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CHAPTER 

I. INTRODUCTION 

The maturity of current information technology, especially telecommunications, 

storage and database technology, facilitates the collection, transmission and storage of 

huge amounts of raw data, unimagined until a few years ago. For the raw data to be 

utilized, they must be processed and transformed into information and knowledge that 

have added value, such as helping to accomplish the task at hand more effectively and 

efficiently. Data mining techniques and algorithms attempt to aid decision making by 

analyzing stored data to find useful patterns and to build decision-support models. These 

extracted patterns and models help to reduce the uncertainty in decision-making 

environments. 

Statisticians and researchers conduct surveys and collect datasets that usually 

contain tens of records. These datasets are considered to be very large when they contain 

a few hundred records (Hand, 1998). Traditional statistical techniques are the main (and 

the most suitable) tools for analyzing these datasets. The main objective of the analysis is 

to make inference and estimate population parameters from collected samples.  

Frequently, statistical agencies must release samples of datasets to external 

researchers. However, these datasets may have sensitive information about previously 

surveyed human subjects. This raises many questions about the privacy and 

confidentiality of individuals in released datasets. Privacy and confidentiality have 

recently become critical issues and a central concern for many people (Grupe et al., 
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2002). Sometimes these concerns result in people refusing to respond and share personal 

information, or worse, providing wrong responses.  

Many laws emphasize the importance of privacy and define the limits of legal 

uses of collected data. In the healthcare domain, for example, the U.S. Department of 

Health and Human Services (DHHS) added new standards and regulations to the Health 

Insurance Portability and Accountability Act of 1996 (HIPAA). The new standards aim 

to protect “the privacy of certain individually identifiable health data” (CDC, 2003). 

Grupe et al. (2002, EXHIBIT 1 pp. 65) listed a dozen privacy-related acts and legislations 

issued between 1970 and 2000 in the United States. 

On the other hand, these acts and concerns limit, either legally and/or ethically, 

the releasing of datasets for reasons (sometimes legitimate) such as conducting research 

in the academic domain or obtaining competitive advantage in the business domain. In 

some cases, statistical offices face a dilemma of what can be called “war of acts.” While 

they must protect the privacy of individuals in their datasets, they are also legally 

required to disseminate these datasets. The conflicting objectives of the Privacy Act of 

1974 and the Freedom of Information Act is just one example of this dilemma (Fienberg, 

1994). This has led to an evolution in the field of statistical disclosure limitation (SDL).  

SDL methods attempt to find a balance between data utility (valid analytical 

results) and data security (privacy and confidentiality of individuals). In general, these 

methods try to either (a) limit the access to the values of sensitive attributes (mainly at the 

individual level), or (b) mask the values of confidential attributes in datasets while 

maintaining the general statistical characteristics of the datasets (such as mean, standard 

deviation, and covariance matrix). Data perturbation methods for microdata are one class 
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of masking methods. Since most statistical analysis methods are based on linear models, 

data perturbation methods generally aim to maintain linear relationships (Muralidhar et 

al., 1999).  

When the size of datasets are large, traditional statistical analysis techniques may 

not be the appropriate tools to use for two reasons (Hand, 1998; 2000; Hand et al., 2000). 

First, traditional statistical tools become unsuitable for making sense of the data and for 

making inferences about the population for large datasets; for instance, almost any small 

difference in a large dataset becomes significant. Second, large datasets may suggest that 

data was not collected for inference (parameter estimation) about the population, and that 

another type of analysis might be more appropriate. In most cases, a significant amount 

of collected data is generated as a consequence of some unplanned activities (e.g., 

transactional databases) vs. planned activities (e.g., experiment or survey designs). 

Therefore, as the size of datasets grows exponentially, the use of other (size-matched) 

analytical tools such as data mining becomes more appropriate.   

Examples of large datasets are abundant. MarketTouch, a company located in 

Georgia, supports direct marketers with data and analytical tools (DMReview.com, 

2004). It has a six-terabyte database called Real America Database (RADBÒ), which 

provides information about more than 93 million households and 200 million individuals. 

It is updated monthly with more than 20 million records. 

Statistical agencies also experience this phenomenon of rapidly growing datasets. 

The Census Bureau (2001) reported that the collected Census 2000 data consist of 

“information about the 115.9 million housing units and 281.4 million people across the 

United States.” These large sizes suggest the need for analytical tools that are suitable for 
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large datasets, and again, data mining tools naturally come into play.  Actually, the 

Census Bureau (accessed 2004) has started providing programs that have data mining 

capabilities such as DataFerrett (Federated Electronic Research, Review, Extraction and 

Tabulation Tool), which can be used to analyze and extract data from TheDataWeb - a 

repository of datasets that can be accessed freely online or bought offline. These datasets 

cover more than 95 subjects. 

Data mining techniques may lead to more significant threats to privacy and 

confidentiality compared to traditional statistical analytical techniques. Domingo-Ferrer 

and Torra (2003) made a connection between SDL methods and some AI (artificial 

intelligent) tools (note that statistics and AI fields are among the main fields contributing 

to the data mining field).  They suggested there are two possible risks of AI (or 

equivalently DM) tools regarding the privacy and confidentiality of released masked 

datasets: disclosure and re-identification threats.  

From a disclosure threat perspective, DM tools can be used to aggregate or 

combine masked copies of a specific original dataset (Domingo-Ferrer and Torra, 2003). 

The goal is to reverse the masking effect and build the original dataset, which raises a 

confidentiality issue. This may pose a great threat when simple unsophisticated SDL 

techniques, such as simple additive data perturbation (SADP) method (Traub et al., 

1984), are used and many masked copies are released. DM tools are also used to enforce 

data integrity and consistency in distributed databases by re-identifying different records 

belonging to the same individual. Contrary to DM, SDL methods aim to avoid identity 

disclosure. Thus, from a re-identification threat perspective, DM tools can be used to re-

identify individuals in masked datasets (raising a privacy issue). Domingo-Ferrer and 
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Torra (2003) suggested that SDL methods should consider the existence of DM tools to 

assess their impact on disclosure (value disclosure) and re-identification (identity 

disclosure) threats. 

These concerns about privacy and confidentiality when DM tools are used have 

led to the birth of privacy-preserving data mining (PPDM). The main goal of PPDM is to 

find useful patterns and build accurate models from datasets without accessing the 

individuals’ precise original values in records of datasets (Agrawal and Srikant, 2000). In 

many cases, PPDM algorithms employ one or more methods to protect the data. One 

protection method used is Simple Additive Data Perturbation Method (SADP) (Traub et 

al., 1984), which has undesirable characteristics in terms of data utility and data security 

(Muralidhar et al., 1999). Most of the newer and more sophisticated data perturbation and 

masking methods, such as C-GADP (Sarathy et al., 2002), IPSO (Burridge, 2003), 

EGADP (Muralidhar and Sarathy, 2005b) and data shuffling (Muralidhar and Sarathy, 

2003a; 2005a), have not been investigated in the PPDM domain. The only exception is 

the GADP method (Muralidhar et al., 1999), which appears in a few privacy-preserving 

classification studies (Islam and Brankovic, 2004; Wilson and Rosen, 2002; 2003) . This 

study will discuss the possibilities of using some of these masking methods for 

monotonic relationships in privacy-preserving estimation (PPE), as well as how these 

methods can be adapted and extended for the more general case involving non-monotonic 

relationships. 

I.1. PPE Problem – Definition and Research Scope 

The goal of this study is to investigate the possibility of using and adapting some 

data masking (mainly data perturbation and data shuffling) methods to develop new 
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privacy-preserving estimation PPE algorithms for numeric variables involving non-

monotonic relationships. Estimation (or regression) tries to estimate and quantify the 

relationships among variables in datasets. The main goal is to investigate the impact of 

newer data perturbation methods on different types of relationships in datasets. The 

required criterion is simple yet powerful: any used perturbation (or masking) method 

should not hurt or alter (to the extent possible) the structure and type of relationships 

among variables existing in original datasets. The result of testing such impact could be 

either preservation or destruction of the original relationships in masked datasets. 

Unfortunately, current data perturbation methods do not preserve all possible 

relationships, as will be seen later. They preserve monotonic nonlinear relationships, at 

best, and simpler relationships (linear ones). This study proposes four new PPE masking 

algorithms, based on the concepts of data perturbation and data shuffling, to preserve the 

more difficult non-monotonic relationships. The focus and scope of this study in the 

space of the privacy-preserving data mining PPDM techniques is represented in Figure 1. 
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Figure 1. Research scope of the study 

I.2. PPE Problem – Importance and Requirements 

There are many important real-life problems that require building estimation 

models for continuous variables. Many of these models are related to human subjects and 

involve confidential attributes. In the following paragraphs, we shed some light on some 

aspects illustrating the importance and the need to protect the privacy and confidentiality 

of human-related data used in regression models.  Before we start, we want to resolve 

some terminology issues. While the term “estimation” appears more frequently in 

engineering literature, other fields use the term “regression” (Ridgeway, 2003). 

Therefore, we may use the terms estimation and regression (technique(s)/ model(s)/ 

problem(s)) interchangeably.  

The need to build estimation models (prediction models for continuous variables) 

occurs frequently in different domains. Berry and Linoff  (2000; 2004) have mentioned 
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many typical examples including estimating the number of children in a family, the total 

household income of a family, real estate value, and a customer’s lifetime value.  

Estimation is also indirectly related to classification. Instead of classifying 

customers as “respondents” or “non-respondents,” for example, estimation techniques 

can be used to assign a probability of expected level of responsiveness (Berry and Linoff, 

2004).  This is very useful in marketing campaigns when budgets are insufficient to target 

all possible respondents. Then, expected respondents with the highest probability of 

responsiveness can be targeted first.  

In large datasets, which typify DM datasets, the frequency of each class in 

categorical and binary variables is usually high. On the other hand, a real-number salary 

figure, for example, in a released dataset can be unique to the degree that it can single out 

the real identity of a de-identified whole record. Categorical and binary attributes 

automatically have more security against disclosure risks than continuous variables. 

Because of this, Domingo-Ferrer et al. (2001) indicated that while non-perturbative and 

masking sampling methods (Skinner et al., 1994), which are based on the concept of 

sample uniqueness and population uniqueness, may suit categorical microdata, they could 

not be used for numeric microdata. Hence, continuous attributes should attract more 

attention for protection against disclosure risks than categorical attributes.  

Regression models that involve allocating huge amounts of money based on 

information about human subjects are sometimes required. Ridgeway (2003) briefly 

mentioned a real-world case, which exemplifies the importance of such estimation 

models.  Medicare (2004) is a federal health insurance program that covers elderly people 

(65 years or older), younger people with disabilities, or those suffering from End-Stage 
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Renal Disease (ESRD). There are many Centers for Medicare and Medicare Services 

(CMS) nationwide. CMS is required by the 1997 Balanced Budget Act to develop a 

“prospective payment system” to allocate a $4.3 billion budget to healthcare facilities that 

help Medicare-insured inpatients to rehabilitate. Part of the system is a (regression) “cost 

model” built using different features (attributes) of patients to predict the cost of 

rehabilitation. These attributes come from two main sources. CMS provides attributes 

such as age, reason for hospitalization, and cost of care. Secondary sources provide 

functional ability scores measuring motor and cognitive abilities of patients. The cost 

model is used to predict the cost of rehabilitation per patient. Accordingly, healthcare 

facilities are reimbursed. 

Regression models are frequently used in business problems. Linear regression is 

the best tool when all relationships among variables in a dataset are linear. This is 

guaranteed when the dataset is normally distributed. However, most business datasets are 

non-normal (Zhang, 2004), which opens the door to all possible forms of relationships 

including non-linear (monotonic or non-monotonic) relationships.  

Clearly, estimation and regression models for both linear and nonlinear 

relationships are important for many applications. In many cases, accessing sensitive data 

about human subjects might be necessary to build such models. Consequently, concerns 

about privacy and confidentiality automatically arise. However, there is a definite 

shortage in the amount of research related to privacy-preserving estimation technique 

(PPE), especially for nonlinear and non-monotonic relationships, as we will see in the 

PPE-related literature (Subection II.1.1) in the next chapter. 
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In summary, estimation (regression) is one pillar of the four main pillars of data 

mining (DM) techniques (see Figure 1 above) and is frequently used for different 

applications. In many cases, individuals’ privacy and confidentiality become a greater 

issue for numeric values than categorical values (Domingo-Ferrer et al., 2001; 2003). 

Actually, converting numeric values into categorical ones is one way to protect privacy 

and confidentiality. Alternatively, masking methods such as data perturbation can be 

used. Accordingly, the first of three main requirements that masking methods need to 

satisfy in the context of PPE is: 

• Requirement I: Masked datasets must allow accurate estimation models to be 

built, while preserving individuals’ privacy and confidentiality. 

Different types of relationships can exist in a dataset. For instance, multivariate normal 

datasets guarantee that all existing relationships among variables are linear. For this 

special case, some existing masking methods are readily available and can perfectly 

preserve linear relationships. However, most (business) datasets contain nonlinear 

relationships (Zhang, 2004), which can be monotonic or non-monotonic (Fisher, 1970). 

“A truth about data mining not widely discussed is that the relationships in data the 

miner seeks are either very easy to characterize, or very, very hard,” (Pyle, 2003). This 

leads us to the second requirement: 

• Requirement II: Masking methods must preserve all possible types of 

relationships among variables (non-monotonic or monotonic; linear or nonlinear). 

Al-Ahmadi et al. (2004) suggested an approach, called the “Data-Centric” Approach in 

PPDM, for developing new privacy-preserving data mining PPDM algorithms. This 

approach suggests, unlike many current PPDM algorithms (Agrawal and Srikant, 2000; 
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Thuraisingham, 2005), that any new PPDM algorithm should focus only on altering and 

changing original datasets without changing standard data mining algorithms. This 

should be done in a way that does not hurt the validity of required analyses (data utility) 

while maximizing data security.  This approach is important for reasons that will be 

apparent in the Subsection II.1.2 titled “Data-Centric Approach (DCA) for Privacy-

Preserving Data Mining.” The third requirement is: 

• Requirement III: PPE methods must be Data-Centric. 

I.3. Motivation Example 

Boyens et al. (2002) have indicated that more businesses have started to outsource 

data mining tasks to specialized data mining and knowledge discovery consultant 

companies.  In other cases, some organizations such as statistical offices are required by 

law to release datasets to outsiders such as researchers and data miners. In addition, some 

businesses need to release datasets to specific parties because of an alliance, although 

they (i.e. the businesses) may have the needed expertise to run and build different data 

mining models by themselves. In all of these cases, the data utility and data security 

concerns are important. 
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To motivate our discussion, we provide a hypothetical example. A store wants to 

release a 1,000-record dataset to an allied market analysis firm while protecting the 

privacy and confidentiality of its customers. The dataset consists of four main variables 

(along with other identifier fields such as Name and Address). Two of these variables are 

non-confidential and two are confidential. The two non-confidential attributes are the age 

of customers (numeric between 20-60 years) and the gender (binary – 0: male or 1: 

female), and they are denoted by S1 and S2, respectively. The two confidential attributes 

are the annual expenditure in $ (numeric) and the debt in $ (numeric), and they are 

denoted by X1 and X2, respectively. The first five and the last five records of the dataset 

are shown in Table 1. The main analysis required by the market analysis firm is 

regression and estimation modeling.  

Table 1. First 5 and last 5 records of the store dataset (motivation example) 

Non-Confidential Attributes Confidential 
Attributes NO 

Age  
(S1) 

Gender  
(S2) 

Expenditure $ 
(X1)  

Debt $ (X2) 

1 53.11 0 258.57 514.74 
2 57.37 1 211.35 569.33 
3 22.06 0 224.45 609.51 
4 25.46 1 272.98 547.63 
5 51.25 1 292.63 516.33 
: : : : : 

996 37.16 0 391.54 413.41 
997 50.72 1 301.59 500.72 
998 28.71 1 296.49 531.81 
999 27.71 0 308.91 537 

1000 29.62 1 298.04 469.97 
Min 20.009 0 172.610 383.490 
Max 59.969 1 444.190 632.800 

Mean 40.264 0.468 296.775 504.692 
STD 11.884 0.499 59.299 59.054 
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 The store is required ethically and legally to protect the privacy and 

confidentiality of its customers (data security). This is also very important for 

maintaining customer trust and loyalty, and retaining profitable customers. At the same 

time and from a different perspective, the store is required to enable the allied market 

analyst firm to obtain accurate regression models from the released masked dataset (data 

utility). As an initial precaution, the store de-identifies the dataset by removing identifier 

fields such as Name and Address from the dataset.  

Figure 41 (Appendix D) shows the relationships among these four variables. The 

figure clearly indicates the existence of nonlinear non-monotonic relationships (e.g., the 

relationship between S1: age and X1: expenditure; see Figure 2). In Section II.3 in the next 

chapter and Appendix E, we show that current masking techniques are unable to maintain 

relationships of the type shown in Figure 2 (i.e. non-monotonic relationships). 
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Figure 2. Motivation Example: Non-monotonic relationships between Age (S1) and Expenditure$ (X1) 
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I.4. Summary and Outline 

In this chapter, we introduced the privacy-preserving estimation PPE involving 

non-monotonic relationships and we specified its scope. We also talked about its 

importance from a practical point of view. In addition, we outlined the general 

requirements of the privacy-preserving data mining PPDM and the specific requirements 

of the privacy preserving estimation PPE.  

In the next chapter (Chapter II), the relevant literature related to PPDM is briefly 

reviewed. The focus is on the limited literature of PPE. Then, the related work and 

concepts in masking methods are presented. This includes the advantage of using 

masking methods in PPDM. Optimal masking methods are defined, and the difficulty of 

their practical implementation is explained. Some recent masking methods are discussed, 

and their limitation in dealing with non-monotonic relationships is demonstrated. This 

chapter concludes by listing possible research questions in PPE. 

Chapter III lays the theoretical basis for our proposed masking methods and their 

needed tools. The chapter starts by defining a “relationship” in the context of estimation 

and regression problems. Then, the theoretical role of Artificial Neural Networks (ANN) 

in learning such relationships is presented. Finally, the roles of residuals left after 

removing conditional expectations E(X|S) in defining and guiding data utility and data 

security requirements are discussed. Chapter IV proposes four new masking methods for 

preserving non-monotonic relationships by adapting and extending some existing 

masking methods. The chapter talks about their implementation and their assumptions. 

Chapter V treats the subject of assessing the success of the proposed masking methods in 

terms of data utility and data security. Some possible new and existing data utility and 
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data security measures for measuring the effectiveness of PPE masking methods are 

listed. Chapter VI assesses the effectiveness of Relationship-Based Masking (RBM) 

when the relationships among confidential attributes are linear. It starts by demonstrating 

the use of some of the RBM data utility and data security measures on the motivation 

example. Additionally, it briefly examines how a snooper may try to compromise a 

masked dataset involving non-monotonic relationships. Then it explains how the 

characteristics of original datasets determine the characteristics of masked attributes. 

Finally, the determination of characteristics is empirically demonstrated.  

 Chapter VII  discusses the effectiveness of the RBM approach in terms of data 

utility when the relationships among confidential attributes are nonlinear. Eleven 

simulated datasets are used. The data utility assessment is done using the measures 

proposed in Section V.3. Although the focus is on data utility for reasons explained there, 

the chapter briefly discusses the subject of data security.   

Chapter VIII concludes this work by summarizing the main findings and results of 

this research. Additionally, the limitations of proposed methods are discussed. Further, 

some possible future research trends in PPE are given.  In addition, the possibility of 

using the proposed masking methods for other PPDM techniques such as privacy-

preserving classification is suggested. 
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CHAPTER 

II. LITERATURE REVIEW 

 In this chapter, we start by reviewing the literature related to Privacy-Preserving 

Data Mining (PPDM). The focus is mainly on Privacy-Preserving Estimation (PPE). 

Then, we review the main related concepts in statistical disclosure control (SDC). We 

also review some data perturbation and data shuffling masking methods. Next, we 

investigate the possibility of using these masking methods for PPE and assess their 

impact on non-monotonic relationships. We conclude this chapter by articulating some of 

the possible research questions in PPE. 

II.1. Related Work in Privacy-Preserving Data Mining (PPDM) 

The data mining “algorithm” (or “technique” in the terminology from Berry and 

Linoff  (2000; 2004)) is one of five different dimensions that can be used to classify 

privacy-preserving data mining methods (Verykios et al., 2004b). Similar to the 

classification of data mining (DM) techniques proposed by Berry and Linoff  (2000; 

2004), privacy preserving data mining (PPDM) techniques can be classified as:  (a) 

directed PPDM techniques: privacy preserving estimation and  privacy preserving 

classification (both can be called predication techniques), and (b) undirected PPDM 

techniques: privacy preserving association rules and privacy preserving clustering. 

While the field of privacy-preserving data mining is new, relatively good progress 

has been made on privacy-preserving classification and association rules. Examples of 
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privacy-preserving classification are Agrawal and Srikant (2000), Du and Zhan (2002; 

2003),  Du et al. (2004), Islam and Brankovic (2004), Johnsten and Raghavan (2000; 

2001), Kantarcioglu and Clifton (2004b), Kantarcioglu and Vaidya (2003), Lindell and 

Pinkas (2002), Vaidya and Clifton (2004), Vaidya et al.(2004),  and Yang et al. (2005). 

Examples of privacy-preserving association rules are Ashrafi et al. (2003; 2004), 

Evfimievski et al. (2002), Evfimievski et al. (2004), Kantarcioglu and Clifton (2004a), 

Oliveira and Zaïane (2003a), Oliveira et al. (2004), Rizvi and Haritsa (2002), Saygin et 

al.(2002), Vaidya and Clifton (2002), Verykios et al. (2004a), and Zhang et al. (2004).  

Some progress has been made in privacy-preserving clustering. Examples include  

Klusch et al. (2003), Lin et al. (2004), Merugu and Ghosh (2003a; 2003b) Oliveira and 

Zaïane (2003b; 2004a; 2004b), and Vaidya and Clifton (2003). However, there has been 

little research in privacy-preserving estimation (regression). Figure 3 shows an abstract 

view of privacy-privacy data mining (PPDM) related literature broken down by PPDM 
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technique.  

II.1.1. Review of Privacy-Preserving Estimation (PPE) Literature  

Sanil et al. (2004) proposed an algorithm for computing the exact coefficients of 

multiple linear regression on the union of a vertically-distributed (or partitioned) dataset 

without sharing original values. This algorithm is applicable when there is a single 

shared, non-confidential dependent variable, and the unshared confidential, independent 

variables are owned by more than two parties (agents) involved in the estimate process. It 

is based on Powell’s algorithm (Brent, 2002; Powell, 1964) for finding the minimum (as 

a numerical solution for a series of  one-dimensional minimization problems) of a 

multivariable quadratic function without calculating its derivative.  In addition, the 

algorithm of Sanil et al. (2004) utilizes the secure summation algorithm (Benaloh, 1987; 

Clifton et al., 2002), which is  considered to be a  part of secure multiparty computation 

in the cryptography literature (Schneier, 1996, pp. 551-552). The secure summation 

algorithm is used to share a statistical summary (total), populated partially by every party 

without revealing how much each party contributes to that statistic. This total is needed 

for estimating the regression coefficients iteratively. By the end of the proposed 

regression algorithm, each party can calculate accurately, from the global regression 

model, the coefficients of the variables they own and share them with other parties.  

Karr et al. (2004) dealt with the case of building multiple linear regression on the 

union of a horizontally-distributed dataset. They suggested two approaches. The first 

approach, called the secure data integration procedure, is used to integrate horizontally-

distributed datasets from more than two parties (agents) into one dataset while protecting 

the identity of the data source. The integrated dataset could then be shared among 



 19 

cooperative parties. Each party could locally run linear regression analysis (or any other 

statistical analysis) and any of its diagnostics on the integrated dataset. This approach 

clearly does not rise to the minimum requirements of protecting the privacy and 

confidentiality of surveyed human subjects because it does not mask confidential 

attributes and aims only to protect the identity of the data sources (i.e. the identity of the 

involved parties, not the identity or confidentiality of surveyed human subjects). 

A second approach is based on the additive nature of the linear regression 

analysis. Instead of sharing and integrating the original unmasked records of the 

distributed datasets, statistics required to calculate the least squares estimators of linear 

regression coefficients are shared and integrated in a secure manner using the secure 

summation algorithm (Benaloh, 1987; Clifton et al., 2002; Schneier, 1996). In this 

approach, diagnostics could not be calculated directly. Karr et al. (2004) proposed two 

approaches to resolve this issue based on whether the computations of diagnostics are 

additive with respect to the parties. When the nature of the computations of the 

diagnostics are additive, such as R2 and correlations, locally-calculated numerators and 

denominators of the diagnostic measures are shared using the secure summation 

algorithm to calculate the global diagnostic measures.  When this is not possible, as in the 

case of sharing the residuals, simulated residuals derived from synthetic independent 

variables and mimicking the relationships among original residuals and independent 

variables are integrated and shared using the secure data integration procedure. The 

procedure of creating synthetic residuals is very similar to the procedure proposed by 

Reiter (2003), which is briefly discussed below. 
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Remote regression servers (cf. Duncan and Mukherjee, 2000; Keller-McNulty and 

Unger, 1998; Schouten and Cigrang, 2003) are access-limitation methods for protecting 

microdata while enabling users to build linear regression models. Instead of running the 

regression analysis locally, users submit a request of the regression analyses they require 

and the server returns the results in terms of regression coefficients and standard errors. 

Although this approach has the advantage of building linear regression models using 

original values, users do not usually have any means of checking the fit of their models. 

Reiter (2003) proposed a method to enable users to check the fit of their models while 

limiting the disclosure risks. The proposed method is based on releasing artificial, 

simulated (marginally-wise) dependent and independent variables, residuals and fitted 

values that mimic the original relationships of the built models. Then these synthetic 

variables could be used, similar to the use of original variables, to assess the fit of the 

regression models. He suggested that this approach could be used to provide diagnostics 

for other possible remotely built, generalized linear models.  

The computations of many multivariate methods, including multivariate linear 

regression, depend on matrix computations such as matrix multiplication and matrix 

inverse.  Based on this well-known fact, Du et al. (2004) proposed some protocols called 

secure two-party matrix computations protocols, which enable two agents to 

collaboratively run matrix computations without knowing about or accessing the other 

party’s original, sensitive values and without the involvement of a third party. They 

suggest that secure versions of some multivariate statistical analysis could be formulated 

using these secure matrix computations building blocks. This approach is generally called 

the Secure 2-party Multivariate Statistical Analysis (S2-MSA). These protocols are used 
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to reformulate some specific multivariate statistical analysis problems including the 

Secure 2-party Multivariate Linear Regression (S2-MLP) problem, when the dependent 

variable is known to both agents.  

 As we have seen, not much has been done in privacy-preserving estimation and 

regression when we need to release a dataset for general analysis. The focus of current 

PPE methods are linear relationships and linear regression methods. Our work deals with 

a more difficult problem that involves non-monotonic relationships. Most prior work 

deals with partitioned (vertically or horizontally) datasets while our work is about 

centralized datasets, whose masked copies will be released in whole for regression tasks. 

The above methods require the involvement of all parties every time they must run a 

regression model, while our proposed methods release the whole masked datasets and do 

not require timely cooperation between the data owner and the data analyst. Many of the 

above methods assume and restrict applicability to the existence of a single shared, 

dependent variable, while our methods allow building regression models using any 

numeric variable as a dependent variable. The mentioned methods are proposed mainly 

for regression tasks while there is initial evidence that our approach can be used for other 

analyses (see Section VIII.2 titled “Possible Opportunities and Limitations”).  

II.1.2. Data-Centric Approach (DCA) for Privacy-Preserving Data 

Mining 

Many PPDM approaches modify some existing DM algorithm(s) while masking 

the data (Thuraisingham, 2005); see, for example, Agrawal and Srikant (2000). Enforcing 

the use of a modified algorithm with a masked dataset to ensure accurate results is not a 

good idea for many reasons. First, data miners usually employ more than one algorithm 
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to mine a dataset. Examining all data mining algorithms, as well as modifying them, is 

not feasible. Second, once a dataset is released, there is no guarantee as to which 

algorithm might be applied. Using a non-prescribed, standard algorithm may lead to 

incorrect conclusions and actions.  

Instead, as suggested by Al-Ahmadi et al. (2004), datasets should be protected or 

masked without reference to a specific DM algorithm. More recently, Oliveira and Zaïane 

(2004c) supported the concept of Data-Centric Approach (DCA) in their standardization 

suggestions to PPDM researchers and developers. Oliveira and Zaïane (2004a) applied 

the DCA concept practically in developing a new PPDM clustering algorithm called 

Rotation-Based Transformation (RBT), which tries to modify only the data such that 

applying standard distance-based clustering algorithms on both the normalized original 

datasets and the transformed datasets produce the same results. Hence, data perturbation 

and masking methods can be a good starting point for implementing the Data-Centric 

Approach (DCA) in PPDM.  

Next, we review the latest developments in data masking methods and see how 

we can use some of them in estimation problems. In Appendix A, we also provide a 

simple framework called the SDL/Relationship Match Framework for choosing a specific 

data perturbation method (or, in general, any masking method) to mask a specific dataset 

for building estimation models. The match is based on the type of existing, most difficult 

relationships in original datasets that the chosen masking method can preserve and 

reproduce in masked datasets.  
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II.2. Related Work in Masking Methods 

Statistical Disclosure Limitation (SDL), known also as Statistical Disclosure 

Control (SDC), techniques are a set of techniques that aim to control the amount of 

disclosed information about sensitive attributes at the level of individual records in 

disseminated datasets while providing valid overall statically analyzable datasets. The 

main goals of SDL techniques are twofold: (a) to minimize disclosure risks by protecting 

the privacy (identity disclosure) and confidentiality (value disclosure) of individuals 

surveyed or included in released datasets, and simultaneously (b) to maximize data utility 

(preserving original (statistical) characteristics of datasets) at the aggregate level 

(Willenborg and Waal, 2001). 

The phrase “disclosure limitation” in SDL (or “disclosure control” in SDC) 

indicates two things. First, there is a specific amount of information, usually at an 

aggregate level, in the original dataset one wants to reveal. Second, one wants to make 

sure that no further information (mainly sensitive or confidential) can be learned. In fact, 

when a dataset is released, some sort of disclosure automatically occurs, and total 

elimination of disclosure is impossible (Fienberg, 1994). Therefore, there are always 

possible disclosure risks associated with any released dataset. Hence, methods to assess 

different possible disclosure risks for any masking method are needed. Similarly, 

methods are also needed to assess data utility. Thus, when a masking method is proposed, 

existing or new measures that quantify data utility and disclosure risk are used to prove 

the effectiveness of the masking method.  

Two natural types of disclosure one wants to prevent are: identities of individuals 

(identity disclosure) and exact values of their confidential attributes (exact value 
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disclosure). The problem of disclosure control is complicated by the concept of the 

second type of value disclosure: the partial value disclosure. In this case, the exact values 

of confidential attributes are protected, but good statistical estimates can be gained by 

accessing masked attributes (Adam and Wortmann, 1989; Dalenius, 1977; Muralidhar et 

al., 1999; Muralidhar and Sarathy, 1999; Sarathy and Muralidhar, 2002). 

The only way to completely eliminate disclosure risks is to avoid releasing 

datasets (given that other physical security measures are implemented). In this situation, 

unfortunately, no data utility is achieved (Fienberg, 1994). Datasets need to be 

disseminated on many occasions for many good, possible reasons. In the case of 

statistical databases, permissible queries should get responses. Two important reasons, 

among others, are that dissemination is either (a) legally required, as in the case of the 

Bureau of Census, or (b) research-motivated. For example, a hospital releases 

information about patients with a specific disease to a medical research institute 

developing a cure for the disease. In the data mining field, datasets can be released to an 

external DM and knowledge discovery consultant company in an effort to gain some 

competitive advantage. There is an increasing trend in many businesses to outsource data 

mining tasks (Boyens et al., 2002).  

There are basically two general approaches for disclosure control: limiting access 

to sensitive attributes or masking original confidential attributes (Adam and Wortmann, 

1989; Willenborg and Waal, 2001). Query-restrictions used in statistical databases (Adam 

and Wortmann, 1989) are one example of access limitation approaches. In this approach, 

a query returns only an aggregate statistic such as the SUM. The number of records used 

to build the aggregate statistic should be more than a specific threshold for the result to be 
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sent to the user. In addition, successive queries should not have a large overlap. However, 

in many cases, this is not sufficient to prevent disclosure.  

When the results of permissible queries are restricted to aggregate information, 

inferential disclosure can occur when a snooper can learn unrevealed information by 

combining the results of more than one query. A snooper is a legitimate user who misuses 

access privilege to obtain unauthorized content (Adam and Wortmann, 1989; Muralidhar 

et al., 1999; Muralidhar et al., 2001). For example, a snooper can combine the results of 

the following two queries, which can be issued by different users, to learn the salary of a 

company’s president: query 1 - “total salaries the company pays,” and query 2 - “total 

salaries the company pays except for the president” (Clifton, 2003). Although the result 

of each query by itself does not represent a privacy or confidentiality threat, combining 

the two leads to exact disclosure. One proposed solution (which may not be practical) is 

to track all replied queries of all users to avoid answering a query that can increase the 

amount of information released and lead to disclosure. Malvestuto and Moscarini (2003) 

discussed the inference problem of confidential values using repeated queries in 

multidimensional databases, as well as a graphical auditing solution (the answer map) for 

the problem.  

Willenborg and Waal (2001) devoted a book to the discussion of the principles 

related to masking techniques. They differentiated between two types of datasets that 

need to be protected: tabular data (aggregated data) and microdata (individual records). 

Perturbative and non-perturbative masking methods are reviewed for each dataset type. 

The former replaces original values with fabricated ones, while the latter utilizes original 
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values. Willenborg and Waal also reviewed data utility and data security measures for 

each dataset type.  

Duncan and Pearson (1991) suggested that masked microdata should be released 

instead of aggregated data (such as aggregated statistic responses to restricted queries, or 

tabular data) to maximize data utility and to allow for different types of analyses. 

Muralidhar and Sarathy (2005b) adopted this viewpoint and pointed out that accessing 

microdata is a requirement for data mining analysis tasks. Clifton (2003) also supported 

this opinion. One important category of perturbative SDL methods for microdata is data 

perturbation methods.  

In data perturbation, a noise term is used to change original confidential attributes 

and generate masked ones. There are mainly two types of perturbation methods: 

multiplicative and additive data perturbation methods. Multiplicative data perturbation 

methods generate masked values by multiplying original unmasked confidential values 

by an error term with a mean equal to 1 and with a small variance (Kim and Winkler, 

2003; Muralidhar et al., 1995). On the other hand, additive data perturbation methods add 

an error term with mean 0 and a specific variance or covariance matrix to the confidential 

attributes. Examples of the latest additive data perturbation methods are GADP 

(Muralidhar et al., 1999), C-GADP (Sarathy et al., 2002), IPSO (Burridge, 2003), and 

EGADP (Muralidhar and Sarathy, 2005b).  

One of the advantages of data perturbation methods is that they automatically 

safeguard against exact value disclosure (Adam and Wortmann, 1989; Muralidhar and 

Sarathy, 1999). However, their ability to protect against partial value disclosure varies 

from one method to another.  Dalenius (1977) defined disclosure risk by the increment in 
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the snooper knowledge after accessing the masked attributes. To account for the worst-

case scenario, the assumption should be that the snooper has maximum knowledge about 

confidential attributes represented in the form of  their distributions (Muralidhar and 

Sarathy, 2003c). 

The remainder of this section is divided into three subsections. The first 

subsection discusses the advantages of using masking methods in developing PPE and 

PPDM methods. The second subsection talks about the Conditional Independence Theory 

for developing optimal (in terms of data utility and data security) masking methods and 

the practical limitation of this theory. The third discusses briefly the latest related 

masking methods and their optimality status. Then, in the main section to follow, we test 

the performance of some of these methods on the store dataset in the motivation example 

to see whether they can be used for PPE involving non-monotonic relationships. We then 

list some difficulties in developing a new PPE method for non-monotonic relationships. 

Finally, we conclude this chapter by compiling a list of possible PPE research questions.  

II.2.1. Advantages of Using Masking Methods for PPE 

Data can be classified as aggregate data (tabular summaries) and microdata (full 

data). While access limitation methods for microdata can achieve some security goals, 

full access to microdata is important for DM. Actually, one of the biggest barriers facing 

data mining projects today is the “inability to release data” due to privacy concerns 

(Clifton, 2003). Masking methods are a sound choice since they allow the release of 

microdata without any access restriction. They have rich literature and are built on a solid 

theoretical basis (cf. Adam and Wortmann, 1989; Willenborg and Waal, 2001). Equally 

important, they are rigorous techniques for maintaining privacy and confidentiality while 
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maximizing data utility (mainly for statistical analysis) (Muralidhar et al., 1999; 

Muralidhar and Sarathy, 2003a; 2005a; Sarathy et al., 2002). Actually, masking 

techniques automatically provide protection against exact value disclosure (Adam and 

Wortmann, 1989; Muralidhar and Sarathy, 1999). From another perspective, they are 

good starting points for practically implementing the Data-Centric Approach (DCA) in 

PPDM (Al-Ahmadi et al., 2004), as discussed earlier. 

II.2.2. Optimal Masking Methods 

In this section, we will talk about the optimality requirements of masking methods 

based on the Conditional Independence Theory. Then we will briefly discuss its practical 

limitations.  

II.2.1.2 Conditional Independence Theory 

The ultimate goals for any masking method are: (a) to maximize data security of 

the masked dataset (minimize disclosure risks: both value and identity risks), and (b) to 

maximize the data utility (minimize information loss or maximize data accuracy) of 

datasets after the protection. Many prior perturbation methods were often developed 

based on the concept that there is always a trade-off between these two goals. Examples 

include simple additive data perturbation SADP method (Traub et al., 1984) and 

correlated-noise additive data perturbation CADP known as Kim’s method (Fuller, 1993; 

Kim, 1986; Tendick, 1991). 

Muralidhar and Sarathy (2003c) developed a theoretical framework for 

perturbation methods, called the Conditional Independence Theory, which eliminates the 

need for a trade-off between data utility and disclosure risks (beyond a specific level 

defined by the characteristics of the data). The framework suggests that the perturbed 
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values Y should be generated (a) only from the conditional distribution f(X|S) and (b) 

independently from the original confidential attributes X given the non-confidential 

attribute S. The importance of these conditions, once they are met, lies in the fact that 

both maximum data utility and data security (minimum disclosure risk) requirements will 

be automatically and simultaneously satisfied. Muralidhar and Sarathy (2003c) detailed 

these requirements of the conditional independence theory and their consequences in 

terms of marginal, joint and conditional distributions. The use of the conditional 

distribution f(X|S) in the data masking literature is not new, and it has been examined in 

different contexts:  multiple imputation (Little, 1993; Rubin, 1993), categorical data 

(Fienberg et al., 1998), and disclosure risk measures (Willenborg and Waal, 2001). 

 Muralidhar and Sarathy (2003c) proved that the two required conditions of the 

conditional independence theory, once met, satisfy both data utility and disclosure risk 

requirements as follows.  The first condition is that perturbed values Y should be 

generated from the conditional distribution f(X|S): 

 ( )|fX SY X S: . (2.1) 

Second, Y should be independent of X given S: 

 , ( , ) ( ) ( )f f f=X Y S X S Y SX Y S X S Y S . (2.2) 

In terms of data utility requirements, two characteristics from the original dataset 

should be preserved in the perturbed dataset. First, the joint distribution between the non-

confidential attributes S and the perturbed attributes Y should equal the joint distribution 

between the non-confidential attributes S and the confidential attributes X: 

( , ) ( , )f f=Y S X S . The theory of conditional independence assures this since Y is 

generated from f(X|S), f(Y|S)= f(X|S), and therefore: 
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 ( , ) ( ) ( ) ( ) ( ) ( , )f f f f f f= = =Y S Y S S X S S X S . (2.3) 

Second, the marginal distribution of the perturbed attributes Y should be the same 

as the marginal distribution of the confidential attributes X: ( ) ( )f f=Y X . Again, the 

theory of conditional independence satisfies this requirement. This can be seen using 

(2.3): 

 ( ) ( , ) ( , ) ( )f f d f d f= = =∫ ∫
S S

Y Y S s X S s X . (2.4) 

 Preserving the joint distribution of the perturbed dataset to be the same as that of 

the original dataset (i.e. ( , ) ( , )f f=Y S X S ) maintains all relationships among variables. 

This suggests that applying any analysis that depends on relationships among variables in 

the perturbed dataset should provide similar (if not exact) results when applying the same 

analysis method on the original dataset. In addition, maintaining identical marginal 

distributions of the perturbed and the original datasets produces the same results for 

univariate analysis of the original and masked datasets for each corresponding variable.  

In terms of data security requirements, there are two assumptions regarding 

intruders: (a) they have full access to the non-confidential attributes S, and (b) they have 

the maximum knowledge about confidential attributes: the conditional distribution of 

confidential attributes X conditioned on non-confidential attributes S: f(X|S). Both 

assumptions collectively account for the worst-case scenario:  that the snooper does a 

good job in trying to breach the confidentiality and privacy of individuals in masked 

datasets even before their release. In this context, disclosure risk is defined by the 

increase in the snooper ability (or reduction of his uncertainty) to predict confidential 

attributes once  the masked dataset is released (Dalenius, 1977; Duncan and Lambert, 

1986). Thus, accessing the released masked dataset (i.e. S and Y) might cause an increase 
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in snooper prediction power since there is now more information (i.e. Y) to use.  

However, the theory of conditional independence requires that Y is independent of X 

given S, and this makes the following relationship true: ( , ) ( )f f=X S Y X S .  

This can be proven by using (2.2): 

 ( , , ) ( , , )
: ( , )

( , ) ( ) ( )
f f

LHS f
f f f

= = =
S X Y S X Y

X S Y
S Y Y S S

 

 ( , ) ( ) ( )
( ) :

( ) ( )
f f f

f RHS
f f

= =
X Y S X S Y S

X S
Y S Y S

. 

Therefore, snoopers do not gain any incremental knowledge (beyond what they already 

know about confidential attributes X from non-confidential attributes S) by accessing 

masked attributes Y.  

As we have seen, the Conditional Independence Theory, once met, guarantees 

maximum data utility and data security. For an interesting discussion about whether the 

Conditional Independence Theory is sufficient to reach the optimal level of data utility 

and data security, refer to comments made by Polettini and Stander (2003) and the 

rejoinder made by Muralidhar and Sarathy (2003b). 

II.2.2.2 Practical Limitation of the Optimal Procedure 

Utilizing the concept of conditional independence to develop masking methods 

for every possible dataset (including non-normal ones) proves to be a difficult problem 

(Muralidhar and Sarathy, 2003c). The main reason is the difficulty in learning the true 

multivariate conditional density function f(X|S). In practice, f(X|S) is usually unknowable 

and difficult to estimate.  
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This limits the practical applicability of the Conditional Independence Theory in 

developing optimal masking methods. Nevertheless, some special cases (such as the case 

of multivariate normal data) have been addressed in the SDL literature in which optimal 

masking methods have been built based on this theory. In the next subsection, we will 

discuss some of the latest (PPE-related) masking methods. In addition, we will explain 

which masking methods (and in which settings) satisfy the Conditional Independence 

Theory.  

II.2.3. Recent Masking Methods  

 Muralidhar et al. (1999) proposed a new perturbation method called the General 

Additive Data Perturbation (GADP) method that avoids the problems in early 

perturbation methods. GADP is mainly designed for maintaining linear relationships. The 

ideal situation is when datasets are normally distributed, which assures that all 

relationships among variables are linear (Kotz et al., 2000). Burridge (2003) and 

Muralidhar and Sarathy (2005b) reported that GADP experiences sampling error that 

affects its performance when it is applied to small datasets. Burridge (2003) suggested a 

new perturbation method called Information Preserving Statistical Obfuscation (IPSO) 

method, which does not suffer from the same problem. The idea behind IPSO lies in the 

concept of capturing the sufficient statistics (Anderson, 2003; Johnson and Wichern, 

1998; Lehmann and Casella, 1998) from original and normally distributed datasets, and 

utilizing them to produce perturbed values in masked datasets. Muralidhar and Sarathy 

(2005b) recognized that although IPSO does a good job when dealing with small datasets, 

it has a problem in data security. They proposed a variant from GADP method that uses 

sufficient statistics to avoid sampling error in small datasets. The new approach is called 
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Enhanced (or Exact) General Additive Data Perturbation (EGADP) method. EGADP 

maintains exact linear relationships, even in small data.  

  All the above three masking methods are proposed for linear relationships. 

Sarathy et al. (2002) proposed a new method called the General Additive Data 

Perturbation method: the Copula approach (C-GADP), which can maintain monotonic 

(linear or nonlinear) pairwise relationships. A copula is a function that joins a group of 

functions of marginals into one multivariate (copula) distribution (Jouini and Clemen, 

1996; Nelsen, 1999; Schweizer, 1991; Sklar, 1959). C-GADP utilizes a multivariate 

normal copula (Clemen and Reilly, 1999; Joe, 1997) to transform non-normal 

distributions into normal ones, which capture the monotonic dependence structure (rank-

order correlation) of original datasets. Then GADP or EGADP can be applied on these 

transformed normal datasets to produce (normally distributed) masked attributes. Finally, 

masked attributes are transformed to their original marginals.  

Muralidhar and Sarathy (2003a; 2005a) proposed a new masking method called 

data shuffling, which combines of the advantages of  perturbation methods and data-

swapping methods.  Like data perturbation methods, the new approach maximizes data 

security and data utility in the case of linear or monotonic nonlinear relationships. Like 

data-swapping methods, it maintains the marginal distributions of the masked 

confidential attributes exactly as the marginal distributions of the original confidential 

attributes. In addition, data shuffling has the advantage of efficient implementation by 

utilizing “only rank order data,” (Muralidhar and Sarathy, 2005a, pp.1). 

There are two approaches to implementing data shuffling: parametric and non-

parametric. The parametric approach is similar to the C-GADP perturbation method 
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(Sarathy et al., 2002) with an additional step: rank ordering the original values of the 

confidential attributes X according to the rank-order of the perturbed values Y to get the 

final shuffled values.  The non-parametric data shuffling approach has the advantage of 

bypassing the problem of identifying unknown marginal distributions. It utilizes the 

empirical CDF distribution as an estimation mechanism of unknown marginal 

distributions. 

 From an optimality perspective, GADP and EGADP applied to multivariate 

normal data satisfy the Conditional Independence Theory. Therefore, they are optimal in 

terms of maximizing data utility and data security. Although IPSO provides ideal data 

utility by preserving exactly all (linear) relationships in normal data, it has a problem in 

the data security aspect since masked attributes Y are not generated independently from 

f(X|S) (Muralidhar and Sarathy, 2005b).  

When applied to non-normal data, GADP and EGADP provide ideal security but 

not ideal data utility. They only reproduce linear relationships in masked data. This is 

generally adequate for a majority of statistical analyses of masked data, but not for data 

mining.  Many studies (Fuller, 1993; Sarathy et al., 2002; Sullivan and Fuller, 1989) 

concluded that applying additive perturbation methods (including the above sophisticated 

methods) on non-normal datasets reduces the accuracy and utility of masked datasets 

because nonlinear relationships are not preserved. Hence, GADP and EGADP may not be 

suitable for general data mining.  

Because of the known difficulty of estimating the true conditional density 

function f(X|S) in non-normal datasets, developing optimal masking methods based on 

the Conditional Independence Theory is not feasible in this case (Muralidhar and Sarathy, 
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2003c). Nevertheless, preserving some characteristics of non-normal datasets is possible. 

For example, C-GADP and data shuffling can maintain monotonic (linear or nonlinear) 

pairwise relationships. Both C-GADP and data shuffling provide optimal data security 

but not optimal data utility because they do “not utilize the true conditional density 

f(X|S),” (Muralidhar and Sarathy, 2003c). Instead, they approximate f(X|S) with a multi-

variate normal copula distribution. Nevertheless, the level of provided data utility may be 

sufficient for some data mining applications.  

II.3. Impact of Current Masking Methods on Non-Monotonic 

Relationships 

Lechner and Pohlmeier (2004) investigated how some disclosure limitation 

masking methods affect estimating nonlinear data models using econometric estimation 

techniques. Two disclosure limitation methods were studied: blanking and noise addition. 

The researchers used three econometric estimation techniques: the SIMEX method, the 

calibration method, and a semi-parametric sample selectivity estimator. Lechner and 

Pohlmeier (2004) concluded that the disclosure limitations techniques, at varying 

degrees, make it difficult to get nonlinear models and other estimates from masked 

datasets similar to those obtainable from original datasets. Lechner and Pohlmeier (2004) 

further pointed out that while the effects of masking methods on the estimators of linear 

(regression) models have been well-understood, “nonlinear regression techniques coping 

with implications of data masking are still at their infancy.”  

We picked two advanced data masking methods that have been proven to provide 

maximum data utility and data security: EGADP (Muralidhar and Sarathy, 2005b) for 

linear relationships, and (C-EGADP-based) data shuffling (Muralidhar and Sarathy, 
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2003a; 2005a) for monotonic nonlinear relationships. Neither has been used in the PPDM 

arena. These methods were applied to the store dataset (see Table 1I.3). While they 

provide good security measures for the store dataset, these methods do not produce useful 

masked datasets for the required regression tasks because of the existence of non-

monotonic relationships. For example, the relationship between age and expenditure 

variables (see Figure 2 in Section I.3) is not preserved in the masked data. The 

destructive effect of these methods on this type of relationship is demonstrated in Figure 

4. Sarathy et al. (2002) pointed out the limitations of these methods in the case of non-

monotonic relationships.  

 

Figure 4. Impact of current masking methods (EGADP and data shuffling) on non-monotonic 
relationships 

Clearly, there are no masking methods capable of preserving non-monotonic 

relationships in masked datasets as they exist in original datasets. However, the literature 

on SDL and data perturbation methods provides sophisticated masking methods for 

maintaining monotonic relationships (linear and nonlinear) and achieving high levels 

(sometimes optimal) of data utility and data security. Our goal is to adapt and extend 

some of these methods for the case of non-monotonic relationships. In addition, we want 
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to develop or adopt some measures for data utility and data security. These measures will 

be used to investigate the effectiveness of our proposed methods. Next, we will discuss 

briefly some challenges in developing a PPE masking method for non-monotonic 

relationships. 

II.3.1. Challenges in Developing Practical PPE Masking Methods 

for Non-Monotonic Relationships 

SDL masking methods were developed based on the concept that maintaining 

some aggregate correlation-based measures of original datasets in masked datasets would 

preserve the corresponding relationships captured by the aggregate measures. For 

example, GADP (Muralidhar et al., 1999), IPSO (Burridge, 2003) and EGADP 

(Muralidhar and Sarathy, 2005b) try to maintain the Pearson correlation matrix (along 

mean and covariance matrix). This ensures that all original linear relationships are 

reproduced in the masked datasets. On the other hand, C-GADP (Sarathy et al., 2002) and 

data shuffling (Muralidhar and Sarathy, 2003a; 2005a) try to maintain Spearman rank-

order correlation matrix. This ensures that all original monotonic nonlinear (and linear, in 

the case of multivariate normal datasets) relationships are reproduced in the masked 

datasets.  

 One challenge in developing a new PPE-masking approach for non-monotonic 

relationships is that there is no aggregate measure capable of capturing non-monotonic 

relationships that we can use to reproduce this type of relationship in masked datasets. 

Thus, a different strategy is needed for developing the new approach. Since PPE, and 

regression methods in general, are about quantifying the relationships among variables 

(Rud, 2001), “relationships” will be the basis for developing our new PPE approach. In 
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the first section in Chapter III, we will provide a formal regression-related definition of 

relationships in PPE. 

 Another challenge that arises is the need to test the effectiveness of the newly 

developed PPE method in terms of data utility and data security. Data security measures 

are based on general concepts and, therefore, existing security measures can be used. 

However, data utility measures are specific to the task at hand (Domingo-Ferrer et al., 

2001; 2003). For PPE, it is necessary to maintain relationships among the variables in 

masked datasets in the manner they exist in original datasets. For monotonic 

relationships, data utility (in masking techniques) can be easily checked by comparing the 

relative aggregate measures of the original and masked datasets. Similarity between these 

aggregate measures declares the success of the masking methods in terms of data utility. 

Again, there is no aggregate measure for non-monotonic relationships; therefore, we need 

to take a different path in developing suitable data utility measures. Once more, we will 

use the concept of relationships as the basis for our data utility measures. The new 

proposed data utility measures, along with adopted security measures, are discussed in 

Chapter V. 

II.4. Research Questions 

This study raises and addresses the following questions: 

• Question 1: Since there is no aggregate measure for non-monotonic relationships, 

how should relationships be defined (and later measured) in PPE and PPDM? 

• Question 2: Is it possible to develop/adapt new masking methods in PPE to 

maintain non-monotonic relationships while maximizing data utility and data 

security? 
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• Question 3: What is the theoretical basis for these masking methods?  

• Question 4: What is data utility in PPE? What is data security in PPE? How can 

we quantify data utility and data security in PPE (success measures)?  

• Question 5: Can the new methods preserve other types of relationships (linear or 

monotonic nonlinear)? 

• Question 6: What are the assumptions of these new methods? What will happen 

if these assumptions are violated? 

• Question 7: How can we establish the validity of the new methods (experiment 

design)? 

• Question 8: How well do these methods compare with existing methods? 
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CHAPTER 

III. RELATIONSHIP-BASED  MASKING: THEORETICAL BASIS 

The prvious chapter discussed the need for maintaining and reproducing the 

different types of possible relationships in masked datasets, as they exist in original 

datasets. In addition, it was seen that existing masking methods do not preserve all types 

of relationships in masked datasets. This chapter introduces four interrelated 

Relationship-Based  Masking (RBM) methods for reproducing different types of 

relationships in masked datasets. The RBM approach is a three-stage approach: 

identifying relationships, analyzing residuals, and applying masking. These three stages 

are interrelated. The theoretical basis for the RBM methods lies mainly in the first two 

stages (relationships and residuals). Hence, the focus of this chapter is on the first two 

stages (and the tools related to them) while the subject of the following chapter is mainly 

the third stage (along with the first two stages).  

First, a formal definition for a relationship in the estimation and regression 

context is needed. In addition, we need an effective, proven way to learn and capture 

different possible types of relationships that may exist in a dataset. It is also critical to 

understand the roles that residuals play in defining and guiding data utility and data 

security requirements to develop effective masking methods. 

Section III.1 draws attention to the formal statistical definitions of a relationship 

and discusses the one that is usually used in estimation and regression modeling. In 



 41 

addition, this section specifies the class1 of relationships that the RBM approach tries to 

learn from original datasets, and whether it is data-utility or data-security driven. Section 

III.2 investigates the capability of Artificial Neural Networks (ANN) in capturing 

relationships including non-monotonic ones. Section III.3 concludes this chapter by 

investigating the roles of residuals r left after fitting confidential attributes X (as 

dependent variables) to non-confidential attributes S (as independent variables) in 

defining and guiding data utility and data security requirements. 

III.1. Conditional Expectation: The Formal Definition of Relationships 

in PPE 

Macnaughton (2002) compiles and discusses seven definitions of a relationship 

between two random variables. One of these definitions that is particularly suited to this 

study is that there is a relationship between variables x and y, if the values of y can be 

expressed as: 

 ( )y f x e= +  (3.1) 

“where e is usually viewed as being independent of x” and represents the random 

component of the relationship. f(x) is strictly a real (deterministic) mathematical function 

that represents the exact component of the relationship with no random element involved. 

A strict mathematical function means that it maps from one or more values of x to only 

one value of y (but not to more than one value of y). For example, the function y = f(x) = 

x2 is a mathematical function because it maps multiple values of x such as (-2,2) to 

                                                 

1 We may use the term “class” when we refer to a relationship based on the confidentiality level of its 
involved dependent and independent variables. Examples include the class of relationships between X and 
S and the class of relationships among confidential attributes X or E(Xi|Xj). In addition, we may use the 
term “type” or “shape” when we talk about the shape of a relationship: linear or monotonic nonlinear, or 
non-monotonic. 
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exactly one value of y (4). Thus, a mathematical function is either one-to-one (1-1) 

mapping or many-to-one (M-1) mapping, but not one-to-many (1-M) mapping. The 

former two cases are called single-valued mapping while the latter case is called a multi-

valued mapping (Bishop, 1995). The existence of multi-valued mapping in data, which 

violates the definition of a mathematical function, impacts the effectiveness of our 

proposed masking methods in terms of data utility, as we will discuss later.  

 Muralidhar and Sarathy (2005a) suggest that perturbed variables Y satisfy the 

minimum security requirements when they are generated using a function g(S,e) of only 

the non-confidential attributes S, and a noise term e that is independent of the original 

confidential attributes X given the non-confidential attributes S. Notice the similarity of 

formula (3.1) with the function g(S,e) when one chooses function g to be the addition of 

independent/orthogonal noise e to a random function f of non-confidential attributes S:  

 ( , ) ( )Y g S e f S e= = +  (3.2) 

where e is independent of X (or e ⊥ X) given S as a security requirement, ⊥ denotes 

“orthogonal to”, and f(S) is any random function of S. Equation (3.2) only suggests the 

requirements of the data security of perturbation methods and it does not consider or 

guarantee data utility. 

 Data utility can be ensured if the function f(S) is carefully chosen. Macnaughton 

(2002) suggested that the mathematical form of f is usually determined by data analysis, 

although theoretical considerations can also be taken into account. He further suggested 

that such an approach usually leads to choosing the form of f as the best estimate of the 

conditional expectation ( )E Y S  in Equation (3.2) (note that we are using the 

terminology of data perturbation: S, X and Y). Actually, ( )E Y S  cannot be calculated 
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initially since the masked values Y are not available. Nevertheless, the conditional 

expectation ( )E Y S is specified to be ( )E X S  to maximize data utility. Thus, in our 

context, formula (3.2) can be expressed as: 

 ( )E= +Y X S e  (3.3) 

where e is independent of X given S (or e ⊥ S,X) and e resembles the characteristics of r  

obtained from: 

 ( )E= +X X S r  (3.4) 

where r is independent of S (or r⊥ S) by definition. Equation (3.3) is the essence of 

EGADP (Muralidhar and Sarathy, 2005b). EGADP can preserve linear characteristics of 

original datasets perfectly, even for very small datasets, while providing maximum data 

security (Section II.3). However, it cannot, as we saw earlier, preserve non-linear 

relationships. Estimating the conditional expectations ( )E X S  accurately, and 

accordingly the “relationships” between X and S by the regression definition, is critical 

for maintaining data utility.  

We conclude this section by discussing the difference between independence and 

orthogonality (uncorrelated). Independence implies orthogonality; the reverse is not 

always true (Hunter, 1972). When we learn relationships E(X|S) from multivariate 

normal data, residuals r are always guaranteed to be independent of E(X|S) or any 

function of S (see Rhodes (1971), Property 8, pp. 692). When distributions of data are 

non-normal, the only condition guaranteed at all times is that residuals r are orthogonal 

(uncorrelated) to E(X|S) or any function of S (see Rhodes (1971), Proposition 2b, pp. 690 

and Bickel and Doksum (2001), Proposition 1.4.1 (a) and (b), pp. 34). Nevertheless, 

“(w)hen two variables are uncorrelated, they may be (and often are) 
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independent,”(Schield, 1995). This means that residuals r are often independent of 

E(X|S) or any function of S regardless of the data distribution. In our discussion, we do 

not make a distinction between these two concepts and we use independence and 

orthogonality interchangeably.  

 

III.2. Artificial Neural Networks (ANN) Approaches for Estimating 

Conditional Expectations 

There are many approaches that can be used to learn relationships (conditional 

expectations) in datasets. For example, one can try to fit a polynomial of an appropriate 

degree to the data. However, this approach suffers from two limitations. First, it is a 

parametric approach that requires a pre-judgment of the relationship before trying to fit it 

to the data. This proves difficult especially if there is no theoretical guidance (Fisher, 

1970). Second, it is affected by the curse of dimensionality (Bishop, 1995). Similarly, 

nonlinear regression requires the specification of the functional form before the 

estimation of parameters can begin. On the other hand, other approaches such as artificial 

neural networks (ANN) do not assume any pre-specified form of the relationship. In 

addition, although ANNs also face the problem of the curse of dimensionality, they are 

less affected compared to the polynomial approach (Bishop, 1995).  

There are many characteristics of neural networks architectures that make them 

appealing in estimating nonlinear and non-monotonic conditional expectations. First, 

ANN approaches have been proven to be global function estimators of nonlinear and 

non-monotonic continuous functions (Bishop, 1995; Hagan et al., 1996).  Second and 

more interestingly, they can be used to approximate the conditional expectation of the 
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network output O given the network input I (i.e. E(O|I)) when the minimized error 

function is the (mean) sum of squared errors function (MSE) and the network is used to 

map input I to output O (Bishop, 1995; Saerens, 1996; 2000). Saerens (1996) suggests 

that this is a fundamental mathematical statistics result based on estimation theory and 

can be found in many books such as Deutsch (1965), Meditch (1969) and Shao (1999). 

Bishop (1995) proves the above fact mathematically for the case of multilayer 

perceptron neural networks (MLP). Saerens (1996) does the same and emphasizes the 

importance of the assumption that the minimum error is indeed reached after the training. 

He also points out that many researchers arrive at the same conclusion. A few examples 

for the continuous case are White (1989) and Wan (1990). Examples for the binary case 

are Bourlard and Wellekens (1989), Ruck et al. (1990), Gish (1990), and Shoemaker 

(1991). For a general review, refer to Richard and Lippmann (1991). 

There are two more interesting facts about using the MSE function for estimating 

the conditional expectations. First, the ability of the neural networks to learn the 

conditional expectations is not affected by the characteristics of the noise (e.g. normal vs. 

non-normal) in the data (Saerens, 1996). Second, the ability to learn the conditional 

expectation when using MSE is not specific to the multilayer perceptron neural networks 

MLP and it is independent of the neural network architecture (Bishop, 1995). Actually, 

this fact is even applicable in architectures that are not classified as neural networks as 

long as they try to minimize MSE and they succeed in approaching the real minimum 

(Bishop, 1995; Saerens, 1996). 

(Multiple) Linear regression, which utilizes the concept of least squared errors, 

does a good job in estimating linear conditional expectations in normally distributed 
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datasets (where all relationships are linear). However, when applied to datasets 

containing nonlinear relationships, it does a poor job. This is because it assumes that 

relationships are linear and can be discovered by fitting lines that minimize the squared 

error. In this sense, the global minimum of the squared errors, which might be obtained 

by fitting some curves to the data, is not reached. As a result, (multiple) linear regression 

cannot be used as a mechanism to estimate conditional expectations when the 

relationships are not linear. This shows the importance of the assumption that the 

minimum error is indeed achieved after the estimation process stops. ANN algorithms do 

not assume any functional form that may hamper learning the true conditional 

expectation.  

The above discussion is important to our context. We can use any neural networks 

architecture based on MSE to estimate the required conditional expectation of the 

confidential attributes X given the non-confidential attributes S (i.e. E(X|S)) by mapping 

the input S to the output X regardless of the form of the conditional expectation 

(monotonic or (single-valued mapped) non-monotonic) or the characteristics of the error 

term. The main assumption is that the training procedure actually reaches, or at least 

approaches, the global error minimum.  

MLP neural networks suffer from the trap of local minimums that may limit their 

ability to reach the global minimum of the minimized error function. Consequently, the 

real conditional expectation may not be learned accurately. However, there are other 

neural networks architectures that can be used instead and do not suffer from the same 

problem. 
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Support Vector Machine (SVM) (Vapnik, 2000) and Least Squares Support 

Vector Machine (LS-SVM) (Suykens et al., 2002) are different neural networks 

architectures (Schèolkopf and Smola, 2003). SVM and LS-SVM are kernel-based 

methods (Schèolkopf et al., 1999; Shawe-Taylor and Cristianini, 2004). They utilize the 

kernel trick to implicitly map an input space into a higher dimensional space called the 

feature space. Then, well-known linear (and non-linear) learning algorithms can be 

applied on the feature space to learn relationships and patterns. The main two tasks, 

among others, that can be run in the feature space are regression and classification.  

SVM and LS- SVM do not suffer from local minimums that hinder optimization 

algorithms from reaching the global minimum of the cost function in the error space. This 

is because the cost function in the dual space (the main optimization space for (LS-) 

SVM cost functions) has a quadratic form with a unique global minimum (Suykens et al., 

2002). In this study, we use LS-SVM (Suykens et al., 2002) and its Matlab toolbox 

implementation, called LS-SVMlab1.5 (2003), to learn conditional expectations. 

However, any learning mechanism that is theoretically capable of capturing and learning 

non-monotonic conditional expectations (relationships) can be used in our proposed 

Relationship-Based  NM-EGADP masking approach (RBM).  

III.3. The Roles of the Residuals (r) 

III.3.1. Residuals Role in Defining Relationships among Attributes 

The residuals r obtained from estimating E(X|S) (see Equation (3.4) in Section 

III.1) play important roles in defining two main groups (classes) of relationships: (a) 

relationships between non-confidential attributes S and confidential attributes X (i.e. 

E(X|S)), and (b) relationships among confidential attributes X (i.e. E(Xi|Xj) or E(Xj|Xi)). 
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For simplicity and without losing generality, we limit our discussion to two confidential 

attributes X ( iX  and jX , where , 1  and i j q i j= ≠Κ ) and the non-confidential 

attributes S. The residuals r (ri and rj) are obtained from the following two equations: 

 ( )i i iX E X r= +S  (3.5) 

and 

 ( )j j jX E X r= +S . (3.6) 

In our proposed masking methods, masked variables Y (Yi and Yj) are generated 

as follows: 
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where e (ei and ej) are noise terms that try to preserve certain characteristics of the 

residuals r (ri and rj) to maximize data utility. In addition, the noise terms e are generated 

to satisfy security requirements and to avoid providing extra information about 

confidential attributes X beyond what is known about them from the non-confidential 

attributes S. 

In the proposed masking methods, we specify E(Yi|S) = E(Xi|S) and E(Yj|S) = 

E(Xj|S) (see Equations (3.7) and (3.8)) so that relationships between confidential 

attributes X ( iX  and jX ) and non-confidential attributes S are automatically reproduced 

in masked datasets between masked attribute Y ( iY  and jY ) and non-confidential 

attributes S. The only required condition is that e should be orthogonal to S or any 

function of S, similar to residuals r. Except for the orthogonality, the added noise terms e 
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are not required to mimic every aspect or characteristic of the residuals r to preserve this 

class of relationships.  

However, relationships among confidential attributes X (E(Xi|Xj) and E(Xj|Xi))2 

are not directly reproduced in masked datasets by only fixing conditional expectations 

E(X|S) while masking. In addition to the role of conditional expectations E(X|S), E(Xi|Xj) 

depends heavily on the characteristics of the added  noise (ei and ej). Ideally, we want the 

characteristics of the added noise e (ei and ej) to be exactly the same as the characteristics 

of original residuals r (ri and rj) in terms of two related requirements: (a) orthogonality 

(mainly for maintaining relationships between X and S in masked datasets), and (b) joint 

distribution (mainly for maintaining relationships among confidential attributes X in 

masked datasets). Although the former is achievable, the latter is not always feasible and 

achievable. Therefore, we want to get as close as possible to the ideal case to maximize 

the data utility. 

But before we discuss these data utility requirements further, we explore whether 

other possible types of residuals that result from different forms of estimation or 

(conditional) expectations can be used in masking methods to maintain relationships 

(especially among confidential attributes X) without violating other requirements. First, 

let us consider the set of residuals resulted from subtracting the expectations of the 

confidential attributes E(X) from the confidential attributes X. In this case, all 

relationships among X are completely captured by this set of residuals. However, this set 

                                                 

2 For simplicity of discussion, we shall only talk about E(Xi|Xj) initially, with the assumption that it is a 
single-valued mapping. 
 



 50 

of residuals captures none of the relationships between X and S, and there is no easy way 

to relate them to conditional expectations E(X|S). 

Another idea is to use the residuals from fitting E(Xi|SXj) . One problem with 

these residuals is that they do not satisfy an important security requirement: we cannot 

use any function of confidential attributes X directly in generating masked attributes Y 

(Muralidhar and Sarathy, 2003c; 2006b). Clearly, residuals obtained from E(Xi| Xj) are 

not suitable either since they inherit the problems of the last two types of residuals: they 

do not carry any information about non-confidential attributes S, and they violate the 

security requirement of avoiding conditioning on confidential attributes X.  

Therefore, we can only use functions of non-confidential attributes S as specified 

in Equations (3.5) and (3.6). In this case, E(Xi|Xj) is captured by the two (orthogonal) 

components in Equations (3.5) and (3.6): E(X|S) and r. Since E(X|S) is the fixed part 

during masking (refer to Equations (3.7) and (3.8)), the added noise set e (i.e. the 

dynamic or changed part) should mimic the characteristics of the residual set r to 

maintain the relationships among masked attributes Y as they exist among confidential 

attributes X. There are two dimensions for similarity: orthogonality and joint 

distributions.  

In Equations (3.5) and (3.6), residuals r (ri and rj) are orthogonal to S and any 

function of S when the conditional expectations E(X|S) are correctly estimated (Bickel 

and Doksum, 2001, Proposition 1.4.1 (a) and (b),  pp. 34; Rhodes, 1971, Proposition 2b, 

pp. 690). Notice that both E(Xi|S) and E(Xj|S) are functions of S. This is the main concept 

in mean square estimation. It is called “the orthogonality principle” (Gray and Davisson, 

2004; Papoulis and Pillai, 2002). Interestingly, the orthogonality principle generally holds 
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true when the conditional expectations (e.g. E(Xi|S) and E(Xj|S)) are nonlinear functions 

of the data (here it is S) and it is called “Nonlinear Orthogonality Rule” (Papoulis and 

Pillai, 2002).  

From a data utility perspective, for e to resemble the characteristics of r, e should 

be orthogonal to S or any function of S. Otherwise, relationships between X and S will 

not be reproduced in masked datasets between Y and S. The orthogonality principle also 

has a role to play in determining E(Xi|Xj). Since the residuals r (ri and rj ) are orthogonal 

to the conditional expectations E(X|S) (both E(Xi |S) and E(Xj |S)), E(Xi|Xj) is defined 

separately by the relationships between E(Xi |S) and E(Xi |S), and by the  relationships 

between ri and rj. Notice also that the conditional expectations E(Xi |S) and E(Xj |S) are 

used in generating the masked variables Y. In addition, the added noise terms e are 

required to be orthogonal to these conditional expectations, similar to r. Therefore, the 

similarity of the characteristics of relationships between ei and ej and the characteristics 

of relationships between ri and rj determine how well the relationships between masked 

attributes Y (Yi and Yj) are maintained as they exist between original attributes X (Xi and 

Xj). 

Ideally, we want the marginal and joint distributions of added orthogonal noise 

terms e to be the same as the marginal and joint distributions of residuals r. Statistically 

speaking, this means ( ) ( )i if e f r= , ( ) ( )j jf e f r=  and ( ) ( ), ,i j i jf e e f r r= . 

Although marginal distributions can be preserved even when they are not distributed 

according to well-known standard distributions using the concept of rank-based 

replacement “shuffling” (Muralidhar and Sarathy, 2003a; 2006b), joint distributions are 

more difficult, if not impossible, to preserve since they are usually unknowable in 
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practice. The only exception might be when residuals r is multivariate normally 

distributed. Hence, some approximation mechanisms for joint distributions are needed.  

As discussed earlier, the relationships among confidential attributes are explained 

by two orthogonal components: E(X|S) and r. The greater the variation and pattern 

among confidential attributes X explained by E(X|S), the less variation and pattern 

among confidential attributes X explained by r. In other words, the relationships among 

confidential attributes X can be very difficult (i.e. non-monotonic relationships) to 

capture directly at the attributes level (especially since we cannot condition on 

confidential attributes for security reasons) and to reproduce using existing masking 

methods as we saw earlier. Nevertheless, dividing the relationships between X and S into 

conditional exceptions and residuals can simplify the situation. First, this helps us to 

automatically reproduce relationships between non-confidential attributes S and 

confidential attributes X in masked datasets. Second, based on the variation and pattern 

explained by E(X|S), what is left in r can be simpler relationships (monotonic nonlinear, 

linear, or even no relationships) even when the relationships among confidential 

attributes X are non-monotonic. 

When the relationships in r are simple relationships, joint distributions of 

residuals r can be approximated using some approximation mechanisms used by the 

adapted methods at the attributes level. Most of the current masking methods are 

correlation-based. They try to maintain and reproduce covariance matrices of original 

datasets in masked dataset. In our adaptation of these masking methods, we try to 

reproduce the covariance matrices at the level of residuals r. In this context, we derive a 

very important result: 
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 ( ) ( ) ( ), ( ), ( ) ,i j i j i jCov X X Cov E X E X Cov r r= +S S . (3.9) 

This result shows that the RBM approach always works when the relationships 

among X are linear, regardless of the types of relationships between X and S: linear, 

monotonic nonlinear, or non-monotonic. It might also suggest that relationships among X 

can be preserved regardless of their types (monotonic or non-monotonic) as long as the 

patterns and relationships among residuals r are simple (linear or no relationships). This 

is because simple patterns among residuals r may suggest that the more complex pattern 

among X is captured by the relationships among E(X|S) (i.e. E(Xi|S) and E(Xj|S)). 

Moreover, these simple patterns among r can be preserved by just replicating their 

covariance matrix among the independent noise. The proof of this important result (i.e. 

Equation (3.9)) is presented in Appendix B for both the case of multivariate normal data 

and the general case.   

To recap, there are four possible types for the relationships among residuals r: (a) 

no relationships (i.e. residuals are orthogonal to each other), (b) linear relationships, (c) 

monotonic nonlinear relationships, and (d) non-monotonic relationships. Regardless of 

the type of relationships among confidential attributes X (including non-monotonic 

relationships), when relationships between conditional expectations E(X|S) (E(Xi|S) and 

E(Xj|S)) explain most of the variation and pattern in the relationships among confidential 

attributes X, the remaining variation and pattern explained by relationships among 

residuals r can be simpler (monotonic linear or no relationships). In this case, when we 

add orthogonal noise terms e with the same (Pearson-based) covariance matrix of 

residuals r to conditional expectations E(X|S), we approximate the joint distribution of r 

and replicate it in e. This will cover cases (a) and (b), and approximate (c) if it slightly 
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deviates from linearity. Our proposed masking methods do not cover the last case (i.e. 

(d)).  

III.3.2. Role of Residuals in Guiding Security Requirements 

In original datasets, the conditional expectations E(X|S) are the deterministic 

component of the relationships between the non-confidential attributes S and confidential 

attributes X while the set of residuals r is the random component. In addition, the 

variance of a confidential attribute Xi can be written as (see Proposition 1.4.1 (c), pp. 34 

in (Bickel and Doksum, 2001)): 

 ( ) ( )( ) ( )i i iVar X Var E X Var r= +S . (3.10) 

In the RBM approach, the set of residuals r is the main factor in defining the 

characteristics of original datasets in terms of security. For example, when there are no 

residuals (i.e. ( ) 0Var =r ) in original datasets, there is no security in the data with 

which to begin. In this case, releasing any data should be avoided.  

When there is a random component (i.e. residual set r with ( ) 0Var >r ), a 

possible secure random noise e can be generated and added to E(X|S) to generate masked 

datasets. This secure noise set e is generated to be orthogonal to the residuals set r given 

S. In other words, e should be orthogonal to X given S. The orthogonality condition 

ensures that e does not provide more information on confidential attributes beyond what 

is intended originally and specified by the characteristics of original datasets. Notice that 

the greater the variation residuals set r has, the greater the security. 

Sometimes, the amount of variation in the residuals r might not be enough to 

allow the RBM masking methods to work effectively. In other words, the variation in 

residuals r may explain a very small portion of the variation in the confidential attributes 
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X compared to the variation explained by the deterministic part E(X|S). In this case, the 

NM-EGADP masking methods do not provide effective protection. We suggest the 

security index (SI) measure for variable Xi to assess whether residuals ri explain enough 

of the variation in Xi for effective masking: 

 ( )
( )
( )

100i
i

i

Var r
SI X

Var X
= ×  (3.11) 

where 0 percent represents no security at all to begin with since Xi is completely a 

deterministic function of S (i.e. Xi = E(Xi |S)), and 100 percent represents a complete 

random relationship where Xi and S are independent and E(Xi |S) reduces to E(Xi).  

Therefore, after we estimate relationships between X and S, we need to calculate 

this index for every confidential attribute. The acceptable level of SI can be different for 

every Xi. Nevertheless, the SI measure should represent a good balance between a useful 

relationship (between Xi and S) that we want to preserve and sufficient variation in the 

residuals to enable the RBM methods to work effectively.   

Nevertheless, the sensitivity of confidential attributes along with the amount of 

variation in every confidential attribute Xi also plays an important role in determining the 

applicability of the RBM approach. For example, a variance of 50 (i.e. Var(Xi)) might be 

considered large when Xi represents age, while a variance of 500 might be considered 

small when Xi represents annual salary in an enterprise. In the latter, the variation in the 

confidential attribute annual salary is not enough to mask effectively using the RBM 

approach regardless of what SI returns. Hence, the characteristics of datasets and their 

confidential attributes should be evaluated case by case based on both the sensitivity and 

variation of confidential attributes X as well as the security index (SI) before applying the 

RBM approach.  
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When the variation in confidential attributes is enough for their sensitivity level to 

be masked effectively, but the SI measures are low, original datasets should not be 

masked and released. Nevertheless, some compromises are possible. The following are 

just two examples of possible compromises. We may add independent noise e with more 

variance than the variance of original residuals r. This may affect the relationships among 

confidential attributes. However, this approach will not affect the relationships between 

X and S. In addition, removing one or a few non-confidential attributes S may allow for 

more variance in the residuals r. In this case, one may try to remove the least important 

non-confidential attribute S and assess its impact on r. 

III.3.3. Summary 

In summary, we want e to mimic the characteristics of residuals r to maximize 

data utility, including the joint distribution of r and their orthogonality to S and any 

function of S.  Although satisfying orthogonality is achievable, as will be seen when we 

discuss masking methods implementation, reproducing the joint distribution of r in e is 

more difficult, if not impossible, except for some special cases. One special case is that r 

is a multivariate normal. Hence, some approximation mechanisms are needed. Regardless 

of the relationships among confidential attributes X, relationships among the residuals r 

can be independent, linear, monotonic nonlinear or non-monotonic. We use a covariance-

based approximation mechanism to cover at least the first two situations.  From a data 

security perspective and in addition to the above data utility requirements, the added 

noise e should be orthogonal to X given S.  
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CHAPTER 

IV. IMPLEMENTATION OF RELATIONSHIP-BASED  MASKING 

 This chapter builds upon the last two chapters and introduces the algorithmic 

framework of the four Relationship-Based  NM-EGADP3 (Non-Monotonic EGADP) 

masking methods by discussing the implementation of two of them. We also briefly 

explain the main difference between the four Relationship-Based  NM-EGADP masking 

methods. We conclude this chapter by discussing the assumptions behind these masking 

methods.  

IV.1. NM-EGADP Perturbation and NM-EGADP Shuffling Masking 

Methods 

In this study, we propose four interrelated, adapted masking methods that have the 

ability to capture and maintain non-monotonic relationships besides other relationships 

(i.e. monotonic relationships: linear or nonlinear) in masked datasets once the 

assumptions are met. To the best of our knowledge, no PPE or masking method 

(perturbation or shuffling) has been developed to tackle this issue. In addition, the new 

proposed methods have the advantage of satisfying data security while providing data 

utility for PPE.  

                                                 

3 We may use RBM, NM-EGADP, or RBM NM-EGADP (abbreviated as shown or the full name) to refer 
to the approach we suggest in this study. These terms are interchangeable. 
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The four masking methods are numbered in ascending order. We abbreviate them 

as Method 1 to Method 4. Since they are very similar, we only present and discuss two of 

them in this subsection: NM-EGADP Perturbation (Method 1) and its variant NM-

EGADP Shuffling4 (Method 2). We briefly explain the main difference between the four 

Relationship-Based  NM-EGADP masking methods at the end of this subsection. More 

discussion and a list of all four algorithms for proposed masking approaches can be found 

in Appendix C.   

“NM-EGADP” stands for nonlinear Non-Monotonic EGADP approach. The 

“NM” part of the methods’ names is used to indicate ability of these new adapted 

methods to preserve nonlinear non-monotonic relationships.  The “EGADP” part in the 

name is used to point to the similarity of the general methodological framework among 

these methods and the EGADP masking method (Muralidhar and Sarathy, 2005b). 

Although it is desirable that masking methods maintain linear measures such as 

correlation and covariance matrices exactly in masked data, it is not required for PPE 

applications. Nevertheless, these masking methods usually generate masked data with 

similar linear measures.  

“Shuffling” indicates the use of rank-based ordering of original values of either 

residuals or confidential attributes using the rank order of orthogonal (or independent) 

scaled noise and/or perturbed values, respectively. The shuffling approach has many 

advantages (Muralidhar and Sarathy, 2003a; 2006b) already mentioned in Section II.2.3. 

This topic will be revisited briefly at the end of this subsection. In addition, we provide a 

step-by-step procedure for shuffling in Appendix C, in which we also demonstrate the 
                                                 

4 The term “Shuffling” is first introduced in the masking literature by Muralidhar and Sarathy (2003a; 
2006). 
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shuffling procedure using a hypothetical example. We refer to the shuffling procedure by 

the operator “Shuffle A by B” in the proposed algorithms. 

As mentioned earlier, the Relationship-Based  NM-EGADP Masking (RBM) 

approach can be generally thought of as a three-stage approach: relationships, residuals, 

and masking. In the first stage, we estimate and learn the relationships between X and S. 

In the second stage, we calculate the residuals from the previous stage and we analyze 

them for relationships and patterns. In addition, we check the residuals using the security 

index (SI) to see whether they have enough variation for effective application of the RBM 

masking. At this stage, we also generate orthogonal noise with characteristics that 

resemble the characteristics of the residuals. In the final stage, we mask the confidential 

attributes X based on the characteristics of the residuals.  

Assume that we have p non-confidential (numeric and categorical) attributes S 

and q confidential (numeric) attributes X. The relationships between these p+q variables 

involve non-monotonic relationships. We want to mask the confidential attributes X 

without altering or destroying the relationships in the original dataset.  The NM-EGADP 

perturbation and the NM-EGADP shuffling algorithms are (note that the presentation of 

these algorithms is different than the presentation in Appendix C): 

Stage I: Relationships: 

1. Regress X on S by training q Least Squares Support Vector Machines (LS-SVM)  

neural networks N1j (one for each individual confidential attribute X): 

 ( )( )1 ~ | ,    1, ,j jN E f X j q=S Κ . (4.1) 
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N1 (=[N11,…, N1q]) learns the function of the expected value of the conditional 

distribution f(X|S) as discussed by Bishop (1995) and others. Refer to Section 

III.2 for more details. 

2. Use the set of trained neural networks N1 to calculate the following: 

a. The set of expected values 1 ( [ , , ])qµ µ µ= Κ of the conditional distribution 

f(X|S) evaluated at S values where:  

 ( )( ) ,    1, ,j jE f X j qµ = =SS Κ . (4.2) 

Stage II: Residuals: 

b. The orthogonal residuals set r (=[r1,…, rq]) where: 

 ( )( )   -  ,    1, ,j j jr X E f X j q= =SS Κ . (4.3) 

3. Compute the covariance matrix of the first residuals set ∑ r . This covariance 

matrix will be used later to scale another orthogonal set of residuals and make its 

covariance matrix the same as ∑ r . 

Stage III: Masking: 

4. Generate q independent random variates V (=[V1,…, Vq]). 

5. Regress V on both S and X by training another set of q LS-SVM neural networks 

N2 (=[N21,…, N2q]) where: 

 ( )( )2 ~ , ,    1, ,j jN E f V j q=S X Κ . (4.4) 

6. Use the set of the trained neural networks N2 to calculate a second orthogonal 

residuals set b (=[b1,…, bq]) where: 

 ( )( ) ,
   -  , ,    1, ,j j jb V E f V j q= =S XS X Κ . (4.5) 
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7. Compute the covariance matrix of the second residuals set ∑ b . Note that although 

the new set of residuals b is orthogonal to S, X, and r, the covariance matrix ∑ b is 

different than ∑ r . 

8. Compute a new residuals set e by scaling the (normalized) set of the orthogonal 

residuals b to have the same covariance matrix as the covariance matrix  ∑ r of 

original dataset: 

 ( ) ( )0.5 0.5−= ∑ ∑r be b . (4.6) 

9. Calculate the new perturbed attributes Y: 

 ( )Eµ= + = +Y e X S e . (4.7) 

Therefore: 

 ( )( )~ E f +Y X S e . (4.8) 

Step 9 ends the NM-EGADP perturbation algorithm. The NM-EGADP shuffling 

algorithm has the following extra step: 

10. Shuffle X by Y to compute shuffled attributes Yshf. This is done by ordering 

original values of individual confidential attributes X according to the rank-order 

of the corresponding perturbed attributes Y (see Appendix C for more details). 

This is possible because we utilize the expectation of the conditional distribution 

f(X|S) plus an orthogonal noise term e that resamples the covariance matrix of the 

residuals of the original dataset while the assumption is that the noise terms have 

constant variance and linear (or simple) patterns left among them (these 

assumptions are discussed later).  

The perturbed attributes Y or the shuffled attributes Yshf then can be released (along the 

non-confidential attributes S) instead of the original confidential attributes X. 
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 In Step 1, the algorithm tries to learn the expectation of the conditional 

distribution f(X|S) using  (4.1) (i.e. E(f(X|S)) or simply E(X|S)). The estimated 

conditional expectation is next evaluated at S values in Step 2-a using (4.2). This 

evaluation (the calculated u) is used in Step 9 to generate the perturbed values Y by 

adding a zero-mean noise term e, which is orthogonal to X given S, to u. This 

automatically minimizes disclosure risk in the perturbed values and, accordingly, in the 

shuffled values (Step 10). As discussed earlier in Section III.1, masking methods satisfy 

security requirements when they generate masked attributes Y using only a random 

function of non-confidential attributes S and independent noise (Muralidhar and Sarathy, 

2006b). However, this does not imply that the perturbed (and accordingly, the shuffled) 

variables necessarily maximize data utility unless the random function is derived from the 

(estimated) conditional distribution f(X|S). Nevertheless, since NM-EGADP employs the 

conditional expectations E(X|S), the resulting perturbed and shuffled variables should 

have a better data utility than any random function of S. The better the indirect estimation 

of the conditional distribution f(X|S) in terms of conditional expectations, the better the 

data utility. If the conditional expectation is calculated accurately, it would represent the 

best mean squared error estimator ( )f S for X according to the theory of estimation and 

detection (Bickel and Doksum, 2001; Graybill, 1976; Jelenkovic, 2001; Shao, 1999): 

 2 2[ ( )] [ [ ]]E f E E− ≥ −X S X X S . (4.9) 

Bishop (1995) points out and proves the possibility of utilizing neural networks as 

a framework to model the function of expected values of conditional probability density 

function  f(X|S) (or simply the conditional expectations E(X|S)) by mapping form S to X. 

Please refer to Section III.2 in this study and to Section 6.1.3 (pp. 201-206, Equation 
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(6.46)) and its discussion in Bishop (1995) for more details. “For many regression 

problems, the form of network mapping given by the conditional average … can be 

regarded as optimal,” Bishop (1995; pp. 205) said. The above and other ANN 

characteristics discussed in Section III.2  make the use of ANN and more specifically LS-

SVM in our masking methods a sound choice.   

 Steps 2-b and 3 of the NM-EGADP shuffling algorithm are used to compute the 

covariance matrix ∑ r of the residuals set r. ∑ r is used for rescaling in Step 8. The goal 

of Steps 4 to 6 is to create a new residuals set b that is orthogonal to X given S. Because 

of this orthogonality, the use of b in Step 9 to create perturbed attributes Y is possible and 

meets the minimum disclosure risk criterion. However, the covariance matrix 

∑ b (calculated in Step 7 and used in Step 8) is different than the covariance matrix of the 

original residuals set ∑ r , and this may lead to a poor data utility mainly among 

confidential attributes X. The goal of Step 8 is to create new orthogonal residuals set e 

that has a covariance matrix equal to ∑ r . As shown in Burridge (2003), this is done by 

rescaling the residuals set b in two sub-steps. First, b is normalized by multiplying it 

by( ) 0.5−∑ b . Second, the result of the previous sub-step is scaled by multiplying it 

by( )0.5∑ r .  Note that (.)0.5
 denotes a square-root matrix (Johnson and Wichern, 1998, pp. 

67). 

The new residuals set e is used in Step 9 to create new perturbed attributes Y. 

These masked values can be released, but some differences in the marginal distributions 

usually occur (such as discrepancies in the range and the variance of the original values). 

Shuffling overcomes such problems. Perturbed attributes Y are used as a basis to shuffle 

the original confidential attributes X to generate the shuffled attributes Yshf. Yshf 
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attributes satisfy both minimum disclosure risk and maximum (but not ideal) data utility, 

and Yshf along with S are ready to be released. As Muralidhar and Sarathy (2006b) point 

out, shuffling has three advantages.  First, the shuffling approach maintains marginal 

distributions. This leads automatically to the second advantage: shuffling avoids changes 

in the variance. Third, shuffling can be used even if the residuals are not normal. 

We conclude our discussion of the NM-EGADP shuffling algorithm with a few 

remarks. Note that in Steps 1 and 5, the assumption is that good training parameters have 

been chosen in a way that balances the trade-off between bias and variance in the context 

of training neural networks. Because of this dependency on training parameters (and the 

nature of the nonlinear monotonic or non-monotonic relationships) and the tendency of 

ANN approaches to over-fit the data, we should not expect linear measures, such as 

covariance and linear correlation measures, of original datasets to be maintained exactly 

in perturbed (or shuffled) datasets, as what we usually get using the original EGADP 

algorithm. On the other hand, although EGADP maintains these linear measures exactly, 

it destroys any nonlinear relationships (monotonic or non-monotonic) that may exist in 

original datasets by linearizing them. This causes biases related to relationships and leads 

to a poor data utility for PPE.  Further, if the nature of relationships among variables is 

nonlinear, then linear measures may be meaningless.  

We conclude this subsection by mentioning the main difference between the two 

RBM methods (Method 1 and Method 2) and the other two masking methods (Method 3 

Method 4: Residuals-Shuffled NM-EGADP Perturbation and Residuals-Shuffled NM-

EGADP Shuffling). In Method 3, we shuffle the residuals based on the scaled orthogonal 

noise instead of shuffling at the variables level as in Method 2. In Method 4, we shuffle at 
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both levels: residuals level and variables level. Refer to Appendix C for more 

information.   

IV.2. Assumptions of the Relationship-Based  Masking Methods  

The assumptions underlying RBM methods are critical for defining the 

applicability of the RBM methods and drawing their limitation boundaries. As usual, the 

assumptions should be theoretically driven or practically guided to be sound.   

The proposed RBM methods depend on two components to generate masked 

attributes: conditional expectations E(X|S) and residuals r. There are some assumptions 

related to these two components. First, the estimation mechanism, LS-SVM in our case, 

should (be able to) learn the true conditional expectations E(X|S). This is critical from 

two perspectives. Incorrectly learned relationships (conditional expectations E(X|S)) from 

original data lead to correspondingly incorrectly generated relationships E(Y|S) in 

masked data. Hence, data utility is affected. In addition, residuals r will not be orthogonal 

to the true conditional expectations if it can be estimated later. Hence, data security is 

adversely affected. 

This leads us to the first assumption; namely, all relationships E(X|S) among non-

confidential attributes S and confidential attributes X should be monotonic or (single-

valued mapping) non-monotonic. As discussed in Section III.1, multi-valued mapping 

hinders the estimation mechanisms from learning the true conditional expectations. 

In Section III.3, we talked about the roles residuals r plays in guiding and 

determining the data utility and data security requirements. We also mention the 

important rule that residuals r plays in reproducing relationships among confidential 

attributes X in masked data. In addition, we reached an interesting result relating the 
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covariance matrices of E(X|S) and r to the covariance matrix of confidential attributes X. 

We also provide its proofs in Appendix B. Hence, the proposed masking methods try to 

maintain the covariance of the independent added noise terms e as the covariance of 

residuals r to approximate the distributions of residuals.  

When the residuals are independent, reproducing the covariance of r in e reduces 

to reproducing variances of residuals r. However, maintaining covariance matrices can 

result in maintaining linear relationships regardless of the joint distributions of r although 

it does not maintain original joint distributions. Therefore, we assume linearity (linear 

relationships and patterns) among residuals r for RBM methods to work.  

Nevertheless, even when the relationships among confidential attributes X are 

non-monotonic, patterns and relationships among r can be simple when the patterns and 

relationships among conditional expectations E(X|S) shape (or account for) most of the 

patterns and relationships among X. In this case, even monotonic nonlinear relationships 

among r, especially when they do not deviate largely from linearity, may work. Note that 

in two masking methods (Method 3 and Method 4 in Appendix C), the residuals are 

shuffled and this may compensate for any moderate deviation from linearity given that 

the residuals have constant variance.  

Thus, the second assumption is linearity among residuals r, which means that the 

patterns left among residuals must be simple patterns (no relationships or linear ones). 

Nevertheless, our expermintal results (Chapter VII) suggest that a little violation in this 

assumption, such as monotonic nonlinear relationships with moderate deviation from 

linearity or most of the variation among X accounted for by E(X|S), might not degrade 
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significantly the performance of the RBM methods, especially the ones employing 

shuffling refinement.  

Finally, since the RBM approach utilizes independent normal noise terms with 

constant variance in masking the confidential attributes X, the third assumption for RBM 

to work is that residuals r should have constant variance. This assumption is basically 

required for maintaining the relationships among X and not for maintaining the 

relationships between X and S.   

The assumption of single-valued mapping can be assessed using scatter plots. The 

linearity and constant variance assumptions can also be checked graphically. Actually, 

Hair et al. (1998) suggest that the constant variance (homoscedasticity) assumption “is 

best examined graphically” (pp. 74), and mention that scatter plots are “the most common 

way to assess linearity” (pp. 75). In addition, they discuss some statistical tests for 

assessing some assumptions. For more details about assumptions assessment and other 

related topics, see Chapter 2 titled “Examining Your Data” and Chapter 4 in (Hair et al., 

1998).   
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CHAPTER 

V. ASSESSMENT MEASURES FOR THE RBM APPROACH 

 For any masking method to be practical, it should prove its usefulness and 

effectiveness in terms of data security and data utility. The first step in this process is to 

define the possible security threats one wants to minimize and the data utility one wants 

to maximize. We already discussed these issues in Section II.2. The second step is to find 

or develop a suitable set of objective measures to assess the effectiveness and usefulness 

of the masked methods based on the provided data security and utility requirements.  

V.1. Data Security Measures in PPE 

The MSE security measures, proposed by Muralidhar and Sarathy (2005a; 2006a) 

based on Graybill (1976), are the main security measures we will use for evaluating value 

disclosure (confidentiality). They naturally fit in the context of estimated relationships 

and conditional expectations using MSE. To recall, masked attributes Y should be 

independent of confidential attributes X given non-confidential attributes S (Muralidhar 

and Sarathy, 2003c). In addition, S should always be a better predictor for X than Y. Both 

mean that a snooper will always use S to obtain more accurate prediction results. 

However, if (s)he tries to combine Y with S to improve the prediction of X, (s)he gains 

nothing (avoid partial and inferential disclosure). These conditions can be translated in 

terms of the MSE in the following inequalities and equalities (Graybill, 1976; Muralidhar 

and Sarathy, 2005a; 2006a): 
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 ( )[ ] ( )[ ]2 2,E E E E− = −X X S X X S Y  (5.1) 

and 

 ( )[ ] ( )[ ]2 2E E E E− ≤ −X X S X X Y . (5.2) 

The above measures assume that real conditional expectations are correctly estimated. 

From another perspective, when all relationships are linear as in the case of 

multivariate normal datasets, there are also corresponding security measures, proposed by 

(Sarathy and Muralidhar, 2002), for the above mentioned MSE security measures. These 

measures are presented in terms of canonical correlation CC: 

 ( ) ( ),CC CC=X S X S Y  (5.3) 

 ( ) ( )CC CC≥X S X Y . (5.4) 

 Although these CC security measures are mainly for linear relationships, they can 

be adapted for nonlinear monotonic or non-monotonic relationships that completely 

consist of piecewise linear relationships. In this case, we call them piecewise CC. These 

piecewise measures will not be used in this dissertation since they are only applicable in 

the above special case. The only exception is when we talk about the performance of our 

methods on the motivation example in which non-monotonic relationships completely 

consist of piecewise linear relationships. 

For assessing identity disclosure or re-identification risk (privacy), we use 

probabilistic record linkage (Winkler, 2004a; b) for re-identifying individuals from their 

masked values.  

V.2. Data Utility Measures in PPE 

Unlike data security measures, it is difficult to provide a global measure for data 

utility for every possible use or analysis because just enumerating and accounting for all 
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possible uses of a released dataset is not possible (Domingo-Ferrer et al., 2001; 2003). 

Therefore, data utility measures are usually derived based on a specific anticipated use or 

analysis. Privacy-Preserving Estimation (PPE) is no exception. Regression and estimation 

tasks are about learning conditional expectations and quantifying relationships (Rud, 

2001) between a dependent variable and one or more independent variables.  A PPE 

algorithm succeeds when regression models obtained from masked datasets are the 

“same” as (or very similar to) the corresponding regression models obtained from 

original datasets. This defines the data utility in PPE informally. However, we need to 

quantify this definition in terms of similarity measures of maintained relationships.  

As seen earlier in Subsection II.3.1, existing masking methods attempt to preserve 

some aggregate (usually correlation-based) measures in masked datasets to be the “same” 

as the corresponding aggregate measures of original datasets. These aggregate measures 

are also used as data utility measures. Unfortunately, there is no aggregate measure that is 

able to capture non-monotonic relationships. Hence, we propose two types of possible 

general data utility measures for privacy-preserving regression: parameter-based 

measures and prediction-based measures. Although the main focus of these measures is 

non-monotonic relationships, they can be used for all three types of relationships. 

Parameter-based data utility measures are based on the concept that when the 

characteristics and the relationships of the masked dataset resemble the characteristics 

and the relationships of the original dataset, fitting a specific regression model on both 

datasets should generate very similar estimated parameters. This is regardless of whether 

the model is mis-specified or well-specified. Nonlinear (and linear) regression estimation 
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procedures found in standard statistical and mathematical packages such as SAS, SPSS, 

and Matlab can be used for this purpose.    

When one wants to estimate a regression model using non-parametric estimation 

techniques such as ANN (also known as black-box techniques), parameter-based data 

utility measures cannot be used because it is harder to extract and compare parameters 

from built models. Instead, we propose prediction-based data utility measures. 

Relationships are maintained in masked datasets when two regression models, one 

estimated from the original dataset and the other from the masked dataset, using the same 

estimation technique have the “same” prediction power when both models are evaluated 

on any specific dataset. Similar to Muralidhar and Sarathy (2005a), MSE can be used for 

measuring the similarity of the predication power of the two models. Hence, prediction-

based data utility measures can be based on MSE. Notice the applicability of these 

measures for regression problems in general, even in the case of monotonic (linear or 

nonlinear) relationships.  

A normalized form of the MSE and SSE measures for the predictive power of 

regression models involving nonlinear relationships is the following form of coefficient 

of determination R2 (Kirkup, 2003, pp. 74): 
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 (5.5) 

where ia is the actual value of a dependent random variable A, îa is the corresponding 

predicted (or fitted) value using a specific nonlinear regression model, and a is the mean 

of the dependent variable A. The values of this measure lie between 0 and 1. It can easily 

be converted into a percentage, which facilitates the comparison process. Thus, we can 
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use the above R2 measure to cast our prediction-based MSE data utility measures (and 

even MSE security measures) into a normalized easy-to-compare form.  

The number of all possible combinations of regression models that can be built 

from any dataset is typically large and grows rapidly with the number of variables. 

Consider the motivation example in Section I.3. There are four variables: two non-

confidential attributes (S1 and S2) and two confidential attributes (X1 and X2). If we take 

any variable as a dependent variable and calculate all combinations of the other three 

variables as independent variables, then we will have seven possible models for just a 

single dependent variable (DV). Since any variable from the four variables can be a 

dependent variable, there are 28 models in total. If we ignore calculating the measures for 

the two cases we are sure will not change (i.e. relationships between non-confidential 

attributes: S1|S2 and S2|S1), then we will have 26 models we need to build from original 

datasets and compare with the corresponding 26 models we built from masked datasets. 

Table 2 below shows the 14 possible combinations of IV for the two confidential DV (X1 

and X2). 

One possible approach is to calculate the data utility measures for every 

Table 2. Possible different combinations of relationships to be maintained when a confidential attribute is 
a dependent variable in the store motivation example (2 X and 2 S). k is the model number. 

Confidential Dependent Variable (DV) Type 
of IVs No X1 X2 

1 ( ) ( )1 1 2 2 1 1 2 2| , , | , ,k kE X S S X E Y S S Y=  ( ) ( )2 1 2 1 2 1 2 1| , , | , ,k kE X S S X E Y S S Y=  
2 ( ) ( )1 1 2 1 1 2| , | ,k kE X S X E Y S Y=  ( ) ( )2 1 1 2 1 1| , | ,k kE X S X E Y S Y=  Mixed 

X & S 
3 ( ) ( )1 2 2 1 2 2| , | ,k kE X S X E Y S Y=  ( ) ( )2 2 1 2 2 1| , | ,k kE X S X E Y S Y=  

Pure 
X 4 ( ) ( )1 2 1 2| |k kE X X E Y Y=  ( ) ( )2 1 2 1| |k kE X X E Y Y=  

5 ( ) ( )1 1 2 1 1 2| , | ,k kE X S S E Y S S=  ( ) ( )2 1 2 2 1 2| , | ,k kE X S S E Y S S=  

6 ( ) ( )1 1 1 1| |k kE X S E Y S=  ( ) ( )2 1 2 1| |k kE X S E Y S=  Pure 
S 

7 ( ) ( )1 2 1 2| |k kE X S E Y S=  ( ) ( )2 2 2 2| |k kE X S E Y S=  
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individual model (every possible relationship) and then find the average of all these 

individual models. However, this approach will hide the importance of relationships at 

the individual level and may not be the best approach. Alternatively, we can take a 

pragmatic approach that shows how well the relationships are preserved at the individual 

level for some specific relationships. Thus, we can calculate MSE or the R2 of the 

prediction-based (MSE) data utility at the following “representative” settings, for 

example: 

• R2 (X1|S) = R2 (Y1|S)   represents the relationship between 

confidential and non-confidential attributes, 

• R2 (X1|X2) = R2 (Y1|Y2)  represents the relationship among 

confidential attributes, and 

• R2 (X1|S,X2) = R2 (Y1|S,Y2)  represents the relationship between 

confidential, and a mixture of confidential and non-confidential attributes. 

  The calculations and comparisons of the prediction-based data utility measures 

assume that the models from the original and masked datasets are estimated using the 

same estimation mechanism and are evaluated at the same data points. 

“Data mining tools should model nonlinearity very well, so the predicted/actual 

values relationship should be pretty much linear with all of the nonlinearity accounted 

for in the model,” Pyle (2003, pp. 443). This linearity, which indicates similarity, 

between predicted/actual values can be measured in different ways. Witten and Frank 

(2005) suggest using the correlation coefficients as a measure for the similarity between 

predicted and actual values (refer to Section 5.8 “Evaluating numeric prediction” and 

Table 5.8 in (Witten and Frank, 2005)).  
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Similarly, correlation can be used as a prediction-based data utility measure. 

When the characteristics of masked datasets resemble the characteristics of original 

datasets, fitted values of models built based on original datasets and fitted values of 

corresponding models built based on masked datasets should be similar. This assumes 

that fitted values are calculated using the two models with the same set of values for the 

independent variables, and the models, which can take different possible formats such as 

estimated functions or trained ANNs, are built using the same estimation mechanisms. 

This similarity between the two sets of fitted values can be measured by correlation 

between the sets. Ideally, the correlation should be 1.0 (i.e. the two sets of fitted values 

should be identical). The closer the correlation is to one, the more similar the masked 

dataset is to the original dataset.  

For example, we can estimate the following two corresponding models: E(Xi|S) 

from the original dataset and E(Yi|S) from the masked dataset. Then we calculate the 

fitted values for both models using the values of the independent variables S: E(Xi|S)|s 

and E(Yi|S)|s. When the models E(Xi|S) and E(Yi|S) are similar, the correlation among 

fitted values (i.e. Corr(E(Xi|S)|s, E(Yi|S)|s)) should be very high, ideally one.  

Similarly, we can calculate the slope of the regression of the two sets of fitted 

values. When they are similar, the slope is close to one. Equivalently, the scatter plot of 

the two sets of fitted values should show a strong linear pattern (close to a sharp line) 

with a slope equal to one. 

However, one problem with the above approach is that correlation and slope only 

consider the direction of relationships between the fitted values; it does not consider their 

magnitudes. In other words, when the set of fitted values we get from the original model 
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and the masked model are different in the magnitude but one set is perfectly a linear 

transformation of the other set, we still get a correlation of one and a slope of one, which 

can be mistakenly interpreted as an indication of “similar models”. To account for the 

difference in magnitudes, the sum of the differences between the two vectors can be 

calculated. This sum should be, or at least approach, zero. Similarly, the mean of the 

square of the differences can be used instead of the sum of the differences.  

In the next subsection, we discuss statistical equivalence tests for validating 

models and how they can be used as data utility measures. One advantage of some of 

these tests is that they consider both the direction and magnitude of the relationships in 

establishing the similarity between the fitted values from original and masked models. 

V.3. Equivalence Tests for Validating Models as Data Utility Measures 

Model validation is an important stage in the process of building models. It 

establishes the usefulness of built models for their proposed practical goals (Rykiel, 

1996). There are different possible tests for validating models (Yang et al., 2004). Many 

of these tests are statistical significance tests (for testing a significant difference between 

two hypotheses). They test the null hypothesis 0H  of valid models (there is no significant 

difference between observations and model predictions) against the alternative hypothesis 

aH  of invalid models (such significant difference exists) (Robinson and Froese, 2004): 

 0 : 0  ; valid model

: 0  ; invalid model
o p

a o p

H
H

µ µ

µ µ

− =

− ≠
 (5.6) 

where oµ  is the population mean of the observations and pµ  is the population mean of 

the model predictions.  
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Unfortunately, many practitioners misinterpret the failure to reject the null 

hypothesis as evidence of the trueness of the null hypothesis (Cohen, 1990; 2003; 

Parkhurst, 1985; 2001). In the context of validating models, this may lead to the wrong 

conclusion of validated models although low power could, and more likely would, be the 

main reason behind this rejection failure (Robinson and Froese, 2004). Hence, statistical 

significance tests are unsuitable for validating models (Loehle, 1997; Mayer and Butler, 

1993).  

There are two other problems with using significance tests as a tool for validating 

models (Robinson et al., 2005). First, as the size of the sample, and thus the power, 

increases, any small difference between the population observations mean and the 

population predictions mean may become significant and invalidate tested models unless 

we encounter an exactly correct null hypothesis. Second, statistical significance is 

unassociated with practical significance. Put another way, significance tests can reject the 

null hypothesis of valid models due to a significant statistical difference, which is 

practically negligible. Model validation using equivalence tests (ET) (Robinson et al., 

2005; Robinson and Froese, 2004) can avoid these three problems.  

Equivalence tests are hypothesis tests that are more appropriate than standard 

significance tests when the research goal is to demonstrate similarity rather than 

difference (Parkhurst, 2001). The intended tested similarity can be between two means or 

two proportions (Rogers et al., 1993; Streiner, 2003). Equivalence tests are popular in the 

field of biomedicine where they are known as bioequivalence tests. Many drug regulatory 

entities in the USA (e.g. Food and Drug Administration (FDA)), Europe (e.g. European 

Community (EC)), and Japan require generic drugs to prove its equivalence to brand 
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names using bioequivalence tests before they are permitted to the market (Berger and 

Hsu, 1996; Yanagawa, 2005). (Bio-)Equivalence tests have started to find their way to 

other fields including psychology (Rogers et al., 1993), environmental sciences 

(McBride, 1999), and the military (Warner, 2002), to name a few.  

There are several equivalence tests (Wellek, 2003). Among the most popular are 

the two one-sided t-test (TOST) and the paired t-test for equivalence (PTTE). Parkhurst 

(2001) pointed out that TOST was proposed independently and slightly differently by 

Schuirmann (1981) and Westlake (1981). Westlake (1981) proposed the test during his 

response to the comments made by Kirkwood (1981) on his early work in equivalence 

tests (Westlake, 1976; 1979). Robinson et al. (2005, pp. 905) presented the TOST as a 

four-step procedure. More on PTTE can be found in (Wellek, 2003, Section 5.3, pp. 77-

82).  

Bartko (1991) points to some early work in (bio-)equivalence tests fields, known 

earlier as “proving the null hypothesis,” such as (Blackwelder, 1981; 1982), (Blackwelder 

and Chang, 1984), (Detsky and Sackett, 1985), (Dunnett and Gent, 1977), and (Makuch 

and Simon, 1978). Two good tutorials of equivalence tests are Streiner (2003) and 

Tamayo-Sarver et al. (2005). Wellek (2003) has written a book about equivalence tests. 

For more information about this book, refer to the review written by Yanagawa (2005).  

Many commercial statistical programs in the market today support equivalence 

tests partially or fully. SAS (2003) performs power analysis for some equivalence tests. 

NCSS and PASS program (Hintze, 2004) support some equivalence tests besides many of 

their power analysis procedures. EquivTest (2006) is a program dedicated to equivalence 

tests analysis.  
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There are different possible uses for equivalence tests. Parkhurst (2001) suggests 

that the use of equivalence and reverse tests can reduce the misinterpretation of negative 

results in statistical significance tests (hypotheses testing). Equivalence tests are more 

appropriate than significance (hypothesis) tests when the research goal is to demonstrate 

similarity rather than difference.   

Equivalence tests can be also used for validating models (Robinson et al., 2005; 

Robinson and Froese, 2004). They have the advantage of eliminating the three problems 

mentioned earlier that are associated with using statistical significance tests when 

validating models (Robinson et al., 2005; Robinson and Froese, 2004). First, to avoid the 

problem of misinterpreting the results of negative-results model-validation hypothesis 

tests, Loehle (1997) suggests that the null hypothesis 0H  should be that the model is 

invalid. This is precisely how equivalence tests test hypotheses, and why Robinson and 

Froese (2004) advocate the use of equivalence tests for validating models.   

 Second, as we have more data and the power of the test increases, the model has 

the advantage of proving more its validity instead of its invalidity in the case of 

significance tests (Robinson and Froese, 2004). Although it is not always true, 

equivalence tests usually need a larger sample size than significance tests (Streiner, 

2003). The sample size depends mainly on the equivalence margin δ  (discussed shortly): 

as the equivalence margin gets smaller, the required sample size increases (Streiner, 

2003). Berger and Hsu (1996), Wellek (2003), Streiner (2003),  and Tamayo-Sarver et al. 

(2005), among others, deal with the subject of sample size and power analysis for 

equivalence tests. Third, practical negligible discrepancy between the mean of 
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observations and the mean of predictions can be easily incorporated into statistical 

equivalence tests using the equivalence margin δ  as we will see next.   

Robinson and Froese (2004) suggested using equivalence tests, or more 

specifically TOST and PTTE, for validating models:  

 0 : 0  ; invalid (or different) model(s)

: 0  ; valid (or similar) model(s)
o p

a o p

H
H

µ µ

µ µ

− ≠

− =
 (5.7) 

In model validation, we begin the test by defining a metric as the mean of the 

differences between observations and model predictions. Then, the equivalence margin 

δ , which is used around the metric to create a range of practical negligible difference or 

what is called indifference or equivalence region, should be specified.  This margin can 

be relative, such as a percentage of the standard deviation, or absolute. Although some 

may consider the subjective choice of the equivalence margin as a disadvantage, or 

different applications may require different equivalence margins, it is easy to re-calculate 

these tests using different equivalence margins when the mean, the standard deviation of 

the differences, and the sample size are provided (Robinson and Froese, 2004). 

The hypotheses in Equation (5.7) can be represented more explicitly using the 

equivalence margin δ  as: 

 
0 :          ; invalid (or different) model(s)

  or:    OR    

:   ; valid (or similar) model(s)

o p

o p o p

a o p
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µ µ δ µ µ δ

δ µ µ δ

− >

− > − < −

− ≤ − ≤

 (5.8) 

This proposed ET tests the null hypothesis of an invalid model (model predictions 

are different than observations) against the alternative hypothesis of a valid model 

(observations and predictions are similar) (Robinson and Froese, 2004). We can adapt the 

usage of this ET as a data utility measure to test the null hypothesis of different models 
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(original datasets models and their corresponding masked datasets models are different) 

against the alternative hypothesis of similar models (original datasets models and their 

corresponding masked datasets models are similar) in terms of their predictions. The 

descriptions of the hypotheses shown between parenthesis in Equations (hypothesis 

settings) (5.7) and (5.8) indicate this usage adaptation (i.e. “different models” vs. “similar 

models”). The vectors of values that are compared in our case are the fitted (predicted) 

values from original datasets models and the fitted (predicted) values from the 

corresponding masked datasets models (e.g. E(Xi|S)|s vs. E(Yi|S)|s). 

In testing these ET hypotheses, a special confidence interval for the metric (the 

mean of the differences between the fitted values from original and masked datasets) is 

calculated. When this confidence interval is totally contained within the range of the 

indifference region, the null hypothesis of different models is rejected and the practical 

similarity of these models is statistically established. Otherwise, we fail to reject the null 

hypothesis of different models (different predictions or fitted values from original and 

their corresponding masked models). This rejection failure is due to either a low power 

test (as in the case of a small sample size) or a real difference in the population.  

These model-validation equivalence tests (ET) consider only the magnitude of the 

relationship unlike data-utility correlation and slope measures proposed earlier, which 

consider only the direction of the relationship. Robinson et al. (2005) extended the work 

of Robinson and Froese (2004) by providing a deeper regression-based equivalence test 

using TOST for model validation. The new test compares: (a) the similarity of the means 

(of predicted and of observed, or what is called “population-level agreement”), and (b) 

the closeness of the slope of regression to one (similarity between individual pairs of 
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observations and predictions, or what is called “point-to-point agreement”). Notice the 

similarity of (a) to the test provided by (Robinson and Froese, 2004), which focuses on 

the magnitude of the relationship, and the similarity of (b) to the proposed data-utility 

correlation and slope measures, which focus on the direction of the relationship. Hence, 

this test considers both the magnitude and the direction of the relationship. 

The regression in this test (Robinson et al., 2005) is done between the 

observations vector as a dependent variable (DV) and the predictions vector (after 

subtracting its mean) as an independent variable (IV). Although the subtraction of the 

predictions mean does not change the regression slope, it makes the equivalence tests of 

the regression intercept and the regression slope independent. For the intercept, the ET 

investigates the similarity of the intercept to the mean of observations.  For the slope, the 

ET investigates the closeness of the regression slope to one. Hence, the observations 

mean (the intercept) and the slope of one represent the metrics for the equivalence tests. 

Similar to the first test (Robinson and Froese, 2004), we need also to specify an 

alpha level α  (a test size) and equivalence (indifference) region for the two equivalence 

tests. Although the equivalence tests for the intercept and the slope are independent, the 

joint test size α  should be corrected to allow explaining the results of the two tests 

jointly (Robinson et al., 2005). For example, when we use 0.05α =  for each test, the 

joint α  level will be more (0.0975 ). When correction is done, each test should be 

executed at 0.02532α = (or equivalently, two one-sided 97.468%  CI) for the intercept 

test and for the slope test. 

For the intercept testing, the equivalence region is the observations mean ±  

equivalence margin ( )0δ . For the slope testing, the equivalence region is 1  ±  
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equivalence margin ( )1δ . Again, equivalence margins 0δ  and 1δ  can be absolute or 

relative. The next step is to calculate the special (two one-sided) confidence interval for 

the intercept and the slope (based on their standard error for example). Finally, we reject 

the dissimilarity null hypothesis of both/either test(s) when its confidence interval is 

contained completely within the equivalence region.  

The confidence intervals for these tests of equivalence assume: (1) the model is 

correct and (2) the residuals: (a) are independent, (b) have constant variance, and (c) are 

normally distributed. To avoid these assumptions, Robinson et al. (2005) suggested a 

non-parametric bootstrap method to construct the test confidence interval. Further, the 

choice of equivalence intervals in the proposed test is subjective in nature. To avoid 

possible resistance to the test use or results, Robinson et al. (2005) suggested a method to 

reverse the results of these tests and calculate the smallest TOST equivalence regions that 

can lead to the rejection of the null hypothesis of dissimilarity at a specific α  level.  

We adapt this test (Robinson et al., 2005) as our main data utility measure in the 

next chapter. In this adapted test, we replace observations with the fitted values (model 

predictions) from original datasets models and predictions with the fitted values (model 

predictions) from their corresponding masked datasets models.  

The logic is simple, yet powerful. Models built from masked data should be very 

similar, in terms of predictions, to models built from their corresponding original data. 

This similarity means two things. First, the mean of the fitted values from an original data 

model and the mean of the fitted values from its corresponding masked data model (both 

models evaluated using the same data) should be very similar, if not equal. Second, the 

slope of the regression of one of these two sets of fitted values on the other should be 
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(close to) one. We used the equivalence package5 developed by Robinson (2005) in the 

statistical programming environment R (R, 2006; Venables et al., 2002) for running these 

equivalence tests.  

                                                 

5 We would like to acknowledge the assistance of Dr. Andrew Robinson in developing and providing the 
equivalence package as a result of some personal communications. 
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CHAPTER 

VI. ASSESSING THE RBM APPROACH WHEN THE 
RELATIONSHIPS AMONG CONFIDENTIAL ATTRIBUTES ARE 

LINEAR  

In this chapter, we assess the performance of the RBM approach in terms of data 

utility and data security when relationships among confidential attributes are linear. 

Section VI.1 demonstrates the effectiveness of some of the proposed masking methods 

using the motivation example (see Section I.3) and some of the measures in Chapter V. 

Section VI.2 discusses briefly how a snooper might try to learn more from the release of 

RBM-masked datasets involving non-monotonic relationship. Section VI.3 discusses how 

the characteristics of original datasets drive and define the characteristics of masked 

attributes. This includes the possible level of security RBM can provide while 

maximizing data utility. Section VI.4 investigates empirically the concepts Section VI.2 

and Section VI.3 discuss.  

VI.1. Illustration of the Effectiveness of NM-EGADP Approach using 

the Motivation Example 

In this section, we want to test the effectiveness of the Relationship-Based  NM-

EGADP approach on the store dataset in the motivation example (Section I.3) using the 

adopted data security measures and some of the data utility measures developed in the 

previous chapter. We begin by masking the confidential attributes in the store dataset 

using the two NM-EGADP methods (Perturbation and Shuffling). Table 42 (Appendix D) 
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shows the first ten and last ten masked values of the two confidential attributes along 

with their original values. Figure 41 (Appendix D) shows the relationship between all 

variables in the original unmasked store dataset. The similarity of this figure with Figure 

44 and Figure 45 (Appendix D) for masked datasets provides visual evidence that the 

Relationship-Based  NM-EGADP approach can maintain original relationships in masked 

datasets.  

VI.1.1. Data Utility  

By comparing the (linear and nonlinear) parameter-based data utility measures, 

Table 49 to Table 54 (Appendix D), the parameters obtained from the masked datasets 

are similar to the ones obtained from the original dataset, indicating that original 

relationships (including non-monotonic relationships) are reproduced well in masked 

datasets. Prediction-based mean squared errors (MSE) data utility and data security 

measures using (non-monotonic) LS-SVM regression are presented in Table 3 for NM-

EGADP perturbed store dataset. For comparison purposes, we also calculate MSE 

measure using piecewise linear regression because the non-monotonic relationships 

between S1 and confidential attributes X consist of two lines (one for S1<40 and another 

for S1≥40, as you can see from Figure 2 (Section I.3) and Figure 41 (Appendix D)).  The 

difference between the two LS-SVM regression models of confidential attributes X given 

the non-confidential attributes S is 0.65953, which is approaching zero indicating the 

predictive similarity of the model obtained from the original data with the one obtained 

from the masked data. This measure gets even better (0.090638) when we utilize the 

information about the actual shape of the relationship (piecewise linear) and use liner 

regression to calculate MSE. We reach a similar conclusion about the similarity of 
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models obtained from confidential attributes with models obtained from masked 

attributes (refer to the last row in Table 3).  

The results of piecewise linear regression are better relative to the results of LS-

SVM regression (even in the case of security measures). This is an indication of the 

difficulty in learning nonlinear relationships. Another reason is that learning mechanisms, 

such as ANN approaches, that mainly depend on the data to learn relationships and 

assume nothing about the relationships, tend to over fit the data (Rud, 2001). The 

normalized data utility measures for relationships using R2 for X1 for three different 

relationships are: 

• R2(X1|S): 92.85%  = R2(Y1|S): 92.81% (confidential with non-confidential) 

• R2(X1|X2): 85.73% = R2(Y1|Y2): 85.65% (among confidential) 

• R2(X1|S,X2): 93.95%= R2(Y1|S,Y2): 92.20% (confidential with non-

confidential and confidential) 

The results show that, in a predictive sense, original relationships are preserved although 

there is a little discrepancy in the last result, which can be attributed to the difficulty of 

Table 3. Prediction-based (MSE) data utility and data security measures for the NM-EGADP 
perturbed store dataset 

 Measure LS-SVM 
 Regression 

Piecewise Linear 
Regression 

232.40 229.54 E[X-E(X|SY)]2 

= 
E[X-E(X|S)]2 227.00 229.65 

227.00 229.65 

Data 
Security 

E[X-E(X|S)]2 
<= 

E[X-E(X|Y)]2 343.49 338.73 

E[E(X|S)|s-E(Y|S)|s]2=0 0.65953 0.090638 Data 
 Utility E[E(X1| X2)|x2-E(Y1| Y2)|x2]2=0 1.0868 0.014977 
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learning nonlinear relationships using non-parametric approach and its tendency to over 

fit the data (Rud, 2001). 

The Pearson correlation matrices of the original dataset (Table 43, Appendix D), 

the perturbed dataset (Table 44, Appendix D), and the shuffled dataset (Table 45, 

Appendix D) are similar, indicating that linear relationships are well maintained in 

masked datasets. This holds true although many correlations are weak to begin with 

because of the existence of non-monotonic relationships. However, maintaining the 

(weak) product-moment correlation matrices of original and masked datasets to be 

similar can be useful. For example, if a statistician has access to the original dataset and 

decides that a specific transformation is needed before running a standard statistic 

method, then (s)he can obtain similar results from masked and original datasets in case 

(s)he is not allowed to access the original dataset. Similarly, the Spearman rank-order 

correlation matrices of the original dataset (Table 46, Appendix D), the perturbed dataset 

(Table 47, Appendix D), and the shuffled dataset (Table 48, Appendix D) are very 

similar, indicating that monotonic nonlinear relationships are also well reproduced in 

masked datasets, which is an advantage for PPE. 

VI.1.2. Data Security 

For data security (identity disclosure), there are only seven records (0.7 percent) 

re-identified using probabilistic record linkage programs. This is a good result and 

represents a good first wall of defense. Combined with the fact that masking methods 

provide automatic protection against exact value disclosure (a second wall of defense), it 

gets better. The two requirements for data security (partial or inferential value disclosure) 

using MSE measures are met (as shown in Table 3 above). The results for both data 
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security requirements are almost perfect in the case of piecewise regression 

(229.54=229.65 and 229.65≤ 338.73). On the other hand, while the measure of one data 

security requirement using LS-SVM regression is very good (227 ≤ 343.49), there is a 

slight difference in the other requirement (227= 232.40), and this can be attributed again 

to the tendency of ANN approaches to over fit the data (Rud, 2001). Nonetheless, this 

result (i.e. 227= 232.40) still suggests that S is a better predictor for X than Y. The 

normalized form using R2 of the two data security requirements for X1 is: 

• R2(X1|S): 92.85%  = R2(X1|S,Y): 92.69% 

• R2(X1|S): 92.85%  ≥ R2(X1|Y): 89.10%, 

and for X2 is: 

• R2(X2|S): 93.25%  = R2(X2|S,Y): 93.04% 

• R2(X2|S): 93.25%  ≥ R2(X2|Y): 89.91%. 

Clearly, the above results represent effective protection against partial value disclosure.  

For the motivation example, we find that the CC between the masked variables Y 

and the original confidential variables X is 0.96662, which is very high and represents a 

security threat. This is in agreement with the high predictive scores in the above 

measures. In addition, the CC between the non-confidential attributes and the confidential 

attributes is 0.082266, which is very low. This may mean that Y is a better predictor of 

the confidential attributes than the non-confidential attributes S (instead of the reverse, 

which is the desirable). In other words, this seems to suggest that the Relationship-Based  

NM-EGADP approach does not satisfy the data security requirements. Thus, releasing 

the masked dataset in this case will increase the snoopers’ prediction ability. To recall, 

the data security requirements state that the best predictor of the confidential attributes X 
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are the non-confidential attributes S. Therefore, a snooper always will use the non-

confidential attributes S. When the snooper tries to improve his/her prediction power by 

using both the non-confidential S and the masked Y attributes to predict the confidential 

attributes X, the masked variables Y do not increase the accuracy of prediction. This is 

because X and Y are independent given S.  

However, before we jump to the conclusion that RBM NM-EGADP approach 

does not satisfy the data security requirements, let us remember that the canonical 

correlation analysis fails to detect nonlinear relationships. By referring to Figure 41 

(Appendix D), we notice there is a very strong non-monotonic relationship between S1 

and X1. This relationship consists of two lines. Therefore, piecewise CC security 

measures are applicable. By calculating the piecewise CC for each line (S1<40 and 

S2≥40), we find very strong CC: 0.98498 and 0.98126, respectively. Both are higher than 

the one we get from using Y to predict X (0.96662). When we use both S and Y to 

predict X, we get: 0.98498 and 0.98126 (piecewise). This indicates that the Relationship-

Based  NM-EGADP approach satisfies the data security requirements. For comparison 

purposes, when Y alone is used to predict X, the piecewise CC is 0.96771 and 0.96533, 

respectively. In other words, the problem lies with the dataset itself and not the masking 

methods. This becomes clearer by calculating the security index (SI) for X1 and X2 (see 

Subsection III.3.2): SI(X1) = 6.67% and SI(X2) = 6.31%. Obliviously, the residuals r 

explains a very small portion of the variation in the confidential attributes X and most of 

the variation in X explained by (a function of) S (i.e. E(X|S)) with which to begin. This 

can also be seen from another perspective. The piecewise CC between the non-
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confidential attributes S and the confidential attributes X is very high (0.98) indicating a 

strong relationship, which explains most of the variability in X with which to start.  

Therefore, the store should not release this specific dataset. The store should be 

advised that they must always evaluate the strength of the relationship between the non-

confidential attributes S and the confidential attributes X based on CC and MSE security 

requirements before they decide to release a specific dataset. Releasing datasets with very 

strong relationship (e.g. 0.80 or higher CC or piecewise CC correlation) may not be a 

good idea. Nevertheless, this depends on the sensitivity and the variance of confidential 

attributes. Another option is to treat those non-confidential attributes that have very 

strong relationships with confidential attributes as confidential attributes and mask them, 

unless the outside world already has access to those non-confidential attributes. In this 

case, it is safer not to release such datasets.  

To assess the security of our method(s), we simulate a new 1000-record dataset, 

which is similar to the store dataset. However, it only contains two variables: one non-

confidential S and one confidential X, which correspond to S1 and X1 in the store dataset, 

with less piecewise CC than the one we encounter in the store dataset (0.98). The goal is 

to obtain some evidence that our NM-EGADP methods (both perturbation and shuffling) 

really satisfy the MSE security requirements. Table 4 shows the first five and last five 

records of the original attributes (non-confidential S and confidential X) along with the 

corresponding NM-EGADP perturbed attribute Y and NM-EGADP shuffled attribute 

Y_SHF. Figure 5 is divided into three subfigures showing the relationship between the 

non-confidential and the confidential attributes along with the corresponding 

relationships between the non-confidential and the perturbed attributes, and the non-
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confidential and shuffled attributes, respectively. By comparing the three figures, they are 

similar and there is a strong graphical indication that our methods preserve conditional 

expectations (relationships). 

 The CC between the confidential attributes X and the masked attribute Y is 

0.35875. The CC between the confidential attributes X and the non-confidential attributes 

S is 0.017245. However, the low canonical correlation can be, as we saw earlier, an 

indication of either a weak linear relationship between the two variables or the existence 

of nonlinear relationship. It is clear from Figure 5 that the relationship is non-monotonic. 

Using the piecewise CC (two lines: S<40 and S≥40), we get the following measures: 

0.6035 and 0.58826. Both indicate a stronger relationship with X than Y. In addition, 

when we measure the piecewise CC between X on one side and S and corresponding Y 

values on the other side (i.e. piecewise CC(X|SY)), we get 0.6035 and 0.58832. This 

means that the snooper will definitely use S to predict X values, and adding Y to the 

equation will not enhance his/her ability to predict the confidential values. We got similar 

Table 4. First 5 and last 5 records of the two-variable dataset, to check the piecewise 
CC security of NM-EGADP masking procedures  

Masked 
NO S X Perturbed 

Y 
Shuffled 
Y_SHF 

1 53.12 45.89 62.94 62.63 
2 57.37 32.81 78.142 78.52 
3 22.06 51.14 52.149 51.51 
4 25.46 72.10 44.255 42.91 
5 51.25 65.57 64.215 64.20 
: : : : : 

996 37.16 96.33 92.00 92.69 
997 50.72 70.32 65.18 65.18 
998 28.71 69.37 24.53 28.05 
999 27.71 89.99 56.87 56.31 

1000 29.62 63.57 76.55 76.54 
Min 20.01 9.7333 0.49153 9.7333 
Max 59.97 132.84 123.13 132.84 

Mean 40.264 62.722 62.722 62.722 
STD 11.884 19.201 19.195 19.201 
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results for the NM-EGADP shuffling. Hence, NM-EGADP approach (using perturbation 

and shuffling) satisfies the R2 and MSE security requirements and provides optimal 

security. 

In addition, we present some graphical evidence in “Appendix E – Graphical Pilot 

Study – Comparisons for PPE Masking Methods” that the NM-EGADP shuffling 

procedure works well and preserves all types of relationships (including non-monotonic 

ones) while EGADP (shuffling) does not preserve nonlinear relationships and (C-GADP 

based) data shuffling only maintains monotonic relationships. .  

VI.2. How a Snooper May Compromise RBM Masked Data 

This section starts by discussing the snooper model presented by Fuller (1993). 

Then, it uses this model as a basis for discussing how a snooper may deal with RBM-

masked datasets. The assumption in the (two-stage) Fuller’s snooper model is that 

original datasets are normally distributed, which ensures all relationships are linear. In 

addition, all attributes in the original datasets are masked before the release of the data. 

The assumption is also that the snooper has a target individual with some known values 

for few attributes. The snooper will try to take advantage of the released masked data to 
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Figure 5. Diagrams of the two-variable dataset (aimed to check the piecewise CC security of NM-
EGADP masking procedures) and its masked datasets. 
(a) non-confidential attribute S vs. confidential attribute X, (b) non-confidential attribute S vs. NM-
EGADP perturbed attribute Y, and (c) non-confidential attribute S vs.  NM-EGADP shuffled 
attribute Y_SHF. 
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learn more about the original values of the other masked attributes for the target. This 

process consists of two stages: re-identification of the target record (identity disclosure) 

and predicting the original values of the masked attributes more accurately (value 

disclosure).  

At the first stage, the snooper tries to re-identity the masked record belonging to 

the target individual. This is needed because all attributes are masked and no direct match 

is possible. Fuller (1993) discussed two probabilistic approaches based on whether the 

snooper is sure that the masked record for the target is among the released data. Both 

approaches use the known values as a basis for computing the probability that a specific 

masked record is the target’s record. The masked record with the highest probabilistic 

match is assumed to be the target record. Refer to Equations 2.10 to 2.12 (pp. 388) and 

the discussion of them in Fuller (1993) for more information. 

After re-identification, the snooper will try to enhance his prediction of the 

unknown values in the target record (than what was possible before) by using both the 

known pre-release values and the masked values from the released record. Enhancing 

prediction means less variance in the prediction error. To facilitate our discussion and the 

comparison with the RBM approach, we shall call the unknown values of the target X, 

the known values S, and the values in the masked record Y.  

It is known from the estimation theory that the conditional expectation E(X|S) is 

the best predictor for X using S. This means that E(X|S) has the minimum variance of 

prediction error. When the data is normally distributed, the conditional expectation 

E(X|S) is linear in the form of: 

 ( ) 0 1E b b= +X S S . (6.1) 
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Moreover, this conditional expectation can be calculated before the release of the 

masked data, as long as we know the mean and the covariance of the original data in 

addition to the few known values S for the target record (refer to Equation 2.3 in Fuller 

(1993)). Once the masked data is released and the target record is successfully re-

identified, the snooper will try to use the masked data to enhance his prediction and 

obtain tighter prediction interval than the one (s)he obtains from (6.1). Thus, (s)he will 

try to fit a prediction model for unknown values in the re-identified target record in the 

form of:  

 ( ) 0 1 2E b b b= + +X SY S Y . (6.2) 

Refer to Equations 2.5 to 2.9 (pp. 387) and the discussion of them in Fuller (1993) for 

more information. 

As said earlier, the Fuller’s snooper model assumes that all attributes in original 

datasets are masked and the non-confidential attributes S are null. This assumption 

emphasizes the importance of the re-identification step. Conversely, the RBM approach 

assumes the existence of S attributes, which can be numeric, categorical or both. When S 

is categorical, the re-identification step is still required as long as there is enough 

frequency of each category and unique, or a small number of, combinations of  the 

categorical attributes do not exist, especially when they include the target record(s).  

When S attributes are numeric or combinations of numeric and categorical, 100 

percent re-identification rate is most likely to occur automatically (for all or most 

records) once the masked data is released. This is because most numeric values tend to be 

distinctive, and their uniqueness easily leads to exact record identification. Thus, the 

snooper does not usually need to go through the re-identification stage when (s)he deals 
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with RBM-masked datasets. Therefore, we intentionally ignored the S variables when we 

tried to assess the performance of the RBM approach in terms of re-identification in other 

sections in this study.  

In Fuller’s snooper model, all relationships are linear due to normality. When this 

is the case, sophisticated masking methods, such as GADP (Muralidhar et al., 1999) and 

EGADP (Muralidhar and Sarathy, 2005b), can be used without increasing the risk of 

value disclosure beyond what the (linear) conditional expectation in (6.1) explains before 

the release of the data. Hence, these masking methods reduce Equation (6.2) to Equation 

(6.1) (i.e. b2 = 0).  

As seen earlier, when the relationships between S and X are linear, the covariance 

matrix along the mean of original data and the few known values S can be used to 

estimate the conditional expectations E(X|S) before even the release of the masked data 

(see Equation (6.1)). However, when the relationships between S and X are non-

monotonic as in RBM-masked datasets, the covariance and the mean are not useful for 

estimating the conditional expectations E(X|S) since the relationships are not linear any 

more as in Equation (6.1). 

The snooper may or may not know about the existence of non-monotonic 

relationships in original datasets before the release of the RBM-masked data. 

Nonetheless, the non-monotonic relationships are automatically disclosed once the 

masked data is released. However, their disclosure is not considered a threat or a 

drawback. Actually, it is one of the main goals of the RBM approach; namely, to preserve 

and reproduce different types of relationships in masked data as they exist in original 

datasets for enhancing data utility in PPE. Moreover, the conditional expectations 
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characterize the whole dataset at the attributes level and not the confidential values of 

each individual at the record level.  

As usual, the snooper is better off using all available information to improve 

her/his prediction. Therefore, since the conditional expectation E(X|S) is the best 

predictor for X using S (i.e. it has the minimum variance of prediction error) and the 

values of  S are known for all records in the released datasets, the snooper will first try to 

estimate the conditional expectations E(X|S) by estimating E(Y|S). This is because the 

RBM approach specifies that E(Y|S) = E(X|S). E(X|S) is usually estimated from the 

following model: 

 ( ) intE ε= +X X S  (6.3) 

where ( )intVar ε is the variance of the initial prediction error that the snooper plans to 

reduce. Note the similarity between (6.3) and (6.1) when the conditional expectations are 

linear. 

Next, the snooper will try to combine Y and S (or the evaluation of the best 

function of S that explains X (i.e. the fitted values E(X|S)|s)) to improve her/his 

prediction accuracy of X and obtain less variance in the prediction error. The new 

prediction model might be written as:  

 ( )( ), newE E ε= +SX X Y X S  (6.4) 

where ( )newVar ε is the variance of the new prediction error that the snooper hopes to be 

less than the variance of the initial prediction error in (6.3) (i.e. ( ) ( )intnewVar Varε ε< ). 

When the relationships between X and Y and the relationships between X and 

( )E SX S  are linear (which is reasonable to assume, as we will discuss shortly in this 
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section and in the following section), the relationship in (6.4) might take the following 

linear form: 

 ( )( ) ( )0 1 2,E E b b E b= + +S SX Y X S X S Y . (6.5) 

However, the snooper gains nothing because X and Y are independent (or 

orthogonal) given (the evaluation of) the best predictor E(X|S), and the relationship in 

(6.4) should reduce to: 

 
( )( ) ( )( )

( )

,E E E E

E

=

=
S SX Y X S X X S

X S
 (6.6) 

and b2 = 0 in (6.5): 

 ( )( ) ( )0 1,E E b b E= +S SX Y X S X S . (6.7) 

 In terms of the variance of the prediction error, Equations (6.6) and (6.7) mean 

there is no improvement or reduction in the variance of the prediction error 

(i.e. ( ) ( )intnewVar Varε ε= ).  

Nevertheless, when the relationship between E(X|S) (or E(X|S)|s) and X is very 

strong in original datasets to begin with, there is no need to reduce the variance of the 

prediction error ( )intVar ε  because it is already low. In this case, the security of masked 

data can be easily compromised in two ways: using what E(X|S) reveals about X or using 

what Y reveals about X. 

In the first situation, the snooper gains considerable knowledge about the 

confidential attributes just from the release of the masked data since E(Y|S) is strongly 

correlated with X.  This is because the RBM approach maintains E(Y|S) to be the same as 

E(X|S) for enhancing data utility, and E(X|S) explains most of the variation in X. We 

talked in Subsection III.3.2 about the Security Index (SI) measure, which is calculated as 
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1-Var(ri)/Var(Xi) or Var(E(Xi|S)/Var(Xi), and how it can be used to assess whether there 

is enough variance in residuals (based on the characteristics of original datasets) for 

effective use of the RBM masking approach. 

In the second situation, the snooper depends on the strength of the relationships 

between X and Y. The relationships between X and Y are linear, as mentioned earlier. 

The reason for this linearity is again that the RBM approach specifies E(Y|S) = E(X|S) 

for maximizing data utility. Hence, both are functions of S and we want them to be the 

same. Note that X and Y are not independent. They are only independent given the best 

predictor using S (i.e. E(X|S)). If S is null, it is possible, at least hypothetically, to 

generate Y independently from X. In some special cases, such as the multivariate normal 

data, this is practically possible. Examples of this linearity between X and Y are 

presented in Figure 15 to Figure 22 in Section VI.4. We will discuss the linearity of 

relationships between X and Y more formally in the next section.  

Since the cause of linearity between X and Y is the specification E(Y|S) = E(X|S), 

the strength of relationships between X and E(X|S) mentioned in the first point also has a 

direct impact on the strength of the linear relationships between X and Y. The stronger 

the (non-monotonic) relationships between S and X, the stronger the linear relationships 

between X and Y. Note that Y does not explain more about X than E(X|S) (more on this 

in the next section). Nevertheless, the snooper may try to fit a simple linear model 

between Y and X instead of fitting a more complicated model for the non-monotonic 

relationships between S and X knowing that (s)he may scarify a little accuracy for 

simplicity. As it is clear by now, the characteristics of original datasets play a main role in 

the effectiveness of applying the RBM approach.  
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VI.3. How the Characteristics of Original Datasets Determine the 

Characteristics of Masked Attributes 

From the discussion in the previous section and in Section III.3, it is clear that the 

characteristics of original datasets shape the characteristics of masked attributes and 

dictate the maximum level of possible security using RBM approach. In this section, we 

express the characteristics of masked attributes Y in terms of the characteristics of 

original datasets (both non-confidential S and confidential attributes X).  

More specifically, we derive some useful relationships and results (under the 

assumptions of normal residuals with constant variance) that relate every masked 

attribute Yi to its original unmasked confidential attribute Xi based solely on the 

characteristics of original datasets. This allows owners of original datasets to assess the 

characteristics of masked attributes, including the strength of their association with 

confidential attributes after just estimating E(Xi|S) and before masking. Thus, they can 

make an informed decision about whether to mask and release the data.  

When ( )i i iY E X e= +S , the covariance between a confidential attribute Xi and 

its masked copy Yi is: 

 ( ) ( )( ),i i iCov X Y Var E X= S  (6.8) 

where 1i q= Κ . 

By using (6.8), we derive the following important result for measuring the association 

(correlation) strength between Xi and Yi when the RBM NM-EGADP approach is used 

for masking: 

 ( ), 1i iCorr X Y η= −  (6.9) 
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where 

 ( )
( )

i

i

Var r
Var X

η =  (6.10) 

where ri is from Equation (3.5) in Section III.3.1. 

Note that η  links the correlation security measure in (6.9) and the security index 

measure (SI) discussed in Subsection III.3.2. Equation (6.9) helps data owners to 

calculate the association (correlation) between Xi and Yi, and evaluate whether that 

association level is acceptable for the sensitivity level of confidential attributes (from a 

security point of view). Refer to Subsection III.3.2 for more information about what we 

mean by the “sensitivity level of confidential attributes”. 

We can also write Equation (6.9) differently using Proposition 1.4.1 (c) pp. 34 in 

(Bickel and Doksum, 2001): 

 ( )
( )( )
( )

, i
i i

i

Var E X
Corr X Y

Var X
=

S  (6.11) 

Equation (6.11) leads us to (see pp. 36-37 in (Bickel and Doksum, 2001)): 

 
( ) ( )

( )( )[ ]

2

2

,

,

i i i

i i

Corr X Y R X

Corr X E X

=

=

S

S
 (6.12) 

We also argue that the range for both correlations (i.e. ( ),i iCorr X Y  and 

( )( ),i iCorr X E X S ) in (6.12) is between 0 and 1. For ( ),i iCorr X Y , this is clear from 

(6.11) since it equals the division of two positive quantities (i.e. the variances).  

In addition, the relationships between X (observations) and E(X|S) or the fitted 

values E(X|S)|s (predicted) tend to be linear when the estimation mechanism, such as 

ANN, learns the conditional expectations well. When the conditional expectations are 

well estimated, the model (i.e. the estimated function of E(X|S)) accounts for all 



 101 

nonlinearity that may exist between S and X (see pp. 443 in (Pyle, 2003)). The linear 

relationship between X and E(X|S) is also clear from: 

 ( )E= +X X S r . (6.13) 

Based on the above argument and its validity, we also derive an upper bound for 

the correlation in (6.9) and (6.11): 

 ( ) ( )( ), ,i i i iCorr X Y Corr X E X≤ S  (6.14) 

where the equality only holds when Corr(Xi, E(Xi |S)) = 1 or Corr(Xi, E(Xi |S)) = 0. The 

former means that Xi is a complete deterministic function of S and E(Xi |S) explains all 

variation in Xi (i.e. Var(E(Xi |S)) = Var(Xi) and Var(ri) = 0). The latter means that the 

relationship between Xi and S is completely random (i.e.Var(E(Xi |S)) = 0 and Var(ri) = 

Var(Xi)). This becomes more obvious when we consider the values that equate both 

correlations in Equation (6.12).  

 As known, any linear relationship between two random variables can be 

represented in the form of regression line:  

 0 1i iX b bY= + . (6.15) 

We derive analytically the coefficients of the regression line (b0 and b1) between Xi and Yi 

before even generating Yi. The intercept b0 can be calculated as:  

 ( )
( )
( )

( )0
i

i i
i

Var r
b E X E X

Var X
η= =  (6.16) 

and the slope b1 can be calculated as: 

 
( )

( )
( )

( )( )
( )

1 , 1 1 i
i i

i

i

i

Var r
b Corr X Y

Var X
Var E X

Var X

η= = − = −

=
S

 (6.17) 
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For more discussion about the results in this section (and others), their derivations and 

proofs, and their connections to other security measures, refer to Appendix P.  

 

VI.4. Assessing the Impact of the Characteristics of Original Datasets on 

the Effectiveness of the RBM Approach 

As discussed in the previous two sections and in Section III.3, the characteristics 

of original datasets play an important role in the effectiveness of the RBM approach. One 

of the main characteristics of original datasets is the variance of the residuals that affects 

the level of protection that the RBM approach can provide while maximizing data utility. 

We want to empirically investigate this impact using three levels of variance of 

confidential attributes and three simulated datasets including the motivation example. In 

the first subsection, we discuss the three simulated datasets and discuss how the 

differences in their characteristics affect the security index (SI) measure and, accordingly, 

the generated masked attributes. In the second subsection, we present the data utility 

measures. In the third section, we talk about data security measures. For convenience, we 

may repeat some equations that appear in other parts of this study.  

VI.4.1. Original Datasets and their Characteristics 

The two new datasets have the same two non-confidential attributes S as in the 

motivation example (ME.L) dataset. They differ from the motivation example in that the 

confidential attributes X are generated with more variance than the motivation example. 

This reflects on the variance of the residuals ri obtained by subtracting the conditional 

expectations E(Xi |S) from Xi because we tried to fix the variance of the E(Xi|S) as Table 5 

and Table 6 may suggest. We call these two datasets “ME.L.MV1” and “ME.L.MV2” 



 103 

while we call the motivation example dataset “ME.L”. “ME” stands for motivation 

example.  We use “L” in the datasets’ names to point to the linear relationships between 

the confidential attributes X1 and X2. “MV” means more variance. The two numbers (1 

and 2) are to distinguish between the two new levels of variance.  

In this section, we present the calculations of some measures based on two 

estimation mechanisms for the conditional expectations: piecewise linear (regression) and 

LS-SVM. The reason we decide to use the piecewise linear estimation mechanism is that 

the conditional expectations for the three datasets are piecewise linear. Thus, we would 

like to utilize this extra information and see the impact of using (precise) conditional 

expectations versus using close (but not precise) LS-SVM estimated conditional 

expectations on some of the measures.  

Figure 6, Figure 9 and Figure 12 show the scatter-plots matrices for ME.L, 

ME.L.MV1 and ME.L.MV2 datasets, respectively. The patterns among the fitted values 

u, when estimated using LS-SVM, and among their residuals r for each dataset are 

presented in Figure 7, Figure 10 and Figure 13, respectively. When the estimation 

mechanism used is piecewise linear regression, the corresponding figures are Figure 8, 

Figure 11 and Figure 14. Both sets of figures show (general) linear patterns among u 

corresponding to the linear patterns among X. Nevertheless, the linear patterns are 

sharper and more obvious when the piecewise linear regression estimation mechanisms is 

used.  

Bickel and Doksum (2001) suggest that (Proposition 1.4.1 (c), pp. 34): 

 ( ) ( )( ) ( )i i iVar X Var E X Var r= +S . (6.18) 
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Equation (6.18) can be used as a measure to check the accuracy of learned 

conditional expectations. We present the calculation of this measure in Table 5 for X1 and 

in Table 6 for X2. When we use the piecewise linear estimation mechanism, the results 

precisely validate Equation (6.18). However, there are some differences between the RHS 

and LHS calculations of Equation (6.18) when the LS-SVM estimation is used. In 

addition, we provide the calculations of the security index measure (SI) for variables X1 

and X2 for every dataset. SI is calculated as ( ) ( )1 i iVar r Var X−  or 

( ) ( )i iVar u Var X . Note that ( )i iu E X= S . The lower the SI measure, the less 

security RBM can provide. Thus, ME.L is the least secure dataset and ME.L.MV2 is the 

most secure. However, the security has an inverse relationship with the data utility. The 

stronger the relationships (conditional expectations) between X and S, the more insecure 

the dataset.  

We derived the following important result earlier and provided its proofs in 

Appendix B: 

 ( ) ( ) ( )( ) ( ), , ,i j i j i jCov X X Cov E X E X Cov r r= +S S . (6.19) 

Table 7 shows the calculations for this measure using the two estimation 

mechanisms (piecewise linear and LS-SVM). Since the conditional expectations for these 

datasets are piecewise linear, the measures precisely match the relation presented in 

Equation (6.19) when we use the piecewise-linearly estimated conditional expectations. 

When we use the LS-SVM estimation, slight discrepancies occur.    

In addition, Equation (6.8) (i.e. Cov(Xi,Yi) = Var(ui)) expresses the covariance 

between Xi and Yi in terms of one of the original datasets’ characteristics (i.e. Var(ui)). 

We calculated this measure for all four masked datasets for each dataset. Table 8 shows 
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the results for X1 and Y1 while Table 9 shows the results for X2 and Y2. The measures 

(almost) hold. We went further and masked the piecewise linear parts of the conditional 

expectations of the attributes separately. Then we calculated the same measures and listed 

them in the same two tables. We obtain comparable results to the previous (LS-SVM 

estimated) measures with one exception. The calculations of the measure in Equation 

(6.8) exactly hold for all datasets masked using masking method 1. Hence, this masking 

method adds an independent normally distributed noise (with the same covariance as with 

the residuals covariance) and does not employ any shuffling refinement.  

We earlier argued that the relationships between X and Y are linear because RBM 

specifies that E(Y|S) = E(X|S). Figure 15 to Figure 20 provide graphical evidence for this 

claim. The more variance the residuals have, the weaker the linear relationships between 

X and Y. The correlation measures between X and Y show this trend. To make the 

comparison between the linear relationships between Xi and Yi in the three datasets 

easier, we plot them next to each other using a unified scale (the scale of the data with the 

largest residuals variance). Figure 21 shows the three plots for comparing X1 vs. Y1 while 

Figure 22 shows the three plots for comparing X2 vs. Y2. 

Since the relationship between Xi and Yi is linear, we derived the coefficients of a 

regression line in the form of “Xi = b0 + b1Yi ”, as presented in Equations (6.16) and 

(6.17) in the previous section. These coefficients are calculated based on the 

characteristics of original datasets and before generating masking attributes. We 

calculated these coefficients for both X1 (Table 10) and X2 (Table 11) in two ways. First, 

we run linear regression models for each masked dataset and report the results in the left 

half of the two tables. On the right side of these tables, we present the regression 
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coefficients based on the calculations of Equations (6.16) and (6.17). Clearly, they are 

similar.  

These regression coefficients can have a role to play in security since they relate 

the masked attributes Y to the confidential attributes X. We developed some correlation-

based measures to assess the security that RBM can provide in generating Y based solely 

on the characteristics of original datasets in the previous section (more on this in the data 

security subsection).  

Finally, we present the scatter-plots matrices of the masked datasets for the ME.L 

(Motivation Example) dataset in Appendix D. For the other two datasets, we present the 

scatter plots for their masked datasets at the end of this chapter.  

 

Table 5. Var(X1)  =  Var(u1) + Var(r1) 

(u1) (r1) (u1)+(r1) (X1) Diff%
ME.L 3278.720 237.615 3516.335 3516.335 0.00% 6.76%
ME.L.MV1 3205.861 2523.685 5729.547 5729.547 0.00% 44.05%
ME.L.MV2 3136.636 10094.741 13231.377 13231.377 0.00% 76.29%
ME.L 3280.863 234.462 3515.326 3516.335 0.03% 6.67%
ME.L.MV1 3234.839 2487.245 5722.084 5729.547 0.13% 43.41%
ME.L.MV2 3254.133 9948.647 13202.780 13231.377 0.22% 75.19%

Var SI

Piecewise 
Linear

LS-SVM

Method Dataset

 
 

Table 6. Var(X2)  =  Var(u2) + Var(r2) 

(u2) (r2) (u2)+(r2) (X2) Diff%
ME.L 3265.245 222.144 3487.389 3487.389 0.00% 6.37%
ME.L.MV1 3086.605 1479.537 4566.142 4566.142 0.00% 32.40%
ME.L.MV2 2923.988 5918.147 8842.135 8842.135 0.00% 66.93%
ME.L 3256.945 219.989 3476.934 3487.389 0.30% 6.31%
ME.L.MV1 3076.161 1469.744 4545.905 4566.142 0.44% 32.19%
ME.L.MV2 2940.068 5860.834 8800.902 8842.135 0.47% 66.28%

Var SI

Piecewise 
Linear

LS-SVM

Method Dataset

 
 



 107 

Table 7. Cov(X1,X2)  =  Cov(u1,u2) + Cov(r1,r2) 

(u1,u2) (r1,r2) (u1,u2)+(r1,r2) (X1,X2) Diff%
ME.L -3270.774 3.904 -3266.871 -3266.871 0.00%
ME.L.MV1 -3144.049 23.621 -3120.428 -3120.428 0.00%
ME.L.MV2 -3020.134 94.484 -2925.649 -2925.649 0.00%
ME.L -3262.102 1.306 -3260.796 -3266.871 0.19%
ME.L.MV1 -3129.142 17.527 -3111.614 -3120.428 0.28%
ME.L.MV2 -2993.171 73.047 -2920.124 -2925.649 0.19%

LS-SVM

Method Dataset Cov

Piecewise 
Linear

 
 

Table 8. Covariance between X1 and Y1 and its relationship to the variance of u1 

1 2 3 4
ME.L 3278.72 3278.72 3281.77 3276.56 3282.03
ME.L.MV1 3205.86 3205.86 3201.56 3202.97 3187.59
ME.L.MV2 3136.64 3136.64 3051.19 3121.63 3049.08
ME.L 3280.86 3281.41 3277.31 3286.91 3276.03
ME.L.MV1 3234.84 3239.07 3221.72 3273.40 3237.25
ME.L.MV2 3254.13 3270.15 3659.79 3306.64 3294.33

Var(u 1) 
Cov(X 1,Y 1) for Masking Method

Peicewise 
Linear

LS-SVM

Method Dataset

 
 

Table 9. Covariance between X2 and Y2 and its relationship to the variance of u2 

1 2 3 4
ME.L 3265.24 3265.24 3269.02 3269.18 3269.30
ME.L.MV1 3086.61 3086.61 3071.76 3099.30 3075.25
ME.L.MV2 2923.99 2923.99 2915.84 2953.70 2917.46
ME.L 3256.94 3261.43 3263.47 3262.40 3263.21
ME.L.MV1 3076.16 3083.28 3061.68 3092.25 3073.27
ME.L.MV2 2940.07 2954.36 2953.25 2983.78 2958.27

LS-SVM

Cov(X 2,Y 2) for Masking Method
Method Dataset Var(u 2) 

Peicewise 
Linear
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Table 10. Calculating the regression coefficients of X1 = b0 + b1Y1 based on the characteristics of 
original data  

1 19.747 0.933
2 20.173 0.932
3 20.282 0.932
4 20.282 0.932
1 128.673 0.566
2 129.746 0.562
3 128.405 0.567
4 128.942 0.565
1 222.844 0.247
2 214.181 0.277
3 221.699 0.251
4 222.359 0.249

X 1 = b 0 + b 1Y 1
Original Data

M
E.

L.
M

V1

128.800 0.566

b 0

b 0 =
Var (r 1)/Var (X 1 ) 

* E (X 1 )

b 1 =
Var (u 1)/Var (X 1)
[= Corr (X 1,Y 1)]

Masked Data

Dataset

0.248

19.884 0.933

M
E.

L
Masking
Method b 1

M
E.

L.
M

V2

223.175

 

 

Table 11. Calculating the regression coefficients of X2 = b0 + b1Y2 based on the characteristics of 
original data  

1 31.250 0.938
2 32.406 0.936
3 31.359 0.938
4 32.443 0.936
1 162.061 0.679
2 166.296 0.671
3 162.291 0.678
4 165.015 0.673
1 335.535 0.335
2 336.163 0.334
3 334.842 0.337
4 335.876 0.335

X 2 = b 0 + b 2Y 2
Original Data

M
E.

L.
M

V1

162.460 0.678

b 0

b 0 =
Var (r 2)/Var (X 2 ) 

* E (X 2 )

b 1 =
Var (u 2)/Var (X 2)
[= Corr (X 2,Y 2)]

Masked Data

Dataset

0.337

31.846 0.937

M
E.

L

Masking
Method b 1

M
E.

L.
M

V2

334.510
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Figure 6. Motivation Example (ME.L) Dataset  
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Figure 7. ME.L dataset: u1 vs. u2 and r1 vs. r2 scatter plots (LS-SVM) 
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Figure 8. ME.L dataset: u1 vs. u2 and r1 vs. r2 scatter plots (piecewise linear) 
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Figure 9. ME.L.MV1 Dataset 
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Figure 10. ME.L.MV1 dataset: u1 vs. u2 and r1 vs. r2 scatter plots (LS-SVM) 
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Figure 11. ME.L.MV1 dataset: u1 vs. u2 and r1 vs. r2 scatter plots (piecewise linear) 
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Figure 12. ME.L.MV2 Dataset 
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Figure 13. ME.L.MV2 dataset: u1 vs. u2 and r1 vs. r2 scatter plots (LS-SVM) 
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Figure 14. ME.L.MV2 dataset: u1 vs. u2 and r1 vs. r2 scatter plots (piecewise linear) 
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Figure 15. ME.L: X1 & Y1 vs. S1 scatter plot and the linearity of relationships between  X1 & Y1 
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Figure 16. ME.L.MV1: X1 & Y1 vs. S1 scatter plot and the linearity of relationships between  X1 & Y1  
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Figure 17. ME.L.MV2: X1 & Y1 vs. S1 scatter plot and the linearity of relationships between  X1 & Y1 
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Figure 18. ME.L: X2 & Y2 vs. S1 scatter plot and the linearity of relationships between  X2 & Y2 
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Figure 19. ME.LMV1: X2 & Y2 vs. S1 scatter plot and the linearity of relationships between  X2 & Y2 
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Figure 20. ME.LMV2: X2 & Y2 vs. S1 scatter plot and the linearity of relationships between  X2 & Y2 
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Figure 21. Comparing the linearity of relationships between X1 & Y1 for the three datasets on a 
unified scale 
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Figure 22 Comparing the linearity of relationships between X2 & Y2 for the three datasets on a 
unified scale 

VI.4.2. Data Utility  

In this section, we want to assess the data utility of the three masked datasets 

using the four RBM masking methods. We will use the equivalence tests measures 

discussed in Section V.3. For these tests, we need to calculate the fitted values from two 

models of which we want to test their equivalency. One model is built from original data 

and the other is built from the corresponding masked data. Each model represents the 

estimated conditional expectations (for specific sets of attributes divided into one 

dependent variable (DV) and other independent variables (IV)). 

We estimate the conditional expectations and calculate the fitted values using two 

estimation approaches: linear regression and LS-SVM. Linear regression assumes that 

conditional expectations are linear. When this is the case, this estimation approach should 

outperform the LS-SVM estimation approach in the quality of estimated conditional 

expectations. Otherwise, LS-SVM approach is more flexible.  Once the required 

conditional expectations are modeled, we evaluate the two models at the same data points 

from original datasets to generate the fitted values to test. 
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We are interested in six relationships listed in Table 12 and in Table 13. They 

represent three important classes of relationships. Table 12 shows the equivalence test 

results when the linear regression is used as an estimation mechanism while Table 13 

shows the equivalence test results when LS-SVM is used as an estimation mechanism. 

Although we tested at 25 percent equivalence region, the listed numbers are the minimum 

equivalence regions required to pass the equivalence tests. These numbers represent 

percentages either of the mean of original data for the mean equivalence test or of a slope 

of one for the slope equivalence test.  

For the mean equivalence test, both estimation mechanisms work well and all the 

results are significant, which leads to the rejection of the null hypotheses of dissimilar 

means. The minimum equivalence regions required to pass the test are very small 

especially in the case of testing linear conditional expectations. RBM shows its 

effectiveness in preserving the mean of the predictions (fitted values) from masked data to 

be similar to the predictions of original data. Hence, RBM is effective in reproducing the 

mean of confidential attributes in masked attributes.  

When the linear regression estimation is used, the slope equivalence test could be 

used to assess the ability of the RBM approach to maintain linear relationships (as they 

are represented by the covariance matrix) regardless of the type of actual existing 

relationships (liner or nonlinear). Table 12 shows that all relationships in all datasets 

masked by the four RBM masking methods pass the slope equivalence tests except for 

two cases. ME.L.MV2 masked using masking methods 3 or 4 are the two exceptions. 

Otherwise, there is strong evidence that RBM maintains linear relationships well. 
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Moreover, masking method 1, which simply adds normal noise to u, slightly outperforms 

all other masking methods across (almost) all relationships and datasets.  

Note that ME.L.MV2 is the dataset with most of the variation in X explained by r 

rather than u (r1 explains 75.19 percent of the variation of X1, for example). The source of 

the problem seems to be a combination of the amount of variation explained by r and the 

shuffling refinement, which tries to maintain marginal distributions. While masking 

method 3 applies shuffling refinement at the residuals level, masking method 4 applies it 

at two levels: residuals level and variables level. The common step is the shuffling at the 

residuals level. The shuffling at the residuals level for this case seems to destroy the 

orthogonality of the added noise, which biases the (weak to begin with) conditional 

expectations, especially with the large amount of variation in r. We do not face this 

problem when no shuffling refinement is used (i.e. masking method 1) or the shuffling 

refinement is done only at the variables level (i.e. masking method 2).  

When LS-SVM estimation mechanism is used, all relationships between S and X 

(relationships 1 and 2 in Table 13) pass the slope equivalence tests including the one that 

did not pass the slope test using linear regression. Note that the relationships between S 

and X are non-monotonic. Hence, LS-SVM estimation is more appropriate than linear 

regression estimation in this case.  

When we tested for relationships among X, two datasets did not pass the 

equivalence tests. In the case of X1|X2 vs. Y1|Y2, ME.L.MV1 did not pass the test when 

masked using method 1 or 3. Similarly, ME.L.MV2 did not pass the test when masked 

using method 1, 2 or 3. However, we know that the relationships between X1 and X2 and 

the relationships between Y1 and Y2 are linear for all three datasets (see Figure 21 and 
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Figure 22). Thus, the tests based on the linear regression (Table 12) might be more 

appropriate. Hence, all these cases pass the equivalence test, and the minimum required 

regions to pass the test are small. In addition, the parameter-based data utility measures 

for E(X1|X2) vs. E(Y1|Y2) (see Table 14) support the similarity of the predicted values of 

original and masked data. 

This demonstrates an important point: the estimation mechanism should be able to 

learn the conditional expectations as well as possible. While the assumption of the 

linearity of conditional expectations when linear regression estimation mechanism is used 

hinders its ability to be used for testing the equivalence of nonlinear relationships, the 

problem of over-fitting in the LS-SVM estimation mechanism may affect the 

effectiveness and the accuracy of the results one obtains from the equivalence tests, 

especially as the variance of residual increases. 

For the relationships X1|SX2 vs. Y1|SY2 and X2|SX1 vs. Y2|SY1, ME.L.MV1 and 

ME.L.MV2 datasets did not pass the slope equivalence test except for ME.L.MV1 dataset 

when masked using method 2 for relationship X2|SX1 vs. Y2|SY1. 

Finally, a general trend (with few exceptions) is that as the variance of the 

residual increases, maintaining the data utility becomes harder especially in the case of 

nonlinear relationships as estimated using the LS-SVM estimation mechanisms. This can 

be seen from the magnitude of the minimum required region to pass the equivalence test 

even when the test failed.  
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Table 12. Equivalence Tests using Linear Regression to Calculate the Compared Fitted Values 

1 2 3 4 1 2 3 4
ME.L 0.00% 0.00% 0.00% 0.00% 0.02% 2.07% 2.75% 1.56%
ME.L.MV1 0.00% 0.00% 0.01% 0.01% 0.12% 5.29% 10.01% 2.94%
ME.L.MV2 0.00% 0.01% 0.02% 0.01% 0.56% 0.58% 31.49% 29.37%

1 2 3 4 1 2 3 4
ME.L 0.00% 0.00% 0.00% 0.00% 0.03% 1.53% 1.04% 1.14%
ME.L.MV1 0.00% 0.00% 0.00% 0.00% 2.06% 6.95% 3.96% 3.45%
ME.L.MV2 0.00% 0.00% 0.01% 0.01% 7.38% 6.98% 24.79% 12.78%

1 2 3 4 1 2 3 4
ME.L 0.00% 0.00% 0.00% 0.00% 0.12% 0.21% 0.28% 0.21%
ME.L.MV1 0.00% 0.00% 0.00% 0.00% 0.03% 1.66% 0.14% 1.81%
ME.L.MV2 0.00% 0.00% 0.00% 0.00% 0.94% 8.70% 1.67% 3.81%

1 2 3 4 1 2 3 4
ME.L 0.00% 0.00% 0.00% 0.00% 0.16% 0.21% 0.31% 0.21%
ME.L.MV1 0.00% 0.00% 0.00% 0.00% 0.47% 1.66% 0.84% 1.81%
ME.L.MV2 0.00% 0.00% 0.00% 0.00% 1.20% 8.70% 0.89% 3.81%

1 2 3 4 1 2 3 4
ME.L 0.00% 0.00% 0.00% 0.00% 0.12% 0.22% 0.29% 0.22%
ME.L.MV1 0.00% 0.01% 0.01% 0.01% 0.03% 1.68% 0.20% 1.88%
ME.L.MV2 0.00% 0.01% 0.02% 0.01% 0.92% 8.70% 1.98% 4.07%

1 2 3 4 1 2 3 4
ME.L 0.00% 0.00% 0.00% 0.00% 0.16% 0.22% 0.30% 0.22%
ME.L.MV1 0.00% 0.00% 0.00% 0.00% 0.48% 1.70% 0.84% 1.82%
ME.L.MV2 0.00% 0.00% 0.00% 0.00% 1.25% 8.74% 0.97% 3.87%

Relationship 6: E(X2|SX1)|sx1 vs. E(Y2|SY1)|sx1 

Dataset Mean Equivalence Test Slope Equivalence Test

Relationship 5: E(X1|SX2)|sx2 vs. E(Y1|SY2)|sx2 

Dataset Mean Equivalence Test Slope Equivalence Test

Relationship 4: E(X2|X1)|x1 vs. E(Y2|Y1)|x1 

Dataset Mean Equivalence Test Slope Equivalence Test

Relationship 3: E(X1|X2)|x2 vs. E(Y1|Y2)|x2 

Dataset Mean Equivalence Test Slope Equivalence Test

Relationship 2: E(X2|S)|s vs. E(Y2|S)|s

Dataset Mean Equivalence Test Slope Equivalence Test

Dataset Mean Equivalence Test Slope Equivalence Test
Relationship 1: E(X1|S)|s vs. E(Y1|S)|s

 

 

 

 



 122 

Table 13. Equivalence Tests using LS-SVM to Calculate the Compared Fitted Values 

1 2 3 4 1 2 3 4
ME.L 0.01% 0.01% 0.01% 0.01% 0.04% 0.15% 0.23% 0.15%
ME.L.MV1 0.02% 0.02% 0.03% 0.04% 0.10% 0.51% 1.00% 0.26%
ME.L.MV2 0.03% 0.08% 0.10% 0.10% 0.23% 9.99% 0.83% 1.09%

1 2 3 4 1 2 3 4
ME.L 0.02% 0.02% 0.02% 0.02% 0.28% 0.22% 0.26% 0.22%
ME.L.MV1 0.04% 0.04% 0.04% 0.04% 0.73% 1.28% 0.46% 0.95%
ME.L.MV2 0.06% 0.06% 0.06% 0.06% 0.69% 0.95% 1.33% 0.65%

1 2 3 4 1 2 3 4
ME.L 0.09% 0.07% 0.11% 0.07% 0.41% 0.44% 0.70% 0.42%
ME.L.MV1 1.25% 0.26% 1.02% 0.21% 34.32% 6.10% 32.11% 3.25%
ME.L.MV2 1.91% 0.39% 1.83% 0.43% 71.52% 29.60% 75.81% 22.63%

1 2 3 4 1 2 3 4
ME.L 0.04% 0.03% 0.05% 0.03% 1.17% 0.35% 1.20% 0.38%
ME.L.MV1 0.37% 0.16% 0.15% 0.11% 7.23% 10.27% 1.32% 3.86%
ME.L.MV2 0.61% 0.24% 0.24% 0.23% 55.22% 47.66% 27.61% 32.98%

1 2 3 4 1 2 3 4
ME.L 0.24% 0.19% 0.23% 0.20% 1.72% 1.40% 1.81% 1.27%
ME.L.MV1 1.33% 1.27% 1.07% 1.23% 38.44% 28.63% 32.34% 34.02%
ME.L.MV2 1.57% 1.75% 2.77% 3.57% 77.22% 71.92% 75.32% 73.91%

1 2 3 4 1 2 3 4
ME.L 0.10% 0.14% 0.10% 0.13% 2.13% 3.10% 2.00% 2.80%
ME.L.MV1 0.76% 0.50% 0.43% 0.44% 24.90% 23.46% 28.12% 25.79%
ME.L.MV2 0.68% 0.66% 1.11% 0.95% 55.98% 55.47% 54.26% 52.87%

Dataset Mean Equivalence Test Slope Equivalence Test
Relationship 1: E(X1|S)|s vs. E(Y1|S)|s

Relationship 2: E(X2|S)|s vs. E(Y2|S)|s

Dataset Mean Equivalence Test Slope Equivalence Test

Relationship 3: E(X1|X2)|x2 vs. E(Y1|Y2)|x2 

Dataset Mean Equivalence Test Slope Equivalence Test

Relationship 4: E(X2|X1)|x1 vs. E(Y2|Y1)|x1 

Dataset Mean Equivalence Test Slope Equivalence Test

Relationship 5: E(X1|SX2)|sx2 vs. E(Y1|SY2)|sx2 

Dataset Mean Equivalence Test Slope Equivalence Test

Relationship 6: E(X2|SX1)|sx1 vs. E(Y2|SY1)|sx1 

Dataset Mean Equivalence Test Slope Equivalence Test
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Table 14. Parameter-Based data utility measures for E(X1|X2) vs. E(Y1|Y2) 

1 770.109 -0.938
2 768.572 -0.935
3 770.884 -0.939
4 768.554 -0.935
1 641.233 -0.683
2 635.700 -0.672
3 641.830 -0.684
4 635.194 -0.671
1 461.521 -0.328
2 479.005 -0.362
3 460.344 -0.325
4 456.953 -0.319

X1  = b 0  + b 1 X2Y 1 = b 0 + b 1Y 2
Masked Data

Dataset
Original Datasets

b 0 b 0 b 1
Masking
Method b 1

-0.331

769.554 -0.937

M
E.

L
M

E.
L.

M
V2

463.084

M
E.

L.
M

V1

641.342 -0.683

 
 

 

VI.4.3. Data Security 

As discussed in Section VI.2, the snooper knows that the best (s)he can do is to 

learn the conditional expectations u (= E(X|S)) especially when (s)he sees non-monotonic 

relationships. Thus, (s)he will try to improve her/his prediction using other available 

information such as the masked attributes Y. As stated earlier, relationships between u 

and confidential attributes X are linear. In addition, relationships between Y and 

confidential attributes X are also linear. Knowing that, the snooper may choose to fit a 

linear regression model using both u and Y as predictors to reduce the prediction error 

(s)he obtains from using the best predictors u alone.  

We simulate the above scenario (using the three ME-related datasets) to enhance 

the prediction of X1 and X2 separately beyond what is known about them from the 

conditional expectations u (or the fitted values E(X|S)|s).  Table 15 and Table 16 present 

the results of this simulation. Instead of fitting a regression line in the form of  E(Xi|ui) = 
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a + bui, the snooper will try to fit one in the form of  E(Xi|uiYi) = a + bui + cYi to enhance 

his prediction. Clearly, the snooper gains nothing by doing that since all regression 

coefficients c are negligible and non-significant for both X1 and X2 across the three 

datasets and the four masking methods. The regression R2 and adjusted R2 also confirm 

that there is no prediction improvement by using Y and u to predict the non-confidential 

attributes X over using u alone . 

One may argue that this is just one linear combination among many other possible 

ones and another untested linear combination may reveal more about X. For this reason, 

we decided to run other (stronger) security tests that consider simultaneously all possible 

linear combinations of predictors (u and Y) that reveal the most about X:  the canonical 

correlation security tests (CC). There are two conditions in the canonical correlation 

security tests (CC) that should be satisfied when the fitted values u (i.e. the best 

predictors) are involved. First, u should be the best predictor for X: 

 ( )( ) ( )CC E CC≥SX X S X Y . (6.20) 

In addition, no gain is possible when a snooper tries to combine both u and Y to 

predict X: 

 ( )( ) ( )( ),CC E CC E=S SX X S X X S Y . (6.21) 

Table 17 demonstrates the use of the above CC measures for all three datasets 

masked using all four masking methods.  Clearly, the measures indicate that the RMB 

approach did a good job in protecting the original datasets and no extra information can 

be learned about confidential attributes X beyond what the conditional expectations u 

reveal about them. 
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Although the snooper will not enhance his prediction using the masked values, 

datasets with low security index (SI) can reveal a lot to the snooper through the 

conditional expectations u. For example, in the case of ME.L dataset, E(X|S) already 

explains 93.3 percent and 93.7 percent (see Table 15 and Table 16) of the variation of X1 

and X2, respectively, in terms of R2. The correlations in Table 18 and Table 19 show 

similar levels of associations between X and Y. In terms of CC measures (Table 17), the 

threat seems to be greater. This again signifies the importance of assessing the 

characteristics of confidential attributes X in original datasets before masking them. As 

the portion of the variance of X explained by the residuals increases, the possible security 

level that the RBM approach can provide increases. 

Finally, Table 18 and Table 19 demonstrate how closely the equality in the 

relationship presented in Equation (6.12) (i.e. Corr(Xi, Yi) = [Corr(Xi, ui)]2) holds.  

Although there are slight discrepancies in some figures, they are understandable given 

that the estimation mechanism (the LS-SVM machine) approaches the conditional 

expectations. The tables also show that the upper bound (i.e. Corr(Xi, ui)) for the 

correlation between Xi and Yi presented in Equation (6.14) holds for all cases. 
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Table 15. Possible snooper scenario to compromise X1 

Dataset a b
(p -value)

c
(p -value) R 2 Adj. 

R 2

-0.046 1.000
(0.000) - 0.933 0.933

1 -0.046 1.000
(0.000)

0.000
(0.995) 0.933 0.933

2 -0.044 1.005
(0.000)

-0.005
(0.868) 0.933 0.933

3 -0.048 1.004
(0.000)

-0.003
(0.913) 0.933 0.933

4 -0.043 1.010
(0.000)

-0.010
(0.752) 0.933 0.933

-0.342 1.001
(0.000) - 0.566 0.565

1 -0.342 1.001
(0.000)

-0.000
(0.997) 0.566 0.565

2 -0.340 1.003
(0.000)

-0.002
(0.947) 0.566 0.565

3 -0.334 0.998
(0.000)

0.003
(0.916) 0.566 0.565

4 -0.342 1.001
(0.000)

0.000
(0.989) 0.566 0.565

-1.301 1.004
(0.000) - 0.248 0.247

1 -1.302 1.005
(0.000)

-0.001
(0.981) 0.248 0.247

2 -1.135 0.998
(0.000)

0.005
(0.870) 0.248 0.247

3 -1.312 0.999
(0.000)

0.006
(0.853) 0.248 0.247

4 -1.315 0.999
(0.000)

0.005
(0.864) 0.248 0.247
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Table 16. Possible snooper scenario to compromise X2 

Dataset a b
(p -value)

c
(p -value) R 2 Adj. 

R 2

-0.810 1.002
(0.000) - 0.937 0.937

1 -0.810 1.004
(0.000)

-0.003
(0.928) 0.937 0.937

2 -0.811 1.004
(0.000)

-0.003
(0.933) 0.937 0.937

3 -0.810 1.004
(0.000)

-0.003
(0.934) 0.937 0.937

4 -0.811 1.005
(0.000)

-0.004
(0.911) 0.937 0.937

-1.660 1.003
(0.000) - 0.678 0.678

1 -1.660 1.004
(0.000)

-0.001
(0.986) 0.678 0.677

2 -1.650 1.007
(0.000)

-0.003
(0.914) 0.678 0.677

3 -1.660 1.003
(0.000)

0.000
(1.000) 0.678 0.677

4 -1.657 1.005
(0.000)

-0.002
(0.949) 0.678 0.677

-3.539 1.007
(0.000) - 0.337 0.337

1 -3.542 1.009
(0.000)

-0.002
(0.947) 0.337 0.336

2 -3.539 1.008
(0.000)

-0.001
(0.976) 0.337 0.336

3 -3.547 1.009
(0.000)

-0.001
(0.963) 0.337 0.336

4 -3.543 1.009
(0.000)

-0.002
(0.949) 0.337 0.336

M
E.
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M

V1
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Table 17. Canonical correlation security measures (CC) using the best predictor E(X|S) for the three 
ME-Related datasets 

1 2 3 4
CC (X|u) 0.983 0.983 0.983 0.983

>= >= >= >= >=
CC (X|Y) 0.966 0.966 0.966 0.966
CC (X|u) 0.983 0.983 0.983 0.983

= = = = =
CC (X|u,Y) 0.983 0.983 0.983 0.983
CC (X|u) 0.880 0.880 0.880 0.880

>= >= >= >= >=
CC (X|Y) 0.774 0.771 0.776 0.772
CC (X|u) 0.880 0.880 0.880 0.880

= = = = =
CC (X|u,Y) 0.880 0.880 0.880 0.880
CC (X|u) 0.673 0.673 0.673 0.673

>= >= >= >= >=
CC (X|Y) 0.453 0.469 0.453 0.451
CC (X|u) 0.673 0.673 0.673 0.673

= = = = =
CC (X|u,Y) 0.673 0.673 0.673 0.673

M
E.

L.
M

V1
M

E.
L.

M
V2

Masking MethodsDataset Condition

M
E.

L

 

 

Table 18. Corr(X1,Y1):  its upper bound and its relationship to Corr(X1, E(X1|S)) and the security 
index (SI) 

1 2 3 4
ME.L 6.67% 0.067 0.933 0.966 0.933 0.933 0.932 0.933 0.932
ME.L.MV1 43.41% 0.434 0.566 0.752 0.566 0.566 0.562 0.569 0.565
ME.L.MV2 75.19% 0.752 0.248 0.498 0.248 0.247 0.277 0.251 0.249

Var (u 1) / 
Var (X 1)

Corr (X 1,Y 1) for Masking Method
Dataset SI

Var (r 1) / 
Var (X 1)

Corr
(X 1,u 1)

R 2=Corr
(X 1,u 1)2

 

 

Table 19. Corr(X2,Y2):  its upper bound and its relationship to Corr(X2, E(X2|S)) and the security 
index (SI) 

1 2 3 4
ME.L 6.31% 0.063 0.937 0.968 0.937 0.937 0.936 0.937 0.936
ME.L.MV1 32.19% 0.322 0.678 0.823 0.677 0.677 0.671 0.678 0.673
ME.L.MV2 66.28% 0.663 0.337 0.581 0.338 0.335 0.334 0.337 0.335

Var (u 2) / 
Var (X 2)

Corr (X 2,Y 2) for Masking Method
Dataset SI

Var (r 2) / 
Var (X 2)

Corr
(X 2,u 2)

R 2=Corr
(X 2,u 2)2
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Figure 23. ME.L.MV1 – Masked using masking method 1 
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Figure 24. ME.L.MV1 – Masked using masking method 2 
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Figure 25. ME.L.MV1 – Masked using masking method 3 
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Figure 26. ME.L.MV1 – Masked using masking method 4 
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Figure 27. ME.L.MV2 – Masked using masking method 1 
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Figure 28. ME.L.MV2 – Masked using masking method 2 
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Figure 29. ME.L.MV2 – Masked using masking method 3 
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Figure 30. ME.L.MV2 – Masked using masking method 4 
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CHAPTER 

VII. ASSESSING THE RBM DATA UTILITY WHEN THE 
RELATIONSHIPS AMONG CONFIDENTIAL ATTRIBUTES ARE 

NONLINEAR 

The theoretical basis, as represented by Equation (3.9) in Subsection III.3.1 and 

its proofs in Appendix B, of the Relationship-Based  masking (RBM) approach show that 

the RBM masking methods work when the relationships among X are linear regardless of 

the relationships between X and S: monotonic (linear or nonlinear) or (single-valued 

mapping) non-monotonic. However, we cannot theoretically establish how the RBM 

approach will work in the general case, or even given a specific dataset when the 

relationships among confidential attributes are not linear. Therefore, we conduct an 

experiment to assess its effectiveness for specific datasets with the aim of detecting 

which type of dataset/relationship class RMB is suitable for and for which it is not. 

This chapter empirically investigates the effectiveness of the four proposed 

masking methods in Chapter IV and Appendix C in terms of data utility. We want to 

achieve three goals during our discussion. The first goal is to assess the effectiveness of 

the proposed methods in terms of data utility. The second goal is to discuss what happens 

when a violation in the assumptions of the masking methods occurs. Some main 

assumptions for the masking methods are listed in Section IV.2 such as linearity (or 

simple pattern) and constant variance of the residuals, and well-estimated conditional 

expectations. The third goal is to select the best possible masking method among the four 

proposed methods based on its general performance when the relationships among X are 

nonlinear.  
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In our experiment, we use ten simulated and derived datasets in addition to the 

motivation example. The first section (Section VII.1) in this chapter briefly introduces 

these datasets and their characteristics. The second section (Section VII.2) examines the 

effectiveness of the masking methods in terms of data utility using some of the measures 

developed in Section V.2 and, more important, in Section V.3 titled “Equivalence Tests 

for Validating Models as Data Utility Measures”. The last section (Section VII.3) 

concludes briefly by trying to find one masking method among the four that does a 

decent job in maintaining different types and classes of relationships. It also summarizes 

the effects of violation of assumptions on the performance of the masking methods. 

Note that we are not planning to discuss the security of the simulated datasets. 

The datasets with non-monotonic relationships among X are simulated with low security 

index (SI).   We use low SI to enable us to generate non-monotonic relationships in two 

classes of relationships simultaneously. The two relationship classes are the class of 

relationships between S and X and the class of relationships among X.  

RBM uses the theory of the conditional independence (Muralidhar and Sarathy, 

2003c) by conditioning on the best predictor of X (i.e. E(X|S)). When we evaluated the 

two security conditions using Equations (6.20) and (6.21) (security canonical-correlation 

measures involving the best predictor u) presented in Subsection VI.4.3, both security 

conditions held in all cases although their magnitude was high. Thus, confidentiality is 

satisfied to the extent the characteristics of original datasets allow. For privacy, the worst 

re-identification case we encountered across all datasets and masking methods is 4.80 

percent re-identification rate, which is acceptable. 
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VII.1. Datasets 

Nine of the datasets (NM.01 to NM.05, ME.L, and MNL.01 to MNL.03), 

including the motivation example, consist of four variables: two non-confidential 

attributes S (S1 and S2) and two confidential attributes X (X1 and X2). The other two 

datasets (NM.01.S1 and ME.L.S1) consist of three variables: one non-confidential 

attribute S (S1) and two confidential attributes X (X1 and X2). These two datasets are 

derived, as their names suggest, from two of the datasets with four variables by dropping 

one non-confidential attribute (S2). The goal is to study the impact of doing so on the 

pattern of residuals, which may affect the effectiveness of the masking methods 

accordingly. 

All the names of datasets have an indicator as to the type of the relationship 

existing among confidential attributes X (class).  We use “L” in the names of the datasets 

when relationships among confidential attributes X are linear. For example, the name of 

the motivation example dataset is ME.L and the name of its derived dataset (with one 

non-confidential attribute S1) is ME.L.S1. The prefix “MNL” is used when the 

relationships among X are monotonic nonlinear. Examples include datasets MNL.01 to 

MNL.03. When the relationships among confidential attributes are non-monotonic, the 

names of datasets start with the prefix “NM,” as in datasets NM.01 to NM.05 and 

NM.01.S1. This class of relationships is more difficult to reproduce in masked datasets 

because masking methods try to reproduce them indirectly (vs. directly in the case of 

relationships between non-confidential attributes S and confidential attributes X) to 

satisfy security requirements. 
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The three MNL datasets are created by randomly sampling 1,000 data points from 

the simulated monotonic nonlinear dataset used in Sarathy et al.(2002). For each dataset, 

we also pick a different pair of variables (as X1 and X2) from the three original 

confidential attributes.  

We refer to a group of four datasets (the three MNL datasets and NM.01.S1 

dataset) as ill-behaved datasets in this chapter. The three MNL datasets violate the 

assumption of constant variance of the noise (residuals) terms. This is clear from Figure 

90, Figure 97 and Figure 104 in Appendix K, Appendix L and Appendix M, respectively. 

NM.01.S1 dataset violates the assumption that the patterns left among residuals r after 

removing the conditional expectations E(X|S) are linear or simple patterns. Clearly, 

Figure 111 in Appendix N shows non-monotonic pattern among r in the case of the 

NM.01.S1 dataset.  

Table 20 lists all 11 datasets with their related groups and highlights the main 

characteristics of the datasets. In this chapter, when we present the results related to all 

datasets at once in the form of tables, we divide the tables into four horizontal sections. 

The first section represents the datasets with non-monotonic relationships among 

confidential attributes X. This group, which can be called the non-monotonic group, 

consists of five datasets (the NM datasets). The motivation example (ME.L) occupies the 

second section. The third section consists of the three datasets with monotonic nonlinear 

relationships among confidential attributes (the MNL datasets). This group is called the 

“monotonic nonlinear” group. The last group is called the “One S” group, which consists 

of only one non-confidential attribute S1 (NM.01.S1 and ME.L.S1 datasets). Both 
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datasets are derived from their corrsponding two non-confidential attributes datasets as 

discussed earlier.  

In our discussion, many of the materials related to the 11 datasets in the form of 

tables and figures are provided in appendices.  Appendix D provides the material related 

to the motivation example dataset (ME.L). Appendix F to Appendix J, Appendix K to 

Appendix M, and Appendix N and Appendix O present the related material to the Non-

Monotonic group (NM.01-NM.05 datasets),  the Monotonic Nonlinear group (MNL.01-

MNL.03 datasets), and the One S group (NM.01.S1 and ME.L.S1 datasets), respectively. 

 

 

 

 

Table 20. Datasets characteristics 

Group Dataset Records 
No 

S 
No 

X 
No 

X 
vs. 
S 

X1 
vs. 
X2 

E(X1|S)|s 
vs. 

E(X2|S)|s 

r1 
vs. 
r2 

NM.01 1000 2N 2N NM NM NM NR 
NM.02 1000 2N 2N NM NM NM L 
NM.03 1000 2N 2N NM NM NM NR 
NM.04 1000 2N 2N NM NM NM NR 

Non-
Monotonic 

NM.05 1000 2N 2N NM NM NM NR 
Motivation 
Example ME.L 1000 2: 1N & 

1C 2N NM L L NR 

MNL.01 1000 2N 2N MNL MNL MNL MNL 
MNL.02 1000 2N 2N MNL MNL MNL MNL Monotonic 

Nonlinear 
MNL.03 1000 2N 2N MNL MNL MNL MNL 
NM.01.S1 1000 1N 2N NM NM NM NM One S 
ME.L.S1 1000 1N 2N NM L L NR 

NR: No Relationship 
L:  Linear Relationships 
MNL:  Monotonic Nonlinear Relationships 
NM:  Non-Monotonic Relationships 
N: Numeric 
C: Categorical 
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VII.2. Data Utility 

In any dataset, there are many possible combinations of relationships among 

variables. The number of relationships increases rapidly as the number of variables 

increases. In our simulated datasets with four variables, the number of possible 

relationship combinations is 28 (refer to Table 2 and the related discussion in Subsection 

V.2). In this section, using the same approach as in Section VI.1 and Subsection V.2, we 

select six relationships as a plausible representation of the most important relationships 

that may exist in these datasets.  

In the following six subsections, we will investigate the data utility measures for 

the six relationships, divided equally into three classes:  

1. Relationships between confidential attributes X and non-confidential attributes S: 

a. E(X1|S)|s vs. E(Y1|S)|s, and  

b. E(X2|S)|s vs. E(Y2|S)|s 

2. Relationships among confidential attributes X:  

a. E(X1|X2)|x2 vs. E(Y1|Y2)|x2, and  

b. E(X2|X1)|x1 vs. E(Y2|Y1)|x1 

3. Relationships between confidential attributes X, and a mixture of confidential 

attributes X and non-confidential attributes S:  

a. E(X1|SX2)|sx2 vs. E(Y1|SY2)|sx2, and  

b. E(X2|SX1)|sx1 vs. E(Y2|SY1)|sx1 

The rest of this section is divided into six subsections, one for each relationship. 

In each subsection, we will discuss the data utility measures for the corresponding 

relationship. We begin our discussion of the data utility by presenting the measures of 
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equivalence tests (refer to Section V.3). First, we discuss the equivalence of the 

magnitudes of original and corresponding masked relationships (fitted values) using the 

equivalence tests for the mean of the fitted values obtained from the original unmasked 

datasets and comparing them with the mean of the fitted values obtained from the 

corresponding four masked datasets.  When they are the same or very similar, it indicates 

RBM maintains the means of masked attributes similar to the corresponding means of 

original attributes. 

Second, when the fitted values (obtained from original and their corresponding 

masked datasets) at the individual values, not at their means, are the same or similar, the 

direction of the relationships among them becomes linear and the slope of regression of 

one set of fitted values on the other set should be one or close to one. 

Unlike ordinary regression of the sets of original and masked fitted values on each 

other, the test for the slope using the equivalence tests is independent of testing the mean 

of the fitted values (Subsection V.3). Nevertheless, ordinary regression can be also used 

for comparison purposes. Thus, for the similarity of the direction of the relationship, we 

also report the results of direct regression of one set of original fitted values on their 

corresponding masked sets of fitted values. We show the significance and the strength of 

the regression using R2. In addition, we report the correlation between sets of 

corresponding fitted values. In our discussion, we use numbers 1 to 4 to refer to masking 

methods 1 to 4, respectively (see Appendix C).  

 



 140 

VII.2.1. Relationship 1: E(X1|S)|s vs. E(Y1|S)|s 

Table 21 presents the results of the equivalence tests (Section V.3) of the mean of 

fitted values. All the equivalence tests are significant and the null hypotheses of 

dissimilar means are rejected (unmarked numbers indicate significant equivalence tests).  

Although we test the equivalence at 25 percent equivalence regions, the numbers listed 

represent the required minimum equivalence regions (as a percentage of the original 

mean) to pass the equivalence tests. All numbers of the required mean equivalence tests 

are very small, especially when compared to the test value (25 percent). The largest (or 

worst) required minimum equivalence region across all datasets and masking methods to 

pass the equivalence tests of mean is 0.32 percent (of the original mean) in the case of 

dataset NM.01.S1 and masking method 4. This means that all masking methods perform 

well in maintaining the means of fitted values of masked datasets as the means of fitted 

values of original datasets. Notice also that the means of fitted values are also the means 

of the dependent variables (either confidential or masked variables) since the means for 

residuals equal zero. 

Table 21. Percentage of minimum equivalence regions of significant equivalence tests for mean and 
slope of 1 for relationships (fitted values) E(X1|S)|s vs. E(Y1|S)|s 

Mean Equivalence Test Slope Equivalence Test Dataset 
1 2 3 4 1 2 3 4 

NM.01 0.04% 0.06% 0.05% 0.06% 0.14% 0.16% 0.16% 0.23% 
NM.02 0.22% 0.26% 0.18% 0.19% 0.87% 0.97% 1.01% 0.42% 
NM.03 0.28% 0.29% 0.24% 0.23% 1.39% 1.47% 1.51% 0.83% 
NM.04 0.19% 0.21% 0.15% 0.16% 0.69% 0.52% 0.54% 0.52% 
NM.05 0.07% 0.09% 0.08% 0.09% 0.64% 1.17% 0.89% 0.99% 
ME.L 0.01% 0.01% 0.01% 0.01% 0.04% 0.15% 0.23% 0.15% 
MNL.01 0.07% 0.11% 0.11% 0.13% 0.76% 7.70% 1.88% 3.29% 
MNL.02 0.09% 0.11% 0.12% 0.13% 1.24% 8.38% 2.82% 3.76% 
MNL.03 0.10% 0.23% 0.16% 0.27% 2.93% 13.84% 3.04% 4.01% 
NM.01.S1 0.06% 0.31% 0.14% 0.32% 0.33% 16.92% 2.11% 7.28% 
ME.L.S1 0.00% 0.01% 0.01% 0.01% 0.03% 0.15% 0.18% 0.16% 
All numbers are significant  
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 Table 21 shows also the results of the equivalence tests of slope for the 

regression of fitted values obtained from original datasets on the fitted values obtained 

from their corresponding four masking datasets for the relationships E(X1|S)|s vs. 

E(Y1|S)|s. All equivalence tests are significant and the null hypotheses of dissimilar slope 

to one are rejected at the range of 1±0.25 (i.e. at 25 percent of slope of one, or [.75± 

1.25]).  

However, the minimum required equivalence region to pass the equivalence test 

of slope of one is always less than 17 percent. When we exclude the group of monotonic 

nonlinear datasets (NML group with non-constant variance among their residuals) and 

NM.01.S1 datasets (the one with non-monotonic nonlinear relationships among its 

residuals as Figure 111 shows), the minimum required equivalence regions for significant 

slope equivalence tests across all datasets and masking methods are about 1 percent or 

less. The largest figure in this group is 1.51 percent in the case of NM.03 dataset and 

masking method 3. Note that the datasets we excluded are the ones we referred to earlier 

as the ill-behaved datasets. 

When ill-behaved datasets are included, although all the masking methods pass 

the slope equivalence tests, the larger required minimum equivalence regions for masking 

methods 2 and 4 show that they did not perform as well as masking methods 1 and 3.  

From Table 21, based on tests of both mean and slope equivalence, we can 

conclude that masking method 1 outperforms other masking methods in many cases. In 

this method, we add a normal independent noise to E(X|S) to generate Y. This makes 

relearning the conditional expectations E(Y|S), which are basically E(X|S), from masked 

datasets easy and direct for most learning algorithms.    
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 Another way to check the similarity of the fitted values obtained from original 

and their corresponding four masking methods is to draw the scatter plots of these fitted 

values. When the scatter plots show sharp linear relationships, with slope of one or close 

to one, the relationships learned from original and masked datasets are similar. Figure 31 

shows the four scatter plots for the motivation example (ME.L dataset). They show 

strong linear relationships with slope of one indicating the similarity of relationships 

learned from original and masked datasets.  

 These figures can be quantified using different measures such as slope (Table 22), 

and R2 and correlations along their significance (Table 23). These measures show similar 

patterns to the ones found in the slope equivalence tests. When we exclude the ill-

behaved datasets, all the slopes are almost one. In addition, both R2 and correlation 

measures are also significant and compatible with one another, and compatible with the 

slope equivalence tests. R2 measures almost 100 percent and the correlations are almost 

one.  

 Nevertheless, masking method 1, which adds independent normal noise, 

outperforms other masking methods in the case of datasets with some violations in 

assumptions (e.g. ill-behaved datasets). In addition, it generally outperforms other 

masking methods across all datasets.  This is similar to the conclusion we draw from the 

slope equivalence tests earlier.  
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Table 22. Slope of linear regression of relationships (fitted 
values) E(X1|S)|s vs. E(Y1|S)|s 

Slope Dataset 
1 2 3 4 

NM.01 0.9994 0.9998 0.9992 1.0004 
NM.02 1.0003 0.9983 1.0038 0.9962 
NM.03 0.9994 0.9993 1.0033 0.9971 
NM.04 1.0002 0.9974 1.0005 0.9955 
NM.05 0.9982 1.0011 0.9999 0.9990 
ME.L 0.9999 0.9990 1.0018 0.9990 
MNL.01 0.9890 1.0502 0.9895 0.9917 
MNL.02 0.9919 1.0572 0.9928 0.9944 
MNL.03 0.9931 0.9755 0.9180 0.8185 
NM.01.S1 0.9976 1.1622 0.9786 1.0403 
ME.L.S1 0.9999 0.9990 1.0014 0.9989 
 
 

Table 23. R2 of linear regression  and correlation of relationships (fitted values) E(X1|S)|s vs. 
E(Y1|S)|s 

R2 Correlation Dataset 
1 2 3 4 1 2 3 4 

NM.01 99.98% 99.95% 99.97% 99.95% 0.9999 0.9998 0.9998 0.9998 
NM.02 99.57% 99.36% 99.70% 99.68% 0.9978 0.9968 0.9985 0.9984 
NM.03 99.13% 99.06% 99.32% 99.38% 0.9956 0.9953 0.9966 0.9969 
NM.04 99.68% 99.61% 99.79% 99.76% 0.9984 0.9980 0.9990 0.9988 
NM.05 99.58% 99.41% 99.53% 99.39% 0.9979 0.9970 0.9976 0.9970 
ME.L 100.00% 99.99% 100.00% 99.99% 1.0000 0.9999 1.0000 1.0000 
MNL.01 99.05% 97.84% 97.97% 96.97% 0.9952 0.9891 0.9898 0.9847 
MNL.02 98.67% 97.78% 97.46% 96.79% 0.9933 0.9888 0.9872 0.9838 
MNL.03 97.39% 86.19% 93.00% 81.00% 0.9869 0.9284 0.9644 0.9000 
NM.01.S1 99.91% 97.52% 99.48% 97.44% 0.9996 0.9875 0.9974 0.9871 
ME.L.S1 100.00% 99.99% 100.00% 99.99% 1.0000 1.0000 1.0000 1.0000 
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Figure 31. Motivation Example (ME.L) Dataset – E(X1|S)|s vs. E(Y1|S)|s 
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VII.2.2. Relationship 2: E(X2|S)|s vs. E(Y2|S)|s  

Table 24 shows the equivalence tests for the mean of the sets of fitted values 

obtained from original datasets versus their corresponding masked datasets, E(X2|S)|s vs. 

E(Y2|S)|s , and for their regression slopes of one. The mean equivalence tests are examined 

at 25 percent of the mean of original fitted values. The slope equivalence tests are 

examined at slope range of 1±0.25. For the mean equivalence tests, all tests are 

significant as in the previously discussed relationship. Moreover, all minimum required 

equivalence regions to pass the tests are very small. The largest figure is 0.42 percent (of 

the mean of original fitted values) in the case of NM.02 dataset and masking method 1. 

These small values indicate that all masking methods succeeded in maintaining the 

magnitude of the relationships obtained from masked data to be the same as the 

magnitude of the relationships obtained from original data. Consequently, they maintain 

the mean of the masked attributes to be the same as the mean of the confidential 

attributes. In addition, the performance of all four masking methods in maintaining the 

mean is comparable and no masking method is superior across all datasets. Nevertheless, 

in the case of the datasets with some violations in assumptions, masking method 1 

performs slightly better.  

For the slope equivalence tests, when we exclude the ill-behaved datasets (the 

three MNL datasets and NM.01.S1), the largest minimum equivalence region to pass the 

slope equivalence test to one is 2.11 percent (i.e. the slope in the range of 1±0.0211). 

Other minimum equivalence regions are even less than 1.75 percent and many of them 

are less than 1 percent. 
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For the ill-behaved datasets, the required minimum equivalence regions are 

generally and slightly larger than other datasets. Some of them are above 11 percent (i.e. 

the minimum equivalence region for the slope in the range of 1±0.11) as in the case of 

MNL.02 and NM.01.S1 datasets when masked using masking method 2. On these 

datasets, masking method 1 performs better than other masking methods in most cases. 

On all other datasets, the performance of all four masking methods is comparable. 

Figure 32 shows the scatter plots for the fitted values obtained from the original 

motivation example dataset against the fitted values obtained from its four masked 

datasets for the relationship E(X2|S)|s vs. E(Y2|S)|s . All four scatter plots indicate very 

strong linear relationships with a slope equal to one. We report the slopes of all 

relationships in these scatter plots in Table 25. When we exclude the ill-behaved datasets, 

all slopes are very close to one. The minimum two slopes are 0.9885 and 0.9877 in the 

case of the NM.01 dataset when masked using masking methods 1 and 3, respectively.  

For the ill-behaved datasets, the masking methods perform differently on these 

datasets based on the assumption they violate. The ill-behaved datasets can be divided 

into two groups based on their assumption violation: the assumption of constant variance 

and the assumption of simple (linear) patterns exist among residuals after learning the 

conditional expectations E(X|S). While the three MNL datasets mainly violate the 

constant variance assumption, the NM.01.S1 violates the assumption of simple linear 

patterns among residuals. Most masking methods perform very well on the NM.01.S1 

dataset in terms of data utility. The slopes are very close to one in the case of masking 

methods 1 and 4 with slopes 0.9819 and 0.9979, respectively. The other two masking 

methods (2 and 3) are off by about ±0.08. 
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On the other hand, when the constant variance assumption in residuals is violated 

(the MNL datasets), the slopes are far from one. The closest figure to one is 0.8281in the 

case of the MNL.01 and masking method 1. Masking method 1 outperforms other 

masking methods on this group of datasets. When there is no assumption violation, the 

performance of all four methods is comparable.  Further, all R2 and correlations measures 

in Table 26 are significant. They are compatible and confirm the conclusions we draw 

from the slopes table (Table 25) for most cases. 

 

Table 24. Percentage of minimum equivalence regions of significant equivalence tests for mean and 
slope of 1 for relationships (fitted values) E(X2|S)|s vs. E(Y2|S)|s  

Mean Equivalence Test Slope Equivalence Test Dataset 
1 2 3 4 1 2 3 4 

NM.01 0.02% 0.02% 0.02% 0.02% 1.26% 0.15% 1.34% 0.15% 
NM.02 0.22% 0.20% 0.20% 0.18% 0.47% 0.49% 0.61% 0.40% 
NM.03 0.42% 0.41% 0.32% 0.32% 1.45% 1.44% 0.60% 0.95% 
NM.04 0.35% 0.32% 0.28% 0.27% 1.73% 1.57% 0.86% 1.02% 
NM.05 0.17% 0.18% 0.16% 0.16% 1.50% 2.11% 1.74% 1.61% 
ME.L 0.02% 0.02% 0.02% 0.02% 0.28% 0.22% 0.26% 0.22% 
MNL.01 0.25% 0.31% 0.29% 0.34% 3.21% 5.77% 5.56% 6.70% 
MNL.02 0.34% 0.38% 0.36% 0.40% 7.63% 11.25% 7.75% 8.93% 
MNL.03 0.33% 0.38% 0.36% 0.41% 6.18% 8.68% 5.48% 7.04% 
NM.01.S1 0.05% 0.11% 0.06% 0.12% 1.65% 11.06% 8.30% 4.45% 
ME.L.S1 0.01% 0.01% 0.01% 0.01% 0.17% 0.16% 0.20% 0.16% 
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Figure 32. Motivation Example (ME.L) Dataset – E(X2|S)|s vs. E(Y2|S)|s 
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Table 25. Slope of linear regression of relationships (fitted 
values) E(X2|S)|s vs. E(Y2|S)|s  

Slope Dataset 
1 2 3 4 

NM.01 0.9885 0.9994 0.9877 0.9994 
NM.02 0.9969 0.9980 0.9942 0.9979 
NM.03 0.9985 0.9992 0.9953 0.9989 
NM.04 0.9970 0.9976 0.9945 0.9969 
NM.05 0.9922 0.9971 0.9976 0.9963 
ME.L 0.9980 0.9987 0.9983 0.9987 
MNL.01 0.8281 0.7571 0.7672 0.6760 
MNL.02 0.7727 0.7311 0.7356 0.6643 
MNL.03 0.7734 0.6983 0.7087 0.6262 
NM.01.S1 0.9819 1.0799 0.9198 0.9979 
ME.L.S1 0.9990 0.9991 0.9987 0.9991 
 
 

Table 26. R2 of linear regression  and correlation of relationships (fitted values) E(X2|S)|s vs. 
E(Y2|S)|s  

R2 Correlation Dataset 
1 2 3 4 1 2 3 4 

NM.01 99.92% 99.94% 99.92% 99.94% 0.9996 0.9997 0.9996 0.9997 
NM.02 99.61% 99.67% 99.68% 99.71% 0.9980 0.9984 0.9984 0.9986 
NM.03 99.01% 99.08% 99.41% 99.41% 0.9951 0.9954 0.9970 0.9971 
NM.04 98.68% 98.86% 99.16% 99.22% 0.9934 0.9943 0.9958 0.9961 
NM.05 98.49% 98.39% 98.72% 98.72% 0.9924 0.9919 0.9936 0.9936 
ME.L 99.95% 99.95% 99.95% 99.95% 0.9998 0.9998 0.9998 0.9997 
MNL.01 83.14% 74.06% 78.43% 69.26% 0.9118 0.8606 0.8856 0.8322 
MNL.02 74.10% 67.79% 70.69% 63.49% 0.8608 0.8233 0.8408 0.7968 
MNL.03 75.24% 66.70% 69.84% 61.24% 0.8674 0.8167 0.8357 0.7825 
NM.01.S1 99.30% 97.09% 99.00% 96.49% 0.9965 0.9853 0.9950 0.9823 
ME.L.S1 99.98% 99.98% 99.98% 99.98% 0.9999 0.9999 0.9999 0.9999 
 
 

VII.2.3. Relationship 3: E(X1|X2)|x2 vs. E(Y1|Y2)|x2  

As discussed in Section III.1 and Subsection II.2.1.2, the class of this relationship 

(i.e. the class of relationships among confidential attributes E(Xi|Xj)) is more difficult to 

maintain than the class of the earlier two relationships (i.e. the class of relationships 

among non-confidential attributes and confidential attributes E(X|S)) for security reasons. 
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The independent mean equivalence tests and the slope equivalence tests for the fitted 

values obtained from original datasets and their corresponding four masked datasets are 

reported in Table 27. All mean equivalence tests are significant at 25 percent equivalence 

regions. All masking methods maintain the mean of the fitted values of masked values 

close to the mean of the original fitted values. When there is no violation in assumptions, 

all of the minimum required equivalence regions are less than 1.50 percent except for the 

NM.02 dataset when masked using method 1 (it is 2.05 percent). Actually, many of them 

are less than 1 percent. In the case of ill-behaved datasets, masking method 1 did not 

perform as well as the other three masking methods, especially methods 2 and 4. 

Moreover, method 4 seemed to perform slightly better than method 2 in many cases. 

The slope equivalence tests of slope equal to one indicate similar results: masking 

methods 2 and 4 outperform masking methods 1 and 3. Although not all of the slope 

equivalence tests are significant, they are always significant in the case of these two 

masking methods (i.e. 2 and 4). In addition, and similar to what we obtained in the mean 

equivalence tests, masking method 4 performs better than masking method 2 in most 

Table 27. Percentage of minimum equivalence regions of significant equivalence tests for mean and 
slope of 1 for relationships (fitted values) E(X1|X2)|x2 vs. E(Y1|Y2)|x2  

Mean Equivalence Test Slope Equivalence Test Dataset 
1 2 3 4 1 2 3 4 

NM.01 0.76% 0.11% 0.75% 0.11% 3.37% 0.68% 3.36% 0.65% 
NM.02 2.05% 0.32% 1.22% 0.27% 4.45% 1.78% 3.13% 2.30% 
NM.03 1.10% 0.36% 0.38% 0.17% 4.86% 3.83% 1.84% 0.52% 
NM.04 1.46% 0.23% 1.27% 0.25% 3.27% 1.98% 3.22% 2.63% 
NM.05 0.84% 0.25% 0.40% 0.16% 24.83%* 13.19% 10.17% 3.54% 
ME.L 0.09% 0.07% 0.11% 0.07% 0.41% 0.44% 0.70% 0.42% 
MNL.01 3.61% 0.17% 0.80% 0.17% 79.06%* 7.86% 8.45% 5.05% 
MNL.02 1.53% 0.16% 0.49% 0.17% 63.20%* 6.28% 14.13% 4.10% 
MNL.03 2.12% 0.28% 1.38% 0.29% 52.01%* 2.88% 60.43%* 5.39% 
NM.01.S1 3.48% 1.71% 3.11% 1.64% 11.98% 11.26% 12.35% 8.15% 
ME.L.S1 0.12% 0.08% 0.11% 0.08% 0.74% 0.43% 0.54% 0.44% 
* indicates non-significant slope equivalence tests. Null hypotheses of dissimilar slope of one cannot be rejected. 



 149 

cases. Further, Table 27 also provides some evidence that ill-behaved datasets usually 

require larger minimum equivalence regions than the required regions by other datasets to 

pass the slope equivalence tests.  

 Figure 33 shows the scatter plots of the original fitted values (i.e. E(X1| X2)|x2) 

against each of the four masked fitted values (i.e. E(Y1| Y2)|x2) for the motivation 

example. Although they are not exactly straight lines, the existence of sharp linear pattern 

with slope close to one is clear in all four scatter plots. Table 28 shows the slopes for all 

datasets’ scatter plots. For easy comparison with the slope equivalence tests, the cells that 

correspond to the slope equivalence table’s cells with non-significant figures are also 

marked in the slope table. Similarly, the table of R2 and correlation measures (Table 29), 

which will be discussed shortly, is also marked. We use this procedure wherever it is 

applicable in the rest of this chapter.  

When we exclude the ill-behaved datasets, the performance of all masking 

methods in terms of regression slope is comparable. However, in some cases, as in the 

case of masking method 1 applied on NM.01 and NM.02 datasets and masking method 3 

applied on NM.01 dataset, masking methods 2 and 4 perform better than masking 

methods 1 and 3. In addition, when the relationships among confidential attributes are 
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Figure 33. Motivation Example (ME.L) Dataset – E(X1|X2)|x2 vs. E(Y1|Y2)|x2 
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non-monotonic, the slopes in many cases are not as close to one as when the relationships 

are monotonic. For examples, compare NM datasets with ME.L and ME.L.S1 datasets. 

 In the case of the ill-behaved datasets, all slopes (corresponding to significant or 

non-significant slope equivalence tests) are smaller compared to the slopes of other 

datasets. When the assumption violated is the constant variance, masking methods 2 and 

(especially) 4 perform better than masking methods 1 and 3. When the assumption 

violated is simple (monotonic) patterns among residuals, the reverse happens: masking 

methods 1 and 3 perform better than masking methods 2 and 4. 

Table 29 presents R2 and correlation measures for all datasets. They show the 

same level of masking methods performance and similar patterns to the performance 

level and patterns shown by the slopes table (Table 28). Although all listed figures are 

significant, they are low in the cases when we encounter non-significant slope 

equivalence tests figures.  

Table 28. Slope of linear regression of relationships (fitted 
values) E(X1|X2)|x2 vs. E(Y1|Y2)|x2  

Slope Dataset 
1 2 3 4 

NM.01 0.9447 0.9941 0.9432 0.9945 
NM.02 0.9438 0.9793 0.9647 0.9760 
NM.03 1.0216 1.0130 1.0070 0.9947 
NM.04 0.9637 0.9799 0.9639 0.9731 
NM.05 1.0666* 1.0543 0.9695 0.9980 
ME.L 0.9959 0.9958 0.9981 0.9958 
MNL.01 0.4462* 0.9013 0.8041 0.9263 
MNL.02 1.0676* 0.9243 0.8333 0.9408 
MNL.03 0.6298* 0.9088 0.7346* 0.9246 
NM.01.S1 0.7963 0.6861 0.7875 0.6454 
ME.L.S1 0.9926 0.9956 0.9946 0.9954 
* indicates non-significant slope equivalence tests. Null hypotheses 
of dissimilar slope of one cannot be rejected. Provided here for easy 
comparison between regular slope and slope equivalence tests. 
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VII.2.4. Relationship 4: E(X2|X1)|x1 vs. E(Y2|Y1)|x1  

The class of this relationship is the same as the class of the previous relationship:  

the class of relationships among confidential attributes X. Hence, they are harder to 

maintain in masked datasets because they are reproduced indirectly to satisfy security 

requirements. For the simulated datasets we test, the group of NM datasets (NM.01-

NM.05) poses another challenge: the mapping from X1 to X2 in original datasets and 

similarly the mapping from Y1 to Y2 in masked datasets is a multi-valued mapping. As we 

discussed in Section III.1, this type of mapping makes it impossible to learn the real 

conditional expectations using artificial neural networks (ANN) (refer also to Section 

6.1.5, pp. 207-208 in Bishop (1995)). Shortly, we will discuss the impact of multi-valued 

mapping using the slope equivalence tests. 

 Table 30 presents the results of the (independent) equivalence tests of means of 

fitted values (original vs. masked) and their slopes (of one). For the mean equivalence 

tests, all the results are significant at the test value 25 percent and the null hypotheses of 

dissimilar means of fitted values obtained from original datasets to the means of the 

Table 29. R2 of linear regression  and correlation of relationships (fitted values) E(X1|X2)|x2 vs. 
E(Y1|Y2)|x2  

R2 Correlation Dataset 
1 2 3 4 1 2 3 4 

NM.01 96.51% 99.86% 96.32% 99.85% 0.9824 0.9993 0.9814 0.9993 
NM.02 97.64% 99.08% 98.83% 99.35% 0.9881 0.9954 0.9941 0.9967 
NM.03 98.06% 98.24% 99.35% 99.59% 0.9902 0.9912 0.9968 0.9980 
NM.04 98.86% 99.49% 98.82% 99.39% 0.9943 0.9974 0.9941 0.9969 
NM.05 82.54%* 93.10% 89.04% 97.28% 0.9085* 0.9649 0.9436 0.9863 
ME.L 99.61% 99.66% 99.53% 99.60% 0.9981 0.9983 0.9976 0.9980 
MNL.01 11.31%* 95.99% 76.26% 96.10% 0.3363* 0.9798 0.8733 0.9803 
MNL.02 42.36%* 97.21% 93.59% 96.85% 0.6508* 0.9859 0.9674 0.9841 
MNL.03 33.15%* 90.12% 31.96%* 89.39% 0.5757* 0.9493 0.5654* 0.9454 
NM.01.S1 72.85% 63.87% 71.81% 66.88% 0.8535 0.7992 0.8474 0.8178 
ME.L.S1 99.60% 99.55% 99.61% 99.57% 0.9980 0.9977 0.9981 0.9979 
* indicates non-significant slope equivalence tests (null hypotheses of dissimilar slope of one cannot be rejected). 
Provided to facilitate comparison with slope measures. 
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corresponding four masked datasets are rejected. The largest minimum required 

equivalence region to pass the mean equivalence test across all datasets and masking 

methods is 5.90 percent in the case of the NM.03 dataset and masking method 1. This 

means that all masking methods do a very good job in maintaining the mean of the fitted 

values. This also indicates they maintain the mean of the masked attributes similar to the 

mean of original confidential attributes. As a final remark, the highest values we 

encounter are the ones associated with the multi-valued mapping, especially for NM.02 to 

NM.04 masked using masking methods 1 and 3. Masking methods 2 and 4 also 

outperform masking methods 1 and 3 in all cases although the difference is sometimes 

small. 

 For the slope equivalence, all the results for the NM.02 to NM.05 datasets are 

non-significant, and the null hypotheses of mean not equal to one cannot be rejected. 

These datasets suffer from the multi-valued mapping. It must be noted that each masking 

method of the four masking methods performs as badly as the other ones, and there is no 

superior method in this case. Nevertheless, although NM.01 (the check mark) dataset also 

Table 30. Percentage of minimum equivalence regions of significant equivalence tests for mean and 
slope of 1 for relationships (fitted values) E(X2|X1)|x1 vs. E(Y2|Y1)|x1  

Mean Equivalence Test Slope Equivalence Test Dataset 
1 2 3 4 1 2 3 4 

NM.01 0.30% 0.09% 0.22% 0.07% 3.97% 2.53% 3.17% 1.86% 
NM.02 4.13% 0.36% 2.75% 0.37% 97.15%* 96.77%* 96.74%* 99.39%* 
NM.03 5.90% 1.01% 4.43% 1.00% 72.40%* 74.86%* 71.23%* 71.50%* 
NM.04 4.19% 0.32% 3.11% 0.31% 101.14%* 103.12%* 102.55%* 106.99%* 
NM.05 1.86% 0.39% 1.62% 0.37% 51.97%* 47.67%* 49.96%* 46.66%* 
ME.L 0.04% 0.03% 0.05% 0.03% 1.17% 0.35% 1.20% 0.38% 
MNL.01 0.32% 0.18% 0.21% 0.18% 5.56% 10.25% 3.58% 8.15% 
MNL.02 0.58% 0.16% 0.92% 0.17% 2.33% 8.74% 21.58%* 9.09% 
MNL.03 1.56% 0.38% 0.78% 0.35% 9.80% 2.52% 6.96% 2.91% 
NM.01.S1 0.48% 0.46% 0.53% 0.46% 5.75% 15.13% 6.47% 11.24% 
ME.L.S1 0.07% 0.04% 0.08% 0.03% 0.95% 0.35% 1.09% 0.41% 
* indicates non-significant slope equivalence tests. Null hypotheses of dissimilar slope of one cannot be rejected. 
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suffers from the multi-valued mapping problem, it does not suffer from it on all its range 

of X1 values as the other datasets do (compare the relationships between the two 

confidential attributes X using the figures in the related appendices for datasets NM.01-

NM.05: Appendix F-Appendix H). The multi-valued mapping in this dataset happens 

only near the head of the check mark. Therefore, this dataset passes the slope equivalence 

tests. Masking method 4 performs better than other masking methods on this dataset. 

 Both ME.L and ME.L.S1 pass the slope equivalence tests. Masking methods 2 

and 4 perform better than masking methods 1 and 3 as they measured by the minimum 

required equivalence regions to pass the test. The smaller the required regions are, the 

more similar the compared measures.  All the slopes for the ill-behaved datasets pass the 

slope equivalence tests except in the case of the MNL.02 dataset masked using masking 

method 3. The required minimum equivalence regions for the ill-behaved datasets are 

generally larger than the ones required by other datasets given they do not suffer from the 

multi-valued mapping problem. 

 For the motivation example, Figure 34 shows the scatter plots of the fitted values 

obtained from the original dataset versus the fitted values obtained from the four 

corresponding masked datasets. Clearly, all four scatter plots demonstrate very strong 
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Figure 34. Motivation Example (ME.L) Dataset – E(X2|X1)|x1 vs. E(Y2|Y1)|x1 
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linear relationships with slopes close to one. Table 31 lists the slopes of all the scatter 

plots for the relationship E(X2|X1)|x1 vs. E(Y2|Y1)|x1.    

 In Table 31, the slopes in the case of the motivation example and its derived 

dataset (i.e. ME.L and ME.L.S1) are very close to one. For NM.01 (with a little multi-

valued mapping problem at the head), the smallest slope is 0.9550. Although it is less 

than the slopes of the ME.L datasets, it is better than the slopes shown by other multi-

valued mapping datasets (NM.02 to NM.05).  

In Table 32, the R2 of the regression of the fitted values and the correlation among 

them are non-significant in the case of dataset NM.04 masked using methods 1, 2 and 3. 

When the slope equivalence tests are non-significant (i.e. in the case of the four datasets 

with the multi-valued mapping problem: NM.02-NM.05), their values are less than other 

values. 

Table 31. Slope of linear regression of relationships (fitted 
values) E(X2|X1)|x1 vs. E(Y2|Y1)|x1  

Slope Dataset 
1 2 3 4 

NM.01 0.9550 0.9693 0.9656 0.9785 
NM.02 0.7379* 0.6729* 0.5945* 0.2531* 
NM.03 1.1186* 0.6714* 1.0558* 0.6805* 
NM.04 0.0605** -0.1604** -0.0858** -0.4524* 
NM.05 1.1847* 0.8324* 1.2002* 0.8755* 
ME.L 0.9887 0.9972 0.9886 0.9970 
MNL.01 0.9645 0.8740 0.9201 0.8871 
MNL.02 0.9380 0.9099 1.0886* 0.9054 
MNL.03 0.7725 0.8914 0.8721 0.9125 
NM.01.S1 0.6872 0.7088 0.6252 0.6703 
ME.L.S1 0.9911 0.9970 0.9897 0.9966 
* indicates non-significant slope equivalence tests. Null hypotheses 
of dissimilar slope of one cannot be rejected. Provided here for easy 
comparison between regular slope and slope equivalence tests. 
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Because of that, all the slope equivalence tests for NM.02 to NM.05 datasets are non-

significant; notice how the corresponding  R2 and correlations measures are low in these 

cases. 

VII.2.5.  Relationship 5: E(X1|SX2)|sx2 vs. E(Y1|SY2)|sx2  

The data utility measures in this subsection try to verify whether the relationships 

among the confidential attribute X1 and a mixture of non-confidential attributes S and 

other confidential attributes X2 in original datasets are correctly reproduced during 

masking among the corresponding masked attribute Y1 and a set of non-confidential 

attributes S and other masked attributes Y2 in masked datasets. Table 33 shows the 

equivalence tests for both the mean and the slope. All mean equivalence tests are 

significant, and the null hypotheses of dissimilar means of fitted values obtained from 

original datasets and corresponding means of fitted values obtained from their four 

masked datasets are rejected at test value 25 percent.  

Table 32. R2 of linear regression  and correlation of relationships (fitted values) E(X2|X1)|x1 vs. 
E(Y2|Y1)|x1  

R2 Correlation Dataset 
1 2 3 4 1 2 3 4 

NM.01 98.55% 98.66% 99.00% 99.08% 0.9927 0.9933 0.9950 0.9954 
NM.02 3.20%* 3.28%* 3.00%* 0.65%* 0.1788* 0.1811* 0.1731* 0.0809* 
NM.03 33.81%* 19.33%* 33.30%* 21.97%* 0.5815* 0.4397* 0.5771* 0.4687* 
NM.04 0.02%** 0.21%** 0.06%** 2.24%* 0.0145** -0.0463** -0.0251** -0.1498* 
NM.05 59.95%* 46.66%* 63.06%* 49.81%* 0.7743* 0.6831* 0.7941* 0.7057* 
ME.L 99.68% 99.78% 99.72% 99.80% 0.9984 0.9989 0.9986 0.9990 
MNL.01 92.71% 95.01% 93.80% 94.52% 0.9629 0.9747 0.9685 0.9722 
MNL.02 93.19% 98.09% 87.42%* 97.87% 0.9653 0.9904 0.9350* 0.9893 
MNL.03 82.46% 88.84% 91.55% 90.42% 0.9081 0.9426 0.9568 0.9509 
NM.01.S1 67.67% 63.15% 61.50% 62.50% 0.8226 0.7947 0.7842 0.7906 
ME.L.S1 99.74% 99.74% 99.72% 99.75% 0.9987 0.9987 0.9986 0.9988 
* indicates non-significant slope equivalence tests (null hypotheses of dissimilar slope of one cannot be rejected). 
Provided to facilitate comparison with slope measures.  
** indicates, in addition to non-significant slope equivalence tests, non-significant R2 and correlation 
measures. 
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 When the ill-behaved datasets are excluded, the largest minimum required 

equivalence region to pass the mean equivalence tests is 1.91 percent in the case of the 

NM.05 dataset masked using method 2. Many other figures are even less than 1 percent. 

For the ill-behaved datasets, the largest minimum required equivalence region is 6.31 

percent in the case of masking method 1 applied on the NM.01.S1 dataset. Nevertheless, 

many figures are still less than 2 percent or even 1 percent. These results provide 

evidence that all masking methods are able to maintain the means of masked attributes as 

the means of confidential attributes, as they are here measured by fitted values. The 

performance of the four masking methods is comparable across all datasets. Nevertheless, 

masking method 4 performed slightly better than other masking methods on NM.01-

NM.05 datasets. 

All slope equivalence tests for the ill-behaved datasets are non-significant, and we 

cannot reject the null hypotheses of dissimilar means to one. Although masking method 1 

applied on NM.05 dataset did not pass the test, its required minimum equivalence region 

to pass the slope equivalence test (26.11 percent) is less than the ones required by the ill-

Table 33. Percentage of minimum equivalence regions of significant equivalence tests for mean and 
slope of 1 for relationships (fitted values) E(X1|SX2)|sx2 vs. E(Y1|SY2)|sx2  

Mean Equivalence Test Slope Equivalence Test Dataset 
1 2 3 4 1 2 3 4 

NM.01 0.79% 0.64% 0.76% 0.62% 3.89% 1.44% 3.74% 1.29% 
NM.02 1.36% 0.90% 1.13% 0.50% 3.22% 1.74% 2.27% 1.33% 
NM.03 1.35% 1.47% 1.02% 0.94% 14.15% 12.21% 8.63% 7.41% 
NM.04 1.10% 1.18% 1.26% 0.94% 7.88% 5.93% 4.00% 3.34% 
NM.05 1.58% 1.91% 0.60% 0.39% 26.11%* 24.44% 15.85% 12.21% 
ME.L 0.24% 0.19% 0.23% 0.20% 1.72% 1.40% 1.81% 1.27% 
MNL.01 1.62% 0.90% 1.12% 0.96% 60.16%* 54.95%* 44.27%* 52.25%* 
MNL.02 1.28% 1.66% 1.81% 1.93% 34.63%* 32.99%* 29.50%* 33.59%* 
MNL.03 3.33% 1.44% 2.01% 1.93% 67.23%* 62.08%* 56.47%* 63.88%* 
NM.01.S1 6.31% 4.70% 3.64% 5.43% 48.14%* 30.81%* 39.57%* 46.74%* 
ME.L.S1 0.12% 0.13% 0.12% 0.13% 1.02% 0.65% 1.12% 0.60% 
* indicates non-significant slope equivalence tests. Null hypotheses of dissimilar slope of one cannot be rejected. 
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behaved datasets and it is close to the test value (25 percent). All other masking methods 

applied on other datasets pass the slope equivalence test of slope equal to one. Their 

required minimum equivalence regions to pass the slope equivalence tests tend to be 

larger than those required by early relationships. Masking method 4 shows superior 

performance when compared to other masking methods, as demonstrated by its smaller 

required minimum equivalence regions when we exclude the ill-behaved datasets. 

 Figure 35 shows the scatter plots for the set of fitted values obtained from the 

original motivation example dataset (ME.L) versus each set of fitted values obtained 

from each of its four masked copies. Clearly, they show strong linear patterns although 

they may not form very sharp lines. This indicates that all four masking methods 

succeeded in reproducing the relationship E(X1|SX2)|x2 in masked datasets represented by 

the relationship E(Y1|SY2)|x2.  

Table 34 quantifies these scatter plots in terms of regression slopes for all 

datasets. For the ill-behaved datasets, the slopes are far from one. This confirms the 

results we got from the slope equivalence tests. The slope of the fitted values of the 

NM.05 dataset masked using method 1 is the worst slope among the slopes of the four 

masking methods for this dataset. Notice this corresponds to the case that did not pass the 

slope equivalence tests besides the ill-behaved datasets. Nevertheless, this slope (0.9949) 
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Figure 35. Motivation Example (ME.L) Dataset – E(X1|SX2)|sx2 vs. E(Y1|SY2)|sx2 
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is close to one. By checking the R2 and correlation measures, which we will discuss 

shortly, the difference in masking methods’ performance becomes clearer. For other 

datasets, the slopes are always about or more than 0.95. In some cases, masking methods 

2 and 4 outperform masking methods 1 and 3. In others, this distinction dissolves.  

 Table 35 presents R2 and correlation measures for the linear patterns in the scatter 

plots. All these measures are significant. Nonetheless, notice how these measures are low 

Table 34. Slope of linear regression of relationships (fitted 
values) E(X1|SX2)|sx2 vs. E(Y1|SY2)|sx2  

Slope Dataset 
1 2 3 4 

NM.01 0.9487 0.9763 0.9486 0.9769 
NM.02 0.9781 0.9756 0.9783 0.9747 
NM.03 0.9996 0.9883 0.9755 0.9782 
NM.04 0.9940 0.9898 0.9843 0.9869 
NM.05 0.9949* 1.0047 1.0035 0.9981 
ME.L 0.9926 0.9900 0.9934 0.9884 
MNL.01 0.5446* 0.7703* 0.7195* 0.8270* 
MNL.02 0.6480* 0.7953* 0.7644* 0.8487* 
MNL.03 0.4543* 0.6771* 0.6032* 0.6472* 
NM.01.S1 0.4637* 0.5497* 0.4876* 0.4164* 
ME.L.S1 0.9963 0.9935 0.9969 0.9929 
 

Table 35. R2 of linear regression  and correlation of relationships (fitted values) E(X1|SX2)|sx2 vs. 
E(Y1|SY2)|sx2  

R2 Correlation Dataset 
1 2 3 4 1 2 3 4 

NM.01 97.61% 98.22% 97.43% 98.10% 0.9880 0.9911 0.9871 0.9905 
NM.02 95.89% 96.93% 96.71% 97.87% 0.9792 0.9845 0.9834 0.9893 
NM.03 87.85% 88.72% 90.92% 92.23% 0.9373 0.9419 0.9535 0.9604 
NM.04 93.13% 94.52% 95.75% 96.52% 0.9651 0.9722 0.9785 0.9825 
NM.05 76.16%* 78.47% 86.56% 89.53% 0.8727* 0.8858 0.9304 0.9462 
ME.L 98.35% 98.39% 98.34% 98.37% 0.9917 0.9919 0.9917 0.9918 
MNL.01 24.36%* 37.71%* 43.17%* 42.57%* 0.4936* 0.6141* 0.6571* 0.6524* 
MNL.02 45.45%* 56.37%* 56.97%* 59.41%* 0.6742* 0.7508* 0.7548* 0.7708* 
MNL.03 17.23%* 28.48%* 29.08%* 26.10%* 0.4151* 0.5337* 0.5392* 0.5109* 
NM.01.S1 26.80%* 41.09%* 32.37%* 24.86%* 0.5177* 0.6410* 0.5690* 0.4986* 
ME.L.S1 99.17% 99.24% 99.15% 99.23% 0.9959 0.9962 0.9957 0.9962 
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compared to others in the table cells that correspond to the non-significant slope 

equivalence tests in Table 33 (i.e. all the ill-behaved datasets and NM.05 masked using 

method 1). 

 

VII.2.6. Relationship 6: E(X2|SX1)|sx1 vs. E(Y2|SY1)|sx1 

Table 36 shows the results of the equivalence tests for the relationship 

E(X2|SX1)|x1 obtained from original datasets to its corresponding relationships 

E(Y2|SY1)|x1 obtained from their four masked copies in terms of mean and slope. For the 

mean, all masking methods pass the equivalence tests indicating the ability of these 

methods to preserve the mean of confidential attributes in the masked attributes. The 

largest required minimum equivalence region to pass the equivalence test is 3.06 percent 

in the case of the ill-behaved dataset (MNL.03) when masked using method 1.  This 

number drops to 1.21 percent in the case of masking method 3 applied to the NM.03 

dataset when we excluded the ill-behaved datasets. Most of the other numbers are less 

Table 36. Percentage of minimum equivalence regions of significant equivalence tests for mean and 
slope of 1 for relationships (fitted values) E(X2|SX1)|sx1 vs. E(Y2|SY1)|sx1  

Mean Equivalence Test Slope Equivalence Test Dataset 
1 2 3 4 1 2 3 4 

NM.01 0.09% 0.08% 0.09% 0.08% 1.08% 0.78% 1.19% 0.61% 
NM.02 0.31% 0.36% 0.28% 0.37% 0.66% 0.56% 0.75% 0.87% 
NM.03 0.87% 0.69% 1.21% 0.65% 1.14% 1.02% 1.30% 1.08% 
NM.04 0.60% 0.67% 0.70% 0.79% 2.06% 2.17% 2.42% 2.40% 
NM.05 0.64% 0.50% 0.44% 0.40% 2.56% 3.88% 3.38% 4.33% 
ME.L 0.10% 0.14% 0.10% 0.13% 2.13% 3.10% 2.00% 2.80% 
MNL.01 1.19% 2.27% 1.11% 1.25% 72.27%* 72.90%* 73.39%* 72.00%* 
MNL.02 2.19% 3.01% 1.49% 1.66% 65.84%* 61.47%* 56.43%* 54.48%* 
MNL.03 3.06% 1.25% 1.28% 1.22% 55.75%* 62.61%* 52.26%* 60.17%* 
NM.01.S1 1.29% 0.81% 1.02% 0.85% 30.81%* 42.93%* 52.19%* 41.41%* 
ME.L.S1 0.11% 0.07% 0.10% 0.07% 1.28% 1.11% 1.15% 1.07% 
* indicates non-significant slope equivalence tests. Null hypotheses of dissimilar slope of one cannot be rejected. 
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than 1 percent. 

For the slope equivalence tests, masking methods applied on the ill-behaved 

datasets did not pass the tests and the null hypotheses of dissimilar mean to one cannot be 

rejected. The slope equivalence tests for masking methods applied on all other datasets 

were significant. The null hypotheses of dissimilar slope to one are rejected. The largest 

required minimum equivalence region to pass the slope equivalence tests is 4.33 percent 

in the case of masking method 4 applied on the NM.05 dataset. In general, the 

performance of the four masking methods on each dataset is comparable regardless of the 

category of the dataset (i.e. whether it is an ill-behaved dataset) and there is no superior 

masking method in all cases.  

Figure 36 shows the scatter plots of the fitted values obtained from the original 

motivation example dataset (ME.L) versus each of the fitted values obtained from each 

one of its four masked versions. Strong or sharp lines with slope of one indicate identical 

fitted values. Linear pattern with slope close to one point to similar fitted values. The 

linear pattern in Figure 36 is the latter one indicating similar fitted values.  
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Figure 36. Motivation Example (ME_L) Dataset – E(X2|SX1)|sx1 vs. E(Y2|SY1)|sx1 
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Table 37 shows the slopes of the regression lines of the linear patterns for all 

datasets. The magnitude levels of the reported slopes are compatible with the slope 

significance tests although all slopes (or linear regression models) for the fitted values are 

significant (refer to R2 measures in Table 38). This means the slopes are high when the 

slope equivalence tests are significant and low when the tests are non-significant. When 

the slope equivalence tests are non-significant in the case of the ill-behaved datasets, the 

slopes are far off. The closest slope to one is 0.8458 in the case of the MNL.02 dataset 

masked using masking method 2. When the ill-behaved datasets are excluded, all slopes 

are very high and, in many cases, close to one. The minimum slope is 0.9705 in the case 

of NM.03 masked by method 3. 

Table 38 reports the R2 and correlation measures for the fitted values. They are 

also high when the slope equivalence tests are significant and low when the slope 

equivalence tests are non-significant.  The performance of the four masking methods is 

comparable to one another.  

 

Table 37. Slope of linear regression of relationships (fitted 
values) E(X2|SX1)|sx1 vs. E(Y2|SY1)|sx1  

Dataset Slope    
 1 2 3 4 

NM.01 0.9887 0.9994 0.9881 0.9985 
NM.02 0.9945 0.9961 0.9969 0.9997 
NM.03 0.9746 0.9805 0.9705 0.9801 
NM.04 0.9867 0.9941 0.9945 0.9954 
NM.05 0.9745 0.9847 0.9840 0.9871 
ME.L 0.9948 1.0005 0.9945 0.9992 
MNL.01 0.7986* 0.8341* 0.6354* 0.7072* 
MNL.02 0.7702* 0.8458* 0.7644* 0.7342* 
MNL.03 0.5625* 0.5950* 0.6046* 0.6460* 
NM.01.S1 0.6176* 0.8191* 0.6192* 0.6785* 
ME.L.S1 0.9944 0.9959 0.9944 0.9957 
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Table 38. R2 of linear regression  and correlation of relationships (fitted values) E(X2|SX1)|sx1 vs. 
E(Y2|SY1)|sx1  

R2 Correlation Dataset 
1 2 3 4 1 2 3 4 

NM.01 99.50% 99.57% 99.59% 99.62% 0.9975 0.9978 0.9980 0.9981 
NM.02 99.31% 99.50% 99.42% 99.53% 0.9966 0.9975 0.9971 0.9976 
NM.03 97.63% 97.93% 97.31% 97.86% 0.9881 0.9896 0.9864 0.9892 
NM.04 97.59% 98.10% 97.93% 98.01% 0.9879 0.9905 0.9896 0.9900 
NM.05 96.16% 95.89% 96.25% 95.70% 0.9806 0.9792 0.9811 0.9783 
ME.L 98.19% 97.85% 98.27% 97.99% 0.9909 0.9892 0.9913 0.9899 
MNL.01 24.83%* 25.31%* 19.36%* 22.39%* 0.4983* 0.5031* 0.4400* 0.4732* 
MNL.02 29.13%* 35.56%* 36.29%* 36.41%* 0.5397* 0.5963* 0.6024* 0.6034* 
MNL.03 27.67%* 24.93%* 31.75%* 28.54%* 0.5260* 0.4993* 0.5635* 0.5342* 
NM.01.S1 45.83%* 49.85%* 32.51%* 42.82%* 0.6770* 0.7060* 0.5702* 0.6544* 
ME.L.S1 98.83% 99.08% 98.94% 99.10% 0.9941 0.9954 0.9947 0.9955 
 
 

 

VII.3. Summary 

From the results in the previous section, it is clear that no one masking 

method is superior to all other methods in every class of relationships. 

Nevertheless, masking method 4 seems to do a reasonable job across all the 

different relationships and datasets. This is because masking method 4 employs 

the shuffling refinement, which corrects the marginal distributions at two levels: 

the residuals level and the variables level. Because of this refinement, it has also 

the advantage of maintaining the marginal distributions of masked variables as the 

marginal distributions of confidential attributes.  

It is also interesting to compare the difference in performance between the 

motivation example dataset (ME.L) and its derived dataset (ML.L.S1) with the 

check-mark dataset (NM.01) and its derived dataset (NM.01.S1). Note that 

ML.L.S1 does not violate any assumption while NM.01.S1 violates the 



 163 

assumption of simple linear patterns among residuals. There is no difference in 

performance between motivation example dataset (ME.L) and its derived dataset 

(ML.L.S1). On the other hand, there is a difference in performance between 

check-mark dataset (NM.01) and its derived dataset (NM.01.S1). This difference 

is not just in the magnitude of data utility measures (especially, slope-related 

ones) but even in the significance of the measures. In the next chapter, we will 

summarize the general conclusions and findings of this chapter and the whole 

study. 
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CHAPTER 

VIII. CONCLUSIONS 

VIII.1. Main Findings and Conclusions 

In this section, we summarize the main finding and conclusions of this study in 

terms of data utility and data security.  

VIII.1.1. Data Utility 

We earlier picked three important classes of relationships to preserve in masked 

datasets: relationships between S and X, relationships among X, and relationships 

between X and a mixture of S and X. The types of these relationships can be linear, 

monotonic nonlinear, or non-monotonic. The main results on data utility are: 

1. The RBM approach allows the relationships between non-confidential 

attributes S and confidential attributes X (i.e. E(X|S) to be estimated and 

reproduced in masked datasets between non-confidential attributes S and 

masked attributes Y. There are only two conditions. First, the estimation 

mechanism used should be able to learn and estimate conditional 

expectations well. The ANN estimation approach employed by RBM 

learns conditional expectations well when the minimum of the mean 

squared error function is reached regardless of the type of relationship. 

Second, the added noise e should be independent of (or orthogonal to) S or 

any function of S similar to the residuals r. 
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2. When the purpose of the masking is only to preserve relationships 

between non-confidential attributes S and confidential attributes X, or at 

least they represent the most important class of relationships to preserve 

first, simple addition of a normal noise to the estimated conditional 

expectations E(X|S) works well for RBM. This is because most estimation 

mechanisms find it easier to learn conditional expectations when the 

residuals (noise terms) are normally distributed (with constant variance). 

Masking method 1 achieves exactly that. Refer to the discussion of 

relationships E(X1|S) and E(X2|S) in the previous chapter. However, 

masking method 1 does not seem to be the best among other masking 

methods in preserving other classes of relationships. 

3. When relationships among confidential attributes X are linear, all 

proposed masking methods preserve data utlity regardless of the 

relationships between non-confidential attributes S and confidential 

attributes X (i.e. monotonic linear or nonlinear, or (single-valued 

mapping) non-monotonic relationships). This is clear from Equation (3.9) 

in Subsection III.3.1 and their proofs in Appendix B. We need only to add 

independent noise e with the same covariance of r to E(X|S) to produce 

masked data Y with the same linear relationships among Y, as the linear 

relationships among X.  

4. When the relationships among confidential attributes X are nonlinear 

(monotonic nonlinear or non-monotonic), the RBM approach preserves 

data utility in our experiment as long as the patterns and relationships 
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among the fitted values (i.e. the evaluation of the conditional expectations 

E(Xi|S)|s and E(Xj|S)|s) corresponds and accounts for (most of) the 

nonlinear patterns among X, as checked by scatter plots.  

5. The initial results suggest that the RBM approach works for the class of 

relationships between X and a mixture of S and X (i.e. E(Xi|SXi)) as long 

as relationships among X are linear. This happens because the two 

subcomponents or (sub-)classes of relationships contributing to this class 

of relationships (i.e. the class of relationships among S and X, and the 

class of relationships among X) are well maintained and preserved in the 

masked data. 

6. The RBM approach may work for the class of relationships between X and 

a mixture of S and X (i.e. E(Xi|SXj)) when relationships among X are 

nonlinear as long as the patterns and relationships among the conditional 

expectations E(Xi|SXj) correspond to the patterns and relationships among 

X. This correspondences leaves simple patterns (linear or no relationships) 

in residuals r that can be reproduced easily in the independent noise e by 

specifying only Cov(ei,ej) = Cov(ri,rj). 

7. Except for the two cases mentioned in the previous point, the RBM 

approach does not seem to work well in many cases for the class of 

relationships between X and a mixture of S and X (i.e. E(Xi|SXj)) when 

relationships among X are nonlinear and the patterns among r are not 

linear. The non-simplicity of the patterns among residuals r indicate that 

the residuals account for at least some, if not all, of the non-monotonic 
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patterns in Xi|SXj instead of patterns among conditional expectations 

accounting for them. Two reasons might be behind this behavior. First, the 

tendency of the ANN approach is to over-fit the data, especially as the 

number of independent variables increase and when no mechanism to 

reduce the over-fitting is applied. Second, there may be some interactions 

between S and X when they are used together as independent variables. 

The RBM approach does not explicitly consider such interactions or 

relationships in generating masked data.  

8. Masking methods that employ the shuffling refinement at the level of 

variables (methods 2 and 4) perform relatively better in the class of 

relationships that involve non-confidential attributes X as independent 

variables than other masking methods. Hence, the RBM approach tries to 

reproduce these relationships indirectly for security reasons. Actually, 

masking method 4 outperforms masking method 2 on many occasions. 

This is because masking method 4 implements shuffling refinement at two 

levels: the residuals level and the variables level.  

9. The RBM approach utilizes the concepts of conditional expectations and 

the manipulation of residuals to achieve data utility and data security. It 

has a good theoretical basis and utilizes the concept of conditional 

independence theory (Muralidhar and Sarathy, 2003c). However, although 

the RBM approach is promising and covers many classes of relationships 

well, it is clear from the above discussion that the RBM approach is not 

generalizable to all possible classes of relationships and all existing 
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datasets. Nonetheless, it is one step forward in the field (i.e. masking 

datasets involving nonlinear and non-monotonic relationships for PPE), 

which is still in its infancy. 

VIII.1.2. Data security 

The RBM approach is developed based on the concepts of conditional 

independence theory for masking (perturbation) methods (Muralidhar and Sarathy, 

2003c). The RBM approach generates masked variables Y in a way that makes the non-

confidential attributes S (or functions of S such as E(X|S)) the best predictors for the 

confidential attributes X. In addition, combining S and Y will not improve the prediction 

of X beyond what is known about them from S (or the best predictor E(X|S)). 

Notice that X and Y are not independent unless we condition on S (or functions of 

S). In addition, the relationships between X and Y will tend to be linear (with positive 

slope) since we want to maximize data utility and S links the two. When the variance of 

residuals ri is a small portion of the variance of confidential attributes Xi and most of this 

variance is explained by the variance of the conditional expectations (i.e. Var(E(Xi|S))), 

there is not enough security in original datasets with which to begin. In other words, 

generating masked datasets from original data with very small variance of residuals r 

while maximizing data utility would result in insecure masked datasets, in which a 

snooper can use Y to predict X with high confidence without even using S. This is not to 

say that Y is a better predictor for X than S (or E(X|S)). S is still the best predictor. 

However, it is easier for the snooper to fit a simple linear regression model between Y 

and X rather than to fit a nonlinear model (or an ANN model), especially when the gain 

from the latter approach is very small. 
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The security index measure (SI) in Section III.3.2 can be used to assess if the 

confidential attributes X (based on their characteristics in original datasets) have enough 

variance in the residuals to allow for effective masking using the RBM approach. We 

also draw attention to the importance of evaluating each confidential attribute based on 

the sensitivity of the variables to see whether there is enough variance at the attributes 

level to with which to begin. In addition, we developed the theoretical connection 

between the security measure (SI) for a confidential attribute Xi and the correlation of the 

confidential attribute with its masked version (i.e. Corr(Xi, Yi)). This helps the owner of 

data to pre-assess the possible disclosure risk associated with a specific confidential 

attribute (based on its original characteristics) before releasing the masked data or even 

before masking takes place.  

When a dataset with a low SI measure has to be released, some compromises on 

the side of data utility can be made. For example, we can add a noise term with more 

variance than we have in the residuals. Although this approach may not affect the class of 

relationships between S and X, it will affect the class of relationships among X, for 

example. We discussed some possible compromises in Section III.3.2. Fuller (1993) also 

discussed some possible compromises in Section 2 of his paper. Some of Fuller’s 

suggestions might be applicable to our context.  

Finally, the empirical work we have done shows that the RBM approach satisfies 

the requirements of protection against value disclosure although the problem of over-

fitting affects one of the measures in some cases. However, we showed that the measure 

holds true using more controlled datasets (i.e. datasets with their non-monotonic 

relationships consist of piecewise linear relationships; the motivation-example related 
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datasets). In addition and surprisingly, although X and Y are not independent unless 

conditioned on S, the worst re-identification rate we encountered was about 5 percent, 

which is acceptable. 

VIII.2. Possible Opportunities and Limitations 

The definition of a relationship between variables A and B adopted in our 

proposed methods (NM-EGADP masking methods) is the mathematical definition 

(Macnaughton, 2002): A=g(B)+e where g(B) is a strict, mathematical function. A strict 

mathematical function is a single-valued mapping (one-to-one or many-to-one mapping) 

but not multi-valued mapping (one-to-many). Usually the mathematical function g(B) is 

replaced by the conditional expectation E(A|B) since the best estimator of g(B) ends to be 

E(A|B) (Bickel and Doksum, 2001; Shao, 1999). Again, E(A|B) is a mathematical 

relationship in the strict sense we mentioned.   

When the data contains multi-valued mapping areas as in inverse problems 

(Bishop, 1995), the definition of mathematical functions is violated. This leads to the 

following serious consequence: the conditional expectation in this case is wrongly 

learned because the average of two or more solutions is not necessarily a (valid) solution 

(Bishop, 1995). This impact of the multi-valued mapping on learning the conditional 

expectation is automatically inherited by the RBM approach since they adopt the 

mathematical and conditional expectation definition for a relationship. Figure 37 

demonstrates what can be called “by-product” limitation of our proposed methods. For a 

good treatment of the subject of the function mapping (single-valued vs. multi-valued 

mapping) on the performance of learning conditional expectation using ANN, refer to 

(Bishop, 1995, pp. 207-208 specifically and Chapter 6 in general). 
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From another perspective, we think (and there is initial evidence) that our 

proposed methods can be used for other privacy-preserving data mining techniques such 

as classification and clustering. To recall, our proposed methods are about maintaining 

and reproducing relationships and “relationships between variables then give life to MR” 

(Multiple Regression), “and indeed to all multivariate statistical techniques,” Rud (2001, 

pp. 106) said. Although this possibility will not be investigated in this study, we will 

provide a simple classification example using Multiple Discriminant Analysis (MDA). 

We run MDA on our original motivation example and its two masked versions (using 

NM-EGADP perturbation and its shuffling variant). S2 is considered the target class 

variable in this analysis. The confusion matrices of the three models are shown in Table 

39. The similarity among the three listed confusion matrices in this example suggests that 

using our masking methods for other PPDM techniques is a promising direction of 

research that we plan to pursue later. Figure 52 shows an example for possible 

application for privacy-preserving clustering. 
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(c) NM-EGADP Shuffling 

Figure 37. Impact of multi-valued data on learning the conditional expectation 
(a) wrongly learned conditional expectation from original multi-valued dataset (b) impact of that on 
producing perturbed values (c) impact of that on producing shuffled values 
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VIII.3. Contributions of this Study 

 In this section, we summarize the main contributions of this study. First, it adapts 

some masking techniques for privacy-preserving estimation (PPE) for the more difficult 

types of relationships (non-monotonic). Second, an appropriate theoretical definition of 

relationships (i.e. conditional expectation) in the context of regression applications is 

specified and utilized as a basis for the RBM approach. Third and based on this 

definition, existing effective theoretically based masking methods for monotonic 

(a) 
Original 
Dataset 

282 250 532

28.2% 25.0% 53.2%

242 226 468

24.2% 22.6% 46.8%

524 476 1000

52.4% 47.6% 100.0%

Count

% of Total

Count

% of Total

Count

% of Total

.00

1.00

S2

Total

.00 1.00

Predicted S2

Total

 

(b) 
NM-EGADP 

Perturbed 
Dataset 

281 251 532

28.1% 25.1% 53.2%

238 230 468

23.8% 23.0% 46.8%

519 481 1000

51.9% 48.1% 100.0%

Count

% of Total

Count

% of Total

Count

% of Total

.00

1.00

S2

Total

.00 1.00

Predicted S2

Total

 

(c) 
NM-EGADP 

Shuffled 
Dataset 

275 257 532

27.5% 25.7% 53.2%

230 238 468

23.0% 23.8% 46.8%

505 495 1000

50.5% 49.5% 100.0%

Count

% of Total

Count

% of Total

Count

% of Total

.00

1.00

S2

Total

.00 1.00

Predicted S2

Total

 
Table 39. MDA classification example using the motivation example dataset and its masked copies 
 



 173 

relationships are adapted and extended for non-monotonic relationships. Fourth, this 

adaptation employs some learning and estimation mechanisms for learning the 

(monotonic and, more importantly, non-monotonic) conditional expectations and 

relationships.  Although other learning approaches might be also appropriate, we adopt 

Artificial Neural Networks (ANN) approaches as our main learning mechanism based on 

the presented ample theoretical evidences of their ability to learn different types of 

conditional expectations. We also mention the main theoretical criterion of this ability; 

namely, reaching the global minimum of the mean squared errors function after training. 

Fifth, while we adopt existing security measures for value disclosure (MSE measures) 

and identity disclosure (percent of re-identified records using record linkage), we propose 

two new types of data utility measures: parameter-based measures and (MSE) prediction-

based measures. In addition, we adapt the use of a model validation test using regression-

based equivalence tests as a data utility measure. Sixth, we use a form of nonlinear 

regression coefficient of determination R2 measures to obtain normalized forms of our 

proposed MSE data utility and existing MSE data security measures. Seventh, we adapt 

and propose an extension for Canonical Correlation Analysis security measures 

(piecewise CC) for special cases of nonlinear relationships (when they completely consist 

of piecewise linear relationships). Eighth, we propose a simple, yet insightful, framework 

(the SDL/Relationships Match Framework) in Appendix A (pp. 189) to guide the use of 

any specific existing or new masking method on a dataset based on the relationships 

existing in the dataset that the masking method can preserve. Last but not least, we 

express the characteristics of masked attributes in terms of the characteristics of original 

data. Thus, these characteristics including security-related ones can be calculated before 
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even the masking takes place. In addition, we derive an upper bound for the correlation 

between confidential attributes and their masked copies. The proofs for many results are 

also provided.  
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Appendices 

Appendix A – SDL/Relationship Match Framework  

In this section, we propose an abstract framework called the SDL/Relationship 

Match framework. The framework is a very simple yet informative framework that can 

be used to match and guide the use and application of any existing or newly developed 

data masking method with a specific dataset for regression tasks (and maybe other 

analyses) based on the type of relationships they share (the type of the relationship that 

the dataset contains and that the masking method can preserve).  

The goal of the SDL/Relationship Match framework for PPE is threefold: (a) 

emphasizing the importance of relationships among variables (as a data utility measure) 

in estimation and privacy-preserving estimation (PPE) problems, (b) suggesting an initial 

mechanism (by utilizing existing SDL methods) to implement the concept of Data-

Centric Approach (DCA) in the PPDM field by focusing only on altering datasets as 

opposed to PPE and PPDM algorithms, and (c) identifying any possible gap in the SDL 

literature in terms of maintained relationships in masked datasets (e.g., non-monotonic 

relationships). 

As stated earlier, this framework suggests evaluating the effectiveness of existing 

or new SDL masking methods based on the relationships they maintain. Effectiveness in 

this context also means that SDL methods should first prove to be effective in terms of 

security requirements before they are tested in terms of data utility (maintained 
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relationships). Dalenius (1977) and Duncan and Lambert (1986) suggested that accessing 

masked attributes should not increase the ability of snoopers to predict confidential 

attributes. In other words, masked attributes should not carry information about 

confidential attributes beyond what is already known from accessing the non-confidential 

attributes.  

Once the SDL masking method provides a sufficient level of security, it is 

evaluated for the type of relationships it can maintain. Datasets, on the other hand, are 

evaluated based on existing relationships between confidential and non-confidential 

attributes. Scatter plots and scatter matrix plots can be used for such an assessment. Then 

one can apply an appropriate SDL masking method on a specific dataset based on the 

relationship match. Refer to Figure 38 for the framework.  
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Figure 38. SDL/Relationship Match Framework 
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Appendix B – The Relationship between the Covariance Matrices of 

Confidential Attributes X, Conditional Expectations E(X|S) and Residuals r 

  In this section, we begin by stating a theorem (Theorem I) that explains the 

relationship among the covariance matrix of the confidential attributes X, the covariance 

matrices of the confidential expectations E(X|S), and of the residuals r in the case of 

multivariate normally distributed datasets. A proof for this special-case theorem is then 

provided. Next, we show that the same relationship generally holds true regardless of the 

dataset distribution (Theorem II).  This is done by alternating the first theorem proof. 

Finally, we provide an equivalent relationship in terms of correlation matrices 

(Proposition I). Since, by definition, the covariance is a binary relationship between two 

random variables, we state these theorems and their proofs using two confidential 

attributes X ( iX  and jX , where , 1  and i j q i j= ≠Κ ). 

Theorem I 

In Gaussian (normally distributed) datasets, the relationship between the 

covariance matrix of confidential attributes X ( iX  and jX ) and the covariance matrix of 

the conditional expectations of confidential attributes X , given non-confidential 

attributes S  ( ( )iE X S  and ( )jE X S ) and the covariance matrix of their residuals r ( ir  

and jr ), can be expressed as: 

 ( ) ( ) ( ), ( ), ( ) ,i j i j i jCov X X Cov E X E X Cov r r= +S S . (B.1) 

♦  
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Proof: 

We start by expressing the covariance matrix of confidential attributes in terms of 

expectations (see Bickel and Doksum (2001), Equation (A.11.14), pp. 458): 

 ( ) ( ) ( ) ( ),i j i j i jCov X X E X X E X E X= − . (B.2) 

By expanding the first term in the RHS ( )i jE X X , we get: 

 ( ) ( ) ( )( ) ( ) ( ), ( ) ( )i j i i j j i jCov X X E E X r E X r E X E X= + ⋅ + −S S . (B.3) 

The following is the result of simple multiplications: 

 
( ) ( )

( ) ( )

, ( ) ( ) ( ) ( )i j i j i j j i i j

i j

Cov X X E E X E X rE X r E X rr

E X E X

= + + +

−

S S S S
 (B.4) 

Then we distribute the expectations for every added term: 

 
( ) ( ) ( )

( ) ( ) ( ) ( )

, ( ) ( ) ( )

( )

i j i j i j

j i i j i j

Cov X X E E X E X E rE X

E r E X E rr E X E X

= +

+ + −

S S S

S
 (B.5) 

Since ir  is independent of ( )jE X S  and jr  is independent of ( )iE X S in the case of 

multivariate normally distributed datasets (see Rhodes (1971), Property 8, pp. 692), and 

using the fact that ( ) ( ) ( )E WZ E W E Z=  when W Z⊥  (see Bickel and Doksum 

(2001), Equation (A.11.21), pp. 459), Equation (B.5) can be written as: 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
1 2, ( ) ( ) ( )

( )

i j i j

j i i j i j

Cov X X E E X E X E r E E X

E r E E X E rr E X E X

= +

+ + −

S S S

S
 (B.6) 

By recalling that ( ) ( ) 0i jE r E r= = , the above expression (with some terms 

rearranged) becomes: 

 
( ) ( ) ( ) ( )

( )

, ( ) ( )i j i j i j

i j

Cov X X E E X E X E X E X

E rr

= −

+

S S
 (B.7) 
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Using the following facts: 

• ( )iE X  can be written as ( )( )iE E X S  (Durrett, 2005, Property (1.1f), pp. 224) 

• ( )jE X  can be written as ( )( )jE E X S (Durrett, 2005, Property (1.1f), pp. 224) 

• ( ) ( ) 0i jE r E r = , 

Equation (B.7) can be rewritten as:  

 
( ) ( ) ( ) ( )

( ) ( ) ( )

, ( ) ( ) ( ) ( )i j i j i j

i j i j

Cov X X E E X E X E E X E E X

E rr E r E r

= −

+ −

S S S S
 (B.8) 

This simply restates and confirms Equation (B.1) that: 

 ( ) ( ) ( ), ( ), ( ) ,i j i j i jCov X X Cov E X E X Cov r r= +S S . 

This concludes our proof. 

♦  

Theorem II 

Generally speaking and regardless of dataset distributions, the relationship 

between the covariance matrix of confidential attributes X ( iX  and jX ) and the 

covariance matrix of the conditional expectations of confidential attributes X , given non-

confidential attributes S  ( ( )iE X S  and ( )jE X S ) and the covariance matrix of their 

residuals r ( 1r  and 2r ), can be expressed as: 

 ( ) ( ) ( ), ( ), ( ) ,i j i j i jCov X X Cov E X E X Cov r r= +S S  (B.9) 

regardless of the shape (linear, monotonic, or non-monotonic) of the conditional 

expectations ( )iE X S  and ( )jE X S . 

♦  
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Proof: 

Again, we start by expressing the covariance matrix of confidential attributes in terms of 

expectations (see Bickel and Doksum (2001), Equation (A.11.14), pp. 458): 

 ( ) ( ) ( ) ( ),i j i j i jCov X X E X X E X E X= − . (B.10) 

By expanding the first term in the RHS ( )i jE X X , we get: 

 ( ) ( ) ( )( ) ( ) ( ), ( ) ( )i j i i j j i jCov X X E E X r E X r E X E X= + ⋅ + −S S . (B.11) 

The following is the result of simple multiplications: 

 
( ) ( )

( ) ( )

, ( ) ( ) ( ) ( )i j i j i j j i i j

i j

Cov X X E E X E X rE X r E X rr

E X E X

= + + +

−

S S S S
 (B.12) 

Then we distribute expectations: 

 
( ) ( ) ( )

( ) ( ) ( ) ( )

, ( ) ( ) ( )

( )

i j i j i j

j i i j i j

Cov X X E E X E X E rE X

E r E X E rr E X E X

= +

+ + −

S S S

S
 (B.13) 

The residuals r ( 1r  and 2r ) are uncorrelated with any and every function of S (see 

Rhodes (1971), Proposition 2b, pp. 690, and Bickel and Doksum (2001), Proposition 

1.4.1 (a), pp. 34). “Any and every function of S” includes the conditional expectations 

1( )E X S  and 2( )E X S  (see Bickel and Doksum (2001), Proposition 1.4.1 (b), pp. 34). 

Since the covariance matrix is a scaled version of the correlation matrix, we get the 

following: 

 ( ), ( ) 0i jCov r E X =S  (B.14) 

and 

 ( ), ( ) 0j iCov r E X =S . (B.15) 
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Expand (B.14) and (B.15) using Bickel and Doksum (2001) Equation (A.11.14) pp. 458: 

 ( ) ( ) ( ) ( ), ( ) ( ) ( ) 0i j i j i jCov r E X E r E X E r E E X= ⋅ − =S S S  (B.16) 

and 

 ( ) ( ) ( ) ( ), ( ) ( ) ( ) 0j i j i j iCov r E X E r E X E r E E X= ⋅ − =S S S . (B.17) 

Combining (B.16) and (B.17) with the fact that ( ) ( ) 0i jE r E r= =  leads us to: 

 ( )( ) 0i jE r E X⋅ =S  (B.18) 

and 

 ( )( ) 0j iE r E X⋅ =S . (B.19) 

Using (B.18) and (B.19), Equation (B.13) (with some terms rearranged) becomes: 

 
( ) ( ) ( ) ( )

( )

, ( ) ( )i j i j i j

i j

Cov X X E E X E X E X E X

E rr

= −

+

S S
 (B.20) 

Using the following facts: 

• ( )iE X  can be written as ( )( )iE E X S  (Durrett, 2005, Property (1.1f), pp. 224) 

• ( )jE X  can be written as ( )( )jE E X S (Durrett, 2005, Property (1.1f), pp. 224) 

• ( ) ( ) 0i jE r E r = , 

Equation (B.20) can be rewritten as:  

 
( ) ( ) ( ) ( )

( ) ( ) ( )

, ( ) ( ) ( ) ( )i j i j i j

i j i j

Cov X X E E X E X E E X E E X

E rr E r E r

= −

+ −

S S S S
 (B.21) 

This simply restates and confirms Equation (B.9) that: 

 ( ) ( ) ( ), ( ), ( ) ,i j i j i jCov X X Cov E X E X Cov r r= +S S . 

This concludes our proof. 

♦  
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Proposition I 

The relationship among the correlation of two confidential attributes X ( iX  and jX ), the 

correlation of the two conditional expectations ( ( )iE X S  and ( )jE X S ) obtained from 

regressing the two confidential attributes on non-confidential attributes S, and the 

correlation between the residuals r ( ir  and jr ) left from the regression is: 

( )

( ) ( )
( ) ( )

( )

( ) ( )
( ) ( )

( )

,

( ) ( )
( ), ( )

)
,

i j

i j
i j

i j

i j
i j

i j

Corr X X

Var E X Var E X
Corr E X E X

Var X Var X

Var r Var r
Corr r r

Var X Var X

=

⋅

+ ⋅

S S
S S (B.22) 

♦  

Proof: 

The relationship between the correlation matrix and the covariance matrix is (Bickel and 

Doksum, 2001, Equation A.11.18, pp.458): 

 ( ) ( )
( ) ( )

,
, i j

i j
i j

Cov X X
Corr X X

Var X Var X
=  (B.23) 

We start from Equations (B.1) and (B.9): 

 ( ) ( ) ( ), ( ), ( ) ,i j i j i jCov X X Cov E X E X Cov r r= +S S . (B.24) 

By using (B.23) and (B.24): 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

,

( ) ( ) ( ), ( )

,

i j i j

i j i j

i j i j

Var X Var X Corr X X

Var E X Var E X Corr E X E X

Var r Var r Corr r r

⋅ =

⋅ +

⋅

S S S S  (B.25) 
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By dividing both sides of (B.25) by ( ) ( )i jVar X Var X , we get (B.22). This concludes 

our proof. 

♦  
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Appendix C – Relationship-Based  NM-EGADP Masking Algorithms 

In this study, we propose four interrelated Relationship-Based  PPE masking 

methods, numbered in ascending order, for masking datasets containing non-monotonic 

relationships.  The goal is to release masked datasets for building estimation (regression) 

models. In this appendix, we list and discuss these masking algorithms.   

Figure 39 shows the general schema of how these masking methods work. The 

general process is shown in the middle column. An outline of the corresponding 

mathematical process is shown in the third column. The procedure starts by learning the 

relationships between confidential attributes X and non-confidential attributes S (i.e. the 

conditional expectations E(X|S)). Then, orthogonal (to both S and X) noise terms are 

generated. The covariance matrix of this set of orthogonal noise terms are scaled to 

mimic the characteristics of the original residuals set resulted from the regression process 

in the first step. Finally, we add the scaled orthogonal noise to the original conditional 

expectations E(X|S) to generate masked variables Y.  

There are two shuffling-based dimensions differentiating between the proposed 

four masking methods: whether we shuffle the residuals by the added orthogonal noise, 

and whether we shuffle the confidential attributes by the perturbed variables. The 

possible combinations of these two dimensions, with two possibilities each, represent the 

four masking methods (as shown in Figure 40 below and the first column in Figure 39 

below).  
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 Shuffling is the process of ranking order observations in one random variable 

based on the rank-order of observations in another random variable (Muralidhar and 

Sarathy, 2003a; 2006b). It has the advantage of changing the rank order of the original 

variables while maintaining their marginal distributions. Next, we explain the shuffling 

process in more detail. We also demonstrate the process using a hypothetical example. 

 

Figure 39. General schema of how Relationship-Based  Masking (RBM) approach works 
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How Shuffling Works 

When we say “Shuffle A by B,” where A and B are two random variables, we 

mean the following: 

1. Find the rank-order RA of all observations in the first random variable A. 

2. Find the rank-order RB of all observations in the second random variable B. 

 

Figure 40. Classification of the NM-EGADP masking methods 
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3. Create a third random variable C (the shuffled version of the random variable A) 

by rearranging the observations in A according to the rank-order of B, or more 

specifically: 

C(RowB(RB)) = A(RowA(RA)); where RA = RB. 

By the end of this procedure, the shuffled variable C will have the exact marginal 

distribution of variable A with the exact rank-order of variable B.  

Example: 

Table 40 shows the shuffling procedure using a hypothetical example. Now, we 

demonstrate the shuffling procedure for a specific instance of the hypothetical example. 

Let us try to “Shuffle A by B” for the observations that have the rank-order of 2 (i.e. RA =  

RB = 2): 

1. Locate two corresponding observations in A and B based on the equality of their 

rank-orders (here, RA =  RB = 2) 

2. Start from the above formula: C(RowB(RB)) = A(RowA(RA)); where RA = RB 

3. Replace the rank-orders RA and RB by their values: C(RowB(2)) = A(RowA(2))  

4. Use the corresponding rows/numbers of these rank-orders as indices for the 

variables C and A: C(1) = A(7)  

5. Assign the observation of  the corresponding index of A to the variable C at the 

corresponding B-derived index: C(1) = 2.9  

Notice that to shuffle the whole random variable A by B, we just repeat the above steps 

for every observation in A.  

♦  
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Masking Methods 

Now, we present the algorithms of the two groups of masking methods: the NM-EGADP 

masking methods. While the four methods are very similar, the distinction between the 

two groups is how the orthogonal noise is generated (a normal noise vs. a normal copula 

noise). The first method (method 1) is the basis for all four masking methods. No 

shuffling is used in the basis methods. The other three masking methods use the shuffling 

at the level of either residuals, perturbed variables, or both. We surround the shuffling 

steps in the algorithms by frames when listed shortly. We use the word “perturbation” in 

naming the methods when no shuffling at the level of perturbed variables is involved 

(regardless of whether residuals are shuffled). When shuffling is done at the level of 

perturbed variables, we replace the word “perturbation” with the word “shuffling”. In 

addition, when residuals are shuffled before they are added to conditional expectations, 

we use the phrase “residuals-shuffled” in the beginning of the methods’ names. When 

both levels of shuffling are done, we use both “residuals-shuffled” and “shuffling” in the 

Table 40. Hypothetical example demonstrating “Shuffle A by B” for generating a shuffled variable C 
A RA RowA(RA) B RB RowB(RB) C RC 

8.8 8 1 2.3 2 1 2.9 2 
4.5 4 2 7.5 7 2 7.3 7 
7.3 7 3 8.4 8 3 8.8 8 
9.7 9 4 6.8 6 4 6.4 6 
3.2 3 5 4.2 4 5 4.5 4 
10.5 10 6 3.6 3 6 3.2 3 
2.9 2 7 1.1 1 7 1.8 1 
5.3 5 8 5.9 5 8 5.3 5 
6.4 6 9 10.9 10 9 10.5 10 
1.8 1 10 9.9 9 10 9.7 9 

RA,  RB, and  RC represent the rank-order of the random variables A, B and C. 



 204 

method name. Table 41 lists the names of the four methods and their characteristics in 

terms of the type of the added noise and the involvement level of shuffling.  

Relationship-Based  NM-EGADP Masking Algorithms 

The four masking methods use (un-shuffled/shuffled) normal noise. 

Method 1: NM-EGADP Perturbation 

1. Regress X on S by training q Least Squares Support Vector Machines LS-SVM 

neural networks N1j (one for each individual confidential attribute Xj): 

 ( )1 | ,    1, ,j jN E X j q= =S Κ  (C.1) 

N1 (=[N11,…, N1q]) learns the set of conditional expectations E(X|S). 

2. Use the set of trained neural networks N1 to calculate the following: 

a. The set of conditional expected values 1 ( [ , , ])qµ µ µ= Κ  of the 

conditional expectations E(X|S) evaluated at S values where:  

 ( ) | ,    1, ,j jE X j qµ = =SS Κ  (C.2) 

b. The residuals set r (=[r1,…, rq]) where: 

 ( )   -  | ,    1, ,j j jr X E X j q= =SS Κ . (C.3) 

Table 41. A list of the four NM-EGADP masking methods and their characteristics. 
 

No Method Variable Noise Shuffled 
Residuals 

Shuffled 
Observation 

1 NM-EGADP Perturbation Y Normal - - 

2 NM-EGADP Shuffling Y_Shf or 
Yshf 

Normal -   

3 Residuals-Shuffled NM-
EGADP Perturbation Y_SR Normal   - 

4 Residuals-Shuffled NM-
EGADP Shuffling Y_SR_Shf Normal     
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3. Compute the covariance matrix of the first residuals set ∑ r , which will be used 

later to scale another set of orthogonal residuals and makes it have the same 

covariance matrix ∑ r .  

4. Generate q independent random variates V (=[V1,…, Vq]). 

5. Regress V on both S and X by training another set of q LS-SVM neural networks 

N2 (=[N21,…, N2q]) where: 

 ( )2 | , ,    1, ,j jN E V j q= =S X Κ . (C.4) 

6. Use the set of the trained neural networks N2 to calculate a second orthogonal 

residuals set b (=[b1,…, bq]) where: 

 ( ) ,
   -  | , ,    1, ,j j jb V E V j q= =S XS X Κ . (C.5) 

7. Compute the covariance matrix of the second residuals set ∑ b . Note that although 

the new set of residuals b is orthogonal to S, X and r, the covariance matrix ∑ b is 

different than ∑ r . 

8. Generate a new orthogonal set of residuals e by scaling the (normalized) set of 

orthogonal residuals b by the covariance matrix ∑ r of the original residuals:            

 ( ) ( )0.5 0.5−= ∑ ∑r be b . (C.6) 

9. Calculate the new perturbed attributes Y: 

 ( )|Eµ= + = +Y e X S e . (C.7) 

Method 2: NM-EGADP Shuffling 

1. Perform steps 1 to 9 of Method 1 

2. Shuffle X by Y to generate the shuffled attributes Yshf. 
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Method 3: Residuals-Shuffled NM-EGADP Perturbation 

1. Perform steps 1 to 8 of Method 1 

2. Shuffle r by e to generate the shuffled orthogonal residuals eshf. 

3. Calculate the new perturbed attributes Y: 

 ( )|Eµ= + = +shf shfY e X S e . (C.8) 

Method 4: Residuals-Shuffled NM-EGADP Shuffling 

1. Perform steps 1 to 8 of Method 1 

2. Shuffle r by e to generate the shuffled orthogonal residuals eshf. 

3. Calculate the new perturbed attributes Y: 

 ( )|Eµ= + = +shf shfY e X S e . (C.9) 

4. Shuffle X by Y to generate the shuffled attributes Yshf. 
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Appendix D– Extended Results Related to the Motivation Example 

 

Table 42. Sample of the Motivation Example Dataset 
No S1 S2 X1 X2 Y1 Y2 Y1shf Y2shf 
1 53.12 0 258.57 514.74 271.54 546.83 270.04 546.22 
2 57.37 1 211.35 569.33 220.82 603.43 219.80 608.35 
3 22.06 0 224.45 609.51 223.10 555.46 221.74 555.42 
4 25.46 1 272.98 547.63 262.40 532.68 261.18 533.55 
5 51.25 1 292.63 516.33 268.89 517.11 268.45 520.38 
6 33.69 0 332.74 459.77 366.92 476.60 365.43 474.31 
7 52.63 0 271.99 523.39 288.68 524.81 291.32 525.92 
8 55.13 0 268.46 576.32 249.96 557.04 248.90 556.42 
9 29.54 1 303.64 481.62 288.66 477.52 291.06 475.90 
10 59.44 1 214.64 590.22 208.29 601.59 210.45 605.57 
: : : : : : : : : 

991 41.35 1 418.87 426.78 396.27 435.37 399.37 437.04 
992 34.30 1 342.65 457.91 370.11 448.22 367.94 448.21 
993 26.25 0 262.73 531.11 263.65 527.80 262.18 529.54 
994 26.28 0 286.67 549.47 277.26 553.15 277.25 552.01 
995 50.65 0 268.78 519.65 299.97 502.34 302.79 502.53 
996 37.16 0 391.54 413.41 359.38 399.86 357.00 398.41 
997 50.72 1 301.59 500.72 296.39 503.60 299.00 504.17 
998 28.71 1 296.49 531.81 266.50 512.61 264.34 514.69 
999 27.71 0 308.91 537.00 288.56 525.41 290.84 526.75 
1000 29.62 1 298.04 469.97 303.20 501.94 306.17 502.46 
Range 39.96 1 271.58 249.31 264.83 244.17 271.58 249.31 
Min 20.01 0 172.61 383.49 168.46 381.97 172.61 383.49 
Max 59.97 1 444.19 632.80 433.29 626.14 444.19 632.80 

Mean 40.2640 .4680 296.7751 504.6919 296.7753 504.6918 296.7751 504.6919 
STD 11.88385 .49922 59.29870 59.05412 59.29040 58.95759 59.29870 59.05412 
VAR 141.226 .249 3516.335 3487.389 3515.351 3475.997 3516.335 3487.389 
S: non-confidential attributes 
X: original confidential attributes 
Y: masked (perturbed) confidential attributes 
Yshf: masked (shuffled) confidential attributes 
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Figure 41. Motivation Example (ME.L) – Original dataset  
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Figure 42. Motivation Example – Predicted values E(X1|S)|s vs. E(X2|S)|s 
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Figure 43. Motivation Example – Residuals r1 vs. r2 
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Figure 44. Motivation Example – The NM-EGADP Perturbation (masking method 1) masked dataset 
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Figure 45. Motivation Example – The NM-EGADP Shuffling (masking method 2) masked dataset 
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Figure 46. Motivation Example (ME.L) – Masked using masking method 3 
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Figure 47. Motivation Example (ME.L) – Masked using masking method 4 
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Note: 

The visual similarity between the figures of the masked datasets (both perturbated and 

shuffled) and the figure of the original dataset suggests that NM-EGADP masking 

procedures work fine in term of data utility. 
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Table 43. Motivation Example - Original dataset Pearson correlations 

Correlations

1 -.010 -.026 .052
.759 .409 .100

1000 1000 1000 1000
-.010 1 .032 -.031
.759 .308 .320

1000 1000 1000 1000
-.026 .032 1 -.933
.409 .308 .000

1000 1000 1000 1000
.052 -.031 -.933 1
.100 .320 .000

1000 1000 1000 1000

Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N

s1

s2

x1

x2

s1 s2 x1 x2

 
 

Table 44. Motivation Example - NM-EGADP perturbed dataset Pearson correlations 

Correlations

1 -.010 -.026 .052
.759 .409 .100

1000 1000 1000 1000
-.010 1 .032 -.031
.759 .308 .320

1000 1000 1000 1000
-.026 .032 1 -.933
.409 .308 .000

1000 1000 1000 1000
.052 -.031 -.933 1
.100 .320 .000

1000 1000 1000 1000

Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N

s1

s2

y1

y2

s1 s2 y1 y2

 
 

Table 45. Motivation Example - NM-EGADP shuffled dataset Pearson correlations 
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Correlations

1 -.010 -.027 .053
.759 .391 .096

1000 1000 1000 1000
-.010 1 .032 -.032
.759 .307 .316

1000 1000 1000 1000
-.027 .032 1 -.931
.391 .307 .000

1000 1000 1000 1000
.053 -.032 -.931 1
.096 .316 .000

1000 1000 1000 1000

Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N

s1

s2

y1_shf

y_shf2

s1 s2 y1_shf y_shf2

 
 
Note: 

The similarity between the correlation matrices of the masked datasets (using the NM-

EGADP perturbation and NM-EGADP shuffling) and the correlation matrix of the 

original dataset suggests that NM-EGADP masking procedures not only maintain non-

monotonic relationships but also maintain linear relationships (another extra advantage in 

term of data utility). 
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Table 46. Motivation Example - Original dataset rank-order (Spearman) correlations 

Correlations

1.000 -.008 -.031 .054
. .794 .321 .090

1000 1000 1000 1000
-.008 1.000 .030 -.033
.794 . .342 .296

1000 1000 1000 1000
-.031 .030 1.000 -.938
.321 .342 . .000

1000 1000 1000 1000
.054 -.033 -.938 1.000
.090 .296 .000 .

1000 1000 1000 1000

Correlation Coefficient
Sig. (2-tailed)
N
Correlation Coefficient
Sig. (2-tailed)
N
Correlation Coefficient
Sig. (2-tailed)
N
Correlation Coefficient
Sig. (2-tailed)
N

s1

s2

x1

x2

Spearman's rho
s1 s2 x1 x2

 
 
 

Table 47. Motivation Example - NM-EGADP perturbed dataset rank-order (Spearman) correlations 

Correlations

1.000 -.008 -.033 .056
. .794 .298 .078

1000 1000 1000 1000
-.008 1.000 .031 -.034
.794 . .332 .289

1000 1000 1000 1000
-.033 .031 1.000 -.938
.298 .332 . .000

1000 1000 1000 1000
.056 -.034 -.938 1.000
.078 .289 .000 .

1000 1000 1000 1000

Correlation Coefficient
Sig. (2-tailed)
N
Correlation Coefficient
Sig. (2-tailed)
N
Correlation Coefficient
Sig. (2-tailed)
N
Correlation Coefficient
Sig. (2-tailed)
N

s1

s2

y1

y2

Spearman's rho
s1 s2 y1 y2

 
 

 
 

Table 48. Motivation Example - NM-EGADP shuffled dataset rank-order (Spearman) correlations 
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Correlations

1.000 -.008 -.033 .056
. .794 .298 .078

1000 1000 1000 1000
-.008 1.000 .031 -.034
.794 . .332 .289

1000 1000 1000 1000
-.033 .031 1.000 -.938
.298 .332 . .000

1000 1000 1000 1000
.056 -.034 -.938 1.000
.078 .289 .000 .

1000 1000 1000 1000

Correlation Coefficient
Sig. (2-tailed)
N
Correlation Coefficient
Sig. (2-tailed)
N
Correlation Coefficient
Sig. (2-tailed)
N
Correlation Coefficient
Sig. (2-tailed)
N

s1

s2

y1_shf

y_shf2

Spearman's rho
s1 s2 y1_shf y_shf2

 
 

 
Note: 

The similarity between the rank-order correlation matrices of the masked datasets (the 

NM-EGADP perturbation and NM-EGADP shuffling) and the rank-order correlation 

matrix of the original dataset suggests that NM-EGADP masking procedures not only 

maintain non-monotonic relationships but also maintain monotonic nonlinear 

relationships (another extra advantage in term of data utility). 
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Fitting a Wrong Regression Model: Linear Regression Case 

Note: 

We know that the relationship between X1 and S1 is non-monotonic. Assume the data 

analyst fits a wrong model (a linear regression model). If he fits the wrong model to the 

masked datasets and masking procedures work well, he should get similar results.  

 
Table 49. Original dataset - Fitting a wrong regression model (Linear Regression Case: X1|S1)  

Coefficientsa

302.029 6.628 45.566 .000
-.130 .158 -.026 -.826 .409

(Constant)
s1

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: x1a. 
 

 
Table 50. NM-EGADP perturbed dataset - Fitting a wrong regression model (Linear Regression 

Case: X1|S1) 

Coefficientsa

302.025 6.628 45.571 .000
-.130 .158 -.026 -.826 .409

(Constant)
s1

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: y1a. 
 

 
Table 51. NM-EGADP shuffled dataset - Fitting a wrong regression model (Linear Regression Case: 

X1|S1) 

Coefficientsa

302.229 6.628 45.597 .000
-.135 .158 -.027 -.858 .391

(Constant)
s1

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: y1_shfa. 
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Motivation Example – Data Utility Assessment by Fitting Parametric Regression 

Models for Data Involving Non-Monotonic Relationships  

Goal:  

To assess the parametric-similarity between the parameters of models estimated from the 

motivation example original unmasked dataset and the parameters of models estimated 

from the motivation example masked (perturbed or shuffled) datasets. 

Notes: 

• Nonlinear regression facility in SPSS is used to estimate the parameters of the 

nonlinear regression models. 

• Parameter c always stands for the constant term (if it appears in the model). 

• We choose the value 0.0001 as a starting value for all parameters (a, b, and c). 

Table 52. Motivation Example - Data Utility assessment by fitting nonlinear Parametric Regression 
Models: (X|S), (Y|S), and (Yshf|S) 

Model Parameters Estimated From 

Original Dataset 
DV: X1 - IV: S1S2 

Perturbed Dataset 
DV: Y1 - IV: S1S2 

Shuffled Dataset 
DV: Y1_shf  - IV: 

S1S2 

Nonlinear 

Regression 

Fitted Model a B c a b c a b c 

1 2aS bS+  6.266 47.287  6.266 47.287  6.265 47.321  

1 2aS bS c+ +
 

-0.129 3.803 300.187 -0.129 3.803 300.182 -0.134 3.808 300.384 

2 2
1 2aS bS+  0.104 117.107  0.104 117.107  0.104 117.150  

2 2
1 2aS bS c+ +

 
-0.009 3.585 310.551 -0.009 3.585 310.548 -0.009 3.590 310.655 

3 3
1 2aS bS+  0.002 167.810  0.002 167.809  0.002 167.852  

3 3
1 2aS bS c+ +

 
0.000 3.326 314.220 0.000 3.326 314.218 0.000 3.330 314.291 

10 10
1 2aS bS+  0.000 264.570  0.000 264.568  0.000 264.587  

10 10
1 2aS bS c+ +

 
0.000 2.948 313.929 0.000 2.948 313.928 0.000 2.953 313.944 
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Table 53. Motivation Example - Data Utility assessment by fitting nonlinear Parametric Regression 
Models: (X1|X2), (Y1|Y2), and (Y1_shf|Y2_shf)  

Model Parameters Estimated From 

Original Dataset 
DV: X1 - IV: X2 

Perturbed Dataset 
DV: Y1 - IV: Y2 

Shuffled Dataset 
DV: Y1_shf  - IV: 

Y2_shf 

Nonlinear 

Regression 

Fitted Model a C a c a c 

2aX  0.567  0.568  0.567  

2aX c+  -0.937 769.554 -0.938 770.091 -0.935 768.654 
2
2aX  0.001  0.001  0.001  

2
2aX c+  -0.001 535.702 -0.001 536.116 -0.001 535.375 

3
2aX  0.000  0.000  0.000  

3
2aX c+  0.000 457.432 0.000 457.837 0.000 457.292 

10
2aX  0.000  0.000  0.000  

10
2aX c+  0.000 344.865 0.000 345.752 0.000 344.940 

 
 
Table 54. Motivation Example - Data Utility assessment by fitting nonlinear Parametric Regression 
Models: (X1|SX2), (Y1|SY2), and (Y1_shf|SY2_shf) 

Model Parameters Estimated From 
Original Dataset 
DV: X1 - IV: S1S2 

Perturbed Dataset 
DV: Y1 - IV: S1S2 

Shuffled Dataset 
DV: Y1_shf  - IV: S1S2 

Nonlinear 

Regression 

Fitted Model a b c d a b c d a b c d 

1 2 2aS bS dX+ +

 
2.376 22.783  0.359 2.371 22.745  0.360 2.368 22.788  0.360 

1 2 2aS bS dX c+ + +

 
0.112 0.366 765.41

2 -0.938 0.112 0.372 765.93
7 -0.939 0.109 0.353 764.62

0 -0.936 

2 2 2
1 2 2aS bS dX+ +

 
0.029 52.952  0.001 0.029 52.842  0.001 0.029 52.941  0.001 

2 2 2
1 2 2aS bS dX c+ + +

 
0.001 0.128 534.45

1 -0.001 0.001 0.151 534.86
6 -0.001 0.001 0.138 534.18

5 -0.001 

3 3 3
1 2 2aS bS dX+ +

 
0.000 87.252  0.000 0.000 87.064  0.000 0.000 87.219  0.000 

3 3 3
1 2 2aS bS dX c+ + +

 
0.000 -0.061 457.00

9 0.000 0.000 -0.024 457.40
6 0.000 0.000 -0.030 456.89

6 0.000 

10 10 10
1 2 2aS bS dX+ +

 
0.000 230.52

5  0.000 0.000 229.77
6  0.000 0.000 230.49

2  0.000 

10 10 10
1 2 2aS bS dX

c

+ +

+

 
0.000 -0.012 344.97

6 0.000 0.000 0.083 345.81
4 0.000 0.000 0.138 345.01

1 0.000 
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 Possible Usefulness for other Tasks: Classification using Discriminant Analysis 

(Part of my research Agenda after graduation)  
 

Table 55. Classification: Original Dataset: IV: S2, DV: S1 X1 X2 

s2 * Predicted Group for Analysis 1 Crosstabulation

282 250 532
28.2% 25.0% 53.2%

242 226 468
24.2% 22.6% 46.8%

524 476 1000
52.4% 47.6% 100.0%

Count
% of Total
Count
% of Total
Count
% of Total

.00

1.00

s2

Total

.00 1.00

Predicted Group for
Analysis 1

Total

 
 
Table 56. Classification: NM-EGADP Perturbed Dataset: IV: S2, DV: S1 Y1 Y2 

s2 * Predicted Group for Analysis 1 Crosstabulation

281 251 532
28.1% 25.1% 53.2%

238 230 468
23.8% 23.0% 46.8%

519 481 1000
51.9% 48.1% 100.0%

Count
% of Total
Count
% of Total
Count
% of Total

.00

1.00

s2

Total

.00 1.00

Predicted Group for
Analysis 1

Total

 
 

 
Table 57. Classification: NM-EGADP Shuffled Dataset: IV: S2, DV: S1 Y1shf Y2shf 

s2 * Predicted Group for Analysis 1 Crosstabulation

275 257 532
27.5% 25.7% 53.2%

230 238 468
23.0% 23.8% 46.8%

505 495 1000
50.5% 49.5% 100.0%

Count
% of Total
Count
% of Total
Count
% of Total

.00

1.00

s2

Total

.00 1.00

Predicted Group for
Analysis 1

Total
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Appendix E – Graphical Pilot Study – Comparisons for PPE Masking Methods 

In this appendix, we present some graphical evidence that the NM-EGADP shuffling 

procedure work well and preserve different types of relationships including non-

monotonic ones while EGADP (shuffling) doesn’t preserve nonlinear relationships and 

(C-GADP based) data shuffling only maintains monotonic relationships. 
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Figure 48. Graphical Pilot Study: Linear relationships (bivariate normal dataset) 
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Figure 49. Graphical Pilot Study: Monotonic nonlinear relationships I 
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Figure 50. Graphical Pilot Study: Monotonic nonlinear relationships II 
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Figure 51. Graphical Pilot Study: Non-Monotonic relationships (U-shape data) 
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Figure 52. Graphical Pilot Study: Non-Monotonic relationships (3-cluster data) 
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Appendix F – Dataset: NM.01 (Check Mark )  
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Figure 53. NM.01  Dataset  
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Figure 54. NM.01  Dataset – Predicted values E(X1|S)|s vs. E(X2|S)|s 
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Figure 55. NM.01  Dataset – Residuals r1 vs. r2 
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Figure 56. NM.01  Dataset – Masked using masking method 1 
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Figure 57. NM.01  Dataset – Masked using masking method 2 
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Figure 58. NM.01  Dataset – Masked using masking method 3 
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Figure 59. NM.01  Dataset – Masked using masking method 4 
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Appendix G – Dataset: NM.02 
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Figure 60. NM.02  Dataset  
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Figure 61. NM.02  Dataset – Predicted values E(X1|S)|s vs. E(X2|S)|s  
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Figure 62. NM.02  Dataset – Residuals r1 vs. r2  
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Figure 63. NM.02  Dataset – Masked using masking method 1  
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Figure 64. NM.02  Dataset – Masked using masking method 2 
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Figure 65. NM.02  Dataset – Masked using masking method 3  

S1

S
1

S2 Y1_SR_SHF Y2_SR_SHF

S
1

S2

S
2

Y1
_S

R
_S

H
F Y

1_S
R

_SH
F

S1

Y
2_

S
R

_S
H

F

S2 Y1_SR_SHF Y2_SR_SHF

Y2_SR
_S

H
F

 

Figure 66. NM.02  Dataset – Masked using masking method 4  
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Appendix H – Dataset: NM.03 
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Figure 67. NM.03  Dataset 
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Figure 68. NM.03  Dataset – Predicted values E(X1|S)|s vs. E(X2|S)|s 
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Figure 69. NM.03  Dataset – Residuals r1 vs. r2 
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Figure 70. NM.03  Dataset – Masked using masking method 1 
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Figure 71. NM.03  Dataset – Masked using masking method 2 
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Figure 72. NM.03  Dataset – Masked using masking method 3 
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Figure 73. NM.03  Dataset – Masked using masking method 4 
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Appendix I – Dataset: NM.04 
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Figure 74. NM.04  Dataset 
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Figure 75. NM.04  Dataset – Predicted values E(X1|S)|s vs. E(X2|S)|s 
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Figure 76. NM.04  Dataset – Residuals r1 vs. r2 
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Figure 77. NM.04  Dataset – Masked using masking method 1 
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Figure 78. NM.04  Dataset – Masked using masking method 2 
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Figure 79. NM.04  Dataset – Masked using masking method 3 
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Figure 80. NM.04  Dataset – Masked using masking method 4 



 242 

Appendix J – Dataset: NM.05 
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Figure 81. NM.05  Dataset 
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Figure 82. NM.05  Dataset – Predicted values E(X1|S)|s vs. E(X2|S)|s 
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Figure 83. NM.05  Dataset – Residuals r1 vs. r2 
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Figure 84. NM.05  Dataset – Masked using masking method 1 
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Figure 85. NM.05  Dataset – Masked using masking method 2 
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Figure 86. NM.05  Dataset – Masked using masking method 3 
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Figure 87. NM.05  Dataset – Masked using masking method 4 
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Appendix K – Dataset: MNL.01  
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Figure 88. MNL.01  Dataset 
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Figure 89. MNL.01  Dataset – Predicted values E(X1|S)|s vs. E(X2|S)|s 
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Figure 90. MNL.01  Dataset – Residuals r1 vs. r2 
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Figure 91. MNL.01  Dataset – Masked using masking method 1 
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Figure 92. MNL.01  Dataset – Masked using masking method 2 
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Figure 93. MNL.01  Dataset – Masked using masking method 3 
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Figure 94. MNL.01  Dataset – Masked using masking method 4 



 250 

Appendix L – Dataset: MNL.02 
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Figure 95. MNL.02  Dataset 
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Figure 96. MNL.02  Dataset – Predicted values E(X1|S)|s vs. E(X2|S)|s 
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Figure 97. MNL.02  Dataset – Residuals r1 vs. r2 
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Figure 98. MNL.02  Dataset – Masked using masking method 1 
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Figure 99. MNL.02  Dataset – Masked using masking method 2 
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Figure 100. MNL.02  Dataset – Masked using masking method 3 
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Figure 101. MNL.02  Dataset – Masked using masking method 4 
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Appendix M – Dataset: MNL.03 
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Figure 102. MNL.03  Dataset 
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Figure 103. MNL.03  Dataset – Predicted values E(X1|S)|s vs. E(X2|S)|s 
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Figure 104. MNL.03  Dataset – Residuals r1 vs. r2 
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Figure 105. MNL.03  Dataset – Masked using masking method 1 
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Figure 106. MNL.03  Dataset – Masked using masking method 2 
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Figure 107. MNL.03  Dataset – Masked using masking method 3 
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Figure 108. MNL.03  Dataset – Masked using masking method 4 
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Appendix N– Dataset: NM.01.S1 – Check Mark Dataset with One S with Non-

Monotonic Relationships among Residuals 
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Figure 109. NM.01.S1  Dataset 



 259 

0 5000 10000 15000
u2

0

5000

10000

15000

u 1

 

Figure 110. NM.01.S1  Dataset – Predicted values E(X1|S)|s vs. E(X2|S)|s 
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Figure 111. NM.01.S1  Dataset – Residuals r1 vs. r2 
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Figure 112. NM.01.S1  Dataset – Masked using masking method 1 
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Figure 113. NM.01.S1  Dataset – Masked using masking method 2 
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Figure 114. NM.01.S1  Dataset – Masked using masking method 3 
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Figure 115. NM.01.S1  Dataset – Masked using masking method 4 
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Appendix O – Dataset: ME.L.S1 – Motivation Example with One S 
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Figure 116. ME.L.S1  Dataset 
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Figure 117. ME.L.S1  Dataset – Predicted values E(X1|S)|s vs. E(X2|S)|s 
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Figure 118. ME.L.S1  Dataset – Residuals r1 vs. r2 
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Figure 119. ME.L.S1  Dataset – Masked using masking method 1 
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Figure 120. ME.L.S1  Dataset – Masked using masking method 2 
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Figure 121. ME.L.S1  Dataset – Masked using masking method 3 
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Figure 122. ME.L.S1  Dataset – Masked using masking method 4 
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Appendix P – Important Results Relating the Characteristics of Masked 

Attributes to the Characteristics of Original Data 

 In this appendix, we present two important results along their proofs. In addition, 

we provide some other results without explicit proofs.  

Proposition I: 

The relationship between the covariance of Xi and its masked copy Yi masked using the 

RBM NM-EGADP approach and the conditional expectation of a confidential attribute Xi 

on the non-confidential attributes S is: 

 ( ) ( )( ),i i iCov X Y Var E X= S  (P.1) 

where 1i q= Κ . 

♦  

Proof: 

Using (A.11.14) pp. 458 in (Bickel and Doksum, 2001), we can write the above 

covariance as follows: 

 ( ) ( ) ( ) ( ),i i i i i iCov X Y E XY E X E Y= −  (P.2) 

Since ( )i i iX E X r= +S  and ( )i i iY E X e= +S , Equation (P.2) can be written as:  

 ( ) ( )( )( ) ( ) ( ),i i i i i i i i i iCov X Y E u r u e E u r E u e= + + − + +  (P.3) 

where ( )i iu E X= S . Since ,i i ir e u⊥ , we can write Equation (P.3) as: 

( ) ( )( )( ) ( ) ( )( ) ( ) ( )( ),i i i i i i i i i iCov X Y E u r u e E u E r E u E e= + + − + + (P.4) 

Since ( ) ( ) 0i iE r E e= = , we can write the following: 

 ( ) ( )( )( ) ( )[ ]2,i i i i i i iCov X Y E u r u e E u= + + −  (P.5) 

This can be simplified to: 
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 ( ) ( ) ( )[ ]22,i i i i i i i i i iCov X Y E u ue u r re E u= + + + −  (P.6) 

By distributing the expectations, we get: 

 ( ) ( ) ( ) ( ) ( ) ( )[ ]22,i i i i i i i i i iCov X Y E u E ue E u r E re E u= + + + −  (P.7) 

As said, ,i i ir e u⊥  and ( ) ( ) 0i iE r E e= = . In addition, i ie r⊥  as a security 

requirement, which leads to: 

 
( ) ( ) ( ) ( )2,i i i i iCov X Y E u E u E e= + ( ) ( )i iE u E r+ ( ) ( )i iE r E e+

( )[ ]2iE u−
 (P.8) 

Or simply: 

 ( ) ( ) ( )[ ]22,i i i iCov X Y E u E u= −  (P.9) 

Using (A.11.15) pp. 458 in (Bickel and Doksum, 2001), this leads to: 

 ( ) ( ),i i iCov X Y Var u=  (P.10) 

Or: 

 ( ) ( )( ),i i iCov X Y Var E X= S  (P.11) 

This ends our proof. 

 

♦  

Proposition II: 

The security measure (SI) is related to the correlation between Xi and its masked copy Yi, 

which is masked using the RBM NM-EGADP approach, as follows: 

 ( ), 1i iCorr X Y η= −  (P.12) 

Where 

 ( )
( )

i

i

Var r
Var X

η =  (P.13) 
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♦  

Proof: 

By using Proposition 1.4.1 (c) pp. 34 in (Bickel and Doksum, 2001), we can write 

Equation (6.10) as: 

 ( )
( ) ( )( )

i

i i

Var r
Var r Var E X

η =
+ S

 (P.14) 

Using Equation (P.1), we can write: 

 ( )
( ) ( ),

i

i i i

Var r
Var r Cov X Y

η =
+

 (P.15) 

We can simplify it in a series of steps: 

 ( ) ( ) ( ),i i i iVar r Cov X Y Var rη η+ =  (P.16) 

 ( ) ( ) ( ),i i i iCov X Y Var r Var rη η= −  (P.17) 

 ( ) ( )( ), 1i i iCov X Y Var rη η= −  (P.18) 

 ( ) ( )
1

, 1i i iCov X Y Var r
η

 = −   
 (P.19) 

To convert the covariance in the LHS of (P.19) to correlation (see (A.11.18) pp. 458 in 

(Bickel and Doksum, 2001)), we must divide both sides by ( ) ( )i iVar X Var Y . However, 

since one of the specifications of the RBM approach is that ( ) ( )i iVar Y Var X= , we can 

divide both sides by ( )iVar X : 

 ( )
( )

( )
( )

, 1
1i i i

i i

Cov X Y Var r
Var X Var X η

 = −   
 (P.20) 

This leads to 

 ( )
1

, 1i iCorr X Y η
η

 = −   
 (P.21) 

which can be simplified to: 
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 ( ), 1i iCorr X Y η= −  (P.22) 

This ends our proof. 

♦  

Notice also that Equation (6.9) (or (P.22)) can be written as: 

 ( )
( )( )
( )

, i
i i

i

Var E X
Corr X Y

Var X
=

S  (P.23) 

Since ( ) ( )i iVar r Var Xη =  and  using Proposition 1.4.1 (c) pp. 34 in (Bickel and 

Doksum, 2001), we have:   

 ( )( )
( )

( )
( )

1i i

i i

Var E X Var r
Var X Var X

+ =
S  (P.24) 

But we prefer to present Equation (6.9) in terms of the variance of residuals r 

because Corr(Xi, Yi) is used to assess security (rather than utility) and residuals r are what 

determine the possible security level from the characteristics of original datasets. 

Nonetheless, Equation (6.11) is still interesting because when E(Xi|S) represents the best 

linear predictor of Xi, The RHS of Equation (6.11) becomes (see pp. 36-37 and Equation 

(1.4.11) pp. 36 in (Bickel and Doksum, 2001)): 

 ( )
( )( )
( )

2 i
i

i

Var E X
R X

Var X
=

S
S  (P.25) 

Therefore, ( ) ( )2,i i iCorr X Y R X= S . In addition, Formula (P.25) is equivalent to (see 

pp. 40 in (Bickel and Doksum, 2001)): 

 ( ) ( )( )[ ]
( )( )
( )

22 , i
i i i

i

Var E X
R X Corr X E X

Var X
 

= = 
  

S
S S  (P.26) 

As said earlier, the assumption is that the conditional expectations E(Xi|S) in 

(P.25) and (P.26) represent the best linear predictor for Xi. Nevertheless, when the 

estimation mechanism, the ANN machine in our case, does a good job in estimating the 
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conditional expectations, the relationships between the observations (Xi) and predicted or 

the fitted values (E(Xi|S)|s) becomes linear since the model accounts for all nonlinearity 

that may exist between S and X (see pp. 443 in (Pyle, 2003)). In this case, formulas 

(P.25) and (P.26) holds true even when the relationships between S and X are nonlinear: 

monotonic or non-monotonic. We obtained some initial empirical evidence that support 

this claim.  

From (P.23) and (P.26), we also can write: 

 ( ) ( )( )[ ]2, ,i i i iCorr X Y Corr X E X= S  (P.27) 

Since the relationship between Xi and Yi is always positive linear, which is clear from 

Equation (P.23) (i.e. a division of two positive quantities). In addition, the relationship 

between Xi and E(Xi|S) is also always linear positive. This means that the range of 

possible values for the correlation in both sides of Equation (P.27) is between 0 and 1. 

This leads to the following inequality, which defines an upper bound for the correlation-

based security measure in (6.9): 

 ( ) ( )( ), ,i i i iCorr X Y Corr X E X≤ S  (P.28) 

Notice the similarity of this inequality with the following security measures: 

 ( ) ( ), ,CC CC≤X Y X S  (P.29) 

and 

 ( ) ( )MSE MSEi iX X≥Y S  (P.30) 

The “<” sign in (P.28) always holds except in two cases where the “<” sign turn into 

absolute equal sign “=”. These two cases become obvious by combining the information 

in (P.27) with (P.28). These two cases happen when: 

 ( )( ), 1i iCorr X E X =S  (P.31) 
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or  

 ( )( ), 0i iCorr X E X =S  (P.32) 

Equation (P.31) indicates 100% deterministic (linear) relationship between S and X while 

Equation (P.32) shows no relationship at all (i.e. complete random or independent 

variables) in the linear sense between S and X. Since we assumed the estimation 

mechanisms did a good job in learning the true conditional expectations and in modeling 

any nonlinearity may exist (so that the relationships between Xi and E(Xi |S) is linear), 

Equation (P.32) suggests that Xi and E(Xi |S) are actually independent.  

 Now we will present a third result that enables us to estimate the regression line 

between an original confidential attribute Xi as a dependent variable and its masked copy 

Yi as independent variable (or the reverse) based on the characteristics of original datasets 

and before even the masking takes place. Then, we will use the first two propositions and 

the discussion follows them to prove the third proposition.  

Proposition III: 

When masking using the RBM approach, the relationship between an original 

confidential attribute Xi and its masked copy Yi becomes linear (since the goal is to 

maximize data utility and the non-confidential attributes S link them together). This 

relationship takes the form of a line: 

 0 1i iX b bY= +  (P.33) 

where the intercept b0 can be calculated as: 

 ( )
( )
( )

( )0
i

i i
i

Var r
b E X E X

Var X
η= =  (P.34) 

and the slope b1 can be calculated as: 
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( )

( )
( )

( )( )
( )

1 , 1 1 i
i i

i

i

i

Var r
b Corr X Y

Var X
Var E X

Var X

η= = − = −

=
S

 (P.35) 

♦  

Proof: 

Bickel and Doksum (2001, Theorem 1.4.3 pp. 38) suggest that “the unique best linear 

predictor” takes the form of (using the masking terminology): 

 0 1i iX b bY= +  (P.36) 

where the slope is:  

 ( )
( )1

,i i

i

Cov X Y
b

Var Y
=  (P.37) 

and the intercept is: 

 ( ) ( )0 1i ib E X b E Y= −  (P.38) 

We can rewrite the slope equation (Equation (P.37)) using the fact 

( ) ( )i iVar Y Var X=  and using some of the above derived results as follows: 

 ( )

( )[ ]
1 2

,i i

i

Cov X Y
b

Var Y
=  (P.39) 

 ( )
( ) ( )1

,i i

i i

Cov X Y
b

Var X Var Y
=  (P.40) 

 ( )1 ,i ib Corr X Y=  (P.41) 

 ( )
( )1 1 1 i

i

Var r
b

Var X
η= − = −  (P.42) 

 ( )( )
( )1

i

i

Var E X
b

Var X
=

S  (P.43) 
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We can rewrite the intercept equation (Equation (P.38)) using the fact ( ) ( )i iE Y E X=  

and using some of the above derived results as follows: 

 ( ) ( )0 1i ib E X b E X= −  (P.44) 

 ( )( )0 11ib E X b= −  (P.45) 

 ( ) ( )( )0 1 ,i i ib E X Corr X Y= −  (P.46) 

 ( ) ( )( )0 1 1ib E X η= − −  (P.47) 

 ( )0 ib E Xη=  (P.48) 

 ( )
( )

( )0
i

i
i

Var r
b E X

Var X
=  (P.49) 

This ends our proof. 

 

♦  
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