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CHAPTER I 

INTRODUCTION 

Many pathogenic variants of Pseudomonas syringae cause diseases in plants and 

induce a wide variety of symptoms including blights, cankers and leaf spots (Alfano and 

Collmer, 1996; Hirano and Upper, 2000). The specificity of P. syringae to cause disease 

on particular host plants led to investigations focusing on the molecular basis of host 

specificity (Staskawicz et al., 1984; Lindgren et al., 1986). Multiple bacterial genes are 

induced during pathogenesis and are required for pathogenicity (Staskawicz et al., 1984; 

Lindgren et al., 1986; Collmer et al., 2000) or contribute to disease severity (e.g., 

virulence factors) (Mittal and Davis, 1995; Kloek et al., 2001).  

Pseudomonas syringae pv. tomato (Pst) causes bacterial speck of tomato, an 

economically important disease. The pathogen causes necrotic lesions on the leaves, 

stems, and fruit of tomatoes (Goode and Sasser, 1980). Foliar lesions are generally 

surrounded by a yellow chlorotic halo (Peñaloza-Vázquez, et al., 2000). In Pst strain 

DC3000 (Pst DC3000), the type III secretion system (TTSS) determines pathogenicity 

(He, 1998; Galan and Collmer, 1999; Hutcheson et al., 2001), and coronatine (COR) is 

an important component of Pst DC3000 virulence (Bender et al., 1999). The TTSS is a 

protein secretion complex used by many Gram-negative plant pathogenic bacteria to 

promote pathogenesis (Arnold et al., 2003). COR is a phytotoxin that contributes to the 

virulence of Pst DC3000 (Brooks et al., 2004; Uppalapati et al., 2005; Elizabeth and 

Bender, 2007).  
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Bacterial speck disease of tomato is largely regarded as a foliar disease (Preston, 

2000), and studies of the Pst DC3000-tomato interaction have primarily been conducted 

in the leaves of 3-4 week old tomato plants. Foliar assays generally require high relative 

humidity to enable pathogen entry and development of typical disease symptoms 

following inoculation (Lund et al., 1998; Peñaloza-Vázquez et al., 2000; Zhao et al., 

2003; Uppalapati et al., 2007). Unfortunately, these assays require extensive growth 

chamber or greenhouse space and are labor-intensive. Thus a part of my study was 

focused on the development of a reliable seedling assay for Pst-tomato interactions that 

could reduce both the time and space needed for virulence assays.  

COR has structural and functional resemblance to methyl jasmonate (MeJA), and 

related derivatives known as the jasmonates (Feys et al., 1994; Weiler et al., 1994). 

MeJA is a plant growth hormone that plays a key role in plant defense to biotic and 

abiotic stress (Howe et al., 1996; McConn et al., 1997; Vijayan et al., 1998; Truman et 

al., 2007). COR also play a major role in disease symptom production (Brooks et al., 

2004).  

During a compatible interaction with a host, Pst DC3000 infection results in the 

activation of the JA signaling pathway (Zhao et al., 2003; Laurie-Berry et al., 2006). This 

results in suppression of the SA pathway because of mutual antagonism with the JA 

pathway (Kloek et al., 2001; Kunkel and Brooks, 2002). It has been proposed that the 

suppression of the SA pathway during the Pst DC3000-host interaction is caused by 

COR, which acts as a molecular mimic of JA (Feys et al., 1994; Bender et al., 1999; 

Staswick and Tiryaki, 2004).  

Our present understanding of COR function does not clearly explain how chlorosis 

impacts or benefits pathogen virulence. Furthermore, the identity of host molecular 
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targets for COR and the downstream signaling cascades that ensue are not well 

understood. Based on similarities between COR and JA in terms of structure and function 

(Feys et al., 1994; Uppalapati et al., 2005), it seems likely that COR and JA interact with 

at least one common host receptor.  

Therefore, another part of my study has focused on the identification and 

characterization of plant proteins that are the molecular targets of COR. I explored the 

utility of virus-induced gene silencing (VIGS) as a fast-forward genetics tool to screen a 

cDNA library of Nicotiana benthamiana, with the aim of identifying plant genes that are 

involved in COR-mediated chlorosis.  
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CHAPTER II 

REVIEW OF LITERATURE 

 

Pseudomonas syringae 

Pseudomonas syringae is a Gram-negative plant pathogenic bacterium that causes 

a wide variety of symptoms on plants, including blights, galls and leaf spots (Alfano and 

Collmer, 1996).  P. syringae is divided into approximately 50 pathovars (pv.) based on its 

host range (Hirano and Upper, 2000). For example, P syringae pv. phaseolicola causes 

halo blight in bean (Webster et al., 1983), and P. syringae pvs. glycinea and  maculicola 

cause blight on soybean (P. syringae pv. glycinea) and leaf spots on tomato and Brassica 

spp. (P. syringae pv. maculicola) (Wiebe and Campbell, 1993). The specificity of the 

host-pathogen interaction in different pathovars of P. syringae is a potential tool to 

understand various aspects of the host-pathogen relationship. To this end, genomes of P. 

syringae pv. tomato DC3000, pv. syringae B728a and pv. phaseolicola 1448a have been 

sequenced (Buell et al., 2003; Feil et al., 2005; Joardar et al., 2005) Information from 

annotations and comparative sequence analysis of the genomes are being used to 

understand the molecular basis of the host-pathogen interaction (Vencato et al., 2006). 

 The importance of virulence in pathogens arises from the fact that they require 

nutrients and congenial environmental conditions that are essential for their successful 

establishment. The genetic basis for pathogenicity and virulence of P. syringae includes 

various factors including phytotoxins (Bender et al., 1999), the type III secretion system 
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(TTSS; encoded by the hrp/hrc cluster) (He, 1998; Galan and Collmer, 1999; Hutcheson 

et al., 2001), exopolysaccharides (Yu et al., 1999; Keith et al., 2003), and global 

regulatory proteins such as GacA and GacS (Hrabak and Willis, 1992; Rich et al., 1994; 

Chatterjee et al., 2003).  Furthermore, the presence of flagella and the ability to 

synthesize extracellular polysaccharides are also important for epiphytic colonization and 

pathogenicity in P. syringae (Hatterman and Ries, 1987; Yu et al., 1999; Keith et al., 

2003). Also, multiple genes are induced during pathogenesis and function as 

pathogenicity factors (Collmer et al., 2000; Preiter et al., 2005; Fu et al., 2006; 

Sreedharan et al., 2006; Tang et al., 2006).  In P. syringae, pathogenicity is host specific; 

in other words, the pathogen produces effector proteins that are released into the plant 

host cells. If the host possesses the corresponding resistance (R) gene, the interaction 

generally results in a hypersensitive response (HR), followed by activation of defense 

signal transduction pathways in the host plant. Plant hosts that lack the corresponding R 

gene are susceptible to the pathogen (Badel et al., 2003).   

 

P. syringae pv. tomato, a model organism for bacterial-plant interactions 

P. syringae pv. tomato DC3000 (Pst DC3000), a pathogen of tomato, Brassica 

spp. (collard, turnip), and Arabidopsis thaliana (Moore et al., 1989; Whalen et al., 1991; 

Wang et al., 2002; Elizabeth and Bender, 2007) has become a model strain for 

investigating plant–microbe interactions, largely because of its genetic tractability, 

pathogenicity on Arabidopsis, and the availability of its genomic sequence 

(www.tigr.org). The Pst DC3000 genome (6.5 megabases) consists of a circular 

chromosome and two plasmids, which collectively code for 5763 ORFs, including 298 
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virulence genes (Buell et al., 2003).  In Pst DC3000, the TTSS and coronatine (COR) 

play a major role in symptom development (Figure 1; see Brooks et al., 2004; Jin et al., 

2003).  A number of regulatory proteins have also been implicated in the virulence of Pst 

DC3000 including GacA, HrpL, CorR, and CorS (Figure 1; Fouts et al., 2002; Chatterjee 

et al., 2003; Jin et al., 2003; Sreedharan et al., 2006). In the following sections, I describe 

some of the classic literature along with some recent discoveries on symptom 

development, biology, epidemiology, and disease development with respect to Pst. 
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Figure 1: Schematic overview of P. syringae–plant interactions. Biosynthesis of the TTSS and small 

molecules such as coronatine are controlled by several regulatory factors. The central pathogenic process is 

the injection of multiple effector proteins into plant cells by the TTSS, which is depicted as the brown 

structure traversing the bacterial inner and outer membranes, plant cell wall, and plasma membrane. The 

effectors may suppress defenses and promote nutrient and water accumulation in the apoplast unless any 

one of them is detected by a resistance (R) gene-encoded sentinel, in which case strong host plant defenses 

associated with the hypersensitive response (HR) are triggered. Coronatine (COR) is a non-host specific 

phytotoxin that presumably suppresses the host defense system. Figure adapted from Buell et al. (2003). 
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1. Symptoms 

One of the most obvious phenotypic changes observed in tomato as a result of Pst 

infection is necrosis on leaves and fruit. Typical symptoms observed on tomato leaves are 

necrotic lesions, which are generally surrounded by chlorotic halos. Infected fruits show 

dark brown specks with a dark green halo around them. Specks (which are usually 

superficial on fruit) form sunken lesions on ripened fruits.   

Formation of necrotic lesions on tomato leaves infected by Pst (formerly known 

as P. tomato) has been studied for several decades. Bashan et al. (1980) reported that the 

appearance of necrotic lesions correlated with a pH increase from 6.5 to 8.0 in Pst-

infected leaves. Furthermore, the increased incidence of necrotic lesions was associated 

with elevated electrolyte leakage 120 h after inoculation; this correlated with a high 

concentration of accumulated ammonia (Bashan et al., 1980).  

In general, the process of plant infection by phytopathogenic bacteria is via 

wounds and natural openings.  Although the significance with respect to pathogenesis is 

not clear, several plant cell wall degrading enzymes have been detected during the 

infection of tomato by Pst. For example, high levels of cutinase activity were reported on 

both susceptible and resistant tomatoes 48 h post inoculation (hpi; Bashan et al., 1985). 

Interestingly, genes encoding cutinase activity were not identified in the genome of Pst 

DC3000 (Buell et al., 2003), and a role for cutinase activity in pathogenesis has not been 

investigated using a genetic approach in P. syringae. Among the pectinolytic enzymes, 

polygalacturonase, pectin lyase, pectate lyase and pectin-methylesterase activities were 

also observed during Pst-tomato interaction (Bashan et al., 1985). More recently, a 

functional annotation of the Pst DC3000 genome revealed genes encoding cell-wall 



  8 

degrading enzymes including a pectin lyase, a polygalacturonase and three enzymes with 

cellulolytic activity (Buell et al., 2003).  

 

2. Biology & epidemiology 

  Transmission of Pst over long distances in the absence of a host plant largely 

depends on survival and fitness of the pathogen. Bashan et al. (1982) reported that Pst 

survived on infested seeds for a period of 20 years. The infested seeds developed into 

seedlings that either showed disease symptoms or contained a high population of the 

pathogen. Furthermore, artificially infested seed lots that were stored up to six years also 

contained the pathogen. Although there is some controversy regarding how Pst 

overwinters, several reports show that seeds, weeds, and volunteer tomato plants can 

facilitate the survival of the pathogen, and these may also serve as inoculum sources in 

tomato fields (Chambers & Merriman, 1975; Jardine et al., 1988; Schneider and Grogan, 

1977;;  McCarter et al., 1983). The extent to which Pst establishes in the field depends on 

several environmental factors and cultural practices. For example, airborne Pst occurred 

in relatively high numbers above the Pst-inoculated tomato fields after clipping the 

plants, before irrigation, and after harvest (McInnes et al., 1988). Lindemann and Upper 

(1985) found that the upper flux of epiphytic bacteria in bean plants was higher during 

sunny days when the leaves were dry. In addition to suggesting the influence of wind and 

rain, followed by dry, sunny days, the authors also propose that large positive 

electrostatic charges may be correlated with the high upper flux of bacteria.  In another 

study, Yunis et al. (1980) observed a positive correlation between cool temperatures (13-

28
o
C), high relative humidity (>80%), and disease severity, which agrees with the earlier 
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results of Pohronezny et al. (1979). Host factors also influenced disease development 

with higher yield losses occurring in plants that were infected in earlier developmental 

stages (Yunis et al., 1980). For example, infection occurred in immature, green tomato 

fruit but not in ripened, red fruit (Yunis et al., 1980).  This was attributed to the lower pH 

of the red fruit skin (5.2) and red flesh (4.0) compared to that of green fruit skin (6.3) and 

green flesh (5.0). Although Pst is known primarily as a foliar pathogen, it also causes 

very mild symptoms in tomato roots (Bashan, 1998). 

 

3. Infection 

For successful establishment and infection, phytopathogenic bacteria enter plant hosts 

via natural openings including stomata, hydathodes, lenticels and trichomes (Bashan et 

al., 1981; Getz et al., 1983a, b; Hugouvieux et al., 1998). Scanning electron and light 

microscopy indicate that 48 h after spray-inoculation with 10
6 

CFU/ml Pst, only a few 

randomly-dispersed bacteria were observed. However, stomata, trichome bases and 

intercellular regions below the epidermal cells were completely covered with bacteria 

(Bashan et al., 1981). A similar phenomenon was observed by Boureau et al. (2002) 

where Pst DC3000 expressing green fluorescent protein was used to monitor pathogen 

growth on tomato leaves. There was a drastic reduction of the epiphytic population of Pst 

DC3000 48 hpi on leaves spray-inoculated with 10
7 

CFU/ml of the pathogen. However, 

the endophytic population in the substomatal cavities and intercellular spaces increased 

approximately 100-fold in susceptible plants. Although natural openings on the plant 

surface such as stomata are viewed as passive openings for the entry of  plant pathogenic 

bacteria, recent evidence suggest pathogen-associated molecular patterns (PAMPs) such 
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as exopolysaccharides and flagella trigger stomatal closure as part of the host basal  

defense response (Melotto et al., 2006). The pathogen attempts to intervene in this 

process by producing virulence factors that induce the re-opening of guard cells (Melotto 

et al., 2006; Underwood et al., 2007). 

Infection of tomato fruit resulting in bacterial speck symptoms depends largely on the 

presence of trichome bases that are opened as a result of trichome loss (Getz et al., 

1983a). On small, developing tomato fruits (e.g. <3 cm diameter), trichomes are lost 

leaving the base open. This enables the pathogen to invade the open trichomes and 

multiply subepidermally (Getz et al., 1983a).  In ripening fruits (e.g. >3 cm diameter), the 

aperture at the base of the trichome gradually closes; when the fruit is fully ripened, the 

trichome bases are completely covered with a cuticular layer (Getz et al., 1983a). In 

addition to changes in pH, alterations in the apertures of the trichomes may also explain 

why green fruits are more susceptible to Pst infection.  

 

The Type III Secretion System (TTSS)  

Another critical component in the pathogenicity of Pst is the type III secretion system 

(TTSS). The TTSS, which is a protein delivery mechanism employed by some Gram-

negative pathogenic bacteria, functions to secrete proteins known as the ‘effectors’ into 

host cells (Cornelis and Van Gijsegem, 2000; Tang et al., 2006). The TTSS consists of a 

needle-like structure that forms on the bacterial cell envelope and acts as a conduit for the 

delivery of effector proteins into the host (Cornelis and Van Gijsegem, 2000; Jin and He, 

2001; Cornelis, 2002). In plant pathogens, a large cluster of genes that encode the TTSS 

are designated as the hrp genes (for hypersensitive response and pathogenicity) due to the 

inability of the hrp mutants to cause disease on susceptible host plants and failure to elicit 
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an HR on nonhost plants and the resistant cultivars of susceptible plants (Lindgren, 

1997). In P. syringae, some of the effector proteins are designated as ‘Avr’ proteins 

because of their detection through the gain-of-function avirulence phenotypes. Other 

effectors are named ‘Hop’ proteins (Hrp outer proteins) based on their ability to 

translocate across the TTSS machinery (Alfano and Collmer, 2004). The importance of 

effector proteins arises from the fact that they play key roles in promoting pathogenesis 

as well as eliciting defense responses (Alfano and Collmer, 2004; Mudgett, 2005). An 

example of an effector protein that interacts directly with a host R gene product is the 

AvrPto protein secreted by Pst. AvrPto interacts with the corresponding R gene product, 

Pto (Tang et al., 1996), in a classical gene-for-gene manner (Keen, 1990), which results 

in a HR. However, interactions exist where the R gene-mediated defense reaction that 

elicits the HR does not involve a direct interaction of Avr and R gene products. For 

example, the products of AvrRpm1 and AvrB interact with RIN4 (RPM1-INTERACTING 

PROTEIN4), and RIN4 then becomes phosphorylated. The product of the Arabidopsis R 

gene RPM1 then interacts with phosphorylated RIN4, and this results in a defense 

response (Mackey et al., 2002; Desveaux et al., 2007; reviewed in Mudgett, 2005).  

Hypersensitive cell death occurs through the induction of ion fluxes and oxidative 

bursts that result in the generation of extracellular reactive oxygen species, which cause 

membrane damage to host cells (Heath, 2000; Greenberg and Yao, 2004).  In susceptible 

plants, Avr gene products may suppress HR-mediated defense in various ways. For 

example, the Pst DC3000 effector AvrPtoB can inhibit the cell death induced by 

oxidative stress (Abramovitch et al., 2003). Another Pst DC3000 effector, AvrRpt2, 
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suppresses the AvrRpm1-mediated HR by cleaving the RIN4 protein, thus resulting in 

suppression of RPM1-mediated defense (Mudgett, 2005; Nomura et al., 2005). 

 

Regulatory factors 

Several regulatory genes that impact virulence in Pst DC3000 are associated with 

the TTSS. The hrpL gene is required for the expression of several transcripts in the hrp 

gene cluster and encodes a sigma factor related to the extracellular factor family of 

alternate sigma factors (Xiao et al., 1994).  hrpS and hrpR encode response regulator 

members of the two-component regulatory system (TCRS) and are responsible for the 

transcriptional activation of hrpL (Xiao et al., 1994).  hrpR and hrpS are expressed as a 

single operon and then they interact to form a stable heterodimeric complex that 

positively regulates the σ
54

-dependent hrpL promoter (Hutcheson et al., 2001). A study 

by Bretz et al. (2002) reported that the TTSS in P. syringae is negatively regulated by 

Lon protease, an ATP-dependent serine protease, which is involved in the degradation of 

several regulatory proteins. Regulation involves Lon protease-mediated degradation of 

HrpR, which is reduced when hrp gene expression is induced.  Thus, Lon protease 

negatively regulates the TTSS in P. syringae by the degradation (proteolysis) of HrpR. 

The GacA and GacS proteins also comprise a TCRS, where GacA is a response 

regulator and GacS is the sensor kinase. GacS presumably senses environmental signals, 

is autophosphorylated at a conserved histidine residue, and phosphorylates GacA, which 

then activates the transcription of target genes (Rich et al., 1994). GacA acts as a central 

regulator that controls an assortment of transcriptional and posttranscriptional factors 

(Chatterjee et al., 2003).  Pst DC3000 gacA mutants show reduced virulence on both 
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tomato and Arabidopsis (Chatterjee et al., 2003). Another TCRS that was recently 

discovered in P. syringae consists of RhpR and RhpS. In this interaction, 

autophosphorylated RhpR is a negative regulator of hrpL, hrpR and avrPto genes, 

whereas RhpS induces the TTSS by reversing the autophosphorylation of RhpR and thus 

promotes pathogenesis (Xiao et al., 2007).  

 

Phytotoxins 

Plant pathogens produce a number of metabolites that are toxic to plant cells. 

However, only those metabolites that fulfill the following criteria are considered 

phytotoxins: (i) a purified toxin should reproduce the disease symptoms; (ii) there should 

be a direct correlation between pathogenicity and toxin yield; (iii) the toxin should be 

produced during the active growth of the pathogen in planta; and (iv) a non-toxigenic 

strain should be reduced in virulence (Bender et al., 1999). Several strains of P. syringae 

produce phytotoxins that generally induce chlorosis (coronatine, phaseolotoxin, and 

tabtoxin) (Gnanamanickam, 1982; Mitchell, 1976; Levi, 1986) or necrosis (syringomycin 

and syringopeptin) (Paynter and Alconero, 1979; Iacobellis et al., 1992). Most 

phytotoxins produced by P. syringae are considered non-host specific because they cause 

disease symptoms on plants that are non-host for the phytotoxin producing pathogen.  

 

1.  Coronatine 

Pst DC3000 produces the phytotoxin coronatine (COR), which contributes to 

virulence in Arabidopsis, tomato, collard and turnip (Brooks et al., 2004; Uppalapati et 

al., 2005; Elizabeth and Bender, 2007). COR also acts as a virulence factor in other P. 
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syringae pathovars such as pv. atropurpurea, glycinea, maculicola, and morsprunorum, 

which infect ryegrass, soybean, crucifers, and Prunus spp., respectively (Bender et al., 

1999). The structural components of COR consist of the polyketide coronafacic acid 

(CFA) and the cyclized isoleucine derivative coronamic acid (CMA) (Parry et al., 1994). 

While CFA is synthesized from precursor metabolites that include three units of acetate, 

one unit of pyruvate and one unit of butyrate, CMA is a product of isoleucine that has 

undergone an isomerization and a cyclization (Bender et al., 1999). CFA and CMA are 

linked together via amide bond to form COR (Figure 2a; Bender et al., 1999).  

C

O

O

H H

NH

CO2H

C

O

O

H H

NH2
CO2H

OH =

JA

C

O

O

H H

OH NH

CO2H

ACC

CFA CMA COR

A

B

C

O

O

H H

NH

CO2H

C

O

O

H H

NH

CO2H

C

O

O

H H

NH2
CO2H

OHC

O

O

H H

NH2
CO2H

OH =

JA

C

O

O

H H

OH NH

CO2H

ACCJA

C

O

O

H H

OH NH

CO2H

ACC

CFA CMA COR

A

B

 

Figure 2: Structural resemblance of COR and plant metabolites. A) Structure of COR, showing the 

coronafacic acid (CFA) and coronamic acid (CMA) components linked by an amide bond. B) The 

biochemical structure of the CFA component of COR has a high degree of similarity to the plant hormone 

jasmonic acid (JA), whereas 1-aminocyclopropane-1-carboxylic acid (ACC), the precursor metabolite for 

ethylene, resembles CMA. 

 

2. Mode of action 

COR is a non-host specific phytotoxin that induces chlorosis on several plants 

including tomato and soybean (Gnanamanickam et al., 1982) COR has structural and 

functional properties that are similar to jasmonic acid (JA; Figure 2a, b) and its 
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derivatives (Feys et al., 1994; Weiler et al., 1994). A recent high-throughput 

transcriptome analysis indicated that COR regulates about 35% of the methyl jasmonate 

induced genes (Uppalapati et al., 2005). JA is a plant growth regulating hormone that 

plays a key role in plant defense response against biotic and abiotic stresses (Howe et al., 

1996; McConn et al., 1997; Vijayan et al., 1998; Truman et al., 2007).   

 

3. Pst DC3000 and coronatine production.  

Unlike many P. syringae pathovars where the coronatine (COR) genes are clustered 

and plasmid-encoded, the COR genes in Pst DC3000 are chromosomally encoded. In Pst 

DC3000, the genes encoding CFA and CMA, are separated by a 26-kb region (Brooks et 

al., 2004; Buell et al., 2003). Boch et al. (2002) used in vivo expression technology 

(IVET) to identify bacterial genes that are specifically induced during the infection of A. 

thaliana by Pst DC3000. Approximately 15% of the genes induced during infection were 

localized to the CFA operon and included cfl, cfa1, cfa6, cfa7, cfa8, and cfa9. These 

results are consistent with a previous study where a cor::inaZ transcriptional fusion was 

used to identify plant factors that stimulated cor gene expression in Pst DC3000. COR 

production by Pst DC3000 is induced in the presence of the host.  Malic, citric, shikimic, 

and quinic acids were identified as compounds that stimulate COR production, and these 

compounds were present in leaf extracts and apoplastic fluids of tomato (Li et al., 1998).  

 

Current understanding on function of COR in virulence  

Genetic screens for COR/JA insensitivity have resulted in the identification of the 

coronatine insensitive1 (coi1) and JA insensitive1 (jai1) genes in Arabidopsis and tomato, 
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respectively (Staswick et al., 1992; Feys et al., 1994; Berger et al., 1996; Li et al., 2003; 

Li et al., 2004). Studies employing these mutants suggest that COR may have 

biochemical functions similar to JA. For example, during a compatible interaction with a 

host, Pst DC3000 infection results in the activation of the JA signaling pathway (Zhao et 

al., 2003; Laurie-Berry et al., 2006). This leads to the suppression of the salicylic acid 

(SA) pathway owing to the antagonistic relationship between the JA and SA pathways 

(Kloek et al., 2001; Kunkel and Brooks, 2002). The suppression of the SA pathway 

during the Pst DC3000-host interaction is thought to be caused by COR, which functions 

as a molecular mimic of JA (Feys et al., 1994; Bender et al., 1999; Staswick and Tiryaki, 

2004). More recently, COR has been shown to induce stomatal opening to promote entry 

of bacteria into the host (Melotto et al., 2006). 

Despite the studies described above, the molecular mechanisms involved in COR-

mediated chlorosis and the precise mode of action of COR are unknown. Therefore, one 

objective of the current work was to use virus-induced gene silencing (VIGS) as a fast-

forward genetics tool for identifying plant genes associated with COR-mediated 

chlorosis.  

 

Virus induced gene silencing (VIGS) 

VIGS, also known as post-transcriptional gene silencing, is a mechanism adopted 

by plants to defend against viruses through RNA-mediated viral gene suppression 

(Baulcombe, 1999). It involves the synthesis of the viral dsRNA, by an RNA-dependent 

RNA polymerase, following viral entry into the host cell (Dalmay et al., 2000). The 
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Figure 3: A model for virus-induced gene silencing pathway showing the Tobacco rattle virus as an 

example. A) Following its entry into the host cell, the virus is uncoated. The naked single stranded RNA 

(ssRNA) is synthesized into dsRNA by an RNA-dependent RNA polymerase (RdRp) which may be 

encoded by both the viral and the host genome. B) The dsRNA thus formed serves as a target for DICER, 

an enzyme that specifically cleaves dsRNAs. This results in the formation of several 21-23 bp dsRNAs 

known as the short interfering RNAs or siRNAs.  C) The siRNAs then form a protein-RNA complex 

known as the RNA-induced silencing complex (RISC). D) An ATP-dependent helicase activity in the 

complex unwinds the siRNA into single stranded RNA. E) These RNA molecules serve as guides and 

facilitate the cleavage of mRNA molecules by binding to homologous target mRNAs resulting in their 

degradation. (Figure adapted from Nykanen et al., 2001). 
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dsRNA thus formed serves as a target for DICER, an endonuclease that specifically 

cleaves dsRNAs (Figure 3; Bernstein et al., 2001). This results in the formation of several 

21-23 bp dsRNAs known as the short interfering RNAs or siRNAs. These RNA 

molecules serve as guides and facilitate the cleavage of homologous mRNA molecules 

(Zamore et al., 2000).  The siRNAs are then recognized by a protein-RNA complex 

known as the RNA-induced silencing complex (RISC) (Hammond et al., 2000; Nykanen 

et al., 2001). An ATP-dependent helicase activity in the complex unwinds the siRNA into 

single stranded RNA, and this binds to homologous target mRNAs resulting in their 

degradation (Nykanen et al., 2001). 

 

Tobacco rattle virus (TRV) as a VIGS Vector 

VIGS has been manipulated as a technique for transient suppression of host gene 

transcripts or “knockdown” of gene expression. This is accomplished when a 

recombinant virus vector containing a partial sequence from the host gene is introduced 

into the plant (Baulcombe, 1999; Liu et al., 2002b). This approach was initially used with 

Tobacco mosaic virus to silence phytoene desaturase (PDS), a gene that encodes an 

essential enzyme in the carotenoid pathway (Kumagai et al., 1995). More recently, other 

viruses, including Potato virus X, Tomato golden mosaic DNA virus, and TRV have also 

been developed into VIGS vectors (Burch-Smith et al., 2004). As part of my work, I used 

TRV (Liu et al., 2001a, b) and a fast-forward genetics approach to identify plant genes 

involved in COR mediated chlorosis.     

TRV is a plant virus whose genome consists of two positive-sense single stranded 

RNAs that are encapsidated separately into rod shaped particles (MacFarlane, 1999).  
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Figure 4: The Tobacco rattle virus (TRV) genome and the VIGS vector. A) TRV has a bipartite RNA 

genome known as RNA1 and RNA2. RNA1 encodes for a replicase that is composed of two enzymes; a 

134 kilodalton (kDa or K) helicase and a 194 K RNA-dependent RNA polymerase. RNA1 also contains 

genes that encode for a movement protein (MP) and a 16 K cysteine-rich protein. TRV coat protein (CP) is 

encoded by RNA2 along with two other non-structural 29.4 K and 32.8 K proteins. B) In order to develop 

TRV as a VIGS vector, both RNA1 and RNA2 were inserted in a recombinant Agrobacterium tumefaciens 

T-DNA immediately downstream of the CaMV 35S dual promoter (2X35S) to generate a new recombinant 

T-DNA vector construct.  In addition, sequences encoding a self-cleaving ribozyme (Rz) was also added 

immediately upstream of the nopaline-synthase termination sequence (NOSt) of the T-DNA.  Furthermore, 

in RNA2, the two non-structural genes were replaced with a multiple cloning site (MCS) to enable insertion 

of sequences that are targeted for silencing. LB and RB indicates the left border and the right border, 

respectively, of the T-DNA vector. The resulting recombinant RNA1 and RNA2 are now called the pTRV1 

and pTRV2. These two constructs are transformed separately into A. tumefaciens. Figure adapted from Liu 

et al., 2002a.  

 

 RNA1 encodes for a replicase proteins that consists of a 134 kDa helicase and a 

194 kDa RNA-dependent RNA polymerase (Figure 4a). RNA1 also encodes a 29 kDa 

movement protein and a cysteine-rich 16 kDa protein (MacFarlane, 1999). RNA2 

134K

194K

16K

MP

CP 29.4K 32.8K

RNA1

RNA2

(a)

Replicase

134K

194K

16K

MP

CP MCS

RBLB

LB RB

2X35S

2X35S Rz

Rz

NOSt

NOSt

(b)

Replicase

134K

194K

16K

MP

CP 29.4K 32.8K

RNA1

RNA2

(a)

Replicase

134K

194K

16K

MP

CP 29.4K 32.8K

RNA1

RNA2

(a)

Replicase

134K

194K

16K

MP

CP MCS

RBLB

LB RB

2X35S

2X35S Rz

Rz

NOSt

NOSt

(b)

Replicase

134K

194K

16K

MP

CP MCS

RBLB

LB RB

2X35S

2X35S Rz

Rz

NOSt

NOSt

(b)

134K

194K

16K

MP

CP MCS

RBLB

LB RB

2X35S

2X35S Rz

Rz

NOSt

NOSt

(b)

Replicase



  20 

encodes the coat protein and two non-structural proteins (MacFarlane, 1999; Liu et al., 

2002c). 

To develop TRV as a VIGS vector, Liu and associates (2002b) generated 

Agrobacterium binary constructs containing cDNA clones of RNA1 and RNA2, 

individually within the T-DNA (Figure 4b). The cDNAs corresponding to RNA1 and 

RNA2 were inserted immediately downstream of the double CaMV 35S promoter. In 

addition, a self-cleaving ribozyme was added to the 3’ end. In the construct containing 

RNA2 of TRV, the two non-structural genes were replaced with a multiple cloning site 

(MCS), which was used as the insertion site for cDNA clones chosen for silencing 

experiments. The T-DNA vector constructs that resulted were designated pTRV1 and 

pTRV2, and these were transformed into Agrobacterium tumefaciens. Approximately 

equal amounts of A. tumefaciens transformants carrying pTRV1 and pTRV2 were mixed 

together and then infiltrated into plants to achieve silencing of the target genes. 

 

Application of VIGS to study COR function 

VIGS has been widely applied to understand gene functions in several plant 

species including Arabidopsis (Burch-Smith et al., 2006; Lin et al., 2007), tomato (Liu et 

al., 2002a; Ryu et al., 2004; Fu et al., 2005) and N. benthamiana (Liu et al., 2002c; 

Anand et al., 2007b; Hirano et al., 2007). VIGS has also been used to probe gene 

function on a whole genome scale by using it as a screening tool to perform fast-forward 

genetics (Lu et al., 2003; Anand et al., 2007b). 

Leaf tissues of tomato, collard and turnip treated with purified COR or infected 

with COR-producing strains of P. syringae show chlorosis (Gnamanickam et al., 1982; 
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Uppalapati et al., 2005, 2007; Elizabeth and Bender, 2007). Furthermore, COR also 

induces chlorosis on Nicotiana benthamiana (Figure 5a), thus provided a host plant 

where VIGS could be used to identify plant genes associated with COR and/or Pst 

DC3000-induced chlorosis. 

 

 

Figure 5. A): Leaves of Nicotiana benthamiana and tomato show chlorosis in response to COR. Photos 

were taken five days after COR application. B): Leaves showing the phenotype resulting from the silencing 

of phytoene desaturase (PDS) in N. benthamiana and tomato using VIGS. Notice that unlike in N. 

benthamiana, the photo-bleaching in tomato is not as pronounced and uniform throughout the leaf 

indicating inefficient silencing of PDS gene. Pictures were taken four weeks after silencing. 

 

As part of my dissertation research, N. benthamiana was chosen for VIGS instead 

of tomato because similar to earlier observations (Ekengren et al., 2003; Ryu et al., 2004; 

Uppalapati et al., 2007), efforts to silence PDS using VIGS in tomato resulted in non-

uniform silencing, which was evident from the inconsistent photobleaching phenotype 

(Figure 5b). However, in N. benthamiana, the silencing of PDS resulted in a pronounced 

and uniform photobleaching (Figure 5b). Thus, we decided that N. benthamiana would be 
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a better host to assess altered chlorotic phenotypes in a high-throughput fashion. 

Moreover, a cDNA library of N. benthamiana is already available that contains ~4000 

clones. Thus, the cDNA clones of N. benthamiana lines that have been silenced using 

VIGS could be readily screened to find lines displaying an altered phenotype in response 

to COR. The identification of silenced genes could then be used in sequence analysis to 

identify orthologs in tomato and Arabidopsis. Orthologous genes could then be 

investigated in these biologically relevant hosts in pathogencity and genetic studies, with 

the goal of identifying genes involved in COR and Pst DC3000-induced chlorosis and 

their contribution to disease. 

 

OBJECTIVES 

I. Identification of plant genes involved in the perception of coronatine, a phytotoxin 

produced by Pst DC3000, using the following approaches: 

A. Screening of N. benthamiana silenced lines for altered chlorosis in response to 

COR (Figure 6): The silenced lines were obtained by: (A) Germinating and 

raising N. benthamiana on seed beds for 3 weeks; (B) Transplanting each 

seedling into individual six inch pots; and (C) performing VIGS based fast-

forward genetics using a cDNA library (~4000 N. benthamiana cDNA 

clones); these were cloned into a VIGS vector based on tobacco rattle virus 

(TRV). (D) Pronounced silencing was generally achieved in three weeks. (E) 

Purified COR was applied onto expanded leaves, which were then examined 

for altered chlorosis. 
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Figure 6.  Silencing of N. benthamiana genes.  N. benthamiana seedlings were raised for 3 weeks (A) and 

then transplanted into pots (B). A mixture of TRV1 and TRV2, which contain the N. benthamiana cDNA 

library, were  Agro-inoculated into the lower leaves (C), and silencing was achieved by 3 weeks post Agro-

inoculation (D). COR was applied onto silenced leaves, and phenotypes were observed after 3-4 days. 

 

B. Assessment of altered response to COR on tomatoes silenced using tomato 

sequences homologous to selected N. benthamiana cDNAs. Briefly, the 

inserts in the N. benthamiana cDNA clones selected in part A (see above) 

were sequenced, and the sequence information was used to perform a BLAST 

search to look for orthologs in tomato. The cDNAs of tomato orthologous 

sequences were then transformed into the TRV2 VIGS vector and used to 



  24 

silence tomato plants. The silenced tomato lines were then assessed for 

phenotypic response to COR to compare with the corresponding N. 

benthamiana lines. The response to COR-producing Pst DC3000 was also 

assessed on silenced lines to study the overall contribution of COR during 

disease development. 

C. Use of Arabidopsis to further understand the involvement of the tomato 

ortholog (as obtained in part B above) in COR/Pst DC3000-mediated 

chlorosis. Since Arabidopsis is also a host of Pst DC3000, Arabidopsis T-

DNA knock-out mutants corresponding to the N. benthamiana and tomato 

silenced lines showing an altered chlorosis phenotype were obtained and 

assessed for response to COR and Pst DC3000. Furthermore, a gene 

expression analysis was performed to better understand the involvement of the 

identified gene in COR and Pst DC3000-mediated chlorosis. 

 

II. Develop a high through-put assay for assessing the pathogenicity of Pseudomonas 

syringae pv. tomato DC3000 (Pst DC3000) on tomato. 

 

A. Define parameters for assay, including: 

i. Methods for seedling incubation (treatment and handling of seeds, 

temperature of incubation, choice of support). 

ii. Age of seedlings, inoculation method, quantitative and qualitative 

variables. 

B. Validation of seedling assay with known mutants. 

C. Expression of known marker genes in the seedling assay. 
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D. Comparison of incompatible and compatible interactions (Pst DC3000 on Rio 

Grande (PtoR) and the near isogenic line (PtoS) in the seedling assay.  

E. Screening of a Pst DC3000 mutant library for virulence on tomato seedlings 
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CHAPTER III 

The Thylakoid Formation1 gene is required for coronatine-induced chlorosis in 

response to Pseudomonas syringae pv. tomato DC3000 infection 

SUMMARY 

Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), which causes disease in 

tomato and Arabidopsis, produces coronatine (COR), a non-host specific phytotoxin. 

COR, which functions as a methyl jasmonate (MeJA) mimic, is required for full 

virulence of Pst DC3000 and for the induction of chlorosis in host plants. Previous 

genetic screens based on insensitivity to COR and/or MeJA identified several potential 

targets for COR and MeJA. Despite these observations, the mechanisms involved in 

COR-mediated chlorosis remain unclear. In this study, we utilized Nicotiana 

benthamiana and viral-induced gene silencing to reduce the expression of over 4,000 

cDNA clones mined from a N. benthamiana cDNA library.  The silenced lines of N. 

benthamiana were then screened for altered response to purified COR. Using this 

forward genetic approach, several genes were identified with a potential role in COR-

induced chlorosis.  These were designated as altered COR-induced chlorosis (ALC) 

genes. One of the identified genes, ALC1, produced a hypersensitive/necrosis-like 

phenotype instead of chlorosis when silenced. To understand the involvement of ALC1 

during the Pst DC3000-host interaction, we used the nucleotide sequence of ALC1 and 

identified its ortholog in Arabidopsis (Thylakoid Formation1, THF1) and tomato
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 (SlALC1). In pathogenicity assays performed on an Arabidopsis thf1 mutant and 

SlALC1-silenced on tomato plants, Pst DC3000 induced necrotic lesions but chlorosis 

was absent, indicating that these genes are required for Pst DC3000-mediated chlorosis in 

Arabidopsis and tomato. Furthermore, genetic studies suggest that THF1 regulates 

senescence during pathogenesis in Arabidopsis. 

 

INTRODUCTION 

In nature, plants come in contact with numerous microbes most of which are not 

capable of causing disease. This is mainly due to basal resistance mechanisms exhibited 

by plants against potential pathogens, which include physical barriers and preformed and 

inducible antimicrobial compounds (Dangl and Jones, 2001; Dixon et al., 2002; 

Nurnberger et al., 2004). In addition, plants also recognize surface derived molecules 

known as pathogen-associated molecular patterns (e.g. lipopolysaccharides, flagellin and 

harpin), which trigger the induction of defense responses including oxidative burst, 

apoptosis-like cell death and production of phytoalexins (Nurnberger et al., 2004; Hann 

and Rathjen, 2007). Another type of defense mechanism is mediated by disease resistance 

(R) genes and is induced by effector proteins secreted by pathogens. This results in a 

hypersensitive response (HR), which is characterized by necrotic cell death and may be 

followed by localized reinforcement of plant cell walls (Abramovitch et al., 2003; Hauck 

et al., 2003). Plant defense mechanisms, in general, involve a complex network of three 

genetically distinct signaling pathways, known as the salicylic acid (SA), jasmonic acid 

(JA), and ethylene (ET) pathways (Kunkel and Brooks, 2002; Glazebrook, 2005). 
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Pathogens, in turn, have co-evolved by developing mechanisms that suppress plant 

defense pathways.  

Several strains of Pseudomonas syringae produce phytotoxins. In plants, these 

phytotoxins generally induce chlorosis (e.g. coronatine, phaseleotoxin, and tabtoxin) 

(Gnanamanickam, 1982; Mitchell, 1976; Levi, 1986) or necrosis (e.g. syringomycin and 

syringopeptin) (Paynter and Alconero, 1979; Iacobellis et al., 1992). Some toxins do not 

induce visible symptoms, but instead influence metabolic processes in the host that are 

manifested at the biochemical level (Bender et al., 1999). In many cases, the toxins 

produced by P. syringae are not required for pathogenicity; they act as virulence factors 

and contribute to increased disease severity by facilitating bacterial movement in planta 

(Patil et al., 1974), lesion size (Bender et al., 1987; Xu and Gross, 1988) and pathogen 

multiplication (Bender et al., 1987; Feys et al., 1994; Mittal and Davis, 1995).  Most 

phytotoxins produced by P. syringae are considered non-host specific because they cause 

disease symptoms on plant species not infected by the toxin-producing pathogen (Bender 

et al., 1999).  

Coronatine (COR), a phytotoxin produced by P. syringae pv. tomato (Pst DC3000), is 

induced in the presence of the plant host metabolites such as malic, citric, shikimic, and 

quinic acids, which are present in leaf extracts and apoplastic fluids of tomato (Li et al., 

1998). COR contributes to the virulence of Pst DC3000 in Arabidopsis, tomato, collard 

and turnip (Brooks et al., 2004; Uppalapati et al., 2005; Elizabeth and Bender, 2007). The 

structural component of COR consists of the polyketide coronafacic acid (CFA) and the 

cyclicized isoleucine derivative, coronamic acid (CMA) (Parry et al., 1994). It has been 

shown that COR has structural and functional resemblance to 12-oxo-phytodienoic acid 
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(12-OPDA), methyl jasmonate (MeJA), and related derivatives known as the jasmonates 

(Feys et al., 1994; Weiler et al., 1994). MeJA is a plant growth hormone that plays a key 

role in plant defense response to biotic and abiotic stress (Howe et al., 1996; McConn et 

al., 1997; Vijayan et al., 1998; Truman et al., 2007).   

During a compatible interaction with a host, Pst DC3000 infection results in the 

activation of the JA signaling pathway (Zhao et al., 2003; Laurie-Berry et al., 2006). This 

results in suppression of the SA pathway because of mutual antagonism with the JA 

pathway (Kloek et al., 2001; Kunkel and Brooks, 2002). The suppression of the SA 

pathway during the Pst DC3000-host interaction has been proposed to be caused by 

COR, which acts as a molecular mimic of JA (Feys et al., 1994; Bender et al., 1999; 

Staswick and Tiryaki, 2004).  

Pst DC3000 causes disease on several plant species including tomato and 

Arabidopsis. A typical symptom on tomato is bacterial speck that includes necrosis 

surrounded by a chlorotic halo (Mittal and Davis, 1995; Zhao et al., 2003). In 

Arabidopsis, the infected area exhibits water-soaked lesions accompanied by diffuse 

chlorosis (Mittal and Davis, 1995; Brooks et al., 2004). Pst DC3000 infection also causes 

chlorosis in other plants belonging to Brassicaceae family such as collard and turnip 

(Elizabeth and Bender, 2007). In addition to chlorosis, Pst DC3000-infected collard 

plants exhibit water-soaked lesions and anthocyanin, suggesting that Pst DC3000 elicits 

unique responses in different plants. Studies have shown that tomato plants inoculated 

with a COR-defective mutant of Pst DC3000 did not develop typical chlorotic symptoms; 

furthermore COR contributed to pathogen fitness and disease development in SA-

independent manner (Uppalapati et al., 2007). Unlike tomato, purified COR does not 
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elicit chlorosis on Arabidopsis leaves (Mach et al., 2001). However, in Arabidopis, COR 

is required for full disease symptom development and pathogen fitness in a SA-dependent 

manner (Kloek et al., 2001; Brooks et al., 2005). These results suggest that COR 

functions as an important virulence factor in tomato and Arabidopsis, although it 

functions differently in these hosts.  

Despite our present understanding of COR function, it is not clear how chlorosis 

impacts or benefits pathogen virulence. Furthermore, the identity of host molecular 

targets for COR and the downstream signaling cascades that ensue are not well 

understood. Based on similarities between COR and JA in terms of structure and function 

(Feys et al., 1994; Uppalapati et al., 2005), it seems likely that COR and JA interact with 

at least one common host receptor. Thus, in addition to furthering our understanding of 

disease development, studies aimed at understanding the molecular mechanism of COR 

may provide information on JA-mediated plant defense. Therefore, in an effort to identify 

plant proteins that are the molecular targets of COR, we used virus-induced gene 

silencing (VIGS) as a fast-forward genetics tool to screen a Nicotiana benthamiana 

cDNA library for altered chlorosis in response to COR. 

 VIGS is a mechanism adopted by plants to defend against viral attack via RNA-

mediated viral gene suppression (Baulcombe, 1999). VIGS reduces the expression of the 

targeted host gene when a recombinant viral genome, inserted with a partial sequence 

from the host target gene, is introduced into the plant (Baulcombe, 1999; Liu et al., 

2002b). VIGS has been widely used to understand gene function in several plant species 

including Arabidopsis (Burch-Smith et al., 2006; Lin et al., 2007), tomato (Liu et al., 

2002a; Ryu et al., 2004; Fu et al., 2005) and N. benthamiana (Liu et al., 2002c; Anand et 
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al., 2007a; Hirano et al., 2007). Furthermore, VIGS has been utilized as a screening tool 

to perform fast-forward genetics (Lu et al., 2003; Anand et al., 2007b).  

In this study, tobacco rattle virus (TRV) was used as a VIGS vector (Liu et al., 

2001b, c), and a fast-forward genetics approach was implemented   to identify potential 

molecular targets of COR. Using this strategy, we identified a N. benthamiana cDNA 

clone that displayed an unexpected hypersensitive/necrosis-like phenotype when silenced 

rather than the typical chlorotic phenotype observed in response to COR. The cDNA 

clone identified using this approach had homology to an Arabidopsis gene that encodes a 

light-regulated protein located in the chloroplast, which was previously named Thylakoid 

Formation1 (Wang et al., 2004). The pathogenicity assays performed in this study 

indicate that Thf1 regulates necrosis and chlorosis in response to Pst DC3000. 

Furthermore, gene expression studies using senescence-related JA marker genes (e.g. 

LOX2, PDF1.2, CORI1 and SAG12) indicate that Thf1 may also regulate senescence 

during pathogenesis.  

 

MATERIALS AND METHODS 

Plant material and bacterial cultures 

 Seeds of N. benthamiana were germinated and maintained in the greenhouse 

facility of the Noble Foundation, Ardmore, OK, as described previously (Senthil-Kumar 

et al., 2006). Seeds of tomato (Solanum lycopersicum) cv. Glamour were obtained from 

Stokes Seeds, Inc. (Buffalo, NY, U.S.A.).  Seeds of the Arabidopsis thf1 T-DNA mutant, 

its complement, and overexpression lines were kindly provided by Dr. Ken Korth, 

University of Arkansas. Agar and broth cultures of Pst DC3000, and P. syringae pvs. 
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glycinea, maculicola and tabaci were grown on King’s B medium (King et al., 1954). 

Agrobacterium tumefaciens and Escherchia coli cultures were grown on Luria Bertani 

(LB) medium (1% yeast extract, 0.5%
 
Bacto-tryptone, 1% NaCl). When required, growth 

media were supplemented with antibiotics at the following concentrations: rifampicin (50 

mg/L), kanamycin (50 mg/L), ampicillin (100 mg/L) and gentamicin (20 mg/L). For 

pathogen infection assays on silenced-tomato lines, plants were inoculated with a 

bacterial suspension as described (Uppalapati et al., 2007). Bacterial suspensions (optical 

density at 600 nm [OD600] =0.1) were prepared in distilled water containing 0.0025% 

Silwet L-77 (OSi Specialities Inc., Danbury, CT, USA), and sprayed on plants using a 

Paasche VL airbrush (Paasche Airbrush Co. Chicago, IL, USA) to runoff. The spray-

inoculated plants were then incubated in growth chambers at 90-100% relative humidity 

(RH) for the first 24 h followed by 70% RH until the end of the experimental period. In 

Arabidopsis infection experiments, the leaves of 4-week old plants were either infiltrated 

(OD600=0.2) with bacteria using a needleless syringe, or the plants were inverted and 

dipped into the culture suspension (OD600=0.002). The plants were then placed in trays 

and covered with transparent lids and incubated in growth chambers for the rest of the 

experimental period. Although the bacterial concentrations were determined routinely 

based on OD, the initial number of colony forming units (CFU) was determined by 

plating homogenized leaf samples harvested on the day of inoculation (0 dpi). 

 

Screening of a N. benthamiana cDNA library based on COR responsiveness 

A library of N benthamiana consisting of approximately 4000 cDNA clones (del Pozo et 

al., 2004) was used to screen for plant genes involved in COR-mediated chlorosis. 
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Briefly, the cDNA library was cloned into a GATEWAY-ready VIGS vector based on 

TRV (Liu et al., 2002b, c). TRV RNA1 (TRV1) and TRV RNA2 (TRV2) were integrated 

into a modified T-DNA plasmid and maintained separately in A. tumefaciens strain 

GV2260 (Liu et al., 2002b). TRV1 contains the viral RNA-dependent RNA polymerase 

(RdRp) and the viral movement protein, whereas TRV2 contains the viral coat protein 

gene and the insertion site for the target cDNA clone. Approximately equal proportions 

(OD600=0.1) of A. tumefaciens containing TRV1 and TRV2 were mixed together in a 

buffer containing 10 mM MES, 10 mM MgCl2 and 100 µM acetosyringone. The culture 

mixture was then infiltrated into two leaflets of three-week old N. benthamiana seedlings 

with a 1 ml needleless syringe. About three weeks post inoculation, 2 µl of COR (2 nmol) 

was placed on either side of the midrib of two fully expanded leaves per plant. N. 

benthamiana inoculated with TRV::GFP was used as a control, and altered phenotypes in 

response to COR were recorded 5-7 days post application. 

 

Cloning of a full length Nb28C12 gene 

A tobacco (N. tabacum) full length cDNA sequence of Nb28C12 (226 bp) was 

obtained from the J. C. Venter Institute’s plant genome database (Accession no. 

TC10126; www.tigr.org). Based on the tobacco sequence, primers for PCR were 

designed (forward: 5’ CAA CTC CAT TCT CTA AAG CAA C 3’; reverse: 5’ GTC AAT 

GAG GTC CAA GCA GG 3’); these spanned approximately 70 bp upstream and 40 bp 

downstream of the putative coding region. The 1 kb PCR product thus obtained was then 

cloned into the pGEMT EASY vector (Promega, Madison WI) and transformed into E. 

coli JM109 competent cells. The identity of the insert was then confirmed by sequencing. 
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Construction of pTRV::Sl28C12 and VIGS in tomato 

The vectors pTRV1 and pTRV2 (Liu et al. 2002b) were kindly provided by Dr. 

Dinesh-Kumar, Yale University, U.S.A. An antisense Sl28C12 sequence consisting of a 

324 bp fragment, (TIGR accession no. TC162724, currently 

http://compbio.dfci.harvard.edu/tgi/ accession no. 178313) was PCR-amplified from 

tomato (cv. Glamour) by reverse transcriptase-PCR (RT-PCR) using primers 

Sl28C12attB1: 5'- ggg gac aag ttt gta caa aaa agc agg ct TTC CAC CTC TCG CTT TGT 

CG -3' and Sl28C12attB2: 5'- ggg gac cac ttt gta caa gaa agc tgg gt GCA TCA GCT CTG 

TAT TGC TC -3' (the small letters indicate the GATEWAY adapters). The amplified 

fragments were then introduced into GATEWAY-ready pTRV2 (Liu et al. 2002b). The 

construct pTRV2-Sl28C12 was then introduced into A. tumefaciens strain GV2260 by 

electroporation. TRV::SlPDS (PDS encodes phytoene desaturase) was used as a positive 

control for VIGS and has been described previously (Ryu et al. 2004). The inserts and 

PCR fragments were verified by sequencing.  

For gene silencing in tomato, a mixture of A. tumefaciens containing TRV1 and 

TRV2-Sl28C12 was made as described for N. benthamiana and agitated at room 

temperature for 3-4 h. To prepare tomato seedlings for transformation with A. 

tumefaciens, an infiltration method for tomato seedlings (Ekengren et al., 2003) was used 

with slight modifications. Two-week old tomato seedlings with fully-expanded 

cotyledons were removed from pots, completely submerged in the A. tumefaciens culture 

mixture, and then vacuum-infiltrated for 2 min. The seedlings were then transplanted into 

Professional Blend potting mixture (Sun Gro, Bellevue, WA). To improve the silencing 

efficiency, the remaining culture solution was dispensed around the seedlings using the 
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Agrodrench method (Ryu et al., 2004). Inoculated, potted seedlings were then maintained 

in growth chambers for 10-14 days, with a  12 h photoperiod at 22°C (day) and 18°C 

(night). Then the plants were moved to greenhouse and maintained at 14 h (day, 25°C) 

and 22°C (night) for 10-14 days. 

 

Generation of tomato Sl28C12 transgenic RNAi lines 

In order to generate a tomato Sl28C12 RNAi line, the Sl28C12 fragment 

described above was introduced into plasmid vector pDONR 207 (Invitrogen, Carlsbad, 

CA, USA), and the resulting clone was then transformed into E. coli TOP10 competent 

cells (Invitrogen, Carlsbad, CA, USA).  The plasmid was then isolated and the fragment 

was then introduced into a GATEWAY-ready binary RNAi vector pK7GWIWG2(I) 

(Karimi et al., 2002) to generate the Sl28C12 RNAi construct. This construct was 

transformed into E. coli DH5α competent cells, isolated and then transformed into A. 

tumefaciens strain GV2260 by electroporation. For the transformation of tomato plants, a 

tomato tissue culture method developed by Frary and Van Eck (2005) was followed with 

slight modifications (e.g. tobacco feeder cell layers were not used). Cotyledons of 7-8 

day-old tomato seedlings were dissected and maintained on KCMS (KC Biological MS 

medium; Frary and Van Eck, 2005) for 24 h. Tomato cotyledons were then co-cultivated 

with A. tumefaciens cultures carrying the RNAi construct and maintained in darkness for 

48 h. For all subsequent steps, the transformation protocol described by Frary and Van 

Eck (2005) was followed. The presence of the construct in the transgenic line 3-2 was 

confirmed in PCR experiments using primer combinations of attB2 with the 35S 
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promoter (P35S) or the 35S terminator (T35S) that flanks the insertion sequence (Karimi 

et al., 2002). 

 

This study68GGAGGGCTACCCCAGTGAA

TCCTTTAGCGCCTCTACATATGC

Nb/SlThf1F

Nb/SlThf1R

This study83TGGTGCTGAGAGATTCCGCT

TGGTTTCATGAATGCCAGCAG

Nb/SlActinF

Nb/SlActinR

This study328CATCATGGCTAAGTTTGCTTCC

GCATGTCATAAAGTTACTCATAGAGTG

AtPDF1.2F

AtPDF1.2R

This study57GCTTCGCATGGTTACATTCTTG 

TCCCGGCGGCAATAATTT

AtCORI1F

AtCORI1R

Li Kang73TCGTTGCACCACCTGAAAGGAA

TGGAATGTGCTGAGGGAAGCAA

AtActin2F

AtActin2R

(Huynh le et 

al., 2005)

129GTGTCTACGCGGATGTGAAG

CAGCAAACTGATTTACCGCA

AtSAG12F

AtSAG12R

AtThf1R

This study61TTCGCGTTCCACTTCGAAA 

AGGCACATCGGCGGTAAC

AtThf1F 

This study62CATTTCCGCTACACCATGGA 

CCACCTCCGTTGACAAGACTTT

AtLOX2F

AtLOX2R

Li Kang68CGGAGCTCAATTCTCGGAATT 

AGGAAGCTCGAGTGCCAAGTAC

AtEF1αF

AtEF1αR

SourceFragment 

size

Primer sequencesPrimers 

(F/R)
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TCCTTTAGCGCCTCTACATATGC

Nb/SlThf1F

Nb/SlThf1R

This study83TGGTGCTGAGAGATTCCGCT

TGGTTTCATGAATGCCAGCAG

Nb/SlActinF

Nb/SlActinR

This study328CATCATGGCTAAGTTTGCTTCC

GCATGTCATAAAGTTACTCATAGAGTG

AtPDF1.2F

AtPDF1.2R

This study57GCTTCGCATGGTTACATTCTTG 

TCCCGGCGGCAATAATTT

AtCORI1F

AtCORI1R

Li Kang73TCGTTGCACCACCTGAAAGGAA

TGGAATGTGCTGAGGGAAGCAA

AtActin2F

AtActin2R

(Huynh le et 

al., 2005)

129GTGTCTACGCGGATGTGAAG

CAGCAAACTGATTTACCGCA

AtSAG12F

AtSAG12R

AtThf1R

This study61TTCGCGTTCCACTTCGAAA 

AGGCACATCGGCGGTAAC

AtThf1F 

This study62CATTTCCGCTACACCATGGA 

CCACCTCCGTTGACAAGACTTT

AtLOX2F

AtLOX2R

Li Kang68CGGAGCTCAATTCTCGGAATT 

AGGAAGCTCGAGTGCCAAGTAC

AtEF1αF

AtEF1αR

SourceFragment 

size

Primer sequencesPrimers 

(F/R)

Table 1. Primers used for qRT-PCR

 

 

 

RNA isolation and reverse transcription-PCR (RT-PCR) analysis 

Total RNA was isolated from leaves of N. benthamiana, tomato and Arabidopsis 

plants using TRIZOL reagent (Invitrogen, Carlsbad, CA, USA). RNA samples were 
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treated with RNAse free DNAse (Promega, Madison, WI, USA), followed by phenol-

choloroform-isoamyl alcohol (Sigma, St. Louis, MO, USA) to remove the DNase. The 

first strand cDNA was synthesized using oligo (dT) 15 primer and Omniscript RT kit 

(Qiagen, Valencia, CA, USA). For quantitative analysis of transcripts, primer pairs were 

designed using the Primer Express software (Applied Biosystems Inc., Foster City, CA) 

to amplify the target sequences (Table 1). qRT-PCR was performed with ABI HT7900 

machine using SYBR Green method (Applied Biosystems Inc., Foster City, CA) to 

analyze the quantitative expression of the samples. PCR efficiency was determined using 

linear regression software LinRegPCR (Ramakers et al., 2003). In order to normalize the 

data, parallel reactions were run using the elongation factor-alpha (EF1α) primers as the 

endogenous control for Arabidopsis and actin primers as the endogenous controls for N. 

benthamiana and tomato (Table 1). For the analysis of the data, the transcript levels were 

relatively quantified as described previously (Pfaffl, 2001). 

 

RESULTS 

Purified coronatine produces chlorosis on Nicotiana benthamiana leaves 

Tomato leaf tissues treated with purified COR or infected with COR-producing 

strains of P. syringae show chlorosis (Gnamanickam et al., 1982; Uppalapati et al., 2005, 

2007). To identify novel genes involved in COR perception and COR signaling leading to 

chlorosis, we explored the utility of a fast-forward genetic screens using VIGS and N. 

benthamiana (Ryu et al., 2004; Burch-Smith et al., 2004; Anand et al., 2007b).  Unlike 

tomato, the efficiency of VIGS is quite uniform in N. benthamiana and thus this plant 

offers a better system for large-scale functional characterization of genes (Lu et al., 2003; 
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Anand et al., 2007b). Thus we initially investigated whether exogenous COR would 

induce a chlorotic response in N. benthamiana. When purified COR was applied to N. 

benthamiana leaves at different concentrations (0.002 – 2.0 nmol in 2 µl aliquots), a 

visible chlorotic zone was observed in a dose-dependent manner (Figure 7a). Although 

COR produced visible chlorosis at concentrations as low as 0.002 nmol, the chlorotic 

phenotype was more defined and reproducible at 0.2 nmol (Figure 7b). Based on these 

results we concluded that a VIGS-based approach in N. benthamiana was suitable for 

screening silenced plants for an altered chlorosis phenotype upon COR application. 

 

Figure 7. Coronatine (COR) induces visible chlorosis on N. benthamiana leaves. (a) Purified 

COR applied to N. benthamiana leaves in 2 µl aliquots (arrows) at different concentrations 

(0.002, 0.02, 0.2, 2 nmol, from lower to upper parts of the leaf); a visible chlorotic zone was 

observed 4 dpi. (b) Chlorotic phenotype induced by 0.2 nmol COR (quantity per inoculation site) 

on N. benthamiana. (c-h). Response of silenced lines of N. benthamiana leaves to 2 nmol COR. 

COR was applied three weeks post Agro-inoculation to silenced lines of N. benthamiana. In 

response to COR, leaves of silenced lines showed necrosis (c) or a necrosis-like phenotype (d and 

e). Some lines exhibited an enhanced chlorosis (f and h). Photos were taken 7 days  after COR 

application. 
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VIGS identifies five N. benthamiana genes potentially involved in COR-mediated 

chlorosis 

 To identify the plant genes involved in COR-mediated chlorosis, we used a 

normalized N. benthamiana cDNA library cloned in pTRV2 (del Pozo et al., 2004). 

Approximately 4,000 cDNA clones were inoculated in duplicates to silence their 

corresponding genes in N. benthamiana (Anand et al., 2007b). COR (2 nmol) was 

applied to the leaves of silenced plants, and the phenotypes were recorded 5-7 days after 

COR application.  

During the initial screening, approximately 100 silenced plant lines (representing 

100 cDNA clones) manifested an atypical response when treated with COR. After 

secondary and tertiary screenings, we identified five non-redundant cDNA clones that 

when silenced, resulted in plant lines that responded atypically to exogenous COR 

(Figure 7c-f, h). The application of COR to wild-type (Figure 7b) or TRV::GFP (vector 

control, Figure 7g) N. benthamiana plants resulted in a defined chlorotic halo. The 

silenced lines resulting from the five different cDNA clones exhibited either 

hypersensitive (HR)-like necrosis (Figure 7c-e) or increased chlorosis (Figure 7f, h) in 

response to COR. For example, Nb28C12-silenced plants exhibited a diffuse HR-like 

necrosis that extended beyond the area inoculated with COR (Figure 7d). Plants silenced 

with cDNA clone Nb2F10 displayed a well-defined necrosis (Figure 7c), whereas 

Nb37G8 (Figure 7e) silenced lines displayed a necrotic phenotype surrounded by 

chlorosis. Nb37B3- and Nb39H9-silenced plants displayed an enhanced, expanded 

chlorotic phenotype in response to COR (Figure 7f, h).  
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Figure 8. Phenotype of wild-type and Nb28C12-silenced N. benthamiana.  (a) Leaves of N. 

benthamiana (vector control, TRV::GFP) and (b, c) plants silenced with TRV::Nb28C12. Notice 

that the silenced leaf on panel (c) has a variegated phenotype. Photos were taken five weeks after 

Agro-inoculation.  

 

ALC1 is an ortholog of the gene encoding Thylakoid Formation 1 protein 

Since the silencing of Nb28C12 produced the most dramatic phenotype in 

response to COR application, this line was selected for further study. The phenotype of 

N. benthamiana plants silenced with TRV::Nb28C12 was similar to control plants 

(TRV::GFP) up to four weeks post-silencing. However, after the fifth week, leaves of 

Nb28C12-silenced plants turned slightly pale green in color (Figure 8). At six weeks 

post-inoculation, portions of some leaves showed a variegated grey coloration (Figure 

8c). To confirm the suppression of Nb28C12 mRNA in silenced plants, quantitative real-

time RT-PCR (qRT-PCR) was performed. The relative expression ratio of Nb28C12 gene 

in the silenced line was 0.023, indicating the transcript level was approximately six-fold 

lower than in the control plant (Figure 9). 
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To further characterize the cDNA clone, the 28C12 insert in vector pTRV2 was 

amplified by PCR using vector-specific primers and sequenced. We termed this gene as 

altered COR-induced chlorosis 1 (ALC1). The sequence information was then analyzed to 

predict gene function. A BLASTn search against the TIGR database using ALC1 

sequence revealed 77% identity to an Arabidopsis gene THF1 (Genbank ID AY899908); 

92% identity to a potato gene that encodes a light-regulated chloroplast localized protein 

(Solanum tuberosum THF1, Genbank ID AY342161); 81% identity to a rice (Oryza 

sativa) gene encoding inositol phosphatase-like protein (Genbank ID AY224446); and 

79% identity to a wheat (Triticum aestivum) gene encoding Ptr Tox A binding protein 

(Genbank ID AY377991). To facilitate a more comprehensive comparative analysis of 

ALC1, we designed a primer pair to clone the full length ALC1 gene based on tobacco (N. 

tabacum, TC10126, Figure 10) and tomato (TC178313, Figure 10) orthologous 

sequences present in the TIGR database (www.tigr.org). The cloned gene was then 

Figure 9. Real time qRT-PCR analysis comparing the transcript levels of 28C12 in N. 

benthamiana (left) and tomato leaves (right) silenced with TRV::28C12 and TRV::Sl28C12, 

respectively. Expression levels in silenced lines are shown relative to the control (TRV::GFP). 

N. benthamiana and tomato samples were collected three weeks and four weeks post Agro-

inoculation, respectively.  
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sequenced and results were translated using the “Translate tool” program 

(http://www.expasy.ch/tools/dna.html). The translated sequence was then aligned with 

orthologous plant genes using ClustalW (http://www.ebi.ac.uk/clustalw/). As shown in 

Figure 11a, N. benthamiana shows strong sequence identity with the tobacco (N. 

tabacum) ortholog with an alignment score of 96 followed by tomato (score of 89), 

potato (89), rice (68), Arabidopsis (67) and wheat (66). N. benthamiana also displays a 

higher degree of evolutionary relatedness with the tobacco ortholog when compared to 

other plant orthologs that were analyzed (Figure 11b). 

 

 
Figure 10. Pairwise alignment of full length tobacco (N. tabacum TC10126 ) and tomato 

(TC178313) orthologous sequences of 28C12(ALC1) using BLAST (bl2seq) program from 

NCBI. For design of primer pairs to generate a full length ALC1 sequence, consensus 

sequences upstream and downstream of the coding region were chosen (sequences with 

yellow background). The coding region is highlighted with green background. The symbol 

/---/ indicates the continuity of the sequences. Sequence source: TIGR database 

(www.tigr.org).  
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Figure 11. Comparative analysis of the translated sequence of ALC1 from N. benthamiana 

(Genbank EU106046) with orthologs in tobacco (N.  tabacum, TIGR: TC10126), tomato (S. 

lycopersicon, TIGR: TC162724), potato (S. tuberosum, Genbank ID AY342161), Arabidopsis ( 

THF1, Genbank AY899908), rice (Oryza sativa, inositol phosphatase-like protein; Genbank 

AY224446) and wheat (Triticum aestivum, Ptr ToxA binding protein. Genbank AY377991). (a) 

A multiple sequence alignment program (ClustalW) was used to align the sequences. Identical 

amino acid residues are shaded in blue.  Residues with conserved or semi-conserved substitutions 

are highlighted in green and yellow, respectively. (b) A phylogram of the sequences was 

generated using PHYLIP TREE and shows the evolutionary distance of all the homologs in panel 

(a) relative to ALC1. 
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ALC1-silenced tomatoes show necrosis in response to COR or Pst DC3000  

To understand the potential role of Nb28C12 in host-pathogen interaction, we 

decided to use tomato for further study. Tomato, unlike N. benthamiana, is infected by 

Pst DC3000. Furthermore, purified COR induces chlorosis when applied to tomato leaves 

(Palmer and Bender, 1995; Zhao et al., 2003; Uppalapati et al., 2005).  A tomato ortholog 

of ALC1 was identified using a BLASTn search against a tomato database (www.tigr.org, 

TC162724). Using primers specific to the tomato sequence, we cloned the tomato 

ortholog of ALC1 (see Experimental Procedures), which we refer to as SlALC1. A 

fragment of SlALC1 was subcloned into pTRV2 and used for VIGS in tomato. qRT-PCR 

analysis of silenced tomatoes revealed that the relative expression ratio of SlALC1 

transcripts was 0.061 (about four-fold lower) in the silenced plants when compared to 

mock-inoculated (TRV::GFP) plants (Figure 9). Although the majority of leaves in 

SlALC1-silenced tomatoes did not exhibit an obvious phenotype (Figure 12a, middle 

panel), some of the older leaves showed variegated coloration on the leaf surface (Figure 

12a, right panel). When purified COR (2 nmol) was exogenously applied, the silenced 

line showed a necrotic phenotype with little or no chlorosis (Figure 10b, left panel). 

To study the influence of SlALC1 on the virulence of Pst DC3000 in tomato, 

SlALC1 silenced and control (TRV::GFP) tomato plants were spray-inoculated with Pst 

DC3000 (10
8
CFU/ml). Control (TRV::GFP) plants showed typical bacterial speck 

symptoms at 5 dpi, which consisted of necrotic lesions surrounded by chlorotic halos 

(Figure 12c, left panel). At 5 dpi, the leaves of SlALC1-silenced plants showed necrosis  
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Figure 12. Phenotype of wild-type and silenced tomato lines.  (a) Tomato leaves silenced with 

TRV::GFP (control, left) and SlALC1 (middle and right panel) five weeks after agro-inoculation. 

The SlALC1 silenced lines largely appeared similar to that of the wild-type plants (middle panel), 

however, a few leaves showed a variegated phenotype (right panel). (b) Phenotype of tomato 

lines inoculated with 2 nmol COR. Transiently (TRV::SlALC1) and stably silenced (3-2) tomato 

lines show necrosis in response to COR; whereas wild-type and vector control (e.g. TRV::GFP) 

lines show chlorosis. (c) Response of control and transiently silenced tomato lines to Pst DC3000. 

(d) Response of wild-type and stably silenced tomato lines to Pst DC3000. (e) Population 

dynamics of Pst DC3000 on wild-type and silenced tomato lines. All experiments were repeated 

at least twice, and the data shown are representative of each experiment. 

 

with little or no chlorosis (Figure 12c). At 10 dpi, the necrosis observed on the silenced 

plants was severe (Figure 12c, right panel).  

As noted above, severe necrosis was observed in transiently (TRV::SlALC1) 

silenced plants in response to Pst DC3000 (Figure 12c). To determine if this could be 

explained by a higher amount of bacterial growth in silenced lines, the population of Pst 

DC3000 was monitored at 1, 3 and 5 dpi. Interestingly, the bacterial population on the 

silenced plants was not significantly different from that on the inoculated control 

(TRV::GFP) (Figure 12e). These results suggest that SlALC1-mediated chlorosis does not 

have a significant effect on growth of the bacteria in tomato plants.  
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  Although we were fairly successful in transiently silencing the tomato SlALC1 

gene, a uniform and pronounced silencing, such as that observed in N. benthamiana, is 

often difficult to achieve in tomato (Ekengren et al., 2003; Ryu et al., 2004). It is 

therefore difficult to assess the extent of silencing especially if the silencing does not 

result in any appreciable phenotypic change in the silenced plants (Liu et al., 2002a; Ryu 

et al., 2004). Therefore, to achieve stable, uniform silencing and to confirm the necrosis 

phenotype induced by COR and Pst DC3000 on SlALC1-silenced tomato lines, we 

generated SlALC1 RNAi lines. We assayed three independent transgenic RNAi lines and 

all responded similarly to COR application and Pst DC3000 infection. Here, we discuss 

the data for one of the transgenic, stably silenced lines, 3-2.  Results obtained from qRT-

PCR indicated the transcript levels of SlALC1 were five-fold less in RNAi line 3-2 when 

compared to wild-type tomato plants (data not shown). When COR (2 nmol) was applied 

to the leaves of the silenced line 3-2, necrosis appeared five days later (Figure 12b, 

second panel from left). When line 3-2 was inoculated with Pst DC3000 (10
8 

CFU/ml), 

leaves developed necrotic lesions without chlorosis (Figure 12d), further confirming that 

SlALC1 is required for COR-induced chlorosis. Consistent with the results obtained with 

VIGS, there was no difference in the growth of Pst DC3000 in the RNAi line 3-2 and 

wild-type tomato (Figure 12e).  

 

Arabidopsis thf1 mutant displays necrosis without chlorosis upon Pst DC3000 

inoculation 

As mentioned above, ALC1 is closely related to an Arabidopsis gene called THF1 

(Figure 11a). An Arabidopsis thf1 mutant has been previously identified and shown to 
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have variegated leaves (Figure 13), which were shown to lack normal chloroplast 

development in the variegated regions (Wang et al., 2004). Additionally, THF1 

expression in leaves was positively regulated by light (Wang et al., 2004). Another study 

showed that THF1 is expressed throughout Arabidopsis, including seedlings, hypocotyls, 

flowers and roots (Huang et al., 2006). 

  

Figure 13. Phenotype of the Arabidopsis thf1 mutant: The mutant thf1 grew slower than the wild-

type Col-0 and the foliage was variegated in coloration (inset). On maturity, the mutant line 

attained Col-0 size (data not shown). 

 

We obtained the Arabidopsis thf1 mutant and reconfirmed the mutation by 

ascertaining the insertion of T-DNA in THF1 (data not shown). Unlike N. benthamiana 

and tomato, exogenous application COR on Arabidopsis leaves does not induce chlorosis. 

Instead, Arabidopsis seedlings respond to COR by displaying a strong purple hue 

indicative of anthocyanin accumulation (Bent et al., 1992; Laurie-Berry et al., 2006). To 

further characterize the thf1 mutant, we germinated seeds of Arabidopsis Col-0, the thf1 

mutant line, the thf1 line complemented with THF1, and a THF1-overexpressing line on 

half strength MS medium containing 2 nmol COR (Laurie-Berry et al., 2006). As 

expected, Col-0 seedlings showed anthocyanin accumulation within ten days after 

germination (Figure 14a). Strikingly, the thf1 mutant showed hypersensitivity to COR by  
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Figure 14.   Arabidopsis thf1 displays hypersensitivity in the presence of COR and produces 

necrosis with no chlorosis upon Pst DC3000 inoculation. (a) Arabidopsis wild-type Col-0, the 

thf1 mutant line, the complemented line of thf1 (Comp), and the THF1 overexpression line (35S-

Thf1) were germinated on half strength MS medium containing 2 nmol COR (upper panels). 

These lines were also germinated on half strength MS medium alone without COR (lower 

panels).  Photos were taken of 10-day old seedlings, and each scale bar indicates 3 mm. (b) 

Foliage of four-week old Arabidopsis lines were either dipped in a Pst DC3000 culture 

suspension (10
8 

CFU/ml; upper panel) or infiltrated with (10
6 

CFU/ml, using a needle-less 

syringe, lower panel).  Photos were taken 6 days post inoculation. (c) Arabidopsis leaves 

infiltrated with Pst DC3000 (b, lower panel) were homogenized in water and were then plated on 

KB medium, and the bacterial population was quantified. All experiments were conducted at least 

three times, and the data are representative of each experiment. 
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displaying a severe growth defect and more visible anthocyanin accumulation than Col-0 

(Figure 14a, second panel from left). Both the THF1 complemented and overexpressing 

lines showed phenotypes similar to the wild-type (Figure 14a).  

To determine whether THF1 has an effect on Pst DC3000-induced disease 

symptoms on Arabidopsis, we dip-inoculated (10
8 

CFU/ml) and syringe-infiltrated (10
6 

CFU/ml) the wild-type Col-0 and thf1 mutant with Pst DC3000. As expected, Col-0 

showed water-soaked necrotic lesions accompanied by chlorosis (Figure 14b).  However, 

the thf1 mutant plants exhibited necrotic lesions lacking chlorosis (Figure 14b). 

Complemented lines of the thf1 mutant and THF1-overexpressing plants displayed 

disease symptoms similar to wild-type Col-0 after inoculation with Pst DC3000 (Figure 

14b).  These results clearly indicate that THF1 is required for Pst DC3000-induced 

chlorosis. Interestingly, when the growth of Pst DC3000 was monitored at 0, 1, 2 and 4 

dpi, no significant differences in bacterial growth were observed between the wild-type 

Col-0, the thf1 mutant, the complemented line of thf1, and the THF1 overexpression line 

(Figure 14c). These results suggest that Pst DC3000-induced chlorosis does not 

contribute to the overall fitness of the pathogen, at least for the duration of time the 

bacterial growth was monitored.   

Necrosis occurred much earlier on Pst DC3000-infected thf1 leaves than on 

leaves of the wild-type Col-0. We therefore investigated whether the thf1 mutant had a 

weaker defense response and was more susceptible to biotic and abiotic stress because of 

defects in thylakoid formation (Wang et al., 2004). To investigate this, leaves of Col-0 

and the thf1 mutant were infiltrated with two pathogens that do not infect Arabipdopsis, 

P. syringae pv. tabaci and P. syringae pv. glycinea, and growth and symptoms were  
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Figure 15. Response of Arabidopsis thf1 mutant line to other pathogens (P. syringae pv. 

maculicola and Erwinia carotovora subsp. carotovora) and non-pathogens (P. syringae pvs. 

tabaci and glycinea): (a) Wild-type Arabidopsis Col-0 and the thf1 mutant were syringe-

infiltrated with pathogens (5 x 10
5 

CFU/ml) and non-pathogens (10
6 

CFU/ml), and photos were 

taken 5 dpi. (b) Growth of P. syringae pvs. maculicola, tabaci and glycinea on Co1-0 and the thf1 

mutant line 0, 1, 3 and 5 dpi. Inoculated samples were homogenized in water and plated on KB 

medium supplemented with antibiotics when necessary. 

 

compared with P. syringae pv. maculicola, which is pathogenic to Arabidopsis (Dong et 

al., 1991; Mishina and Zeier, 2006).  As expected, the population of P. syringae pv. 

maculicola increased approximately 100-fold on both Col-0 and thf1 leaves by 3 dpi; 
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however, neither P. syringae pv. glycinea or tabaci multiplied on Col-0 or thf1 plants 

(Figure 15b) .    

Arabidopsis Col-0 and the thf1 mutant were also monitored for symptom 

development in response to inoculation with P. syringae pvs. maculicola, glycinea and 

tabaci and the soft rot pathogen Erwinia carotovora subsp. carotovora.  P. syringae pv. 

maculicola induced chlorosis on Col-0 but not on thf1 mutant line (Figure 15a). Neither 

Col-0 nor thf1 plants developed visible symptoms in response to P. syringae pvs. tabaci 

or glycinea (Figure 15a). E. carotovora subsp. carotovora induced soft rot on both Col-0 

and thf1 with no apparent difference in phenotypic response between the wild-type and 

the mutant line.  Infiltration of leaves with cell death inducing agents such as NaCl (500 

mM) or H2O2 (3%) (Peart et al., 2002; Kang et al., 2004) caused similar cell death 

response on both Col-0 and thf1 mutant line (data not shown). From the above 

experiments, only P. syringae pv. maculicola induced unique response on thf1 when 

compared to Col-0. This response was similar to the one induced by Pst DC3000. The 

results indicate that the early death of the infected leaf tissues observed in the thf1 mutant 

as a result of severe necrotic lesion is specific to Pst DC3000 and P. syringae pv. 

maculicola. 

 

Pst DC3000-induced chlorosis is associated with senescence 

The results obtained in pathogenicity studies (Figure 14c and 15b) indicated that 

early death in the thf1 mutant line was not due to elevated bacterial growth. Thus we 

speculated that the early death observed in leaves of the thf1 mutant was somehow 

associated with pathogen-induced chlorosis.  Since chlorosis is associated with  
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senescence (Quirino et al., 2000) and because JA (a functional analog of COR) induced 

premature senescence in Arabidopsis (He et al., 2002), we investigated whether the 

senescence-associated gene SAG12 was differentially expressed in the thf1 mutant in 

response to Pst DC3000. SAG12 encodes a cysteine protease that is expressed only in 

senescing tissues (Noh and Amasino, 1999a, b); furthermore, SAG12 is activated during 

methyl jasmonate (MeJA)-induced senescence in Arabidopsis leaves (He et al., 2002). 

Figure 16. Arabidopsis THF1 is required for the induction of senescence in response to Pst DC3000. 

For real time qRT-PCR, approximately 4-week old wild-type Col-0 and the thf1 mutant line were 

syringe-infiltrated with Pst DC3000 (10
6 

CFU/ml). Total RNA was extracted from the leaves of the 

infected plants collected 1, 2 and 4 dpi. Control samples (mock inoculation) were collected on the day 

of inoculation. Gene specific primers were used for amplification of the SAG12, LOX2, PDF1.2 and 

CORI1 transcripts. The transcript levels were normalized against the elongation factor EF1α that was 

used as endogenous control as described by Pfaffl (2001). (a) qRT-PCR showing the induction of the 

senescence-associated gene, SAG12, in the Col-0 and thf1 mutant lines at 4 dpi. Actin, a house-

keeping gene, was used to ascertain that the lack of expression of SAG12 in the thf1 mutant was not 

due to RNA degradation.  (b-d) Expression of JA pathway marker genes (LOX2 and PDF1.2) and (d) 

CORI1 (encoding chlorophyllase) are activated in Pst DC3000-infected Col-0 and the thf1 mutant. All 

experiments were repeated at least three times. The data shown here represent the average of three 

biological replicates and three technical replicates with the standard deviation values shown as the 

error bars. 
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Using qRT-PCR, we analyzed the transcript level of SAG12 four days after infiltration 

with Pst DC3000. Infected leaves of Col-0 expressed approximately four-fold higher 

levels of SAG12 (Figure 16a) as compared to the thf1 mutant line.  

One possible explanation for the reduced level of SAG12 transcripts (as shown in 

Figure 16a) was the possible degradation of RNA in the Pst DC3000-infected thf1 mutant 

as a result of premature death. Thus we measured the transcript levels of the actin house-

keeping gene. There was no difference in the actin transcript levels between Col-0 and 

thf1 infected with Pst DC3000 4 dpi (Figure 16a). Additionally, we ran an agarose gel 

loaded with 2 µg aliquots of total RNA from all samples examined for qRT-PCR. Visual 

examination of the gel indicated that all of the RNA samples appeared intact (data not 

shown). The results clearly suggest that Pst DC3000-induced chlorosis is directly 

associated with senescence. 

 

The JA pathway appears intact in thf1 mutant plants after Pst DC3000 inoculation  

By using a JA-insensitive Arabidopsis mutant, coronatine insensitive1 (coi1), He 

et al. (2002) demonstrated that JA signaling pathway is required for the promotion of 

senescence in Arabidopsis. The study also indicated that senescing leaves show high 

level of SAG12 accumulation. Thus, it remained possible that the absence of chlorosis 

and reduced levels of SAG12 transcripts in the Pst DC3000-infected thf1 mutant was due 

to disruption of the JA- dependent signaling pathway. Thus, we used qRT-PCR to 

analyze transcript levels of Lipoxygenase2 (LOX2) and Plant defensin1.2 (PDF1.2). 

Transcripts of LOX2 and PDF1.2 were induced in both Col-0 and thf1 in response to Pst 
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DC3000. Although expression of both genes was lower in thf1, especially at 4 dpi, the JA 

pathway appears to be functional (Figure 16b, c) at the time points analyzed. 

 Chlorosis occurs due to the degradation of proteins in the chloroplast (Quirino et 

al., 2000), and the Arabidopsis CORI1 gene (encoding chlorophyllase), is induced upon 

COR or MeJA application (Benedetti et al., 1998), resulting in chlorophyll degradation 

(Benedetti and Arruda, 2002). We wanted to know if the lack of chlorosis in thf1 could be 

due to repression of CORI1 as a result of loss of THF1 function. Thus, we analyzed 

CORI1 transcript levels in Pst DC3000 inoculated Col-0 and thf1 plants. Relative to Col-

0, CORI1 expression in thf1 was lower; however, induction of COR11 in the thf1 mutant 

was ~75 fold lower compared to the basal expression level (Figure 16d). These results 

suggest that the JA dependent pathway is not affected in the thf1 mutant. 

 

DISCUSSION 

COR produces visible chlorosis when applied to tomato, collard and turnip leaves 

(Uppalapati et al., 2005; Elizabeth and Bender, 2007). However, in Arabidopsis COR 

does not produce chlorosis; instead it induces anthocyanin accumulation in seedlings 

(Bent et al., 1992). Depending on the host and tissue, COR also induces hypertrophy in 

potato, inhibits root elongation, and stimulates ethylene production (Feys et al., 1994; 

Bender et al., 1999). COR contributes to the virulence of Pst DC3000 in Arabidopsis, 

tomato, collard and turnip (Brooks et al., 2004; Uppalapati et al., 2005; Elizabeth and 

Bender, 2007) and functions as a virulence factor in other P. syringae pathovars 

including pv. atropurpurea, glycinea, and maculicola, which infect ryegrass, soybean, 

and crucifers, and respectively (Bender et al., 1999). More recently, COR was shown to 
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induce the opening of stomata to promote the entry of pathogen into the host (Melotto et 

al., 2006). 

Our observation that COR also induced chlorosis on N. benthamiana provided a 

perfect tool to identify plant genes, by application of VIGS, that play a role in COR 

and/or Pst DC3000 induced chlorosis. Here, we have clearly shown that the N. 

benthamiana gene ALC1 and its orthologs, SlALC1 in tomato and THF1 in Arabidopsis, 

are required for the induction of chlorosis in response to COR and/or Pst DC3000. 

Furthermore, based on genetic studies we performed on the Arabidopsis mutant line thf1, 

we speculate that Pst DC3000-induced chlorosis is associated with premature senescence 

of the plant. Spray-inoculation of Pst DC3000 on ALC1 silenced tomatoes induced 

necrotic lesions without chlorosis on the majority of the leaves instead of the typical 

bacterial speck symptom with a chlorotic halo (Mittal and Davis, 1995; Zhao et al., 

2003). Furthermore, necrosis appears to progress beyond the infected areas (Figure 12c 

right panel) in a similar fashion as runaway cell death phenotype that has been reported 

earlier in Arabidopsis lsd1 mutant (Jabs et al., 1996). Arabidopsis mutants that die earlier 

than the wild-type in response to P. syringae infection include the npr1 (Cao et al., 1994) 

and acd5 (Greenberg et al., 2000). Interestingly, these mutants harbored more bacteria. In 

our study, evaluation of Pst DC3000 multiplication did not indicate a higher number of 

bacteria on ALC1-silenced tomato plants. This suggests that the early death induced by 

the pathogen is caused by reasons other than the overwhelming growth of the pathogen.  

To determine the role of ALC1 in the development of symptoms in response to 

COR or Pst DC3000, we chose Arabidopsis since it is genetically tractable and a host of 

Pst DC3000. The ortholog of ALC1 in Arabidopsis, known as THF1, is a single-copy 
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gene with no closely related sequences in the Arabidopsis genome (Wang et al., 2004). A 

Genbank database sequence query indicated that THF1 orthologs are present almost 

exclusively in photosynthetic organisms. Expression of the Arabidopsis THF1 gene is 

positively regulated by light, and the gene product is a chloroplast-localized protein. A T-

DNA knockout mutant of THF1 has been previously identified (Wang et al., 2004). The 

mutant line, thf1, is slightly stunted and has variegated leaves. The ultrastructure of 

chloroplasts in the thf1 mutant shows shorter stacks of thylakoids in the green sector of 

the leaves and accumulation of membrane vesicles, but no thylakoids within the intact 

chloroplast membrane in the white sector of leaves (Wang et al., 2004). A recent study 

showed that THF1 is ubiquitously expressed in Arabidopsis (Huang et al., 2006). Unlike 

leaves, expression of THF1 in roots is light-independent, THF1 interacts with GPA1, a 

component of the heterotrimeric G-protein complex, possibly through two 

transmembrane domains that span into the cytosol (Huang et al., 2006). Degradation of 

THF1 in presence of D-glucose and the epistatic relationship between the mutant lines, 

thf1-1 and gpa1-4, which are hypersensitive to D-glucose, suggest that THF1 functions as 

the downstream partner of GPA1 in a G-protein-coupled sugar signaling pathway (Huang 

et al., 2006). 

 Exogenous application of COR (2 nmol) on Arabidopsis leaves did not produce 

any chlorosis. However, consistent with earlier observations (Bent et al., 1992; Feys et 

al., 1994), our study showed that Arabidopsis seedlings grown on MS medium 

supplemented with COR accumulated anthocyanin. Interestingly, anthocyanin 

accumulation was significantly elevated in the thf1 mutant as compared to the wild-type 

plants. Therefore, the THF1 mutation has a positive effect on anthocyanin accumulation 
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in Arabidopsis. This contrasts with observations made in tomato where silencing of the 

homolog SlALC1 negatively affected COR-induced chlorosis. These results are consistent 

with earlier an observation that COR induces different phenotypes in Arabidopsis and 

tomato (Mach et al., 2001; Uppalapati et al., 2005). It is possible that the induction of 

chlorosis in Arabidopsis seedlings is suppressed by anthocyanin accumulation. 

Furthermore, unlike Arabidopsis Col-0 where MeJA induces anthocyanin accumulation 

(Feys et al., 1994), in the Arabidopsis glabra1 (gl1) mutant, chlorosis is induced in 

response to MeJA (He et al., 2002). GL1 encodes a MYB-related transcription factor that 

positively regulates trichome initiation (Oppenheimer et al., 1991). Another Arabidopsis 

gene required for trichome development, TRANSPARENT TESTA GLABRA (TTG1), is 

also required for anthocyanin production (Galway et al., 1994). GL1 and TTG1 have 

been proposed to interact via GL3 to positively regulate trichome development 

(Schellmann and Hulskamp, 2005). Thus, it is plausible that GL1 is required for 

anthocyanin accumulation and chlorosis is induced in the gl1 mutant because the mutant 

cannot produce anthocyanin in the presence of MeJA. Thus, it is quite likely that the gl1 

mutant may display a chlorotic phenotype in response to COR. 

 Similar to ALC1-silenced tomato plants, inoculation of thf1 with Pst DC3000 did 

not result in a typical chlorotic phenotype around the water-soaked lesion. Analysis of the 

Pst DC3000 population dynamics in the thf1 mutant line indicated that there was no 

difference in the bacterial population dynamics between the wild-type Col-0 and the thf1 

mutant line. Interestingly, Pst DC3000-inoculated leaves of ALC1-silenced tomato and 

the Arabidopsis thf1 mutant line died earlier than corresponding wild-type lines. 

Therefore, it is possible that Pst DC3000, a pathogen with hemi-biotrophic qualities, uses 
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ALC1/THF1 to gradually transition into a necrotrophic phase by reprogramming the 

plant to enter senescence. P. syringae pv. maculicola also induced symptoms on the thf1 

mutant similar to Pst DC3000, which is consistent with the fact that both are pathogenic 

on Arabidopsis and both produce coronatine (Dong et al., 1991; Cuppels and Ainsworth, 

1995). Furthermore, P. syringae pvs. glycinea and tabaci, which are not pathogenic to 

Arabidopsis, did not show any visible symptoms on Col-0 and thf1. Interestingly, P. 

syringae pv. glycinea produces coronatine (Cuppels and Ainsworth, 1995). However, its 

pathogenesis in Arabidopsis is largely dictated by the presence of the effector AvrB that 

interacts with the host R gene, RPM1 (Ong and Innes, 2006). Mutation in either avrB or 

the host R gene leads to chlorosis (Nimchuk et al., 2000; Ong and Innes, 2006). 

Plant leaves undergo senescence at the terminal end of their developmental 

process. This is generally marked by chlorosis that represents the programmed 

degradation of the proteins in the chloroplast (Quirino et al., 2000). Senescence may also 

be induced by external factors such as environmental stress, nutrient supply and pathogen 

attack (Butt et al., 1998; Lim et al., 2003). In our study, we wanted to know whether Pst 

DC3000 induced chlorosis is associated with senescence. Several genes are up-regulated 

during senescence including SAG12 (Quirino et al., 2000; He et al., 2002; Lim et al., 

2003). Our results showed that SAG12 gene was up-regulated beginning 4-5 dpi in Col-0. 

However, this phenomenon was not observed in the thf1 mutant, suggesting that Pst 

DC3000-triggered senescence is directly related to chlorosis.  

Promotion of plant senescence by MeJA has been well-established (Ueda and 

Kato, 1980). Previously, MeJA induced senescence in the Arabidopsis gl1 mutant, was 

represented by a chlorotic phenotype and SAG12 accumulation, and was correlated with 
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the activation of JA-related marker genes such as LOX and PDF1.2 (He et al., 2002). 

Additionally, the Arabidopsis mutant coi1 in a Col-gl1 did not show any chlorosis in 

response to MeJA, indicating that chlorosis is JA-mediated. To discover whether SAG12 

expression in the Pst DC3000-inoculated thf1 mutant was lower because of defect in JA 

biosynthesis/perception; we looked at the expression levels of LOX2 and PDF1.2. We 

observed elevated levels of LOX2 and PDF1.2 transcripts in both Col-0 and thf1 that 

were inoculated with Pst DC3000, thus suggesting that the JA pathway is intact in the 

thf1 mutant. We also looked at the expression level of the chlorophyllase gene, CORI1 

(also known as AtCHL1), that is inducible by COR or Pst DC3000 in Arabidopsis 

(Benedetti et al., 1998; Benedetti and Arruda, 2002; Laurie-Berry et al., 2006). 

Expression of CORI1 was induced in both Col-0 and thf1 upon inoculation with Pst 

DC3000. However, the induction of COR11 was significantly higher in Col-0 when 

compared to thf1. Therefore, it appears that THF1 is required for efficient chlorophyll 

degradation during Pst DC3000-induced chlorosis in Arabidopsis.  

The photosynthetic electron transport system, a major source for reactive oxygen 

species (ROS), is present in the chloroplast (Foyer et al., 1994; Foyer and Noctor, 2003). 

The rapid accumulation of ROS in plant cells due to biotic and abiotic stress can exceed 

the capacity of the antioxidants to detoxify them. Therefore, efficient and tightly 

regulated degradation of chlorophyll is important in order to avoid the cellular damage 

caused by ROS (Matile et al., 1999; Takamiya et al., 2000). We speculate that in COR-

treated or Pst DC3000-inoculated ALC1 silenced tomatoes and in the Pst DC3000-

inoculated Arabidopsis thf1 mutant, the necrosis/HR-like cell death phenotype may 

appear because the effect of ROS supersedes the detoxifying capacity of antioxidants. 
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Moreover, a latter part of chlorophyll degradation takes place in the vacuole (Takamiya et 

al., 2000). Thus we speculate that THF1, which is localized on the chloroplast membrane 

and stromules (Wang et al., 2004),  is somehow involved in the transport of the 

chlorophyll catabolic intermediates across the membrane for efficient and tightly-

regulated degradation. Furthermore, SAG12 is located in the senescence-associated 

vacuoles that develop in the cytoplasm of the senescing leaves with intact chloroplasts 

(Otegui et al., 2005) Thus, there may be a direct or indirect interaction between THF1 

and SAG12. THF1 may play a signaling role during the transport of chloroplast proteins 

to the vacuoles containing proteases such as SAG12. The likelihood that THF1 plays a 

role in signaling stems from the fact that THF1 is an interacting partner in the G-protein 

mediated D-glucose signaling mechanism (Huang et al., 2006). THF1 orthologs in other 

plants such as wheat ToxABP1 (Manning et al., 2007) and rice inositol phosphatase-like 

protein that interacts with chilling-inducible protein (Cooper et al., 2003) are potentially 

part of the signaling cascade during stress responses. Additionally, the inability to induce 

SAG12 activation in the thf1 mutant may suggest that SAG12 functions downstream of 

THF1.  

Despite our current findings about the role of ALC1/THF1 in pathogen-induced 

senescence, understanding its exact mechanism warrants further investigation. Current 

evidence suggests that THF1 may have multiple functions (Huang et al., 2006). In leaves, 

THF1 gene expression is light-dependent (Wang et al., 2004) and plays a role in the 

biogenesis of photosystem II; thus, the thf1 mutant is sensitive to high light intensity 

(Keren et al., 2005). However, in Arabidopsis roots, the THF1 expression is light 

independent and the gene product directly interacts with GPA1, the Gα part of the 
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heterotrimeric G-protein and is involved in the sugar signaling mechanism (Huang et al., 

2006). Regulation of Pst DC3000 induced chlorosis may therefore be another unique 

function of THF1. Our results raise several questions. Does COR interact directly with 

ALC1/THF1 on the chloroplast membrane, or does COR induce chlorosis through a 

ALC1/THF1-mediated nuclear signal located downstream of other signaling molecules? 

Interestingly, a chloroplast protein in wheat, ToxABP1 (an ortholog of THF1; Figure 11), 

directly interacts with Pyrenophora tritici-repentis protein ToxA (Manning et al., 2007). 

ToxA is a determinant of virulence in P. tritici-repentis, a pathogen that causes the tan 

spot of wheat. Similar to our observation that THF1 expression was not induced in the 

presence of pathogen, there was no difference between the expression level of ToxABP1 

in ToxA sensitive and insensitive wheat (Manning et al., 2007). Therefore (Uppalapati et 

al., 2005; Thines et al., 2007), it is possible that COR may also interact directly with 

ALC1/THF1 to induce senescence. 
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CHAPTER IV 
 

 

Development of a high-throughput screening method for Pseudomonas syringae pv. 

tomato DC3000 pathogenicity using tomato seedlings 

 

SUMMARY 

Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) is a plant pathogen that 

causes bacterial speck of tomato, an economically important disease. The interaction of 

tomato and Arabidopsis with Pst DC3000 are popular systems for analysis of 

pathogenesis and virulence.  In the current study, we show that Pst DC3000 is a pathogen 

of tomato seedlings, an aspect of pathogen biology that has not been previously 

investigated. This finding resulted in the development of a virulence assay on tomato 

seedlings that has several advantages over labor-intensive foliar assays, including a 

shorter growth and incubation period, ease of inoculation and handling, and rapid 

generation of larger sample sizes per experiment. The utility of this assay was 

investigated by exploring the virulence functions of the Type III secretion system (TTSS) 

and coronatine (COR) on tomato seedlings. The current study also addresses the 

application of the seedling assay for the primary screening of Pst DC3000 virulence 

mutants. The seedling assay using defined Pst DC3000 mutants agreed well with results 

obtained by foliar inoculation of tomato plants. Furthermore, preliminary results using 

transcriptional fusions to the GUS reporter gene and tomato seedlings yielded gene
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expression results that are consistent with those obtained in foliar inoculation of 3-4 week 

old tomato plants.  

 

INTRODUCTION 

Many pathogenic variants (pathovars or pv.) of Pseudomonas syringae cause diseases 

in plants and induce a wide variety of symptoms including blights, galls and leaf spots 

(Alfano and Collmer, 1996; Hirano and Upper, 2000).  Bacterial speck disease caused by 

Pst is an economically important disease of tomato, and the pathogen causes necrotic 

lesions on the leaves, stems, and fruit s of tomatoes (Goode and Sasser, 1980). Foliar 

lesions are generally surrounded by a yellow chlorotic halo due to production of the 

phytotoxin coronatine (COR) (Peñaloza-Vázquez, et al., 2000). On tomato, fruit lesions 

are slightly raised and small, varying in size from tiny flecks to visible lesions 

approximately 3 mm in diameter (Bashan, 1980; Goode and Sasser, 1980) Fruit infection 

can lead to infestation of tomato seed, and Pst can survive on seeds, especially inside 

cavities present on the seed surface (Devash et al., 1980).  Seedlings from infested seeds 

either develop visible disease symptoms or remain symptomless; in the latter case, 

asymptomatic plants grown under high relative humidity contain massive populations of 

the pathogen, thus serving as a reservoir for future infections (McCarter et al., 1983). 

Although several reports have shown that Pst is seed-borne (Bashan et al., 1982) and 

infects tomato seedlings (Gitaitis et al., 1992), these aspects of disease etiology and 

pathogen biology are not well understood. 

 

 



 65 

Factors affecting the pathogenicity and virulence of P. syringae 

 The ability of P. syringae to cause disease in a host-specific manner led to 

investigations focusing on the molecular basis of host specificity (Lindgren et al., 1986; 

Staskawicz et al., 1984). Genetic studies using transposon mutants identified multiple 

genes that are induced during pathogenesis and are required for pathogenicity 

(Staskawicz et al., 1984; Lindgren et al., 1986; Collmer et al., 2000) or contribute to 

disease severity (e.g., virulence factors) (Mittal and Davis, 1995: Kloek et al., 2001). In 

Pst DC3000, the type III secretion system (TTSS) determines pathogenicity (He, 1998; 

Galan and Collmer, 1999; Hutcheson et al., 2001), and COR is an important component 

of Pst DC3000 virulence (Bender et al., 1999). The TTSS and COR also play a major 

role in symptom production (Brooks et al., 2004; Jin et al., 2003). Other factors that 

contribute to the virulence of Pst DC3000 are exopolysaccharides (Yu et al., 1999; Keith 

et al., 2003) and a number of regulatory proteins including GacA, GacS, HrpL, CorR, and 

CorS (Hrabak and Willis, 1992; Rich et al., 1994; Fouts et al., 2002; Chatterjee et al., 

2003; Jin et al., 2003; Sreedharan et al., 2006) 

The TTSS is a protein secretion complex used by many Gram-negative plant 

pathogenic bacteria to promote pathogenesis (Arnold et al., 2003). Phylogenetic analyses 

of the sequences of the TTSS constituents indicate that the system is an evolutionarily 

divergent form of the bacterial flagellar apparatus (Nguyen et al., 2000). Some of the 

genes encoding for the TTSS system are highly conserved and are hence called hrc genes 

(for hypersensitive response and conserved) (Bogdanove et al., 1996).  Other genes 

encoding the TTSS that are not rigidly conserved among phytopathogenic bacteria are 

designated hrp (for hypersensitive response and pathogenicity) (He, 1998). The hrp/hrc 
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gene cluster (Figure 17) is required for the elicitation of the hypersensitive response (HR) 

on non-host plants and for pathogenicity on susceptible hosts (Badel et al., 2003; Alfano 

and Collmer, 2004; Mudgett, 2005). In P. syringae, the hrp/hrc genes encode the 

structural and regulatory proteins associated with the TTSS.  Functions for some of the 

hrp/hrc genes have been described based on sequence similarity with the bacterial 

flagellar assembly genes and the TTSS genes of animal pathogens (Jin et. al., 2003; 

Cornelis, 2006), although the P. syringae hrpA gene has been biochemically shown to 

encode a pilus that elongates at the distal end by the addition of HrpA pilin subunits (He 

et al., 1993; Li et al., 2002) and acts as a conduit for effector protein delivery into the 

host cell (Jin et al., 2001).  

 

 

 

 

 

A number of regulatory genes impact virulence in P. syringae (Tang et al., 2006). 

The hrpL gene is required for the expression of several transcripts in the hrp gene cluster 

Figure 17. The hrp/hrc pathogenicity island in P syringae genome. The gene cluster is 

flanked by several effector genes encoded by the exchangable effector locus (EEL) and the 

conserved effector locus (CEL). While the genes in the EEL vary between strains of P. 

syringae, the CEL-encoded effectors are conserved and are required for the pathogenicity. 

The hrp/hrc gene cluster consists of hrp and hrc genes that encode for structural and 

regulatory proteins of TTSS. (Figure adapted from Charkowski et al., 1997 and Arnold, 

2003). 
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(Xiao et al., 1994). HrpL recognizes a consensus sequence (GGAACC-N15/16-

CCACNNA) on the promoters of the hrp operons known as the “hrp box” thus activating 

their transcription (Figure 18) (Fouts et al., 2002). Expression of hrpL is regulated by 

rpoN, which encodes σ
54

 (Chatterjee et al., 2002). The induction of hrpL induction also 

requires hrpR and hrpS, which are response regulator members of the two-component 

regulatory system (Xiao et al., 1994). hrpR and hrpS are expressed as a single operon and 

then they interact to form a stable heterodimeric complex that positively regulates the 

σ
54

-dependent hrpL promoter (Hutcheson et al., 2001).  Both hrpRS and rpoN are 

transcriptionally regulated by another two-component regulatory system, e.g. gacA and 

gacS, where GacA is a response regulator and GacS is the sensor kinase (Chatterjee et al., 

2003; Tang et al., 2006). GacS presumably senses environmental signals, is 

autophosphorylated at a conserved histidine residue, and phosphorylates GacA, which 

then activates the transcription of target genes (Rich et al., 1994). GacA acts as a central 

regulator that controls an assortment of transcriptional and post-transcriptional factors 

(Chatterjee et al., 2003).   

Experimental evidence combined with bioinformatic analyses indicates that Pst 

DC3000 produces over 40 effector proteins (Buell et al., 2003; Lindeberg et al., 2006). A 

large number of these proteins (including AvrPto) function to compromise plant defense 

by suppressing the HR (Nomura et al., 2005). Transgenically expressed AvrPto repressed 

defense-related callose deposition in Arabidopsis cell walls and allowed substantial 

multiplication of the Pst DC3000 hrcC mutant (Hauck et al., 2003). HrcC is a putative 

outer membrane protein that forms part of the basal structure of the TTSS needle-

complex (He et al., 2004).  HrpZ, HrpW, and HrpJ are three harpins (Hrp proteins) in P. 
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syringae that are known to translocate through the TTSS, and all three proteins have a 

role in compromising host defense (He et al., 1993; Charkowski et al., 1998; Lee et al., 

2001; Fu et al., 2006).  

 

In the Pst DC3000-host interaction, disease severity is greatly enhanced by the 

virulence factor COR (Brooks et al., 2004; Uppalapati et al., 2007; Elizabeth and Bender, 

2007). COR consists of the two structural components that are the precursors and 

intermediates in the COR pathway; e.g. the polyketide CFA and the cyclized isoleucine 

derivative CMA (Parry, 1994). To study the contribution of CFA, CMA and COR in 

virulence, well-defined mutants of Pst DC3000 were generated (e.g. cfa6 and cmaA) 

(Brooks et al., 2004). The cfa6 and cmaA mutants exhibited reduced virulence 

phenotypes in Arabidopsis, and these phenotypes were comparable to a double mutant 

(cfa6 cmaA), thus suggesting that the intact COR molecule is necessary for virulence 

(Brooks et al., 2004). Similar results were observed in tomato and edible brassicas 

Figure 18. A simplified model showing 

regulation of the P. syringae type III 

secretion system (TTSS). (A) GacS is 

autophosphorylated in response to 

environmental signals. This leads to the 

phosphorylation of the response 

regulator GacA. The phosphorylated 

GacA then activates the transcription of 

hrpRS (B) and rpoN (B’).  (C) HrpRS 

associate with the rpoN-encoded product 

σ
54 

at the hrpL promoter to activate hrpL 

expression. (D) HrpL recognizes the hrp 

box and activates the transcription of hrp 

operons. HrpA acts upstream of hrpRS 

transcription to stimulate TTSS 

activation. (Figure adapted from Tang et 

al., 2006).
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infected with the same Pst DC3000 COR
-
 mutants (Uppalapati et al., 2007; Elizabeth and 

Bender, 2007). 

 

P. syringae infection assays 

To determine the virulence and pathogenicity of P. syringae, several bioassays have 

been developed. These include the assessment of the hypersensitive reaction (HR) on 

tobacco leaves and inoculation of fruit, seed pods, leaves and seedlings. Pathogenesis 

assays for the characterization of P. syringae virulence mutants have included: (i) 

puncture inoculation of primary bean leaves and bean pods with a toothpick dipped in the 

bacterial culture (Anderson and Mills 1985; Somylai et al., 1986); (ii) wounding of bean 

leaves with carborundum and applying inoculum with cotton swabs (Anderson and Mills 

1985); and (iii) vacuum infiltration of bean leaves with bacterial inoculum (Lindgren et 

al., 1986). Mutants were also screened on tobacco leaves for their ability to elicit an HR; 

nonpathogenic mutants that were unable to induce an HR on tobacco leaves were later 

referred to as hrp mutants (Lindgren et al., 1986). In another study, several inoculation 

methods were used to identify virulence mutants of P. syringae pv. syringae on common 

bean (Phaseolus vulgaris). These included syringe-infiltration and spray-inoculation of 

the primary leaves and stab inoculation of bean pods. Using this approach, mutants of P. 

syringae pv. syringae were identified that were defective in virulence on bean leaves but 

were still able to elicit a HR on tobacco (Willis et al., 1990).  

Seedlings of apple, pear and peach were used for the detection of pathogenicity and 

measurement of virulence in P. syringae pv. syringae on woody plants (Endert and 

Ritchie, 1984). Symptoms ranged from small scabby lesions (low virulence) to extensive 
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rotting of the entire hypocotyl and epicotyl (highly virulent). In another study utilizing 

snap bean seedlings, both seeds and primary leaves were inoculated to evaluate the role 

of the TTSS in the growth of P. syringae pv. syringae B728a in the field (Hirano et al., 

1999).  The results of this study suggested that mutants defective in the TTSS showed 

greater virulence defects in foliar assays than when inoculated to seeds. In a more recent 

study, alfalfa seedlings were used as a model for identifying pathogenicity factors in P. 

aeruginosa, which causes cystic fibrosis (CF) (Silo-Suh et al., 2002).  This study showed 

a good correlation between virulence in alfalfa seedlings and factors that contribute to the 

persistence of P. aeruginosa
 
in CF. 

 

Assays using P. syringae pv. tomato (Pst) 

Foliar assays have been used to screen for host resistance to P. syringae pv. tomato 

(formerly P. tomato); for example, Pilowsky and Zutra (1982) screened for resistance to 

Pst by spray-inoculating the foliage of wild tomato seedlings. In another study Cuppels 

(1986) used cotton swabs to inoculate the foliage of 15-day-old tomato seedlings with the 

aim of isolating Pst mutants with impaired virulence. More recently, Brooks et al. (2004) 

screened a library of Tn5 mutants of Pst DC3000 for impaired virulence on Arabidopsis 

using a dip inoculation method. 

Bacterial speck disease of tomato is largely regarded as a foliar disease (Preston, 

2000), and studies of the Pst DC3000-tomato interaction have primarily been conducted 

in the leaves of 3-4 week old tomato plants. Foliar assays generally require high relative 

humidity to enable pathogen entry and development of typical disease symptoms 

following dip or spray inoculation (Lund et al., 1998; Peñaloza-Vázquez et al., 2000; 
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Zhao et al., 2003; Uppalapati et al., 2007). Unfortunately, these assays require extensive 

growth chamber or greenhouse space and are labor-intensive. Thus the development of a 

reliable seedling assay for Pst-tomato interactions could reduce both the time and space 

needed for virulence assays. 

In the present study, I describe the development of a simple, inexpensive 

seedling-based assay that expedites the analysis of Pst DC3000-tomato interactions. 

Furthermore, this assay was then used to screen a mutant library of Pst DC3000 to 

identify mutants that were defective in virulence on tomato. 

 

MATERIALS AND METHODS 

Bacterial isolates and inoculum preparation 

The bacterial strains and plasmids used in this study are listed in Table 2.  

Bacterial cultures were maintained at -80ºC in 15% glycerol.  Working cultures were 

maintained at 4ºC on mannitol-glutamate medium (Keane et. al., 1970) or King’s 

medium B (King et. al., 1954) with antibiotic selection when needed.  Antibiotic 

concentrations (in µg/ml) were as follows: rifampicin, 50; spectinomycin, 25; 

streptomycin, 25; kanamycin, 25; and chloramphenicol, 25.  Prior to inoculation, 

bacterial strains were subcultured at 28ºC for 36-48 h and suspended in 1 ml sterile 

distilled H2O.  Cultures were then adjusted to the desired concentration with a 

spectrophotometer (Spectronic 20, Bausch & Lomb).  The final volume used for dip and 

vacuum infiltration was 40 ml.  To study the effect of inoculum concentration on 

symptom development, three different concentrations of Pst DC3000 inoculum were 
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used: OD600 = 0.01, 0.1 and 1.0, which are equivalent to 5 x 10
6
 CFU/ml, 5 x 10

7
 CFU/ml 

and 5 x 10
8
 CFU/ml, respectively. 

Table 2. Bacterial strains and plasmids used in this study.  

This studyRifR SpR/SmR KmR; VJ202 containing hrpL in 

pVSP61

KP430

Penaloza-Vazquez & 

Bender, 1998)

CmR, 6.6-kb promoter probe vector containing 

promoterless uidA in pBBR1MCS

pBBR.Gus

Keith et al., 2003CmR, algD::uidA promoter fusion in  pBBR1MCSpDCalgDP

Penaloza-Vazquez & 

Bender, 1998)

CmR, cfl::uidA promoter fusion in pBBR1MCSpCFLP3

Xiao et al., 1994SmR, hrpL::uidA promoter fusion in pRG970pYXJIR

Plasmids

Preston et al., 1995CmR AmpR; contains hrpR-V on pCPP2201DC3000-hrcC 

Preston et al., 1995CmR AmpR; contains hrpR-V on pCPP2201DC3000-hrpS

Complemented lines

Barbara KunkelRifR KmR; contains mini-Tn5 insertion in a 381 bp

ORF with an unknown function; defective in COR 

and CFA

DB2H10

Barbara KunkelRifR SpR; contains a deletion in pnlADC3000-pnlA

Charkowski et al., 

1998

RifR SpR; contains Ω SpR insertion in hrpWCUCPB5096

Alan CollmerRifR; KmR; has deletion in hrpZhrpZ

Fouts et al., 2003Cmr; DC3000 derivative containing deletion in 

entire hrp gene cluster 

CUCPB5114

Zwiesler-Vollick et 

al., 2002

RifR SpR; hrpL::ΩVJ202

Yuan & He, 1996CmR, hrpS::Tn5CmhrpS

Yuan & He, 1996CmR, hrcC::Tn5CmhrcC

Alan CollmerCOR+Wild-type

P. syringae pv. tomato DC3000

Reference or sourceRelevant characteristicsStrain 

This studyRifR SpR/SmR KmR; VJ202 containing hrpL in 

pVSP61

KP430

Penaloza-Vazquez & 

Bender, 1998)

CmR, 6.6-kb promoter probe vector containing 

promoterless uidA in pBBR1MCS

pBBR.Gus

Keith et al., 2003CmR, algD::uidA promoter fusion in  pBBR1MCSpDCalgDP

Penaloza-Vazquez & 

Bender, 1998)

CmR, cfl::uidA promoter fusion in pBBR1MCSpCFLP3

Xiao et al., 1994SmR, hrpL::uidA promoter fusion in pRG970pYXJIR

Plasmids

Preston et al., 1995CmR AmpR; contains hrpR-V on pCPP2201DC3000-hrcC 

Preston et al., 1995CmR AmpR; contains hrpR-V on pCPP2201DC3000-hrpS

Complemented lines

Barbara KunkelRifR KmR; contains mini-Tn5 insertion in a 381 bp

ORF with an unknown function; defective in COR 

and CFA

DB2H10

Barbara KunkelRifR SpR; contains a deletion in pnlADC3000-pnlA

Charkowski et al., 

1998

RifR SpR; contains Ω SpR insertion in hrpWCUCPB5096

Alan CollmerRifR; KmR; has deletion in hrpZhrpZ

Fouts et al., 2003Cmr; DC3000 derivative containing deletion in 

entire hrp gene cluster 

CUCPB5114

Zwiesler-Vollick et 

al., 2002

RifR SpR; hrpL::ΩVJ202

Yuan & He, 1996CmR, hrpS::Tn5CmhrpS

Yuan & He, 1996CmR, hrcC::Tn5CmhrcC

Alan CollmerCOR+Wild-type

P. syringae pv. tomato DC3000

Reference or sourceRelevant characteristicsStrain 

 
 

Propagation of tomato seedlings 

Seeds of tomato (Solanum lycopersicum) cv. Glamour were obtained from L. L. 

Olds Seed Company (Madison, WI). Tomato cv. wild-type Rio Grande (PtoR) and a near 

isogenic line containing the PtoS gene were kindly provided by Dr. Kiran Mysore. Two 

different support matrices were used to assess the efficiency of seed germination and 
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seedling elongation.  In one method, a stack of three paper towels was placed in a Petri 

dish (9 cm, stackable, Kord Valmark). The towels were soaked with 4 ml sterile distilled 

H2O. Seeds were placed on the soaked towels and incubated at 22 or 28
o
C (see below). In 

the second method, seeds were placed on water agar (1% agar, 9 cm Petri dishes) and 

incubated at 22 or 28
o
C.  

 

Inoculation techniques 

Tomato seedlings were four days old at time of inoculation. Two inoculation 

methods (dip and vacuum infiltration) were used to evaluate their effect on subsequent 

disease development with respect to time, efficiency, and reproducibility.  Dip 

inoculation involved immersing the seedlings in culture suspensions (OD600 = 0.1) for 5 

min prior to placing them on fresh water agar. In the other technique, seedlings were 

vacuum-infiltrated using a Speedvac vacuum evaporator (Savant Inc.) at 635 mm Hg (25 

in Hg) for 20 sec. Seedlings were removed when the pressure re-equilibrated to 0 mm 

Hg. Sterile water was used as a control for non-inoculated seedlings in both methods. In 

each experiment, 20 seedlings were evaluated, and each experiment was repeated at least 

twice. 

 

Disease severity scale 

For quantitative expression of disease symptoms, a scale of 0 to 3 was developed 

as follows: 0 = no necrosis; 1 = slight necrosis of hypocotyls and at junction of root and 

shoot; 2 = severe necrosis of hypocotyls (root remains healthy); and 3 = seedling totally 

necrotic (including root) (Figure 19). Although the lesions were scored based on the 
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intensity of necrosis, the overall virulence of each mutant was compared using Pst 

DC3000 as a positive control, which was assigned a disease severity score of 3.  

 

 

 

Histochemical detection of GUS activity 

Inoculated tomato seedlings were sampled at 72 h post-inoculation (hpi) and 

vacuum-infiltrated with a substrate surfactant solution [5-bromo-4-chloro-3-indoyl β-D-

glucuronide (X-gluc, 0.5 mg/ml, and Silwet L77 (Osi Specialties Inc., Danbury, CT; 0.2 

µl/ml in 50 mM sodium phosphate buffer, pH 7.0]. Vacuum-infiltrated seedlings were 

incubated at 37
o
C overnight and fixed and destained in 80% ethanol at 37

o
C (Hugouvieux 

et al., 1998). Samples from infiltrated seedlings were assayed for GUS activity as 

described previously (Keith et al., 2003). 

 

RESULTS 

 

Effect of seedling support matrix and temperature 

Two matrices were evaluated for their ability to support efficient growth of the 

seedlings during germination. One matrix consisted of a layer of three paper towels 

Figure 19. Disease severity scale for quantitative expression of disease symptoms on tomato 

seedlings as a result of Pst DC3000 infection. 
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placed in a Petri dish and saturated with sterile water, and the other matrix consisted of 

water agar (1% agar) (Figure 20). Although the seedlings grew well on the paper towel 

matrix, the roots attached to the towels, which made it difficult to remove them without 

injury. Furthermore, the paper towels required re-wetting after two days, which added to 

the labor involved in the assay. Finally, the percent germination of seeds was poor on 

paper towels, and the seedlings grew at disparate rates, thus making it difficult to obtain 

uniform results.  

When seeds were incubated on water agar, germination and seedling elongation were 

more uniform in comparison with the paper towel support matrix. Although seedlings 

were incubated on water agar for 4-5 days prior to inoculation, the medium could support 

the seedling growth for up to 10 days. Since the agar medium was semi-solid, it was 

much easier to remove the seedlings for inoculation without damaging the roots.  

 

 

 

The effect of temperature using both support matrices was evaluated by incubating 

seeds at 22 and 28
o
C. Seeds incubated at 28°C were approximately threefold longer than 

those incubated at 22
o
C (Figure 21). Therefore, in all subsequent experiments, seeds were 

incubated at 28
o
C on water agar.  

Figure 20. Evaluation of support matrices for the seedling assay. (A) Tomato seedling 

growth on water-soaked paper towels and (B) 1% water agar. Pictures were taken when 

seedlings were 4 days old. 
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Effect of inoculation methods on symptom development on seedling 

Tomato cv. ‘Glamour’ inoculated with Pst DC3000 showed similar disease 

symptoms when inoculated by dipping or vacuum infiltration. Dip-inoculated seedlings 

exhibited mild symptoms (Figure 22B) at 3 dpi and were completely necrotic at 6 dpi 

(data not shown). However, disease symptoms were observed in the vacuum-infiltrated 

seedlings two days earlier than those inoculated by dipping. Since most of the vacuum-

infiltrated seedlings were completely necrotic at 3 dpi (Figure 22A), this time point was 

used to rate disease severity when screening the Pst DC3000 mutant library.   

 

 

Figure 21. Growth rate of tomato seedlings on water agar incubated at 22 or 28
o
C. (A) 

Seedling growth at 4 days on 1% water agar. (B) Average seedling length obtained from 60 

seedlings incubated at 22 or 28
o
C. 

Figure 22. Symptoms on tomato seedlings at three days after (A) vacuum-infiltration with Pst 

DC3000; (B) dip-inoculation with Pst DC3000; and (C) H2O-inoculated control using vacuum-

infiltration. 
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Effect of inoculum concentration and age of seedling on symptom development 

To study the effect of Pst DC3000 on symptom development, three different 

concentrations of inoculum were used: OD600=0.01, 0.1 or 1.0. Seedlings vacuum-

infiltrated with an OD600=1.0 were severely necrotic within 24 h, and the seedlings died 

in less than 3 days (Figure 23). This concentration was considered too lethal for 

accurately studying disease progression.  When an OD600=0.01 was used, some necrosis 

was apparent at 3 dpi, which became more prominent after 5 days. Tomato seedlings 

inoculated with an OD600=0.1 showed severe symptoms at 3 dpi. Thus for following 

disease progression and completing the assay in a high-throughput manner, an OD600=0.1 

was considerable most suitable.  

The criteria used for choosing the age of seedlings for inoculation included: 1) the 

formation of both hypocotyl and root; and 2) a seedling root length of at least 1 cm. 

Seedlings that were 4 days old fulfilled these criteria and were used for subsequent 

experiments.  

 

 

 

 

 

Figure 23. Disease symptoms on tomato seedlings vacuum-infiltrated with different 

concentrations of Pst DC3000 at 3 dpi. Numbers indicate bacterial cell concentration 

quantified at OD600. 
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Evaluation of assay with known mutants 

To study the host-pathogen interaction using the seedling assay, we initially used 

mutants of Pst DC3000 that had been studied using foliar assays. Several TTSS mutants, 

including hrcC, hrpS, hrpL, hrpZ, hrpW, and CUCPB5114 (deleted for the TTSS), and 

three COR-defective mutants (DB4G3, AK7E2 and DB4G3) were used. The disease 

severity scores and the characteristic phenotype in response to each mutant are given in 

Table 3. 

When four-day old tomato seedlings were inoculated with Pst DC3000 mutants 

defective in COR production, the seedlings exhibited brown necrotic lesions 3 dpi and 

showed differences in root length relative to Pst DC3000 and the water-inoculated 

control. The root length of seedlings inoculated with DB4G3 (CFA
-
 CMA

+
 COR

-
) and 

AK7E2 (CFA
+
 CMA

-
 COR

-
) were comparable to Pst DC3000-inoculated seedlings. 

However, seedlings inoculated with DB29 (CFA
-
 CMA

-
 COR

-
) had exhibited root lengths 

similar to the control (mock-inoculated with water) (Figure 24).  
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Figure 24. Graphical representation of the percent increase in root length of seedlings inoculated 

with Pst DC3000 (COR
+
), DB4G3 (CFA

-
), AK7E2 (CMA

-
), DB29 (CFA

-
 CMA

-
), and water 

(control); data represent increase in root length three days of inoculation. 
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Lesions on seedlings inoculated with different mutants were scored using the 

disease severity scale. Mock-inoculated seedlings did not show any lesions and received 

a score of 0.  Ten of 20 seedlings inoculated with Pst DC3000 were completely necrotic 

(including the root) and were assigned a disease severity score of 3 (Figure 25). 

Similarly, seven of the 20 seedlings inoculated with AK7E2 received a disease severity 

score of 3. Seven, 14 and 13 seedlings (from a total of 20) inoculated with AK7E2, 

ChaDB4G3 and DB29, respectively, received a score of 2 and exhibited necrotic lesions 

on the hypocotyls (roots remained healthy). A few of the seedlings presented only a slight 

necrosis and were given a disease severity score of 1. 
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Similarly, several the TTSS mutants of Pst DC3000 were inoculated onto tomato 

seedlings. For example, hrpZ encodes an effector protein known to traverse the Hrp pilus 

into the plant cell (Brown et al., 2001). In my work, the hrpZ mutant did not differ 

significantly from the wild-type Pst DC3000 in terms of disease severity (symptoms on 

tomato seedlings and number of lesions) (Figure 26A); this is consistent with results 

obtained in foliar inoculation of mature plants (Preston, 1997). Other mutants defective in 

the TTSS, including hrpS, hrcC (Figure 25A), hrpL (designated VJ202) and CUCPB5114 

(deleted for the TTSS) showed little or no symptoms on tomato seedlings, which also 

Figure 25. Seedlings inoculated 

with Pst DC3000 coronatine 

mutants and scored using the 

disease severity scale shown in 

Fig. 19. 
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agrees with whole plant assays (Penaloza-Vazquez et al., 2000; Preston, 1995; Zwiesler-

Vollick et al., 2002).  

 

 

 

 

 

When seedlings were scored for lesions in response to inoculation with Pst 

DC3000 and the TTSS mutants, four of 20 hrpZ-inoculated seedlings received a disease 

severity score of 3 and two were assigned a severity rating of 2; similar ratings were 

observed in response to tomato seedlings inoculated with Pst DC3000 (Figure 27).  

However, the hrpS and hrcC-inoculated seedlings received reduced disease severity 

scores relative to Pst DC3000 and the hrpZ mutant.  For example, three of the hrpS-

Figure 26. Genes encoding the Pst DC3000 type III secretion system are involved in 

the pathogenesis of tomato seedlings. (A) Phenotypes induced by hrp/hrc mutants of 

Pst DC3000 on tomato seedlings.  hrpZ-inoculated seedlings were severely necrotic, 

whereas no necrotic lesions were seen on hrpS- and hrcC-inoculated seedlings. (B) 

Graphic representation of the percent increase in root length in seedlings inoculated 

with the wild-type Pst DC3000 and TTSS mutants (hrpZ, hrpS and hrcC); data 

represent the increase in root length 4 dpi. 
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inoculated seedlings were given a score of ‘2’, and the hrcC-inoculated seedlings did not 

develop lesions (score=0). 

 

 

 

 

Although the lesions were assigned based on the intensity of necrosis, the 

virulence of each mutant was compared using Pst DC3000 as a positive control, which 

received a disease severity score of 3. In Table 3, the disease severity of the mutants was 

scored by comparing virulence with that of Pst DC3000. Seedlings inoculated with the 

hrpL mutant (strain VJ202) showed minor lesions or were symptomless, with healthy 

root growth (Table 3). Additionally, Pst DC3000-pnlA and DB2H10, two previously 

uncharacterized mutants, induced mild symptoms on seedlings. pnlA (locus tag 

PSPTO4283) encodes for a protein that has a putative pectate lyase activity (Buell et al., 

2003); DB2H10 remains uncharacterized (B. N. Kunkel, pers. comm.). 

 

 

Figure 27. Seedlings inoculated with Pst DC3000 and selected TTSS mutants (hrpZ, hrpS, and 

hrcC) and scored using the following disease severity scale: 0, no necrosis; 1, slight necrosis of 

hypocotyls and at junction of root and shoot; 2, severe necrosis of hypocotyls (root remains 

healthy); and 3, seedling totally necrotic (including root). 
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Table 3: Symptoms and disease severity of Pst DC3000 mutants on tomato seedlings 

Strain Relevant characteristics Disease 

Severity 

Symptoms 

P. syringae pv. tomato 

DC3000 COR
+
  3 Complete necrosis of seedling, ‘mushy’ 

appearance, anthocyanin accumulation, 

stunted root growth. 

DB4G3 
COR- Km

R
; contains an 

insertion in cfa6 

2 Severe necrosis of hypocotyl, root growth 

stunted 

AK7E2 
COR- Sp

R
; contains insertion in 

cmaA 

2 Severe necrosis of hypocotyls and root, 

root growth stunted 

DB29 
COR- Km

R
 Sp

R
; cmaA-cfa6 

mutant of DC3000 

1 Mild necrosis of hypocotyl, root growth 

stunted 

CUCPB5114 Cm
r
; DC3000 derivative 

containing deletion in entire 

hrp gene cluster  

0 Stunted root  

DC3000-hrpZ Rif
R
; Km

R
; has deletion in hrpZ 2,3 Severe necrosis, Anthocyanin 

accumulation, severely stunted root  

CUCPB5096 

 
Rif

R 
Sp

R
; contains Ω Sp

R
 

insertion in hrpW 

2,3 Severe necrosis, severely stunted root  

DC3000-pnlA Rif
R 

Sp
R
; contains a deletion in 

pnlA 

1 Mild necrosis, severely stunted root 

DB2H10 Rif
R 

Km
R
; contains mini-Tn5 

insertion in a 381 bp ORF of 

unknown function. COR
- 
CFA

-
 

1 Mild necrosis 

AC811 Rif
R 

Km
R
; contains mini-Tn5 

insertion in gacA 

1 Mild necrosis 

 

DC3000-gacS RifR KmR; contains a Tn5 

insertion in gacS  

1 Mild necrosis, stunted root 

DC3000-hrpL Rif
R
 Sp

R
; hrpL::Ω 

0,1 Mild to no necrosis 

D3000-hrcC hrcC::Tn5Cm 0 Mild anthocyanin accumulation, severely 

stunted root length 

DC3000-hrpS hrpS::Tn5Cm 0 Anthocyanin accumulation, severely 

stunted root  

hrpL 

complement 

 2,3 Severe necrosis of seedling, stunted root 

growth 

hrcC 

complement 

 3 Complete necrosis of seedling, ‘mushy’ 

appearance, anthocyanin accumulation, 

stunted root growth 

hrpS 

complement 

 3 Complete necrosis of seedling, ‘mushy’ 

appearance, anthocyanin accumulation, 

stunted root growth 
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Overall, there was a good correlation between virulence on seedlings with results 

obtained with mature plants. To explore whether the seedling assay could be used in 

genetic complementation studies, representative mutants that were complemented for the 

genetic defect were analyzed for virulence in seedling assays.  These experiments 

included the hrcC, hrpL and hrpS with the corresponding, complementing genes (Table 

3). Seedlings were inoculated and disease severity was rated as described in the methods 

section. Three dpi, the original mutants showed few to no lesions, whereas the 

complemented mutants showed lesions and phenotypes comparable to that of Pst 

DC3000-inoculated tomato seedlings. 

 

Validation of the assay using sensitive and resistant tomato 

 Tomato seedlings of cultivar Rio Grande that were either susceptible (PtoS) or 

resistant (PtoR) to Pst DC3000 were evaluated using the seedling assay. The PtoR gene 

confers resistance to strains of Pst that carry the avirulence gene avrPto (Ronald et al., 

1992; Martin et al., 1993). Seedlings of PtoS and PtoR tomatoes were infiltrated with Pst 

DC3000 (OD600=0.1) or water and evaluated 3 dpi. Seedlings of PtoS tomatoes 

inoculated with Pst DC3000 were severely necrotic and had well-defined lesions, 

whereas the PtoR tomatoes inoculated with Pst DC3000 were relatively healthy with 

minor lesion development (Figure 28A). 

When seedlings were scored using the disease severity scale, none of the ten 

mock-inoculated seedlings of PtoR or PtoS lines showed any symptoms.  However, of the 

ten Pst DC3000-inoculated PtoS seedlings, five received a disease severity score of 1, 

four received a rating of 2, and one was given a score of 3. For the PtoR line, five Pst 
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DC3000-inoculated seedlings received a score of 0 (no lesions) and the remaining five 

received a score of 1 (slight lesion development). In summary, the results indicate that 

PtoR seedlings were highly resistant to Pst DC3000, which agrees with results obtained 

with intact, mature plants (Martin et. al., 1993). 

 

. 

 

 

 

Expression of GUS reporter activity in tomato seedlings   

To determine whether Pst DC3000 virulence genes are expressed in infected 

seedlings, the transcriptional activity of several known virulence genes (e.g. 

representative of the TTSS, COR and the exopolysaccharide alginate) were studied. 

Tomato ‘Glamour” seedlings were inoculated with three Pst DC3000 strains that carried 

promoters of the hrpL (representing the TTSS), cfl (COR pathway) and algD (alginate 

pathway). algD encodes GDP-mannose dehydrogenase and is the first gene to be 

transcribed in the alginate structural gene cluster of P. syringae (Penaloza-Vazquez et al., 

1997). 

Figure 28.  (A), Phenotype of susceptible (PtoS) and resistant (PtoR) Rio Grande seedlings at 4 

days post inoculation with Pst DC3000. Arrows indicate necrotic regions. PtoS lines were 

inoculated with water as control lines. (B) Graphic representation of Rio Grande lines in 

response to Pst DC3000 inoculation. The experiment was performed twice with similar 

results. 
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These three promoters were previously fused to a promoterless glucuronidase 

(GUS or uidA) gene, and the constructs are described in Table 3 (see pYXJIR, pCFLP3, 

and pDCalgDP). Transcriptional activity (GUS gene expression) was evaluated in tomato 

seedlings 72 hpi. The hrpL::uidA fusion was highly expressed in tomato seedling roots 

(Figure 29A). Since hrpL encodes an alternate sigma factor that activates several 

transcripts in the TTSS (Collmer et. al., 2002; Xiao et. al., 1994; Jin et. al., 2001), these 

results suggest that the TTSS is expressed in tomato seedling roots.  The cfl::uidA fusion 

was also highly expressed in roots (Figure 29B). cfl is the first gene in an operon 

encoding the structural genes required for synthesis of CFA, the polyketide component of 

COR (Liyanage et. al., 1995); and these results suggest that cor genes are highly 

expressed in tomato roots. However, the algD::uidA gene was not highly expressed in 

tomato seedling roots, suggesting that alginate is not expressed in this tissue (Figure 

29C). 

 

 

 

 

 

Figure 29. Virulence gene expression in the roots of Pst DC3000-infected tomato seedlings.  

The expression of several virulence genes was measured by monitoring the activity of 

transcriptional fusions to a promoterless glucuronidase gene (GUS; uidA).  Reporter activity 

was monitored in tomato roots infected with Pst DC3000 carrying: (A) hrpL::uidA promoter 

fusion (indicating activity in the TTSS); (B) cfl::uidA (representing COR gene expression); 

(C) algD::uidA, (indicating alginate gene expression); and (D) control (promoterless uidA 

gene). 
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Time course study of virulence gene expression 

To understand the progression of virulence gene expression during seedling infection, 

transcriptional activity of hrpL and cfl were observed and visually quantified for up to 8 

dpi. Pst DC3000 strains carrying cfl::uidA or hrpL::uidA transcriptional fusions were 

vacuum-infiltrated into tomato seedlings. cfl expression was visible beginning at 12 hpi; 

whereas, hrpL activity was not evident until 1-2 dpi (Figure 30). These results were 

consistent with studies performed on leaves of 4-week old tomato plants (Guzman-

Hernandez et al., unpublished). 

 

 

 

 

Application of the seedling assay to screen for Pst DC3000 virulence mutants 

After the seedling assay was developed and validated using defined Pst DC3000 

virulence mutants, I investigated whether the assay could be used to screen a library of 

uncharacterized Pst DC3000 mutants. A collection of approximately 1000 Pst DC3000 

Figure 30. Dynamics of Pst DC3000 virulence gene expression in tomato seedlings. Pst 

DC3000 strains carrying either the cfl or hrpL promoter fused to the GUS (uidA) reporter 

gene were vacuum-infiltrated into 4-day old tomato seedlings. Each seedling shown is 

representative of five seedlings. 
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mutants (Kloek et al., 2000; Brooks et al.,  2004), which was generated through 

insertional mutagenesis of transposon Tn5, was kindly provided by Dr. Barbara Kunkel 

(Washington University, St. Louis, MO). Tomato seedlings (4-5 days old) were 

submerged in bacterial culture suspensions (OD600=0.1), and the inoculum was 

introduced by vacuum infiltration (see Methods). The inoculated seedlings were then 

incubated at 28°C on water agar. After 3-4 days, symptoms on the seedlings were 

observed and recorded, and twenty seedlings were used as biological replicates. The 

assay was performed in batches with each group consisting of not more than ten Pst 

DC3000 mutant strains excluding the wild-type Pst DC3000 and the control. The 

completion of each batch required approximately ten days. Approximately 200 mutants 

were screened using this approach, and I identified seven different mutants that 

consistently exhibited reduced disease symptoms on tomato seedlings relative to Pst 

DC3000 (Table 4). The phenotype of several mutants with reduced virulence is shown 

below (Figure 31). 

 

 

 

Figure 31. Pst DC3000 mutants identified using the high-throughput seedling assay and 

shown to have a reduced virulence phenotype on tomato seedlings.  Seedlings were 

vacuum-infiltrated with Pst DC3000 mutants and incubated on water agar. Pictures were 

taken 5 dpi. 
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Of the seven mutants mentioned above, a mutant designated as AKIIIA1 was 

previously shown to contain a transposon insertion in dsbA (Kloek et al., 2000).  DsbA is 

a periplasmic enzyme involved in the direct oxidation of cysteine residues in proteins that 

localize to the periplasm (Bardwell et al., 1991). Furthermore, two other mutants, 

AKIIIA5 and AKIIIF1, were auxotrophic (Table 4) and did not grow on histidine as the 

nitrogen source.  

The remaining four Pst DC3000 mutants were subsequently grown on minimal media 

supplemented with various carbon and nitrogen sources. Three of the mutants (AKIIA9, 

AKIIB12 and AKIID10) grew on par with Pst DC3000 (Table 4). However, one mutant 

(AKIID11) did could not utilize succinate or aspartate as a carbon source or glutamate, 

proline, L-alanine, or arginine as a nitrogen source. 

 

Table 4. Growth characteristics of Pst DC3000 virulence mutants 

Mutant Characteristics Reference 

AKIIA9 Prototroph; reduced virulence on tomato seedlings This study 

AKIIB12 Prototroph; reduced virulence on tomato seedlings This study 

AKIID10 Prototroph; reduced virulence on tomato seedlings This study 

AKIID11 
Auxotroph, no growth on several C and N sources; 

reduced virulence on tomato seedlings 
This study 

AKIIIA1 dsbA mutant; reduced virulence on tomato seedlings Kloek et al., 2000 

AKIIIA5 
Auxotroph, no growth on histidine as sole N source; 

reduced virulence on tomato seedlings 
Andrew Kloek 

AKIIIF1 
Auxotroph, no growth on histidine as N source; 

reduced virulence on tomato seedlings 
Andrew Kloek 
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DISCUSSION 

Foliar assays have been used to screen for host resistance on tomato in response to 

P. syringae pv. tomato (Pilowsky and Zutra, 1982) and to isolate Pst mutants with 

impaired virulence (Cuppels, 1986; Kloek et al., 2000). Tomato plants have also been 

used to conduct infection assays with P. syringae (Zhao et al., 2003; Uppalapati et al., 

2007) and other pathogens including Ralstonia solanacearum (Gonzalez et al., 2007), the 

oomycete Phytopthora infestans (Lee et al., 2006), and the fungal pathogen 

Cladosporium fulvum (van Kan et al., 1991). Although these methods for assessing the 

virulence of P. syringae have been established, these are not rapid, high-throughput 

methods that facilitate the screening of large numbers of mutants. Thus the aim of this 

work was to develop a seedling assay that could be used in virulence screens and gene 

expression studies.  

To establish the utility of the seedling assay as a screening tool for the 

identification of pathogenicity genes, the seedling assay results were compared with those 

obtained in foliar assays using well-characterized virulence mutants. For example, the 

well-defined TTSS mutants hrcC, hrpS, hrpL, hrpZ, hrpW, and CUCPB5114 showed 

similar disease phenotypes in the seedling and whole plant assays (Penaloza-Vazquez et. 

al., 2000; Preston, 1997; Zwiesler-Vollick et. al., 2002; Zhao et. al., 2003). Similarly, 

results from the virulence assays using COR biosynthetic mutants were consistent 

between seedling (this study) and foliar assays (Uppalapati et al., unpublished).  

The seedling assay also shows promise in identifying plant genes that confer 

pathogen resistance. This was shown using the resistant line of tomato cultivar Rio 

Grande that contains the R gene PtoR.  PtoR confers resistance to Pst by physically 
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interacting with the Pst effector protein AvrPto (Tang et al, 1996), an event that triggers a 

signal transduction cascade leading to host defense. Inoculation of Pst DC3000 on PtoR 

seedlings resulted in limited necrotic lesions, suggesting that Pto-mediated resistance 

functions during the seedling stage of growth. Moreover, the results obtained with 

seedlings were similar to those obtained with mature plants (Martin et. al., 1993). 

During Pst DC3000 infection of plant hosts, the TTSS (Tang et al., 2006; 

Lindeberg et al., 2006) and the COR genes (Mittal and Davis, 1995; Brooks et al., 2004; 

Melotto et al., 2006; Uppalapati et al., 2007) are required for symptoms associated with 

bacterial speck disease. The results from our studies with tomato seedlings inoculated 

with Pst DC3000 carrying hrpL::uidA and cfl::uidA suggest that TTSS and COR genes 

are also expressed in tomato seedlings. Similarly, a qualitative assay that was performed 

using Pst DC3000 containing the hrpL::uidA and cfl::uidA constructs agreed with similar 

experiments performed on the foliar parts of tomato. Thus, the pathogen may use similar 

strategies to induce pathogenesis on both fully grown plants and seedlings. 

The use of the seedling assay to screen a Pst DC3000 mutant library indicated that 

this approach could be used to identify virulence genes involved in bacterial speck 

disease. It may also be possible to use this approach to screen for virulence genes in other 

pathogens of tomato. Furthermore, some of the mutants that were isolated using the 

seedling assay were not identified using the whole plant, foliar assay (B.N. Kunkel, 

personal communication). Therefore, in addition to its utility as a rapid, high-throughput 

assay, the assay described above also has the potential to identify pathogen genes that are 

uniquely expressed during pathogenesis of seedlings. 
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APPENDIX 

Subcellular localization of ALC1  

 

SUMMARY 

 The N. benthamiana ALC1 described in Chapter III was predicted to be a 

homolog of Arabidopsis THF1. An earlier study showed that THF1 was located in the 

chloroplast. In this study, I used ChloroP, a program that predicts the chloroplast transit 

peptides and an ALC1-GFP fusion construct, to show that ALC1 is a nuclear-encoded 

protein that localizes to the chloroplast. 

 

INTRODUCTION 

 In my earlier studies using fast-forward screening of the N. benthamiana cDNA 

library, I discovered several plant genes that are potentially involved in COR-mediated 

chlorosis (Chapter III). One of these genes, ALC1, resulted in a HR-like phenotype when 

silenced in N. benthamiana. The full-length ALC1 gene was then sequenced, the putative 

amino acid coding region was predicted, and a BLAST search was performed. The search 

result indicated that the predicted ALC1 protein had homologs in several plants (Chapter 

III, Figure 11). One of the sequences that showed strong homology with ALC1 was 

Arabidopsis THF1 (alignment score=67). THF1 was previously shown to be a light- 

regulated, chloroplast-localized protein (Wang et al., 2004). My identification of ALC1 as 

a gene involved in COR-mediated chlorosis in Arabidopsis was primarily based on the 
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strong homology between the two sequences. In the current study, I used transient 

expression of ACL1 to determine if the protein localizes to the chloroplast in N. 

benthamiana, thus possibly functioning in a manner orthologous to THF1. 

 

METHODS 

Generation of an ALC1-GFP construct 

 To transiently express ALC1 in N. benthamiana, the GATEWAY-ready pMDC83 

was used as a vector to generate a GFP fusion (Curtis and Grossniklaus, 2003). Full 

length ALC1 sequence was amplified from N. benthamiana cDNA using the following 

gene specific primers: ALC1attB1: 5'- ggg gac aag ttt gta caa aaa agc agg ctt c ATG GCG 

GCA GTT ACT TCG-3'; and ALC1attB2: 5'- ggg gac cac ttt gta caa gaa agc tgg gtc CCT 

CCC AGC ATA TTG GT AAT CT-3' (small letters indicate the GATEWAY adapters).  

The amplified sequence was cloned into the donor vector pDONR 207 (Invitrogen, 

Carlsbad, CA, USA), and the resulting clone was then transformed into E. coli DH5α 

competent cells (Invitrogen, Carlsbad, CA, USA). The full length gene was further sub-

cloned into pMDC83 (Figure 32a), and pMDC83-ALC1 (Figure 32b) was then introduced 

into A. tumefaciens GV2260 by electroporation. To generate pMDC83 empty vector that 

can replicate in A. tumefaciens GV2260 without killing the host (Dao-Thi et al., 2005), 

the vector was restriction digested with KpnI to remove the ccdB (controller of cell 

division or death) region (Figure 32c, d). The open ends were then ligated with T4 DNA 

ligase. 

 

Microscopy 
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 For visualization of GFP, a laser scanning confocal microscope (model TCS SP2 

AOBS, Leica Microsystems Inc, Bannockburn, IL, USA) was used. GFP was excited at 

488 nm by an argon laser, and emission was collected at 522 nm. The fluorescence of 

chlorophyll was obtained at 680 nm. 

 

 

Figure 32.  The GATEWAY-ready GFP vector pMDC83 was used for transient expression of ALC1. 

(a) pMDC83 carrying the GATEWAY recombination sites attR1 and attR2. The controller of cell 

division or death (ccdB), a lethal gene, is present as a negative selection marker. (b) The ALC1-GFP 

construct. (c) To generate an empty vector as a control, the ccdB region was removed by restriction 

digestion with KpnI and, (d) the open ends were ligated with T4 DNA ligase.  

 

 

RESULTS AND DISCUSSION 

 A previous study showed that Arabidopsis THF1, a homolog of N. benthamiana 

ALC1 is localized to the chloroplast. To determine if ALC1 is also localized to the 
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chloroplast, the predicted ALC1 amino acid sequence was first analyzed using ChloroP 

(http://www.cbs.dtu.dk/services/ChloroP/), a program that predicts the chloroplast transit 

peptide sequence (Emanuelsson et al., 1999). The results suggested that the protein has a 

chloroplast transit peptide (Figure 2), indicating that ALC1 is a nuclear-encoded, 

chloroplast-localized protein. 

Table 5. Prediction of the chloroplast transit peptide. 

Name                    Length          Score            cTP                        cTP-length                                     

---------------------------------------------------------------------------------------------------- 

ALC1                       295           0.597             Yes                    70 

---------------------------------------------------------------------------------------------------- 

The ChloroP program was used for predicting the chloroplast transit peptide (cTP) sequence. The 

first 70 of 295 amino acids residues in ALC1 were predicted to comprise a transit peptide. 

 

 To further confirm the localization of ALC1 to the chloroplast, the putative 

coding region of ALC1 was cloned into a GFP fusion vector. ALC1 was fused 

downstream of the CaMV 35S promoter and upstream of gfp6his in the GATEWAY-

ready plasmid vector pMDC83 (Figure 32b). For transient expression of ALC1 in N. 

benthamiana leaves, the construct was transformed into A. tumefaciens GV2260. Six 

week old N. benthamiana plants were Agro-infiltrated with strain GV2260 (OD600=1.0) 

carrying the pMDC83-ALC1 construct. A slightly modified pMDC83 vector (Figure 32d) 

was transformed into A. tumefaciens GV2260 and infiltrated as a control. After 48 h, the 

infiltrated regions were observed under the confocal microscope. In control leaves, GFP 

was expressed in the cytoplasm (Figure 33a, b) whereas no GFP expression observed in 

the chloroplast (Figure 33b, c). Leaves infiltrated with the pMDC83-ALC1 construct 

expressed GFP exclusively in the chloroplast (Figure 33d, e, f).  
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Figure 33. ALC1 is localized to the chloroplast. Six week old N. benthamiana leaves were inoculated 

with A. tumefaciens GV2260 carrying GFP (vector control, panels a-c) or an ALC1-GFP fusion 

construct (panels d-f). The Agro-inoculated leaves were incubated for 48 h and observed using a 

confocal microscope. 

 

 From the above results, I have concluded that ALC1 is a nuclear-encoded protein 

that is localized to the chloroplast. This would also indicate that ALC1 is an ortholog of 

Arabidopsis THF1.  
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