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CHAPTER I 
 
 

INTRODUCTION 
 

Phytophthora spp. are zoosporic plant pathogens responsible for a 

number of plant diseases of commercially important crops worldwide (Erwin et 

al., 1983; Erwin and Ribeiro, 1996; Agrios, 1997). The occurrence of 

phytopathogenic Phytophthora spp. in irrigation water has been known since the 

pioneering work of Bewley and Buddin (1921). Phytophthora zoospores or 

structures produced by them (cysts, hyphal fragments, appressorium-like 

structures, microsporangia) do occur and survive in irrigation water (Thomson, 

1972 and Duniway, 1979). In addition, these oomycetous plant pathogens have a 

complex asexual life cycle with distinct multiple infectious propagules which 

include mycelium, sporangia, zoospores, and zoospore cysts (de Souza et al., 

2003). All these asexual life cycle stages are influenced differently by 

environmental factors such as temperature, water relations, physical and 

chemical conditions, and with interacting combinations of these factors (Fawcett, 

1936; Zentmeyer, 1981; Duniway, 1983). The geographic distribution of 

Phytophthora and the diseases they cause depend on the constraints of these 

environmental factors on any or all of the life cycle stages (Duniway, 1983). 

Among the environmental factors, temperature has been reported to have a large 

influence on growth, reproduction, and pathogenesis of Phytophthora spp.  
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(Sujkowski, 1987; Sing and Chauhan, 1988; Matheron and Matejka, 1992). 

Effects of temperature on soilborne Phytophthora spp. have been reported 

(Zentmeyer and Erwin, 1970; Zentmeyer, 1981; Sujkowski, 1987; Matheron and 

Matejka, 1992). However, these studies take into account only one species or 

isolate of Phytophthora and consider only one particular stage in the life cycle 

(Gooding and Lucas, 1959; Zentmeyer and Erwin, 1970; Zentmeyer, 1981; 

Sujkowski, 1987; Matheron and Matejka, 1992; Sato, 1994; Roy, 1999; Timmer 

et al., 2000). This study examined the effect of temperature on the asexual life 

cycle stages, which included the mycelial growth, sporangia production, and 

zoospore cyst germination of several water-borne Phytophthora spp. 

             The predominant propagules of Phytophthora spp. in wet and irrigated 

environments are the motile biflagellate zoospores (Thomson, 1972; von 

Broembsen and Charlton, 2001). These are produced in asexual sporangia 

borne on hyphal tips of the mycelium. The released zoospores swim in films of 

water in search of a host and with the aid of a combination of tactic signals, and 

locate suitable infection sites (Gow et al., 1999; van West et al., 2002, 2003). 

Thus, zoospore competency as plant infective units requires that they undergo a 

characteristic multi-stage pre-infection sequence involving taxis, docking, 

encystment, cyst adhesion, and cyst germination (Deacon and Donaldson, 1993; 

Deacon, 1996). The zoospore cysts, depending on environmental cues have 

different options. They have the ability to remain encysted, germinate by germ 

tubes or by releasing additional zoospores (repeated emergence) (von 

Broembsen and Deacon, 1997; Xu and Morris, 1998; von Broembsen and 
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Charlton, 2000). The zoospores that emerge from the cysts during re-emergence 

(cyst derived zoospores) are structurally similar to zoospores released from the 

sporangia (sporangial derived zoospores). The released cyst derived zoospore 

wiggles its way out of the cyst, leaving the cyst cell wall (ghost) behind with or 

without a prominent exit tube (Fig. 3.1). The ecological significance, if any, of 

repeated emergence in natural conditions is not known. This unique 

phenomenon is thought to be a survival strategy in the absence of immediately 

available hosts by allowing cysts to delay germination until more favorable 

circumstances and then releasing further zoospores to achieve infection 

(Cerenius and Söderhäll, 1985; von Broembsen and Deacon, 1997). This study 

was undertaken to document the prevalence and occurrence of repeated 

emergence among water-borne Phytophthora spp. Understanding zoospore 

repeated emergence and factors that influence it, especially in water-borne 

Phytophthora spp., is an essential step in understanding the epidemiology of 

these pathogens. Phytophthora zoospores depend entirely on endogenous 

energy reserves (Cerenius and Söderäll, 1984; Pennington et al., 1989), which 

cannot be renewed. They use their endogenous energy reserves for motility, 

autonomous dispersal, and physiological activities such as maintaining 

appropriate balance with their surrounding media. Theoretically, this implies that 

cyst derived zoospores are likely to be depleted of energy having spent some of 

their macromolecules in cyst wall development and formation of new flagella. 

Cyst derived zoospores are expected to be less biologically fit as dispersive, 

multiplicative and primary infective units of Phytophthora spp. compared to 
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sporangial derived zoospores. However, the biological attributes of these 

different generations of zoospores including the ability to disperse autonomously, 

infect roots, and retain motility remain unknown. 
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CHAPTER II 
 

LITERATURE REVIEW 
 

BACKGROUND INFORMATION 
 

The zoosporic organisms, which were traditionally classified as fungi by 

mycologists, are a taxonomically diverse group whose only justification for being 

grouped together is the production of flagellated zoospores (Barr, 1983).  The 

current classification system (Alexopoulos et al., 1996) places these organisms 

into six different Phyla; Myxomycota, Labyrinthulomycota, Chytridiomycota, 

Hyphochytri[di]omycota, Plasmodiophoromycota, and Oomycota (Barr, 1983; 

Alexopoulos et al., 1996). Delimitation of the zoosporic fungi into these taxa is 

made on the bases of zoospore flagellation (Barr, 1983; Fuller and Jaworski, 

1987) and modes of infection. Thus, Chytridiomycota have a single posterior 

whiplash (smooth) flagellum and have close affinity to true fungi (Fuller and 

Jaworski, 1987).  Hyphochytriomycota have a single anterior, tinsel flagellum, 

whereas, Plasmodiophoromycota have two anterior whiplash flagella of unequal 

length and share many features with protozoa. Oomycota have anterior tinsel 

and posterior whiplash flagella, which are of unequal length.  Zoospores, aptly 

described by Fuller (1977) as the “hallmark of the aquatic fungi”, are adapted for 

survival in aquatic environment (McIntosh, 1972), thereby in turn making 

zoosporic fungi better adapted to the aquatic environment (Duniway, 1979).  This 

has enabled zoosporic fungi to have a widespread occurrence in 
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aquatic habitats (Klotz et al., 1959; McIntosh, 1966; Thomson, 1972; Thomson 

and Allen, 1974; Kliejunas and Ko, 1976; Shokes and McCarter, 1979; Pittis and 

Colhoun, 1984; von Broembsen, 1984; Mircetich et al., 1985; Pottorf and Panter, 

1997).  However, the term “aquatic fungi” is an inappropriate reference to 

zoosporic fungi (Barr, 1983), since many zoosporic fungi are not primarily aquatic 

and occur in soil and many are foliar plant pathogens.  In addition, there are 

many non-zoosporic fungi found in the aquatic habitats (Thomson, 1972).  Much 

of the available literature on zoosporic fungi is based on saprophytic species 

because these are easier to study, while many zoosporic plant pathogens are 

obligate parasites, which do not lend themselves to ecological and biological 

investigations.  Of the zoosporic plant pathogens, the oomycete species from 

genera Pythium and Phytophthora are of particular concern to agricultural 

producers because they are well adapted to aquatic survival, occur and disperse 

in irrigation waters, and are responsible for many diseases. Therefore, the 

formulation of suitable management approaches of these phytopathogens will 

depend on a sound understanding of their ecology and biology in water. 

  

Taxonomic position of Oomycetes. The traditional five-kingdom classification 

system of Whittacker (1969) placed the oomycetes in the Kingdom Fungi due to 

their filamentous growth habit. However, more recent knowledge gleaned from 

molecular and biochemical analyses indicate unambiguously that the oomycetes 

are evolutionarily distinct and distantly related to true fungi (Chytridiomycota, 

Zygomycota, Ascomycota and Basidiomycota), although they produce vegetative 
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and reproductive structures that resemble those of the true fungi (Barr, 1983, 

1992; Alexopoulos et al., 1996; van West et al., 2003). Oomycetes are ‘fungus-

like’ mycelial organisms currently classified in the eukaryotic kingdom 

Straminipila (Alexopoulos et al., 1996; Dick, 2001) and are more closely related 

to the heterokont algae (Chrysophyceae, Phaeophyceae, and Xanthophyceae 

(Barr, 1992; Govers, 2001) than true fungi. Dick (2001) favored the kingdom 

name ‘Straminipila’ over Cavalier-Smith’s (1986) earlier published kingdom name 

‘Chromista’ because the anteriorly directed straminipilous flagellum is the critical 

diagnostic feature of this kingdom and not the presence of pigmented organelles, 

chromophyte endosymbionts, which formed the basis of Cavalier-Smith’s 

Kingdom name Chromista (Cavalier-Smith, 1986). The remarkable distinguishing 

features of oomycetes include production of heterokont (one tinsel and one 

whiplash) dispersive zoospores, sexual oospores, possession of β-1, 3-glucan 

polymers, and cellulose as predominant cell wall constituents (Erwin et al., 1983). 

They exhibit vegetative diploidy and have mycolaminarin as their storage 

carbohydrates (Erwin et al., 1983; Erwin and Ribeiro, 1996; Margulis and 

Schwartz, 2000). Oomycetes (Kingdom: Straminipila) comprise three 

recognizable subclasses: Saprolegniomycetidae, Rhipidiomycetidae, and 

Peronosporomycetidae. Saprolegniomycetidae contain many oomycetes 

pathogenic to fish such as Saprolegnia as well as the important plant pathogenic 

species in the genus Aphanomyces (Bruno and Wood, 1999). However, most of 

plant pathogenic oomycetes belong to two orders: Peronosporales and Pythiales 

of the subclass Peronosporomycetidae (van West et al., 2003). The latter order 
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includes obligate biotrophic pathogens such as Plasmopara, Albugo, Bremia, and 

Peronospora spp. that cause downy mildew and white rust on several 

economically important crops (Agrios, 1997). The order Pythiales contains the 

family Pythiaceae that comprises economically important genera of Phytophthora 

and Pythium (Alexopoulos et al., 1996; Agrios, 1997). All these genera are 

reputed to be responsible for annual losses of many valuable food and cash 

crops, ornamental plants, and forest species worldwide (Erwin and Ribeiro, 1996; 

van West et al., 2003; Appiah et al., 2005). 

 

The genus Phytophthora.  The genus name Phytophthora, derived from Greek 

words Phyton and phthora, literally means ‘plant destroyer’ and was coined by 

Anton de Bary in 1876 to describe the type species Phytophthora infestans 

(Mont.) de Bary. The term ‘plant destroyer’ is a befitting description of the causal 

agent of potato late blight causal organism, which devastated potato production 

in the mid 19th century in Ireland (1845 – 1846), and still remains a worldwide 

production constraint nearly 160 years later.  The genus Phytophthora is 

cosmopolitan and with over 67 species described (Erwin and Ribeiro, 1996), is 

arguably one of the most devastating group of plant pathogens (Erwin et al., 

1983; Erwin and Ribeiro, 1996; Agrios, 1997). They cause enormous economic 

losses on several important food, fiber, and ornamental crops worldwide (Erwin 

and Ribeiro, 1996). According to Kamoun (2003), “virtually every dicotyledonous 

plant is affected by one or more species of Phytophthora, and several 
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monocotyledonous species are infected as well”. They cause root and crown 

rots, trunk cankers, foliar, twig, and fruit blights (Agrios, 1997).  

In the traditional taxonomy of Waterhouse (1963) and Stamps et al. 

(1990), Phytophthoras were divided into six morphological groups on the basis of 

sporangium structure (nonpapillate, semipapillate, or papillate), form of 

antheridium (amphigynous or paragynous), and whether the taxon is inbreeding 

(homothallic) or outbreeding with A1 and A2 mating types (heterothallic). 

Amphigyny is exclusively a feature of heterothallic species whereas homothallic 

species either exhibit amphigyny or paragyny or, in some cases, produce 

antheridia of both types (Cooke et al., 2000). These morphological groups are in 

no way a reflection of natural relationships among Phytophthora spp. but they 

nevertheless still form indispensable identification keys to phytophthorologists. 

 

Phytophthora disease cycle. Phytophthora spp. are responsible for a number 

of commercially important plant diseases (Erwin et al., 1983; Erwin and Ribeiro, 

1996; Agrios, 1997). The infective units of these oomycetous plant pathogens 

include zoospores, oospores, chlamydospores, sporangia, and hyphal fragments 

(Thomson, 1972). However, for majority of Phytophthora spp. zoospores 

constitute the dominant infection units (Thomson, 1972; von Broembsen and 

Charlton, 2001) responsible for explosive disease epidemics. After release from 

sporangia, motile biflagellate zoospores are either moved passively or swim 

actively in water (Duniway, 1976) to potential infection sites. They are 

chemotactically attracted to elongation zones of roots of potential host plants 
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where they settle and encyst (Zentmeyer, 1961; Ho and Zentmeyer, 1977; 

Hardham, 2001). Zoospore cysts usually germinate within 20 – 30 min after 

encystment (Hardham, 2001) and germ tube grows and penetrates plant 

epidermal cells intercellularly along the anticlinal cell walls. As colonization 

advances, the pathogen produces haustoria that ramify in the cortical cells, 

acquire nutrients from plant, produce chlamydospores in cortical cells, and 

multinucleate sporangia on the root surface within 2 – 3 days (Ho and 

Zentmeyer, 1977; Hardham, 2001). The cytoplasmic contents of sporangia 

undergo cytokinesis to form uninucleate motile zoospores that are released 

through an apical pore in the sporangium. After discharge, the new generations 

of motile zoospores seek out and accumulate at new infection sites (Deacon and 

Donaldson, 1993) and the infection cycle is repeated. 

 

Occurrence of Phytophthora spp. in irrigation water. Occurrence of 

phytopathogenic Phytophthora spp. in irrigation water was first reported by by 

Bewley and Buddin in 1921. Since then, there have been several reports of 

successful recovery of Phytophthora spp. from water bodies including nursery 

irrigation water (Klotz et al., 1959; McIntosh, 1966; Thomson and Allen, 1974; 

Kleijunas and Ko, 1976; Shokes and McCarter, 1979; Ali-Shtaye et al., 1991; 

Pittis and Colhoun, 1984; von Broembsen, 1984, 1990; MacDonald et al., 1994; 

von Broembsen and Wilson, 1998; Yamak et al., 2002; Bush et al., 2003). 

Phytophthora spp. have been noted to occur in water bodies such as puddles, 

runoff water in streams (Kleijunas and Ko, 1976; Shokes and McCarter, 1979 



 11

and Ali-Shtaye et al., 1991), in lakes and rivers (von Broembsen, 1984, 1990) 

and in irrigation water (Klotz et al., 1959; Thomson and Allen, 1974; von 

Broembsen and Wilson, 1998; Yamak et al., 2002). Thomson and Allen (1974) 

isolated various plant pathogens from irrigation tail water in Arizona.  Their 

isolations included Phytophthora parasitica Breda de Haan (Dastur) and P. 

citrophthora (R.E. Sm. & E.H. Sm.) Leonian.  Klotz et al. (1959) recovered 

Phytophthora spp. from canals and reservoirs that served as sources of irrigation 

water to citrus growers in California.  von Broembsen (1990) established the 

occurrence of Phytophthora cinnamomi Rands in river waters used for irrigation 

in Southwestern Cape Province of South Africa.  In separate studies, MacDonald 

et al. (1994) and von Broembsen and Wilson (1998) recovered several 

Phytophthora spp. namely; Phytophthora cryptogea Pethybr. & Lafferty, P. 

citrophthora (R.E. Sm. & E.H. Sm.) Leonian, P. citricola Sawada, P. cinnamomi 

Rands, and P. parasitica Breda de Haan (Dastur) from ornamental nursery 

irrigation run-off.  The pathogenicity of the pythiaceous fungi isolated from water 

to commercially grown plants irrigated with these waters has been confirmed 

(Pittis and Colhoun, 1984; Ali-Shtaye et al., 1991; Yamak et al., 2002) and, in 

most cases, a strong correlation has been reported between the use of infested 

water and diseases in the nursery industry (Macdonald et al., 1993). Between 

1961 and 1963, McIntosh (1966) found Phytophthora cactorum (Lebert & Cohn) 

J. Schröt, the cause of collar rot of fruit trees in the water of many irrigation 

systems in the Okanagan and Similkaneen valleys of British Columbia. Yamak et 

al. (2002) also reported the occurrence of pathogenic Phytophthora spp. 
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including P. cactorum in the irrigation water in the Wenatchee river valley of 

Washington. Additionally, the following Phytophthora spp. have also been 

recovered in water assays by different workers: P. palmivora (E.J. Butler) E.J. 

Butler (Ali-Shtaye et al., 1991), P. syringae (Kleb.) Kleb (Klotz et al., 1959), P. 

megasperma Drechs. (MacDonald et al., 1994), P. cambivora (Petri) Buisman 

(McIntosh, 1966), P. gonapodyides (Petersen) Buisman (Pittis and Colhoun, 

1984), P. drechsleri Tucker, and P. capsici Leonian (Bush et al., 2003).  

 Phytophthora spp. usually survive in these aquatic environments as oospores, 

chlamydospores, microsporangia, hyphal fragments or as zoospores (Thomson, 

1972). The first three mentioned propagule types usually germinate into 

sporangia, which ultimately produce zoospores (Pittis and Colhoun, 1984) if 

conditions are favorable. According to Thomson and Allen (1976), Phytophthora 

sporangia are stimulated to readily release zoospores in water. Therefore, 

zoospores constitute the dominant Phytophthora propagules that occur in 

irrigation water (Thomson, 1972; von Broembsen and Charlton, 2001) and are 

thought to be responsible for disease outbreaks when zoospore contaminated or 

recycled irrigation water is used on susceptible nursery crops. 

 

Phytophthora zoospores as inoculum in irrigation water. Zoospores of 

Phytophthora spp. survive and are particularly adapted to the aquatic 

environment (McIntosh, 1972; Duniway, 1979), where they serve the dual 

function of initiation of new generations and of dissemination of the pathogen 

(Hickman and Ho, 1966). These functions are critical in the life cycle of 
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Phytophthora as the zoospore must be able to gain access to the substrate, 

survive, and be easily dispersed to the susceptible hosts.  The spread of these 

zoosporic organisms by means of zoospores depends on water availability, both 

for free swimming, and in the final phases for the formation and discharge of 

zoospores (Lange and Olson, 1983).  Water can also be critical for encystment 

and host penetration by the encysted zoospore.  Thus, free water is an important 

factor in the epidemiology of the zoosporic plant pathogens as it aids in 

flagellated zoospore movement.  The distance traveled by the individual 

zoospores is usually relatively short (Lange and Olson, 1983), and is very much 

a function of the duration of active swimming period, which in turn is governed by 

the following factors: (i) cessation of motility due to the presence of a suitable 

substrate, which induces encystment, and initiation of infection, (ii) the 

exhaustion of energy supply/potential carried by the zoospore, and (iii) zoospore 

encounter with extreme conditions, which in some way leads to its lysis.  

However, where natural water flow or passive water flow occurs through the soil 

due to irrigation or rainfall, zoospores may spread over long distances or over 

neighboring fields (Erwin et al., 1983; Ristaino et al., 1988).  The dispersed 

zoospores encyst, marking the final endpoint of the motile period for the 

zoosporic phytopathogens.  If a suitable infection site on a host is located, then 

this encystment may at the same time initiate host penetration. 

 

Sources of Phytophthora zoospores that contaminate irrigation water. The 

oospores or chlamydospores that occur in the sediment or plant debris at the 
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bottom of water reservoirs or in surface floating plant debris can serve as 

sources of zoospores in the waters (Pittis and Colhoun, 1984).  These structures 

usually germinate to produce sporangia, which ultimately release zoospores 

under favorable environmental conditions. Owing to negative geotaxis (Cameron 

and Carlile, 1977; Charlton, 2001), the released zoospores swim upwards 

(against gravity) in water to occupy positions where passive dispersal is more 

likely. Cameron and Carlile (1977) while working with Phytophthora cactorum, P. 

nicotianae, and P. palmivora demonstrated that zoospores are negatively 

geotropic and accumulate at the uppermost surface of the water.  Active 

swimming and not flotation cause the negative geotropism, as Phytophthora 

zoospores have a higher density than the water.  In addition, the asymmetrical 

nature of the Phytophthora zoospores in terms of flagella position and their 

shapes is a contributing factor. Ho et al. (1968a) reported that Phytophthora 

zoospores are broader at the posterior than the anterior. This morphological 

feature makes the zoospore more inclined to point slightly upward as it swims, 

and show a net tendency to swim to the surface. 

The other important source of zoospores in irrigation waters is the 

irrigation water itself.  Water flowing over infested soils or crops usually moves 

zoospores or encysted zoospores and deposits them downstream. However, of 

the many important zoospore inoculum sources mentioned in the literature, 

recirculated irrigation water is the most important one.  This is because the 

running irrigation water has the potential of moving the inoculum (zoospores, 

cysts, oospores or chlamydospores) from a small number of infected plants and 
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then releases large numbers of the same type of inoculum when recirculated 

back to the susceptible plants (MacDonald et al., 1994). 

  

 Survival of Phytophthora zoospores in irrigation water. Phytophthora 

zoospores or structures produced by them (cysts, hyphal fragments, 

appressorium-like structures, and microsporangia) are particularly adapted for 

survival in irrigation water (Thomson, 1972; Duniway, 1979). Thomson and Allen 

(1976) observed motile zoospores in water preparations for up to 20 hours. They 

also reported that zoospores of Phytophthora parasitica, or structures produced 

by them, survived for 40 – 60 days in irrigation water.  However, they did not 

determine whether the source of the observed zoospores was from sporangia or 

zoospore cysts. Zoospore cysts exposed to conditions stimulatory to germination 

but unconducive for vegetative growth usually form short hyphal fragments as 

survival structures (Thomson, 1972). Production of microsporangia is a further 

survival mechanism (Thomson, 1972; Thomson and Allen, 1976). Thomson 

(1972) reported that microsporangia can survive for over 60 days in irrigation 

water. However, they never quantified these structures.  Thus, the Phytophthora 

zoospore, in whatever form, has the ability to survive in irrigation water for 

weeks, a phenomenon which enhances the chance of pathogen dissemination 

with irrigation water to susceptible crops (Shokes and McCarter, 1979). 

 

Dispersal of Phytophthora zoospores in irrigation water. The biflagellate 

zoospores of Phytophthora spp. are able to swim in irrigation water.  However, 
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they have a limited capacity for dispersal through their own active swimming 

activities unless they are aided by moving water in form of irrigation water or in 

rainfall runoff (Erwin et al., 1983).  Phytophthora zoospores have been noted to 

swim in a smooth helical path and can afford a speed of approximately 100-

150µm per second (Deacon and Donaldson, 1993).  However, this rate of 

movement is not important because the swimming is interspersed with frequent 

spontaneous direction changes (Carlile, 1986; Deacon and Donaldson, 1993).  

Moreover, zoospore movements are often disoriented when they contact 

surfaces (Erwin and Ribeiro, 1996), causing them to stop swimming and form 

cysts.  The major determinant of zoospore dispersal in aquatic systems must 

therefore be the water currents, which will also dictate the direction of movement 

(Neher and Duniway, 1992).  They found considerable dispersal of Phytophthora 

parasitica zoospores along the direction of water flow in irrigation furrows.  This 

caused an increase in disease incidence with increasing distance from the water 

inlet, resulting from zoospores that were transported away from the water inlet to 

areas of slower current where they settle out.  Café-Filho et al. (1992b) recorded 

long distance dispersal of viable propagules of Phytophthora capsici and P. 

parasitica downstream with the usual furrow irrigation practices.  Their study also 

found increased accumulation of secondary inoculum with distance and time 

from the initial inoculum source located upstream. Noticeably, active 

(autonomous) zoospore dispersal has received comparatively little attention 

notwithstanding the fact that they must rely on their autonomous swimming 

activities in water to locate suitable infections sites or substrates. This has led to 
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little information on the contribution of active/autonomous zoospore swimming on 

the dispersal of Phytophthora spp in water. 

 

 The biology of zoospores. The zoospore forms the motile unicellular portion of 

the life cycle of Phytophthora and other oomycetous organisms.  They are 

formed in a zoosporangium by mitotic nuclear divisions and subsequent cleavage 

by fusion of the vesicles (Hohl and Hamamoto, 1967; Lange and Olson, 1983). 

The zoospores are discharged through a more or less pronounced papillum 

(papillation and its degree thereof is species specific), swim for a period, and 

encyst (Hohl and Mitchell, 1972; Lange and Olson, 1983).  The period of motility 

apparently depends on environmental factors.  As the propagules of survival and 

spread, zoospores undergo a multi-stage sequence before host infection 

(Deacon and Saxena, 1998).  According to Deacon and Donaldson (1993), the 

motile zoospores seek out and accumulate on a host (usually around the region 

of elongation immediately behind the root tip), orientate, encyst and adhere on 

the host surface, before finally germinating to initiate infection. 

 

The zoospore morphology and ultrastructure. The zoospores of Phytophthora 

spp. are typically ovoid, bluntly pointed at one or either ends or reniform (Ho et 

al., 1968a; Lunney and Bland, 1976) and are biflagellate (with anterior tinsel and 

posterior whiplash flagella).  The soma (body) is bound by a unit membrane (Ho 

and Hickman, 1967) and is longer than it is broad (Carlile, 1983). The biflagellate 

zoospore of Phytophthora has a ventral groove (Ho et al., 1968a) that runs the 
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entire longitudinal axis of the zoospore body.  The groove appears deeper at the 

center (appearing as almost overarched by outgrowths of the zoospore body) 

than it is at either end.  This characteristic shallowness at either end is 

responsible for the zoospore’s reniform shape observed when they are viewed 

from the anterior (Ho et al., 1968a).  The two flagella arise from a protuberance in 

the deep part of the groove region nearer to the anterior than to the posterior.  

However, the flagella are distinguishable by the presence or absence of lateral 

appendages (mastigonemes or flimmers) on their surfaces.  The tinsel or hispid 

flagellum has prominent lateral hairs projecting at right angles to the long axis 

and is oriented anteriorly whereas the posteriorly projected whiplash flagellum is 

hairless. 

          Ultrastructurally, the zoospore cell protoplasm is bound by a plasma 

membrane, which extends the entire length of each flagellum (Hoch and Mitchell, 

1972; Deacon and Donaldson, 1993). The zoospore has cell organelles such as 

the ribosomes, mitochondria, endoplasmic reticulum, vesicles, microtubules, and 

a pyriform shaped nucleus (Ho et al., 1968b; Hoch and Mitchell, 1972).  The 

nucleus is bound by a double nuclear membrane and has a large distinct 

nucleolus. The rough endoplasmic reticulum (RER) occurs as concentric rings 

around the nucleus.  The typical, spherical to oblong or irregular shaped 

membrane bound mitochondria are abundant in the protoplasm.  They contain 

numerous narrow, elongate cristae lying parallel to one another. The crystalline 

containing vesicles (Reichle, 1969) are widespread within the cell’s cytoplasm, 

except in the groove region.  
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The ultrastructural features of the biflagellate zoospore groove region 

presents an interesting set up with profound effects on the zoospore behavior.  

The groove region lacks the mitochondria, ribosomes and vesicles. Instead, it 

has abundant microtubules, a single large contractile vacuole, and several 

groups of undulating, transversely striated elements of unknown nature (Ho et 

al., 1968b; Hoch, 1972).  The groove-associated microtubules are thought to be 

responsible for mechanical support at the flagella bases.  The striated elements 

are not well understood functionally, but are also presumed to offer further 

support in this area (Ho et al., 1968b).  The large central contractile vacuole lying 

just beneath the groove region seems to aid in osmoregulation. 

The flagella originate from protuberances (called kinetosomes or 

blepharoplasts) in the groove region (Barr, 1983).  The two kinetosomes are 

located in close association with one another.  Lunney and Bland (1976) showed 

that an electron-opaque striated fiber bundle called a rootlet directly connects the 

two kinetosomes.  Other fiber bundles or ‘rootlets’ partly surround each 

kinetosome and radiate into the cytoplasm just below the plasmalemma of the 

zoospore body.  The rootlets have 5-8 microtubules.  The flagella in cross-

section exhibit the typical 9 +2 microtubular formation.  Ho et al. (1968b) reported 

that the zoospore axoneme is not different from other flagella.  The axoneme 

consists of a peripheral ring of nine doublet fibrils and two single central fibrils.  

These are features of importance in zoospore motility. 
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Zoospore motility and taxes. Biflagellate zoospores of Phytophthora species 

depend on their flagella for detection of external stimuli as well as for motility.  

Zoospore motility results from the propagation of symmetrical planar sine waves 

distally (i.e. from base to apex) by both flagella (Cahill et al., 1996).  In this 

rhythm, the action of whiplash flagellum pushes the cell through surrounding 

medium in a direction opposite to that of wave propagation.  The action of tinsel 

flagellum, however, pulls the cell in same direction as that of the wave 

propagation.  The anteriorly directed tinsel flagellum is responsible for most of 

the thrust, whereas the posteriorly directed whiplash flagellum acts to control 

direction of movement (Carlile, 1983).  The posterior whiplash flagellum is 

believed to be responsible for the often-observed swift but smooth direction 

changes in zoospore movements. Deacon and Donaldson (1993) reported that 

Phytophthora zoospores move in a smooth helical path, rotating about their long 

axis as they swim in an aqueous medium.   

         The duration of zoospore swimming varies.  Thomson (1972), and 

Thomson and Allen (1974) have recorded zoospore motility extending up to 20 

hours for Phytophthora parasitica in water. It is not clear whether the observed 

zoospores were the original released from sporangia or additional released from 

zoospore cysts. Nevertheless, coupled with a speed of about 100 – 150µm per 

second (Deacon and Donaldson, 1993), one might expect the zoospores to be 

able to move long distances through their swimming activities.  However, the 

duration of swimming is affected by such factors as temperature, pH, and the 

presence or absence of obstacles such as zoospores, shallow suspension 
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medium, or any other particles interfering with the swimming zoospores (Carlile, 

1983).  Generally, cool water (10 – 15 C) has been shown to allow the longest 

swimming period (Carlile, 1986).  The motility period can be reduced by such 

factors as shaking, centrifugation, excessive physical contact, and high 

carbohydrate concentrations.  In addition, the zoospores are known to exhibit 

numerous direction changes, which also influence their distance of travel.  It 

therefore seems probable that the swimming activities of the zoospore are a 

means to thoroughly explore a limited volume rather than traveling long distances 

(Carlile, 1986).  

             Despite the enormous ecological advantage it confers to Phytophthora 

species, the factors that determine the duration of the motile phase and its 

termination in irrigation water are poorly understood.  Irving and Grant (1984) 

suggested that naturally occurring pectic materials on the host plant surface 

provide the necessary recognition and response signals for the commencement 

of differentiation of the motile zoospore into a cyst.  Nevertheless, it is probable 

that the same factors allow motility to be retained until the cell is within a few 

millimeters of the host surface and in a locality where, after germination, 

sufficient nutrition is available to carry it through to the stage where it has access 

to the contents of living host cells.  Low concentrations of divalent cations have 

also been reported to prolong zoospore motility (Carlile, 1983).  A more startling 

report by Willoughby and Roberts (1994) revealed that physical or ionic shock is 

able to immobilize Aphanomyces zoospores without causing encystment and 

then resume motility afterwards.  This could have considerable implications in 
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irrigation waters, by ensuring that the zoospores are carried in a quiescent state 

and only encyst when they approach a suitable substrate or host.  The present 

research studies sought to provide new information on the ability of different 

generations of zoospores to retain motility in irrigation water. 

During motility, zoospores also show various tactic responses to host 

roots, all of which are essential for the fungal survival (Cameron and Carlile, 

1980; Carlile, 1983).  The tactic responses include directed movements to 

chemical gradients (chemotaxis), in water currents (rheotaxis), due to gravity 

(geotaxis), in electrical fields (electrotaxis), and in response to diffusible factors 

from other zoospores (autoaggregation) (Khew and Zentmeyer, 1973; Cameron 

and Carlile, 1977; Cameron and Carlile, 1980; Carlile, 1983; Deacon and 

Donaldson, 1993; Morris and Gow, 1993).  Chemotactic responses help 

zoospores in locating plant roots by swimming toward regions of nutrient 

exudation such as the zone of elongation or wounded sites (Khew and 

Zentmeyer, 1973).  Chemotactic responses of zoospores to root exudate 

compounds like amino acids, sugars and organic acids have been demonstrated 

in vitro (Zentmeyer, 1961; Jones et al., 1991).  Geotactic and rheotactic 

responses serve to place the zoospores in the aerobic layers of the soil where 

roots occur (Carlile, 1983; Cameron and Carlile, 1980).  The electrotactic 

response may act synergistically with chemotaxis in facilitating host location (Ho 

and Hickman, 1967). Zoospores accumulate at the cathode of an electric field in 

vitro, a factor that may account for the observed electric response toward 

cathodic root tips (Morris et al., 1992).  
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The phenomenon of formation of zoospore clumps (zoospore 

autoaggregation) is not well understood, but is thought to result from the 

attraction of a diffusible factor released by the initial zoospore clumps formed due 

to random collisions. This mechanism also serves to prevent the formation of 

further clumps in the vicinity (Carlile, 1983). Whatever the mechanism it could be 

an important factor in increasing the inoculum potential in these organisms. Often 

zoospores show taxis to roots and accumulate at the zone of elongation or 

wounding (Hickman and Ho, 1966). 

 

Zoospore encystment and cyst germination. After a period of active 

swimming, the duration of which is subject to environmental conditions, the 

zoospores slow down, assume a sluggish motion, and start to display irregular 

jerky motions (Lunney and Bland, 1976; Erwin et al., 1983).  The zoospores 

retract or shed their flagella, round up, and form double walled spherical 

structures called cysts (Bartnicki and Wang, 1983).  During and before 

encystment at an infection site, several events take place.  First, the zoospores 

adopt a specific orientation with respect to a potential host before they finally lose 

their motility.  According to Hardham and Gubler (1990), the specific orientation 

is responsible for the alignment of a predetermined site of germ tube emergence.  

These workers observed a specific alignment in Phytophthora cinnamomi in 

which the zoospore ventral surface faces the root.  This alignment and loss of 

motility is followed by zoospore cyst secretion of adhesive proteinaceous 

material, which binds the zoospore cyst to the host surface (Gubler et al., 1989) 
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to prevent any possible dislodgement and to anchor the cyst so the germ tube 

can physically penetrate the host surface.  The encysting zoospore releases 

Ca2+, which interacts with the adhesive and fixes the cyst to host surface 

(Deacon and Donaldson, 1993).  The released Ca2+ is trapped by the adhesive 

pad which is later reabsorbed to trigger germination.  

In nature, zoospore encystment prior to infection is largely a pre-

programmed process that only requires a host or substrate trigger (Deacon and 

Donaldson, 1993).  However, agitation, lowering of the pH, or increasing the 

osmotic potential of a solution or other adverse changes of environmental 

conditions can hasten zoospore encystment (Hemmes, 1983).  Depending on the 

trigger, different types of encystment have been recognized (Waterhouse, 1962).  

These are the rapid encystment, which is a prelude to germination and the 

second type, which occurs presumably to tide over certain adverse conditions.  

Still, a third type of encystment that accompanies dimorphism (diplanetism) in 

some fungi does occur. The encystment in response to root surface mucilage 

polysaccharides has been shown to be a prelude to germination by germ tube 

(Estrada-Garcia et al., 1990).  The second and third types of encystment are 

triggered by unfavorable factors, and may lead to further zoospore emergence or 

germination failure (von Broembsen and Deacon, 1997; von Broembsen and 

Charlton, 2000).  Studies on the factors that affect zoospore encystment would 

provide useful information with potential for disease management.  

Following encystment and adhesion, a localized bulge on the cyst wall 

appears (within 30 – 40 min) as a first sign of germination.  The bulge initially 
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develops into a narrow tube (Hoch and Mitchell, 1972), which later expands into 

assimilative hyphae.  Cyst germination is also a very responsive phase and has 

many triggers.  Root exudates (Hickman and Ho, 1966) nutrient mixtures, 

sugars, amino acids, and several other compounds have been reported to trigger 

cyst germination (Jones et al., 1991; von Broembsen and Deacon, 1997; Deacon 

and Saxena, 1998).  Thus, depending on environmental cues, two possible 

pathways may follow zoospore encystment.  It may germinate by producing a 

germ tube or by releasing a further zoospore, a cycle which may occur 

repeatedly.  The production of further zoospore from the cysts is thought to be a 

“default” option (Deacon, 1996; von Broembsen and Deacon, 1997) adopted in 

case of failure by these parasites to locate a suitable host or substrate after 

swimming for a time.  

There is little information on the precise factors that promote or suppress 

cyst germination in vivo. It is not always clear whether factors that induce cyst 

formation could suppress or promote subsequent cyst germination. Carlile (1983) 

postulated that factors that signal favorable conditions (like root exudates) are 

likely to stimulate both encystment and subsequent germination, but unfavorable 

factors (like physical or chemical shock) that stimulate encystment may inhibit 

germination by germ tubes but promote further zoospore emergence.  Zoospore 

encystment induced by basic amino acids and Fe3+ within certain concentration 

ranges produced cells less committed germinate (Byrt et al., 1982).  Tellingly, 

other compounds such as simple sugars or acidic amino acids are essential at 

the time of the reception of encystment stimulus for the cell to proceed to germ 
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tube formation. These germination-inducing compounds do not have the capacity 

to induce encystment on their own (Byrt et al., 1982).  These findings undermine 

the theory that the cell transformation from the motile state to the germination 

state depends on a cascade effect in which one single factor triggers the pre-

infection process.  It is probable that zoospore germination near host surfaces 

results from exposure to multiple germination cues.   

 

Zoospore repeated emergence (re-emergence). It is generally assumed that 

under the normal course of events, zoospores usually settle down after a swarm 

period, encyst, and germinate by a germ tube.  However, a number of cases 

where zoospores encyst in water and re-emerge for another swimming period 

have been reported for Dictyuchus (Weston, 1919), Achlya (Salvin, 1940), 

Aphanomyces (Cerenius and Söderhäll, 1984, 1985; Lilley et al., 1999), 

Saprolegnia (Diéguez-Uribeondo et al., 1994), Pythium (Jones et al., 1991) 

Phytophthora (von Broembsen and Deacon, 1997), Phytophthora sojae (Xu and 

Morris, 1998) and several other Phytophthora spp. (von Broembsen and 

Charlton, 2000). This phenomenon is properly called “repeated emergence” in 

Phytophthora (Blackwell, 1949) as opposed to diplanetism, which should mean 

diplanetism with dimorphism. Diplanetism is yet to be reported for Phytophthora 

spp.  In diplanetism, the zoospore when it first emerges from the sporangia is 

pear shaped with two terminal flagella, but after second emergence, and later 

ones, is bean shaped with two lateral flagella (Blackwell, 1949; Alexopoulos et 

al., 1996).  The term repeated emergence has also been used for the later 
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swarming stages in Dictyuchus (Weston, 1919), Saprolegnia (Diéguez-Uribeondo 

et al., 1994), and is therefore appropriately used in Phytophthora and Pythium 

where only the laterally biflagellate zoospore is known. 

Repeated zoospore emergence is thought to be an adaptive feature 

(Cerenius and Söderhäll, 1985) which functions to prolong the motile phase, 

thereby providing the parasite an opportunity to further explore its environment in 

case a suitable substrate or host is not immediately located (Ho and Hickman, 

1967).  It is also thought to offer a “rejuvenation” opportunity by ushering in a 

period of quiescence for a certain mass of protoplasm, which later emerges as a 

thoroughly revived entity (Salvin, 1940). Repeated emergence has been reported 

to be responsive to environmental cues in nature. Xu and Morris (1998), 

observed the suppression of repeated emergence of zoospores in Phytophthora 

megasperma var. sojae by root substances and nutrient solutions.  von 

Broembsen and Deacon (1997) also found that Ca2+ triggers zoospore cyst 

germination in Phytophthora parasitica but suppresses further zoospore release 

from ungerminated cysts. 

Despite the reported cases of repeated zoospore emergence in several 

Pythiaceous fungi including Phytophthora sojae (Ho and Hickman, 1967), 

Pythium aphanidermatum (Jones et al., 1991), and Phytophthora parasitica (von 

Broembsen and Deacon, 1997), its extent and prevalence remains to be reported 

among this group of pathogens. Moreover, there is reason to believe that the 

extent of repeated zoospore emergence is a variable character among fungal 

species.  This is because zoospores are dependent on stored energy and thus 
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on reserve food material (Salvin, 1940). It has also been speculated that the 

repeated emergence of zoospores from the encysted state is under the control of 

some inherent factor (Salvin, 1940).  This is an interesting phenomenon worthy 

of further investigation. 

Zoospores that emerge from cysts during repeated emergence are 

structurally similar to those released from the sporangia (sporangial derived 

zoospores) (Xu and Morris, 1998).  Salvin (1940) recorded up to five successive 

swarm stages of motile Achyla zoospores, which had similar shape but with 

decreased amount of material with each generation.  While working with 

Saprolegnia parasitica, Diéguez-Uribeondo et al. (1994) also reported a record 

six swarm stages. The ability of these cysts to produce additional generations of 

zoospores appeared to be related to stored reserves.  If this were true, then one 

would expect the reserves to decline with each successive generation.  This 

would subsequently render the cyst derived zoospores less biologically fit than 

the sporangia derived zoospores. However, in no case has a comparative study 

on any component of biological fitness between these two types of zoospores 

been attempted for any fungus.  This study explored the ability of both sporangial 

and cyst derived zoospores to disperse autonomously, to locate roots in water, 

and to retain motility.  

 

RESEARCH JUSTIFICATION 

Phytophthora spp. are destructive plant pathogens with complex asexual 

life cycle stages that produce various infectious propagules which include 
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mycelium, sporangia, zoospores and zoospore cysts (de Souza et al., 2003). 

Each of these stages is under the influence of different environmental factors 

such as temperature, water relations, physical and chemical conditions, and with 

interacting combinations of these factors (Fawcett, 1936; Zentmeyer, 1981; 

Duniway, 1983). Therefore, the geographic distribution of Phytophthora spp. and 

the diseases they cause depends on the constraints of any of these 

environmental factors on any or all of the life cycle stages (Duniway, 1983). Of 

the environmental factors, temperature has been reported to have a large 

influence on growth, reproduction and pathogenesis of Phytophthora spp. 

(Sujkowski, 1987; Sing and Chauhan, 1988; Matheron and Matejka, 1992). 

However, most of these studies take into account only one species or isolate of 

Phytophthora and consider only one particular stage in the life cycle (Gooding 

and Lucas, 1959; Zentmeyer and Erwin, 1970; Zentmeyer, 1981; Sujkowski, 

1987; Matheron and Matejka, 1992; Sato, 1994; Roy, 1999; Timmer et al., 2000). 

The current study examined the effect of temperature on the asexual life cycle 

stages which included the mycelial growth, sporangia production, and zoospore 

cyst germination of several water-borne Phytophthora spp. An understanding of 

the influence of temperature on these important life cycle developmental stages 

is essential step in the development of best management practices for these 

pathogens in irrigation water. 

              Phytophthora zoospore cysts, depending on environmental cues have 

different options. They have the ability to remain encysted, germinate by germ 

tubes, or by releasing additional zoospores (repeated emergence) (von 
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Broembsen and Deacon, 1997; Xu and Morris, 1998; von Broembsen and 

Charlton, 2000). The zoospores that emerge from the cysts during re-emergence 

are structurally similar to zoospores released from the sporangia. Repeated 

zoospore emergence is an adaptation to parasitism with great value for survival 

and spread for plant pathogenic oomycetes, which exhibit it (Cerenius and 

Söderhäll, 1985).  The intervening encystments probably function to offer the 

zoospore an opportunity to replace worn out flagella and to further provide 

opportunity for zoospore to disperse and thoroughly explore its environment.  

This phenomenon is also thought to offer a “rejuvenation” opportunity by 

ushering in a period of quiescence for a certain mass of protoplasm, which later 

emerges as a thoroughly revived entity (Salvin, 1940).  Despite the great survival 

value this intriguing phenomenon is thought to confer, it remains poorly 

understood in Phytophthora spp. The current study sought to characterize and 

document the occurrence of this phenomenon and the possible role of 

temperature as an important environmental cue which influences repeated 

zoospore emergence among Phytophthora spp. common in irrigation water. 

Understanding this phenomenon is an essential step in understanding the basic 

biology and epidemiology of water-borne Phytophthora spp. 

Zoospore motility and autonomous dispersal are important pre-infection 

stages, which must be accomplished with precision if successful host infection is 

to occur (Donaldson and Deacon, 1993). The motile phase aids in dispersal of 

Phytophthora by increasing the probability of encountering a new host. 

Prolonged motility could thus have considerable epidemiological implications for 
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these pathogens in irrigation water. Zoospores depend entirely on endogenous 

energy reserves and only acquire the competence to take up exogenous energy 

sources upon germination (Pennington et al., 1989). Thus, even though 

zoospores that emerge from cysts are similar structurally to those released from 

sporangia (Xu and Morris, 1998), they may have their energy reserves severely 

depleted with each successive swarm stage.  It is therefore probable that the 

biological fitness of subsequent zoospore generations become limited. However, 

there is currently no information comparing important components of biological 

fitness of zoospore released from sporangia with those that emerge from cysts 

for Phytophthora spp. This study compared autonomous dispersal, root location 

and infection, and motility retention for these zoospore types for several 

Phytophthora spp. Such studies are essential in understanding the ecological 

role of cyst derived zoospores and consequently formulating relevant 

Phytophthora disease management support systems in irrigated cropping 

systems. 
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RESEARCH OBJECTIVES 

 

          The study specific objectives were: 

1. To investigate, characterize, and document the effect of temperature 

on asexual life cycle stages and repeated zoospore emergence 

(swarming) by several Phytophthora spp. common in irrigation water. 

2. To compare autonomous dispersal, and root location and infection by 

of sporangial and cyst derived zoospores of several Phytophthora spp. 

common in irrigation water. 

3. To compare the ability of sporangial and cyst derived zoospores to 

retain motility under different temperature regimes. 
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CHAPTER III 
 
 

EFFECT OF TEMPERATURE ON PHYTOPHTHORA MYCELIAL GROWTH, 
SPORANGIA PRODUCTION, AND ZOOSPORE REPEATED EMERGENCE 

 
 
            Phytophthora spp. are ubiquitous pathogens of a number of important 

crops worldwide (Erwin et al., 1983; Erwin and Ribeiro, 1996; Agrios, 1997) and 

possess a high level of diversity with over 67 species described (Erwin and 

Ribeiro, 1996). These pathogens have a complex asexual life cycle with distinct 

multiple infectious propagules which include the mycelium, sporangia, 

zoospores, and zoospore cysts (de Souza et al., 2003). Phytophthora 

pathogenesis is influenced by different environmental factors such as 

temperature, water relations, physical and chemical conditions, and with 

interacting combinations of these factors (Fawcett, 1936; Zentmeyer, 1981; 

Duniway, 1983). The geographic distribution and seasonality of Phytophthora 

diseases depends on the constraints of any of these environmental factors on 

any or all of the life cycle stages (Duniway, 1983). Of the environmental factors, 

temperature has been reported to have greatest influence on growth, 

reproduction and pathogenesis of Phytophthora spp. (Sujkowski, 1987; Sing and 

Chauhan, 1988; Matheron and Matejka, 1992). Effects of temperature on 

soilborne Phytophthora spp. have been reported (Zentmeyer and Erwin, 1970; 

Zentmeyer, 1981; Sujkowski, 1987; Matheron and Matejka, 1992). However, 
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most of these studies take into account only one species or isolate of 

Phytophthora and consider only one particular stage in the life cycle (Gooding 

and Lucas, 1959; Zentmeyer and Erwin, 1970; Zentmeyer, 1981; Sujkowski, 

1987; Matheron and Matejka, 1992; Sato, 1994; Roy, 1999; Timmer et al., 2000).  

            Mycelial development by Phytophthora spp. is an important component of 

disease development (Zentmeyer, 1981; Simpfendorfer et al., 2001). The 

temperature in any given environment must be permissive to mycelial 

development and growth for the respective Phytophthora spp. to support disease 

progress (Duniway, 1983). The parallel effects of temperature on mycelial growth 

and the development of Phytophthora diseases have been described (Fawcett, 

1936; Zentmeyer et al., 1976; Zentmeyer, 1981; Duniway, 1983; Matheron and 

Matejka, 1992).  Zentmeyer (1981) reported a temperature correlation between 

P. cinnamomi mycelial growth and Phytophthora root rot disease development of 

avocado. However, such results should be interpreted with caution. Matheron 

and Matejka (1992) reported a lack of correlation between Phytophthora 

parasitica and P. citrophthora mycelial growth on corn meal agar (CMA) and 

disease development. This could be due to the fact that temperature affects only 

the physiology of the pathogen when grown in vitro. Alternatively, Phytophthora 

disease development is the resultant, cumulative effect of temperature on the 

physiological processes of both the pathogen and the host.  

           Even though Phytophthora growth in vitro at various temperatures may 

offer limited predictive value of disease development on plant tissues at the same 

temperatures, understanding the influence of temperature on the in vitro mycelial 
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development of Phytophthora spp. is an essential step in the development of 

best management practices for these pathogens in irrigated agriculture. 

          Sporangia production is an important stage in the life cycle of Phytophthora 

spp., as it provides the opportunity for rapid increase in the numbers of infective 

propagules and disease (Matheron and Matejka, 1992). Sporangia usually 

germinate either indirectly by releasing zoospores or directly by growing germ 

tubes and thus increasing plant tissue infection (Gooding and Lucas, 1959; 

Matheron and Matejka, 1992; Sato, 1994; Timmer et al., 2000). The influence of 

temperature on the rate of sporangia formation in Phytophthora spp. has been 

documented (Gooding and Lucas, 1959; Duniway, 1983; Matheron and Matejka, 

1992; Sato, 1994; Timmer et al., 2000). In most Phytophthora spp., the 

temperature range over which sporangia can form appears to be narrow and this 

is thought to confine their activities to certain seasons of the year (Fawcett, 1939; 

Duniway, 1983). Usually, significant in vitro sporangial production occurs within a 

wide range of temperature whereas the optimal range is quite narrow for a given 

Phytophthora spp. Studies on the influence of temperature on sporangial 

production by water-borne Phytophthora spp. is an important prerequisite for 

developing disease predictive models in the field. 

Zoospores are primary propagules of infection by oomycetes, including 

Phytophthora spp., especially under wet conditions and in irrigated cropping 

systems. The infection process begins with zoospore orientation towards a 

potential host, their encystment and adherence to a host surface, and their 

subsequent germination (Hardham and Gubler, 1990). In this scenario, 
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encystment is largely a pre-programmed process that only requires a host or 

substrate trigger (Deacon and Donaldson, 1993). Environmental cues such as 

physical agitation, heat or chemical shock, lowering of the pH, or increasing the 

osmotic potential of a solution have been noted to hasten zoospore encystment 

(Ho and Hickman, 1967; Hemmes, 1983; Willoughby and Roberts, 1994). After a 

period of active swimming without locating a host or substrate Phytophthora 

zoospores slow down, assume a sluggish motion, and start to display irregular 

jerky motions (Lunney and Bland, 1976; Erwin et al., 1983).  They shed their 

flagella, round up, and form double walled spherical structures (Bartnicki-Garcia 

and Wang, 1983) called cysts.  Depending on environmental cues, encysted 

zoospores may remain encysted, germinate by germ tubes or by releasing 

additional zoospores (repeated emergence).  

Repeated zoospore emergence has been observed in both sporangial and 

cyst derived zoospore cysts (von Broembsen and Charlton, 2000) of water-borne 

Phytophthora spp. This phenomenon is thought to be an adaptive feature which 

offers great opportunity for survival and spread for plant pathogenic oomycetes 

which exhibit it (Cerenius and Söderhäll, 1985).  The intervening encystments 

probably function to offer the zoospore an opportunity to replace worn out 

flagella, and provide further opportunity to thoroughly explore its environment, 

and offer to a “rejuvenation” period of quiescence (Salvin, 1940).  Despite great 

survival value and epidemiological implications of this phenomenon, little is 

known about its occurrence and prevalence for water-borne Phytophthora spp. 
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Understanding this phenomenon is an essential step in the formulation of 

effective management practices of water-borne Phytophthora spp.  

The objective of this study was to investigate the occurrence and 

prevalence of zoospore repeated emergence (re-emergence) among 

Phytophthora spp. common in irrigation water. The ability of both sporangial and 

cyst derived zoospore cysts to germinate by further zoospore release was 

investigated for various Phytophthora spp. that are commonly associated with 

irrigated cropping systems. The role of temperature as a possible environmental 

factor that influences this process was also evaluated. 

 

MATERIALS AND METHODS 

 

Media. Clarified V8 broth was prepared by mixing 340 ml of V8 juice (Campbell 

Soup Co., Camden, NJ) with 5 g CaCo3 and stirred with a magnetic stirrer for 30 

min. The mixture was then centrifuged at 10,000 rpm for 10 min, the supernatant 

decanted and diluted (1:5, v/v) with sterile distilled water (SDW). The broth was 

dispensed into bottles (200 ml per 500 ml Pyrex bottle) before autoclaving for 15 

min at 121oC (von Broembsen and Deacon, 1996).  A clarified V8 agar was 

prepared by adding 15 g of Difco Bacto Agar (Difco Laboratories, Detroit, 

Michigan) to 1L V8 broth and autoclaving again (Ribeiro, 1978). The mineral salts 

solution comprised of Ca(NO3)2.4H2O (3.08 g), MgSO4.7H2O (1.49 g), and KNO3 

(0.51 g) per liter of distilled water (von Broembsen and Deacon, 1996). The 

solution was autoclaved and 1 ml of filter sterilized chelated iron solution added. 
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The iron solution comprised of ethylenediamine-tetraacetic acid (EDTA) (0.6525 

g), KOH (0.375 g), and FeSO4.7H2O (1.245 g) in 50 ml sterile distilled water 

(SDW).  

 

Experimental cultures. Isolates of Phytophthora parasitica (Brenda de Haan) 

Dastur (GLN 9-3), P. citrophthora (Sm. et Sm.) Leonian (GLN 7-23), P. citricola 

Sawada (PHP R-2), and P. cinnamomi Rands (1D-A) originally isolated from 

irrigation water or irrigated nursery crops in Oklahoma and maintained on malt 

extract agar (MEA; 10 g difco malt extract and 15 g difco bacto agar per liter of 

distilled water) were used in the experiments described. P. cryptogea 

(Perthybridge and Lafferty) isolates FDM51 and FWDM4 from dusty miller 

(Senecio cineraria) were supplied by Dr. M. Benson of North Carolina State 

University, Raleigh, NC. 

Effect of temperature on mycelial mat development. The effect of 

temperature on mycelial mat growth of Phytophthora parasitica (GLN 9-3), P. 

citricola (PHP R-2), P. citrophthora (GLN 7-23), and P. cryptogea (isolates 

FDM51 and FWDM4) was assessed as follows. Each isolate was grown on V8 

agar for 4 days and mycelial disks (5 mm diameter) from actively growing colony 

margins were cut with a sterile cork borer and distributed (3 disks per petri dish) 

into 65 mm petri plates each containing 3 ml of clarified V8 broth. The plates 

were then incubated at 15, 20, 25, or 30 C and colony diameter measurements 

taken at 24, 48, and 72 h by taking two perpendicular readings of each colony 

and subtracting the diameter of the inoculation disk. A total of two replicate plates 
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were inoculated for each isolate and temperature combination and the 

experiment was repeated once.  

 

Effect of temperature on sporangium production. Each isolate was grown on 

V8 agar in 65 mm petri plates. After 4 days, 5 mm agar disks were obtained from 

actively growing colony margins and distributed (3 disks per plate) into 65 mm 

petri plates each containing 3 ml of mineral salt solution (MSS). The plates were 

incubated at 15, 20, 25, or 30 C in the dark for 3 - 4 days after which, the 

numbers of sporangia along the periphery of four arbitrarily selected fields of 

view for each disk were counted under the microscope at a magnification of 

X100. There were two replicate plates for each isolate and temperature and the 

experiment was repeated three times.     

 

Zoospore production. Zoospores were produced axenically from each 

Phytophthora isolate following a protocol previously described by von Broembsen 

and Deacon (1997). Prior to use, the cultures were plated onto cornmeal agar 

{CMA; 17 g cornmeal agar per liter of distilled water (Sigma-Aldrich, St. Louis, 

MO)} and incubated at 25 C for 4 - 5 days. Cultures were then transferred to 

clarified V8 agar and incubated at 25 C for 3 - 4 days. Agar blocks (5 x 5 mm) 

were cut with a sterile scalpel from colony margins and distributed (10 per plate) 

into 90 mm petri plates each containing 10 ml clarified V8 broth. The plates were 

incubated for 36 h (for P. cryptogea isolates), or 24 h for all other isolates at 25 C 

to allow mycelial mats to develop.  
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           Following incubation, the broth from each plate was removed and the 

mats washed three times with mineral salts solution (MSS) as follows: 10 ml of 

MSS was added into each plate and the plates swirled gently to wash the mats. 

At the end of the third washing the plates were flooded with 10 ml of MSS and 

incubated at 20/21 C beneath (~ 16 cm) fluorescent lights. After 24 h, the MSS 

from each plate was removed, replaced with additional 10 ml of MSS, and 

returned to incubation under same conditions.  After 4 days of further incubation, 

the MSS was decanted, the mats were rinsed twice with sterile distilled water 

(SDW), each plate flooded with 10 ml of SDW, and immediately placed in a 

refrigerator (4 C) for 45 - 50 min to stimulate cleavage of sporangium contents to 

form zoospores (von Broembsen and Deacon, 1997).  After 45 – 50 min, the 

plates were removed from the refrigerator and placed on bench racks at 21 – 22 

C to allow zoospore release.   

             Zoospore suspensions were harvested from each plate after 1 - 2 h by 

tilting and pipetting the top 8 ml into McCartney bottles (16 ml per bottle for a 

total of 5 bottles). Zoospores are negatively geotropic (Cameron and Carlile, 

1977; Charlton, 2001) and tend to concentrate at the upper third of liquid in tilted 

plates (von Broembsen and Deacon, 1997). 

  

Induction of zoospore encystment. Zoospore suspensions were encysted by 

holding each McCartney bottle against a Maxi Mix II vortex machine (Whatman 

Inc., Clifton, NJ) for 2 min. The cyst suspensions from all bottles were 
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immediately mixed together in a sterile 100 ml Pyrex bottle and gently swirled to 

homogenize the suspension.  

 

Experimental design. Sporangial derived zoospore (SDZ) cysts produced as 

described above were incubated at 15, 20, 25, or 30 C in Eppendorf tubes or 

McCartney bottles for 7 – 8 h. For every incubation temperature, four replicate 

Eppendorf tubes (each containing 1 ml of cyst suspension) and a McCartney 

bottle containing 16 ml of cyst suspension were prepared. The four Eppendorf 

tubes were used to assess the mode of SDZ cyst germination as described 

below. Previous studies by Charlton and von Broembsen (2001) established that 

zoospore re-emergence from cysts occurs by 7 – 8 h after vortex encystment, 

and the released zoospores tend to congregate near the upper surface of the 

liquid (Cameron and Carlile, 1977; von Broembsen and Deacon, 1997; Charlton, 

2001). At 7 – 8 h, cyst derived zoospore suspensions were obtained by removing 

the upper third of liquid from each McCartney bottle and dispensing into four 

Eppendorf tubes (each Eppendorf tube received 1 ml aliquot of zoospore 

suspension). Each Eppendorf tube was held against a vortex mixer for 70 sec (to 

produce CDZ cysts) and returned to incubation at their respective temperatures 

for a further 6 - 7 h. Four replicate Eppendorf tubes were prepared for each 

treatment and each experiment was repeated three times. 

 

Assessment of germination of SDZ cysts. After 7 – 8 h of incubation, each 

Eppendorf tube was briefly held against a vortex mixer for 3 sec to resuspend the 
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contents and then 80 µl was spread on precleaned plain 3 x 1 inch microscope 

slides (Fisher Scientific Co., Pittsburg, PA). The slides were supported 

underneath by glass rods in 150 x 120 mm pyrex petri-dishes lined with moist 

paper towels to maintain wetness prior to mode of germination assessment. The 

mode of germination was assessed for 100 cells per slide microscopically at 

200X using a photomicrographic attachment (Nikon Corp., Chiyoda-Ku, Tokyo) 

and a video screen. The cells were scored as ungerminated, germinated by germ 

tube, or germinated by a single zoospore release (von Broembsen and Deacon, 

1997). Cells were considered to have germinated by germ tubes if the germ tube 

length exceeded twice the cell’s diameter. Germination by further zoospore 

release (re-emergence or repeated emergence) was represented by the 

presence of empty cyst cell walls (ghosts) with or without a short exit tube (Figure 

3.1).  

 

Assessment of germination of sporangial derived zoospore (CDZ) cysts. At 

6 - 7 h post-encystment of CDZs, 80 µl aliquots were obtained from each 

Eppendorf tube, spread on microscope slides and treated as described 

previously. The mode of CDZ cyst germination was assessed for 100 cells on 

each slide as described above for SDZ cysts. 

 

Data analysis. The experiment with each isolate was repeated three times with 

four replications per treatment (temperature). Since there were no trial effects, 
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data for each isolate were pooled and analyzed using the PROC GLM (SAS 

Institute Inc., Cary, NC, 2001).  

  

RESULTS 

Effect of temperature on mycelial mat growth. All five Phytophthora isolates 

tested in this study were able to survive and attain varying degrees of mycelial 

growth from 15 – 30 C (Table 3.1). After 72 h, Phytophthora parasitica (GLN 9-3) 

had greater (P≤0.05) mycelial growth at 25 and 30 C, whereas P. citrophthora 

(GLN 7-23) had greater growth at 20 C. Phytophthora citricola (PHP R-2) showed 

greater growth at 15 and 20 C after 72 h, and P. cryptogea isolates FDM51 and 

FWDM4 had greatest growth at 20 C and at 20 and 25 C respectively. 

Discernable variations existed in isolate mycelial growth rates at the different 

temperatures tested (Table 3.2). Phytophthora citrophthora (GLN 7-23) had the 

greatest (P≤0.05) growth rate at 20 C and P. citricola (PHP R-2) at 15 and 20 C, 

whereas P. cryptogea isolates FDM51 and FWDM4 had higher growth rates at 

15 C and at 20 and 25 C, respectively. 

 

Effect of temperature on sporangial production. Appreciable sporangial 

production by all Phytophthora isolates in mineral salt solution (MSS) occurred at 

25 C (Table 3.3). However, considerable variation in the extent of sporangial 

production was observed between the isolates at different temperatures. 

Phytophthora citrophthora (GLN 7-23) and P. cryptogea (FDM51) both had 

greater (P≤0.05) sporangial production at 25 and 30 C, whereas P. cryptogea 
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(FWDM4) had the most prolific sporangial formation at 30 C. Phytophthora 

citricola (PHP R-2) had the greatest sporangial production at 25 C, whereas P. 

parasitica (GLN 9-3) had the greatest sporulation at 25 C. Phytophthora citricola 

(PHP R-2) produced no sporangia at 30 C, and P. citrophthora (GLN 7-23) was 

the most prolific sporangial producer (optimum 25 and 30 C).  

 

Phytophthora zoospore cyst germination. Cysts of P. citrophthora, P. citricola, 

P. parasitica, and P. cryptogea germinated by either producing a further 

zoospore (repeated emergence), by a germ tube, or remained ungerminated in 

sterile distilled water (SDW). On rare occasions (<1%), cysts germinated by 

issuing short germ tubes, which developed miniature sporangia at their tips, 

releasing a single zoospore. The mode of germination was apparently influenced 

by temperature. Therefore the influence of water temperature on mode of 

sporangial and cyst derived zoospore cyst germination was further investigated 

for select Phytophthora isolates that were prolific producers in our preliminary 

studies, namely; P. citrophthora (GLN 7-23), P. citricola (PHP R-2), P. parasitica 

(GLN 9-3), and P. cryptogea (isolates FDM51 and FWDM4). 

 

Effect of temperature on SDZ cyst germination. Temperature influenced the 

mode of SDZ cyst germination differently for each isolate considered in this study 

(Table 3.4). Cyst germination by repeated emergence (re-emergence) was 

higher (P≤0.05) for P. cryptogea (FWDM4) at 20 and 25 C and optimum for P. 

cryptogea (FDM51) at 30 C. Phytophthora parasitica (GLN 9-3) exhibited cyst 
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germination by re-emergence at 20, 20, 25 and 30 C (optimum at 20 C). Re-

emergence for these cysts in P. citrophthora (GLN 7-23) and P. citricola (PHP R-

2) were low and did not show any differences across all temperatures considered 

in this study. Conversely, cyst germination by germ tubes was low (P≤0.05) for P. 

cryptogea (FDM51 and FWDM4) and P. citricola (PHP R-2) across all 

temperatures. This mode of germination was greater (up to 68%) for P. parasitica 

(GLN 9-3) at 25 C and across all temperatures for P. citrophthora (GLN 7-23). 

Some cysts remained ungerminated in each case, but were not followed to 

determine their final fates in this study. 

 

Effect of temperature on CDZ cyst germination. The mode of cyst germination 

for each isolate was also influenced differently by temperature (Table 3.5). 

Phytophthora cryptogea (FWDM4) cysts had higher (P≤0.05) germination by re-

emergence at 20 and 25 C than at 30 C, whereas, P. cryptogea (FDM51) had 

higher germination by re-emergence at 30 C. This mode of germination for P. 

parasitica (GLN 9-3) was greater at 20 C than at 15 and 30 C, for P. citricola 

(PHP R-2) at 20, and for P. citrophthora (GLN 7-23) at 20 and 25 C. Cyst 

germination by germ tubes was consistently low (<13%) for P. cryptogea 

(isolates FDM51 and FWDM4) and P. citricola (PHP R-2) at all temperatures. 

phytophthora citrophthora (GLN 7-23) had high germination by germ tubes 

across all temperatures with a maximum of 69% at 30 C, whereas P. parasitica 

(GLN 9-3) germination by germ tubes was optimum at 25 and 30 C. There was a 
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tendency for greater percent germination by re-emergence for CDZs than for 

SDZs for all isolates in this study. 

  

DISCUSSION 

The life cycle of Phytophthora spp. consists of several distinct asexual 

developmental stages that are each crucial for plant infection and disease 

development (Hardham, 2001). These include vegetative growth of filamentous 

hyphae, sporulation, release of motile zoospores, zoospore encystment, and cyst 

germination which eventually initiate plant infection (Kennedy and Pegg, 1990). 

The results of this study demonstrated that temperature is an important 

environmental factor with differential effects on growth stage and could have 

important implications for disease and disease management. 

 The results obtained in this study confirmed the influence of temperature 

on mycelial mat growth for different Phytophthora spp. The influence of 

temperature on mycelial growth of different Phytophthora spp. have been 

reported (Waterhouse and Blackwell, 1963; Zentmeyer et al., 1976; Zentmeyer, 

1981; Sujkowski, 1987; Roy, 1999; Simpfendorfer et al., 2001; Dirac and Menge, 

2002). Waterhouse and Blackwell (1963) reported an optimum mycelial growth 

temperature of 25 – 28 C for P. citricola, while P. cryptogea was observed to 

have optimum mycelial growth at 20 – 25 C (Kennedy and Pegg, 1990), P. 

citrophthora at 26 C (Dirac and Menge, 2002) and P. parasitica at 30 – 31 C for 

(Matheron and Matejka, 1992; Dirac and Menge, 2002). Results obtained in the 

in vitro studies with water-borne isolates of these species were in general 
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agreement with these reports. The slight variations observed in our study could 

be due to the effect of growth media composition, pH and inherent differences 

between isolates of each species. The influence of nutrient composition on the in 

vitro mycelial growth of Phytophthora spp. has previously been reported 

(Zentmeyer et al., 1976; Matheron and Matejka, 1992). The pH of artificial media 

has also been reported (Wong et al., 1986; Simpfendorfer et al., 2001) to 

influence mycelial growth in vitro.  

Sporangia production is an important stage in the life cycle of 

Phytophthora spp., providing the opportunity for increase in infective units and 

increased disease (Gregory, 1983; Matheron and Matejka, 1992). Phytophthora 

sporangia can germinate either indirectly by releasing zoospores or directly by 

growing germ tubes and thus enhancing plant infection (Gooding and Lucas, 

1959; Matheron and Matejka, 1992; Sato, 1994; Timmer et al., 2000). Results 

obtained in our studies show that sporangia production in Phytophthora is 

influenced differently by temperature. Production of sporangia in soil by 

Phytophthora spp. has been documented (Duniway, 1983). The temperature 

response variability among related genera of Phytophthora has also been 

reported (Gooding and Lucas, 1959). Our results on the effect of temperature on 

Phytophthora sporangia production very closely follow those previously reported 

(Gooding and Lucas, 1959; Matheron and Matejka, 1992; Mizubuti and Fry, 

1998; Timmer et al., 2000). The temperature range over which the tested isolates 

were able to produce abundant sporangia appeared to be narrow, suggesting 
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that temperature as a factor may confine the pathogenic activities of 

Phytophthora to certain geographic locations and seasons of the year.      

The observation that cysts of waterborne Phytophthora spp. can remain 

ungerminated, or germinate either by germ tubes or by further zoospore release 

following vortex-induced encystment is a feature shared with several other spp. 

of oomycetes including Dictyuchus (Weston, 1919), Achyla (Salvin, 1940), 

Phytophthora megasperma var. sojae (Ho and Hickman, 1967), Aphanomyces 

(Cerenius and Söderhäll, 1985), Pythium aphanidermatum (Jones et al, 1991), 

Saprolegnia parasitica (Diéguez-Uribeondo et al., 1994), P. sojae (Xu and Morris, 

1998) and Phytophthora parasitica (von Broembsen and Deacon, 1997; von 

Broembsen and Charlton, 2000). The observed ungerminated cysts probably 

were still in a quiescent state waiting to germinate later. However, their final fates 

were not studied.  

Both SDZ and CDZ cysts exhibited germination by re-emergence, but re-

emergence was greater for the latter cyst type.  The reason for the observed 

enhanced germination by re-emergence for CDZs is not clearly known, but this 

could be because we selected for re-emergence competent cells in each case as 

we harvested the cyst derived zoospores. For clarity of terminology, we have 

chosen to use the terms “repeated emergence”, “re-emergence” or “further 

zoospore release” to describe this phenomenon as opposed to diplanetism, 

which would include dimorphism (Blackwell, 1949). Diplanetism has yet to be 

reported for Phytophthora spp. The zoospores that emerge from cysts are 

structurally similar to zoospores released from sporangia. During re-emergence, 
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the released zoospore wiggles its way out of the cyst, leaving the cyst membrane 

(ghost) behind with or without a prominent exit tube as described by Ho and 

Hickman (1967) for Phytophthora megasperma.  

The ecological significance, if any, of repeated emergence in natural 

conditions is still a matter of speculation, but the fact that Phytophthora spp. 

appears to dedicate some of their limited endogenous energy to produce 

precursors or other materials needed for additional generations of zoospores 

suggests that repeated emergence may play a role in vivo.   Also, repeated 

emergence of zoospores could have implications as a survival strategy in the 

absence of hosts by allowing cysts to delay germination until more favorable 

circumstances and then releasing further zoospores to achieve infection 

(Cerenius and Söderhäll, 1985; Diéguez-Uribeondo et al., 1994; von Broembsen 

and Deacon, 1997). 

 Results obtained in this study is in agreement with previous observations 

by von Broembsen and Charlton (2000) on the ability of both sporangial and cyst 

derived cysts of water-bone Phytophthora spp. to germinate by repeated 

emergence (re-emergence). Additionally, re-emergence was observed for a fifth 

species, P. cryptogea (isolates FDM51 and FWDM4), and this suggests that re-

emergence could be common among members of the genus Phytophthora. 

Cysts that germinate by germ tubes may later produce microsporangia (<1%) but 

a vast majority are probably not important in a hostile environment such as 

irrigation water devoid of a suitable substrate to support further mycelial growth. 

Our findings clearly demonstrate that temperature is an external signal that has a 
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profound impact on the mode of germination for both SDZ and CDZ cysts of 

Phytophthora spp. To our knowledge, this is the first report on the effect of 

temperature on re-emergence from cysts of second and third generations of 

Phytophthora zoospores.  

            This study provides data with implications for the different aspects of 

Phytophthora disease epidemics in wet and irrigated agriculture. Collectively, the 

results suggest that the different stages of water-borne Phytophthora spp. that 

are part of the asexual life cycle differ considerably in their response to 

temperature. Mycelial growth and zoospore cyst germination were the least 

sensitive to temperature differences and sporangial production the most 

sensitive. The differences of isolates in response to temperature need to be 

considered when developing Phytophthora disease management support 

decision systems in the future. Also, this study provides additional experimental 

data supporting the observations of Ho and Hickman (1967), von Broembsen and 

Deacon (1997), Xu and Morris (1998), von Broembsen and Charlton (2000) that 

Phytophthora spp. are able to undergo repeated emergence in water. 

 

SUMMARY AND CONCLUSIONS 

 

1. Several asexual developmental life cycle stages of Phytophthora spp. 

(mycelial growth, sporangia production, and zoospore repeated 

emergence) are influenced differently by temperature, a fact that may 
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account for distribution of Phytophthora diseases or their upsurge during 

certain seasons of the year. 

2. Vortex-encysted Phytophthora zoospores are able to germinate in SDW 

either by re-emergence, or germ tubes. The subsequent generations of 

zoospores are structurally similar to the initial biflagellate zoospores 

released from the sporangia. 

3. Re-emergence is a common mode of cyst germination for five different 

water-borne Phytophthora spp. 

4. The effect of temperature on the mode of Phytophthora cyst germination 

varies with isolates of each species. 
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Figure 3.1 Ghosts of zoospore cysts (arrows) after germination by release of a 
single zoospore (re-emergence) 
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Table 3.1 Effect of temperature on mean colony diameter of five Phyophthora 
isolates in V8 broth after 24, 48, and 72 h 
   

 Mean colony diameter (mm)a  

 
 

      Isolate                              Temp (C)          24 h                      48 h                72 h    
 
    P. citrophthora (GLN 7-23)     15      5.3Cb           11.0B                   16.8B  
      20      7.1AB                    13.7A                   20.1A  
      25      7.8A                      13.1A                    16.2B  
      30      6.7B                      12.9A                    17.5B  
       LSD        0.88                         1.31                     2.18 
       
    P. parasitica (GLN 9-3)     15       0.7C                       3.3C                      4.6C  
      20       2.8B                       6.0B                     10.3B  
      25       5.6A                     10.9A                     15.4A  
      30       6.1A                     11. 6A                    14.8A 
                                      LSD          0.54                        0.73                       1.26 
          
    P. cryptogea (FDM51)     15        3.0C                      9.2B                      14.8B  
      20        7.1B                     15.2A                     17.1A  
      25      11.8A                     13.4A                     16.4AB  
      30      11.4A                     14.0A                     15.9AB 
                                      LSD           1.74                       2.05                        1.69 
          
     P. cryptogea (FWDM4)     15         4.6D                    11.3C                      15.3B  
      20         8.8C                    15.4A                      17.4A  
      25       14.1A                    16.3A                      17.8A  
      30       12.5B                    13.8B                      14.7B 
                                      LSD            1.32                      1.08                         1.32  
          
     P. citricola (PHP R-2)     15          6.4B                    14.8B                      19.4A  
      20          9.6A                    17.4A                      20.4A  
      25          9.2A                    14.7B                      16.4B  
                                                   30          6.3B                    10.7C                      12.4C 
                                                   LSD              0.85                      1.62                         1.56  

 

aData are means of two experiments each replicated two times 
         bMeans in the same column for each isolate followed by the same letter are not    

  significantly different according to Fisher’s (protected) least significant  
  difference test 
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Table 3.2 Effect of temperature on the growth rate (mean change in colony 
diameter per day) of five Phyophthora isolates in V8 broth after 72 h  

 

     
aData are means of two experiments each replicated two times 

   bMeans in the same columns followed by the same letter are not significantly different  
    according to Fisher’s (protected) least significant difference test 
  

 

 

 

 

 

 

 

 

           

     Growth rate (mm/day)a        

                      
                      P. citrophthora         P. parasitica               P. citricola)       P. crytogea                  P. cryptogea    
                          (GLN 7-23)               (GLN 9-3)                   (PHP R-2)        (FDM51)                      (FWDM4)                  
                        
Temp     
 (C) 
 
15             5.6Bb                      1.5C                6.5A             5.8A                    5.1B  
                                     
 
20             6.7A                     3.4B                6.8A             5.7B                    5.8A 
                                          
 
25              5.4B                      5.2A                5.5C             5.4C                   5.9A   
                                
 
30               5.8B                       4.9A                5.8B            5.3C                   4.9B 
 
LSD                    0.72                       0.41                0.41             0.45                   0.52                        
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Table 3.3 Effect of temperature on mean number of sporangia in four microscope 
fields (X100) for five Phytophthora isolates 

 

 

    aData are means of three experiments each replicated twice. 
    bMeans in the same column for each isolate followed by the same letter are  
      not significantly different according to Fisher’s (protected) least significant  
      difference test  

 

 

 

 

 

 

 

 

 

           

     Mean number of sporangiaa        

                      
              P. citrophthora         P. parasitica              P. citricola                   P. crytogea                 P. cryptogea        
                                                                                                                                                                                       
                   (GLN7-23)          (GLN 9-3)                  (PHP R-2)                    (FDM51)                      (FWDM4) 
                                                                                                                                                                                            
                        
Temp 
 (C) 
 
15     53.7Bb     12.6B           40.2B                      14.5C                     33.0C  
 
20     76.4B     17.3B            51.4B                     41.9B                     36.7C 
 
25    149.6A     25.5A          116.1A                     72.0A                     96.5B 
 
30    136.6A         0.2C              0.0                       82.7A                    131.2A 
 
LSD          43.59                  5.94                        46.20                    14.68                     31.22  
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          Table 3.4 Effect of water temperature on mean percent germination of  
           sporangial derived cysts of five Phytophthora isolates by zoospores or  
           germ tubes 

 
                                        

                             Mean % Germinationa 
                                                                                    _______________________________________________                            
                                                                         Temp 
                                                                         (C)                  Zoospores              Germ tubes         
                                             Isolate  
                         _____________________________________________________________________________                          
                     
                                     P. cryptogea (FWDM4)   15                23.8Cb                         6.6A             
                         20                 45.7A                         5.6AB             
                         25                 52.5A                         4.5AB             
                         30                 36.1B                         3.5B                  
                                                                             LSD               9.45                           2.58                    
         
                                     P. cryptogea (FDM51)     15               11.4C                          4.1C            
                              20               21.7B                         4.9BC           
                              25               21.7B                         7.1B            
                              30               39.2A                           12.4A              
                                                                              LSD             7.35                          2.44                     
         
                                   P. parasitica (GLN 9-3)      15                  5.9AB                        24.3B             
                                20               10.4A                        46.4AB                
                                25                 5.5AB                        68.0A             
                                30                 3.4B                          59.0A                  
       LSD             4.59                           22.72                   
                   
                                   P. citrophthora (GLN 7-23) 15               11.7AB                      57.9A                    
                                20                16.7A                        60.1A                    
                                25                15.1A                       58.6A                    
                                30                   5.0B                         67.4A                    
                                                                              LSD               7.41                         NS                        
         
                                   P.citricola (PHP R - 2)      15                  10.3A                       8.2A                    
                                 20                 17.7A                       6.2A                   
                                  25                 14.6A                       5.6A                  

                             30                       9.2A                                             4.2A                  
      LSD                   NS                                             NS                       
                                _____________________________________________________________________   

 
aData are means of three experiments each replicated four times. 
bMeans in the same column for each isolate followed by the same letter are  
 not significantly different according to Fisher’s (protected) least significant  
 difference test  
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Table 3.5  Effect of water temperature on mean percent germination of cyst 
derived zoospore cysts of five Phytophthora isolates by zoospores or germ tubes  

 
                                                       Mean %Germinationa                                 
 
                                                      Temp  

                                              Isolate              (C)     Zoospores                                                                                     Germ tubes       
              _____________________________________________________________________________                    
 
          P. cryptogea (FWDM4) 15   49.6ABb                                                    6.3A                    
                    20   50.3A                                                              7.3A                     
                    25   60.6A                                                                6.0A                     
                   30   39.0BC                                                             4.3A                    
                                                                         LSD             11.32                                                               NS                      
         
          P. cryptogea (FDM51) 15    19.0B                                                               6.0A                       
                    20   22.6B                                                               7.3A                     
                    25   20.8B                                                                   8.6A                    
                    30   40.8A                                                                 10.6A                  
                                                                          LSD              9.90                                                             NS                      
         
         P. parasitica (GLN 9-3) 15      34.2B                                                           20.8B                   
                    20   61.3A                                                          13.0B                   
                    25    43.0AB                                                   49.7A                  
                    30     24.5B                                                         44.0A                   
                                                                         LSD             16.03                                                      21.32                  
         
                                  P.citrophthora (GLN 7-23)15    22.6B                                                        47.5B                  
                       20  39.3A                                                      4 4.3B                  
                       25  33.5A                                                            42.8B                  
                       30  10.5C                                                           69.0A                  
                                                                          LSD              7.21                                                                 12.22                 
         
            P.citricola (PHP R - 2)    15     19.5B                                                                   12.8A                 
                     20     47.0A                                                               6.3A                 
                     25    24.8B                                                                         6.1A                
              30    21.3B                                                                          5.1A                 
                                                                          LSD            10.83                                                                NS                   
                                 ____________________________________________________________________ 

  
                aData are means of three experiments each replicated four times 

    bMeans in the same column for each isolate followed by the same letter are  
     not significantly different according to Fisher’s (protected) least significance  
     difference test 
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CHAPTER IV 
 

AUTONOMOUS DISPERSAL, ROOT LOCATION AND INFECTION BY 
       SPORANGIAL AND CYST DERIVED ZOOSPORES OF 
       PHYTOPHTHORA  SPP. IN WATER 

 
 
 
                The most important role of zoospores in the life cycle of Phytophthora is 

serving as agents of dispersal and location of suitable infection courts 

(Donaldson and Deacon, 1993; Gow, 2004). Zoospores can disperse 

successfully locate, and colonize new sites by passive transport in water currents 

over the soil surface or through soil pores (Newhook et al., 1981). They have 

also been reported to disperse over short distances by active (autonomous) 

movement in slow moving or stationary soil water found between soil particles 

(Duniway, 1976; Newhook et al., 1981; Café-Filho et al., 1992b). Passive 

dispersal is accomplished by moving irrigation water, streams, rivers or in rainfall 

runoff (Erwin et al., 1983; Café-Filho et al., 1992b). Zoospore dispersal and 

direction of movement in these aquatic systems is mainly dependent on the 

dictates of water currents. Neher and Duniway (1992) found considerable 

dispersal of Phytophthora parasitica zoospores along the direction of water flow 

in irrigation furrows which was manifested by an increase in disease incidence 

with increasing distance from water inlet. This was interpreted to be a result of 

increased number of propagules transported away from the water inlet to areas 

of slower current where they settle out (Neher and Duniway, 1992).  Café-Filho et 
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al. (1995) recorded long distance dispersal of viable propagules of Phytophthora 

capsici and P. parasitica with furrow irrigation practices downstream.  Their study 

also found increased accumulation of secondary inoculum with distance and time 

from the initial inoculum source.  

The ability of Phytophthora zoospores to swim and to locate suitable 

infection courts is a unique feature that offers great ecological advantage to 

these pathogens. Autonomous dispersal of Phytophthora zoospores over short 

distances or directed by chemotactic responses to host plant roots have been 

demonstrated (Hickman and Ho, 1966; Hickman, 1970). Motile zoospores have 

been observed to move autonomously and to accumulate at the zone of 

differentiation of elongating plant roots in soil (Ho, 1969; Kleijunas and Ko, 1976). 

Autonomous movement by zoospores in a particulate system composed of 

beads, sand, or mixtures of sand and soil has also been reported (Duniway, 

1976; Newhook et al., 1981). More specifically, swimming distances of 12 mm 

have been reported for P. cinnamomi zoospores through capillary tubes (Allen 

and Newhook, 1973), 13 – 25 mm for P. infestans and P. cinnamomi zoospores 

in soil (Lacey, 1967), and 25 – 35 mm for P. cryptogea in the surface water of 

flooded soils (Duniway, 1976). These studies assessed autonomous dispersal in 

particulate systems where zoospores were exposed to continual collision with 

solid surfaces leading to ceasation of motility and premature encystment due to 

“contact stimulus”.  Because of inherent constraints to dispersal in these systems 

it has generally been concluded that zoospore autonomous dispersal is relatively 

insignificant and confers minimal or no ecological advantage to Phytophthora 
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spp. This line of thought has led investigators to direct their focus on passive 

dispersal of zoospores by moving water (Duniway, 1976; Newhook et al., 1981; 

Neher and Duniway, 1992; Café-Filho et al. 1992a, 1992b) with little attention to 

autonomous dispersal. However, location by zoospores of suitable infection 

courts on roots depends on additional lateral transport through wet soils or water, 

which must be provided for by their own autonomous dispersal (Café-Filho et al. 

1992a). Currently, there is a noticeable lack of information in the literature on the 

role zoospore swimming plays in dispersal, location, and infection of plant roots 

by Phytophthora spp. in non-restraining liquid environments.  Therefore, the 

ability of sporangial derived zoospore (SDZs) to move autonomously and to 

locate and infect seedlings was examined for some water borne Phytophthora 

spp. 

Phytophthora spp. have the ability to produce different generations of 

zoospores in water. In the absence of a host or suitable substrate, the SDZs 

encyst and the resultant cysts can germinate by releasing further zoospores, or 

cyst derived zoospores (CDZs) (von Broembsen and Deacon, 1997; Xu and 

Morris, 1998; von Broembsen and Charlton, 2000). The CDZs are structurally 

similar to the SDZs (Xu and Morris, 1998; von Broembsen and Charlton, 2000).  

However, since zoospores depend entirely on endogenous energy reserves 

(Cerenius and Söderäll, 1984; Pennington et al., 1989), which cannot be 

renewed, the CDZs are likely to be depleted of energy having spent some of their 

macromolecules in cyst wall development and formation of new flagella. This 

may mean that the CDZs are deprived of internal sources of energy for their 
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swimming and location of new hosts. However, little is known regarding any 

component of biological fitness (including the ability to move autonomously and 

to locate and infect roots) of Phytophthora CDZs. Comparative studies of 

biological fitness of CDZs and SDZs may provide additional information for 

formulating better disease management strategies in irrigated agriculture. 

 

MATERIALS AND METHODS 

 

Culture and zoospore production. Zoospores were produced axenically from 

pure cultures of Phytophthora parasitica (Brenda de Haan) Dastur isolate GLN 9-

3, and P. cryptogea (Perthybridge & Lafferty) isolates FDM51 and FWDM4 as 

previously described in Chapter III. 

 

Maze experiments.  The extent of lateral, active (autonomous) zoospore 

dispersal and root infection was assessed in model plastic mazes (19 x 11 x 5.5 

cm) (Rubbermaid Incorp., Wooster, Ohio) each filled with 120 ml of sterile 

distilled water (SDW) to a depth of 14 mm. The mazes were constructed by 

partitioning plastic storage containers with 3" x 1" microscope slides (Fisher 

Scientific Co., Pittsburg, PA) glued with 100% Aquarium Sealant (Dow Corning 

Corp., Midland, MI) at distances of 15, 85, 150, and 210 mm from either side of a 

central inoculation point (Figs. 4.1, 4.2, and 4.2). The partitioning was meant, 

among other things, to limit the effect of water flow on the lateral movement of 

zoospores, which was to be used as a measure of active zoospore movement. It 



 62

was also meant to assess the ability of zoospores to swim around the ends of the 

glass slide partitions and cause infections at varying distances. Two14-d-old 

Catharanthus roseus seedlings were positioned at 15, 85, 150, or 210 mm from 

either side of the inoculation point (Figs. 4.1 and 4.2) in each maze. Mazes 

without plants were used as controls in each case.   

 

Assessment of autonomous dispersal by SDZs in mazes. SDZs were 

harvested from plates as described previously and pipetted into a 100 ml, sterile 

Pyrex bottle. A portion of the zoospore suspension (about 60 ml in McCartney 

bottles) was set aside for use in production of CDZ as described below. An 

aliquot (1 ml of SDZ suspension) was pipetted into an Eppendorf tube, encysted 

by vortexing for 70 sec, and then used to determine zoospore concentration with 

a Spotlite haemacytometer (Baxter Healthcare Corp., McGraw Park, IL). The final 

concentration was adjusted to 103 – 104 per ml. Two milliliters of the zoospore 

suspension were slowly inoculated into each maze by placing the pipette tip just 

under the water surface to minimize disturbance at the point of inoculation. After 

4 h, the seedlings or 1 ml of liquid (from equivalent distances in mazes without 

plants) were plated on Phytophthora selective medium (P10VPH) (Tsao and 

Ocaña, 1969; Masago et al., 1977). The selective medium (P10VPH) consisted of 

1 liter of CMA amended with 20 ml of P10VPH stock solution (the stock solution 

was made up of vancomycin (1.0 g), 95% primaricin (0.05 g), 95% PCNB (0.53 

g) and 99% hymexazole (0.25 g) in 100ml of sterile distilled water). The plates 

were incubated at 25 C for 48 h, after which the number of infections (# of hits) 
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per seedling pair and colony forming units (CFUs) were recorded for each 

distance. Isolates were tested in separate experiments on successive days. Each 

experiment consisted of six seedling pairs or water aliquots at each distance and 

the experiments were repeated three times. 

 

Assessment of autonomous dispersal by CDZs in mazes. SDZs that had 

been set aside earlier were encysted by holding each McCartney bottle against a 

Maxi Mix II vortex machine for 2 min. Cyst suspensions from all the McCartney 

bottles were immediately mixed together in a sterile 100 ml Pyrex bottle and 

incubated for 7 - 8 h at 20 C (for P. parasitica GLN 9-3) or 25 C (for P. cryptogea 

isolates FDM51 and FWDM4). CDZ suspensions were harvested by pipetting out 

the upper third of liquid (~20 ml) from the Pyrex bottle and used without adjusting 

the concentration. Two ml of CDZ suspension were inoculated into each maze as 

outlined above. Seedlings or 1 ml of liquid (from control mazes) were removed at 

the test distances after 4 h and plated onto P10VPH selective medium. The plates 

were incubated at 25 C for 48 h, after which the number of infections (# of hits) 

per seedling pair or colony forming units (CFUs) for mazes without seedlings 

were recorded for each distance. Isolates were tested in separate experiments 

on successive days. Each experiment consisted of six seedling pairs or water 

aliquots at each distance and the experiments were repeated three times.  

 

Linear dispersal experiments. The ability of different generations of 

Phytophthora zoospores to move actively and infect roots in water were 
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assessed in linear V-shaped troughs (65 cm long x 2.9 cm wide at the top x 2.5 

cm depth at the center) (Cameo Moulding Products, Nashville, TN) filled with 120 

ml of SDW to a depth of 11 mm at center (Figs. 4.4 and 4.5). The linear troughs 

were constructed from commercially available gutter troughs and were sealed at 

either end to prevent water spill over. The troughs were set to level using a 

builder’s level. The troughs were used to assess the ability of zoospores to 

disperse in linear paths devoid of any barriers and hence no frequent turns as in 

model mazes described previously. Two 14-d-old seedlings (Catharanthus 

roseus L.) were positioned at 0, 80, 160, 240, or 320 mm from either side of the 

central inoculation point (Figs. 4.3, 4.4, and 4.5). The seedlings were held in an 

upright position with their roots and root crown immersed in water using a layer of 

parafilm wrapped around the trough at the designated points (Fig. 4. 6). Linear 

troughs without seedlings were used as the control in each experiment.   

 

Assessment of autonomous dispersal by SDZs in linear troughs. SDZs were 

obtained from each Phytophthora isolate as outlined previously and a portion 

(approximately 60 ml in McCartney bottles) was set aside for use in production of 

CDZs as described above. The concentrations of SDZs were adjusted to 103 – 

104 and inoculated into each trough by pipette at point of inoculation as with 

mazes. Seedlings or 1 ml of liquid from control troughs were recovered from test 

distances after 4 h and were plated on Phytophthora selective medium (P10VPH) 

as described previously. The plates were incubated at 25 C for 48 h, after which 

the number of infections (# of hits) per seedling pair or colony forming units 
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(CFUs) for control troughs were recorded for each distance. Isolates were tested 

in separate experiments on successive days. Each experiment consisted of six 

seedling pairs or water aliquots at each distance and the experiments were 

repeated three times. 

 

Assessment of autonomous dispersal CDZs in linear troughs. CDZs were 

produced as described for maze experiments. Two ml of CDZs were used 

without adjusting concentration and inoculated into each trough as outlined 

previously. Seedlings or 1 ml of liquid (from control troughs) was obtained after 4 

h and plated onto a selective medium (P10VPH) and the plates incubated at 25 C 

for 48 h. The results were recorded as explained above. Isolates were tested on 

separate experiments on successive days. Each experiment consisted of six 

seedling pairs or water aliquots at each distance and the experiments were 

repeated three times.  

 

Quantitative assessment of autonomous dispersal of SDZs and CDZs in 

linear troughs. Because the initial interest was to determine the maximum 

distance SDZs and CDZs could move autonomously in a non-restraining 

medium, CDZ concentrations were not adjusted accordingly in the studies 

described above. To achieve a quantitative comparison of the ability of SDZs and 

CDZs to disperse autonomously, the experiments described below were 

conducted. SDZs and CDZs were produced axenically from pure cultures of 

Phytophthora cryptogea (Perthybridge & Lafferty) isolates FDM51 and FWDM4 
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as described previously except that the concentration of both SDZs and CDZs 

were adjusted to 104 zoospores per ml before 2 ml of the suspension were added 

at the inoculation point of each trough. The results were recorded as explained 

previously. Isolates were tested on separate experiments on successive days. 

Each experiment consisted of four seedling pairs or water aliquots at each 

distance and the experiments were repeated three times.  

 

Data analysis. Data from model maze and linear trough experiments were 

statistically analyzed using the PROC GLM (SAS Institute Inc., Cary, NC, 2001) 

for zoospore type infections (# of hits) and colony forming units (CFUs) at each 

distance. 

 

RESULTS 

 

Autonomous dispersal by SDZs and CDZs in mazes. SDZs and CDZs were 

able to actively move and infect 14-d-old Catharanthus roseus seedlings in 4 h in 

model mazes up to a distance of 215 mm except for SDZs of P. parasitica (GLN 

9-3) and P. cryptogea (FWDM4) (Table 4.1), and CDZs of P. cryptogea (FDM51), 

which were capable of infecting seedlings up to a distance of 150 mm. SDZs and 

CDZs of all three isolates were recovered at all distances up to and including 215 

mm (Table 4.2). For each Phytophthora isolate considered in this study, there 

was a trend for infection and recoverable colony forming units (CFUs) to 

decrease with increasing distance from the point of inoculation.  
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Autonomous dispersal by SDZs and CDZs in linear troughs.  SDZs moved 

actively in linear troughs and infected 14-d-old Catharanthus roseus seedlings to 

a distance of 320 mm for all isolates (Table 4.3). Only CDZs of P. parasitica 

(GLN 9-3) caused seedling infections at a distance of 320 mm. SDZs and CDZs 

also were recovered at 320 mm in control linear troughs without seedlings (Table 

4.4), except for P. parasitica (GLN 9-3). For each Phytophthora isolate 

considered in this study, there was a trend for infection rates and recoverable 

colony forming units (CFUs) to decrease with increasing distance from the point 

of inoculation. 

 

Quantitative comparison of autonomous dispersal by SDZs and CDZs in 

linear troughs.  When the same concentrations of P. cryptogea (FDM51) SDZs 

and CDZs were used, both zoospore types moved actively in linear troughs and 

infected 14-d-old Catharanthus roseus seedlings to a distance of 320 mm (Table 

4.5). SDZs and CDZs of P. cryptogea (FWDM4) infected seedlings at distances 

of 240 and 320 mm, respectively (Table 4.6). Both SDZs and CDZs of P. 

cryptogea (FDM51) were recovered at 320 mm in control linear troughs without 

seedlings (Table 4.7). SDZs and CDZs of P. cryptogea (FWDM4) reached 320 

and 240 mm, respectively (Table 4.8) 
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DISCUSSION 

Phytophthora zoospores are important infective and dispersive units 

(Donaldson and Deacon, 1993; Gow, 2004). They are a stage in the life cycle not 

having cell walls or the ability to utilize exogenous energy sources, so zoospores 

must rely on their endogenous energy reserves for autonomous dispersal and 

maintenance of osmotic balance with their immediate environments (Suberkropp 

and Cantino, 1973; Pennington et al., 1989; Cerenius and Söderäll, 1984). The 

findings in this study that SDZs are able to autonomously disperse and infect 

roots in model mazes up to a distance of 215 mm and in linear troughs to a 

distance of 320 mm is unprecedented for Phytophthora spp. Ho and Hickman 

(1967) estimated that Phytophthora megasperma var. sojae zoospores could 

swim 560 mm in 1 h, if they swam in a fixed direction and at a constant speed. In 

practice, this movement is not achievable because according to Carlile (1986) 

and Deacon and Donaldson (1993), zoospore swimming is always interspersed 

with frequent spontaneous direction changes (Carlile, 1986; Deacon and 

Donaldson, 1993). On the basis of this assumption, it has been argued that 

autonomous zoospore dispersal is a means of thoroughly exploring a limited 

volume rather than traveling long distances (Carlile, 1986). Suh and Axtell (1999) 

were the first to demonstrate the ability of Lagenidium giganteum zoospores to 

travel and cause infection up to a distance of 600 mm. There is no report in the 

literature on Phytophthora zoospore movement to a comparable magnitude. The 

utilization of endogenous energy reserves by zoospores to fuel movement has 

been reported for Blastocladiella emersonii (Suberkropp and Cantino, 1973), 
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Phytophthora drechsleri (Barash et al., 1965) and P. palmivora (Bimpong, 1975). 

Whatever the zoospore source, it is probable that zoospores depend on 

endogenous energy reserves to accomplish this feat. 

The comparable infectivity by Phytophthora CDZs and SDZs of flood 

inoculated Catharanthus roseus seedlings has been reported (von Broembsen 

and Charlton, 2000). These studies also extend this observation to include the 

ability of CDZs and SDZs to move autonomously in a non-restraining medium 

and infect Catharanthus roseus seedlings up to a distance of 215 mm (in model 

mazes) and 320 mm (in linear troughs) and postulate that CDZs of Phytophthora 

spp. can serve as effective dispersal and infection units in irrigation water. The 

ability of zoospores to autonomously disperse up to these distances was 

apparently not influenced much by the gradient of root exudate components 

(Zentmeyer, 1961; Ho and Hickman, 1967; Hickman, 1970; Deacon, 1988), since 

they were also able to accomplish the same in control mazes and linear troughs 

seedlings. The current data somewhat parallel those of Crump and Branton 

(1966) who observed rapid and graceful swimming for secondary zoospores of 

Saprolegnia spp., which were able to travel greater distances than the primary 

zoospores.  

The source of energy for Phytophthora CDZs remains largely unknown. 

The probable explanation for the observed ability of CDZs to perform as their 

SDZ counterparts may be partly because they were vortex encysted relatively 

soon (about 90 min) after release from the sporangia and so they did not have 

time to expend significant amount of endogenous energy. The method of vortex 
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encystment soon after release was an attempt to mimic what could be happening 

to zoospores in irrigation water. According to Diéguez-Uribeondo et al. (1994) 

increasing zoospore swimming time may exhaust them of the storage materials 

needed by further generations. Increasing swimming time for SDZs before 

induction of encystment could be used to test this hypothesis. 

 

SUMMARY AND CONCLUSIONS 

 

1. Phytophthora zoospores are able move autonomously up to distances of 

215 mm (in model mazes) and 320 mm (in linear troughs) with or without 

seedlings in water. Our results indicate that Phytophthora zoospores are 

able to move autonomously to greater distances in a non-restraining 

medium than previously thought. 

2.  The CDZs of Phytophthora spp. are able to move the same distances and 

cause infections. They can therefore play a significant role as dispersal 

and infection propagules of water-borne Phytophthora spp. 

3. The results of the current study suggest that CDZs could have ecological 

roles to play and their presence should be factored into the available 

disease management protocols. 

4. On the basis of our results and those of von Broembsen and Charlton 

(2000), we speculate that both SDZs and CDZs dispersal in non-

restraining liquid systems like free surface water could be of greater 
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significance in the epidemiology of water-borne diseases in irrigated 

agriculture than previously considered. 
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Figure 4.1 Diagram of a model maze showing the inoculation point (red star), 
seedling positions, and distances from the inoculation point 
 

 
 
                                                              
 
 
   Represents the inoculation point 
A Represents the first seedling position, 15 mm from the inoculation point 
B Represents the second seedling position, 85 mm from the inoculation point 
C Represents the third seedling position, 150 mm from the inoculation point 
D Represents the fourth seedling position, 215 mm from the inoculation point   
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B B
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Figure 4.2 A typical model maze with seedlings positioned at the longest 
distances equidistant from the central inoculation point 

 

 
 
 

Figure 4.3 Maze experimental set-up showing seedling pairs at distances tested 
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Figure 4.4 Diagram of a block showing the point of inoculation (0 mm) in each 
trough and the positions of seedlings represented by black dots 
 

 
 
 
 
      0 mm is the inoculation point in each trough, control troughs were sampled at  
         all distances (water samples) 
 
 
 
 
       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0       80       160     240     320     80   160      240      320     

 Control

650 mm

        Represent position of seedlings relative to the inoculation point 

29 mm 

Represent positions with no seedlings; water samples 
were taken from all positions in control troughs 
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Figure 4.5 A typical linear trough construction with seedling pairs in position 
 

 
 
 
 
Figure 4.6 Linear troughs experimental set-up showing seedling pairs at positions 
equidistant from a central inoculation point 
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Table 4.1 Mean number of infections of Catharanthus roseus seedlings              
              by sporangial derived zoospores (SDZs) and cyst derived zoospores  
              (CDZs) of Phytophthora isolates at distances from inoculation points in   
               model mazes after 4 h 

 
       
   Distance       Replicates          Mean no. of infectionsa                           
           Isolates                              (mm)         
                   SDZs                    CDZs 
        P. parasitica (GLN 9-3)            
   15         9                      6.0                       4.2                          
                                                     85       18                      2.9                      2.6                                               
                                                    150       18                0.8                      0.3     
                  215       18                      0.0                      0.01 
                                                   LSDb                                           2.02                    0.66     
       
        P. cryptogea (FDM51)                          
                                                    
                   15          9                     4.1                        2.3  
   85        18                3.3                        2.0 
                  150        18                1.8                        0.3 
                  215        18                0.1                        0.0 
                                                   LSD                                            1.11                      0.93 
               
         P. cryptogea (FWDM4) 
                                                      15                     9                6.0                        3.7                      
                                                      85                   18                     2.9                        3.4 
                                                     150                  18                     0.8                        0.8 
                                                     215                  18                     0.0                        0.1 
                                                     LSD                                          2.02                      2.04 
                                                     

  
aData are mean number of infections of three experiments replicated six times 
bLeast significance difference of means at P≤0.05 within a single column for each  
isolate 
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Table 4.2 Mean number of colony forming units (CFUs) of sporangial derived 
zoospores (SDZs) and cyst derived zoospores (CDZs) of Phytophthora isolates 
recovered at distances from inoculation points in model mazes without seedlings 
after 4 h 

 
       
   Distance              Replicates       Mean no. of CFUsa                          
         Isolates                                (mm)         
      SDZs                        CDZs 
        P. cryptogea (FDM51)            
    15    9  48.5                         32.5 
     85  18  38.7                          22.5 
   150  18  16.0                            1.1 
   215  18    5.7                            3.6 
                                                     LSDb                                              19.35                       12.16     
      
        P. cryptogea (FWDM4)                          
       
    15    9  85.9                       60.6 
     85  18  37.8                        39.5 
   150  18    6.0                          8.9 
   215  18    4.6                          4.9 
                                                     LSD                                                32.77                     28.5 
                 
         P. parasitica (GLN 9-3) 
                                                     15                                9                49.5                       57.8                
                                                     85                              18                36.8                       47.5 
                                                   150                              18                  4.8                         8.2 
                                                   215                              18                  1.00                       1.4 
                                                   LSD                                                  12.02                     41.52 
                                                                                 

 
 aData are means of number of colony forming units (CFUs) of three experiments  
 replicated six times. 
bLeast significance difference of means at P≤0.05 within a single column for each  
  isolate 
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Table 4.3 Mean number of infections of Catharanthus roseus seedlings by 
sporangial derived zoospores (SDZs) and cyst derived zoospores (CDZs) of 
Phytophthora isolates at distances from inoculation points in linear troughs after 
4 h 

 
       
   Distance              Replicates    Mean no. of infections a                         
             Isolates                           (mm)         
      SDZs                        CDZs 
        P. cryptogea (FDM51)            
      0    9 9.0                              5.5  
    80  18             13.5                              6.3 
   160  18 5.2                              4.2 
   240  18 3.3                              0.5 
   320  18 1.2                              0.0 
                                                    LSDb                                              4.21                            3.81 
        P. cryptogea (FWDM4)                          
       
      0    9 8.5                              7.3  
    80  18             10.5                              6.7 
   160  18 7.5                              2.0 
   240  18 0.5                              0.2 
              320  18 0.2                               0.0 
                                                    LSD                                               3.3                              3.3 
 
         P. parasitica (GLN 9-3) 
                                                        0                             9                 8.0                              6.1  
                                                      80                            18                5.7                              5.7 
                                                    160                            18                3.2                              0.3 
                                                    240                            18                2.5                              0.3 
                                                    320                            18                0.8                              0.2 
                                                    LSD                                               2.14                            2.02 

 
aData are means of number of infections for three experiments replicated six 
 times 
bLeast significance difference of means at P≤0.05 within a single column for each  
isolate 
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Table 4.4 Mean number of colony forming units (CFUs) of sporangial derived 
zoospores (SDZs) and cyst derived zoospores (CDZs) of Phytophthora isolates 
recovered at distances from inoculation points in linear troughs without seedlings 
after 4 h 

 
       
   Distance              Replicates       Mean no. of CFUs a                        
                  Isolates                      (mm)         
      SDZs                 CDZs 
        P. cryptogea (FDM51)            
      0    9  73.0                    53.5 
    80  18  57.8                     56.3 
   160  18  31.0                    27.3 
   240  18  19.3                    10.7 
   320  18    7.7                      2.7 
                                                     LSDb                                              45.78                  24.06 
        P. cryptogea (FWDM4)                          
       
      0    9   44.2                    53.5  
    80  18   40.5                    56.3 
   160  18   28.0                    27.8 
   240  18    5.5                     10.7 
              320  18    0.3                       2.6 
                                                     LSD                                               19.6                      17.42 
 
         P. parasitica (GLN 9-3) 
                                                       0                               9     251                    80.8 
                                                       80                           18                    218                    88.3 
                                                     160                           18                    83.5                   21.6  
                                                     240                           18                      3.5                     1.0 
                                                     320                           18                      1.7                     0.0 
                                                     LSD                                                   66.34                  1.77 

 
  aData are means of number of colony forming units (CFUs) of three experiments  
 replicated six times 
bLeast significance difference of means at P≤0.05 within a single column for each  

              isolate 
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Table 4.5 Mean number of infections of Catharanthus roseus seedlings by 
Phytophthora cryptogea (FDM51) sporangial derived zoospores (SDZs) and cyst 
derived zoospores (CDZs) at distances from inoculation points in linear troughs 
after 4 h 

 
       
   Distance              Replicates            Mean no. of  
     (mm)        infectionsa  
 Isolates      
P. cryptogea (FDM51) SDZs 
     
      0    6        5.0Ab 
     80  12        3.0A 
   160  12        0.6B 
   240  12        0.7B 
   320  12        0.2B 
                                                     LSD                                                    2.05 
P. cryptogea (FDM51) CDZs     
       
      0    6        3.5A 
     80  12        1.7AB  
   160  12        0.3B  
   240  12        0.5B 
   320  12        0.8B 
                                                    LSD                                                      2.07 

 
a Data are means of number of infections for three experiments replicated four 
   times 
bMeans in the same column for each isolate followed by the same letter are  
  not significantly different according to Fisher’s (protected) least significance  
  difference test 
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Table 4.6 Mean number of infections of Catharanthus roseus seedlings by 
Phytophthora cryptogea (FWDM4) sporangial derived zoospores (SDZs) and 
cyst derived zoospores (CDZs) at distances from inoculation points in linear 
troughs after 4 h   
 
    
   Distance             Replicates       Mean no. of     
                                                       (mm)                      infectionsa  
         Isolates       
P. cryptogea (FWDM4) SDZs     
      0    6   4.2Ab  
     80  12   5.0A  
   160  12   2.8B  
   240  12   0.7C 
   320  12   0.0 C 
                                                     LSD                                                1.72 
P. cryptogea (FWDM4) CDZs     
       
      0    6    5.0AB  
     80  12    7.2 A 
   160  12    2.7 B 
   240  12    1.2 B 
   320  12    1.8 B 
                                                     LSD                                                 3.17    

 
aData are means of number of infections for three experiments replicated four 
 times 
bMeans in the same column for each isolate followed by the same letter are  
  not significantly different according to Fisher’s (protected) least significance  
  difference test 
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Table 4.7 Mean number of colony forming units (CFUs) of Phytophthora  
             cryptogea (FDM51) sporangial derived zoospores (SDZs) and cyst  
             derived zoospores (CDZs) recovered from linear troughs without  
             seedlings at various distances at 4 h after inoculation   
 
    
   Distance              Replicates              Mean CFUsa     
                                                       (mm)                   
          Isolates       
P. cryptogea (FDM51) SDZs     
          0  12          48.9Ab 
        80  12          18.7B 
      160  12            2.0 C 
      240  12            1.0 C 
      320  12            0.3C 
                                                        LSD                                                    12.05                                                       
P. cryptogea (FDM51) CDZs     
       
         0  12            53.0A 
       80  12            11.7B 
     160                  12              3.0B 
     240  12              0.3B 
     320  12              0.5B 
                                                       LSD                                                       18.07 

               
              aData are means of number of colony forming units (CFUs) of three experiments  
            replicated four times 

bMeans in the same column for each isolate followed by the same letter are  
  not significantly different according to Fisher’s (protected) least significance  
  difference test 
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Table 4.8 Mean number of colony forming units (CFUs) of Phytophthora  
             cryptogea (FWDM4) sporangial derived zoospores (SDZs) and cyst  
             derived zoospores (CDZs) recovered from linear troughs without  
             seedlings at various distances at 4 h after inoculation   
 
    
   Distance           Replicates            Mean CFUsa    
                                                       (mm)                   
           Isolates       
P. cryptogea (FWDM4) SDZs     
      0  12     65.5 Ab 
     80  12     56.5 A 
   160  12     44.5 A 
   240  12     35.7 A 
   320  12     31.0 A 
                                                     LSD                                                  NS 
P. cryptogea (FWDM4) CDZs     
       
       0  12     54.7A  
     80  12     39.5 A 
    160  12     22.8 B 
    240  12       3.3C 
    320  12       0.0 C 
                                                      LSD                                                 15.46 

 
              aData are means of number of colony forming units (CFUs) of three experiments  
            replicated four times 

bMeans in the same column for each isolate followed by the same letter are  
  not significantly different according to Fisher’s (protected) least significance  
  difference test 
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CHAPTER V 
 

EFFECT OF TEMPERATURE ON MOTILITY RETENTION 
BY PHYTOPHTHORA SPORANGIAL AND 

CYST DERIVED ZOOSPORES 
 
 
 
              The flagellated zoospores of Phytophthora spp. utilize a motile phase 

upon release from sporangia, a unique attribute that enables them to respond to 

environmental cues thereby offering great ecological advantage (Deacon, 1996). 

Motility offers zoospores the advantage of being able to respond to 

environmental cues such as living plant roots (Kleijunas and Ko, 1976). Motile 

zoospores are able to migrate to and collect in favorable infection courts, thus 

increasing their inoculum potential. Migration and accumulation on plant roots in 

soil by motile zoospores have been reported for P. megasperma (Ho, 1960), P. 

drechsleri (Mehrotra, 1970) and P. palmivora (Kleijunas and Ko, 1976). The 

longer that zoospores swim, the greater are their chances of reaching infection 

sites (Sato, 1979) compared to those that encyst before reaching an infection 

court.  

              There is little information on factors that influence the motile zoospore 

stage but some observations have been made for temperature effects on 

zoospore motility (Ho and Hickman, 1967; Bimpong and Clerk, 1970; Sato, 1979; 

Carlile, 1986; Roy, 1999).  Ho and Hickman (1967) reported on the influence of 



 85

relatively low temperatures to prolong zoospore motility in liquid systems. Carlile 

(1986) also reported that cool water (10 – 15 C) resulted in the longest swimming 

periods.  

             Phytophthora zoospores are capable of producing successive 

generations of zoospores in water (already discussed in Chapter III). The second 

generation zoospores that emerge from cysts during the repeated emergence 

are structurally similar to those released from the sporangia (Xu and Morris, 

1998; von Broembsen and Charlton, 2000). However, since zoospores depend 

entirely on endogenous energy reserves which cannot be renewed (Cerenius 

and Söderäll, 1984; Pennington et al., 1989), cyst derived zoospores (CDZs) 

may become depleted of energy by utilizing critical macromolecules in cyst wall 

development and formation of new flagella. This may mean that the CDZs are 

deprived of internal sources of energy for their swimming activities. A 

comparative study of the attributes of sporangial derived zoospores (SDZs) and 

cyst derived zoospores (CDZs) for any Phytophthora spp. is completely lacking in 

the literature. Two Phytophthora cryptogea isolates (isolates FDM51 and 

FWDM4) were selected based on their ability to produce CDZs over a wide 

temperature range (observed in Chapter III).  

This chapter presents the results of a comparative study of ability of SDZs 

and CDZs of these two isolates to retain motility and of the role of temperature in 

retention motility. 
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MATERIALS AND METHODS 

 

Assessment of SDZ motility retention. SDZs were produced axenically from 

Phytophthora cryptogea (isolates FDM51 and FWDM4) as previously described. 

Immediately after release, 3 ml of zoospore suspension were pipetted into 65 

mm petri dishes and three replicate dishes were incubated at 15, 20, or 25 C.  

Zoospore motility retention was assessed at 0, 3, 6, and 9 h as follows: the 

numbers of motile zoospores at three randomly selected fields in each plate were 

focused near the top of liquid and examined at 200X with the aid of a video-

micrograph as outlined below.     

 

Assessment of CDZ motility retention. A batch of SDZs (in about 80 ml) was 

vortex encysted by holding a 100 ml Pyrex bottle against a Maxi Mix II vortex 

machine (Whatman Inc., Clifton, NJ) for 3 min. At 6 – 7 h post encystment CDZs 

were harvested by carefully pipetting out the upper third of liquid from the Pyrex 

bottle and into a different sterile Pyrex bottle. Three ml of this CDZ suspension 

were pipetted into each 65 mm petri dish to give three replicate dishes, which 

were incubated at 15, 20, or 25 C.  Motility retention of CDZs was determined at 

0, 3, 6, and 9 h using video-microscopy as described below. 

 

Video-microscopy. The motility retention of both SDZ and CDZs were examined 

using video-microscopy as previously described (Jones et al., 1991). Briefly, a 

video camera (Sony DXC-151A) without front lenses was attached by a 
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photographic extension tube to a Nikon Labophot microscope (Nikon Corp., 

Chiyoda-Ku, Tokyo). The camera was attached through a Sony CMA-D2 camera 

adaptor power supply unit to a Sony SVO-1610 HQ video recorder. The video 

recorder was in turn attached to a Sony Triniton 15” monitor. Recordings were 

made using light transmitted from a Philips 6V 20W bulb at 200X.  The camera 

used contained integral time-date facility, which superimposed times (as 

minutes/seconds/tenths of seconds) on the video recordings. The zoospores 

(both SDZs and CDZs) were tape-recorded over 3 – 7 sec in three randomly 

selected microscope fields for each plate. The status of zoospores (whether 

motile or non-motile) was assessed by first circling zoospores on clear plastic 

wrap laid over the monitor, advancing the tape for 3 sec, then scoring zoospores 

that have moved out of the circles as motile. Most zoospores moved off the 

screen, but a minimum distance scored as motile was movement of three 

zoospore lengths from the circle. Each experiment consisted of three replicate 

plates and each experiment was repeated three times. 

 

Data analysis. Data obtained from all the isolates were statistically analyzed 

using the PROC GLM (SAS Institute Inc., Cary, NC, 2001) for zoospore type X 

temperature interactions. 

RESULTS 

 

Effect of temperatures on motility retention by SDZs. Motility at the start of 

these experiments was <100% (Fig. 5.1). For P. cryptogea (FWDM4) SDZs at 12 
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h after incubation, there was a reduction in mean percent motility (P≤0.05) to 

78.7% at 20 C and to 46.9% at 25 C. For P. cryptogea (FDM51), after 9 h 

incubation at 15, 20, and 25 C mean percent motility was greatly reduced for all 

temperatures. Incubation at 25 C resulted in the greatest reduction in motility. 

Thus, compared with SDZs of P. cryptogea (FWDM4), those of P. cryptogea 

(FDM51) had shorter motile periods at all three temperatures. 

 

Effect of temperature on motility retention by CDZs. Motility at the start of 

these experiments was <100% (Fig. 5.2). For CDZs of P. cryptogea (FWDM4), 

the mean percentage motility dropped significantly (P≤0.05) by 9 h for all 

temperatures tested. The mean percent motility of P. cryptogea (FDM51) CDZs 

was less than <40% immediately after harvest and no motile CDZs were present 

after 3 h incubation at 25 C. 

 
 

DISCUSSION 
 

               These studies provide an extensive analysis of the effect of 

temperature on SDZs and also compare the effects of temperature on CDZs. To 

our knowledge, these are the first studies measuring zoospore motility at three 

temperatures over a period of 12 h for any Phytophthora isolate. The 

experimental data confirm and extend previous observations on the ability of low 

temperatures to prolong Phytophthora SDZ motility in liquid systems (Ho and 

Hickman, 1967; Sato, 1979; Carlile, 1986; Roy, 1999). Based on this evidence of 

the effect of temperature on zoospore motility retention, it appears that 
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moderately cool temperatures may be more favorable for spread of Phytophthora 

spp. in irrigated agriculture compared to higher temperatures.          

           CDZs had inferior motility retention compared with their SDZ counterparts, 

but low temperatures also supported better motility retention for these zoospore 

types. This may be because it is generally thought that CDZs do not have as high 

endogenous energy reserves as SDZs. This in part may account for their low 

motility retention at high temperatures. More accurate estimates of motility 

retention would be possible if factors that influence more transitions are clearly 

understood and considered. 

 

SUMMARY AND CONCLUSIONS  

1. The two isolates of P. cryptogea considered in this study had different 

capacities for motility retention. 

2. Overall, the zoospores of both isolates (FDM51 and FWDM4) of P. 

cryptogea were able to retain motility for longer time at the lowest water 

temperature (15 C) than at the highest water temperature (25 C). This 

was especially evident for CDZs compared to SDZs. 

3. For both isolates CDZs were not able to retain motility as well as SDZs. 
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Figure 5.1 Effect of temperature on mean percent motility of sporangial derived 
zoospores (SDZs) of Phytophthora cryptogea (isolates FWDM4 and FDM51) 
after 3, 6, 9, or 12 h incubation at 15, 20, or 25 C 
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Figure 5.2 Effect of temperature on mean percent motility of cyst derived   
       zoospores (CDZs) of Phytophthora cryptogea (isolates FWDM4 and   
        FDM51) after 3, 6, 9, or 12 h incubation at 15, 20, or 25 C 
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CHAPTER VI 
 
 

SIGNIFICANCE OF RESEARCH 
 

         The occurrence of phytopathogenic Phytophthora spp. in irrigation water   

was first reported by Bewley and Buddin (1921). Since then, there have been 

numerous reports of successful recovery of Phytophthora spp. from water bodies 

including nursery irrigation water (Klotz et al., 1959; McIntosh, 1966; Thomson 

and Allen, 1974; Kleijunas and Ko, 1976; Shokes and McCarter, 1979 and Ali-

Shtaye et al., 1991; Pittis and Colhoun, 1984; von Broembsen, 1984, 1990; 

MacDonald et al., 1994; von Broembsen and Wilson, 1998; Yamak et al., 2002; 

Bush et al., 2003). Zoospores constitute the dominant asexual Phytophthora 

propagules that occur in irrigation water (Thomson, 1972; von    

Broembsen and Charlton, 2001) and are responsible for disease outbreaks when 

zoospore contaminated or recycled irrigation water is used on susceptible 

nursery crops. The current study on the biology of isolates of water-borne 

Phytophthora spp. has important implications for decision making support 

systems. 

 

Effect of temperature on asexual propagules of water-borne Phytophthora 

spp. Phytophthora spp. are oomycetous plant pathogens with complex asexual 
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life cycle stages each of which constitute infectious propagules, notably the 

mycelium, sporangia, zoospores, and zoospore cysts (de Souza et al., 2003). 

Each stage of Phytophthora pathogenesis is influenced differently by 

environmental factors such as temperature. This in turn influences the 

geographic distribution and seasonality of Phytophthora diseases (Duniway, 

1983). The information obtained in this study could be used to time disease 

control measures so that they coincide with periods when production of asexual 

propagules of Phytophthora spp., especially zoospores, are high. 

 

Phytophthora repeated emergence. The ability of Phytophthora zoospore cysts 

to germinate by releasing further zoospores in water (repeated emergence) is a 

significant finding with implications for survival and spread in irrigation water, 

especially in the absence of available hosts or suitable substrates (Cerenius and 

Söderhäll, 1985; Diéguez-Uribeondo et al., 1994; von Broembsen and Deacon, 

1997; von Broembsen and Charlton, 2000). The intervening encystments 

probably function to provide zoospores the opportunity to replace worn out 

flagella and then to re-emerge to disperse and thoroughly explore their 

environment (Salvin, 1940). The observed influence of water temperature on 

Phytophthora mode of zoospore cyst germination should be factored in when 

considering the epidemiology and management of these pathogens.  

 

Motility retention by sporangial and cyst derived zoospores. Motile 

zoospores have the ability to migrate and collect in favorable infection courts, 
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thereby increasing their inoculum potential. The longer the duration of the 

zoospore motile phase, the higher the chances of causing infection would be. 

Cyst derived zoospores lost motility sooner than sporangial derived zoospores, 

especially at the highest water temperature (25 C), but this varied considerably 

with isolates. Both types of zoospores retained motility longer at the lowest water 

temperature (15 C), suggesting that cool temperatures would be more favorable 

for Phytophthora spread in irrigated agriculture.  

    

Autonomous dispersal and root infection by sporangial and cyst derived 

zoospores. Both sporangial and cyst derived zoospores move to, locate, and 

infect roots at distances up to 215 mm (in model mazes) and 320 mm (in linear 

troughs) and were also able to do the same in the controls without seedlings. 

This demonstrated that zoospores have the ability to move further autonomously 

in non-restraining media than previously thought. This capability is a unique 

feature that probably offers these pathogens great ecological advantage. The 

additional generations of zoospores could be important survival structures that 

aid in dispersal especially in the absence of hosts or suitable substrates in 

irrigation water (Cerenius and Söderhäll, 1985; Diéguez-Uribeondo et al., 1994; 

von Broembsen and Deacon, 1997). Moreover, these experimental data and that 

of von Broembsen and Charlton (2000) point to the fact that cyst derived 

zoospores of Phytophthora spp. can potentially serve as infection and dispersal 

units in irrigation water. Reappraisal of Phytophthora disease management 

strategies in irrigated agriculture should consider this new information.  
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