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CHAPTER I 

INTRODUCTION 

 

Pseudomonas syringae (P. syringae) produces a variety of symptoms 

such as leaf spots, cankers and blights on different plants and is divided into 

pathovars (pv.) based on host range. The infection of plants by P. syringae is a 

complex process that involves epiphytic colonization, entry into the host plant 

through natural openings and wounds, establishment in the intercellular space 

(apoplast), and multiplication and production of disease symptoms. In many P. 

syringae pathovars, low-molecular weight, non host-specific phytotoxins are 

produced, which induce chlorotic and necrotic symptoms on various host plants 

(Bender and Scholz-Schroeder, 2004). 

Coronatine (COR) is a chlorosis-inducing, non-host-specific phytotoxin 

produced by multiple P. syringae pathovars. The COR molecule has a unique 

structure and consists of two separate moieties: coronafacic acid (CFA), a 

polyketide; and coronamic acid (CMA), an ethylcyclopropyl amino acid derived 

from isoleucine (Ichihara et al., 1977). The CFA and CMA moieties are linked 

through an amide bond. COR induces severe chlorosis, hypertrophy, 

anthocyanin production, ethylene production, alkaloid accumulation, the 

synthesis of proteinase inhibitors and inhibits root elongation on different plant 

species (Feys et al., 1994; Lauchli and Boland, 2003; Palmer and Bender, 1995). 
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In several pathovars of P. syringae, COR can contribute to multiplication and 

lesion formation in various host plants including ryegrass, soybeans, tomato and 

Arabidopsis thaliana (A. thaliana). 

P. syringae pv. tomato DC3000 (Pst DC3000) is a model strain for 

investigating plant-microbe interactions due to its genetic tractability and its 

pathogenicity on A. thaliana. It is also a pathogen of several cultivated plant 

species, including tomato and crucifers. COR production by Pst DC3000 was 

previously shown to be stimulated in the presence of the host, and the toxin may 

facilitate the intercellular establishment of the pathogen (Mittal and Davis, 1995; 

Wang et al., 2002). Genetic studies using the COR-defective mutants of Pst 

DC3000 that lack the ability to produce CFA and/or CMA showed that the intact 

COR molecule must be produced for maximal virulence on A. thaliana (Brooks et 

al., 2004).  However, it is important not to extrapolate the results obtained using 

A. thaliana to make broad generalizations on the reaction of other host plants to 

Pst DC3000 and COR- mutants, even within the mustard family, Brassicaceae.  

Brassicas belong to a large plant family of major economic importance 

and are used as vegetables, oilseeds, and condiments. In Oklahoma, leafy 

crucifers like collard, kale, mustard and turnip are important minor crops, and 

their quality and yield have been negatively impacted by several bacterial 

diseases (Anonymous, 1994). Since Brassica spp. are related to A. thaliana, the 

genomic information available from A. thaliana can be utilized to compare the loci 

that correspond to similar genes in edible brassicas. This approach is powerful 
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since results obtained in A. thaliana can be used to test gene expression in 

Brassica spp.  

COR and other virulence factors produced by P. syringae can alter major 

plant defense signaling pathways such as those involving salicylic acid (SA) and 

jasmonic acid (JA).  COR functions in part by promoting bacterial colonization of 

plant tissue, possibly because it functions as a molecular mimic of methyl 

jasmonate and suppresses plant defense pathways (Feys et al., 1994; Lauchli 

and Boland, 2003; Uppalapati et al., 2005; Zhao et al., 2003). Other studies 

suggest that COR might act as a virulence factor of P. syringae by suppressing 

or delaying the activation of SA-dependent host defense responses (Brooks et 

al., in press; Kloek et al., 2001; Zhao et al., 2003). However, the role of COR in 

pathogenesis differs with host-pathogen interactions, and the essential 

mechanisms are still unknown. Since the toxin induces chlorosis, there is 

potential degradation of chlorophyll and hence rapid induction of the 

chlorophyllase (Chlase) enzyme in plant tissue.  

In the current investigation, we explore the role of COR in the interactions 

between Pst DC3000 and two edible Brassica spp., collard and turnip, by utilizing 

biochemically defined mutants defective in CFA and/or CMA. Symptom 

development, bacterial growth, pigment changes and defense gene expression 

were investigated. Furthermore, the responses of both Brassica spp. to 

exogenous application of purified CFA, CMA and COR were also explored.
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CHAPTER II 

REVIEW OF LITERATURE 

 

(i) PSEUDOMONAS SYRINGAE 

Biology and symptoms: Pseudomonas syringae (P. syringae) is a gram-

negative plant pathogenic bacterium that produces a wide variety of symptoms in 

plants such as leaf spots, blights, cankers and wilting (Alfano and Collmer, 1996). 

The pathogen is subdivided into pathovars or pathogenic variants (pv.), based on 

host range. Although P. syringae interacts with a wide range of host plants, 

individual strains have a high level of host specificity.  

The infection by P. syringae is a multifaceted process that initiates with 

surface or epiphytic colonization. The epiphytic populations on the leaf surface 

serve as the inoculum source for the disease, and surface establishment directs 

further disease development and infection on the host plant. Epiphytic growth is 

ecologically important for the survival and the spread of the pathogen in the field. 

Successful epiphytes exhibit a range of attributes including chemotaxis, 

microcolony development, nutrient acquisition, resistance to external stress, and 

antibiosis. For most plant-associated bacteria, there is a quantitative link between 

the size of the surface population and the degree of plant disease (Hirano and 

Upper, 2000). Epiphytic fitness of the bacterium is generally bestowed by traits 

such as the presence of pili, production of extracellular polysaccharides, and 
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pigment production. Alginate, which is a co-polymer of O-acetylated β-1, 4-linked 

D-mannuronic acid and L-guluronic acid, has been reported to enhance the 

epiphytic fitness of P. syringae (Keith et al., 2003; Penaloza-Vazquez et al.,

2004). 

The epiphytic phase is followed by the entry of P. syringae into the host 

plant through natural openings and wounds. The bacteria then establish in the 

intercellular space (apoplast), where they multiply. Infected leaves show water-

soaked lesions that develop into necrotic lesions, which are often surrounded by 

chlorotic halos (Hirano and Upper, 2000) High leaf humidity and cool temperatures 

(13 to 250C) favor disease development (Preston, 2000). 

Type III secretion system: The type III secretion system (TTSS), a major 

factor in the pathogenicity and epiphytic colonization of susceptible hosts infected 

by P. syringae is encoded by the hrp/hrc regulon. The TTSS of P. syringae 

encodes the Hrp pilus, which facilitates the delivery of effector proteins and 

extracellular accessory proteins into the plant apoplast. P. syringae accessory or 

helper proteins are termed as type III chaperones (TTCs) (Guo et al., 2005). 

Proteins secreted via the TTSS require host cell contact and the presence of 

chaperones, but not a signal peptide (Galán and Collmer, 1999). The secretion 

and translocation of effector proteins presumably occur through the hrp pilus, 

which elongates at the distal end by the addition of hrpA pilin subunits (Jin et al.,

2001; Li et al., 2002). The TTSSs in plant pathogenic bacteria are closely related 

to the flagellar export systems of bacterial pathogens of animals.  Thus, it has 

been hypothesized that the TTSS might have evolved as an adaptation of the 
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flagellar apparatus as a conduit for proteins other than flagellin.  This would allow 

the close association of plant pathogens and host cells.  

The TTSS of P. syringae is encoded by the hrp (hypersensitive response 

and pathogenicity) genes, which are not rigidly conserved among plant pathogenic 

bacteria. The genes that encode the core components of the TTSS are highly 

conserved and are known as the hrc (hypersensitive response and conserved) 

genes (Bogdanove et al., 1996; Preston, 2000). The importance of the TTSS in the 

leaf surface establishment of P. syringae pv. syringae B728a has been established 

(Hirano et al., 1999). Two hrp mutants, hrpC and hrpJ exhibited very poor 

epiphytic fitness and caused less disease severity than the wild-type.   

Chang et al. (2005) conducted a high-throughput screen for type III 

effector genes of P. syringae pvs. tomato and phaseolicola and defined 29 type 

III proteins from P. syringae pv. tomato, and 19 from pv. phaseolicola race 6. The 

study provided full functional annotation of the hrpL-dependent type III effector 

suites from both pathovars and also showed that the high variability of these 

protein sets apparently reflects the evolutionary selection by various host plants 

(Chang et al., 2005). The P. syringae pv. tomato DC3000 (Pst DC3000) effector 

database contains 60 ORFs, making the bacterium a model for studying plant-

pathogen interactions (http://pseudomonas-syringae.org/pst_func_gen.htm). 

Virulence in P. syringae is multifactorial: The pathogenicity of P. 

syringae depends on diverse factors including:

(a) The TTSS and associated effector proteins.  
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(b) Production of exopolysaccharides (EPS), which contribute to 

epiphytic fitness, formation of water-soaked lesions, and 

protection from environmental stress (Keith et al., 2003; 

Penaloza-Vazquez et al., 2004).  

(c) Global regulatory genes, such as gacA and gacS (also known 

as lemA) (Chatterjee et al., 2003; Preston, 2000).  

(d) Low-molecular weight, non-host-specific phytotoxins, which 

induce chlorotic and necrotic symptoms on a wide variety of 

host plants (Bender and Scholz-Schroeder, 2004). These non-

host-specific toxins are capable of inducing disease symptoms 

on plants that cannot be infected by the toxin-producing 

pathogen. These toxins increase the virulence of P. syringae 

and their production amplifies the severity of disease. 

Phytotoxins produced by P. syringae: Phaseolotoxin is produced by P. 

syringae pvs. phaseolicola and actinidiae, pathogens that induce halo blight on 

legumes and kiwi fruit, respectively. The toxin inhibits ornithine carbamoyl 

transferase leading to the accumulation of ornithine and deficit of intercellular 

arginine, which ultimately leads to chlorosis. Tox- mutants of P. syringae pv. 

phaseolicola failed to move systemically in bean plants and were less virulent 

(Peet et al., 1986).  

Tabtoxin is a monocyclic β-lactam produced by P. syringae pvs. tabaci, 

coronafaciens and garcae. The toxin is a dipeptide and consists of tabtoxinine-β-

lactam (TβL) linked to threonine by a peptide bond. The hydrolysis of the peptide 
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bond releases TβL, which irreversibly inhibits glutamine synthetase. The resulting 

ammonia accumulation in plants disrupts the thylakoid membrane of the 

chloroplast, uncouples photophosphorylation and eventually leads to chlorosis.  

Syringomycins and syringopeptins produced by P. syringae pv. syringae are 

necrosis-inducing lipopeptide phytotoxins that contribute to virulence in bacteria–

plant interactions. Both toxins have structural and functional similarities and share 

common biosynthetic, regulatory and secretory mechanisms (Bender and Scholz-

Schroeder, 2004; Zhang et al., 1997). Due to the amphipathic nature of 

syringomycin and syringopeptin, they generate a membrane flux of H+, K+ and 

Ca2+, disrupting the plant membrane potential. This leads to electrolyte leakage, 

plant cell death and necrosis. Both the toxins are reported to have antimicrobial 

activity. 

P. syringae pvs. tomato, glycinea, maculicola, atropurpurea and 

morsprunorum produce coronatine, a chlorosis-inducing non host-specific 

phyototoxin (Bender et al., 1987; Ullrich et al., 1993; Zhao et al., 2000). This toxin 

is discussed in greater detail below. 

 

(ii) CORONATINE (COR) 

Structure & components: COR has an unusual structure and consists of 

two distinct moieties: (1) coronafacic acid (CFA), a polyketide; and (2) coronamic 

acid (CMA), an ethylcyclopropyl amino acid derived from isoleucine (Ichihara et 

al., 1977; Mitchell, 1991; Parry et al., 1994a). CFA is synthesized by the 

polyketide pathway from one unit of pyruvate, one unit of butyrate and three 
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acetate residues (Parry et al., 1994a).  Studies have revealed that the pyruvate is 

converted to α-ketoglutarate, which is then used as a starter for CFA synthesis 

(Parry et al., 1996). Parry and co-workers (Parry et al., 1991; Parry et al., 1994b) 

demonstrated that during CMA biosynthesis, isoleucine is first converted to 

alloisoleucine, which is then cyclized to form CMA. During the final step in the 

pathway, CFA and CMA are linked by amide bond to form COR (Bender et al.,

1993; Parry et al., 1994a) (Fig. 1). The enzymes involved in this reaction do not 

have rigid specificity for the amino acid substrate and hence, other coronafacoyl 

amide toxins such as coronafacoylisoleucine, coronafacoylalloisoleucine, and 

coronafacoylvaline, are synthesized. However, COR is the most toxic 

coronafacoyl compound made by COR-producing organisms (Mitchell, 1985a, 

1985b; Mitchell and Young, 1985; Mitchell and Ford, 1998). 

C
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Fig.1. Biochemical pathways involved in the synthesis of coronatine (COR) and 
coronafacoyl compounds. COR is formed by the coupling (CPL) of a polyketide 
component, coronafacic acid (CFA), to an amino acid component, coronamic acid 
(CMA) via an amide bond. CFA is a polyketide derived from three units of acetate, 
and one unit each of pyruvate and butyrate. CMA is derived from isoleucine via 
alloisoleucine. CFA can also be coupled to L-alloisoleucine (aile) and L-isoleucine 
(ile) to form the coronafacoyl analogues, CFA-aile and CFA-ile, respectively.  
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Biological effects of COR: Diffuse, intense chlorosis is induced on leaf 

tissue by external application of COR or due to infection by COR-producing P. 

syringae strains. The severe spread of chlorosis in tomato and tobacco plants 

has been ascribed to the loss of chlorophyll a and b (Kenyon and Turner, 1992; 

Palmer and Bender, 1995). Ultrastructural studies have revealed that the 

chloroplasts of COR-treated tomato have intact membranes; however, the 

chloroplasts were smaller and stained intensely. The association of COR with the 

chloroplasts of tomato leaves was proven by the use of COR-specific antiserum 

in immunolocalization studies (Zhao et al., 2001). Recent studies showed that 

COR could induce the expression of chlorophyllase, an enzyme in the chlorophyll 

degradation pathway (Benedetti and Arruda, 2002). The rapid breakdown of 

chlorophyll could be associated with the rapid senescence of leaves exposed to 

COR (Tsuchiya et al., 1999).  

COR also induces hypertrophy, anthocyanin production, alkaloid 

accumulation, accumulation of proteinase inhibitors, stimulates ethylene 

production, and inhibits root elongation on diverse plant species (Feys et al.,

1994; Lauchli and Boland, 2003; Palmer and Bender, 1995). In grasses and a 

few monocots, COR has been associated with apoptosis (cell death) and 

flavonoid accumulation (Bender and Scholz-Schroeder, 2004).  

Involvement of COR in virulence and pathogenicity: COR acts as a 

virulence factor in some pathovars of P. syringae and contributes to  bacterial 

multiplication and lesion formation or development in numerous host plants, 

including ryegrass, soybeans, tomato and A. thaliana (Bender et al., 1987; Budde 
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and Ullrich, 2000; Mittal and Davis, 1995; Sato et al., 1983). Genetic studies 

revealed that COR defective (COR-) strains of P. syringae pvs. tomato, 

maculicola, and atropurpurea were impaired in their ability to multiply and 

produced smaller necrotic lesions than the COR-producing strains (Bender et al.,

1987; Budde and Ullrich, 2000; Mittal and Davis, 1995; Sato et al., 1983). It is 

hypothesized that COR acts a molecular mimic of methyl jasmonate and 

suppresses plant defense pathways, hence promoting the colonization of host 

tissue (Kloek et al., 2001; Zhao et al., 2003). Nomura et al. (2005) portray 

different models to describe the suppression of basal defense, gene-for-gene 

resistance and non-host resistance in plants by COR and other virulence factors. 

This defense suppression is described as the essential step in pathogenesis, and 

it is likely that COR plays an import role in this process. Other theories proposed 

for the role of COR in virulence include the promotion of lesion formation and 

expansion (Bender et al., 1999) as well as the triggering of programmed cell 

death (Yao et al., 2002). A recent study by Brooks and co-workers (2004) implies 

that COR has a vital role in the establishment of a successful infection probably 

by assisting the pathogen in both colonization and persistence in host tissue. 

Nevertheless, the significance and role of COR in pathogenesis varies with host-

pathogen interactions and the mechanisms underlying these activities are not 

well comprehended.  

The structure and function of COR and associated compounds were 

examined in biological assays, ultrastructural studies and cDNA microarray 

analysis (Uppalapati et al., 2005). The results showed that conjugation of CFA to 
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an amino acid is important for chlorosis, changes in chloroplast structure, cell 

wall thickening, accumulation of proteinase inhibitors, stimulation of 

anthocyanins, and root growth inhibition. The intact COR molecule has a broader 

range of activity than its components and also impacts signaling in tomato via the 

jasmonic acid, ethylene, and auxin pathways. 

COR production by Pst DC3000: Pst DC3000 is a pathogen of several 

plant species, including tomato, crucifers (cabbage, cauliflower) and the model 

plant Arabidopsis thaliana (A. thaliana). The genetic tractability of Pst DC3000, 

its pathogenicity on A. thaliana, and the completion of its genomic sequence 

(Buell et al., 2003) have greatly facilitated the use of Pst DC3000 as a model 

strain for investigating plant-microbe interactions (Preston, 2000; Whalen et al.,

1991).  

COR production by Pst DC3000 is stimulated in the presence of the host. 

The infection of A. thaliana by Pst DC3000 induced specific genes in the 

pathogen, including those involved in COR biosynthesis (Boch et al., 2002). 

These results agree with an earlier study where transcriptional fusions between 

cor genes and the ice nucleation reporter (inaZ) were used to identify plant 

factors that stimulated cor gene expression (Li et al., 1998). Malic, citric, shikimic, 

and quinic acids present in leaf extracts and apoplastic fluids of tomato were 

identified as compounds that activate the toxin genes and stimulate COR 

production (Li et al., 1998).  Of all the hosts (tomato, cabbage, soybean and 

pepper) examined, cabbage was found to have the highest COR-inducing 

activity. Both qualitative and quantitative differences in plant signal molecules 
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might contribute to plant-related differences in cor gene expression. The 

production of 25 to 40-fold less COR by Pst DC3000 than P. syringae pv. 

glycinea PG4180 in vitro could be due to the lack of the ‘plant factor’, which is 

required for stimulating cor gene expression in Pst DC3000 (Penaloza-Vazquez 

et al., 2000). 

COR is required for the symptom development or the establishment of Pst 

DC3000 when the pathogen is either dip- or spray-inoculated to A. thaliana and 

tomato. However, when A. thaliana or tomato plants are infiltrated with Pst 

DC3000, the toxin is not absolutely required for  a successful infection (Mittal and 

Davis, 1995). These results suggest that COR may have a vital role in facilitating 

the establishment of the Pst DC3000 in the apoplast of susceptible hosts. In 

another study, Wang et al. (2002) compared cor gene expression and COR 

biosynthesis in Pst DC3000 and PG4180. Their study suggested that COR was 

crucial for the establishment of a successful infection by Pst DC3000 in collard, 

whereas COR might not be absolutely required for symptom development and 

infection of soybean by PG4180. 

To appraise the relative contributions of CFA, CMA, and COR in the 

virulence of Pst DC3000 on A. thaliana, three isogenic mutants were compared. 

These mutants were created with Tn5 insertions in the genes encoding COR 

biosynthesis (Brooks et al., 2004). The mutant DB4G3 is defective in CFA 

production and contains a mutation in cfa6 (encodes a multifunctional polyketide 

synthase); mutant AK7E2 is defective in CMA production and contains a 

mutation in cmaA (encodes a gene that catalyzes the formation of adenylated 
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alloisoleucine, a precursor to CMA). Mutant DB29 is a double mutant, defective 

in the synthesis of both CFA and CMA, and contains mutations in both cfa6 and 

cmaA. The virulence phenotypes of these mutants were compared with wild-type 

Pst DC3000 on A. thaliana. Both the single and double mutants were equally 

impaired in their ability to elicit symptoms and multiply in A. thaliana, leading the 

authors to conclude that the intact COR molecule must be produced for maximal 

virulence on A. thaliana. However, it is important to note that other host plants 

may respond differently to Pst DC3000 and COR- mutants (discussed below). 

(iii) THE MODE OF ACTION OF COR: CLUES FROM PHYTOHORMONES 

Jasmonic acid pathway: Jasmonates are fatty acid derivatives that play 

a pivotal role in many biological activities in plants. In A. thaliana, jasmonates 

inhibit root elongation, while they also promote senescence, pollen development 

and anther dehiscence (Devoto and Turner, 2003; Weber, 2002). Jasmonic acid 

(JA) and methyl jasmonate (MeJA) are plant defense molecules produced in 

response to attack of certain herbivores and certain pathogens. A. thaliana 

defective in the biosynthesis or perception of JA failed to show defense 

responses after insect or pathogen attack (Creelman and Mulpuri, 2002). The JA 

pathway is turned on in response to the attack by fungal pathogens or wounding 

or herbivory. Linolenic acid is released from the damaged plant plasma 

membrane, which in turn is converted to 12-oxo-phytodioenic acid (12-OPDA) by 

the sequential action of lipoxygenase (LOX), allene oxide synthase, and allene 

oxide cyclase.  Lipoxygenase (LOX gene) is a common marker used to follow the 

expression of JA signaling. OPDA is converted to JA by a reductase and three 
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steps of β-oxidation. OPDA, JA, and other octadecanoid molecules can act upon 

various molecular targets to activate gene expression and defense responses 

(Lauchli and Boland, 2003) (Fig. 2). Jasmonates have both stimulatory and 

inhibitory effects on plant morphology and physiology (Creelman and Mulpuri, 

2002). When plants are wounded, rapid JA biosynthesis and massive 

transcriptional reprogramming occurs, leading to the expression of many wound-

related and pathogenesis-related proteins (Liechti and Farmer, 2002). 

New cyclopentenones have been found in plants, and they display varied 

signaling functions. Two mechanisms of gene expression by jasmonates have 

been illustrated recently: (a) activation and suppression of various overlapping 

sets of genes by JA and OPDA; (b) alteration of gene expression via the 

electrophilic activities of the cyclopentenone ring in JA-related molecules. Current 

studies have identified A. thaliana MAP kinase 4 as a positive regulator of JA-

induced gene expression (Farmer et al., 2003). 

 

Fig.2. Jasmonic acid biosynthetic 
pathway (Lauchli and Boland, 
2003). 
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COR is thought to be an analog of octadecanoid signaling molecules that 

modulate defense reactions in plants (Weiler et al., 1994). It was noted that COR 

functions as a structural and functional analog of JA, MeJA and their C18 

precursor, OPDA (Feys et al., 1994; Lauchli and Boland, 2003). COR and MeJA 

were found to have similar, but not identical functions in tomato where they 

modulate multiple phytohormone pathways(Uppalapati et al., 2005).  An A.

thaliana mutant insensitive to COR (coi1) was also insensitive to MeJA 

(Benedetti et al., 1998; Feys et al., 1994). The COI1 allele was shown to encode 

a 66-kDa protein containing an N-terminal F-box motif and a leucine-rich repeat 

domain (Weber, 2002; Xie et al., 1998).  F-box proteins in eukaryotes function as 

receptors that employ regulatory proteins as substrates for ubiquitin-mediated 

degradation.  COI1 presumably functions in protein degradation by means of the 

E3 ubiquitin ligase complex, which could eventually modulate the abundance of 

proteins that control the expression of JA/COR-responsive genes (Devoto et al.,

2002; Xu, 2002).  There seems to be a common site of action for COR and 

octadecanoids, and they may bind to common receptors or interacting proteins. 

How COR might function as a virulence factor by mimicking MeJA in plant-

bacteria interactions is still unknown. The identification of additional genes 

induced or suppressed by COR might yield information on novel genes that are 

also regulated by octadecanoids and will further augment our understanding of 

the role of the octadecanoids in plant defense.  

Salicylic acid pathway: Salicylic acid (SA) plays a critical signaling role in 

the activation of local and systemic plant defense responses after pathogen 
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attack. There are two proposed pathways for SA biosynthesis in plants; one 

pathway originates from phenylalanine and a second from shikimate (Fig. 3). 

Phenylalanine ammonia lyase, the core enzyme in phenylpropanoid metabolism 

converts phenylalanine to trans-cinnamic acid, which is in turn converted to 

benzoic acid. In the second pathway, SA is synthesized from shikimate though 

chorismate and isochorismate (Shah, 2003).  

SHIKIMATE

CHORISMATE

ISOCHORISMATE

SALICYLIC ACID

PHENYL ALANINE

BENZOIC ACID

Isochorismate
synthase

Isopyruvate
lyase

TRANS-CINNAMIC ACID

Phenylalanine 
ammonia 

lyase

Benzoic acid-2-
hydroxylase

Increased levels of endogenous SA, as well as the exogenous application 

of SA, activated pathogenesis-related (PR) proteins and enhanced resistance to 

a broad range of pathogens (Ryals et al., 1996). Application of the commercially 

available SA analog, benzo (1, 2, 3) thiadiazole-7-carbothioc acid S-methyl ester 

(BTH), potentiated defense gene expression, accumulation of hydrogen peroxide 

and subsequent cell death, processes that are associated with elevated plant 

defense (Fitzgerald et al., 2004).  

Fig.3. Salicylic acid 
biosynthetic pathway 

(modified from Shah, 2003).
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Genetic studies have shown that SA is required for the rapid activation of 

defense responses and for the establishment of systemic acquired resistance 

(SAR) (Delaney et al., 1994; Gaffney et al., 1993). SAR is characterized by an 

increase in endogenous SA, transcriptional activation of the PR genes and 

enhanced resistance to a wide spectrum of virulent pathogens. Increasing SA 

concentrations in plants either by endogenous synthesis or exogenous 

application of SA induced SAR(Metraux et al., 1990). Synthetic SA analogs such 

as BTH and 2, 6-dichloroisonicotinic acid (INA) are also effective inducers of SAR 

(Görlach et al., 1996). 

The significance of SA in plant defense is further authenticated by the use 

of transgenic plant lines that degrade SA as well as by the isolation of plant 

mutants that are defective in SA production. For example, many investigators 

have utilized transgenic plants that are unable to accumulate SA due to the 

expression of the SA-degrading enzyme, salicylate hydroxylase, which is 

encoded by the nahG gene (Delaney et al., 1994). The importance of SA in plant 

defense is further supported by the use of plant mutants such as the A. thaliana 

npr1-1 (non-expressor of pathogenesis related genes) line, which is impaired in 

the production of SA-related transcripts. For example, the npr1-1mutant of A. 

thaliana was extremely susceptible to infection with P. syringae, thus supporting 

a role for PR proteins and SA in modulating defense in this pathosystem (Cao et 

al., 1994). Another mutant that has proven helpful for demonstrating the 

importance of SA in defense is the A. thaliana coi1 (coronatine-insensitive) 

mutant.  Kloek et al. (2001) studied the interaction of the coi1 mutant with Pst 
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DC3000 and showed a rapid and strong expression of the PR-1 gene, which is a 

well-accepted marker for following SA accumulation. The authors concluded that 

the resistance in coi1 plants could be due to enhanced signaling through the SA-

dependent defense pathway. This study also provides a clue that COR might act 

as a virulence factor of P. syringae by restraining or delaying the activation of 

SA-dependent host defense responses. 

Several additional studies provide further evidence that COR functions by 

suppressing the plant defense response. In tomato, Zhao et al. (2003) observed 

the repression of PR gene expression in tomato plants inoculated with the COR-

producing Pst DC3000 but not with a COR- mutant. In another study, SA levels 

were quantified and shown to be lower in tomato inoculated with Pst DC3000 in 

comparison to a COR- mutant (Uppalapati et al., in preparation). In a recent 

study, SA defective A. thaliana plants were used in combination with wild-type 

Pst DC3000 and COR- strains to show that COR was required to overcome or 

suppress SA-dependent defenses and for normal disease symptom development 

in A. thaliana (Brooks et al., in press).  New studies analyzing the molecular and 

biochemical action of effectors associated with the TTSS show that these 

proteins contribute to bacterial pathogenicity by hampering plant defense signal 

transduction.  

Ethylene is another signaling molecule that plays an important role in 

disease resistance depending upon the pathogen and plant species. It has been 

proposed that ethylene causes leaf abscission and thus restricts the spread of 

the pathogen (Bleecker and Kende, 2000.). Ethylene signaling is modulated 
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through a pathway that includes a MAP kinase and a transcriptional cascade 

leading to biological responses. Ethylene-insensitive (ein) or ethylene-resistant 

(etr) mutants of A. thaliana with minor or no response to ethylene treatment are 

used to study the ethylene signal transduction pathway and its role in plant 

disease resistance. Previous reports have shown the production of ethylene in 

COR-treated tissue (Kenyon and Turner, 1992). One possible clue to this activity 

is the structural similarity of CMA and aminocyclopropyl carboxylic acid (ACC), 

which is an intermediate in the ethylene pathway (Bender et al., 1999). (Fig.4). 

However, recent investigations using seedling assays, ultrastructural studies and 

gene expression profiling have shown that CMA does not function as an analog 

of ACC in tomato (Uppalapati et al., 2005).  

Fig.4. Structures of coronatine (COR), methyl jasmonate (MeJA) and 
aminocyclopropyl carboxylic acid (ACC) (Brooks et al., 2004). 
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Cross-talk between pathways: Further clues regarding the mechanism 

of action for COR can be extrapolated from the interaction of different signaling 

pathways. It is important to note that the JA, SA and ethylene signaling pathways 

do not function independently. Rather, they are engaged in an intricate signaling 

complex in which the different pathways manipulate each other through positive 

and negative regulatory interactions. Furthermore, the roles of these hormones 

vary with the particular host-pathogen interaction (Hoffman et al., 1999).  

The interactions between the SA and JA pathways are complex, and there 

is evidence for both positive and negative interactions between these two 

signaling pathways. Studies with tobacco and A. thaliana have suggested that 

the major form of interaction between these pathways is mutual antagonism 

(Norman-Setterblad et al., 2000); in other words, when activity in one pathway is 

elevated, the other pathway is negatively impacted. The inhibitory effect of SA on 

JA signaling is well-demonstrated (Doares et al., 1995; Doherty et al., 1988; 

Gupta et al., 2000; Peña-Cortés et al., 1993); however, several reports also 

indicate that JA antagonizes the SA pathway (Kachroo et al., 2001; Kloek et al.,

2001; Niki et al., 1998).  

Several proteins have now been identified that modulate signaling 

between the SA and JA pathways, including WRKY70, NPR1, and NPR4. The 

WRKY70 transcription factor presumably functions as an activator of SA-induced 

genes and a repressor of JA-responsive genes, thus integrating signals from 

these mutually antagonistic pathways (Li et al., 2004). The WRKY family of 

transcription factors is characterized by a DNA binding domain that contains the 
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highly conserved amino acid sequence WRKYGQK. Transcription factors in the 

WRKY family have been shown to confer disease resistance and trigger the 

expression of defense-related genes during SAR (Eulgem et al., 2000; Robatzek 

and Somssich, 2002). NPR1, a key regulator of the SA pathway and PR protein 

expression, has been shown to modulate the cross-talk between SA- and JA-

dependent defense pathways (Pieterse and Van Loon, 2004).  Liu et al. observed 

that NPR4 protein (which shares 36% identity with NPR1) positively regulates the 

expression of SA and JA responsive genes and hence may modulate cross-talk 

between these two pathways (Liu et al., 2005). In addition, microarray analysis of 

A. thaliana has revealed more than 50 defense-related genes coordinately 

regulated and induced by SA and JA (Schenk et al., 2000).  P. syringae may use 

COR and TTSS effectors to activate the jasmonic acid (JA) pathway and thereby 

inhibit or delay salicylic acid–mediated plant responses (Fig. 5) (Mudgett, 2005). 

It is also important to note that the ethylene pathway communicates with 

both the SA and JA pathways. For example, transcriptional activity in the JA and 

Fig.5. Model for P. syringae- host plant interaction (Mudgett, 2005) 
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ethylene pathways is often coordinately regulated (Glazebrook et al., 2003; 

Kunkel and Brooks, 2002; Lorenzo et al., 2003; Schenk et al., 2000) . Ethylene is 

known to interact with the SA pathway in a synergistic manner, which has been 

revealed by microarray experiments and nahG transgenic of A. thaliana 

(O'Donnell et al., 2003; Schenk et al., 2000).  

In summary, there is ample evidence that plant defense responses may 

be fine-tuned by separate signaling pathways so that plants install the proper 

combination of defenses against specific pathogens and control their temporal 

expression.  

Chlorophyllase (Chlase): Chlorophyllase is presumably the first enzyme 

in the chlorophyll degradation pathway (Matile et al., 1999). Pathogen attack can 

result in the release of chlorophyll (from thylakoid membrane), which has to be 

degraded to avoid the accumulation of reactive oxygen species. Therefore, the 

degradation of chlorophyll is vital in order to avoid cellular damage.  

Chlase is rapidly induced in response to wounding and treatment with 

MeJA or COR; consequently it is thought to be associated with JA dependent 

defenses (Benedetti et al., 1998; Brooks et al., in press). Two Chlase-encoding 

genes were identified and characterized from A. thaliana (Benedetti and Arruda, 

2002; Tsuchiya et al., 1999). A. thaliana plants silenced by RNAi for AtCLH1,

which encodes Chlase in A. thaliana, are resistant to Erwinia carotovora. The 

AtCLH1-silenced plants showed increased levels of SA as well as enhanced 

induction of SA-dependent defense genes like PR-1 and PR-2. This suggests the 

potential involvement of Chlase in promoting JA-dependent defense and 
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repressing SA-mediated plant defense in A. thaliana (Kariola et al., 2005).  These 

authors also propose a hypothetical model for the role of Chlase in plant defense, 

where reactive oxygen species and the SA and JA-mediated defense pathways 

each participate in determining the outcome of the response to different 

pathogens. 

 

(iv) BRASSICAS/CRUCIFERS  

Importance of edible brassicas. The Cruciferae/Brassicaceae or 

‘mustard family’ is a large plant family of major economic importance that 

contains an assorted variety of crop plants. On an economic basis, brassicas are 

grouped into oilseed, vegetable, and condiment crops. Brassica spp. are a 

valuable source of dietary fiber, vitamin C, and contain other health-promoting 

factors such as anticancer compounds (Fahey and Talalay, 1995). Leafy 

crucifers like collard, kale, mustard and turnip are important minor crops in 

Oklahoma. About 600 ha of these vegetables are grown every year during both 

spring and fall cropping seasons and are harvested up to three times per 

cropping season (Anonymous, 1994). Among the brassicas, turnip (Brassica 

rapa L., cultivar ‘All Top’) and collard (B. oleracea L., cultivar ‘Vates’) are among 

the main varieties grown in Oklahoma with yields recorded up to 6 to 12 

tons/acre. These crucifers have been damaged by many diseases leading to a 

reduction in product quality and economic loss. Although some fungal diseases 

cause problems in Brassica spp., bacterial pathogens have been the primary 

disease-causing agents of leafy greens in Oklahoma. 
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Bacterial diseases of brassicas/crucifers. Several bacterial pathogens 

cause diseases on crucifers or brassicas (Lelliott and Stead, 1987). These 

include Xanthomonas campestris pv. campestris (black rot of crucifers) (Pammel, 

1893; Williams, 1980), X. campestris pv. raphani (bacterial leaf spot of radish 

and turnip) (White, 1930), P. syringae pv. maculicola (pepper spot of crucifers 

and bacterial leaf spot of brassicas) (McCulloch, 1911), P. viridiflava (leaf spots 

of various crucifers), P. cichorii, P. marginalis, and X.  campestris pv. aberrans. A

new, unidentified pathovar of P. syringae was reported to cause leaf spot and 

blight of broccoli raab (Brassica rapa subsp. rapa) (Koike et al., 1998) The 

pathogen was closely related to P. syringae pvs. coronafaciens and maculicola.

Further characterization of the pathogen was done by host range analyses, 

phage sensitivity, ice nucleation and BOX-PCR, and the pathogen was identified 

as P. syringae pv. alisalensis pv. nov., causal agent of leaf spot and blight of 

broccoli raab (Cintas et al., 2002). The first report of bacterial leaf spot caused by 

P. syringae pv. maculicola on leafy crucifers in Oklahoma was published by 

(Zhao et al., 2000) and includes the identification and characterization of 

fluorescent Pseudomonas spp. isolated from leafy crucifers in Oklahoma.      

P. syringae pv. maculicola: P. syringae pv. maculicola causes bacterial 

leaf spot (pepper leaf spot) of crucifers (McCulloch, 1911). The disease is 

widespread throughout the world and has been reported in countries where 

cauliflower and other crucifers are grown. The distinctive symptoms induced by 

the pathogen are small brown spots with irregular edges surrounded by chlorotic 

halos. The spots enlarge and coalesce creating large necrotic areas. P. syringae 
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pv. maculicola strains are classified into three groups based on different types of 

lesions on cauliflower and tomato leaves (Wiebe and Campbell, 1993). These 

groups consist of those that induce chlorotic (CL), water-soaked (WS), and 

necrotic lesions (NL). The WS lesion is a small, brown, water-soaked lesion 

without a chlorotic halo; the CL is similar to WS, but with a chlorotic halo. The NL 

is a small, dark grey, dry and sunken spot. Bacterial leaf spot is more prevalent 

during high rainfall and in coastal valleys and causes major economic losses in 

cauliflower and broccoli (Campbell et al., 1987). P. syringae pv. maculicola 

causes disease on cabbage, cauliflower, turnip, broccoli, kohlrabi, mustard, 

Chinese cabbage, rape, brussel sprouts, and radish and also infects tomato 

(Cuppels and Ainsworth, 1995).  

P. syringae pv. maculicola and P. syringae pv. tomato (causal agent of 

bacterial speck of tomato) are distinct, but closely related pathovars. It has been 

proposed that these two pathovars be combined based on pathological and 

physiological tests (Takikawa et al., 1992). Pst DC3000 and P. syringae pv.

maculicola have similarities in phenotype, DNA homology, and COR production 

(Zhao et al., 2000), and the taxonomic status of these two pathogens remains 

debatable (Cuppels and Ainsworth, 1995; Wiebe and Campbell, 1993).  

Zhao and co-workers examined the response of different edible Brassica 

spp. to P. syringae pv. maculicola and pv. tomato. Several P. syringae strains 

examined showed a differential response on collard and turnip, and a preliminary 

study suggested that the two Brassica spp. respond differently to COR (Zhao et 

al., 2000; Zhao et al., 2002). 
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Brassica – A. thaliana relatedness: Because of its relatedness to the 

model plant Arabidopsis, the genus Brassica is an exceptional system for 

studying genome divergence and relatedness. A. thaliana is not an economically 

important crop; however, its small physical size, rapid life cycle, small genome, 

abundant seed production, easy manipulation, genetic tractability and the 

availability of numerous mutants and genetically transformed lines make it a 

‘model organism’ in plant research. Genetic studies of B. oleracea, B. napus and 

B. rapa have also been performed and several molecular maps within the genera 

have been published (Bohuon et al., 1998; Lan and Paterson, 2000). The 

genomic information available from model species such as A. thaliana can be 

compared to the non-model species (e.g. brassicas), and the loci that correspond 

to the candidate genes mapped can be easily recognized. Sequence identity 

between the B. oleracea and A. thaliana genomes is much higher in the coding 

regions (85%) than in non-coding regions, and so A. thaliana cDNA microarrays 

could be used to explore global gene expression in brassicas 

(www.tigr.org/tdb/e2k1/bog1/ and http://brassica.bbsrc.ac.uk/). Thus, 

comparative genomics could advance research in the more complex Brassica 

genomes by exploiting the A. thaliana chromosome sequence maps (Arabidopsis 

Genome Initiative, 2000). 
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(v) GOALS OF THE PRESENT STUDY 

In this study, I investigated the role and mode of action of COR in the 

virulence of Pst DC3000 on edible species of brassicas.  The main objectives of 

the study were: 

(1) Determine whether COR functions as a virulence factor for Pst 

DC3000 in collard and turnip. 

(2) Examine the influence of COR on modulating selected defense 

pathways in brassicas. 

(3) Investigate how collard and turnip respond to exogenous 

application of COR and its components, coronafacic acid and 

coronamic acid.  
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CHAPTER III 

The Phytotoxin Coronatine from Pseudomonas syringae pv. tomato DC3000 

Functions as a Virulence Factor and Influences Defense Pathways in 

Edible Brassicas 

 

SUMMARY 

The phytotoxin coronatine (COR), produced by Pseudomonas syringae 

pv. tomato (Pst) DC3000, is proposed to be a virulence factor that facilitates the 

successful infection of host plants by suppressing host defense mechanisms. In 

the present investigation, we analyzed the role of COR and its components, 

coronafacic acid (CFA) and coronamic acid (CMA) in the virulence of Pst 

DC3000 on collard and turnip, two important edible brassicas. These host plants 

were inoculated with well-defined mutants of Pst DC3000 that were defective in 

either CFA, CMA or both components of the COR molecule and monitored for 

symptom development, bacterial colonization, chlorophyll and anthocyanin 

content. Furthermore, we investigated the influence of COR on major plant 

defense signaling pathways. Our results suggest that COR contributes to the 

symptom development in both hosts and multiplication of Pst DC3000 in turnip. 

The CFA component was found to contribute to the development of symptoms in 

turnip. Gene expression analysis conducted using real-time quantitative PCR 

indicated that Pst DC3000 suppresses the salicylic acid pathway in collard, while 
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COR producing Pst DC3000 and the mutant AK7E2 (CFA+ CMA-) function at 

least partially to suppress the SA pathway in turnip. Pst DC3000 promoted the 

expression of the JA response gene, LOX2 in both collard and turnip. However, 

in turnip, Pst DC3000 and AK7E2 induced expression of LOX2. CORI1, which 

encodes chlorophyllase, was expressed in collard leaves inoculated with the 

wild-type COR+ strain and not with the biosynthetic mutants. Turnip leaves 

inoculated with either Pst DC3000 or AK7E2 showed an increase in CORI1 gene 

expression. Our results suggest that COR may modulate plant defense in both 

brassicas, but the CFA moiety functions differentially with respect to defense in 

the two hosts. The defense responses were slightly delayed in turnip when 

compared to those in collard.  With respect to symptom development, the two 

brassicas differed substantially. Unlike in collard, the symptoms were delayed in 

turnip and no water soaking or anthocyanin production were observed.  The late 

symptom development, pigment changes and the difference in bacterial 

population kinetics indicate that COR has totally different effects in these two 

host plants with respect to disease development. This is the first study to 

document differences between Pst DC3000 and COR-defective mutants in 

economically important brassicas using well-defined COR biosynthetic mutants. 

 

INTRODUCTION 

 Plants have developed an array of defense mechanisms in response to 

attack by microbial pathogens, including the activation of hormone signaling 

pathways, rapid oxidative burst, and the accumulation of phytoalexins. Salicylic 
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acid (SA) is a compound known to activate local and systemic plant defenses. 

The significance of SA in plant defense is further authenticated by A. thaliana 

mutants that are defective in SA production (npr1-1 mutants) and transgenic 

lines of Arabidopsis that do not accumulate SA, such as those expressing the 

nahG gene, which encodes salicylate hydroxylase, an enzyme that degrades SA 

to catechol (Brooks et al., in press; Cao et al., 1994; Delaney et al., 1994). The 

activation of the SA pathway leads to the expression of pathogenesis-related 

(PR) proteins; hence PR genes are used to monitor SA-mediated defenses 

(Glazebrook, 2001; Ryals et al., 1996).  

 Jasmonic acid (JA) and methyl jasmonate (MeJA) are plant defense 

molecules produced in response to herbivore attack, wounding, and some 

bacterial and fungal pathogens. When plants are wounded, JA is synthesized 

rapidly and extensive transcriptional reprogramming occurs, resulting in the 

expression of many defense-related proteins (Liechti and Farmer, 2002). 

Lipoxygenase (LOX) is commonly used as a marker to follow the activation of JA 

pathway. The JA pathway has been associated with the virulence of Pst DC3000 

during its interactions with A. thaliana and tomato. One explanation for this 

phenomenon is that Pst DC3000-produced COR may function of as an analog of 

JA and/or suppress the SA pathway (Block et al., 2005; Heck et al., 2003; Zhao 

et al., 2003).  

Successful pathogens have evolved mechanisms to enter host tissue, 

suppress defense mechanisms, multiply and induce disease symptoms. Pst 

DC3000, a model strain for studying the molecular basis of plant-pathogen 
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interactions, causes leaf spots on A. thaliana, tomato and Brassica spp. 

(Cuppels, 1986; Preston, 2000; Zhao et al., 2000). Coronatine (COR) is a 

chlorosis-inducing, non-host-specific phytotoxin produced by several P. syringae 

pathovars, including Pst DC3000 (Bender et al., 1999; Bender and Scholz-

Schroeder, 2004). The COR molecule has an unusual structure and consists of 

two components, coronafacic acid (CFA), a polyketide; and coronamic acid 

(CMA), an ethylcyclopropyl amino acid derived from isoleucine (Ichihara et al.,

1977; Parry et al., 1994). The major biological effects of COR include 

hypertrophy, chlorosis, accumulation of proteinase inhibitors, increased 

anthocyanin levels, stimulation of ethylene production and inhibition of root 

growth (Feys et al., 1994; Lauchli and Boland, 2003; Palmer and Bender, 1995). 

Chlorosis being the major effect, chlorophyll degradation can be monitored using 

Chlase (CORI1) gene expression in plants.   

 COR is involved in the virulence of some strains of P. syringae. Studies in 

soybean, tomato and A. thaliana have shown that the toxin acts as a virulence 

factor and contributes to chlorosis and lesion expansion (Bender et al., 1999; 

Brooks et al., 2004; Penaloza-Vazquez et al., 2000). It has been demonstrated 

that COR interferes with SA-mediated defenses in A. thaliana (Kloek et al.,

2001). The CFA moiety of COR has structural and functional similarity to JA, 

MeJA (Fig. 5; Chapter II), and their C18 precursor, 12-oxo-phytodienoic acid 

(OPDA) (Brooks et al., in press; Feys et al., 1994; Lauchli and Boland, 2003; 

Uppalapati et al., 2005). In A. thaliana, COR stimulates jasmonate responses, 

which presumably suppress SA-dependent defenses, and it has been proposed 
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that COR functions via both SA-dependent and SA-independent mechanisms 

(Block et al., 2005; Brooks et al., in press; Nickstadt et al., 2004; Uppalapati et 

al., 2005). 

 It is important not to make broad generalizations regarding the mode of 

action for COR based on findings obtained with A. thaliana. Thus it is critical to 

analyze the role of COR and how it manipulates defense signaling in other plant 

species infected by P. syringae. In this study, biochemically-defined COR-

defective mutants were used to explore the function of COR and its components 

in the virulence of Pst DC3000 on commercially important, edible brassicas, e.g. 

collard and turnip. Many COR-producing strains of P. syringae were identified 

from Brassica spp. in Oklahoma and their survival and inoculum sources were 

also determined (Zhao et al., 2000; Zhao et al., 2002).  In a previous study, 

Wang et al. (2002) investigated the transcriptional activity of a cor biosynthetic 

gene and showed that it was expressed very early in collard leaves, suggesting a 

potential role for COR in the infection of collard plants.  

 In the present study, the relatedness of A. thaliana to edible brassicas at 

the genomic level was exploited to analyze gene expression in collard and turnip 

in response to Pst DC3000 and a series of well-defined COR biosynthetic 

mutants. Differences between collard and turnip in response to COR were 

thoroughly analyzed by inoculating these hosts with Pst DC3000 and three COR-

defective mutants and monitoring bacterial growth, symptom development, 

chlorophyll degradation, anthocyanin accumulation and gene expression in 

response to the different bacterial strains. The results show that COR is a 
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virulence factor in both brassicas, but contributes to the multiplication of Pst 

DC3000 only in turnip. Real-time quantitative PCR analysis indicated that the SA 

pathway was suppressed in turnip and collard inoculated with the COR-

producing wild-type Pst DC3000. However, the results obtained from symptom 

analysis, population kinetics and defense gene expression suggest some striking 

differences between turnip and collard in response to Pst DC3000. 

 

Experimental Procedures 

 

Plant material

Seeds of collard (Brassica oleraceae var. viridis L. cv. Vates) and turnip 

(B. rapa var. utilis (DC) Metzg. cv. Alltop) were obtained from Twilley Seed 

Company (Hodges, SC). The plants were grown in Metro-Mix® 200  (Sierra 

Horticultural Products Co., Marysville, OH) and maintained in a growth room at 

24-250C, 35-40% relative humidity (RH) with a photoperiod of 12 h. Bacterial 

inoculation experiments were conducted using four-week old plants.  

Bacterial strains and inoculation

Pst DC3000 and mutants AK7E2 (CFA+ CMA-; cmaA::Tn5), DB4G3 (CFA-

CMA+; cfa6::Tn5), and DB29 (CFA- CMA- ; cfa6-cmaA double mutant) (Brooks et 

al., 2004) were used in this study. Pst DC3000 and the mutants were grown at 

28oC for 24 h on mannitol glutamate (MG) agar supplemented with the following 

antibiotics (µg/mL): rifampicin, 100; kanamaycin, 25; and spectinomycin, 100. 

Bacterial cells were suspended to an OD600=0.1 (~107 cfu ml-1) in sterile distilled 
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water, and the surfactant Silwet L77 (Osi Specialties Inc., Danbury, CT) was 

added to the bacterial inoculum at a concentration of 0.025%.  Four-week-old 

plants were spray-inoculated with an airbrush (55.2 kPa) until leaf surfaces were 

evenly wet. After inoculation, the plants were incubated in a growth chamber with 

a photoperiod of 12 h at 25oC. The relative humidity (RH) was 90% for the first 48 

h after inoculation and 70% for the remainder of the experiment.  

Symptoms and bacterial growth

The plants were monitored for disease symptoms and bacterial 

colonization during a seven day period. Visible symptoms such as chlorosis, 

water soaking, necrosis, and anthocyanin accumulation on plants inoculated with 

Pst DC3000 were compared to plants inoculated with the COR- mutants.  

Disease severity was scored according to the percentage of leaf area showing 

symptoms using a 0-4 rating scale as follows: 0, no disease; 1, 1 to 25%; 2, 26 to 

50%; 3, 51 to 75%; and 4, 76 to 100%. The number of leaves showing individual 

symptoms out of the total number of leaves was also calculated for each 

host/strain interaction to calculate percentage infection. 

The total as well as internal population of all bacterial strains was 

estimated 0, 1, 3, and 6 days after inoculation. Random leaf samples were 

collected at each sampling time and each leaf was dissected along the midrib. 

One half of each leaf was used to assess the total bacterial population and the 

remaining half was surface sterilized with 15% H2O2 for 5 min and then rinsed 

three times in sterile distilled water to estimate the internal population. Leaf discs 

(4 replications, 10 mm diameter) were removed from individual leaf sections and 
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macerated in sterile distilled water with a mortar and pestle. Dilutions of leaf 

homogenate made in sterile distilled water were plated onto MG medium 

containing the appropriate antibiotics. The plates were then incubated at 250C for 

48 h, and bacterial colonies were counted. The experiments were repeated at 

least three times with similar results. 

Pigment estimation

The levels of chlorophyll and anthocyanin in the inoculated leaves were 

estimated 7 days after inoculation. Leaf discs (10 mm diameter) were macerated 

in 1 ml of ice-cold ethyl acetate/acetone (1:1 v/v) solvent mixture. This was 

diluted (1:33 ratio) in the same solvent mixture and absorbance was read at 665 

and 649 nm to estimate chlorophylls a and b, respectively.  

For anthocyanin determination, the method described by Gould et al.

(2000) was used. Leaf discs (10 mm diameter) were agitated gently in 1 ml of a 

solution containing 3M HCl: H2O: methanol (1:3:16 volume ratio) in the dark for 

24 h at 4oC. The solution was removed, absorbance was read at 530 and 653 

nm, and anthocyanin was estimated as A530-0.24 A653. Subtraction of 0.24 A653 

compensates for the small overlap in absorbance at 530 nm by the chlorophylls 

(Gould et al., 2000). The readings were plotted as the percentage chlorophyll or 

anthocyanin present in inoculated leaves relative to the mock-treated control 

(100%). The experiments were repeated at least three times with similar results 

and the standard deviation was included. 

Northern blot analysis
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Total RNA was extracted from inoculated leaves collected at different time 

points (0, 12, 24 and 48 h) using TRIZOL (Sigma) reagent, a mono-phasic 

solution of phenol and guanidine isothiocyanate. During sample (100 mg of leaf 

tissue) homogenization, TRIZOL disrupts cells and dissolves cell components, 

while maintaining the integrity of the RNA. Addition of chloroform followed by 

centrifugation separates the solution into an aqueous phase and an organic 

phase. RNA remains entirely in the aqueous phase, which is recovered by 

precipitation with isopropyl alcohol.  

Ten µg of RNA (extracted as described above) was electrophoresed on 

formaldehyde gels, transferred to nylon membranes, and fixed to membranes 

using UV light (Stratalinker® UV Crosslinker). Hybridization probes were 

prepared using the Random Primer Labeling kit (Invitrogen Life Technologies, 

Carlsbad, CA). A. thaliana cDNA clones containing genes indicative of the SA 

pathway (PR-1), the JA pathway (LOX2) and chlorophyllase (CORI1) were used 

as probes. The probes were received from the lab of Dr. Barbara N. Kunkel 

(Washington University, St. Louis, MO). The LOX2 probe was a 1.0 kb EcoRI-

BamHI cDNA fragment from A. thaliana LOX2 (AtLOX2) gene and was cloned 

into pZL1 (Brooks et al., in press). The AtLOX2 gene was cloned and 

characterized (Genbank Accession No. L23968) by Bell and Mullet (1993). The 

PR-1 probe contained a 750 bp EcoRI-XhoI fragment with the complete coding 

sequence of the A. thaliana PR-1 gene (Genbank Accession No. NM_127025.2) 

(Brooks et al., in press; Uknes et al., 1992). The CORI1 probe contained a 1.15 

kb  EcoRI-XhoI fragment with the complete coding sequence of A. thaliana 
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CORI1 gene (Genbank accession number- AF021244) (Benedetti et al., 1998; 

Brooks et al., 2005 in press). The cDNA (50 ng) was labeled with 32P (50 µCi), 

hybridized at 45oC overnight, and washed twice (2X SSC at room temperature 

and 1X SSC at 45oC). RNA blots were exposed for 3 to 4 days and analyzed 

using a phosphorimager. 

 

Real-time quantitative PCR (RT-qPCR)

Total RNA was isolated from leaves inoculated with Pst DC3000 and the 

COR- mutants at 0, 0.5, 1, 3, 6, 12, 24 and 48 h after inoculation. The quantity of 

RNA was estimated using a NanoDrop ND-1000 spectrophotometer (NanoDrop 

Technologies, Wilmington, DE) and by gel electrophoresis. The extracted RNA 

was treated with 1 µL (1 U per µL) of amplification grade DNAse I (Invitrogen) to 

avoid contamination by genomic DNA. DNAse I was inactivated by adding 1 µL 

of 25 mM EDTA and incubating at 65oC. 1 µg of the DNAse-treated RNA was 

used to synthesize cDNA using the Superscript TM First Strand Synthesis System 

(Invitrogen). RNA not incubated with reverse transcriptase was included as a 

negative control in the unlikely event that samples contained any remaining 

genomic DNA. The quantity of cDNA was estimated using the NanoDrop ND-

1000 spectrophotometer, and the volume was adjusted to 100 ng per reaction.  

 Primers for PR-1, LOX2, CORI1 and 18S rRNA (included as a 

constitutively expressed control) were designed using D-LUXTM Designer 

software available from Invitrogen (www.invitrogen.com/lux). The primer sets 

were predicted to amplify fragments ranging in size from 60 to105 bp (Table 1).  
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One primer from each set was labeled with the fluorophore JOE (6-carboxy-4′, 5′-

dichloro-2′, 7′-dimethoxyfluorescein). All the primers were designed from regions 

of A. thaliana genes showing the highest homology with Brassica spp.  The 

known sequences of all the genes from A. thaliana were aligned with available 

ESTs of Brassica spp. The Basic Local Alignment Search Tool (BLAST) from 

NCBI (http://www.ncbi.nlm.nih.gov/BLAST/) was used to find regions of similarity 

between sequences.  

Table 1. Fluorogenic LUX primer pairs used for quantitative real-time PCR. 
Target 

gene 

Labeled LUX primer (forward 

orientation) 

Unlabeled primer (reverse 

orientation) 

Predicted 

size (bp)

PR-1 CACTGACCAAGTTGTTTGGAGAAA

GTCAG[JOE]G 

CCATTGTTACACCTCACTTTGG 66 

LOX2 GAACCTTGGTGGCCTGTCCT CTACGAGAGGTGACCCATGCAA

TCG[JOE]AG 

80 

CORI1 CGAAGTCAAAGCTCACCTACCAAC

TT[JOE]G 

TGGCCCACGAGTGAGGTGTA 66 

18S rRNA GACCTGGGAAGTTTGAGGCAATAA

CAGG[JOE]C 

TGTCGGCCAAGGTGTGAACT 105 

PCR was performed using the HotStarTaq Master Mix Kit (250 U Kit; 

Qiagen Inc., Valencia, CA), which included HotStarTaq DNA polymerase (250 

U), MgCl2 (final reaction concentration 1.5 mM), and 200 µM of each dNTP.  The 

total reaction volume for real-time PCR was 25 µl, and each reaction contained 3 

µM of the gene specific primers (1 µl), 12.5 µl of the HotStar Taq Master Mix, and 

100 ng of the cDNA template (2 µl).  The reactions were incubated at 95°C for 
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15 min, and then cycled (40 X) at 95°C for 15 s, 60°C for 1 min and 72°C for 

34 s. Reactions were performed in a 96-well format in a spectrofluorometric 

thermal cycler (ABI PRISM 7700 Sequence Detector System, Applied 

Biosystems).  The amount of fluorescence as a function of PCR cycle was 

plotted using the ABI PRISM 7700 SDS software, and the threshold cycle (Ct)

values were obtained. The Ct values for all target genes were first normalized 

using the gene encoding 18S rRNA to get ∆Ct. Gene expression was calculated 

by the comparative Ct method, in which the relative amount of target gene 

expression is compared to the gene expression at time zero (calibrator) to get the 

∆∆Ct. Target gene expression was represented as the relative fold increase in 

the transcript level with reference to gene expression at time zero. The relative 

differences in target genes were calculated according to the ∆∆Ct mathematical 

model (Pfaffl, 2001). 

 

RESULTS 

 

Symptom development on collard and turnip inoculated with Pst DC3000 and 

COR-defective mutants 

The role of COR as a virulence factor was investigated by inoculating 

collard and turnip with Pst DC3000 and the three COR- mutants. On collard 

plants inoculated with Pst DC3000, chlorotic, water-soaked (WS) lesions 

appeared three days after inoculation. Anthocyanins (apparent as a purple 

pigment) accumulated on the lower surface of Pst DC3000-inoculated leaves. 
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Between three and six days, the chlorotic lesions enlarged and eventually 

developed complete chlorosis and necrosis. Severe chlorosis, water-soaking, 

necrosis and anthocyanin production were apparent on the seventh day after 

inoculation (Fig. 6). Out of the total number of collard leaves sprayed with Pst 

DC3000, 65, 60 and 53 percent of the number of leaves exhibited chlorosis, WS 

and necrotic lesions, and anthocyanin accumulation, respectively (Fig. 6A-D and 

Table 2). 

Leaf samples collected from Pst DC3000-inoculated leaves exhibited 75-

100% chlorosis, necrosis and WS lesions and were rated as a 4 on the disease 

severity scale (Table 2). The extent of anthocyanin production was rated as 3. 

The leaves inoculated with the single mutants (AK7E2 and DB4G3) showed mild 

chlorosis, necrosis, WS lesions and anthocyanin accumulation. Collard leaves 

sprayed with the double mutant (DB29) showed negligible chlorosis, necrosis 

and WS lesions and mild anthocyanin levels, and these symptoms were rated as 

1 (Table 2).    
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Table 2. Percentage of disease in collard inoculated with Pst DC3000 and COR-
defective mutants. 

 

In turnip, severe symptoms were induced by Pst DC3000, and 57 and 

54% leaves showed chlorosis or necrosis, respectively (Fig. 7A, Table 3). Unlike 

in collard, on which symptoms were apparent beginning three days after 

inoculation, symptoms were not visible on turnip until the fifth day after 

Bacterial 
strains Chlorosis 

Necrosis & Water 
soaking 

 
Anthocyanin 

Disease 
%

Rating Disease 
%

Rating Disease 
%

Rating 

Pst DC3000 65 ± 5.6 4 60 ± 4.5 4 53 ± 6.0 3

DB4G3 (CFA-) 3 ± 1.2 1 5 ± 1.5 1 4 ± 2.2 1

AK7E2 (CMA-) 8 ± 2.3 1 9 ± 3 1 5± 2.6 1

DB29 
(CFA- CMA- )

3 ± 1.5 1 4 ± 1 1 2 ± 1.6 1

Fig.  6. Symptoms on collard leaves sprayed with Pst DC3000 (panels A-D), AK7E2 (cmaA
mutant; panel E), DB4G3 (cfa6 mutant; panel F), and DB29 (cmaA cfa6 mutant, panel G). The 
plants were sprayed with 107 CFU/ml of inoculum and incubated in a growth chamber as 
described in Experimental Procedures. The leaves were photographed 7 days after 
inoculation. 
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inoculation. Furthermore, turnip leaves inoculated with Pst DC3000 did not 

exhibit WS lesions or anthocyanin production, symptoms that were observed in 

collard. The CFA- mutant DB4G3 (cfa6) and the CFA- CMA- double mutant DB29 

(cfa6-cmaA) did not produce highly noticeable symptoms on turnip (Fig. 7C, D). 

However, AK7E2 (cmaA mutant) induced severe chlorosis and necrosis in turnip 

leaves (Fig. 7B, Table 3). These results indicate that collard and turnip differ 

considerably with respect to symptom development when inoculated with Pst 

DC3000 and the COR- mutants.  

Table. 3. Percentage of disease in turnip inoculated with Pst DC3000 and COR-
defective mutants.                                                     

 

Bacterial 
strains Chlorosis 

 
Necrosis  

 
Anthocyanin 

Disease 
%

Rating Disease 
%

Rating Disease 
%

Rating 

Pst DC3000 57 ± 2.6 4 54 ± 5.1 3 0 0

DB4G3 (CFA-) 4 ± 2.5  1 4 ± 1.5 1 0 0

AK7E2 (CMA-) 35 ± 4 3 21 ± 4.5 2 0 0

DB29 
(CFA- CMA- )

4 ± 2.6 1 3 ± 1.2 1 0 0

Fig. 7. Symptoms on turnip leaves sprayed with: A, Pst DC3000; B, AK7E2 (cmaA mutant);
C, DB4G3 (cfa6 mutant) and D, DB29 (cmaA cfa6 mutant). The plants were spray-
inoculated with 107 CFU/ml of inoculum and incubated in a growth chamber as described in 
Experimental Procedures. Leaves were photographed 7 days after inoculation. 
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Growth of Pst DC3000 and COR- mutants on collard and turnip 

The population dynamics of Pst DC3000 and the COR-defective mutants 

were evaluated to determine whether COR contributed to the multiplication of the 

bacteria in planta. Interestingly, the total (Fig. 8) and internal (data not shown) 

populations of Pst DC3000 and the three COR-defective mutants were not 

significantly different on collard during the six-day sampling period, which 

suggests that COR does not facilitate the multiplication of Pst DC3000 in collard. 

 Pst DC3000 and AK7E2 (cmaA mutant) showed significantly higher 

populations in turnip at three days after inoculation (108 CFU/g leaf tissue) (Fig. 

9). Pst DC3000 maintained a higher total population on turnip throughout the 

experiment, while the AK7E2 population declined such that at day 6 it was not 

distinguishable from those of DB4G3 and DB29. There was no significant 

difference in either the population of DB4G3 and DB29 (cfa6 and cmaA-cfa6 

mutants, respectively). Growth of these mutants in planta was consistently lower 

than Pst DC3000, and their population was significantly lower than Pst DC3000 

by the sixth day of sampling. The higher population of Pst DC3000 in turnip 

indicates that COR is important for the persistence of the bacterium in turnip but 

not collard; thus these two brassicas respond quite differently to the pathogen. 
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Fig. 8. Total populations of Pst DC3000, AK7E2 (cmaA), DB4G3 (cfa6) and DB29 (cmaA-cfa6)
on collard leaves. The symptoms on these plants are shown in Fig. 6. Collard plants were 
inoculated as described in Experimental Procedures. The experiments were repeated at least 
twice and the vertical bars show the standard deviation. 
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Chlorophyll and anthocyanin estimation

Inoculation with Pst DC3000 induced changes in the pigmentation of 

leaves, and this was quantified by measuring chlorophyll and anthocyanin 

content. Chlorophyll levels in Pst DC3000-inoculated collard leaves were only 

20% of the mock-inoculated control leaves, which was significantly lower (Fig. 

10A). This finding is consistent with the observation of chlorosis on collard leaves 

inoculated with Pst DC3000 (Fig. 6A). Collard leaves inoculated with the COR-

defective mutants showed only a slight reduction in chlorophyll content compared 

to those inoculated with Pst DC3000 (Fig. 10A), and this relationship was 

consistent with the little or no chlorotic symptoms in these leaves (Fig. 6E-G).  

Fig.9. Total populations of Pst DC3000, AK7E2 (cmaA mutant), DB4G3 (cfa6
mutant) and DB29 (cmaA-cfa6 mutant) on turnip leaves. The symptoms on these 
plants are shown in Fig. 7. Turnip plants were inoculated as described in 
Experimental Procedures. The experiments were repeated at least twice and the 
vertical bars show the standard deviation. 
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The level of anthocyanin was approximately threefold higher in collard 

leaves inoculated with COR-producing Pst DC3000 than the collard leaves 

treated with any of the mutants and the control (Fig. 10B). This is in agreement 

with the accumulation of purple pigmentation in collard leaves inoculated with Pst 

DC3000 (Fig. 6D). The collard leaves inoculated with the single and double 

mutants showed very low anthocyanin levels, which were comparable to those in 

the water-inoculated control (Fig. 10B). These data are consistent with the visual 

symptoms, as we do not observe anthocyanin production in collard leaves 

sprayed with the COR-defective mutants (Fig. 6E-G). 

Fig.10. Chlorophyll and 
anthocyanin levels in collard 
leaves inoculated with Pst
DC3000 and the COR-defective
mutants.  A, Chlorophyll 
content in collard leaves 
inoculated with Pst DC3000, 
AK7E2 (cmaA mutant), DB4G3 
(cfa6 mutant) and DB29 (cmaA-
cfa6 mutant). B, Anthocyanin 
levels in collard leaves 
inoculated with Pst DC3000, 
AK7E2, DB4G3 and DB29. 
Pigments were analyzed 7 days 
after inoculation, and the 
analysis was performed three 
times with similar results.  
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The chlorophyll content of turnip leaves inoculated with the wild-type DC3000 

and the CMA- mutant was reduced to ~30% and ~70% as compared to the mock-

inoculated control, respectively (Fig. 11). These results are consistent with the 

chlorosis observed on turnip leaves inoculated with these strains (Fig.7A and B). 

There were no significant differences in the chlorophyll levels of turnip inoculated 

with DB4G3 and DB29. Anthocyanin levels in turnip inoculated with DC3000 and 

the COR- mutants were not significantly different from each other (data not 

shown). This agrees with the visible anthocyanin pigmentation in turnip plants.  

Gene expression analysis

The expression of genes indicative of the SA pathway (PR-1), JA pathway 

(LOX2) and chlorophyllase enzyme (CORI1) were monitored in both Brassica 

spp. treated with Pst DC3000 and the COR biosynthetic mutants. In both collard 

and turnip, a weak expression of CORI1 was detected 48 h after inoculation with 

Fig.11. Chlorophyll content in turnip leaves inoculated with Pst DC3000, AK7E2 (cmaA 
mutant), DB4G3 (cfa6 mutant) and DB29 (cmaA-cfa6 mutant). Pigments were analyzed 7 
days after inoculation, and the analysis was performed three times with similar results.
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Pst DC3000, but not after inoculation with the COR-defective mutants (Fig. 12A 

and Fig. 13A, respectively). Even though the signals in northern blots were not 

extremely clear, the results agree with the observations of chlorosis and low 

chlorophyll content in collard inoculated with Pst DC3000, but not in those 

inoculated with the COR-defective mutants. Although northern blot analysis was 

not sensitive enough to detect CORI1 induction in turnip in response to AK7E2 

(cmaA mutant), inoculation with this mutant induced chlorosis and lowered the 

chlorophyll levels in turnip (Figs. 7, 11). It has been hypothesized that COR 

contributes to the virulence of P. syringae by suppressing host defense 

mechanisms in A. thaliana and tomato (Kloek et al., 2001; Zhao et al., 2003). To 

test the modulation of host defense mechanisms by COR in collard and turnip, 

we monitored the expression of LOX2 and PR-1, which are indicative of 

transcriptional activity in the JA and SA pathways, respectively. LOX2 expression 

was detected at all the time points analyzed in both collard and turnip plants 

inoculated with Pst DC3000 and the three COR-defective mutants (Fig. 12B; Fig. 

13B).  Thus, analysis by RNA blots did not show a significant difference in LOX2 

expression in Pst DC3000-inoculated plants as compared to the COR-defective 

mutant-inoculated plants, which would be predicted if the JA pathway was 

activated in response to COR production.  

The transcriptional activity of PR-1 (indicative of activity in the SA 

pathway) was observed only at 48 h and only in turnip leaves inoculated with 

DB29 (cmaA-cfa6 mutant) (Fig. 13C). This finding suggests that PR-1 is 

suppressed in turnip inoculated with Pst DC3000, and supports the hypothesis 



50

that COR functions in part by down-regulating the SA pathway. However, since 

inoculation with AK7E2 (cmaA mutant) and DB4G3 (cfa6 mutant) also failed in 

PR-1 expression, we are forced to conclude that both parts of the COR molecule 

are required for this effect. Expression of PR-1 was not detected by RNA blot 

analysis in collard leaves inoculated with Pst DC3000 or the COR-defective 

mutants (data not shown). 

Fig.12. Gene expression in collard by RNA blot analysis.  Expression of (A) CORI1
and (B) LOX2 at 0, 12, 24 and 48 h after inoculation with Pst DC3000, AK7E2 
(cmaA mutant), DB4G3 (cfa6 mutant) and DB29 (cmaA-cfa6 mutant).

Fig. 13. Gene expression in turnip by RNA blot analysis.  Expression of (A) CORI1, (B)
LOX2 and (C) PR-1 genes at 0, 12, 24 and 48 h after inoculation with Pst DC3000, AK7E2 
(cmaA mutant), DB4G3 (cfa6 mutant) and DB29 (cmaA-cfa6 mutant). 
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The results described above suggest that COR stimulates chlorophyll 

degradation and may modulate SA-mediated defenses in turnip. Collectively, 

these results point to activation of the JA pathway in both collard and turnip in 

response to Pst DC3000 and the COR-defective mutants. Surprisingly, 

differential expression of LOX2 was not detected by RNA blot analysis; in other 

words, we predicted that LOX2 expression would be higher in Pst DC3000-

inoculated leaves, but this was not observed by RNA blot analysis. Also, COR is 

thought to down-regulate SA-dependent defense responses. Thus we would 

predict that expression of PR-1, which is indicative of gene expression in the SA 

pathway, would be repressed in plants inoculated with the COR-producing wild-

type strain Pst DC3000, but expressed in response to COR-defective mutants. 

However, PR-1 expression was not detected by RNA blot analysis in collard 

plants, regardless of the strain or time point.  Nevertheless, in turnip leaves 

inoculated with the double mutant DB29 (cmaA-cfa6), expression of PR-1 was 

observed at 48 h (Fig. 13C).  

Although the results from RNA blot analysis show expression of the genes 

of interest to some extent, we could not draw logical conclusions due to either 

faint signal or lack of signals from the blots as well as the lack of reproducibility of 

the results. This could be due to different reasons.  For example, LOX2 and 

CORI1 are ‘early expressed’ genes in plants, so the time points analyzed in the 

RNA blots may not have been those at which the highest transcript abundance 

occurred. Secondly, the probes from A. thaliana contained full-length cDNA, 

including the 5’ and 3’ UTR (untranslated region), which are not highly 
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homologous to the Brassica UTR. Finally, the probe sizes (> 750 bp) may have 

been too large to get a reliable signal in northern blot analysis.   

 Since the results from northern blot analysis were not very consistent or 

conclusive, the expression of PR-1, LOX2 and CORI1 were monitored in collard 

and turnip by real-time quantitative PCR (RT-qPCR), which is a much more 

sensitive technique than RNA blot analysis. The primers were designed from A. 

thaliana coding regions that are highly homologous to those of Brassica spp. 

Since these primers would anneal to a smaller region than that recognized by the 

probes used in the northern blots, and since primer annealing is followed by 

amplification, the results should be more reliable. Initially, gene expression was 

monitored at the same time points used in the RNA blot analysis. Based on some 

preliminary experiments, very early time points were also included. Thus, gene 

expression was evaluated at a series of time points (0, 0.5, 1, 3, 6, 12, 24 and 48 

h post inoculation) for each gene. Furthermore, in experiments in which LOX2 

expression was monitored, a 15 min time point was included. 

 When RT-qPCR was used to monitor gene expression in collard, a rapid, 

transient induction of PR-1 was observed 6 h after inoculation with DB29 (cmaA-

cfa6 mutant). Interestingly, this surge was not observed with either of the single 

mutants (AK7E2 or DB4G3), suggesting that both components of the COR 

molecule are required for suppression of PR-1 in collard.  The expression of PR-

1 was significantly lower (~1000-fold) in collard plants inoculated with Pst 

DC3000, AK7E2, and DB4G3 (Fig. 14A). These data suggest the suppression of 

the SA pathway by COR and its components, CFA and CMA in collard.  It is likely 
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that SA-mediated defenses are suppressed in collard inoculated with Pst 

DC3000, and the lack of PR-1 induction in AK7E2 and DB4G3-inoculated plants 

indicates that both CMA and CFA are required for PR-1 suppression in collard. 

 Expression of the JA/wound induced gene, LOX2, was observed in collard 

plants as early as 15 and 30 min after inoculation with Pst DC3000. The 

expression peaked at 30 min and was over 300-fold higher than expression of 

LOX2 in collard inoculated with the single and double mutants (Fig. 14B). The 

RT-qPCR data indicate that COR production by Pst DC3000 does stimulate a 

rapid increase in LOX2 activity. LOX activity occurs early in the JA pathway and 

hence this gene is expressed early in collard plants inoculated with the wild-type 

COR-producing bacterium, but not in plants inoculated with COR-defective 

mutants. 

 In collard, maximal expression of the chlorophyllase-encoding gene, 

CORI1, occurred 1 h after inoculation with COR-producing Pst DC3000. 

Induction of CORI1 was not observed in collard inoculated with the COR-

defective mutants. Transcription was over 100-fold greater in plants inoculated 

with the COR-producing bacterium Pst DC3000 than in the COR-defective 

mutants (Fig. 14C). These results correlate with the chlorosis that developed on 

Pst DC3000-inoculated collard leaves and with the absence of chlorotic lesions in 

collard leaves inoculated with the mutant strains (Fig. 6). Furthermore, these 

results agree with the significant decrease in chlorophylls a and b that was 

apparent in collard leaves inoculated with Pst DC3000, but not the COR-

defective mutants (Fig. 10A).  
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Fig.14. Analysis of gene 
expression in collard by 
RT-qPCR after 
inoculation with Pst
DC3000, AK7E2 (cmaA
mutant), DB4G3 (cfa6
mutant) and DB29 
(cmaA-cfa6 mutant).
(A), PR-1 expression at 
0, 6, 12, 24 and 48 h; 
(B) LOX2 gene 
expression at 0, 0.25, 
0.5, 1, 2 and 3 h; and  
(C) CORI1 gene 
expression at 0, 0.5, 1, 
2 and 3 h. cDNA was 
synthesized from total 
RNA and real-time 
qPCR was performed 
using gene specific 
primers (Table 1).  
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In turnip, the kinetics of PR-1 expression was slightly different than that 

observed in collard, with maximal expression occurring in leaves inoculated with 

the double mutant (DB29; cmaA cfa6) at 12 h (over 500-fold higher than the 

single mutants and Pst DC3000) after inoculation (Fig. 15A). When plotted 

independently of the DB29-treatment, PR-1 expression was observed in turnip 

inoculated with the DB4G3 mutant (CFA- CMA+) at 24 h, and this expression was 

significantly higher (10-fold) than that in tissue inoculated with AK7E2 or Pst 

DC3000 (Fig. 15A’). This suggests that in turnip the whole toxin, as well as the 

CFA component alone, can suppress SA-associated defense. Maximal 

transcription of lipoxygenase (LOX2) was noted at 30 min after inoculation with 

Pst DC3000, while the level of transcription was approximately 120-fold lower 

when turnip was inoculated with the COR-defective mutants (Fig. 15B). There 

was a slight increase in the expression of LOX2 gene (8-fold higher than with 
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DB29 and DB4G3) by AK7E2 (CMA- CFA+) at 30 min and 1h, suggesting that 

CFA (shown separately as in Fig. 15B’) contributes partly to the modulation of JA 

pathways in turnip.  
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Although chlorosis was not apparent until five days after inoculation of 

turnip with Pst DC000, CORI1 (the first enzyme in chlorophyll degradation 

Fig.15. Analysis of gene 
expression in turnip by 
RT-qPCR after 
inoculation with Pst
DC3000, AK7E2 (cmaA
mutant), DB4G3 (cfa6
mutant) and DB29 
(cmaA cfa6 mutant). 
 
(A), PR-1 expression at 
0, 6, 12, 24 and 48 h; 
(A’), PR-1 expression 
by Pst DC3000, AK7E2 
and DB4G3 at 0, 6, 12,
24 and 48 h.  
 
(B) LOX2 gene 
expression at 0, 0.5, 1, 
2 and 3 h; (B’) LOX2
gene expression in 
turnip treated with 
AK7E2, DB4G3 and 
DB29 at 0, 0.5, 1, 2 and 
3 h. 
 
(C) CORI1 gene 
expression at 0, 6, 12, 
24 and 48 h. 
 
cDNA was synthesized 

from total RNA and real-
time qPCR was 
performed using gene 
specific primers (Table 
1).  
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pathway) was highly expressed at 12 h (over 600-fold higher than in plants 

inoculated with DB4G3 and DB29) after inoculation and then the expression 

dropped to a basal level after 48h (Fig. 15C). The expression of CORI1 was also 

elevated in turnip plants inoculated with AK7E2 (CFA+ CMA-) at 12h after 

inoculation (Fig. 15C). The expression was 3-fold lower than that induced by Pst 

DC3000. These gene expression data agree with the chlorosis observed on 

turnip sprayed with Pst DC000 or AK7E2 (FIG. 7 A and B). CORI1 gene 

expression was not observed in turnip plants inoculated with either DB4G3 or 

DB29. 

 The RT-qPCR expression analyses in the present study indicate that COR 

functions in part to suppress SA-associated defenses and to activation of the JA 

pathway in both collard and turnip. Furthermore, this study suggests that COR 

functions to degrade chlorophyll, an observation that has been reported by others 

in A. thaliana and tomato.  

 

DISCUSSION 
 

The results of this study indicate that collard and turnip respond very 

differently to infection with Pst DC3000 and the COR- mutants. Symptom 

development in collard occurred much more rapidly than in turnip; for example, 

Pst DC3000-inoculated collard plants exhibited chlorotic, water-soaked lesions 

within three days post-inoculation. In contrast, symptoms were less severe on 

turnip and not apparent until five days after inoculation with Pst DC3000 (Table 3, 

Fig. 7). Unlike collard, turnip plants did not develop water-soaked lesions in 
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response to Pst DC3000, and anthocyanins did not accumulate in inoculated 

turnip leaves as they did in collard leaves. 

 COR-defective mutants were severely attenuated in virulence in 

comparison with Pst DC3000 (Fig. 6), and the lesion phenotypes in collard were 

similar for all three mutants (Table 2). In this respect, the results obtained with 

collard are similar to those reported for A. thaliana, in which the intact toxin is 

required for full manifestation of symptoms (Brooks et al., 2004). Turnip plants 

inoculated with DB4G3 (cfa6 mutant) and DB29 (cmaA-cfa6 mutant) produced 

minor symptoms or none at all (Fig. 7C, D); however, when turnip was inoculated 

with AK7E2 (cmaA mutant), a substantial amount of chlorosis and necrosis 

developed (Fig. 7B). The symptoms observed in turnip plants inoculated with 

AK7E2 (cmaA mutant) may be due to the production of coronafacoyl conjugates, 

e.g. coronafacoylvaline, coronafacoylisoleucine, coronafacoylserine, and 

coronafacoylthreonine, which also induce chlorosis (Mitchell, 1984; Mitchell and 

Ford, 1998; Uppalapati et al., 2005). Thus, the CFA moiety might form a 

conjugate with an amino acid present in turnip and the resulting coronafacoyl 

compound could induce the symptoms observed in turnip infected with AK7E2. 

These results indicate that the CFA component of COR is required for the 

bacterium to elicit disease symptoms in turnip.  

 

COR contributes to the multiplication of Pst DC3000 in turnip

Although there was an obvious difference in the visual symptoms, the 

bacterial populations of Pst DC3000 and the COR-defective mutants were similar 
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in collard (Fig. 8). This finding differs from results reported for A. thaliana, in 

which all three COR mutants were compromised in their ability to multiply in 

planta (Brooks et al., 2004). Thus in collard, COR contributes to disease 

symptom production, but not to multiplication in planta. In this respect, the results 

of this study are similar to those reported for Chinese cabbage inoculated with 

COR+ and COR- strains of P. syringae pv. maculicola, where COR contributed to 

the development of chlorosis but not  to bacterial growth in planta (Tamura et al.,

1998). 

In turnip, the bacterial populations of Pst DC3000 were higher than those 

of the COR- mutants throughout the sampling period. Thus, in turnip, COR is 

important for both symptom development and multiplication of Pst DC3000, a 

finding that agrees with the results reported for tomato and A. thaliana (Brooks et 

al., 2004; Uppalapati et al., 2005). It is of significance that COR is thus shown to 

have two distinct roles in turnip, e.g. contributing to disease development and 

bacterial growth in planta.

Pst DC3000 alters pigment levels in collard and turnip

COR is a chlorosis-inducing phytotoxin, and a decrease in chlorophyll 

content was previously reported in tomato leaves inoculated with the toxin 

(Palmer and Bender, 1995). Ultrastructural studies demonstrated that 

chloroplasts in COR-inoculated tissue are significantly smaller than those in 

healthy tomato leaves (Palmer and Bender, 1995). In the present study, 

chlorophyll a and b levels in Pst DC3000-inoculated collard and turnip were only 
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20-30%, respectively, of those present in mock-inoculated leaves. Consistent 

with this finding, severe chlorosis was observed on both collard and turnip 

inoculated with Pst DC3000 (Figs. 6A, 7A). Furthermore, gene expression 

analysis (Figs. 14C, 15C) indicated that COR activates chlorophyllase, the 

principal enzyme in chlorophyll degradation.  Thus, COR interferes with 

photosynthesis by degrading chlorophyll. A very early activation of CORI1, which 

encodes the first enzyme in the chlorophyll degradation pathway, in response to 

COR treatment has been shown previously in A. thaliana (Benedetti et al., 1998).  

Anthocyanin accumulates in plants in response to many stresses including 

UV light, drought, extreme temperatures and pathogen infection (McClure, 1975). 

Foliar anthocyanin has been associated with plant resistance to herbivores and 

also has antioxidant activity (Coley and Kursar, 1996; Stone et al., 2001; Wang et 

al., 1997). The levels of anthocyanin were significantly higher in collard leaves 

inoculated with Pst DC3000 (COR+) than in the leaves inoculated with COR-

mutants. Interestingly, anthocyanins did not accumulate to significant levels in 

turnip leaves, indicating a differential response in these two brassicas to Pst 

DC3000 infection. The high level of anthocyanin could be attributed to the early 

activation of the JA pathway, as JA is reported to induce the biosynthesis of 

anthocyanin in the wounded tissues of certain plants (Gould et al., 2002; Richard 

et al., 2000; Tamari et al., 1995). Moreover, the expression of anthocyanin can 

be tissue and species-specific (Feys et al., 1994). 

 

COR suppresses SA-dependent defenses in both collard and turnip
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A popular hypothesis regarding the mode of action of COR is that the toxin 

promotes virulence by suppressing salicylic acid-associated defense in plants 

(Glazebrook et al., 2003; Kloek et al., 2001; Kunkel and Brooks, 2002). In the 

current study, this hypothesis was explored by analyzing the expression of PR-1,

a gene that reflects activation of the SA pathway. Optimal expression of PR-1 

was observed in collard and turnip leaves 6 and 12 h, respectively, after 

inoculation with the cmaA-cfa6 double mutant, DB29. In collard inoculated with 

Pst DC3000 and the single mutants (DB4G3 and AK7E2), PR-1 expression was 

dramatically lower. However, DB4G3 (CFA- CMA+) induced a level of expression 

of PR-1 in turnip, suggesting that COR and CFA (to a lesser extent) could 

suppress SA-dependent defenses in turnip.  Thus COR, and possibly its 

components, function in part to suppress SA-dependent defenses, depending on 

the specific host-pathogen interactions. Previous studies in tomato also showed 

elevated PR gene expression in response to inoculation with a COR- mutant 

when compared to that following inoculation with Pst DC3000 (Zhao et al., 2003).  

 

COR stimulates JA-mediated signaling in brassicas

Several prior investigations have confirmed the activation of JA-mediated 

responses by COR in A. thaliana and tomato (Block et al., 2005; Feys et al.,

1994; Schmelz et al., 2003; Uppalapati et al., 2005). In this study, the 

lipoxygenase gene, LOX2, was expressed very early in collard and turnip after 

inoculation with Pst DC3000. Although there is a difference in the timing of 

disease symptom development in collard and turnip, the JA pathway is activated 
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very early in both brassicas. Microarray analysis has shown early activation of 

LOX2 genes in A. thaliana (Reymond et al., 2000). These findings support the 

theory that COR acts as a JA analog, which then suppresses SA-associated host 

defense, thus enhancing pathogen virulence (Kloek et al., 2001; Mittal and Davis, 

1995). Interestingly, a slight activation of the LOX2 gene was observed in turnip 

treated with AK7E2 (CMA- CFA+). This increase could be due to the structural 

and functional similarity of CFA and COR to JA, which in turn might be significant 

in the interaction with turnip and not with collard.  It has been argued that COR-

mediated virulence occurs via SA-dependent and SA-independent mechanisms 

(Block et al., 2005; Feys et al., 1994; Schmelz et al., 2003; Uppalapati et al.,

2005)). Our results show that PR-1 expression is suppressed by COR and by 

one or both of its components. The expression of PR-1 in collard and turnip 

inoculated with COR- bacteria suggests that COR modulates virulence at least 

partly through a SA-dependent mechanism. The early activation of jasmonate-

mediated responses when COR is produced may contribute to the suppression 

of SA-mediated defenses in brassicas. To our knowledge, this is the first study 

conducted to characterize the molecular interactions of Pst DC3000 with edible 

species of brassicas and to monitor defense gene expression in these hosts 

using real-time qPCR. 
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CHAPTER IV 

The Response of Edible Brassicas to Exogenous Application of Coronatine and 

its Components, Coronafacic and Coronamic Acid 

 

SUMMARY 

 The phytotoxin coronatine (COR), which is produced by several pathovars 

of P. syringae, causes a wide variety of biological responses in plants. In the 

present study, we studied the effect of COR and its components, coronafacic 

acid (CFA) and coronamic acid (CMA), on collard and turnip, which are Brassica 

spp. grown in Oklahoma. Both collard and turnip were treated with 0.2 nmol each 

of CFA, CMA and COR. The toxin induced chlorophyll degradation and chlorosis 

on both collard and turnip, but the response of turnip was later than that in 

collard. Gene expression analysis revealed that COR activated the gene 

encoding chlorophyllase (CORI1) in both Brassica spp. LOX2, which indicates 

activity in the jasmonic acid pathway, was expressed very early in both plant 

species treated with COR. The application of exogenous CFA also promoted 

LOX2 expression in turnip, but this effect was not observed in collard. RT-qPCR 

analysis suggested that the CFA component of COR may be partly accountable 

for JA-responsive defense gene expression in turnip, but not in collard. PR-1, a

gene used to monitor activity in the pathway leading to production of salicylic acid 
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(SA), was not induced by the application of COR, CFA, or CMA.  Altogether, 

there were dissimilarities between collard and turnip in the time and intensity of 

chlorosis development as well as the relative fold induction of different marker 

genes. Moreover, the phenotypic responses and gene expression of the two 

plant species after exogenous COR and related compounds were applied were 

considerably different from those observed after inoculating the plants with COR+

and COR- bacterial strains. These results suggest that the bacterial strain also 

plays an important role in determining the response of host plants to COR and its 

components. 

 

INTRODUCTION 

 

Coronatine (COR), a non host-specific phytotoxin produced by certain 

pathovars of Pseudomonas syringae, functions as a virulence factor in a number 

of P. syringae-host plant interactions (Bender et al., 1999; Brooks et al., 2004; 

Penaloza-Vazquez et al., 2000). COR induces a range of effects in plants such 

as chlorosis, hypertrophy, root inhibition, ethylene production and accumulation 

of anthocyanin and proteinase inhibitors. The major biological effect on leaves 

treated with COR is the development of intense chlorosis, which has been 

ascribed to the rapid break down of chlorophyll in the plant (Kenyon and Turner, 

1992; Palmer and Bender, 1995; Uppalapati et al., 2005). In A. thaliana as well 

as tomato, COR stimulated the expression of chlorophyllase, the first enzyme in 
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the chlorophyll degradation pathway (Benedetti and Arruda, 2002; Brooks et al.,

2005 in press; Tsuchiya et al., 1999).  

 The COR molecule is composed of the polyketide coronafacic acid (CFA) 

and coronamic acid (CMA), which is a cyclized derivative of isoleucine; these two 

parts are linked together by an amide bond. COR functions in part as a structural 

and functional analog of jasmonic acid (JA) and endogenous jasmonates in A. 

thaliana and tomato (Feys et al., 1994; Zhao et al., 2003).  It has been 

speculated that COR contributes to virulence by functioning as a JA analog, and 

that induction of the JA pathway occurs at the expense of salicylic acid (SA)-

mediated defenses (Block et al., 2005; Zhao et al., 2003). The SA pathway was 

previously shown to be a critical component of a successful defense response in 

the A. thaliana-P. syringae interaction (Delaney et al., 1994), and COR was 

reported to suppress SA-related plant defenses in A. thaliana inoculated with P. 

syringae (Brooks et al., in press; Kloek et al., 2001). The expression of the LOX2 

and PR-1 genes are markers that are utilized to follow the activation of JA- and 

SA-associated defense responses, respectively (Creelman and Mulpuri, 2002; 

Farmer et al., 2003; Glazebrook, 2001). 

 Results obtained with A. thaliana and tomato have been invaluable in 

furthering our understanding of the role of COR and its components.  However, it 

is important not to overextend our interpretation of the function of COR and 

related molecules based on observations with only two plant species. 

Furthermore, the response of plants treated with the purified compounds may 

differ considerably from those obtained when plants are inoculated with the COR-
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producing pathogen. In the present study, we treated both collard and turnip 

leaves with equimolar concentrations of COR, CFA and CMA and evaluated the 

phenotypic response, pigment production, and expression of genes encoding 

chlorophyllase (CORI1), LOX2, and PR1. The results show that COR induces 

chlorophyll degradation and subsequent chlorosis in both the hosts. Although 

COR activated JA responses and chlorophyll degradation in both collard and 

turnip, there were distinct differences in the timing and manifestation of chlorosis 

and considerable variation in the relative fold increase in gene expression in the 

two Brassica spp. 

 

EXPERIMENTAL PROCEDURES 

 

Plant material

Seeds of collard (Brassica oleraceae var. viridis L. cv. Vates) and turnip 

(B. rapa var. utilis (DC) Metzg. cv. Alltop) were obtained from Twilley Seed Co. 

(Hodges, SC). The plants were grown in Metro-Mix® 200  (Sierra Horticultural 

Products Co., Marysville, OH) and maintained in a growth room at 24-250C, 35-

40% relative humidity (RH), and a photoperiod of 12 h. COR, CFA and CMA 

were applied as droplets of 0.2nmol onto the leaves of four-week old plants.  

 

Exogenous application of COR, CFA and CMA

The leaves of collard and turnip plants were treated with equimolar 

concentrations (0.2 nmol) of purified COR and its components, CFA and CMA. 
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Stock solutions (0.1 mg/ml) of each compound were maintained in methanol and 

stored at 40C. Aliquots of each compound were removed from the stock 

solutions, and methanol was removed by evaporation in a water bath maintained 

at 50 to 550C. The compounds were then suspended in water and applied to 

turnip or collard leaves in 2 µL droplets (63.8, 41.6 and 25.8 ng of COR, CFA and 

CMA, respectively and equivalent to 0.2nmol). Treated plants were then 

transferred to a growth chamber maintained at 250C, 12h photoperiod and 70% 

relative humidity.  

 

Symptoms and pigment estimation

Treated plants were monitored for disease symptoms during a seven day 

period. The extent of chlorosis and pigment changes in plants treated with COR 

were noted and compared to those of CFA, CMA and mock-treated (sterile 

distilled water) plants. The quantity of chlorophyll and anthocyanin in treated 

leaves was estimated seven days after inoculation. Leaf discs (10 mm diameter) 

were macerated in ice-cold ethyl acetate/acetone (1:1 v/v). This suspension was 

diluted (1:33 ratio) in the same solvent and absorbance was read at 665 and 649 

nm to estimate chlorophylls a and b, respectively. Leaf discs of the same size 

were agitated gently in 1 ml of a solution containing 3M HCl: H2O: methanol 

(1:3:16 volume ratio) in the dark for 24 h at 4oC. The absorbance was read at 

530 and 653 nm, and anthocyanin levels were estimated as A530-0.24 A653. The 

deduction of 0.24 A653 compensates for a small overlap in absorbance at A530 by 
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chlorophyll a and b. The readings were plotted as percentage chlorophyll or 

anthocyanin present in treated leaves. 

Northern blot analysis 

Total RNA was extracted from inoculated leaves collected at different time 

points (0, 12, 24 and 48 h) using TRIZOL reagent, a mono-phasic solution of 

phenol and guanidine isothiocyanate (Sigma). During sample (100 mg of leaf 

tissue) homogenization, TRIZOL disrupts cells and dissolves cell components, 

while maintaining the integrity of the RNA. Addition of chloroform followed by 

centrifugation separates the solution into an aqueous phase and an organic 

phase. RNA remains entirely in the aqueous phase, which is recovered by 

precipitation with isopropyl alcohol.  

Ten µg of RNA (extracted as described above) was electrophoresed on 

formaldehyde gels, transferred to nylon membranes, and fixed to membranes 

using UV light (Stratalinker® UV Crosslinker). Hybridization probes were 

prepared using the Random Primer Labeling kit (Invitrogen Life Technologies, 

Carlsbad, CA). A. thaliana cDNA clones containing genes indicative of the SA 

pathway (PR-1), the JA pathway (LOX2) and chlorophyllase (CORI1) were used 

as probes. The probes were received from the lab of Dr. Barbara N. Kunkel 

(Washington University, St. Louis, MO). The LOX2 probe was a 1.0 kb EcoRI-

BamHI cDNA fragment from A. thaliana LOX2 (AtLOX2) gene and was cloned 

into pZL1 (Brooks et al., in press). The AtLOX2 gene was cloned and 

characterized (Genbank Accession No. L23968) by Bell and Mullet (1993). The 

PR-1 probe contained a 750 bp EcoRI-XhoI fragment with the complete coding 
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sequence of the A. thaliana PR-1 gene (Genbank Accession No. NM_127025.2) 

(Brooks et al., in press; Uknes et al., 1992). The CORI1 probe contained a 1.15 

kb  EcoRI-XhoI fragment with the complete coding sequence of A. thaliana 

CORI1 gene (Genbank accession number- AF021244) (Benedetti et al., 1998; 

Brooks et al., 2005 in press). The cDNA (50 ng) was labeled with 32P (50 µCi), 

hybridized at 45oC overnight, and washed twice (2X SSC at room temperature 

and 1X SSC at 45oC). RNA blots were exposed for 3 to 4 days and analyzed 

using a phosphorimager. 

 

Real-time quantitative PCR (RT-qPCR)

Total RNA was isolated from leaves inoculated with Pst DC3000 and the 

COR- mutants at 0, 0.5, 1, 3, 6, 12, 24 and 48 h after inoculation. The quantity of 

RNA was estimated using a NanoDrop ND-1000 spectrophotometer (NanoDrop 

Technologies, Wilmington, DE) and by gel electrophoresis. The extracted RNA 

was treated with 1 µL (1 U per µL) of amplification grade DNAse I (Invitrogen) to 

avoid contamination by genomic DNA. DNAse I was inactivated by adding 1 µL 

of 25 mM EDTA and incubating at 65oC. 1 µg of the DNAse-treated RNA was 

used to synthesize cDNA using the Superscript TM First Strand Synthesis System 

(Invitrogen). RNA not incubated with reverse transcriptase was included as a 

negative control in the unlikely event that samples contained any remaining 

genomic DNA. The quantity of cDNA was estimated using the NanoDrop ND-

1000 spectrophotometer, and the volume was adjusted to 100 ng per reaction.  
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Primers for PR-1, LOX2, CORI1 and 18S rRNA (included as a 

constitutively expressed control) were designed using D-LUXTM Designer 

software available from Invitrogen (www.invitrogen.com/lux). The primer sets 

were predicted to amplify fragments ranging in size from 60 to 105 bp (see 

Chapter III, Table 1).  One primer from each set was labeled with the fluorophore 

JOE (6-carboxy-4′, 5′-dichloro-2′, 7′-dimethoxyfluorescein). All the primers were 

designed from regions of Arabidopsis genes showing the highest homology with 

Brassica spp.  The sequences of PR-1, LOX2, CORI1 and 18S rRNA from A. 

thaliana were aligned with available ESTs of Brassica spp. The Basic Local 

Alignment Search Tool (BLAST) from NCBI 

(http://www.ncbi.nlm.nih.gov/BLAST/) was used to find regions of similarity 

between sequences.  

 PCR was performed using the HotStarTaq Master Mix Kit (250 U Kit; 

Qiagen Inc., Valencia, CA), which included HotStarTaq DNA polymerase (250 

U), MgCl2 (final reaction concentration 1.5 mM), and 200 µM of each dNTP.  The 

total reaction volume for real-time PCR was 25 µl, and each reaction contained 3 

µM of the gene specific primers (1 µl), 12.5 µl of the HotStar Taq Master Mix, and 

100 ng of the cDNA template (2 µl).  The reactions were incubated at 95°C for 

15 min, and then cycled (40 X) at 95°C for 15 s, 60°C for 1 min and 72°C for 

34 s. Reactions were performed in a 96-well format in a spectrofluorometric 

thermal cycler (ABI PRISM 7700 Sequence Detector System, Applied 

Biosystems).  The amount of fluorescence as a function of PCR cycle was 

plotted using the ABI PRISM 7700 SDS software, and the threshold cycle (Ct)
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values were obtained. The Ct values for all target genes were first normalized 

using the gene encoding 18S rRNA to get ∆Ct. Gene expression was calculated 

by the comparative Ct method, where the relative amount of target gene 

expression is compared to the gene expression at time zero (calibrator) to get the 

∆∆Ct. Target gene expression was represented as the relative fold increase in 

the transcript level with reference to gene expression at time zero. The relative 

differences in target genes were calculated according to the ∆∆Ct mathematical 

model (Pfaffl, 2001). 

 

RESULTS 

 

Symptoms on collard and turnip treated with COR, CFA and CMA 

The effects of purified COR and its constituents were studied by the 

exogenous application of COR, CFA and CMA onto the leaves of collard and 

turnip. Chlorotic symptoms were first apparent on collard leaves on the third day 

following application of COR (Fig. 16D). Symptoms appeared as round, chlorotic 

regions (5 to 10 mm diameter) surrounding the region where COR was applied. 

The application of CFA and CMA did not induce any visible symptoms and were 

indistinguishable from those of the water-inoculated control.   

Fig.16. Symptoms on collard leaves treated with: (A) water control; (B) CFA; (C)
CMA; and (D) COR. The leaves were inoculated with 0.2 nmol of the purified 
compounds and photographed seven days after treatment.
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Chlorotic symptoms were visible on turnip beginning five days after 

treatment. In this host, the chlorosis had a diffuse pattern and was less intense 

(Fig. 17D) than that observed in collard (Fig. 16D). No symptoms were induced 

by CFA or CMA. These results indicate that the intact COR toxin, when applied 

as a purified compound in the absence of the bacterium, is required for chlorosis 

in both Brassica spp. 

Chlorophyll and anthocyanin estimation

The chlorophyll content of COR-treated collard leaves was approximately 

30% of that observed in healthy, water-inoculated control tissue (Fig. 18). These 

findings agree with the observation of leaf chlorosis. CFA and CMA treated 

tissues showed a slight reduction in chlorophyll a and b levels, but the reduction 

was not enough to result in visible symptoms and was not statistically significant 

(Fig. 16B, C). The levels of anthocyanin pigment did not change in any of the 

CFA, CMA and COR treated collard leaves (data not shown). This result is 

consistent with the lack of noticeable anthocyanin production on treated leaves.  

Fig.17. Symptoms on turnip leaves treated with: (A) water control; (B) CFA; 
(C) CMA; and (D) COR. The leaves were inoculated with 0.2 nmol of the 
purified compounds and photographed seven days after treatment. 
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Fig.19. Chlorophyll content in turnip leaves treated with COR, CFA, CMA 
and water.  The leaves were inoculated with 0.2 nmol of the purified 
compounds. The pigment level was analyzed 7 days after inoculation, and 
the analysis was repeated two times with similar results. 

Fig.18. Chlorophyll content in collard leaves treated with COR, CFA, CMA 
and water. The leaves were inoculated with 0.2 nmol of the purified 
compounds. The pigment level was analyzed 7 days after inoculation, and 
the analysis was repeated two times with similar results. 
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The level of chlorophyll in turnip leaves treated with COR was 

approximately 50% of that in leaves receiving control treatment, whereas 

treatment with CFA and CMA did not result in a significant reduction in pigment 

levels (Fig. 19). The anthocyanin levels in all treatments were equivalent to that 

of the water-inoculated control (data not shown). This finding suggests that COR 

and its components are unable to stimulate anthocyanin production in turnip 

leaves.  

 

Gene expression analysis 

The gene that encodes lipoxygenase (LOX2) was expressed at all the 

time points of analysis in collard leaves treated with CFA, CMA and COR (Fig. 

20A). CORI1, which encodes chlorophyllase, was expressed at 24 and 48 h 

(visible as weak signals) after treating collard leaves with COR (Fig. 20B). This 

result is in agreement with the manifestation of chlorosis induced in collard by 

COR. However, the application of CFA and CMA did not induce the expression of 

CORI1.

Fig.20. Gene expression in collard treated with CFA, CMA and COR by RNA 
blot analysis.  Expression of (A) LOX2 and (B) CORI1 at 0, 12, 24 and 48 h 
after treatment with 0.2 nmol of each CFA, CMA and COR. 
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In turnip leaves, application of CFA, CMA and COR induced LOX2 

expression, which was apparent at 12 h and at each time point thereafter. A 

weak expression of CORI1 was noticed in turnip leaves, but only 48 h after COR 

treatment (Fig. 21B). The treatments with CFA and CMA did not induce the 

expression of CORI1 in turnip.  

Sensitivity limitations in the RNA blots were caused by the use of very 

large probes that were derived from A. thaliana in northern blots, and lacked 

100% homology to sequences in the Brassica spp. To achieve greater sensitivity, 

RT-qPCR analysis was used to analyze expression of LOX2, CORI1 and PR-1 in 

collard and turnip leaves treated with COR, CFA, and CMA. In addition to the 

time points used for northern blots (0, 12, 24 and 48 h post inoculation), early 

time points including 0.5, 1, 3, 6 h were also included to monitor the relative-fold 

increase in gene expression. In the case of LOX2, expression was also analyzed 

at 0.25 h.  

An increase in LOX2 expression was observed in collard leaves 30 min 

after treatment with COR (Fig. 22A). The increase in gene expression was over 

Fig.21. Gene expression in turnip treated with CFA, CMA and COR by RNA 
blot analysis.  Expression of (A) LOX2 and (B) CORI1 at 0, 12, 24 and 48 h 
after treatment with 0.2 nmol of CFA, CMA and COR. 
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200-fold higher in COR-treated tissue than in CFA, CMA and mock-inoculated 

controls (Fig. 22A). These results suggest that the JA pathway is activated very 

quickly after purified COR is applied to collard leaves.  

In collard leaves treated with COR, an increase in CORI1 expression was 

apparent 6-12 h after treatment with exogenous COR. Maximal expression, 

observed 6 h post treatment, was 35-fold higher than in the mock-inoculated 

control or the CFA and CMA treatments (Fig. 22B) These observations are 

consistent with the chlorosis visible on COR-treated leaves and the reduction in 

chlorophylls a and b (Figs. 16 and 18, respectively). 
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In turnip, JA-associated LOX2 gene expression showed a maximal 

relative-fold increase 30 min after inoculation with COR. The relative-fold 

increase in LOX2 expression in COR-treated tissue at 30 min was 43, 28 and 34-

fold higher than that observed in turnip leaves treated with sterile water (mock-

treatment), CFA, or CMA, respectively. Interestingly, there was a significant 

relative-fold induction of LOX2 apparent 1 h after treatment with CFA (Fig. 23A).  

There was a 30-fold difference in the relative-fold induction of LOX2 expression 

in response to CFA as compared to CMA expression at the 1 h time point. 

However, LOX2 induction at 1h was still 1.4 fold higher in COR treated leaves 

than was the CFA induced expression. These results suggest a potential role of 

CFA in modulating the LOX2-mediated JA responses in turnip. In turnip, LOX2 

Fig.22. Analysis of gene expression in collard by real-time qPCR after treatment with 0.2 
nmol CFA, CMA or COR. A, Relative-fold increase in LOX2 expression at 0, 0.5, 1, and 3 
h after treatment. B, CORI1 expression at 0, 3, 6, 12, and 24 h after treatment. cDNA 
was synthesized from total RNA and real-time qPCR was performed using gene specific 
primers (Chapter III, Table. 1.) 



79

expression is triggered by both CFA and COR, probably due to the structural 

similarity of these compounds to JA. Other than LOX2 induction, CFA does not 

induce any other response in turnip. 

The chlorophyllase-encoding gene, CORI1, showed a high relative-fold 

increase in gene expression in COR-treated turnip leaves beginning at 12 h; this 

increase was transient, with a slight change in relative-fold induction detected at 

24 h (Fig. 23B). The relative-fold increase in CORI1 expression was over 120-

fold higher in COR-treated turnip tissue at 12 h as compared to other treatments. 

Thus, the expression of CORI1 obtained by real-time qPCR agrees with the low 

chlorophyll levels observed in turnip leaves treated with COR, but not with CFA 

or CMA (Figs. 17 and 19). 
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There was no expression of the SA-pathway marker gene, PR-1, in collard 

or turnip treated with COR, CFA, CMA, or mock-inoculation with water. It is likely 

that COR and its components either suppress the SA-associated defense in both 

the host plants or may have no effect on induction of the SA pathway in the 

absence of the bacteria. The data available from the present study is not enough 

to draw any conclusions on the effect of purified CFA, CMA or COR on SA-

mediated defense responses in collard and turnip. A feasible experiment to 

resolve this issue is to induce the expression of PR-1 gene followed by the 

application of these compounds to monitor their effects on 

expression/suppression of the PR-1 gene in planta. This would be done by spray 

Fig.23. Analysis of gene expression in turnip by real-time qPCR after treatment with 
0.2 nmol CFA, CMA or COR.  Relative-fold induction of: A, LOX2 at 0, 0.5, 1, and 3 
h; and B, CORI1 expression at 0, 6, 12, 24, and 48 h.  cDNA was synthesized from 
total RNA and real-time qPCR was performed using gene specific primers (Chapter 
III, Table. 1.)  
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inoculating the plants with salicylic acid followed by the treatment of both plants 

with CFA, CMA and COR. The PR-1 levels in the plants will be lowered if any of 

the compounds suppressed SA pathway. These experiments would confirm the 

likely effects of COR and its components on SA mediated defense responses are 

in progress. 

DISCUSSION 

 Both collard and turnip plants developed chlorosis when treated 

exogenously with 0.2 nmol purified COR, but showed no other visible foliar 

symptoms. In collard, COR induced round, chlorotic regions, which were 

apparent 3 days post-treatment; however, the chlorosis on turnip was delayed 

(not apparent until 5 days), and the chlorotic regions were  more diffuse and less 

localized than those observed in collard leaves (Figs. 16 and 17). The 

appearance and timing of chlorosis in turnip was comparable to those observed 

in tomato, where moderate to severe yellowing was apparent five to eight days 

after COR treatment (Palmer and Bender, 1995; Uppalapati et al., 2005). The 

differences in the timing and pattern of chlorosis between host plant species 

could be due to the difference in perception of COR by putative receptors in 

individual host plants. In both collard and turnip, the intact COR toxin was 

required to induce chlorosis; in this respect, these results agree with those 

obtained in A. thaliana and tomato (Brooks et al., 2004; Uppalapati et al., 2005).  

 It is important to compare the results obtained with exogenous compounds 

to those obtained with the defined COR-defective mutants (Chapter III). For 
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example, although the (CFA+ CMA-) mutant AK7E2 induced chlorotic lesions on 

turnip, (Chapter III, Fig. 7B) the exogenous application of CFA did not induce 

chlorosis. This difference might be due to the inability of exogenous CFA to form 

chlorosis-inducing coronafacoyl conjugates, possibly because of the absence of 

coronafacoyl ligase, an enzyme that may be present only in the bacterium.

 Another interesting difference in the results obtained with exogenous 

compounds was the absence of anthocyanin pigments in collard leaves treated 

with purified COR. This contrasts with the high levels of anthocyanin that 

accumulated in collard leaves spray-inoculated with the COR-producing Pst 

DC3000 (Chapter III, Fig. 6D). This finding suggests that anthocyanin 

accumulation is a product of the host-bacterium interaction, and application of 

exogenous COR alone is not sufficient to induce anthocyanins.  Similar results 

were observed in tomato, in which leaves inoculated with COR did not 

accumulate anthocyanins (Uppalapati et al., 2005).  

 It has been reported that COR enhances the loss of chlorophyll in various 

plant species (Kenyon and Turner, 1992; Palmer and Bender, 1995; Uppalapati 

et al., 2005). In the present study, the level of chlorophyll a and b in collard were 

reduced to 30% in COR-treated collard leaves and were 50% lower in COR-

treated turnip leaves than in the mock-inoculated leaves (Figs. 18 and 19). No 

difference in the chlorophyll level was observed on either CFA or CMA-treated 

leaves of collard or turnip. Furthermore, chlorosis was observed on collard and 

turnip leaves treated with COR, but not those treated with CFA or CMA (Figs. 16 

and 17). Ultra structural and immunolocalization studies previously suggested the 
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association of COR with the chloroplasts (Palmer and Bender, 1995; Zhao et al.,

2001). Gene expression analysis by RNA blot analysis and RT-qPCR showed 

the activation of the chlorophyllase-encoding gene, CORI1, in the COR-treated 

leaves of both collard and turnip.  The expression of CORI1 by COR was 

previously reported (Benedetti and Arruda, 2002; Brooks et al., in press;

Tsuchiya et al., 1999). CORI1 gene expression, as analyzed by RT-qPCR was 

activated at an earlier time point in collard than in it was in turnip, and this result 

supports the conclusion that chlorosis develops earlier in collard. These results 

imply that COR may down-regulate genes associated with the photosynthetic 

apparatus. 

 Many previous reports suggest that COR functions as a molecular mimic 

of JA and associated molecules (Block et al., 2005; Feys et al., 1994). The LOX2 

gene, whose expression is indicative of activity in the JA pathway, was induced 

very quickly after treatment of collard and turnip with COR (within 30 min). In 

turnip, there was also a significant increase in LOX2 gene expression 1 h after 

treatment with CFA, but the relative-fold increase in gene expression was 1.4-

fold less than that observed with COR. This observation suggests that the CFA 

component has a potential role in modulating JA-mediated defenses in turnip. 

Similar results were observed for lipoxygenase gene expression in tomato leaves 

treated with CFA and COR (Uppalapati et al., 2005). For example, the CFA 

moiety regulated 40% of the COR-modulated genes and most of the JA-

responsive genes (Uppalapati et al., 2005). However, it is important to note that 
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tissue-specific and species-specific differences can exist and broad 

interpretations based on a few studies may not be valid (Feys et al., 1994) .  

 The expression of PR-1, which is a marker indicative of activity in the SA 

pathway, was not observed in turnip or collard treated with COR, CFA, or CMA.  

It is not clear from the available data if SA-mediated defense responses are 

suppressed or not influenced by these compounds.  The cross-talk of COR with 

other virulence factors in the pathogen (like Type III effectors) may be required 

for effective suppression of SA-associated signaling pathways.  Studies in tomato 

also failed to validate the suppression of SA signaling by COR and its 

components (Uppalapati et al., 2005). Nonetheless, ongoing experiments will 

likely provide us more information on the modulation of SA-mediated defense 

responses by COR and its components. The gene expression analyses by a 

sensitive technique like RT-qPCR provided us with information on the differences 

in the responses of the two Brassica spp. to exogenous application of COR and 

its components.  
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CHAPTER V 

GENERAL CONCLUSIONS 

 

Coronatine acts as a virulence factor of Pst DC3000 in edible Brassica spp.

Coronatine (COR) is a non-host-specific phytotoxin produced by 

numerous pathovars of Pseudomonas syringae, including Pst DC3000. The toxin 

is composed of a polyketide, coronafacic acid (CFA) linked by an amide bond to 

an ethylcyclopropyl amino acid, coronamic acid (CMA). The toxin acts as a 

virulence factor of P. syringae on many plants such as tomato, soybean, 

ryegrass and A. thaliana (Bender et al., 1987; Budde and Ullrich, 2000; Mittal and 

Davis, 1995; Sato et al., 1983). Although previous studies have suggested a 

potential role of the toxin in crucifers (Brassica spp.), the contribution of COR in 

the bacterial virulence and modulation of defense responses in these plants were 

not previously investigated.  

The current study focuses on the exploration of the role of COR and its 

components in the virulence of Pst DC3000 on two edible species of brassicas, 

viz., collard (Brassica oleracea var. viridis cv. Vates) and turnip (B. oleracea var. 

utilis cv. Alltop). In this study, the role of COR was investigated using three 

biochemically-defined mutants of Pst DC3000: DB29 (CFA- CMA-); DB4G3 (CFA-

CMA+); and AK7E2 (CFA+ CMA-) (Brooks et al., 2004). Inoculation of collard with 

the COR-producing Pst DC3000 resulted in early and severe chlorosis, water 
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soaking and anthocyanin accumulation. On turnip inoculated with Pst DC3000, 

symptoms included a delayed and diffuse chlorosis and necrosis. When collard 

leaves were inoculated with the three bacterial mutants (DB4G3, AK7E2, and 

DB29), the symptoms were attenuated. Although DB29 and DB4G3 did not 

induce notable symptoms on turnip other than very mild chlorosis or necrosis, 

AK7E2 produced a considerable amount of chlorosis and necrosis on turnip, 

which suggests the possible production of coronafacoyl conjugates in this host. 

In other words, the CFA moiety might have conjugated with an amino acid in 

turnip plants forming other chlorosis-inducing coronafacoyl compounds (Mitchell 

and Ford, 1998). Collectively, these results imply that the CFA component and 

the intact COR toxin are required for the appearance of disease symptoms in 

turnip and collard, respectively.  

Bacterial growth kinetics showed that Pst DC3000 as well as all the COR-

defective mutants multiplied to similar levels in collard, implying that the toxin is 

not required for the persistence of the bacterium in planta. However, in turnip, Pst 

DC3000 maintained a higher population than the COR- mutants throughout the 

sampling period, indicating a role for COR in the multiplication of the pathogen in 

this host.  

The levels of chlorophyll in Pst DC3000 inoculated collard and turnip were 

20 to 30%, respectively, of that of the mock-treated (water) control (Chapter III). 

Real-time PCR analysis revealed that the COR-producing Pst DC3000 induced 

the expression of the CORI1 (chlorophyllase) gene in both collard (1 h) and 

turnip plants (12 h). Furthermore, AK7E2 (CFA+ CMA- mutant) also induced 
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CORI1 gene expression in turnip, which correlates with the ability of this mutant 

to cause chlorosis. CORI1 has been characterized in A. thaliana and was rapidly 

induced in response to methyl jasmonate and COR (Benedetti et al., 1998; 

Benedetti and Arruda, 2002; Tsuchiya et al., 1999). Our observations on 

chlorophyll degradation support earlier studies suggesting the association of 

COR with the chloroplasts and the down-regulation of photosynthetic genes in 

COR-treated tissue (Palmer and Bender, 1995; Uppalapati et al., 2005). 

Collectively, these results show that COR has distinct roles with respect to 

virulence in collard and turnip. 

 

Coronatine modulates the major defense pathways in edible Brassica spp.

COR is reported to influence the salicylic acid (SA) and jasmonic acid (JA) 

pathways in plants (Block et al., 2005; Glazebrook et al., 2003; Kloek et al., 2001; 

Kunkel and Brooks, 2002; Schmelz et al., 2003; Uppalapati et al., in preparation). 

In the current study, we investigated the effect of COR on the SA and JA 

pathways by monitoring the expression of PR-1 and LOX2, which are markers for 

SA and JA, respectively (Glazebrook, 2001; Liechti and Farmer, 2002; Zhao et 

al., 2003). Pst DC3000 and the single mutants (DB4G3 and AK7E2) did not 

induce significant expression of PR-1 in collard. Maximal expression of PR-1 was 

detected at 6 and 12 h respectively in DB29-inoculated collard and turnip, 

suggesting that COR suppresses SA-mediated defense (Chapter III). This finding 

suggests that COR may interfere with SA signaling and thus promote pathogen 

virulence (Kloek et al., 2001). In turnip, DB4G3 (CFA- CMA+) induced PR-1 
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expression, thus signifying the function of CFA in suppressing SA-defense in this 

host. It is remarkable that maximal expression of LOX2 occurred as early as 15 

or 30 min after with Pst DC3000 inoculation on collard and turnip respectively. 

Another observation that implicates CFA in turnip is the flux in LOX2 gene 

expression observed in the AK7E2 (CFA+ CMA-) mutant. Since COR and CFA (in 

turnip) both have structural similarities with JA, they might be perceived similarly 

by these hosts and share a common receptor (Uppalapati et al., 2005; Zhao et 

al., 2003). The activation of JA-associated defense may be a part of the general 

virulence strategy of the pathogen. The antagonistic interaction between the JA 

and SA signaling pathways further suggests that the early activation of JA by Pst 

DC3000 might lead to the suppression of SA-associated defense and hence 

promote disease development.  

 

Response of edible Brassica spp. to exogenous application of purified 

CFA, CMA and COR

In several prior investigations, the application of COR caused chlorosis 

and the loss of chlorophyll in different plants (Kenyon and Turner, 1992; Palmer 

and Bender, 1995; Uppalapati et al., 2005). Collard and turnip plants treated with 

0.2 nmol COR developed chlorosis at days 3 and 5, respectively (Chapter IV). 

There were distinctly different patterns of chlorosis on these plants that could be 

due to differences in the perception of COR by collard and turnip. The chlorophyll 

levels of COR treated collard and turnip was reduced to 30 and 50%, 

respectively of that in healthy leaves. The expression of the CORI1 gene earlier 
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in collard (6 h) than in turnip (12-24 h), as shown by real-time PCR analysis is 

consistent with the differential timing of chlorosis in these hosts. The induction of 

CORI1 by COR was reported formerly (Benedetti and Arruda, 2002; Brooks et 

al., in press; Tsuchiya et al., 1999). The application of equimolar concentrations 

of CFA and CMA did not induce visible changes on either plant or a significant 

reduction in chlorophyll content. There was no obvious difference in the 

expression of CORI1 in CFA or CMA treated collard or turnip as compared to the 

water control. Thus, the intact toxin (when applied as a purified compound) is 

required for chlorosis on both these Brassica spp. In experiments using bacterial 

mutants (Chapter III), turnip plants inoculated AK7E2 (cmaA mutant; CFA+ CMA-)

developed chlorosis and contained reduced chlorophyll levels (Chapter III). 

These observations were attributed to the potential ability of CFA to form 

coronafacoyl conjugates with amino acids in turnip. However, since chlorosis was 

not observed when exogenous CFA was applied to turnip, the presence of the 

bacterium may be required to elicit chlorosis. For example, the bacterium may 

provide the coronafacoyl ligase enzyme for conjugating CFA with other amino 

acids, and the absence of this enzyme may be responsible for the lack of 

chlorosis when pure CFA was applied to the plants.  

 As explained in the bacterial inoculation experiments, the exogenous 

application of COR induced the expression of LOX2 in both collard and turnip 

within 30 min after treatment. This could be explained by the similarity of COR to 

JA and associated molecules (Block et al., 2005; Feys et al., 1994). The LOX2 

induction by CFA and CMA treated collard plants was very similar to the mock 
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(water) treated control. But in turnip leaves, LOX2 was expressed within 1 h after 

treatment with CFA, suggesting a potential role for CFA in modulating JA-

mediated defenses in turnip. Microarray analysis in tomato revealed that the CFA 

moiety regulated 40% of the COR-modulated genes and most of the JA-

responsive genes (Uppalapati et al., 2005). However, LOX2 induction in turnip by 

CMA was not significantly different from that in mock-treated water control.  

Nonetheless, the expression of PR-1, a marker used to follow SA signaling, was 

not induced by any of these treatments. Possible explanations include 

suppression of the SA pathway by COR and its components, or the failure of the 

compounds to influence the pathway when applied in purified form. Detailed 

investigations are underway to monitor the influence of COR and its components 

on PR-1 gene expression after pre-inducing the gene by exogenous salicylic 

acid.  
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APPENDIX 

Effect of Coronatine, Coronafacic acid and Coronamic acid  

on Brassica seedlings  

 

SUMMARY 

 Coronatine (COR), when applied as a purified compound, inhibited the 

growth of collard and turnip seedlings. Lower concentrations of COR inhibited the 

growth of collard seedlings, while relatively higher concentrations of COR 

reduced seedling size and dry weight in turnip.  The components of the toxin, 

coronafacic acid (CFA) and coronamic acid (CMA) did not induce any changes 

on the seedlings of either Brassica spp.   

INTRODUCTION 

 Coronatine (COR) is a chlorosis-inducing phytotoxin produced by several 

Pseudomonas syringae pathovars and has diverse effects on plants. The 

inhibition of root growth is one of the many biological effects of COR (Sakai, 

1980; Feys et al., 1994). Additionally, COR induces anthocyanin accumulation in 

Arabidopsis thaliana and tomato seedlings (Feys et al., 1994; Uppalapati et al., 

2005.)  In tomato, root inhibition was observed in a dose-dependent manner. In 

this study, we attempt to investigate whether the seedlings of two Brassica spp. 

(collard and turnip) responded differently to COR, CFA, and CMA. The 
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results show that COR, but not its components, induce root inhibition on Brassica 

spp. at the concentrations used. The phenotypic response, root length and dry 

weight measurement reveal that the growth of collard seedlings was inhibited at 

a lower concentration of COR (0.2 nmol) and turnip seedling growth was 

dramatically reduced at higher concentrations (1 nmol).  

 

EXPERIMENTAL PROCEDURES 

Seeds of collard (B. oleraceae var. viridis L. cv. Vates) and turnip (B. rapa 

var. utilis (DC) Metzg. cv. Alltop) were germinated on water-saturated filter paper 

placed in Petri plates for 3 days at room temperature. The seedlings were then 

treated with two different quantities (0.2 nmol and 1 nmol) of CFA, CMA and 

COR. The treatments were made by diluting the required amount of the individual 

compounds in 1 ml of sterile distilled water.  Mock inoculations were made by 

applying 1 ml of sterile distilled water. The seedlings were then incubated for 4 

days at room temperature. The seedlings were then photographed, and seedling 

lengths were measured. The seedlings were then placed on dry paper towel in 

Petri plates and kept at 370C. A reduction in the moisture content was observed 

starting at 2 days. The dry weight was taken daily until a constant value (for 

about a week) was obtained. The average values for all parameters were 

calculated for four seedlings each. The experiments were repeated twice with 

similar results. 
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RESULTS 

 The application of 0.2 nmol and 1 nmol COR inhibited root growth in 

collard seedlings, while the inoculation of 0.2 or 1 nmol CFA and CMA did not 

induce any visible reduction in seedling growth (Fig.24 A, B). COR treatment (0.2 

nmol) reduced collard seedling length to 2.4 cm when compared to the mock-

inoculated seedlings, which were 6.7 cm. There was also a considerable decline 

in the root growth after application of 1 nmol COR (2 cm seedling length) as 

compared to the control (6.6 cm) (Fig. 25A). The dry weight of the COR-

inoculated (0.2 nmol) collard seedlings was substantially lower (1.8 mg) as 

compared to the mock-inoculated control (4.3 mg). When collard seedlings were 

inoculated with 1 nmol COR, dry weight was 1.5 mg as compared to 4.3 mg for 

control seedlings (Fig. 25B).  Nevertheless, the difference in the reduction in 

seedling length and dry weight of collard seedlings treated with the two 

concentrations of COR was not very different. 

Fig.24. Seedlings of collard treated with (A) 0.2 nmol and (B) 1 nmol of: (a)  
water; (b) CFA; (c) CMA; and (d) COR. The compounds were applied on 
seedlings grown on water-saturated filter paper for 3 days at 240C. The seedlings 
were further maintained in the same conditions for another 3 to 4 days. 
Photographs were taken 4 days after treatment. 
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In turnip plants, treatment with 0.2 nmol COR reduced root growth (Fig. 

26A). The length of COR-treated turnip seedling was 3.6 cm, which was shorter 

than the water-treated control seedlings (6.5 cm) (Fig. 27A). However, 

application of 1 nmol COR on turnip seedlings resulted in very tiny seedlings 

(Fig. 26B). The length of the seedlings was reduced to 1.8 cm, while the mock- 

inoculated seedlings were 7.2 cm long. There was a significant difference in the 

extent of seedling growth in turnip treated with the higher (1 nmol) concentration 

Fig.25. (A) Length 
and (B) dry weight
of collard seedlings 
treated with 0.2 
nmol or 1 nmol 
COR, CFA, CMA 
and water control. 
The experiment was 
repeated twice with 
similar results. 
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of the toxin. There was also reduction in dry weight after COR treatment (0.2 

nmol) on turnip (2.3 mg) as compared to treatment with water (dry weight of 3.4 

mg). The seedling dry weight was 1.3 mg after treatment with 1 nmol COR as 

compared to a higher weight for the water control (3.6 mg) (Fig. 27B). The root 

growth, length and dry weight were considerably lower than that of the turnip 

seedlings treated with 0.2 nmol COR. The application of either concentration (0.2 

and 1 nmol) of CFA or CMA failed to induce any phenotypic effects or differences 

in seedling growth and dry weight and were similar to the mock treatment.  

Fig.26. Seedlings of turnip treated with (A) 0.2 nmol (B) 1 nmol of: (a) water; (b) 
CFA; (c) CMA; and (d) COR. The compounds were applied on seedlings grown 
on water-saturated filter paper for 3 days at 240C, and the seedlings were 
further maintained at the same conditions for another 3 to 4 days. Photographs 
were taken 4 days after treatment.
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Fig.27. (A) Length and 
(B) dry weight of 
turnip seedlings 
treated with 0.2 nmol 
and 1 nmol of COR, 
CFA, CMA and water 
control. The 
experiment was 
repeated twice with 
similar results.  
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DISCUSSION 

 

The seedling assays indicate that the whole toxin (COR), but not its 

components are capable of inducing obvious changes on both collard and turnip 

seedlings. The phenotypic response observed with COR treatment was a 

reduction in growth and dry weight of seedlings. CFA and CMA did not impact 

seedling growth, which correlates with the lack of symptom development in the 

leaves of both Brassica spp. by these two components (Chapter IV). In previous 

studies, CMA did not inhibit tomato seedling growth, but CFA inhibited tomato 

root length when applied at higher concentrations (e.g. 20 nmol) (Uppalapati et 

al., 2005). In the present study, we find that COR is more biologically active than 

CFA and CMA in both collard and turnip seedlings. Also, it is important to note 

that there was no appearance of anthocyanin in any of the treatments, unlike 

results observed with A. thaliana and tomato (Feys et al., 1994; Uppalapati et al., 

2005.)  The appearance of anthocyanins in response to COR may be host and/or 

tissue-specific (Feys et al., 1994). 

 In this study, the effect of two different concentrations of purified COR, 

CFA and CMA were examined on collard and turnip seedlings. Application of 0.2 

nmol of COR was sufficient to reduce the length and dry weight of collard 

seedlings by 2.8 and 2.4-fold respectively, when compared to the water-treated 

control. Although 0.2 nmol COR inhibited root length in turnip seedlings, the 

seedling length and dry weight were decreased by only 1.8- and 1.4-fold relative 

to the water-treated control. Another interesting observation is the variation in 
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observed effects according to the concentration of toxin applied. When 1 nmol of 

COR was applied, collard seedlings showed a 3.3- and 2.8-fold decrease in 

seedling length and dry weight, respectively, in comparison to the water-treated 

control. Interestingly, in turnip, the application of 1 nmol COR induced an even 

higher reduction in the length and dry weight. Turnip seedling length and dry 

weight were reduced by 4 and 2.8-fold, respectively, as compared to the control. 

Hence, in collard, a lower concentration of the toxin is enough to cause 

significant root inhibition, while a higher concentration of COR induces inhibition 

of turnip seedling growth. Altogether, these results indicate that there are notable 

differences in the effect of COR on seedlings of collard and turnip. 
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