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CHAPTER I 
 
 

INTRODUCTION 

 

Wheat (Triticum aestivum L.) is an important cereal crop and is the staple food for nearly 

40% of the world’s population (Weise 1987).  It is an important source of carbohydrate, 

protein, vitamins and minerals that provides 20% of the world’s food calories.  Wheat 

occupies about 20% of the world’s cultivated land.  In the United States of America, 

wheat is an important agricultural commodity for domestic use and in international trade.  

In the southern Great Plains, nearly six million acres of land is under wheat cultivation in 

the state of Oklahoma, which typically ranks second in hard red winter wheat production 

across the nation (NASS 2009). 

 

Wheat suffers from many diseases that are major constraints to productivity.  About 20% 

of wheat yield worldwide is lost due to diseases (Weise 1987).  One of the major foliar 

diseases of wheat is tan spot (synonym yellow leaf spot) caused by the ascomycetes 

fungus Pyrenophora tritici-repentis (Died.) Drech. (anamorph: Drechslera tritici-repentis 

(Died.) Shoemaker)) (Ali and Francl 2003, Singh et al. 2006).  Tan spot is prevalent in 

many wheat growing areas in the world and can reduce wheat productivity (Ackermann 

et al. 1988, Francl et al. 1992, Friesen et al. 2005).  
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Yield losses in wheat due to tan spot may range from 3 to 50% in the central plains of the 

United States (Ali and Francl 2003, Hosford 1982, Rees et al. 1982).  Nearly a 40% grain 

yield loss was reported in Kansas due to tan spot (Sone et al. 1994).  A lower thousand-

kernel weight, reduced number of grain per head, shriveling and discoloration of seeds, 

and reduced milling quality also were reported as being due to tan spot (Bockus and 

Classen 1992). 

 

Since first identified in New York in 1940 (Barrus 1942), tan spot has become a major 

disease in the United States (Engle et al. 2006).  Tan spot has been known in the southern 

Great Plains since the 1970s but has not been a major concern for wheat cultivation in 

Oklahoma (Hunger and Brown 1987); however, the incidence and severity of tan spot can 

be of concern in Oklahoma if the proper environmental condition occurs. One factor that 

has contributed significantly to the increased incidence and severity of tan spot in 

Oklahoma has been a change in cultivation practices from conventional tillage (clean 

tillage) to minimum or no-till practices.   

 

Minimum or no-till practices allow for increased residue on the soil surface.  The tan spot 

fungus survives on the wheat residue from the previous year and infects wheat in the 

following cropping season (Bockus and Shroyer 1998). Sutton and Vyn (1990) found a 

positive correlation between the severity of tan spot and the amount of infected wheat 

residue present in the field.  Presently nearly 30% of the wheat production area in 

Oklahoma is under no-till practices, and the trend is increasing (Dr. Jeff Edwards, OSU 

Department of Plant and Soil Sciences, personal communication).  Thus, increased levels 
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of inoculum on wheat residue pose a threat to result in more outbreaks of tan spot.  This 

fact, along with planting susceptible cultivars, contributes greatly to an increased 

occurrence of tan spot (Baily 1996, De Wolf et al. 1998). 

 

Variability and adaptability of a plant pathogen are major problems to stability of disease 

management of a crop.  Differences between isolates of a pathogen in characters like 

growth, sporulation, reproduction, virulence, latent period, etc., can be critical for 

determining disease incidence and severity.  Ascospores are the primary inoculum for tan 

spot initiation, and thus, the ability of the causal fungus to produce pseudothecia (sexual 

fruiting bodies), number of asci per pseudothecia and mature ascospores per ascus, are 

important contributing factors to tan spot epidemics.  Conidia produced on infected tissue 

are the secondary inoculum that spread disease in the field.  Isolates can also vary in their 

ability to produce conidia (Hunger and Brown 1987, Rodriguez and Bockus 1996).  

Virulence is an important character of an isolate, and wide variations in virulence in 

isolates have been reported by many scientists (Krupinsky 1992, Luz and Hosford 1980, 

Moreno et al. 2008, Sah and Fehrmann 1992, Schilder and Bergstrom1990).  While 

studying representative isolates of P. tritici-repentis from different decades, Kader et al. 

(2009) found significant variation among isolates in growth, sporulation, pseudothecia 

formation, ascospore maturity and virulence. 

 

There is also the possibility that less fit isolates are replaced by more virulent and better 

adapted isolates over time and space.  For example, in the wheat-stripe rust pathosystem, 

Milus et al. (2006) found that older populations of Puccinia striiformis f. sp. tritici had 
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been replaced by a newer population that had a 2 day shorter latent period, and a spore 

germination rate that was double that of older isolates. In Canada, isolates of 

Phytophthora infestans collected in the 1990s were found more virulent on tuber tissue 

than older isolates (Peters et al. 1999).  In a study with a Cercospora kikuchii population, 

the causal fungus of cercospora leaf spot in soybean, recent isolates collected in 2000 and 

2001 were found more virulent than older isolates collected in 1979, 1989 and 1994 (Cai 

and Schneider 2008).  Information does not exist for comparing P. tritici-repentis isolates 

collected from wheat over time. 

 

P. tritici-repentis is a necrotrophic fungus that produces three host-specific toxins 

(Ciuffetti and Touri 1999).  Thus, P. tritici-repentis is considered to be composed of eight 

races based on their specific reaction (necrosis and/or chlorosis) on wheat differentials 

(Andrie et al. 2007, Ali and Francl 2003, Lamari and Bernier 1991).  Knowing the 

occurrence of these races in a particular area and the response of germplasm to those 

races is important to developing wheat cultivars resistant to tan spot.  The wheat-P. 

tritici-repentis pathosystem does not follow the classical gene-for-gene system (Flor 

1955).  Complete resistance is not known in wheat, and thus, susceptible wheat cultivars 

show a compatible reaction in response to toxins produced by isolates of P. tritici-

repentis (Strelkov and Lamari 2003).  The races present in the P. tritici-repentis 

population in Oklahoma have not been determined, but this knowledge is critical in 

selecting and using resistant germplasm in a wheat breeding program. 
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Genetic relationships of isolates based on morphological characters are not usually highly 

accurate because a phenotypic character is influenced by host-pathogen-environment 

interaction during disease development.  However, there are a number of molecular 

techniques that can determine the genetic variability and relationship among isolates of a 

species.  These molecular tools can be reliable and accurate approaches for pathogen 

diagnostics, gene identification, and determining the genetic variability and/or relatedness 

of a species (McCartney et al. 2003, William et al 1990).  Nucleic acid-based techniques 

are rapid, specific, and highly sensitive and are widely used in applied plant pathology 

(Vincelli and Tisserat 2008).  The genetic relationships of P. tritici-repentis isolates 

present in Oklahoma can be determined by molecular analysis. 

 

The fitness, virulence and genetic variability for P. tritici-repentis isolates in Oklahoma 

have not been investigated, but that information is important to selecting isolates for use 

in germplasm screening for tan spot resistance and to develop management strategies.  

Hence, the objective of this research project was to characterize and compare P. tritici-

repentis isolates collected from Oklahoma over three decades for: 

1. Growth, sporulation and pseudothecia production of P. tritici-repentis isolates. 

2. Virulence of the isolates on winter wheat cultivars. 

3. Race structure, fitness and pathogenic and molecular variability among those 

isolates. 

For the reader’s information, chapters three to five have been prepared in manuscript 

format.  The references cited for the Introduction and for the Review of Literature are 

presented in the Reference section.
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CHAPTER II 
 
 

REVIEW OF LITERATURE 

 

History of tan spot in wheat 

The foliar disease tan spot of wheat, which is caused by the fungus Pyrenophora tritici-

repentis (Died.) Drechs. (anamorph: Drechslera tritici-repentis (Died.) Shoemaker), has 

been identified as a major limiting factor to wheat production worldwide (Duveillier 

1998, Francl et al. 1992).  This disease is also known as yellow leaf spot, yellow leaf 

blotch, leaf blight and eye spot of wheat (Hosford 1971).  The sexual stage of the fungus 

was reported as Sphaeria trichostoma Fr. in 1823, Pyrenophora trichostoma (Fr.) Fck. in 

1870 and Pyrenophora tritici-repentis (Died.) Drechs.  The asexual stage was named as 

Helminthosporium tritici-repentis (Died.) in 1923, Drechslera tritici-vulgaris (Nisikado) 

Ito in 1930, and Drechslera tritici-repentis (Died.) Shoem. in 1959 (Hosford 1982). 

 
The parasitic nature of this fungus was first discovered on a grass (Agropyron repens) in 

Germany in 1902 when it was named Pleospora tritici-repentis (Diedicke 1902).  The 

same fungus was reported in the USA in 1923 (Drechsler 1923).  In 1928, tan spot was 

first reported on wheat in Japan (Ito 1930) and in European countries (Anderson 1955).
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Tan spot on wheat was identified in India in 1931 (McRae 1932, Mitra 1934), in Canada 

in 1937 (Conners 1937), in the USA in 1942 (Barrus 1942), in Australia in 1953  

(Valder and Shaw 1953), in China in 1959 (Jiang 1959) and in Brazil in 1968 (Costa 

Neto 1968).  During the 1970s, tan spot became a major disease of wheat worldwide, and 

consequently, CIMMYT (International Wheat and Maize Improvement Center) 

emphasized tan spot research programs to improve resistance to this disease (Duveiller et 

al. 1998). 

 

Disease symptoms and yield loss 

Symptoms of tan spot appear on leaves during the fall and spring in winter wheat. The 

fungus induces two distinct symptoms, tan necrosis and chlorosis (Gamba et al. 1998, 

Lamari and Bernier 1989).  Wheat cultivars commonly develop either necrosis or 

chlorosis in response to infection by an isolate, however, both symptoms can be observed 

in a single cultivar (Lamari et al. 1991).  Necrosis is the desiccated tan-colored tissue 

around the spot while chlorosis refers to yellowing that spreads over the leaf without any 

well-defined border (Lamari et al. 1995).  These two symptoms are produced as a result 

of toxin secretion by P. tritici-repentis (Engle et al. 2006).  Lesions on leaves 

characteristically have a small, tan to brown center, which is surrounded by a yellow 

circular border.  Lesions initially appear as tan-brown flecks and expand into lens-shaped 

lesions that develop into tan blotches.  Large lesions coalesce and develop dark-brown 

centers surrounded by a chlorotic border.  As lesions expand and tissue is killed, a tannish 

hue develops over the leaves.  As plants mature, the fungus infects stems on which it 

produces black pseudothecia that are a characteristic sign of this fungus (Weise 1987). 
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Yield losses in wheat due to tan spot may range from 3 to 50% in the central plains of the 

United States (Ali and Francl 2003, Hosford, 1982).  Nearly a 40% grain yield loss was 

reported in Kansas due to tan spot (Sone et al. 1994).  During grain filling, the fungus can 

infect wheat seed and cause a pink smudge or reddish discoloration (Schilder and 

Bergstrom 1994).  A lower thousand-kernel weight, reduced number of grain per head, 

shriveling and discoloration of seeds and reduced milling quality have all been reported 

due to tan spot in wheat (Bockus and Classen 1992). 

 

Pathogen biology 

P. tritici-repentis is a homothallic ascomycetes fungus that propagates sexually by 

ascospores and asexually by conidia.  The fungus develops one-loculed, black, raised 

fruiting bodies (pseudothecia) on wheat residue during the fall and winter.  Inside a 

pseudothecium, sac-like asci are formed containing sexual spores (ascospores) with eight 

ascospores per ascus.  Asci are bitunicate (double walled) with pseudoparaphysis present 

between asci.  The median cell of an ascospore has a longitudinal septation (Ellis and 

Waller 1976).  Ascospores are the primary inoculum for infection, and lesions found on 

lower leaves in late winter or early spring resulted from infection by ascospores released 

from psuedothecia on wheat residue. 

 

Conidia represent the secondary or repeating inoculum for tan spot in a wheat field, and 

are formed on conidiophores in the lesion on a leaf.  Conidiophores are olive-black with a 

swollen base, and conidia are subhyaline and cylindrically shaped with 4-6 septa.  A 

conically tapered basal cell is diagnostic of conidia of P. tritici-repentis (Weise 1987).   
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Conidia also have been observed on pseudothecia (Shoemaker 1962).  The current 

taxonomy of P. tritici-repentis is presented in Table 1. 

 

Host range 

This fungus can infect and survive on a wide range of grasses, with 26 grasses described 

as alternative hosts of P. tritici-repentis (Krupinsky 1982, Krupinsky 1992).  Ali and 

Francl (2003) recovered races 1, 2 and 4 from volunteer wheat, and races 1 and 5 from 

durum wheat.  In the same study, race 4 was recovered from other grasses and was not 

pathogenic to wheat.  Barley is not a reservoir host of P. tritici-repentis, and thus, does 

not play a significant role in tan spot epidemiology (Ali and Francl 2001).  A survey of 

barley fields from 35 locations in North Dakota during the 1999 growing season found 

only race 1 from 2-5% of the total samples.  Moreover, no disease resulted when 12 

barley cultivars were inoculated by races 1 to 5 (Ali and Francl 2001).  Race 1 also has 

been recovered from broomgrass (Bromus inermis), which was pathogenic to wheat (Ali 

and Francl 2003, Krupinsky 1987). 

 

Infection and host-pathogen interaction 

P. tritici-repentis is a necrotrophic fungus which kills host tissue, colonizes the diseased 

tissue and produces conidia (Friesen et al. 2008).  While studying the leaf infection 

process, Larez et al. (1986) found that conidia produced multiple germtubes and formed 

appresoria.  An infection peg develops from appressoria that penetrates the leaf epidermis 

and grows intercellularly in mesophyll tissue (Dushnicky et al. 1996).  The wheat-P. 

tritici-repentis pathosystem follows a toxin-based gene-for-gene model where a receptor 
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present in a susceptible host recognizes pathogen effectors (toxins) with the result being a 

compatible (susceptible) reaction  (Strelkov and Lamari 2003).  

 

Host-specific toxins 

A unique feature of this fungus is the production of host-selective toxins (Ciuffetti et al. 

1999, Lamari and Bernier 1989, Strelkov et al. 1998).  Initial research provided evidence 

that toxins are the pathogenicity factors for tan spot development (Tomas and Bockus 

1987, Brown and Hunger 1993).  P. tritici-repentis is one of the few necrotrophic fungi 

able to produce multiple host-specific toxins (Strelkov et al. 2006). 

 

This fungus secretes toxins into the apoplast that are capable of crossing host plasma 

membranes (Manning and Ciuffetti 2005).  Although the molecular mechanisms are not 

clearly understood, research has shown that toxins are internalized into mesophyll cells 

(Manning et al. 2008) where they interact with chloroplast-localized proteins in the 

chloroplast membrane (Manning et al. 2007, Strelkov et al. 1998).  Finally an alteration 

in the photosynthetic electron transport is induced that leads to accumulation of reactive 

oxygen species and eventually cell death (Manning et al. 2009).  Upon inoculation by 

toxins, cellular electrolytic leakage was also reported (Kwon et al. 1998). 

 

P. tritici-repentis is able to produce multiple host-specific toxins (Strelkov et al. 2006).  

As of today, three host-specific toxins produced by this fungus have been reported, and 

different isolates are capable of producing different combinations of toxins (Touri et al. 

1995, Hallock et al. 1993).  Toxin A (Ptr ToxA) induces necrosis while toxin B and toxin 
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C (Ptr ToxB and Ptr ToxC, respectively) induce chlorosis (Strelkov et al. 2006).  Ptr 

ToxA, a ribosomally synthesized protein, has a mass of 13.2 kDa.  Cloning of the ToxA 

gene revealed a 19.7 kDa protein that undergoes proteolytic cleavage to form the 

functional 13.2 kDa protein; thus, production of Ptr ToxA requires host metabolism 

(Ciuffetti et al. 1997).  When treated with pure Ptr ToxA, sensitive wheat cultivars 

produce necrosis 48 h after inoculation (Kwon et al. 1998).  Inoculation of susceptible 

cultivars with 0.2-90 nM of Ptr ToxA induces necrosis (Ballance et al. 1989, Touri et al. 

1995, Zhang et al. 1997).  When the temperature is >30oC, the activity of Ptr ToxA to 

initiate necrosis is significantly reduced.  This could occur because of a failure of the 

toxin to interact with the putative receptor at the cellular level (Lamari and Bernier 1994). 

 

Ptr ToxB is a small protein with a mass of 6.6 kDa that induces extensive chlorosis 

(Lamari and Bernier 1989).  Ptr ToxB is stable to heat up to 55oC (Orolaza et al. 1995).  

A minimum of 14 nM of purified Ptr ToxB was reported to produce chlorosis on 

susceptible cultivars (Strelkov et al. 1999). 

 

Although not fully characterized, another low molecular weight (approx. 1.0 kDa) 

chlorosis-inducing toxin, Ptr toxin C (Ptr ToxC), also has been discovered (Gamba et al. 

1998, Orolaza et al. 1995).  Ptr ToxC is not proteinaceous but a nonionic, polar molecule 

(Effertz et al. 2002). 
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Genetics of pathogen and disease resistance 

A single-copy of a gene was discovered for the necrosis-inducing Ptr ToxA (Ciuffetti et 

al. 1997) while multiple-gene copies were identified for chlorosis-inducing Ptr ToxB 

(Martinez et al. 2001, Strelkov 2002).  When an avirulent isolate was transformed to 

express toxin genes, it became pathogenic (Ciuffetti et al. 1997).  The toxins produced by 

P. tritici-repentis are only pathogenicity factors and do not seem to influence other 

biological functions of the fungus.  The absence of toxin production did not affect the 

survival and reproduction of P. tritici-repentis (Strelkov and Lamari 2003). 

 

Although P. tritici-repentis has existed in nature for a long time (Hosford 1982), the 

fungus has only recently been thought to have become pathogenic on wheat via 

acquisition of a toxin gene (ToxA) from the fungus Phaeospora nodorum (anamorph: 

Stagonaspora nodorum), the causal agent of wheat glume blotch (Friesen et al. 2006).  

Since both fungi live in the same niche, the toxin gene appears to have been transferred 

from P. nodorum to P. tritici-repentis by horizontal gene transfer.  Oliver et al. (2008) 

also supported the hypothesis of horizontal transfer of the ToxA gene because only after 

1970 did tan spot become evident on wheat cultivars grown in Australia since 1911.  The 

formation of conidial anastomosis tubes between conidia of P. tritici-repentis and 

Phaeospora nodorum in the same niche could facilitate horizontal gene transfer (Roca et 

al. 2005). 

 

Complete resistance to tan spot has not been found but low to moderate resistance has 

been reported in wheat lines (Singh et al. 2008).  Wheat resistance to tan spot is 
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characterized by small, dark brown lesions that do not increase in size (Singh and Hughes 

2005), and resistance has been reported as qualitative (Lamari et al. 1991, Duguid et al. 

2001, Duguid et al. 2001, Gamba et al. 1998) or quantitative (Elias et al. 1989, Faris et al. 

1997, Nagle et al. 1982).  Many researchers have found wheat resistance to tan spot 

necrosis to be governed by a single recessive gene (Anderson et al. 1991, Ciuffetti et al. 

1997, Singh et al. 2005, Singh et al. 2006), whereas resistance to chlorosis is governed by 

a single dominant gene (Lamari and Bernier 1991) or can be quantitative (Faris et al. 

1997). 

 

Races of Pyrenophora tritici-repentis 

P. tritici-repentis is a highly specific pathogen, and physiological variation or specific 

reaction to a host is due to the production of host-specific toxins on a set of wheat 

differentials.  Populations of P. tritici-repentis are classified into eight races based on 

their ability to induce necrosis and/or chlorosis on wheat differentials (Ali and Francl 

2003).  Andrie et al. (2007) described race identification based on the specific reactions 

(symptoms) on four wheat differentials (Appendix 2).  Thus, Lamari et al. (2003) 

proposed that races 2, 3 and 5 carry one virulence factor (toxin), races 1, 6 and 7 carry 

two, and race 8 carries three virulence factors (toxins), respectively. The avirulent race 4 

does not carry any of the virulence factors. 

 

All eight races have been discovered in nature (Lamari and Bernier 1989a, 1989b, Lamari 

et al. 1995, 2003, Strelkov and Lamari 2003).  Races 1 and 2 are present in all wheat 

growing areas and are the most prevalent races in the USA and Canada.  Races 3 and 4 
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also are found occasionally in the USA and Canada (Freisen et al. 2003, Engle et al. 

2006).  In a study with 270 isolates collected from bread wheat, durum wheat and non-

cereal grasses in the Great Plains, Ali and Francl (2003) recovered races 1, 2, 4 on bread 

wheat, race 1 and 5 on durum wheat, and race 1 and 4 on non-cereal grasses. In this 

study, 107 isolates were collected from bread wheat in both the northern and southern 

Great Plains, 93%, 2% and 5% of them were identified as race 1, 2 and 4, respectively. 

Race 4 was predominant (96%) in 22 isolates collected from non-cereal grasses in the 

southern Great Plains (Kansas and Oklahoma) except one (4%), which was identified as 

race 1 (Ali and Francl 2003).  An increased number (50%) of race 2 was observed in 

western Canada (Lamari et al. 1998).  Races 5 and 6 are common in Africa (Lamari 

1995); race 5 has also been reported in the USA and Canada (Ali and Francl 2003, 

Strelkov et al. 2002), and in Azerbaijan (Lamari et al. 2003).  Algeria, and the Caucasus 

and Fertile Crescent regions are the center of origin and diversity for wheat (Vavilov 

1951), and following a long-term host-pathogen coevolution,  almost all the races (1, 2, 3, 

5, 6, 7 and 8) were found in those areas (Strelkov et al. 2002, Lamari et al. 2003, Lamari 

et al. 2005). 

 

Genetic diversity of Pyrenophora tritici-repentis 

P. tritici-repentis reproduces by both sexual and asexual processes, and thus, genetic 

diversity likely contributes to tan spot epidemics.  Considerable variation in growth, 

sporulation, virulence and fungicide response has been reported among isolates of P. 

tritici-repentis (Hunger and Brown 1987, Krupinsky 1992b).  Recently, Kader et al. 

(2009) reported significant variation in isolates collected from winter wheat in Oklahoma 
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in 1983, 1996 and 2006 for growth, sporulation and virulence.  Schilder and Bergstrom 

(1990) studied virulence of 17 isolates of P. tritrici-repentis on 12 wheat cultivars and 

found significant differences among the isolates for virulence, host susceptibility, and 

isolate X cultivar interactions.  Pathogenic variation is observed among isolates of P. 

tritici-repentis, which are able to induce two distinct symptoms (necrosis and/or 

chlorosis) on wheat leaves (Lamari and Bernier 1991), however, occurrence of both 

symptoms on the same cultivar is also observed.  Moreno et al. (2008) has reported 

pathogenic variability on wheat cultivars and molecular variability among the isolates. 

 

Phenotypic variation is often difficult to explain as it can be greatly influenced by the 

complex interaction of the host, pathogen and environment.  Thus, employment of 

molecular tools is useful to determine genetic variability in the population of a species 

(McCartney et al. 2003; Williams et al. 1990).  Researchers have used different molecular 

markers to study variability in P. tritici-repentis such as rapid amplified polymorphic 

DNA (RAPD) (Mironenko et al. 2007, Santos et al. 2002, Singh and Hughes 2006), 

simple sequence repeats (SSR) (Cambell et al. 1999 and Johnson et al. 2000), inter 

simple sequence repeats (ISSR) (Moreno et al. 2008), and restriction fragment length 

polymorphism (RFLP) (Faris et al. 1997).   

 

 AFLP, a PCR-based marker, is being used to estimate genetic relationship in different 

species (Vos et al. 1996).  It is a reliable, reproducible and robust technique which is 

unaffected by small variations in amplification parameters like PCR cycle profiles or 

template concentration (Zhong and Steffenson 2001).  AFLP has been employed to study 
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the genetic relationship of many fungi (Garzon et al. 2005, Hielmann et al. 2006, Majer et 

al. 1996, O’Neill et al. 1997, Serenius et al. 2007, Zhan et al. 2006).  Using AFLP 

analysis along with sequence data from the internal transcribed spacer region of the 

ribosomal DNA, Friesen et al. (2005) found variability in the population genetic structure 

of P. tritici-repentis isolates belonging to different races and geographic locations.  AFLP 

markers were successfully used to study genetic differentiation in other Pyrenophora 

species (Leisova et al. 2005, Serenius et al. 2007).   

 

Disease cycle and epidemiology 

P. tritici-repentis oversummers and overwinters on wheat stubble by forming sexual 

fruiting bodies (pseudothecia).  An increased occurrence of tan spot has been reported 

with the retention of wheat residue in no-till farming practices (Hosford 1982, Rees and 

Platz 1980, Schuh 1990, Watkins et al. 1978).  In winter, the fungus lives on the stubble 

and passes through the cold period.  These fruiting bodies produce and release ascospores 

during spring rains. Ascospores are the primary inoculum for tan spot epidemics, and a 

positive correlation exists between tan spot severity and the level of primary inoculum in 

the field (Adee and Pfender1989, Wright and Sutton 1990). 

 

Disease spread by ascospores is limited to short distances, while long-distance dispersion 

largely depends on wind-borne conidia (Schilder and Bergstrom 1992).  Conidia, which 

are produced on diseased tissue and serve as secondary inoculum, facilitate tan spot 

epidemics in the field (Shabeer and Bockus 1988).  In a cropping year, repeated cycles of 

conidial production can occur, thus, tan spot is a polycyclic disease (Ronis and 
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Samaskiene 2006).  Isolates of P. tritici-repentis might differ in conidial production; 

however, number of conidia produced is not always correlated with disease severity 

(Rodriguez and Bockus 1996). 

 

Abiotic factors including temperature, moisture, nutrients, and light can play an important 

role in disease onset and inoculum production (Fernandes et al. 1991, Hosford et al. 1987, 

Luz and Bergstrom 1986, Khan 1971).  Tan spot development in wheat is temperature-

sensitive.  Lamari and Bernier (1994) observed the effect of temperature on tan spot 

development on eight susceptible wheat cultivars.  Tan spot development was constant 

over a range of 10-25oC, but the severity was drastically reduced when temperature was 

more than 27oC.  The cultivar ‘Glenlea’ did not produce any necrotic symptom at 30oC. 

 

The length and degree of coldness in a particular area could influence the production of 

pseudothecia and ascospores by isolates of P. tritici-repentis.  Although the maturation of 

pseudothecia and ascospores can occur over a range of 5-20oC, the optimum temperature 

of 15-18oC has been reported (Ronis and Semaskiene 2006).  Summerwell and Burgess 

(1988) reported ascospore maturation in pseudothecia on wheat straw required 18 days at 

15oC. 

 

Temperature and the availability of free moisture greatly influence germination of 

conidia.  The optimum temperature for conidial production on V8 juice medium was 

21oC, although conidiogenesis took place over a range of temperatures from 10-31oC 

(Platt et al. 1977).  A certain combination of temperature and wet period is critical for 
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conidial germination.  For example, 95% conidial germination was observed at 20oC with 

a 6-h period of wetness (Larez et al. 1986).  However, 6-12 h of wet period is required for 

successful infection, but increased wet period (96 h) at 23oC produced maximum disease 

(Hosford et al. 1987).  An incubation period of 2 days and a latency period of 6-7 days 

were observed by Wolf and Hoffman (1993) at 23oC with 95% relative humidity. 

 

P. tritici-repentis is a diurnal fungus that produces conidiophores following exposure to 

light and conidia following exposure to dark (Khan 1971).  The greatest number of 

conidia is produced using a 12/12 h light/dark cycle.  Although the fungus produces 

conidia when exposed to a range of 1 to 21 h of light per day, no conidial development 

occurred when exposed to continuous light or darkness (Khan 1971).  This light-

dependency was further confirmed by Francl (1998). 

 

Plant age, cultivars and leaf position can influence tan spot development. In a greenhouse 

experiment, plants were most susceptible to tan spot on a scale of 0-5 at the boot (Feekes’ 

scale 10, disease severity 3.4) and flowering (Feekes’ scale 10.5.1, disease severity 3.9) 

stages and yield losses of about 50% were recorded when plants were infected at the boot 

stage (Shabeer and Bockus 1988).  Perello et al. (2003) found a significantly higher 

severity of tan spot at heading stage when compared to tillering and first hollow stem.  

Resistance to tan spot differed among the wheat genotypes following artificial 

inoculation, and more disease was recorded in older (lower) leaves than in younger 

(upper) leaves (Hosford et al. 1990). 

 



 19

Tan spot epidemics also depend on the aggressiveness of isolates and resistance in host 

genotypes.  In an isolate X cultivar experiment, isolates with a high level of 

aggressiveness produced more disease in comparison to isolates with a low-level of 

aggressiveness, and the severity of tan spot significantly differed among cultivars with 

different level of resistance (Krupinsky 1992). 

 

Antagonistic relationships have been observed between P. tritici-repentis and other fungi 

when co-inoculated on wheat.  For example, following a mixed infection with 

Cochliobolus sativus, the causal agent of wheat spot blotch, C. sativus dominated over P. 

tritici-repentis.  In mixed inoculations, only a 20% component of C. sativus conidia was 

needed to significantly reduce germination, germ tube development and appressoria 

formation by conidia of P. tritici-repentis (Luz and Bergstrom 1987).  However, a 

neutralism was observed between P. tritici-repentis and Phaeosphaeria nodorum (Luz 

1986). 

 

Nutrient availability can affect the survival and reproduction of fungi (Hall 1971, Ross 

and Bremner 1971).  Thus, nutrients in wheat straw can influence the reproduction of P. 

tritici-repentis.  Pseudothecia production and ascospore maturity of P. tritici-repentis 

differed significantly on nutrient-amended media (Pfender and Wootke 1987), and 

pseudothecia and ascospore production was proportional to the level of nitrogen (9-900 

ppm) supplied in the medium.  The greatest number of pseudothecia was observed when 

nitrogen was applied at 900 ppm in media, with this number reduced to 60% at 90 ppm.  

A maximum number of fertile pseudothecia were produced on media at 900 ppm 
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nitrogen, but phosphorus and potassium at a rate of 50 and 20 ppm, respectively, also 

were required.  In another experiment (James et al. 1991), nutrient-amended wheat straw 

produced more pseudothecia and mature ascospores than straw without amendment, but 

the difference was insignificant, indicating that P. tritici-repentis is able to produce 

pseudothecia on straw without additional nutrients. 

 

Management of tan spot in wheat 

Resistant cultivars, tillage methods and application of fungicides are useful in controlling 

tan spot of wheat (Jorgensen and Olsen 2007).  Genetic resistance is the most safe, 

economical and sustainable method for tan spot management (Rees and Platz 1990, Reide 

et al. 2003).  A 50-75% reduction in tan spot severity was reported by using moderately 

resistant cultivars (Singh et al. 2008).  In some areas use of multilines and cultivar 

mixture also has been used to control tan spot (Cox et al. 2004).  

 

Cultural practices including residue management, crop rotation, fertilizer application and 

deep plowing also are useful in controlling this disease.  Maintaining low levels of 

residue in a field is a simple but effective way to minimize tan spot incidence.  Sone et al. 

(1994) reported about a 90% reduction in tan spot when the source of inoculum 

(ascospores) was located 3.6-5.4 m away from wheat.  Bockus and Classen (1992) 

reported that rotation with sorghum, which allowed a 15 month period between two 

wheat crops, significantly reduced tan spot.  Ascocarp production on straw was greatly 

reduced where previous wheat residue was disked before wheat planting (Zhang and 

Pfender 1992).  Huber et al. (1987) reported a reduction in tan spot severity of wheat 
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when nitrogen was applied in ammonium form. In contrast, Bockus and Davis (1993) did 

not find any consistent affect of nitrogen fertilizers on tan spot severity in wheat.  

Burning of stubble can effectively control tan spot by reducing infected residue. 

 

Following fungicide treatment in winter wheat in Denmark, up to a 90% reduction in tan 

spot was observed, which increased grain yield from 0.8-1.7 t/ha over a non-treated plot 

(Jorgensen and Olsen 2007).  In another field experiment in Australia, application of 

propiconazole at 62 ml a.i./ha after flag leaf emergence resulted a 59% increase of grain 

yield compared to the untreated control (Colson et al. 2003).  Although not practiced 

widely, microbial competition and antagonism may significantly reduce ascocarp 

formation and ascospore production of P.  tritici-repentis in warm and low-humidity 

environments (Pfender 1988).   

 

 

 

 

 

 

 

 

 

 
 
 



 22

Table 1.  Taxonomy of the fungus Pyrenophora tritici-repentis  
              (Agrios 2005, Webster and Weber 2007) 
_______________________________________________________________________  

Superkingdom: Eukaryota 

Kingdom: Fungi ---- Produce mycelium, cell wall consists of chitin, lack of chloroplast 

Subkingdom:  Dikaryota ---- cell contain two genetically distinct nuclei 

Phylum : Ascomycota ---- Have sexual stage (teleomorph) and asexual stage (anamorph),  

   Sexual spore called ascospore, 8 ascosopres in asci, produce asexual spores (conidia)   

   on free hypha   

Subphylum: Pezizomycotina---- Filamentous ascomycetes; hyphae 

Class: Dothideomycetes---- Fruiting body is ascostromata, produce asci within locule  

    preformed in stroma, ascus have double wall (bitunicate), ascostroma is monolocular  

    called pseudothecium 

Order: Pleosporales ----- Asci surrounded by pseudoparaphysis inside pseudothecia 

Family: Pleosporaceae 

Genus: Pyrenophora ---- anamorph is Drechslera, causing leaf spots in cereals and 

     grasses 

Species: Pyrenophora tritici-repentis, cause of tan spot in wheat. 

______________________________________________________________________  
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CHAPTER III 
 
 

GROWTH, SPORULATION AND PSEUDOTHECIA PRODUCTION OF 
PYRENOPHORA TRITICI-REPENTIS ISOLATES COLLECTED OVER THREE 

DECADES IN OKLAHOMA 
 

 
 
 
ABSTRACT 
 
Variability in fitness characters like growth, sporulation and reproduction can 

significantly affect disease onset, incidence and severity.  Hence, variability in these 

characters was determined for isolates of Pyrenophora tritici-repentis collected from 

Oklahoma over three decades.  Seventeen isolates were studied for growth on 

commercial potato dextrose agar (CPDA), PDA made from fresh potatoes (RPDA), and 

clarified V8 juice agar (CV8).  Conidia production was determined on CV8 and on wheat 

leaves of wheat cultivars Deliver (moderately susceptible), TAM 105 (susceptible) and 

Red Chief (resistant).  Isolates were also evaluated for pseudothecia production and 

ascospore maturity formed on wheat straw.  Radial growth for all isolates was 

significantly higher on RPDA and CV8 than on commercial PDA.  Isolates differed 

significantly (P <0.05) for conidia production on CV8 and on leaves.  The isolate 

designated as Cherokee produced the highest number of conidia on CV8 while isolate 

OKD4 did not produce conidia on CV8.
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The isolate Kiowa produced the highest number of conidia on leaves of all three 

cultivars.  A weak correlation (r = 0.362 - 0.586) was found between conidial production 

on CV8 and on cultivars; however, higher correlations (r = 0.71 - 0.85) were observed 

within cultivars. Isolates also varied significantly in pseudothecia production and 

ascospore maturity on wheat straw.  Although isolate OKD2 produced the highest 

number of pseudothecia, no mature ascospores were found after 23 days of incubation.  

Based on these fitness characters the most recently collected isolates from the 2000s 

appeared more fit than isolates collected in the 1980s and 1990s.  Variability in these 

characters that contribute to fitness in the field should be taken into account when 

selecting isolates for use in studies screening wheat germplasm and studying the etiology 

and epidemiology of tan spot.  

 

INTRODUCTION 

Tan spot caused by the ascomycetes fungus Pyrenophora tritici-repentis (Died.) Drech. 

(anamorph: Drechslera tritici-repentis (Died.) Shoemaker) is a major disease of wheat 

worldwide (Singh et al. 2006, Ali and Francl 2003).  Yield losses in wheat due to tan spot 

may range from 3 to 50% in the central plains of the United States (Ali and Francl 2003, 

Hosford, 1982), and a near 40% grain yield loss due to tan spot was reported in an 

experimental study in Kansas (Sone et al. 1994).  Lower thousand-kernel weight, reduced 

number of grain per head, shriveling and discoloration of seeds, and reduced milling 

quality have all been attributed to tan spot (Bockus and Classen, 1992). 
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In Oklahoma in the southern Great Plains, winter wheat typically is grown on 5-6 million 

acres annually (NASS 2009).  Tan spot has been present in Oklahoma since the 1970s 

(Hunger and Brown 1987), but generally has not been considered a major disease concern 

until recently when  cultivation practices have changed from clean to minimum or no-till 

practices that leave increased residue on the soil surface.  As a result, an increase in the 

incidence and severity of tan spot has been noticed. 

 

Presently no-till wheat is employed on nearly 30% of the acres cultivated with wheat in 

Oklahoma (Dr. Jeff Edwards, OSU Plant and Soil Sciences Department, personal 

communication).  The tan spot fungus survives on wheat residue from the previous year 

and infects wheat in the following spring (Bockus and Shroyer 1998).  Ascospores 

produced in pseudothecia are the primary inoculum that initiates tan spot in the spring.  

Sutton and Vyn (1990) found a positive correlation between the severity of tan spot and 

the amount of infected wheat residue present in the field.  This fact along with planting 

susceptible cultivars can contribute greatly to an increased occurrence of tan spot (Baily 

1996, De Wolf et al. 1998). 

 

Characters such as growth, sporulation and fruiting body formation are important in 

disease onset and epidemics because these characters help define the fitness of the 

pathogen.  P. tritici-repentis is a necrotrophic fungus, which kills tissue by secreting host-

specific toxins and then colonizes the dead tissue.  Mycelia growing on the dead tissue 

produce conidia that are the secondary inoculum for spreading tan spot in the field.  

Hunger and Brown (1987) found significant variation in growth and sporulation on media 
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among isolates of P. tritici-repentis collected from winter wheat in Oklahoma during the 

1980s.  Furthermore, sporulation on host tissue is not only a fitness character of the 

pathogen but also provides a means to evaluate host resistance, which is an important 

parameter in breeding for resistance to tan spot (Riaz et al. 1991).  In the corn-Bipolaris 

maydis pathosystem, Nelson and Tung (1973) found a positive relationship between 

sporulation on the host and disease severity.  Variation in pseudothecia formation and 

ascospore development can also affect wheat tan spot epidemics in Oklahoma.  Less fit 

isolates might be replaced by more aggressive and better adapted isolates over time.  For 

example, in the wheat-stripe rust pathosystem, Milus et al. (2006) found that older 

populations of Puccinia striiformis f. sp. tritici have been replaced by a newer population 

that has a 2 day shorter latent period, and a spore germination rate that is double that of 

older isolates.  Little is known about P. tritici-repentis isolates collected from wheat in 

different time periods.  In a preliminary study, Kader et al. (2009) found significant 

difference in fitness characters among the isolates such as radial growth, sporulation, 

pseudothecia formation and their maturity.  However, a more thorough investigation is 

necessary, and the objective of this study was to compare the fitness characters such as 

growth, sporulation and pseudothecia production of P. tritici-repentis isolates collected in 

Oklahoma over three decades. 

 

MATERIALS AND METHODS 

Isolate collection and storage 

Isolates of P. tritici-repentis originally collected from single ascospores or conidia in the 

1980s, 1990s and 2000s were included in this study (Table 1).  Single ascospore isolates 
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were obtained by washing wheat straw on which pseudothecia had formed in 10% bleach 

for one min, rinsing thoroughly in sterile water, drying and placing the straw on 15% 

water agar (WA) in 90 mm petri plates.  After 3 days of incubation at 21oC, plates were 

examined using a dissecting microscope, and single ascospores ejected from 

pseudothecia were transferred to potato dextrose agar (PDA) using a sterile transfer 

needle.  Conidial isolates were obtained from leaves.  Leaves having typical tan spot 

symptoms were collected and surface sterilized as described above, and incubated in 12 

hr light at 23oC and 12 hr dark at 16oC for 3 days.  After identifying conidia using a 

microscope, single conidia were taken aseptically and placed on PDA.  Isolates were 

maintained on PDA while being used in experiments but were maintained in liquid 

nitrogen for long term storage. 

 

Growth and sporulation on media 

Growth and sporulation of isolates were determined using the procedure as described by 

Hunger and Brown (1987).  A 5-mm diameter mycelial plug, excised with a sterilized 

cork borer from the edge of an actively growing isolate, was removed and placed on 

commercial PDA (CPDA) and PDA made from fresh potatoes (RPDA) (200 g potato, 

dextrose 20 g, agar 15 g in l L) and clarified V8 (CV8) juice agar (150 ml V8 juice, 3 g 

CaCO3, 15 g agar, 850 ml water) in 90 mm petri plates.  Plates were maintained in an 

incubator (Percival model I-36LL, Boone, IA) at 23oC in dark for 5 days.  Radial growth 

was measured by averaging the length of two opposite diameters and subtracting 5 mm 

from each reading.  A two-factor randomized complete block design was followed with 

four replications.  Each plate was a replication for a combination of isolate and medium, 
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and plates were arranged randomly within a replication.  The experiment was repeated 

twice. 

 

To determine conidial production of each isolate on CV8, about 10 drops of sterile water 

was added and mycelia were matted down using a sterile bent glass rod.  Plates were then 

kept in the incubator for 12 hr at 23oC with under cool-white fluorescent tubes  

(40W, 30 µEs-1m-1) to produce conidiophores.  This was followed by 12 hr dark at 16oC 

to induce conidia production.  Conidia were washed from the plate into a beaker using a 

stream of sterile water.  One ml of conidial suspension was pipetted onto a segmented 

petri plate (40 mm), and the number of conidia per ml was determined with a 

stereomicroscope.  Area of mycelial colony (πr2; r = radius of colony) was calculated, and 

the number of conidia per colony unit area was calculated.  A randomized complete block 

design with four replications was followed and the experiment was conducted twice. 

 

Sporulation on leaves 

To determine sporulation on leaves, the moderately susceptible wheat cultivar ‘Deliver’ 

was used.   Cultivar TAM105 (susceptible) and Red Chief (resistant) were included as 

checks. Conidia of each isolate were produced and harvested as described above and 

adjusted to 2000 conidia per ml.  Seedlings were raised in commercial ‘Ready-Earth’ soil 

(Sun Gro Co., Bellevue, WA) in 6-inch x 1.5 in. dia plastic containers.  Seedlings with 

three leaves fully expanded were inoculated with the conidial suspension (approximately 

1.5 ml per plant) of each isolate using an atomizer (DeVilbiss Co., Somerset, PA) 

following the procedure of Rodriguez and Bockus (1996).   Inoculated plants were 
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allowed to dry for 30 min so conidia would adhere to leaves, and then were placed in a 

mist chamber.  After 48 hr, inoculated plants were removed from the mist chamber and 

placed in a greenhouse at 21oC following a cycle of 14 hr light (510 µEs-1m-1) and 10 hr 

dark.  After 5 days, the 2nd and 3rd leaves from the bottom were cut into 5-7 cm segments 

and placed on to filter paper moistened by 2.5 ml of sterile water in a 90-mm petri plate.  

Petri plates, sealed by parafilm to retain moisture, were incubated in the light 

(30 µEs-1m-1) for 12 hr at 23oC followed by 12 hr dark at 16oC for 5 days.  Leaf segments 

were again cut into 1-cm pieces and placed in a sterile test tube containing 25 ml sterile 

water.  The tubes were vortexed at maximum speed for 30 sec.  One ml of conidial 

suspension was transferred into a segmented petri plate and conidia were counted using a 

stereomicroscope.  The average number of conidia produced per leaf was calculated.  

This experiment was done twice in a randomized complete design with four replications 

(five plants per replication). 

 

Pseudothecia production 

To determine pseudothecia production by each isolate, the procedure of James et al. 

(1991) was basically followed but without adding nutrients to the wheat straw.  Wheat 

straw was cut into pieces (2-in long), boiled for 10 minutes at 80oC and autoclaved.  

About 2.5 ml of sterile water was added to filter paper in a petri plate and four pieces of 

straw were placed parallel to each other on the moistened filter paper.  A 5-mm dia 

mycelial plug was placed in between each piece of straw.  Petri plates were sealed with 

parafilm and were kept in dark at 21oC for 14 days during which time pseudothecia 
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formed.  Plates were then incubated at 15oC in a 12 hr light (30 µEs-1m-1) and 12 hr dark 

cycle for 23 days.   

 

The total number of pseudothecia and mature pseudothecia per straw were counted.  A 

pseudothecium was considered mature only if at least one clearly mature ascospore was 

found as indicated by the presence of pigmentation and clear septation under a compound 

microscope (Friesen et al. 2003).  The experiment was conducted twice in a randomized 

complete block design with four replications.  Each petri plate with four pieces of straw 

was a replication for each isolate. 

 

Statistical analysis 

All statistical analyses were done using SAS 9.1 software (SAS Institute, Inc., Cary, NC).    

Data were transformed if necessary.  Data were analyzed using the PROC MIXED 

module for radial growth on media and sporulation on leaf of wheat cultivars.  Treatment 

means were separated by protected t-test using pair-wise difference option (PDIFF) at 5% 

level of significance.  An ANOVA was performed using the GLM procedure for 

sporulation on CV8, total pseudothecia production on straw and pseudothecial maturity.  

Means were separated by Fisher’s least significance difference test (α = 0.05).  The 

relationships (Pearson correlation coefficients) between the ability of sporulation on CV8 

and the three cultivars for all isolates were determined using the PROC CORR option (α 

= 0.05). 
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RESULTS 

Radial growth  

Isolates varied significantly (P < 0.0001) for radial growth on three media (Table 2).  The 

mean radial growth was least on CPDA while it was greater on RPDA and CV8 (Table 

3).  Statistically, the greatest mean radial growth was observed for isolate RBB6 and OK-

06-3.  GYA3 and Cherokee showed the lowest radial growth.  The average mycelial 

growth (41.8 mm) of the recent isolates from the 2000s was more than that (38.5 mm) of 

older isolates collected during the 1980s and 1990s. 

 

Sporulation on CV8 and on leaves 

Isolates differed significantly (P <0.0001) for conidia production on CV8 or on leaves of 

three wheat cultivars (Table 4).  OKD1, Guymon, Cherokee and Atoka produced the 

greatest number of conidia on CV8 while the fewest were produced by OKD3, GYA3, 

OKD2, OKD5, OK-06-2 and El Reno (Table 5).  OKD4 did not produce conidia on CV8.  

Kiowa produced the greatest number of conidia on wheat leaves, and the fewest were 

produced by GYA3, OK-06-2 and OKD3.  The mean sporulation for the recent and the 

older isolates was 1023 and 416, respectively on wheat leaves.  Lower correlation 

coefficients (r = 0.585, 0.557 and 0.363) were found between conidial production for the 

sixteen isolates on CV8 and on the leaves of the three cultivars (Table 6).  However,  

higher correlation coefficients (r = 0.854, 0.758 and 0.709) were found for conidial 

production on leaves for all isolates within the three cultivars (Table 6). 
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Pseudothecia production 

Isolates differed significantly (P < 0.05) in production of pseudothecia and formation of 

mature ascospores within pseudothecia (Table 7).  OKD2 and OK-06-1 produced the 

highest number of pseudothecia while the least pseudothecia were produced by OKD4, 

GYA3 and El Reno.  The percent of pseudothecia containing mature ascospores was 

highest for Guymon, while OKD3, OKD4, El Reno and OK-06-2 did not produce mature 

pseudothecia when then experiment was terminated.  The recent isolates produced 47 

pseudothecia on wheat straw of which 20% were mature while the older isolates 

produced 42 psedothecia of which 11% were mature (Table 7). 

 

DISCUSSION 

Growth is an important fitness character that enables the fungus to utilize nutrients from 

infected tissue.  For example, Loughman and Deverall (1986) reported that in a study of 

3-4 days after inoculation, rapid intercellular hyphal growth of P. tritici-repentis was 

observed in a susceptible wheat cultivar which formed significantly larger mycelia as 

compared to growth and mycelia formed in a resistant cultivar.  In our experiments, 

fungal radial growth on artificial media, which lacks host influence, was studied.  Isolates 

grew well on RPDA and CV8 while less growth was observed on CPDA.   Agar made 

using fresh potatoes likely provides more vitamins and minerals that could have 

contributed to fungal growth.  

 

The number of conidia produced by an isolate is an important fitness character in disease 

epidemiology, and variation in conidial production both on media and on wheat cultivars 
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has been reported for isolates of P.tritici-repentis (Hunger and Brown 1987, Rodriguez 

and Bockus 1996).  Studying sporulation in vitro lacks the effect of host physiology and 

interaction, and does not take into account the complex affects from wheat genotype, leaf 

position, fungal isolate, wet period etc. (Cox and Hosford 1987, Hosford et al. 1990).  

Sporulation on host tissue is a fitness character of a pathogen that can be influenced by 

host resistance (Rotem et al. 1978).  Conidial production was highest on the susceptible 

cultivar TAM 105 as compared to production on the resistant cultivar Red Chief.  In a 

wheat producing area, Riaz et al. (1991), reported that an isolate of P. tritici-repentis 

produced significantly greater conidia on a susceptible cultivar compared to a resistant 

cultivars. Thus, selection of wheat germplasm resistant to tan spot and utilizing them in a 

breeding program is important. 

 

In this study, correlation between conidial production of all isolates on CV8 and on wheat 

leaves of three cultivars was low; however, correlations between the cultivars were high.  

Sporulation on CV8 lacks host influence, thus, the relationship was not able to explain a 

large amount of variability of the experiment (Rotem et al. 1978).  For example, the 

isolate Cherokee, in comparison to other isolates, produced the highest number of conidia 

on CV8 while its sporulation was much less on all three cultivars (Table 5).  On the other 

hand, the correlation coefficients for sporulation on cultivars were high, which explains a 

large amount of variability due to the influence of the host.  Although studying 

sporulation on the host is difficult due to tedious experimental requirements, the 

difficulty of counting spores, and high experimental errors, etc. (Rotem et al. 1978), we 

concluded that sporulation of P. tritici-repentis isolates should be studied on wheat leaves 
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(in vivo) rather than on media in order to obtain the most accurate results.  However, 

environment conditions or competition with other pathogens in the field may also affect 

sporulation (Luz and Bergstrom 1986).  Studying sporulation in vivo is also important to 

help predict tan spot epidemics.  Tan spot is a polycyclic disease because it occurs 

repeatedly in the field by air-borne conidia (Rodriguez and Bockus 1996).  Thus, conidia, 

produced on the host, facilitate secondary infection that leads to severe disease in the 

field (Mundt 2009). 

 

Tan spot is a disease favored in wheat produced by conservation tillage because P. tritici-

repentis completes its life cycle on wheat residue.  The production of pseudothecia, 

number of asci per pseudothecia and number of mature ascospores per ascus are 

important to tan spot epidemics.  In this study, production of pseudothecia and their 

maturity were independent.  For example, OKD2, OKD3, OKD5, OK-06-2, OK-06-3 

produced a high number of pseuthothecia but few or no mature ascospores.  Perhaps 

isolates required additional nutrients as it has been shown that this fungus differed 

significantly in pseudothecia production and ascospore maturity in nutrient-amended 

media (Pfender and Wootke 1987).  However, the lack of effect of additional nutrients 

also has been demonstrated (James et al. 1991).  We did not add any nutrient in our study 

because P. tritici-repentis survives naturally on residue left in the field (Odvody et al. 

1982). Our experiment was terminated after 23 days of incubation because this is the 

accepted procedure as developed by James et al. (1991).  Ascospores likely continued to 

mature after 23 days, but early maturation of ascospores would be an important 

competitive character of an isolate for tan spot initiation and establishment. 
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Based on parameters that contribute to fitness such as mycelial growth, sporulation and 

pseudothecia development, the isolates collected most recently during the 2000s appeared 

to be better fit than isolates collected in the 1990s or 1980s.  Wheat production in 

Oklahoma under no-till cultivation is increasing, and the recently collected isolates are 

well adapted for completing their life cycle under this production system.  P. tritici-

repentis survives saprophytically during much of its life cycle, and a higher sporulation 

and rate of pseudothecial development would increase its survival capacity. 

 

Long term storage or continuous subculturing may affect isolate physiology.  Hosford 

(1971) reported that a P. tritici-repentis isolate maintained on PDA changed in color and 

radial growth rate.  This phenomenon was also observed by Hunger and Brown (1987).  

However, P. tritici-repentis isolates used in our studies were maintained in liquid 

nitrogen, which is an accepted means to keep cultures over long periods of time while 

maintaining stability (Dhamen et al. 1983).   Variability in P. tritici-repentis isolates for 

fitness characters can be further studied with other parameters.  For example, determining 

the relationships of its fitness to isolate virulence, latent period, fungicide sensitivity etc. 

will facilitate understanding wheat tan spot epidemics and management. 
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Table 1.  Pyrenophora tritici-repentis isolates collected from winter wheat in Oklahoma over 
three decades that were used in this study 

 
 
Isolate 

 
Collection year 

 
County 

Propagule of 
initial isolation 

OKA1 1983 Garfield Ascospore 
OKA2 1983 Garfield Ascospore 
OKD1 1983 Blaine Ascospore 
OKD2 1983 Blaine Ascospore 
OKD3 1983 Blaine Ascospore 
OKD4 1983 Blaine Ascospore 
OKD5 1983 Blaine Ascospore 

 
RBB6 1996 Kay Ascospore 
GYA3 1996 Texas Ascospore 

 
El Reno 2005 Canadian Conidia 
Guymon 2006 Texas Conidia 
Cherokee 2006 Cherokee Conidia 
OK-06-1 2006 Payne Ascospore 
OK-06-2 2006 Payne Ascospore 
OK-06-3 2006 Payne Ascospore 
Atoka 2007 Atoka Conidia 
Kiowa 2007 Pittsburg Conidia 
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Table 2. Analysis of variance of radial growth of seventeen isolates of Pyrenophora 
tritici-repentis collected from winter wheat in Oklahoma on three media 

 
Source DF Type III SS Mean squares F value P value 
Isolate 16 8592.30 537.01 29.31 <0.0001 
Media 2 26032.82 13016.41 710.49 <0.0001 
Isolate*Media 32 4324.38 135.14 7.38 <0.0001 
 
 
 
 
Table 3. Mean radial growth of Pyrenophora tritici-repentis isolates on commercial 

Potato dextrose agar (CPDA), PDA made from fresh potatoes (RPDA) and clarified 
V8 (CV8) juice agar 

 
 
Isolates 

Radial growth (mm) on media (Mean ± SE)a  
Mean CPDA RPDA CV8 

1980s     
OKA1 37.8b ± 2.8 A,b 45.3 ± 1.0 C,a 49.9 ± 1.1 CD,a 44.3 
OKA2 29.8 ± 2.3 BC,b 48.5 ± 0.9 BC,a 52.3 ± 0.6 CD,a 43.5 
OKD1 17.8 ± 0.8 EFG,b 49.5 ± 0.6 BC,a 48.9 ± 1.4 CD,a 38.7 
OKD2 20.5 ± 1.5 DEF,b 48.3 ± 0.8 BC,a 48.1 ± 0.8 CD,a 38.9 
OKD3 22.0 ± 1.4 DE,c 46.0 ± 0.7 C,a 32.8 ± 4.3 E,b 33.6 
OKD4 24.3 ± 1.1 CD,c 53.8 ± 0.6 AB,a 38.0 ± 2.3 E,b 38.7 
OKD5 23.3 ± 1.8 DE,b 45.8 ± 0.7 C,a 48.8 ± 1.9 CD,a 39.3 
1990s     
RBB6 37.0 ± 5.6 A,b 58.4 ± 0.4 A,a 53.5 ± 0.6 BC,a 49.6 
GYA3 12.5 ± 1.5 G,c 38.8 ± 0.5 D,a 24.0 ± 1.3 F,b 25.1 
2000s     
El Reno 23.8 ± 1.9 D,b 49.3 ± 0.6 BC,a 51.3 ± 0.5 CD,a 41.4 
Guymon 25.3 ± 4.1 C,c 47.5 ± 0.9 C,b 52.5 ± 0.9 CD,a 41.8 
Cherokee 15.3 ± 1.3 FG,b 31.3 ± 0.6 E,a 34.4 ± 3.2 E,a 27.0 
OK-06-1 19.5 ± 2.1 DEF,b 57.6 ± 0.3 A,a 58.8 ± 1.3 AB,a 45.3 
OK-06-2 25.3 ± 4.5 CD,c 49.3 ± 2.2 BC,b 60.5 ± 0.6 A,a 45.0 
OK-06-3 23.3 ± 7.2 DE,b 59.5 ± 0.5 A,a 63.3 ± 0.8 A,a 48.7 
Atoka 24.0 ± 1.9 CD,b 49.9 ± 0.3 BC,a 47.0 ± 1.4 D,a 40.3 
Kiowa 33.3 ± 1.3 AB,c 47.5 ± 0.6 C,b 53.5 ± 0.6 BC,a 44.8 
Mean 24.4 48.1 48.6  
a Means in a column (upper case) and row (lower case) having same letter did not differ 
significantly by pair-wise difference option (PDIFF) in PROC MIXED (α = 0.05); SE = 
Standard error. 
b Average of four replications. 
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Table 4.  Analysis of variance for conidia production of sixteen isolates of Pyrenophora 
tritici-repentis on leaves of wheat cultivars Deliver, TAM 105 and Red Chief  
 

Source DF Mean squares F value P value 
Isolate 15 3540650.39 55.22 <0.0001 
Cultivar 2 7286962.22 167.80 <0.0001 
Isolate*Cultivar 30 398027.72 9.17 <0.0001 

 
 
 
Table 5. Sporulation (mean ± standard error) of sixteen isolates of Pyrenophora tritici-              

repentis on clarified V8 (CV8) juice agar and on leaves of wheat cultivar 
Deliver, TAM 105 and Red Chief 

 
 
Isolates 

Sporulation 
on CV8c 

Sporulation on wheat leafa 
Deliver TAM 105 Red Chief 

1980s     
OKA1 30b ± 3.0 DE 502b ± 16 EFG, ab 765 ± 36 D, a 198 ± 44 DEFG, b 
OKA2 48 ± 2.1 BC 272 ± 21 GH, b 780 ± 12 D, a 89 ± 9 FG, b 
OKD1 62 ± 8.7 AB 779 ± 21 CDE, a 860 ± 267 D, a 178 ± 14 EFG, b 
OKD2 24 ±3.2 DEF 621 ± 16 DEF,a 850 ± 175 D, a 79 ± 8 G, b 
OKD3 11 ± 1.3 F 153 ± 24 H, a 320 ± 30 E, a 101 ± 25 FG, a 
OKD4 - d - - - 
OKD5 16 ± 2.1 EF 370 ± 32 FGH, b 932 ± 72 CD, a 248 ± 19 DEFG, b 
1990s     
RBB6 34 ± 5.6 CD 528 ± 28 EFG, a 764 ± 33 D, a 399 ± 45 CDEF, a 
GYA3 15  ± 1.6 EF 80 ± 7 H, a 157 ± 30 E, a 87 ± 9 FG, a 
2000s     
El Reno 17 ± 1.5 EF 665 ± 17 DEF, a 109 ± 21 E, b 240 ± 32 DEFG, b 
Guymon 61 ± 9.2 AB 1693 ± 75 AB, b 2923 ± 90 A, a 687 ± 51 BC, c 
Cherokee 68 ± 8.6 A 855 ± 87 CD, a 848 ± 53 D, a 478 ± 31 CDE, b 
OK-06-1 50 ± 2.1 B 876 ± 90 CD, a 1174 ± 107 C, a 493 ± 31 CD, b 
OK-06-2 20 ± 2.2 DEF 268 ± 37 GH, a 205 ± 38 E, a 83 ± 25 G, a 
OK-06-3 29 ± 2.3 DE 1020 ± 57 C, b 1575 ± 250 B, a 815 ± 115 B, b 
Atoka 62 ± 8.3 AB 1575 ± 221 B, a 1740 ± 202 B, a 440 ± 72 CDE, b 
Kiowa 50 ± 7.1 B 1910 ±315 A, b 2629 ±285 A, a 1271 ± 224 A, c 
Mean 37 760 1039 368 
a Sporulation means on wheat leaf following the same letter in a column (upper case) and 
row (lower case) did not differ significantly by pair-wise difference (PDIFF) option in 
PROC MIXED using a protected t-test (α = 0.05). 
b Average of four replications. 
c Conidia calculated per cm2 mycelial colony area; means within this column having  
same letter did not differ significantly by Fisher’s least significance test (α = 0.05). 
d Did not produce conidia on CV8, and was excluded from analysis. 
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Table 6.  Pearson correlation coefficients (r) between the conidiation of sixteen isolates 
of Pyrenophora tritici-repentis on clarified V8 (CV8) juice agar and on leaves 
of three wheat cultivars 

 
  

CV8 
Wheat cultivars 

Deliver TAM105 Red Chief 
CV8 - 0.585 

(<0.0001)a 
0.557 
(<0.0001) 

0.362 
(0.0032) 

Deliver - - 0.854 
(<0.0001) 

0.758 
(<0.0001) 

TAM105 - - - 0.709 
(<0.0001) 

         a Value in the parenthesis indicates probability level. 
 
 
 Table 7. Total number of pseudothecia and percent mature pseudothecia produced by the  

    isolates of Pyrenophora tritici-repentis collected from winter wheat in Oklahoma  
 
 
Isolates 

Total  
pseudothecia a,c 

Mature  
pseudothecia (%) a,b 

 

1980s    
OKA1 51.0 ± 12.8 bcd 41.6 ± 11.0 ab  
OKA2 49.7 ± 5.4 bcd 21.6 ± 4.2 def  
OKD1 41.5 ± 3.4 cd 7.4 ± 1.8 gh  
OKD2 84.5 ± 9.1 a 0.0 ± 0.0 i  
OKD3 49.2 ± 3.9 bcd 5.0 ± 2.1 h  
OKD4 12.3 ± 3.1 e 0.0 ± 0.0 i  
OKD5 36.1 ± 1.4 d 3.4 ± 2.3 hi  
1990s    
RBB6 44.7 ± 6.7 bcd 12.9 ± 1.6 efg  
GYA3 12.0 ± 1.7 e 0.8 ± 0.7 i  
2000s    
El Reno 1.5 ± 0.8 f 0.0 ± 0.0 i  
Guymon 59.6 ± 4.4 abc 54.2 ± 8.1 a  
Cherokee 49.7 ± 1.2 bcd 34.9 ± 3.3 bc  
OK-06-1 69.4 ± 5.4 ab 22.0 ± 2.5 ded  
OK-06-2 47.1 ± 3.9 bcd 0.0 ± 0.0 i  
OK-06-3 61.4 ± 5.7 abc 11.7 ± 2.9 fg  
Atoka 35.3 ± 4.2d 23.8 ± 1.4 cd  
Kiowa 47.7 ± 3.4 bcd 22.3 ± 1.2 cde  
a Mean ± standard deviation; means following the same letter within a column did not 
differ significantly by Fisher’s least significance difference test (α = 0.05).  
b Data were analyzed after arcsine root transformation. 
c Two-inch wheat straw of cv. Deliver was infested by mycelial plug and pseudothecia 
counted on it after 14 days of incubation.
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CHAPTER IV 
 
 

VIRULENCE OF PYRENOPHORA TRITICI-REPENTIS ISOLATES, YIELD LOSS, 
AND EVALUATION OF WHEAT RESISTANCE TO TAN SPOT IN OKLAHOMA 

 

 
 

ABSTRACT 

In recent years, prevalence of tan spot on wheat has become more noticeable in 

Oklahoma.  Selection of pathogen isolates for use in identifying cultivar resistance is 

critical to crop improvement.  Virulence of sixteen isolates of Pyrenophora tritici-

repentis collected over three decades was estimated on three wheat cultivars Deliver, 

TAM 105 and Red Chief.  Three of these isolates, OKD1, RBB6 and OK-06-1, collected 

in 1983, 1996 and 2006, respectively, were tested on cultivar Deliver in the field in 2008 

and 2009.  Twelve isolates (out of sixteen) were used across eleven cultivars to evaluate 

resistance to tan spot.  All sixteen isolates differed significantly (P < 0.0001) in virulence 

based on percent leaf area infection on the wheat cultivars Deliver, TAM 105 and Red 

Chief.  Isolates collected from the 2000s exhibited more virulence than those collected in 

the 1980s and 1990s.  Four isolates (out of sixteen) in this study were lowly virulent and 

produced the least percent leaf area infection on the three cultivars.  Isolates differed 

significantly (P < 0.0001) in virulence and yield losses, but did not affect thousand kernel 

weight (P < 0.2591).  A maximum of 25.2% yield loss was observed for OK-06-1..
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In an isolate X cultivar study Kiowa was the most virulent isolate across all eleven 

cultivars followed by Cherokee, OKD2, OKD5 and OKA1.  Significantly (P < 0.0001) 

less disease was observed on cultivar OK-Rising, Pete, Jagger and OK-Bullet across all 

twelve isolates.  A greater amount of disease was observed on cultivars Chisholm, Duster 

and Triumph-64.  Increased virulence in isolates was able to detect an increased 

variability in susceptibility (percent leaf area infection) in wheat cultivars (r = 0.53; P < 

0.05), and increased susceptibility in cultivars detected increased variance in virulence of 

the isolates (r = 0.76; P < 0.01).  Thus, developing resistant cultivars should be conducted 

using virulent isolates to enhance management of tan spot. 

 

INTRODUCTION 

Oklahoma typically ranks second in winter wheat production in the USA, and wheat is 

grown on nearly six million acres (NASS 2009).  To prevent soil erosion, conserve soil 

water and reduce fuel cost, low- or no-tillage is being practiced on about 30% of the 

wheat production area in Oklahoma (Dr. Jeff Edwards, OSU Plant and Soil Science, 

personal communication).  As this shifting in cultivation practices from clean-till to no-

till has occurred in Oklahoma, the incidence of tan spot has increased.  The ascomycete 

fungus Pyrenophora tritici-repentis (Died.) Drechs. (anamorph Drechslera tritici-

repentis (Died.) Shoemaker) is the causal organism of the wheat foliar disease ‘tan spot’ 

or ‘yellow spot’ (Francl et al. 1992, Weise 1987).   Prevalence of tan spot has been 

reported in Oklahoma since the 1970s (Hunger and Brown 1987), but was not considered 

a serious problem to wheat production.  However, with the increasing shift to no- or low-
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till practices, an increase in tan spot has been observed.  In a field study near Stillwater, a 

21% yield loss due to tan spot was reported (Kader et al. 2009). 

 

P. tritici-repentis survives and overwinters on plant residue left in the field (Odvody et al. 

1982).  Ascospores, ejected from sexual fruiting bodies (pseudothecia) on wheat residue, 

are the primary inoculum to initiate tan spot in the next cropping season (Shabeer and 

Bockus 1998).  Previous research showed a positive correlation between the amount of 

residue in the field and tan spot severity (Adee and Pfender 1989).  Thus, residue on 

which the fungus completes its life cycle, contributes to an increase in inoculum of tan 

spot which increases tan spot incidence and severity if a favorable environment occurs. 

 

Variation in the virulence of a pathogen is a problem in disease management (Stakman, 

1957).  Previous studies showed that isolates of P. tritici-repentis can significantly differ 

in virulence (Krupinsky 1992, Krupinsky 1992, Sah and Fehrmann 1992, Schider and 

Bergstrom 1990, Singh et al. 2006).  Eight Mexican isolates varied in lesion number 

produced on seedlings and adult plants on the wheat cultivar Morocco (Gilchrist et al. 

1984).  Luz and Bergstrom (1980) compared 40 isolates on wheat and, by using a 0-6 

scale, found twelve virulence patterns among the isolates.  Schilder and Bergstrom (1990) 

observed a significant isolate X cultivar interaction with isolates from New York.  

Hunger and Brown (1987) used nine isolates to inoculate the susceptible wheat cultivar 

TAM 101, and found different lesion lengths.  Different races were reported to vary in 

their virulence (Singh et al. 2006). 
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The use of host resistance is the best option in disease management, and wheat resistance 

to tan spot is governed by recessive genes (Cuiffetti and Touri 1999, Strelkov and Lamari 

2003).  Using partial resistance, Singh et al. (2008) reported a 50-75% reduction of tan 

spot in wheat.  Resistance to tan spot might vary with wheat cultivar, growth stage, leaf 

position, wetness period, and fungal isolates (Cox 1987, Hosford et al. 1990, Shabeer and 

Bockus 1988).  Wheat lines and cultivars differed significantly in lesion lengths when 

they were tested against tan spot using a bulk of three isolates (Evans et al. 1999).  Wheat 

cultivars varied significantly in tan spot reaction (0-5 scale) in both the greenhouse and 

the field when inoculated by a bulk of P. tritici-repentis isolates (Raymond et al. 1985). 

While increasing of no-tillage wheat cultivation is a reality in Oklahoma, it is necessary 

to evaluate wheat cultivars to tan spot that were developed for this area. 

 

Carson (1987) observed that an increased level of virulence in isolates is able to detect an 

increased level of variability in cultivar reaction (percent leaf area infection).  

Conversely, increased susceptibility in cultivars is able to detect maximum variability in 

virulence in isolates.  Thus, in the P. tritici-repentis-wheat pathosystem, the relationship 

between the mean cultivar reaction and variance in virulence among isolates is positive 

linear.  Schilder and Bergstrom (1990) also observed this relationship between isolate 

virulence in P. tritici-repentis and cultivar reaction in wheat.  This relationship between 

isolates virulence and cultivar reaction also allows excluding lowly virulent isolates from 

an isolate X cultivar study because they cannot detect variability in cultivars’ reaction 

efficiently. 
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Isolates of P.tritici-repentis might also vary in virulence over time and space. It is 

reported in other fungi that more recently collected isolates are more virulent than older 

isolates (Cai and Scheider 2008, Peters et al. 1999).  Hence, a thorough evaluation of the 

virulence of isolates of a fungus and resistance in wheat cultivars to those isolates is 

necessary.  The objective of this research was to determine the virulence of isolates of P. 

tritici-repentis collected from wheat in three decades in Oklahoma, and to test wheat 

cultivars for reaction against them. 

 

MATERIALS AND METHODS 

Inoculum preparation 

All isolates of P. tritici-repentis were maintained on potato dextrose agar (PDA) (200 g 

potato, dextrose 20 g, agar 15 g in l L) at 4oC during the period of study.  Conidia were 

produced from each isolate by following the procedure reported in Raymond et al. (1985) 

with slight modifications.  A 5-mm diameter  mycelial plug, excised with a sterilized cork 

borer from the edge of an actively growing isolate, was removed and placed on clarified 

V8 juice agar (CV8) (150 ml V8 juice, 3 g CaCO3, 15 g agar, 850 ml water) in a 90 cm 

petri plate.  V8 juice was clarified by centrifugation at 7,500 rpm for 5 min.  After 

keeping in an incubator (Percival, Boone, IA) at 23oC in the dark for 5 days, about 10 

drops of sterile water was added and mycelia were matted down using a sterile bent glass 

rod.  Plates were then kept in an incubator and exposed to cool-white fluorescent lighting 

(40W, 30 µEs-1m-1) for 12 hr at 23oC to produce conidiophores, followed by 12 hr dark at 

16oC to induce conidia production. Conidia were collected in a beaker by washing with a 
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stream of sterile water.  Conidia were adjusted to 2000 per ml of suspension before 

inoculation. 

 

Virulence testing in the greenhouse 

To determine virulence of 16 isolates (Table 2), the wheat cultivars Deliver (moderately 

susceptible), TAM 105 (susceptible) and Red-Chief (resistant) were used.  Seeds were 

sown in 6-in. x 1.5 in. dia plastic cones containing a commercial ‘Ready-earth’ soil (Sun 

Gro, Bellevue, WA).  Plants were raised in a growth chamber at 21oC with a 14 h 

photoperiod (550 µEm-1s-1).  When three leaves were fully expanded, plants were 

inoculated with a conidial suspension (2000 conidia per ml) of each isolate until incipient 

run-off by using an atomizer (DeVilbiss Co., Sommerset, PA).  Isolates (main plot) and 

cultivars (sub plot) were arranged in a spit-plot randomized complete block design with 4 

replications.  About one hr after inoculation during which time plants dried so conidia 

would adhere to leaves, plants were placed in a mist chamber that provided near 100% 

relative humidity for 48 hr.  Plants were then placed in a greenhouse at 21-23oC.  One 

week after inoculation, leaves were scanned using an EPSON 1650 scanner and the 

percentage of leaf area infection was calculated using ASSESS software (American 

Phytopatholigical Society, St. Paul, MN).  As leaf position affects tan spot severity 

(Hosford et al. 1990), only the 2nd and 3rd leaves were rated.  Ten plants (20 leaves) were 

rated for one replication, lesion size was recorded, and the experiment was conducted 

twice. 
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Virulence in field and yield loss 

To evaluate virulence of isolates in the field, experiments were conducted in 2007-08 and 

2008-09 at the Oklahoma State University Plant Pathology farm in Stillwater.  Seeds of 

the wheat cultivar ‘Deliver’ were planted on 10 October 2007 and on 20 October in 2008 

in 7 x 10.5 ft2 plots of 9 rows 7.5 in. apart.  Three isolates, OKD1, RBB6 and OK-06-1, 

randomly chosen from the 1980s, 1990s and 2000s, respectively, and inoculum was 

prepared following the procedure of Raymond et al. (1985).  After water-soaking 

overnight in 130 ml distilled water, oat kernels (150 g) in a conical flask were autoclaved.  

Conidial plugs (5 mm diameter) from each isolate were added aseptically.  Flasks 

containing inoculated oat kernels were maintained for 14 days at room temperature with 

shaking every 3 days.  Infested kernels were dried by spreading on aluminum foil for one 

day before placement in the trial.  In mid November, infested oat kernels (125 g) were 

applied in an area of 2.5 X 4 ft (10 ft2) of each plot on the soil surface between the middle 

rows following the procedure by Sone et al. (1994).  Uninoculated oat kernels were 

applied as a control.  The trial was designed as a randomized complete block with 4 

replications.  Sprinkler irrigation was provided to maintain adequate moisture for disease 

development.  The fungus produced pseudothecia and mature asci during the winter and 

early spring on the infected kernels, thus, providing primary inoculum (ascospores) in 

late February to early March.  Disease severity was rated starting with the second week of 

March at two weeks interval from the F-3, F-2, F-1 and flag leaves, and averaged disease 

severity from these leaves were analyzed.  Each time ten leaves from a leaf position were 

selected randomly from each plot.  Leaves were taken to the lab and rated for percent leaf 
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area infection by using ASSESS software as described earlier.  Yield and thousand kernel 

weight (TKW) were also recorded. 

 

Isolate virulence X cultivar resistance 

To evaluate wheat reaction to tan spot, eleven cultivars and twelve isolates were used 

(Table 6).  Four lowly virulent isolates were excluded, and thus, twelve isolates were 

included in this study.  Seedlings of each cultivar, inoculum preparation, inoculation and 

disease rating were done as described earlier. The experiment was conducted in the 

greenhouse following a split-plot in a randomized complete block design with four 

replications (five plants per replication).  Isolates and cultivars were used as the main plot 

and sub-plot, respectively.  The relationship between variance among cultivar to cultivar 

resistance was determined by regressing the variance among cultivars to mean isolate 

virulence. Similarly, the variance among isolates was regressed against the mean percent 

leaf area infection of cultivars (Carson 1987). 

 

Statistical analysis 

All analyses were performed using SAS 9.1 statistical software (SAS Institute, Cary, 

NC).  In the isolate X cultivar study, untransformed data were analyzed.  Analysis of 

variance was carried out using the PROC MIXED option, and treatment means were 

separated using the pairwise option (PDIFF) at 5% level of probability.  Field data were 

analyzed assuming year is a random affect and isolates are fixed affect (α = 0.05). 
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RESULTS 

Virulence of isolates in the greenhouse 

Isolates differed significantly (P < 0.0001) in virulence on three wheat cultivars, cultivars 

differed in response to isolates (P < 0.0001), and a significant interaction (P < 0.0001) 

between isolate and cultivar was observed (Table 1).  Overall, Cherokee was the most 

virulent isolate across three cultivars followed by Kiowa, OK-06-1, OK-06-3 and OKA1.  

El Reno was the least virulent followed by OKD3, OKD5 and OKA2 (Table 2).  On an 

average all 16 isolates produced 29.52%, 43.42% and 7.75% leaf area infection on 

cultivar Deliver (moderately susceptible), TAM 105 (susceptible) and Red Chief 

(resistant), respectively. On an average, isolates collected in the 2000s produced 32.96% 

LAI while isolates of the 1980s and 1990s produced 21.37% and 19.26% LAI, 

respectively (Table 2).  The mean disease severity for the recent (2000s) and older (1980s 

and 1990s) isolates across the three cultivars was 32.9% and 20.3%, respectively.  

 

Virulence of isolates in field and yield loss 

In the field study, isolates significantly differed (P < 0.0001) in disease severity (percent 

leaf area infection) and yield.  Statistically, thousand kernel weight (TKW) was not 

affected by the isolates (Table 3).  A year affect was found for disease severity, yield and 

TKW (P < 0.0077, P < 0.0001 and P < 0.0001, respectively) (Table 3). 

 

Disease severity, yield, yield reduction (%) and TKW are presented in Table 4. Highest 

disease was observed for OK-06-1 while it was least for OKD1.   Mean yields from plots 

infected by OKD1, RBB6 and OK-06-1 were 52.9, 42.6 and 42.9 bu/A, respectively.  A 



 53

25.22% yield reduction was observed for isolate OK-06-1 compared to the control while 

it was 19.83% for RBB6 and 7.26% for OKD1.  Isolates did not affect TKW (Table 4). 

 

Isolate virulence X cultivar resistance 

Cultivars differed significantly (P < 0.0001) in their percent leaf area infection in 

response to isolates in the greenhouse (Table 5).  Isolates also varied significantly (P < 

0.0001), and an interaction between cultivar and isolate was detected (Table 5).  The 

highest percent leaf area infection was observed for the susceptible check TAM 105, 

followed by Chisholm, Duster and Triupmh-64 (Table 6).  OK-Rising, Pete, Jagger, OK-

Field, OK-Bullet, Karl-92 produced significantly less disease, and thus, were resistant as 

compared to the resistant check Red Chief.    The variance in disease reaction (percent 

leaf area infection) among wheat cultivars was positively correlated (r = 0.53; P < 0.05) 

with mean isolates virulence (Fig. 1).  A positive correlation (r = 0.76; P < 0.01) was also 

observed between the disease reaction (percent leaf area infection) of wheat cultivars and 

the variance in virulence among isolates (Fig. 2).  The lowly virulent isolates were 

excluded from this study, and thus, overall mean of isolate virulence from each decade 

across all eleven cultivars were not presented.  

 

DISCUSSION 

Selection of isolates for gremplasm screening is critical because isolates can vary in 

virulence.  The use of lowly virulent isolates would not be as beneficial as using highly 

virulent isolates because lowly virulent isolates cannot differentiate disease reaction 

(percent leaf area infection) in cultivars compared to highly virulent isolates (Krupinsky 
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1992).  Thus, less virulent isolates may be excluded from further isolate X cultivar 

interaction studies where cultivar resistance is investigated.  In this study, lowly virulent 

isolates OKD3, GYA3, El Reno and OK-06-2 were not included in the isolate X cultivar 

interaction (Table 6). 

 

Disease severity, yield and TKW differed significantly (P < 0.05) between years (Table 

3).  Isolates also differed significantly to disease severity and grain yield, and a 

considerable yield loss was observed in this study (Table 3 and 4) although TKW was not 

affected by isolates (Table 4).  Yield and TKW were lowered in 2009 as compared to 

2008 due to freezing and hail events.  However, these results indicate that tan spot can 

substantially damage wheat in Oklahoma. 

 

Screening of wheat cultivars is routinely practiced to evaluate reaction to tan spot (Singh 

et al. 2006), and durable resistance to a wide variety of isolates is always sought by 

breeders in wheat improvement.  Isolates representing a range of virulence should be 

used in screening wheat cultivars to provide a basis of stringent selection (Schilder and 

Bergstrom 1990).  Carson (1987) suggested the resistance of wheat to tan spot would be 

stable when highly virulent isolates of P. tritici-repentis are used to inoculate diverse 

genotypes of wheat.  In this study, cultivars were inoculated by isolates showing a range 

of virulence.  Thus, we expect the resistance in OK-Rising, Pete, Jagger, OK-Bullet and 

OK-Field to tan spot should be durable to this pathogen in the field. 
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We did not study resistance in the field with all the isolates, and field conditions might 

affect isolate virulence or wheat resistance.  Compared to a field study, testing of 

virulence in the greenhouse is convenient and also indicative of results obtained in a field 

study.  Evans et al. (1999) observed a high similarity (r = 0.75 to 0.93, P < 0.05) between 

greenhouse and field testing in identifying wheat resistant to tan spot.  Raymond et al. 

(1985) reported a correlation of 0.91 between greenhouse and field study of cultivars 

reaction to tan spot.  Thus, use of many isolates and cultivars in the greenhouse is quick, 

cost-effective and reliable.  However, results of resistance screening in wheat 

improvement programs could change considerably, depending on the isolates used and 

field conditions (Schilder and Bergstrom 1990). 

 

A significant (P < 0.0001) interaction between isolates and cultivars was observed (Table 

1).  This interaction was not expected because isolates should produce disease 

independently of the cultivars tested (Van der Plank 1982).  However, significant 

interactions between isolates of P. tritici-repentis and wheat cultivars were also observed 

by Krupinsky (1992), Sah and Fehrmann (1992) and Schilder and Bergstrom (1990).  

Schilder and Bergstrom (1990) indicated that every leaf might not receive the same 

amount of inoculum, thus, difference in inoculum coverage may contribute to the 

variation.  An interaction might also be significant if there is presence of physiological 

specificity of the isolates (races) (Krupinsky 1992, Van der Plank 1984).  However, all 

the isolates in this study were race 1 (data not shown).  Another possible explanation 

might be that we analyzed untransformed data.  Typically this kind of experiment 
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produces high variance and data transformation usually is not useful (Sah and Fehrmann 

1992, Schilder and Bergstrom 1990). 

 

Evaluation of varietal resistance is most likely to be meaningful if diverse isolates of a 

pathogen are utilized (Raymundu et al. 1999).  Inclusion of highly virulent isolates also is 

desirable because this enhances detection of increased genetic variance in cultivar 

response to tan spot (Carson 1987).  We observed a positive correlation between the 

isolate variability in virulence and susceptibility of wheat cultivars (Fig. 1 and 2).  Thus, 

the highly virulent isolates differentiated resistance in wheat cultivars better then lowly 

virulent isolates.  Conversely, the most susceptible cultivars were able to differentiate 

isolate virulence better than resistant cultivars. This phenomenon was also observed by 

other researchers (Carson 1987, Shah and Fehrmann 1992, Shilder and Bergstrom 1990).  

Use of cultivars with a range of resistance can also efficiently determine virulence of an 

isolate.  For example, mean virulence for OK-06-1 was high when tested on three 

cultivars, such as, Deliver, Red Chief and TAM 105 (Table 2), but its overall mean 

virulence was low when exposed to eleven cultivars (Table 6). 
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Table 1. Analysis of variance for percent leaf area infection of sixteen isolates of 
Pyrenophora tritici-repentis on three wheat cultivars Deliver, TAM 105 and Red 
Chief under greenhouse study 

 
Source DF MS F value P value 
Isolate 15 2398.34 36.53 <0.0001 
Cultivar 2 20679.23 389.77 <0.0001 
Isolate*Cultivar 30 409.93 7.73 <0.0001 

 
 
 
Table 2. Virulence of sixteen isolates of Pyrenophora tritici-repentis on three wheat   

     cultivars Deliver, TAM 105 and Red Chief under greenhouse inoculation 
 
 
Isolates 

Percent leaf area infection (Mean ±SE)a Decade 
mean Deliver TAM 105 Red Chief 

OKA1(1983)c 46.8b ±5.3 B, a 54.6±8.5 BCD, a 4.0±0.3 CDE, b  
OKA2(1983) 16.9 ±2.2 HI, a 27.1±4.6 F, a 6.3±0.3 BCDE, b  
OKD1(1983) 27.9 ±2.3 EFG, b 44.2±3.7 DE, a 4.0±0.9 CDE, c  
OKD2(1983) 17.9 ±1.5 GHI, b 47.6±4.4 CDE, a 12.2±2.3 ABCD,b  
OKD3(1983) 11.3 ±1.6 I, ab 14.8±1.9 G, a 1.6±0.2 E, b  
OKD5(1983) 19.8 ±1.5 GHI, a 24.9± 4.9 FG, a 2.9±0.4 DE, b 21.4d 
     
RBB6 (1996) 23.8 ±3.7 EFGH, b 53.5±2.4 BCD, a 6.2±0.8 BCDE, c  
GYA3(1996) 11.8 ±1.2 I, ab 18.6±1.6 FG, a 1.6±0.2 E, b 19.3e 
     
El Reno(2005) 0.4 ±0.1 J, a 0.7±0.1 H, a 0.1±0.0  E, a  
Guymon(2006) 34.1 ±3.5 DE, b 58.5±12.2 B, a 5.2±1.2 BCDE, c  
Cherokee(2006) 70.0 ±2.0 A, a 74.7±9.5 A, a 21.4±1.9 A, b  
OK-06-1(2006) 51.3 ±3.8 B, a 57.6± 2.1 BC, a 6.0±0.9 BCDE, b  
OK-06-2(2006) 23.0 ±.1 FGH, b 57.3± 3.4 BC, a 1.8±0.3 DE, c  
OK-06-3(2006) 39.0 ±4.2 CD, b 53.4±6.5 BCD, a 14.4±2.1 ABC, a  
Atoka (2007) 30.5 ±2.3 DEF, a 37.8±4.2 E, a 15.0±1.4 AB, b  
Kiowa (2007) 47.7 ±1.6 BC, b 69.5±5.8 A, a 21.4±1.5 A, c 33.0f 
Mean 29.5 43.4 7.8  
a Means following the same letter in a column did not differ significantly by pairwise 
difference (PDIFF) in PROC MIXED option (α = 0.05); SE = Standard error. 
b Mean leaf area infection from the bottom 2nd and 3rd leaves after seven days of 
inoculation; each mean is the average of four replications. 
c Year of collection in parenthesis. 
d,e,f Mean isolate virulence from 1980s, 1990s and 2000s, respectively.
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Table 3.  Analysis of variance for percent leaf area infection (LAI), yield and thousand  
               kernel weight (TKW) for isolates of Pyrenophora tritici-repentis on wheat  
               cultivar Deliver in inoculated field plots in Stillwater, Oklahoma (2008 and  
               2009 combined) 
 
 
Source 

 
DF 

%  LAI Yield TKW 
F P > F F P > F F P > F 

Year 1 9.01 0.0077 172.55 <0.0001 25.61 <0.0001 
Rep*Year 3 0.09 0.9656 3.44 0.0391 0.43 0.7345 
Isolate 3 83.70 <0.0001 12.38 <0.0001 1.46 0.2591 
Year*Isolate 3 6.51 0.0036 0.16 0.9203 1.38 0.2804 
 
 
 
 
 
 
 
Table 4. Meana (± standard error) disease severity, yield, yield reduction and thousand              

kernel weight (TKW) of wheat cultivar Deliver inoculated with three isolates of             
Pyrenophora tritici-repentis near Stillwater, Oklahoma (2008 and 2009 
combined) 

 
Isolate Disease severityb Yield (bu/A) Yield reduction (%) TKWd 
OKD1 (1983)c 15.7 ± 1.6 c 52.9 ± 5.0 a 7.3 34.9 ± 1.0 a 
RBB6 (1996) 24.9 ± 1.1 b 46.2 ± 4.8 b 19.8 33.3 ± 0.7a 
OK-06-1 (2006) 31.1 ± 2.7a 42.9 ± 4.9 b 25.2 34.1 ± 0.9 a 
Control   4.6 ± 0.4 d 56.7 ± 4.6 a - 34.1 ± 0.6 a 
a Means having same letter in a column did not differ significantly by Fisher’s least 
significant difference test (α = 0.05). Mean is the average of four replications. 
b Disease severity measured as leaf area infection (%) from the average of third, second 
and first leaf below the flag leaf and the flag leaf. 
c Year of collection in the parenthesis. 
d Thousand kernel weight (gm). 
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Table 5.  Analysis of variance for percent leaf area infection on eleven winter wheat cultivars inoculated  
                by each of twelve isolates of Pyrenophora tritici-repentis under greenhouse study 

 
Source DF MS F P > F 
Isolate 11 472.31 13.31 <0.0001 
Cultivar 10 8785.16 247.61 <0.0001 
Isolate*Cultivar 110 269.72 7.60 <0.0001 

 
Table 6.  Meana percent leaf area infection on eleven winter wheat cultivars by twelve isolates of Pyrenophora  
               tritici-repentis collected from heat field in Oklahoma 
 
 
 
Isolate 

Wheat cultivars  
 

Mean 
Chisholm Duster Jagger Karl-92 OK- 

Bullet 
OK-
Field 

OK- 
Rising 

Pete Red Chief TAM-105 Triumph-64 

OKA1 13.5b FG, bcd 20.4 DE,b 5.3 B,de 13.8 ABC,bc 5.5 CD,de 5.3 A,de 10.5 A,cde 9.3 ABC,cde 4.0 C,e 54.6 BC,a 13.5CD,bcd 14.1 
OKA2 9.3 G,c 36.8 B,a 4.3 B,d 17.3A,c 5.8 CD,d 5.3 A,d 9.0 A,c 9.8 AB,cd 5.4 C,d 27.2 F,b 8.3 DE,d 12.6 

OKD1 46.8 A,a 7.0 FG,b 9.3 B,b 4.4 DE,b 5.0 CD,b 5.3 A,b 1.8 A,b 2.5 BC,b 2.5 C,b 52.1 BCD,a 6.0 DE,b 13.0 

OKD2 54.3 A,a 10.8 FG,c 21.5 A,b 5.8 CDE,c 8.0 CD,c 7.0 A,c 2.5 A,c 2.8 BC,c 7.8 C,c 45.0 DE,a 24.8 AB,b 16.8 

OKD5 33.2 BC,b 45.8 A,a 3.8 B,de 11.3 A-D,cd 11.0 BC,cd 15.5 A,c 1.0 A,e 4.8 BC,de 2.3 C,e 25.5 F,b 7.0 DE,de 14.6 

RBB6 19.8 DEF,b 22.0 CDE,b 2.3 B,c 1.5 E,c 4.8 CD,c 7.5 A,c 1.5 A,c 1.4 BC,c 4.8 C,c 49.9 CDE,a 24.9 AB,b 12.8 

Cherokee 15.3 EFG,cd 27.8 CD,b 1.6 B,f 14.3 AB,cde 16.4 B,cd 9.1 A,df 6.3 A,ef 2.1 BC,f 18.0 AB,c 67.0 A,a 2.9 E,f 16.4 

Guymon 21.7 DEF,b 10.3 FG,c 1.8 B,d 2.9 E,cd 2.8 CD,cd 2.7 A,cd 3.9 A,cd 1.7 BC,d 5.5 C,cd 50.8 B-E,a 6.1 DE,cd 10.0 

OK-06-1 25.5 CD,b 14.3 EF,c 3.0 B,d 2.0 E,d 4.3 CD,d 1.8 A,d 1.7 A,d 2.0 BC,d 6.5 C,cd 58.0 BC,a 4.0 E,d 11.2 

OK-06-3 15.6 EFG,bc 6.2 FG,de 3.5 B,de 6.2 B-E,de 7.3 CD,cde 1.0 A,e 10.0 A,cd 1.8 BC,de 8.8 C,cde 53.4 BC,a 20.0 BC,b 12.1 

Atoka 23.3 DE,b 3.8 G,cd 2.5B,cd 2.5 E,cd 1.0 D,d 2.0 A,cd 7.0 A,cd 1.0 C,d 10.3 BC,c 43.3 E,a 2.6 E,cd 9.0 

Kiowa 37.6 B,b 29.1 BC,c 1.6 B,f 4.5 DE,f 28.3 A,c 5.7 A,ef 1.1 A,f 13.4 A,de 19.3 A,d 58.8 AB,a 31.1 A,bc 20.9 

Mean 25.9 19.5 5.0 7.2 8.3 5.7 4.7 4.4 7.9 48.8 12.6 - 
a Means having same letter within a column (upper case) and row (lower case) did not differ significantly by pairwise difference 
(PDIFF) in PROC MIXED option (α = 0.05). 
b Mean is the average of four replications. 
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Fig. 1. Relationship between the mean virulence of twelve isolates of Pyrenophora tritici-        

repentis and variance in disease reaction among eleven wheat cultivars. 
 
 
 

 
 
Fig. 2. Relatioship between the mean disease reaction of eleven wheat cultivars and the     

variance in virulence among twelve isolates of Pyrenophora tritici-repentis.
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CHAPTER V 
 
 

RACE STRUCTURE, SYMPTOMATOLOGY, AND GENETIC 
RELATIOSHIP OF PYRENOPHORA TRITICI-REPENTIS ISOLATES 

COLLECTED OVER THREE DECADES FROM WINTER WHEAT IN 
OKLAHOMA 

 

 
 

ABSTRACT 

In recent years, tan spot of wheat caused by the fungus Pyrenophora tritici-repentis has 

become more prevalent in Oklahoma and variability in this pathogen has made sustained 

management of tan spot difficult to attain.  Experiments were conducted to investigate the 

race structure, disease symptoms and genetic relationship in P. tritici-repentis isolates 

from seventeen isolates collected from winter wheat over three decades.  Races were 

determined based on the symptoms of necrosis and/or chlorosis produced on wheat 

differentials by using 16 isolates.  Variability in symptom development for 12 isolates 

was tested on 13 wheat cultivars.  Genetic relationship among 17 isolates was determined 

by amplified fragment length polymorphism- polymerase chain reaction (AFLP-PCR). 
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All isolates except one (El Reno), were classified as race 1.  Isolates varied widely in 

producing necrosis and/or chlorosis symptoms on wheat cultivars, but necrosis with a 

chlorotic halo was predominate (56.4%).  AFLP-PCR analysis using 13 primer pairs 

produced a total of 494 alleles of which 285 were polymorphic.  The overall genetic 

diversity among the isolates was 25.2%.  Genetic relationships based on cluster analysis 

and principal component analysis showed only minor differences between isolates, and 

isolates did not form tight clusters or groups.  Based on the date of collection and 

location, no association could be detected among the isolates.  The lack of distinct 

grouping indicates that the isolates of P. tritici-repentis used in this study are likely from 

a single lineage and did not vary genetically to a great extent over the past three decades.  

The results will facilitate selection of isolates for use in wheat resistance screening and 

other management practice. 

 

INTRODUCTION 

Tan spot of wheat (Triticum aestivum L.) is caused by the necrotrophic ascomycetes 

fungus Pyrenophora tritici-repentis (anamorph: Dreschlera tritici-repentis (Died.) 

Shoemaker) and is a major disease in many wheat growing areas in the world (Francl et 

al. 1992, Weise 1987).  A range of 3 to 50% yield loss in wheat has been observed for tan 

spot depending on the isolate virulence, cultivar susceptibility and the environmental 

conditions (Rees and Platz 1983, Shabeer and Bockus 1988).  In Oklahoma in the 

southern Great Plains, wheat is grown annually on nearly six million acres, which 

typically ranks second across the nation (NASS 2009).  For many years, tan spot was not 

a major problem in wheat in Oklahoma although its occurrence has been reported since 
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the 1970s (Hunger and Brown 1987).  In recent years the presence of tan spot in 

Oklahoma has become more prevalent.  In a field study in Stillwater, a 21% yield loss of 

wheat has been reported due to tan spot (Kader et al. 2009).  Shifting cultivation practices 

from clean tillage to a no-till system, which leaves residue on the field surface, is 

favorable for the survival and seasonal carry over of this fungus (Baily 1996, Bockus and 

Classen 1992).  Adee and Pfender (1989) found a positive correlation between the 

amount of infected residue in the field and tan spot severity.  Moreover, genetic 

variability in P.tritici-repentis might increase as the fungus completes its life cycle every 

year by going through a sexual stage. 

 

Variability of plant pathogens is a major problem in achieving disease control, and the 

knowledge of genetic variability is essential for developing sustainable management 

practices including development of resistant cultivars (Stakman 1957).  Genetic 

variability is significant and common among isolates of P.tritici-repentis (De Wolf 

1998).  This fungus is able to induce two distinct types of symptoms (necrosis and/or 

chlorosis) on wheat leaves (Cuiffetti and Touri 1999, Lamari and Bernier 1989).  Isolates 

of this fungus can also induce both necrosis and chlorosis symptoms on a single cultivar 

(Lamari and Bernier 1991) or induce different symptoms on different wheat cultivars 

(Moreno et al. 2008).  Based on the necrosis and/or chlorosis symptoms on wheat 

differentials, Lamari and Bernier (1989) classified this fungus into eight races (Andrie et 

al. 2007) (Appendix 2).  Race 1 is the most prevalent in the USA, although other races 

(race 2 and 3) are reported occasionally (Ali and Francl, 2003).  Race 5 is reported in the 

northern part of USA and Canada (Ali and Francl 2003, Lamari et al. 1995).  
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Considerable genetic diversity in wheat is found in the ‘center of origin and diversity’ 

(the Fertile Crescent and Caucasus regions, Syria, Azerbaijan, Kazakhstan, Uzbekistan), 

and all the eight races have been reported in those areas (Lamari et al. 2003, Lamari et al. 

2005, Stelkov and Lamari 2003). 

 

Measuring the genetic relationship between pathogen isolates based on isolate 

morphology and virulence exclusively is often difficult to accomplish because complex 

pathogen-host-environment interactions can affect phenotypic (disease) development.   

Employment of molecular tools is useful in determining genetic variability in the 

population of a species at the genomic level (Williams et al. 1990).  Researchers have 

used different molecular markers to study variability in P. tritici-repentis including rapid 

amplified polymorphic DNA (RAPD) (Mironenko et al. 2007, Peltonen et al. 1996, 

Santos et al. 2002, Singh and Hughes 2006), inter simple sequence repeats (ISSR) 

(Moreno et al. 2008), internal transcribed spacer (ITS) sequence analysis (Friesen et al. 

2005, Stevens et al. 1998), and restriction fragment length polymorphism (RFLP) (Faris 

et al. 1997).  Amplified fragment length polymorphism (AFLP) is a polymerase chain 

reaction (PCR)-based marker (Vos et al. 1996), which is highly reproducible and has 

been used to estimate genetic relationship in different species.  AFLP has been employed 

to study the genetic relationship in other fungi and Oomycetes (Garzon et al. 2005, 

Hielmann et al. 2006, Majer et al. 1996, O’Neill et al. 1997, Serenius et al. 2007, Zhan et 

al. 2006).  Friesen et al. (2005) used AFLP to study population genetic structure of a 

global collection of P. tritici-repentis, but did not find a grouping of the isolates based on 

geographic origin or races.  To date, elucidation of the genetic relationships in P. tritici-
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repentis isolates from Oklahoma is lacking.  The objectives of this study were to 

investigate race(s), symptomatology and to reveal genetic relationship in P. tritici-

repentis isolates collected over three decades from winter wheat in Oklahoma. 

 

MATERIALS AND METHODS 

Fungal isolates 

A total of seventeen isolates of P. tritici-repentis, derived from single ascospores or 

single conidia, were collected in the 1980s, 1990s and 2000s from winter wheat in 

Oklahoma (Appendix 1).  Isolates were stored in liquid nitrogen for long-term storage. 

When needed, isolates were removed from liquid nitrogen and were grown on potato 

dextrose agar (PDA) (200 g potato, 20 g dextrose, 15 g agar in 1L water).  After 3-4 days 

on PDA, a mycelial plug (5 mm diameter) was aseptically excised from the actively 

growing colony margin using a cork borer and transfer onto clarified V8 juice agar (CV8) 

(150 ml V8 juice, 3 g CaCO3, 15 g agar, 850 ml water).  After growing on CV8 for 5 

days in dark at 23oC, mycelia were matted down, and plates were incubated in a 12/12 h 

light/dark cycle at 23oC to induce conidial production.  Agar plugs of 5 mm diameter 

removed from the conidial ring formed on CV8 were transferred into vials and were 

stored in liquid nitrogen for future use. Isolates were grown on PDA, and were 

maintained at 4oC in the dark during the experiment. 

 

Inoculum preparation 

Conidia were produced by each isolate following the procedure of Raymond et al. (1985).  

A 5-mm diameter mycelial plug, excised with a sterilized cork borer from the edge of an 
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actively growing isolate on fresh PDA, was removed and placed on clarified V8 (CV8) 

juice agar in 90 mm petri plates were maintained in an incubator (Percival model I-36LL, 

Boone, IA) at 23oC in the dark for 5 days.  About 10 drops of sterile water were added 

and mycelia were matted down using a sterile bent glass rod.  Plates were then incubated 

for 12 hr at 23oC with cool-white fluorescent tubes (40W, 30 µEs-1m-1) to produce 

conidiophores.  This was followed by 12 hr dark at 16oC to induce conidia production.  

Conidia were washed from the plate into a beaker using a stream of sterile water. Conidia 

were adjusted to 2000 per ml before inoculation. 

 

Race identification 

To determine race(s), the necrosis and/or chlorosis model on wheat differential was 

followed (Andrie et al. 2007) (Appendix 2).  Differential wheat lines, namely 6B662, 

Glenlea, 6B365, and Salamouni were used (Ali and Francl, 2003).  Four seeds of each 

wheat differential were planted in a plastic container (6 in. X 1.5 in.) filled with Ready-

Earth soil (Sun Gro., Bellevue, WA).  Seedlings with two leaves fully expanded were 

inoculated with the conidial suspension (2000 conidia/ml) of each isolate until incipient 

run-off using an atomizer (DeVilbiss Co. model 5610D, Somerset, PA) following the 

procedure of Rodriguez and Bockus (1996).  Inoculated plants were allowed to dry for 30 

min so conidia would adhere to leaves and then were placed in a mist chamber for 48 hr. 

Inoculated plants then were placed on a lab bench at 21-23oC under metal halide lighting 

following a cycle of 14 hr light (510 µEs-1m-1) and 10 hr dark. 
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 Seven days after inoculation, symptoms produced by each isolate on the wheat 

differentials were rated on a scale of 1-5  based on lesion type (Lamari et al. 1989), where 

1 = small, dark brown to black spots without any surrounding chlorosis or tan necrosis 

(resistant), 2 = small, dark brown to black spots with very little chlorosis or tan necrosis 

(resistant), 3 = small dark brown to black spots completely surrounded by a distinct 

chlorotic or necrotic ring, lesions not coalescing (susceptible), 4 =  spots completely 

surrounded by chlorotic or necrotic zones, lesion coalescing (susceptible), 5 = spots may 

not be distinguishable, lesions coalescing and spread over leaf (susceptible). One seedling 

was considered as one replication. 

 

Symptom variability 

To study variability in symptoms, 13 wheat cultivars and 12 isolates were used (Table 1).  

Seedlings of wheat cultivars were raised, and inoculum of each isolates was prepared as 

described earlier.  At the three-leaf stage, four seedlings of each cultivar were inoculated 

with 2000 conidia/ml until incipient run-off and then maintained as described earlier.  

Disease symptoms (necrosis and/or chlorosis) were recorded 5 days after inoculation. 

 

DNA extraction 

Four day-old fungal cultures growing on PDA plates were kept at -20oC for 2 hrs, and 

mycelia of each isolate were scraped from the PDA surface using a sterilized scalpel and 

placed into a mortar.  Mycelia were ground into a fine powder using a mortar and pestle 

and liquid nitrogen.  DNA was extracted from ~0.25 g mycelia powder of each isolate 

following the salt-extraction method of Aljanabi and Martinez (1997).  DNA 
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concentration (ng/µl) was measured at 260/280 absorbance using a NanoDrop 1000 

spectrophotometer (NanoDrop Technologies, Wilmington, DE), and the purity of 

genomic DNA was examined after agarose gel (1%) electrophoresis of 3 µg DNA from 

each of the isolate and staining with 0.5 µg/ml ethidium bromide. 

 

ITS sequence  

Nuclear internal transcribed spacer (ITS) regions (ITS1, 5.8S rDNA and ITS2) were 

amplified by polymerase chain reaction (PCR) using ITS4 and ITS5 primers (White et al. 

1990).  A reaction included 25 µl 2X Gotaq Green core mix (Promega, San Luis, CA), 1 

µl each of 10 mM 1X- ITS4 and ITS5 primer (IDT technologies, IA), 23 µl DNase free 

water and 0.5 µl purified DNA.  Polymerase chain reaction (PCR) was performed in a 

PT200 thermocycler (MJ Research, Watertown, MA) using the following program: 95oC 

for 3 min followed by 34 cycles of 94oC for 30 sec, 55oC for 45 sec, and 72oC for 1 min, 

and a final extension at 72oC for 7 min.  Electrophoresis was performed in a 1% agarose 

gel with 1X sodium borate running buffer (pH 8.0), and DNA stained with ethidium 

bromide  and visualized under UV light.  Amplified products were purified using 

PurelinkTM PCR Purification Kit (Invitrogen, Carlsbad, CA).  ITS region from each 

isolate was sequenced at OSU Core Facility, and the sequences were compared with P. 

tritici-repentis GenBank accessions in the NCBI database (ncbi.nih.gov) using the 

BLAST search. 
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AFLP analysis 

AFLP analysis was performed by using an AFLPTM Microbial Fingerprinting kit 

(Applied Biosystems, Foster city, CA).  Genomic DNA (120 ng) was digested by EcoR1 

and Mse1 enzymes (Invitrogen, Carlsbad, CA) and adaptors were ligated by incubating at 

37oC for 2 hr.  The digested and adaptor-ligated templates were diluted 1:19 in 1X TE 

buffer (pH 8.0) and 4 µl of the diluted DNA sample mixed with 16 µl of pre-selective 

amplification master mixture (0.5 µl of each EcoR1 and Mse1 pre-selective primer plus 

15 µl core mix).  The samples were pre-amplified in a PCR thermocycler (Nyx Technik 

Inc., San Diego, CA) using 24 cycles of 94oC for 20 s, 56oC for 30 s, and 72oC for 2 min. 

Amplified pre-selective templates were again diluted 1:19 by 1X TE buffer (pH 8.0), and 

3 µl of this diluted pre-selective PCR product was mixed with 17 µl of selective 

amplification master mixture [1 µl of each fluorescent-labeled EcoR1-NN/NNN and 

unlabelled Mse1-N/NNN primer (Table 2) plus 15 µl of core mix].  PCR conditions were 

of 33 cycles of which 20 cycles of 94oC for 20 s, 56oC for 30 s and 72oC for 2 min; the 

first 10 cycles started with an annealing temperature of 66oC with 1oC decreased in each 

subsequent cycle; and finally a 60oC for 30 m hold.  The amplified products were 

separated by capillary electrophoresis by an ABI 3730 DNA Analyzer (Applied 

Biosystems, Foster city, CA).  Rox 500 (Applied Biosystems) was used as the internal 

standard size. The chromatograms were converted into a binary data matrix as presence 

(1) or absence (0) of an allele using GeneMapper 4.0 (Applied Biosystems) calibrated 

against 75-500 bp DNA size standards. 
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AFLP data analysis 

Genetic diversity (DI) for each primer combination was determined using the software 

POPGENE (version 1.32, University of Alberta, Edmonton, Canada) as DI= 1- ∑P2i, 

where P2i is the frequency of ith allele at a locus in a population (Nei 1978).  NTSYSpc 

(version 2.0, Exeter Biological software, Setauket, NY) (Rolf 1993) was used to 

determine pairwise Jaccard similarity coefficient between isolates (Sneath and Sokal 

1973), Sij= a/(a+b+c), where a is the number of alleles present in both isolates (ij), b is 

the number of allele present in i but not in j, c is the number of allele present in j but not 

in i. A cluster analysis was performed based on the Jaccard similarity coefficient and an 

unweighted pair group method with arithmetic average (UPGMA) by using the 

sequential, agglomerative, hierarchical, nested clustering (SAHN) module of the 

NTSYSpc.  The data were bootstrapped 1000 times to determine robustness of the 

dendogram by WINBOOT program (Yap and Nelson 1996).  In order to highlight the 

resolution power of the coordination, a principal component analysis (PCA) was carried 

out using the PROC PRINCOMP option of SAS 9.2 (SAS Institute, Cary, NC) to 

generate a two-dimensional presentation. 

 

RESULTS 

All isolates except one (El Reno) were identified as race 1 based on the symptoms 

produced on the wheat differential set (1-5 scale; 1-2: resistant, 3-5 susceptible) (Table 

1).  No disease symptoms other than dark brown to black spots were induced by El Reno, 

which therefore was considered as race 4.  
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Isolates varied widely in symptoms induced on wheat cultivars (Table 2).  All twelve 

isolates were pathogenic and produced necrosis with a yellow halo (N), necrosis with 

extended chlorosis (NC) or only chlorosis extended over the leaf (C) on all thirteen wheat 

cultivars.  Over the combination of 12 cultivars and 13 isolates, necrosis was the 

dominant symptom (56.41%) followed by necrosis with extended chlorosis (32.05%) and 

chlorosis (11.54%). 

 

Results from the AFLP analysis are presented in Table 3.  Using 13 primer combinations 

all 17 isolates of P. tritici-repentis yielded a total of 494 alleles of which 285 were 

polymorphic.  On an average each primer combination produced 38 alleles of which ~22 

were polymorphic.  The EcoR1-AA and Mse1-C combination gave the highest number of 

alleles of 70 while the EcoR1-AT and Mse1-CAG combination produced the fewest 

number of alleles at 16.  The highest number of polymorphic alleles (44 out of 70) was 

detected by the EcoR1-AA and Mse1-C combination.  The percentage of polymorphism 

ranged from 26.42% to 100%, with an average of 57.69%. An overall genetic diversity 

among the isolates was 0.252, with a range of variation from 0.104 to 0.394 for the 

primer combinations. 

 

The dendrogram generated by cluster analyses revealed genetic divergence among the 

isolates, but did not show any distinct obvious grouping based on the date of collection or 

race (Fig. 1).  Similarity coefficients among isolates ranged over 70-82%.  A maximum 

similarity (82%) was found between OKD3 and El Reno.  Bootstrap analysis gave low 

percentage values (11.7 to 66.7%) of the grouping, indicating that these grouping are not 
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highly reliable, and all isolates are basically belong to a single group (Fig. 1).  All the 

isolates formed one large group by the principal component analysis (PCA) (Fig. 2).  In 

PCA, the first, second and third PC explained 37.3%, 8.02% and 6.45% of the total 

variability, respectively. 

 

DISCUSSION 
 
Resistance to tan spot in breeding programs and management strategies to control this 

disease should be developed against the most prevalent races.  Predominant races that 

occur in an area are a major challenge to limiting losses due to this disease.  So, knowing 

the races present in the field would help to determine control strategies such as selection 

of fungicide, crop rotation or the use of cultivar mixtures.  In this study, 15 out of 16 

isolates were race 1, and one was race 4 (Table 1).  Race 1 was also found to be the 

predominant race in the southern Great Plains by Ali and Francl (2003).  In a study of a 

global collection of P. tritici-repentis populations, five isolates were included from 

Oklahoma, and all of them were race 1 (Friesen et al. 2005).  Race 1 is considered more 

virulent than other races due to the presence of two toxin genes (necrosis and chlorosis).  

Another reason explaining the predominance of race 1 might be the lack of selection 

pressure on this pathogen due to the monoculture of wheat with a narrow genetic base 

with most cultivars being susceptible to tan spot (Ali and Francl 2003).  One isolate (El 

Reno) was race 4.  Ali and Francl (2003) tested 22 isolates collected from wheat in 

southern Great Plains, of which 21 isolates were race 1 except one isolate of race 4.  Race 

4 has been reported to be most typically isolated from alternative non-cereal grasses (Ali 

and Francl 2003).  It is suspected that the race El Reno might have infected wheat from a 
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non-cereal host, and likely is non-persistent because it would not compete well with more 

virulent races. 

 

Presence of races of a pathogen in a specific area can have a practical impact on disease 

control.  A highly host-selective pathogen might survive on other related plant species, 

but probably would not cause severe disease.  In contrast, a non-specialized pathogen has 

a broad host range and can be equally pathogenic to many hosts.  Based on the 

knowledge of host specialization and cultivation of wheat, the presence of a particular 

race of P. tritici-repentis can also be predicted.  Thus, a non-host crop rotation effectively 

controls a host-specialized pathogen.  For example, a crop rotation with canola or 

sorghum between wheat seasons would more effectively eliminate P. tritici-repentis than 

would rotation with an alternative crop such as barley.  Due to the lack of a susceptible 

host (wheat) the fungus would not survive and complete its life cycle (Bockus and 

Classen 1992).  

   

Isolates showed different symptoms on the same cultivar, indicating that there is 

considerable variation in symptom production by the isolates (Table 2).  Conversely, one 

isolate did not induce the same symptoms on every cultivar.  This indicates that a cultivar 

has its own genetic and physiological affect.  This agrees with Moreno et al. (2008), who 

reported that P. tritici-repentis isolates induced different symptoms on a particular wheat 

cultivar and an isolate induced more than one symptom on different cultivars. 
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Diversity value by the analysis of DNA polymorphism is useful to measure genetic 

diversity within a species.  In a study with Xanthomonas oryzae pv. oryzicola,  the 

bacterial leaf streak pathogen to rice, Raymundo et al. (1999) found a diversity value of 

0.93 reflecting a high genetic diversity in the organism.  Our AFLP data demonstrated 

only slight genetic diversity among the isolates with a diversity value of 0.252.  This 

finding is consistent with other marker studies of P. tritici-repentis fungal populations 

where many primer combinations revealed a genetic diversity value of 0.20 or less 

(Friesen et al. 2005).  Using AFLP, Leisova et al. (2008) found little genetic diversity 

(0.096) among 100 isolates of P. tritici-repentis in the Czech Republic collected during 

1998-2005.  The reasons for genetic diversity in P. tritici-repentis could be regular sexual 

recombination or vegetative compatibility among isolates (Moreno et al. 2008, Singh and 

Hughes 2006); however, as P. tritici-repentis is homothallic, sexual recombination 

should contribute only minimally to genetic variation.   

 

In cluster analysis, high similarity coefficient (90% or greater) and a higher percentage of 

consistency value of the bootstrap analysis determine the stability of grouping among the 

isolates within a population (Chen et al. 1995, Felsenstein 1985, Yap and Nelson 1996).  

Felsenstein (1985) suggested that groups only with bootstrap consistency values of 95% 

or greater would be considered stable in a cluster analysis.  Lower bootstrap consistency 

values (11.7 to 66.7%) in our study suggest that the apparent grouping is not stable, and 

basically all isolates belong to a single group (Figure 1).  However, our data suggest the 

presence of some genetic diversity in this pathogen, and thus, deploying of resistance to 
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virulent isolates in wheat should be helpful because diverse isolates would breakdown 

resistance at a faster rate (Raymodo et al. 1999). 

We used AFLP as a molecular marker.  AFLP has been shown to produce the maximum 

number of alleles (Jurgenson et al. 2002).  When compared to other markers used in 

population genetics studies, AFLP performed the best for estimating genetic relationships 

(Garcia et al. 2004, Powel et, al. 1996).  In principle component analysis (PCA), the 

original variable (in this case alleles) was transformed to new variables or principal 

components (PCs), which represent the combination of the original data (Hielmann et al. 

2006).  One of the useful properties of PCs is the lack of correlation, because they are 

sorted according to the variability they explain. The first PC is the linear combination of 

the original variable that accounts for the greatest amount of variation; thus, the second 

PC accounts for the next greatest amount of variation, and so on (Hielmann et al. 2006). 

 

Despite little genetic diversity, cluster analysis and PCA revealed that the isolates of P. 

tritici-repentis used in this study are homogeneous, and therefore, are derived from a 

common lineage.  According to PCA, a high PC value distinguishes the isolates into 

distinct groups (Gril et al. 2008, Mello, et al. 2008, Priyatmojo et al. 2002), whereas a 

low PC value fails to sort isolates into groups and the isolates fit around the center of co-

ordination (Fernando et al. 2006).  In our study, PC1 explained the highest variability 

(37.3%) of the total variation and put all the isolates in one group (Fig 2, A and B), which 

confirms that the isolates in this study are genetically similar.  In a genetic diversity study 

from 100 isolates of P. tritici-repentis using AFLP analysis, Leisova et al. (2008) found 

that a high PC value fit isolates into one group while a low PC value failed to group 
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isolates.  In our study PC2 and PC3 accounted for a proportion of the total variance of 

only 8.02% and 6.45%, respectively.  Further, isolates clustered around the center of 

coordination, suggesting that isolates in this collection could not be characterized into 

further grouping (Fig. 2C).  Fernando et al. (2006) studied genetic relationship among 60 

isolates of Gibberella zeae, which causes Fusarium head blight in cereals.  Although G. 

zeae isolates were collected within 200 miles and the isolates exhibited a high genetic 

diversity, low values in PCs put all the isolates around the center of ordination suggesting 

the population is derived from a single lineage.  Using AFLP markers, a global collection 

of P. tritici-repentis isolates also did not show any genetic grouping based on geographic 

origin or races (Friesen et al. 2005).      

 

Host specialization might play some role in determining genetic relationships.  In a study 

with Monilinia laxa, the causal agent of apple brown rot, isolates collected from apple 

trees did not group in different clusters, while isolates collected from peach, nectarine, 

plum and apricot did group into separate clusters (Gril et al. 2008).  In our study, all 

isolates were collected from Oklahoma and from the same host (wheat).  Another reason 

only a single cluster may have been observed with our isolates is that conidia of P. tritici-

repentis are windborne and can readily mix together in the field.  Hence, it is not possible 

for an isolate to maintain an isolated pocket of high similarity in Oklahoma. 

 

 A complete understanding of variability in the population of P. tritici-repentis is critical 

to resistance screening, and to developing management practices such as the selection of 

fungicides.  For example, representative isolates from different groups or lineages, if any, 
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should be included in the screening of cultivars to deploy a wider resistance to tan spot.  

Regular monitoring and virulence testing of this pathogen would benefit tan spot 

management of wheat in Oklahoma. 
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Table 1. Reaction of isolates on wheat differential and identification of races in  
              Pyrenophora tritici-repentis collected from 1980s, 1990s and 2000s in  
              Oklahoma 
 
 
Isolates 

Wheat differential  
Raceb 6B662 Glenlea 6B365 Salamouni 

1980s 
OKA1 

 
1Ra 

 
4N 

 
5C 

 
1R 

 
Race 1 

OKA2 1R 3N 5C 1R Race 1 
OKD1 2R 5N 5C 1R Race 1 
OKD2 2R 4N 5C 1R Race 1 
OKD3 1R 4N 5C 1R Race 1 
OKD5 1R 3N 3C 1R Race 1 
1990s 
RBB6 

 
1R 

 
5N 

 
5C 

 
1R 

 
Race 1 

GYA3 1R 3N 4C 1R Race 1 
2000s 
El Reno 

 
1R 

 
1R 

 
1R 

 
1R 

 
Race 4 

Guymon 1R 5N 5C 1R Race 1 
Cherokee 2R 4N 5C 1R Race 1 
OK-06-1 1R 4N 5C 2R Race 1 
OK-06-2 1R 5N 5C 2R Race 1 
OK-06-3 1R 5N 5C 1R Race 1 
Atoka 2R 5N 5C 2R Race 1 
Kiowa 1R 4N 5C 1R Race 1 
a Lesion type on a 1-5 scale, where 1= small, dark brown to black spots without any surrounding chlorosis 
or tan necrosis (resistant), 2= small, dark brown to black spots with very little chlorosis or tan necrosis 
(resistant), 3= small dark brown to black spots completely surrounded by a distinct chlorotic or necrotic 
ring, lesions not coalescing (susceptible), 4=  spots completely surrounded by chlorotic or necrotic zones, 
lesion coalescing (susceptible), 5= spots may not be distinguishable, lesions coalescing and spread over leaf 
(susceptible) (Lamari et al. 1989); R= resistant, N= necrosis, C= chlorosis. 
b Races identified based on  symptoms on leaf as necrosis and/or chlorosis (Andrie et al. 2007). 
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Table 2. Different symptoms produced by thirteen wheat cultivar in response to twelve isolates of Pyrenophora tritici-repentis  
              collected from Oklahoma winter wheat fields 
 
 
Sl. 
No. 

 
 
Isolates 

Wheat cultivars 

Billings Chisholm Deliver Duster Endurance Jagger Karl-
92 

OK-
Bullet 

OK-
Field 

OK-
Rising 

Pete TAM105 Triumph-
64 

1 OKA1 NC N N N C N N N N N N NC N 

2 OKA2 NC N N N NC N N N N N N N N 

3 OKD1 NC N NC N C N N N N N N NC N 

4 OKD2 NC NC NC N C N N N N N N N N 

5 OKD5 C N NC N C N NC N N N N NC N 

6 RBB6 C N NC NC C NC NC NC NC N N NC NC 

7 Cherokee C N NC NC C N NC N NC NC N N NC 

8 Guymon C NC NC NC C N NC N N NC N NC N 

9 OK-06-1 C NC NC N C N NC N N N N NC NC 

10 OK-06-3 C N NC NC C NC N N N N N NC NC 

11 Atoka NC N NC N C N N N N NC N NC N 

12 Kiowa C N NC N C N N N N N N NC NC 

 N Necrosis with yellow hallow, C Chlorosis extended over leaf, NC Both necrosis and chlorosis, usually necrosis with little  
 extended chlorosis.  Cultivars Billing and Endurance produced mainly extended chlorosis with little necrosis.
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Table 3.  Genetic variability in seventeen isolates of Pyrenophora tritici-repentis 
following amplified fragment length polymorphism (AFLP) analysis using 
thirteen primer combinations 

 
 
EcoR1- 

 
Mse1- 

Total 
allele 

Polymorphic 
allele 

Percent 
polymorphism 

Genetic 
diversity 

AA C 70 44 62.86 0.204 
AA CA 53 14 26.42 0.104 
AA CG 57 32 56.14 0.196 
AA GC 24 23 95.83 0.394 
AC CA 30 15 50.00 0.158 
AG C 57 31 54.39 0.233 
AG GA 21 19 90.48 0.374 
AT C 51 25 49.02 0.193 
AT CA 20 12 60.00 0.256 
AT CAC 19 19 100.00 0.397 
AT CAG 16 16 100.00 0.397 
TA C 27 12 44.44 0.188 
TG C 49 23 46.94 0.183 
Total 494 285 - - 
Average 38 21.92 57.69 0.252 
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Fig. 1. Cluster analysis based on 494 alleles obtained from amplified fragment length 

polymorphism (AFLP) showing the relationship among seventeen isolates of 
Pyrenophora tritici-repentis collected from winter wheat in Oklahoma over three 
decades. Cluster analysis was performed based on unweighted pair group method 
with arithmetic average (UPGMA). Values in the fork show the percentage of 
times the grouping was consistent from a 1000 replicated bootstrap analysis (Yap 
and Nelson 1996).  

 



 89
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Fig. 2.  Principal component analysis based on amplified fragment length polymorphism 
(AFLP) for seventeen isolates of Pyrenophora tritici-repentis collected from 
winter wheat in Oklahoma. A higher PC value grouped the isolates in one group 
(A and B), a lower PC value did not differentiate isolates into group (C).   
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APPENDICES 

 

 

Appendix 1.   Pyrenophora tritici-repentis isolates collected from winter wheat fields in 
Oklahoma that were used in this study 

 
 
Isolate 

 
Collection year 

 
County 

Propagule of initial 
isolation 

OKA1 1983 Garfield Ascospore 
OKA2 1983 Garfield Ascospore 
OKD1 1983 Blaine Ascospore 
OKD2 1983 Blaine Ascospore 
OKD3 1983 Blaine Ascospore 
OKD4 1983 Blaine Ascospore 
OKD5 1983 Blaine Ascospore 
    
RBB6 1996 Kay Ascospore 
GYA3 1996 Texas Ascospore 
    
El Reno 2005 Canadian Conidia 
Guymon 2006 Texas Conidia 
Cherokee 2006 Cherokee Conidia 
OK-06-1 2006 Payne Ascospore 
OK-06-2 2006 Payne Ascospore 
OK-06-3 2006 Payne Ascospore 
Atoka 2007 Atoka Conidia 
Kiowa 2007 Pittsburg Conidia 
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Appendix 2.  Races of the fungus Pyrenophora tritici-repentis, the causal organism of tan 
spot in wheat (Andrie et al. 2007) 

 
Races Wheat differentials 

6B662 Glenlea 6B365 Salamouni 
1 Resistant Necrosis Chlorosis Resistant 
2 Resistant Necrosis Resistant Resistant 
3 Resistant Resistant Chlorosis Resistant 
4 Resistant Resistant Resistant Resistant 
5 Chlorosis Resistant Resistant Resistant 
6 Chlorosis Resistant Chlorosis Resistant 
7 Chlorosis Necrosis Resistant Resistant 
8 Chlorosis Necrosis Chlorosis Resistant 

 
 



 

  

VITA 
 

Kazi Abdul Kader 
 

Candidate for the Degree of 
 

Doctor of Philosophy 
 
 
Dissertation:   FITNESS, VIRULENCE AND GENETIC VARIABILITY IN 

PYRENOPHORA TRITICI-REPENTIS ISOLATES CAUSING TAN SPOT OF 
WHEAT IN OKLAHOMA 

 
 
Major Field:  Plant Pathology 
 
Biographical: 
 

Education: Earned Bachelor of Science in Agriculture from Bangladesh 
Agricultural University, Mymensingh, Bangladesh in 1990; Received 
Master of Science in Plant Pathology from Institute of Postgraduate 
Studies in Agriculture, Gazipur, Bangladesh in 1995; Completed the 
requirements for the Doctor of Philosophy in Plant Pathology at 
Oklahoma State University, Stillwater, Oklahoma in May, 2010. 

  
 
Experience:  Scientific Officer, Bangladesh Agricultural Research Institute, 

Gazipur, Bangladesh, September 1992 to July 2005; Senior Scientific 
Officer, Bangladesh Agricultural Research Institute, Gazipur, 
Bangladesh, August 2005 to present; Graduate Research Assistant, 
Department of Entomology and Plant Pathology, Oklahoma State 
University, Oklahoma, USA, August 2005 to March 2010.  

 
Professional Memberships:  American Phytopathological Society,     

Bangladesh Phytopathological Society. 
 
 
 

 
 
 



 

 
ADVISER’S APPROVAL:   Dr. Robert M. Hunger 
 
 
 

 

Name: Kazi Abdul Kader                                                  Date of Degree: May, 2010 
 
Institution: Oklahoma State University                      Location: Stillwater, Oklahoma 
 
Title of Study: FITNESS, VIRULENCE AND GENETIC VARIABILITY IN 

PYRENOPHORA TRITICI-REPENTIS ISOLATES CAUSING TAN 
SPOT OF WHEAT IN OKLAHOMA 

 
Pages in Study: 104               Candidate for the Degree of Doctor of Philosophy 

Major Field: Plant Pathology 
 
Scope and Method of Study:  Isolates of Pyrenophora tritici-repentis (causal fungus of 

tan spot of wheat) collected from the 1980s, 1990s and 2000s were studied for 
their fitness, virulence and genetic relationship. Mycelial growth was quantified 
on agar media, and sporulation was quantified on agar and on the three wheat 
cultivars Deliver, TAM 105 and Red Chief. Wheat straw of cv Deliver was 
infested by each isolate, and total pseudothecia were determined after 14 days of 
incubation. Maturity of pseudothecia was determined after 23 days of incubation 
at 15oC. Virulence of isolates was determined by inoculating wheat cultivars with 
conidia. Three isolates, OKD1, RBB6 and OK-06-1, collected in 1983, 1996 and 
2006, respectively, were used in the field study to determine disease severity, 
yield loss and thousand kernel weight on wheat cv Deliver in 2007-08 and 2008-
09. In the greenhouse, the reaction of 11 wheat cultivars was tested to 12 isolates. 
Race structure and symptom variability was determined by the reaction of wheat 
cultivars to P. tritici-repentis isolates. Amplified fragment length polymorphism 
(AFLP) was performed to determined genetic relationship among the isolates. 

 
Findings and Conclusions:  Recent isolates collected in the 2000s were more fit for 

growth, sporulation, pseudothecia formation and maturity than isolates collected 
in the 1980s and 1990s.  The recent isolates also were more virulent than the older 
isolates.  Isolate OK-06-1 (2006) produced significantly more tan spot on wheat 
in both the years in the field compared to the older isolates OKD1 (1983) and 
RBB6 (1996).  A 25% yield loss was observed for the isolate OK-06-1.  Among 
cultivars, OK-Rising, OK-Field, OK-Bullet and Pete were as resistant as the 
resistant check Red Chief.  All isolates were race 1 except El Reno, which was 
race 4. Isolates also exhibited variability in symptoms induced of which 56, 32, 
and 12% were necrosis, necrosis and chlorosis, and chlorosis only, respectively. 
AFLP studies revealed that the P. tritici-repentis population in Oklahoma did not 
change significantly over the last three decades and the isolates were likely from a 
single lineage. 


