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PREFACE 

Chapter I of this thesis is an introduction and chapter II is a literature review focusing on 

the history and biology of Schizaphis graminum (Rondani), and Lysiphlebus testaceipes 

Cresson.  Also included is a detailed description of functional response, cold weather 

ecology, supercooling ability and greenbug management.   Chapters III, IV, V, and VI are 

formal manuscripts of the research I conducted during my Ph.D. program and are written 

in compliance with the publication policies and guidelines for manuscript preparation 

with the Entomological Society of America. 

Pursuing and completing this degree would not have been possible without the 

loving support of my wife Gina, who put up with my long hours and late nights in 

addition to working long hours herself to support our family during my time at Oklahoma 

State University.  I would like to sincerely thank my major professor Dr. Kristopher Giles 

for all his assistance and advice throughout my project.  Additionally I want to thank Drs. 

Norman Elliott, Tom Phillips, and Mark Payton for their valuable advice and assistance.  

Special thanks are extended to Tim Johnson, Jennifer Chown, Cole O'Neil, and Dennis 

Kastl for helping collect data for this thesis.  I also want to thank my sons Nathaniel, 

Zachary, Phillip and John for pitching in and helping whenever I needed extra help.  

Above all I want to thank my parents John and Madeline Jones for their faith in me.  
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CHAPTER I 
 
 

GENERAL INTRODUCTION 
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Six to seven million acres of winter wheat, Triticum aestivum L., are planted annually in 

Oklahoma (Krenzer et al. 1999).  Wheat is planted in Oklahoma for forage production, 

grain production or a combination of the two (Thompson 1990).  Whether grown for 

forage or grain production, Oklahoma wheat is attacked by several insect herbivores 

including the greenbug Schizaphis graminum (Rondani) (Homoptera: Aphididae). 

 The greenbug, described by Rondani (1847), was first reported in the United 

States as an agronomic pest of wheat in 1882 (Hunter and Glenn 1909, Webster and 

Phillips 1912). Greenbug feeding reduces yield and crop quality when population levels 

surpass economic injury levels (EIL’s) (Burton et al. 1985, Pike and Schaffner 1985, 

Kieckhefer and Kantack 1988, Massey 1993, Elliott et al. 1994a, Noetzel 1994). Local 

greenbug outbreaks occur in Oklahoma almost every year, and statewide infestations are 

reported about every 5-10 years (Starks and Burton, 1977).  In Oklahoma, losses range 

from $0.5 to $135 million annually, though much of the losses are due to the expense of 

insecticide use (Starks and Burton 1977, Webster 1995). 

 Greenbugs are attacked by a number of predators and parasites, including lady 

beetles, parasitic wasps, spiders, damsel bugs, lacewing larvae and syrphid fly larvae 

(Royer et al. 1998a).  One of the most important examples of these natural enemies in the 

Southern Great Plains is the parasitic wasp Lysiphlebus testaceipes Cresson 

(Hymenoptera: Aphidiidae)(Ruth et al. 1975, Kring and Gilstrap 1983, 1984, Kring et al. 

1985).   

Lysiphlebus testaceipes has been demonstrated to be an effective biological 

control agent of greenbugs in winter wheat in Oklahoma (Jones 2001, Giles et al. 2003).  

Field cage studies by Jones (2001) demonstrated that actual parasitism rates above 4% of 
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the greenbug population were sufficient to prevent greenbug populations from exceeding 

economic injury levels. While these studies demonstrated that L. testaceipes was 

effective, they did not investigate the mechanisms of how greenbug populations are 

suppressed during winter wheat growth.  Describing greenbug suppression in Oklahoma 

by L. testaceipes requires an understanding of parasitoid ecology during cold winter 

months. 

Greenbug parasitoids such as L. testaceipes are frequently exposed in Oklahoma 

to temperatures below 0°C yet are active on warmer days (Personal Observation).  Insects 

exposed to temperatures below the melting point of their body fluid are in danger of 

being killed by a lethal freezing. They may be able to tolerate being in a frozen state, or 

they avoid freezing by keeping their body fluids supercooled (Zachariassen 1985). A 

review of the literature found virtually no research about cold weather ecology of aphid 

parasitoids.  As such, little is known about the cold weather ecology of L. testaceipes.  It 

is not currently known what the lowest temperature is at which L. testaceipes can survive.  

Measurement of its supercooling point (SCP) will answer that question, but many insects 

perish before their SCP is reached (Leather et al. 1993). Hunter and Glenn (1909) also 

reported that L. testaceipes has the ability to survive temperatures below 0°C and oviposit 

later when temperatures are warmer.  A more complete study of the functional 

survivability of L. testaceipes is needed to determine survivability at temperatures 

commonly experienced in Oklahoma.  Finally there are conflicting reports about 

ovipositional ability of L. testaceipes at cold temperatures. Sekhar (1960) reported total 

ovipositional inactivity at 14°C, while Hunter and Glenn (1909) reported "successful 
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oviposition attempts" at 3.33°C and feeble attempts at 1.67°C. A study of the functional 

response at low temperatures will provide answers to this question. 

 The overall goals of this research are to investigate effects of winter temperatures 

common to Oklahoma on the survivorship and ovipositional behavior of L. testaceipes. 

Objectives 

I. Examine effects of cold temperatures on survivorship of Lysiphlebus testaceipes 

through experiments to determine the supercooling point of various life stages of 

L. testaceipes and of its host, the greenbug, S. graminum 

II. Determine survivorship of adults and mummies at temperatures commonly 

experienced during Oklahoma winters. 

III. Investigate and define the minimum temperature required for oviposition by L. 

testaceipes and describe attack rates at increasing temperatures.  

Explanation of Thesis Format 

This general introduction is followed by a literature review (chapter II), then 

chapters III, IV, and V, devoted to individual papers to be published, a general summary 

(chapter VI), and appendices.  Lists of references are provided for citations in the 

literature review and papers to be published.  In paper I (chapter III) supercooling ability 

of L. testaceipes is used to determine the lowest temperatures that the parasitoid and its 

host could possibly survive.  The second paper (chapter IV) examines functional 

survivability of L. testaceipes at low temperatures by cooling parasitoid specimens for 

various time periods and then examining whether they are still able to successfully 

reproduce.  The third paper (chapter V) determines the minimum temperature that L. 

testaceipes adults can successfully oviposit, and attack rates for L. testaceipes are 
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reported for varying prey densities (functional response) from the lowest temperature that 

L. testaceipes can successfully oviposit up to 14°C.  All chapters follow the general 

guidelines of the Entomological Society of America for submission to scientific journals. 
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CHAPTER II 
 
 

LITERATURE REVIEW 
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Oklahoma Wheat Production 

 Winter wheat (Triticum aestivum L.) is grown in the Southern Great Plains of the 

United States for grain production, forage and grain production, or for forage production 

only (Krenzer et al. 1999).  In 1998, over 6 million acres of winter wheat were planted in 

Oklahoma, of which about 4 million acres were harvested for grain with an average yield 

of 34 per bushels acre (Krenzer et al. 1999).  Overall, about 50 to 55% of planted wheat 

is grazed (Thompson 1990, Carver et al. 1991).  

 In Oklahoma, wheat fields are generally prepared in late summer (Royer and 

Krenzer 2000).  Planting dates depend on the intended purpose of the wheat and location 

of the field.  Wheat for forage and grain production is generally planted in Oklahoma’s 

southern region from 15 September to 10 October, while grain only wheat is generally 

planted from 10 October to 30 October.  Planting generally occurs earlier as the location 

is changed further north and west.  Soon after planting, wheat germinates and emerges 

from the soil as a seedling.  Tillering begins soon after emergence when the first stem 

appears and continues until elongation (jointing) starts in the spring. Wheat may cease 

growth and go dormant during the coldest months (usually December through early 

February) of the winter. Generally in February when temperatures begin to warm, plants 

resume growth and tillers extend strongly upward by “jointing”.  This is characterized by 

a strong upward extended stem that is hollow.  Heading begins in March or April, as the 

flower spike emerges from the flag leaf sheath and continues until flowering is complete.  

The seed head matures and is generally harvested in late May or early June.  

There are numerous cultivars of wheat available for planting.  Cultivar selection is 

governed mostly by grain production potential, however, recent research has improved 
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variety selection with increased emphasis on forage production (Worrall & Gilmore 

1985, Krenzer et al. 2001, 2002, 2004).  

Insect Pests of Wheat 

 Winter wheat is attacked by numerous insect herbivores including aphids 

(Homoptera: Aphididae), armyworms (Pseudaletia unipuncta (Hayworth) and 

Spodoptera frugiperda J. E. Smith), cutworms (Euxoa auxilaris Grote and Agrotis spp.), 

false wireworms in the family Tenebrionidae, Hessian fly (Mayetolia destructor Say), 

mites (Petrobia latens, Aceria tosichella Keifer, and Pentalius major) and white grubs 

(Cyclocephala spp. and Phylophaga spp.)(Royer et al. 1998a). 

Aphids are of particular interest because they have been observed to damage 

wheat from plant emergence to heading.  Aphids reproduce rapidly, and are often not 

detected by farmers until their populations reach deleterious levels (Royer et al. 1998a). 

Aphid pests that infest winter wheat in Oklahoma and throughout much of the Southern 

Great Plains include greenbug, S. graminum, Russian wheat aphid, Diuraphis noxia 

Mordviko, bird cherry-oat aphid, Rhopalosiphum padi L., Rice root aphid, R. 

rufiabdominalis (Sasaki), English grain aphid, Sitobion avenae Fabricius, and corn leaf 

aphid, Rhopalosiphum maidis Fitch.  Arguably the most important of these aphid pests is 

the greenbug (Jones 2001, Royer et al. 2002a).  

Greenbug 

Greenbugs infest a wide variety of crops and wild hosts throughout the central 

United States, feeding on over 70 graminaceous species, many of which serve as 

secondary hosts when winter wheat and other grain crops are not present (Michels 1986).  

First reported in the United States as an agronomic pest of wheat in 1882 (Pfadt 1962), 
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greenbugs can reach tremendous population levels in a short period of time (Starks and 

Burton 1977).  Outbreaks occur in Oklahoma almost every year, and statewide 

infestations are reported about every 5-10 years (Starks and Burton, 1977).  

 Greenbug Biology. Greenbugs are small light green aphids with a darker green 

dorsal line, black eyes and black tipped cornicles, legs and antenna (Wadley 1931).  

Greenbugs develop through four nymphal stages, collectively taking about one week to 

complete under favorable conditions (Metcalf and Metcalf 1993).  Greenbugs reproduce 

mainly by apomictic parthenogenesis when temperatures are above their developmental 

threshold of about 5.86°C (Wadley 1931, Walgenbach et al. 1988).  Alate females can 

reproduce 24 to 48 hours after the last molt, and wingless females are capable of 

reproduction almost immediately following the final molt (Wadley 1931).  Paedogenesis, 

reproduction by nymphs, occurs in approximately 2% of alate immature greenbugs 

(Wood and Starks 1975).  Wadley (1931) described reproductive rates of 3.5 nymphs per 

day by parthenogenic females and about one egg per day by oviparous females.  Webster 

and Starks (1987) recorded a mean of six nymphs produced per day by biotype E 

greenbugs on TAM 105 wheat at 26-28°C.  There are about 21 generations per year, 

however as many as 33 generations have been observed (Webster and Phillips 1918). 

 In the Southern Great Plains greenbug is thought to overwinter primarily as 

parthenogenetic females (Webster and Phillips 1918, Wadley 1931).  However alate 

males and apterous non-parthenogenetic females (sexuales) may be produced in response 

to increased scotophase (Mittler and Gordner 1991).  After mating, oviparous females 

deposit eggs that overwinter from which apterous parthenogenetic females hatch in the 

spring (Dixon 1985, Miyazaki 1987). 
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Greenbugs feed on phloem sap by inserting stylets formed by mandibles and 

maxillae into the plant tissue to feed, which results in chlorosis, and in many cases 

eventual death of the plant (Burton 1986).  Injury is visible soon after feeding begins due 

to chlorophyll reduction (Gerloff and Ortman 1971, Niassy et al. 1987, Peters et al 1988).  

The two leaf stage, or growth stage 13 (Zadoks et al. 1974), is the most susceptible to 

greenbug feeding injury (Pike and Schaffner 1985).  Infestation at this stage can cause 

root and shoot biomass reductions that persist throughout the entire growing season 

which can result in significant yield reductions (Burton 1986, Kindler et al. 2002).  

Economic Status of Greenbug. In Oklahoma, losses attributable to greenbug 

damage are estimated to range from $0.5 to $135 million annually, though much of the 

expense of greenbug infestation results from insecticide use (Starks and Burton 1977, 

Wratten et al. 1990, and Webster 1995). A severe outbreak in 1976 resulted in costs of 

over $80 million to Oklahoma farmers from insecticide applications and yield losses 

(Starks and Burton 1977).  

There have been relatively few studies that have attempted to quantify the 

relationship between greenbug population density and economic loss in winter wheat.  

Kieckhefer and Gellner (1992) estimated the economic threshold at 15 greenbugs per 

plant feeding for 30 days (450 aphid feeding days).  Aphid feeding days is calculated by 

multiplying the number of greenbugs per plant by the number of days that they feed on 

that plant.  Burton and Burd (1993) described a significant dry root weight loss after only 

14 days of feeding by 10 greenbugs on TAM 101 wheat.  Kieckhefer et al. (1994) 

estimated reduced grain production at 41 kg of grain per hectare per 100 aphid feeding 

days. Kindler et al. (2003) reported a 14.5 kg/ha loss of yield for each greenbug per tiller 
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during years with near average precipitation and a loss of 34.3 kg/ha under severe 

drought conditions. 

Integrated Pest Management of Greenbug 

Cultural Controls. The use of cultural controls to manage greenbug in winter 

wheat has been limited to a few tested approaches. Conservation tillage provides 

increased crop residue on the soil surface and has been shown to reduce immigration of 

greenbugs into wheat fields (Burton and Krenzer 1985), however, their results may have 

simply been lower numbers rather than reduced immigration; presumably crop residue 

reduces the attractiveness of fields to greenbugs in comparison to bare soil.  Reductions 

in greenbug populations resulting from conservation tillage are proportional to the 

amount of residue left on the soil surface, with no-till fields having the largest amount of 

crop residue. 

Nitrogen fertilization at recommended rates invigorate wheat allowing it to better 

tolerate greenbug injury.  Under proper fertilization, the rate of greenbug population 

growth is reduced relative to the growth rate of wheat plants, which allows plants to 

escape some injury (Daniels 1975).  Grazing cattle on wheat during winter, a common 

practice in much of the Southern Great Plains, also reduces greenbug populations 

(Daniels 1975, Arnold 1981, Ismail et al. 2003).  Grazing after the onset of jointing 

reduces wheat yields, so cattle are typically removed from fields in late-winter (Redmon 

et al. 1996, Ismail et al. 2003).  None of these tactics have been used for the sole purpose 

of controlling greenbugs, but could be included in a comprehensive IPM program.  

In the Southern Great Plains region of the U. S., winter wheat, is often grown in 

continuous monocultures in large acreages.  However, it has been well documented that 
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continuous monocultures can over time lead to increased pest pressures (Ahern and 

Brewer 2002, Brewer and Elliott 2004, Men et al. 2004, Boyles et al. 2004). 

Host Plant Resistance. Host plant resistance is an intrinsic plant defense against 

herbivores (Painter 1951). There are three types of intrinsic plant defenses collectively 

referred to as “Painter’s resistance triangle.” Antibiosis is resistance conferred by host 

plant toxins or other compounds that have a deleterious effect on herbivores. Antixenosis 

is defined as non-preference of the herbivore for the plant.  Tolerance is the ability by the 

host plant to endure injury by herbivores without sustaining an economic loss.  

Winter wheat producers in the Southern Plains have limited but important 

greenbug-resistant cultivars as tools for IPM.  According to Porter et al. (1997), TAM-

110 (with the Gb3 resistance gene) confers resistance to the most abundant greenbug 

biotypes C, I, and E (Porter et al. 1997, Lazar et al. 1998).  Greenbug populations are 

designated by their “biotype” which refers to the way a select group of plants respond to 

feeding (Porter et al. 1997).  TAM 110 is recommended for production in dryer climates 

(High Plains) because it is susceptible to leaf rust.  An Oklahoma adapted general-use 

cultivar (‘OKField’) with Gb3 will be available during the fall of 2005.  This cultivar is 

also designated as “Clearfield” which will allow for more selective weed management.  

Greenbug resistant wheat with Gb3 is not immune to infestation, and damage can occur 

when aphid levels are extremely high, however, resistant cultivars can withstand 

considerably more feeding injury without yield loss than susceptible cultivars (Lazar et 

al. 1998, Kindler et al. 2002). Wheat cultivars with greenbug resistance genes have been 

shown to have little to no effect on parasitoids and Coccinellidae predators (Jones 2001, 

Fuentes-Granados et al. 2001, Giles et al. 2005).  These tritrophic evaluations indicate 
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that the beneficial effects of resistance and biological control could be interactive 

(Brewer and Elliott 2004). 

 While host plant resistance can be integrated with biological control (Van Emden 

1995), integration may not be as simple as once thought. Hare (1992) has cited 16 studies 

where interactions between resistant crop varieties and parasitoids were studied. Host 

plant resistance can be positive, have no apparent effect, or even have a negative effect 

on parasitoid success. Studies evaluating negative effects suggest that host plant 

resistance may affect weight and fecundity of female parasitoids of the third trophic level 

as well (Van Emden 1991, 1995, Fuentes-Granados et al. 2001). 

Greenbug Sampling and Decision Making. Because grain yield losses are 

directly related to greenbug population levels, a population assessment (sampling) is 

required to estimate the potential for economic losses, and whether insecticides are cost 

effective to apply (Royer et al. 1998b, 2002, Kindler et al. 2002, 2003, Elliott et al 2003a, 

2003b).  In Oklahoma, greenbug infestations are measured by one of three general 

methods.  The mean number of aphids per wheat tiller is estimated by selecting three 

tillers at each of 25 random locations in the field, and calculating the average number of 

greenbugs present.  The second involves determination of the mean number of aphids per 

0.3m of crop furrow from counts taken at several random locations throughout the field 

(Royer et al. 1998b).  More recently, a third method utilizing a binomial sequential 

sampling scheme has been developed and refined into a simple management system. 

Coined “Glance 'n go,” this method involves looking at randomly selected tillers and 

noting the presence or absence of greenbugs on each tiller (Royer et al. 2002a, 2002b, 

2005a 2005b).  Because the proportion of tillers that are infested accurately corresponds 
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with greenbug density (Giles et al. 2000), samplers can quickly classify high or low 

greenbug populations through sequential sampling. The important goal of Glance 'n go 

sampling is not to determine the exact greenbug density in the field, but rather to classify 

the likely density as being above or below a defined economic threshold (ET).  The 

economic threshold is the density at which control measures should be taken to prevent 

an increasing pest population from surpassing the economic injury level (EIL: costs of 

control are equal to crop loss values), above which significant losses to the producer 

occur (Stern et al. 1959).  Due to the simplicity, timesavings, and ease of using Glance ‘n 

go, producers could be more likely to sample for greenbugs and make profitable educated 

decisions about insecticide applications (Elliott et al. 2003c).  

Insecticides: When insect herbivore populations increase above economic 

thresholds (ET), treating with an appropriate insecticide can mitigate crop losses. 

Chlorpyrifos, dimethoate, disulfoton, imadacloprid, malathion, and methyl parathion, are 

registered for greenbug control in Oklahoma (Royer et al 1998b, Criswell 2005). 

Widespread use of pesticides for greenbug control has likely contributed to pesticide 

resistance (Shotkoski et al. 1990, Sloderbeck et al. 1991, Sloderbeck 1992, Peckman and 

Wilde 1993).  Greenbug resistance (greenbug as biotype “D”) to organophosphate 

compounds in sorghum was described by Teetes et al. (1975) and by Peters (1975) in 

Oklahoma, South Dakota, and Texas. Two types of insecticide resistance have been 

identified in greenbugs: pattern-1 resistance (target-site resistance) due to altered 

acetylcholinesterase, and pattern-2 resistance (metabolic resistance) caused by amplified 

esterases (Shufran et al. 1993).  Pattern-2 resistant greenbugs are the most abundant in the 

Great Plains  (Shufran et al. 1997). 
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Biological Control: Greenbugs are attacked by a number of predators and 

parasites, including lady beetles, parasitic wasps, spiders, damsel bugs, lacewing larvae 

and syrphid fly larvae (Royer et al. 1998a).  One of the most important examples of 

natural enemies in the Southern Great Plains is the parasitic Hymenoptera (Ruth et al. 

1975, Kring and Gilstrap 1983, 1984, Kring et al. 1985, Jones 2001, Jones et al. 2003, 

Giles et al. 2003).  Hymenopteran parasitoids of the greenbug in Oklahoma include 

Aphelinus nigritus (Howard), Aphelinus varipes (Foerster), Diaeretiella rapae 

(McIntosh) and Lysiphlebus testaceipes (Cresson), which are all primary parasitoids.  Of 

these L. testaceipes is the most important (Jackson et al 1970, Walker et al. 1973, Archer 

et al. 1974, Summy et al. 1979).  A complex of hyperparasitoids, including Aphidencyrtus 

aphidivorus (Mayr), Pachyneuron siphonophorae (Ashmead), Charips sp. and Asaphes 

lucens (Provancher) have also been identified. 

Results of past research are not consistent about the roles of natural enemies in 

greenbug population regulation.  Some authors place great emphasis on predators such as 

the Coccinellidae (Cartwright et al. 1977, Kring and Gilstrap 1984, Kring et al. 1985).  

Others argue that parasitoids such as L. testaceipes are more effective regulators of 

greenbug populations (Pergrande 1902, Sekhar 1957, Jackson et al 1970, Kring and 

Gilstrap 1983, Rice and Wilde 1988, Patrick and Boring 1990, Jones 2001, Jones et al. 

2003, Giles et al. 2003, Royer et al. 2005a, 2005b, 2005c).  It is probable that greenbug 

population levels at any particular time are the result of a complex web of many factors 

including both parasitism and predation, along with other factors such as weather, disease 

and host-plant resistance. In order to incorporate natural enemies into IPM decisions, 
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natural enemies must be identified and their biology must be described to determine 

whether they can be relied on to achieve successful control.   

Lysiphlebus testaceipes 

Lysiphlebus testaceipes Cresson (Hymenoptera: Aphidiidae)is a solitary 

endoparasitoid whose geographic range is Nearctic, Neotropical, Oceanic, in addition to 

being Paleartic because of intentional introductions (Mackauer and Starý 1967, Krombein 

et al. 1979). It has been observed to attack over 100 aphid species, including the greenbug 

(Mackauer and Starý 1967, Starý et al.1988, Pike et al.2000). 

Female L. testaceipes oviposit in all life stages of the greenbug (Webster and 

Phillips 1912).  About 2 days after a greenbug is parasitized, the egg hatches into a larva 

that develops first by consuming hemolymph and later the internal organs of the host.  

After developing through four instars, the immature parasitoid begins to twist and turn 

inside the host.  The movement expands the host exoskeleton to form a swollen tan 

colored mummy within which pupation occurs.  Before pupating, the larva chews an 

opening in the host exoskeleton ventrally and fastens it to a leaf surface with silk.  Once 

attached, the parasitoid larva pupates.  Upon emergence, the adult chews a circular 

opening dorsally in the aphid pupal case to emerge and begin another generation (Hardee 

et al. 1990, Knutson et al. 1993).  

Lysiphlebus testaceipes has a developmental threshold of 6.6º C and takes 9.3 

days to develop from egg to adult at 26º C, in contrast to requiring over 49 days at 10º C 

(Elliott et al. 1994b, Royer et al. 2001).  There are conflicting observations on the lower 

temperature limits for L. testaceipes oviposition.  Sekhar (1960) reported total 

ovipositional inactivity at 14º C, while Hunter and Glenn (1909) reported successful 
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oviposition attempts at 3.33º C and feeble attempts at 1.67º C.  Hunter and Glenn (1909) 

also reported that L. testaceipes adults have the ability to survive temperatures below 0º C 

and oviposit later when temperatures were warmer.  Though Oklahoma often experiences 

temperatures during the winter and spring below developmental requirements as 

measured in the laboratory, adult parasitoids have been observed during cold weather 

(<10º C, on a sunny day) (D.B. Jones unpublished data).  Cold weather activity indicates 

either prolonged adult survival, and/or brief warm periods that allow pupating parasitoids 

to complete development. 

Lysiphlebus testaceipes has been observed to suppress greenbug populations 

below EIL's in wheat directly through mortality (probing and/or parasitism), and 

indirectly by sterilizing greenbugs and reducing reproductive potential (Pergande 1902, 

Spencer 1926, Sekhar 1957, Wood and Chada 1969, Eikenbary and Rogers 1974, 

Krombein et al. 1979, Salto et al. 1983, Jones 2001, Giles et al. 2003).  Additionally, L. 

testaceipes can cause aphids to drop from the plant in an attempt to avoid parasitism. 

Once on the ground, aphids are highly subject to desiccation and attack by other natural 

enemies (Losey et al. 1998). 

Lysiphlebus testaceipes has great potential for destroying large numbers of 

greenbugs and has been identified as a reliable natural enemy of greenbug and other 

small grain aphids (Pergande 1902, Sekhar 1957, Wood and Chada 1969, Salto et al. 

1983, Patrick and Boring 1990, Jones 2001, Giles et al. 2003, Jones et al. 2003, Royer et 

al. 2005a. 2005b).  The effect of L. testaceipes on greenbug populations can be dramatic. 

When parasitized as adults, greenbugs stop reproducing about three days after being 

parasitized by L. testaceipes (Spencer 1926, Eikenbary and Rogers 1974). However the 
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biology of L. testaceipes is not well described, especially during the colder winter months 

when wheat is grown in the Southern Great Plains. Factors such as overwintering, 

ovipositional ability and survivability during the colder months have yet to be explored.  

Functional Response 

Functional response can be used as an indicator to help determine the relative 

effectiveness of natural enemies in different situations.  Functional response describes the 

change in attack rate by a natural enemy to the change in host density (Solomon 1949, 

van Alphen and Jervis 1996). There are four distinct functional response types described 

in the literature. Type I is described as a constant rise in prey consumed, or hosts 

parasitized as prey density rises until the natural enemy is satiated or the parasitoid's egg 

supply is exhausted (Fig. 2.1).  The type II attack rate rises at a decreasing rate until a 

maximum value is reached; the time requirements for subduing, killing, eating and 

digesting the prey, are responsible for the rate change.  The type III response resembles a 

type II functional response except that at low prey densities the functional response 

accelerates creating a sigmoidal curve; this acceleration represents an ever-shorter 

searching time at moderate prey densities.  A type IV response resembles a type II 

response but at high prey densities, the attack rate decreases due to prey species being 

able to interfere with and slow the natural enemy (Holling 1959, van Alphen and Jervis 

1996). 

 Previous work by Jones et al. (2003) measured functional responses and 

superparasitism by the indigenous parasitoid wasp L. testaceipes and the introduced 

parasitoid Aphidius colemani Viereck (Hymenoptera: Aphidiidae) on greenbug, at four 

temperatures (14, 18, 22, and 26°C) during a 24-hour period (12:12 L:D). At all 
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experimental temperatures, functional responses for both wasps most closely fit the Type 

III model.  Instantaneous attack rates at 14°C, for L. testaceipes were significantly lower 

than estimates at 22 and 26°C when data were fit to a Type II functional response model. 

However, L. testaceipes was able to find, subdue and oviposit in many greenbug hosts at 

14°C.  This suggests that L. testaceipes should be active at even colder temperatures. 

Overwintering Biology 

 Overwintering strategies allow insects to survive environments unfavorable for 

continuous reproduction and normal metabolic functions.  Overwintering insects 

generally must contend with lower than optimum temperatures and other adversities 

associated with winter conditions.  Overwintering is frequently associated with 

hibernation, which can be subdivided unto three main subclassifications (Mansingh 

1971):  

1. Quiescence.  A response of individual insects to sudden, non-cyclic deviations of 

normal weather conditions that are usually short lived.  Quiescence is probably 

only seen in early winter to active insects and results in growth retardation. 

2. Oligopause.  A fixed period of dormancy in response to cyclic and longer term 

climatic changes.  Due to longer retardation in growth than quiescent insects, 

insects in oligopause require nutritional reserves and may even feed periodically 

during the dormant phase. 

3. Diapause.  A long term period of dormancy that enables an insect to overcome 

extended periods of adverse weather conditions.  There is a definite preparatory 

phase that is usually initiated by a temperature independent factor, such as 

photoperiod, that initiates metabolic changes.  The insect does not feed while in 
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diapause and return of favorable conditions will not terminate diapause 

immediately.  Termination of diapause usually requires a complex series of 

events, such as the accumulation of degree-days, or a critical photoperiod that will 

allow the insect to emerge from its overwintering state. 

 Overwintering insects are vulnerable in their overwintering state.  Evasion of 

predation can be impaired due to the overwintering insects immobility.  The 

overwintering site can also cause major problems for the insect.  If the overwintering site 

is flooded or desiccated the insect may be unable to remove itself from these detrimental 

conditions.  Because of these and possibly other factors, overwintering insects usually 

experience a high mortality rate, evidenced by the bird cherry-oat aphid Rhopalosiphum 

padi L., whose eggs may show a 20 percent winter survival rate (Leather 1980).  

 There can be benefits to overwintering.  Species, such as anholocyclic aphid 

species, enter diapause and use it as an opportunity to reproduce sexually without 

sacrificing much of the rapid multiplicative phase of their life cycle (Ward et al. 1984).  

Additionally insects in full diapause have little problem with starvation, which can be a 

major mortality factor of insects active in winter (Mansingh 1971). 

 Site selection is extremely important for an overwintering insect.  Factors such as 

proximity of large bodies of water, and mountains, inclination and aspect of slopes, 

vegetation, soil types, snow cover, and possibly other factors affect local conditions and 

can influence survival of the overwintering insect (Flohn 1969, Danks 1978, Wellington 

and Trimble 1984).  Temperature inversions during the winter are also common and can 

result in temperature differences of a few or many degrees over only a few meters from 

ground level (Henson et al. 1954, Stark 1959).  Soil moisture can further aid moderation 
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of soil temperature extremes and help overwintering insects by reducing desiccation risks 

(Calkins and Kirk 1969).  Snow cover can also be an important factor by providing 

insulation for overwintering insects, protecting them from temperature extremes (Mackay 

and Mackay 1974).  

Currently it is not known where L. testaceipes overwinters in the colder regions of 

the Great Plains. It has been speculated that they may over winter as mummies while 

attached to blades of grass at varying distances above ground.  While not observed, it 

would be advantageous for L. testaceipes to drop from the plant and lay in loose soil or 

under snow cover due to observations that at only a few centimeters of soil depth, 

temperatures are moderated (Mukerji and Braun 1988).  If overwintering does indeed 

take place above ground then site selection would be critical since a parasitoid that was 

concealed inside a whorl of dried leaves would be better protected than a completely 

exposed mummy. Lysiphlebus testaceipes may also be able to overwinter in the Southern 

Great Plains as an adult or as eggs, larvae, or pupae inside a host aphid.  In Oklahoma L. 

testaceipes adults have been observed to be actively seeking hosts and ovipositing on 

warmer days throughout the winter (D. Jones Personal Observation), suggesting that 

adults are able to survive the cold temperatures and/ or pupating parasitoids are being 

warmed enough to complete development. 

 Parasitoids such as L. testaceipes, have additional concerns related to diapause.  

To be successful, parasitoid and host life cycles must be synchronized such that when the 

parasitoid breaks diapause there are hosts available to perpetuate the parasitoid.  It is 

probable that some aspect of host physiology is responsible for initiation, maintenance 

and termination of diapause and that they also play a role in synchronizing host and 
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parasitoid life cycles (Leather et al. 1993). Three main modes of diapause induction and 

regulation have been suggested (Tauber et al. 1983, 1986).  Some are highly dependent 

on the physiological state of their host.  Others are regulated by environmental cues 

similar to those that affect non-parasitoids, and others are regulated by a combination of 

host physiology and environmental cues.  Most species appear to respond to more than 

one cue (Saunders et al. 1970, Anderson and Kaya 1974, Eskafi and Legner 1974, Parrish 

and Davis 1978, Brodeur and McNeil 1989).  Parasitoids usually have a well defined 

stage in their development at which they are sensitive to cues that induce diapause 

(Leather et al. 1993).  Parasitoids don’t always simply follow the physiological lead of 

their hosts.  Many parasitoids are able to alter the physiology of their hosts (Holdaway 

and Evans 1930, Leather et al. 1993).  Additionally there are examples of the parasitoid 

being able to regulate the onset of diapause in their host (Moore 1989). 

Cold Hardiness. Currently little is known about whether L. testaceipes is able to, 

or needs to diapause to survive winter conditions in the Southern Great Plains. Cold-

hardiness refers to the ability of an insect to survive low temperatures.  Cold-hardiness of 

an insect is a relative term.  At any point in the life of an insect, its ability to survive cold 

extremes may vary greatly.  A number of indices can be used to measure cold-hardiness, 

such as supercooling points or by LT50s.  LTime50 is the time at a constant temperature 

required to kill 50 percent of the population, whereas LTemp50 is the temperature at a 

fixed period of time required to kill 50 percent of the population.  Insects can improve 

their survivability through changes in their body chemistry commonly referred as cold 

acclimation, or also known as cold-hardening (Leather et al.1993).  
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Supercooling.  Scientific interpretations for cold hardiness are largely based on 

research by Salt (1961), who stated that “insects hibernating in cold regions are generally 

able to withstand fairly low temperatures for long periods of time.  Under natural 

conditions, the only mortality directly attributable to temperature is from freezing.”  This 

founding hypothesis has given rise to the classification of insects as being freezing 

tolerant or intolerant (Salt, 1936, 1961).  Insects exposed to temperatures below the 

melting point of their body fluid are in danger of being killed by a lethal freezing. The 

supercooling point is usually regulated by the presence of various endogenous, non-water 

ice nucleating agents (Lee 1991, Lee et al. 1995). In general, one of two strategies allows 

these insects to survive such extreme conditions.  They may be able to tolerate being in a 

frozen state, or they avoid freezing by keeping their body fluids supercooled 

(Zachariassen 1985).  A pure liquid or solution that remains unfrozen at temperatures 

below its freezing point is said to be supercooled (Angell 1982).  When ice-nucleating 

agents are absent, small volumes of water will readily supercool until random clustering 

of water molecules spontaneously form an ice embryo, upon which ice can form. The 

theoretical lowest temperature that water can supercool is about -40º C.   

 In biological systems, ice nucleation generally occurs at temperatures warmer 

than -20º C (Vali 1995).  It is thought that nucleation occurs by a heterogeneous process 

in which a non-water substrate initiates ice formation.  The specific subzero temperature 

at which ice nucleation occurs is determined by a process influenced by both volume and 

the duration of exposure to cold temperatures (Vali 1995).  As volume increases, the 

capacity of a solution to supercool decreases, while increasing duration of exposure to 

cold temperatures increases the likelihood that ice nucleation will occur. 
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 Classification of being freezing tolerant or intolerant, depends on whether an 

insect is able to survive formation of extracellular and possibly intracellular ice.  The 

only protection for freezing intolerant species is to avoid being frozen or by being able to 

super cool their body fluids by various means that also prevent freezing. Freezing tolerant 

species are able to withstand freezing frequently by having ice-nucleating agents 

(proteins or peptides), generally only present in winter, that initiate protective 

extracellular freezing at high sub zero temperatures (Zachariassen and Hammel 1976, 

Zachariassen 1980, 1982, Duman, 1980) and or by the presence of polyhydroxy alcohols 

that limit freeze damage (Duman and Horwath 1983).   

 While supercooling studies have been performed on many insects, there are 

surprisingly few studies on parasitoid and aphid supercooling.  Hofsvang and Hägvar 

(1977) examined supercooling in mummies of the aphid parasitoids Ephedrus cerasicola 

Staŕy and Aphidius colemani Viereck (Hymenoptera: Aphidiidae).  They found that both 

parasitoids could be supercooled below -25º C. Archer et al. (1973, 1974) examined cold 

storage abilities of L. testaceipes adults and mummies, but did not examine supercooling 

or cold acclimation. However these works are very brief and interpretation of their results 

is difficult. Archer found that L. testaceipes adults could be stored for up to 21 days at 

7.2º C, but less than 17% were able to survive this long.  Mummies of L. testaceipes were 

hardier, surviving up to 90 days.  

Cold Acclimation: Insects can increase their ability to withstand low 

temperatures through acclimation (Salt 1961).  This is a process whereby various cues 

can stimulate the insect to undergo physiological changes and/or behavioral changes that 

enhance their ability to survive (Leather et al. 1993).  Mechanisms of cold acclimation 
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include removal of ice nucleators including simple actions such as emptying the insect's 

gut.  Other mechanisms include water loss, and accumulation of polyols, sugars, amino 

acids, and various proteins (Leather et al. 1993). There may be other mechanisms to cold 

acclimation that are as yet to be determined. Cold acclimation can be observed in many 

freezing intolerant species as a seasonal increase in the ability to supercool.  This type of 

change in supercooling ability can be seen in the adult beech leaf mining weevil; 

Rhynchaenus fagi L. beetles collected in late June had a supercooling point of -15.4º C, 

while beetles collected in early January had a mean supercooling point of -23.1º C (Bale 

1980).   

There are factors that can lower an insect's cold hardiness.  The insect may not 

evacuate its gut contents, keeping the potential ice nucleators that can initiate ice 

formation in the gut.  Body surface moisture can reduce supercooling ability greatly by 

allowing ice formation on the body exterior that initiates ice formation within the body at 

warmer temperatures.  High water content in the hemolymph can significantly raise the 

supercooling point.  Recent feeding by phloem feeders such as aphids can enhance 

supercooling due to the diet being largely sugars and polyols, but other types of feeding, 

such as chewed plant material, may introduce ice nucleating agents into the gut (Leather 

et al. 1993). 

Changes in cold hardiness can be induced in the laboratory. This involves cooling 

the insect to an intermediate temperature for a period of time where physiological 

changes may occur.  These changes enable the insect to withstand colder temperatures 

than one of its non-acclimated co-horts (Baust 1973, Duman and Horwath 1983).  A mix 

of one or more of the previously listed factors probably controls induction of cold 
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hardiness. It is not currently known if L. testaceipes is able to cold-acclimate and survive 

lower temperatures. 



 27

References Cited  

Ahern, R.G. and Brewer, M. J.  2002. Effect of different wheat production systems on 

the presence of two parasitoids (Hymenoptera: Aphelinidae; Braconidae) of the Russian 

wheat aphid in the North America Great Plains. Agric. Ecosyst. Environ., 92, 201-10. 

Anderson, J. F., and H. K. Kaya. 1974.  Diapausal induction by photoperiod and 

temperature in the elm spanworm egg parasitoid, Ooencyrtus sp.  Ann. Entomol. Soc. 

Am.  67: 845-849. 

Angell, C. A.  1982.  Supercooled water.  In: F. Franks [ed.] Water, A Comprehensive 

Treatise.  Plenum Press. New York.  pp. 1-82. 

Archer, T. L., C. L. Murray, R. D. Eikenbary, K. J. Starks, and R. D. Morrison.  

1973.  Cold storage of Lysiphlebus testaceipes mummies. [Schizaphis graminum, grain 

pest control].  Environ. Entomol. 2:1104-1108. 

Archer, T. L., R. H. Cate, R. D. Eikenbary and K. J. Starks. 1974.  Parasitoids 

collected from greenbugs and corn leaf aphids in Oklahoma in 1972.  Ann. Entomol. Soc. 

Am.  67:11-14. 

Arnold, D. C. 1981.  Effects of cold temperatures and grazing on greenbug populations 

in wheat in Noble County, Oklahoma 1975-76.  J. Kansas. Entomol. Soc. 54:571-577.  

Bale, J. S. 1980.  Seasonal variation in cold hardiness of the adult beech leaf mining 

weevil Rhynchaenus fagi L. in Great Britain. Cryo-Letters. 1: 372-383. 

Baust, J. G.  1973.  Mechanisms of cryoprotection in freezing tolerant animal systems.  

Cryobiology.  10: 197-205. 

Boyles, M., T. Peeper and C. Medlin.  2004.  Okanola: Producing winter tolerant canola 

in Oklahoma, 2nd Ed.  OAES and OCES Oklahoma State University. 



 28

Brewer, M.J. and Elliott, N.C. 2004. Biological control of cereal aphids in North 

America and mediating effects of host plant and habitat manipulations.  Annu. Rev. 

Entomol., 49, 219-242.   

Brodeur, J., and J. N. McNeil.  1989.  Biotic and abiotic factors involved in diapause 

induction of the parasitoid, Aphidius nigripes (Hymenoptera: Aphidiidae).  J. Insect 

Physiol.  35: 969-974. 

Burton, R. L. and E. G. Krenzer, Jr. 1985.  Reduction of greenbug (Homoptera: 

Aphididae) populations by surface residues in wheat tillage studies.  J. Econ. Entomol.  

78:390-394.) 

Burton, R. L., D. D. Simon, K. J. Starks and R. D. Morrison. 1985.  Seasonal Damage 

by Greenbugs (Homoptera: aphididae) to a Resistant and a Susceptible Variety of Wheat.  

J. Econ. Entomol.  78: 395-401. 

Burton, R. L.  1986.  Effect of greenbug (Homoptera: Aphididae) damage on root and 

shoot biomass of wheat seedlings.  J. Econ. Entomol.  79:633-636.  

Burton, R. L.  and J. D. Burd.  1993.  Relationship between number of greenbugs and 

damage to wheat seedlings.  Southwestern Entomol.  18:263-267. 

Calkins, C. O., and V. M. Kirk.  1969.  Effect of winter precipitation and temperature 

on overwintering eggs of northern and western corn rootworms.  J. Econ. Entomol.  62: 

541-543. 

Cartwright, B. O., R. D. Eikenbary, J. W. Johnson, T. N. Farris and R. D. Morrison.  

1977.  Field release and dispersal of Menochilus sexmaculatus, an imported predator of 

the greenbug, Schizaphis graminum.  Environ. Entomol.  6(5): 699-704. 



 29

Carver, B. F., E. G. Krenzer Jr. and W. E. Whitmore.  1991.  Seasonal forage 

production and regrowth of hard and soft red winter wheat.  Agronomy Journal.  83:533-

537 

Criswell J.  2005.  Small grains insect control suggestions. In 2005 OSU Extension 

Agents Handbook of Insect, Plant Disease, and Weed Control.  OSU Extension 

Publication E-832.  534 pp. 

Daniels, N. E.  1975.  Factors influencing greenbug infestations in irrigated winter wheat.  

Texas Agricultural Experiment Station Publication MP-1187, College Station, Texas, 

USA. 

Danks, H. V.  1978.  Modes of seasonal adaptation in insects. 1. Winter survival.  Can. 

Entomol.  110: 1167-1205. 

Dixon, A. F. G.  1985.  Aphid Ecology.  Chapman and Hall, New York.  157 pp. 

Duman, J. G. 1980.  Factors involved in the overwintering survival of the freeze tolerant 

beetle Dendroides canadensis.  J. Comp. Physiol.  136: 53-59.  

Duman, J. G., and K. L. Horwath.  1983  The role of haemolymph proteins in the cold 

tolerance of insects.  Ann. Rev. of Physiol.  45: 261-270. 

Eikenbary, R. D. and C. E. Rogers.  1974.  Importance of alternate hosts in 

establishment of introduced parasites.  Tall timbers conference on ecological animal 

control by habitat management.  Tallahassee, FL pp 119-133. 

Elliott, N. C., W. E. Riedell and B. W. Fuller.  1994a.  Yield on Spring Wheat in 

Relation to Level of Infestation by Greenbugs (Homoptera: Aphididae).  Can. Ent.  126: 

61-66. 



 30

Elliott, N. C., J. A. Webster and S. D. Kindler.  1994b.  Developmental response of 

Lysiphlebus testaceipes to temperature.  Southwestern Entomol. 24:1-4. 

Elliott, N.C., K.L. Giles, T.A. Royer, S.D. Kindler, D.B. Jones, and F.L. Tao.  2003a.  

The negative binomial distribution as a model for describing counts of greenbugs, 

Schizaphis graminum, on wheat.  Southwest. Entomol. 28(2):131-136. 

Elliott, N.C., K.L. Giles, T.A. Royer, S.D. Kindler, F.L. Tao, D.B. Jones, and G.W. 

Cuperus.  2003b.  Fixed precision sequential sampling plans for the greenbug and bird 

cherry-oat aphid (Homoptera: Aphdidae) in winter wheat in Oklahoma. J. Econ. Entomol. 

96(5):1585-1593. 

Elliott, N.C, Constein, K.L., Royer, T.R., Giles, K.L., Kindler, S.D. and Waits, D.A.  

2003c.  Greenbug Pest Management Decision Support System [Internet]. Agricultural 

Research Service, US Department of Agriculture. Available from: 

<http://www.ento.okstate.edu/gbweb/index.htm> [Accessed: 23 Sept, 2005] 

Eskafi, F. M., and E. F. Legner. 1974.  Fecundity, development and diapause in 

Hexacala sp. near websteri a parasite of Hippelates eye gnats.  Ann. Entomol. Soc. Am.  

67: 769-771.  

Flohn, H. 1969.  Climate and weather.  Weidenfeld and Nicolson, London.  

Gerloff, E. D. and E. E. Ortman.  1971. Physiological changes in barley induced by 

greenbug feeding stress.  Crop Sci. 11:174-176. 

Giles K. L., T. A. Royer, N. C. Elliott and S. D. Kindler.  2000.  Development and 

validation of a binomial sequential sampling plan for the greenbug (Homoptera: 

Aphididae) infesting winter wheat in the southern plains.  J. Econ. Entomol.  93(5): 1522-

1530. 



 31

Giles, K.L., D.B. Jones, T.A. Royer, N.C. Elliott, and S.D. Kindler. 2003. 

Development of a Sampling Plan in Winter Wheat that Estimates Cereal Aphid 

Parasitism Levels and Predicts Population Suppression. J. Econ. Entomol.   96(3):975-982. 

Giles, K. L., J. W. Dillwith, R. C. Berberet, and N. C. Elliott. 2005. Survival, 

development, and growth of Coccinella septempunctata fed Schizaphis graminum from 

resistant and susceptible winter wheat. Southwest. Entomol. 30: in press 

Fuentes-Granados, K. L. Giles, N. C. Elliott, and D. R. Porter.  2001.  Assessment of 

greenbug-resistant wheat germplasm on Lysiphebus testaceipes Cresson (Hymenoptera: 

Aphidiidae) oviposition and development in greenbug over two generations. Southwest. 

Entomol. 26: 187-194. 

Hardee, D. D., P. J. O’Brien, G. W. Elzen and G. L. Snodgrass.  1990.  Emergence 

and survival of the parasitoid Lysiphlebus testaceipes from Aphis gossypii exposed to 

aphicides.  Southwestern Entomologist 15(2): 211-216. 

Hare, D. J. 1992.  Effects of plant variation on herbivore-enemy interactions.  pp 278-

298 In Fritz, R. S. & Simms, E. L. (Eds) Plant resistance to herbivores and pathogens.  

University of Chicago Press. 

Henson, W. R., R. W. Stark, and W. G. Wellington. 1954.  Effects of the weather of 

the coldest month on winter mortality of the lodgepole needle miner, Recurvaria sp. In 

Banff National Park. Can. Entomol.  86: 13-19.  

Hofsvang, T., and E. B. Hägvar. 1977.  Cold storage tolerance and supercooling points 

of mummies of Ephedrus cerasicola Staŕy and Aphidius colemani Viereck (Hym: 

Aphidiidae).  Norw. J. Ent.  24: 1-6. 



 32

Holdaway, F. G., and A. C. Evans.  1930.  Parasitism, a stimulus to pupation: Alysia 

manducator in relation to the host Lucilia sericata.  Nature.  125: 598-599. 

Holling, C. S.  1959.  Some characteristics of simple types of predation and parasitism.  

Can. Ent.  91: 385-398.  

Hunter, S. J. and P. A. Glenn.  1909.  The greenbug and its enemies. Univ. Kans. Sci. 

Bull. 9: 221pp.  

Ismail, E.A., Giles K.L., Coburn, L., Royer, T.A., Hunger, R.M., Verchot, J., Horn, 

G.W., Krenzer, E.G., Peeper, T.F., Payton, M.E., Michels, G.J. Jr. and Owings, D.A.  

2003.  Effects of Aphids, Barley Yellow Dwarf, and Grassy Weeds in Grazed Winter 

Wheat. Southwest. entomol., 28, 121-130. 

Jackson, H. B., L. W. Coles, E. A. Woods, Jr. and R. D. Eikenbary.  1970.  Parasites 

reared from the greenbug and corn leaf aphid in Oklahoma in 1968 and 1969.  J. Econ. 

Entomol.  63:733-736. 

Jones D. B.  2001.  Natural enemy thresholds for greenbug, Schizaphis graminum 

Rondani, on winter wheat.  M. S. Thesis.  Oklahoma State University.  Stillwater, OK.  

114 p.  

Jones, D.B., K. L. Giles, R. C. Berberet, T.A. Royer, N. C. Elliott and M.E. Payton. 

2003. Functional responses of an introduced parasitoid and an indigenous parasitoid on 

greenbug at four temperatures. Environ. Entomol. 32(3):425-432. 

Jones, D.B., K.L. Giles, Y. Chen, And K.A. Shufran. 2005. Estimation of 

Hymenopteran Parasitism in Cereal Aphids Using Molecular Markers.  J. Econ. Entomol. 

98(1): 217-221. 



 33

Kieckhefer, R. W. and B. H. Kantack.  1988.  Yield losses in winter grains caused by 

cereal aphids (Homoptera: Aphididae) in South Dakota.  J. Econ. Entomol.  81: 317-321. 

Kieckhefer, R. W. and J. L. Gellner.  1992.  Yield losses in winter wheat caused by 

low-density cereal aphid populations.  Agron. J.  84:18-183. 

Kieckhefer B. W., N. C. Elliot, W. E. Riedell and B. W. Fuller.  1994.  Yield of spring 

wheat in relation to level of infestation by greenbugs (Homoptera: Aphididae).  Can. Ent.  

126: 61-66. 

Kindler, S. D., N. C. Elliott, T. A. Royer. K. L. Giles, F. Tao, and R. Fuentes. 2002.  

Effect of greenbugs on winter wheat yield. J. Econ. Entomol.  95:89-95. 

Kindler, S. D., N. C. Elliott, K. L. Giles, and T. A. Royer.  2003.  Economic injury 

level for the greenbug, Schizaphis graminum, in Oklahoma winter wheat.  Southwest. 

Entomol.  28:163-166. 

Knutson, A., E. P. Boring, III, G. J. Michels, Jr. and F. Gilstrap.  1993.  Biological 

control of insect pests in wheat.  TAM Extension Pub. B-5044.  12pp. 

Krenzer, G., R. Kochenower, R. Austin and C. Luper.  1999.  Grain yield from wheat 

variety trals 1998-1999.  Protection Technology - Crops.  11(18): 21pp.  Oklahoma 

Cooperative Extension Service.  

Krenzer, G.,R. Kochenower, R. Austin, and C. Luper. 2001. Fall forage yield  

from small grain trials 2000-2001. PT2001-1, 13(1):14pp. Oklahoma Cooperative 

Extension Service. 

Krenzer, G.,R. Kochenower, and R. Austin. 2002. Fall forage yield  

from small grain trials 2001-2002. PT2002-11, 14(11):14pp. Oklahoma Cooperative 

Extension Service. 



 34

Krenzer, G., R. B. Hunger, E. Smith, and B. Carver.  2004. Wheat Variety 

Comparisons Chart (Revised 2004) PT1997-17 (Revised), Vol. 9, No. 17 (Revised): 2pp.  

Oklahoma Cooperative Extension Service.  

Kring, T. J. and F. E. Gilstrap.  1983.  Within-field distribution of greenbug 

(Homoptera: Aphididae) and it's parasitoids in Texas winter wheat.  J. Econ. Entomol.  

76: 57-62. 

Kring, T. J. and F. E. Gilstrap.  1984.  Efficacy of the natural enemies of grain 

sorghum aphids (Homoptera: Aphididae).  J. Kans. Entomol. Soc.  57: 460-467. 

Kring, T. J., F. E. Gilstrap and G. J. Michels Jr.  1985.  Role of Indigenous 

Coccinellids in regulating greenbugs (Homoptera: Aphididae) on Texas Grain Sorghum.  

J. Econ. Entomol.  78:  269-273. 

Krombein, K. V., P. D. Hurd, D. C. Smith and B. D. Burks. (Eds.)  1979.  Catalog of 

Hymenoptera in America North of Mexico.  Smithsonian Institute Press, Washington. 

Lazar, M. D., W. D. Worrall, G. L. Peterson, K. B. Porter, L. W. Rooney, N. A. 

Tuleen, D. S. Marshall, M. E. McDaniel, and L. R. Nelson.  1998.  Registration of 

TAM 110 wheat. Crop Sci. 37: 1978-1979. 

Leather, S. R. 1980.  Egg survival in the bird cherry-oat aphid, Rhopalosiphum padi.  

Entomologia Experimentalis et Applicata.  27: 96-97. 

Leather, S. R., K. F. A. Walters, and J. S. Bale.  1993.  The Ecology of insect 

overwintering.  Cambridge University Press. Melbourne, Australia. 255p.  

Lee, R. E. 1991.  Principles of insect low temperature tolerance. In R. E. Lee and D. L. 

Denlinger [Eds.] Insects at Low Temperatue.  Chapman and Hall, New York. pp. 17-46. 



 35

Lee, R. E., A. Dommel, K. H. Joplin, and D. L. Denlinger. 1995. Cryobiology of the 

freeze-tolerant gall fly Eurosta solidaginis: Overwintering energetics and heat shock 

proteins.  Climate Res. 5: 61-67. 

Losey, J.E., and R.F. Denno.  1998.  The escape response of pea aphids to foliar-

foraging predators: factors affecting dropping behaviour.  Ecol. Entomol.  23: 53-61. 

Mackauer M, and P. Starý.  1967.  World Aphidiidae: Hym. Ichneumonoidea.  Le 

Francois. Paris. 

Mackay, J. R., and D. K. Mackay. 1974.  Snow cover and ground temperatures, Camy 

Island, NWT.  Arctic.  27: 289-297. 

Mansingh, A. 1971. Physiological classification of dormancies in insects.  Canadian 

Entomologist.  103: 983-1009. 

Massey, B.  1993.  Insects on small grains and their control.  Oklahoma Cooperative 

Extension Service No. 7176. 

Men, X. Y., G. E. Feng, N. Y. Erdal and M. N. Parajulee.  2004.  Evaluation of winter 

wheat as a potential relay crop for enhancing biological control of cotton aphids in 

seedling cotton. 

Metcalf, M. A. and R. A. Metcalf.  1993.  Useful and Destructive Insects: Their Habits 

and Control.  Fifth Edition. McGraw-Hill Inc. New York. 

Michels, G. J.  1986.  Graminaceous North American host plants of the greenbug with 

notes on biotypes.  Southwestern Entomol.  11:55-66. 

Mittler, T. E. and N. K. N. Gordner.  1991.  Variation between clones of Schizaphis 

graminum (Homoptera: Aphididae) in the photoperiodic induction of sexual morphs.  

Environ. Entomol.  20(2):433-440. 



 36

Miyazaki, M.  1987.  Forms and morphs of aphids.  In A. K. Minks and P. Harrewijn 

[eds.], World Crop Pests.  Aphids: Their Biology, Natural Enemies and Control.  Volume 

A.  Elsevier, New York.  450 pp. 

Moore, S. D.  1989.  Regulation of diapause by an insect parasitoid.  Ecol. Entomol.  14: 

93-98. 

Mukerji, M. K., and M. P. Braun. 1988.  Effect of low temperatures on mortality of 

grasshopper eggs (Orthroptera: Acrididae).  Can. Entomol.  120: 1147-1148. 

Niassy, A., J. D. Ryan and D. C. Peters.  1987.  Variations in feeding behavior, 

fecundity, and damage of biotypes B and E of Schizaphis graminum on three wheat 

genotypes.  Environ. Entomol.  16:1163-1168. 

Noetzel, D.  1994.  Revised aphid thresholds in small grains. Minnesota Agricultural 

Extension Service Publication.  13 pp. 

Painter, R. H.  1951.  Insect resistance in crop plants.  University of Kansas Press, 

Lawrence, Kansas. 

Parrish, D. S., and D. W. Davis.  1978.  Inhibition of diapause in Bathyplectes 

curculionis, a parasite of the alfalfa weevil.  Ann. Entomol. Soc. Am.  71: 103-107. 

Patrick C. D. and E. P Boring, III.  1990.  Managing insect and mite pests of Texas 

small grains.  TA&M Extension Publication # B-1251.  11 pp. 

Peckman, P. S. and G. E. Wilde.  1993.  Sublethal effects of permethrin on fecundity 

and longevity of Hippodamia convergens (Coleoptera: Coccinellidae).  J. Kansas 

Entomol. Soc.  66:361-364. 

Pergande, L.  1902.  The southern grain louse.  USDA Div. Entomol. Bull.  38 New 

Series: 7-19.  



 37

Peters, D. C., E. A. Wood Jr. and K. J. Starks.  1975.  Insecticide Resistance in 

Selections of the Greenbug.  J. Econ. Entomol.  68: 339-340. 

Peters, D. C., D. Kerns, G. Puterka and R. W. McNew.  1988.  Feeding behavior, 

development, and damage by biotypes B, C and E of Schizaphis graminum in wintermalt 

and post barley.  Environ. Entomol.  17:503-507. 

Pfadt, R. E..  1962.  Insect pests of small grains.  In, R. E. Pfadt (ed.), Fundamentals of 

Applied Entomology, pp. 213-248.  Macmillan Co., New York.  668pp. 

Pike, K. S. and R. L. Schaffner.  1985.  Development of autumn populations of cereal 

aphids, Rhopalosiphum padi (L.) and Schizaphis graminum (Rondani) (Homoptera: 

Aphididae) and their effects on winter wheat in Washington State.  J. Econ. Entomol. 78: 

676-680. 

Pike, K.S., P. Starý, T. Miller, G. Graf, D. Allison, L. Boydston, and R. Miller. 2000. 

Aphid parasitoids (Hymenoptera: Braconidae: Aphidiinae) of Northwest USA. 

Proceedings of the Entomological Society of Washington. 102:688-740. 

Porter, D. R., J. D. Burd, K. A. Shufran, J. A. Webster, and G. L. Teetes.  1997.   

Greenbug (Homoptera: Aphididae) biotypes:  selected by resistant cultivars or  

preadapted opportunists?  J. Econ. Entomol. 90:1055-1065. 

Redmon, L. A., E. G. Krenzer, Jr., D. J. Bernado and G. W. Horn.  1996.  Effect of 

wheat morphological stage at grazing termination on economic return.  Agron. J.  88: 94-

97. 

Rice M. E. and G. E. Wilde.  1988.  Experimental evaluation of predators and 

parasitoids in suppressing greenbugs (Homoptera: aphididae) in sorghum and wheat.  

Environ. Entomol.  17: 836-841. 



 38

Rondani, C.  1847.  Nuov. Ann. Sci. Bologna Ser. 2 vols 8,9. 

Royer, T. A., K. L. Giles and N. C. Elliott.  1998a.  Insects and mites on small grains.  

Oklahoma State University Extension Facts F-7176. 

Royer, T. A., K. L. Giles and N. C. Elliott.  1998b.  Small grain aphids in Oklahoma.  

Oklahoma State University Extension Facts F-7183. 

Royer, T. A., and E. G. Krenzer.  2000.  Wheat Management in Oklahoma: A 

Handbook for Oklahoma’s Wheat Industry.  Oklahoma State University Extension 

Publication E-831. 

Royer, T. A., K. L. Giles, and N. C. Elliott.  2001.  Developmental response of three 

geographic isolates of Lysiphlebus testaceipes (Hymenoptera: Aphidiidae) to 

temperatures. Environ. Entomol.  30: 637-641. 

Royer, T. A., K. L. Giles and N. C. Elliott.  2002a.  Glance ‘n go sampling for 

greenbugs in winter wheat.  Oklahoma State University Extension Facts L-306. 

Royer, T. A., K. L. Giles and N. C. Elliott.  2002b.  Glance ‘n go sampling for 

greenbugs in winter wheat.  Oklahoma State University Extension Facts L-307. 

Royer, T. A., K. L. Giles and N. C. Elliott.  2005a.  Glance ‘n go sampling for 

greenbugs in winter wheat.  Oklahoma State University Extension Facts L-306 (Revised). 

Royer, T. A., K. L. Giles and N. C. Elliott.  2005b.  Glance ‘n go sampling for 

greenbugs in winter wheat.  Oklahoma State University Extension Facts L-307 (Revised). 

Royer, T. A., K. L. Giles, T. Nyamanzi, R. M. Hunger, E. G. Krenzer, N. C. Elliott, 

S. D. Kindler, and M. Payton.  2005c.  Economic evaluation of the effects of planting 

date and application rate of imidacloprid for management of cereal aphids and barley 

yellow dwarf in winter wheat.  J. Econ. Entomol.  98:95-102. 



 39

Ruth, W. E., R. W. McNew, D. W. Caves and R. D. Eikenbary.  1975.  Greenbugs 

(Homoptera: Aphididae) forced from host plants by Lysiphlebus testaceipes 

(Hymenoptera: Braconidae).  Entomophaga.  20: 65-71. 

Salt, R. W.  1936.  Studies on the freezing process in insects.  Technical Bulletin, 

Minnesota Agricultural Experimental Station.  116: 1-41. 

Salt, R. W.  1961.  Principles of insect cold-hardiness.  Annual Review of Entomology. 

6: 55-74. 

Salto, C. E., R. D. Eikenbary and K. J. Starks.  1983.  Compatability of Lysiphlebus 

testaceipes (Hymenoptera: Braconidae) with greenbug (Homoptera: Aphididae) biotypes 

“C” and “E” reared on susceptible and resistant oat varieties.  Environ. Entomol.  12:603-

604. 

Saunders, D. S., D. Sutton, and R. A. Jarvis. 1970.  The effect of host species on 

diapause induction in Nasonia vitripennis.  J. Insect Physiol.  16: 405-416. 

Sekhar, P. S.  1957.  Mating, oviposition and discrimination of hosts by Aphidius 

testaceipes (Cres.) and Praon aguite Smithi primary parasites of aphids.  Ibid.  50: 370-

375.  

Sekhar, P. S.  1960.  Host relationships of Aphidius testaceipes (Cresson) and Praon 

aguti (Smith), primary parasites of aphids.  Can. J. Zoo.  38: 593-603. 

Shotkoski, F. A., Z. B. Mayo and L. L. Peters.  1990.  Induced Disulfoton resistance in 

greenbugs (Homoptera: Aphididae).  J. Econ. Entomol.  83: 2147-2152.  

Shufran, R. A., G. E. Wilde and P. E. Sloderbeck.  1993.  Current distribution of 

pesticide resistant greenbugs based on gel-electrophoresis, pp 10-12.  In Proceedings, 



 40

Greenbug Workshop and Symposium, Alberquerque, NM, February 9-10.  Cooperative 

Extension Service, New Mexico State University, Las Cruces. 

Shufran, R. A., G. E. Wilde and P. E. Sloderbeck.  1997.  Life history study of 

insecticide resistant and susceptible greenbug (Homoptera: Aphididae) strains.  J. Econ. 

Entomol.  90:1577-1583. 

Sloderbeck, P. E., M. A Chowdhury, L. J. DePew and L. L. Buschman.  1991.  

Greenbug (Homoptera: Aphididae) resistance to Parathion and Chlorpyrifos-Methyl.  J. 

Kans. Entomol. Soc.  64: 1-4. 

Sloderbeck, P. E.  1992.  Discovery of pesticide resistant greenbugs in Kansas.  In P. E. 

Sloderbeck (Comp.), Proceedings of the Greenbug Workshop, 4 February, Garden City, 

Kansas.  

Solomon, M. E.  1949.  The natural control of animal populations.  J. Animal Ecol.  18: 

1-45. 

Spencer, H.  1926.  Biology of the parasite and hyper parasites of aphids.  Ibid 19: 119-

157. 

Stark, R. W.  1959.  Climate in relation to winter mortality of the lodgepole needle 

miner, Recurvaria starki Free., in Canadian Rocky Mountain parks.  Can. J. of Zool. 37: 

753-761.   

Starks, K. J. and R. L. Burton.  1977.  Preventing Greenbug [Schizaphis Graminum] 

Outbreaks [Small Grains and Sorghum].  Leafl U S Dep Agric 309, Rev., 11 pp. 

Starý, P., J.P. Lyon, and F. Leclant. 1988. Biocontrol of aphids by the introduced 

Lysiphlebus testaceipes (Cress.) (Hym., Aphidiidae) in Mediterranean France. Journal of 

Applied Entomology. 105: 74-78. 



 41

Stern, V. M., R. F. Smith, R. van den Bosch and K. S. Hagen.  1959.  The integration 

of chemical and biological control of the spotted alfalfa aphid: the integrated control 

concept.  Hilgardia.  29(2): 81-102. 

Summy, K. R., F. E. Gilstrap and S. M. Corcoran. 1979.  Parasitization of greenbugs 

and corn leaf aphids in west Texas.  Southwestern Entomol.  4:176-180.  

Tauber, M. J., C. A. Tauber, J. R. Nechols, and J. J. Obrycki.  1983.  Seasonal 

activity of parasitoids: control by external, internal, and genetic factors.  In: V. K. Brown 

and I. Hodek [eds.] Diapause and life cycle strategies in insects.  Dr. W. Junk Publishers, 

The Hague.  pp. 87-108. 

Tauber, M. J., C. A. Tauber, J. R., and S. Masaki.  1986.  Seasonal adaptations of 

Insects.  Oxford University Press, New York. 

Teetes, G. L., C. A. Schaefer, J. R. Gipson, R. C. McIntyre and E. E. Latham.  1975.  

Greenbug resistance to organophophorus insecticides on the Texas high plains.  J. Econ. 

Entomol.  68:214-216. 

Thompson, J. D.  1990.  Varietal and clipping effects on seasonal forage distribution, 

grain yield and economic returns for winter wheat utilized as a dual purpose crop.  M.S. 

Thesis, Oklahoma State University, Stillwater, OK.  

Vali, G.  1995.  Principles of ice nucleation. In: R. E. Lee, G. J. Warren, and L. V. Gusta 

[eds.] Biological Ice Nucleation and its Applications. American Phytopathological 

Society.  St. Paul Minnesota.  pp. 1-28.   

van Alphen, J. J. M. and M. A. Jervis.  1996.  Foraging behaviour.  In: M. Jervis and 

N. Kidd (eds.), Insect Natural Enemies: Practical approaches to their study and 

evaluation.  Chapman and Hall, New York, New York. 



 42

van Emden, H. F.  1991.  The role of host plant resistance in insect pest mis-

management.  Bull. Entomol. Res.  81:123-126. 

van Emden, H. F.  1995.  Host plant-Aphidophaga interactions.  Agriculture, 

Ecosystems and Environment.  52:3-11. 

Wadley, F. M.  1931.  Ecology of Toxoptera graminum, especially as to factors affecting 

importance in the northern United States.  Ann., Entomol. Soc. Am.  24: 325-395. 

Walgenbach D. D., N. C. Elliot, R. W. Kieckhefer.  1988.  Constant and fluctuating 

temperature effects on developmental rates and life table statistics of the greenbug.  J. 

Econ. Entomol.  81: 501-507. 

Walker, A. L., D. G. Bottrell and J. R. Cate, Jr.  1973.  Hymenopterous parasites of 

biotype C greenbug in the high plains of Texas.  Ann. Entomol. Soc. Am.  66:173-176. 

Ward, S. A., S. R. Leather, and A. F. G. Dixon.  1984.  Temperature prediction and the 

timing of sex in aphids.  Oecologia.  62: 230-233. 

Webster, F. M. and W. J. Phillips. 1912.  The spring grain-aphid or “greenbug,” USDA 

Bur.  Entomol. Bull 110. 153 p. 

Webster, F. M. and W. J. Phillips. 1918.  Contribution to the knowledge of Toxoptera 

graminum in the South.  J. Agric. Res.  14(2):97-111.  

Webster, J. A. and K. J. Starks.  1987.  Fecundity of Schizaphis Graminum and 

Diuraphis Noxia (Homoptera: Aphididae) at Three Temperature Regimes.  J. Kans. 

Entomol. Soc.  60: 580-582. 

Webster, J. A.  1995.  Economic impact of the greenbug in the western United States: 

1992-1993.  Volume Publication No. 155.  Great Plains Agricultural Council, Stillwater, 

Oklahoma. 



 43

Wellington, W. G., and R. M. Trimble.  1984.  Weather.  In: C. B. Huffaker, and R. L. 

Rabb [eds.], Ecological entomology.  John Wiley & Sons Ltd. New York. pp. 400-425.  

Wood, E. A. Jr. and H. L. Chada.  1969.  Chemical control of the sorghum “greenbug,” 

Guymon, Oklahoma 1968.  Okla. Agr. Exp. Sta. Prog. Rep.  P-616.  4p. 

Wood, E. A. and K. J. Starks.  1975.  Incidence of paedogenesis in the greenbug.  

Environ. Entomol.  4(6):1001-1002 

Worrall, W. D. and E. C. Gilmore.  1985.  Forage production of small grains for the 

rolling plains.  Research Report MP-1584, Texas Agricultural Experiment Station.  

College Station, Texas.  

Wratten, S. D., A. D. Watt, N. Carter, and J. C. Entwhistle.  1990.  Economic 

consequences of pesticide use for grain aphid control on winter wheat in 1984 in 

England.  Crop Prot.  9: 73-78. 

Zachariassen, K. E., and H. T. Hammel.  1976.  Nucleating agents in the haemolymph 

of insects tolerant to freezing.  Nature.  262: 285-287. 

Zachariassen, K. E. 1980.  The role of polyols and nucleating agents in cold-hardy 

beetles.  J. Comp. Physiol.  140: 227-234.  

Zachariassen, K. E. 1982.  Nucleating agents in cold-hardy insects.  Comparative 

Biochemistry and physiology.  73A: 557-562. 

Zachariassen, K. E. 1985.  Physiology of cold tolerance in insects.  Physiological 

Reviews.  65:799-832. 

Zadocks, J. C., T. T. Chang, and C. F. Konzak.  1974.  A decimal code for the growth 

stages of cereals.  Weed Res.  14:415-421.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

44

Type II Functional Response

Host or Prey Density

# 
of

 P
re

y 
At

ta
ck

ed

Type I Functional Response

Host or Prey Density

# 
of

 P
re

y 
At

ta
ck

ed

Type III Functional Response

Host or Prey Density

# 
of

 P
re

y 
At

ta
ck

ed

Type IV Functional Response

Host or Prey Density

# 
of

 P
re

y 
At

ta
ck

ed

Figure 2.1.  The four types of functional response observed in predators and parasitoids.   
Y-axis label refers to number of hosts parasitized or consumed. 
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CHAPTER III 
 
 

SUPERCOOLING POINTS OF LYSIPHLEBUS TESTACEIPES AND 

ITS HOST SCHIZAPHIS GRAMINUM 
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Abstract 

Supercooling points (SCP) were measured for various life stages of male and 

female Lysiphlebus testaceipes (Cresson) parasitoids, along with mummies and its aphid 

host, Schizaphis graminum (Rondani).  Some parasitoids were acclimated (4 hours at 10º 

C before cooling down to the SCP) to determine if this could significantly lower the SCP. 

Acclimation did not improve SCPs for L. testaceipes. An inverse relationship between 

age of the adult parasitoid and its SCP was detected.  Non-acclimated male and female 

parasitoids older than 12h post-emergence spontaneously froze at the warmest mean 

temperatures (-20.32º C ± 1.32 SE and -22.55º C ± 0.62 SE respectively).  Younger 

female adult parasitoids (less than 6h post emergence) and mummies had mean SCPs 

below -26º C. Knowledge of SCPs for L. testaceipes and its host S. graminum help 

provide insights about their ability to successfully function throughout the winter in the 

Southern Great Plains. 



 

47  

Introduction 

Lysiphlebus testaceipes (Cresson) (Hymenoptera: Aphidiidae) is a nearctic 

parasitoid that attacks over 100 aphid species (Mackauer and Starý 1967, Starý et 

al.1988, Pike et al.2000).   It is an important parasitoid of cereal aphids in the Southern 

Great Plains and has been observed to suppress winter wheat (Triticum Aestivum L.) pests 

such as the greenbug, Schizaphis graminum (Rondani) (Homoptera: Aphididae) below 

economic injury levels  (Hight et al. 1972, Jones 2001, Giles et al. 2003). 

Climatic conditions in Oklahoma are relatively mild during the winter months of 

wheat growth (Table 3.1). In January, low temperatures average -3° C and highs average 

8° C in Oklahoma City (1973-2003; http://nndc.noaa.gov/).  This transitional area of the 

Great Plains, however, occasionally experiences dramatic drops in temperature with 

extremes reaching as low as -22° C (Table 3.1). When temperatures approach colder 

extremes in the Southern Great Plains, little is known about the relationship between L. 

testaceipes and its greenbug host. Predictability of L. testaceipes for regulating greenbug 

populations is dependent upon its survival during periods of potentially fatal cold winter 

weather. 

Insects exposed to temperatures below the melting point of their body fluid are in 

danger of being killed by a lethal freezing of that fluid (Salt 1961, Baust 1973, Block 

1995).  In general, one of two strategies enables insects to survive such extreme 

conditions.  They may be able to tolerate being in a frozen state, or they avoid freezing by 

various methods including supercooling their body fluids to a point below their actual 

melting point (Zachariassen 1985).  The supercooling point (SCP) of an insect can be 

lowered by a number of means, including; production of gylcerol and other antifreeze 
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compounds, dehydration of the insect, ingestion of certain substances, and or changes in 

fatty acids (Sømme 1982).  Supercooling points provide a basic indication about the 

coldest temperature extreme that an insect could survive (Salt 1961, Leather 1993).  

The objectives of this study were to (1) determine the supercooling points of 

various life stages of L. testaceipes and its greenbug host, and (2) determine whether 

conditioning at an intermediate temperature would significantly alter the SCP.  

Knowledge of these SCPs would indicate the coldest possible temperature extremes that 

L. testaceipes could survive and provide insights about population interactions with 

greenbugs during the winter. 

Materials and Methods 

Insect Preparation.  Wheat seed (cultivar ‘2137') was planted in 5cm diameter by 

20cm tall Ray Leach “conetainers™” (Stuewe & Sons Inc., Corvallis, Oregon) and grown 

for about 3 weeks.  A clear acetate tube cage (5cm diameter by 30cm tall) was then fitted 

around the top of the conetainer™ as previously described (Jones et al 2003).  In order to 

provide adequate ventilation, each cage had two holes in the sides covered with polyester 

fine mesh netting. 

Conetainers™ of wheat were infested with 25-50 3rd instar and older greenbugs 

from a previously described stock colony of biotype E greenbugs (Jones et al. 2003, 

2005). These greenbugs were allowed to settle overnight, after which 5 male/female pairs 

of L. testaceipes from previously described parasitoid colonies reared on wheat (Jones et 

al. 2003, 2005) were released into each conetainer™ cage. By limiting the number of 

greenbugs, the fitness of emerging parasitoids was not influenced by plant health 

(Fuentes-Granados et al. 2001).  Parasitized greenbugs were allowed to develop into 
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mummies, after which they were removed from the conetainer™, and placed individually 

into 1.5 ml microcentrifuge vials. Vials were kept at 22 ± 1 °C and a photoperiod of 

12:12 (L:D). Mummies were allocated such that some were available for mummy SCP 

analysis, or allowed to develop to provide adult L. testaceipes for adult SCP analysis.  

Measurement of Supercooling Point.  To measure the SCP, four thermocouple 

appliances were constructed (Fig. 3.1).  Each consisted of a 2.5 x 20 cm test tube, with a 

cork stopper. A 0.3 x 10 cm wooden dowel was placed in the center of the stopper so that 

it would hang down into the center of the test tube and provide a platform to place the 

insect specimen on.  A 1 m long copper-constantan standard gauge thermocouple wire 

was extended through the cork stopper and taped to the support dowel.  To the distal end 

of the standard gauge wire, a short length of ultra-fine copper wire was soldered to the 

end of the copper wire and the same procedure was performed to the constantan lead 

using constantan ultra-fine wire. The distal ends of the ultra-fine wires were twisted 

together and secured with a small drop of solder to create the temperature-measuring 

interface. 

Each insect specimen (greenbug, L. testaceipes mummy, or L. testaceipes adult) 

was placed singly onto the end of the wooden dowel along with a small drop of 

petroleum jelly to secure the insect.  The ultra-fine thermocouple was then placed in 

contact with the insect specimen and secured with more petroleum jelly.  The specimen 

was then centered into the test-tube. Each thermocouple was connected to a Sable 

Systems International TC-1000 thermocouple meter (Sable Systems International, 

Henderson, NV).  The TC-1000 meter self calibrated itself (< 0.2° C) against lab-grade 

internal standards when turned-on and at regular intervals while temperature 
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measurements were occurring.  Temperature measurements were relayed from the meter 

to a laptop computer via serial cable and were recorded to an ASCII text file.  Once 

connected, each test tube was placed, along with 3 other test tube-thermocouple 

preparations, inside a wrapping of foam insulation (~ 5 cm thick).  This is done to slow 

the cooling rate to about 1° C per minute.  This group of insulated test tubes was then 

placed into a Styrofoam box and surrounded with crushed dry ice. Temperature 

measurements were taken every 0.5 seconds until the exotherm associated with the latent 

heat of fusion is detected (Fig. 3.2).  The onset of the exotherm corresponds with the 

supercooling point for each specimen (Salt 1961).   

As insects were available, we determined mean SCPs for the greenbug host, L. 

testaceipes mummies (mummies consisted of greenbugs that had mummified within the 

previous 24h), freshly emerged adult parasitoids (less than 6h post-emergence males and 

females), and older parasitoids (greater than 12h post-emergence males and females).  

Minimums of 20 individual specimens were used to determine each mean SCP. 

Acclimation at an intermediate temperature for a few hours can improve the SCP 

due to changes in the insect's physiology (Sømme 1982, Lee 1991).  Most aphid 

parasitoids including L. testaceipes are polyvoltine as are their hosts including the 

greenbug and, as such, usually respond to day length and temperature as cues for the 

induction of diapause and diapause associated changes such as increased cold hardiness 

(Polgár and Hardee 2000).  To determine if acclimation significantly changed the 

supercooling point of L. testaceipes males, females, and mummies, these life stages were 

acclimated at an intermediate temperature of 10°C for four hours before measuring those 

SCPs.  Acclimation at 10°C was chosen because it represents the approximate average 
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daily temperature during November, prior to the onset of the coldest temperatures during 

December and January (Table 3.1).  Because L. testaceipes is a rather short lived 

parasitoid (personal observation), acclimation time was kept short at four hours. These 

acclimated adult parasitoids were categorized as being 6 to 10 h post emergence 

specimens.   

Statistical Analysis. An analysis of variance (ANOVA) was performed using 

PROC MIXED in PC SAS version 8.2 (SAS Institute 1999) to compare SCP's among 

specimens at a significance level of P = 0.05.  Student's t-test was used to compare 

differences in mean SCP across treatments. 

Voucher Specimens 

Voucher specimens of L. testaceipes adults, mummies and S. graminum adults 

were deposited in the Department of Entomology and Plant Pathology museum at 

Oklahoma State University in Stillwater. 
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Results and Discussion 

Mean supercooling points for all treatments ranged from –20.32º C for older male 

parasitoids to -26.33º C for mummies acclimated at 10º C (Table 3.2). There were 

significant differences across treatments (F8,218 = 8.72, P < 0.0001). Acclimated and non-

acclimated mummies, greenbug hosts and non-acclimated female L. testaceipes adults 

had the lowest mean SCPs, but were not significantly different from one another (df = 

218, t < 1.82, P > 0.07). This lack of significant difference in SCPs was not unexpected 

since parasitoid mummies and their hosts are closely related with respect to their body 

resources (Brodeur and Boivin 2004). These SCPs for greenbug and L. testaceipes are 

similar to similar species including other cereal aphids such as English grain aphid, 

Sitobion avenae (F.), aphid parasitoids Aphidius colemani Viereck, and Ephedrus 

cerasicola Staŕy and the whitefly parasitoid Eretmocerus eremicus (Rose & Zolnerowich) 

(Table 3.3). 

A general trend could be discerned that shows as the parasitoid ages, its ability to 

supercool is reduced (Fig. 3.3).  Supercooling points for older parasitoids were at 

significantly higher temperatures than all other treatments (Table 3.2).  Non-acclimated 

older male parasitoids (older than 12h post-emergence) spontaneously froze at the 

warmest mean temperature (-20.32º C ± 1.32).  Non-acclimated older female parasitoids 

(>12h post-emergence) had a significantly lower mean SCP of -22.55º C (df = 218, t = 

2.68, P = 0.008).  Additionally these two age groups had at least a three-fold larger range 

compared with any of the other age groups (Table 3.2). 

For many insects, acclimation for a short period of time at an intermediate 

temperature can significantly lower the SCP (Sømme 1982, Lee 1991).  We determined 
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that acclimation for four hours at 10º C had no significant effect on mean SCP for L. 

testaceipes mummies (-26.33 vs. -25.94º C; df = 218, t = 0.34, P = 0.73).  Additionally, 

there were no significant differences in mean SCP for acclimated and non-acclimated 

male L. testaceipes (-24.40 vs. -23.95º C; df = 218, t = 0.43, P = 0.66).  However, the 

mean SCP for acclimated female L. testaceipes was significantly warmer than for non-

acclimated females (-26.13 vs. -23.29º C; df = 218, t = 2.60, P = 0.01). 

The observation that acclimation did not significantly lower the SCP for L. 

testaceipes regardless of life stage (Table 3.2) indicated that either (1) no changes were 

taking place in the parasitoids that could enable them to withstand lower temperatures 

(Sømme 1982), or (2) our acclimation "treatment" of 10º C for four hours was 

insufficient to initiate such changes.  Additionally, the photoperiod was not changed in 

this experiment, and perhaps L. testaceipes needs a day length cue to alter its SCP.  

Acclimated adult parasitoids had SCPs that were intermediate to the non-acclimated 

adults (<6h post-emergence) and the older parasitoids (>12h post-emergence). These 

acclimated adult parasitoids were on average about 4 hours older than the freshly 

emerged parasitoids and at least 2 or more hours younger than the older parasitoids. If L. 

testaceipes is indeed able to significantly lower its SCP, other factors may be important, 

such as the physiological state of its host, or perhaps even the species of the host aphid 

(Polgár and Hardee 2000).  Progeny of Aphidius matricariae Haliday would not enter 

diapause if anholocyclic aphid species such as Aphis gossypii Glover and Myzus 

ascalonicus Doncaster were the host aphid.  But A. matricariae could enter diapause if 

they developed in apterous virginoparae of the holocyclic aphid species Myzus persicae 

Sulzer (Polgár and Hardee 2000). 
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Supercooling ability can often be attributed to the accumulation of cryoprotectant 

chemicals and/or the absence on ice nucleating agents (Lee 1991).  Sugars such as 

glucose, trehalose, and fructose and polyols such as glycerol, mannitol, and sorbitol are 

known to provide increased supercooling ability and are commonly found in insects 

(Sømme 1967, 1969, Tanno 1964, Block and Zettel 1980). Perhaps common sugars such 

as trehalose constitute a high percentage of L. testaceipes hemolymph and provide much 

of their supercooling ability. The depletion of this sugar or some other resource necessary 

for the parasitoid to live may be responsible for the SCP to be inversely related to the age 

of the parasitoid. Another possibility was that as the parasitoids aged, they accumulated 

ice-nucleating agents as a by-product of normal metabolic processes in their hemolymph 

allowing the parasitoids to freeze at warmer temperatures. 

In Oklahoma, parasitoids experience temperatures that range from ideal, to 

tolerable, to unsuitable, during the winter wheat growing season (Table 3.1). Based on 

these results, L. testaceipes could likely survive even the most extreme temperatures 

experienced in central Oklahoma (Table 3.1). However SCP is only an indication of how 

cold an organism can be before it freezes (Bale 1993).  The parasitoid may perish at 

much warmer temperatures or be rendered unable to function in a normal manner much 

in the same manner that the English grain aphid, a potential host of L. testaceipes, has a 

cold tolerance of -14.6º C, about 12º C above its SCP (Parish and Bale 1991). This 

situation is likely to occur for L. testaceipes in Oklahoma during rapid temperature 

decreases without protective snow cover.  

Lysiphlebus testaceipes is commonly found at latitudes that experience much 

colder temperatures than Oklahoma (Royer et al. 2001).  How these parasitoids survive 
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the winter at the colder latitudes has yet to be answered. Do these parasitoids survive the 

winter or do they immigrate in from more temperate regions each spring?  As yet we 

have no clear answers to this question.  If these parasitoids were able to overwinter in 

these colder climates perhaps they were protected by snowfall much in the same manner 

that snowfall insulates and protects over-wintering Colorado potato beetles (Milner et al. 

1992, Hoy 1998). Supercooling ability is only a base value that indicated what 

temperature L. testaceipes might be able to endure, more research is needed to answer the 

questions about temperatures and winter conditions L. testaceipes can survive in the field 

in Oklahoma.  
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Table 3.1. Table of temperatures in Celsius for Oklahoma City, Oklahoma (1973-2003) from the National Virtual Data 

System, part of the National Oceanic & Atmospheric Administration (NOAA) (http://nndc.noaa.gov/). 

September October November December January February March April 

High (normal) 29°C 23°C 16°C 10°C 8°C 12°C 17°C 22°C 

Low (normal) 17°C 11°C 3°C -2°C -3°C -1°C 4°C 9°C 

Maximum 42°C 36°C 31°C 30°C 27°C 33°C 34°C 38°C 

Minimum 2°C -9°C -12°C -22°C -20°C -19°C -16°C -7°C 
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Table 3.2.  Supercooling points for greenbug, Lysiphlebus testaceipes mummies, freshly emerged adults, older adults, and 

adults conditioned at 10°C. 

 

Species 

 

Acclimation 

 

Life stage 

 

Sex 

Mean SCP 

± SE (°C) 

 

n 

SCP range (°C) 

(max, min) 

Signifi-

cance 

L. testaceipes 4 h @10°C Mummy  NA -26.33 ± 0.20 19 -24.49,  -27.79 A 

L. testaceipes None Adult (< 6 h post emergence) Fem. -26.13 ± 0.31 22 -22.25,  -27.48 AB 

Greenbug None Adult  Fem. -25.98 ± 0.10 22 -25.03,  -26.76 ABC 

L. testaceipes None Mummy  NA -25.94 ± 0.18 20 -24.49,  -27.16 ABC 

L. testaceipes None Adult (< 6 h post emergence) Male -24.40 ± 0.45 27 -19.50,  -26.97    BCD 

L. testaceipes 4 h @10°C1 Adult (< 6 h post-emergence) Male -23.95 ± 0.50 20 -19.30,  -26.49      CDE 

L. testaceipes 4 h @10°C1 Adult (< 6 h post-emergence) Fem. -23.29 ± 0.61 20 -19.23,  -26.53         DE 

L. testaceipes None Adult (> 12 h post emergence) Fem. -22.55 ± 0.62 48 -9.29,  -26.74            E 

L. testaceipes None Adult (> 12 h post emergence) Male -20.32 ± 1.32 29 -5.40,  -27.26              F 

 

1Adult specimens that were acclimated for 4 h @ 10 are described in the text as being 6-10 h post-emergence. 
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Table 3.3. Coldest supercooling points  (SCPs) for adults of various aphid and parasitoid 

species. 

Species SCP (°C) Reference 

Lysiphlebus testaceipes Cresson -26.13 This paper 

Aphidius colemani Viereck -25.4 Hofsvang and Hägvar 1977 

Eretomocerus eremicus (Rose & 

Zolnerowich) 

-25.0 Tullett et al.  2004 

Ephedrus cerasicola Staŕy -26.1 Hofsvang and Hägvar 1977 

Schizaphis graminum (Rondani) -25.98 This paper 

Diurahpis noxia Mordiilko -24.9 Butts 1992 

Aphis glycenes Matsumura -24.9 McCornack et al. 2005 

Megoura crassicauda Mordvilko -24.5 Asai et al. 2002 

Myzus persicae (Sulzer) -24.2 Bale et al. 1988 

Sitobion avenae (F.) -24.2 Knight et al. 1986 

Acyrthosiphon pisum (Harris) -23.7 Asai et al. 2002 

Aphis fabae Scopoli   -23.6 O'Doherty 1986 

Elatobium abietinum (Walker) -15.7 Powell 1974 
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Fig. 3.1. Generalized diagram of supercooling point measuring equipment as used in this 

experiment.
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Fig. 3.2. Generalized plot illustrating the exotherm associated with the latent heat 

of fusion.  The onset of the exotherm corresponds with the supercooling point for 

each specimen (Salt 1961). 
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Fig. 3.3. Plot of supercooling points of Lysiphlebus testaceipes as related to adult 

parasitoid age (hours post-emergence from mummy).  
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CHAPTER IV 

 
 

COLD HARDINESS OF LYSIPHLEBUS TESTACEIPES 

 



 

74 

Abstract 

Lysiphlebus testaceipes (Cresson) mummies and adults were cooled for various periods 

of time to determine their cold hardiness at temperatures commonly experienced in the 

Southern Great Plains. Subsequently, surviving parasitoids were exposed to greenbug, 

Schizaphis graminum (Rondani) hosts, to determine whether the temperature extreme 

they survived adversely affected oviposition.  Lysiphlebus testaceipes females survived 

regimens that cooled the parasitoid to 2, -2, and -6°C for 12 h, however at -8°C, all L. 

testaceipes specimens perished.  Female parasitoids that survived cooling treatments 

were able to oviposit when warmed. Some L. testaceipes adults were able to survive up to 

21d at 5°C and oviposit successfully when warmed to 22°C, however no adults survived 

more than 7d at -6°C.  A few L. testaceipes mummies were observed to survive up to 67d 

at 5°C and 28d at -6°C and still oviposit successfully when warmed to 22°C.  These cold 

temperature survival abilities along with observations that parasitoids are actively 

foraging at cold winter temperatures in the field provide insights on how L. testaceipes, 

when it is present in sufficient numbers, is able to effectively prevent greenbug 

populations from increasing in winter wheat agro-ecosystems. 
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Introduction 
Lysiphlebus testaceipes (Cresson) (Hymenoptera: Aphidiidae), is a nearctic 

parasitoid that attacks over 100 aphid species, and is an important parasitoid of cereal 

aphids including the greenbug Schizaphis graminum (Rondani) (Homoptera: Aphididae), 

in the Southern Great Plains (Mackauer and Starý 1967, Krombein et al. 1979, Starý et 

al.1988, Pike et al.2000). This parasitoid has great potential for destroying large numbers 

of greenbugs (Jones 2001), and has become an important part of greenbug management 

programs in winter wheat, Triticum aestivum L. (Royer et al. 2002, 2005, Giles et al. 

2003, Jones et al. unpublished data).  

Lysiphlebus testaceipes has been found to provide control of greenbug and other 

small grain aphid populations on winter wheat from fall to spring in Oklahoma (Jones 

2001, Jones et al. 2003, Giles et al. 2003).  However these studies did not examine what 

effects cold winter temperatures (December to February) might have on the performance 

of this parasitoid.  Based on historical temperatures recorded at Oklahoma City, 

Oklahoma (National Virtual Data System, NOAA;  http://nndc.noaa.gov/), normal high 

and low temperatures during the wheat growing season range from -2°C in January to 

30°C in September with extremes of 43°C and -21°C (Table 4.1).  In order to understand 

interactions between greenbugs and L. testaceipes, it is necessary to describe parasitoid 

biology over the full range of these temperatures.  Much work has been done at warmer 

temperatures (above 10°C), yet relatively little has been studied when cold weather 

occurs. 

One very important question relative to predicting biological control of aphids in 

winter wheat has to do with the survivability (cold-hardiness) of L. testaceipes during 

winter months in Oklahoma.  That is, what are the temperature thresholds below which L. 
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testaceipes populations are unable to survive or are significantly reduced? Insects 

exposed to temperatures below the melting point of their body fluid are in danger of 

being killed by a lethal freezing of that fluid (Salt 1961, Baust 1973, Block 1995).  

Previous work has indicated that L. testaceipes adults and mummies can supercool to 

about -26° C (Jones et al. unpublished data). However, supercooling ability is not 

necessarily the best indication of what temperature extremes an insect can survive (Bale 

1987).  This question about cold-hardiness can be addressed by determining the 

temperature required to kill 50 percent of the population for a constant time period 

(LTemp50), and the time required to kill 50 percent of the population at a constant low 

temperature (LTime50; Salt 1950, Leather et al. 1993).  Simple survival of a female 

parasitoid is not the only issue of importance.  The question of “functional” survivability 

must be considered.  This is important because the female parasitoid not only has to 

survive the cold temperature, but must also be able to function and reproduce afterward.  

Additionally life stage may be important for survival.  It is not currently known which 

life stage of L. testaceipes is best suited for cold temperature survival.  Parasitoids in the 

adult stage are necessary for reproduction to occur, however the pupal or larval stage may 

be more important for L. testaceipes to persist throughout the winter months in the 

Southern Great Plains.  

The objectives of this research were;  

1) Determine minimum temperatures which L testaceipes adults and mummies (pupal 

stage) could survive for 12 hours and what temperature was lethal to 50% of the 

specimens (LTemp50).   
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2) Determine how long (LTime50) L. testaceipes adults and mummies could survive at 

5°C (just below the developmental threshold temperature for L. testaceipes) and at the 

LTemp50 temperature (-6°C ) for L. testaceipes. 

3) Examine the ability of parasitoids to reproduce after exposure to cold temperatures. 

Materials and Methods 

Greenbug and Parasitoid Colonies.  Biotype “E” greenbugs colonies were 

maintained as previously described (Jones et al. 2003, 2005) on wheat (cv ‘2137') grown 

in a fritted clay and sphagnum moss mixture.  Lysiphlebus testaceipes colonies were also 

maintained as previously described (Jones et al. 2003, 2005). Wheat (cv ‘2137') grown in 

5 cm diameter by 20 cm tall Ray Leach “conetainers™” (Stuewe & Sons Inc., Corvallis, 

Oregon) was infested with 25-35 3rd instar and older greenbugs from the wheat stock 

colony (Jones et al 2003). This was done to ensure that parasitoids of known age (± 12h) 

developed in greenbugs reared on wheat. Limiting the number of greenbugs helped 

ensure that the fitness of emerging parasitoids was not influenced by plant health 

(Fuentes-Granados et al. 2001). These greenbugs were allowed to settle overnight, after 

which 5 male/female pairs of L. testaceipes parasitoids were released into each 

conetainer™ cage. After several days, parasitized greenbugs developed into mummies.  

Cages were inspected daily for mummies that were removed and placed individually into 

1.5 ml microcentrifuge vials. These mummies were used immediately for evaluations 

requiring mummies or were allowed to develop at 22°C with a photo-period of 12:12 

(L:D) into adult parasitoids for evaluations requiring adults.  

Twelve Hour Cold Hardiness of Adult L. testaceipes.  Adult L. testaceipes 

parasitoids targeted for evaluations were placed as pairs (male/female) into 1.5ml micro 
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centrifuge tubes immediately after emerging.  These parasitoids were then placed into an 

environmental chamber and cooled from 22°C at 4°C drops in temperature, every two 

hours, by manually resetting the chamber temperature, until a defined temperature of 2, -

2, -6, or -8°C was attained.  Once the desired minimum temperature was attained the 

parasitoid pairs were maintained at that temperature for 12h, after which temperatures 

were increased 4°C every 2h until the chamber was at 22°C again.  After being returned 

to 22°C, individual female parasitoids were placed into a large test tube (2.5 x 20 cm) 

with 10 greenbugs on a wheat seedling grown in a 1.5 ml micro centrifuge tube.  The 

parasitoids were allowed to interact with greenbugs for 24 h, before they were removed.  

These greenbugs were reared in the test tube at room temperature (about 22° C) for three 

days and were dissected to determine parasitism and the number of eggs oviposited by 

the subject parasitoid (Jones et al. 2003).  Fifty pairs of L. testaceipes adults (as three 

replications of 17, 17, and 16 pairs for each replication) were evaluated at each 

temperature.  

Twelve Hour Cold Hardiness of L. testaceipes Mummies.  Recently 

mummified greenbugs parasitized by L. testaceipes were placed singly into 1.5 ml micro 

centrifuge tubes and then placed into an environmental chamber. These mummies were 

then assigned to the same cold regimen treatments described for L. testaceipes adults. 

Once the cold cycles were completed, mummies were then held at 22°C (12:12 L:D) until 

they emerged as adults.  Newly emerged female parasitoids were then paired up with a 

male and exposed to 10 greenbug hosts in test tubes (as previously described) for 24h.  

Greenbug hosts were dissected three days later to determine successful oviposition. A 
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total of one hundred mummies in replications of 33, 33 and 34 L. testaceipes mummies 

were evaluated at each temperature.  

Long Term Cold Hardiness of L. testaceipes Adults.  Lysiphlebus testaceipes 

mummies (in 1.5 ml microcentrifuge tubes) were placed into an environmental chamber 

at 22° C to allow development into adults.  Within 12 h after emergence, one hundred of 

these parasitoids (50 male and 50 female) were then placed individually in 1.5 ml 

microcentrifuge tubes into another environmental chamber and cooled from 22 to 5°C 

(just below the developmental threshold for L. testaceipes) in steps of 4°C every 2h (the 

last step was 3°C).  Parasitoids were removed from the chamber at intervals of 1, 2, 3, 7, 

9, 12, 14, 16, 19, 21, and 22 days, briefly examined (10 microcentrifuge tubes at a time), 

and replaced into the chamber to determine survival. A total of three replications of 100 

newly emerged adult parasitoids each were evaluated for survival at 5°C.  Adult 

parasitoids cooled to 5°C were not assayed for ovipositional ability since the same 

individuals were followed over time until each one died making oviposition observations 

impossible. 

Another 200 L. testaceipes adults (100 females and 100 males) were cooled 

stepwise as previously described to the approximate LTemp50 (-6°C) of adult L. 

testaceipes. At intervals of 1, 2, 3, 4, 5, and 6 days after being cooled, 16 or 17 males and 

an additional 16 or 17 females were removed from the incubator.  Survival of each 

parasitoid was recorded, after which surviving female parasitoids were paired with a male 

parasitoid and evaluated for ovipositional ability as previously described.  Three 

replication of this procedure were made such that a total of one hundred parasitoids (50 



 

80 

male and 50 female) were evaluated (2 replications of 16 males and 16 females and a 

third replication of 17 males and 17 females) for each time interval.   

Long Term Cold Hardiness of L. testaceipes Mummies.  To evaluate the length 

of time that L. testaceipes mummies could survive when cooled, groups of newly formed 

mummies (mummy cohorts ranged from 16 mummies to 258 mummies) were cooled to 

5°C for 1, 2, 3, 7, 9, 12, 14, 16, 27, 35, 47, 49, 67, or 68 days.  For each time period a 

minimum of 50 mummies were evaluated, whether by repetition of small cohorts or by a 

single large cohort. Additional  groups of mummies (33 to 41 mummies), were cooled 

stepwise to -6°C and maintained for 1, 2, 7, 14, 21, or 28 days (Table 4.2).  When each 

group of mummies were removed from the environmental chamber, the mummies were 

warmed to 22°C and held for several days to allow development into adults.  Surviving 

parasitoids were then sexed, paired to allow mating and then evaluated for oviposition 

ability as previously described.    

Field Observations.  In order to verify that L. testaceipes is indeed able to 

survive Oklahoma winter temperatures and is active during the wheat growing season, 

sentinel plants infested with greenbugs were used to determine whether parasitoids were 

ovipositing in a local wheat field during 2003-2004.  These sentinel plants were prepared 

by taking wheat grown in a conetainer™ as described above, and infesting it with 25-30 

greenbugs without regard to greenbug age.  The greenbug-infested conetainer™ was then 

placed into a growth chamber and cooled to 5°C for 24h to help lessen the possible shock 

of transferring greenbugs reared at 22°C into the field where temperatures could drop 

below 0°C.  Eight sentinel plants were placed in the ground (still in the conetainer™), 
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and spaced 30m apart along a transect across a 40 ha wheat field in Payne County, 

Oklahoma.   

Sentinel plants were placed in the field from 1 December 2003 until 18 March 

2004. Each group of sentinel plants was left in the field for 14d after which each was 

replaced by a fresh plant. Collected sentinel plants were each caged inside a 5cm by 

30cm tall acetate tube that had two mesh windows in the side and a mesh top for 

ventilation and then returned to the laboratory.  Each plant was then maintained for seven 

days at 22°C (12:12 L:D) to allow parasitoids that may be present to develop into 

mummies.  Mummies were removed every 24h, placed into a 1.5ml microcentrifuge tube 

and then reared at 22°C until adult emergence. Adult parasitoids were then identified to 

species using a parasitoid key developed by Pike et al. (1997).  Temperature data were 

obtained from the Oklahoma Mesonet (http://www.mesonet.org). 

Statistical Analysis. An analysis of variance (ANOVA) was performed using 

PROC MIXED in PC SAS version 8.2 (SAS Institute 1999) to determine differences in 

survival for adults and mummies for each temperature and time period.  ANOVA was 

also used to analyze ovipositional data at a significance level of P = 0.05.  SAS PROC 

PROBIT was used to determine LTime50 and LTemp50 values. 

Voucher Specimens. Voucher specimens of L. testaceipes adults, mummies and 

S. graminum adults were deposited in the Department of Entomology and Plant 

Pathology museum at Oklahoma State University in Stillwater. 
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Results and Discussion 

Twelve Hour Cold Hardiness of L. testaceipes Adults and Mummies.  About 

74% of male and female L. testaceipes survived being cooled to 2°C for 12 h (Table 4.2). 

At -2°C and -6°C survivorship declined to 66.8 and 49.4% respectively.  When L 

testaceipes adults were cooled to -8°C for 12h, all specimens perished.  From this data, 

the LTemp50 was determined to be about -6°C for L. testaceipes adults. Of the surviving 

female parasitoids 70.5% oviposited a mean of 12.0 eggs per female at 2°C.  At -2°C, 

75.0% of surviving female parasitoids oviposited a mean of 10.4 eggs per female 

parasitoid, and 87.2% of surviving female parasitoids at -6°C oviposited a mean of 6.4 

eggs (Table 4.2). 

Eighty-five percent of L. testaceipes mummies survived 2°C for 12h with 44% of 

the adult females that emerged from the surviving mummies ovipositing a mean of 6.9 

eggs per parasitoid.  Survival dropped to 80% for mummies cooled to -2°C, with 40% of 

the emerged females ovipositing a mean of 6.4 eggs per parasitoid.  Sixty-seven percent 

of mummies survived being cooled to -6°C, with 35% of the emerged females 

ovipositing a mean of 6.8 eggs per parasitoid.  All mummies that were cooled to -8°C for 

12h perished (Table 4.2). Because 67% of the mummies survived being cooled to -6°C, 

but none survived being cooled to -8°C, and no temperatures were tested in between 

those temperatures, PROC PROBIT was unable to determine the LTemp50 with any 

precision. Therefore all we can declare is that the LTemp50 was between -6 and -8°C for 

L. testaceipes mummies. 

There may be a direct relationship between the 12h temperature treatment and the 

mean number of eggs that adult L. testaceipes oviposited (Table 4.2).  A possible reason 
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for this might be that more body resources were utilized at the colder temperatures than 

were utilized at the warmer temperatures. However, L. testaceipes oviposition rates for 

females cooled for longer periods of time did not have a detectable trend (Table 4.3).  

The presence of a trend in oviposition rates for females in the 12h study was more likely 

a false trend that would not be seen if the 12h study were conducted with a larger cohort 

of parasitoids.  

Long Term Cold Hardiness of L. testaceipes Adults and Mummies.  At 5°C, a 

few L. testaceipes mummies were able to survive at least 67 days and the emerging 

females were able to oviposit successfully (less than 0.2 greenbugs per parasitoid; Table 

4.4), though at a much reduced rate (<0.2 eggs per female) (Table 4.3).  The majority of 

the mummies cooled to 5°C were able to survive at least 16d with the LTime50 being 

calculated at about 683.9h or approximately 28.5d (Tables 4.5 and 4.6).  When L. 

testaceipes mummies were cooled to -6°C, survival was somewhat reduced compared to 

mummies cooled to 5°C.  LTime50 was determined to be 300.8h or approximately 12.5d.  

However some individual specimens were viable after 28d (Table 4.5) parasitizing a 

mean of 4.0 greenbugs per emerging female (Table 4.4) with a mean of 11.3 eggs per 

female (Table 4.3).  

Lysiphlebus testaceipes adults were only able to survive a maximum of one week 

at -6°C (Table 4.5). The LTime50 was 66.8h (Table 4.6).  Adults that survived -6°C 

oviposited a mean of 3.8 eggs per female into a mean of 2.4 greenbugs after 4 days, up to 

5.8 eggs per female into a mean of 2.7 greenbugs after only 2 days (Tables 4.3 and 4.5).  

When adult parasitoids were cooled to 5°C, 2.3% were able to survive at least 21 days.  

At 5°C, it took 250.2h or approximately 10.4d for 50% of the specimens to perish (Table 
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4.6).  Lysiphlebus testaceipes adults chilled to 5°C were not assayed for ovipositional 

ability because individual parasitoids were followed over time until each one died, thus 

oviposition observations were not possible. 

Sentinel Plants.  Lysiphlebus testaceipes were collected on sentinel plants 

throughout the collection period from 1 December 2003 until cessation of collections on 

18 March 2004 (Fig. 4.1).  Numbers of L. testaceipes collected did not follow the 

seasonal decrease in temperature, but rather increased until 2 March 2004 after which 

collections declined (Fig. 4.1).  Additionally, while it was determined that exposure to -

8°C killed 100% of L. testaceipes mummies and adults in the laboratory, L. testaceipes 

was active in the field though out the winter even though the ambient temperature 

dropped below -8°C many times (Fig. 4.1). This was probably due to some parasitoids 

being in various protected microclimates within the wheat field that enabled them to 

survive these lethal low temperatures (Leather et al. 1993).  These microclimates include 

being sheltered by vegetation, temperature inversions, snow cover, hiding under the soil 

surface, inclination, and possibly other factors that affect local conditions (Flohn 1969, 

Danks 1978, Wellington and Trimble 1984). 

These results compare well with Archer et al. (1973, 1974) who performed cold 

storage studies on L. testaceipes.  They found that L. testaceipes mummies could survive 

up to 90d at 1.7 and 4.4°C, while adults only survived 21days.  We found that L. 

testaceipes can survive as a mummy for over 68d at 5°C and over 28d at -6°C.  

Additionally L. testaceipes adults can survive over 21d at 5°C, but are limited to less than 

7d at -6°C (Table 4.5).  However -8°C was lethal to both adults and immature L. 

testaceipes in the laboratory.  
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Because Lysiphlebus testaceipes can survive for such long periods of time at these 

cold temperatures, it is well suited for life in the Southern Great Plains.  Temperatures in 

the Oklahoma City, OK area, which should be representative of the Southern Great 

Plains, drop below the -8°C temperature that caused 100% mortality for L. testaceipes in 

the laboratory.  However, these minimums occur for only short periods of time, with the 

ambient temperature frequently exceeding the developmental threshold of L. testaceipes 

(6.6°C; Royer et al. 2001) most days (Table 4.1, Fig. 4.1).  

Because temperatures are frequently warmer than the developmental threshold, 

and the parasitoid can complete a life cycle even during the coldest month, L. testaceipes 

should not need to enter diapause to overwinter in the Southern Great Plains. 

Additionally, sentinel plant data demonstrate that even when the temperature drops below 

-8°C, there are a number of L. testaceipes parasitoids that are able to find protected 

locations that enable them to survive the lethal temperatures.  When the temperatures 

near the developmental threshold, L. testaceipes development slows and their life cycle is 

considerably lengthened (Royer et al. 2001).  Additionally, in most winters in the 

Southern Great Plains, there are many aphid hosts available (personal observation) to 

utilize for the next generation. In colder regions of the Great Plains, L. testaceipes may 

yet enter diapause to survive the winter since aphid hosts are scarcer, but there is no data 

yet to support this possibility. This ability to survive cold temperatures as adults and 

mummies, and successfully attack greenbugs and other cereal aphids throughout the 

winter months may explain why this parasitoid has been capable of providing biological 

control of greenbug and other cereal aphids in winter wheat in the Southern Great Plains.   
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Table 4.1. Table of temperatures in Celsius for Oklahoma City, Oklahoma (1973-2003) from the National Virtual Data 

System, part of the National Oceanic & Atmospheric Administration (NOAA) (http://nndc.noaa.gov/). 

September October November December January February March April 

High (normal) 29°C 23°C 16°C 10°C 8°C 12°C 17°C 22°C 

Low (normal) 17°C 11°C 3°C -2°C -3°C -1°C 4°C 9°C 

Maximum 42°C 36°C 31°C 30°C 27°C 33°C 34°C 38°C 

Minimum 2°C -9°C -12°C -22°C -20°C -19°C -16°C -7°C 
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Table 4.2. Survival of L. testaceipes cooled stepwise from 22°C to 2, -2, -6, and -8°C for 12 hours, along with mean percent of 

females ovipositing when exposed to 10 greenbugs after being warmed stepwise back to 22°C. 

Mean Percent Survival Life 

Stage 

Exposure 

(hours) 

 

Temp. 

Number of  

Parasitoids Male Female Pooled 

Mean Percent of 

Females Ovipositing 

Mummy 12 h 2°C 100 mummies 34% 51% 85% 70.5% (6.9(1) ) 

 12 h -2°C 100 mummies 36% 44% 80% 75.0% (6.4(1) ) 

 12 h -6°C 100 mummies 28% 39% 67% 87.2% (6.8(1) ) 

 12 h -8°C 100 mummies NA NA 0% 0.0% 

Adult 12 h 2°C 50 male: 50 Female 70.8% a 77.3% a 74.0% a 97.3% (12.0(1) ) 

 12 h -2°C 50 male: 50 Female 65.1% a 68.5% a 66.8% a 97.0% (10.4(1) ) 

 12 h -6°C 50 male: 50 Female 44.7% b 54.1% b 49.4% b 82.9% (6.4(1) ) 

 12 h -8°C 50 male: 50 Female 0.00% c 0.00% c 0.00% c 0.0% 

(1) Mean eggs laid per female parasitoid 
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Table 4.3. Total eggs oviposited by Lysiphlebus testaceipes females ± SE, after being cooled to 5, and -6°C for various periods 

of time (means within the same column followed by the same letter are not significantly different from each other at P = 0.05). 

 Life Stage and Temperature 

 Mummies Adults 

Time 5°C -6°C 5°C  -6°C  

24 (1d) 4.7 ± 0.3 bcd(1) 3.0 ± NA a(7) NA 4.9 ± 0.8 a(13) 

48 (2d) 5.3 ± 1.9 bc(1) 2.2 ± NA a(8) NA 5.8 ± 1.0 a(13) 

72 (3d) 4.4 ±  1.2 bcd(1)  NA 5.3 ± 0.6 a(13) 

96 (4d)    3.8 ± 0.6 a(13) 

120 (5d)    4.7 ± 0.3 a(13) 

144 (6d)    0.0 ± 0.0 a(13) 

168 (7d) 6.4 ± 1.4 ab(1) 5.1 ± NA a(9) NA  

216 (9d) 9.6 ± 1.6 a(1)  NA  
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288 (12d) 6.9 ± 1.0 ab(1)  NA  

336 (14d) 7.5 ± 0.3 ab(1) 9.0 ± NA a(10) NA  

384 (16d) 7.6 ± 0.1ab(2)  NA  

456 (19d)   NA  

504 (21d)  7.4 ± NA a(11) NA  

648 (27d) 8.3 ± NA ab(3)    

672 (28d)  11.3 ± NA a(12)   

840 (35d) 7.3 ± NA ab(4)    

1128(47d) 1.0 ± NA cd(5)    

>1600 (67d) <0.2 ± NA d(6)    

 

 (1) Three repetitions of 17, 17, and 16 mummies for a total of 50 mummies. 

(2) One repetition of 258 mummies. 
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(3) One repetition of 159 mummies. 

(4) One repetition of 229 mummies. 

(5) One repetition of 140 mummies. 

(6) One repetition of 226 mummies. 

(7) One repetition of 41 mummies. 

(8) One repetition of 33 mummies. 

(9) One repetition of 37 mummies. 

(10) One repetition of 36 mummies. 

(11) One repetition of 39 mummies. 

(12) One repetition of 35 mummies. 

 (13) Three repetitions of 17, 17, and 16 parasitoids of each sex for a total of 50 males and 50 females. 
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Table 4.4. Greenbugs parasitized by Lysiphlebus testaceipes females ± SE, after being cooled to 5, and -6°C for various 

periods of time (means within the same column followed by the same letter are not significantly different from each other at P 

= 0.05). 

 Life Stage and Temperature 

 Mummies Adults 

Time 5°C -6°C 5°C  -6°C  

24 (1d) 2.8 ± 0.3 ab(1) 1.4 ± NA a(7) NA 2.6 ± 0.5 a(13) 

48 (2d) 2.7 ± 0.8 ab(1) 0.5 ± NA a(8) NA 2.7 ± 0.4 a(13) 

72 (3d) 2.5 ±  0.1 b(1)  NA 2.9 ± 0.1 a(13) 

96 (4d)    2.4 ± 0.8 a(13) 

120 (5d)    4.2 ± 0.2 a(13) 

144 (6d)    0.0 ± 0.0 a(13) 

168 (7d) 3.9 ± 0.6 ab(1) 1.7 ± NA a(9) NA  
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216 (9d) 4.2 ± 0.2 a(1)  NA  

288 (12d) 3.6 ± 0.3 ab(1)  NA  

336 (14d) 4.2 ± 0.2 a(1) 3.0 ± NA a(10) NA  

384 (16d) 3.7 ± 0.3 ab(2)  NA  

456 (19d)   NA  

504 (21d)  2.9 ± NA a(11) NA  

648 (27d) 4.4 ± NA a(3)    

672 (28d)  4.0 ± NA a(12)   

840 (35d) 3.9 ± NA ab(4)    

1128(47d) 1.0 ± NA b(5)    

>1600 (67d) <0.2 ± NA c(6)    

 

 (1) Three repetitions of 17, 17, and 16 mummies for a total of 50 mummies. 
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(2) One repetition of 258 mummies. 

(3) One repetition of 159 mummies. 

(4) One repetition of 229 mummies. 

(5) One repetition of 140 mummies. 

(6) One repetition of 226 mummies. 

(7) One repetition of 41 mummies. 

(8) One repetition of 33 mummies. 

(9) One repetition of 37 mummies. 

(10) One repetition of 36 mummies. 

(11) One repetition of 39 mummies. 

(12) One repetition of 35 mummies. 

 (13) Three repetitions of 17, 17, and 16 parasitoids of each sex for a total of 50 males and 50 females. 
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Table 4.5. Long term percentage survival for Lysiphlebus testaceipes ± SE, cooled to 5, and -6°C for various periods of time 

(means within the same column followed by the same letter are not significantly different from each other at P = 0.05). 

 Life Stage and Temperature 

 Mummies Adults 

Time 5°C -6°C 5°C  -6°C  

24 (1d) 94.0% ± 3.4 ab (1) 61.9% ± 7.6 ab (7) 96.7% (13) 75.7% ± 3.1 a (14) 

48 (2d) 96.0% ± 2.8 a (1) 82.4% ± 6.6 a (8) 89.0% (13) 81.6% ± 3.2 a (14) 

72 (3d) 90.0% ±  4.3 bcd (1)  81.0% (13) 49.1% ± 2.3 b (14) 

96 (4d)    21.9% ± 3.1 c (14) 

120 (5d)    9.1% ± 2.7 d (14) 

144 (6d)    0.00% ± 0.0 e (14) 

168 (7d) 84.0% ± 5.2 cde (1) 52.6% ± 8.2 ab (9) 72.3% (13)  

216 (9d) 94.0% ± 3.4 abc(1)  54.7% (13)  
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288 (12d) 82.0% ± 5.5 de (1)  45.3% (13)  

336 (14d) 76.0% ± 6.1 e (1) 37.8% ± 8.1 bc (10) 33.3% (13)  

384 (16d) 85.3% ± 2.2 e (2)  21.7% (13)  

456 (19d)   11.7% (13)  

504 (21d)  37.5% ± 7.8 bc (11) 2.3% (13)  

648 (27d) 55.9% ± 6.5 f (3)    

672 (28d)  8.3% ± 4.7 c (12)   

840 (35d) 41.9% ± 3.3 f (4)    

1128(47d) 1.4% ± 1.0 g (5)    

>1600 (67d) <2.4% ± 1.7 g (6)    

 

 (1) Three repetitions of 17, 17, and 16 mummies for a total of 50 mummies. 

(2) One repetition of 258 mummies. 
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(3) One repetition of 159 mummies. 

(4) One repetition of 229 mummies. 

(5) One repetition of 140 mummies. 

(6) One repetition of 226 mummies. 

(7) One repetition of 41 mummies. 

(8) One repetition of 33 mummies. 

(9) One repetition of 37 mummies. 

(10) One repetition of 36 mummies. 

 (11) One repetition of 39 mummies. 

(12) One repetition of 35 mummies. 

(13) Three cohorts of 100 adult L. testaceipes parasitoids examined every day or two until no parasitoids survive. 

(14) Three repetitions of 17, 17, and 16 parasitoids of each sex for a total of 50 males and 50 females.
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Table 4.6. Time required to kill 50% of Lysiphlebus testaceipes population (LTime50) ± 

95% confidence interval as determined by SAS PROC PROBIT. 

Life Stage and Temperature 

Mummies Adults 

5°C -6°C 5°C -6°C 

683.9 h ± 31.7 (1) 300.8 h ± 49.0 (2) 250.2 h ± 7.8 (3) 66.8 h ± 5.2 (4) 
 

(1) df = 1, X2 = 482.8, P < 0.0001 
(2) df = 1, X2 = 79.6, P < 0.0001 
(3) df = 1, X2 = 1240.2, P < 0.0001 
(4) df = 1, X2 = 186.8, P < 0.0001
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Fig. 4.1. Sentinel plant collections of parasitoids from a winter wheat field in Payne 

County Oklahoma for December 2003 through March 2004 (bar graph) superimposed on 

a plot of minimum and maximum temperatures for Stillwater, Oklahoma obtained from 

the Oklahoma Mesonet.  All parasitoids collected were Lysiphlebus testaceipes except for 

four hyperparasitoids collected on 18 March 2004.
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CHAPTER V 
 
 

PARASITISM OF GREENBUG, SCHIZAPHIS GRAMINUM, BY THE 

PARASITOID LYSIPHLEBUS TESTACEIPES, AT WINTER TEMPERATURES
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Abstract  
Functional responses by Lysiphlebus testaceipes (Cresson), a common parasitoid of small 

grain aphids, on greenbug, Schizaphis graminum (Rondani), were measured at seven 

temperatures (14, 12, 10, 8, 6, 4, and 2°C) during a 24 hour period (12 h Light: 12 h 

Dark). Oviposition by L. testaceipes ceased at temperatures below 4°C. At all 

experimental temperatures, a type I, rather than a type II or type III functional response, 

was determined to be the best fit based upon coefficient of determination (r2) values. 

Lysiphlebus testaceipes was observed to oviposit in greenbugs at temperatures below the 

developmental temperature of both the greenbug host (5.8°C) and the parasitoid itself 

(6.6°C).  This ability to oviposit at sub-developmental temperatures enables the parasitoid 

to increase the percentage of greenbugs that are parasitized while the greenbugs are 

unable to reproduce.  The implications of these findings regarding population suppression 

of greenbugs are discussed. 
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Introduction 

Winter wheat (Triticum Aestivum L.) is an important multi-purpose cereal crop grown in 

the Southern Great Plains.  Over twelve million acres are planted annually for grain, 

forage or as a combination grain/forage crop in Oklahoma and Texas (Epplin et al. 1998, 

NASS 2005). In this region of the United States, winter wheat is attacked primarily by 

phloem feeding cereal aphids resulting in reduced forage and grain yields (Gerloff and 

Ortman 1971, Burton 1986, Niassy et al. 1987, Peters et al. 1988, Kindler et al. 2002, 

2003, K. Giles unpublished data).  One of the most damaging of the cereal aphids 

commonly found attacking winter wheat, is the greenbug, Schizaphis graminum 

(Rondani).  Greenbug can have a large impact on wheat production.  Its economic impact 

in Oklahoma has ranged from $0.5 to $135 million annually (Starks and Burton 1977, 

Webster 1995). 

 Greenbug populations can be suppressed below economic injury levels (EIL) 

through the actions of aphid parasitoids such as Lysiphlebus testaceipes Cresson 

(Hymenoptera: Aphidiidae)(Jones 2001, Giles et al. 2003).  Lysiphlebus testaceipes is a 

solitary endoparasitoid whose geographic range is Nearctic, Neotropical, Oceanic, in 

addition to being Paleartic because of intentional introductions (Mackauer and Starý 

1967). It has been observed to attack over 100 aphid species (Mackauer and Starý 1967, 

Starý et al.1988, Pike et al.2000). Lysiphlebus testaceipes has been observed to suppress 

greenbug populations below EIL's in wheat directly through mortality, and indirectly by 

reducing reproductive potential (Spencer 1926, Eikenbary and Rogers 1974, Giles et al. 

2003).  Additionally, L. testaceipes causes aphids to drop from the plant in an attempt to 
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avoid parasitism. Once on the ground, aphids are highly subject to desiccation and attack 

by other natural enemies (Losey et al. 1998).  

Because of the relatively moderate climate in Oklahoma and Texas, greenbugs 

and other cereal aphids are able to feed on wheat throughout fall, winter and spring 

months (Elliott et al. 2003, Royer et al. 2005). Adult parasitoids have been observed 

actively foraging on cool sunny days in Oklahoma throughout the winter months (D. B. 

Jones unpublished data). However, when winter temperatures are at the lower extremes 

commonly encountered during wheat production, little is known about the relationship 

between L. testaceipes and its greenbug host. 

Our previous work on L. testaceipes attack rates were based on assumptions by 

integrated pest management practitioners (Patrick and Boring 1990, Royer et al. 1998).  

They suggested that parasitoids could not suppress greenbug populations at cool 

temperatures such as below 14°C because parasitoid development was delayed relative to 

their aphid hosts.  Indeed, studies demonstrating lower developmental thresholds for 

greenbug (5.8°C; Walgenbach et al. 1988) versus L. testaceipes (6.6°C; Royer et al. 

2001) and dramatic reductions in attack rates by L. testaceipes as temperatures were 

decreased to 14°C (Jones et al. 2003) support this assumption.  However, recent field 

observations on the suppression of greenbug by L. testaceipes during cold winter months 

suggest that adult parasitoids are actively foraging at temperatures below greenbug 

developmental thresholds and effectively preventing populations from increasing (Jones 

2001, Giles et al. 2003). 

The primary objective of this study was to measure the 24 h functional response 

of L. testaceipes on greenbugs infesting winter wheat at 14°C and repeat these 
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measurements at progressively colder temperatures until L. testaceipes failed to parasitize 

greenbug hosts.  Additionally, we investigated the relationship between temperature and 

the proportion of L testaceipes females that oviposited at each temperature. 

Materials and Methods 

Greenbug and Parasitoid Colonies.  Biotype “E” greenbugs were obtained from 

colonies maintained at the USDA-ARS Plant Science and Water Conservation Research 

Laboratory at Stillwater, OK; some were established on grain sorghum (cv ‘SG-925') and 

others were established on wheat (cv ‘2137') grown in a fritted clay and sphagnum moss 

mixture.  Insect colonies and all plants were kept inside double walled fine mesh cages 

located within a climate-controlled greenhouse (approximately 22°C).  The double walled 

cages prevented contamination of colonies by feral greenbugs and parasitoids while 

permitting ample airflow.  Fresh plants were rotated as needed into cages housing 

colonies.  

 Three parasitoid colonies were maintained at 22 ± 1 °C and a photo-period of 

12:12 (L:D) in double walled fine mesh cages in growth chambers.  Lysiphlebus 

testaceipes was isolated from specimens collected in Caddo county, OK in the spring of 

2003 (40 L. testaceipes adults isolated from greenbug mummies). Using sub-samples of 

parasitoid offspring, we verified the parasitoids as L. testaceipes by keys (Pike et al. 

1997) and PCR analysis (Chen et al. 2002, Jones et al. 2005). Pots of grain sorghum 

infested by greenbugs were placed in the colonies every 3-4 days to maintain a steady 

supply of parasitoids. Parasitoid colonies were maintained on grain sorghum because 

wheat stock plants succumbed relatively quickly to greenbug feeding damage. 
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Functional Response Evaluations.  Wheat seed (cultivar ‘2137') was planted in 

5 cm diameter by 20 cm tall Ray Leach “conetainers™” (Stuewe & Sons Inc., Corvallis, 

Oregon).  When plants were approximately 30 cm tall (about 3-4 weeks), they were 

thinned to two similar sized tillers that were threaded through a 0.6 cm diameter hole in a 

5 cm diameter by 0.6 cm thick circular Plexiglas disk.  The disk was fitted into the 

conetainer™ at soil level and cotton filled up the remaining area of the hole to create a 

sealed experimental arena floor that prevented access to the soil.  A 5 cm diameter by 30 

cm tall clear acetate tube cage with two 5 cm holes covered with fine mesh polyester 

netting in the sides (to allow ventilation) was then fitted around the top of the 

conetainer™.  The top of each tubular cage was also covered with netting that was held in 

place by a rubber band.  Greenbugs from the colonies reared on wheat were introduced 

by placing second and third instars on wheat tillers in each conetainer™ with a fine 

brush.  By only using similar-aged greenbugs, possible complicating factors such as host 

age preference by the wasps were avoided.  We established greenbugs in conetainers™ at 

densities that ranged from 5 greenbugs per conetainer™ up to 80 greenbugs per 

conetainer™ at each of the following seven temperatures in growth chambers: 2, 4, 6, 8, 

10, 12, and 14°C.  Because greenbugs are somewhat fragile, mortality from handling 

made it difficult to establish a predetermined density of greenbugs.  Additionally, 

paedogenesis, reproduction by nymphs, occurs in approximately 2% of immature 

greenbugs (Wood and Starks (1975). Because of these difficulties, we targeted four 

density ranges (≤20, 21-40, 41-60, and 61-80 greenbugs/conetainer™) at each 

experimental temperature. This ensured a sufficient range of densities necessary to 

describe the functional response (Jones et al. 2003). Actual numbers of greenbugs in each 
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conetainer™ were determined when greenbugs were later dissected.  Greenbugs were 

allowed to acclimate at each temperature for 4 hours before parasitoids were introduced. 

A minimum of six conetainer™ replicates were evaluated at each temperature and 

density range.  Because all temperatures and densities could not be run at the same time, 

temperatures and density combinations were run in a random order. 

In order to have naïve parasitoids that developed in greenbugs reared on wheat, 

conetainers™ of wheat were infested with 25-35 3rd instar and older greenbugs from the 

wheat stock colony. By limiting the number of greenbugs, the fitness of emerging 

parasitoids was not influenced by plant health (Fuentes-Granados et al. 2001). These 

greenbugs were allowed to feed overnight, after which 5 male/female pairs of L. 

testaceipes parasitoids were released into each conetainer™ cage. Parasitized greenbugs 

were allowed to develop into mummies, after which, they were removed from the colony, 

and placed individually into 1.5 ml microcentrifuge vials.  These isolated mummies were 

allowed to develop until they emerged as adults.  Upon emergence, the parasitoids were 

sexed and paired to allow mating.  Only parasitoids that had emerged on the day of the 

experiment were used in that day's work.  Parasitoids destined for evaluation were placed 

into the growth chamber to acclimatize at each experimental temperature for four hours 

before being released into designated conetainers™ with greenbugs. 

Parasitoids were released as a mated pair in each experimental conetainer™ 

during the dark cycle.  The lights came on the next morning at 6:00 AM and then turned 

off 12 h later at 6:00 PM, after which both parasitoids in each conetainer™ were removed 

and their survival recorded.  If a female wasp did not survive, data from that conetainer™ 

were not used.  Survival of the male wasp was noted, but did not influence whether data 
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were discarded.  During the 24 h period that the parasitoids were exposed to greenbugs, 

they were only active during the 12 hour light period and were quiescent when lights 

were off (D. B. Jones unpublished data).  After the removal of parasitoids, conetainers™ 

were placed in a chamber at 22°C for 2-3 days to allow parasitoid eggs to develop into 

larvae before dissections were attempted.  Subsequently, conetainers™ were held at 5°C 

to arrest parasitoid development, until all greenbugs were dissected.  Eggs of aphid 

parasitoids are quite difficult to detect, thus delaying dissections until after hatching 

greatly improved accuracy of data (Hofsvang and Hågvar 1978, van Steenis 1993, Jones 

et al. 2003).  Encapsulation could hinder accuracy, but encapsulation of L. testaceipes by 

S. graminum has yet to be observed (D. Jones personal observation).  

 Dissections were performed in an aqueous solution of 2% saline (NaCl) and 1% 

dishwashing detergent to act as a surfactant. Greenbugs were dissected by grasping the 

head with a pair of fine forceps and “pricking” the caudal region with a second pair of 

fine forceps, opening the body cavity.  Contents were then gently squeezed from the 

greenbug into the dissecting solution and examined for the presence of parasitoid larvae.  

Though L. testaceipes is solitary, superparasitism frequently occurs (Jones et al. 2003).  

Therefore numbers of larvae present in each greenbug and the total numbers of greenbugs 

per experimental unit (conetainer™ cage) dissected were recorded.  Though some eggs 

may fail to hatch, the total number of parasitoid larvae present was assumed to be equal 

to the total number of eggs laid per female in 24 h (Hofsvang and Hågvar 1978, van 

Steenis 1993).   

 Statistical Analyses.  All statistical analyses were performed using PC SAS 

version 8.2 (SAS Institute 1999) at a significance level of P=0.05.  Coefficients of 
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determination (r2 values) were calculated using PROC NLIN to determine which 

functional response model (Type I, II, or III) best described the number of greenbugs 

parasitized at each temperature over the range of host densities.  The following models 

were evaluated: 

 Type I:  NA = aTN    (Holling 1959a) 

 Type II:  NA = aTN / (1+aThN)   (Holling 1959b) 

 Type III:  NA = N [1-exp(-aT / (1+aThN))]  (Hassell et al. 1977) 

In these models, NA is the number of hosts parasitized, N is the initial host density, 

T is the time available for searching during the experiment, a is the instantaneous attack 

rate, and Th is the amount of time the parasitoid spent handling the host. For the type I 

models the parameter a, along with the parameters a and Th for the type II and type III 

models, were estimated using PROC NLIN (Donnelly and Phillips 2001, Jones et al. 

2003). Though these parameters can be measured by observation (Mills and Gutierrez 

1999), it was not practical to do so in this experiment. 

Typically, functional responses are calculated for only those predators or 

parasitoids that actually attack their prey or host and are perceived of as normally 

functioning animals. However in this paper we also estimated functional response for all 

of the female parasitoids including those that remained alive but did not oviposit. We did 

this because our observations indicated that as temperatures decreased the proportion of 

parasitoids that oviposited decreased as well. This decrease in the proportion of 

ovipositing parasitoids may help to describe L. testaceipes biology at sub-optimal 

temperatures and the resulting dynamics with greenbug populations in field situations. 

While including non-parasitizing parasitoids in the analyses was not typical of functional 
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response models, these non-ovipositing parasitoids are viable, potential attackers of 

aphids that may only need warmer temperatures in order to become active.   

Voucher specimens.  Voucher specimens of L. testaceipes adults and mummies 

and S. graminum adults were deposited in the Department of Entomology and Plant 

Pathology museum at Oklahoma State University in Stillwater. 
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Results and Discussion 

Parasitism at Low Temperatures.  Previous work by Jones et al. (2003) 

suggested that L. testaceipes should be able to oviposit at temperatures below 14ºC.  This 

experiment confirmed that assumption as we observed that 23.3% of L. testaceipes 

females assayed successfully oviposited at 4ºC (Fig. 5.1).  This minimum temperature is 

very close to observations by Hunter and Glen (1909), who, with limited observations, 

reported that L. testaceipes could oviposit at 3.3º C.  This result also compares well with 

field observations that L. testaceipes can be active during typical Oklahoma winter 

temperatures (Pomeroy and Brun 1999, Giles et al. 2003).  

These observations are interesting because L. testaceipes is actively ovipositing at 

temperatures below its developmental threshold of 6.6°C (Royer et al. 2001) and below 

the developmental temperature threshold of its greenbug host (greenbug developmental 

threshold = 5.8°C; Walgenbach et al. 1988).  Provided adult females are present in wheat 

fields during the winter, this ability to oviposit at temperatures below the developmental 

threshold of the host enables the parasitoid to effectively increase its population levels 

(within greenbug hosts) while the host cannot increase its population. As experimental 

temperatures increased, so did the percentage of ovipositing females (Fig. 5.1).  

However, percentages were similar at 8 to 14°C.  As environmental temperature 

increased above the developmental threshold for greenbugs, several factors including 

numerical and functional responses influence the dynamics between L. testaceipes and its 

host.  

Functional Response Calculations.  When considering all experimental 

parasitoids including those that did not oviposit, a type I functional response provided the 
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best fit at 4, 6, and 8º C (Table 5.1).  However, the fit was poor because the coefficients 

of determination (r2) were only 0.15, 0.34, and 0.46 respectively.   At 10, 12, and 14º C, a 

type II functional response best described the relationship between greenbug density and 

the attack rate of L. testaceipes. The r2 values were only marginally better than for a type 

I (Table 5.1).  Comparisons of instantaneous attack rates (a) estimated from Type I 

functional response models revealed that the 4º C functional response model was not 

significantly different from the 6º C model, but was significantly different (lower) than 

the models for all other experimental temperatures (Table 5.2).  When instantaneous 

attack rates (a) were calculated for the type II models, no significant differences were 

observed (Table 5.2).  Handling time (Th) estimates were also generated for the type II 

models, however, no significant differences were observed among temperatures. 

When those parasitoids that did not oviposit were removed from the calculations, 

the functional response coefficients of determination improved considerably. Again the r2 

values were only marginally better for type II functional response models over the 

coefficient of determination values for a type I model. Instantaneous attack rates (a) 

estimated from Type I functional response models revealed that the 4 and 6º C models 

were significantly different from the 14º C model, but were not significantly different 

from the 8, 10, and 12º C models.  Conversely the 14º C model was also not significantly 

different from the 8, 10, and 12º C models (Table 5.3).  When instantaneous attack rates 

(a) and handling time estimates (Th) were calculated for the type II models, no significant 

differences were observed (Table 5.3).   

 Whether we considered only L. testaceipes females that oviposited, or all of the 

experimental parasitoids, type II models provided only a slightly improved fit with regard 
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to r2 values (Table 5.2). Additionally the extremely small handling times observed appear 

to be biologically insignificant and provide little predictive power when describing the 

relationship between greenbug density and attack rates of L. testaceipes.  At temperatures 

below 14º C the type I functional response model appears to best describe attack rates as 

greenbug population densities increase.  The slopes describing these attack rates are quite 

similar between 8 to 14º C, however the slope is significantly different at 4º C (Figs. 5.2 

& 5.3). 

Implications for Winter Ecology of Lysiphlebus testaceipes.  A functional 

response is defined as the change in attack rate of a parasitoid or a predator exposed to 

increasing host densities per defined unit of time (Solomon 1949). The results of this 

experiment demonstrate that at temperatures below 14º C, functional response models are 

poor predictors of attack rates (Fig. 5.2).  Despite this poor predictive ability of the 

models, we have observed suppression of greenbug and other cereal aphid populations by 

L. testaceipes during the cold winter months in Oklahoma (Jones 2001, Giles et al. 2003). 

Our study adds additional information toward understanding why L. testaceipes 

can be such an effective natural enemy in the Southern Great Plains during winter 

months.  When L. testaceipes is present in winter wheat fields during the mild autumns 

(>14º C during August to November), this parasitoid is able to contribute toward 

suppression of aphid populations by a combination of (1) a high attack rate (Jones 2001, 

Giles et al. 2003), (2) sterilization of attacked aphids (Spencer 1926, Hight et al. 1972, 

Eikenbary and Rogers 1974), (3) dislodgment of aphids from the plant (Losey 1998), and 

(4) its reproductive (numerical) response from attacked aphids (Giles et al. 2003).  These 

factors are also important contributions toward aphid suppression during the mild spring 
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months from February to May.  During December and January, when temperatures are 

often below 14º C, the reproductive response may be relatively unimportant.  As 

temperatures continue to drop, a developmental advantage occurs with greenbugs (5.8°C; 

Walgenbach et al. 1988) that have a developmental threshold lower than L. testaceipes 

(6.6°C; Royer et al. 2001). 

Providing that temperatures do not drop below the threshold for aphid 

development, aphids should continue to numerically increase at rates higher than L. 

testaceipes. Despite weak functional response relationships at cool temperatures, a 

significant proportion of female L. testaceipes parasitoids continue to attack greenbugs as 

temperatures decrease below developmental thresholds for both the host greenbug and 

the parasitoid (Fig. 5.1).  Under these low temperature conditions, L. testaceipes adult 

females can continue to parasitize, sterilize and dislodge greenbugs without significant 

development or reproduction by the host.  Additionally, L. testaceipes are longer lived at 

colder temperatures and are able to inflict mortality for extended periods of time (up to 3 

weeks; D. Jones unpublished data).  

These characteristics of L. testaceipes could enable the parasitoid to keep its 

population expanding (relative to aphid hosts) even when the weather is not optimal for 

reproduction and subsequent development. Eventually adult parasitoids will die and/or 

exhaust their egg load during this period.  However, the parasitoid progeny within their 

greenbug hosts are in a state of reduced or arrested development. The progeny is alive 

and able to develop once temperatures increase (Archer et al. 1973, Royer et al. 2001).  

Indeed, we have collected apparently healthy greenbugs from winter wheat fields in 

January and early February, which were all or mostly all parasitized (Giles et al. 2003).   
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Understanding interactions between greenbugs and L. testaceipes during cold 

winter weather in the Southern Great Plains requires information on the influence of 

decreasing temperatures on parasitoid ecology/biology.  The observed low r2 values for 

functional response models evaluated in our study indicate that attack rates at 

temperatures below 14ºC would be difficult to predict. The actual within-field 

interactions between S. graminum and L. testaceipes during the winter will depend upon 

multiple factors including the relationship between microclimate temperatures and 

activity (attack by L. testaceipes), development, and reproduction. A future model with 

all of these factors will allow us to validate field collected population dynamics data. 
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Table 5.1.  Coefficients of determination for functional response regression models for 

Lysiphlebus testaceipes at 2, 4, 8, 10, 12, and 14°C (12:12 L:D) on greenbugs. 

Parasitoid 

Speciesa 

 

Temperature (±1°C) 

Type I 

r2 

Type II 

r2 

Type III 

r2 

L. testaceipes 2b NA NA NA 

 4b 0.116 0.150 0.150 

 6b 0.335 0.335 0.335 

 8b 0.461 0.461 0.461 

 10b 0.344 0.398 0.398 

 12b 0.283 0.308 0.308 

 14b 0.405 0.406 0.406 

 2c NA NA NA 

 4c 0.655 0.669 0.669 

 6c 0.483 0.524 0.524 

 8c 0.625 0.625 0.625 

 10c 0.667 0.719 0.720 

 12c 0.480 0.523 0.524 

 14c 0.721 0.730 0.730 

             

a Lysiphlebus testaceipes host densities ranged from 5 to 80 greenbugs per 

experimental unit.  Type I, II and III functional response equations were evaluated using 

SAS PROC NLIN to generate coefficients of determination (r2 values), indicating best fit. 

b Functional response r2 values calculated using all parasitoids at that temperature. 
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c Functional response r2 values calculated using only those parasitoids that 

oviposited at that temperature.
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Table 5.2.  Estimates of instantaneous attack rates (a) for all Lysiphlebus testaceipes 

females evaluated calculated from experimental data fit to Type I and II functional 

response models. 

             
Functional      Instantaneous   Handling  

Response     attack rate   time 

Model  Temperature °C  a ± SE a   Th ± SE a 

             
Type I   2   NA    NA 

   4   0.02 ± 0.01 a   NA 

   6   0.08 ± 0.02 ab   NA 

   8   0.22 ± 0.04   b   NA 

   10   0.12 ± 0.03   b   NA 

   12   0.14 ± 0.05   b   NA 

   14   0.19 ± 0.05   b   NA 

 

Type II   2   NA    NA 

   4   0.16 ± 0.66  a   0.67 ± 0.70 a 

   6   0.08 ± 0.02  a   0.00 ± 0.00 a 

   8   0.22 ± 0.04  a   0.00 ± 0.00 a 

   10   0.58 ± 1.16  a   0.10 ± 0.07 a 

   12   0.35 ± 0.55  a   0.06 ± 0.08 a 

   14   0.21 ± 0.18  a   0.01 ± 0.06 a 

    
a a and Th estimated by PROC NLIN. 

Means sharing the same letter are not significantly different at α = 0.05. 
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Table 5.3.  Estimates of instantaneous attack rates (a) for Lysiphlebus testaceipes females 

that successfully oviposited, calculated from experimental data fit to Type I and II 

functional response models. 

             

Functional      Instantaneous   Handling  

Response     attack rate   time 

Model  Temperature °C  a ± SE a   Th ± SE a 

             
 

Type I   2   NA    NA 

   4   0.10 ± 0.03 a   NA 

   6   0.12 ± 0.03 a   NA 

   8   0.29 ± 0.06 ab   NA 

   10   0.22 ± 0.04 ab   NA 

   12   0.24 ± 0.07 ab   NA 

   14   0.34 ± 0.06   b   NA 

 

Type II   2   NA    NA 

   4   0.25 ± 0.41  a   0.10 ± 0.12 a 

   6   0.61 ± 1.00  a   0.09 ± 0.06 a 

   8   0.29 ± 0.17  a   0.00 ± 0.00 a 

   10   0.87 ± 1.20  a   0.05 ± 0.03 a 

   12   0.68 ± 1.07  a   0.04 ± 0.04 a 

   14   0.48 ± 0.35  a   0.01 ± 0.02 a 

    
a a and Th estimated by PROC NLIN. 

Means sharing the same letter are not significantly different at α = 0.05.
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Fig. 5.1.  Bar graph with standard error bars, showing the percent of Lysiphlebus 

testaceipes females who successfully oviposited in greenbug, Schizaphis graminum, over 

a 24h (12:12 L:D) at 2, 4, 6, 8, 10, 12, and 14°C.
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Fig. 5.2. Scatter plots with linear regression trend lines (type I functional response) for 

Lysiphlebus testaceipes attack rates (excluding those parasitoids that did not oviposit) at 

4, 6, 8, 10, 12, and 14°C (12:12 L:D). The 2°C scatter plot was omitted because no 

oviposition occurred.  
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Fig. 5.3.  Scatter plots with linear regression trend lines (type I functional response) for 

Lysiphlebus testaceipes attack rates (including those parasitoids that did not oviposit) at 

4, 6, 8, 10, 12, and 14°C (12:12 L:D). The 2°C scatter plot was omitted because no 

oviposition occurred.
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 
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In Oklahoma, parasitoids experience temperatures that range from ideal, to tolerable, to 

unsuitable, during the winter wheat growing season.  These studies provide new and 

more accurate knowledge about the winter ecology of the aphid parasitoid Lysiphlebus 

testaceipes Cresson (Hymenoptera: Aphidiidae).  Results from my first experiment in this 

dissertation provides insights about the supercooling point of L. testaceipes and its 

greenbug, Schizaphis graminum (Rondani)(Homoptera: Aphididae) host.  It was 

discovered that mean supercooling points for L. testaceipes ranged from –20.32ºC for 

older male parasitoids to -26.33ºC for mummies acclimated at 10º C.  For many insects, 

acclimation for a short period of time at an intermediate temperature can significantly 

lower the SCP (Sømme 1982, Lee 1991).  Acclimation for four hours at 10ºC had no 

significant effect on mean SCP for L. testaceipes mummies or L. testaceipes males.  

However, acclimation did significantly lower the SCP approximately 3ºC for L. 

testaceipes females (-26.13 vs. -23.29ºC.  Acclimated and non-acclimated mummies, 

greenbug hosts and non-acclimated female L. testaceipes adults had the lowest mean 

SCPs, but were not significantly different from one another (df = 218, t < 1.82, P > 0.07). 

This lack of significant difference in SCPs was not unexpected since parasitoid mummies 

and their hosts are closely related with respect to their body resources (Brodeur and 

Boivin 2004). 

These SCPs for greenbug and L. testaceipes were similar to similar species 

including other cereal aphids such as English grain aphid, Sitobion avenae (F.), aphid 

parasitoids Aphidius colemani Viereck, and Ephedrus cerasicola Staŕy and the whitefly 

parasitoid Eretmocerus eremicus (Rose & Zolnerowich) (Hofsvang and Hägvar 1977, 



 

137 

Knight et al. 1986, O'Doherty 1986, Butts 1992, Asai et al. 2002,Tullett et al. 2004, 

McCornack et al. 2005) 

A general trend was also detected that shows as the parasitoid ages, its ability to 

supercool was reduced.  Supercooling points for older parasitoids were at significantly 

higher temperatures than all other treatments.  Non-acclimated older male parasitoids 

(older than 12h post-emergence) spontaneously froze at the warmest mean temperature (-

20.32ºC ± 1.32).  While, non-acclimated older female parasitoids (>12h post-emergence) 

had a mean SCP of -22.55ºC.  Additionally these two age groups had at least a three-fold 

larger range compared with any of the other age groups.   

Supercooling ability can often be attributed to the accumulation of cryoprotectant 

chemicals and/or the absence on ice nucleating agents (Lee 1991).  Sugars such as 

glucose, trehalose, and fructose and polyols such as glycerol, mannitol, sorbitol are 

known to provide increased supercooling ability and are commonly found in insects 

(Sømme 1967, 1969, Tanno 1964, Block and Zettel 1980). Perhaps common sugars such 

as trehalose constitute a high percentage of L. testaceipes hemolymph and provide much 

of their supercooling ability. The depletion of this sugar or some other resource necessary 

for the parasitoid to live may be responsible for the SCP to be inversely related to the age 

of the parasitoid. Another possibility is that as the parasitoids aged they accumulated ice-

nucleating agents in their hemolymph as a by-product of normal metabolic processes 

allowing the parasitoids to freeze at warmer temperatures. 

Based on the SCP, L. testaceipes could likely survive even the most extreme 

temperatures experienced in central Oklahoma. However SCP is only an indication of 

how cold an organism can be before it freezes (Bale 1993).  The parasitoid may perish at 
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much warmer temperatures or be rendered unable to function in a normal manner much 

in the same manner that the English grain aphid, a potential host of L. testaceipes, has a 

cold tolerance of -14.6º C, about 12º C above its SCP (Parish and Bale 1991).  

Lysiphlebus testaceipes is commonly found at latitudes that experience much 

colder temperatures than Oklahoma (Royer et al. 2001). Supercooling ability is only a 

base value that indicates what temperature L. testaceipes might be able to endure.  How 

these parasitoids survive the winter at the colder latitudes has yet to be answered. 

In the second experiment the ability of L. testaceipes to withstand cold 

temperatures and whether surviving affected their ability to reproduce once temperatures 

warmed was examined. In this experiment -6°C for 12h was the lethal temperature for 

50% of L. testaceipes adults and mummies.  Negative eight degrees Celsius was lethal for 

all subject parasitoids.  Being chilled did not affect the ability of the parasitoids to 

function once temperatures were made favorable again after the cold treatment with 

female parasitoids being able to oviposit a mean of 6 or more eggs. 

Knowing the minimum temperature that L. testaceipes can survive is but a part of 

the overall explanation of how this parasitoid can survive conditions on the Southern 

Great Plains.  Longevity at cold temperatures is also important.  Lysiphlebus testaceipes 

mummies could survive for 67d at 5°C, and up to 28d at -6°C.  The time it took to kill 

50% of the test insects (LTime50) was approximately 28.5d at 5°C and 12.5d at -6°C.  

Adult L. testaceipes were not as hardy.  Adults cooled to 5°C survived up to 21d with a 

LTime50 of approximately 10.4d.  Adults cooled to -6°C perished within 7d with the 

LTime50 being only 66.8h.  All life stages of L. testaceipes were able to successfully 
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reproduce following cold treatments indicating that any damage that may have altered 

ovipositional ability was usually enough to be fatal to the parasitoid.  

A final part of the second experiment positioned sentinel plants infested with 

greenbugs in a wheat field in Payne County, Oklahoma during the 2003-2004 winter 

wheat growing season.  From this data, it was determined that L. testaceipes was indeed 

actively parasitizing host greenbugs even during the coldest months of the year. 

Temperatures were frequently below the -8°C threshold that killed 100% of L. testaceipes 

mummies and adults in the laboratory, yet some parasitoids were able to survive and 

oviposit once conditions improved. This was probably due to some parasitoids being in 

various protected microclimates within the wheat field that enabled them to survive these 

lethal low temperatures (Leather et al. 1993). 

Because temperatures are frequently warmer than the developmental threshold, 

and the parasitoid can successfully reproduce even during the coldest month, L. 

testaceipes should not need to enter diapause to overwinter in the Southern Great Plains. 

Additionally, sentinel plant data demonstrate that even when the temperature drops below 

-8°C, there are a number of L. testaceipes parasitoids that are able to find protected 

locations that enable them to survive the lethal temperatures.  When the temperatures 

near the developmental threshold, L. testaceipes development slows and their life cycle is 

considerably lengthened (Royer et al. 2001).  Additionally, in most winters in the 

Southern Great Plains, there are many aphid hosts available (personal observation) to 

utilize for the next generation. In colder regions of the Great Plains, L. testaceipes may 

yet enter diapause to survive the winter since aphid hosts are more scarce, but there is no 

data yet to support this conjecture. The ability to survive cold temperatures as adults and 
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mummies and successfully attack greenbugs and other cereal aphids throughout the 

winter months may explain why this parasitoid frequently provides biological control of 

greenbug and other cereal aphids in winter wheat in the Southern Great Plains.   

The third experiment was initiated in response to observations I made on a 

previous experiment.  The previous work suggested that L. testaceipes should be able to 

oviposit at temperatures below 14ºC (Jones et al. 2003).  The third experiment confirmed 

that assumption as we observed that 23.3% of L. testaceipes females assayed successfully 

oviposited at 4ºC.  This minimum temperature is very close to observations by Hunter 

and Glen (1909), who, with limited observations reported that L. testaceipes could 

oviposit at 3.3º C.  This result also compares well with field observations that L. 

testaceipes is active during typical Oklahoma winter temperatures (Pomeroy and Brun 

1999, Giles et al. 2003).  

The experiment also demonstrated that L. testaceipes can successfully oviposit at 

temperatures below its developmental threshold of 6.6°C (Royer et al. 2001) and below 

the developmental temperature threshold of its greenbug host (greenbug developmental 

threshold = 5.8°C; Walgenbach et al. 1988).  Provided adult females are present in wheat 

fields during winter, this ability to oviposit at temperatures below the developmental 

threshold of the host enables the parasitoid to effectively increase its population levels 

(within greenbug hosts) during the time when the host cannot increase its population.  

Whether we considered only L. testaceipes females that oviposited, or all of the 

experimental parasitoids, the type I functional response model (Solomon 1949) appears to 

best describe attack rates as greenbug population densities increase at temperatures below 

14º C. However, the results of this experiment demonstrate that at temperatures below 
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14º C, functional response models are poor predictors of attack rates.  Despite the poor 

predictive ability of the models, L. testaceipes has been observed to suppress greenbug 

and other cereal aphid populations during the cold winter months in Oklahoma (Jones 

2001, Giles et al. 2003). 

When coupled with previous research, the three studies in this dissertation provide 

an understanding of why L. testaceipes is an effective natural enemy in the Southern 

Great Plains during winter months.  When L. testaceipes is present in winter wheat fields 

during mild autumns (>14ºC during August to November), the parasitoid is able to 

contribute toward suppression of aphid populations by a combination of (1) a high attack 

rate (Jones 2001, Giles et al. 2003), (2) sterilization of attacked aphids (Spencer 1926, 

Hight et al. 1972, Eikenbary and Rogers 1974), (3) dislodgment of aphids from the plant 

(Losey 1998), and (4) its reproductive (numerical) response from attacked aphids (Giles 

et al. 2003). These factors are also important contributions toward aphid suppression 

during the mild spring months from February to May.  During December and January, 

when temperatures are often below 14º C, the reproductive response may be relatively 

unimportant. However, because L. testaceipes is able to withstand temperatures as low as 

-8ºC, and apparently has the ability to seek shelter from colder temperatures in the field, 

it should be considered for biological control of small grain aphids in the production of 

winter wheat even when temperatures are sub-optimal. 
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