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Abstract: Salmonella-tainted cantaloupe has been implicated in foodborne 

illnesses. We know little about Salmonella ecology on cantaloupe flowers and fruits, and 

chose to investigate whether it can enter edible tissues, and whether its interactions with 

other microbes influence its fate.  We assessed the survival and potential internalization 

of S. enterica and the wilt bacterium, Erwinia tracheiphila, on cantaloupe after fruit 

surface or flower inoculation. S. enterica, E. tracheiphila, or a mixture of the two (10
7
 

cfu/ml) were introduced onto natural rind cracks or into the flower whorl. Inoculated rind 

and sub-rind mesocarp were sampled at 0, 9 and 24 days post-inoculation (DPI). Flower 

samples were collected at 0 and 43 DPI, and interior mesocarp at 15 and 43 DPI. S. 

enterica survived on 40% and 14% of cantaloupe rinds inoculated with both pathogens, 

or S. enterica only, respectively. 58% of E. tracheiphila inoculated samples developed 

watersoaked lesions on rinds. Unlike S. enterica, E. tracheiphila traversed some fruit 

cracks and 31% of sub-rind mesocarps were positive at 24 DPI. At 0 and 43 DPI all 

blossom samples receiving S. enterica alone, or the mixture, were positive for S. enterica.  

At 43 DPI, the populations of S. enterica were significantly (P<0.05) higher than these at 

0 DPI from 4.46 to 6.12 log cfu/ ml and 4.89 to 6.86 log cfu/ml, respectively. E. 

tracheiphila was never detected after day 0. A mesocarp sample from one fruit, flower-

inoculated with S. enterica only, was positive for this bacterium. The results suggest that 

S. enterica can survive on the rind until fruit maturity.  E. tracheiphila can traverse the 

cracked rind, causing watersoaking of interior tissues; the leakage of cell contents can 

enhance S. enterica survival on the fruit surface. Fruit contamination after flower 

inoculation with S. enterica was a rare event under our conditions, but flowers can harbor 

the bacteria until fruit maturity, thereby becoming a potential reservoir. Use of 

agricultural practices minimizing fruit contact with potentially contaminated substrates 

could reduce the risk of Salmonella contamination. 
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CHAPTER I 

 

 

INTRODUCTION 

 

Contamination of fresh vegetables and fruits by human pathogens such as 

Salmonella, Escherichia coli O157:H7, Listeria monocytogenes, and Campylobacter 

jejuni occurs repeatedly partly because of the successful adaptation of these pathogens to 

environments associated with food production, processing, and storage. Fresh produce 

includes a variety of unprocessed fruits and an increasing number of vegetables that 

previously were consumed predominantly after processing. As consumption of fresh 

produce has increased, so have incidents of foodborne illness (5, 31, 32). The number of 

such outbreaks doubled between 1973 to1987 (4) and continues to occur due to fresh 

produce consumption in the United States. Many health-conscious consumers, wishing to 

maximize the nutritional content of their food, recognize that less processing often means 

that more nutrients remain. 

Cantaloupes, and then tomatoes, are the most popular raw produce types 

worldwide, and cantaloupe was the second most implicated type in Salmonella outbreaks 

(1, 6, 12). Among 54% of human illness outbreaks associated with the consumption of 

fresh produce in which the pathogen was identified, 60% were caused by bacteria, and of 

these Salmonella caused 48% (32). Salmonella serovars implicated include Chester in
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1990 (28), Saphra in 1997 (32), Oranienburg in 1998 (18), and Poona in 2000, 2001 and 

2002 (1). Although plants have not generally been considered a niche for human 

pathogens, this paradigm is now being reconsidered. Uptake of Salmonella after artificial 

inoculation has been reported to occur in several plant species (2, 16, 20). Salmonella 

was taken up by tomato hypocotyls cotyledons, and stems after inoculation onto 

previously wounded roots of seedlings grown in a hydroponic system (16). Sources of 

Salmonella in field contaminations can include irrigation water (13, 24, 25), insect 

vectors [particularly houseflies (17) and other flies (33)], soil and crop debris (3). 

Salmonella survives for as long as 405 days in sterilized manure-amended soils (35).  

Very little information is available on the mechanisms of human pathogen 

internalization in fresh produce (20). Pathogens might enter the plant/fruit through natural 

openings, such as stomata, lenticels and nectarthodes. Cantaloupe fruit is smooth and 

hairy until about 10 days after pollination, when the rind begins to crack because of fruit 

expansion. This process continues for 10-15 days, but the cracks are soon healed by 

corky growth, which becomes the netting for netted melon types. The cracks are openings 

through which microflora from sources such as manure, irrigation water or soil might 

enter. However, pathogen internalization through the cracks has not been documented. 

The presence of other plant resident microorganisms, including plant pathogens, 

can be beneficial for the growth and colonization of Salmonella (3, 34). The relationship 

between any two microbes on the plant surface varies with the plant species, the 

microbial species, and the conditions, and it could be negative, positive or neutral to the 

participants. The more positive the relationship becomes, the more difficult it is to 

remove the microorganisms from the plant surface (19). Barak and Liang (3) showed that 
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at the 3-5 leaf and pre-bloom stages of tomato plants, S. enterica populations were 

significantly higher after co-inoculation with Xanthomonas campestris pv. vesicatoria 

than when the human pathogens were inoculated alone. A synergistic relationship of 

Salmonella spp. with storage fungi was observed during the storage of market vegetables 

(34), when co-inoculation of tomato fruits, potato tubers and onion bulbs with Salmonella 

Typhimurium and either Botrytis or Rhizopus resulted in increased populations of 

Salmonella compared to those on control fruits inoculated with Salmonella alone. A 

similar study by Brandl et al. (7) showed possible synergism between S. enterica and 

Aspergillus niger, attributed to cellulose-chitin interactions. Similarly, co-inoculation 

with Cladosporium cladosporioides greatly enhanced the ability of S. enterica to 

penetrate (3-4 cm inside the rind) mesocarp tissues of cantaloupe fruit (29). 

E. tracheiphila, an important pathogen of most cucurbits including cantaloupe, 

causes bacterial wilt disease (10, 11, 23). It is naturally transmitted by two cucumber 

beetles (striped: Acalymma vittatum. F. and spotted: Diabrotica undecimpunctata 

hawoardi Barber) (11, 23, 27). It overwinters in adult beetles (11, 14, 26) and 

transmission occurs when these insects feed on plants and their frass contaminates fresh 

feeding wounds (8, 9, 21-23, 27) on leaves, stems, or flower nectaries (30). To date, no 

other means of transmission has been reported. E. tracheiphila eventually enters the 

xylem vessels multiplies, and produces exopolysaccharides, thereby blocking water flow 

and causing wilting (30). 

Our brief report from a preliminary experiment suggests that, following flower 

inoculation, E. tracheiphila is able to colonize cantaloupe fruit and traverse to vines, 

causing wilting (15). We wanted to investigate whether S. enterica could survive and 
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colonize fruit rinds and flowers, and whether they could gain access to the edible fruit 

mesocarp from those locations. We also wanted to understand whether E. tracheiphila 

influences S. enterica survival or internalization on cantaloupe fruits or flowers. The 

output of this work will aid our understanding of the relationship between human and 

plant pathogens on flower and fruit surfaces and will help to identify strategies to reduce 

fresh produce contamination by human pathogens.  

The objectives of this research are to understand survival and internalization of 

Salmonella on cantaloupe, with or without the influence of a plant pathogen: 

1- To characterize the survival and internalization of S. enterica on or in 

cantaloupe fruit when inoculated on the rind at the time of natural fruit cracking, alone or 

in the presence of the plant pathogen, E. tracheiphila.  

2- To investigate the survival and internalization, of S. enterica when 

introduced into flower interiors, alone or in the presence of the plant pathogen E. 

tracheiphila.  
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CHAPTER II 

 

 

REVIEW OF LITERATURE 

 

I – History, origin and nutritive value of cantaloupe 

Cantaloupe (Cucumis melo), also known as cantaloup, muskmelon, or rockmelon, 

is in the family Cucurbitaceae, which includes nearly all melons and squashes. There are 

two major varieties of cantaloupes. Cucumis melo var. cantalupensis (grown mainly in 

Asia and Europe) is considered to be a true cantaloupe as it is rough and warty. Cucumis 

melo var. reticulatus is grown largely in the United States, where “cantaloupe” has 

become a generic name for all kinds of netted, musk-scented melons (64). Cantaloupe is a 

rich source of nutrients including fiber, minerals, and almost all the vitamins for a normal 

human health. In a market survey Eitenmiller et al. (25) found that levels of niacin, 

riboflavin, thiamin, ascorbic acid, folacin and chromium (Cr) in cantaloupe fruit were 

significantly higher during maximum availability periods than at other times. 

The name of the fruit comes from the city of Cantalupo, near Tivoli, Italy, where 

cultivation began in the sixteenth century (57). Christopher Columbus, on his second 

voyage in 1494, introduced cantaloupes to the North America. Robinson and Decker-

Walters (60) suggested that Asia or Africa could be the origin of muskmelon. Evidence 
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based on genetic studies, attempts at crossing with other Cucumis species, and the 

worldwide distribution of melon varieties suggests that Africa was the origin (39). 

However, melon domestication started in Egypt over 3,000 years ago (55). Melon 

dispersion may have occurred from Africa to the Middle East and Asia, where secondary 

diversification and domestication development could have occurred (39).  

II – Cantaloupe production in the United States 

In the United States, California continues lead in melon production, accounting 

for 43% of the harvested area, 49% of production, and 48% of the value (75). The total 

United States cantaloupe production in 2011 was 8.55 x 10
5
 metric tons, with a total area 

of 2.87 x 10
4
 ha. California is responsible for 5 x 10

5
 metric tons of cantaloupe according 

to the 2011 census (75). Cantaloupe is also produced in Oklahoma on 446 acres (76). 

Althogh the per capita civilian utilization of cantaloupe has been decreasing since 2001 

(75), the fruit remains popular nationwide. 

III - Growth conditions 

III –a -Temperature 

Melons are warm-season annuals that are very sensitive to frost at any growth 

stage. Seedlings planted in the greenhouse should not be transplanted to the field until the 

soil temperature (3 inches beneath the soil surface) reaches 60
o
 F. Growth is very slow 

below 60
o
F (16

o
C) and the optimum temperature for growth ranges from 85

o
 to 95

o
F (30

o
 

to 35
o
C), although cantaloupe can tolerate temperatures in excess of 104

o
F (40

o
C). 

Average base, optimum and upper critical growth chamber temperatures of 49.5
o
F, 93

o
F 

and 113
o
F, respectively, were established for cultivars Gold Rush and Mission (7). In the 

field, the crop is best grown on raised beds covered with black or silver plastic mulch to 
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protect the melons from rotting, a common problem when the fruits are in contact with 

soil (James Motes, Oklahoma State University, Department of Horticulture, retired; 

personal communication). 

III –b -Soil 

Soil texture can be used as an indicator for growers to decide whether to plant 

early or late in the season (33). Sandy soils are suitable for early plantings because of 

their more rapid heating. Loam and clay loam soils are preferred for mid-season 

production because of their high water-holding capacity as they prolong the harvest 

period, thus making fruit available throughout the season. Irrespective of soil texture, 

cantaloupe can be grown on any soil provided that it is well drained. 

III –c -Irrigation 

Yield and income can be maximized with wise selection of cultivation techniques 

and the appropriate amount of water for fruit growth and development (1). In spite of the 

fact that furrow irrigation could increase the microbial contamination of fresh produce 

including cantaloupe compared to sub-surface irrigation (66), furrow irrigation is 

commonly used for its economy and simplicity (48). A total of 2-5 irrigations/season are 

generally adequate (but frequency of irrigation also depends on rainfall amounts) after the 

establishment of the crop and the last irrigation should be given 7-10 days before harvest. 

Drip irrigation is gaining popularity as it is easy to do, uses water efficiently, and results 

in less foliar and fruit disease than with overhead irrigation. Furthermore, drip irrigation 

does not interfere with the activity of honeybees in pollination and fertilization. A 

combination of drip irrigation and plastic mulch is the best for highest fruit yield (18, 42), 

and reduces water requirements as well as insects, pathogens and weeds (18). 
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Mohamedien et al. (11) found perforated tunnels with polyethylene mulch treatment 

resulted in taller plants, higher and earlier yields and thicker fruit flesh. 

III-d –Fertilizer requirements 

Cantaloupes are heavy users of soil nutrients. Average fertilizer application rates 

are 90 to 168 kg ha
-1

 (80-150 pounds per acre) of nitrogen (N) and 45 to 225 kg/ha (40 to 

200 poundsper acre) of P2O5 and potassium, depending on the nutrients available in the 

soil (33). Higher doses of phosphorus promote fruiting and optimum amounts assure 

sweetness. The peak period of nutrient absorption in cantaloupe production, 44 days after 

transplanting, coincides with the period of highest fertilizer demand (4). Macronutrient 

requirements of cantaloupe fruits are, in order, K> N> Ca> P> Mg> S, corresponding to 

46.7, 29.5, 11.3, 4.7, 4.5, and 4.0 g kg
-1

 dry matter, respectively (67). In one study, N 

accumulated in the vegetative parts such as leaf and stem whereas P and K accumulated 

more in the fruit (67). Macronutrients, if given in adequate amounts, lead to optimum 

plant development and fruit yield. 

IV-Pollination and fruit development 

IV-a -Pollination and fruit set 

Cantaloupe plants produce male, hermaphrodite, and female flowers (the latter, 

rarely) and they need insect activity for pollination and fruit set. Cantaloupes are 

pollinated mostly by honeybees during the early hours of the day when the flowers are 

open. Farmers maintain hives to assure high yields and large melon size. Pollination can 

occur over a period of a week after flowering without adverse effect on harvest 

productivity (24). Growth of pollen tubes within the stigma is favored by pollination of 

newly opened flowers (77). Post-pollination, fruit setting can be inhibited by the presence 
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of other fruits on the same vine. Better fruit set results from insect pollination (70%) than 

from hand pollination (40%) (45). Only 1-4 fruits per vine will mature (27, 37). Pollen 

non-viability and self- or cross-sterility can be problematic in some cantaloupe varieties 

(9). Artificial (i.e. hand) pollination, done by collecting pollen from male flowers and 

rubbing it onto the stigma surfaces, is practiced for greenhouse grown cantaloupes. 

IV-b -Rind development 

The surface of the newly formed fruit is always smooth and hairy with a waxy 

cuticle. Netting generally starts towards end of the fruit-expansion stage (38) but natural 

surface cracking begins when the fruit is around 10-12 days old (Benny Bruton, USDA, 

Lane, OK, retired; personal communication) usually near the blossom scar (38). Cracking 

results from short periods of epidermal cell division. The cracks increase in number and 

length as the fruits mature, and the fruit surfaces are covered with cracks by 21 days post-

anthesis (79). The familiar netting of cantaloupes is due to the deposition of a corky layer 

derived from a sub-epidermal periderm, which has been characterized as an elaborate 

system of lenticels. Netting gives roughness to the fruit surface, providing numerous 

pockets that can serve as shelter to various microflora and create vulnerability to 

microbial contamination. Netted rinds are difficult to sanitize (71, 74). As low as 150 

bacteria cm
-2

 present on netted cantaloupe rind surface can contaminate the edible 

mesocarp upon cutting (3, 47, 71, 77). 

V –Varieties and performance 

Some cantaloupe varieties grown commonly in the United States include 

Ambrosia, Burpee Hybrid, Classic, Cordele, Gold Star, Imperial 4-50, Mainstream, 

Magnum 45, Mission, Saticoy, Summet, and TAM-Uvalde. Varieties that perform well in 
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Oklahoma include Caravelle, Cruiser, Sugarcube, Rockstar, Athena, Ambrosia, Super 45 

and PMR 45 (James Motes, Oklahoma State University, Department of Horticulture, 

retired; personal communication). Most of the latter varieties are netted and weigh 

between 2 lb to 6 lb. Sugar Cube, a new, compact, “personal-size” (4” diam) hybrid from 

Seneca Vegetable Research (Flat Street, NY) has deep orange flesh, good taste, and 

excellent storage life. This variety also is resistant to many diseases of melon (29). Edible 

flesh ranges from pink to orange in color and the rind has pronounced netting. The shelf-

life of cantaloupe (either American or British type) compared to other melon types is 

intermediate to poor (6- 12 days) among six different varieties (acidulous, cantalupensis, 

inodorus, saccharinus, reticulatus and an unknown variety) tested (43). Moreover their 

plant height, fruit weight and total soluble solids are also affected by growing conditions.   

VI-a-Problems related to fresh produce consumption 

VI-a-i-Outbreaks of salmonellosis 

Outbreaks of human illness related to consumption of uncooked fresh produce, 

contaminated with human pathogens in the form of raw fruits and vegetables or juice, 

have led to food poisoning and death. From 1973 to 1997 in the United States, 190 fresh 

produce-associated disease outbreaks were reported with 16,058 illnesses, 598 

hospitalizations and eight deaths (65). Human pathogens associated with fresh produce 

include bacteria, protozoa, and viruses. Salmonella was associated with 48% of the 

bacterial disease outbreaks. Among three multistate outbreaks of Salmonella infections, 

two were associated with consumption of cantaloupe and one with watermelon. Among 

recent outbreaks related to fresh produce, cantaloupe was the second most implicated 

produce type, after tomato (10, 26). Cantaloupe has been a common vehicle of 
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Salmonella contamination. S. enterica serovar Chester was named in a 1990 outbreak in 

which 245 disease cases were registered in 30 United States (68). Because reported cases 

usually only a fraction of the total number, actual numbers are likely much higher (49). 

VI-a-ii-Pre-harvest contamination 

Cantaloupe fruit contamination can take place at any point from field production 

to consumption. Irrigation water and animal manure have been common sources of field 

contamination by human pathogens. Among various types of irrigation, sub surface drip 

irrigation may be safest for less contamination (70). Salmonella and hepatitis A virus can 

survive even 14 days after the last irrigation in the field (70). In one field survey 

conducted to assess microbial quality of fresh produce, Salmonella enterica serovar 

Montevideo was detected in 0.8% of all produce studied, and in 3.3% of cantaloupes 

(36).  Salmonella colonized plant roots at higher populations than did Escherichia coli 

(23). Dominance of this pathogen on alfalfa sprouts has also been reported (8), and S. 

enterica was more capable of attachment to alfalfa sprouts than E. coli, even after several 

washings. Salmonella survives in a variety of different agricultural environments 

depending upon the availability of nutrients and a conducive soil pH (35). Moreover, 

Salmonella can survive as a resident on the surface of fresh produce at the time of fruit 

harvest. Recoveries of Salmonella from stomached produce were highest, although not 

significantly so, and those from homogenized produce were lowest.  

Salmonella survival on plant surfaces, and in soil, manure and irrigated water has 

been well studied. Abiotic factors such as temperature, moisture and soil type may impact 

bacterial longevity. Salmonella survived for 45 days in wet soil (30), 231 days in poultry 
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compost-amended soil (35), 150 days in almond orchard soil (22), 77 days in loamy sand 

(19), 3 years in animal feces (53), and 405 days in manure-amended sterilized soil (81). 

VI-a-iii-Post-harvest contamination 

Fruits and their products post-harvest, can act as vehicles for human pathogens, if 

not properly handled (46, 56). Fresh produce sampled in the packing shed can have 

significantly higher levels of microbial contamination than that sampled on the farm (2), 

suggesting improper postharvest handling. Seasonal differences can also affect produce 

contamination, which was higher during the fall months, i.e. September, October, and 

November, than at other times of the year. The type of fresh produce also influences the 

risk of contamination; after artificial inoculation with human pathogens, cantaloupe 

supported bacterial growth and multiplication for longer periods of time than did lettuce 

and bell pepper (69).  

VI-b-Association of human pathogens with fresh produce 

VI-b-i-Affinity of Salmonella to fresh produce 

Specific serovars of Salmonella enterica associate preferentially with specific 

fruits or vegetables. For example, Salmonella Montevideo was the most persistent on 

tomato, with higher recovery numbers on tomato fruit surfaces than were recovered with 

serovars Poona and Michigan. Serovars Hartford and Enteritidis had little to no 

attachment under these conditions (30). Serovar Chester was linked with an outbreak 

related to contaminated cantaloupe in the United States in 1990 (68). Another three 

outbreaks attributed to S. Poona have been epidemiologically linked to cantaloupes 

grown and imported from Mexican farms (5, 26), where iguanas had been feeding on 

melons in the field. Pet iguanas can be reservoirs of S. Poona infection in children (5). 
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Salmonella Saphra caused another outbreak of foodborne illness that was blamed on 

imported cantaloupe from Mexico (51). Other serovars of Salmonella also establish 

specific interactions with particular species of fresh produce (5, 26, 52). 

VI-b-ii-Salmonella internalization 

Associations of human pathogens with fresh produce have generally been 

reported as surface contamination, but recent reports have suggested the possibility of 

internal contamination (31, 32, 40). Internalization, or movement of the pathogen from 

the surface to the interior of the plant, has significant implications for the effectiveness of 

sanitizing procedures and the level of health risk. On artificially inoculated iceberg 

lettuce leaves exposed to light, Salmonella cells clustered near open stomata, entered into 

leaves via the stomatal openings, and remained close to photosynthetically active cells 

(40). However, internalization did not occur when plants were kept in darkness and 

discontinued photosynthesis, suggesting that Salmonella may be attracted to plant cells 

that are activated by light (40). A positive effect of light on Salmonella motility was 

noted. 

Salmonella was borne internally in tomato, both after infiltration through the stem 

scar at harvest (31) and in artificially inoculated tomato plants grown in a hydroponic 

system (32). Among several tested serovars, Montevideo and Poona had the highest rates 

of internalization. However, the percentage of fruit having contaminated pulp (55%) was 

lower than that of fruit surface (82%) or stem scar (73%) contamination (31). 

Though many reports of cantaloupe root and fruit surface contamination have 

been published, there has been no report of Salmonella internalization in cantaloupe (23, 

44). Therefore, one objective of this study was to address whether Salmonella Poona can 
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enter and colonize cantaloupe fruit interiors through natural flower openings, such as 

nectarthodes, stigmas and pollen tubes, or through natural cracks on fruit surfaces.  

VI-c-Salmonella behavior on cantaloupe rind 

Biofilms are matrix-enclosed bacterial populations in which bacteria are in 

contact with each other and with the substrate. Biofilms are formed by both plant 

pathogens and human pathogens on plant surfaces, including the rind of cantaloupes (6). 

Salmonella Poona RM 2350 and S. Michigan formed biofilms within two hours after 

inoculation on to cantaloupe rinds at 20
o
C (6). Embedded in the biofilm’s extracellular 

polymeric material was a fibrillar substance that may serve as a protective shield for these 

human pathogens against the action of commercially available sanitizers. Salmonella 

serovars Enteritidis, Virchow, Thompson, Typhimurium and Newport produced strong 

biofilms on cantaloupe rinds while Hadar, Poona and Amager produced weak biofilms 

(41). 

Some bacterial genes associated with biofilm formation by Salmonella have been 

identified. S. enterica Typhimurium genes mIrA and adrA are required for both cellulose 

production and biofilm formation in LB (complex) medium, whereas STM1987 (GGDEF 

domain, containing protein A, GcpA) is required for biofilm formation in medium devoid 

of nutrients (28). 

VI-d-Interaction of Salmonella with other microflora on fruit rind 

VI-d-i-Soft rotting bacteria 

The survival of human pathogens on fresh produce can be enhanced in the 

presence of other plant resident human pathogens or plant pathogens. Among forty eight 

different types of healthy and soft rotted vegetables and fruits tested for presence of 
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Salmonella, 33% and 30% of the enriched broth and wash samples, respectively, yielded 

black colonies characteristics of Salmonella on XLD plates (80). Soft rot affected 

specimens had a higher prevalence of Salmonella (59% in 533 samples from broth 

enrichment and 66% in 401 samples from wash water) compared to healthy samples 

(30% of 402 samples from broth enrichment and 33% in 781 samples from wash water). 

VI-d-ii-Storage and pathogenic fungi 

No significant difference was found between the populations of Salmonella 

Typhimurium on healthy and injured cantaloupe fruit surfaces, but the Salmonella 

recovery was higher in the presence of rotting fungi than on healthy fruit (26.4% vs. 

20.2%) (80). Salmonella multiplied to greater titers on fruit surfaces in the presence of 

Botrytis or Rhizopus, but to lower titers in the presence of Alternaria or Geotrichum, as 

compared with the control. When Salmonella Typhimurium was co-inoculated with 

Rhizopus sp. onto cantaloupe surfaces during cold storage, high CO2 concentration and 

adverse temperatures decreased Salmonella populations slightly, but the presence of 

Rhizopus did not affect Salmonella survival (61). However, co-inoculation with 

Cladosporium cladosporioides greatly enhanced the ability of S. enterica to penetrate 

mesocarp tissues of cantaloupe fruit compared to S. enterica inoculated alone (59). S. 

enterica Poona grew 3-4 cm below the inoculated cantaloupe rind, following wounding, 

and moved into the mesocarp when C. cladosporioides was present in the co-inoculation 

treatment. 

VI-e-Use of sanitizers in produce processing 

Cantaloupes are generally washed to remove surface contaminants before being 

packaged. In the United States, packaging procedures vary from state to state. For 
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example, Georgia grown cantaloupes are first moved to packing sheds, where they are 

washed and then packed, whereas California grown cantaloupes are packed in the field 

without disinfection. Salmonella populations on Georgia grown cantaloupes that were 

washed in either cold or hot water were reduced by about 0.5-log (3). Even so, 

Salmonella was detected in the rinstate of 1 out of 900 cantaloupe fruits. The use of 

chlorinated water in packinghouse disinfection tanks did not completely eliminate fungi, 

total aerobic bacteria and total coliform bacteria from cantaloupe rinds (47). Despite the 

disinfection practices, Salmonella multiplied approximately ten fold, suggesting that it 

can re-infest the fruit rind after disinfection (47). 

Chlorine can be effective in controlling surface-resident foodborne pathogens; 8.0 

mg/liter of ClO2 of gaseous chlorine dioxide reduced Salmonella on raspberry by as 

much as 1.5 log CFU/g (72). Different combinations of sanitizing chemicals reduced 

Salmonella populations on cantaloupe rind surfaces. A 2% commercial detergent 

formulation (DECCO Apl Kleen 246) followed by 5% H2O2 at 50
o
C reduced Salmonella 

in excess of 3 logs (62). Application of H2O2 as a sanitizer on the rind surface extended 

the shelf life of cut cantaloupe, killing almost all the bacteria on the melon surface 

without contaminating the cantaloupe flesh (62). 

Uniform glow discharge plasma (OAUGDP) also has been effective in 

inactivation of human pathogenic bacteria on apples, cantaloupe and lettuce (21). 

Salmonella populations were reduced by >2 log on cantaloupe rind surfaces after one 

minute exposure to OAUGDP. Chemical sanitizers such as chlorinated or ozonated water 

or commercial detergents have been used to remove human pathogens from fresh fruits 

and vegetables, but treated produce may become more vulnerable to human pathogens 
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after treatment (73). Chlorine (200 ppm), hydrogen peroxide (2.5%) and hot water (96
o
C) 

removed Salmonella from cantaloupe surfaces, but after re-inoculation with Salmonella, 

pathogen recovery was greater from hot water-treated cantaloupe than from untreated, 

chlorine or hydrogen peroxide treated fruits (73). The increased probability of re-

contamination of sanitized produce compared to that for un-sanitized produce, which may 

be due to the removal of competing microflora, suggests that sanitizing procedures may 

have unintended consequences and should be carefully evaluated. 

VI-f-Bacterial wilt, insect vectors, and Enterobacteriaceae 

Muskmelon is susceptible to various economically important viral, bacterial, 

mycoplasmal, and fungal diseases (82). Bacterial wilt, caused by Erwinia tracheiphila, is 

an important disease, especially in warm climates. Most cantaloupe varieties are 

susceptible to this disease, which can cause significant losses if the insect vector is 

present. Muskmelon cvs. Legend and Superstar, among six cultivars tested, had some 

resistance to E. tracheiphila, but placing inocula onto leaves prior to wounding and 

creating larger wounds on the leaves led to higher infection rates even in the resistant 

cultivars (13). Pumpkin seedlings were also susceptible to E. tracheiphila when 

artificially inoculated on wounds at the cotyledon stage (12). It has been reported that this 

pathogen is active only when it invades xylem vessels and is not capable of causing 

disease epiphytically or through soil medium (58). But according to a recent study, E. 

tracheiphila was able to internalize through male flowers easily in the absence of nectar 

and caused 48% of plant wilting compared to only 12% plant wilting in the presence of 

nectar (12%) (63). When ingested by xylem feeding cucumber beetles, the wilt bacteria 
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are carried to the guts, where they can overwinter and be passed into the frass, later being 

deposited on floral organs from which they can access the plant system (50). 

The striped cucumber beetle (Acalymma vittatum F.) is an important vector of E. 

tracheiphila in cucurbit growing areas around the world. Although a single contaminated 

beetle was not sufficient to transmit the wilt pathogen, significant wilt occurred at beetle 

densities of 4 or 5 per plant (15). Feeding preferences of the striped cucumber beetle 

influence the incidence of wilt among cantaloupe varieties grown in the field (16). The 

beetle’s ability to transmit E. tracheiphila depends on the total feeding time (14). When 

the insects fed continuously for 12 h, 24-48 h, or 72 h, only 0.05%, ≈2% and 5% of the 

beetles, respectively, transmitted E. tracheiphila. 

Relationships among insects, Enterobacteriaceae and cucurbits have been 

explored. Squash bugs (Anasa tristis, De Geer) harbor and transmit Serratia marcescens, 

the causal agent of cucurbit yellow vine disease, on watermelon, cantaloupe, and squash 

(17). S. marcescens overwintered inside the squash bugs and transmitted the CYVD 

pathogen the following season (17). S. marcescens was retained by the insects after 21 

days of feeding (54), and continued to transmit after molting (78). Female bugs were 

more efficient transmitters than males. 

Salmonella can be transmitted also by other insects that visit agricultural fields. 

Flies acquired Salmonella when confined in a room containing chickens challenged with 

Salmonella enterica serovar Enteritidis (34). Salmonella also can be internally 

transmitted from one bird to another by the lesser mealworm beetle (Alphitobius 

diaperinus, Panzer) (20). Nearly a decade ago Salmonella uptake by tomato fruit after 

artificial inoculation of its flower was observed (31). There is a need to determine 
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whether Salmonella can be acquired and transmitted by other insects during normal 

activities such as landing, feeding, and oviposition. 
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CHAPTER III 

 

 

SURFACE SURVIVAL AND INTERNALIZATION OF SALMONELLA ENTERICA 

THROUGH NATURAL CRACKS ON DEVELOPING CANTALOUPE FRUITS, 

ALONE OR IN THE PRESENCE OF THE MELON WILT PATHOGEN ERWINIA 

TRACHEIPHILA 

 

Abstract 

Outbreaks of foodborne illness attributed to the consumption of Salmonella-

tainted cantaloupe (Cucumis melo var. reticulatus) have occurred repeatedly. However, 

we have limited understanding on the ecology of Salmonella on cantaloupe fruit surfaces. 

In this study, we investigated the interactions between S. enterica Poona and Erwinia 

tracheiphila on cantaloupe fruit surfaces. Cantaloupe fruits were inoculated, at their 

natural cracking stage, with these two pathogens, either singly or in a mixture, at 20 µl of 

10
7
 cfu/ml and spread over 2 x 2 cm of the marked rind surface. Microbial and 

microscopic analysis of the rind layer was performed at 0, 9 and 24 days post inoculation 

(DPI). At 24 DPI (fruit maturity), S. enterica was still detected on 40% and 14% of fruits 

inoculated with both pathogens or with S. enterica only, respectively (P = 0.11, Fisher’s 

Exact Test, one tailed). Two of the rind samples, inoculated with the mixed culture 
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treatment, yielded countable S. enterica at fruit maturity (24DPI) E. tracheiphila, when 

inoculated alone, internalized through the fruit cracks, causing watersoaking (61%) and 

traversed to the underlying sub-rind mesocarp (31%) at 24 DPI. Salmonella can survive 

on the cantaloupe surface until fruit maturity when introduced at the time of natural fruit 

cracking and its survival was enhanced by the presence of E. tracheiphila. In this work, 

S. enterica was not detected in the fruit interior, but since E. tracheiphila internalized 

through natural cracks on developing fruits, the possibility that human pathogens might 

also do so needs further investigation. Good agricultural practices that avoid fruit contact 

with soil, use of contamination free water and measures that keep plants free of pathogen 

attack could reduce the risk of Salmonella contamination and persistence on the fruit. 

 

Introduction 

The occurrence of human pathogens on fresh fruits and vegetables and the 

incidence of foodborne illness have been increasing in the United States and around the 

world (34, 63, 64). Salmonella enterica, causal agent of salmonellosis, is one of the most 

common human pathogenic bacteria contaminating fresh produce world-wide (7). Among 

recent Salmonella-associated disease outbreaks, cantaloupe (Cucumis melo var. 

reticulatus) was the second most implicated produce type (3, 10, 25). The first 

documented salmonellosis outbreak, caused by consumption of salad bar cantaloupes 

contaminated with S. enterica Chester in 1990, involved 245 reported cases in 30 U.S. 

states (58). Since reported cases are only a fraction of the actual number of people 

sickened, hundreds of illnesses reported could actually indicate thousands or more (46). 

Cantaloupe fruit is characterized by pronounced rind netting, which contains micro 
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pockets likely to shelter microflora and prevent effective sanitation (1, 45, 68, 69). As 

few as 150 bacteria cm
-2 

on the netted rind surface can contaminate the edible mesocarp 

upon slicing (68). 

Cantaloupe fruit netting begins at the blossom scar (40) with natural cracking of 

the rind on 10-12 day old fruits (47). The cracks lengthen and cover the whole fruit 

surface at the end of the fruit-expansion stage (40). Stomata present on the fruit surface 

become nonfunctional with time. Corky surface ridges, consisting of a thick cuticle (40) 

containing lenticels, which function in gas exchange, form, sealing the cracks (47).  

As the rind cracks begin to form, defensive compounds are produced by the plant 

to reinforce structural and chemical barriers against the threat of pathogen attack (40). 

Cantaloupe fruits usually develop on the soil surface, where the physical defensive 

barriers may be compromised, providing a route of entry for saprophytes or plant- or 

human-pathogenic microbes present in the agricultural environment. Rot is very common 

in cantaloupes that develop on soil surfaces (James Motes, Oklahoma State University, 

Department of Horticulture, retired; personal communication). 

Human pathogens such as S. enterica can be brought into the agricultural field by 

contaminated irrigation water (27, 49, 53), insect vectors (35), or soil and crop debris (5), 

and contaminate the growing plants (17, 20, 30, 37, 52, 71). Bacterial uptake and 

translocation by and within plant parts following artificial inoculation has been reported 

in many plant species (5, 21, 32, 42). Although the ecology of S. enterica on plant  

surfaces, outside of its mammalian hosts, is poorly understood, several groups have 

shown that the presence of other plant resident microorganisms, such as soft rot bacteria 

(72) and storage fungi (60, 62, 71), can promote the growth and colonization of plants by 
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S. enterica. Fruits having wounds or contaminated with other microflora were more likely 

than healthy fruits to be colonized by this pathogen. Barak and Liang (5) reported 

significantly higher S. enterica populations after it was co-inoculated with Xanthomonas 

compestris pv. vesicatoria onto tomato plants at the 3-5 leaf and pre-bloom stages, than 

when it was inoculated alone.  Similar synergism was reported between species of 

Rhizopus or Botrytis, both of which cause rots in vegetables, and S. enterica 

Typhimurium (71). Brandl et al. (11) showed synergism (attachment and biofilm 

formation) between S. enterica and Aspergillus niger, possibly due to cellulose-chitin 

interaction.  Pre-incubation of S. enterica with N-acetylglucosamine (a monomeric 

component of chitin) or its cellulose-deficient mutant failed to attach to the fungus.  

Similarly, co-inoculation of S. enterica with Cladosporium cladosporioides greatly 

enhanced its ability to penetrate the mesocarp of cantaloupe fruit (60).  

Limited information is available on the possible internalization of either plant or 

human pathogens through openings created on the cantaloupe rind surface at the time of 

cracking, and on the possible interactions between plant and human pathogens.  

Therefore, the objective of this study was to investigate the survival and internalization of 

the human pathogen, S. enterica Poona, and the plant pathogen, Erwinia tracheiphila 

(cause of cucurbit bacterial wilt), on cantaloupe inoculated at the time of natural fruit 

cracking. We investigated whether the presence of E. tracheiphila would influence 

Salmonella’s capacity for long term survival on the fruit surface and on its internalization 

into the edible fruit mesocarp. The results of this work will help to identify strategies to 

limit contamination and internalization by human pathogens on this popular and 

nutritious fruit. 
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Materials and Methods 

Bacterial strains, labeling, storage and inoculum preparation. Salmonella 

enterica Poona from our laboratory collection, a clinical isolate from 2001 cantaloupe 

outbreak, was plasmid-labeled in our laboratory with pUC18T-mini-Tn7T-Gm-

dsRedExpress (fluorescing red) having gentamycin and ampicillin resistance genes 

following the protocol of Choi and Schweizer (15). Erwinia tracheiphila (Et) strain 

MCM1-1, isolated originally from Oklahoma cantaloupe by B. Bruton (USDA-ARS, 

Lane, OK) and provided by M. Gleason (Iowa State University, IA) was transformed 

with pGFPuv (Clontech Laboratories, Inc., CA) by electroporation as described in Ma et 

al. (2) and colonies were selected after growing on ampicillin amended nutrient agar 

plates. Plasmid stability tests were performed for both labeled pathogens by ten 

successive transfers in Luria Bertani broth (LB) followed by plating on nutrient agar 

plates (NAP) or LB agar plates for E. tracheiphila and S. enterica, respectively. E. 

tracheiphila colonies were observed under UV light and S. enterica colonies were 

observed normal light after 2 days, as they took time to develop fluorescence. Both 

pathogens were stored in Luria Bertani (LB) broth aliquots, amended with 25% glycerol, 

at -80
o
C.  For use in experiments, S. enterica and E. tracheiphila were grown on LB agar 

amended with gentamycin (LBgent.), and nutrient agar amended with ampicillin- 

NAPamp.), at 37
o
C and 28

o
C, respectively, for 48 hr. Bacterial cells were harvested with a 

sterile plastic loop and dispersed well in 0.1% peptone water to a final homogenous 

suspension of ca. 2 x 10
7 
cfu/ml, determined by optical density (OD) at 600 nm. To 

prepare mixed strain inoculum, equal volumes of each bacterial suspension were mixed 
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to yield a final concentration of ca. 10
7
 cfu/ml. The inoculum titer was determined by 

plating appropriate dilutions (in 0.1% peptone water) on agar plates. 

Plant management. Seeds of cantaloupe (Cucumis melo var. reticulatus), cv. 

Sugarcube, were sown 1” deep in cells of polypropylene flats containing Redi-earth 

potting mix (SUNGRO®, Bellevue, WA) and placed in a growth chamber (75
o
F, 60% 

humidity,14h day/10 h night). Seedlings (21 days old, 2-3 leaf stage) were transplanted to 

4.2 gal pots containing Metromix-300 potting mix (Sun Gro, WA) supplemented with 

slow-release Osmocote fertilizer (19N, 6P and 12 K).  Pots were transferred to the 

greenhouse, where average temperature and humidity were 23
o
C and 52%, respectively. 

Greenhouse temperatures were set at 24
o 
C (day) and 18

o 
C (night) with 14 h day/ 10 h 

night periods. 

A week after transplanting, vines were trailed up and tied onto a framework of 

polyvinyl chloride (PVC) pipes to minimize plant-to-plant contact and to facilitate 

sampling from identifiable plants. Pots were watered every other day. Pistillate flowers 

were pollinated, using a fine artist’s paint brush, with pollen collected from 1-2 staminate 

flowers of the same plant.   Resulting young fruits were attached to the PVC frame so 

that, after inoculation, they were free from contact with other plant parts or PVC frame.  

Experimental design. Each cantaloupe plant was allowed to produce 2-3 fruits. 

Fruits of 8 plants were inoculated with each of the three pathogen treatments (E. 

tracheiphila or S. enterica or a mixture of the two pathogens) (24 plants), and three plants 

were inoculated with 0.1 % peptone water as controls (24+3=27 plants per replication) 

(Figure III-1). Fruits of three plants per treatment (9 plants) were sampled at 0 and 9 DPI, 

and fruits of five plants per treatment (15 plants) were sampled at 24 DPI. With 27 plants 
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in each of three replications, a total of 81 plants were sampled in the experiment. Rind, 

sub-rind mesocarp and inner mesocarp were sampled as illustrated (Figure III-1). Each 

plant was allowed to produce one additional fruit that received no inoculation, to 

investigate the systemic movement of the inoculated pathogens; only inner mesocarps 

were sampled on these plants (Figure III-1). Each treatment consisted of three replicated 

trials that were conducted from February to September of 2011. 

Inoculation of fruit rind. Twelve-day-old fruit, having fresh natural cracks, were 

inoculated with ca. 10
7
 cfu/ml of bacterial suspension.  A total of 20 µl of suspensions of 

S. enterica, E. tracheiphila, a mixture of both bacteria, or 0.1% peptone (control), were 

deposited in 10-15 droplets onto the rind within a 2 x 2 cm square drawn with an 

indelible marker around a freshly formed crack on a single fruit/plant (Figure III-2). The 

droplets were spread over the marked area using a soft, sterile plastic bristled brush. 

Fruit sampling and microbiological analysis. Fruit were sampled immediately 

after inoculation (0 DPI), at 9 DPI and at fruit maturity (when fruits easily detached from 

peduncles, averaged as 24 DPI). Fruit sampled at 9 DPI and at maturity were checked, 

after inoculation and before microbial analysis, for any change in the appearance of the 

inoculation site. The marked squares were slightly larger at these sampling dates than at 

the time of inoculation because of the fruit growth. Fruit rinds (2 x 2 cm
2
, 2-3 mm thick), 

associated sub-rind mesocarp (~2 cm thick and 7-10 g weight) from the region 

immediately underneath the inoculation site, and the inner mesocarp (including ca. 25% 

seeds by weight) from the center of un-inoculated fruits were analyzed for the presence of 

both pathogens. Rind layers and sub-rind mesocarp samples were excised aseptically 

from the pathogen(s) or peptone inoculated 2 x 2 cm squares, whereas inner mesocarp 
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samples were excised from the whole non-inoculated fruit. A rind fragment 3 cm
2
 and 2-

3 mm thick was used for microbiological analysis (cultivation and enumeration of viable 

microbes and PCR) and the remaining 1 cm
2
 was processed for analysis under CLSM and 

SEM (Figure III-1). If the rind sample had any symptoms then that portion was included 

in all microbial assays and electron microscopic examination. If no symptoms were 

observed then the 1cm
2
 rind piece was excised from a corner of the 2 x 2 cm rind piece. 

Rind pieces (3 cm
2
) were placed into sterile whirl-pack bags (7 oz., Nasco, WI) 

containing 10 ml Universal Pre-enrichment Broth (UPB) (Becton, Dickinson and 

Company, MD) and hand massaged from the outside with firm pressure for 2 min 

followed by 1 min of vigorous hand shaking. Sub-rind mesocarp samples excised from 

immediately below the inoculation site, and 25 g of inner mesocarp from the center of un-

inoculated fruit, were placed in a whirl-pak bags with filters (24 oz. and 55 oz. capacity, 

respectively) and macerated with a rubber hammer. UPB was added at a ratio of 1: 9 (wt.: 

vol.). A 100µl volume of each rind layer and mesocarp homogenate was plated (two 

replicates) on NAPamp and XLD for enumeration of microbes present at high titers, and 

250 µl volumes of the same aliquots were plated on each of 4 XLD and 4 NAPamp. plates 

for enumeration of microbes present at low titers. XLD plates, specific for Salmonella 

Poona, were incubated at 37
o
C for 24 h, and NAPamp, selective for GFPuv tagged E. 

tracheiphila, were incubated at 28
o
C for 3-4 days. The remaining suspensions were 

incubated at 28
o
C for 24 h, and then loopfuls of the enriched UPB were streaked onto 

XLD and NAPamp plates and incubated at 37 or 28
o 
C for 24 h or 3-4 days, respectively. 

To enrich selectively for S. enterica, 100 µl of the overnight enrichment culture was 

transferred to 10 ml of Rappaport Vasilliadis Broth (RV) (Becton, Dickinson and 
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Company) and incubated at 42
o 

C for 48 hrs. A loopful of incubated RV broth was 

streaked onto XLD plates and incubated for 18-24 h at 37
o
C to observe black colonies 

that were presumptive of Salmonella Poona.  

PCR confirmation of S. enterica and E. tracheiphila. One-ml aliquots of 

overnight incubated rind and mesocarp samples were centrifuged (5800 x g for 10 min) 

and the pellets stored at -20
o
C until the DNA was extracted for PCR. DNA was extracted 

from the frozen pellets using a DNeasy Blood and Tissue Kit (QIAGEN Group, Austin, 

TX). Pathogen presence was assessed by a multiplex PCR using Salmonella specific 

primers (forward- 5’ GTGAAATTATCGCCACGTTCGGGCAA 3’ and reverse- 5’ TCA 

TCGCACCGTCAAAGGAACC 3’) to amplify a 284-bp nucleotide sequence within the 

invA gene (55) and E. tracheiphila specific primers ETC1 (5’GCACCAATTCCGCAGT 

CAAG3’) and ETC2 (5’CGCAGGATGTTACGCTTAACG3’) to amplify a 426-bp 

nucleotide sequence within the carbamoylphosphate synthetase gene (48). DNA 

amplification was carried out in a 25 µl reaction consisting of 12 µl Gotaq® Green 

Mastermix (Promega Corporation), 3 µl template DNA, 1 µl each primers (total 4 µl), 

and 6 µl of nuclease free water. PCR was performed on Eppendorf thermal cycler 

(Eppendorf, Hauppauge, NY) with cycling conditions including an initial denaturation at 

94
o
C for 3 min, followed by 35 cycles at 94

o
C for 30 sec, 60

o
C for 20 sec, 72

o
C for 30 

sec, and a final extension at 72
o
C for 3 min. Amplified products were run on 1.5% gel 

made with 1x TAE buffer and electrophoresis run for a total of 1 hr. A total of 3 

replications of the entire experiment were completed. 

Confocal laser scanning microscopy (CLSM). To locate the inoculated 

pathogens on the fruit rind, a 1 cm
2
 rind piece, out of 4 cm

2
 of the inoculated square, was 
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divided into two pieces (0.5 cm
2
 each) for analysis by scanning electron microscopy 

(SEM) and CLSM. Although all samples were collected and processed for both types of 

microscopy, for the latter, a total of 36 samples (one for each pathogen and control 

treatment and DPI in a single replication) were processed. Tissues were fixed in 4% 

paraformaldehyde for 1 h and washed 3X in distilled water. Fixed pieces were 

longitudinally hand sectioned with a razor blade and placed onto a glass slide with a drop 

of water and covered with coverslip. To visualize green fluorescence (GFPuv)- or red 

fluorescence (DsRed) - expressing Erwinia and Salmonella, respectively, sections were 

observed using a LEICA (Japan) TCS SP2 Laser Scanning Confocal Microscope with an 

upright Leica DMRE microscope, equipped with an Argon ion laser at 458, 476, 488 and 

514 nm; green HeNe at 543 nm; and red HeNe at 633 nm; the Coherent UV Laser was at 

300-360 nm. GFPuv was found to excite with 488 nm light and the emission was 

collected through a BA 505-525 filter. The wavelength of the lasers was first optimized 

using positive control samples inoculated with both pathogens, before processing the 

experimental samples. 

Scanning electron microscopy (SEM). The remaining 0.5 cm
2
 of the rind pieces 

of fruits sampled at 0, 9, or 24 DPI were processed for SEM. Tissues were fixed with 2% 

gluteraldehyde in 0.2 M cacodylate buffer and stored at room temperature for 2 h, rinsed 

3X with 0.1 M buffered wash (60 ml 0.2 M cacodylate buffer and 12.3 g sucrose 

dissolved in 140 ml of dH2O) and then fixed for 1 h in 1% osmium tetraoxide at room 

temperature. After another rinse they were dehydrated in ethanol [(30%, 50%, 70%, 80%, 

90%, 95%, and 100% (3 X)] followed by critical-point drying 2X with HMDS 

(hexamethyldisilazane) and sputter coating with Au/Pd for 2 min with a MED 010 
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sputtering device (Balzers Union, Blazers, Liechtenstein). Coated samples were 

examined at different magnifications with a Quanta 600F scanning electron microscope 

(FEI Corporation, Hillsboro, Oregon), operating at 15 to 20 kV. 

Statistical analysis. All experiments, including fruits inoculated with E. 

tracheiphila only, S. enterica only, a mixture of the two microbes, or 0.1% peptone water 

as a control, were completed in triplicate. Mean and standard errors of log base 10 

transformed colony counts of both bacteria were calculated using MS Excel and the 

resulting data were analyzed using ANOVA procedures with SAS Version 9.2 (SAS 

Institute, Cary, NC). Main effect means (DPI given treatment and treatment given DPI) 

were reported and analyzed with planned contrasts.  Percent data were analyzed with 

contingency tables and Fisher’s Exact Test for the fruit detection part of the text.  Graphs 

were plotted using SigmaPlot 2002 for Windows Version 8.0 (SPSS Inc.). All tests are 

considered significant at the P ≤ 0.05. 

 

Results 

Fruit appearance and symptom development. Newly formed, healthy 

cantaloupe fruit were hairy and smooth-skinned, but at about 10-12 days of age, small 

cracks appeared in the rind around the blossom end. Red-to-orange exudates seeping 

from the newly formed rind cracks indicated the presence of a connection from the fruit 

interior to the outside environment (Figure III-3). The cracks lengthened, branched and 

intersected over time, gradually filled in and became raised as corky layers built up along 

them.  
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After E. tracheiphila or E. tracheiphila + S. enterica inoculation of cantaloupe 

fruit rind, small watersoaked lesions (Figure III-4 B) appeared at the inoculated site 

within 4 - 7 days on 28 (58%) of the inoculated fruit. 61% of the fruits, sampled at 24 

DPI with E. tracheiphila alone treatment, had watersoaked lesion. The watersoaked spots 

ranged from barely noticeable lesions to a maximum of ca. 2 cm
2 

(half the area of the 

inoculation site in a few fruits) over the next 20 days (data not shown). The percentage of 

fruit that developed watersoaked lesions by 9 and 24 DPI in these two treatments did not 

differ significantly (P<0.05) (Figure III-4 A). E. tracheiphila, tagged with GFPuv, was 

observed (using UV light) as patches of green fluorescence between the rind cracks and 

underneath the rind cuticle (Figure III-4 B and C). No lesions appeared on any fruits 

receiving S. enterica alone or the control buffer. 

S. enterica and E. tracheiphila survival on cantaloupe fruit rind. 

Enumeration. After inoculation of S. enterica, E. tracheiphila, or a mixture of 

both species onto cantaloupe fruit rind, bacterial recovery varied with the sampling time. 

At 0 DPI, 3.62 log out of 5.60 log CFU/3 cm
2
 inoculated bacteria were recovered in the 

S. enterica-only treatment and 3.69 log out of 5.63 log CFU/3 cm
2
 in the S. enterica + E. 

tracheiphila inoculated treatment were recorded in Universal Pre-enrichment Broth 

(Table III-1). S. enterica numbers recovered in both treatments were significantly 

(<0.0001) lower (ca. 80% less) at 9 DPI than at 0 DPI, and by 24 DPI only 2 fruits (13%) 

receiving the S. enterica + E. tracheiphila treatment still had detectable numbers of S. 

enterica (Table III-1).  

Unlike S. enterica, E. tracheiphila recovery was very low at 0 DPI. Only 1.58 log 

cfu/3cm
2 

and 0.49 log cfu/3cm
2 

were recovered from fruit treated with E. tracheiphila 
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alone, or with E. tracheiphila + S. enterica, respectively, out of 5.64 - 5.71 log cfu/3cm
2 

inoculated (Table III-1). The latter recovery rate was approximately 70% less than that of 

the E. tracheiphila-only treatment. No E. tracheiphila was detected on fruits sampled at 9 

and 24 DPI in either treatment when watersoaked lesions were not present. 

Microscopy. At 0 DPI S. enterica was observed by CLSM on rind samples that 

had received both single and mixed culture inoculations (Figure III-5 A and B, 

respectively). Only a few samples were visually positive (on the surface) for S. enterica 

at 9 DPI, and none were positive at 24 DPI (data not shown). E. tracheiphila was 

observed on the rind surface at 0 DPI (Figure III-5 C), and at 9 and 24 DPI when 

watersoaked lesions were present (Table III-2). In internal longitudinal sections below the 

watersoaked lesions (to a depth of 3 mm), E. tracheiphila was observed in the 

intercellular spaces (Figure III-5 D).  

S. enterica numbers on the rind surface at 0 and 9 DPI, as detected by CLSM 

observation and culture enumeration, were indistinguishable (data not shown). Although 

bacteria were not counted in CLSM, in some of the 0 DPI samples it was difficult to find 

S. enterica. The number of S. enterica varied within same DPI samples and between 

samples of 0 and 9 DPI, but this bacterium was never observed at 24 DPI. The number of 

S. enterica PCR positive fruits was significantly higher (P>0.001) at 0 DPI than at 24 DPI 

in both, single or multispecies inoculated samples (Table III-1, Figure III-6). S. enterica 

was detected (by overnight enrichment culture and PCR) on 14% and 40% of fruit 

inoculated with S. enterica, or with S. enterica + E. tracheiphila, respectively, at 24 DPI, 

but these treatments were not significantly different (P = 0.11, one tailed Fisher’s Exact 

Test) (Table III-2, Figure III-6). Among mixed culture inoculated fruits sampled at 24 
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DPI, S. enterica survived on more fruits (50% - 4 out of 8) having E. tracheiphila - 

induced watersoaked lesions than on fruits without them (29% - 2 out of 7) (Table III-2).  

Scanning electron micrographs of fruit having with watersoaked lesions, 

inoculated with E. tracheiphila or E. tracheiphila + S. enterica, revealed bacterial masses 

on the rind surface on or adjacent to the natural cracks (Figure.III-7 B) as well as deep 

inside the cracks (Figure.III-7 D). Few fruits at maturity with watersoaked lesions, ≤ 0.5 

cm
2
 lesion, showed inhibition of the watersoaked lesion with brownish margin and 

looked like drying out (data not shown). 

S. enterica colonization of cantaloupe fruit sub-rind mesocarp. Two types of 

mesocarp samples, one immediately underneath the S. enterica or S. enterica + E. 

tracheiphila inoculated rind and sampled at 0, 9 and 24 DPI (i.e. sub-rind mesocarp) and 

the other from the central core of the fruit that received no rind inoculations and was 

sampled only at 24 DPI (i.e. inner mesocarp), were examined. Neither microbial analysis 

(cultivation) nor PCR detected S. enterica in the sub-rind mesocarp of 112 fruits sampled 

in all DPI and treatments (Table III-3, some data not shown).  

Assessment of systemic movement. Of the 131 total inner mesocarp samples, 

taken from the central core of fruits that received no inoculation but were growing on the 

same plants on which other fruit received either S. enterica or S. enterica + E. 

tracheiphila, and sampled at all DPIs, were negative for S. enterica by both microbial 

plating and PCR (Table III-2).  

E. tracheiphila colonization of cantaloupe fruit sub-rind mesocarp. Some of 

the sub-rind mesocarp of fruits that were inoculated with E. tracheiphila or E. 
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tracheiphila + S. enterica, and that later developed watersoaked lesions (sampled at 9 

DPI and later), were positive for E. tracheiphila by microscopy, culture and PCR. On E. 

tracheiphila only inoculated fruit, E. tracheiphila was detected in 10% and 31% of sub-

rind mesocarp sampled at 9 and 24 DPI, respectively (Table III-3). At 24 DPI, 27% of the 

sub-rind samples that received E. tracheiphila + S. enterica and had watersoaked lesions 

were positive for E. tracheiphila. All control fruits and those which did not develop 

watersoaked lesions were negative for both the pathogens on sampled sub-rind mesocarp. 

 

Discussion 

Outbreaks of foodborne illness associated with Salmonella enterica contaminated 

cantaloupe fruits underscore the importance of understanding the mechanisms of 

microbial contamination and persistence in the fruit. Recent work by others has shown 

that the presence of other microbial species, including plant pathogens, on the surfaces of 

a number of plant species can enhance rates of human pathogen survival and 

internalization. In this study we investigated the fate of Salmonella enterica Poona, alone 

or in the presence of the cucurbit wilt causing bacterium, Erwinia tracheiphila, on 

cantaloupe fruit surfaces.  

In nature, striped and spotted cucumber beetles transmit E. tracheiphila while 

feeding on plant parts (13), and even frass can be a source of contaminating bacteria as 

beetles feed on flowers and released bacteria enter plant interiors and cause wilt 

symptoms (48). The formation of tears or cracks during progressive changes in shape and 

size of cantaloupe fruit (18) and their subsequent coverage by the accumulation of a 
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corky scar, are unique features that expose modified lenticels that serve in gas exchange 

(70). Smooth surfaced melons also develop corky ridges if exposed to mechanical 

injuries (40). Prior to the wound healing, however, the cracks may provide a ready 

pathway for microbes on the surface to enter interior tissues.  

After rind inoculation, alone or in a mixture with E. tracheiphila, S. enterica 

could be detected on cantaloupe rind surfaces throughout the experiment, but its 

population levels declined over the successive sampling periods (0, 9 and 24 DPI) 

irrespective of the treatments. Others have shown that S. enterica can remain viable on 

the Arabidopsis thaliana, lettuce, parsley, radish, and carrot phyllosphere for an extended 

time (16, 36, 37). That S. enterica populations decline over time on agricultural produce 

also has been reported elsewhere and is not surprising, as many factors determine 

bacterial survival and the plant environment is generally not considered to be a natural 

niche for human enteric pathogens (4, 5, 9, 41). Although most fruit receiving S. enterica 

in our experiments tested positive only after enrichment, two fruit inoculated with the S. 

enterica + E. tracheiphila mixture still had countable S. enterica through direct plating at 

fruit maturity (24 DPI).  

We found no evidence for invasion or colonization of the fruit mesocarp (sub-rind 

or inner mesocarp) by S. enterica. Human enteric pathogens are documented plant 

invaders under some conditions, having been reported to traverse lettuce stomata (42), 

and to colonize tomato leaf trichomes (4), roots (32) and flowers (31). Infiltration into 

cantaloupe fruit during low temperature storage (59) also has been found.  The fact that 

we never detected S. enterica in any mesocarp samples during our study suggest that 
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even in the presence of watersoaking this bacterium rarely, if ever, traverses the rind into 

the edible portions of the fruit. 

E. tracheiphila, which causes wilt in cantaloupe and many other cucurbit crops in 

the eastern United States (12, 19, 24), is transmitted in nature by spotted and striped 

cucumber beetles (29). Our original reason for including this treatment was the hope that 

this plant pathogen might serve as a positive control so that, if S. enterica were not 

detected on the cantaloupe rind or in interior tissues, we would know that the reason was 

not a failure of our inoculation method.  Introduction of this bacterium, in volumes and 

titers unlikely to occur in the environment, directly onto cantaloupe rind surfaces, is far 

from a natural phenomenon. However, our preliminary experiments had revealed that E. 

tracheiphila could enter the fruit after introduction to the cracked areas (data not shown) 

or through flower interiors and produce watersoaked lesions (28). Furthermore, Rojas and 

Gleason (61) recently reported that E. tracheiphila can live as an epiphyte on muskmelon 

leaves under a wide range of leaf wetness levels and temperatures, and they speculated 

that this niche could serve as a source of E. tracheiphila inoculum for pathogen 

dissemination. Their findings, combined with ours, suggest that E. tracheiphila may be a 

normal resident on cucurbit plant surfaces in nature. If this is true, then its ability to 

facilitate the survival of a human pathogen such as S. enterica becomes much more than 

an academic question. 

E. tracheiphila was detected on fruit rind soon after inoculation at 0 DPI, but only 

in very low numbers, and it was never detected from the surfaces of healthy looking fruit 

at 9 and 24 DPI.  These low recovery rates for E. tracheiphila even at 0 DPI may be due 

to the slow growth rate of this species, high viscosity of bacterium with significant 
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amount of polysaccharide production, the unusual plant niche for this bacterium, or rapid 

loss in viability (13, 65, 66). Considerable research has been done to find the accurate 

inoculation (33, 51, 54, 57, 66, 73, 74), isolation (54, 66), and storage (13, 22) techniques 

for E. tracheiphila. Numerous methods of E. tracheiphila transmission in cucurbit plant 

has been studied (56) but its internalization through cracks formed on fruit surface has 

never been reported. However in our experiment, E. tracheiphila did traverse the rind, of 

some fruit leading to the formation of watersoaked lesions that enlarged over time. We 

detected E. tracheiphila in 31% of sub-rind mesocarp samples, that had lesions at 24 DPI, 

and the increase in their numbers in that location from 9 DPI to 24 DPI suggests that they 

either continue to move there over time or multiply there. That E. tracheiphila, deposited 

artificially in high numbers on the cantaloupe rind, can colonize the rind surface, enter 

the underlying mesocarp tissue through natural cracks, and cause watersoaked lesions is a 

new finding. Such events might take place in nature, but be un-noticed if contaminated 

beetles feed on these fruits or their frass contaminates the open wound as natural cracks 

on fruit surface. 

Introducing the human pathogen, S. enterica, and the plant pathogen, E. 

tracheiphila, simultaneously led to some differences in the behavior of the individual 

bacterial species. In this work, S. enterica persisted in greater numbers in the presence of 

watersoaked lesions caused by E. tracheiphila than on non-symptomatic rinds. In nature, 

human pathogens that come into contact with potential plant niches encounter numerous 

microflora with which they may interact synergistically or antagonistically (8, 23, 38, 

62). Microbial synergism between S. enterica and normal plant microflora, such as 

certain storage fungi (71), and the plant pathogen Xanthomonas campestris pv. 
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vesicatoria, in the absence of plant disease (5), has been reported. Recently, Barak and 

Schroeder (6), showed a positive correlation between bacterial speck lesion formation 

and S. enterica survival on the tomato phyllosphere. Our test pathogens, i.e. S. enterica 

and E. tracheiphila, might interact and colonize differently on other varieties of 

cantaloupe fruit; a study with S. enterica and Escherichia coli O157:H7 showed variable 

levels of root colonization depending on the cantaloupe variety (21). Both S. enterica and 

E. coli, colonized the rhizosphere of ‘Burpee’s Ambrosia’ most and ‘Israel Old Original’ 

least among five cultivars tested. In the work reported here, it is likely that the leakage of 

cellular contents into intercellular spaces after E. tracheiphila inoculation, which resulted 

in watersoaking, provided nutrients and water supportive of S. enterica growth on the 

rind surface, thereby extending the persistence of the human pathogen in what would 

otherwise have been a less favorable environment.  

We saw no indication that the presence of S. enterica influenced the behavior or 

survival of E. trachiphila on the cantaloupe fruit.  The apparent lack of interaction 

between these species on rind surfaces is interesting because, in vitro, when S. enterica 

and E. tracheiphila are streaked onto the same agar plate, there is clear inhibition of E. 

tracheiphila (data not shown).  

In this work there was no evidence for systemic movement of either pathogen in 

the cantaloupe plant after rind inoculation. Lack of systemic movement of S. enterica was 

expected, since we saw no internalization of this species. More interesting is that E. 

tracheiphila, which was detected in the fruit mesocarp and which, in “typical” wilt 

disease, moves systemically in the xylem, was not detected in un-inoculated fruit present 

on the same plant that had inoculated fruit. The question of whether E. tracheiphila, after 
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traversing the fruit rind into the mesocarp, can find its way to the xylem and from there 

move to other plant parts needs further investigation. In a preliminary experiment we 

found evidence for systemic movement of E. tracheiphila to the fruit then to the vines, 

resulting in plant wilting after flower interior inoculation (28). Twenty four days may not 

be enough time for the plant pathogen to move through the vines and cause wilting. 

Changes in fruit physiology during ripening, or the density of fruit tissues may restrict 

systemic bacterial spread. The fact that E. tracheiphila numbers declined over time may 

also reflect physiological incompatibility. Many storage and pathogenic fungi are active 

on mature fruit from where they initiate postharvest decay (67, 75), but there are only few 

bacterial diseases associated with fruits [Erwinia amylovora (26), Xanthomonas 

axonopodis pv. citri (43, 44), Xyllela fastidiosa (14), etc.], and their primary location is 

organs or tissues rather than fruits (39, 50). 

Our results support the conclusion that survival of S. enterica on cantaloupe fruit 

can be influenced by synergism with other microflora. As E. tracheiphila did internalize 

in our study through the natural cracks, producing watersoaked lesions, the possibility of 

S. enterica internalization also exists.  Fruit cracking may be a route of internal 

contamination in the field. 
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 Figure III-1: Fruit sampling in a single replication. Fruits of 8 plants were 

inoculated with each of the three pathogen treatments (E. tracheiphila or S. enterica or 

mixture of these two pathogens) (24 plants), and three plants served as controls (24+3=27 

plants per replication). Fruits of three plants per treatment (9 plants) were sampled at 0 

and 9 DPI, and fruits of five plants per treatment (15 plants) were sampled at 24 DPI. 

Rind, sub-rind mesocarp and inner mesocarp were sampled as illustrated. 
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Figure III-2: Newly formed natural cracks on cantaloupe fruit rind areas (2 x 2 

cm) inoculated with in 10-15 droplets of 20 µl pathogen(s) suspensions or 0.1% peptone 

and spread with a sterile bristled brush. Arrow head indicates cracks older than those in 

the area being inoculated. 
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Figure III-3: Reddish orange exudate (arrow) observed on the natural cracks of 

10-12 day-old cantaloupe fruit rind. These cracks are naturally healed by deposition of 

corky material, forming the characteristic netting on cantaloupes. 
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Figure III-4: Cantaloupe rind inoculation with E. tracheiphila (Et- green 

fluorescing with GFPuv), alone or together with S. enterica (SP- red fluorescing with 

DsRedExpress), pathogens were spread onto the rind surface with a soft brush and 

sampled at 0, 9 or 24 DPI. (A) Percentage of cantaloupe fruit showing watersoaked 

symptoms based on visual inspection, no significant difference between day 9 and 24 at 

any level of Et or SP + Et (Fisher’s Exact one-tailed P=0.64 and P=0.53, respectively), (B 

and C) Cantaloupe rind with watersoaked lesion observed under natural light, and under 

UV light, respectively. C shows green fluorescing E. tracheiphila on the cracks and 

beneath the cuticle in a watersoaked area. Scale bars represent 2 cm.
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Table III-1: Recovery of S. enterica Poona and E. tracheiphila, at intervals following inoculation, singly or together, onto 

cantaloupe fruit rind surfaces.  

 

SE - standard error of mean, CFU – colony forming units, SP – Salmonella enterica Poona, Et – Erwinia tracheiphila 

TNTC- Too numerous to count, NA- Not applicable since watersoaking did not occur immediately. 

¥ Numbers in parenthesis following “TNTC” indicate # of fruits on which lesions developed /total fruit sampled for that treatment 

* Numbers in parenthesis following pathogen recovery figures indicate # of fruit samples having detectable level of pathogen/total # 

fruit sampled. 

Means within the same treatment having the same letter are not statistically significant at the 0.05 level according to ANOVA.

 

Treatments 

Pathogen 

assessed 

Development of 

watersoaked lesion 

Pathogen recovery (Log CFU ± SE/3cm
2
) 

0 DPI 9 DPI 24 DPI 

Et Et + 

- 

 NA 

1.58
a
 ± 0.30 (8/10) 

TNTC (6/10)
¥
 

0.00
b
 ± 0.00 (4/10)* 

TNTC (8/13) 

0.00
b
 ± 0.00 (5/13) 

SP SP NA  3.62
a
 ± 0.19 (9/9) 0.65

b
 ± 0.27 (4/9) 0.00

c
 ± 0.00 (0/14) 

SP + Et 

 

Et 

 

+ 

- 

 NA 

0.49
a
 ± 0.34 (2/10) 

TNTC (6/10) 

0.00
b
 ± 0.00 (4/10) 

TNTC (8/15) 

0.00
b
 ± 0.00 (0/15) 

 SP NA  3.69
a
 ± 0.19 (8/10) 0.79

b
 ± 0.28 (5/10) 0.27

c
 ± 0.19 (2/15) 

Control SP and Et NA  0.00 ± 0.00 (0, 3) 0.00 ± 0.00 (0/3) 0.00 ± 0.00 (0/6) 
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Figure III-5: Confocal laser scanning microscope images showing the presence of 

inoculated, fluorescently tagged bacteria on cantaloupe rind surfaces. Rind epidermal 

cells appear as a beehive pattern, and bacteria are indicated with arrows (panels C and D). 

(A) Fruit rind surface inoculated with S. enterica Poona (labeled with DsRedExpress) and 

sampled at 0 day post inoculation (DPI), (B) Fruit rind surface inoculated with a mixture 

of S. enterica Poona + E. tracheiphila (labeled with GFPuv) and sampled at 0 DPI (C) 

Fruit rind surface inoculated with E. tracheiphila and sampled at 0 DPI and (D) 

Longitudinal section of rind containing watersoaked lesion and sampled at 24 DPI; E. 

tracheiphila in the intercellular spaces (arrow) (inoculated with mixture of S. enterica 

plus E. tracheiphila). The scale bars represent 5µm.  
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Figure III-6: Fruits positive for S. enterica Poona (SP) from rinds of cantaloupe 

inoculated with S. enterica Poona alone (SP), or S. enterica + E. tracheiphila (SP + Et), at 

0, 9 or 24 days post inoculation (DPI). Similar letters above bars of the same treatment do 

not significantly differ at p < 0.05) according Fischer’s Exact test- one tailed. Overall p-

value for comparison of proportions among levels of DPI given treatments are <0.001 

and 0.0039 for SP and SP + Et, respectively. 
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Figure III-7: Scanning electron micrographs of cantaloupe rind surface at fruit 

maturity (24 days post inoculation). (A) Rind inoculated with 0.1% peptone; (B) Masses 

of bacteria seen near a trichome scar on a rind that had a watersoaked lesion, inoculated 

with E. tracheiphila; (C) Crack on rind inoculated with 0.1% peptone; and (D) Crack on 

rind inoculated with mixed S. enterica + E. tracheiphila line the fruit crack that had a 

waterloaked lesion. All observations were made at 5,000X; scale bar shows 20µm. 
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Table III-2: Recovery of S. enterica from cantaloupe fruit inoculated with a 

mixture of S. enterica and E. tracheiphila, data sorted by the development of E. 

tracheiphila-incited watersoaked lesions. 

 

Days post-inoculation 

% of fruits with lesions + 

for S. enterica 

% of fruits without 

lesions + for S. enterica 

 

P- value 

9 83.3 (5/6)* 75.0 (3/4) 0.67 

24 50.0 (4/8) 28.5 (2/7) 0.38 

Total 64.3 (9/14) 45.5 (5/11) 0.30 

*Numbers in parenthesis following % pathogen recovery figures indicate # of fruit 

samples positive by (colony counts) of pathogen/total # of fruit sampled. 

Percent fruit values analyzed using Fisher’s Exact Test. 
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Table III-3: Percent of sub-rind mesocarp and inner mesocarp samples positive, 

by colony count and PCR, for S. enterica or E. tracheiphila from fruits inoculated with 

either S. enterica, E. tracheiphila or a mixture of these pathogens, sampled at different 

days post inoculation (DPI). 

 

Samples for measurement 

 Treatment on fruit rind 

 Et SP Et + SP Control 

9 DPI  

Total # of fruits sampled 

 

10 9 10 3 

Sub-rind mesocarp*      

Et +   10
a
 0

a
 0

a
 0

a
 

SP +   0
a
 0

a
 0

a
 0

a
 

24 DPI  

Total # of fruits sampled 

 

13 14 15 6 

Sub-rind mesocarp      

Et +  31
a
 0

b
 27

ab
 0

b
 

SP +  0
a
 0

a
 0

a
 0

a
 

Inner mesocarp**       

Total # of fruits sampled  33 38 43 17 

Et +  0 0 0 0 

SP +  0 0 0 0 

Et – E. tracheiphila, SP – S. enterica Poona, 

*Sub-rind mesocarp- 7-10 g of mesocarp underlying the rind square of fruits inoculated 

with pathogen(s) or with 0.1% peptone water. 

**Inner mesocarp- Mesocarp excised from the center of un-inoculated fruits on the 

same plants on which other fruit were treated with pathogen(s) or 0.1% peptone water 

treatment. 

Percentages in the same row with the same letter are not significantly different at the 0.05 

level. Means were separated using Fisher’s Exact Test. 
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CHAPTER IV 

 

 

SALMONELLA ENTERICA COLONIZATION OF CANTALOUPE FLOWERS 

AND FRUIT FOLLOWING FLOWER INOCULATION ALONE OR WITH 

ERWINIA TRACHEIPHILA 

 

Abstract 

Cantaloupe, which is vulnerable to Salmonella contamination, has been 

implicated in numerous outbreaks of foodborne illness. However, little is known about 

the mechanisms and pathways by which S. enterica colonizes the fruit. We hypothesized 

that bacteria present within flower interiors, to which they could be introduced by insects, 

could access the developing fruit through natural flower openings, such as nectaries and 

stigmas. We further hypothesized that the presence of a plant pathogen, the cucurbit wilt 

bacterium Erwinia tracheiphila, could influence the fate of Salmonella in this 

environment. Hand pollinated cantaloupe flowers were inoculated at the bottom of the 

floral whorl with 5 µl (ca. 10
7
 cfu/ml) of S. enterica Poona, a clinical isolate from 2001 

cantaloupe outbreak, E. tracheiphila MCM1-1, a mixture of these two pathogens, or 

0.1% peptone water as a control treatment. Fruit mesocarp samples (25 g) were excised at 

15and 43 days post inoculation (DPI). Whole flowers were sampled immediately (0 DPI) 
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and at fruit maturity (43 DPI) (consisted of dried floral remnants plus a 1 x 1 x 0.1-0.2 cm 

of adjacent blossom-end rind). All flowers sampled at 0 and 43 DPI and inoculated with 

either S. enterica or S. enterica + E. tracheiphila were positive for S. enterica, and at 43 

DPI the populations of S. enterica were significantly (P<0.05) higher than these at 0 DPI 

from 4.46 to 6.12 log cfu/ ml and 4.89 to 6.86 log cfu/ml, respectively. E. tracheiphila 

was not recovered from any of the samples, regardless of treatment at 43 DPI and no 

observations were made at 15 DPI. An interior mesocarp sample from just one fruit, 

whose flower was inoculated with S. enterica only and sampled at 15 DPI, was positive 

for S. enterica. Our data suggest that, following flower inoculation, internalization of 

Salmonella into cantaloupe mesocarp is a rare event. However, dried floral remnants and 

the blossom end on mature fruit could act as a reservoir for Salmonella if the pathogen 

were introduced to the site at the flowering stage. 

 

Introduction 

Salmonella enterica is the human pathogen most common by implicated 

infoodborne illnesses, and outbreaks have been increasingly linked with the consumption 

of fresh fruits and vegetables (21). One million infections, 19,533 hospitalizations, and 

378 deaths occur annually in the United States (40). Associated food recalls have resulted 

in significant economic losses (2, 9, 15). The first reported multistate outbreak of 

salmonellosis in the United States, in 1990, which was attributed to the consumption of S. 

enterica Chester contaminated cantaloupe (Cucumis melo var. reticulatus), was reported 

to affect 256 people (36), but the actual number of people involved was likely higher, 
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since many cases go unreported (29). Salmonellosis can be fatal for infants and 

immunologically compromised people (7).  

Human pathogens, such as Salmonella, can enter agricultural production fields 

through agricultural inputs such as irrigation water (16, 32, 34), soil or animal manure 

(5). Cantaloupe is particularly vulnerable because of its surface netting and uaual contact 

with soil surface, where human pathogens may be present. Long term survival of human 

pathogens in agricultural environments creates a risk for consumers of fresh produce (11, 

12, 18, 25, 45). Those pathogens, once established as surface contaminants, are not easily 

washed away, even when sanitizers are used (1, 28, 42, 44). Moreover, injuries on plant 

surfaces can prolong human pathogen persistence, possibly due to leaking fluids or the 

creation of protected niches (22, 45). Internalization of human pathogens in plants, and 

enhancement of their colonization of plant surfaces in the presence of plant pathogens or 

other microflora, have been demonstrated in lettuce, tomato and other fresh vegetables (4, 

5, 13, 20, 26, 39, 45). 

We hypothesized that S. enterica can internalize into the edible portion 

(mesocarp) of cantaloupe fruit after introduction into the flower interior, either alone or 

together with the melon wilt pathogen, Erwinia tracheiphila, and that S. enterica can 

survive on inoculated flowers until the time of fruit maturity. 

 

Materials and Methods 

Bacterial strains, maintenance and inoculum preparation.  S. enterica Poona, 

a clinical isolate from 2001 cantaloupe outbreak, (2), and E. tracheiphila strain MCM1-1, 

isolated originally from cantaloupe by B. Bruton, USDA-ARS, Lane, OK, and provided 
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by M. Gleason, Iowa State University, IA, were used in this study. Bacteria were stored 

in Luria Bertani (LB) broth with 25% glycerol at -80
o
C.  To prepare inoculum, S. 

enterica and E. tracheiphila were grown for 24 h at 37
o
C and 28

o
C on LB and nutrient 

agar, respectively. Cells of both pathogens were harvested with a sterile loop and 

dispersed in 0.1% peptone. The final concentration of both pathogens, determined by 

optical density and dilution plating, was adjusted to ca. 2 x 10
7
 cfu/ml. For mixed species 

inoculation, equal volumes of S. enterica and E. tracheiphila suspensions were mixed 

with 0.1% peptone water to a final concentration of ca. ca. 10
7
 cfu/ml. Suspensions were 

used immediately after formulation and inoculation was completed in 1-2 h.  

Plant management.  Cantaloupe, cv. Sugarcube, seeds were sown about an inch 

deep in cells of polypropylene flats containing Redi-earth potting mix (Sun Gro, WA) 

and placed in a growth chamber (75
o
F, 60% humidity and 14/10 h day/night light). 

Seedlings that were 21 days old and at the 2-3 leaf stage were transplanted in to 4.2 

gallon plastic pots containing Metromix-300 potting mix (Sun Gro, WA) supplemented 

with slow-release Osmocote fertilizer (19N, 6P and 12 K). Pots were then transferred to a 

polypropylene tray in the greenhouse, where day and night temperatures were set at 24
o
C 

and 18
o
C, respectively, with 14 h day/ 10 h night light. 

A week after transplanting the vining plants were trailed up and tied onto a 

framework of polyvinyl chloride (PVC) pipes, and pots were watered every other day. 

Young fruit that formed also were supported on the PVC frame. The experiment, which 

included three replications, was started in August 2011 and completed in January 2012. 

The average temperature and humidity recorded inside the greenhouse were 23
o
C and 

52%, respectively.  
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Flower pollination, inoculation and sampling.  Hand pollination was performed 

by collecting pollen, using a fine artist’s paint brush, from 1-2 staminate flowers and then 

dabbing it onto the stigmas of pistillate flowers of the same plant; on the day they 

opened. Flower whorls were inoculated with pathogen(s) or with 0.1% peptone 

immediately after pollination. Cultured cell suspensions, adjusted to ca. 10
7 
cfu/ml (5µl) 

were introduced, using a thin pipette tip, to the base of the floral whorl. 

Two types of flower samples were collected to determine pathogen(s) survival: at 

day 0 samples were fresh, moist flowers and at day 43 samples consisted of the dried 

floral remnants supplemented with a thin, 1x1x0.1-0.2 cm from the blossom-end rind to 

which they were attached (Figure.IV-1). Two additional sample types: internal mesocarp 

tissues of fruits, which developed after flower inoculation, and excised at 15 DPI and 43 

DPI, and from fruits that were left un-inoculated to test for systemic pathogen movement. 

Fruits were visually inspected for symptoms prior to sampling and analysis. 

We hypothesized that S. enterica, inoculated in the interior of pollinated flowers, 

might traverse into the fruit derived from the ovary of that flower through natural 

openings such as nectarthodes, and from there could access the vascular tissue and move 

systemically into other regions of the plant, such as another fruit. To test for systemic 

movement, one un-inoculated fruit was left on each test plant for testing at fruit maturity. 

Treatments consisted of S. enterica alone, E. tracheiphila alone, or a mixture of S. 

enterica + E. tracheiphila, with a total of 5 plants per treatment (2 plants for sampling at 

0 and 15 DPI and 3 plants for sampling at 43 DPI). For control treatments (0.1% peptone 

water), 1 and 2 plants were sampled at 0 and 15 and 43 DPI, respectively. This is 
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explained clearly, with a flow diagram, in Figure IV-1. Each treatment was replicated 

three times. 

Microbiological analyses.  Flower samples, fresh or dried with attached blossom 

end rind ca. ≤ 1 g each, inoculated or not with pathogen(s), were collected in individual 

whirl-pak bags (7 oz., Nasco Co., IL) macerated with a rubber hammer in 10 ml of 

Universal Pre-enrichment Broth (UPB) (Becton, Dickinson and Company, MD), hand 

shaken for 1 minute and processed for microbial analysis. Mesocarp samples were 

excised aseptically by bisecting the fruits, cutting wedge-shaped triangles perpendicular 

to the bisection, and then slicing and lifting a thin (2-4 mm thick) mesocarp layer that 

included the core seeds (Figure IV-2). Mesocarp samples (ca. 25 g) in whirl-pak bags (55 

oz. size, Nasco Co., IL) were weighed and macerated as above. UPB (225 ml) was added 

to the bags followed by hand shaking for 1 minute. Flower and mesocarp suspensions 

were plated on xylose lysine deoxycholate agar (XLD) plates (250 µl in quadruplicate 

plates and 100µl in duplicate plates) to recover S. enterica. The presence or absence of E. 

tracheiphila was assessed by PCR. Reported optimal growth temperatures of these two 

pathogens differ (37
o
 C for S. enterica and 28

o
 C for E. tracheiphila), but in a preliminary 

experiment we found no difference in S. enterica growth rates on LB broth at 28
o
 C and 

37
o
 C, based on optical density (OD) at 600 nm (data not shown), so all the enriched 

samples were incubated at 28
o
 C for 24 hrs. The remaining flower and mesocarp 

suspensions were incubated and processed for S. enterica detection following Food and 

Drug Administration Bacteriological Analytical Manual (FDA, BAM) protocols (14). 

Finally, 1 ml of overnight incubated mesocarp and flower suspensions (1 ml each) were 
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centrifuged at 5800 x g for 10 minutes and the pellets stored at -20
o
C until the DNA was 

extracted for PCR. 

 PCR detection of S. enterica and E. tracheiphila.  DNA was extracted from the 

frozen pellets using a DNeasy Blood and Tissue Kit (QIAGEN Group, Austin, TX). 

Pathogen presence was assessed by a multiplex PCR using Salmonella specific primers 

(forward- 5’ GTGAAATTATCGCCACGTTCG GGCAA 3’ and reverse- 5’ 

TCATCGCACCGTCAAAGGAACC 3’) to amplify a 284-bp nucleotide sequence within 

the invA gene (35), and E. tracheiphila specific primers ETC1(5’GCACCAATTCCGCA 

GATCAAG3’) and ETC2 (5’CGCAGGATGTTACGCTTAACG3’) to amplify a 426-bp 

nucleotide sequence within the carbamoylphosphate synthetase gene (30). DNA 

amplification was carried out in a 25 µl reaction mix consisting of 12 µl Gotaq® Green 

Mastermix (Promega Corporation), 3 µl template DNA, , 1 µl each primers (total 4 µl), 

and6 µl of nuclease free water. PCR was performed on Eppendorf Thermal cycler 

(Eppendorf North America, NY) with cycling conditions including an initial denaturation 

at 94
o
C for 3 min, followed by 35 cycles at 94

o
C for 30 sec, 60

o
C for 20 sec, 72

o
C for 30 

sec, and a final extension at 72
o
C for 3 min. Amplified products were run on 1.5% gel 

made with 1x TAE buffer and electrophoresis run for a total of 1 hr. A total of 3 

replications of the entire experiment were completed. 

Statistical analysis. All experiments were completed in triplicate. Mean and 

standard errors of log base 10 transformed count values were calculated using MS Excel 

and the resulting data were analyzed using ANOVA procedures with SAS Version 9.2 

(SAS Institute, Cary, NC). A two-factor factorial (treatment and DPI) in a randomized 

complete block design was the assumed model. 
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Results 

Fruit appearance after flower inoculation.  After S. Poona, E. tracheiphila, a 

mixture of the two bacteria, or peptone water were used to inoculate flowers, the range in 

the fruit shape and size did not differ from those of controls. Flowers, that remained 

attached to the fruit towards fruit maturity, became dry and brittle as fruits developed. All 

fruits, irrespective of treatments, appeared healthy from beginning to fruit maturity. 

Survival and growth of S. enterica and E. tracheiphila at flower inoculation 

sites. Whole flowers (when available) from each treatment were collected and processed 

for microbial content.  E. tracheiphila populations were not enumerated, but multiplex 

PCR was performed on DNA extracted from overnight enriched cultures. Except at 0 

DPI, all samples were negative for E. tracheiphila. Immediately after flower inoculation 

recovery, of S. enterica was ca. 5 log in both S. enterica and mixed-culture treatments 

(Table IV-1); S. enterica recovery was significantly higher (P<0.05) at 43 DPI than at 0 

DPI in both S. enterica-containing treatments. S. enterica recovery at 43 DPI was 39% 

greater (6.12 log cfu/ml) in the S. enterica only treatment, and 45% greater (6.86 log 

cfu/ml) in the S. enterica + E. tracheiphila treatment than at 0 DPI (Table IV-1). Rates of 

S. enterica recovery did not differ between the two inoculation treatments at 0 or 43 DPI 

(P>0.05). The identity of S. enterica was confirmed with multiplex PCR in these two 

treatments. 

S. enterica and E. tracheiphila internalization of fruit mesocarp.  The 

mesocarp tissue of fruits that developed from inoculated flowers was sampled at 15 and 

43 DPI to assess pathogen internalization. Of 108 fruits, including controls, sampled, 15 

received S. enterica alone or in a mixture with E. tracheiphila. The mesocarp of one of 6 
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fruits that developed after flower inoculation with S. enterica alone and sampled at 15 

DPI was positive for S. enterica after overnight enrichment. All other mesocarp samples 

were negative for S. enterica. We did not detect E. tracheiphila from any fruit mesocarp 

throughout the experiment. 

 

Discussion 

Salmonella, a common human enteric pathogen, has been implicated as a 

contaminant of cantaloupe fruit (3, 8, 31) and can be transferred into the edible mesocarp 

at the time of cutting (42). Whether it can invade developing cantaloupe fruit in the field 

is not known, although in a recent study S. enterica failed to enter cantaloupe plant roots 

after soil inoculation (27). Recent reports of Salmonella internalization into edible parts 

of the other plant species after artificial inoculation, either alone or in the presence of a 

plant pathogen, has increased concern that, under certain conditions, it could occur in the 

field (4, 5, 19, 25, 26, 37).  

As numerous insects visit flowers and could transmit human pathogens (24, 43), 

we were interested to know whether S. enterica can survive in inoculated flower interiors 

and/or enter the cantaloupe plant through natural floral openings, such as nectarthodes or 

stigmas, and also whether the presence of the cucurbit wilt pathogen, E. tracheiphila, 

would influence that ability. Under the conditions of our study, the incidence of fruit 

mesocarp colonization by S. enterica after flower inoculation was very low. S. enterica 

did, however, survive on inoculated flowers until fruit maturity. Although we did not 

detect, E. tracheiphila, at fruit maturity, it is possible that microbial community members 

could have enhanced its survival. 
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Whether it was inoculated alone or together with E. tracheiphila, S. enterica was 

not found in fruit mesocarps sampled 43 days after flower inoculation. One S. enterica 

only-inoculated fruit, sampled at 15 DPI, was PCR positive, but only after enrichment 

culture, suggesting that population levels were very low.  

Most flowers, regardless of treatment, were wet the day after inoculation/ 

pollination, and this could be a normal phenomenon for plant to make conducive 

environment for fertilization, and the presence of a film of water is often conducive to 

bacterial entry (46). Barak et. al. (4) reported that the broken bases of type 1 trichomes 

present on tomato leaves as a preferred site for S. enterica Poona colonization and the 

occurrence of disease in those plants correlated with higher S. enterica populations 

compared to those on healthy plants. Others have reported internalization of S. enterica in 

other fresh produce (18-20, 26). Guo et al. (19) found that 25% of tomato fruits contained 

S. enterica after flowers were brushed with a bacterial suspension. The fact that S. 

enterica Poona was significantly more likely to internalize than four other Salmonella 

serovars tested suggests the existence of serovar-specific traits that may influence 

adaptation to the plant environment. Human pathogen internalization through other plant 

parts also has been reported. S. enterica entered lettuce leaves through stomata (26), 

tomato fruit through roots (20), and stems inoculations (19). Greater fruit colonization by 

S. enterica occurred when tomato stems were inoculated prior to, rather than after fruit 

set (19). Similarly, fruit internalization by microbes other than human pathogens through 

unusual routes also has been reported. Pseudomonas corrugata (41) and E. carotovora 

subsp. carotorova (6), respectively, entered tomato fruit after flowers were sprayed or 

fruits were dipped in the pathogen inoculum. P. corrugata, which causes tomato pith 
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necrosis, usually infects through the rhizosphere, so the flower is an unusual route of 

internalization for this pathogen. E. carotovora subsp. carotovora, which causes soft rot 

of fruits and vegetables, is an important disease in the field and during storage. 

Much of the previous research done to explore the possibility of human pathogen 

internalization involved relatively high doses of pathogens that are unlikely to occur in 

agricultural environments. When we used ca. 5 x 10
4
 cfu/flower (ca. 10

7
 cfu/ml) of S. 

enterica, a titer that would be realistic for most microorganisms in natural environments 

(23, 33), the bacteria survived and grew in the inoculated flowers. Although greenhouse 

humidity was relatively low (52% on average, and occasionally as low as 10%) the 

flower interior is likely to retain moisture, and nectar could serve as a source of nutrition. 

All flowers receiving S. enterica inoculation sustained population increases evident at 43 

DPI (P<0.05). It’s the population growth was greater when it was co-inoculated with E. 

tracheiphila than when it was inoculated alone. However, the latter bacterium was 

detected neither on surfaces nor in samples at 43 DPI. The decline in population of E. 

tracheiphila in this study is consistent with that reported previously after cantaloupe 

phyllosphere inoculation (38), although in the latter study it internalized in the fruit 

mesocarp after flower inoculation, producing watersoaked lesions (17). As we did not 

sample flowers between 0 and 43 DPI, we do not know the pattern of bacterial 

multiplication in this period, but it is possible that E. tracheiphila modified the 

environment such that it was more conducive for S. enterica survival and multiplication. 

Our data are consistent with an interpretation of a synergistic relationship between this 

human pathogen and other microflora; similar to that been reported by others for certain 

phytobacteria (5) and storage and pathogenic fungi (10, 37, 45). We did not detect E. 
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tracheiphila on any of the flowers sampled at 43 DPI and only short-term survival of this 

pathogen, under optimal conditions, has been reported on the cantaloupe phyllosphere 

(38). Furthermore, we cannot say whether S. enterica survived on or in the blossom-end 

rind that was combined with the flower sample. However, our data suggest that the 

likelihood of S. enterica internalization in cantaloupe is low and might occur only in 

special conditions that are unlikely to occur in the field.  

Our work provides new information about the possibility of long-term Salmonella 

survival on artificially inoculated blossoms, and internalization into the fruit after flower 

inoculation. Further research is needed to better characterize the relationships between 

Salmonella and members of the natural microbial community. Survival of S. enterica on 

flower blossom could be a problem of having cross contamination if the pathogen is 

brought to the flower. 
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Figure IV-1: Illustration for fruit sampling from a single replication composed of 

5 plants, flowers of which were inoculated with pathogens at the base of the floral whorl.  

Two plants each were sampled at 0 (for flowers) and 15 DPI (for inner mesocarp), and 3 

plants receiving pathogen treatment E. tracheiphila alone, S. enterica alone, or a mixture 

of these two pathogens) were sampled at 43 DPI. Inner mesocarps and flowers (along 

with a small piece of attached rind) were sampled at 24 DPI.  Control plants with 0.1% 

peptone inoculation were 1 and 2 for 0 and 15 DPI, and 43 DPI sampling, respectively, in 

each replication.  
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Figure IV-2: Fruit mesocarp samples excised at 43 DPI from fruits that developed 

from flowers previously inoculated with S. enterica or a mixed culture of S. enterica + E. 

tracheiphila. Each sample included edible mesocarp, seeds and placenta. Samples (ca. 25 

g) were assayed by direct plating, enrichment and PCR techniques.  
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Table IV-1: Mean recovery of S. enterica Poona from flowers after inoculation 

with S. enterica alone or S. enterica + E. tracheiphila at 0 and 43 days post inoculation 

(DPI). 

 

Treatment 

 Number of flower samples  S. enterica Poona recovery (Log10 cfu/ml¥) 

 0 DPI 43DPI  0 DPI 43 DPI* 

SP only  15 10  4.46
b
 ± 0.03 6.12

a
 ± 0.42 

SP + Et  15 11  4.89
b
 ± 0.02 6.86

a
 ± 0.70 

*Values in a row followed by the same letter are not significantly different at 0.05 

according to ANOVA. 

SP- S. enterica Poona, Et- E. tracheiphila, 

 ¥ Volume of wash water i.e. Universal Pre-enrichment Broth (UPB) 
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APPENDICES 

 

Preliminary Experiments 

Prior to beginning of the main experiments described in the preceding chapters, 

several preliminary studies were conducted to select an appropriate cantaloupe cultivar 

and to establish optimum inoculation and sample processing techniques. 

 

APPENDIX A 

Cantaloupe cultivar selection 

Objectives.  The objectives of this study were 1) to understand the general 

characteristics of cantaloupe plant growth, flowering and fruiting under the conditions of 

our BSL-2 greenhouse, and 2) to compare the plant habit, days to fruit maturity, number 

of fruits per plant, fruit weight, of three cantaloupe varieties, Sugarcube, Caravelle and 

Cruizer, and select the one most suitable for our purposes. 

Greenhouse conditions.  The average temperature recorded throughout this study 

was 23
o
C. Daylength was set at 14 h day/ 10 h night. 

Plant form and growth.  Although the leaves of most of varieties were bigger in 

the greenhouse compared to their natural size in the field, cv. Sugarcube was the most 

compact of the three tested, and therefore was the most amenable to vine trellising and 
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the easiest to keep vines of adjacent plants separate. Furthermore, fruits of cv. Sugarcube 

were the smallest of the three, and less likely to fall when hanging on the supported 

frame, as only peduncle were tied for fruit support. Therefore, cv. Sugarcube was 

selected for our study. 

Flowering.  All three cantaloupe varieties produced three types of flowers i.e. 

male (Fig. 1 A), complete (Fig. 1 B) and female (Fig. 1 C). Male flowers were produced 

early during plantgrowth. They were first observed 10-15 days after transplanting and 

continued to appear until plant death. Complete flowers, which appeared only after some 

male flowers were present, were the most likely to produce fruit. The time from planting 

to the appearance of the first complete flower ranged from 25-36 days (avg. 31) in 

Sugarcube, 37-44 days (avg. 41) in Caravelle and 36-38 days (avg. 37) in Cruiser. Female 

flowers were few in number, appeared near plant maturity, and seldom set fruit. 

Pistillate flowers (mainly complete flowers) of cv. Sugarcube only were 

pollinated, using a fine artist’s paint brush, with pollen collected from 1-2 male flowers 

(Fig. 2 A- F). The pollen-laden brush was dabbed against the stigma tip several times for 

successful pollination. In Sugarcube, out of 32 pollinated flowers only 4 (13%) flowers 

produced fruits. Many small fruits aborted between 4-5 days, turning yellow and later 

shriveling. 

Fruiting and net formation.  Fruits, when newly formed (7-10 days of age), 

were light green in color and smooth surfaced but hairy. Rind cracking, a natural process 

resulting from fruit expansion that precedes the deposition of callose netting, began 

within 9-13 days of fruit formation. Cracks usually appeared first at the blossom end and 
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spread to cover the whole fruit within 10-15 days. Reddish or orange exudates observed 

in the crevices showed that the wound briefly exposed interior tissue (Fig. 3 A- C). 

Although we did not measure the crack depths, those of cv. Sugarcube were deep and 

more widely separated than those of cvs. Cruiser and Caravelle. The cracks later become 

filled with corky material that gradually build up to create the reticulation characteristic 

of mature fruits (Fig. 3 D- F). 

The number of fruits set on each plant varied with cultivar. Average fruit 

numbers/plant in our experiments was 2-4 for Sugarcube, and 1-2 each for Caravelle and 

Cruiser. Days frompollination to fruit maturity ranged from 37-45 days (avg. 39), 29-40 

days (avg. 36), and 38-42 days (avg. 40) for cvs. Sugarcube, Caravelle, and Cruiser, 

respectively. Overall, cv. Sugarcube matured the fastest, had the greatest fruit set and was 

most manageable in the greenhouse due to its compact form (Fig. 4). 

 

APPENDIX B 

Evaluation of pathogenicity on cantaloupe plants of a parental, and a GFPuv tagged 

derivative, of E. tracheiphila 

Objectives. 

1. To evaluate whether E. tracehiphila strain MCM1-1, which had been stored at -80
o
C 

for several years, was still pathogenic to cantaloupe, and to become familiar with 

symptoms produced on cantaloupe cv. Sugarcube. 
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This strain was collected originally from an Oklahoma cantaloupe plant by B. 

Bruton (USDA ARS, Lane, OK), and was obtained from M. Gleason (Iowa State 

University, Iowa). Stab inoculation was used to introduce the pathogen (10
7
 cfu/ml @ 20 

µl) onto the stem surface on the node of Sugarcube cantaloupe into the stem interior 

tissues of plant. All the inoculated plants became wilted,followed by shriveling of stem 

and then plant death..  

2. To genetically modify E. tracheiphila strain of MCM1-1 to express the GFP gene, and 

to test its pathogenicity on cv. Sugarcube. 

We tagged E. tracheiphila so that the pathogen could be traced by confocal laser 

scanning microscopy (CLSM) after fruit surface inoculation. An E. tracheiphila plasmid 

was transformed with pGFPuv (Clontech Laboratories, Inc., CA, USA) by 

electroporation as described in Ma et al. (1) and colonies were selected on ampicillin 

amended nutrient agar (NA-amp) plates. For inoculation, E. tracheiphila was harvested 

from NA-amp plate cultures after 24 hr. of incubation. In two sub-experiments, 

cantaloupe plants (cv. Sugarcube) were greenhouse grown to a height of 2-3 ft. and, 10-

15 days after transplanting, were stab-inoculated (two spots per plant) with E. 

tracheiphila by depositing 20 µl on the stem surface. The inoculated surface was pricked 

at least 10 times with a syringe needle (Fig. 5 A) to create openings for bacterial entry. 

Plant shoots, above the site of inoculation, started to wilt 4-5 days after inoculation (Fig. 

5 B). Stems then shriveled at the point of inoculation. Symptomatic stem pieces of 2 – 3 

cm were surface sterilized with 1% sodium hypochlorite (NaOCl) for 2 minutes, 

aseptically excised, and plated on NA-amp (?) plates. Within 2-3 days of incubation at 

28
o
C, colonies resembling E. tracheiphila (small colonies fluorescing green ) appeared, 
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and 2-3 randomly picked colonies were confirmed to be E. tracheiphila with PCR. 

Colonies isolated from plants infected with GFPuv tagged E. tracheiphila appeared green 

under UV light (Fig. 5 C); colonies from these plants also were verified by PCR using E. 

tracheiphila specific primers (F- GGCGATCACGACACAGTTG T and R- 

CAGTTTTTGGTCAGGGCATA CTC) yielding a product of 68-bp, the expected size. 

The E. tracheiphila strain, parental as well as GFP tagged, was still pathogenic, 

leading to wilting of the variety Sugarcube in our greenhouse condition. 

 

APPENDIX C 

Internalization of Erwinia tracheiphila into cantaloupe fruits through flower 

inoculation  

To study the ability of human pathogenic S. enterica to survive on, and to enter 

and translocate, in cantaloupe plants, we needed to identify a positive control; i.e., a 

pathogen that was known to have the capability to do these same functions. However, the 

only serious bacterial pathogen of cantaloupe, the wilt-causing E. tracheiphila, is 

normally transmitted from plant to plant by insects (cucumber beetles) and we did not 

know what it would do when introduced onto natural cantaloupe rind cracks or into 

flowers. 

Objective.  The objective of this study was to evaluate whether E. tracheiphila 

was able to internalize into fruits after flower inoculation. 
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Methods.  E. tracheiphila was inoculated in 5 µl volumes at concentrations of 

10
7
, 10

8
, 10

9
, and 10

10
 cfu/ml within the whorl of individual pistillate flowers. 

Concentration of E. tracheiphila was confirmed by OD600 nm and by plating on nutrient 

agar plates (NAP). Cultures were kept on ice until the time of inoculation, which was 

completed within 1-2 h after inoculum formulation. Fruits were visually inspected during 

their growth for symptoms. The presence of E. tracheiphila was confirmed by culturing 

fruit sample (after sterilization with 1% NaOCl for 1 min) in NAP and cultures were 

further verified by PCR using E. tracheiphila specific primers (F- 

GGCGATCACGACACAGTTG T and R- CAGTTTTTGGTC AGGGCATAC TC). 

Results.  Neither the cantaloupe plants nor the fruits developed any wilting 

symptoms. However, on one of 5 plants whose pistillate flowers were inoculated (10
9
 

cfu/ml) watersoaked lesions appeared on 2 out of 5 fruits (Fig. 6 A). Two out of three 

plants inoculated with E. tracheiphila at10
8
 cfu/ml showed wilting symptoms, but no 

watersoaked lesions on fruits. The other E. tracheiphila inoculated plants, and all of the 

control plants, showed no wilting. 

Plants that had fruits with watersoaked lesions also showed vine wilting (Fig. 6 B) 

and the peduncle that connected the vine and the fruit became shriveled and collapsed. 

Presence of E. tracheiphila was confirmed by the ‘ooze test’ (observation of a cloudy 

exudate emanating from a freshly cut stem, indicative of a slime-producing fungal or 

bacterial wilt pathogen) (Fig. 6 C). Fruits that developed lesions also had impaired 

netting (Fig. 6 D) and did not mature, and on some of them bacterial ooze also seeped out 

from the lesions. The interior tissue (mesocarp) of fruits showing watersoaked lesions 

were positive for the presence of inoculated bacteria by culturing (Fig. 6 E). On the other 
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hand, fruits that developed from un-inoculated plants (or flowers) appeared healthy and 

had no lesions (Fig. 6 F). PCR using E. tracheiphila specific primers (F- 

GGCGATCACGACACAGTTG T and R- CAGTTTTTGGTCAGGGCATAC TC) 

yielded a product of 68bp (the expected size) confirming the pathogen’s presence inside 

fruits with lesions and wilted vines (Fig. 6 G). 

Conclusion.  E. tracheiphila, at high concentration (10
9
-10

10
 cfu/ml) is able to 

traverse from the flower interior into the developing fruit, where it produces watersoaked 

symptoms. The bacteria also able moved into the vines after traversing through the fruits, 

where wilting occurred. In nature, only are the only known means for pathogen 

transmission is via the feeding of cucumber beetles. There is a possibility of E. 

tracheiphila internalization if insect frass falls within the flower whorl. 

 

APPENDIX D 

Internalization of Erwinia tracheiphila into cantaloupe fruits through rind cracking 

and its interaction with Salmonella enterica  

Objective.  Continuing to explore the use of E. tracheiphila as a positive control 

for Salmonella interactions with cantaloupe, an experiment was conducted to evaluate 

whether E. tracheiphila could internalize through natural cracks formed on the fruit and 

whether its presence affected Salmonella survival on those fruit surfaces.  

Methods.  Flowers on 8 plants were pollinated as described above and two 

fruits/plant were allowed to set. Fruits at the age of 10-12 days were inoculated with 10
7
 

cfu/ml of 20µl of S. enterica or a mixture of S. enterica + E. tracheiphila. The rind of 
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each fruit was marked with four 2x2 cm squares all of which were inoculated with S. 

enterica only, S. enterica + E. tracheiphila and 0.1% peptone water. Fruits were then 

sampled at 7 or at ca. days post inoculation 19 DPI (at maturity). A few of the fruits 

inoculated with S. enterica plus E. tracheiphila developed watersoaked lesions while 

fruits inoculated with S. enterica alone, or with peptone water (controls), were apparently 

healthy. 

Results.  At 7 DPI, Salmonella was detected on 100% (10 of 10) fruits previously 

inoculated with S. enterica alone or S. enterica plus E. tracheiphila (Table 1). At 19 DPI 

(fruit maturity) S. enterica survival varied with the treatments. Eighty percent of 5 fruits 

sampled and 86% of 7 fruits sampled had recoverable bacteria after previous inoculation 

with S. enterica only or a mixture of S. enterica + E. tracheiphila, respectively (Table 1). 

Watersoaked lesions were observed on rinds co-inoculated with the two 

pathogens and the sub-rind mesocarp immediately below the sampled rind also were 

watersoaked (Fig. 7 A and B). Internal tissues (sub-rind mesocarp) of 2 fruits (out of 12) 

co-inoculated with S. enterica andE. tracheiphila on their rind surface showed E. 

tracheiphila lesions: one each at 7 DPI and at 19 DPI). Two fruit inner mesocarp yielded 

Salmonella on XLD plates (Fig. 7 C).and E. tracheiphila also was observed on ampicillin 

amended nutrient peptone agar on the same sample that was positive for S. enterica (Fig. 

7 D). Salmonella identity was confirmed by PCR (using the invA primer pair). Fruits 

receiving S. enterica-only treatments and control plants were apparently healthy and rind 

and mesocarp samples from these plants were negative for both pathogens. 

A total of 9 samples either (a) inoculated with S. enterica only, and sampled at 7 

DPI (3 samples) or 19 DPI (1 sample) or (b) inoculated with a mixture of S. enterica plus 
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E. tracheiphila and sampled at 7 DPI (3 samples) or 19 DPI (1 sample) were processed 

for SEM observation. Biofilm like structures, bacterial cells seen as clustering together 

with some aggregated mass, were evident on samples inoculated with S. enterica only 

(Fig. 8 A and B), especially at 7 DPI. No biofilms were observed on samples receiving 

mixed culture (S. enterica + E. tracheiphila) inoculation (Fig. 8 C and D). 

Discussion. E. tracheiphila may facilitate the internalization and surface survival 

of S. enterica inoculated onto the cantaloupe fruit rind at the time of natural fruit 

cracking. E. tracheiphila internalization into fruit and production of watersoaked lesions 

suggest that the cracks provide an opening into the fruit interior. The fact that S. enterica 

internalized into cantaloupe fruits only when co-inoculated with E. tracheiphila shows 

that the presence of E. tracheiphila may enhance the fitness and invasiveness of S. 

enterica. The biofilm like structures observed on the fruit surfaces, or in the cracks, 

inoculated with the mixed bacteria inoculum, shows that the two pathogens may interact 

with one another as well as with the host plant. Their ability to traverse into the sub-rind 

mesocarp has implications for our ability to remove the microbes with sanitizers, and re-

emphasize the importance of good agricultural practices to maintain contamination free 

agricultural products to produce safe and healthy cantaloupe fruit. 
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Figure 1. Three types of flowers produced by cantaloupe plants A. Male flower, 

B. Complete flower (with male and female part) and C. Female flower. 
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Figure 2. Hand pollination of cantaloupe flowers. A. Separating petals from the 

male flower to collect pollen; B. Collecting pollen with a fine artist’s brush; C. Pollen 

collected on brush, ready for pollination; D. Brushing stigma of a complete flower; E. 

Complete flower after pollination; and F. Observing pollen adhering to stigma with a 

hand lens. 
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Figure 3. Cantaloupe varieties Sugarcube, Caravelle, and Cruizer at the time of 

cracking (A, B, C and D, respectively), during netting and towards fruit maturity (D, E, 

and F, respectively). Arrow head on pictures shows reddish orange exudates on cracks 

suggesting opening into the fruit. 
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Figure 4. Reproductive parameters of three different cantaloupe varieties 

[Sugarcube (n=16), Cruiser (n=6) and Caravelle (n=5)] in the greenhouse during summer 

of 2010. The bars show the standard error for each category. 
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Figure 5. Inoculation of cantaloupe plant with GFPuv tagged E. tracheiphila. A. 

Site of E. tracheiphila inoculation, B. Wilting of plant after E. tracheiphila inoculation 

(arrow showing site of inoculation), and C. Recovery of E. tracheiphila from stem 

samples of wilted plant (green fluorescing bacteria on arrow heads), incubated on 

ampicillin-amended nutrient agar and observed under UV light. 
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 Figure 6. Evidence of Erwinia tracheiphila entry into cantaloupe plants following flower 

interior introduction. A. Watersoaked lesions appear on developing fruits and peduncles collapse; 

B. Wilted vine; C. Bacteria stream from the freshly cut stem; D. Impaired netting on mature fruit; 

E. Internal tissue of symptomatic fruit showing presence of E. tracheiphila on nutrient agar plate; 

F. A normal fruit; G. PCR results showing 68 bp amplicon, from tissue with watersoaked lesion. 
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Figure 7. Cantaloupe fruit rind surface inoculated with a mixture of S. enterica 

and E. tracheiphila at the time of natural fruit cracking and sampled at fruit maturity (40 

DPI). A. E. tracheiphila lesion, on the fruit rind, just before rind layer extraction, B. Sub-

rind mesocarp with E. tracheiphila lesion, suggesting bacterial traversal through the outer 

rind, C. Black colonies of S. enterica, recovered from fruit rind, observed on XLD plate, 

and D. Recovery of E. tracheiphila from fruit with watersoaked lesion, observed under 

UV light on ampicillin amended nutrient agar. 

  



116 
 

 

Figure 8. Interaction of Salmonella enterica Poona, alone or in the presence of E. 

tracheiphila, on the natural fruit cracks, sampled over time. Fruit crack inoculated with S. 

enterica only and sampled 7 days post inoculation (DPI) (A) and 19 DPI (B). Fruit crack 

inoculated with a mixture of S. enterica + E. tracheiphila and sampled at 7 DPI (C) and 

19 DPI (D). 
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Table 1. Mean percentage of fruits positive for Salmonella on fruit rind and sub-

rind mesocarp, immediately below the rind layer, of fruit rind initially inoculated with 

Salmonella only or Salmonella + E. tracheiphila, sampled at 7 and 19 days post 

inoculation (DPI). 

 

Sampling 

Time 

 Fruit inoculation with S.P. only  Fruit inoculation with S.P. + Et 

 Total 

Fruits 

 % S.P. recovery  Total 

Fruits 

% S.P. recovery 

  Rind Sub-rind mesocarp  Rind Sub-rind mesocarp 

7 DPI  5  100 0  5 100 20 

19 DPI  5  80 0  7 86 14 
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