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CHAPTER I 

 

 

INTRODUCTION 

Deception has previously been defined as “a message knowingly transmitted by a 

sender to foster a false belief or conclusion by the receiver”(Buller & Burgoon, 1996). 

Methods of deception detection have existed for thousands of years. As noted by one 

author, for as long as people have been lying, people have been trying to detect deception 

(Ford, 2006). Despite this history of attempting to detect deception, humans have not 

proven to be very capable at this task, as most are not able to detect deception at a rate 

better than chance (Vrij, Edward, Roberts, & Bull, 2000). Methods that could assist 

humans with the task of deception detection are intrusive, subjective, or fail to achieve 

acceptable accuracy levels on a consistent basis. They may also require extensive user 

training.   

Accurate, non-invasive, user-friendly methods are needed to address the 

shortcomings of existing deception detection methods. Improved methods of deception 

detection are particularly important to those who must detect lies in the usual course of 

their work, such as security personnel, human resource managers, among others. 

Automated classification methods have been introduced into text-based deception 

research as one possible alternative to previous methods (Zhou, Burgoon, Nunamaker, & 

Twitchell, 2004; Zhou, Burgoon, Twitchell, Qin, & Nunamaker, 2004).  
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Background 

Prevailing theories of deception include Interpersonal Deception Theory (Buller 

& Burgoon, 1996), Information Manipulation Theory (McCornack, 1992), Four Factor 

Theory (Zuckerman & Driver, 1987), Ekman’s Clues to Deceit, (Ekman, 1985; Ekman & 

Friesen, 1969) and Reality Monitoring (Johnson & Raye, 1981). Additionally, known 

cues to deception have recently been summarized in the self-presentational perspective of 

deception (DePaulo et al., 2003).  

When discussing deception, the terms ‘lying’ and ‘deceit’ are often used 

interchangeably (Buller & Burgoon, 1996; Ekman, 1985; Grover, 1993; Vrij & Mann, 

2004). The concept of deception also includes the choice to lie. Those who 

unintentionally provide false information are not considered to be engaging in deception.  

Common to theories of deception is a focus on cues to deception. These 

indicators, or cues, may be divided into three classes: nonverbal, paraverbal, and verbal 

(Sporer & Schwandt, 2006). Nonverbal cues are those such as eye contact and body 

movements. Paraverbal cues are vocal cues that accompany speech, such as voice pitch. 

The third category is verbal content cues, such as pronoun usage and verbal immediacy.   

A subset of verbal content cues, linguistic-based cues, has been defined to 

describe those cues that can be operationalized with general linguistics knowledge (Zhou, 

Burgoon, Nunamaker et al., 2004). Linguistic-based cues are relatively content 

independent and lend themselves to automated analysis.  In early deception research, 

nonverbal cues received more attention (Berrien & Huntington, 1943; Cutrow, Parks, 

Lucas, & Thomas, 1972; Ekman & Friesen, 1969; Ekman & Friesen, 1972; Ekman & 

Friesen, 1974). Over time, nonverbal, paraverbal and verbal content cues to deception 
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have been studied, with a recent meta-analysis listing 158 of these cues (DePaulo et al., 

2003). This list includes indicators belonging to all three classes of cues. 

Recent studies have begun to focus on deception detection using linguistic-based 

cues and their possible utility in automated deception detection (Zhou, Burgoon, 

Nunamaker et al., 2004; Zhou, Burgoon, & Twitchell, 2003).  However, the foundation 

for this technique has not been empirically validated using traditional methods, such as 

factor analysis. Additionally, these cues have not been validated in a ‘high-stakes’ real-

world context.  

 

Problem statement 

Humans are not very accurate lie detectors. A recent study summarizing results of 

over 23,000 subjects found the average accuracy in detecting deception to be 54 percent 

(Bond and DePaulo, 2006). Several alternate methods exist for deception detection 

including the polygraph, Statement Validity Analysis, and Reality Monitoring (Vrij et al., 

2000). A summary of existing deception detection methods and the type of cues they use 

is shown below in Table I.  

Automated deception detection using linguistic-based cues is a method that holds 

promise (Zhou, Burgoon, Nunamaker et al., 2004). It is not invasive, does not require 

complex training and is especially relevant given the rise in text-based communication in 

everyday life (Zhou, Burgoon et al., 2003) and the difficulty with which people recognize 

verbal forms of deceit. Automating the analysis also provides less subjective results. 
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Table I 

Cue Classes and Related Deception Detection Methods 

Cue Class Applicable Methods 

 

Drawbacks of Methods 

Nonverbal Polygraph 

 

Brain Fingerprinting 

 

Invasive, specialized equipment required, 

extensive training required, subjective results 

Invasive, specialized equipment required, 

proprietary technology 

Paraverbal Voice Stress Analysis 

 

Inaccurate, subjective results 

Verbal Content Scientific Content Analysis 

Content Based Criteria 

Analysis 

 

Automated Text-Based 

Deception Detection 

Extensive training required, subjective results 

Extensive training required, subjective 

results, not appropriate for use with suspect 

statements 

New, not previously tested with real-world 

data 

 Mixed Behavioral Analysis Interview Extensive training required, subjective 

results, inaccurate 

 

One study showed that people lie in 14 percent of emails and 21 percent of instant 

messages (Hancock, Thom-Santelli, & Ritchie, 2004).  Yet another study by George and 

Keane (2006) examining deceptive resumes found that respondents identified less than a 

third of the deceptions in text.  This suggests a need for research in deception that 

analyzes text. The technique presented here is not the only technique for analyzing the 

veracity of text. However, in contrast to other methods, this is an automated technique, 

which should allow it to readily analyze large data sets.  

While the sample here is written text produced as part of the investigation of 

crimes, the technique should be applicable to other forms of text. For example, 

electronically produced text such as email (such as the Enron corpus), web pages, or 

blogs could be analyzed with the method employed here. It might also be used with 

transcribed text of oral communications.  
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Most studies in deception detection, regardless of approach, use student subjects 

in experimental settings (Vrij & Mann, 2001b). A recent meta-analysis of 120 studies 

showed 101 used student subjects. Only four of these studies involved situations where 

the subjects were not given instructions as to whether they should lie, but subjects did so 

on their own (DePaulo et al., 2003).  It is interesting to note that there is evidence that 

behavior differs between those who choose to lie and those who lie at the direction of an 

experimenter (Feeley & deTurck, 1998).  

Therefore, studies utilizing real-world samples of subjects who either chose to be 

truthful or deceptive may contribute more deeply to the understanding of deception.  

Previous studies in linguistic analysis of deception have relied on ‘mock lies’ (Zhou, 

Burgoon, Nunamaker et al., 2004; Zhou, Burgoon, Twitchell et al., 2004) or very small 

samples (n=18) (Twitchell, Biros, Forsgren, Burgoon, & Nunamaker Jr, 2005), leaving 

analyzing real-world data largely unexplored. A past polygraph study comparing mock 

crime and actual field data found significant differences in results between the samples 

(Pollina, Dollins, Senter, Krapohl, & Ryan, 2004), underscoring the need for real-world 

examination of deception.  

Previous researchers have noted result inconsistencies across deception studies. 

Differing subjects of lies--either a subject’s attitude or feelings versus description of 

actual event--may contribute to the mixed results seen across previous research (DePaulo 

et al., 2003; Ford, 2006; Miller & Stiff, 1993; Sporer & Schwandt, 2006). It is thought 

that the cues that emerge may vary with the subject of the lie, though the set of cues 

related to any particular situation has yet to be empirically identified.  
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Another possible explanation for the inconsistency in findings across studies is 

whether actual or perceived cues to deception were studied (Bond & DePaulo, 2006; Vrij, 

2000).  “The question of identifying particular cues, qualities, or cue combinations that 

lead an observer to infer dishonesty is of course quite distinct from the question of 

identifying the particular cues that really do signal duplicity…” (DePaulo, Zuckerman, & 

Rosenthal, 1980). It is the second statement that drives this study.  

The Krauss, Geller, and Olsen study (1976) illustrates the need to distinguish 

between actual and perceived cues to deception. In this study, subjects were asked to 

describe the information they used to detect lies, they were observed to see what 

information they actually used to detect lies, and behavior was analyzed to see what cues 

differentiated truthful and deceptive communication. The cues reported by the subjects, 

the cues the subjects were observed to be using, and the actual cues to deception were 

each different. Vrij (2000) also found differences in actual and perceived indicators of 

deception.   

 

Research Contributions 

As described above, there is a need for methods of detecting deception in text. A 

framework of linguistic constructs has been proposed for this purpose (Burgoon, Qin, & 

Twitchell, 2006; Zhou, Burgoon, Nunamaker et al., 2004; Zhou, Burgoon, Twitchell et 

al., 2004). This framework has been used successfully to distinguish truthful and 

deceptive messages, but it has not been empirically validated. The framework relies, in 

part, on deception theories, but which theories are valid in the context of the current study 
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is not known. Combining this framework with a review of deception theory, this study 

aimed to answer the following research question:  

• What are the appropriate constructs for use in studying deception in text? 

Using this framework as a starting point, this study refined a set of constructs for 

studying text-based deception. Further, using appropriate statistical methods, the study 

empirically validated these defined constructs.   

In addition to validating constructs for use in studying text-based deception, this 

study aimed to further the understanding of how people deceive when using written or 

other text-based communication methods. As past results have been inconsistent across 

studies, and these cues have not been studied extensively in text, or using ‘real-world’ 

data,  (DePaulo et al., 2003; Zuckerman & Driver, 1987), it is unknown precisely what 

the moderating effect will be on verbal cues in real-world data. To address these issues, 

this study determined which linguistic based cues distinguish truthful from deceptive 

messages in a high-stakes environment. A closely related issue is the impact of incident 

severity on the production of cues in truthful and deceptive messages. The investigation 

of these issues was guided by the following research questions, specifically for text-based 

environments: 

• Which linguistic-based cues distinguish truthful and deceptive subjects in a high 

stakes environment? 

• How does severity impact cue intensity? 

Determining which theoretically-based constructs and cues distinguish truthful and 

deceptive messages contributes to the understanding of how deception takes place or how 

deceptive messages, as a group, can be expected to differ from the set of truthful 
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messages. A classification model, using linguistic-based cues, can aid in determining the 

veracity of individual messages. Using a variety of cue sets and models, the study showed 

that classification of real-world, text-based deception data can be done accurately with a 

parsimonious cue set. As the upper limit on sample sizes for studies of this type will 

likely continue to be restricted due to the difficulty of establishing ‘ground truth’, 

identifying the best cues is pertinent. To guide this portion of the study, the following 

research question was developed:  

• Can the veracity of individual messages be accurately determined using linguistic-

based cues? 

In summary, this study aimed to achieve four primary objectives: First, a set of 

linguistic constructs was validated for use in text-based, high-stakes deception detection 

research. Next, the study identified linguistic-based cues that accurately distinguish 

truthful and deceptive messages with a factual subject in a high-stakes environment. 

Third, the severity of the situation impact in cue importance within this environment was 

examined, and finally, an accurate classification model was constructed using linguistic-

based cues in this real-world, high-stakes environment.  

This chapter has introduced the topic of the research, outlined the need for the 

study, and introduced the research contributions resulting from the study. Chapter Two 

will review the relevant literature. Chapter Three will describe the constructs studied and 

describe the methodology and results related to validating these constructs. Chapter Four 

will describe the hypotheses tested, the related methodology, and the results of testing the 

hypotheses. Chapter Five will detail the classification portion of the analysis. Chapter Six 

will discuss these findings and conclude the dissertation. 
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CHAPTER II 

 

 

REVIEW OF LITERATURE 

Several methods of detecting deception exist, each with various advantages and 

disadvantages. This review begins with a discussion of these methods. Deception theory 

may provide a basis for new deception detection methods, including automated deception 

detection using linguistic-based cues, also termed automated-text based deception 

detection. A discussion of relevant theory follows the review of current deception 

detection methods.  

 

Deception Detection 

Methods for detecting deception have existed for thousands of years, some less 

scientific than others. Over three thousand years ago in China, suspects were forced to 

place dry rice in their mouths. If the rice was still dry when they spit it out, the suspect 

was thought to be lying. In medieval times, deception detection was known to involve 

walking on hot coals or being dunked in water (Ford, 2006).  Over time, more 

sophisticated methods of deception detection have developed.  

Though deception detection is not a new practice, humans have not proven to be 

very capable at this task. A synthesis of over 23,000 subjects showed that human 

performance at the task of deception detection is just slightly better than chance (Bond & 

DePaulo, 2006). Ekman and O’Sullivan (1991) have found just 15 out of 13,000 people 
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who can detect deception with 80 percent accuracy. Previous studies have shown that 

professional lie catchers, with few exceptions, are generally no better than college 

students or the general public at detecting deception. A summary of eight studies of 

professional lie catchers, such as police officers or customs officers, shows overall 

accuracy levels ranging from 49 to 64 percent (Vrij, 2000). Further, it has been suggested 

that professionals may be more difficult to teach to detect deceit (Vrij, 2000), perhaps due 

to a reluctance to abandon old habits and beliefs. Other studies of varying populations 

have also found training to be unsuccessful (Akehurst, Bull, Vrij, & Kohnken, 2004; 

Biros et al., 2005). This suggests that deception detection training is a daunting task 

regardless of trainee background. Even where training has shown success, the 

improvement due to training has been very limited. A summary of training showed that 

trained observers were 57 percent accurate, whereas their untrained counterparts were 54 

percent accurate (Vrij, 2000).  

Secret service agents are one of the few groups that have been found to be 

significantly better than chance at deception detection. Psychiatrists who have an interest 

in deception also are better than most. Other groups of professionals for which lie 

detection may be a necessary or desirable skill, such as judges, police officers and regular 

psychiatrists, have not performed as well (Ekman & O'Sullivan, 1991; Ekman, 

O'Sullivan, & Frank, 1999; Grubin & Madsen, 2005).   

These results report overall accuracy, or the accuracy of detecting truthful and 

deceptive messages combined. When separating the results for detecting lies and the 

truth, the results may be even worse. It appears that humans may be reasonably good at 

detecting the truth, with truth accuracy of 70-80 percent. The accuracy at correctly 
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detecting lies is only 35-40 percent (Feeley & Young, 1998). This may reflect the notion 

of ‘truth bias’ or the idea that receivers are more likely to judge communications to be 

truthful than deceptive (Levine, Kim, Park, & Hughes, 2006; Park & Levine, 2001; Vrij, 

2000). The poor record of humans at lie detection may be attributable to a belief in global 

signs of lying, which may not exist, and/or incorrect beliefs or lack of knowledge about 

the cues that actually point to deception in particular circumstances (Feeley & deTurck, 

1995; Fiedler & Walka, 1993; Grubin & Madsen, 2005; Mann, Vrij, & Bull, 2004; Vrij, 

2000). To aid humans in the task of deception detection, several methods have been 

developed, including those for analyzing text. These include Automated Text-Based 

Deception Detection, Scientific Content Analysis, Statement Validity Analysis, and the 

Behavioral Analysis Interview. 

 

Automated Text-Based Deception Detection 

Linguistic analysis tools have been introduced as a possible aid in deception 

detection that may address some of the drawbacks of other methods (Zhou, Burgoon, 

Nunamaker et al., 2004). Of 158 recently listed cues to deception, (DePaulo et al., 2003) 

approximately 50 could potentially be used in analysis of text. Within this subset of cues, 

some are defined rather ambiguously and are not strictly cues for text. One example of 

such a cue is unusual contents. While a human could read a piece of text and make a 

determination whether the information was relevant and fit within the context of what is 

being described, accomplishing this task with text-processing tools is quite difficult, and 

perhaps not even possible (DePaulo et al., 2003). Good candidates for automated analysis 

are those cues that can be analyzed objectively and can be defined in a manner relatively 
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independent of the content of the text (Zhou, Burgoon, Nunamaker et al., 2004). There 

are two prevailing tools currently being used to analyze deception in verbal 

communication using just some of these linguistic-based cues: Agent 99 Analyzer and 

LIWC. 

Agent 99 Analyzer 

At the University of Arizona, a tool labeled Agent 99 has been developed for use 

in automated deception detection in a variety of forms, including text (Cao, Crews, Lin, 

Burgoon, & Nunamaker, 2003; Zhou, Twitchell, Qin, Burgoon, & Nunamaker, 2003). 

Within Agent 99, the tool developed for deception detection in text has been labeled 

Agent 99 Analyzer (A99A). This tool relies heavily on Generalized Architecture for Text 

Engineering (GATE) (Cunningham, 2002; Cunningham et al., 2005), for text processing. 

Waikato Environment for Knowledge Analysis (WEKA) (Witten & Frank, 2000) is used 

for classification based on the initial text processing steps.  

Utilizing cues belonging to a variety of categories (quantity, complexity, 

uncertainty, non-immediacy, expressivity, diversity, informality, specificity, and affect), 

the use of linguistic-based cues in deception has been investigated (Burgoon et al., 2006; 

Qin, Burgoon, Blair, & Nunamaker Jr, 2005). Studies have found several cues that 

significantly differ between truthful and deceptive messages using both desert survival 

and mock theft scenarios (Burgoon, Blair, Qin, & Nunamaker, 2003; Zhou, Burgoon, 

Nunamaker et al., 2004; Zhou, Twitchell et al., 2003).   

In addition to examining significant differences between truthful and deceptive 

message groups, A99A has also been used for classification studies. In one study, with a 

sample of 94 messages of student subjects, overall accuracy in classifying statements as 
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truthful or deceptive ranged from 57.4 percent using a decision tree to 80.2 percent using 

an artificial neural network (Zhou, Burgoon, Twitchell et al., 2004). The performance of 

the classifier was increased when a subset of the most relevant cues was used. Another 

study with a small real-world data set of 18 messages achieved accuracy of 72 percent 

(Twitchell et al., 2005). This system has also been used to study the effect of modality in 

deception (Qin et al., 2005), finding that differences between truthful and deceptive 

messages remained fairly consistent across modalities. Overall, about thirty cues have 

been used in the Agent 99 Analyzer studies, with up to 22 cues used in any individual 

study. 

LIWC 

Linguistic Inquiry and Word Count (LIWC) processes text based on four main 

dimensions: standard linguistic dimensions, psychological processes, relativity, and 

personal concerns (Pennebaker & Francis, 2001). Within each of these dimensions, a 

number of variables are represented. For example, the psychological processes dimension 

contains variables representing affective and emotional processes, cognitive processes, 

sensory and perceptual processes, and social processes. In total, the default dictionary 

serves as the basis for 74 output variables. LIWC was initially created to identify basic 

cognitive and emotional dimensions and has since been expanded and refined. 

Newman, Pennebaker, Berry, and Richards  (2003) proposed that the language 

dimensions of self-references, negative emotions, and cognitive complexity could be 

associated with deception. The use of motion and exclusive words were proposed as 

indicators of cognitive complexity. The study found that third person pronouns were also 

a predictor of deception. They used LIWC to extract the variables described above and 
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then classified text using logistic regression. The overall accuracy in this study was 61 

percent.  

Based on the work of Newman et al. (2003), Bond and Lee (2005) used LIWC to 

code the statements of prisoners. Utilizing the variables from the previously described 

study by Newman et al, a classification accuracy of 69.1 percent was achieved using the 

prisoner statements. In addition to the categories studied by Newman et al., Bond and Lee 

also used LIWC to code Reality Monitoring (RM) Terms. Bond and Lee had an overall 

accuracy rate of 71.1 percent using logistic regression to classify statements based on the 

RM terms.  

Hancock and colleagues (2004) have also examined the use of automated 

linguistic analysis in deception. Their research, which draws on Interpersonal Deception 

Theory (Buller & Burgoon, 1996) and the self-presentation perspective (DePaulo et al., 

2003; Vrij, 2000), hypothesized differences in word counts, pronoun usage, words related 

to feelings and senses and exclusive words between deceptive and truthful 

communications. The study used LIWC to analyze eight variables in the four categories 

described above. Deceptive senders used more words, more third person pronouns such 

as “he”, “she” and “they”, and more sensory terms than truthful senders.  

This work was later expanded to include evaluation of three additional variables: 

negative emotions, causation terms (such as “because” and “effect”), and question marks 

(Hancock, Curry, Goorha, & Woodworth, 2005). Motivated senders used significantly 

more causation terms than unmotivated senders. Significant effects were not found for 

the other variables. Classification models were not implemented in the studies by 

Hancock and colleagues.  
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The results of the above studies show that methods incorporating automated 

linguistic analysis show promise in studying deception and deception detection. 

Linguistic analysis techniques may overcome many of the limitations (invasiveness, 

inconsistent accuracy, the need for extensive user training, time consuming procedures, 

and the required presence of a trained examiner) of previously introduced methods, Other 

techniques that can evaluate text include SCAN, CBCA, and BAI.  

 

Scientific Content Analysis 

 Scientific Content Analysis (SCAN) is a statement analysis procedure developed 

for use in criminal investigations. SCAN relies on criteria such as pronoun usage, 

spontaneous corrections, emotions, and connection phrases in analyzing transcripts or 

written statements. These criteria are not unique to SCAN and many are quite similar to 

those used in Criterion Based Content Analysis.  Based on the limited published results 

available, the technique appears to work reasonably well in classifying statements as 

truthful or deceptive. It has been noted that the technique may not work when the subject 

is discussing multiple issues (Driscoll, 1994). This technique was created by Avinoam 

Sapir, a former Israeli police lieutenant, based on years of experience interrogating 

subjects and is not theoretically based (Lesce, 1990; Porter & Yuille, 1996). The 

technique’s accuracy has been compared to that of the polygraph, though specific 

accuracy rates have not been reported 
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Statement Validity Analysis and Content Based Criteria Analysis 

 Statement Validity Analysis (SVA) is a technique for analyzing the verbal content 

of statements. It is made up of three components, one of which is Content Based Criteria 

Analysis (CBCA). SVA was originally developed for determining the veracity of the 

testimony of children in sexual abuse cases, but has since been more widely applied to 

other types of cases and to adult subjects. CBCA, the SVA component which receives the 

most attention, involves analyzing a statement according to 19 criteria. CBCA is based on 

the Undeutsch hypothesis, which posits that statements derived from memories from 

actual events differ from statements that are based on fantasy (Undeutsch & Yuille, 

1989). Beyond this conjecture, the technique lacks theoretical foundation (Sporer, 1997; 

Vrij, 2000). While the full list of criteria includes 19 items, a subset of 14 criteria are 

sometimes used, as the full list might be applicable only when the technique is used for 

its original purpose (Vrij, 2000). The results of past studies analyzing the statements of 

adults have shown that the technique’s accuracy may vary widely, with reported accuracy 

ranging from 55 to 90 percent.  

There is also a truth bias associated with CBCA, as results show that the 

technique works better for detecting truths than lies (Vrij, 2000). This is particularly 

problematic in the context of crime investigation, since the focus is identifying deceptive 

statements accurately. A recent study showed that there may be issues to address in 

achieving inter-rater reliability when using this technique (Godert, 2005), though if raters 

are trained properly, the technique can be more effective. If aspects of the technique can 

be automated, this particular issue can be somewhat lessened. However, the nature of the 

technique is that the criteria are subjective (Vrij, 2000), so there will be limits to how 
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much inter-rater reliability can be improved. The subjective nature of CBCA also limits 

its potential for automation. 

Further, despite the fact that CBCA was developed to be used as just one of three 

parts of SVA, in 2000, one researcher remarked that not a single SVA study had been 

published. There are no formal rules for determining whether a statement analyzed using 

CBCA is truthful or deceptive (Vrij, 2000), such as how many criteria must be present or 

how the criteria should be weighted.  It has also been suggested that due to its design, 

CBCA may not be appropriate for use with suspect statements (Vrij, 2005).  

 

Behavioral Analysis Interview 

The Behavioral Analysis Interview (BAI) is a method of deception detection that 

relies on observing suspect verbal and nonverbal behavior during a structured interview 

(Horvath, Jayne, & Buckley, 1994). In one study, four judges trained in using the 

technique reviewed 60 tapes of actual suspects that were interviewed using BAI.   

Overall, raters correctly identified truthful suspects with 78 percent accuracy and 

deceptive statements with 66 percent accuracy.  No conclusion was drawn 15.5 percent of 

the time. A more recent study showed found that suspects’ behavior in BAI interviews 

was not consistent with the types of behaviors predicted by the technique. The updated 

study did not assess the ability of rater’s to distinguish between truthful and deceptive 

suspects (Vrij, Mann, & Fisher, 2006). Like CBCA and SCAN, this technique relies on a 

trained rater’s assessments of various criteria.  
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Polygraph 

While the focus of this study is deception detection in text, for the sake of 

comparison, it is worth mentioning other prevalent methods of deception detection. The 

polygraph is perhaps the most well-known tool that may be used to assist humans with 

the task of deception detection. The device measures changes in physiological activity 

and an examiner makes a veracity determination based on these changes (Vrij, 2000).  

The polygraph was invented in 1917 by William Moulton Marston (Ford, 2006), though 

he was not the first to experiment with pulse and blood pressure as measures of deceit. 

The device was expanded to include heart rate, blood pressure, respiratory rate, and 

galvanic skin response in 1932.  

The polygraph has been shown to be one of the most accurate lie detection 

methods. One report gives accuracy rates between 72 and 91 percent in field studies 

(National Research Council, 2002). Despite its popularity and apparent accuracy, the 

polygraph is not without significant drawbacks. First, the results of the polygraph 

examination  are heavily dependent on the examiner (Sporer, 1997; Vrij, 2000). Second, 

extensive training is required to obtain certification to administer a polygraph 

examination. There may also be practical limitations to the use of the polygraph as both 

the appropriate equipment and a trained examiner must be available. This test is also 

considered intrusive (Twitchell, Jensen, Burgoon, & Nunamaker, 2004). During the  test, 

several sensors are attached to the subject’s body, pneumatic tubes are put around the 

chest and stomach, and a blood pressure cuff is placed around the subject’s arm (Vrij, 

2000).  Finally, the test may be time-consuming. The examiner must arrive at the 

necessary location, the instrument must be calibrated, the exam must proceed using the 



 19 

required format, and then the results must be evaluated. The test can only be used to 

analyze responses to ‘yes’ or ‘no’ questions.  

 

Voice-Stress Analysis 

 The voice stress analyzer was introduced in the 1970s and touted as a possible 

replacement of the polygraph (Rice, 1978). The voice stress analyzer measures psycho-

physiological responses of the suspect. Like the BAI technique, the interrogation must be 

properly structured and the machine’s results must be carefully interpreted. Unlike the 

polygraph, it can be used without the subject’s knowledge, though such practice is not 

without controversy. The accuracy of voice stress analyzers is reported to range from 

chance level (Gamer, Rill, Vossel, & Godert, 2006; Vrij, 2005) to about equal to that of 

the polygraph. These machines are fundamentally designed to detect stress, not lies and, 

like the polygraph, are heavily dependent on the skill of the operator when used as lie 

detectors. Despite its initial promise, the voice stress analyzer has failed to gain scientific 

acceptance (Ford, 2006; Hollien & Harnsberger, 2006; Hopkins, Benincasa, Ratley, & 

Grieco, 2005).  

 

Methods of the Future 

 Brain Fingerprinting has been offered as yet another alternative to the polygraph. 

However, the technique is patented, so while the results with this technique have been 

promising, only limited studies have been published. In one study, the technique correctly 

classified all six subjects. This technique may prove to be highly accurate, but involves 
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even more time and preparation than the polygraph (Ford, 2006). Similarly, other groups 

of researchers are working on finding structural areas of the brain associated with lying.  

Though there are numerous methods of deception detection, automated text-based 

deception detection has the potential to accurately determine veracity using minimal 

resources. Previous results using this technique have been encouraging, though the 

theoretical foundation for this method has not been validated. The basis of automated lie 

detection should be those cues that actually indicate deception versus those that observers 

might perceive to indicate deception. The origin of these cues should be those identified 

by deception theory describing the process of how people actually deceive. Several 

theories of deception have been developed, though not specifically for use in text. These 

theories are described next.  

 

Theories of Deception 

 

Knapp et al Hypotheses 

 In the 1970’s, Knapp and colleagues made a set of predictions as part of an effort 

to define deception as a communication construct (Knapp, Hart, & Dennis, 1974).  This 

work hypothesized that deceivers would be more uncertain, vague, nervous, reticent, 

dependent, and unpleasant. Though this work does not rise to the level of a theory, later 

works share some elements with this study. Further, this study coded a number of verbal 

behaviors, including some linguistic-based cues, and was one of the first to do so. 
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Ekman’s Clues to Deceit 

 Ekman (1985, 1992, 2001) describes two kinds of clues to deceit: leakage and 

deception clues. Leakage describes the mistakes deceivers make that reveal the truth. 

Deception clues reveal that deception is taking place but do not reveal the truth. From 

deception clues we can determine whether someone is lying; from leakage, we can 

determine what it is a person is lying about. Most cues that have been studied would be 

considered deception clues (DePaulo et al., 2003). Whether cues appear as leakage or 

deception clues, thinking and feeling aspects to deception are described that may drive 

the production of cues.  The primary feelings, or emotions related to deception are fear, 

guilt and duping delight. Liars may fear getting caught, feel guilty about lying or 

experience excitement associated with the challenge of getting away with the lie. Even 

though a liar may try to conceal these feelings, they may not be able to control all 

expression of clues associated with them.  Thinking cues include inconsistencies, 

appearing over-rehearsed, and speaking slowly.   

 

Four Factor Theory 

Zuckerman et al. (1987) defined four factors involved in deception that can 

influence behavior: attempted control, arousal, felt emotion, and cognitive processing. 

According to this theory, deceivers will try to control their behavior to prevent disclosure 

of deception which will then reveal cues to deception such as behavior that appears 

planned, rehearsed or lacking in spontaneity. The behavior of the deceiver may also seem 

overexaggerated. This theory is similar to Ekman’s thinking cues to deception (Ekman, 

1985). The four factor theory also suggests that deceit will be associated with 
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physiological arousal. The deceit is believed to cause changes in several non-verbal 

behaviors such as pupil dilation and eye blinks. It may also increase speech errors. 

Deception also is associated with affect, specifically negative affects such as guilt and 

anxiety. This echoes Ekman’s feeling cues (Ekman, 1985). The Four-Factor Theory 

suggests a cognitive component to deception. It is believed that deception is more 

difficult than telling the truth. This complexity will lead to identifiable changes in the 

behavior of the subject such as more frequent hesitations, and a decrease in frequency of 

illustrators. It is noted that some of the behaviors associated with cognitive complexity 

may also be related to arousal and that it may not be possible to isolate exact causal 

antecedents.  

 

Reality Monitoring 

Reality monitoring theorizes that memories based on actual experiences and 

memories based on imagined events are distinct on several dimensions (Johnson & Raye, 

1981). While not originally developed as a theory of deception, the theory has been 

extended to this context (Frank & Ekman, 1997; Vrij & Mann, 2001a, 2001b). Truthful 

accounts are expected to share characteristics with memories based on actual experience, 

and deceptive accounts are expected to share characteristics with imagined events (Vrij et 

al., 2000). Specifically, real memories will contain more perceptual information, 

contextual information, and affective information. Imagined events are expected to 

include more cognitive operations and be more vague (Vrij et al., 2000). Sporer (1997) 

developed a set of reality monitoring criteria to be used to distinguish truthful and 

deceptive communications: clarity, perceptual information, spatial information, temporal 
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information, affect, reconstructability of the story, realism, and cognitive operations. Vrij 

(2000) later provided a review of ten studies using these criteria.  

Clarity refers to whether the statement is clear and vivid. One study showed 

truthful statements to have greater objective clarity. Perceptual information refers largely 

to whether the statement includes sensory information, visual details and details of 

physical sensations. Seven of the reviewed studies showed this criterion to be greater in 

truthful accounts. The third criterion, spatial information, has produced mixed results. 

This criterion refers to information about locations, and the arrangement of people and 

objects. Temporal information has been found to be greater in truthful accounts. This 

type of information involves statements that include information about when the event 

happened. Affect, or details about the subject’s feelings during the event, has also shown 

mixed results. Story reconstructability is expected to be greater in truthful accounts based 

on past studies, as is realism or the extent to which the study is plausible and realistic. 

Seven of the studies found no relationship between cognitive operations and deception.   

It has been noted (DePaulo et al., 2003) that most people do not create lies 

entirely from scratch, but derive them largely based on experienced events, so reality 

monitoring may be most applicable in those situations where deceivers are creating their 

tales entirely from scratch and truthtellers are relaying facts, as was generally the case in 

the studies reviewed by Vrij (2000). This perspective may be less applicable in a situation 

where a deceiver may send a message that is simply a modification of actual events.  

A recent review of reality monitoring research notes no known studies where 

“real statements by real witnesses are analyzed” (Masip, Sporer, Garrido, & Herrero, 

2005), though its accuracy in classifying various types of statements using either 
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discriminant analysis or logistic regression has been shown to be up to 85 percent using 

laboratory data. The similarity between the reality monitoring criteria and those used in 

CBCA has also been noted (Sporer, 1997, 2004). An important distinction is that reality 

monitoring is a theory that has been applied to deception and deception detection, 

whereas CBCA is a deception detection method that is only very loosely, if at all, 

grounded in theory.  

 

Self-Presentational Perspective of Deception 

 In earlier work, Depaulo (1992) described the self-presentational perspective of 

nonverbal communication. A recent deception meta-analysis expands upon this 

perspective by organizing the combined cues to deception into five categories 

representing nonverbal, verbal and paraverbal communication. The first category 

suggests that liars are less forthcoming than truthtellers. According to this category, liars 

should provide shorter and less detailed responses. Deceivers may also seem reticent. The 

second category predicts that liars will tell less compelling tales. That is, their messages 

will include more discrepancies, be less engaging, more passive, uncertain, and non-

immediate.  The third category predicts that liars will be less positive and pleasant. 

Fourth, liars are predicted to be more tense.  

The final category of this perspective on deception predicts that liars will include 

fewer ordinary imperfections and unusual contents within their messages. This last 

category largely includes those cues that are part of CBCA. The self-presentational 

perspective is largely based on the pretext that most lies that are told are ‘everyday lies’ 

(Sporer & Schwandt, 2006). While there is overlap in the predictions of the self-
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presentational perspective with prior theories of deception, this perspective may be most 

applicable for use with everyday lies.  

 

Information Manipulation Theory 

 Information Manipulation Theory (IMT) proposes that deceptive messages violate 

the conversational maxims of quality, quantity, relation and manner (McCornack, 1992). 

These conversational maxims were proposed by Grice as guidelines for effective and 

efficient use of language. In deceptive communication, the quantity of the information 

may be manipulated simply by altering the amount of information that is presented. 

Quality manipulations would be represented by what might be considered stereotypical 

deceptive messages. These manipulations involve deliberate distortions or fabrication of 

information. Relation violations of conversational maxims occur when the relevance of 

information is manipulated. For example, a subject may fail to directly answer a question. 

The final way that IMT suggests that messages are manipulated is through manner. Here, 

information is conveyed in an ambiguous fashion or will lack clarity.  

 

Interpersonal Deception Theory 

Interpersonal Deception Theory (IDT) views deception as an interactive form of 

communication, merging the principles of deception with the principles of interpersonal 

communication (Buller & Burgoon, 1996). Though originally developed for study of 

deception in richer media, such as face-to-face communication, later work has suggested 

that it is applicable for studying most forms of communication, due to its view of 

deception as a strategic undertaking, which is not restricted to nonverbal environments 
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(Zhou, Burgoon, Nunamaker et al., 2004). According to the authors of IDT, 

communication includes both strategic and nonstrategic behaviors (Buller & Burgoon, 

1996). Within the context of IDT, strategic behavior refers to large-scale plans and 

intentions, not necessarily to specific routines or tactics. Related to this strategic 

behavior, deceivers may engage in information management, image management, and 

behavior management during interpersonal communication.  

Information management is a key aspect of IDT, reflecting how deceivers control 

information with the goal of creating credible message (Burgoon, Buller, Guerroro, Afifi, 

& Feldman, 1996). According to information management, deceivers alter their messages 

along the following dimensions: veracity, completeness, directness/relevance, clarity, and 

personalization.  Image management includes attempts to maximize credibility of the 

sender, such as managing one’s demeanor to appear competent and trustworthy. Behavior 

management reflects additional efforts to prevent leakage by controlling behavior that 

might expose deception. IDT’s notion of behavior management is similar to Zuckerman’s 

dimension of control. While information management, image management, and behavior 

management are all considered part of strategic behavior by IDT, information 

management is most closely related to verbal behavior (Burgoon et al., 1996). 

Non-strategic, or inadvertent behaviors reflect unintentional, unconscious 

behavior. Non-strategic behaviors have also been labeled leakage (Ekman & Friesen, 

1969). IDT suggests that deceivers will unintentionally display arousal, negative affect, 

and noninvolvement. This is consistent with Zuckerman’s view that deception would 

influence changes in affect and arousal (Buller & Burgoon, 1996; Zuckerman & Driver, 

1987).  



 27 

Information Management and Information Manipulation Theory  

 As noted above, according to IDT, information management is one strategy used 

by deceivers when trying to create credible messages. There are five main dimensions to 

information management. Again these are veracity, completeness, directness/relevance, 

clarity, and personalization. Several of these dimensions correspond to the four 

dimensions of quality, quantity, relation, and manner that are outlined by IMT. In a 

previous work, Burgoon and colleagues have described how the dimensions of 

information management and IMT are related (Burgoon et al., 1996).  

The first dimension of information management is veridicality. This may also be 

conceptualized as truthfulness, honesty, veracity, or message fidelity and is quite similar 

to the IMT maxim of quality. This dimension describes stereotypical notions of truth or 

how the truth is expected to appear.  Completeness is similar to the IMT maxim of 

quantity or whether the speaker has provided as much information as the circumstance 

requires. The Directness/relevance dimension of information management as described 

by IDT is similar to the IMT maxim of relation. This dimension describes the extent to 

which the message is relevant to the context and circumstance.  

Clarity is similar to the IMT maxim of manner. Clarity describes speech that 

should be clear, comprehensible, and concise. Deception may be signaled by 

communications that are vague and ambiguous. Personalization, also termed 

disassociation or verbal nonimmediacy, describes whether a person’s own thoughts, 

opinions and feelings are reflected by the information. This dimension is linked with the 

construct of nonimmediacy (Wiener & Mehrabian, 1968). Nonimmediate language is 

used to distance or disassociate the speaker from the message. Increased modifiers, which 
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have been suggested as an indicator of clarity, have also been suggested as a sign of 

nonimmediacy, along with generalizations, shifting time and place of events, etc.  

Though most of the theories of deception were developed separately, they share 

many common elements. These commonalities are summarized in Table II below. From 

this summary, it can be seen that the existing literature suggests nine dimensions or 

constructs that can be used to describe deception in text-base communication, though not 

all may be amenable to automated analysis. The fit of these constructs for both the text-

based environment and automated analysis will be assessed in a later section. In addition 

to examining messages to determine their veracity using appropriate constructs, this study 

will also look at the impact of severity, or high-stakes situations, on the content of the 

message  
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Table II 

Common Elements of Deception Theories 

Element Original Name Theory 

Veridicality Veridicality 

Quality 

IDT 

IMT 

 

Completeness Completeness  

Quantity 

Perceptual/Contextual Information 

Reticent 

Less Forth Coming 

 

IDT 

IMT 

Reality Monitoring 

Knapp et al. 

Self-Presentational Perspective 

 

Directness/ 

relevance 

Directness/relevance 

Relation 

Uncertain 

 

IDT 

IMT 

Knapp et al. 

Clarity Clarity 

Manner 

Vague 
 

IDT 

IMT 

Knapp et al. 

 

Immediacy Personalization 

Dependent 

Less compelling tales 

IDT 

Knapp et al. 

Self-Presentational Perspective 

 

Arousal Arousal 

More Tense 

Nervous 

IDT, Four-Factor Theory 

Self-Presentational Perspective 

Knapp et al. 

 

Affect Negative Affect 

Feeling Cues 

Felt Emotion 

Affective Information 

Unpleasant 

Less Positive and Pleasant 

IDT 

Ekman’s Clues to Deceit 

Four-Factor Theory 

Reality Monitoring 

Knapp et al. 

Self-Presentational Perspective 

 

Control Control 

Behavioral/Image Management 

Four-Factor Theory 

IDT 

 

Cognitive 

Processing 

Cognitive Processing 

Cognitive Information 

Four-Factor Theory 

Reality Monitoring 

 Thinking Cues Ekman’s Clues to Deceit 
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High Stakes Deception 

 

 Much deception research has focused on everyday lies (DePaulo, Kirkendol, 

Kashy, Wyer, & Epstein, 1996; DePaulo et al., 2003; Frank & Feeley, 2003; Vrij et 

al., 2000). While everyday lies may comprise most of the lies people tell (DePaulo et 

al., 1996), understanding more serious, or high-stakes, lies, and detecting those lies 

has been deemed important (DePaulo et al., 2003; Frank & Feeley, 2003; Kohnken, 

1985). High-stakes situations are those in which  the subject has something to gain or  

lose by being judged truthful or deceptive (Frank & Ekman, 1997). 

Past research has found that the cues that are significant under conditions of 

low motivation are different than those that are significant under conditions of high 

motivation (Zuckerman & Driver, 1987). In a low motivation state, Zuckerman & 

Driver found eight cues to be significantly different between truthful and deceptive 

subjects. In a high motivation condition, ten cues were significantly different between 

the groups. Only three cues (pupil dilation, blinking, and speech hesitations) had 

significant differences between deceptive and truthful conditions for both conditions. 

For eight cues, there was a significant difference in the level of the cue between high- 

and low-motivation conditions, where only one such difference would have been 

expected by chance. Thus it appears that motivation does impact cue production. In 

order to understand how subjects react when the consequences are of importance and 

the subjects are, therefore, presumably motivated, researchers have introduced the 

concept of ‘high-stakes’ deception (Frank & Ekman, 1997; Vrij & Mann, 2001a, 

2001b). 
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There have been limited studies that have studied real-world high-stakes 

deception. These include a study in which police officers studied tapes of the requests for 

help from the public of five subjects later identified to be guilty in the case in question 

(Vrij & Mann, 2001a). In this study, the police officers were 50 percent accurate in 

identifying deception, a rate equal to that of chance.  The police officers did slightly 

better (64 percent) when watching tapes of confessed murderers  in a study which 

purports to be the first published study of a real-world high-stakes situation (Vrij, 2000, 

2005; Vrij & Mann, 2001b).  

In a related study, the frequencies of six non-verbal behaviors were coded from 

tapes of sixteen suspects, including: hand movements, shifting positions, foot and leg 

movements, gestures, self-manipulations, and hand/finger movements. Three of the 

nonverbal behaviors were shown to be indicators of deceptive behavior. The other cues 

were inconsistent across the sample, with about half the deceivers showing an increase in 

the behavior and half the truthtellers showing an increase in the behavior (Mann, Vrij, & 

Bull, 2002).  A99A has also been used to evaluate a small sample of real-world 

statements with promising results (Sporer, 2004).  These studies of real-world samples 

are particularly important, as it has been questioned whether even ‘mock crime’ 

paradigms can provide understanding into how deception occurs naturally (Ekman, 1985; 

Pollina et al., 2004). 

In addition to the studies described above using real-world data, some high-stakes 

studies, using laboratory data, have used cues that can be analyzed in text in an 

automated manner, and therefore may provide some foundation for the current study. 

These include studies based on a single detection methodology, such as CBCA (Akehurst 
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et al., 2004; Godert, Gamer, Rill, & Vossel, 2005); or studies that have utilized cues from 

multiple theories and methods (Adams, 2002; Davis, Markus, Walters, Vorus, & 

Connors, 2005; Porter & Yuille, 1995; Vrij, Edward, & Bull, 2001; Zhou, Burgoon, 

Twitchell et al., 2004; Zhou, Twitchell et al., 2003).  

Several studies of high-stakes deception have included only nonverbal cues 

(Berrien & Huntington, 1943; Bradley & Janisse, 1981; Gamer et al., 2006; Hocking & 

Leathers, 1980; Mann et al., 2002; Stromwall, Hartwig, & Granhag, 2006; Vrij, 1993; 

Vrij, 1995; Vrij, Semin, & Bull, 1996) or have only evaluated deception detection 

accuracy or perceptions of deception rather than evaluating actual cues to deception 

(Feeley & Young, 2000; Frank & Ekman, 1997, 2004; Granhag & Stromwall, 2001; 

Kraut & Poe, 1980; Lakhani & Taylor, 2003; Mann et al., 2004; Meissner & Kassin, 

2002; Vrij & Mann, 2001a). Only limited studies of high-stakes deception, using both 

real-world data and text analysis, have been conducted. More studies in this area can 

contribute to an understanding of the cues to deception in this context.  

This chapter has described existing deception detection methods and deception 

theories. The constructs that are common to these theories were also summarized. 

Additionally, the need for high-stakes deception research was summarized. The following 

chapter will detail the development of a set of constructs for studying this domain as well 

as the validation of these constructs. 
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CHAPTER III 

TEXT-BASED DECEPTION CONSTRUCTS 

Construct Development 

 A review of the literature suggested several constructs (see Table II) that might be 

appropriate to guide the study of deception in text. These constructs were compared to a 

previously developed set of constructs, the Zhou/Burgoon framework, which were 

developed for this purpose. In addition, prior construct validation attempts provided 

insight useful in further development of this set of constructs. Using this information, the 

final set of constructs to be studied was defined. 

 

Prior Construct Validation Attempts 

 A key part of this study was the refinement and validation of a framework for 

deceptive text-based communication; therefore, it seems pertinent to note prior efforts to 

define the behavioral dimensions or constructs related to deception. Vrij and colleagues 

(1996) conducted principle components analysis on six nonverbal behaviors (self-

manipulations, shifting positions, hand and finger movements, foot and leg movements, 

gestures, and head movements). The result of the analysis, using an orthogonal rotation, 

was three factors, each including two variables. The factors were labeled nervous 

behavior, subtle movements, and supportive behavior. Given the limited number
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variables, or cues, included in this study, the applicability of the results may be limited.  

Further, it may be difficult to support the argument of orthogonal factors for describing 

deceptive behavior, limiting the relevance of this analysis to the current context. It is 

specifically noted that the Information Management dimensions of IDT are 

conceptualized as non-independent (Burgoon et al., 1996). The three factors suggested by 

Vrij and colleagues seem only applicable to describing nonverbal behavior and seem 

unlikely to extend to a more general description of deceptive behavior.  

Sporer and colleagues have conducted factor analysis, also with orthogonal 

rotation, on data analyzed using CBCA and Reality Monitoring criteria in several studies 

(Sporer, 2004). The results have not been entirely consistent, though sufficient 

commonalities have emerged to suggest five dimensions: Logical consistency/realism, 

clarity/vividness, quantity of details and contextual embedding, feelings and thoughts, 

and verbal/non-verbal interactions. The interactions dimension consists only of criteria 

from CBCA, while the other dimensions consist of criteria from both CBCA and Reality 

Monitoring. There seems to be little relation between the first dimension, logical 

consistency/realism and the constructs suggested by the review of deception theory, as 

summarized in Table II. Several theories, including IMT and IDT, suggest constructs 

consistent with the clarity/vividness and quantity of details dimensions.  

Feelings and thoughts have also been previously suggested as important aspects 

of deception, though they are usually discussed as separate aspects of deception (Buller & 

Burgoon, 1996; DePaulo et al., 2003; Ekman, 1985; Zuckerman & Driver, 1987). Though 

the factor analysis conducted in these studies is based in part on the CBCA, which is not 

theoretically based, the results are consistent, in part, with deception theory, and were 
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useful in refinement of the Zhou/Burgoon constructs. However, like the study of 

nonverbal behavior (Vrij et al., 1996), the factor analysis relied on orthogonal rotation. 

As described previously, an oblique rotation may be more appropriate for the theories 

reviewed in this study.  

 

Zhou/Burgoon Linguistic-Based Cues Framework 

In operationalizing the constructs of the revised framework, the research of 

Burgoon, Zhou and colleagues (Burgoon et al., 2006; Zhou, Burgoon, Nunamaker et al., 

2004; Zhou, Burgoon et al., 2003; Zhou, Burgoon, Twitchell et al., 2004; Zhou, Twitchell 

et al., 2003) in automated deception detection using linguistic-based cues serves as a 

strong base. The constructs of the Zhou/Burgoon framework (referred to as the 

Zhou/Burgoon cues or framework from here forward) were subjected to construct 

validation along with the revised constructs in order to determine which of these 

competing frameworks is more appropriate to the current high-stakes context.  

For this study, the Zhou/Burgoon framework was reviewed for consistency and 

completeness relative to those constructs suggested by deception theory, as summarized 

in Table II. Recently, Burgoon, Qin, and Twitchell (2006) published an updated version 

of the framework, consisting of eight categories, as shown in Table III.  
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Table III 

Zhou/Burgoon Linguistic-Based Cues Framework 

Construct Variables 

 

Quantity  Words, Verbs, Sentences 

 

Specificity 

 

1
st
 person pronouns, 2

nd
 person pronouns, 3

rd
 person pronouns, other 

references, modifiers, sensory ratio and number of sensory details 

 

Affect Affect ,  Imagery, Pleasantness 

 

Diversity Lexical Diversity, Content word diversity, Redundancy 

 

Complexity  Average sentence Length, Average word length, pausality.  

 

Uncertainty Modal Verbs 

 

Nonimmediacy  Passive voice 

 

Activation Emotiveness, activation 

 

The Zhou/Burgoon framework summarized linguistic-based cues using the 

following categories: Quantity, specificity, affect, diversity, complexity, uncertainty, 

nonimmediacy, and activation. Quantity suggests reticence by deceivers, leading to 

manipulations in the number of words and sentences. This is conceptualized similar to the 

completeness and quantity dimensions of IDT and IMT, respectively. Specificity implies 

that deceivers will manipulate the level of details present. While this dimension has some 

similarity to quantity in that it reflects the amount of information included in the 

message, quantity refers more generally to length details while specificity reflects type of 

details, such as described by reality monitoring (Zhou, Burgoon, Nunamaker et al., 2004) 

or CBCA.  
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Affect is defined as “A feeling or emotion as distinguished from cognition, 

thought, or action.”  (American heritage dictionary, 1991). The affect construct has been 

used to represent the emotions present in the message or language (Whissell, 1989; Zhou, 

Burgoon, Nunamaker et al., 2004). Diversity is viewed as an extension of completeness, 

or quantity. This reflects the extent to which an appropriate amount of detail has been 

included in the message. While the concept of diversity is somewhat similar to both 

specificity and quantity, it is meant to reflect the level of detail in general, rather than 

specific types of details, such as spatial or temporal information.  

The category of complexity was selected for the framework based on a previous 

study of newspaper credibility (Burgoon, Burgoon, & Wilkinson, 1981). It primarily 

refers to how simple the message or language is or is not. Uncertainty refers to evasive or 

ambiguous language used to avoid giving direct or relevant answers. Nonimmediacy is 

used in messages to avoid taking responsibility for or claiming ownership of the message. 

Activation attempts to capture the expressivity of the language used (Fuller, Biros, 

Adkins et al., 2006; Fuller, Biros, Twitchell, Burgoon, & Adkins, 2006; Zhou, Burgoon, 

Nunamaker et al., 2004).  

 

Revised Constructs 

Based on existing literature and the Zhou/Burgoon framework, a set of revised 

constructs were developed for use in studying deception in text. Though the 

Zhou/Burgoon framework was a useful starting point, it did not cover all pertinent 

aspects of deception, as not all dimensions identified in Table II are included within the 

framework. Further, the Zhou/Burgoon framework constructs have not been empirically 
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validated. Without this validation, there cannot be any assurance that the cues that are 

being measured are indicators of the related constructs (Pedhazur & Schmelkin, 1991). 

Therefore, the revised set of constructs were meant to more fully describe deception and 

provide guidance for measuring the appropriate cues in the current study and future 

research.  The proposed constructs can be divided into two components. The first set of 

constructs reflects the difference between the group of truthful messages and the group of 

deceptive messages. Seven constructs were proposed belonging to this group. The second 

component includes the construct of severity which was expected to impact the content of 

the messages and specifically the intensity of cues in the context of high-stakes, factual 

message production. 

Deception 

The summary of deception theory (see Table II) was reviewed for constructs that 

could be operationalized using linguistic-based cues. This information was used to guide 

refinement of the Zhou/Burgoon framework. All constructs in a refined framework 

should be theoretically supported, as well as amenable to measurement by automated 

methods.  

This review of the Zhou/Burgoon framework, which utilized both the review of 

prior theory and previous construct validation attempts, suggested the addition of new 

constructs, omission of constructs that are not theoretically supported, and improved 

measurement of the constructs. The first construct considered was Completeness. This 

construct represented whether the message includes an appropriate amount of 

information. This may refer both the amount of detail present in the message and the 

length of the message. The Zhou/Burgoon framework separates this construct into those 
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of Quantity and Specificity. A previous factor analysis showed that Quantity of Details 

and Contextual Embedding should be part of the same construct (Sporer, 2004). In the 

revised framework, the length of the message and the amount and type of detail in the 

message were separated. To be consistent with the Zhou/Burgoon framework, these 

constructs were labeled Quantity to represent message length and Specificity to represent 

amount and type of details. The Specificity construct subsumed the Specificity and 

Diversity constructs of the Zhou/Burgoon linguistic-based cues framework.  

Directness related to the relevance of the information to the context and 

circumstance. It includes the level of uncertainty, or strength and firmness of the passage 

(Knapp et al., 1974). Uncertainty may reflect attempts to avoid giving relevant answers 

(Fuller, Biros, Twitchell et al., 2006).  In the Zhou/Burgoon framework, this concept was 

referred to as uncertainty.  

The next construct suggested for the revised construct set was clarity. Clarity 

describe the degree to which messages were clear and comprehensible (Burgoon et al., 

1996). Comprehension expressed the ease of understanding a message (Burgoon et al., 

1981).  Messages may lack clarity by demonstrating vague and ambiguous language. The 

factor analysis of RM and CBCA criteria suggested a factor termed Clarity/Vividness. 

The category in the Zhou/Burgoon framework perhaps shared greatest conceptual 

similarity with the construct of clarity was the complexity category.  

Immediacy, or as it may alternatively be termed non-immediacy  was considered 

to be related to veracity by several previous descriptions (Buller & Burgoon, 1996; 

DePaulo et al., 2003; Knapp et al., 1974). Immediacy described whether the message 

includes attempts to disassociate oneself from the events described. Language that 
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implies claiming responsibility for the message content was also included within the 

definition of this construct (Fuller, Biros, Twitchell et al., 2006). Affect has frequently 

been included in deception theory (Buller & Burgoon, 1996; DePaulo et al., 2003; 

Ekman, 1985; Zuckerman & Driver, 1987). Terms used to refer to this construct include:  

affect or affective information, feeling cues, and felt emotion.  A previous factor analysis 

included criteria including psychological processes, cognitive operations, and emotions in 

a factor labeled feelings and thoughts (Sporer, 2004). Despite this result, to be consistent 

with the larger set of literature (Buller & Burgoon, 1996; DePaulo et al., 2003; Ekman, 

1985; Zuckerman & Driver, 1987), affect was separated from constructs representing 

thinking or cognitive operations.  

The final deception construct is that of cognitive processing. It is thought that the 

difficulty involved in being deceptive differs from that of being truthful (Vrij, 2000). This 

discrepancy should lead to identifiable changes in behavior and related cue production 

(Zuckerman & Driver, 1987). Recently, researchers conducting automated text analysis 

have successfully integrated cognitive processing-related variables (Bond & Lee, 2005; 

Newman et al., 2003). This construct is not represented in the Zhou/Burgoon framework.  

Severity 

The constructs described above were intended to describe elements that may 

differ between deceptive and truthful messages. An additional aspect of this study was 

the examination of deception in a ‘high-stakes’ environment, which has been described as 

situations in which the subject has something to gain or lose by having his or her message 

judged to be truthful or deceptive (Frank & Feeley, 2003). Within the high-stakes context 

of this study, not all messages had the same potential consequences, and therefore there 
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were expected to be differences within the group of deceptive messages and within the 

group of truthful messages. In order to examine the impact of varying consequences, this 

study utilized the concept of severity. This concept was defined in terms of punishment 

related with involvement in the incident. This construct was studied in relation to the set 

of constructs that represent various aspects of deceptive messages. The full list of 

constructs to be examined is summarized in Table IV.  

Table IV 

Summary of Constructs to be Studied 

Construct Theoretical Foundation Brief Description 

  Deception Constructs 

Quantity IDT, IMT, Self-Presentational 

Perspective 

 

Length of message 

 

Specificity IDT, RM 

 

Amount and type of details in the 

message 

 

Uncertainty IDT, IMT Relevance, directness, and certainty 

of message 

 

Clarity IDT, IMT Message clarity and 

comprehensibility  

 

Immediacy IDT, Self-Presentational Perspective Attempts to disassociate oneself 

from the events described 

 

Affect IDT, Ekman’s Clues to Deceit, 

Four-Factor Theory, RM, Self-

Presentational Perspective 

 

Emotions present in the message 

 

Cognitive 

Processing 

Four-Factor Theory, RM, Ekman’s 

Clues to Deceit 

Increased or decreased cognitive 

processing and cognitive 

information present in the message 

related to veracity 

 

Impact of  Severity 

Severity Frank & Ekman, 1997, Vrij, 2000, 

Depaulo et al., 2003 

Consequences of being involved in 

incident described 
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There were a few constructs suggested by reviewing the literature that were not 

included in the revised framework. Veridicality was considered for inclusion in the 

revised framework. This construct refers to the overall truthfulness or appearance of 

truthfulness of the message (McCornack, 1992). This construct represents typical beliefs 

regarding honesty.  As it captures the overall truthfulness of the message (Buller & 

Burgoon, 1996), it could not be logically separated from the deception variable. 

Therefore veracity was not included in the revised framework. Zuckerman et al (1987) 

proposed control as one of the four aspects of deception. This construct is not well-

defined for the environment of automated analysis. Therefore, control was not included in 

the revised framework.  

Arousal is also suggested as a possible construct in previous deception literature 

(Buller, Burgoon, Buslig, & Roiger, 1996; DePaulo et al., 2003; Knapp et al., 1974; 

Zuckerman, DePaulo, & Rosenthal, 1981). Previous research has proposed that it may not 

be possible to separate the cues of arousal from those of cognitive complexity or affect 

(DePaulo et al., 2003; Zuckerman et al., 1981; Zuckerman & Driver, 1987). To achieve 

consistency with the Zhou/Burgoon framework, this construct was not included in the 

revised framework.   

The Zhou/Burgoon framework includes an activation category. Activation, also 

termed expressivity may be considered as one component of affect (Whissell, 1989). 

While research in newspaper style related expressivity, or emotiveness, to trustworthiness 

(Burgoon et al., 1981), this category has not otherwise been theoretically supported, 

except as it may have some relation with affect. While it may have some predictive value, 

due to lack of theoretical support, it was not included in the revised framework. Next, the 
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data sample used for the dissertation, and the methods used to validate the constructs are 

described. Then, the results of construct validation are detailed.  

 

Construct Validation Methodology 

 

Data sample 

The sample for the study was a subset of those who completed a statement, 

officially known as a report 1168, at two military bases from January 2002 to December 

2006. This data sample was used for construct validation, and all subsequent analyses. 

Person-of-interest statements are official reports written by a subject or witness in 

an investigation. The process of recording an incident statement from a person of interest 

is as follows: the investigators typically have the person-of-interest come into the office 

where they have the option to write the statement or type it into a computer. The 

statements were all recorded on AF Form 1168. If the person-of-interest is simply a 

witness and not actively involved in the case, his or her statement could be recorded in 

the field. All statements were written in the presence of law enforcement personnel. If a 

person is a suspect he or she was read both the Miranda rights and Article 32 of the 

Uniform Code Military Justice prior to making a statement. Base law enforcement 

personnel reviewed cases to find those in which the statement could be identified as 

truthful or deceptive. Table V describes the criteria used to identify statements.  
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Table V 

Criteria for Determining Statement Veracity 

Statement Type Criteria 

Deceptive  1. The subject later recanted the statement and recorded another 

statement, but was not charged with making a false official 

statement. 

2. The subject was charged with making a false official statement.  

3. Other evidence in the case showed that the statement could not be 

true.  

4. An impartial witness, such as security force personnel, gave a 

statement substantially contradicting the subject’s statement.  

 

Truthful  1. Evidence in the case or result of the case corroborated the 

statement. 

2. Statement is given by law enforcement personnel witnessing the 

incident. Law enforcement personnel are assumed to be impartial 

witnesses who would make every attempt to give reliable 

accounts.  

 

This sample provided the opportunity to examine deception and its detection in a 

real-world, high-stakes context. As previously noted, most studies have been conducted 

in experimental settings using student subjects (Vrij & Mann, 2001; Depaulo et al., 

2003). A need for research using serious, or high-stakes, lies has also been identified 

(DePaulo et al., 2003; Frank & Feeley, 2003; Kohnken, 1985). Due to these 

circumstances, all available statements that base personnel could confidently identify as 

truthful or deceptive were collected from the military bases. Of the over 370 statements 

gathered to date, many more truthful than deceptive statements were received.  

Procedures to prepare the statements for analysis, including transcription of the 

original statements were prepared by the team of researchers involved in the project. This 

process included removing identifying information, typing the statement exactly how it 

was written while coding for any anomalies that could not be transcribed directly, and 
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saving the transcribed statement with a specified file name that captured additional 

information about the statement. The complete procedure is shown in Appendix B.   

 

Construct Validation 

The first major goal of this study was to validate a framework of constructs for 

use in research of text-based deception and its detection. To meet this goal,  based on 

theory and past literature, a set of revised constructs were proposed and a set of 

linguistic-based cues were identified to measure each of these constructs. Confirmatory 

factor analysis was used to empirically validate the proposed constructs. To establish 

whether or not the revised set of constructs were superior to the previously unvalidated 

Zhou/Burgoon framework, it was also analyzed using confirmatory factor analysis.  

Measurement of Constructs 

 The proposed constructs of this study had to be validated before hypotheses could 

be appropriately developed. This validation required the identification of appropriate cues 

to measure each construct; therefore this section was developed prior to hypothesis 

development. Many of the cues used as indicators of the defined constructs were retained 

from the Zhou/Burgoon framework. Where improved measures were available, they were 

substituted for existing measures. 

 Quantity was the first construct that has been defined for the revised set of 

constructs. In the Zhou/Burgoon framework and previous studies (Burgoon et al., 2006; 

Qin et al., 2005), number of words, number of verbs, and number of sentences were used 

to measure quantity. As this construct was not substantially redefined, this construct 

continued to be measured by these three cues.  
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Specificity was defined for this study to generally reflect the amount of details and 

type of details included in the message. This definition was used in order to be consistent 

with the Zhou/Burgoon framework (Burgoon et al., 2006) and findings of a previous 

factor analysis (Sporer, 2004). Spatial information, temporal information and sensory 

information are appropriate cues to represent different types of details that might be 

present in a statement. These cues have previously been used in the study of deception in 

text (Zhou, Burgoon, Nunamaker et al., 2004; Zhou, Burgoon et al., 2003). 

Previously, specificity was measured by 1
st
 person pronouns, 2

nd
 person pronouns, 

3
rd

 person pronouns, other references, modifiers, sensory ratio and number of sensory 

details. To more closely fit the current definition, specificity does not include measures of 

pronoun usage, as these measures may be more closely related to the revised construct of 

immediacy. Previously, lexical and content word diversity were used to measure the 

amount of details, though in a separate category of the framework (Burgoon et al., 2006; 

Zhou, Burgoon, Nunamaker et al., 2004). Lexical diversity is measured as the ratio of 

different words or terms to total terms.  

Content word diversity is measured by the number of content words divided by 

the total number of words. It has been shown that lexical diversity is dependent on text 

length. An alternate measure, bilogarithmic type-token ratio, has been developed to deal 

with this problem (Kohnken, 1985). The bilogarithmic type-token-ratio was used as a 

substitute for lexical diversity in the revised constructs.  

 Uncertainty was only measured with one variable--modal verbs--in the 

Zhou/Burgoon framework. This can be problematic (Pedhazur & Schmelkin, 1991) as the 

sources of systematic and nonsystematic variance cannot be identified in single-indicator 
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constructs. Therefore, additional variables were included to measure this construct in the 

revised framework. A certainty dictionary was available within the LIWC system 

(Pennebaker & Francis, 2001). Tentative constructions have previously been associated 

with the uncertainty in deception (Knapp et al., 1974). A variable termed Tentative is 

included within LIWC, and was used to measure this aspect of uncertainty. Passive voice 

terms have also been considered to be an indicator of uncertainty (Knapp et al., 1974; 

Zhou, Burgoon, Twitchell et al., 2004) and were used as such in this study. A final 

proposed indicator of uncertainty was generalizing terms (Zhou, Burgoon, Nunamaker et 

al., 2004). 

 Clarity has previously been measured by average word length, average sentence 

length, and pausality (Burgoon et al., 2006; Zhou, Burgoon, Twitchell et al., 2004). As 

defined in the revised framework, comprehensibility is part of the construct of clarity. 

Previously, factor analysis has shown that comprehension is correlated with readability, 

redundancy, sentence length and complexity. In this work, complexity was defined as the 

ratio of characters to words and syllables to words. Redundancy is a measure of function 

words (articles, prepositions, and conjunctions) per sentence. Readability measures 

emphasize word and sentence length (Burgoon et al., 1981). Causation words, such as 

because or effect,  are believed to add a level of concreteness to the message or make it 

less vague (Hancock et al., 2005) contributing to the clarity of the message. Based on 

these previous studies, average word and sentence length, redundancy, causation words 

and complexity ratio were used to measure the clarity construct.  

 Immediacy describes attempts to associate oneself with a message or to claim 

ownership of its content. Immediacy is indicated by pronoun usage. Self-oriented terms 
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might be used to associate oneself with the message. Other-oriented pronouns may signal 

attempts to distance oneself from the message (Hancock et al., 2005). Self-oriented terms 

include first-person pronouns. Other-oriented terms include second and third-person 

pronouns (Hancock et al., 2005; Zhou, Burgoon, Nunamaker et al., 2004).  

The definition of affect in the revised framework is consistent with previous forms 

of this construct (Zhou, Burgoon, Twitchell et al., 2004). The Whissell Dictionary of 

Affect in Language uses three variables to measure this construct: activation, imagery, 

and pleasantness (Whissell, 1989). This dictionary includes a total of 8742 words and has 

been tested for reliability and validity. This dictionary has previously been integrated into 

deception studies (Burgoon et al., 2006; Fuller, Biros, Adkins et al., 2006; Fuller, Biros, 

Twitchell et al., 2006; Zhou, Burgoon, Twitchell et al., 2004). In one study, activation 

was moved to a separate category containing this variable and expressivity (Burgoon et 

al., 2006). For measuring the revised constructs, activation was included in the affect 

construct, in order to be consistent with the Dictionary of Affect.  

Cognitive Processing is not a construct in the Zhou/Burgoon framework, but has 

been studied previously in deception studies. The use of motion verbs and exclusive 

words have been associated with deception (Newman et al., 2003). Additionally, a 

dictionary of cognitive processing terms was used as an indicator for this construct based 

on previous work (Pennebaker & Francis, 2001).  

Severity was determined from the subject of the statement.  As described above, 

severity was used in this study to capture the consequences of the event described. 

Deception researchers have established a need to study serious lies, though few studies 
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have studied linguistic-based cues in this environment. Further, measures have not 

previously been established to capture this concept.  

Severity was introduced in this study on a somewhat exploratory basis as an 

attempt to capture how differing levels of severity or stakes impacted the production of 

linguistic-based cues. All types of incidents within the sample were given a rating 

between one and five by law enforcement personnel, with one being the least severe and 

five representing the highest severity. To achieve interrater-reliability, the ratings were 

made by three experienced law enforcement officials, with eight to fourteen years of 

experience. To determine the statement severity, the subject of each statement was 

identified, and marked with the corresponding rating. The revised constructs and their 

related measures are summarized in Table VI. 

To extract the cues from the statements, GATE and LIWC were used. In A99A, 

General Architecture for Text Engineering (GATE)  (Cunningham, 2002; Cunningham et 

al., 2005) is used to extract cues from text and Waikato Environment for Knowledge 

Analysis (WEKA) (Witten & Frank, 2000) to build classification models using the 

extracted cues. GATE has successfully been used in the past for extracting linguistic-

based cues, and was used here to extract cues based on default features of the program, 

such as the part-of-speech tagger, and deception specific dictionaries added to the tool.  

LIWC was used to extract the remaining cues. Linguistic Inquiry and Word Count 

(LIWC) (Pennebaker & Francis, 2001) processes text based on four main dimensions: 

standard linguistic dimensions, psychological processes, relativity, and personal 

concerns. Based on these dimensions, default dictionaries are available for 74 cues. 

Additional dictionaries can be added to either tool.  
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Table VI 

Revised Constructs and Related Measures 

Construct Measurement 

 

Quantity Words, Verbs, Sentences 

 

Specificity Sensory ratio, Spatial ratio, Temporal ratio, Content Word 

Diversity, Bilogarithmic Type-Token-Ratio. 

Uncertainty  Certainty Terms, Tentative Terms, Modal Verbs, Passive 

Voice, Generalizing Terms 

 

Clarity Redundancy, Sentence Length, Complexity Ratio, Average 

Word Length, Causation Terms. 

 

Immediacy 1
st
 person pronouns, 2

nd
 person pronouns, 3

rd
 person 

pronouns 

 

Affect Positive Activation, Negative Activation, Positive Imagery, 

Negative Imagery, Positive Pleasantness, Negative 

Pleasantness 

 

Cognitive Processing Exclusive Verbs, Motion Words, Cognitive Processing 

Terms. 

 

Severity Rating of incident severity in terms of related punishment  

 

 The Zhou/Burgoon framework included eight categories of cues. The revised 

framework included seven categories related to deception, in addition to the severity 

construct. The two frameworks are juxtaposed in Table VII below to highlight the 

differences between them.  
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Table VII 

Summary of Zhou/Burgoon and Revised Frameworks 

Zhou/Burgoon Framework Revised Framework 

Construct Related Cues Construct Related Cues 

 

Quantity  Words, Verbs, Sentences 

 

Quantity Words, Verbs, Sentences 

 

Specificity 

 

1
st
 person pronouns, 2

nd
 

person pronouns, 3
rd

 

person pronouns, other 

references, modifiers, 

sensory ratio and number 

of sensory details 

 

Specificity Sensory ratio, Spatial 

ratio, Temporal ratio, 

Content Word Diversity, 

Bilogarithmic Type-

Token-Ratio. 

 

Affect Affect ,  Imagery, 

Pleasantness 

 

Affect Activation, Imagery, 

Pleasantness 

Diversity Lexical Diversity, 

Content word diversity, 

Redundancy 

 

N/A  

Complexity  Average sentence 

Length, Average word 

length, pausality.  

 

Clarity Redundancy, Sentence 

Length, Complexity Ratio, 

Average Word Length, 

Causation Terms. 

 

Uncertainty Modal Verbs 

 

Uncertainty Certainty Terms, 

Tentative Terms, Modal 

Verbs, Passive Voice, 

Generalizing Terms 

 

Nonimmediacy  Passive voice 

 

Immediacy 1
st
 person pronouns, 2

nd
 

person pronouns, 3
rd

 

person pronouns 

 

Activation Emotiveness, activation 

 

N/A  

N/A  Cognitive  

Processing 

Exclusive Verbs, Motion 

Words, Cognitive 

Processing Terms. 

 

  Severity Rating of incident severity 

in terms of related 

punishment  
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Confirmatory Factor Analysis 

Confirmatory factor analysis was performed on the Zhou/Burgoon framework and 

the revised construct set. After constructing the models, absolute, incremental and 

parsimonious fit measures for the model were examined to assess the overall model. 

Absolute fit measures include the chi square statistic, goodness-of-fit index (GFI), and 

RMR, and RMSEA Absolute fit measures do consider any overfitting that may occur in 

the model. Incremental fit measures include TLI, NFI, and CFI. These measures assess 

the model fit compared to a null model that specifies no relation among the constructs or 

variables. The main parsimonious fit measure is the adjusted Goodness-of-fit index 

(AGFI), which assesses the fit of the model when considering the number of estimated 

parameters. The loadings of the constructs were examined for statistical significance. 

Each construct was also assessed for reliability. To assess construct reliability, alpha, 

composite reliability, and average variance explained were calculated (Hair, Anderson, 

Tatham, & Black, 1998).  

 

Construct Validation Results 

 Traditional construct validation was applied to two competing models. The results 

below show that while a valid set of constructs was determined, some of the proposed 

cues and constructs may not be valid, particularly for this domain. 
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Model 1: Zhou/Burgoon Framework 

As described previously, the Zhou/Burgoon model includes eight constructs with 

a total of 22 cues. The full model was first submitted to analysis; however, the solution 

was not admissible. The constructs were examined to determine which might be 

removed. Based on estimates of reliability, the complexity construct was removed, as 

calculations of alpha showed that there was negative covariance that could not be 

resolved. After removing the complexity construct, an admissible solution was generated. 

In that solution, all loadings were less than 1 and only one cue was not significantly 

loading, the 1
st
 person singular pronouns. This cue was then removed. The resulting 

model was admissible, though the fit was not acceptable on all measures examined. 

Table VIII 

Zhou/Burgoon Framework Fit Measures 

Fit Measure Value Suggested Value 

RMSEA 0.10 <0.08 

Adjusted Chi-Square 4.93 <5 

Standardized RMR 0.08 <0.10 

GFI 0.86 >0.9 

CFI 0.90 >0.9 

NFI 0.88 >0.9 

 

The model resulting from performing CFA on the Zhou/Burgoon framework 

retained seven constructs and 17 cues. Four of the constructs—quantity, affect, diversity, 

and activation have acceptable construct reliability according to their composite 

reliability, average variance explained and alpha. Suggested values of these measures are 

0.70 for composite reliability, 0.50 for average variance explained, and 0.70 for alpha.  

Specificity has poor reliability. This may be due in part to the large amount of zero values 



 54 

for 2
nd

 person pronouns and 3
rd

 person pronouns. This issue is discussed further in a later 

section. Reliability could not be assessed for Uncertainty and Nonimmediacy since these 

two constructs had only a single indicator. 

Table IX 

Zhou/Burgoon Constructs and Indicators Retained by CFA 

Construct Indicator 

Standardized 

Loading 

Composite 

Reliability 

Average 

Variance 

Explained alpha 

Quantity Word Quantity 1 0.94 0.83 0.92 

 Verb Quantity 0.87    

 

Sentence Quantity 

 

0.86 

    

Specificity 1
st
 Person Plural 0.53 0.42 0.17 0.33 

 

2
nd

 person 

pronouns 0.36    

 

3
rd

 Person 

pronouns 

0.5 

    

 

Sensory Ratio 

 

0.15 

    

Affect Affect 0.12 0.81 0.66 0.74 

 Imagery 0.98    

 

Pleasantness 

 

1 

    

Diversity Lexical Diversity 1 0.80 0.62 0.74 

 

Content Word 

Diversity 0.87    

 

Redundancy 

 

0.3 

    

Uncertainty 

 

Modal Verbs 

 

1 

 

1 

 

1 

 - 

Nonimmediacy 

 

Passive Voice 

 

1 

 

1 

 

1 

 - 

 Activation Emotiveness 0.5 0.74 0.61 0.58 

 Activation 0.98    
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Model 2: Revised Framework 

The second model analyzed was the revised framework. Similar to the 

Zhou/Burgoon framework, an admissible solution could not be found with confirmatory 

factor analysis when all variables and constructs were included in the model. Constructs 

and cues were removed one by one until an admissible solution could be calculated. The 

initial admissible solution included all proposed information except for the immediacy 

construct and the motion variable used as an indicator of cognitive processing. In this 

model, content word diversity and redundancy had loadings greater than one. Six 

additional cues did not have significant loadings.  

Cues with loadings greater than one and those without significant loadings were 

removed, then replaced one at a time until these issues were resolved. In addition to the 

immediacy cues and the motion cue, the clarity and cognitive processing constructs had 

to be removed as no acceptable combination of cues could be found to represent these 

constructs. Additionally, the space, content word diversity, modal verbs, and passive 

voice cues had to be removed.  The fit measures for the resulting set of constructs are 

shown below in Table X. As can be seen in the table, the values are acceptable for all of 

the fit measures.  

Table X 

Revised Framework Fit Measures 

Fit Measure Value Suggested Value 

RMSEA 0.08 <0.08 

Adjusted Chi-Square 3.45 <5 

Standardized RMR 0.06 <0.10 

GFI 0.93 >0.9 

CFI 0.94 >0.9 

NFI 0.92 >0.9 
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Though the fit measures suggest that the set of constructs was good, when 

construct reliability is assessed, this was not the case, as only two of the four remaining 

constructs have acceptable values for the three measures being used here to assess 

construct reliability. Additionally, it should be noted that only four of the seven suggested 

constructs and 12 of the proposed cues have been retained, as shown in Table XI below.  

Table XI 

Revised Framework Constructs and Indicators Retained by CFA 

Construct Indicator 

Standardized 

Loading 

Construct 

Reliability 

Average 

Variance 

Explained Alpha 

Quantity Word Quantity 1 0.97 0.87 0.92 

  Verb Quantity 0.87    

  

Sentence Quantity 

 

0.86 

    

Specificity Sensory Ratio 0.34 0.35 0.17 0.33 

  Temporal Ratio 0.24    

  

Bilogarithmic Type-

Token Ratio 

 

0.57 

 

    

Affect Activation 0.99 0.99 0.98 0.99 

  Imagery 0.98    

  

Pleasantness 

 

1 

    

Uncertainty Certainty Terms 0.53 0.54 0.30 0.46 

  Generalizing Terms 0.74    

  Tentative Term s 0.29    

 

Construct Validation Summary 

Confirmatory factor analysis has been performed on two sets of constructs on a 

data set including 366 statements. The results of this analysis are summarized in Table 

XVI. In both models tested, the Zhou/Burgoon framework and the Revised framework, 

the number of constructs and cues confirmed were less than what had been proposed. 

Two constructs, quantity and affect, were validated across both models, though the cues 
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of these constructs varied somewhat. As affect is the only construct based on a previously 

validated set of constructs (Whissell, 1989), it is not surprising that it emerged as one of 

the constructs with acceptable validity. Quantity uses straightforward counts of words or 

sentences without relying on the definition or meaning of various words. It appears that 

the constructs based on lists or dictionaries of words are more problematic.  

Table XII 

CFA Result Summary 

Item Zhou/Burgoon 

framework 

Revised 

Framework 

Number of Constructs 7 4 

      Number of Reliable Constructs 4 2 

Number of Cues 18 12 

RMSEA 0.10 0.08 

Adjusted Chi-Square 4.93 3.45 

Standardized RMR 0.08 0.06 

GFI 0.86 0.93 

CFI 0.90 0.94 

NFI 0.88 0.92 

 

The Zhou/Burgoon framework retains more constructs and cues upon validation, 

though it does not have acceptable fit on most of the evaluated measures. As noted 

previously, three of the seven constructs retain only one or two indicators, preventing 

Alpha from being calculated for these three constructs.  The revised model is the most 

parsimonious and has an acceptable fit, though both models assessed did not have 

acceptable reliability levels on all constructs. As model 2, the Revised model, is 

theoretically based, has a good fit, and is also parsimonious; it appears to be the best 

model. Using these results as a foundation, a set of hypotheses was developed to test the 

cues related to the constructs of the revised model. This is outlined in the next chapter.
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CHAPTER IV 

HYPOTHESIS TESTING 

Hypotheses 

 One goal of this study was to identify the cues that distinguish truthful and 

deceptive messages in the high-stakes, real-world context. To accomplish this, 

hypotheses were developed for the cues representing each construct.  However, the 

constructs of the study had not previously been validated. To ensure that hypotheses were 

made about appropriate constructs, factor analysis was conducted prior to hypotheses 

development. (See Chapter III for details of measurement of the constructs and construct 

validation). In addition to developing hypotheses regarding the difference between 

truthful and deceptive message groups on each linguistic-based cue, an additional 

hypothesis was developed regarding the impact of severity on these cues. The constructs 

presented below are those that could be validated in the revised construct framework. The 

remaining three constructs and the fifteen cues associated with these constructs are not 

presented in the hypotheses. The hypotheses presented here are summarized in Table 

XIII. 

 

Quantity 

Quantity reflects the length of the statement. According to IMT (McCornack, 

1992), deceptive messages are edited such that sensitive information is omitted. This 
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suggests that deceptive messages should demonstrate reduced quantity.  Knapp (1974) 

also suggested that deceivers would exhibit reticence, including using fewer words, and 

confirmed this in their experiment. The self-presentational perspective concurs that 

deceptive statements will be shorter (DePaulo et al., 2003). Previous results regarding the 

construct of quantity have been mixed, with some suggesting deception increases 

quantity and others finding decreases. Therefore, it appears that this particular construct 

may apply differently depending on the domain or context.  

Though these differing results may seem contradictory, it is actually consistent 

with IDT. This theory suggests that language will be adapted according to the context and 

the goals of the person producing the message (Burgoon et al., 2003). According to IDT, 

if time is available or efforts at persuasion may be beneficial, the deceiver is likely to 

create a longer message (Burgoon et al., 2003). This echoes the earlier finding of Watson 

and Ragsdale (Watson & Ragsdale, 1981). If the context is more conversational or the 

speaker provides a complete answer without interruption, he or she may increase quantity 

to appear believable or provide additional evidence to support his or her deception 

(Hancock et al., 2005). Similarly, if the deceiver is instructed to or is attempting to give 

enough evidence or detail to persuade the deceiver, it is expected that deceptive 

statements will show increased quantity as compared to truthful statements (Zhou, 

Twitchell et al., 2003).   

The current context is believed to be closer to that where a person completes an 

answer without interruption and may increase quantity in order to appear believable. In 

one study where subjects were asked to discuss a topic completely, deceptive messages 

were shown to use more words than truthful messages (Hancock, Curry et al., 2004; 
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Hancock et al., 2005). Other studies have also supported the finding of greater word 

quantity in deceptive messages, including a text-based study where senders were 

motivated to convince the receiver that they were being truthful (Zhou, Burgoon, 

Nunamaker et al., 2004; Zhou, Twitchell et al., 2003). Based on this, the following is 

hypothesized: 

Hypothesis 1: Deceptive statements will show greater quantity than truthful 

statements demonstrated by a)greater word quantity, b) greater verb quantity and 

c) greater sentence quantity.  

 

 

 

Specificity 

Specificity refers to language that establishes the context of the statement and 

perceptual information given (Zhou, Burgoon, Nunamaker et al., 2004). It describes the 

amount and type of details in a message. Reality monitoring posits that truthful messages 

will include more perceptual information since a subject is describing an actual 

experience (Bond & Lee, 2005; Zhou, Burgoon, Nunamaker et al., 2004). Contextual 

information includes language related to sensations experienced, spatial information and 

temporal information. This is consistent with the view of the self-presentational 

perspective which suggests that deceivers will provide less detail in their responses 

(DePaulo et al, 2003). Similarly, IDT proposes that deceptive statements will show 

reduced specificity. This may be expressed by reduced contextual detail and also by 

reduced lexical diversity, a measure similar to type-token ratio, reflecting less detailed 

content that truthful statements (Zhou, Burgoon, Nunamaker et al., 2004).   The majority 

of studies in one analysis supported truthful statements having more spatial temporal and 
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perceptual information than deceptive statements (Zhou, Burgoon, Nunamaker et al., 

2004).    

Bond and Lee also confirmed, using default LIWC dictionaries that deceivers 

tended to use less sensory information and less temporal information (Bond & Lee, 

2005).  Others have also shown deceivers to be less specific when forming their messages 

(Watson & Ragsdale, 1981). It was suggested that deceivers have trouble being specific 

about events or situations that do not exist. Experimental studies have confirmed that 

deceivers may be less specific by using fewer unique words in their messages (Knapp et 

al., 1974; Zhou, Burgoon, Nunamaker et al., 2004).  This supports the following 

hypothesis: 

Hypothesis 2: Deceptive statements will show less specificity than truthful 

statements, demonstrated by: a) lower sensory ratios, b) lower temporal ratios, and 

c) lower bilogarithmic type-token ratios. 

 

 

Affect 

For decades, it has been thought that deceivers would show greater negative 

affect. Newman and colleagues (2003) studied deception across five different samples. 

Consistently, deceivers used more negative emotion terms. This is in alignment with 

previous work that suggests that greater emotion may be present reflecting guilt or fear 

associated with lying (Ekman, 1985; Newman et al., 2003). These emotions may result in 

direct incorporation of affect in language, particularly negative affect (Zuckerman & 

Driver, 1987). Another study showed that deceivers used greater positive affect (Zhou, 

Burgoon, Nunamaker et al., 2004). Affect, as measured here, consists of three 
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components: activation, imagery, and pleasantness, each of which are anticipated to 

increase in deceptive statements. 

Hypothesis 3: Deceptive statements will show greater affect than truthful statements 

demonstrated by a) greater activation b) greater imagery, and c) greater 

pleasantness. 

 

 

 

Uncertainty  

Uncertainty may reflect attempts to avoid giving relevant answers. It includes the 

level of uncertainty, or strength and firmness of the passage (DePaulo et al., 2003; Fuller, 

Biros, Twitchell et al., 2006; Knapp et al., 1974). Knapp and colleagues were some of the 

earliest researchers to address linguistic cues. They proposed that deceivers would be 

more uncertain and also associated tentative constructions with uncertainty in deception 

(Knapp et al., 1974). IMT suggests that when the maxim of relation is violated, deceptive 

messages will fail to provide direct information. The messages will not include 

contextually relevant material that is expected. This information will be general, and will 

reflect the inhibited state of producing a deceptive message.  

The self-presentational perspective also describes deceptive communications as 

being more uncertain.  IDT suggests that deceptive messages will express uncertainty 

through more generalizing terms in an effort to deceive by ambiguity and evasiveness 

(Zhou, Burgoon, Nunamaker et al., 2004). The four-factor theory also predicted more use 

of generalizing terms. Previous results confirmed this (Buller & Burgoon, 1996; Knapp et 

al., 1974; Zuckerman & Driver, 1987), leading to the following hypotheses: 

Hypothesis 4: Deceptive statements will show greater uncertainty than truthful 

statements demonstrated by: a) More generalizing terms, b) fewer certainty terms, 

and c) more tentative terms. 
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Severity 

This study was conducted in a high-stakes context, or one in which there are 

consequences associated with being found either truthful or deceptive. Within the high-

stakes context, there will be varying levels of consequences. Severity is used here to 

represent the consequences associated with a particular situation. It is a logical 

assumption that those who find themselves in severe situations will be motivated more 

than those in less severe situations. This should apply to both truthful and deceptive 

messages, as in both cases the sender of the message faces pressure to be believable.  The 

self-presentational perspective of deception predicts that cues will be stronger when 

subjects are motivated to prevent lie detection. This perspective also predicts that lies 

about transgressions will result in stronger cues (DePaulo et al., 2003)  

An analysis of previous deception studies ( DePaulo et al., 2003) found that the 

cues to deception were clearer and more cues were significant when the deception was 

about a transgression; that is when deception was about a crime, mock crime, or similar 

situation. Zuckerman et al. found that language-related cues were particularly useful in 

detecting deception in motivated situations (Zuckerman & Driver, 1987). Zuckerman et 

al found that a greater number of cues were significantly associated with deception in a 

high motivation level as compared to low motivation. There were also a number of cues 

that were significantly different between high and low level conditions. Researchers have 

proposed that in high motivation situations, greater cue leakage will occur (Friedman & 

Tucker, 1990; Porter & Yuille, 1995). Previously, severity and its correlates have been 

measured as dichotomous. Here, it will be measured as a continuous variable. As the cues 
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increase in strength when speakers are motivated and when transgressions are discussed, 

we propose that severity will have a positive relationship with the intensity of each cue:  

Hypothesis 5: There will be a positive relationship between severity and cue 

intensity. 

  

Table XIII 

Hypothesis Summary 

Hypothesis Description 

Quantity  

H1A Deceptive statements will show greater word count than truthful statements 

H1B Deceptive statements will show greater verb count than truthful statements 

H1C Deceptive statements will show greater sentence count than truthful 

statements 

 

Specificity  

H2A Deceptive statements will show lower sensory ratios than truthful 

statements 

H2B Deceptive statements will show lower temporal ratios than truthful 

statements 

H2C Deceptive statements will show lower bilogarithmic type-token ratios than 

truthful statements 

 

Affect  

H3A Deceptive statements will show greater activation than truthful statements 

H3B Deceptive statements will show greater imagery than truthful statements 

H3C Deceptive statements will show greater pleasantness than truthful 

statements 

 

Uncertainty  

H4A Deceptive statements will show fewer certainty terms than truthful 

statements 

H4B Deceptive statements will show greater generalizing terms than truthful 

statements 

H4C Deceptive statements will show greater tentative terms than truthful 

statements 

 

Severity 

H5 

There will be a positive relationship between severity and cue levels. 

 



 65 

Hypothesis Testing Methodology 

 Based on the validated constructs, and the cues that represent the constructs, 

MANOVA and Regression were used to test the hypotheses related to the deception 

constructs, as well as severity.  

 

MANOVA 

The second major goal of this study was to determine which verbal cues 

distinguish truthful and deceptive messages. For this component of the study, MANOVA 

was utilized. MANOVA is an appropriate statistical procedure to employ for the analysis 

of categorical independent variables and metric dependent variables that are at least 

interval scaled. It allowed us to analyze how the cues belonging to each construct 

separate truthful and deceptive subjects as a set and as individual cues (Hair et al., 1998). 

The maximum number of cues used to measure a single construct is three cues and the 

study included two groups, deceptive and truthful messages. The minimum recommended 

sample size for MANOVA is at least 20 observations per group or more observations per 

group than there are dependent variables. It has also been noted that achieving adequate 

power can be difficult with group sizes less than 50, however, this minimum will be 

exceeded for this study (Hair et al., 1998). The cell sizes were unequal due to the many 

more truthful that deceptive statements received. However, the software package used, 

SPSS, automatically adjusts for unequal cell size.  

First, the model was assessed at the multivariate level to see if there was a 

significant difference of the vectors of means of the dependent variables across groups. 

This step was followed by the F-test to assess univariate differences for the individual 
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cues. When using MANOVA the following assumptions must be checked: constant 

variance-covariance matrices occur across groups, multivariate normality of the 

dependent variables occurs within each group, observations are independent of each 

other, and the dependent variables are correlated.  

 

Regression 

To complement the MANOVA analysis used to study the difference between 

truthful and deceptive statements for each cue, the impact of severity on cue intensity was 

evaluated using linear regression. Based on the results of previous studies, it could be 

expected that more cues would be significant in situations of higher severity, and that 

there would be a significant difference between high and low severity conditions 

(Zuckerman & Driver, 1987). However, this implies a binary measurement of severity-

either high or low. For this study, each statement received a severity rating between one 

and five. This scale, like many in the social sciences may be somewhere between ordinal 

and interval. The loss of information if treated as ordinal must be balanced against the 

error that may result if the scale is considered interval. In this case, the scale was treated 

as interval in order to perform more powerful statistical analysis (Pedhazur & Schmelkin, 

2006).  

A linear regression model was built for each of the twelve cues representing the 

four validated constructs. In each of the models, one of the twelve cues was the 

dependent variable. Severity and veracity condition, dummy coded for truthful or 

deceptive, were the independent variables. This design allows interpretation of the 
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relationship between severity and the cue, as well as whether this impact is the same or 

different for truthful and deceptive statements.  

 

Hypothesis Testing Results 

 

Results for Between Group Differences 

These results show the difference in cues between deceptive and truthful groups, 

testing the hypotheses described in Table XIII. So that assumptions of normality and 

homogeneity of variance could be met, several variables had to be transformed before 

hypothesis testing could be completed. The transformations used are listed along with 

their respective cues in Table XIV below. The multivariate test was significant for the 

quantity, specificity, and uncertainty constructs. This shows a significant difference in the 

vector of the means for these constructs, but does not show which group of statements, 

deceptive or truthful, has higher levels of any particular construct. To assess these 

differences, univariate tests were performed for each cue. The results show that the 

quantity related cues are significantly higher in deceptive than truthful statements, 

confirming hypotheses 1A, 1B, and 1C. Similarly, hypothesis 2B, and 2C were 

supported, as deceptive statements showed lower temporal ratio and lower bilogarithmic 

type-token ratio. Though there was a significant difference between the two groups in 

sensory ratio, the direction of the means was opposite of what was hypothesized. There 

were no significant differences for affect or its related cues. Therefore, hypotheses 3A, 

3B, and 3C were not supported. While hypothesis 4A, and 4C were not supported, there 

was a significant difference between deceptive and truthful statements in the number of 
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generalizing terms used, supporting hypothesis 4B. These results of the hypothesis testing 

are summarized in table XVI.  

Table XIV 

Summary of MANOVA Results 

Cue 

(Transformation, if 

applicable) 

Raw 

 

Mean (Std Dev)  

Normed 

 

Mean (Std Dev) 

Transformed 

Values 

Mean (Std Dev) 

 Truth Deceptive Truth Deceptive Truth Deceptive 

Quantity       

Word Quantity 

(Square Root) 

88.28 

(84.70

) 

176.09 

(102.19) 

.16 

(.18) 

.34 

(.21) 

.35 

(.18) 

.56  

(.18) 

Verb Quantity 

(Square Root) 

 

13.82 

(16.82

) 

30.03 (22.18) .13  

(.16) 

.29  

(.22) 

.32 

(.18) 

.50  

(.20) 

Sentence 

Quantity (Square 

Root) 

5.56  

(5.20) 

9.99  

(6.02) 

.12  

(.14) 

.24  

(.16) 

.30 

(.17) 

.46  

(.15) 

Specificity       

Sensory Ratio 2.94  

(1.99) 

3.51  

(1.90) 

.17  

(.17) 

.30 

(.16) 

  

Temporal Ratio 

(Square Root) 

 

5.92  

(3.82) 

4.37  

(2.38) 

.27  

(.18) 

.20  

(.11) 

.48 

(.19) 

.43  

(.12) 

Bilogarithmic 

Type-Token 

Ratio 

.90  

(.03) 

.89  

(.02) 

.46 

(.17) 

.41  

(.12) 

  

Affect       

Activation 1.39 

(.61) 

1.49  

(.55) 

.67  

(.29) 

.72  

(.26) 

  

Imagery 1.30 

(.58) 

1.37  

(.52) 

.65  

(.29) 

.68  

(.26) 

  

Pleasantness 

 

1.51 

(.66) 

1.59  

(.59) 

.65  

(.29) 

.68  

(.25) 

  

Uncertainty       

Certainty Terms 

(Square Root) 

.39  

(.91) 

.46  

(.76) 

.95  

(.12) 

.94  

(.10) 

.97 

(.08) 

.97  

(.05) 

Generalizing 

Terms 

.93 

(1.43) 

1.58  

(1.23) 

.10  

(.16) 

.17  

(.14) 

  

Tentative Terms 

(Square) 

1.38 

(2.13) 

1.42  

(1.30) 

.06  

(.10) 

.07  

(.06) 

.01 

(.06) 

.01  

(.01) 

*Bold print indicates significant result with Alpha=0.05 
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Results for Impact of Severity 

Linear regression was performed to determine the impact of severity on cue 

intensity, or the amount of cue present in the statement (see Table XV for results). It was 

hypothesized that cues would intensify when severity increased. This was true for five of 

the twelve cues examined. For a sixth cue, bilogarithmic type token ratio, there was a 

significant relationship between severity and cue intensity, but in this case severity 

actually reduced cue intensity. Though not all results were significant, the results show 

that for most cues, severity tends to increase cue intensity. As shown by the deceptive 

coefficient, where truthful statements were dummy coded as 1, severity tends to increase 

more for deceptive that truthful statements, though not significantly so in 11 of 12 cases. 

For sensory ratio, severity significantly increases cue intensity, and does so significantly 

more for deceptive than truthful statements.  

This portion of the study tested hypothesized differences between truthful and 

deceptive statements and the impact of severity on cue intensity. Seven of the hypotheses 

were supported, and an additional hypothesis was partially supported. Below, these 

results are compared to those of previous work.  
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Table XV 

Summary of Regression Results 

Construct Cue (Transformation, if applicable) Severity 

Coefficient 

Deceptive 

Coefficient 

R 

Square 

Quantity Word Quantity (Square Root) .40 -0.05 .37 

 Sentence Quantity (Square Root) .32 -.03 .29 

 Verb Quantity .35 -0.04 .30 

 

Specificity Bilogarithmic Type-Token Ratio -.11 .01 .04 

 Sensory Ratio .16 -.07 .14 

 Temporal Ratio (Square Root) -.07 .03 .02 

 

Affect Activation .08 -.02 .01 

 Imagery .07 -.01 .01 

 Pleasantness .08 -.00 .01 

 

Uncertainty Certainty Terms (Square Root) -.03 -.01 .01 

 Generalizing Terms .10 -.03 .06 

 Tentative Terms (Square) -.01 .00 .00 

 

 

Summary of Between Group Differences 

 Significant differences in the expected direction were found for seven of the 

twelve cues examined. This study found that deceivers will use greater quantity, indicated 

by greater word, verb and sentence quantity. This is consistent with the findings of at 

least one previous study (Zhou, Burgoon, Nunamaker et al., 2004) and the prediction that 

deceptive statements would show increased quantity due to attempts to provide 

convincing evidence. Two studies using the desert survival task (Zhou, Burgoon, 

Nunamaker et al., 2004; Zhou, Twitchell et al., 2003) found that deceivers use 

significantly less diversity in language, which is consistent with the finding of lower 

bilogarithmic type-token ratio. Kohnken (1985) also found lower type-token ratio in 

deceptive speech of eyewitnesses. It appears that quantity-related cues and bilogarithmic 
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type-token ratio are appearing in a manner similar to at least some other works, as 

predicted. The lack of significance for most cues related to affect and uncertainty is also 

consistent. So while there may be some aspects of deception that vary with domain, it 

appears that some cues are consistent.  

Some previous studies (Zhou, Burgoon, Nunamaker et al., 2004; Zhou, Burgoon, 

Twitchell et al., 2004) have separated affect into positive and negative dimensions. 

Though construct validation strongly supported affect as measured here, measuring 

positive and negative affect separately may be worth exploring, since significant 

differences were not found here. Similar to the current study, a previous experiment 

failed to find uncertainty terms to be significantly different between the groups (Sporer, 

1997). If this continues to be the case, alternative or larger dictionaries may be needed to 

measure the construct of uncertainty. As described in further detail in a later section, 

there was a large number of statements for which certainty terms were not present, which 

certainly could impact any ability to find significant results.  

Only one cue, sensory terms, had a significant difference in a direction opposite 

of what was predicted. There is no clear explanation for this; however, it is possible that 

this cue corresponds somewhat with quantity. That is, subjects may inadvertently include 

more sensory information, which may or may not be accurate, in an effort to sound 

convincing. 

 

 

 

 



 72 

Table XVI 

Summary of Hypotheses Results 

Hypothesis # Hypothesis Result 

Quantity   

H1A Deceptive statements will show greater word count 

than truthful statements 

Supported 

H1B Deceptive statements will show greater verb count than 

truthful statements 

Supported 

H1C Deceptive statements will show greater sentence count 

than truthful statements  

 

Supported 

Specificity   

H2A Deceptive statements will show lower sensory ratios 

than truthful statements 

Not Supported 

 

H2B Deceptive statements will show lower temporal ratios 

than truthful statements 

Supported 

H2C Deceptive statements will show lower bilogarithmic 

type-token ratios than truthful statements 

 

Supported 

Affect   

H3A Deceptive statements will show greater activation than 

truthful statements 

Not Supported 

H3B Deceptive statements will show greater imagery than 

truthful statements 

Not Supported 

H3C Deceptive statements will show greater pleasantness 

than truthful statements 

 

Not Supported 

Uncertainty   

H4A Deceptive statements will show fewer certainty terms 

than truthful statements 

Not Supported 

H4B Deceptive statements will show greater generalizing 

terms than truthful statements 

Supported 

H4C Deceptive statements will show greater tentative terms 

than truthful statements 

 

Not Supported 

Severity 

H5 

 

There will be a positive relationship between severity 

and cue intensity. 

Partially 

Supported 
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Summary of Severity Regression Analysis 

There are two main studies that have previously examined concepts similar to 

severity in deception research (DePaulo et al., 2003; Zuckerman et al, 1987). Depaulo 

and colleagues (2003) studied the impact of trangressions, such as crimes and other 

misdeeds, on  cues and found that the cues were clearer for 11 of the 12 cues examined. 

That study found that response length had greater magnitude for transgressions versus 

lies not about transgressions. This was the only cue examined that could be a linguistic-

based cue. Zuckerman et al. (1987) studied the difference in high and low motivation 

conditions for a number of deception cues, including five verbal cues: negative 

statements, irrelevant information, self-references, immediacy, and leveling terms. In the 

low motivation condition, deceivers used significantly fewer immediacy terms.  In the 

high motivation condition, deceivers used significantly more negative statements and 

levelers.  

There were no cues comparable to negative statements and immediacy terms 

included in the hypothesis testing. Levelers are conceptually similar to generalizing 

terms, used in this study as an indicator of uncertainty. Zuckerman’s finding of more 

levelers in deceptive behavior is consistent with the finding of more generalizing terms in 

deceptive statements in this study. Though not all results were significant, these 

exploratory results show that severity can have an impact on cue intensity for both 

truthful and deceptive statements in a high-stakes environment.  

This chapter presented a set of hypotheses related to the validated constructs. 

Specifically, hypotheses were developed for the twelve cues related to the constructs of 
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quantity, specificity, affect, and uncertainty. A hypothesis was also developed to describe 

the relationship between severity and cue intensity. The methodology and results for the 

hypothesis testing were also described. The next chapter will present the methodology, 

results and analysis for the final piece of the dissertation, the classification models used 

to determine veracity. 
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CHAPTER V 

CLASSIFICATION METHODOLOGY, RESULTS, & ANALYSIS 

Methodology 

 

Message Feature Mining 

The final goal of this study was building a decision support system to identify 

deceptive messages using linguistic-based cues. Essentially, this step included building a 

variety of models for the purpose of classifying truthful and deceptive statements, 

following a process known as Message Feature Mining (Adkins, Twitchell, Burgoon, & 

Nunamaker Jr, 2004), outlined in Table X. This process has two main steps: extracting 

features and classification. Key aspects of the feature extraction phase were choosing 

appropriate features, or cues, and calculating those features over desired text portions. 

This entailed processing the text through appropriate programs in order to quantify the 

levels of the linguistic cues present in the statements.  

After completing this step, five of the 371 statements were excluded from the 

sample due to excessively short or long length, leaving 366 statements to be used for 

classification. Key components of the classification phase are choosing an appropriate 

classifier, and training and testing the model. Logistic regression, decision trees, and 

artificial neural networks were selected as the classification methods to be used due to 
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their common use and their use in a previous study in automated text based deception 

detection (Zhou, Burgoon, Twitchell et al., 2004)

Table XVII 

Message Feature Mining Process 

Main Steps of Message Feature Mining Process 

1. Select desired features or cues 

 

2. Identify and quantify features in text using text processing tools 

 

3. Select types of classification models to be built 

 

4. Train and test models 

 

5. Evaluate model performance 

 

6. Identify important features 

 

Several cue sets were used to develop alternate classification models in order to 

identify the best set of inputs and the most accurate model. The sample was balanced in 

order to obtain better performance with the various data mining algorithms (Berry & 

Linoff, 2004). Here, the number of deceptive statements was the limiting factor in 

balancing the data set. There were 79 deceptive statements and 287 truthful statements. 

While software may automatically balance the data, if the reduced sample is not carefully 

constructed, bias may be introduced into the results. To overcome this, the 287 truthful 

statements were randomly divided into four partitions containing 71 to 72 statements. 

Four data sets were then formed, each including all of the deceptive statements and one 

of the four partitions of truthful data. Three data sets included 151 statements and the 

fourth had 150 statements.  Classification models were constructed using each of the four 

data sets. 
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Cue Sets 

The size of the data set was an important consideration in choosing a subset of the 

more than 30 cues available to be used for building the classification models. Based on 

artificial neural network heuristics (Sarle, 2004),  if the entire set of available cues were 

used, well over 600 statements would be needed to achieve generalizable results. Of the 

120 samples reported by DePaulo et al (2003), the largest sample size was 192. Further, 

due the difficulty of establishing “ground truth”, it is not likely that a sample of 600 or 

more items could feasibly be collected. For these reasons, investigating methods for 

limiting the number of variables into classification models for automated deception 

detection has additional merit.  

While other types of classifiers are not as restrictive as the neural network in 

terms of number of inputs, the same data and cues were presented to each model so 

results would be comparable.  A previous study using linguistic based cues included 22 

variables extracted using A99A as classification inputs (Zhou, Burgoon, Twitchell et al., 

2004). This represents the largest cue set used for building classification models for 

deception detection.  

The results of this previous study showed that accuracy was improved when the 

original set of 22 variables was reduced to only those variables identified as important 

after training and testing the models on the full set of 22 cues. To reduce the set of 22 

cues, variables that were listed as important in classifying messages for at least 2 of 4 

techniques were identified. This provided a list of 14 cues, listed in Table XVIII, which 

form the first of the four cue sets, which will be referred to as the Zhou/Burgoon cues. 

The Zhou/Burgoon cues showed reasonable accuracy in a previous study and will provide 
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a comparison point for the current work. However, that study was a laboratory study in 

which students discussed the well-known desert survival problem. Since the domain was 

changed for this study, those cues may not translate to a new situation.  

The need for theoretically based deception detection methods drove the selection 

of the second set of variables (Council, 2003). A set of deception constructs for use in 

linguistic analysis were identified and validated in Chapter III. The twelve cues that serve 

as indicators of the four constructs compose the second cue set. The use of this second, 

construct related, cue set may determine the suitability of cues selected strictly for their 

theoretical origin, not for their applicability for data mining analysis or previous use in 

classification studies.  

It is likely that an accurate model could be achieved with one of the first two cue 

sets. However, in order to determine the best set of cues, a third set, the comprehensive 

cue set was implemented to identify the best combination of cues from all that were 

available. For the third set of cues, a list of cues including the cues identified in the A99A 

studies, the validated framework cues, and previous studies implementing LIWC to study 

deception was compiled. This included 31 cues, which have been labeled the 

comprehensive cue set.  

A feature selection procedure was used to develop the fourth cue set. The feature 

selection was applied to the comprehensive cue set to reduce this overall list to a number 

more appropriate to the size of the data set. The specific procedure used the f-statistic to 

determine the relationship between a given cue and the dependent variable. The variables 

were then ranked in importance according to this relationship. The eight most important 

cues were retained to form the fourth and final cue set. Based on the size of the data set 
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and neural net heuristics (Sarle, 2004), it was determined that this cue set should be 

limited to eight variables in an attempt to maximize generalizability of results.   

There are of course several other feature selection procedures that could be 

implemented, but using the f-statistic for feature selection was deemed to be a reasonable 

starting point due to its simplicity and availability. The classification results based on this 

last cue set can be used to explored the utility of additional feature selection methods. 

The four cue sets are summarized in Table XVIII.   
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Table XVIII 

Summary of Classification Cue Sets 

Cues Zhou/ 

Burgoon 

Important 

Cues 

Comprehensive 

Cue Set 

Text-Based 

Deception 

Construct 

Cues 

Feature 

Selection 

Cues 

1st person plural pronouns 

1st person singular pronouns 

2
nd

 person pronouns 

3
rd

 person pronouns 

Activation 

Average sentence length 

Average  word length 

Bilogarithmic type-token  

Causation terms 

Certainty terms 

Cognitive processing  

Content word diversity 

Emotiveness 

Exclusive terms 

Generalizing terms 

Imagery 

Lexical diversity 

Modal verbs 

Modifiers 

Motion terms 

Passive verbs 

Pausality 

Pleasantness 

Redundancy 

Sensory ratio 

Sentence quantity 

Spatial ratio 

Temporal ratio 

Tentative terms 

Verb quantity 

Word quantity 

X 

X 

X 

 

X 

 

X 

 

 

 

 

X 

 

 

 

X 

 

 

X 

 

 

X 

X 

 

X 

 

X 

X 

 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

 

 

 

 

X 

 

 

X 

 

X 

 

 

 

 

X 

X 

 

 

 

 

 

 

X 

 

X 

X 

 

X 

X 

X 

X 

 

 

 

X 

 

 

 

 

 

 

 

X 

 

X 

 

 

X 

 

X 

 

 

 

 

 

 

X 

 

 

 

X 

X 

 

Classification Models 

 Following cue selection and text processing, the next main step of Message 

Feature Mining was choosing the appropriate classification method. This was followed 
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by training and testing the models, then evaluating the model performance. The common 

classification methods used were artificial neural network, decision tree, and logistic 

regression. 

An artificial neural network is a system of connected units, or nodes, which are 

arranged in layers. Typically, an artificial neural network has an input layer, a hidden 

layer, and an output layer. The nodes in the hidden layer combine the inputs from the 

previous layer into a single output value which is passed on to the next layer. Associated 

with each unit in the network is a weight. The weights in the network are determined by 

training the network on a portion of the data. The network performance is then tested on 

the remaining data, or holdout sample (Berry & Linoff, 2004). The network that was 

utilized was the common feedforward multilayer perceptron.  

Though artificial neural networks have been shown to be powerful classifiers 

whose performance may exceed other classifiers, in terms of accuracy, artificial neural 

networks are widely considered to be ‘black boxes’ that do not readily give an 

explanation as to precisely how the classification decisions are made. For artificial neural 

networks, sensitivity analysis (Engelbrecht, Cloete, & Zurada, 1995) may be used to 

calculate variable importance. Similar procedures have been applied to automated 

deception detection using linguistic analysis in the past (Zhou, Burgoon, Twitchell et al., 

2004). 

 The second classification method used was a decision tree algorithm. Decision 

trees function by dividing a set of records into successively smaller sets by applying a set 

of decision rules. There are a variety of methods that can be used to determine the best 

way to split the record set, such as entropy reduction, gini, information gain, or the chi-
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square test. This study used the maximum information gain criteria. Decision trees 

provide a user-friendly set of if-then rules that can be used to classify data (Berry & 

Linoff, 2004). C5.0 was the specific decision tree algorithm implemented in this study.  

This algorithm builds a tree, then prunes it to produce a more generalizable tree (Berry & 

Linoff, 2004). The result of the decision tree algorithm is both the classification of all 

data items as truthful and deceptive and a set of if-then rules that can be used to explain 

how these classifications were made.  

 Logistic regression is a statistical technique appropriate for use with continuous 

independent variables and a binary dependent variable. Although discriminant analysis 

could also be considered in these circumstances, logistic regression does not face the 

same strict assumptions, so it may be useful under a wider range of circumstances. In 

logistic regression, the Wald statistic can be used to assess significance of individual cues 

(Hair et al., 1998). Further, standardized coefficients give an indication of variable 

importance. SPSS Clementine was used for the classification portion of message feature 

mining. Though WEKA has been used previously as part of A99A for classification, 

Clementine was used here due to additional output details that are available.   

 To ensure that the results were not due to the particular train and test samples 

selected, ten-fold cross validation was implemented on each of the four data sets.  The 

data set was first partitioned into ten equal sections. Nine sections were used for training 

the appropriate model and the remaining section was used for testing the model. This 

process was repeated ten times, so that each of the ten sections of the data set was used 

once as the testing set. The partitions were stratified so that the observations were split 

approximately equally between the two possible outputs, truthful and deceptive within 
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each partition. Cross validation provides better estimations of the true error rate of the 

classification model than a single train-and-test experiment (Weiss & Kulikowski, 1991). 

The results of the ten experiments for the four data sets were aggregated to estimate the 

overall accuracy of each classification model.  

 Each of the classification models provides somewhat different information. For 

example, logistic information provides information on the significance of each cue and 

whether the cue has a positive or negative relationship with the dependent variable. 

Without advanced algorithms, only the relative importance of each cue in a neural 

network model can be extracted. Despite this, some results can be consistently pulled 

from each model, including overall accuracy, sensitivity, specificity and false positive 

rates. The focus of the analysis is these measures that can be compared across algorithms. 

These measures were compared for each pair formed by the three algorithms and four cue 

sets.  

MANOVA was used to determine if there are significant differences due to cue 

set used, model, or the interaction of these two factors on the dependent variables-overall 

training data accuracy, overall test data accuracy, sensitivity, specificity, and false 

positive rates.  Overall accuracy measures the overall percentage of cases correctly 

classified for either the training or testing data. Sensitivity measures the true positive rate, 

or  percentage of actual deceptive cases correctly predicted. Specificity measures the true 

negative rate, or percentage of actual truthful cases correctly classified. Additionally, 

false positive levels were assessed. This is the ratio of actual truthful cases predicted as 

deceptive to the number of actual truthful cases. These measures can be assessed for 

artificial neural network, decision tree, and logistic regression models.   
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Cue Importance 

For each type of classification model, different methods were used to determine 

which of the cues were the most important discriminators. In addition to analyzing the 

accuracy of the models, the importance of the cues used in each model was evaluated. 

For each model, the importance of each cue within individual models was evaluated. 

Additionally, the number of times a cue appeared as important in the ten iterations of 

cross validation was also considered. For the logistic regression and decision tree models, 

only important variables are included as the model is built. For these models, determining 

which variables are important is then relatively straightforward. For the neural network 

model, all variables are retained by the model by default, though sensitivity analysis can 

be performed to determine the relative importance of each cue. To determine which 

should be included in the list of important variables for a neural network, there is no clear 

cutoff. Here, the number of variables retained by the decision tree and logistic regression 

models were considered. The sensitivity analysis results were also evaluated to determine 

if a clear cutoff point emerged.  

 

Overall Classification Results 

 The classification models described above were evaluated on several performance 

measures and the importance of the various cues for different model and cue set 

combinations were ascertained. MANOVA was used to determine if there were 

significant differences in the classification performance measures for any model, cue set, 

or model/cue combination. At the multivariate level, the overall model was significant. 

There was a significant main effect for cue set for sensitivity. Post hoc contrasts showed 
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that the Construct cue set was better than the feature selection cue set, which was better 

than the Zhou/Burgoon dataset and the Comprehensive set. There was also a significant 

interaction between technique and cue set for training accuracy.  For the remaining 

measures, there were no significant main or interaction effects.  

 

Cue Set Results 

 

Cue Set 1: Zhou/Burgoon cues 

The first set of variables analyzed was the Zhou/Burgoon Cues. The levels or 

amounts of these 14 cues were extracted using GATE. For example, the number of verbs 

and average word length were output from the text processing program. They were then 

used to build the three types of classification models. As described previously, all results

were calculated using ten-fold cross validation for each of the four data sets. To assess 

the performance of the classification model, overall classification accuracy for training 

and testing data, false positive rates, sensitivity and specificity were analyzed (See Table 

XIX for a summary of these results).   

Using this set of cues, the neural network model has the greatest overall accuracy 

for the test data and the decision tree model has the lowest false positive rate. For the 

neural network model, there was a large difference in the training and testing data 

accuracies. All three models showed significant differences on the training data accuracy 

with thiscue set, with the neural network having the highest accuracy and logistic 

regression having the lowest accuracy.  
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Table XIX 

Summary of Classification Results 

 Model 

Measure Logistic Regression 

Mean (Std Dev.) 

Decision Tree 

Mean (Std Dev.) 

Neural Network 

Mean (Std. Dev) 

Overall Accuracy % (Train) 

    Zhou/burgoon 

    Constructs 

    Comprehensive 

    Feature Selection 

 

72.54 (4.78) 

75.50 (3.70) 

79.46 (6.06) 

72.04 (4.45) 

 

82.50 (5.52) 

81.25 (6.93) 

86.07 (4.48) 

77.69 (4.71) 

 

91.26 (4.12) 

87.42 (5.37) 

97.07 (5.62) 

84.60 (5.10) 

 

Overall Accuracy % (Test) 

   Zhou/burgoon  

   Constructs 

   Comprehensive 

   Feature Selection 

 

66.93 (11.89) 

71.16 (10.41) 

70.51 (12.66) 

69.34 (11.39) 

 

69.59 (10.68) 

71.19 (11.21) 

67.12 (11.09) 

70.87 (10.80) 

 

69.89 (9.13) 

73.86 (8.23) 

70.46 (12.77) 

72.01 (11.53) 

 

False + 

   Zhou/burgoon    

   Constructs 

   Comprehensive 

    Feature Selection 

 

30.76 (20.64) 

27.05 (15.32) 

30.54 (19.52) 

30.27 (18.19) 

 

29.29 (22.39) 

33.39 (18.11) 

38.57 (18.99) 

37.01 (17.02) 

 

31.30 (17.61) 

32.55 (15.67) 

29.33 (18.47) 

31.25 (18.89) 

 

Sensitivity 

   Zhou/burgoon  

   Constructs 

   Comprehensive 

   Feature Selection 

 

65.00 (14.15) 

69.46 (16.05) 

71.47 (14.34) 

68.93 (16.36) 

 

68.75 (16.60) 

75.40 (19.45) 

72.28 (12.88) 

77.95 (16.33) 

 

71.03 (15.49) 

79.69 (12.81) 

70.49 (19.05) 

74.87 (15.49) 

 

Specificity 

    Zhou/burgoon  

   Constructs 

   Comprehensive 

   Feature Selection 

 

69.24 (20.64) 

72.95 (15.32) 

69.46 (19.52) 

69.73 (18.19) 

 

70.71 (22.39) 

66.61 (18.11) 

61.42 (18.99) 

62.99 (17.02) 

 

68.71 (17.61) 

67.46 (15.67) 

70.67 (18.47) 

68.75 (18.89) 

 

 

 

Cue Set 2: Text-Based Deception Constructs 

 

Next, the set of 12 cues used as indicators of the four validated constructs were 

used as inputs to the classification models. The neural network model has the highest test 

accuracy rate (73.86 percent) for all models and cue sets. The logistic regression model 

shows the lowest false positive rate for all models and cue sets. The decision tree model 
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has the highest false positive rates. For this set of cues, which includes two less cues than 

cue set one, the reduction in accuracy from training to test data sets is smaller than cue set 

one. Again, the three models had significantly different results on training accuracy.  

 

Cue Set 3: Comprehensive Cue Set 

For the third set of cues, the highest accuracy was found for the logistic regression 

model. The decision tree model has the most false positives and lowest overall test 

accuracy, suggesting that is the worst technique to apply to the comprehensive set of 

cues. Like the first two cue sets, each model was significantly different from the other 

two models for training accuracy.  

 

Cue Set 4: Feature Selection Cues 

 The fourth set of classification models were built using the eight cues that were 

selected using the feature selection procedure. The neural network model is most 

accurate, and has an intermediate false positive rate. The decision tree model had 

significantly better training accuracy than the logistic regression model for this cue set. 

For the training data set, the accuracy of logistic regression and decision tree models 

were each significantly different from the neural network model, though there was no 

significant difference between the logistic regression and tree models. 

 

Summary of Classification Results 

The best result in this study using a large cue set was 73.86 percent for a neural 

network model, exceeding the maximum accuracy of 71.1 percent found in previous 
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studies relying on LIWC alone for text processing. However, this accuracy rate of nearly 

74% was not significantly better than the accuracy of any other cue and model set 

combination. At this point, this method is not as accurate as the polygraph. It is possible 

that if additional data could be added to the sample the accuracy could be increased.  

Alternative classification models might also be used that could improve accuracy. 

However, with a maximum accuracy approaching 74 percent, it is well within the 72 to 

92 percent accuracy shown in polygraph field studies (Council, 2003). For three of the 

four cue sets, the neural network model provides the highest test accuracy, while the 

logistic regression model has the lowest test accuracy for three out of four cue sets. The 

differences in test accuracy were not statistically significant for the models, cue sets, or 

the interaction between the two.   

Though the cue and model set differences were largely not significant, the 

differences are practically significant. For example, there is a difference of about seven 

percent in test accuracy between the top model, the construct cues neural network model, 

and the worst model, the Zhou/Burgoon logistic regression model. To those determining 

which person in a group of individuals involved in a crime is telling the truth or being 

deceptive, that 7 percent accuracy difference might be quite important. While definitive 

conclusions cannot be made, the finding of highest accuracy for a neural network is 

similar to what was found in the Zhou/Burgoon dessert survival study and a small set of 

cues seem to be emerging as important across studies. This result can provide guidance, 

as well as a basis for comparison for future studies.  
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Summary of Cue Importance 

 In addition to analyzing the performance of the models, the importance of the 

cues used in each model was evaluated. Since our interest is in identifying the cues with 

the greatest capacity to distinguish truthful and deceptive statements, the important cues 

are only reported for the most accurate of the four data sets for each model and cue set 

combination. For each of the twelve model-cue combinations, the importance of each cue 

within individual models was evaluated. Additionally, the number of times a cue 

appeared as important in the ten iterations of cross validation was also considered. For 

the logistic regression and decision tree models, only important variables are included as 

the model is built. For these models, determining which variables are important is then 

relatively straightforward. For the neural network model, sensitivity analysis was used to 

determine which cues were the most important. The important cues are summarized in 

Table XX below.   

 Word quantity, verb quantity, and sensory ratio are the only cues that 

matter for all of the classification models. These three cues, along with temporal ratio, 

were important for at least three of the four cue sets. Since these cues appear to work well 

regardless of the model or other cues used, future studies may focus on these three 

variables. Thirteen additional cues are important for at least one model. As is shown in 

the table below, fifteen of the variables were not important in any of the models for any 

cue set. Cue set 3, the comprehensive set of cues, basically subsumes the other three cue 

sets. Therefore it is not surprising that it is the cue set that most often shows overlap with 

other cues sets regarding which cues are important for a given type of model. 
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Table XX 

Summary of Cue Importance 

Cue NN DT LR 

1st person plural pronouns A2 Z2  

1st person singular pronouns  Z2 A4 

3rd person pronouns  F2  

Activation  A2  

Bilogarithmic type-token ratio   A4 

Emotiveness A2   

Generalizing terms  A2, C2  

Imagery Z4 C2  

Lexical diversity A2  A4 

Motion terms A2  A4 

Pleasantness  A2  

Sensory ratio C1 C2 A4, C1, F1 

Spatial ratio  Z2  

Temporal ratio C1, A2, Z4  A4 

Verb quantity F4, Z4 Z2 A4, Z2 

Word quantity C1, F4 A2, C2, F2 F1, Z2, C1 

Variables not important for any method: average sentence length, average word 

length,  causation, certainty terms, cognitive processing terms, content word diversity, 

exclusive terms, modal verbs, modifiers, passive verbs, pausality, redundancy,  second 

person pronouns, sentence quantity, tentative terms 

Table indicates cue set (A=All, C=Construct,F= Feature Selection, 

Z=Zhou/Burgoon)and partition(1,2,3,4) 

  

In comparison to the Zhou/Burgoon classification study (Zhou, Burgoon, 

Twitchell et al., 2004), most of the variables found to be important in that study were also 

relevant in this study. Only 2
nd

 person pronouns, average word length, modifiers, and 

pausality were previously found important, but were not important here. For this 

particular sample, it is not surprising that second person pronouns, the ‘you’ pronouns, 

were not important. In this case, the ‘you’ would be law enforcement personnel. As the 

statement is generally about a previous incident in which law enforcement were not 

present, it would not be logical to use these pronouns.  
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There was some variation from that study regarding which technique the cues 

were important for. Several cues that were not included in the list of important variables 

from the original set of 22 variables in the Zhou/Burgoon study also failed to be among 

the most important in this study. This included: average sentence length, modal verbs, 

passive voice, and redundancy. For the Zhou/Burgoon desert survival study, 

approximately five to seven cues emerged as important for each model. Here, two to 

seven cues were important per model. As evidence accumulates across domains as to 

which variables are important, or not, this can aid researchers in narrowing down the 

large list of potential cues and determine how many cues to include.  
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CHAPTER VI 

DISCUSSION AND CONCLUSION 

Contribution to Literature and Practice 

 Traditional construct validation procedures, including confirmatory factor 

analysis (CFA), were used to validate a set of constructs for use in researching text-based 

high-stakes deception. These results are expected to generalize to other high-stakes 

domains. However, several proposed constructs could not be validated, including 

constructs previously used without proper validation. This shows the importance of 

validating constructs for each domain, as all constructs suggested by theory may not be 

widely applicable. The reason that several cues and constructs could not be confirmed 

may be due to measurement or domain. Regardless of the reason, this process must be 

repeated with additional samples to investigate this issue. 

 This study also showed differences between deceptive and truthful statements on 

several cues examined. Theoretical predictions were confirmed for several cues related to 

quantity and specificity. However, the findings also suggest that the current method for 

measuring some cues may need improvement. This study has also shown that severity is 

an important issue to investigate further. Here, severity has been studied in a simplistic, 

exploratory manner. Though the method was not sophisticated, it was successful, in that 

it was shown to significantly impact cue intensity for several cues. These findings show 

that severity, or high-stakes certainly is an important issue that should receive further 
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attention and it is also relevant in studying text-based deception. 

The classification results show that accurate automated-text based deception 

detection can be accomplished with high-stakes, real-world data. This is an important 

finding with implications for law enforcement, human resources personnel, and others. 

The results also show that classification can be done with parsimonious cue sets. The 

most important cues were identified, some of which were also important in previous 

studies. There were also a number of cues that were previously found to be important that 

did not play a large role here. The findings here suggest that while some cues will differ 

from domain to domain, there are a few that are emerging as important across domains, 

while others do not seem to enter the model regardless of the context. Given these results, 

this line of research should move forward, since this has the potential to fill the need for 

portable, user-friendly, unobtrusive deception detection in the field.  

 

Limitations 

As described above, some cues, particularly those related to pronoun usage appear 

to be problematic.  An analysis of descriptive statistics for the sample showed that for 

several variables, a value of zero was recorded for a large number of statements. This 

may impact the overall analyses, as this will severely limit the number of non-zero data 

points for a given indicator. Clearly, if a construct is not present in the data, it cannot be 

validated. It should be noted that these zero values can be distinguished from missing 

data. Missing data are those values for which the value is unknown. Here, we know that 

the value is zero, indicating the type of language measured by a given indicator is simply 
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not present in the current sample. Variables for which the data had more than 60% zero 

values are shown in Table XXI below.  

Table XXI 

Cues with Large Number of Zero Values 

Variable % of Records with value of 0 

Causation Terms 65.58 

Certainty Terms 72.90 

Modal Verbs 73.44 

Passive Verbs 73.44 

1
st
 Person Plural Pronouns 82.66 

2
nd

 Person Pronouns 92.14 

 

The lack of certain types of pronoun usage is likely due to the domain. When 

writing a statement, subjects are expected to use the name of each person involved in the 

situation. Therefore, they are more likely to say ‘Bob and I’ in an instance that they might 

normally say ‘we’. Similarly, the lack of ‘you’ references or second person pronouns may 

be limited by the context. If a person were to use these pronouns, they would have to be 

referring to the person or people who required them to write the statement. As these 

people were most likely not involved in the incident as it took place, they would not be 

referred to in the description of the incident. There is not a clear reason for the limited use 

of passive and modal terms in the statements.  

The frequency at which zero values appear has not been previously reported, so 

this may or may not be related to the domain. The use of causation terms has only been 

reported in one previous study (Hancock et al., 2005) and the certainty dictionary has not 

been previously used in deception research. It is possible that these are not valid cues for 

deception research or they may not be relevant in this domain. Additional research 

including alternate samples will be required to make this determination. The zero values 



 95 

also impacted the shapes of the variable distributions, impacting the MANOVA analysis. 

Several transformations were necessary. The certainty variable was one with many zero 

values. There was no significant finding for this variable, perhaps impacted by the zero 

values. Some of the variables with large numbers of zeros were included in the 

classification models, because either they were theoretically confirmed or to allow 

comparison with previous work. These variables included: certainty, 1
st
 person plural 

pronouns and second person pronouns. The comprehensive cue set, of course, includes all 

of the cues. Aside from 1
st
 person plural pronouns, the cues with large numbers of zero 

values were not important in any of the models. 

Most deception research to date has been conducted in the laboratory, producing 

inconsistent results (DePaulo et al., 2003). Field research offers the opportunity for 

realism, but does lack the control afforded by the laboratory. Despite sacrificing key 

experimental elements such as randomization and manipulation, this is outweighed by the 

need for real-world data, as sufficiently and realistically replicating a high stakes 

environment may not be possible in the laboratory.  

As has been the case in previous deception research, the available sample size 

may have limited the accuracy that could be achieved. As this is not something that is 

likely to change, this will heighten the importance of selecting valid and appropriate cues. 

A key factor limiting the sample size is the difficulty in determining ground truth. Here, 

every effort was made to correctly identify statements as truthful or deceptive, though 

this process cannot be full proof. In these situations it is better to err on the side of 

caution and exclude questionable statements, as was done here. While it is anticipated 

that this study will generalize to other high-stakes situations, additional studies will be 
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necessary to verify this. As has been found in the past, it is somewhat unlikely that the 

results will generalize to all deceptive situations. Therefore, defining deception and the 

related cues for well-defined contexts is a more pertinent goal than defining a universal 

cue set and classification model.  

 

Future Directions 

This research has validated a set of deception constructs in a real world-high 

stakes domain. It is not expected that the results found here will generalize across all 

domains. These results may very well translate across different high stakes situations. 

Future studies should include alternate samples, preferably from the real world, that allow 

comparison of samples with varying stakes with the current sample. Future studies will 

expand upon the domain studied to explore the limits to the generalizability of this 

research and determine which constructs apply to a given context. Further validation of 

these deception constructs are only part of future research to be conducted. Studies will 

also be needed in order to determine whether the findings which failed to validate some 

constructs are due to the domain and noisiness of field data or if it is the underlying 

theory itself that is faulty. It may also be that some cues have not been sufficiently 

defined and additional dictionaries will need to be developed to more fully capture the 

related concepts.  

Like this study, previous studies have analyzed the difference in cues between 

truthful and deceptive groups. A thorough comparison of the results from this and 

previous studies can show which cues operate the same or differently across domains. In 

addition to reporting means for truthful and deceptive statements, additional reporting of 
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the number of data points with zero values can provide further insight. While high and 

low motivation states have been used in previous deception research, this study is one of 

the first to measure severity on a continuous scale, addressing the previously identified 

need for high-stakes deception research. The results here show that severity impacts cue 

intensity for six of the twelve of the cues studied. Given this initial success, severity 

should be measured in future studies to further understand how this concept impacts cue 

intensity. The measure of severity used here was quite simple. In a real-world setting, it 

may be quite difficult to measure severity in more complex ways, particularly when 

historical data is used. However, in a laboratory situation, a more complex measure might 

be possible. Different measures could be compared to assess whether a simple measure is 

sufficient or a more complex measure is indicated.  

This study showed reasonable accuracy in the first relatively large-scale attempt 

to implement automated text-based deception detection using field data. However, it is 

believed that these results can be improved. No clear pattern has yet emerged to 

definitively suggest the best set of cues or the best type of classifier, though a small set of 

cues has remained important across two studies. MLP neural network models have also 

consistently performed well across these studies. However, since the performance of the 

MLP was not significantly better than other models, we cannot yet rule out the use of any 

of the traditional classifiers in this stream of research.  

As the results suggested better performance with smaller cue sets, additional 

methods for choosing the best reduced cue set should be explored. The feature selection 

used here based on the f-statistic may complement logistic regression since it is a typical 

statistical method relying on linear patterns. Methods which recognize both linear and 
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nonlinear relationships between the inputs and outputs of the model may increase 

accuracy of the decision tree and neural network models. Further, additional classifiers 

such as radial basis function neural networks, random forest, and boosted decision trees 

will be considered.  

The portion of this study with the highest time requirement was transcribing the 

written statements. Alternative methods of capturing written information will be 

explored. This might include having suspects use tablet pc’s or traditional word 

processing software to record their statements. As mentioned previously, it is expected 

that the relevant cues to deception will differ by domain. Samples from other domains 

and cultures can provide assistance into defining the cues to use with specific samples 

and also show if some cues are generalizable.  

 

Conclusion 

This study is the largest known study to examine text-based deception in a real-

world domain. A set of constructs for this domain were validated and the notion of 

context-specificity in deception research was affirmed. For many of the cues examined, 

expected differences between truthful and deceptive statements were found. However, it 

was shown that when examining truthful and deceptive statements in a high-stakes 

situation, the impact of severity on cue intensity must be examined. This study also found 

that real-world deception data can be accurately classified using a combination of text-

processing programs and data mining software. Additional classification methods and cue 

selection procedures need to be explored to increase classification accuracy to the point 

that the technique can be employed in the field. Additional field studies should be 
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conducted to determine whether the results here are unique to the real-world domain or to 

the high-stakes context, or some combination of these factors.  

This study focused on actual deception. Most studies have focused on either 

actual or perceived deception. Additional knowledge could be gained by studying both 

actual and perceived deception within a single high-stakes study. Regardless of form of 

analysis, this study shows that the findings from deception research must be compared 

across domains so that a more complete picture of deception can be formed.
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APPENDICES 

Appendix A 

Severity Rankings 

Please rate the following incident types on a scale from 1 to 5, as shown below, where 1 

is the least severe and 5 is the most severe, in terms of punishment:  

 

     1 2 3 4 5 

Least            Most 

Severe                              Severe   

Type Of Incident Least                                      Most 

Severe                                    Severe 

Domestic Disturbance/Dispute 
 

1 2 3 4 5 

Witness to Domestic Disturbance 1 2 3 4 5 

Animal Control 1 2 3 4 5 

Sexual Harassment 1 2 3 4 5 

Harassment 1 2 3 4 5 

Single Vehicle Fender Bender 1 2 3 4 5 

Decal Sticker Lost/Stolen 1 2 3 4 5 

Witness to Parking Ticket 1 2 3 4 5 

Credit Card Theft 1 2 3 4 5 

Report of Expired Vehicle Registration 1 2 3 4 5 

Financial Irresponsibility 1 2 3 4 5 

Report of Gas Theft 1 2 3 4 5 

Report of Belligerent Suspect 1 2 3 4 5 

Misuse of Government Credit Card 1 2 3 4 5 

Theft 1 2 3 4 5 
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Type Of Incident Least                                      Most 

Severe                                    Severe 

Assault 1 2 3 4 5 

Witness to DWI 1 2 3 4 5 

Drunk on Station 1 2 3 4 5 

Threat 1 2 3 4 5 

Shoplifting 1 2 3 4 5 

Loss of Government Equipment 1 2 3 4 5 

Destruction of Government Property/Disobeying 

Lawful order 
1 2 3 4 5 

DWI 1 2 3 4 5 

Drugs in Vehicle 1 2 3 4 5 

Suspected Drug Use 1 2 3 4 5 

False Witness Statement 1 2 3 4 5 

Gun on Base 1 2 3 4 5 

BB Gun Incident 1 2 3 4 5 

False Accusation of Assault 1 2 3 4 5 

Road Rage 
1 2 3 4 5 

 

Minor in Possession 1 2 3 4 5 

Purchasing Alcohol for a Minor 1 2 3 4 5 

Open Container 1 2 3 4 5 

Insubordination 1 2 3 4 5 

Credit Card Fraud 1 2 3 4 5 

Unauthorized Vehicle Use 1 2 3 4 5 

Inappropriate Material on Government computer 1 2 3 4 5 

Vandalism 1 2 3 4 5 

Forgery 1 2 3 4 5 

Witness to Vandalism 1 2 3 4 5 

Sexual act with a minor 1 2 3 4 5 
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Type Of Incident Least                                      Most 

Severe                                    Severe 

Drug Abuse 1 2 3 4 5 

Failure to Obey Direct Order 1 2 3 4 5 

Leaving Station without permission 1 2 3 4 5 

Unauthorized use of Government Vehicle/Fleeing 

scene 
1 2 3 4 5 

Vehicle Break-in 1 2 3 4 5 

Driving with a suspended license 1 2 3 4 5 

Witness to Assault 1 2 3 4 5 

Safety Violation 1 2 3 4 5 

Witness to Underage Drinking 1 2 3 4 5 

Witness to arson 1 2 3 4 5 

Destruction of Government Records 1 2 3 4 5 
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Appendix B 

Statement Transcription Procedures 

 

I. Prepare Written Statements 

a. Black out personal information (Name, SSN, etc.). Next to the 

information that has been blacked out, indicate what type of 

information has been blacked out.  

b. Systematically replace names identified in the statement with a dummy 

name. For example, each instance of the fourth male mentioned is 

replace with the name “John”.  

c. Label the statement as Truthful, Deceptive or Unknown, and label with 

the gender of the person of interest.  

II. Transcribe Written Statements 

a. Open Notepad or WordPad 

b. Type statement exactly how it is written 

i. Match Case 

ii. Match punctuation 

iii. Match spelling 

iv. Replace the names from the written statement with the dummy 

names as described above.   

v.  For corrections made by person of interest: ignore the initials 

used to verify the corrections were made by the person of 

interest and put whatever was marked out in brackets, “[ ].” This 
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will allow for an automated extraction or classification 

technique to be created and used by the information system.  

vi.  For any words that are illegible (either partially or entirely), 

place these words in curly braces. For any letters that can’t be 

read, use percent (%) as a placeholder. For example, if the letter 

x in the word text can’t be made out, this should be transcribed 

as curly brace te%t curly brace. 

vii.  For any information that is marked out by someone other than 

the person of interest (for example, by law enforcement 

personnel): 

a. If type of information is known, replace with similar 

information. For example if a social security number was 

blacked out, replace with 123-45-6789. 

b. If the type of information blacked out is unknown, indicate 

this by typing |x| to indicate that there was information on 

the statement of an unknown type blacked out. 

viii. Two-person statements (those that include Q&A 

segments)should not be included in the data set. 

III. Saving Typed Statements 

a.  Save statements with the last name of who made the transcription, 

gender of the person of interest (0=unknown, 1=male, 2=female), True 

or False, a 5-digit number, a letter or letters to indicate where the 

statement was collected,  and “.txt”. (i.e. the first false statement from a 
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male collected at Generic Base will be: “Smith1False00001G.txt” and 

the third truthful statement by a female from Generic Base is: 

“Smith2True00003G.txt”   



 115 

Appendix C 

IRB Documentation 



VITA 

Christie Marlene Fuller 

Candidate for the Degree of Doctor of Philosophy 

Dissertation: HIGH-STAKES, REAL-WORLD DECEPTION: AN EXAMINATION OF    

                     THE PROCESS OF DECEPTION AND DECEPTION DETECTION  

          USING LINGUISTIC-BASED CUES  

 
Major Field: Business Administration 
 
Biographical:  
 

Education: Graduated from Hays High School, Hays, Kansas in May 1994; 
received Bachelor of Science degree in Management from Kansas State 
University, Manhattan, Kansas in December 1998; received Master of 
Business Administration degree from Fort Hays State University, Hays, 
Kansas in December 2001. Completed the requirements for the Doctor of 
Philosophy degree with a major in Business Administration at Oklahoma 
State University in May, 2008. 

 
Experience: Employed as a graduate assistant at Fort Hays State University, 

College of Business and Leadership, 2000 to 2001. Employed as an 
Instructor at Fort Hays State University, Computer Information Systems 
Department, 2002 to 2003. Employed as a graduate associate by 
Oklahoma State University, Department of Management Science and 
Information Systems, 2003 to 2007. Employed by Oklahoma State 
University-Tulsa as a visiting assistant professor, 2008. 

 
Professional Memberships: Association for Information Systems, Decision Sciences 

Institute, Phi Kappa Phi Honor Society 

 
 


