v

 .

Our last task is to account for our assumption that T contains all the places

v | 3. Define |x|S =
∏

v∈S |x|v for any x ∈ k. By our assumptions on T , we have

|3|T = |3|A = 1, by the idele product formula. Then
∏

v∈T\S |3|v = |3|T/|3|S = |3|−1S .

Then our final residue formula at 1 is

Res
s=1

ξ̂α,S(s) =
ρk

2
√
dk
ρS ζk,S(2) cα |3|−2S

[
1 + bα |3|−1S

]
. (4.8)

4.4 Residue of the dual Dirichlet series at s = 5/6

Next, we turn to the residue formula at 5/6. Here we abbreviate εk =
ρk
6dk

, all the

factors in the residue at s = 5/6 that depend on k but on nothing else. We use the
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same notation and arguments at the beginning of Section 4.3 along with the formula

aβ = aα
∏
v∈T\S

aβv , but start with the residue formula for ξα,S at 5/6. This leads to

Res
s=5/6

ξ̂α,S(s) =
∑
β|S=α

 ∏
v∈T\S

Zβv(5/6,Ψ0,v)

 Res
s=5/6

ξβ,T (s)

=
∑
β|S=α

 ∏
v∈T\S

Zβv(5/6,Ψ0,v)

 εk ρT ζk,T (1

3

)
cβ aβ

= εk ρT ζk,T

(
1

3

) ∑
β|S=α

 ∏
v∈T\S

Zβv(5/6,Ψ0,v)

 cβ aβ

= εk ρS ζk,S

(
1

3

)
cα aα

∑
β|S=α

 ∏
v∈T\S

(1− q−1v )(1− q−1/3v ) cβv aβv Zβv(5/6,Ψ0,v)


= εk ρS ζk,S

(
1

3

)
cα aα

∏
v∈T\S

[
(1− q−1v )(1− q−1/3v )

∑
βv∈Av

cβv aβv Zβv(5/6,Ψ0,v)

]

after exchanging the sum and product in exactly the same way as in the preceding

section.

The sum in the above formula corresponds to a second Fourier inversion formula.

For finite places v, Theorem 5.1 in [5] states that

(1− q−1v )
∑
αv∈Av

cαv aαv Zαv(5/6,Ψ0,v) = Σ4(Ψ0,v),

for the distribution Σ4 defined on pp. 33 and 34 of [5] by the integral

Σ4(Φv) = Σ4(1/3,Φv) =

∫
k×v

d×v t

∫
kv

dvx

∫
kv

dvy

∫
kv

dvz |t|1/3v Φv(t, x, y, z)

if Φv is any Gov -symmetric function. Replacing Φv by Ψ0,v, this is easy to calculate

as

Σ4(Ψ0,v) =

∫
k×v

d×v t

∫
kv

dvx

∫
kv

dvy

∫
kv

dvz |t|1/3v Ψ0,v(t, x, y, z)

=

(∫
ov

|t|1/3v d×v t

)
|3|2v = |3|2v(1− q−1/3v )−1

51



Therefore, the sum in the residue formula becomes

(1− q−1)(1− q−1/3)
∑
αv∈Av

cαv aαv Zαv(5/6,Ψ0,v) = |3|2v.

Putting this altogether gives

Res
s=5/6

ξ̂α,S(s) = εk ρS ζk,S

(
1

3

)
cα aα ·

∏
v∈T\S

|3|2v .

Assuming again that T contains all places lying over 3, we can finally give the formula

for the residue at 5/6:

Res
s=5/6

ξ̂α,S(s) =
ρk
6dk

ρS ζk,S

(
1

3

)
cα aα |3|−2S . (4.9)

4.5 Generalizing Ohno’s conjecture

Ohno’s conjecture (see [14, 13]) takes the form

ξ̂1(s) = 3−3sξ2(s) ξ̂2(s) = 31−3sξ1(s)

where ξ1(s), ξ2(s) are Shintani’s Dirichlet series (see [17]) corresponding to integral

binary cubic forms of positive and negative discriminant, respectively, and ξ̂1(s), ξ̂2(s)

are the analogous series for the dual lattice. This is the case k = Q with the set of

places S limited to just the one infinite place v = ∞. The completion of Q at the

place ∞ is simply the real numbers R, and there are two GR-orbits of nonsingular

real binary cubic forms, namely, the totally real forms of positive discriminant, and

the complex forms of negative discriminant.

We will attempt to generalize this pattern to any number field k by taking S to

be the set of infinite places v | ∞ of k. For any choice of orbits α ∈ A∞, we will

define −α as another choice in the following way. First, we decompose A∞ as a direct

product A∞ =
∏

v|∞Av and α = (αv)v. If kv = C, there is only one GC-orbit, and we

define −αv = αv, the lone orbit. If kv = R, there are two GR-orbits, and we simply
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define −αv to be the other orbit besides αv. Then for α ∈ A∞, we define −α in the

natural componentwise fashion. Our goal is to establish a formula of the form

ξ̂−α(s) = 3A+Bs ξα(s)

for any α ∈ A∞, for some constants A and B dependent on k and α.

The reason for the comparison of series for the orbit types α and −α lies in

the theorem of Scholz in [16] about the relationship between the 3-class numbers of

quadratic field of positive and negative discriminant. There the key tool is to adjoin

the cube roots of unity to the Galois closure of a noncyclic cubic field, with quadratic

resolvent field of discriminant D. The extended field now contains another family

of conjugate cubic fields with quadratic resolvent field of discriminant −3D. That

correspondence changes the sign of the discriminants of the cubic fields. Hopefully,

this mechanism will be made more precise in the course of our research.

First, we collect the residue calculations of this chapter as well as the original

calculations of Datskovsky-Wright into a convenient reference theorem:

Theorem 4.1 For a finite set S of places of the number field k containing all infinite

places, the residues of the Shintani Dirichlet series ξα,S(s) and the dual series ξ̂α,S(s),

as defined in Sections 2.3 and 2.4, are given by the following formulas:

Res
s=1

ξα,S(s) =
ρk

2
√
dk
ρS ζk,S(2) cα [1 + bα]

Res
s=1

ξ̂α,S(s) =
ρk

2
√
dk
ρS ζk,S(2) cα |3|−2S

[
1 + bα |3|−1S

]
Res
s=5/6

ξα,S(s) =
ρk
6dk

ρS ζk,S

(
1

3

)
cα aα

Res
s=5/6

ξ̂α,S(s) =
ρk
6dk

ρS ζk,S

(
1

3

)
cα aα |3|−2S

When S is the set of infinite places, we have |3|S = |3|∞ = 3n, where n = [k : Q].
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Then, using the preceding theorem, we have

ξ̂−α(1)

ξα(1)
= 3−2n

c−α
cα

1 + b−α 3−n

1 + bα

ξ̂−α(5/6)

ξα(5/6)
= 3−2n

c−α
cα

a−α
aα

.

The next step in simplifying these formulas is to manipulate the formulas for aα, bα

and cα when α corresponds to an orbit type over R or C.

Since we are only considering places v | ∞, there are only three local orbit types

αv to consider, which we will denote as αv = 0 if kv = C, αv = + if kv = R and αv

corresponds to the binary cubic forms of positive discriminant, and αv = − if kv = R

and αv corresponds to the binary cubic forms of negative discriminant. Recall that

in Section 4.2, equation (4.6), we reviewed the definitions of bα and cα established in

[5], and we give these again strictly for the archimedean places

c0 =
1

6
, c+ =

1

6
, c− =

1

2
,

b0 = 3, b+ = 3, b− = 1.

Considering ratios, we have

c−0
c0

= 1,
c+
c−

=
1

3
,

c−
c+

= 3.

For α = (αv)v ∈ A∞, suppose that for m of the real places v we have αv = + and

then for the other r1 −m places we have αv = −. Then by taking products of the

formulas from the previous paragraph we get

c−α
cα

= 3m
(

1

3

)r1−m
= 32m−r1 , bα = 3r2+m, b−α = 3r2+r1−m.

Then

1 + b−α 3−n

1 + bα
=

1 + 3r1+r2−m−n

1 + 3r2+m
=

1 + 3−r2−m

1 + 3r2+m
= 3−r2−m,

since n = r1 + 2r2. It is noteworthy that under our choices this ratio simplifies to just

a power of 3. Then combining these results we obtain

ξ̂−α(1)

ξα(1)
= 3−2n 32m−r1 3−r2−m = 3m−2n−r1−r2 (4.10)
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For the value of the ratio at 5/6, we need the formulas for aα given on page 58 in

[5].

a0 =
3
√

3

4π2
Γ

(
1

3

)6

, a+ =
3
√

3

2π
Γ

(
1

3

)3

, a− =
3

2π
Γ

(
1

3

)3

.

Then the ratios are

a−0
a0

= 1,
a+
a−

=
√

3,
a−
a+

=
1√
3
.

For α ∈ A∞ with m real places v such that αv = +, as before, we have

a−α
aα

=

(
1√
3

)m
(
√

3)r1−m = 3
1
2
r1−m.

Then

ξ̂−α(5/6)

ξα(5/6)
= 3−2n 32m−r1 3

1
2
r1−m = 3m−2n−

1
2
r1 . (4.11)

Both values are consistent with ξ̂−α(s)/ξα(s) being powers of 3. We may now solve

for the constants A,B in this conjectural form:

ξ̂−α(1)

ξα(1)
= 3A+B = 3m−2n−r1−r2

ξ̂−α(5/6)

ξα(5/6)
= 3A+

5
6
B = 3m−2n−

1
2
r1 .

This leads to the linear equations:

A+B = m− 2n− r1 − r2 A+
5

6
B = m− 2n− 1

2
r1,

which have the unique solution

A = m+ r2 B = −3n.

Then the proposed generalization of Ohno’s Conjecture (and Nakagawa’s theorem) is

ξ̂−α(s)

ξα(s)
= 3m+r2−3ns . (4.12)

The calculations presented here establish Theorem 1.2 and motivate Conjecture 1.1.
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Finally, let us compare this conjecture to Nakagawa’s theorem for k = Q. In that

case we have n = [Q : Q] = 1, r1 = 1, and r2 = 0. Then our conjecture would say

ξ̂2(s)

ξ1(s)
= 31+0−3s = 31−3s,

ξ̂1(s)

ξ2(s)
= 30+0−3s = 3−3s.

This is exactly the theorem of Nakagawa mentioned at the beginning of this section.
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CHAPTER 5

Decomposing the Dirichlet series according to the resolvent field

Datskovsky and Wright established the expression of Shintani Dirichlet ξα(s) series as

a sum over extensions k′/k of degree at most 3, as mentioned in the introduction, and

in Chapter 3 of this thesis we established the analogous formula for the dual Dirichlet

series ξ̂α(s). Then after cancelling common factors, as described in Chapter 1.2 at

equation (1.5), our generalization of Ohno’s conjecture becomes

∑
k′∈K−α

d−sk′/k
o(k′)

Rk′(2s)

Rk′(4s)

∏
v|3

Tk′,v(s) = 3r2+m−3ns
∑
k′∈Kα

d−sk′/k
o(k′)

Rk′(2s)

Rk′(4s)

In this chapter, we shall decompose this identity according to the resolvent fields of

the extensions k′/k, and give the proofs of Theorems 1.3 and 1.4 in Chapter 1.2.

5.1 The resolvent field of an extension k′/k of degree at most 3

If k′/k has degree strictly less than 3, we simply define the resolvent field to be

F = k′. If k′/k is a cubic extension, it is either cyclic, in which case we define the

resolvent field to be F = k, or it is noncyclic and its Galois closure over k contains

a unique quadratic field F , which is called the resolvent field in that case.

Each resolvent field F has degree at most 2 over k, and thus can be expressed in

the form F = k(
√
δ) for some nonzero element δ of k. By Kummer theory, k(

√
δ1) =

k(
√
δ2) if and only if δ1/δ2 ∈ k2, the subgroup of squares in k×. Thus, the possible

resolvent fields F of k′/k bijectively correspond to the cosets in k×/k2. For each

δ ∈ k×, define C (δ) to be the set of all extensions k′/k of degree at most 3 which

have resolvent field equal to F = k(
√
δ).
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For each real embedding σ : k → R of k, and for any δ ∈ k×, either δσ > 0

or δσ < 0. Thus, we can define a signature α of δ by setting αv = + if δσ > 0

and αv = − otherwise. This signature is the same as the signature of the extension

k(
√
δ)/k as defined in Chapter 1.2. If αv = +, then k(

√
δ) ⊗k kv ∼= R ⊕ R, and if

αv = −, then k(
√
δ) ⊗k kv ∼= C. For any extension k′/k ∈ C (δ), since the Galois

closure of k′ over k contains k(
√
δ), this shows that k′ ⊗k kv must be a direct sum

of three copies of R. Similar reasoning in case αv = − proves that the signature

of any k′ ∈ C (δ) is the same as the signature of δ. Thus, for any signature α, the

set of extensions Kα is the disjoint union of C (δ) over representatives of all cosets

δ ∈ k×/k2 with signature α.

Finally, for any resolvent field F = k(
√
δ), we define the dual resolvent field

to be F̂ = k(
√
−3δ). The reason for this choice of dual is that the compositum FF̂

must contain the field F0 = k(
√
−3) generated by the cube roots of unity over k.

Kummer theory says that any cyclic cubic extension F ′/F for which F contains the

cube roots of unity must be of the form F ′ = F ( 3
√
γ) for some γ ∈ F×, and that fact

plays a special role in Scholz’ reflection theorem in [16] and Nakagawa’s proof. Note

that duality is symmetric in that the dual field of F̂ is just F . If the signature of δ is

α, then clearly the signature of −3δ is −α.

We summarize these observations about the resolvent fields in the following propo-

sition:

Proposition 5.1 For any signature α of the field k and its negative −α, the sets of

extensions Kα and K−α, respectively, are the disjoint unions of the subsets C (δ) and

C (−3δ) as δ ranges over representatives of each coset in k×/k2 which has signature

α.

By summing over the coset representatives δ ∈ k×/k2 with signature α, this

proposition directly proves what we stated as Theorem 1.3 in Chapter 1.2.
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Theorem 5.1 If for every δ ∈ k×, we have∑
k′∈C (−3δ)

d−sk′/k
o(k′)

Rk′(2s)

Rk′(4s)

∏
v|3

Tk′,v(s) = 3r2+m−3ns
∑

k′∈C (δ)

d−sk′/k
o(k′)

Rk′(2s)

Rk′(4s)

then the generalized Ohno conjecture (1.4) is true.

Later in this chapter, we shall explore the truth of the converse of this theorem. We

next turn to a more detailed discussion of Scholz’ reflection. Let k′/k be an extension

of degree 3 with resolvent field equal to F = k(
√
δ) (which has degree 1 or 2 over k).

The main idea of Scholz’ reflection is that cubic extensions k′/k with resolvent field

F roughly correspond to cubic extensions k̂′/k with resolvent field F̂ . This comes

about as follows. The compositum L = k′F is a cyclic cubic extension of F . Let B

be the field B = F (
√
−3) = FF̂ . Then the degree [B : k] is a divisor of 4, and the

compositum N = k′B is a cyclic cubic extension of B. Since B contains the cube

roots of unity, by Kummer theory the cubic extension N/B has the form N = B(α1/3)

for some nonzero α ∈ B.

5.2 Conductors and discriminants of cubic extensions

In this section, we establish the basic notation of conductors, differents, and dis-

criminants of cubic extensions. This material is derived from Hasse [9] and Martinet-

Payans [11]. Before we continue, we need to recall a few results from class field theory

that would allow us to analyze our Dirichlet series identities.

Theorem 5.2 (Isomorphism Theorem) There is a one-to-one correspondence be-

tween the finite abelian extensions L of F and the open subgroups U = UL of the

idele class group JF = A×F/F× such that the Galois group Gal(L/F ) is isomorphic to

JF/U . Moreover, if L/F is a finite abelian extension and K is an intermediate field

L ⊃ K ⊃ F , then the corresponding subgroups satisfy F× ⊂ UL ⊂ UK ⊂ UF ⊂ A×F .

For each character χ of the group JF trivial on U , let fχ denote its conductor. It

is an integral ideal in F .
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Theorem 5.3 (Conductor-Discriminant Formula) Let L/F be a finite abelian exten-

sion of number fields corresponding to the open subgroup U of the idele class group

JF . Then the relative discriminant DL/F of L/F is given by

DL/F =
∏
χ

fχ,

where χ ranges over all the characters of JF trivial on U .

Let k′/k be an extension of degree ≤ 3 with Galois closure L and resolvent field

F . The relative discriminants of k′/k, L/k, and F/k respectively, considered as

ideals in ok, are denoted by Dk′/k, DL/k, and DF/k, respectively. The differents of

these extensions, as ideals in the rings of the integers of the corresponding overfield,

are denoted by dk′/k, dL/k, and dF/k, respectively. The relative discriminants and

differents are related by means of the relative norms

Dk′/k = Nk′/k(dk′/k), DL/k = NL/k(dL/k), DF/k = NF/k(dF/k).

According to the notation introduced in Chapter 1, we can write

dk′/k = N(Dk′/k), dL/k = N(DL/k), dF/k = N(DF/k).

If k′/k is noncyclic, then F/k turns out to be quadratic and L/F cyclic cubic. By

the isomorphism theorem, this extension corresponds to an open subgroup U of index

3 in JF . There are two nontrivial cubic characters χ and χ2 with kernel equal to U .

By the conductor-discriminant formula, the discriminant of L/F is DL/F = f2χ, since

χ and χ2 have the same conductor. Therefore by the tower law for discriminants (see

Prop. 13 of Chap. VII-4 in [18]) we have

DL/k = D3
F/k NF/k(fχ)2.

Next, we shall discuss the concepts of conductors and discriminants over the idele

class group. For a place v of F , let iv be the natural injection of F×v into the idele
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class group JF . Thus, iv(x) is the coset of the idele with v component equal to x and

all other components equal to 1.

Let χ be a character of JF which is trivial on U . We define the v component to be

χv(x) = χ(iv(x)) for x ∈ F×v . For a finite place v, the kernel of χv contains either the

full unit group o×v of F (in which case we set fv = 0) or some subgroup 1 +$fv
v ov for

a smallest positive integer fv, where $v is a uniformizer in Fv. Then the conductor

of χv is ϕχv = $fv
v . For an infinite place v, the kernel of a finite order character χv

is either all of F×v in which case we set ϕχv = 1, or possibly just the positive real

numbers R+ in the event v is real. In the latter case, we set ϕχv = −1. The idelic

conductor ϕχ is defined to be the idele with v component equal to ϕχv for all places

v. The conductor is well-defined as an element of A×F/A0
F,∞, where

A0
F,∞ =

∏
v|∞

F 0
v ×

∏
v-∞

o×v

where F 0
v represents the connected component of 1 in F×v . Hence, F 0

v = C× if v is

complex and R+ if v is real.

For a place v of F and a place w of L lying above v, let {θ1, . . . , θm} be a basis

of Lw over Fv. Let θ
(i)
j range over the m conjugates of θj. For infinite places v, we

define the relative discriminant ∆Lw/Fv of the extension Lw/Fv to be the square of the

determinant of the matrix (θ
(i)
j ), which is an element of F×v . This relative discriminant

is well-defined only modulo multiplication by elements of F 2
v , the group of squares of

elements of F×v . By convention, we stipulate ∆C/C = ∆R/R = 1 and ∆C/R = −1. For

finite places, the maximal compact subring of Lw is a free ov-module, and thus we may

select a basis {θj}. Then ∆Lw/Fv is defined using this basis. With this special choice

of the θj, the relative discriminant is well-defined module o2v, the group of squares of

elements of o×v . The v-adic part ∆v,L/F of the relative discriminant of L/F is defined

by

∆v,L/F =
∏
w|v

∆Lw/Fv ∈ F×v .
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The idelic relative discriminant ∆L/F is taken to be the idele whose v-adic com-

ponent is ∆v,L/F . That this is an idele is a consequence of the fact that ∆v,L/F ∈ o×v

for almost all v. This discriminant is well-defined modulo multiplication by elements

of

A2
F,0 =

∏
v-∞

o2v.

This idelic definition of discriminant was first advanced in [8], where many basic

properties are established.

There is simple relationship between the conductors and discriminants as ideals

with their counterparts as ideles. Let IF denote the group of fractional ideals of F .

There is a natural homomorphism id : A×F → IF described in Chap. V-3 of [18].

Then we have

fχ = id(ϕχ) DL/F = id(∆L/F ).

Moreover, we have an idelic analogous of the conductor-discriminant formula:

Theorem 5.4 (Idelic Conductor-Discriminant Formula) Let L/F be a finite abelian

extension of number fields corresponding to the open subgroup U of the idele class

group JF . Then the idelic relative discriminant ∆L/F of L/F is given by

∆L/F =
∏
χ

ϕχ,

where χ ranges over all the characters of JF trivial on U .

5.3 The resolvent field identity

Nakagawa’s proof establishes by means of Scholz’ reflection that the terms correspond-

ing to extensions k′/k in C (δ) on one side of Ohno’s series identity correspond to the

terms for extensions k′/k in C (−3δ) on the other side. To simplify our work with

these identities, we introduce some notation for the Euler products in the identities.
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Following equation (2.4) of Chapter 2, we define the following Euler factors:

Ek′,v(s) =



(1 + q−2sv )2 if (k′/k, v) = (1),

1 + q−4sv if (k′/k, v) = (2u),

1 + q−2sv if (k′/k, v) = (2r),

1− q−2sv + q−4sv if (k′/k, v) = (3u),

1 if (k′/k, v) = (3r),

(5.1)

where (k′/k, v) denotes the splitting type of the place v of k in the extension k′/k.

We are omitting the common factors that will cancel out in the generalized Ohno-

Nakagawa identity. From Theorem 3.1, the dual Euler factors are Êk′,v(s) = Ek′,v(s)

for v - 3, and for v | 3 we have

Êk′,v(s) =



q−4sv (1 + q1−2sv + 2q1−4sv ) if (k′/k, v) = (1),

q−4sv (1 + q1−2sv ) if (k′/k, v) = (2u),

q−2sv (1 + q1−4sv ) if (k′/k, v) = (2r),

q−4sv (1 + q1−2sv − q1−4sv ) if (k′/k, v) = (3u),

1 if (k′/k, v) = (3r),

(5.2)

so long as 3 is unramified in k. Again, we have omitted the factors that cancel

out in the conjectured Ohno-Nakagawa identity. Then the cancelled Ohno-Nakagawa

identity has the form

∑
k′∈K−α

d−sk′/k
o(k′)

∏
v-∞

Êk′,v(s) = 3r2+m−3ns
∑
k′∈Kα

d−sk′/k
o(k′)

∏
v-∞

Ek′,v(s). (5.3)

By the same reasoning as behind Theorem 5.1, this conjecture is true if and only if

∑
k′∈C (−3δ)

d−sk′/k
o(k′)

∏
v-∞

Êk′,v(s) = 3r2+m−3ns
∑

k′∈C (δ)

d−sk′/k
o(k′)

∏
v-∞

Ek′,v(s) (5.4)

holds for all δ ∈ k×/k2.
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It is important to note that all the exponents of q−sv in all the Euler factors are

even, and yet the exponent of 3−s in the Ohno-Nakagawa identity is odd in a sense

we will presently make clear, and that this implies there is a natural splitting of the

Ohno-Nakagawa identity. First, we need to express the Euler products as ordinary

Dirichlet series. Each nonarchimedean place v of k corresponds to a prime ideal pv in

the ring o of integers of k, satisfying qv = N(pv) = (o : pv), the absolute norm of pv.

The absolute norm of the ideal 3o generated by 3 in o is just 3n where n = [k : Q].

Then the two sides of our conjecture expand into series of the following form:

3r2+m−3ns
∑
k′∈Kα

d−sk′/k
o(k′)

∏
v-∞

Ek′,v(s) =
∑
k′∈Kα

∑
a

Ck′,a
N(33Dk′/ka2)s

∑
k′∈K−α

d−sk′/k
o(k′)

∏
v-∞

Êk′,v(s) =
∑

k′∈K−α

∑
a

Ĉk′,a
N(Dk′/ka2)s

,

where the coefficients Ck′,a, Ĉk′,a are ordinary rational numbers with denominator a

divisor of 6. Here the sum over a ranges over all integral ideals of o; however, due

to the nature of the Euler products we may assume that the prime power factor of a

corresponding to any prime ideal pv is pjv for 0 ≤ j ≤ 2, except for the prime ideals

pv lying over 3 in the dual series, which may have exponents 0 ≤ j ≤ 4.

In order for this conjectured identity to hold, the sum of the coefficients Ck′1,a1 for

given M = N(33Dk′1/k
a21) for varying k′1 ∈ Kα and a1 in o must equal the sum of the

coefficients Ĉk′2,a2 for M = N(Dk′2/k
a22) and varying k′2 ∈ K−α and a2 in o. The terms

cancelling in this subidentity would satisfy

N(Dk′2/k
) = N(3Dk′1/k

c2)

for some fractional ideal c in k.

In the case k = Q, this equality of norms together with the fact that k1 and k2

have opposite splitting types at ∞ implies that Dk2 = −3Dk1 modulo multiplication

by squares, where Dk1 and Dk2 are the discriminants, as signed integers, of k1 and k2
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respectively. The resolvent field of k1 is then F = Q(
√
Dk1), while the resolvent field

of k2 is the dual F̂ = Q(
√
−3Dk1). This proves that the Ohno-Nakagawa identity

for Q holds only if all the resolvent field identities (5.4) are true. This completes the

proof of Theorem 1.4, which we restate as follows:

Theorem 5.5 For a square-free integer d, let C (d) denote the collection of all ex-

tensions k/Q of degree at most 3 with resolvent field Q(
√
d). Then for d > 0, we

have

∑
k∈C (−3d)

d−sk
o(k)

∏
p

Êk,p(s) = 31−3s
∑
k∈C (d)

d−sk
o(k)

∏
p

Ek,p(s),

∑
k∈C (3d)

d−sk
o(k)

∏
p

Êk,p(s) = 3−3s
∑

k∈C (−d)

d−sk
o(k)

∏
p

Ek,p(s).

Everything in the above identities is the same as in the whole Ohno-Nakagawa

identity, just split according to the resolvent fields. For general ground fields k, the

norm equality N(Dk′2/k
) = N(3Dk′1/k

c2) does not strictly imply that Dk′2/k
= 3Dk′1/k

c2

as ideals (since there are possibly different prime ideals of the same norm). However,

based on the role of Scholz’ reflection in Nakagawa’s proof, it is still natural to suppose

that the identity splits according to the resolvent fields. After this, we shall work on

simplifying the resolvent Ohno-Nakagawa identity (5.4) by means of class field theory.
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CHAPTER 6

Examples of the resolvent Ohno-Nakagawa identity

In this chapter, we shall use known tabulations of extensions of degree at most 3 to

verify finite analogues of the resolvent Ohno-Nakagawa identity. The examples in this

chapter provide precise numerical evidence for Conjectures 1.1 and 1.2; the approach

is different from the equalities of class numbers established in Ohno’s original paper

[14]. Here, instead of calculating class numbers of integral binary cubic forms, we use

existing tables of number fields and calculations of their splitting types at different

places to check the conjectures recast as an equality of finite sums of finite Euler

products. These equalities come from field extensions with bounded ramification,

while the discriminants of the binary cubic forms involved may be enormous and far

beyond the tables calculated by Ohno.

6.1 The finite Ohno-Nakagawa identity

Just as in Chapter 5, choose δ ∈ k×/k2, and let F = k(
√
δ) and F̂ = k(

√
−3δ). Let

S be a finite set of places of k containing all infinite places and all places v dividing

3dF/kdF̂ /k. Let CS(δ) = CS(F ) be the set of all extensions k′/k of degree at most 3

with resolvent field F and which are unramified for all places v /∈ S. Class field theory

implies the set CS(δ) is a finite set of extensions k′/k. Similarly, CS(−3δ) = CS(F̂ ) is

a finite set of extensions. Thus, for all extensions k′/k in CS(δ) and in CS(−3δ), the

relative discriminant dk′/k is divisible only by qv for places v ∈ S. The terms in the

Dirichlet series
a

M s
for which M is divisible only by qv for v ∈ S must cancel out on

both sides of the conjectured resolvent field identity (5.4). This proves the following

66



theorem:

Theorem 6.1 The generalized resolvent field conjecture (1.6) is true if and only if

for all δ ∈ k×/k2 and all finite sets of places S containing all places v | ∞ and

v | 3dF/kdF̂ /k, where F = k(
√
δ), F̂ = k(

√
−3δ), we have

∑
k′∈CS(F̂ )

d−sk′/k
o(k′)

∏
v∈S

Êk′,v(s) = 3r2+m−3ns
∑

k′∈CS(F )

d−sk′/k
o(k′)

∏
v∈S

Ek′,v(s). (6.1)

Recall that n = [k : Q], r2 is the number of complex places of k, o(k′) is the automor-

phism order of k′/k (so 1,2,3, or 6) as defined on p. 21, Ek′,v and Êk′,v are the Euler

factors defined in (5.1) and (5.2), and m is the number of real embeddings of k for

which δ is positive. In particular, by Nakagawa’s theorem all these finite identities

are true when k = Q.

The crucial aspect of this theorem is that there are only finitely many terms on

both sides of the identity. We shall call this the finite Ohno-Nakagawa identity

for S and δ. In this chapter, we confirm this identity for a fair number of cases based

on field data from various sources. Section 6.1 presents numerous confirmations of

Nakagawa’s theorem based on the data of fields of degree at most 3 over Q, while

Section 6.2 presents confirmations of our new conjecture over k = Q(i).

6.2 Resolvent identities over Q

To verify the finite Ohno-Nakagawa identity for a given finite set of places S of k

and element δ ∈ k×, we need a list of the extensions k′/k contained in CS(δ), their

relative discriminants, and their splitting types at the places v ∈ S. We have obtained

this data from several independent sources, which we shall identify below. Again, as

we have established, the identities are known consequences of Nakagawa’s theorem,

but this verification is quite different from Ohno’s original data, and we feel these

examples of identities are worth describing in detail.
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Cohen et al. give a survey of counting number fields in [3]. The Bordeaux com-

putational number theory group has made available tables of number fields of degree

at most 7 and discriminants below specific bounds at

http://pari.math.u-bordeaux1.fr/pub/pari/packages/nftables/

We originally consulted the files in the Bordeaux archive called T20.gp, T22.gp,

T31.gp, T33.gp, where the two numbers refer to degree n and number of real places

r1 of the number fields. A typical line in one of these files would be of the form:

[321,[1,-1,-4,1],1,[]]

which lists the discriminant 321 of the number field, the vector of coefficients of a

generating polynomial x3−x2−4x+1, the class number and the structure of the class

group of the number field. We are only interested in the discriminant and generating

polynomial. These provided verification of the identities over Q at least for small sets

of places S. In particular, for S = {2, 3}, we may extract from the files those fields

with discriminant of the form 2a3b. In addition to Q, there are 7 quadratic fields

and 9 cubic fields up to conjugacy. We list these fields in Table 6.1 sorted by the

square-free part δ of their discriminant Dk.

As a reminder, these lists include only one of each conjugate triple of noncyclic

cubic extensions of Q. Thus, in our identity, we must use o(k′/k) = 3 for cyclic cubic

extensions and o(k′/k) = 1 for noncyclic cubic extensions. We can identify the cyclic

cubic extensions k′/k over k = Q as those cubic extensions with discriminant equal

to a perfect square. Table 6.1 includes only one cyclic cubic field of discriminant 81.

The next task in verifying the identities is to determine the Euler factors Ek′,p(s)

and Êk′,p(s) for each prime p = 2, 3. This requires determining the splitting type of

k′ over kv = Qp. We use the generating polynomial supplied by the Bordeaux tables

to carry this out, and we use the padic package in Maple to factor this polynomial

p-adically. Here is the Maple procedure that accomplishes this
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# Take a number field of degree <=3 and find its splitting type at p

splittype:=proc(field,p)

local x,pol,n,m:

pol:=poly(field,x):

n:=degree(pol):

m:=nops([rootp(pol,p)]):

if n=m then RETURN(1)

elif ( field[1] mod p ) = 0 then # ramified

if n=2 or m=1 then RETURN(3)

else RETURN(5) fi:

else # unramified

if n=2 or m=1 then RETURN(2)

else RETURN(4) fi:

fi:

end:

This procedure assumes that field is a vector describing the number field as con-

tained in the Bordeaux tables. Thus, according to the Bordeaux format, the entry

field[1] is the discriminant of the field. First, this procedures uses another pro-

cedure poly(field,x) that extracts the generating polynomial of the number field

with indeterminate x. Then it determines the degree n of this polynomial (1, 2, or

3), and the number m of roots of the polynomial in Qp through the rootp command

in Maple’s padic package. If n = m, then the polynomial splits completely over Qp

and the type is (1). If not, it then tests to see if p is ramified in k′ over k = Q

by simply checking whether or not p divides the discriminant field[1]. Then in

either case, the type is quadratic if n = 2 or n = 3 and m = 1, which means that the

generating polynomial has an irreducible quadratic factor over Qp. In the procedure,

types (1), (2u), (2r), (3u) and (3r) are numbered 1, 2, 3, 4, and 5. The results of
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these calculations are also shown in Table 6.1.

Given the determination of types, our Maple programs determine the Euler factors

by substituting q = qv and x = q−2sv into the corresponding entry of the arrays of

formats for the Euler factors listed below

eulerfac:=[ (1+x)^2, (1+x^2), (1+x), (1-x+x^2), 1]:

eulerfacdual:=

[ x^2*(1+q*x+2*q*x^2), x^2*(1+q*x),

x*(1+q*x^2), x^2*(1+q*x-q*x^2), 1]:

using the dual factor only for p = 3, when qv = 3fv under the assumption that 3 is

unramified in kv with residue degree fv. The original Euler factors were calculated

in [5] and presented here in equation (2.4), while the dual Euler factors for v | 3 were

calculated in Theorem 3.1.

These procedures allow us to evaluate the two sides of the finite Ohno-Nakagawa

identity in Theorem 6.1. We present them in the form stated in Theorem 6.1 as sums

of partial Euler products. The simplest identity covered by our conjecture is the case

where S = {3} and δ = 1 or −3, since 3 is the only prime dividing 3dF/kdF̂ /k. In that

case, the only fields entering the identities are Q, q1, k1 and k3, since these are the

only fields for which the absolute value of the discriminant is a power of 3. Then the

identities below have the Euler products (for only the prime p = 3) for the fields of

discriminant −3, −243 on one side and the fields of discriminant 1, 81 on the other

side. The Euler factor for 3 is determined by our recipes with the splitting type read

from the last column of Table 6.1.

δ = 1 1

2
3−s 3−2 s

(
1 + 3 · 3−4 s

)
+ 243−s = 31−3s

[
1

6

(
1 + 3−2 s

)2
+

1

3
81−s

]
δ = −3

1

6
3−4 s

(
1 + 3 · 3−2 s + 6 · 3−4 s

)
+

1

3
81−s = 3−3s

[
1

2
3−s
(
1 + 3−2 s

)
+ 243−s

]

70



Both of these identities may be easily checked by hand to be true, as Nakagawa’s

theorem implies.

Next we turn to the full list of fields which are unramified outside S = {2, 3}.

For δ = 1, 2, 3, 6, we have m = 0, while for δ = −1,−2,−3,−6 we have m = 1. For

the purpose of comparison, we shall group the identities in pairs δ and −3δ (mod

squares) since these pairs have the same fields on both sides.

δ = 1
1

2
3−s
(
1 + 2−4 s

)
3−2 s

(
1 + 3 · 3−4 s

)
+ 108−s + 243−s

(
1 + 2−4 s

)
+ 2 · 972−s

= 31−3s
[

1

6

(
1 + 2−2 s

)2 (
1 + 3−2 s

)2
+

1

3
81−s

(
1− 2−2 s + 2−4 s

)]
δ = −3

1

6

(
1 + 2−2 s

)2
3−4 s

(
1 + 3 · 3−2 s + 6 · 3−4 s

)
+

1

3
81−s

(
1− 2−2 s + 2−4 s

)
= 3−3s

[
1

2
3−s
(
1 + 2−4 s

) (
1 + 3−2 s

)
+ 108−s + 243−s

(
1 + 2−4 s

)
+ 2 · 972−s

]
As a small explanation, both of the above identities concern the two fields in Table 6.1

with δ = 1 and the five fields with δ = −3. The Euler factors are determined according

to the recipes given above, with the types read off the last two columns of Table 6.1.

The remaining pairs of identities follow below

δ = 2
1

2
24−s

(
1 + 2−2 s

)
3−2 s

(
1 + 3 · 3−4 s

)
+ 216−s

(
1 + 2−2 s

)
= 31−3s

[
1

2
8−s
(
1 + 2−2 s

) (
1 + 3−4 s

)]

δ = −6
1

2
8−s
(
1 + 2−2 s

)
3−4 s

(
1 + 3 · 3−2 s

)
= 3−3s

[
1

2
24−s

(
1 + 2−2 s

) (
1 + 3−2 s

)
+ 216−s

(
1 + 2−2 s

)]

δ = 3
1

2
4−s
(
1 + 2−2 s

)
3−4 s

(
1 + 3 · 3−2 s

)
+ 324−s

(
1 + 2−2 s

)
= 31−3s

[
1

2
12−s

(
1 + 2−2 s

) (
1 + 3−2 s

)]
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δ = −1
1

2
12−s

(
1 + 2−2 s

)
3−2 s

(
1 + 3 · 3−4 s

)
= 3−3s

[
1

2
4−s
(
1 + 2−2 s

) (
1 + 3−4 s

)
+ 324−s

(
1 + 2−2 s

)]

δ = 6
1

2
8−s
(
1 + 2−2 s

)
3−4 s

(
1 + 3 · 3−2 s + 6 · 3−4 s

)
+ 648−s

(
1 + 2−2 s

)
= 31−3s

[
1

2
24−s

(
1 + 2−2 s

) (
1 + 3−2 s

)
+ 1944−s

(
1 + 2−2 s

)]

δ = −2
1

2
24−s

(
1 + 2−2 s

)
3−2 s

(
1 + 3 · 3−4 s

)
+ 1944−s

(
1 + 2−2 s

)
= 3−3s

[
1

2
8−s
(
1 + 2−2 s

) (
1 + 3−2 s

)2
+ 648−s

(
1 + 2−2 s

)]
These identities may be verified by elementary algebra to be correct; however,

we also used Maple’s algebraic simplification tools to verify them by computer. We

next proceeded to check cases where the set S of places contains all primes up to and

including a given prime p. We denote these sets of extensions by Sp. It turn out that

for even relatively small primes p such as p = 11, the extensions may have discriminant

as large as 22355272112 = 144074700, which is beyond the published Bordeaux tables.

To go further, we used the program cubic written by Karim Belabas. The algorithm

is established in [1], and the source code is available at

http://www.math.u-bordeaux.fr/~belabas/research/software/cubic-1.2.tgz

We made some minor modifications in cubic to allow it to restrict output to only

fields which are unramified for all p > 11. Table 6.2 gives the number of fields in

CSp of both positive and negative discriminant, with the largest discriminant in each

set also displayed. Fields are counted only up to conjugacy. With this data and our

Maple procedures, we verified the finite Ohno-Nakagawa identity (6.1) for all cases

comprised by CS11 .
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As one simple further example, we shall take S = {2, 3, 7} (thus omitting 5)

and δ = −7 and δ = 21. The negative discriminants counted are −7 (quadratic)

and −567 = −347 (cubic), and the positive discriminants are 21 (quadratic) and

756 = 22337 (cubic). The identities (6.1) turn out to be

δ = 21

1

2
7−s
(
1 + 2−2 s

)2
3−4 s

(
1 + 3 · 3−2 s

) (
1 + 7−2 s

)
+ 567−s

(
1− 2−2 s + 2−4 s

) (
1 + 7−2 s

)
= 31−3s

[
1

2
21−s

(
1 + 2−4 s

) (
1 + 3−2 s

) (
1 + 7−2 s

)
+ 756−s

(
1 + 7−2 s

)]
δ = −7

1

2
21−s

(
1 + 2−4 s

)
3−2 s

(
1 + 3 · 3−4 s

) (
1 + 7−2 s

)
+ 756−s

(
1 + 7−2 s

)
= 3−3s

[
1

2
7−s
(
1 + 2−2 s

)2 (
1 + 3−4 s

) (
1 + 7−2 s

)
+ 567−s

(
1− 2−2 s + 2−4 s

) (
1 + 7−2 s

)]
Again, both identities may be verified by elementary algebra, although they must be

true due to Nakagawa’s theorem.

After using the Bordeaux tables and Belabas’ program to complete the above tests

of the finite Ohno-Nakagawa identities, we learned of the program of John Jones and

David Roberts which enumerates low degree fields with prescribed ramification, which

is exactly what we need to test these identities. The Jones-Roberts algorithms are

described in [10], and made available at the website

http://hobbes.la.asu.edu/NFDB/

We used this program to confirm the list of fields provided by Belabas’ program,

as well as the Ohno-Nakagawa identities. It can be used to enumerate fields which

are unramified except for primes at most 17, and thus provide more confirmation of

Nakagawa’s theorem.
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6.3 Resolvent identities over Q(i)

Here we take k = Q(i) and consider the extensions k′/k of degree at most 3. Such

fields k′ have degree 2, 4 or 6, and all infinite places are complex. The Bordeaux

tables include files T40.gp and T60.gp which list all quartic and sextic totally com-

plex fields up to conjugacy and with maximal discriminant 999988 and −199664,

respectively. As it turns out, this is not large enough to verify the identity even for

S = {1 + i, 3}. For example, by our earlier list for Q, the sextic field k( 3
√

3) has

discriminant (−4)3(243)2 = −3779136. The papers [15] and [2] provide information

about enumerating sextic fields. Fortunately, the Jones-Roberts program allows us to

enumerate all fields of degree at most 6 with prescribed ramification at a small set of

primes, and as we shall see this allows us to verify the finite Ohno-Nakagawa identity

for k = Q(i) and S = {1 + i, 3}.

At the website http://hobbes.la.asu.edu/NFDB/, we first conducted a search

for fields of degree 4, r1 = 0, r2 = 2 with arbitrary size discriminant, but ramification

possible only at p1 = 2 and p2 = 3. This would include all quadratic extensions of

Q(i) which are unramified outside S = {1 + i, 3}. This produced a list of 29 degree

4 polynomials corresponding to each possible field up to conjugacy. We next used

Jones’ program to determine the list of sextic fields with r1 = 0 and ramification only

at p1 = 2 and p2 = 3. This produced a list of 140 polynomials, which would include

all cubic extensions of Q(i) unramified outside S = {1 + i, 3}. The lists contain one

polynomial for each isomorphism class of field matching the conditions imposed.

The next task is to extract from these lists precisely those polynomials generating

extensions of Q(i). For that purpose, we use the following basic fact from field theory:

Lemma 6.1 Let L/Q be a finite extension of degree n, and let K/Q be an extension

of degree m | n. Let α be an element of L such that L = Q(α). Then K is a subfield

of L if and only if the minimal polynomial of α over K has degree
n

m
. This will be a
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factor of the minimal polynomial of α over Q.

Proof. Let p(x) ∈ Q[x] be the monic minimal polynomial of α ∈ L; then the degree

of p(x) is [L : Q] = n. Let q(x) be the monic minimal polynomial of α over K which

is assumed to have degree n/m where m = [K : Q]. Since the compositum LK is the

same as the field K(α), then [LK : K] = [K(α) : K] = n/m. Then by the tower law

[LK : Q] = [LK : K][K : Q] = (n/m)m = n = [L : Q]. This proves LK = L and

hence that K ⊂ L. By minimality, q(x) is a factor of p(x).

The converse, where we assume K ⊂ L, immediately follows from the tower law

[L : K] = [L : Q]/[K : Q].

Thus, to extract the extensions of Q(i), we simply have to check if the polynomials

in the lists provided by Jones’ program factor over Q(i). For example, the first quartic

field in Jones’ list is

p(x) = x4 − x2 + 1.

In PARI, the discriminant of the number field generated by a root is calculated by

the command nfinit(p).disc, where p is the polynomial expression. This example

has discriminant Dk′ = 144. We can calculate the factorization of p(x) over Q(i) by

means of the command

factornf( x^4 -x^2 +1, y^2+1)

with the result being

p(x) = x4 − x2 + 1 = (x2 − ix− 1)(x2 + ix− 1)

Thus, this number field is a quadratic extension of Q(i). When we apply this test

to the lists of polynomials produced by Jones’ program, we find that 5 of the quar-

tic polynomials and 13 of the sextic polynomials generate extensions of Q(i). These

are presented in Tables 6.3 and 6.4. These tables also contain the absolute discrim-

inants Dk′ and the absolute norms of the relative discriminants dk′/k = N(Dk′/k)

75



calculated from the tower law given that DQ(i) = −4. From basic facts about dis-

criminants of towers of number fields (see [18], Proposition VIII.4.13), since Dk = −4,

we have Dk′ = D2
k N(Dk′/k) = 16 N(Dk′/k) for [k′ : k] = 2, and Dk′ = D3

k N(Dk′/k) =

−64 N(Dk′/k) for [k′ : k] = 3. The cubic factors of the sextic polynomials in Table

6.4 are given in Table 6.5. The quadratic and cubic extensions of k = Q(i) are given

as k(α) where α is a root of the quartic or sextic polynomial in our lists. The two

factors of the polynomials over k may give non-conjugate extensions of k.

We can also use PARI’s command factornf to test each of the quadratic and

cubic extensions of Q(i) to see if they contain the quadratic and cubic number fields

listed in Table 6.1. The results are presented in the first column of Table 6.3, where

three fields k′ are identified as the biquadratic fields q1(i), q2(i), and q3(i), and in the

fourth column of Table 6.4, where we see 9 of the sextic polynomials factor over the

cubic fields kj, 1 ≤ j ≤ 9.

Since k = Q(i) has class number 1, the relative discriminant of k′/k is of the form

Dk′/k = Dk′/kZ[i], where Dk′/k is determined as an element of (Z[i] r {0})/{±1}.

Also, if k′ = k(α) for some α ∈ Z[i] and the monic minimal polynomial of α over

Z[i] is q(x), then the discriminant ∆(q) of q(x) as a polynomial is equal to a square

of a nonzero element in Z[i] times the generator of the relative discriminant of k′/k.

Thus, ∆(q) = u2Dk′/k for some u ∈ Z[i] r {0}. Then N(∆(q)) = N(u)2 dk′/k. The

fourth column of Table 6.5 shows the polynomial discriminant ∆(q) of q(x), and

the fifth column shows N(u)2. The solutions to N(u) = 1, 2, and 4, resp., in Z[i]

are u ∈ {±1,±i}, {±1 ± i}, and {±2,±2i}, resp. Then u2 ∈ {±1}, {±2i}, and

±4, resp. Since −1 = i2 in Z[i], these calculations allow us to determine Dk′/k

modulo squares from the calculations of ∆(q). This is shown in the sixth column of

Table 6.5. This is an easier calculation for the quadratic extensions of Q(i) in that the

discriminant of each quadratic polynomial in Table 6.3 is also a relative discriminant

of the extension. When the relative discriminant of q(x) is an integer multiple of 1±i,
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then the conjugate factor q(x) has conjugate relative discriminant. Since 1 + i does

not equal 1− i modulo squares in Z[i], these two factors q(x), q(x) give rise to non-

conjugate extensions over k. That explains why the factors q and q for dk′/k = 512,

4608, 23328 and 209952 in Tables 6.3 and 6.5 gives rise to non-conjugate extensions

over k.

The resolvent field of each of the listed extensions is k(
√
Dk′/k) = k(

√
δ) where

δ is the square-free part of Dk′/k. Since we are considering fields unramified outside

S = {1 + i, 3}, the integers of Z[i] which are divisible only by primes over S are equal

modulo squares to precisely one of

δ = 1, i, 1± i, 3, 3i, 3(1± i).

In our tables, we have factored out squares and identified δ in the last column.

The next issue is to completely determine for the factorization p(x) = q(x)q(x)

whether the two factor polynomials q(x) and q(x) generate conjugate or non-conjugate

extensions k′/k. They are conjugate over Q, but not necessarily over k. In the quartic

case, the two extensions are k(
√
δ) and k(

√
δ) where δ is the generator of the relative

discriminant modulo squares. By Kummer theory, these are the same extension if

and only if δδ ∈ k2. Since k2 ∩ Q = ±Q2, this means N(δ) must be a positive

square in Q. Thus, for the non-square discriminants 32 and 288, the factors q(x) and

q(x) generate two different quadratic extensions k′/k, which are not Galois over Q.

This explains our notation for the seven quadratic extensions k′ of Q(i) in Table 6.3.

There are relations among the splitting fields of the quartic polynomials. The quartics

corresponding to Q3 and Q5 both have Galois group D4, while the others have Galois

group C2 × C2. The splitting fields of both the Q3 and Q5 quartics contains Q2.

In general, suppose q(x) is a monic irreducible polynomial over k = Q(i), and

that q(x) is its conjugate polynomial. If α is a root of q(x), then α is a root of q(x).

Let K = k(α) and K = k(α). If K/k is a cyclic cubic extension, then K = K

if and only if K is a Galois extension of degree 6 of Q, since then conjugation is
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an automorphism of order 2 of K/Q. The Galois group is then cyclic C6 or the

symmetric group S3. In the former case, K contains a cyclic cubic extension of Q,

which is unramified outside S. The only possibility is the cyclic field k1 of discriminant

81. From Table 6.4, the second sextic factors over k1, and thus the splitting field is

the compositum K2 = k1 k = k1(i), which is cyclic of degree 6 over Q. If the Galois

group of K/Q is S3, then K contains a conjugate triple of nonconjugate cubic fields.

Thus, this can be determined again by factoring over the cubic fields in Table 6.1.

The cyclic extensions K/k have relative discriminant generator equal to a square

in k, and from our list we see there are just three possible sextics all of which have

DK/k = 81. The first sextic factors over the cyclic cubic field k1, while the second one

in our list factors over k7. Thus, both those sextics have the same cubic extensions

of k arising from the two cubic factors over k. The other two sextics each give rise to

two distinct but conjugate cyclic cubic extensions of k.

All the other cases listed in Table 6.5 correspond to noncyclic cubic extensions of

k = Q(i), since Dk′/k is not a square in k. Suppose the three roots of q(x) generate the

three conjugate cubic extensions K1, K2 and K3 over k. Suppose that the compositum

of these extensions is the S3-extension L of k. Then the roots of q(x) generate the

extensions K1, K2, and K3, and their compositum is L. The triple {Kj} is the same

as {Kj} if and only if L = L, which again means that L/Q is a Galois extension of

degree 12.

Assuming L = L, the Galois group G of L/Q contains S3 as a normal subgroup

corresponding to the subfield k = Q(i), and contains complex conjugation as an

order 2 automorphism. Write S3 = 〈σ, τ | σ3 = τ 2 = 1, τστ = σ−1〉, with all these

automorphisms fixing k. Let φ be complex conjugation on k extended to L. Since S3

is a normal subgroup of G, the three order 2 elements τ , στ and σ2τ are permuted

by conjugation by φ. Thus, at least one is fixed by conjugation by φ. We may relabel

τ to be one of the fixed ones so that φτ = τφ. This implies that 〈τ, φ〉 is an order
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4 subgroup of G, and thus corresponds to a real cubic extension of Q. That means

that the original sextic polynomial factors over this cubic field, which would have

to be in the list of fields unramified outside S on page 85. We may check which of

the sextics in Table 6.4 factors over the cubics listed on page 85, and if so then we

conclude L = L. This accounts for our notation for the 17 cubic extensions of Q(i)

(up to conjugacy) listed in Table 6.5. Also, Table 6.4 shows the cubic fields kj named

in Table 6.1 over which these sextic polynomials factor. The splitting field of the K4

sextic contain the splitting fields of K2 and K3, while the splitting field of the K13

sextic contains K5 and K12. There are no other relations between the splitting fields.

We may now divide the list of 1+7+17 = 25 extensions of k which are unramified

outside S into subsets CS(δ):

CS(1) = {k, K2, K3, K4, K4}

CS(3) = {Q1, K1, K7, K10, K11}

CS(i) = {Q2, K8}

CS(3i) = {Q4, K5, K12, K13, K13}

CS(1 + i) = {Q3, K9}

CS(3(1 + i)) = {Q5, K6}

CS(1− i) = {Q3, K9}

CS(3(1− i)) = {Q5, K6}

For k = Q(i), we have r1 = m = 0 and n = 2, and thus the finite Ohno-Nakagawa

identity takes the form ∑
k′∈CS(−3δ)

Ŷk′,S(s) = 31−6s
∑

k′∈CS(δ)

Yk′,S(s),

with

Yk′,S(s) =
d−sk′/k
o(k′)

∏
v∈S

Ek′,v(s) Ŷk′,S(s) =
d−sk′/k
o(k′)

∏
v∈S

Êk′,v(s).
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For S ⊂ {1 + i, 3}, we have listed all the extensions and their corresponding values of

Dk′/k. The final piece of information we need to check the identities is the calculation

of the splitting type of each place v ∈ S in the corresponding extensions of k. This

would allow us to choose the correct Euler factors Ek′,v and Êk′,v. The splitting type

is directly determined from the factorization of the prime ideal p corresponding to

the place v as a product of prime ideals in the ring of integers of k′. The program

PARI contains a procedure idealfactor that calculates the prime ideal factorization

of a rational prime p in a number field.

As an example, take the extension k′ corresponding to f(x) = x6 − 2x3 + 2. The

following PARI commands compute the factorization of p = 3 in k′

? K=nfinit(x^6-2*x^3+2);\\ Initialize number field K

? fact=idealfactor(K,3);\\ Give prime ideal factorization of 3 in K

? matsize(fact)\\ First dimension = number of prime ideals in fact

% 3 = [1, 2]

? fact[1,2]\\ Second column gives exponent of prime ideal in fact

% 4 = 3

? fact[1,1][3]\\ Ramification order of prime ideal for this row

% 5 = 3

? fact[1,1][4]\\ Residue degree of prime ideal for this row

% 6 = 2

The output is a g×2 matrix where g is the number of distinct prime ideal factors over

p in k′. The second column of this matrix gives the power, i.e. ramification order,

of that prime ideal for that row in the factorization pok′ = Pe1
1 Pe2

2 · · ·Peg
g . The first

entry in the i-th row is a vector of data describing the prime ideal Pi. The 3rd and

4th entries in that vector are the ramification order ei and the residue degree fi of

that prime ideal Pi in k′. Thus, in our example 3ok′ = P3 in this number field where

P is a prime ideal of residue degree 2. The absolute norm of P is then 32 = 9.
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The results of this calculation for our complete list of fields is shown in Tables 6.6

and 6.7. The prime 2 splits into at most 3 distinct prime ideals, while the prime 3 splits

into at most 2 distinct prime ideals in our list of extensions. Since 2Z[i] = (1 + i)2Z[i]

in k, this explains why all the ramification orders in Table 6.6 are even, and we can

deduce the splitting type of p = (1 + i)Z[i] in k′/k by just halving the ramification

orders. The prime 3 is inert in k with residue degree 2. Thus, we can determine the

splitting type in k′/k by halving the residue degrees fi in Table 6.7.

Before delving into all the cases of our conjecture for S = {1 + i, 3}, the easiest

case to check for k = Q(i) is when S = {3} in which case δ may be one of {1, 3, i, 3i}.

In this case, we are reduced to extensions k′/k which are ramified only at the prime

3. That leads to the extensions:

CS(1) = {k, K2, K3, K4, K4}

CS(3) = {Q1, K7}

CS(i) = ∅

CS(3i) = ∅

All the other extensions in our table are ramified over 1 + i. Then the two Ohno-

Nakagawa identities to check are

ŶQ1(s) + ŶK7(s) = 31−6s (Yk(s) + YK2(s) + YK3(s) + 2YK4(s)) ;

Ŷk(s) + ŶK2(s) + ŶK3(s) + 2ŶK4(s) = 31−6s (YQ1(s) + YK7(s)) .

(Here we abbreviate YK = YK,S.) Note that the Y term is the same for extensions K,

K which are conjugate over Q. For these identities, we need only the Euler factor for

the prime 3. Note that 3 has type (3r) in every cubic extension of k, and thus the

Euler factor is the same for all these extensions. Our knowledge of the types leads

81



to, knowing that q−2sv = 9−2s for v = 3,

Ek,3(s) = (1 + 9−2s)2

EQ1,3(s) = (1 + 9−2s)

EK2,3(s) = EK3,3(s) = EK4,3(s) = EK7,3(s) = 1

Êk,3(s) = 9−4s(1 + 91−2s + 2 · 91−4s)

ÊQ1,3(s) = 9−2s(1 + 91−4s)

ÊK2,3(s) = ÊK3,3(s) = ÊK4,3(s) = ÊK7,3(s) = 1

The first finite Ohno-Nakagawa identity would then be

ŶQ1(s) + ŶK7(s) = 31−6s (Yk(s) + YK2(s) + YK3(s) + 2YK4(s))

1

2
9−s ÊQ1,3(s) + 59049−s ÊK7,3(s) =

31−6s
(

1

6
Ek,3(s) +

1

3
6561−sEK2,3(s) +

1

3
6561−sEK3,3(s) +

2

3
6561−sEK4,3(s)

)
1

2
9−s9−2 s

(
1 + 91−4 s)+ 59049−s = 31−6 s

(
1

6

(
1 + 9−2 s

)2
+

4

3
6561−s

)
1

2
3−6s

(
1 + 32−8 s)+ 3−10s = 31−6 s

(
1

6

(
1 + 3−4 s

)2
+

4

3
3−8s

)
1

2
3−6s +

1

2
32−14 s + 3−10s =

1

2
3−6 s

(
1 + 2 · 3−4 s + 3−8 s + 8 · 3−8s

)
=

1

2
3−6 s + 3−10 s +

9

2
3−14 s

0 = 0,

after subtracting terms on both sides, which verifies our conjectured identity.
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The second potential identity reduces as follows

Ŷk(s) + ŶK2(s) + ŶK3(s) + 2ŶK4(s) = 31−6s (YQ1(s) + YK7(s))

1

6
Êk,3(s) +

1

3
6561−s ÊK2,3(s)+

1

3
6561−s ÊK3,3(s) +

2

3
6561−s ÊK4,3(s) =

31−6s
(

1

2
9−sEQ1,3(s) + 59049−sEK7,3(s)

)
1

6
9−4s(1 + 91−2s + 2 · 91−4s) +

4

3
6561−s = 31−6s

(
1

2
9−s (1 + 9−2s) + 59049−s

)
1

6
3−8s(1 + 32−4s + 2 · 32−8s) +

4

3
3−8s = 31−6s

(
1

2
3−2s (1 + 3−4s) + 3−10s

)
1

6
3−8s +

1

2
31−12s + 31−16s +

4

3
3−8s = 31−6s

(
1

2
3−2s +

1

2
3−6s + 3−10s

)
3

2
3−8s +

1

2
31−12s + 31−16s =

1

2
31−8s +

1

2
31−12s + 31−16s

0 = 0,

and again our conjectured identity holds in this example.

The next easiest case to check is δ = 1 + i which comes down to

ŶQ5(s) + ŶK6(s) = 31−6s (YQ3(s) + YK9(s)) .

Note that 1 + i divides all the relative discriminants and so is ramified and in fact of

type (2r) in all 4 extensions. The prime 3 is ramified in all but Q3. It has type (2r)

in Q5 and type (3r) in K6 and K9. Then we have

ŶQ5(s) =
2−5s3−2s

2
(1 + 2−2s)9−2s(1 + 91−4s)

ŶK6(s) = 2−5s3−6s(1 + 2−2s)

YQ3(s) =
2−5s

2
(1 + 2−2s)(1 + 9−4s)

YK9(s) = 2−5s3−8s(1 + 2−2s)

After cancelling the common factor of 2−5s(1 + 2−2s), our conjectured identity boils
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down to

3−2s

2
9−2s(1 + 91−4s) + 3−6s = 31−6s

(
1

2
(1 + 9−4s) + 3−8s

)
1

2
3−6s(1 + 32−8s) + 3−6s = 31−6s

(
1

2
(1 + 3−8s) + 3−8s

)
1

2
3−6s +

1

2
32−14s + 3−6s =

3

2
3−6s +

9

2
3−14s

0 = 0.

Again, the identity holds. All the cases corresponding to the field data for S =

{1 + i, 3} presented in this chapter have been verified to work as well. We believe

these examples are fairly compelling for the truth of our conjecture at least for Q(i),

although we intend to present more comprehensive numerical verifications for this

and other base fields k in a subsequent work.
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# Dk k δ Type of 2 Type of 3

Q 1 Q 1 (1) (1)

q1 −3 Q(
√
−3) −3 (2u) (2r)

q2 8 Q(
√

2) 2 (2r) (2u)

q3 −24 Q(
√
−6) −6 (2r) (2r)

q4 12 Q(
√

3) 3 (2r) (2r)

q5 −4 Q(
√
−1) −1 (2r) (2u)

q6 24 Q(
√

6) 6 (2r) (2r)

q7 −8 Q(
√
−2) −2 (2r) (1)

k1 81 Q(α | α3 − 3α− 1 = 0) 1 (3u) (3r)

k2 −108 Q( 3
√

2) −3 (3r) (3r)

k3 −243 Q( 3
√

3) −3 (2u) (3r)

k4 −972 Q( 3
√

6) −3 (3r) (3r)

k5 −972 Q( 3
√

12) −3 (3r) (3r)

k6 −216 Q(α | α3 + 3α− 2 = 0) −6 (2r) (3r)

k7 −324 Q(α | α3 − 3α− 4 = 0) −1 (2r) (3r)

k8 1944 Q(α | α3 − 9α− 6 = 0) 6 (2r) (3r)

k9 −648 Q(α | α3 − 3α− 10 = 0) −2 (2r) (3r)

Table 6.1: Fields of degree ≤ 3 unramified outside 2,3.
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p #C +
Sp

Dmax #C −Sp Dmax

2 2 8 = 23 2 −8 = −23

3 6 1944 = 2335 11 −972 = −2235

5 14 16200 = 233452 34 −24300 = −223552

7 39 793800 = 23345272 101 −1190700 = −22355272

11 105 96049800 = 23345272112 319 −144074700 = −22355272112

Table 6.2: Number of fields (up to conjugacy) of degree ≤ 3 unramified for primes

> p

k′ Dk′ dk′/k p(x) q(x) Dk′/k δ

Q1 = q1(i) 144 9 = 32 x4 − x2 + 1 x2 − ix− 1 3 3

Q2 = q2(i) 256 16 = 24 x4 + 1 x2 + i 4i i

Q3, Q3 512 32 = 25 x4 − 2x2 + 2 x2 − 1− i 4(1± i) 1± i

Q4 = q3(i) 2304 144 = 2432 x4 + 9 x2 − 3 i 12i 3i

Q5, Q5 4608 288 = 2532 x4 − 6x2 + 18 x2 − 3− 3 i 12(1± i) 3(1± i)

Table 6.3: Polynomials generating quadratic extensions of Q(i) unramified outside

1 + i, 3.
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Dk′ dk′/k p(x) Factors over

−186624 2916 = 2236 x6 − 2x3 + 2 k2

−419904 6561 = 38 x6 + 6x4 + 9x2 + 1 k1

−419904 6561 = 38 x6 − 2x3 + 9x2 + 6x+ 2 k7

−419904 6561 = 38 x6 − 2x3 + 9x2 − 12x+ 5 none

−746496 11664 = 2436 x6 − 6x4 + 9x2 + 4 k6

−1492992 23328 = 2536 x6 + 9x2 − 12x+ 4 none

−3779136 59049 = 310 x6 + 9 k3

−6718464 104976 = 2438 x6 − 4x3 + 9x2 + 12x+ 8 k9

−13436928 209952 = 2538 x6 − 4x3 + 9x2 − 24x+ 20 none

−15116544 236196 = 22310 x6 + 36 k4

−15116544 236196 = 22310 x6 − 6x3 + 18 k5

−60466176 944784 = 24310 x6 + 18x4 + 81x2 + 36 k8

−60466176 944784 = 24310 x6 − 18x4 − 24x3 + 81x2 + 216x+ 180 none

Table 6.4: Sextic polynomials generating cubic extensions of Q(i) unramified outside

1 + i, 3.
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k′ dk′/k q(x) ∆(q) N(∆(q))/dk′/k Dk′/k δ

K1 2916 x3 − 1 + i 54i 1 54i 3

K2 6561 x3 + 3x+ i −81 1 81 1

K3 6561 x3 + 3ix− 1 + i 162i 4 81 1

K4, K4 6561 x3 − 3ix− 1 + 2i 81 1 81 1

K5 11664 x3 − 3x− 2i 216 4 108i 3i

K6, K6 23328 x3 + 3ix− 2i 108(1 + i) 1 108(1± i) 3(1± i)

K7 59049 x3 − 3i 243 1 243 3

K8 104976 x3 − 3ix− 2− 2i −324i 1 324i i

K9, K9 209952 x3 + 3ix− 2− 4i 324(1− i) 1 324(1± i) 1± i

K10 236196 x3 − 6i 972 4 486i 3

K11 236196 x3 − 3 + 3i 486i 1 486i 3

K12 944784 x3 + 9x− 6i −1944 4 972i 3i

K13, K13 944784 x3 − 9x− 12− 6i −3888i 16 972i 3i

Table 6.5: Cubic polynomials generating cubic extensions of Q(i) unramified outside

1 + i, 3.
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k′ dk′/k e1 f1 e2 f2 e3 f3 Type in k′/k

Q1 9 2 2 (2u)

Q2 16 4 1 (2r)

Q3, Q3 32 4 1 (2r)

Q4 144 4 1 (2r)

Q5, Q5 288 4 1 (2r)

K1 2916 6 1 (3r)

K2 6561 2 3 (3u)

K3 6561 2 1 2 1 2 1 (1)

K4, K4 6561 2 3 (3u)

K5 11664 4 1 2 1 (2r)

K6, K6 23328 4 1 2 1 (2r)

K7 59049 2 1 2 2 (2u)

K8 104976 4 1 2 1 (2r)

K9, K9 209952 4 1 2 1 (2r)

K10 236196 6 1 (3r)

K11 236196 6 1 (3r)

K12 944784 4 1 2 1 (2r)

K13, K13 944784 4 1 2 1 (2r)

Table 6.6: Splitting type of 2 in k′/Q, and corresponding type of (1 + i)Z[i] in k′/k.
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k′ dk′/k e1 f1 e2 f2 Type in k′/k

Q1 9 2 2 (2r)

Q2 16 1 2 1 2 (1)

Q3, Q3 32 1 4 (2u)

Q4 144 2 2 (2r)

Q5, Q5 288 2 2 (2r)

K1 2916 3 2 (3r)

K2 6561 3 2 (3r)

K3 6561 3 2 (3r)

K4, K4 6561 3 2 (3r)

K5 11664 3 2 (3r)

K6, K6 23328 3 2 (3r)

K7 59049 3 2 (3r)

K8 104976 3 2 (3r)

K9, K9 209952 3 2 (3r)

K10 236196 3 2 (3r)

K11 236196 3 2 (3r)

K12 944784 3 2 (3r)

K13, K13 944784 3 2 (3r)

Table 6.7: Splitting type of 3 in k′/Q, and corresponding type of 3Z[i] in k′/k.

90



CHAPTER 7

Expressing the resolvent Dirichlet series as sums of idele class group

characters

In this last chapter, we shall use class field theory to interpret the resolvent field

Ohno-Nakagawa identity (5.4) as an equality of sums over a group of characters of

the idele class groups of F = k(
√
δ) and F̂ = k(

√
−3δ). Scholz’ reflection theorem in

[16], developed further in Nakagawa [13], proves a relationship between the absolute

class groups of Q(
√
δ) and Q(

√
−3δ). It is our belief that these ideas and the formulas

in this chapter will eventually complete the proof of the generalized Ohno-Nakagawa

conjecture.

7.1 Simplification of the generalized Ohno-Nakagawa conjecture

The generalized Ohno-Nakagawa conjecture, in the form of the finite resolvent field

conjecture, can be restated here as

∑
k′∈CS(−3δ)

d−sk′/k
o(k′)

∏
v∈S

Êk′,v(s) = 3r2+m−3ns
∑

k′∈CS(δ)

d−sk′/k
o(k′)

∏
v∈S

Ek′,v(s). (7.1)

where δ ∈ k×/k2 and S is a set of places v containing all infinite places and all v that

divide 3dF/k. The general resolvent conjecture is the limit of these as S tends to the

set of all places of k

∑
k′∈C (−3δ)

d−sk′/k
o(k′)

∏
v-∞

Êk′,v(s) = 3r2+m−3ns
∑

k′∈C (δ)

d−sk′/k
o(k′)

∏
v-∞

Ek′,v(s). (7.2)
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In this chapter, we should make clear that, unlike the introduction, these are sums

over extensions up to conjugacy, and thus we take

o(k′) =



6 if k′ = k,

2 if [k′ : k] = 2,

3 if [k′ : k] = 3 and k′/k is cyclic,

1 if [k′ : k] = 3 and k′/k is non-cyclic.

The extensions in C (δ) consist of precisely F = k(
√
δ) and all cubic extensions

k′/k where the Galois closure L of k′ over k is a cyclic cubic extension of F . By class

field theory, the finite abelian extensions L/F bijectively correspond to the open

subgroups U of the idele class group JF = A×F/F× such that JF/U ∼= Gal(L/F ).

Thus, the cyclic cubic L/F correspond to the open subgroups U of A×F/F× of index

3. The quotient JF/U is a cyclic group of order 3, and is therefore the kernel of

precisely two nontrivial cubic characters χ, χ2 of JF . Thus, there is a one-to-two

correspondence between cyclic cubic extensions L/F and cubic characters χ of JF .

In our series, if F/k is quadratic, we require the cyclic cubic extensions L/F to

be S3-extensions of the base field k. The Galois group Gal(F/k) has order two, and

we denote a generator by σ. This Galois group acts on JF in the usual manner, and

the condition that an open subgroup U of index 3 in JF should correspond to an

S3-extension L/k is precisely that Uσ = U and xσ = x−1 (mod U) for all x ∈ JF .

Alternatively, this means that the corresponding cubic character χ of JF should

satisfy χ(xxσ) = χ(NF/k(x)) = 1 for all x ∈ JF . If F = k, there is no extra condition

on χ. We now define X (F ) to be the group of characters χ of JF such that χ3 = 1

and, if [F : k] = 2, we have χ◦NF/k = 1. Given a finite set S of places of k, we define

XS(F ) to consist of those characters which are unramified at all places outside S.

The trivial character χ = 1 corresponds to the trivial extension F of F . Thus,

k′ = F ∈ C (δ) corresponds only to χ = 1. If [k′ : k] = 3, there are two characters
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χ, χ2 of JF corresponding to k′. Thus, it makes sense to define

o(χ) =



6 if k′ = k,

2 if [k′ : k] = 2,

6 if [k′ : k] = 3 and k′/k is cyclic,

2 if [k′ : k] = 3 and k′/k is non-cyclic,

to compensate for this doubling of terms in the latter two cases. However, now

o(χ) = o(F ) depends only on whether F is k or not. Thus, it factors out of the series

altogether. This leads to∑
k′∈C (δ)

d−sk′/k
o(k′)

∏
v-∞

Ek′,v(s) =
1

o(F )

∑
χ∈X (F )

d−sk′/k

∏
v-∞

Ek′,v(s).

Next, we consider the factors d−sk′/k. First, let us assume [F : k] = 2. According to

Hasse (Satz 3 in [9]), the relative discriminant satisfies Dk′/k = DF/k NF/k(fχ) where

fχ is the conductor of the character χ. Taking the absolute norm over Q, we then

have dk′/k = dF/k N(fχ). Now we may factor our series further∑
k′∈C (δ)

d−sk′/k
o(k′)

∏
v-∞

Ek′,v(s) =
d−sF/k
o(F )

∑
χ∈X (F )

N(fχ)−s
∏
v-∞

Ek′,v(s).

With reference to the dual resolvent field F̂ = k(
√
−3δ), the same analysis applied

to the dual Dirichlet series on the left side of (7.2) with the result∑
k′∈C (−3δ)

d−sk′/k
o(k′)

∏
v-∞

Êk′,v(s) =
d−s
F̂ /k

o(F̂ )

∑
χ∈X (F̂ )

N(fχ)−s
∏
v-∞

Êk′,v(s).

This exhibits both sides of the Ohno-Nakagawa identity as sums over groups of idele

class characters. The next task is to rewrite the Euler factors Ek′,v, Êk′,v in terms of

the idelic class character χ corresponding to k′.

7.2 Shintani’s Dirichlet series as sums of idele class group characters

In this section we provide a proof of formula (1.7), which gives Shintani’s Dirichlet

series as a sum of idele class group characters. We also deduce a similar formula for
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the dual Dirichlet series. The factor Ek′,v is a polynomial function of q−2sv = N(pv),

where the polynomial depends on the splitting type of v in k′/k. That splitting type

may be determined by the splitting type of v in the resolvent extension F/k and the

splitting type of any place w | v of F in the extension L/F which is the Galois closure

of k′/k.

For any character χ of JF , the homomorphism id : A×F → IF introduced in

Section 5.2 induces a character, also denoted by χ, on the group of fractional ideals

of F that are relatively prime with the conductor fχ. This is defined as follows: If a

is such an ideal, then we define χ(a) to be equal to χ(aF×), for a ∈ A×F such that

id(a) = a.

Let us assume first that F/k is quadratic. If L/F is a cyclic cubic extension

corresponding to the idele class group character χ of order 3, then class field theory

gives very simple rules for its splitting type:

The finite place w of F is totally ramified in L/F if and only if the prime

ideal Pw ∈ IF corresponding to w is a divisor of the conductor of fχ of

χ.

The finite place w splits completely in L/F if and only if χ(Pw) = 1.

If χ(Pw) 6= 1, then Pw remains prime in L, i.e. Pw is inert in L/F .

A prime ideal pv in k either remains prime in F : pvoF = Pw, or is ramified of degree

2 in F : pvoF = P2
w, or splits as product of distinct conjugate ideals: pvoF = PwPw
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in F . The splitting type of k′/k at v can be determined in terms of δ and χ as follows

(k′/k, v) =



(1) if ψ(δok) = 1 and χ(Pw) = 1,

(2u) if ψ(δok) = −1,

(2r) if pv | δok and Pw - fχ,

(3u) if ψ(δok) = 1 and χ(Pw) 6= 1,

(3r) if Pw | fχ,

where ψ is the quadratic character of Jk = A×k /k× associated to the extension F/k.

If F = k, then k′/k is cyclic and the only splitting types that occur are types (1),

(3u), and (3r). The ramified type (3r) occurs if and only if pv | fχ. For unramified

primes, pv has type (1) if and only if χ(Pw) = 1.

For the sake of convenience, we restate here Theorem 1.5 and then proceed to

prove it. To complete the proof, it only remains to write the Euler product in terms

χ, considered as a character on the group of fractional ideals that are relatively prime

to fχ.

Theorem 7.1 Let k be a number field, δ be a nonzero element of k, and F = k(
√
δ).

Then, for the collection C (δ) of extensions k′/k and for the character group X (F ),

we have the identity

∑
k′∈C (δ)

d−sk′/k
o(k′)

∏
v-∞

Ek′,v(s) =
d−sF/k
o(F )

∑
χ∈X (F )

N(fχ)−s
∏
w-∞

(
1 + χ(Pw) N(Pw)−2s

)
(7.3)

where o(F ) = 3 if F = k and 1 otherwise, Pw is the prime ideal of F corresponding

to the finite place w, and the product is taken over all finite places of F .

Proof. First, we assume that [F : k] = 2. In the type (1) case, we have pvoF = PwPw

and χ(Pw) = χ(Pw) = 1. Since N(Pw) = qv, we have

(
1 + χ(Pw) N(Pw)−2s

) (
1 + χ(Pw) N(Pw)−2s

)
= (1 + q−2sv )2.

95



In the type (2u) case, we have pvoF = Pw is a prime ideal in F with norm N(Pw) = q2v .

Also, it is automatically true that χ(Pw) = 1, by the conditions that χ(xxσ) = 1 and

χ3 = 1. Then

1 + χ(Pw) N(Pw)−2s = 1 + q−4sv .

In the type (3u) case, we must have χ(Pw) = χ(Pw)−1 and N(Pw) = qv. Thus, χ(Pw)

and χ(Pw) are the two nontrivial cube roots of unity. Since χ(Pw) + χ(Pw) = −1,

χ(Pw) · χ(Pw) = 1, it follows that

(
1 + χ(Pw) N(Pw)−2s

) (
1 + χ(Pw) N(Pw)−2s

)
= 1− q−2sv + q−4sv .

The type (3r) case corresponds to prime ideal factors Pw of fχ. The usual extension

of character χ to ramified primes dividing the conductor is to set χ(Pw) = 0. Then∏
w|v

(
1 + χ(Pw) N(Pw)−2s

)
= 1.

The type (2r) cases correspond to those prime ideals pv | δok of k so that Pw - fχ,

where pvoF = P2
w in F . Since Pw = Pw, we conclude that χ(Pw) = 1. As N(Pw) =

qv, we again have

1 + χ(Pw) N(Pw)−2s = 1 + q−2sv .

Now, we assume that F = k. As we have seen before we can only have types (1),

(3u), and (3r). Then all the Euler factors have the form

(
1 + χ(pv) N(pv)

−2s) (1 + χ2(pv) N(pv)
−2s) =


1 if pv | fχ,

(1 + q−2sv )2 if χ(pv) = 1,

1− q−2sv + q−4sv if χ(pv) 6= 1.

This allows to express the complete Euler as∏
v-∞

Ek′,v(s) =
∏
w-∞

(
1 + χ(Pw) N(Pw)−2s

)
.

Combining this with the results obtained in Section 7.1, we finally complete the proof

of the theorem.
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Now, let us turn our attention to the left side of (7.2). Since Êk′,v(s) = Ek′,v(s)

for the finite v | 3, the Euler product can be expressed as

∏
v-∞

Êk′,v(s) =
∏
v-∞

Ek′,v ·
∏
v|3

Êk′,v(s)

Ek′,v(s)

=
∏
w-∞

(
1 + χ(Pw) N(Pw)−2s

)
Mχ(s),

where Mχ(s) is the finite product
∏
v|3

Êk′,v(s)

Ek′,v(s)
.

Theorem 7.2 Let k be a number field, δ be a nonzero element of k, and F̂ =

k(
√
−3δ). Then,

∑
k′∈C (−3δ)

d−sk′/k
o(k′)

∏
v-∞

Êk′,v(s) =
d−s
F̂ /k

o(F̂ )

∑
χ∈X (F̂ )

N(fχ)−s
∏
w-∞

(
1 + χ(Pw) N(Pw)−2s

)
Mχ(s)

(7.4)

To conclude this discussion, we would like to represent the resolvent field identity

in an equivalent way in terms of ideles instead of ideals. Here we used that fact

the characters χ can be considered either as characters on the idele class group or

characters on the ideal group which are relatively prime to the conductor. Suppose

v is a finite place of k and w | v is a place of F . Let $w and rw = N(Pw) denote a

uniformizer and the modulus of Fw, respectively. For Pw - fχ, the value of χ(Pw) is,

by the definition given in Chapter 5, equal to χw($w). We put for each finite place

w | v

Λχw($w) =


χw($w) if (k′/k, v) is of type (1), (2u), (2r), or (3u),

0 if (k′/k, v) = (3r).

Moreover, since fχ = id(ϕχ) we have |ϕχ|AF = N(fχ)−1. With this notation we can

rewrite again the Dirichlet series on the right and left sides of (7.2) and state the

following theorem:
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Theorem 7.3 Using the notation developed in this chapter, we have

∑
k′∈C (δ)

d−sk′/k
o(k′)

∏
v-∞

Ek′,v(s) =
d−sF/k
o(F )

∑
χ∈X (F )

|ϕχ|sAF
∏
w-∞

(
1 + Λχw($w) r−2sw

)
. (7.5)

and

∑
k′∈C (−3δ)

d−sk′/k
o(k′)

∏
v-∞

Êk′,v(s) =
d−s
F̂ /k

o(F̂ )

∑
χ∈X (F̂ )

|ϕχ|sAF̂
∏
w-∞

(
1 + Λχw($w) r−2sw

)
Mχ(s) (7.6)

where the products range over the all finite places w of F̂ .

Our future research, aimed at giving the full proof of the generalized Ohno-

Nakagawa conjecture, will be based on a more detailed analysis of the extra term

Mχ(s).
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