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Grain Storage: A Brief History and Current Statistics 

 The concept of agriculture and storage of harvested cereal grains started about  

10, 000 years ago when humans began storing food in small pits, mud houses, and 

wooden enclosures (Pimentel 1991, Reed 1992).  Modern agricultural technologies, 

combined with efficient storage systems such as grain silos and large grain bins, 

transformed the previously subsistence farming prevalent during medieval times to 

commerce-driven farming at the start of the 19th century.  In 2004, world cereal grain 

production was 2.3 billion metric tonnes and in the United States 389 million metric 

tonnes of cereal grains were produced (FAO 2004).  Post harvest losses of stored grains 

caused by vertebrate and invertebrate pests in the U. S. can reach 9% of the total grain 

stored and in the tropical, developing world could reach 20% or more (Pimentel 1991) 

causing millions of dollars worth economic losses.  The major pests that cause damage to 

cereal grains in storage include vertebrate pests, such as birds and rodents, several species 

of arthropods, and various fungi.    

 
Damage Caused by Arthropod Pests to Stored Grain 

Stored grains and processed food commodities are infested by a wide array of 

arthropod pests, predominantly insects, which cause both qualitative and quantitative 

losses (Mason 2003).  Immatures and/or adults of several species of insects severely 

damage stored food causing a significant reduction in food quality resulting in economic 

losses to the producers (Pimentel 1991).  Storage pests reduce the marketability of the 

bulk grain by lowering the food quality directly through larval and adult feeding, or 

indirectly by contamination from larval frass, adult body parts, and chemicals secreted by 

the insects (Mason 2003).  Presence of live or dead adults in the inspected stored grain in 
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the United States will invariably result in lowering of the food grade as mandated by the 

Federal Grain Inspection Service (FGIS 2004).  For example, when 32 or more insect 

damaged kernels (IDK) occur in a 100 g wheat sample, the FGIS designates the grain as a 

‘sample’ grade, which indicates that the grain is unfit for human consumption, and 

according to the Food and Drug Administration is ‘adulterated’ (FDA 1995).  The 

producers incur huge economic losses when their grain is downgraded.  In addition to 

stored grains, milled products are also infested by storage insect pests.  Contamination of 

processed and value-added food products through insect byproducts such as frass, 

secretions, etc. may cause allergic reactions, disagreeable odor and off-coloration of food 

(Scott 1991, Olsen et al. 2001), and the presence of insect fragments may lead to rejection 

of a company’s milled product by the consumers and could lead to the company paying 

hefty penalties to the federal government or settling consumer law suits.  

 
Arthropod Diversity in a Stored Grain Ecosystem 

 Stored grain ecosystems differ from conventional agro-ecosystems in that the bulk 

storage areas provide the inhabiting organisms an infinite amount of food and temporal 

refuge from an unpredictable external environment (Sinha 1995).  Consequently, a 

variety of arthropods infest stored food products and by far the most important group of 

pests infesting  stored grain and value-added food products are insects, and a majority of 

these insect pests belong to the families Coleoptera (beetles and weevils) and Lepidoptera 

(moths).         

Based on their feeding, stored product insects are classified as either internal 

feeders, feeding on the inside of the grain, or external feeders, feeding on the surface of 

grain kernels, on broken kernels, and on processed products such as flour.  Internal 
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feeders include Sitophilus weevils (Coleoptera: Curculionidae), stored-product bostrichid 

“borers” (Coleoptera: Bostrichidae), seed “weevils” (Coleoptera: Bruchidae), and the 

Angoumois grain moth, Sitotroga cereallela (Olivier) (Lepidoptera: Geleichiidae).  

External feeders include the larger majority of storage pests, such as the flour beetles, 

carpet beetles, flour and meal moths, and non-insect arthropods such as mites.  In 

addition to arthropods that are primary consumers of grain and grain products, there are 

other arthropods present in the storage ecosystem that are secondary consumers upon the 

primary consumers such as predators (e.g. Xylocoris flavipes Reuter, Hemiptera: 

Anthocoridae) and parasitoids (e.g. Habrobracon hebetor Say, Hymenoptera: 

Braconidae).  A comprehensive list of arthropods in stored food ecosystems has been 

reviewed by Hagstrum and Subramanyam (2006).  Among the external feeding 

lepidopteran insects, the Indianmeal moth, Plodia interpunctella (Hübner), is perhaps the 

most common and most important insect pest causing losses to grain and food producers 

worldwide. 

 
Distribution and Description of P. interpuntella  

P. interpunctella is distributed throughout tropical Asia, Africa, Europe, and the 

Americas (Tzanakakis 1959).  It was first described by Hübner in 1827 but the name 

‘Indian meal moth’ was coined by Asa Fitch in the United States (Cotton 1963).  

Currently, two different versions of the same common name for P. interpunctella, 

‘Indianmeal moth’ and ‘Indian meal moth’, are being used in the scientific literature.  The 

Entomological Society of America recommends using the common name ‘Indianmeal 

moth’, which will be used hereafter.  Adult moths are 10-12 mm long and have a wing 

span of about 18 mm.  Adults are recognized by their wing coloration with the apical half 



 

 5 

of the fore wings reddish brown and the basal half with whitish gray scales (Campbell 

1962); hind wings being light gray in color.  Adults usually rest on the walls or other 

indoor dark regions and are most active during the night (Richards and Thomson 1932; 

Silhacek et al. 2003; Madrid and Sinha 1982).  The adults are ready to mate shortly after 

they emerge from the pupa and as soon as their wings dry.  After mating, each female 

lays 150-200 eggs, which are small, oval, and creamy white in color (Brower 1975).  P. 

interpunctella eggs are more or less elliptical measuring 0.45 x 0.27 mm with 

microscopic roughened exterior (Arbogast et al. 1980).  Early larval instars are creamy 

white in color and as the development proceeds, they become whitish yellow with a 

pinkish tinge (Richards and Thomson 1932; Cotton 1963).  There are five instars in the 

larval period and the final, 5th instar larva measures about 10-13 mm (Hinton 1942; 

Allotey and Goswami 1990).  Larvae cause the most damage by chewing the food and 

spinning silken webs around the food material during feeding; larvae cause the formation 

of lumps of food and excreta that, in addition to severely reducing the food quality, may 

also cause jamming of milling equipment in food processing plants.  The fifth instar 

larvae actively search for suitable pupation sites and thereafter pupate by spinning silken 

fibers around their body as a protective cocoon.  The pupae are light brown in color 

initially, but turn dark brown and then black just before the eclosion of the adults.  Under 

ideal abiotic and biotic conditions the life cycle of P. interpunctella, from egg to adult, is 

four weeks (Silhacek and Miller 1972; Bell 1975). 

 
Copulation Behavior of P. interpunctella 
 

Courtship behavior of P. interpunctella was elaborately described by Grant and 

Brady (1975).  Soon after their emergence, the females exhibit a ‘calling’ behavior 
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wherein they raise their abdomens and expose their pheromone glands releasing the 

female sex pheromone.  The calling rhythm of female P. interpunctella is photoperiod 

modulated (Nordlund and Brady 1973).  Calling is initiated 2 hr into the scotophase and 

lasts until the start of next photophase.  Female P. interpunctella produce four sex 

pheromones, which are (Z, E)-9, 12 tetradecadienyl acetate, referred to as ZETA (Brady 

et al. 1971), (Z, E)-9, 12 tetradecadien-1-ol (Sower 1974), (Z, E)-9, 12 tetradecadien-1-al 

(Teal et al. 1995), and Z-9 tetradecadienyl acetate (Zhu et al. 1999).  ZETA is considered 

to be the most important pheromone produced by females because it alone can elicit 

upwind flight and close-range orientation by adult males, although the other pheromones 

are apparently needed to stimulate the full range of orientation and mating behaviors in 

males (Zhu et al. 1999).   

A male in the vicinity of the female perceives the chemical stimulus, becomes 

excited and continuously flaps its wings while searching for the calling females.  Male 

‘wing fanning’ disperses a close-range male pheromone secreted by scent glands located 

at the base of the fore wings (Grant and Brady 1975) that brings about female acceptance 

as indicated by the turning response of the female after becoming stationary (McLaughlin 

1982) .  After a male finds a female, he touches the female with his antenna and nudges 

the female.  A female that accepts the male raises her abdomen to receive the male 

genitalia that the male thrusts into the female genitalia during a head-to-head position 

(Grant and Brady 1975).  The male stops wing fanning when copulating and the moths in 

copula turn around with heads pointing in opposite directions and remain in that position 

for about an hour.  
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A single male can mate with 6-7 females during its life time and each male 

transfers a single spermatophore per mating into a female (Brower 1975).  Male P. 

interpunctella produce two types of sperm in their ejaculate, unfertile ‘apyrene’ sperm 

without genetic material, and fertile, encysted ‘eupyrene’ sperm (Gage and Cook 1994; 

Cook and Gage 1995).  The numbers of the two types of sperms transferred by a male to 

a female decrease upon successive matings.  However, a reduced ejaculate from a 

remating male has sufficient ‘eupyrene’ sperm to fertilize all the eggs in a female and 

therefore successive matings by males do not have any affect on the fecundity of the 

female (Brower 1975; Cook 1999).  Also, P. interpunctella males allocate their sperm 

depending on the age of the female, with younger females receiving greater number of 

sperm irrespective of their mating history compared to the older virgin females (Cook 

and Gage 1995; Cook et al. 1997).  Males delayed from mating transfer reduced number 

of spermatophores to a female resulting in decreased egg production and males that are 5 

d old fail to inseminate the females (Huang and Subramanyam 2003).  During its life 

time, a single female on an average can mate with 4 males and can lay a maximum of 

approximately 450 eggs (Brower 1975).   

 
Host Finding and Oviposition Behavior of P. interpunctella 

Oviposition is a crucial step for lepidopteran insects as the survivability of an 

immobile neonate larva depends on the judicious choice of host by the adult female 

(Renwick 1989) and preference for certain foods is determined by behavioral, genetic, 

and ecological aspects (Thompson and Pellmyr 1991).  A gravid female insect follows a 

hierarchical pattern of oviposition when a number of potential hosts are available, laying 

most of her eggs on the most preferred host followed by a less preferred host.  Behavioral 
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sequences leading to oviposition by a gravid female involve searching, orientation, 

encounter, landing, surface evaluation, and acceptance (Ramaswamy 1988; Renwick and 

Chew 1994). 

Searching and landing behaviors of gravid P. interpunctella females are induced 

by the perception of a food odor or larval contaminated food odors.  Wind tunnel studies 

by Phillips and Strand (1994) showed that gravid females fly upwind in response to a 

food odor or to a larval contaminated food source but not to larvae alone, and that larval 

secretions alone can elicit oviposition.  Chocolate products containing nuts are very 

attractive to mated females and elicit an upwind flight behavior and landing on the food 

(Hoppe 1981; Olsson et al. 2005a).  Prior experience of the adult moths in the form of 

larval feeding or previous exposure of adults to different foods has been shown to affect 

the orientation behavior of P. interpunctella (Olsson et al. 2006).  They showed that 

female moths pre-exposed to a wheat-based diet showed strong upwind flight behavior in 

a wind tunnel to the same diet regardless of their larval experience on wheat germ diet or 

chocolate diet.   

Although there has been research on the attractiveness of various foods for P. 

interpunctella, only a few studies have been conducted to isolate and identify compounds 

attractive to P. interpunctella females from different foods or combinations of synthetic 

compounds.  Olsson et al. (2005b) identified three compounds in chocolate volatiles, 

ethyl vanillin, nonanal, and phenylacetaldehyde, which consistently attracted P. 

interpunctella adults.  A blend of the above mentioned three compounds was required to 

elicit an upwind flight and landing on the attractant source by P. interpunctella and the 

landing rate was dependent on the amount of the three-component blend.  Uechi et al. 
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(2007) recently identified 27 compounds from a 3% ether-pentane solution of wheat flour 

that were attractive to mated P. interpunctella females but not to virgin males and virgin 

females.  They found that straight- chained saturated aldehydes (alkanals; C6 – C10) and 

unsaturated aldehydes (alkenals; C7 – C11) were active components in wheat and nonanal 

(C9) was the most important attractant for mated females.  Trapping experiments by Toth 

et al. (2002) showed that more females than males were attracted to a 1:1 mixture of 

isoamyl alcohol and acetic acid.   

Oviposition by P. interpunctella females is influenced by physical and chemical 

stimuli on the host surface.  Physical contact with the food is essential for P. 

interpunctella females to accept a food source for laying eggs (Nansen and Phillips 2003) 

and preventing a female moth from contacting a food source will reduce the number of 

eggs laid even in presence of host volatiles.  After a female moth comes in contact with 

the food, a net positive effect of all cues on the food surface results in oviposition 

(Ramaswamy 1988; Renwick and Chew 1994).   P. interpunctella females lay eggs either 

singly in the open spaces between the food grains or sometimes in batches of few eggs by 

sticking eggs on the food particles (personal observation).  In a heterogenous 

environment, gravid P. interpunctella females alight randomly on the oviposition sites 

and lay eggs in batches, which results in an aggregated pattern of egg laying (Arbogast 

and Mullen 1978).   

Ovipositional preference of adult moths is affected by the food type, food quality 

and quantity, prior experience, presence of conspecifics, and environmental factors such 

as temperature, relative humidity, and light-dark cycles.  As mentioned earlier, it is 

believed that female insects follow a hierarchical pattern of host selection for oviposition 
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based on the suitabilities of different hosts for their offspring survival and development 

(optimal oviposition theory; Jaenike 1978).  This is true for wild P. interpunctella 

females, which lay eggs in foods that are good hosts for the survival of their offspring 

(see Chapter 4).  Changes in nutritional quality of food by addition of oils have been 

shown to enhance oviposition by P. interpunctella females.  Nansen and Phillips (2003) 

tested several plant- and animal-derived oils and mineral oils for their effect on 

oviposition by P. interpunctella females.  They found that oil-treated wheat kernels 

received significantly greater numbers of eggs compared to untreated wheat kernels and, 

of all the oils tested, responses to walnut oil-treated wheat kernels were the strongest.  

Moreover, some non-food oils such as mineral oil elicited a significantly greater 

oviposition response from P. interpunctella females compared to untreated wheat kernels.  

In another study, Nansen et al. (2006) showed that walnut-oil treated wheat kernels 

elicited greater oviposition by P. interpunctella females compared to cracked wheat or 

untreated whole wheat kernels.  They found that surface area of the food was an 

important factor in oviposition, more so than the volume of food or the number of food 

patches present, and total oviposition by gravid females increased when the number of 

walnut oil-treated wheat dishes was increased in a test arena.   

Prior experience in the form of the females perceiving host volatiles immediately 

after eclosion influences future oviposition decisions by P. interpunctella females.  In 

two choice bioassays, Olsson et al. (2006) showed that female moths pre-exposed to 

chocolate volatiles preferred to lay eggs in a dish containing chocolate rather than in a 

dish containing wheat that was their larval food.  Conspecific larval-contaminated food 

elicits greater oviposition compared to food alone or larval contaminated substrate alone 
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(Phillips and Strand 1994).  These authors indicated that stable semiochemicals of low 

volatility could be involved in eliciting such a response.  Lower densities of conspecific 

larvae or Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae) larvae elicit greater 

ovipositional responses from P. interpunctella females compared to foods infested with 

higher densities of larvae (Anderson and Löfqvist 1996)        

Temperature and relative humidity affect P.interpunctella oviposition.  Optimal 

temperatures for P. interpunctella egg laying range from 25 to 30°C and relative 

humidity is an important factor influencing oviposition at higher temperatures (Mbata 

1985).  P. interpunctella oviposition is regulated largely by the light-dark cycles.  A 

gravid female lays most of her eggs during the scotophase, with peak oviposition at the 

start of the scotophase and gradually decreasing along the dark period (Madrid and Sinha 

1982, Bell 1981).  The total number of eggs laid by the gravid females and their 

oviposition rate are influenced by the number of dark periods throughout the female’s life 

time and the light-dark conditions, respectively (Lum and Flaherty 1970).  Continuous 

light inhibits oviposition and an alternating cycle of light and dark period is ideal for 

oviposition by gravid females.   

 
Immature Development of P. interpunctella 

Larvae hatch from eggs in 4-7 days depending on the diet and environmental 

conditions (Mbata and Osuji 1983; Allotey and Goswami 1990).  At 15°C and 70% RH, 

larvae do not hatch from the eggs as all the eggs die due to cold temperature (Bell 1975).  

However, as the temperature is raised from 20°C to 30°C at 70% RH, the egg hatch 

period decreases from 6-9 d to 2-4 d.  Larvae that emerge from the eggs feed on the 

available food material and make silken galleries (Richards and Thomson 1932).  Larvae 
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are cannibalistic and feed on conspecific egg shells, unhatched eggs, and dead adult body 

parts.  There are five instars during P. interpunctella larval development as determined 

by the head capsule width (Imura and Sinha 1986; Allotey and Goswami 1990).  Male 

larvae can be distinguished from the females by a dark colored patch on the dorsal side of 

the larval body that represents the testes as viewed through the translucent cuticle.  P. 

interpunctella larvae feed on a wide variety of foods such as cereal grains, legumes, nuts, 

dried vegetables, flowers, and some spices.  The non-feeding, last instar larva searches 

for suitable sites for pupation and is called the ‘wandering stage’.  The pupal stage lasts 

for about a week (Bell 1975).   

Development times for P. interpunctella differ based on the kind of diet, moisture 

content of diet, temperature, and relative humidity.  LeCato (1976) tested the suitability 

of 21 different diets for the development of P. interpunctella.  He found that larvae 

preferred cracked or broken grains or beans compared to whole seeds.  Development 

times were least and adults were heavier from larvae reared on ground or cracked corn 

and soybean compared to wheat, rice, peanut, and peas.  Similarly, Mbata (1990) 

recorded lower development times and higher survival of P. interpunctella larvae on 

cracked maize kernels than whole kernels.  Allotey and Goswami (1990) found that the 

mean development period, which was the time from first instar larvae to adult emergence, 

at 30°C on different food media (groundnut, maize, wheat, and standard rearing medium) 

ranged from 25.7 d to 46.1 d, with the shortest time for development on standard rearing 

medium and then on broken sorghum.  Na and Ryoo (2000) tested the suitability of 

several dried vegetables for P. interpunctella larvae and found that development times 

were shortest on green onions compared to dried carrots, cabbage, and pepper.  Johnson 
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et al. (1992) studied the development of P. interpunctella on four different diets (wheat 

bran, almonds, pistachios, and walnuts) at four different temperatures (25°C, 28.3°C, 

31.7°C, and 35°C).  They found that, irrespective of the temperatures, P. interpunctella 

development times were shortest on wheat bran which has the highest moisture content 

(10.3-14%) of the four diets.  Regression models based on development times (egg to 

adult) of P. interpunctella from various studies have shown that temperature is the most 

important factor determining development time followed by relative humidity, and the 

diet (Subramanyam and Hagstrum 1993).   

 
Population Control Strategies for P. interpunctella 

 Several management practices have been documented in the literature for possible 

control of P. interpunctella.  The broad categories of management strategies for P. 

interpunctella populations include 1) physical control, 2) biorational control,  

3) biological control, and 4) chemical control. 

Physical Control: Human health and environmental risks posed by chemical 

insecticides have prompted scientists to explore alternative techniques for stored product 

insect control.  Physical control techniques such as proper sanitation, heat and cold 

treatments, controlled/modified atmospheres, and electromagnetic radiation can be very 

effective in keeping pest populations low with little or no effect on the quality of stored 

commodity (Vincent et al. 2003; Heaps 2006).   

Insect infestation of stored grains can be reduced by practicing proper sanitary 

practices.  Keeping the farm equipment and empty grain bins free of insects reduces 

future insect infestation of stored products.  Concrete floors are recommended as they are 

easier to clean (Fields and White 2002).  Some other sanitary practices recommended are 
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plugging holes and cracks, killing insects by impacting grain or flour, and reduce places 

suitable for insect harbor (Heaps 2006). 

Elevated temperatures have been shown to affect the survivorship of different life 

stages of P. interpunctella.  One-day old P. interpunctella eggs are more tolerant to heat 

treatments (42-48°C) whereas 3 d old eggs are most tolerant to cold temperatures ranging 

from 0.5-11.5°C (Lewthwaite et al. 1998).  A combination of both hot and cold 

temperature reduce the time for P. interpunctella egg mortality compared to heat alone or 

cold alone treatments.  High temperatures from 46-50°C cause high mortality of both 

diapausing and non-diapausing larvae (Johnson et al. 2003).  Ninety percent of adults die 

after 70 d of exposure to 10°C (Johnson et al. 1997).  Prolonged exposure of adults to 

10°C greatly affects the egg production (>50% decrease) and egg viability (90% 

decrease).  Increasing exposure times cause increased mortality of all life stages of P. 

interpunctella between 44-52°C (Mahroof and Subramanyam 2006).   

  Combination treatments involving controlled atmospheres adversely affect the 

survival of P. interpunctella.  Sauer and Shelton (2002) showed that a 12 h exposure of 

pupae of P. interpunctella to a gaseous mixture of 80% carbon dioxide in N2  at 32.2°C 

caused 100% mortality.  A combination of low pressure (32.5 mm Hg) and high 

temperature (40°C) causes 99% mortality of eggs, larvae, and adults of P. interpunctella 

in less than 3 h (Mbata and Phillips 2001).  Mbata et al. (2004) tested combinations of 

different temperatures (5-37.5°C) and atmospheric pressures (50 - 300 mm Hg) and 

found that the time required for 99% egg mortality was lowest at 50 mm Hg and 37.5°C.  

An initial disinfestation of dried fruits and nuts with low oxygen controlled atmosphere 
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(0.4% O2) followed by application of Indianmeal moth granulosis virus (IMMGV) 

considerably reduces P. interpunctella populations (Johnson et al. 2002). 

Biorational Control: Female sex-pheromone baited traps are routinely used for 

early detection and monitoring P. interpunctella populations in food facilities 

(Burkholder 1984; Vick et al. 1986).  Sticky pheromone traps usually contain a rubber 

septum or any other slow release lure that evaporates ZETA, which is a very powerful 

attractant for males.  Several different trap designs are commercially available (Mullen et 

al. 1997), but the most common type of trap used is the diamond-shaped trap.  

Pheromone lures can be used for mass-trapping of males (Burkholder 1978), preventing 

males from finding the females by using high doses of pheromone, referred to as mating 

disruption (Fadamiro and Baker 2002; Ryne et al. 2001), attract-and-kill strategy, in 

which an attractant is combined with an insecticide or entomopathogen (Nansen and 

Phillips 2004), and the ‘Push-Pull’ strategy, in which pheromone or attractant is used to 

attract insects to their death, and a deterrent is used to keep the pests away from a space 

or product (Cox 2004).  For P. interpunctella females, attractant compounds from 

different foods are being isolated (Olsson et al. 2005b; Uechi et al. 2007, Nansen et al. 

U.S Patent Application), however, their efficacy in the field is yet to be confirmed.  

Another monitoring and detection tool that has been known by pest managers for decades 

is the black light trap.  Different designs of black light traps emitting ultraviolet (UV) 

light are commercially available (Rees 1985; Harris 2006).  Extensive field studies on the 

effectiveness of black light traps in attracting P. interpunctella are lacking, and earlier 

studies on the attractiveness of UV light to P. interpunctella adults revealed contradictory 

outcomes (Stermer 1959; Soderstrom 1970).  Some limitations of currently available 
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commercial black lights include their large size, high power consumption, non-specificity 

to insects, and maintenance problems.   

Biological Control: Biological control of P. interpunctella using pathogens, 

parasitoids, or predators provides an environmentally safe means of controlling the pest.  

Probably the most well known pathogen for P. interpunctella population control is 

Bacillus thuringiensis Berliner (Bt).  The pathogen produces crystal proteins that when 

ingested by lepidopteran larvae cause pores to form in the midgut, which eventually leads 

to death of the larvae (Koziel et al. 1993).  Although grains from some transgenic crop 

cultivars expressing toxic proteins affect the development of P. interpunctella larvae 

(Giles et al. 2000), development of resistance to Bt toxins is a concern that may affect the 

future viability of using Bt for P. interpunctella control (McGaughey and Johnson 1992).  

The Indianmeal moth granulosis virus (IMMGV) is another microbial pesticide that has 

shown some promise in controlling populations of P. interpunctella especially in stored 

nuts (Hunter 1970; Vail and Tebbets 1990).  Biological control agents such as parasitoids 

and predators are exempt from registration under USEPA and FDA and they can be 

freely released in a food facility as long as they don’t become food contaminants 

themselves (Fields and White 2002).  The most common parasitoids used for 

augmentative biological control of P. interpunctella include H. hebetor and 

Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) (Schöller et al. 

2006).  The warehouse pirate bug, X. flavipes is an important predator in the stored grain 

ecosystem and feeds on eggs, larvae, and pupae of P. interpunctella (Donnelly and 

Phillips 2001), and the larger pirate bug, Lyctocoris campestris (F.), another predaceous 
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Anthocorid, has potential as a bio-control agent for storage pests (Parajulee and Phillips 

1992). 

Chemical Control: Chemical control of stored product insects has traditionally 

involved the use of synthetic insecticides.  Residual chemical insecticides are applied as 

surface treatments to empty grain bins, cracks and crevices that can harbor insects in a 

food warehouse or bin, and as grain protectants and surface dressings to stored grains 

(Zettler and Redlinger 1984; White and Leesch 1996).  Residual insecticides used for 

‘spot’ or surface treatments for empty bins include cyfluthrin, malathion, hydroprene, and 

diatomaceous earth.  Residual grain protectants and surface treatments are among the 

most common methods of managing insect pests in bulk storages (Arthur 1996).  Grain 

protectants are applied to grain before they are stored.  Pirimiphos-methyl, chlorpyriphos-

methyl, malathion, pyrethrins, methoprene, diatomaceous earth are some of the most 

commonly used grain protectants in the food industry (White and Leesch 1996).  Insect 

resistance has been a problem with grain protectants, especially malathion (Zettler 1982; 

Arthur et al. 1988).  Upper layers of grain can also be treated with an insecticide if it is 

not possible to treat the whole grain; this is called surface dressing or top dressing.  

Chlorpyriphos-methyl, pirimiphos-methyl, malathion, methoprene, and Bt can be used for 

surface dressing of grain (White and Leesch 1996). 

Fumigation is a process of treating the atmosphere in a stored product 

environment with a toxic gas so that all pest life stages are killed.  The most prominent 

fumigant used for killing insects in post harvest commodities, food processing facilities, 

food shipments, and soil is methyl bromide.  Methyl bromide is a rapid acting and broad 

spectrum pesticide that kills insects in less than 48 hr in space fumigations (Fields and 



 

 18 

White 2002).  Despite its advantages, methyl bromide is an ozone depleter and has been 

banned from use in the United States and other developed countries under the Montreal 

Protocol starting 1 January 2005, except for quarantine purposes (Anonymous 2000).  

Phosphine gas, hydrogen phosphide, is a commonly used grain fumigant and potential 

alternative to methyl bromide, but resistance to phosphine has been discovered in some 

places (Chaudhry 1997; Zettler et al. 1989).  Other problems with phosphine include slow 

rate of action, it is corrosive to metals, especially copper, and its flammability above 

certain concentration in air (Bond et al. 1984; Arthur and Phillips 2002; Thoms and 

Phillips 2004).  Phosphine residues on stored grains are minimal and non-toxic, and 

therefore other improvements are being made to improve the efficacy of phosphine, e.g. 

addition of CO2 (Ren et al. 1994), to mitigate insect resistance to phosphine.  Currently, 

sulfuryl fluoride and carbonyl sulfide are being studied as alternative fumigants for their 

effectiveness in controlling several stored product insect pests.   
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Rationale and Justification 

P. interpunctella is an important insect pest of stored grains and milled food 

products.  Damage is caused by larvae that feed on the stored food resulting in loss of 

food quality and quantity.  Adults moths are short lived (7-9 d) and do not cause any 

direct damage to stored food.  An important but often ignored area of P. interpunctella 

research is the female oviposition behavior.  An adult female can mate with five males 

during its life time and lay an average of 150-200 eggs starting an incipient infestation.  

Even if a small percentage of the hatched larvae successfully complete their development 

to adults, a further recurrence of mating among emerged adults and thereafter cyclical 

generations of P. interpunctella would lead to population outbreaks.  Understanding the 

basic biology and behavior of P. interpunctella adults is necessary to devise future 

management strategies that may manipulate adult behavior and avoid use of harmful or 

environmentally risky chemical insecticides. 

After mating, adult females search for suitable oviposition sites to lay their 

complement of eggs.  What factors influence the decision of the females to lay eggs? 

What is the importance of proximate substrate factors in eliciting an egg laying response 

by females?  Do the female oviposition decisions correspond to their offspring 

performances on different foods?  How does light, with and without semiochemicals, 

affect behavioral responses of P. interpunctella?  To answer these questions, laboratory 

and field studies were conducted for this dissertation to analyze P. interpunctella 

oviposition behavior and study the attraction of adult moths to light and/or 

semiochemicals.  
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Research Objectives 

 The main objectives of this dissertation were to: 

1. Study the effects of substrate physical and chemical factors on oviposition by P. 

interpunctella females.  Specifically, ovipositional responses of females were 

studied in response to different textures, numbers, sizes, surface area, and shapes 

of the substrates applied with chemical stimuli.  

2. Investigate whether the ovipositional host preferences of laboratory moths and 

field- collected moths correspond to their larval performance on eleven different 

hosts.   

3. Study the orientation of adult moths to light, combinations of light and attractants, 

and ovipositional responses of the females to changes in light duration and 

scotophase light intensity.    

 

Manuscripts for Publication 

 Each research objective of this dissertation is elaborated in separate chapters that 

have been written in the form of manuscripts for publication in peer-reviewed 

entomology journals.  The following is a list of journal papers in preparation from this 

dissertation: 

1. Chapter II.  Effect of physical and chemical factors on oviposition by the 

Indianmeal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae)  

(For publication in: Annals of the Entomological Society of America)  
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2. Chapter III.  Ovipositional preferences and larval performances of two 

populations of Indianmeal moth, Plodia interpunctella (Hübner) (Lepidoptera: 

Pyralidae) (For publication in: Environmental Entomology) 

3. Chapter IV.  Responses of adult Plodia interpunctella (Hübner) (Lepidoptera:  

Pyralidae) to light and combinations of attractants and light (For publication in: 

Journal of Insect Behavior)    
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ABSTRACT 

 
Acceptance of a potential host for oviposition by gravid female moths is believed to be 

predominantly determined by the physical and chemical cues on the substrate surface.  

We evaluated the effects of substrate physical and chemical stimuli on oviposition by the 

Indianmeal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae), in a series of 

laboratory experiments.  The experimental arenas were 5.7 liter plastic boxes that 

contained a single, uncovered 5-cm diameter glass Petri dish with either artificial 

substrates alone or artificial substrates applied with 0.1 gram-equivalent of a hexane 

extract of wheat, Triticum aestivum L., or 10 g of wheat kernels.  Presence of the 

chemical extract of wheat significantly increased P. interpunctella oviposition compared 

to physical stimuli without extract.  A dish surface with spherical glass beads elicited 

significantly enhanced oviposition compared to surfaces with cheese cloth, filter paper, or 

sandpaper.  Increasing the numbers of similar-sized extract treated glass beads increased 

oviposition until a certain number of beads was reached, after which the oviposition 

remained constant.  The diameter of the spherical glass beads, rather than the total surface 

area of beads presented, significantly influenced oviposition, with the 5 mm-diameter 

glass beads receiving the most eggs.  P. interpunctella oviposition was also affected by 

the geometric shape of substrates, with ovoid shapes preferred over cuboid.  These 

studies clearly show that semiochemical and physical cues are required to elicit 

maximum oviposition by P. interpunctella, and suggest that ovipositing females prefer 

substrates with smooth, round or curved contours.  

KEY WORDS physical stimuli, chemical stimuli, chemical ecology, host selection 

behavior
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Host finding by herbivorous insects is a behaviorally complex sequence of events 

involving host habitat location, host location, and host acceptance (Fenemore 1988, 

Ramaswamy 1988, Thompson and Pellmyr 1990, Renwick and Chew 1994, Honda 

1995).  The crucial step of host acceptance by gravid female insects for oviposition is 

determined mainly by the presence of favorable stimuli on the plant surface (Ramaswamy 

et al. 1987, Jermy et al. 1988, Renwick and Chew 1994).  Ovipositing females perceive 

cues on the host surface through a variety of sensory receptors like gustatory, olfactory, 

and mechanical receptors located on different parts of the insect body such as antennae, 

tarsi, proboscis, labial palpi, and ovipositor (Städler 1974, Städler 1984, Ramaswamy et 

al. 1987, Hannson 1995).  A final decision to oviposit or not is presumably determined by 

the balance of positive and negative signals perceived by the insect (Renwick and Chew 

1994), and an egg laying response can be interpreted as a net positive effect of physico-

chemical cues present on the host surface (Dethier et al. 1960, Miller and Strickler 1984, 

Renwick and Radke 1987, Renwick and Chew 1994).   

 The Indianmeal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) is 

a serious and widespread pest of food grains and grain-based products, dried fruits, nuts, 

and legumes (Cox and Bell 1991).  P. interpunctella is a common pest in or near food 

storage areas such as grain bins (Doud and Phillips 2000) and food warehouses (Vick et 

al. 1986), and commercial settings such as pet food stores, grocery stores (Platt et al. 

1998), and restaurants.  Economic losses are from the cost of pest control and from the 

non-marketability of products due to larval feeding and the subsequent silken webs spun 

by the larvae around the food material. 
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 Management of P. interpunctella has traditionally involved the use of fumigants 

and residual chemical insecticides.  However, the problems posed by insecticide usage on 

finished products have been well documented in the literature (e. g. Arthur and Phillips 

2003).  Novel pest management strategies involving female P. interpunctella sex 

pheromone, such as mating disruption (Fadamiro and Baker 2002, Ryne et al. 2001, Ryne 

et al. 2006) and attract-and-kill strategy (Nansen and Phillips 2004), affect only males.  

Males that circumvent these strategies can mate with 5 or more females, on an average, 

during their life time (Brower 1975), leading to either persistence or growth of P. 

interpunctella pest populations.  Understanding the behavior of female P. interpunctella 

and incorporating such knowledge into management strategies against females could lead 

to effective pest suppression.   

The objectives of this study were to evaluate the oviposition response of P. 

interpunctella to 1) physical stimuli alone or to both physical and chemical stimuli, and 

2) to the gross texture, type, number, size, surface area, and shape of potential substrates. 

 
Materials and Methods 

Insects.  P. interpunctella for these experiments were obtained from a laboratory 

culture of moths that was maintained in a growth chamber at 28°C, 60-70% RH, and 16:8 

(L:D) on a standard cornmeal-based diet (Phillips and Strand 1994).  Pupae were 

removed from the laboratory colony, separated by sex, and carefully transferred into 1 x 6 

cm shell glass vials and incubated in a growth chamber until they emerged. 

Artificial Substrates.  Glass beads were used as model systems for studying P. 

interpunctella ovipositional responses to changes in different physical aspects of 

substrates, because glass beads are chemically inert, easily available, and offer 
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thigmotactic stimuli similar to natural foods of P. interpunctella such as wheat, Triticum 

aestivum L.  In experiments involving chemical stimuli, we tried to imitate naturally 

occurring oviposition sites by addition of 0.1 gram equivalent of hexane extract of wheat 

to the artificial substrates, and manipulated the glass beads in different ways to study the 

effect of various physical factors on P. interpunctella oviposition. 

Wheat Extracts.  Extracts of locally grown hard red winter wheat were prepared 

by weighing and grinding 100 g of wheat kernels into a fine powder using a food blender.  

The ground wheat was placed in a 500 ml Erlenmeyer flask and extracted for 24 h at 

22ºC using 200 ml of hexane (ACS grade, Pharmco Products Inc., Brookfield, CT).  The 

extract was filtered through a filter paper (Fisher Scientific Qualitative 05 paper) into a 

250 ml Erlenmeyer flask.  The extract was then either concentrated by evaporation under 

N2 gas or diluted to 100 ml with additional hexane to prepare a stock solution of 1 gram-

equivalent wheat/ml concentration.  The stock solution was stored in a 250 ml Wheaton 

glass bottle (Sigma-Aldrich Corp., St. Louis, MO) at -20ºC in a freezer before being used.   

General Bioassay Procedure.  No-choice oviposition bioassays were conducted in 

5.7 liter (31 x 17 x 11 cm) transparent plastic boxes (Sterilite Inc., San Antonio, TX) with 

a single ‘oviposition dish’, which was the bottom of  a 5-cm diameter glass Petri dish (50 

mm x 10 mm) containing the artificial substrates to be evaluated.  The dish was placed 

either on an uncovered plastic box floor (experiment 1a) or on a plastic box floor with 

brown craft paper (experiments 1b-6) (Nansen and Phillips 2003).  Once initial studies 

determined the need for chemical stimuli to elicit oviposition by P. interpunctella, all 

artificial substrates in the remaining experiments were treated with a total of 0.1 gram eq. 

of wheat extract in 200 µL of hexane solution and the control was an empty Petri dish 
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with 200 µL of 0.1 gram eq. wheat extract applied on its surface.  In experiments 

involving treated glass beads, the extract was applied directly on the glass beads in the 

Petri dish using a pipette.  After the extracts or solvent blanks were applied, the Petri 

dishes were kept in the fume hood for about 15 min to allow the hexane to evaporate.  

One pair of 1-2 d old virgin moths was released into the bioassay arena, allowed to mate, 

and lay eggs for 48 h.  All bioassays were conducted in controlled growth chamber 

conditions at 28°C, 60-70% RH, and 16:8 L:D photoperiod.  Eggs laid in the Petri dish, 

on the floor, and on the walls of the plastic box were counted after the 48 h bioassay 

period.  Used glassware was washed with a detergent in tap water, rinsed with acetone 

and distilled water, and then oven dried (12 h) before being used for subsequent 

experiments.  Craft paper floor coverings were discarded after counting the eggs.  The 

plastic boxes were cleaned with a detergent in warm tap water, then rinsed with distilled 

water, and air dried for 24 h before being reused in other bioassays.  

Experiments 1a and b. Effect of Substrate Physical and Chemical Stimuli on 

P. interpunctella Oviposition.  The objective of experiment 1a was to study the 

oviposition response of P. interpunctella in presence of physical stimuli alone or in 

combination with chemical stimuli.  We used 5 mm diameter glass beads (Fisher 

Scientific, Pittsburgh, PA) as sources of physical stimuli for P. interpunctella.  Chemical 

stimuli were provided by 0.1 gram eq. wheat extract in hexane.  No-choice bioassays 

were conducted with three treatments: 1) untreated glass beads, 2) glass beads with 

extract, and 3) 10 g wheat kernels as positive control.  A total of fifteen replicates were 

conducted.   
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 In experiment 1b P. interpunctella oviposition behavior was observed in response 

to an empty dish and to different numbers of glass beads when offered without any 

chemical stimuli; an empty dish with no extract/hexane was control.  Thus, treatments 

were an empty dish, 50, 100, 150, 200, and 250 3-mm diameter glass beads (Fisher 

Scientific, Pittsburgh, PA).  Ten replicates were conducted for each treatment.  Since 

these initial experiments determined that chemical cues were needed to elicit maximum 

oviposition response by P. interpunctella to physical stimuli, all subsequent experiments 

had hexane extract of wheat applied to substrates and/or to empty dishes. 

Experiment 2.  Effect of Different Textures of Artificial Substrates on P. 

interpunctella Oviposition.  Various substrates were tested for female P. interpunctella 

ovipositional response as follows: 1) 10 g of 3-mm diameter spherical glass beads 

(approximately 280 beads; Fisher Scientific, Pittsburgh, PA), 2) a 5-cm diameter piece of 

coarse grade sandpaper (Grit# 60; Norton abrasives, Stephenville, TX), 3) 5-cm diameter 

filter paper (Whatman #1, Whatman International, UK), and 4) a 5-cm diameter piece of 

cotton cheese cloth from a local commercial store.  Wheat extract (0.1 gram eq.) was 

applied on the substrates and to the bottom of an empty dish that served as control.  

Twenty-five replicates were conducted for each treatment.    

 Experiment 3.  Effect of Substrate Number on P. interpunctella Oviposition.  

In no-choice bioassays, 5, 10, 25, 50, 100, 150, 200, 250, 300, and 500 spherical glass 

beads (3 mm diameter; Fisher Scientific, Pittsburgh, PA) were used to study the 

ovipositional response of P. interpunctella females to increase in the number of 

substrates in presence of chemical stimuli.  The amount of solvent was varied from 100 - 

500 µL to account for the increase in the number of beads keeping the total amount of 
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wheat extract added constant (0.1 gram eq.).  Positive control was a dish containing 10 g 

wheat kernels. 

Experiment 4.  Effect of Substrate Size on P. interpunctella Oviposition.  

Spherical glass beads measuring 2 mm, 3 mm, 4 mm, 5 mm, and 6 mm (Fisher Scientific, 

Pittsburgh, PA) in diameter were used in this study.  Twenty-five beads were provided in 

each dish because results from Experiment 3 suggested this to be the minimum number of 

beads for P. interpunctella to direct a greater proportion of her oviposition (>75%) into 

the dish. 

Experiment 5.  Effect of Different-Sized Substrates Offering the Same Total 

Surface Area for P. interpunctella Oviposition.  In experiment 4, size of the substrate 

significantly affected the ovipositional response of P. interpunctella.  To test if this 

differential response to bead sizes was a factor of total increased surface area of beads as 

diameter increased, an experiment was designed wherein the total surface area offered by 

glass beads of each size category was kept nearly constant by adjusting for the number of 

beads per dish.  The numbers of spherical glass beads of different diameters were 

adjusted so that ca. 28.26 cm2 of total surface area was presented in each dish.  The 

following diameters and numbers of glass beads (in parenthesis) used were: 2-mm (225), 

3 mm (100), 4 mm (56), 5 mm (36), and 6 mm (25).    

Experiment 6.  Effect of Substrate Shape on P. interpunctella Oviposition.  

Cuboidal, cylindrical, heart-shaped, ovoid, and spherical (~ 7 mm diameter) glass beads 

(Crafts Etc., Oklahoma City, OK) were used for this experiment.  The different-shaped 

glass beads used for this experiment are typically used for stringing necklaces and 

bracelets, and therefore each glass bead had a single hole through its middle.  The 
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numbers of beads of each shape used in the experiment, based on their displacement of 1 

ml distilled water to approximate similar volumes of space displaced were: cuboidal (6), 

cylindrical (5), heart-shaped (5), ovoid (15), and spherical (6).  Twenty five replications 

were conducted for each treatment under conditions reported above. 

Statistical Analysis.  The data were analyzed for 1) the number of eggs in the 

dish and/or total eggs laid per box and 2) the proportion of total eggs in the dish relative 

to those deposited in the entire box.  Only boxes that had five or more eggs were included 

in the analyses for calculating the mean proportion of total eggs per dish for each 

treatment.  The five-egg threshold was established because preliminary studies 

determined that females laying less than five eggs in 48 h were either unmated or 

otherwise impaired.  Raw data for egg counts in Petri dishes and the proportions of total 

eggs in Petri dishes were transformed using √(X + 0.5) and arcsine square root method 

(Zar 1999), respectively, to satisfy the assumption of homogeneity of variances for 

analysis of variance (Little and Hills 1978).  The transformed data were analyzed by the 

PROC MIXED procedure of SAS version 9.1 (SAS Institute 2003).  Treatment means 

were separated by the DIFF option of LSMEANS and tested for significant differences (t-

test, P < 0.05).  Data presented are untransformed means ± standard error of the mean. 

 
Results 

 
Experiments 1a and b. Effect of Physical and Chemical Stimuli on P. 

interpunctella Oviposition.  Presence of chemical stimuli significantly enhanced 

oviposition by P. interpunctella (F = 5.08; df = 2, 42; P = 0.0106).  Untreated glass beads 

offering only physical stimuli received only 1/5th the number of eggs that were laid on 

glass beads treated with 0.1 gram eq. of the wheat extract in hexane (Fig. 1).  Proportions 
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of eggs laid in dishes containing untreated glass beads were significantly lower compared 

to extract-treated beads or wheat dish (F = 26.96; df = 2, 30; P < 0.0001).  In Experiment 

1b no chemical stimuli were present in any treatment and the absence or presence of 

different numbers of glass beads did not significantly affect the total oviposition per box 

(F = 0.35; df = 5, 54; P = 0.8798) or the numbers of eggs laid in dishes by P. 

interpunctella (F = 0.43; df = 5, 54; P = 0.8269).  Very low numbers of eggs were 

observed across all the treatments (Table 1).  The proportions of total eggs deposited in 

dishes relative to the whole box were statistically insignificant among the treatments      

(F = 0.64; df = 5, 15; P = 0.6758).  

Experiment 2.  Effect of Different Textures of Artificial Substrates on P. 

interpunctella Oviposition.  A significantly greater number of eggs were laid when glass 

beads were provided as artificial substrates compared to other substrates when all 

substrates were treated with wheat extract (F = 31.29; df = 4, 120; P < 0.0001).  Cheese 

cloth, filter paper, sandpaper, and an empty dish elicited very low numbers of eggs from 

female moths. About 9 to 54-fold more eggs were laid on wheat extract-treated glass 

beads compared to the other substrates (Fig. 2).  Significantly greater proportions of total 

eggs per box were laid on glass beads than in an empty dish, on cheese cloth, or on 

sandpaper (F = 36.46; df = 4, 63; P < 0.0001).  The lowest proportion of total eggs per 

box was laid in the Petri dish with filter paper (Fig. 2).  

 Experiment 3.  Effect of Substrate Number on P. interpunctella Oviposition.  

Average total numbers of eggs laid were significantly different across the treatments (F = 

4.43; df = 11, 288; P < 0.0001).  Increase in the numbers of glass beads increased the 

total oviposition by P. interpunctella (Table 2).  Significant differences were observed in 
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the numbers of eggs laid in dishes containing different numbers of 3-mm beads and 

wheat (F = 7.71; df = 11, 288; P < 0.0001).  The numbers of eggs laid increased as the 

number of glass beads was increased to 150, after which no statistical significance in the 

number of eggs laid was observed.  P. interpunctella females laid significantly lower 

proportions of eggs in Petri dishes that contained 5, 10 or no beads than other treatments 

(F = 13.30; df = 11, 181; P < 0.0001).  No significant differences in the proportions of 

total eggs laid per box were observed when 100 or more beads were used (Table 2).  

Proportion of eggs localized in the dish, which might indicate the presence of optimal 

substrate stimuli for female moths, increased significantly when 25 glass beads or more 

were used. 

Experiment 4.  Effect of Substrate Size on P. interpunctella Oviposition.  Size 

of the substrate significantly affected P. interpunctella oviposition (F = 6.29; df = 5, 144; 

P < 0.0001).  A curvilinear ovipositional response was observed as the diameter of the 25 

glass beads in each dish increased (Fig. 3).  Significantly greater numbers of eggs were 

laid in dishes containing 4, 5, or 6 mm beads than on glass beads of smaller diameter.  

The number of eggs laid in dishes containing 25 beads of 5 mm diameter was about 4 

times greater than when 2 mm or 3 mm diameter glass beads were used.  Significant 

differences were observed in the proportions of total eggs per box laid in the dish among 

glass beads of different sizes (F = 5.64; df = 5, 89; P = 0.0001).  Smaller proportions of 

eggs were laid in dishes containing 2 mm and 3 mm compared dishes containing 5 or 6 

mm beads (Fig. 3). 

Experiment 5. Effect of Substrate Size Relative to Constant Surface Area on 

P. interpunctella Oviposition.  Significant differences were observed in numbers of eggs 
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laid in dishes when glass beads of different diameters, but offering nearly the same total 

surface areas, were used (F = 6.69; df = 5, 144; P < 0.0001).  No significant differences 

in egg counts in dishes were observed when 3-6 mm beads were used (Fig. 4).  A 5 fold 

increase in egg laying was observed when 5 mm beads were used compared to 2 mm 

beads.  Also, significant differences in the proportions of total eggs laid in dishes with 

different treatments were observed (F = 17.84; df = 5, 92; P < 0.0001).  Significantly 

lower proportions of total eggs were laid in empty dishes with extract.  No significant 

differences in the mean proportions of total eggs were observed in case of 3-6 mm beads.   

Experiment 6. Effect of Substrate Shape on P. interpunctella Oviposition.  

Shape of the substrate significantly affected P. interpunctella oviposition (F = 4.14; df = 

5, 144; P < 0.0015).  Dishes containing ovoid beads received significantly greater number 

of eggs (32.8) compared to heart-shaped beads (13.5 eggs).  Significantly lower numbers 

of eggs were laid in empty dishes with no beads (Fig. 5).  Mean proportions of total eggs 

laid in dishes were significantly different among the treatments (F = 9.28; df = 5, 75; P < 

0.0001).  Again, significantly lower proportions of eggs were laid in empty dishes 

without beads (Fig. 5).  The greatest proportion of eggs were laid in dishes containing 

ovoid beads (0.84), however, it was not significantly different from proportions of eggs in 

dishes containing the other substrate shapes. 

 
Discussion 

Results from our experiments clearly show that P. interpunctella females require 

a combination of physical and chemical stimuli for oviposition and that the presence of 

only chemical or physical stimuli separately is not sufficient for eliciting a maximal 

oviposition response.  A relatively low amount of hexane extract of wheat elicited a 
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significant increase in the number of eggs laid by females.  Extract treated-glass beads 

provided a close simulation to cereal grains, and we deduce that they offered both 

thigmotactic and chemical stimuli for P. interpunctella females.  Other species of moths 

require both tactile stimuli and chemical stimuli for eliciting an optimal oviposition 

response.  For example, in the spruce budworm, Choristoneura fumiferana (Clemens) 

(Lepidoptera: Tortricidae), oviposition was influenced by both physical and chemical 

stimuli originating from the host (Städler 1974).  C. fumiferana females exposed to 

petroleum-ether washed twigs of balsam fir, Abies balsamea (L.) Miller, laid lower 

numbers of eggs compared to an unwashed host twig.  Maher and Thiéry (2004) found 

that the European grapevine moth, Lobesia botrana (Denis and Schiffermüller) 

(Lepidoptera: Tortricidae) showed a greater oviposition preference for glass beads treated 

with methanolic/water extracts of grape berries, Vitis vinifera L., than untreated glass 

beads.  They concluded that polar compounds in the host extract served as ovipositional 

stimulants for L. botrana.  The chemical composition of stimulatory compounds in the 

wheat extract we used in our studies is not known, but we assume that both non-volatile 

and volatile components were present in the hexane extract and may have been involved 

in eliciting oviposition.  Further investigation is required before the semiochemical 

oviposition stimulants for P. interpunctella from wheat are known. 

P. interpunctella females laid a far greater number of eggs in dishes with glass 

beads than dishes containing cheese cloth, filter paper, or sandpaper.  Moreover, the 

moths localized their eggs in dishes that contained glass beads, as opposed to being 

dispersed throughout the bioassay boxes.  We conclude that increased egg-laying 

response was mainly attributed to the direct thigmotactic stimuli provided by glass beads 
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with chemical stimuli relative to other physical stimuli in Experiment 2, as empty dishes 

or dishes with cheese cloth, filter paper, or sandpaper, with no or little three-dimensional 

physical stimuli, elicited the lowest responses from female moths.  Similar kinds of 

behavior have been observed in some species of moths and beetles.  The European small 

ermine moth, Yponomeuta cagnagellus Hübner (Lepidoptera: Yponomeutidae), prefers to 

oviposit on glass substrates resembling host twigs rather than on filter paper (Hora and 

Roessingh 1999).  Similarly, L. botrana  prefers to oviposit on spherical glass beads 

resembling grape berries than coarse texture offered by sandpaper (Maher and Thiéry 

2004).  Städler (1974) found that spruce budworm, C. fumiferana, preferred to oviposit 

on artificial twigs that resemble balsam fir.  In the case of beetles, Credland and Wright 

(1988) found that the cowpea weevil, Callosobruchus maculates (F.) (Coleoptera: 

Bruchidae), laid similar numbers of eggs on untreated cowpeas, Vigna unguiculata (L.) 

Walpers, and glass beads treated with cowpea extract.  Rough surfaces offered by filter 

paper, sandpaper or cheese cloth may have deterred the female P. interpunctella from 

laying eggs in our experiment, as was observed in case of the stem borer, Chilo partellus 

(Swinhoe) (Lepidoptera: Pyralidae), which was deterred by rough surfaces offered by leaf 

trichomes on maize, Zea mays L. (Kumar 1992).  Also, the substrates such as filter paper, 

sandpaper, or cheese cloth did not offer substantial three dimensional or vertical physical 

stimuli such as those provided by the natural oviposition sites for P. interpunctella, such 

as cereal grains, nuts or other seeds and fruits.  That importance of direct contact with 

three-dimensional physical stimuli for optimal ovipositional response of P. interpunctella 

is supported by data from Nansen and Phillips (2003), who showed that when P. 

interpunctella females were prevented direct contact with wheat kernels, the females laid 
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fewer eggs in the food dish despite the volatile olfactory stimuli presumably originating 

from the wheat kernels. 

 Our data on P. interpunctella oviposition suggests that females make decisions for 

optimal allocation of eggs based on quality or quantity of the resource patch they may 

encounter at any given time.  Other studies have examined oviposition decisions by 

stored product insects in response to food patches of varying sizes or quantities.  For 

example, the cowpea weevil, C. maculatus, responded to increasing numbers of cowpea 

seeds by increasing oviposition (Cope and Fox 2003).  Campbell and Runnion (2003) 

showed that oviposition by female red flour beetles, Tribolium castaneum (Herbst), 

reached a peak at a certain patch size of flour media, and that no net gain in fitness 

occurred when females oviposited in food patches that exceeded the critical patch size.  

Results by Toews et al. (2000) suggest that the lesser grain borer, Rhyzopertha dominica 

(F.), adjusts oviposition within a patch of seeds related to the total number of seeds in the 

patch.  In our study, P. interpunctella oviposition reached a peak at a certain apparent 

threshold patch size for our artificial system (i.e. bead number) and remained more or less 

constant thereafter despite increasing patch size.  Further research is needed to determine 

if no additional fitness benefits accrue for progeny of P. interpunctella females by laying 

greater numbers of eggs in large patches that exceed a threshold patch size.  Also, other 

physical or biological constrains of female moths may explain the maximum attained 

oviposition that we observed. 

 The size (diameter) of individual glass beads in aggregates, independent of total 

surface area of the aggregate, clearly influenced the oviposition response of P. 

interpunctella (Experiment 5).  Gravid females responded to increased size of glass beads 
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by increasing their oviposition.  Large seeds offer greater amount of larval food for 

offspring survival in seed-breeding insects than do small seeds.  In the case of the bruchid 

C. maculatus, females lay more eggs per seed when supplied with seeds of larger size 

than when seeds of smaller size are provided (Cope and Fox 2003).  The rice weevil, 

Sitophilus oryzae L., prefers larger sized wheat kernels compared to smaller, shriveled 

ones (Campbell 2002).  This preference seems to be justified as the progeny fitness 

increased when S. oryzae oviposited on large size kernels.  Although we did not study 

offspring fitness in the experiments reported here, studies similar to those done with 

internal seed-feeding beetles (e.g., C. maculates and S. oryzae), are warranted for P. 

interpunctella in order to study the correlation between oviposition substrate size and 

offspring fitness.   

We found that the shape of potential oviposition substrates had a weak influence 

on P. interpunctella oviposition (Experiment 6).  Females laid fewer eggs on substrates 

that were more flattened relative to the substrate (heart-shaped beads) or that possessed 

sharp, angular separations of horizontal and vertical surfaces (cube and cylinder-shaped 

beads) compared to substrates with smoother, more rounded contours (spheres and oval-

shaped beads).  P. interpunctella females seem to prefer substrates that have smooth, 

curved surfaces.  Shape of artificial oviposition substrates, and their similarity to the 

shape of natural hosts, has been shown to influence oviposition in some insects.  The 

tortricid moth, L. botrana, prefers to lay eggs on smooth, spherical fruit models that 

resemble grape berries, than flat ones (Maher and Thiéry 2004).  Similarly, C. 

fumiferana, females prefer to oviposit on needle-shaped artificial models that resemble 

the host twigs (Städler 1974). 
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P. interpunctella is a peri-domestic pest of human-produced stored food products, 

and the “natural” or pre-domestication host plants or oviposition substrates are not known 

(Linsley 1944, Mohandass et al. 2007).  Thus, we can not directly relate the results of our 

highly controlled laboratory studies to what might be expected from oviposition of P. 

interpunctella on its natural host.  Nevertheless, our studies clearly show that P. 

interpunctella females prefer to oviposit on substrates that are similar in size (3-6 mm) 

and shape (ovoid) to those of seeds from cereal grains and many other pantry species. 
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Table 1. Oviposition responses of P. interpunctella females to different numbers of 3 
mm diameter glass beads lacking chemical stimuli in Experiment 1 b 
 

Treatment N 
Mean (± S.E) 

egg count per box‡ 
Mean (± S.E) 

egg count per dish‡ 
Mean proportion (± S.E) 

 of total eggs per dish†‡  
Empty dish 10 3.8 ± 1.6 0.6 ± 0.6 0.18 ± 0.18 (3) 

50 10 24.7 ± 15.9 3.8 ± 2.3 0.17 ± 0.04 (3) 
100 10 18.1 ± 16.3 8.3 ± 7.6 0.33 ± 0.08 (3) 
150 10      13.0 ± 6.1 3.0 ± 2.0 0.34 ± 0.18 (6) 
200 10      10.3 ± 6.2 8.0 ± 5.9 0.61 ± 0.21 (3) 
250 10 19.7 ± 11.8 4.2 ± 3.0 0.39 ± 0.28 (3)  

 
 
† The number of boxes with ≥5 eggs laid per box and used in the calculation of proportion 
laid in dishes (in parenthesis) 
‡ Mean (± S. E) values are not statistically significant (P > 0.05)  
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Table 2.  Oviposition responses of P. interpunctella females to different numbers of 3 
mm diameter glass beads with chemical stimuli provided by 0.1 gram eq. wheat 
extract in Experiment 2. 
 
 

Treatment N 
Mean (± S.E) 

egg count per boxa 
Mean (± S.E) 

egg count per disha 
Mean proportion (± S.E) 

 of total eggs per dishab  
Empty dish 25       25.2 ± 8.7de        5.8 ± 2.7e       0.22 ± 0.08d    (11)  

5  25       16.2 ± 7.3e        1.8 ± 0.6e       0.18 ± 0.07d    (11) 
10  25       14.0 ± 6.5e        3.5 ± 1.8e       0.19 ± 0.07d    (11) 
25 25       27.0 ± 8.8de      20.2 ± 7.1cde       0.74 ± 0.09bc  (11) 
50 25       30.4 ± 8.7cde      16.8 ± 7.2de       0.55 ± 0.10c    (16) 
100 25       34.8 ± 9.4bcde      30.8 ± 9.0bcd       0.81 ± 0.06ab  (19) 
150 25       52.8 ± 11.2abc      45.0 ± 10.5ab       0.86 ± 0.05ab  (19) 
200 25       65.9 ± 13.5ab      57.6 ± 12.8ab       0.84 ± 0.05ab  (21) 
250 25       61.6 ± 14.0abc      49.1 ± 12.3ab       0.79 ± 0.09b    (15) 
300 25       75.3 ± 14.1a      59.5 ± 12.3a       0.79 ± 0.07b    (22) 
500 25       68.7 ± 14.0ab      58.8 ± 12.8a       0.86 ± 0.06ab  (20) 

Wheat (10 g) 25       42.8 ± 10.8bcd      42.8 ± 10.6abc       0.98 ± 0.01a    (17) 
 
 
aMeans in a column followed by the same letter are not significantly different (t-test; P < 
0.05) 
bThe number of boxes with ≥5 eggs laid per box and used in the calculation of proportion 
laid in dishes (in parenthesis) 
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Figure Legends 
 
Fig. 1.  Oviposition responses of P. interpunctella to substrates offering physical stimuli 

alone or both physical and chemical stimuli.  A ‘Control’ dish contained glass 

beads treated with hexane only, an ‘Extract’ dish was a dish containing glass 

beads applied with 0.1 gram-equivalent wheat extract in 200 µL hexane, and a 

‘Wheat’ dish was a dish containing 10 g wheat kernels.  Bars represent mean 

numbers of eggs per dish and dots represent the proportion of total eggs laid per 

dish.  Bars or dots with the same lower or uppercase letters, respectively, are not 

significantly different (t-test; P < 0.05; N = 15).   

Fig. 2.  Oviposition of P. interpunctella in no-choice bioassays in response to different 

textures of artificial substrates treated with a hexane extract of wheat.  Bars 

represent number of eggs per dish and dots are the proportions of total eggs per 

dish that was determined by the ratio of number of eggs laid in dish to the total 

number of eggs laid in the box.  Bars or dots with the same lowercase or 

uppercase letters, respectively, are not significantly different (t-test; P < 0.05; N = 

25).   

Fig. 3.  Oviposition responses of single P. interpunctella females to substrates of 

different sizes in no-choice bioassays.  Bars or dots with the same lowercase or 

uppercase letters, respectively, are not significantly different (t-test; P < 0.05; N = 

25). 

Fig. 4.  Mean number of eggs laid by a single P. interpunctella female in the dish (bars) 

and proportion of total eggs laid per dish (black dotted circles) in response to 

different-sized glass beads offering same total surface area.  Means followed by 
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the same lowercase (bars) or uppercase (dots) letters are not significantly different 

(t-test; P < 0.05; N = 25). 

Fig. 5.  Mean oviposition responses of single P. interpunctella females to substrates of 

different shapes.  Means followed by the same lowercase or uppercase letters are 

not significantly different (t-test; P < 0.05; N = 25). 
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ABSTRACT 

Oviposition decisions by female insects can determine the survivability and fitness of 

their offspring.  In this study, we assessed the larval performance and adult oviposition 

preferences of two populations of the Indianmeal moth, Plodia interpunctella (Hübner) 

(Lepidoptera: Pyralidae), one a long-term laboratory colony and another recently 

collected from the field.  Development assays on a variety of foods were conducted on 

individual larvae in small shell vials, and data were collected for survivability (%), 

development time (d), and adult weight (mg).  Larvae from either population did not 

survive on ground walnut, pecan, coriander, and fennel.  There were significant 

differences in larval survivabilities on lab diet, chick pea, and soybean between the two 

populations.  Development times were longest on prunes and barley.  Mean adult weights 

were highest on chick pea, lab diet, and soybean for the laboratory moths whereas 

soybean and chick pea were very suitable for the field moths.  Overall, field moths 

weighed significantly less than the laboratory moths.  Adult ovipositional preferences 

were assessed in no-choice and four-choice oviposition bioassays in plastic boxes 

containing diets differing in quality.  In a no-choice situation, laboratory moths laid 

greater number of eggs on soybean, but the numbers were not significantly different from 

those laid on apricots and wheat.  Field moths laid significantly greater number of eggs 

on soybean, and those numbers were similar to those laid on barley.  In four choice 

bioassays, laboratory moths were less “choosy” and oviposited in diets previously 

determined to be unsuitable for their progeny survival.  Field moths were more selective 

and laid significantly greater numbers of eggs on soybean than in dishes containing 
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barley, coriander, or an empty dish.  Our studies clearly show that captive rearing of P. 

interpunctella for long periods can alter the behavioral patterns of immatures and adults.   

KEY WORDS Host selection, stored products, adaptation 
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Oviposition decisions by female lepidopterous insects can be crucial for the survival of 

their offspring mainly because the neonate larvae of some species are relatively immobile 

and absence of an immediate, optimal food resource could be detrimental to the 

development of the larvae and ultimately fitness of the resultant adult will be severely 

reduced (Thomson and Pellmyr 1991).  Indeed, a generally accepted hypothesis for 

oviposition by a gravid female is that she lays eggs in or on host plants based on their 

quality and suitability for the insect’s offspring, referred to as the optimal oviposition 

theory or the preference-performance hypothesis (Jaenike 1978).  Furthermore, according 

to this theory, when many hosts are simultaneously offered to a female, it is expected that 

she will follow a hierarchical order of host preference laying eggs on the best larval diet 

first, and then on the next best diet, and so forth (Thompson 1988).  However, there have 

been several instances where the post-alightment host preferences of gravid females do 

not match the developmental performance parameters (e. g. development time, 

pupal/adult weight, wing length) of the immatures (Gratton and Welter 1998, Foster and 

Howard 1999, Jallow and Zalucki 2003); and in some cases good correspondence 

between adult oviposition preferences and progeny survival was observed (Wiklund 

1981, Craig et al. 1989, Nylin and Janz 1993, Barker and Maczka 1996, Joachim-Bravo 

et al. 2001).   

 An important factor that may determine whether an insect will oviposit or not on a 

potential host is presence or absence of chemical stimulants and/or deterrents (Jermy 

1984, Thompson and Pellmyr 1991, Honda 1995).  Presence of optimal concentrations of 

stimulatory chemicals on the plant surface alone or in combination with physical stimuli 

such as shape, size, and texture influence the female oviposition decisions (Ramaswamy 
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et al. 1987, Renwick and Chew 1994; Chapter II of this dissertation).  Understanding 

these insect-host interactions and behavioral mechanisms involved in oviposition 

responses of female insects to different hosts will provide an insight into the evolutionary 

patterns of host use and possible host shifts to not-so-favorable hosts when good quality 

hosts are scarce (Tabashnik 1983, Futuyma et al. 1984). 

The Indianmeal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae), 

infests a wide range of stored food commodities such as cereal grains (Allotey and 

Goswami 1990, Locatelli and Limonta 1998), legumes (Lecato 1976), dried fruits (Cox 

1975), nuts (Mbata and Osuji 1983, Johnson et al. 1995), and some spices (Perez-

Mendoza and Aguilera-Penã 2004).  Most laboratory research involving P. interpunctella 

or other economically important insect pests are conducted using laboratory cultures of 

insects reared on artificial food media under constant environmental conditions in order 

to provide a regular supply of experimental insects.  For behavioral studies the laboratory 

reared insects are assumed to show behaviors that correspond to their conspecific wild 

counterparts.  However, because of continuous rearing for several generations under 

confined conditions, inbreeding and loss of variability is expected and consequently the 

laboratory populations may not fully display the behavioral patterns exhibited by the wild 

populations (Mazomenos et al. et al. 1977, Mason et al. 1987).  The possible reasons for 

this variation in laboratory insects may be due to enhanced effect of deleterious genes 

caused by continuous inbreeding (Boller 1972, Briscoe et al. 1972, Mackauer 1976, 

Mukhopadhyay et al. 1997), founders effect (Stuart and Gaugler 1996), no selection 

pressure for use of different hosts due to the absence of natural enemies (Bernays and 

Graham 1988), artificial selection for fast development and high productivity, and low 
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mobility due to confined conditions (Remund et al. 1977).  Due to these factors, lab-

reared insects may not discriminate among different hosts varying in quality.  Compared 

to lab-reared insects, conspecific insects in the wild are under a high selection pressure 

for reproductive success in a variable environment that includes the presence of natural 

enemies, unstable habitats caused by human activity, presence of suitable and unsuitable 

host plants, rare or dispersed host plants, and varying physical environment (temperature, 

relative humidity, etc.) conditions.  Because the overall individual fitness to withstand 

these selection pressures in the wild is mainly dependent on the quality of the food 

resource, it can be presumed that the wild females would be more discriminating during 

the host selection process than the laboratory insects. 

In this study, we separately assessed the performances of progenies from a long-

maintained laboratory colony and a recently collected “field” colony of P. interpunctella 

on several different diets.  Then, we tested ovipositional preferences of these two 

populations in no-choice and four-choice bioassays.  Specifically, the objectives of this 

study were to 1) record percent survivorship from first instar larva to adult, development 

time, and adult weight of progeny from two populations of P. interpunctella on eleven 

potential hosts, and 2) conduct no-choice and four-choice bioassays to evaluate the 

acceptability and preferences, respectively, of individuals from the lab-reared colony and 

a field colony for oviposition on a sub-set of the different diets.  

 
Materials and Methods 

Laboratory Insects.  Our laboratory colony of P. interpunctella has been reared 

on a mixture of cornmeal, chick starter, egg crumbles, and glycerol (4:2:2:1) for 5 years 

(minimum of~60 generations), with occasional infusion of wild moths, in a growth 
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chamber at 28°C, 60-70% RH, and 16:8 (L:D) photoperiod.  Adult moths of specific age 

were obtained by placing cardboard rolls in the culture jars for a week to collect the fifth 

instar larvae and separating the pupae by sex.  First instar larvae emerging from the eggs 

collected from these adults were used for the developmental bioassays. 

Field Moths.  Wild populations of P. interpunctella were collected and combined 

from several retail food stores in or near Stillwater, OK.  Several Styrofoam cups (0.25 L) 

containing standard lab diet were placed at different locations inside these grocery stores 

to collect eggs from wild P. interpunctella females that would oviposit into them.  The 

cups were replaced weekly and the 1-wk old cups were incubated under controlled 

environmental conditions, as mentioned earlier.  When the wandering stage larvae were 

observed, the contents of the diet cups were emptied into 0.5 L jars. Adults were 

separated from the diet jars after their emergence into 0.25 L jars and eggs were collected 

from several mating pairs.  The eggs were then transferred into a 10 cm diameter plastic 

Petri dish for eclosion, and a small amount of food was added to each dish to retain larvae 

that might otherwise disperse and escape from the dish.  These first instar larvae were 

used for development studies within 24 h after hatching from the eggs.  

Diets. Eleven foods were used for this study including the cornmeal-based lab-

rearing diet as the positive control. Seeds or dried fruits from two host plants each from 

five botanical families were selected as follows:  Poaceae: wheat, Triticum aestivum L., 

and pearled barley, Hordeum vulgare L.; Leguminosae: soybean, Glycine max L., and 

chick peas, Cicer arietinum L.; Juglandaceae: pecan nutmeats, Carya illinoensis 

(Wangenh.) K. Koch, and walnut nutmeats, Juglans nigra L.; Rosaceae: apricots without 

pits, Prunus armeniaca L., and plums without pits, Prunus domestica L.; Apiaceae: 
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coriander seeds, Coriandrum sativum L., and fennel seeds, Foeniculum vulgare Miller.  

These foods were either USDA certified organic products (Sun Organic Farms, San 

Marcos, CA) or had no additives as per the manufacturer’s specifications.  Moisture 

contents of these diets were determined by adding 2 g of a diet to a 5 cm diameter glass 

Petri dish and oven drying the sample at 80°C for 48 h.  Three replicates were set up per 

diet.  Dishes containing dried foods were transferred to a chamber containing a desiccant 

(Alumina adsorption, Fisher Scientific, Fair Lawn, NJ) to prevent the food materials from 

absorbing atmospheric moisture after their removal from the oven.  Dry weights of the 

foods were determined and percent moisture contents were calculated, which were: 

wheat-10.9%, barley-10.4%, soybean-9.9%, chick pea-8.9%, pecan-7%, walnut-4.7%, 

apricots-33.5%, prunes-40.1%, coriander-11.5%, and fennel-11%. 

Larval Performance Study. With the exception of lab diet, all the diets were 

ground (wheat, barley, soybean, chickpea, pecans, walnut, coriander, and fennel) or cut 

into small pieces (apricots and prunes) for easy consumption of the food by the larvae.  

The ground foods were passed through # 40 sieves (Seedburo Company, Chicago, IL) 

except walnut and pecans that could not be sifted due to their sticky nature caused by the 

high oil content.  About 1g of each of the different foods was weighed separately on a 

microbalance (Aldinger Company, Dallas, TX) and transferred into a 4.5 cm shell glass 

vial.  Test diets were equilibrated for moisture content for 5-7 d by being held in a 

chamber containing a saturated solution of sodium chloride (Fisher Scientific, Fair Lawn, 

NJ) with a relative humidity of ~75%.  Single first instar larvae from the laboratory 

colony and first generation larvae from the mixed wild population were carefully 

introduced into the glass vials containing the test foods using a camel hair brush.  A total 
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of four blocks over time were conducted in a randomized complete block design.  Each 

block contained 220 vials, ten vials for each of the eleven diets per moth population.  A 

2.5 cm2 nylon cloth was placed at the open end of each vial for ventilation and vial caps 

were tightened on the cloth to prevent the larva from escaping.  Air circulation into the 

vials was allowed by making small holes in the vial caps using a dissecting needle.  After 

the larvae were introduced into the vials and caps securely fastened, they were incubated 

in a controlled environmental chamber at 28°C, 65-70% RH and 16:8 h (L:D) period.  

Development of the larvae was monitored at regular intervals and when wandering stage 

larvae was observed a small strip of cardboard was placed in the vials to provide pupation 

sites for larvae.  Date of adult emergence was recorded.  After emergence, the adults were 

immediately kept in a freezer at -20ºC.   The percentage first instar larvae surviving per 

block was calculated as (number of larvae surviving to adult stage/total number of larvae 

introduced) x 100, and overall percentage survivability was analyzed over the four 

blocks.  Development time was the time interval between introduction of first instar larva 

into the vial and emergence of the adult.  Adult fresh weights were taken by thawing the 

frozen adults for about an hour and weighing the samples on a Sartorius microbalance 

(Aldinger Company, Dallas, TX) to the nearest 0.01 mg. 

Oviposition Preferences for Different Diets 

No Choice Studies.  Oviposition bioassays for field and lab moths were 

conducted in 5.7 L plastic boxes (Sterilite Inc., Townsend, MA).  The lid of the plastic 

box served as the floor of the arena that was covered with a brown craft paper on which 

the bottom of a 5-cm diameter glass Petri dish (Fisher Scientific, Pittsburgh, PA) was 

placed.  Foods for the no-choice bioassays were selected based on the developmental 
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parameters in the performance experiment and were grouped into a) foods highly suitable 

for larval survival and development (soybean and apricots), b) foods moderately suitable 

(barley and wheat), and 3) foods unsuitable for larval survival (coriander and walnut).  

Similar particle size of the foods was ensured by passing the diets through #10 sieve and 

collecting them on a #14 sieve.  Moisture content of the diets was equilibrated by placing 

the food dishes in a humidifying chamber for 3-4 d at ~75% RH using saturated sodium 

chloride solution.  Five grams of each kind of food was weighed using a microbalance 

(Aldinger Company, Dallas, TX) and transferred into a 5-cm diameter Petri dish that was 

placed on the floor of a plastic box.  Field moths used for this study were 2nd generation 

moths from the mixed population of wild adults and raised on the same standard lab diet 

and under the same environmental conditions as the laboratory moths.  Bioassays were 

conducted in a growth chamber maintained at 28ºC, 60% RH, and 16:8 light-dark 

conditions.  An unmated male and an unmated female (1-2 d old) were released into the 

plastic box from a small opening on top of the box that was covered with a small piece of 

duct tape.  Eggs laid by the moths were counted after 48 h in the dish, on the box floor, 

and walls of the arena.  Ten replicates were conducted for each moth population in a 

completely randomized design. 

Four Choice Studies.  Four-choice preference experiments were conducted in 

27.1 L plastic boxes (Sterilite Inc., Townsend, MA).  Similar to the no choice studies, the 

lid of the plastic arena served as a floor and was covered with a brown craft paper.  Four 

5-cm diameter glass Petri dishes were arranged at about 5 cm from each of the four sides 

of the box.  Three diets, which differed markedly in their ability to sustain laboratory and 

wild larvae, were selected for this study.  Soybean was considered a ‘good’ diet for larval 
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survival and development, barley was considered a ‘moderately’ suitable diet, and 

coriander was regarded as a ‘poor’ diet; an empty dish served as control.  Diets of similar 

particle size were prepared and their moisture contents equilibrated as described in no-

choice studies.  Second generation field moths were used for these experiments.  One to 2 

d old, virgin male and virgin female moths of a single population were released per box 

and eggs were counted in the dishes, on the wall, and on the floor of each box after a 48 h 

period.  A total of 10 replications in a completely randomized design were conducted per 

population. 

 
Statistical Analysis. Percent larval survival data were arcsine square-root 

transformed to homogenize variances and a 2-factor (population, diet) analysis of 

variance was performed using PROC MIXED (SAS Institute 2003).  Development time 

and adult fresh weight data were analyzed as 2-factor (population, diet) and 3-factor 

(population, diet, sex) ANOVA, respectively, after the data were transformed by 

√(X+0.5) (Zar 1998).  Random effects in the above models were the blocks.  For 

oviposition bioassays, egg count data were transformed by √(X+0.5) to normalize 

variances and the transformed data were analyzed as a single factor (diet) ANOVA for 

each population separately.  Original means are presented in the tables and figures. 
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Results 

 Larval Survivability.  Laboratory larvae and field larvae differed in their 

survival on the experimental diets, therefore population by diet interaction was significant 

(F = 2.45; df = 10, 63; P = 0.0153).  No significant differences in the larval survival were 

observed between the two populations averaged over the eleven diets (F = 0.63; df = 1, 

63; P = 0.4287), however, the main effect of diet was very significant (F = 110.16; df = 

10, 63; P < 0.0001).  Highest survivability of lab larvae was observed on chick pea, 

wheat, and apricots (Table 1).  No significant differences in average survivabilties of 

laboratory larvae were observed among apricots, soybean, and barley.  In the case of field 

moths, highest larval survivabilities were observed on soybean and apricots, and there 

were no significant survival differences between wheat, lab diet, and chick pea.  Of the 

foods supporting larval development, prunes were least suitable for survival of both the 

laboratory and field populations.  P. interpunctella larvae of the two populations did not 

survive to the adult stage on walnut, pecan, coriander, and fennel.  Comparisons between 

the populations among the different diets showed that significant differences in larval 

survivabilties occurred only on chick pea, soybean, and lab diet.     

 Development Time.  The population by diet interaction was not significant (F = 

1.02; df = 6, 461; P = 0.4131), implying that the laboratory larvae and the field larvae did 

not differ in their development times among the different diets.  There were no significant 

differences observed between the two populations (F = 2.96; df = 1, 461; P = 0.0861), but 

the main effect of diet was significant (F = 294.85; df = 6, 461; P < 0.0001).  Laboratory 

larvae developed fastest on the lab rearing diet and there were no significant differences 

observed on apricots, soybean, chick pea, and wheat.  Development times of larvae 
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originating from the field population were shortest on apricots, lab diet, and soybean.  

Slowest development times were observed on prunes and barley for the two populations 

(Table 2).     

 Adult Weight.  No significant three way (population, diet, sex) interaction was 

observed (F = 0.85; df = 6, 452; P = 0.5335).  The mean fresh weights of adults of the 

two populations were dependent on diet (F = 3.72; df = 6, 452; P = 0.0013) and sex (F 

=7.43; df = 1, 452; P = 0.0066).  The main effects of population (F = 213.06; df = 1, 452; 

P < 0.0001), diet (F = 33.18; df = 6, 452; P < 0.0001), and sex (F = 223.15; df = 1, 452; P 

< 0.0001) were very significant.  Laboratory moths weighed more than the field moths 

and the female weights were significantly higher than the male weights irrespective of the 

population.  Mean adult weights of laboratory males were significantly highest on lab diet 

(6.47 mg) and soybean (6.09 mg), and lowest on wheat (3.48 mg).  There were no 

significant differences in the mean adult weights of laboratory females on chick pea 

(10.36 mg), lab diet (9.98 mg), and soybean (9.25 mg), and these mean values were 

significantly different from the other diets (Table 3).   

Field males weighed significantly higher on soybean, apricots, lab diet, and chick 

pea.  Field females raised on soybean weighed significantly higher than females raised on 

the other experimental diets (Table 3).  There were no significant differences in the 

weights of adult females on chick pea, barley, lab diet, and apricots.  Prunes were poor 

hosts for both laboratory and field larvae since the adults produced on prunes had the 

lowest weight.   

The differences in the mean adult weights between sexes were significantly 

affected by the diet the larvae fed upon (F = 4.48; df = 6, 452; P = 0.0002).  Adult males 
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of the two populations weighed significantly lower than the females on all diets except 

prunes, where no significant differences were observed.  Mean adult weights of field 

males were significantly different from those of laboratory males on the tested diets with 

the exception of wheat.  Also, there were significant differences in adult weights of 

females of the two populations on the different diets (Table 3).   

No Choice Oviposition Bioassays.  In the case of laboratory moths, there were 

significant differences in the numbers of eggs laid in the dishes with food compared to 

the dish with no food (F = 4.70; df = 6, 63; P = 0.0005).  Significantly greater numbers of 

eggs were laid on soybean compared to barley, coriander, and walnut (Fig. 1).  There 

were no significant differences in the average numbers of eggs laid on sorghum, apricots, 

and wheat.  Significantly lower numbers of eggs were laid in empty dishes with no food.  

The mean total numbers of eggs laid in boxes with the different diets and the empty dish 

were not significantly different (F = 1.93; df = 6, 63; P = 0.0903).  Furthermore, the 

females laid a larger percentage of total eggs into a dish with any of the six diets 

compared to the empty dish, in which case the majority of eggs were laid on the box floor 

(Fig. 1). 

There were significant differences in the mean numbers of eggs laid by the field 

moths in the food dishes and the empty dish (F = 7.44; df = 6, 63; P < 0.0001).  Soybeans 

elicited significantly greater oviposition (62.5 eggs) compared to the other diets except 

barley.  Very low numbers of eggs were laid in the empty dish.  Mean total numbers of 

eggs laid in the boxes with the different diets and the empty dish were significantly 

different (F = 4.24; df = 6, 63; P = 0.0012).  Significantly greater numbers of total eggs 

were laid in boxes with soybean compared to all other diets and the empty dish except 
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barley (Fig. 2).  Again, when field females laid eggs in boxes with empty dishes, a greater 

percentage of those eggs were directed outside the dish.   

 Four-Choice Oviposition Bioassays.  Laboratory moths laid significantly 

different numbers of eggs in the three food dishes compared to the empty control dish (F 

= 3.89; df = 3, 36; P = 0.0166).  Average numbers of eggs laid in dishes containing 

soybean and barley were significantly greater from those laid in the empty dish; no 

statistical significance was observed between eggs counts in dish with coriander and 

empty dish (Fig. 3).  In the case of field moths, average numbers of eggs laid in the food 

dishes and the empty control were significantly different (F =12.08; df = 3, 36; P < 

0.0001).  The field moths laid significantly greater number of eggs in a dish with soybean 

compared to barley, coriander, or empty dish (Fig. 4).  The mean total numbers of eggs 

laid per box by field females (43.3±11.1) were lower than the laboratory females 

(79.2±14.2), but the numbers were not statistically significant (F = 3.49; df = 1, 18; P = 

0.0780). 

 
Discussion 

 Our developmental bioassays were conducted by introducing individual neonate 

larvae into small shell vials that precluded the potential effects of conspecific or 

interspecific competition and intervention by natural enemies.  Moreover, the oviposition 

bioassays were conducted in small plastic boxes under controlled environmental 

conditions that restricted the movement of the adult moths and offered protection from 

external interferences by other competing organisms.  These artificially narrow 

environmental conditions were applied to focus just on the scientific questions of host 

suitability and oviposition preference and to make comparisons between populations 



 

 77 

under the same conditions.  Therefore, we conclude that 1) laboratory and field 

populations of P. interpunctella differ in their ability to survive, develop, and effectively 

transform the fed diet into their adult biomass, 2) P. interpunctella adults may prefer to 

oviposit in diets unsuitable for their offspring survival in the absence of favorable larval 

hosts in no-choice situations, 3) adults from wild populations are more “choosy” when a 

number of potential hosts are available, ovipositing on foods that are highly suitable for 

their progeny survival, and 4) laboratory moths are less selective when presented with 

several hosts of varying quality simultaneously, and oviposit in diets unsuitable for their 

progeny survival. 

 Larvae of the two populations survived well on all diets except walnut, pecan, 

coriander, and fennel.  Lab diet was predictably very suitable for the survival of 

laboratory larvae evident from the high survivability, faster development, and higher 

adult weight than field moths.  As indicated earlier, our laboratory colony of P. 

interpunctella has been cultured on a cornmeal-based diet for several years, and therefore 

possibly undergone genetic changes and adaptation to the laboratory environment that 

may be responsible for the observed performance of laboratory larvae on the rearing 

medium when compared to the field larvae.  A majority (> 80%) of the larvae of the two 

populations survived to the adult stage on apricots, chick pea, soybean, and wheat.   

 Ground walnut and pecan did not support larval growth, which was surprising 

because traditionally P. interpunctella is a major pest in stored walnuts and pecans 

(Gecan et al. 1971, Wang and Tang 2001). Furthermore, studies conducted by Nansen 

and Phillips (2003) found that walnut oil was a strong oviposition stimulant for P. 

interpunctella, and Morrison et al. (2005) showed that whole pecan nutmeat was highly 
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suitable for the development of P. interpunctella larvae.  We believe that the main 

causative factor responsible for the mortality of larvae on walnut and pecan is due to 

oxidative rancidity caused by the grinding process that probably released high levels of 

oil.  Walnuts and pecans are high in unsaturated fatty acids, and therefore can turn rancid 

by oxidation to free acids from exposure to air (Musco and Cruess 1954, Maness et al. 

1995, Wang et al. 2002).  Rancidity of nuts leads to the production of peroxides 

(Buransompob et al. 2003) and other undesirable compounds that can destroy the 

nutritive value of the ‘exposed’ nuts (St. Angelo et al. 1979) and therefore can be 

detrimental for the survival of the feeding larvae.  Our results agree with observations 

made by Johnson et al. (1992) who showed that ground walnuts were poor hosts for the 

survival and development of P. interpunctella larvae and indicated that the probable 

reason for this poor performance could be due to rancidity of walnuts caused by grinding.  

Thus, unknowingly we may have affected the survivability of larvae on walnut and pecan 

by grinding.  Coriander and fennel were unfavorable hosts for the larvae of the two 

populations.  Many spices are known to possess compounds that are insecticidal or 

prevent feeding by larvae (anti-feedants) (Shaaya et al. 1997).  Several species of stored 

product insects have been shown to be adversely affected by non-polar extracts of spices 

(Ho et al. 1996, Huang and Ho 1998, Kim and Ahn 2001).  Therefore, it was not 

surprising that the larvae of the two populations did not survive on these two spices.   

 Development times of the larvae of the two populations were dependent on the 

diet type.  The development times ranged from 28 – 31.5 d on lab diet, apricots, soybean, 

chick pea, and wheat.  Overall, laboratory and field populations did not differ in their 

development times.  Experiments conducted by several researchers have indicated that 
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the kind of larval diet is probably the most important factor determining the development 

times of P. interpunctella.  Allotey and Goswami (1990) showed that the mean 

development period of a Nigerian population of P. interpunctella was highest on wheat 

(46.11 d) compared to maize, Zea mays L., groundnut, Arachis hypogea L., and sorghum, 

Sorghum bicolor L.  P. interpunctella larvae have the shortest development times on 

cracked or milled soybeans and corn compared to similar sized wheat, rice, Oryza sativa 

L., and black-eyed peas, Vigna unguiculata L. (LeCato 1976).  Johnson et al. (1992) 

showed that the development times were the longest on ground walnuts compared to 

three other test diets.  In our development assays, we found that the development times 

on barley and prunes were the longest.  Our results on prunes agree with Johnson et al. 

(1995), who showed that prunes were poor hosts for P. interpunctella.  They found that 

the percentage survival of larvae and the number of adults emerging were the lowest and 

the development time longest on prunes.  Moisture contents of the diets may have played 

a secondary role in the larval survival and development compared to the chemical 

composition or nutrient make up of the diets because we observed some contradictory 

results regarding the correlation of moisture content and development time.  For example, 

moisture content in prunes (40%) was the highest among the diets we tested, but P. 

interpunctella larvae took a long time to complete their development to adulthood.  

Contrary to this observation, dried apricots had about 33% moisture content and the 

larvae developed at a faster rate and reached the adult stage in 26 – 30 d.  Moisture 

contents of the other diets on which larvae survived was in the range of 9-11% and the 

development times were more or less similar except barley, on which larvae developed 

into adults in about 48 d.   
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 Field adults weighed less than the laboratory adults, and females of the two 

populations weighed higher than the males.  The probable reason for the field adults 

being lighter than the laboratory adults could be due to the differences in the larval 

rearing diets.  We collected the field moths from pet food and grocery stores and the diets 

that the field moths developed on were probably lower in quality than the lab-rearing 

diet, and these field habitats may not have selected for large moths to develop on high 

quality food.  Because the artificial rearing diets are optimized to promote faster 

development and greater yields of moths, and also due to adaptation of the laboratory 

colony to controlled environmental conditions, the laboratory larvae have a greater ability 

to consume food and thus gain weight.  Similar to our observations, Carpenter and 

Wiseman (1999) found that the pupal weights of a wild strain of the corn earworm, 

Helicoverpa armigera (Boddie) (Lepidoptera: Noctuidae), were significantly lower than 

those of a laboratory strain reared on bean and ‘celufil’ controls and a corn variety 

‘SEG25’.   

 Diet type elicited significant differences in the mean adult weights of field and lab 

populations, due probably to nutritional factors.  Soybean and chick pea were very 

suitable for the development of the larvae as is evident from the adult weights.  Earlier 

studies by LeCato (1976) showed that mean adult weights of P. interpunctella were 

highest on cracked or broken soybean compared to similar sized corn, wheat, rice or peas.  

Adult moths from the laboratory colony were heavier when reared on lab diet than the 

field population.  Again, this could be because of the adaptation of the laboratory 

population to the cornmeal-based rearing diet.  Mean adult weights for both the 

laboratory and field populations were the highest on soybean and chick pea, whose 
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moisture contents (9-10%) were far lower than those of prunes (40%).  Contrary to these 

observations, we found that adult moths weighed higher on apricots (33 % moisture 

content) when compared to wheat and barley (10.4-10.9%).  Moisture contents of the 

diets may play a secondary role in the development of larvae and eventual weight gain by 

the adults compared to the actual nutrient composition (LeCato 1976), such as high fat 

and protein levels in legumes, and physical form of the foods (Mbata 1990). 

 In no-choice oviposition bioassays, both the laboratory and field moths oviposited 

in diets that were unsuitable for their larval survival.  The experimental arenas we utilized 

restricted the dispersal of the females and therefore the moths were probably forced to lay 

eggs on unfavorable hosts.  Adults of the two populations laid greater numbers of eggs on 

soybean, which was the best larval diet among the diets tested, confirming the notion that 

the chemical and nutritional composition of the foods is the most important factor 

determining the post-alightment oviposition behavior of many lepidopterous insects 

(Ramaswamy et al. 1987, Renwick and Chew 1994).  In the oviposition bioassays, we 

offered the insects diets that were of approximately similar particle size, and clearly 

moisture content of the diets seems to be of minor importance. 

 In four choice oviposition assays, laboratory moths were less selective when 

offered diets of differing quality and larval suitability.  They laid eggs in coriander, which 

was unsuitable for larval survival.  There was high individual variation in the oviposition 

preferences of laboratory adults for the three diets.  Total number of eggs laid by the 

laboratory moths was greater than the field moths.  Similarly, olive fruit flies, Dacus 

oleae (Gmelin), reared in the laboratory on an artificial diet for 50 generations laid 3-4 

times more eggs compared to conspecific adults reared on olives for 6-8 generations 
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(Economopoulos et al. 1976).  Contrary to the lab-reared P. interpunctella, field moths 

preferred to oviposit in soybean, which was a very suitable diet for the survival of their 

progeny compared to barley and coriander. 

P. interpunctella populations in their natural field habitats can be presumed to be 

under constant selection pressure from a wide variety of abiotic and biotic factors.  

Therefore, to increase their fitness by producing successful offspring, wild moths have to 

oviposit on the best available larval diet.  It is clear from our study that ovipositional 

preferences of field moths for different diets correspond to the suitability of those diets 

for the survival and development of their progeny.  Continuous culturing of P. 

interpunctella in the laboratory may cause physiological and behavioral changes leading 

to a decline or dilution in their ability to discriminate hosts of varying quality.  Raulston 

(1975) showed that the oviposition patterns of laboratory and wild populations differ in 

that the laboratory moths oviposited earlier than the wild moths.  However, after three 

generations of artificial rearing of wild moths on an artificial media, the oviposition 

patterns were similar between those two populations.  Evidently, even a few generations 

of laboratory culturing can cause field-collected moths to lose their typical behaviors 

exhibited in their natural habitats.  We suggest addition of field moths to an existing 

laboratory colony of moths every 3-4 generations so that sufficient genetic variation and 

behavioral veracity is maintained.  Also, regular tests comparing the lab-reared and wild 

moths are warranted in order to ensure their behavioral similarity. 
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Table 1.  Mean percent larval survivabilities (± SE) of two populations of P. 

interpunctella on eleven diets 
 

Diet Laboratory 
† Field 

† P
a 

Lab diet (control)          100.0 ± 0.0a                   85.0 ± 8.7abc          0.0111 

Barley            77.5 ± 8.5bc          70.0 ± 14.7cd 0.6033 

Wheat            97.5 ± 2.5a          92.5 ± 4.8ab 0.3647 

Chick Pea          100.0 ± 0.0a          85.0 ± 5.0bcd 0.0080 

Soybean            80.0 ± 7.1bc          97.5 ± 2.5a 0.0052 

Apricots            90.0 ± 7.1ab          97.5 ± 2.5a 0.2580 

Prunes            67.5 ± 4.8c          67.5 ± 13.1d 0.9117 

Pecan              0.0 ± 0.0d            0.0 ± 0.0e 1.0000 

Walnut              0.0 ± 0.0d            0.0 ± 0.0e 1.0000 

Coriander              0.0 ± 0.0d            0.0 ± 0.0e 1.0000 

Fennel              0.0 ± 0.0d            0.0 ± 0.0e 1.0000 

       

†Means followed by the same lowercase letter within a column are not significantly 
different (N = 4; P < 0.05). 
aPairwise probabilities comparing survival of the two populations are based on mixed 
model ANOVA.
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Table 2.  Mean development times (days ± SE) of two populations of P. interpunctella 

on seven diets† 

 

Diet Laboratorya Fielda 

Lab diet (control)           28.1 ± 0.8d    (40)          28.0 ± 2.3de    (34)         

Barley           48.9 ± 0.9b    (31)          46.6 ± 1.6b      (27) 

Wheat           31.5 ± 0.5c    (39)          30.3 ± 0.5cd    (36) 

Chick Pea           31.4 ± 0.3c    (39)          31.2 ± 0.8c      (33) 

Soybean           29.8 ± 0.6cd  (32)          28.2 ± 0.3cde  (39) 

Apricots           29.7 ± 1.8cd  (36)          25.8 ± 0.9e      (39) 

Prunes           79.7 ± 3.6a    (27)           83.7 ± 4.4a      (26) 

 
 
aMean values are based on the number of observations in parenthesis 
†Means in a column followed by the same lowercase letter are not significantly different  
(P < 0.05) 
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Figure Legends 
 
 

Fig. 1.  Ovipositional responses of P. interpunctella females from a laboratory colony in 

no-choice bioassays.  Bars followed by the same lowercase letter or uppercase letter are 

not significantly different (N = 10; P < 0.05). 

 

Fig. 2.  Mean (±SE) number of eggs per dish and per box in no-choice bioassays 

involving field moths.  Bars followed by the same lowercase letter or uppercase letter are 

not significantly different (N = 10; P < 0.05) 

 

Fig. 3.  Oviposition responses of female P. interpunctella from a laboratory colony in 

response to diets of differing quality in four-choice bioassays.  Bars followed by the same 

lowercase letter are not significantly different (N = 10; P < 0.05) 

 

Fig. 4.  Mean (±SE) number of eggs laid by females from a field colony of P. 

interpunctella on each diet in four-choice bioassays.  Bars followed by the same 

lowercase letter are not significantly different (N = 10; P < 0.05)   



 

 93 

 

 
 
 
 
 
 
 
 
 
Fig. 1.  
 

Soyb
ean

Apr
icots Wheat

Cor
iand

er
Bar

ley
Walnu

t

Empty 
dish

M
ea
n
 e
gg

 c
ou

n
ts
 (
+
 S
.E
)

0

20

40

60

80

100

Eggs in dish
Total eggs per box a

 ab
ab

  b

     b

 bc

     c

 
 
 
 
 
 



 

 94 

 
 
 
 
 
 
 
 
 
Fig. 2. 
 

Soyb
ean Bar

ley
Apr

icots Wheat

Cor
iand

er
Walnu

t

Empty 
dish

M
ea
n
 e
gg

 c
ou

n
ts
  (
+
 S
.E
)

0

20

40

60

80

100

Eggs in dish
Total eggs per box

     a

 ab
    
    bc

 bc
  c

         
     d

    
    bc

     A

AB

     
     B

  B
 BC

     C   BC



 

 95 

 
 
 
 
 
 
 
 
 
 
Fig. 3.  
 

Soybean Barley Coriander Empty dish

E
gg

s 
in
 d
is
h
 (
M
ea
n
 +
 S
E
)

0

10

20

30

40

50

60 a

a

ab

b

 



 

 96 

 
 
 
 
 
 
 
 
 
 
 
Fig. 4. 
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ABSTRACT 

The Indianmeal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) is a key 

pest of stored food products.  We studied the responses of P. interpunctella adults to 1) 

ultraviolet (UV), green, and white lights using light emitting diodes, 2) combinations of 

attractants and green or UV light, and 3) light duration and different scotophase light 

intensities.  Experiments 1 and 3 were conducted in small metal sheds (3.0 x 2.3 x 1.7 m) 

and experiment 2 was conducted in a larger experimental room (21.4 x 16.5 x 3.0 m).  P. 

interpunctella adults preferentially rested on UV-, green-, and white-lighted areas of the 

metal sheds compared to the corresponding dark areas.  UV was the most active of the 

three lights for positive photo-orientation of the adult moths.  A combination of synthetic 

sex pheromone and green light significantly decreased adult trap captures compared to 

pheromone alone.  Illuminating pheromone-baited traps with UV light did not increase 

trap captures compared to pheromone-only traps.  However, when UV light was placed at 

the pheromone baited-trap, a slight increase in trap captures was observed.  A 

combination of a food-based attractant and UV light did not increase the overall trap 

captures compared to attractant only traps.  Light traps by themselves were not as 

effective as pheromone/attractant-baited traps in attracting adult moths.  Oviposition 

studies showed that moths required a period of darkness for maximum oviposition, which 

was very low when no dark period occurred.  Illumination above 8 lux during the 

scotophase of a 24-hr cycle light-dark caused significant inhibition of oviposition by 

gravid females. 

KEY WORDS oviposition behavior; orientation behavior; sex pheromone; host 

attractants; photoperiod
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Early detection of pest insects causing damage to stored food products is an important 

component of an integrated pest management strategy in the food industry. Preventive 

control measures based on reliable early detection tools could have an enormous impact 

on populations of economically important pests.  This is especially true in grain storage 

areas and food processing plants, where detection of an insect infestation in food for 

human consumption can accrue huge losses for the producer (Phillips 2006). 

The Indianmeal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) is 

an important pest of stored grain and value-added food products with a worldwide 

distribution.  Larvae feed on a variety of foods such as cereals, beans, nuts, dried fruits 

(USDA 1975; LeCato 1976; Cox and Bell 1981), dried flowers (Sauer and Shelton 2002), 

dried vegetables (Na and Ryoo 2000), and some spices (Perez-Mendoza and Aguilera-

Penã 2004), and spin silken webs causing economic losses by affecting food quality. 

Furthermore, the presence of live larvae, larval frass, live adults and their body parts are 

considered major contaminants in the U. S. food industry (Mason 2003).  Qualitative and 

quantitative losses to food products could be prevented if efficient early detection and 

pest suppression tools are investigated.  

Attraction of insects to light is well known and this behavior has been 

incorporated as an early detection and monitoring tool for pest insects in the form of light 

traps (Gilbert 1984).  Three characteristics of light that can affect the behavior of an 

insect are 1) light quality or wavelength, 2) light intensity, and 3) light duration (Callahan 

1957).  As is the case with most insect pests infesting stored foods, P. interpunctella 

adults have been shown to differentially respond to various wavelengths of 

electromagnetic radiation.  Studies conducted by Stermer (1959), using 9 µW light bulbs, 
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showed that P. interpunctella adults were attracted to light wavelengths in the range of 

334 -546 nm and that the most attractive radiation range was 334-365 nm.  Soderstrom 

(1970a) tested different numbers and shapes of green electroluminescent light bulbs and 

single circular ultraviolet lamps with suction traps and found that eight 0.06 W green 

lights per trap versus a single circular 32 W ultraviolet (UV) lamp significantly increased 

the trap catches of P. interpunctella.  These observations contradict findings by Stermer 

(1959) probably because of differences in design and light intensities of light devices. 

Kirkpatrick et al. (1970) found that a suction trap containing a combination of 0.3 W 

green light and circline 32 W black light did not increase the trap catches of P. 

interpunctella compared to green or UV light alone.  Apart from the above three studies, 

no experiments have been conducted to test the responses of P. interpunctella to light 

quality.  Earlier light trapping studies involved attraction of mixed populations of P. 

interpunctella adults toward light sources, ignoring the potential importance of reflected 

light in attracting or repelling adult moths (Kirkpatrick et al. 1970, Soderstrom 1970a).  

Understanding the orientation behavior of adult moths toward reflected light and direct 

light from novel light sources such as light emitting diodes (LEDs) could be quite useful 

in developing inexpensive, non-chemical methods of insect pest control.  Although traps 

baited with the synthetic female sex pheromone, (Z, E) 9, 12 tetradecadien-1-yl acetate 

(ZETA) of P. interpunctella, are reliable indicators of severity of pest infestations, a 

combination of pheromone traps with attractive light sources could provide a more 

effective trapping strategy for monitoring pest populations. 

 Duration of light, or photoperiod, plays an important role in the flight and 

oviposition behavior of P. interpunctella (Lum and Flaherty 1970; Mbata 1985).  The 
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onset of darkness serves as a stimulus for the nocturnal movement of the females and 

peak oviposition occurs immediately after a phase shift from light to dark (Madrid and 

Sinha 1982).  However, there is no information on the effect of different scotophase light 

intensities on oviposition by P. interpunctella.  According to Driesig (1980), responses of 

nocturnal insects to scotophase illumination is an “all-or-none” response, suggesting that 

a threshold light intensity is required during the dark phase, which when exceeded would 

inhibit typical behaviors characteristic of nocturnal insects.  Therefore, we investigated 

the effect of different scotophase light intensities on ovipositional response of P. 

interpunctella. 

 The objectives of this study were to 1) evaluate the spatial distribution and trap 

captures of virgin males, virgin females, and mated females in response to three colored 

lights in small metal sheds, 2) study the combinatorial trapping efficacy of ZETA/food-

based attractant and light to adult moths, and 3) study the oviposition behavior of P. 

interpunctella under different light conditions and scotophase light intensities.  

 
Materials and Methods 

Insects.  The insects for all the experiments were obtained from a laboratory 

colony of P. interpunctella reared on a standard diet (Phillips and Strand 1994).  

Cardboard rolls that served as pupation sites for the wandering 5th instar larvae were 

placed in the colony jars when they were observed. After a week, the rolls were removed 

from the colony jars, and pupae were separated by sex, placed singly into 4.5 cm glass 

vials, and adults emerging from the pupae were used for experiments that required moths 

of a specific age. 
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1. Spatial Orientation of Moths to Lights in Small Metal Sheds.  Green (525 

nm), UV (395 nm), and white (450 nm –700 nm) light emitting diodes (LEDs; 5 mm, 12 

V, 30° radiation angle; The LED Light Inc., Carson City, NV) were used for these 

experiments, which were conducted under otherwise continuous dark conditions.  LEDs 

were used because they provided point sources of narrow beam high intensity radiation, 

they were easy to use, and were long-lasting.  Preliminary experiments showed that 

moths preferentially rested on low light-illuminated horizontal and vertical surfaces that 

reflected light from a light source on the floor, compared to dark surfaces.  Therefore, 

experiments were conducted in three closed metal sheds, 3.0 m x 2.3 m x 1.7 m, to 

evaluate the orientation and spatial distribution of virgin males, virgin females, and mated 

females separately in response to the lighted regions versus dark regions of experimental 

sheds.  Cracks and crevices inside the sheds were plugged using a foam sealant in order 

to prevent external light from entering the experimental arena.   

Sheds were marked into two equal halves using a white tape along the center line, 

and a white sheet of cardboard that served as a rectangular trap (36 cm x 15 cm), with 

adhesive glue over an area of 285 cm2 on its top surface, was placed in each half of the 

metal shed and oriented parallel to the center line.  The two traps were 1.8 m apart and 

each trap was ca. 0.6 m from the nearest side wall.  Two LEDs were inserted through 

holes located along the length of each sticky ‘light’ trap about 10 cm apart, and traps with 

no LEDs were controls.  Each trap was placed on a metal stand that raised it 10 cm above 

the floor, with the sticky portion of the trap and the LEDs facing the ceiling.  Therefore 

through this arrangement, one-half of the metal shed was lighted (transmitting light from 
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the LEDs that reflected from the inside shed surface on that side) and one-half of the shed 

had no light source and was dark.   

Thirty moths (< 3 d old) were released at a given time in each metal shed and the 

spatial distribution of resting moths and numbers of moths captured in sticky traps were 

recorded after 24 h.  When mated females were used, they were obtained by releasing 

groups of <3 d old virgin males and females into a small screened cage (approximately 

30 x 30 x 30 cm) and collecting the adults in copula singly into 4.5 cm glass vials.  The 

mated females were separated from males the following day into clean shell vials and 

were used for the experiments.   

Resting moth counts to determine spatial distribution on the ‘dark’ and ‘light’ side 

of the shed were recorded by counting the number of moths on the floor, walls and 

ceiling, and included the moths caught in the trap in the respective half of the shed.  In 

addition to spatial distribution, trap capture data were analyzed separately to evaluate the 

orientation of adult moths directly to light sources.  The positions of the lighted vs. dark 

traps were alternated each time the light treatments were randomly assigned to the three 

sheds to avoid biased results due to location of the treatments. Temperature and relative 

humidity were recorded using Hobo data loggers (Onset Computer Corporation, 

Bourne, MA), and varied from 28°-35ºC and 25-30%, respectively, during the course of 

the study. Temperature and humidity conditions were similar in all three sheds for a 

given time period and were affected by ambient conditions in the building where the 

sheds were placed for this experiment.  A total of five replications, blocked over time, 

were conducted each for separate experiments with virgin males, virgin females, and 

mated females in a randomized complete block design.  
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 2. Orientation of Moths to Combinations of Semiochemicals and Light.  The 

responses of P. interpunctella adults to the sex pheromone ZETA and a food-based 

attractant in combination with green or UV light were tested in four-choice trapping 

experiments under dark conditions.  The experiments were conducted at three locations in 

an enclosed basement room, 21.4 x 16.5 x 3.0 m3, on the campus of Oklahoma State 

University, Stillwater, OK (Fig. 1).  Diamond shaped sticky traps (Storgard® II, Trécé 

Inc., Adair, OK) were used for the series of experiments.  The temperatures and relative 

humidities throughout the course of the studies ranged from 24-32°C and 23-35 %, 

respectively.  

 In case of males, we tested green LEDs (525 nm) initially in combination with 

ZETA by focusing green light on ZETA-baited traps containing a rubber septa (Sleeve 

Stopper 03-215-5, Fisher Scientific, Pittsburgh, PA) impregnated with 200 µg of ZETA 

(Bedoukian Research, Inc., Danbury, CT) in 5 µL hexane.  Each block included four 

treatments, 1) blank trap, 2) light only trap, 3) ZETA only trap, and 4) Light + ZETA 

trap.  The traps were hung 2.0 m from the ground and located on or near a wall or vertical 

support column.  A 3-LED strip (3.0 V; 90° radiation angle; The LED Light Inc., Carson 

City, NV) was used as the source of light; the light strip was suspended at a distance of 

0.6-0.8 m from the trap, at the same height as the trap, and illuminating the trap.  The 

sticky traps were arranged in such a way that the distance between the traps was 3.3-5.5 

m.  For this and subsequent trapping experiments described below, about 200 moths of 

mixed age and sex were released from a single colony jar at each trap-block location by 

keeping the colony jar open for 6 h.  Trap captures were counted after 48 h.  The 
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experiment was conducted over three different 48 h periods for a total of nine replications 

per treatment, and each time the position of the treatments was randomized. 

 In the second experiment, ultraviolet LEDs (12 V; 30° radiation angle; The LED 

Light Inc., Carson City, NV) replaced the green lights in the previous experiment. The 

basic experimental set up was the same as the green-light experiment except that a single 

UV LED was used per light treatment. The trap counts were taken after 48 h. Because we 

found that the UV light attracted the females in the metal shed experiment, we checked 

the traps for the presence of females in this experiment. A total of nine replications over 

three experimental periods were conducted.  A final experiment with ZETA involved a 

UV LED being placed on top of the trap, such that light was being emitted from the trap, 

rather being reflected from light illuminating the trap from a distance.  The UV LED was 

not placed inside the trap to avoid possible degradation of ZETA by exposure to UV light 

(Bruce and Lum 1976, 1981). The design was identical to the previous two experiments.  

Nine replicates were conducted. 

 Attractiveness of a food-based attractant (the same as that used in Moth 

Suppression®, Insects Limited Inc., Westfield, IN; patent-pending) was tested in 

combination with UV light.  Four ml of the food-based attractant solution was applied to 

a single cotton wick that was placed in a sticky trap alone or in combination with UV 

light that was placed on top of the trap.  The four treatments per block included 1) blank 

trap, 2) light only trap, 3) attractant-baited-trap only, and 4) light + attractant trap.  As 

with previous trapping experiments with ZETA, trap captures were recorded after 48 h.  

A total of 8 replications was conducted, and captures of males and females were 

recorded.        
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 3. Oviposition in Response to Light Duration and Intensity.  The oviposition 

studies were conducted in rectangular glass containers (60 cm x 30 cm x 41 cm) that were 

housed in the metal sheds described above. Two glass containers were arranged on a 

plywood sheet (100 cm x 50 cm) separated by 20 cm and raised 10 cm above the floor 

using two metal stands. About 15 g of wheat kernels (hard red winter wheat, Triticum 

aestivum L.) were added to an opened 5 cm diameter plastic Petri dish (50 mm x 10 mm) 

that was placed in the center of each glass chamber. Two male-female pairs of virgin 

moths (<2 d) were released in each experimental arena between 0800-1400 h local time 

and the numbers of eggs laid were counted after 72 h. Lighting was provided by a single 

100 W (Sylvania Soft White, Osram Sylvania Company, Danvers, MA; experiment a) or 

two 100 W incandescent bulbs (experiment b and c).  

 a. Effect of Photoperiod on P. interpunctella Oviposition.  There were three 

treatments for this experiment, 1) 24 h light, 2) 16 h of light and 8 h of dark, and 3) 24 h 

dark.  A timer was connected to a single 100 W incandescent bulb that was clamped to 

the ceiling, to provide 16 h of light for treatment 2.  The three treatments were assigned 

randomly to the three sheds, each of which contained two glass containers.  Therefore for 

each experimental time period of 72 h, there were two observations for each treatment.  

The treatments were randomized between the sheds each time the experiment was 

repeated.  A total of ten replicates were conducted.  Temperatures in the metal sheds 

ranged from 23-27ºC during the course of the experiments. 

 b. Effect of Low Light Intensity During the Dark Period on P. interpunctella 

Oviposition.  It was evident from experiment 1 that the females require a dark period 

during a daily cycle to realize their full oviposition potential. The objective of this 
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experiment was to examine the effect of increasing light intensity during the scotophase 

on oviposition by P. interpunctella.  Two 100 W incandescent bulbs (Sylvania Soft 

White, Osram Sylvania Company, Danvers, MA) were clamped on to the ceiling (1.7 m 

high) of each of the two metal sheds.  There were two treatments as follows: i) 16 h 

photophase and 8 h of ‘dim’ light scotophase, and ii) 16 h photophase and 8 h of ‘dark’ 

scotophase (control).  The two light bulbs were used such that one full intensity light bulb 

operated for 16 h and the other ‘dim’ light bulb either operated for 24 h (i) or for 16 h (ii).  

The ‘dim’ light intensity was obtained by connecting one of the light bulbs to an 

incandescent light dimmer (Lutron Maestro®, Lutron Electronics, Inc., Coopersburg, 

PA).  It is not known if the reduction in light intensity caused any changes to the spectral 

characteristics of light from the incandescent light source.  In the first trial, light intensity 

from the incandescent “dim” bulb was adjusted such that the light level was too low to be 

detected by a light meter, but it was barely visible to the human observer.  The two glass 

containers were arranged in such a way that they were directly under the light source and 

a light intensity recorder (Hobo® pendant data logger, Part# UA-002-08, Onset Computer 

Corporation, Bourne, MA) was placed between the two glass containers.  These two 

treatments were randomly assigned to two sheds and the positions of the two treatments 

were alternated for each repetition of the experiment. A total of 10 replications were 

conducted for each treatment. In the second trial, the light intensity during the dark phase 

was increased by adjusting the dimmer control to provide light intensity in the range of 

11-22 lux at the level of the light meter that was positioned between the glass containers.  

The light intensities on the floor and top of the arena were 8 lux and 40 lux, respectively.  

The basic set up of the experiment was the same as the previous experiment.  Eight to 10 
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replications were conducted and the temperatures in the metal sheds ranged from 28ºC - 

33ºC.     

Statistical Analysis.  The number of moths counted on the lighted side of the 

shed in orientation experiments was converted into percent of total moths per shed and 

these percentage values were compared among the three treatments.  The percentage data 

were arcsine square root-transformed (Zar 1998) and analyzed by PROC MIXED (SAS 

Institute, Cary, NC).  Similarly, within an individual metal shed, percent moth 

distributions in the lighted and dark side of the metal shed were calculated and analyzed 

by Chi-square test in a contingency table (PROC FREQ).  Trap captures in the metal 

sheds were analyzed between the three treatments by the differences in number of moths 

caught in the light trap and blank trap (∆ light – blank) by Kruskal-Wallis test.  Wilcoxon 

signed-rank test was used to analyze trap capture differences between the light trap 

versus the blank trap for each light treatment.  Trap capture data from the 

light+semiochemical combinatorial study were transformed using √(X+0.5) and analyzed 

as a 2 x 2 factorial ANOVA (light and attractant, each factor with two levels).  The 

number of males and females trapped in combination experiments were compared by 

PROC TTEST of SAS.  Egg count data from oviposition studies were also transformed 

by √(X+0.5) and the transformed data was analyzed by PROC MIXED (SAS Institute 

2003); blocks (dates) were considered random effects in the analysis.  All data presented 

are untransformed means + standard error of the mean.   

 
Results 

Spatial Distribution and Trapping Study.  A significantly greater percentage of 

males were found resting in the green-lit regions of the metal sheds compared to UV and 
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white lighted regions (F = 8.74; df = 2, 12; P = 0.0045).  There were no significant 

differences in the numbers of moths found in the UV and white lighted regions of the 

sheds (Fig. 2).  Males were significantly found resting on green (χ2 = 166.12, df = 1, P < 

0.0001), UV (χ2 = 24.11, df = 1, P < 0.0001), and white (χ2 = 27.01, df = 1, P < 0.0001) 

lighted sides of the metal sheds compared to their corresponding dark sides.  Among the 

three different light traps, no significant differences in male captures were observed (χ2 = 

3.51; df = 2; P = 0.1945).  However, significantly greater number of males were attracted 

to green (χ2 = 8.33, df = 1, P = 0.0039), UV (χ2 = 6.07, df = 1, P = 0.0138), and white (χ2 

= 5.63, df = 1, P = 0.0177) light traps compared to their respective control traps with no 

light.   

In the case of unmated females (Fig. 3), percentage unmated females distributed 

on the lighted side of the shed was not significantly different among green, UV, and 

white lighted regions (F = 3.79; df = 2, 8; P = 0.0696).  Significantly greater percentage 

of moths were observed on the green-(χ2 = 134.99; df = 1; P < 0.0001), UV-(χ2 = 20.0; df 

= 1; P < 0.0001), and white- (χ2 = 56.18; df = 1; P < 0.0001) lit regions of the respective 

metal sheds compared to their corresponding dark regions.  Among the three light traps, 

significantly greater numbers of unmated females were attracted to UV light trap than to 

green and white light traps (χ2 = 9.25; df = 2; P = 0.0033).  No significant differences in 

trap captures were observed for green and white light traps (χ2 = 1.03; df = 1; P = 

0.3092).  There were no significant differences observed in the number of moths trapped 

in green light trap versus control (χ2 = 3.72; df = 1; P = 0.0539) and white light trap 

versus the control trap (χ2 = 2.25; df = 1; P = 0.1336).  Significantly greater numbers of 
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unmated females were trapped in the UV light trap compared to the control trap (χ2 = 

7.31; df = 1; P = 0.0069).     

There were no significant differences in the percentage of mated female moths 

(Fig. 4) observed in the green, UV or white-lit regions of the metal sheds (F = 0.37; df = 

2, 12; P = 0.6994).  Significantly greater percentage of mated females were observed in 

the green-(χ2 = 97.86; df = 1; P < 0.0001), UV-(χ2 = 103.97; df = 1; P < 0.0001), and 

white-(χ2 = 58.07; df = 1; P < 0.0001) lit regions of the metal sheds when compared to 

their respective dark regions.  Mated females were more highly attracted to the UV light 

traps than to the green and white light traps and these trap captures were significantly 

different (χ2 = 10.81; df = 2; P = 0.0002).  Fewer mated females were caught in green and 

white light traps and the trap captures were not significant different (χ2 = 2.0; df = 1; P = 

0.1563).  Within the respective metal shed, more mated females were caught in green (χ2 

= 6.0; df = 1; P = 0.0143) and UV (χ2 = 7.31; df = 1; P = 0.0069) light traps versus the 

control traps.  No significant differences in trap captures between the light and control 

trap were observed for white light (χ2 = 0.06; df = 1; P = 0.8111). 

Combinatorial Trapping Study.  In the green light experiment, no significant 

interaction effect of light and ZETA was observed (F = 3.67; df = 1, 30; P = 0.0648).  

The main effect of ZETA was highly significant on trap captures of males (F = 108.0; df 

= 1, 30; P < 0.0001), however, the main effect of light (F = 3.67; df = 1, 30; P = 0.0648) 

was not significant.  Focusing green light on ZETA-baited traps significantly reduced 

trap captures compared to ZETA alone traps, and green light only traps were no more 

attractive than blank traps (Fig. 5).   
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 When UV light illuminated the pheromone trap from a distance, no significant 

differences in male trap captures were observed between ZETA only trap and 

light+ZETA trap, but these captures were significantly different from trap captures in 

light only traps and blank traps (Table 1).  The light by ZETA interaction and the main 

effect of light were not significant (P > 0.05); the main effect of ZETA was highly 

significant (F = 184.41, df = 1, 30, P < 0.0001).  There were significant differences in 

female captures between light only versus blank traps, but these light trap catches were 

not significantly different from ZETA only or light+ZETA traps.  Only the main effect of 

light was significant in case of females (F = 4.60; df = 1, 32; P = 0.0397).  There were 

significant differences in the numbers of males and females caught in ZETA only trap 

and UV+ZETA traps.  In the case of total trap captures, the interaction effect of light by 

ZETA (F = 4.10; df = 1, 30; P = 0.0519) and the main effect of light were not significant 

(F = 0.01; df = 1, 30; P = 0.9353); the main effect of ZETA was highly significant (F = 

153.5; df = 1, 30; P < 0.0001).           

 When UV light was placed on a ZETA-baited trap, a small but non-significant 

increase in male trap captures compared to ZETA alone traps was observed.  Male trap 

captures in ZETA only and light+ZETA traps were significantly different from captures 

in light only or blank traps (Table 2)  Only the main effect of ZETA was significant (F = 

23.73; df =1, 32; P < 0.0001).  Significantly greater numbers of females were caught in 

light trap and light+ZETA trap when compared to blank trap.  The main effect of light for 

female captures was significant (F = 5.07; df =1, 30; P = 0.0318).  There were significant 

differences in the number of males versus the females trapped only in ZETA trap and 

light+ZETA trap (Table 2).  There were no significant differences in the total numbers of 
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moths caught in the ZETA only and light+ZETA traps.  Two-way ANOVA for total 

moths caught showed that the non-significant effects in the design were light by ZETA 

interaction (F = 0.40; df = 1, 32; P = 0.5324) and light (F = 1.17; df = 1, 32; P = 0.2877), 

and the significant main effect was ZETA (F = 21.81; df = 1, 32; P < 0.0001).   

 In the experiment involving the food-based lure, trap captures of males in light 

only, attractant only, or light+attractant traps were not significant (Table 3).  The 

significant effects in the two-way analysis for males were the light (F = 6.88; df = 1, 28; 

P = 0.0139) and the attractant (F = 8.90; df = 1, 28; P < 0.0058).  Female trap captures 

were statistically significant between light only traps and attractant only and 

attractant+light traps.  The only significant effect for female trap captures was the main 

effect of attractant (F = 28.1; df = 1, 28; P < 0.0001).  Significantly greater numbers of 

male moths were trapped in UV light trap than the females (Table 3).  Overall trap 

captures between the attractant only and light+attractant were not significant (Table 3).  

There were significant differences in total trap captures between attractant only and light 

only traps.  The interaction effect of light by attractant (F = 3.65; df = 1, 28; P = 

0.0664).and the main effect of light (F = 2.73; df = 1, 28; P = 0.1094) were not 

significantly different, however, the main effect of attractant was highly significant (F = 

21.87; df = 1, 28; P < 0.0001). 

 Oviposition Studies. Continuous light (24 h L) significantly reduced oviposition 

by P. interpunctella females (Fig. 6; F = 5.74; df = 2, 27; P = 0.0084).  No significant 

differences in the numbers of eggs laid during 16 h L: 8 h D and 24 h dark were 

observed, although fewer eggs were laid during 24 h dark compared to 16 h L: 8 h D 

conditions.  A scotophase light intensity of ~8-40 lux corresponding to the dark phase 
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significantly reduced oviposition (Fig. 7; F = 6.37; df = 1, 16; P = 0.0226).  However, 

when the light intensity was further reduced to levels undetectable by a light meter but 

faintly visible to the human observer, no significant differences in oviposition occurred 

between dim light and totally dark scotophase conditions (F = 0.92; df = 1, 14; P = 

0.3550) (Fig. 8).  This suggests a certain level of scotophase light intensity that the 

females can tolerate, exceeding which oviposition is inhibited. 

Discussion 

Studies in the metal sheds showed that a significant percentage of adult moths 

moved to areas of low illumination compared to the darker regions for all the three 

colored light treatments.  Males settled significantly on the green illuminated areas of the 

shed compared to the UV and white-lit regions, and they prominently rested on the 

lighted side of the sheds compared to the dark regions.  In case of females, there were no 

significant differences in the number of moths settling on the lighted side of the sheds 

among the three treatments, and the lighted side significantly attracted more females 

compared to the respective darker regions. Likewise, Henneberry and Howland (1966) 

found that about 43% of males of the cabbage looper moth, Trichoplusia ni (Hübner) 

(Lepidoptera: Noctuidae), preferentially rested on the UV illuminated area of the 

experimental arena compared to none in the dark.  The behavioral mechanisms and 

adaptive causation, if any, involved in this kind of preferential resting of P. interpunctella 

on low-lit areas are not known.   

Our trapping studies in small sheds showed that P. interpunctella adults respond 

more positively to a UV light source than to green or white lights.  Although trap 

captures of males and females were not compared, females seemed to show a greater 
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response to UV light than males in a close range situation.  Our observations concur with 

Stermer (1959) who found that P. interpunctella adults were more attracted to the UV 

portion of the light spectrum compared to wavelengths in the visible portion.  Trapping 

studies by Kirkpatrick et al. (1970) and Soderstrom (1970a) showed that P. interpunctella 

adults were more attracted to green lights than to UV light sources.  Our results differ 

from observations by Kirkpatrick et al. (1970) and Soderstrom (1970a) presumably 

because of their using light devices of different design and intensity, and varying the 

intensity of light has been shown to attract or repel several species of stored product 

beetles (Soderstrom 1970b).  We used 12 V LEDs that provided point sources of 

spectrally pure, concentrated light emitted in a 30 - 90° radiation angle and emit 

significantly less amount of light compared to higher wattage light bulbs.   

Insect color vision has been a subject of intensive research and by far the most 

studied insects in this regard are pollinators such as the honey bee (Von Frisch 1967; 

Labhart 1974).  Many species of insects, including several lepidopterans, have a 

conserved set of UV, blue, and green photoreceptors in their eyes (Briscoe and Chittka 

2001).  In the case of P. interpunctella, electroretinogram (ERG) studies by Marzke et al. 

(1973) showed that peak spectral sensitivities were in the blue (450 nm) and green (550 

nm) regions of the light spectrum and responses in the UV region (350-400 nm) were 

more subdued.  This earlier work suggests the presence of blue and green photoreceptor 

cells in P. interpunctella eyes, although, the presence of UV receptors cannot be 

discounted because sensitivities of different areas (dorsal, ventral, and dorsal rim) of an 

insect eye differ to incident light (Stavenga 1992, White et al. 2003; Stalleicken et al. 

2006) and Marzke et al.’s (1973) study did not clearly emphasize the area of eye that was 
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probed for recording responses.  We found in the current study that UV light elicited 

more orientation by adult Indianmeal moths compared to green light, which is contrary to 

what would be expected from the results of the ERG studies done by Marzke et al. 

(1973).  However, electro-physiological studies only involve recording the perception 

and transfer of electrochemical stimuli by the peripheral sensory cells and do not involve 

the central nervous system or necessarily correlate directly to behavior.  A negative or 

positive phototactic behavioral response is the result of perception of stimuli by the 

sensory cells and processing of this information by the brain (Antignus 2000).  Therefore, 

responses of sensory cells observed in electroretinogram studies may not effectively 

transcribe into behavioral responses of insects. 

Then why are P. interpunctella adults attracted to UV light?  Although no 

conclusive evidence of adaptive evolution exists for photo-orientation by P. 

interpunctella, a possible reason could be that shorter wavelengths of light might induce 

migratory or dispersal behavior in insects by providing escape routes through empty 

spaces (Scherer and Kolb 1987a, b).  As humans began storing food in enclosed areas 

shielded from outside environment during relatively recent geological history, P. 

interpunctella has also probably recently evolved to be a pest of stored foods.  There is a 

possibility that because of their dark habitats, adult moths trying to escape from a spent or 

unfavorable resource may have encountered intermittent open spaces toward the sky.  

Because the day sky is UV “rich” (Silberglied 1979), and moon light has similar spectral 

composition as sun light (Stair and Johnston 1953), the adult moths might have adapted 

to being attracted to UV portion of light.  An alternative, or perhaps additional, 

hypothesis for moth responses to UV light is that such light is reflected from green plant 
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tissues, and visual response to plants could be adaptive for phytophagous insects 

(Prokopy and Owens 1983).  P. interpunctella is clearly phytophagous in the storage 

habitat, feeding on grains and grain products, and it may have utilized other plant tissues 

with short-wave length reflectance prior to evolution to the storage habitat.  Virtually 

nothing is known about the distribution of photoreceptors and sensitivities of different 

regions of an adult eye in P. interpunctella.  Further research into visual ecology of adult 

moths would be useful in understanding the behavioral responses of P. interpunctella to 

light, and possibly would help in developing non-hazardous population control strategies.        

Our results with combinatorial experiments involving sex pheromone and light 

that had no measurable increase in response, and mostly had a reduced response to the 

combination, are similar to findings from other insects.  Research conducted by Burkett 

et al. (1998) showed that traps with CO2 as attractant and equipped with colored LEDs or 

incandescent lights did not cause an overall increase in trap catches of several species of 

mosquitoes.  A significant decrease in trap captures, compared to ‘no light’ controls, was 

observed for Aedes dupreei (Coquilett) (Diptera: Culicidae) when green, yellow, or 

incandescent light was used along with CO2 attractant traps.  The possible reasons for the 

variable responses of adult moths to green reflected light in this study and to those in 

metal sheds could be due to the differences in reflectance characteristics of metal and 

concrete, presence of mixed ages and sexes among the released moths, and greater 

intensity of green LEDs used for the combination study.  When UV light was focused on 

ZETA-baited trap, lower but non-significant trap catches compared to ZETA only trap 

were observed.  However, a slight increase in male trap captures was observed when the 

UV light source was placed on top of pheromone trap.  Again, light only traps were not 



 

 118 

as effective as the pheromone-baited traps in capturing adult moths.  It is apparent from 

these combinatorial experiments involving ZETA and light that low illumination of traps 

with green/UV lights or a combination of UV light and pheromone does not significantly 

increase male trap captures, and this may simply be due to ZETA being a stronger 

stimulant to male P. interpunctella than light when presented together.  Conversely, 

Henneberry and Howland (1966) and Henneberry et al. (1967) found that T. ni 

pheromone-baited traps fitted with black light (UV) traps significantly increased male 

trap captures compared to either traps alone.  Henneberry et al. (1967) also found that 

increasing the numbers of females per black light trap significantly increased trap catch.  

Pheromone-baited traps were far more efficient in catching males of the Egyptian cotton 

leafworm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) than UV light traps 

(Rizk et al. 1990).  We found that significantly more males were caught in the UV light 

trap than females when a food-based attractant was used.  This is probably because the 

food attractant was not as powerful as the sex pheromone in attracting males, and there 

may have been a food+UV combination effect for increased male response.  Barr et al. 

(1963) found that the intensity of colored lights is the most important factor in attracting 

insects, but we did not investigate variable light intensity on our orientation experiments.  

Further research needs to be conducted to study the combined effect of UV lighting 

devices of different intensities, and different semiochemical types and concentrations on 

trap captures of male and female P. interpunctella. 

 Oviposition experiments with different photoperiods confirmed earlier findings 

(Lum and Flaherty 1970; Mbata 1985), which showed that continuous light inhibits 

oviposition by P. interpunctella.  Females have been shown to display erratic oviposition 



 

 119 

behavior when exposed to 24 h light conditions (Madrid and Sinha 1982).  P. 

interpunctella females preferred to lay eggs under alternate light-dark periods or 24 h 

dark conditions.  One exception to this behavior has been reported by Bell (1981) who 

found that some populations of P. interpunctella laid eggs during the light periods. 

Gravid females seem to respond to a significant decrease in light intensity during light-

dark transition and require some period of darkness for eliciting oviposition.  At a light 

intensity of 8-40 lux, oviposition was inhibited, however, under very low light conditions 

(>0 to <8 lux), oviposition was similar to that under dark scotophase conditions.  

Therefore, P. interpunctella females can tolerate a certain threshold light intensity during 

the scotophase that when exceeded will inhibit oviposition.  In a related stored product 

pyralid moth, Cadra cautella (Walker), decreasing light intensity and temperature during 

dusk have been implicated in inducing oviposition (Steele 1970; Hagstrum and Tomblin 

1972).  C. cautella females require a light intensity of 0.5-2.0 lux for maintaining an 

oviposition rhythm.  Madrid and Sinha (1982) showed that for inducing nocturnal flight 

behavior in P. interpunctella females required an intensity range of 0.2-2.9 lux.  In our 

study, although the absolute light intensity at the level of the insect was not known, the 

threshold range for oviposition (>0 – 8 lux) was similar to that required for nocturnal 

flight behavior of P. interpunctella.   

 Our experiments clearly show that adult moths will orient to low illuminated 

surfaces and they are very attracted to UV light when pheromone or other strong 

attractants are lacking.  Pheromone was more attractive to males than UV light, and UV 

light may have reduced response to pheromone, so the use of pheromone-baited traps 

alone is recommended as a monitoring tool for P. interpunctella compared to 
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UV+pheromone traps or UV light traps.  Our oviposition studies suggest that food 

storage environments in which lights are kept ‘on’ 24 h a day will result in less 

infestation by P. interpunctella than storages in which lights are always off or in which 

there is a light and dark cycle.  Future research should focus on understanding the visual 

ecology of P. interpunctella adults so that sustainable management strategies could be 

developed.  
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Table 1.  Trap captures (mean ± SE) of P. interpunctella adults in unbaited and baited 
traps illuminated with UV light from a distance† 
 

Treatment n Male Female P (sex)a
  Total 

Blank 9 0.0 ± 0.0b 0.0 ± 0.0b - 0.0 ± 0.0b 

UV 9 0.2 ± 0.1b 0.7 ± 0.2a 0.1324 0.9 ± 0.3b 

ZETA only 9    14.2 ± 2.8a 0.2 ± 0.1ab < 0.0001 14.4 ± 2.9a 

 UV + ZETA 9    10.6 ± 1.9a 0.3 ± 0.2ab < 0.0001  10.9 ± 1.9a 

   
†Means followed by the same lowercase letter within a column are not significantly 
different (P < 0.05) 
aPairwise probabilities for differences between sexes were computed by t-test 
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Table 2.  Trap captures (mean ± SE) of P. interpunctella adults in unbaited and baited 
traps with UV light on top of the trap† 
 

Treatment n Male Female P (sex)a Total 

Blank 9      0.0 ± 0.0b      0.0 ± 0.0b -      0.0 ± 0.0b 

UV 9      1.3 ± 0.6b      0.8 ± 0.4a 0.4137      2.1 ± 0.9b 

ZETA only 9      9.8 ± 2.5a      0.6 ± 0.3ab 0.0056    10.3 ± 2.6a 

UV + ZETA 9    11.2 ± 3.7a      0.9 ± 0.3a 0.0132    12.1 ± 3.9a 

 
†Means followed by the same lowercase letter within a column are not significantly 
different (P < 0.05) 
aPairwise probabilities for differences between sexes were computed by t-test  
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Table 3.  Mean numbers of moths (± SE) caught in traps baited with UV light alone, food 
attractant alone, or both†   
 

Treatment n Male Female P (sex)a Total 

Blank 8     0.1 ± 0.1b     0.0 ± 0.0b 0.3506     0.1 ± 0.1c 

UV 8     3.3 ± 1.2a     0.5 ± 0.3b 0.0254     3.8 ± 1.4b 

Attractant only 8     3.6 ± 1.3a     5.4 ± 1.8a 0.4674     9.0 ± 2.6a 

UV + Attractant 8     5.0 ± 1.3a     3.3 ± 0.8a 0.3318     8.3 ± 1.8ab 

 

†Means followed by the same lowercase letter within a column are not significantly 
different (P < 0.05) 
aPairwise probabilities for differences between sexes were computed by t-test  
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Figure Legends 

 
Fig. 1.  Floor plan of the room where combinatorial experiments were conducted.  

Asterisks represent the locations of experimental replicates.  Shaded areas are the 
unusable spaces of the experimental arena because of the presence of 
machinery/electrical wirings and circuit boards.  Short, thick lines are the entrance 
doors.  Figure not drawn to scale. 

 
Fig. 2.  Spatial distribution and trap captures of P. interpunctella males in response to 

green, UV, and white lights.  The data presented are mean + S. E.  Bars followed 
by the same uppercase (black bars) letter or lowercase (white bars) letter are not 
significantly different (P < 0.05).  Asterisks over the bars represent significant 
differences between the light treatment and control (ns = not significant; *, **, 
*** = significance at 5%, 1%, and 0.1 %, respectively). 

 
Fig. 3.  Responses of unmated females to green, UV, and white light emitting diodes in 

small metal sheds.  Actual means + S. E. are presented.  Bars with the same 
uppercase letter or lowercase letter are not significantly different at P < 0.05.  
Asterisks over bars denote statistical differences between the light treatment 
versus control (ns = not significant; *, **, *** = significance at 5%, 1%, and 0.1 
%, respectively). 

 
Fig. 4.  Percentage distribution of mated females and their trap captures in green-, UV-. 

and white-light traps (mean + S.E).  Bars followed by the same uppercase letter or 
lowercase letter are not significantly different at P < 0.05.  Asterisks represent 
statistical differences between the light treatment and control (ns = not significant; 
*, **, *** = significance at 5%, 1%, and 0.1 %, respectively). 

 
Fig. 5.  Trap captures (mean + S. E) of P. interpunctella adults in traps baited with green 

light alone, ZETA alone, or both.  Bars with the same lowercase letter are not 
significantly different (P < 0.05).   

 
Fig. 6.  Oviposition of P. interpunctella females in response to different durations of 

light.  Bars with the same lowercase letter are not significantly different (P < 
0.05). 

 
Fig. 7.  Oviposition of P. interpunctella females in response to reduced light intensity (8-

40 lux) during the scotophase.   
 
Fig. 8. Ovipositional responses of P. interpunctella females to reduced scotophase light 

intensity (>0 - < 8 lux).  Bars with the same lowercase letter are not significantly 
different (P < 0.05) 
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Fig. 3. 
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Fig. 4. 
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Fig. 5. 
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Fig. 6. 
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Fig. 7. 
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Fig. 8. 
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CHAPTER V 
 
 

                                                             SUMMARY 
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 Semiochemical-based pest management offers a ‘reduced risk’ approach in 

dealing with problematic storage pests (Phillips 1997, 2006).  Semiochemicals are 

chemicals that mediate intraspecific and/or interspecific interactions, and include 

pheromones and food attractants.  In order to effectively manage P. interpunctella 

populations using semiochemicals, a greater emphasis on the study of ecology and 

behavior of the pest is needed.  Although there has been considerable research on the 

pheromone responses of P. interpunctella (reviewed in Phillips 1997 and Mohandass et 

al. 2007), only recently has the importance of females been recognized and research 

initiated to study behavioral responses of P. interpunctella females to food-based 

attractants (Nansen and Phillips 2003, Nansen and Phillips 2006, Olsson et al. 2005a, 

Olsson et al. 2005b, Olsson et al. 2006).  A greater understanding of basic female 

behavior, in addition to studies for enhancing the attraction of males and females to 

attractant-baited traps, can provide comprehensive tools for future management of P. 

interpunctella populations. 

 Objectives: Three comprehensive studies were conducted as part of this 

dissertation that include: 1) close-range oviposition behavior of P. interpunctella females 

to oviposition-stimulating semiochemicals on substrates that vary in texture, number, 

size, surface area, and shape, 2) oviposition behavior of a laboratory and field populations 

of P. interpunctella in relation to their offspring performance on eleven diets, and 3) 

responses of P. interpunctella adults to light alone and to a combination of light and 

semiochemicals. 

Results: Both semiochemical and physical cues were required to elicit maximum 

ovipositional responses from P. interpunctella.  Substrates that offer three dimensional 
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physical stimuli were preferred compared to substrates that were rough and/or that did 

not offer raised thigmotactic stimuli.  Female oviposition reached a peak when offered 

certain number of spherical substrates in a bioassay, and oviposition did not increase 

thereafter.  Size of the substrates, rather than the total substrate surface area, determined 

oviposition response by P. interpunctella.  Smooth, round substrates were preferred by 

females compared to flat, angular substrates.  Although the studies were conducted in 

small plastic boxes that prevented interactions with other competing organisms, these 

findings clearly explain the importance of proximate substrate cues in influencing the 

oviposition decisions by P. interpunctella. 

 Larvae of a laboratory population and a recent field-collected population of P. 

interpunctella did not survive on walnut, pecan, coriander, and fennel, probably due to 

the development of rancidity during grinding (walnut, pecan) and/or the presence of toxic 

chemicals in some of these materials (e.g., coriander, fennel) released upon grinding.  

Prunes and barley were poor foods for the development of larvae, which was evident 

from their longer development times.  Laboratory larvae, presumably because of their 

adaptation to laboratory rearing practices, weighed more than the field moths after 

developing on the same foods under the same conditions.  Laboratory adults were heavier 

on chick pea, lab diet, and soybean.  In the case of field moths, soybean and chick pea 

produced heavier adults.  The following conclusions were drawn from the ovipositional 

host preference experiments: 1) both laboratory and field females will lay eggs in diets 

unsuitable for their progeny survival in no-choice situations when suitable larval hosts are 

not available, 2) field moths are more selective in choosing hosts for oviposition than 

laboratory moths, and 3) adult oviposition preferences correlate with larval performances 
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in the case of field moths, but this is not the case for the laboratory moths.  An indirect, 

but important conclusion of this experiment was that continuous culturing of laboratory 

moths for several years may lead to dilution of their “wild” behavior presumably because 

of genetic alterations that result in behavioral changes. 

 Spatial distribution and trap captures were influenced by light quality.  Ultraviolet 

(UV) light was more attractive to P. interpunctella adults compared to green or white 

lights.  This study clearly showed the importance of reflected light in positive photo-

orientation of P. interpunctella adults.  In small sheds, adult moths were attracted to 

green, UV, and white light illuminated regions than to the corresponding dark regions.  

Illuminating an attractant (pheromone/food lure) baited trap with green or UV light or 

placing a UV light source at the attractant-baited trap did not substantially increase trap 

captures of P. interpunctella when compared to the attractant alone.  Presence of a 

powerful attractant seems to nullify the attractiveness of UV light for adult moths.  

Oviposition experiments prove that 24 h light inhibits oviposition, and a certain period of 

darkness is required for females to elicit oviposition.  A threshold scotophase light 

intensity of 8 lux exists for females that when exceeded inhibits oviposition.   

 Implications: Although close-range oviposition studies involving different 

substrates may have no immediate ‘in field’ application, a greater understanding of the 

female oviposition behavior may lead to more applied research that could provide 

additional tools for future pest suppression methods.  The preference-performance study 

points out important behavioral differences between field and laboratory populations.  

Those experiments emphasize the need to realize laboratory colonies of P. interpunctella 

are adapted to the laboratory rearing habitat, and that behavioral studies may require that 
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researchers introduce field populations at regular intervals into laboratory cultures.  

Testing the behavioral similarity of older laboratory populations with newly collected 

field moths can reveal interesting results as done here, and as found with other insects 

(e.g. the boll weevil, Agee 1986).  An outcome of practical significance from the light 

study in this dissertation is the non-viability of combining a strong attractant with UV or 

green light.  Moreover, because the females require a certain interval of darkness during a 

24 h period to oviposit, disrupting their circadian rhythm by maintaining 24 h light in 

food storage areas could potentially reduce P. interpunctella populations.  Another option 

would be to reduce light levels up to 8 lux so that oviposition by females is inhibited.   

Future Research: A thorough knowledge of the nutritional and behavioral 

ecology of an insect pest is an essential prerequisite for developing successful 

management strategies.  Therefore, future studies on P. interpunctella should concentrate 

on 1) identifying the distribution of sensory receptors involved in oviposition on an adult 

female, 2) understanding the visual ecology of P. interpunctella adults, 3) identifying the 

genetic differences between different field populations of P. interpunctella, 4) evaluating 

the genetic and behavioral changes after successive generations of captive rearing of wild 

populations, 5) assessing the horizontal and vertical dispersal distances of females for 

oviposition, and 6) identifying repellant/antifeedant compounds from foods unsuitable for 

P. interpunctella survival. 
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