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CHAPTER I

INTRODUCTION

Peanut and wheat are important crops produced in Oklahoma.  In the 

United States in 2005, Oklahoma was ranked second in winter wheat production 

and seventh in peanut production.  In 2005, winter wheat was planted on 5.7 

million acres in Oklahoma with an estimated production of 128 million bushels. 

Similarly, peanuts were planted on 35,000 acres with an estimated production of 

105 million pounds.  Together, these two crops had a combined production value 

estimated at 448 million dollars during 2005 (36). 

Disease management is crucial for successful peanut and wheat 

production in Oklahoma. Along with foliar diseases, soilborne diseases are a 

major concern for the peanut and wheat industry through reductions in yield 

quantity and quality, and by lowering the overall value of the crop. Soilborne 

diseases such as southern blight and sclerotinia blight cause wide spread damage 

on peanut and other field crops (16). Southern blight was reported to cause a 

greater yield loss in peanut than any other disease (16). Similarly, wheat root and 

foot rots caused by several soilborne organisms such as Bipolaris, Rhizoctonia, 

Pythium and Fusarium are a common problem in Oklahoma (25).  
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Even though soilborne diseases are problematic on peanut and wheat, 

limited work has been done to identify the levels of pathogenicity, factors 

influencing the pathogenicity, genetic relatedness of the causal organism and 

sources of resistance. This is especially true with respect to southern blight on 

peanut and root rot and sharp eyespot caused by Rhizoctonia spp. on wheat.   

Southern blight is reported to occur commonly on dicotyledonous crops 

such as peanut, but monocotyledonous crops are seldom affected by this disease 

(1). Moreover, the survival and growth of the causal organism, Sclerotium rolfsii,

is favored by high temperature (1, 42). Hence this disease is not expected to cause 

major damage on a cool season crop such as winter wheat, which is widely 

cultivated in Oklahoma (36).  However, seedling blight caused by S. rolfsii has 

reported from a field in Oklahoma, raising questions about the potential of this 

fungus to damage winter wheat in Oklahoma. No studies have reported on 

pathogenicity or the virulence of this pathogen on winter wheat cultivars 

commonly grown in Oklahoma. 

 Root rot or bare patch and sharp eyespot are a set of soilborne diseases 

that occur sporadically in winter wheat fields of Oklahoma.  The causal 

organism, Rhizoctonia spp. is a widespread soilborne fungus with a wide host 

range that includes peanut (6, 13).  The above set of diseases were earlier 

reported to be caused by Rhizoctonia solani, with root attacking strains causing 

root rot or bare patch and stem attacking strains causing sharp eyespot (11, 52). 

However, Rhizoctonia cerealis, a binucleate species of Rhizoctonia was identified to 
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cause a sharp eyespot on wheat and other Gramineae members (8, 10, 28). Hence 

these two soilborne diseases are currently studied and reported separately.  

Unlike R. solani, R. cerealis grows relatively slowly and produces superficial 

lesions that are observed at the stem base of both young and mature plants (10, 

56). Significant yield losses from this disease have been reported from other parts 

of the world, including some regions of the United Kingdom where resistant 

wheat cultivars were identified to help alleviate yield losses (10, 24). The 

potential for sharp eyespot to cause major damage on Oklahoma winter wheat 

cultivars definitely exists, but characterizing the fungal isolates and testing the 

pathogenicity would help to provide quantitative information on the seriousness 

of this disease in Oklahoma. 

 Most wheat in Oklahoma is grown as a continuous monoculture. 

However, some rotation with various crops such as grain sorghum and soybean 

is occasionally practiced (55). In Central and Southwestern Oklahoma, wheat is 

occasionally rotated with peanut (personal communication with Dr. R.M. 

Hunger and Dr. H.A. Melouk). In such a rotation, wheat is usually grown for 

two years after a crop of peanut, but there is no understanding how such a 

rotation program affects the incidence and severity of soilborne diseases like 

southern blight and Rhizoctonia root rot.  

 In this regard, studies were initiated to address the following objectives: 

1. Determine the characteristics and pathogenicity of Rhizoctonia spp. on 

winter wheat and peanut.  
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2. Determine the pathogenicity of Sclerotium rolfsii on peanut and winter 

wheat.  

3. Determine the production of endo-polygalacturonase and oxalic acid by 

isolates of Sclerotium rolfsii.

4. Detect genetic variability of Rhizoctonia spp. isolated from peanut and 

winter wheat. 
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CHAPTER II

LITERATURE REVIEW

Wheat (Triticum aestivum L.) is an annual monocotyledonous plant 

belonging to the grass family Gramineae. Wheats are broadly classified into 

diploids (2n), tetraploids (4n) and hexaploids (6n) based on their chromosome 

makeup.  The first cultivated wheats were considered to be diploids with their 

origins traced to parts of Iran, Iraq and Turkey (14).   Most of the modern 

cultivated wheats are hexaploids except for durum, which is a tetraploid.     

Based on the texture of the endosperm, five basic classes of wheat are 

grown in the United States.  They include hard red winter (HRW), hard red 

spring (HRS), soft red winter (SRW), white (winter or spring) and durum wheat.  

As of 2004, nearly 38% of the all wheat grown in the United States is of the HRW 

type followed by HRS and SRW (54).  All wheat grown in Oklahoma is winter 

wheat, and is primarily of the HRW type (55). 

The climatic conditions and rainfall distribution in Oklahoma are 

congenial for wheat production.  Wheat is primarily grown as a dual-purpose 

crop in Oklahoma thereby allowing the crop to be used in the fall/winter for 

forage purposes and then harvested for grain in the spring (55).  In Oklahoma, 
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planting wheat for grain purposes is usually scheduled from late September until 

the final week of October, but this varies by the region of the state. Wheat used 

for forage is planted two to six weeks earlier (55). 

A healthy, mature wheat plant possesses a main stem with a head, tillers, 

nodes, internodes, leaves and roots.  The main stem and tillers are formed by a 

succession of leaves enclosed around each other.  Hence, the main stem is not a 

true stem but is called a pseudostem.  Seminal or primary roots develop first as 

part of a seedling, and this is followed by the formation of crown or secondary 

roots on the main stem and tillers (12).   

Development of wheat starts with the germination of seed under 

optimum temperature (12 to 25 C) (47) and moisture conditions followed by 

seedling and main stem growth, tillering, stem elongation, booting, inflorescence 

emergence, anthesis, milk development, dough development and ripening.  

These main stages are subdivided into different developmental stages, which 

have been designated using different scales.  The Feekes’ scale (1 through 11) is 

the most commonly used scale in the United States.  A scale of 1 represents 

seedling emergence through the three-leaf stage and scale 11 represents the grain 

filling stage (47). 

Peanut

Peanut (Arachis hypogaea L.) is a self-pollinated, annual, herbaceous  
 
legume and is considered to be a native of South America.  The time and place of  
 
its introduction into the United States is not known (23). Commercial peanut  
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production in Oklahoma started in the 1930’s and early 1940’s due to an  
 
increased need for oil for different purposes. 
 

Four market types of peanuts are grown in the United States. They include 

runner, spanish, virginia and valencia. The three southwestern states of United 

States comprising Texas, New Mexico and Oklahoma grow runner peanut 

mostly, followed by spanish peanut. Peanut is mostly grown on well drained, 

loose, sandy loam soils where optimum mean daily air temperatures are about 

25°-30° C.  Peanut in Oklahoma is generally planted during the month of May, 

but planting dates differ slightly for different market types. A soil temperature of 

20°-35º C is optimal for successful germination of peanut seed (40).   

Peanut has an indeterminate growth habit, wherein vegetative and 

reproductive growth occurs simultaneously.  Flowering starts about 35-40 days 

after emergence and blooming is heavy during mid July.  After successful 

pollination and fertilization, a peg develops downwards from the flower and 

takes about a week to ten days to penetrate completely into the soil.  Under 

favorable soil and climate conditions, fruits mature 10-12 weeks after pollination 

(40). 

Soilborne diseases in wheat

Soilborne diseases in wheat are usually described as either root diseases or 

stem base diseases.  Root diseases in dry soils are primarily caused by 

Cochliobolus sativus (common root rot) and Fusarium spp. (Fusarium root rot), 
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whereas wet soils favor development of diseases like take-all caused by 

Gaeumannomyces graminis var. tritici, Rhizoctonia root rot and damping off of 

wheat caused by several Rhizoctonia spp., (usually Rhizoctonia solani AG-4, AG-5 

and AG-8) and Pythium root rot caused by several Pythium spp. (13,18, 31, 57).   

Eyespot, sharp eyespot and brown foot rot are the important stem base 

diseases in wheat (53).  Eyespot is caused by Tapesia spp. (formerly, 

Pseudocercosporella herpotrichoides) whereas sharp eyespot is induced by 

Rhizoctonia cerealis (teleomorph: Ceratobasidium cereale, Murray & Burpee).  

Microdochium nivale and Fusarium spp. are usually associated with brown foot 

rot.  The symptoms of these three stem base diseases are often confused, 

especially during early growth stages (20, 41). 

Rhizoctonia root rot and sharp eyespot are usually grouped together since 

the causal agents for both these diseases are from Rhizoctonia. Symptoms of 

Rhizoctonia root rot in the field include scattered circular patches of diseased 

plants occurring at the same position for several years.  Affected roots show 

brown rotting toward the root tips and intermediate portions of the roots. 

Additionally, numerous lateral roots arise leading to a highly branched root 

system.  Characteristic symptoms of sharp eyespot are lens-shaped lesions with a 

sharper margin usually occurring on the lower leaf sheaths (7).   

Sclerotium wilt or southern blight on wheat caused by Sclerotium rolfsii 

causes pre-or post-emergence damping off of seedlings, if the infection occurs 
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early in crop cycle.  Further development of the disease may result in rotted 

culms and crowns and eventual death of the plant.   

Unlike Cochliobolus, Fusarium, and Pythium, which are considered as 

common pathogens of wheat, Sclerotium rolfsii is usually considered a 

nontraditional soilborne pathogen with its occurrence most commonly related to 

tropical environment (17, 46, 48).  Hence, the disease is seldom a problem in 

temperate wheat growing areas.    

Although wheat is listed as a host of S. rolfsii (through artificial 

inoculation)  (1), little is known about its pathogenicity.   In 1915, S. rolfsii was 

reported to cause blighted heads in wheat in certain parts of the United States.  

Symptomatology involved appearance of brown lesions on the crown and lower 

portions of the culms.  Heads were completely devoid of grain and ripened 

prematurely (19).  Seedling blight caused by S. rolfsii was reported in Bangladesh, 

with seedlings appearing yellowish during initial stages of infection and later 

become blighted.  In 1922, a serious disease of winter wheat was reported to 

cause by Sclerotium rhizodes in Idaho resulting in considerable losses (26).  The 

disease was reported to occur in spots, killing the majority of plants in that area. 

Soilborne diseases in peanut

Soilborne diseases cause significant problems in the entire peanut 

producing areas of the United States.  The most common and important 

soilborne diseases affecting the peanut plant include Aspergillus crown rot, 

Rhizoctonia limb, pod, and root rot, Sclerotium stem rot (southern blight), 



10

Cylindrocladium black rot, Sclerotinia blight, Verticillium wilt, Pythium pod rot and 

Thielaviopsis black hull (32). 

 Rhizoctonia induced diseases can occur on all parts and at all growth 

stages of the peanut.  Rhizoctonia solani Kuhn is the primary pathogen in the 

Rhizoctonia group, affecting the seeds (seed decay), seedlings (damping off), 

leaves (foliar blight), roots (root rot), limbs (limb rot), peg (peg rot) and pods 

(pod rot) (6, 15, 32).  This fungus usually causes decaying of germinating seed 

and forms light to dark brown sunken lesions on infected hypocotyls, branches, 

roots, pegs and pods.  Disease losses caused by Rhizoctonia are difficult to assess 

due to its association with other soilborne and foliar pathogens (6).   

 Southern blight is found in almost all peanut growing areas of the world, 

and peanut probably sustains a greater annual loss from this disease than any 

other commercially grown crop (1).  Even though many names of the disease 

caused by Sclerotium rolfsii are in usage, white mold, southern blight, southern 

wilt and southern stem rot are the three most commonly used names for the field 

phases of this disease in the United States (1).   

Southern blight occurs in Oklahoma mainly in mid- to late season. Initial 

symptoms of the disease include yellowing and wilting of a branch or the whole 

plant.  Infection is characterized by white rope-like mycelial growth towards the 

base of the stem that imparts a white washed appearance (16).  As the disease 

progresses, this fungus produces light to dark brown lesions on the branches and 

pegs.  Rotting of infected pods occurs without any aboveground symptoms (32). 
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The pathogens

Rhizoctonia solani Kuhn [teleomorph: Thanetephorus cucumeris (Frank) Donk]

The genus Rhizoctonia was first described by de Candolle in 1815 (38).  The 

species concept of Rhizoctonia solani primarily evolved from the work of Duggar 

during 1915 (38). Some of the common characteristics of isolates of R. solani 

include pale to dark brown hyphal pigmentation, multinucleate cells in young 

hyphae, branching near the distal septum of actively growing hyphae, 

constriction of branch hyphae and formation of branch near the point of origin 

(38, 49).  Relationships among the isolates of Rhizoctonia spp. are usually assessed 

through hyphal fusion (anastomosis), morphology of hyphae, and culture 

characteristics (49).  Currently, R. solani is subdivided into eleven anastomosis 

groupings (AG-1 to AG-10, and AG-BI).  Some of these groupings are further 

subdivided based on pathogenicity and nutritional requirements (9).  Evidence 

from previous studies suggests that variation exists among the isolates belonging 

to the same anastomosis group (35).  More recently, anastomosis groupings of 

isolates of R. solani were investigated using molecular techniques such as RAPD-

PCR, RFLP-PCR of the r DNA ITS region (18, 39). 

Rhizoctonia cerealis [teleomorph: Ceratobasidium gramineum (syn: C. cereale,

Corticium gramineum] Rhizoctonia cerealis is one among several binucleate 

species of Rhizoctonia. Isolates of binucleate Rhizoctonia spp. were subdivided 

into 17 anastomosis groups (AG-A to AG-Q), which are sometimes referred to as 

Japanese groups (50).  Isolates of North America were assigned to seven 
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anastomosis groups  (CAG 1 to CAG 7) and most of them correspond to Japanese 

groups with few exceptions (50).  Isolates of R. cerealis belong to AG-D and were 

shown to anastomose with members of AG-D and CAG-1 (50).  Colonies of this 

fungus were described to be white to light brown on potato dextrose agar with 

no zonation (50).  Sullivan described R. cerealis (CAG-1) colonies to be a pale 

color when cultured on potato dextrose marmite agar (37).  Apart from 

conventional characterization, attempts were made to identify markers common 

to all the isolates using marker systems like RAPD assays (34). 

Sclerotium rolfsii Sacc [teleomorph: Athelia rolfsii (Curzi) Tu and 

Kimbrough] Sclerotium rolfsii was first observed in the United States by Peter 

Henry Rolfs in 1892 on tomato (1). The fungus is a Deuteromycete that is 

characterized by the presence of white silky mycelia and brown to black, round 

sclerotia. Hyphae are hyaline and sparsely septate when young. Sclerotia start to 

form when growth is restricted due to nutrient stress and other factors (42). The 

fungus does not produce any asexual spores.  The appearance of the 

teleomorphic stage is very rare. The formation of basidia is infrequent in nature 

and is influenced by the isolate, nutrient composition of the substrate and the age 

of culture (43). Basidiospores have been shown to be pathogenic to host tissue 

under controlled conditions. S. rolfsii sometimes causes aerial leaf blights and leaf 

spots, and in such conditions basidiospores are suspected to be a source of 

inoculum (33, 45). Host range of this fungus is extensive and includes many 
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crops of great economic value (1). The fungus is usually distributed in tropical 

and subtropical regions of the world where warm temperatures prevail.  

Infection process in Rhizoctonia spp.

Elucidation of the infection process is critical to understanding the 

pathogenicity of these fungi.  The activities of Rhizoctonia solani prior to 

penetration of host tissue are complex (29), and include frequent formation of 

convoluted hyphal structures called infection cushions.  R. solani forms infection 

cushions on peanut hypocotyls that facilitate penetration of the fungus through 

epidermal and cortical cells and cause death of the tissues (6).  R. solani can form 

tenacious infection cushions either by a single hypha, by an aggregation of short 

hyphal branches, by proliferation of hyphal branches, or by the aggregation of 

several hyphae (27).  R. solani also can produce numerous infection cushions on 

synthetic films like cellophane (30, 51).   

Infection process in Sclerotium rolfsii

Phytotoxins such as oxalic acid and cell wall degrading enzymes play a 

key role in the infection of a host (5, 42) and S. rolfsii produces a multi-enzyme 

system for the degradation of different polysaccharides in the host tissue (21).  In 

one early study (2), polygalacturonase was reported to be the primary 

component of the “macerating enzyme” in diseased bean tissue, but the enzyme 

was reported to hydrolyze the calcium pectate in the host cell wall only in the 

presence of oxalate ions (3).  This led to a hypothesis that oxalic acid and 

polygalacturonases are produced simultaneously in infected tissue by S. rolfsii, 
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and that this simultaneous production enables them to act synergistically to 

degrade calcium pectate in cell walls.  Bateman and Beer (5) proved that 

simultaneous production and synergistic action of oxalic acid and 

polygalacturonase is necessary for rapid destruction of the host tissue by S. 

rolfsii. In a later study (44), simultaneous production of endo-polygalacturonase 

and oxalic acid along with the rapid mycelial growth was shown to be critical for 

the infection process by S.rolfsii. A cellulase system was also shown to play a key 

role in pathogenesis of S. rolfsii (4).  Other enzymes produced by this fungus are 

hemicullulolytic enzymes including xylanase and mannanase, pectin 

methylesterase, cutinase, phosphotidase, arabanase, galactanase and β-

glucosidases (22, 42). 
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CHAPTER III

CHARACTERISTICS AND PATHOGENICITY OF 

RHIZOCTONIA SPP. FROM WINTER WHEAT AND PEANUT

ABSTRACT

Rhizoctonia spp. cause important root and shoot diseases in peanut and winter 

wheat, which are important crops grown in Oklahoma. A study was conducted 

to characterize the isolates of Rhizoctonia spp. and to determine their 

pathogenicity on peanut and winter wheat cultivars of Oklahoma under 

greenhouse conditions. Cultural morphology, nuclear condition, anastamosis 

grouping and growth rates were determined on four Rhizoctonia solani isolates 

obtained from diseased peanut pods (G-24, JY-1, RS-00-07 and RSP) and four 

isolates from wheat culms with sharp eyespot lesions (Fellers, Marshall, Altus 

and Lahoma).  Pathogenicity of isolates G-24 and Fellers were determined on 

three winter wheat cultivars (Jagger, 2137 and 2174) and four peanut genotypes 

(Okrun, Tamspan 90, Southwest Runner and C 209 6-60). Fungal isolates were 

grown on oat seed which was used for inoculation, and disease severity was 

measured on a 1-6 scale (1=no disease; 6=complete death of the host). Data on 

shoot height and root and shoot fresh weights were also collected. Degree of 
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pathogenicity of the isolates was determined by quantifying the formation of 

infection cushions on cellophane membrane in response to stimulation by roots 

of peanut and winter wheat. All R. solani isolates from peanut had dark colored 

mycelia, multinucleate cells, faster growth rate, and belonged to anastamosis 

group AG 4. Isolates of Rhizoctonia spp. from eyespot lesions of wheat were 

confirmed as R. cerealis based on yellow-white to light tan colored mycelia, 

binucleate cells, slow growth and belonged to the CAG 1 anastomosis group. 

Isolate G-24 from peanut was the most virulent on all peanut and winter 

cultivars and caused the greatest reduction in shoot height and shoot fresh 

weight as compared to the R. cerealis isolate Fellers. Averaged across isolates, no 

significant differences in disease severity were observed among peanut cultivars. 

However, within winter wheat cultivars, seedlings of Jagger received a 

significantly lower disease severity rating compared to 2137 and 2174. In the 

infection cushion study, G-24 formed significantly more infection cushions per 2 

cm2 of cellophane compared to Fellers. Southwest Runner and 2137 had 

significantly less infection cushions among peanut and winter wheat cultivars, 

respectively. Results suggest that quantification of infection cushions can be a 

useful technique for screening cultivars for resistance to infections caused by 

Rhizoctonia.
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INTRODUCTION

The genus Rhizoctonia causes disease on a wide range of host plant species 

(16).  It comprises a diverse group of fungi with their teleomorphs separated into 

three genera of the sub-division Basidiomycotina: Thanatephorus (anamorph=R. 

solani Kuhn), Ceratobasidium (anamorph=binucleate Rhizoctonia) and Waitea 

(anamorph=R. zeae Voorhees) (2). The multinucleate R. solani is the most studied 

species within the genus (16). R. solani infects plants representing  142 species 

from cycadopsida to the monocotyledonae (16). Eleven anastamosis groups have 

been described for this species some of which are pathogenic with a worldwide 

distribution (2, 16). The binucleate Rhizoctonia cerealis occurs worldwide and 

some of the pathogenic isolates are known to cause serious diseases in many 

crops including cereals such as wheat (2). Isolates of Rhizoctonia cerealis are 

assigned to the anastamosis group CAG-1 (1). 

 Rhizoctonia solani causes important root and shoot diseases in peanut  
 

and winter wheat, which are important crops grown in Oklahoma (11, 20). In 

peanut, the fungus attacks pods and limbs causing pod rot and limb rot, 

respectively, that cause significant annual losses (6, 5, 19). In winter wheat, the 

fungus usually causes root rots and preemergence damping off resulting in 

circular patches of chlorotic or dead plants that produce little or no grain (10, 13, 

15).  

 R. cerealis is another important species that causes sharp eyespot in winter 

wheat (3, 4, 7, 8, 9).  Sharp eyespot was earlier reported to be caused by R. solani 
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(18); however, in 1977, Van der Hoeven reported a new species, R. cerealis Van 

der Hoeven, causing sharp eyespot lesions on wheat in Netherlands (9). Hence, 

two different fungi were reported to cause sharp eyespot in wheat.  The disease 

is most commonly found in temperate regions of the world and generally does 

not incur major losses (9, 12, 14, 17).  

 Since peanut and wheat are occasionally used in rotations in Oklahoma 

and since the pathogenicity of isolates of Rhizoctonia spp. on peanut and winter 

wheat cultivars of Oklahoma is unknown, this research was initiated to address 

the following objectives: 

1. Identify and characterize isolates of Rhizoctonia spp. obtained from peanut 

and winter wheat. 

2. Determine the pathogenicity of isolates of Rhizoctonia spp. on peanut and 

winter wheat cultivars through artificial inoculation in the greenhouse. 

3. Quantify formation of infection cushions by Rhizoctonia spp. on cellophane 

membranes in response to stimulation by roots of peanut and winter 

wheat and assess the utility of this technique for studying the response of 

peanut and winter wheat cultivars to inoculation with Rhizoctonia spp. 
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MATERIALS AND METHODS

Collection and maintenance of Rhizoctonia isolates

Isolates of Rhizoctonia were obtained from different sources in 2004  

(Table 1).  Peanut isolates were maintained on SPDA [Potato Dextrose Agar 

containing streptomycin sulfate at 0.14 g/L]. Isolates from wheat were obtained 

from wheat collected from northern and southwestern Okalahoma that exhibited 

characteristic sharp eye spot symptoms. Small sections of the infected tissue 

having the sharp eye lesion were cut and surface sterilized for 3 minutes with 2% 

sodium hypochlorite, rinsed in sterile distilled water, plated on 2% water agar 

and incubated at room temperature (24° C). After 48 h, fungal colonies with 

mycelia characteristics of Rhizoctonia spp. were transferred and maintained on 

SPDA.  

Isolates from peanut and wheat were maintained on autoclaved oat seeds. 

Oat seed (25 g) was mixed with 25 ml of water and autoclaved for 20 minutes in 

glass petriplates (9 cm dia.). After autoclaving, plates were inoculated with ten 

mycelial plugs (0.5 cm dia.) from 4-day-old cultures and incubated at room 

temperature for 7days and dried in open air for a week.  

Cultural characteristics

Mycelial plugs (5 mm dia) of Rhizoctonia isolates were excised from the 

outer margin of 4 day old cultures actively growing on SPDA and transferred to 

SPDA in 100 X 15 mm plastic Petri plates. These plates were then incubated at 24º 
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C for two weeks in the dark and then observed for colony color, sclerotial color 

and zonation.  

Nuclear staining and anastomosis grouping

The nuclear number of the isolates was determined by staining with 0.5% 

aniline blue in lactophenol. Isolates from peanut were known to belong to 

anastomosis group 4 (AG-4).  Hence anastomosis of these isolates was not 

studied in detail. However, isolates collected from wheat were tested for their 

anastomosis using tester strains of R. solani (AG-4) and R. cerealis (CAG-1). 

Autoclaved glass slides were coated with 2% water agar and 0.5 cm hyphal discs 

of the isolate and the tester were placed in pairs, 2 cm apart.  The glass slides 

were incubated at 25º C in the dark until the hyphae from opposite discs 

overlapped. Overlapped hyphae were stained with 0.5% aniline blue in 

lactophenol and examined for hyphal fusion using a light microscope at 100X. 

Hyphal extension

Hyphal extension of the isolates was measured by transferring 5 mm 

mycelial plugs excised from outer margin of actively growing culture onto SPDA 

plates and incubating at 25 C. Radial growth was measured after 24, 48, 72 and 

96 hrs. Each treatment was replicated three times. The data were analyzed using 

PROC MIXED (SAS 9.1, SAS Institute Inc., Cary, NC). 
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Pathogenicity tests

Our preliminary tests has revealed that isolates G-24 and Fellers were 

considerably more pathogenic among R. solani and R. cerealis isolates 

respectively. Hence these two isolates were used for further pathogenicity tests. 

Isolates, R. solani (G-24) and R. cerealis (Fellers) were tested for their 

pathogenicity on four peanut entries (Okrun, Tamspan 90, Southwest Runner 

and C209-6-60) and three winter wheat cultivars (Jagger, 2137 and 2174) under 

greenhouse conditions. Experiments on peanut and winter wheat were 

conducted separately. None of the above genotypes were previously tested for 

their reaction to Rhizoctonia spp.  

 R. solani isolate   G-24 was obtained from Dr. Terry Wheeler (TAES 

Research Plant Pathologist, Lubbock, TX) and was originally isolated from 

peanut pods showing symptoms of pod rot collected from Yoakum County, TX 

in 2003. R. cerealis isolate (Fellers) was isolated in 2004 from a sharp eyespot 

lesion on wheat stem collected from a grower’s field in Northwestern Oklahoma 

by Dr. Robert Hunger (OSU Extension Plant Pathologist, Stillwater, OK). 

Preparation of inoculum

In a 9-cm dia. glass petri plate, 25 ml of deionized water was added to 25 g 

of oat seed and autoclaved for 20 minutes (121 C and 1 kg/cm2). After 

autoclaving and subsequent cooling, plates were inoculated with ten plugs      

(0.5-cm dia) excised from the outer margin of 4-day-old Rhizoctonia cultures. 

Inoculated oat seed were then incubated at 25 C for 7days. To avoid clumping, 
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seeds were mixed with a sterile needle once every two days. Seeds were then 

dried in the open air for a week, transferred to coin envelopes and stored at 4 C 

in a refrigerator until further use. To test for contamination, ten seeds from each 

plate were plated onto SPDA and observed for the growth characteristic of 

Rhizoctonia.

Wheat study

Wheat pre-emergence test

Three hard red winter wheat cultivars, Jagger, 2137 and 2174, which are 

commonly cultivated in Oklahoma, were used in this study.  Ten certified wheat 

seeds of each cultivar were planted at a depth of 2 cm in 12-cm dia. plastic pots 

containing a mixture of sand, soil and shredded peat moss (2:1:1; v/v/v). Each 

healthy wheat seed was planted with an oat seed infested with each of the 

Rhizoctonia isolates. The pots were kept in the greenhouse at 25-30 C for fourteen 

days. The combination of two isolates (G24 and Fellers) and the non-inoculated 

control and three cultivars (Jagger, 2137 and 2174) resulted in nine treatments. 

Treatments were arranged in a randomized complete block design with four 

replications. The experiment was conducted twice.   

Seedling emergence was recorded 7 days after planting (DAP). At 14 DAP, 

seedlings were removed from the pots keeping the roots of seedlings intact and 

then washed in running tap water to remove soil debris. Infection from 

Rhizoctonia was rated on a scale of 1 to 6 (1= healthy; 2= slight discoloration of 

leaf sheath or inner stem; 3= distinct lesion on the leaf sheath or inner stem; 4= 
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rotting at the base of the stem; 5=damping off or yellowing; 6=no emergence). 

Plant height was measured from the base of pseudostem to the end of second 

leaf and fresh root and shoot weights were determined. To fulfill Koch’s 

postulates, Rhizoctonia was re-isolated on to SPDA from infected tissues. All data 

were analyzed using PROC MIXED (SAS Version 9.1, SAS Institute Inc., Cary, 

NC).  

Wheat post-emergence test

In this test, pathogenicity of Rhizoctonia isolates G24 and Fellers ,was 

tested by inoculating 6-week old winter wheat plants.  Certified wheat seeds of 

each cultivar (Jagger, 2137 and 2174) were planted in 12 cm diameter plastic pots 

at a depth of 2 cm containing a mixture of sand, soil and shredded peat moss 

(2:1:1; v/v/v). At 4 DAP, plants in each pot were thinned to 10 healthy seedlings. 

At 6 weeks after planting, a single oat seed infested with Rhizoctonia was placed 

at a 2 cm depth close to each healthy wheat plant. The combination of two 

isolates (G24 and Fellers) and the non-inoculated control and three cultivars 

(Jagger, 2137 and 2174) resulted in nine treatments. Treatments were arranged in 

a randomized complete block design with four replications and the experiment 

was conducted twice.   

At 14 days after inoculation, plants were removed from the pots keeping 

the roots intact and were washed in running tap water to remove soil debris. 

Plants were rated for infection from Rhizoctonia on a scale of 1 to 6 (1= healthy; 2= 

slight discoloration of leaf sheath or inner stem; 3= distinct lesion on the leaf 



30

sheath or inner stem; 4= rotting at the base of the stem; 5=damping off or 

yellowing; 6=complete death). Fresh root and shoot weights were also 

determined. To fulfill Koch’s postulates, Rhizoctonia was re-isolated on to SPDA 

from infected tissues. All data were analyzed using PROC MIXED (SAS Version 

9.1, SAS Institute Inc., Cary, NC).  

Peanut study

Peanut seeds were germinated in 9-cm dia. Petri plates lined with water 

moistened Whatman # 1 filter papers in an incubator in dark at 30 C for 48 h.  

Germinated seeds with uniform radical were transferred to 15 cm x 30 cm pots 

containing a 2:1:1 (v/v/v) mixture of sand, peat moss and topsoil, with four 

germinated seeds per pot.  The combination of two isolates (G-24 and Fellers) 

and the non-inoculated control and four genotypes resulted in 12 treatments. 

Treatments were arranged in a randomized complete block design with four 

replicates and the experiment was conducted twice. 

Inoculum of the Rhizoctonia spp. was prepared using oat seeds as 

described previously for wheat. Peanut seedlings at the V-1 to V-2 growth stage 

were inoculated by placing 2 oat seeds 2 cm below the soil level close to the main 

stem.  After inoculation, pots with inoculated seedlings were placed in a 

greenhouse for 2 weeks at 24-27 °C, which is a temperature range conducive for 

Rhizoctonia growth and infection of hypocotyls.  After 2 weeks, seedlings were 

uprooted and roots were separated from hypocotyls. After careful washing, 

hypocotyls were rated on a 1 to 6 scale developed by the Cotton Seed Treatment 
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Committee of the National Cotton Council (5) with modifications as follows:  1= 

no symptoms, 2= discoloration and/or small pinpoint lesions, 3 = small, distinct 

necrotic lesions, 4 = large necrotic lesions, 5 = girdling lesion, and 6 = dead 

seedling. Seedling height and fresh weight were recorded. All data were 

analyzed using  PROC MIXED (SAS Version 9.1, SAS Institute Inc., Cary, NC).  

Quantification of infection cushions

Growth chamber studies were conducted to quantify the formation of 

infection cushions by isolates of Rhizoctonia spp. on cellophane membrane in 

response to stimulation by root system of peanut and winter wheat. Experiments 

were conducted separately on peanut and winter wheat. Mycelial inoculum of 

Rhizoctonia was prepared as follows: Three hyphal plugs of 0.5 cm diameter 

taken from four day old culture of Rhizoctonia were transferred to a sterile (121 C 

for 20 min) 250 ml Erlenmeyer flask containing 100 ml of 2% potato dextrose 

broth. The inoculated flasks were then placed on a Lab-Line Orbit shaker (Lab-

Line Instrument Inc., Melrose Park, IL) set at 150 rpm for 7 days. After 7 days, the 

contents of a flask were passed through a Whatman #1 filter paper disk under 

vacuum. Contents were under vacuum until no moisture was detected on the 

filter paper disk. A 0.5 g of fresh mycelium was then homogenized in 50 ml of 

deionized water by using a Tekmar II Tissuemizer MarkII (Tekmar Co., 

Cincinnati, OH) set at 10,000 rpm for 45 sec. Formation of infection cushions by 

two isolates of R. solani (G-24 and RSP) and an isolate of R. cerealis (Fellers) was 

studied on four peanut genotypes (Okrun, Tamspan 90, Southwest Runner and 
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C209-6-60). In peanut study, seeds were germinated in Petri plates lined with 

moist Whatman # 1 filter papers in an incubator at 30 C for 48 h.  Germinated 

seeds with good radical growth were transferred to 7 cm diameter pots 

containing 2:1:1 (v/v/v) mixture of sand, peat moss and topsoil with one seed 

per pot. Plants were maintained in a greenhouse for 2 weeks, at which time the 

plants were uprooted, washed with clean water, and the root system was 

enclosed in a tube-like pouch made from cellophane membrane dialysis tubing 

(Sigma-Aldrich, St. Louis, MO) with a molecular wt cut off at 12,000. Each pouch 

with the root system was then transferred into a styrofoam cup (360 ml) filled 

with perlite and mixed with 50 ml of fragmented mycelial suspension of 

Rhizoctonia. Four days later, plants were uprooted and the cellophane pouch 

around the roots was removed carefully.  Eight squares of cellophane (2 cm2

each) were cut from each pouch, placed on a glass slide (2 squares per slide), 

stained with 0.5% aniline blue in lactophenol and observed for infection cushion 

formation under a light microscope at 100X.   

In the wheat study, ten certified seeds of each cultivar (Jagger, 2137 and 

2174) were planted in 12 cm plastic pots at a depth of 2 cm containing a mixture 

of sand, soil and shredded peat moss (2:1:1; v/v/v). Plants were maintained in a 

greenhouse for six weeks, after which time the plants were uprooted, washed 

with clean water and root system was enclosed in a tube-like pouch made from 

cellophane membrane as described for peanut. Each pouch with the root system 

was then transferred into a styrofoam cup (360 ml) filled with perlite and mixed 
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with 50 ml of fragmented mycelial suspension of Rhizoctonia. Four days later, 

plants were uprooted and the cellophane pouch around the roots was removed 

carefully.  Ten squares of cellophane (2 cm2 each) were cut from each pouch, 

placed on a glass slide (2 squares per slide), stained with 0.5% aniline blue in 

lactophenol and observed for infection cushion formation under a light 

microscope at 100X.   

RESULTS

Morphological characters of Rhizoctonia cultures

Isolates of R. solani from peanut were clearly distinct from isolates of R. 

cerealis isolated from wheat culms with sharp eyespot lesions. R. solani isolates 

from peanut (G-24, JY-1, RS-00-007 and RSP) produced light to dark brown 

mycelium and showed no zonations.   Except for isolate JY-1, aerial hyphae were 

sparse.  All R. solani isolates produced irregular, darkly pigmented sclerotia 

randomly throughout the colony. Hyphae of all R. solani isolates were 

comparatively thicker than R. cerealis isolates. 

R. cerealis isolates from wheat (Fellers, Marshall, Altus and Lahoma) 

produced yellow-white to light-tan colored mycelium with a concentric pattern 

of growth. Mycelial pigmentation increased with age and aerial hyphae were not 

observed. None to very few sclerotia developed on the edges of the agar surface 

after prolonged incubation. Sclerotia, when present, were dark brown and 

irregular in shape.   
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Nuclear staining and anastamosis grouping

The rapid staining technique with 0.5% aniline blue in lactophenol was 

effective in determining the nuclear condition of the Rhizoctonia isolates. 

R. solani isolates from peanut had hyphal cells that were multinucleate, whereas 

isolates of R. cerealis from wheat culms with sharp eyespot lesions had binucleate 

cells.   

 R. solani isolates from peanut were known to belong to the anastomosis 

group AG-4 and hence, no tests of hyphal anastamosis were made on these 

isolates. Vegetative hyphae of R. cerealis isolates from wheat (Fellers, Marshall, 

Altus and Lahoma) anastomosed with the CAG-1 tester isolate of R. cerealis but 

failed to anastamose with the AG-4 tester isolate of R. solani (Table 2). 

Growth rates

The hyphal growth rates of R. solani isolates were significantly higher than             

those of R .cerealis isolates and ranged from 19.3-32.6 mm/24 hr (Table 2). Among 

the R. solani isolates, RSP had the slowest hyphal extension rate (19.3 mm/24 hr) 

whereas G-24 had the fastest (32.6 mm/24 hr) (Table 2).  Even though significant 

differences in growth rates were observed among R. solani isolates, no such 

differences occurred among R. cerealis isolates with the range varying only 

between 15.2-15.5 mm/24 hr (Table 2). 
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Pathogenicity tests

Wheat pre-emergence test

Disease severity was significantly affected by Rhizoctonia isolate and 

variety and there was no significant interaction between the two factors (Tables 

3, 4 and 5). Non-inoculated seedlings of all varieties received the lowest disease 

severity rating (Table 3). R. solani isolate G-24 (from peanut)-inoculated seedlings 

of all varieties had significantly (P≤0.05) higher disease severity as compared to 

the R. cerealis isolate Fellers (from wheat) and the non-inoculated control (Table 

3).  Fellers inoculated seedlings of all varieties had lower disease ratings that 

were not significantly different (P > 0.05) from the non-inoculated control. 

Averaging across Rhizoctonia isolates, seedlings of Jagger had significantly 

(P≤0.05) lower disease severity rating compared to 2174  (Table 4). 

 Shoot height was significantly (P≤0.05) affected by isolate but not affected 

by variety and there was no significant interaction (P > 0.05) between the two 

factors (Tables 3, 4 and 6). Across varieties, isolate G-24 inoculated seedlings had 

a significantly (P≤0.05) lower shoot height compared to Fellers and the non-

inoculated control (Table 3).  The mean shoot height for G-24 inoculated 

seedlings was 11.8 cm compared to 18.2 cm for Fellers inoculated seedlings and 

18.1 cm for the non-inoculated control. Shoot height was not affected by the 

isolate Fellers and was not significantly different (P > 0.05) from the non-

inoculated control (Table 3).  
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Shoot fresh weight was significantly (P≤0.05) affected by isolate but not 

affected by variety, and there was no significant interaction (P > 0.05) between 

the two factors (Tables 3, 4 and 7). G-24 -inoculated seedlings had a significantly 

(P≤0.05) lower shoot fresh weight compared to Fellers and non-inoculated 

control (Table 3). The mean shoot fresh weight for G-24-inoculated seedlings was 

0.11 g compared to 0.14 g for Fellers and 0.15 g for non-inoculated control. Shoot 

fresh weight was not affected by the isolate Fellers and was not significantly 

different (P > 0.05) from the non-inoculated control (Table 3). 

 Root fresh weight was significantly (P≤0.05)  affected by variety but not 

affected by isolate and there was no significant interaction (P > 0.05) between the 

two factors (Tables 3, 4 and 8). Averaging across the isolates to compare varieties, 

the mean root fresh weight of seedlings of Jagger was 0.053 g and was 

significantly (P≤0.05) higher compared to 2174 (Table 4). Root fresh weight of 

2137 was not significantly different (P > 0.05) from either Jagger or 2174 (Table 4). 

Wheat post-emergence test

Disease severity was significantly (P≤0.05) affected by variety and 

Rhizoctonia isolate, and there was a significant interaction between the two 

factors (Tables 9, 10 and 11). Non-inoculated seedlings of all varieties received 

the lowest disease severity rating (Table 9).  R. solani isolate G-24-inoculated 

seedlings of all varieties received a significantly (P≤0.05) higher disease severity 

rating as compared to the R. cerealis isolate Fellers and the non-inoculated control 

(Table 9).  Fellers inoculated seedlings of all varieties received a low disease 
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rating but were significantly (P≤0.05) higher than the non-inoculated control 

(Table 9). Averaging across isolates to compare varieties, seedlings of Jagger 

received a significantly (P≤0.05) lower disease severity rating compared to 2137 

and 2174 (Table 10).  

 Shoot fresh weight was significantly (P≤0.05) affected by variety but not 

affected by isolate and there was no significant interaction (P > 0.05) between the 

two factors (Tables 9, 10 and 12). The mean shoot fresh weight of seedlings of 

Jagger was 0.53 g which was significantly (P≤0.05) lower than 2137 and 2174 

(Table 10). 

 Root fresh weight was not significantly (P > 0.05) affected by variety or 

isolate and there was no significant interaction between the two factors (Tables 9, 

10 and 13).  

Peanut study

Disease severity was significantly (P≤0.05) affected by isolate but not 

affected by peanut genotype and there was no significant interaction (P > 0.05) 

between the two factors (Table 14, 15 and 16). Averaging across varieties to 

compare isolates, seedlings of all varieties inoculated with R. solani isolate G-24 

received a significantly (P≤0.05) higher disease severity rating as compared to the 

seedlings inoculated with the R. cerealis isolate Fellers and the non-inoculated 

control (Table 14).   

 Shoot height was significantly (P≤0.05) affected by isolate and genotype 

and there was no significant interaction (P > 0.05) between the two factors 



38

(Tables 14, 15 and 17). Averaging across varieties to compare isolates, G-24 

inoculated seedlings had a significantly (P≤0.05) lower shoot height compared to 

Fellers and the non-inoculated control (Table 14). The mean shoot height for G-24 

inoculated seedlings was 10.3 cm compared to 16.1 cm for Fellers inoculated 

seedlings and 16.1 cm for uninoculated control. Shoot height was not affected by 

the isolate Fellers and was not significantly different (P > 0.05) from the non-

inoculated control (Table 14). Averaging across isolates to compare varieties, 

seedlings of Tamspan 90 recorded a significantly (P≤0.05) greater shoot height 

compared to other varieties (Table 15).  

 Shoot fresh weight was significantly (P≤0.05) affected by both isolate and 

genotype, and there was no significant interaction (P > 0.05) between the two 

factors (Tables 14, 15 and 18). G-24 inoculated seedlings had a significantly 

(P≤0.05) lower shoot fresh weight compared to seedlings inoculated with the 

isolate Fellers and non-inoculated control (Table 14). The mean shoot fresh 

weight for G-24 inoculated seedlings was 1.9 g compared to 2.9 g for Fellers and 

2.9 g for the non-inoculated control. Shoot fresh weight was not affected by the 

isolate Fellers which was not significantly different (P > 0.05) from the non-

inoculated control (Table 14). When averaged across isolates, Southwest Runner 

recorded a significantly (P≤0.05) higher shoot fresh weight followed by line C-

209-6-60, Tamspan 90 and Okrun (Table 15).  
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Quantification of infection cushions formed on cellophane membrane by 

Rhizoctonia isolates

Peanut study

Formation of infection cushions per square (ICS) was significantly (P≤0.05)

affected by isolate and cultivar and there was a significant interaction between 

the two factors (Tables 19, 20 and 21). Averaging across cultivars to compare 

isolates, R. solani isolate G-24 formed significantly (P≤0.05) more ICS compared 

to another R. solani isolate RSP, which formed significantly (P≤0.05) more 

number of ICS compared to the R. cerealis isolate Fellers (Table 19). G-24 formed 

3.1 ICS compared to 1.4 by RSP and 0.3 for Fellers. 

 Averaging across isolates to compare genotypes, significant differences 

(P≤0.05) were observed among cultivars with respect to number of infection 

cushions per square (Table 20). The highest number of infection cushions per 

square were formed on Okrun whereas the lowest number were formed on 

Southwest Runner. No infection cushions were formed on the control (no host) 

confirming the fact that host stimulation is required for the formation of infection 

cushions. Tamspan 90 and C-209-6-60 had higher number of infection cushions 

per square but were not significantly different (P > 0.05) from Okrun and 

Southwest Runner (Table 20).  

 When the interaction between isolate and genotype was examined, G-24 

significantly (P≤0.05) produced more infection cushions per square on Okrun, 

Tamspan 90 and Southwest Runner compared to RSP and Fellers whereas both   
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G-24 and RSP produced significantly (P≤0.05) more number of infection cushions 

per square in C-209-6-60 compared to Fellers (Table 21). 

Wheat study

Formation of infection cushions per square (ICS) was significantly (P≤0.05)

affected by cultivar (Table 23) but not by isolate (Table 22), and there was no 

significant interaction (P > 0.05) between the two factors (Table 24). Averaging 

across isolates to compare cultivars, Jagger and 2174 significantly had a higher 

number of infection cushions per square compared to 2137 and control. 

However, no significant difference (P > 0.05) in infection cushion number was 

observed between Jagger and 2174 (Table 23).   

 Averaging across cultivars, the numbers of infection cushions produced 

by R. solani isolate G-24 was not significantly different (P > 0.05) from R. cerealis 

isolate Fellers (Table 22). 

 

DISCUSSION

R. solani isolates from peanut (G-24, JY-1, RS-00-07 and RSP) are clearly 

distinct in their characteristics compared to the R. cerealis isolates from wheat 

(Fellers, Marshall, Altus and Lahoma). Apart from the nuclear condition, isolates 

differed very much in their appearance, sclerotial development, growth rate and 

pathogenicity. R. solani isolates from peanut possessed dark colored mycelia, 

faster growth rates, multinucleate condition and copious sclerotial development. 

Since the peanut isolates were collected from other sources, the status of the 
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peanut fields where the isolates were originally collected is unknown. However, 

all the isolates were collected from pods possessing pod rot symptoms.

 Cultural morphology of wheat isolates paralleled those reported 

previously for R. cerealis (1, 9). All wheat isolates, irrespective of their origin in 

Oklahoma, possessed a yellow white to light tan colored mycelium, a 

significantly slower growth rate compared to the isolates from peanut and 

absence or very sparse sclerotial development.  The wheat fields from where the 

isolates were collected did not show any major damage from the pathogen. The 

sharp eyespot lesions are not clearly visible in the field and in most cases, lesions 

were restricted to lower stem base. In some cases, sharp eyespot lesions are 

confused with the eyespot caused by the fungus Psuedocercosporella 

herpotrichoides, since both appear as eye shaped lesions. However, when 

observed closely, the margin of the sharp eyespot lesion is very distinct and 

sharp as opposed to wavy margins for the eyespot caused by P. herpotrichoides.

All R.solani isolates from peanut used in this study belonged to the AG 4 

anastomosis group. The AG 4 group consists of isolates that are soilborne and 

cause damping off and root rot over a wide host range (2). Isolates belonging to 

AG4 are autotrophic for thiamine and are capable of hyphal fusion with 

members of AG 4 only (16). AG-4 is further subdivided based on the sclerotial 

form and DNA base sequence homology into AG 4 HG-I originally isolated from 

peanut and AG 4 HG-IIB that was isolated from sugar beet (16). Isolates of R. 

cerealis from wheat used in this study were all anastamosed with CAG-1 or AG-D 
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tester isolate which was originally isolated from wheat. CAG-1 group is 

distributed worldwide and includes pathogenic isolates causing sharp eyespot in 

cereals (2, 16). 

 Isolates of R. solani from peanut grew twice as fast as isolates of R. cerealis 

from wheat and these observations paralleled those previously reported (9). 

Among R. solani isolates from peanut, RSP grew significantly slower than other 

isolates. However, there is no significant difference in growth rates among R. 

cerealis isolates.  

 R. solani isolate G-24 isolated from peanut pods had caused significant 

damage to peanut and wheat seedlings during artificial inoculation in the 

greenhouse. Distinct necrotic lesions were seen on hypocotyls of inoculated 

peanut seedlings. Necrotic lesions resulted in stunted plants, decreased shoot 

fresh weight and in few cases complete death of the seedling.  

 In the wheat study, pre-emergence inoculation of the isolate G-24 resulted 

in non emergence of seedlings and decreased stand.  Seedlings that emerged 

were stunted in appearance and produced distinct lesions on the base of the 

stem. Infection was restricted to the stem portion of the plant and roots were not 

affected. Hence, a significant reduction in shoot height and shoot fresh weight 

was observed but root fresh weight was not significantly affected. Lesions were 

not deep and were restricted to the outer leaf sheath. However, the G-24 isolate 

had a different effect when inoculated on 6-week old wheat plants, where the 
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severity of disease was very low with no significant effect on shoot and root fresh 

weights.   

 The R. cerealis isolate Fellers did not cause any damage to peanut and 

winter wheat in our greenhouse studies. In most cases, the effect of this isolate 

was not significantly different from the non-inoculated control. Among four 

isolates of R. cerealis, Fellers was chosen for this study since our preliminary data 

have shown that this isolate comparatively caused more disease than the other 

isolates. However, the pathogenicity of this isolate was negligible compared to 

G-24 and the other R. solani isolates from peanut. 

 Averaging across isolates to compare varieties, our pre-emergence wheat 

study showed that Jagger received a significantly lower disease severity rating 

compared to 2137 and 2174. However, no significant differences in shoot height, 

shoot fresh weight and root fresh weight were observed among the three 

varieties. Our post emergence study also showed significant differences in 

disease severity, with Jagger receiving a significantly lower disease severity 

rating compared to 2137 and 2174. However, the disease severity ratings were 

low, and the significance of this difference needs further substantiation. 

 Infection cushions formed by the R. solani isolate G-24 were more 

conspicuous and easy to read compared to the R. cerealis isolate Fellers. In the 

peanut study, signiciantly lower infection cushions were formed on Southwest 

Runner compared to the other peanut cultivars, and isolate G-24 produced a 

significantly higher number of infection cushions per cellophane square 
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compared to RSP and Fellers. It is important to note that the mean number of 

infection cushions produced by each isolate corresponded with the pathogenicity 

of the isolate that was previously tested in greenhouse studies. Results from the 

wheat study were somewhat surprising. There was no significant difference in 

the mean number of infection cushions produced by isolates G-24 and Fellers 

and since the disease ratings of Rhizoctonia isolates were very low on wheat 

seedlings, it is difficult to compare the number of infection cushions with the 

pathogenicity of the isolates.  Overall, the results suggest that quantification of 

infection cushions can be a useful technique to evaluate peanut and wheat 

germplasms for resistance to Rhizoctonia diseases.  

 In conclusion, our greenhouse and lab studies on pathogenicity of 

Rhizoctonia spp. showed that R. solani isolates from peanut have the potential to 

cause significant damage to peanut and winter wheat, when the pathogen attacks 

at early stages of crop growth. Even though some resistance was observed in 

cultivars such as Jagger, field studies are needed to substantiate the results found 

under greenhouse conditions. On the other side, R. cerealis isolates, currently 

found in Oklahoma, are lowly virulent or non pathogenic and pose no risk to 

peanut and winter wheat productivity. Our results also indicate that planting 

peanuts in a wheat field with a history of sharp eyespot may not pose any risk to 

peanuts, but planting wheat in peanut field with a history of Rhizoctonia diseases 

may pose a significant risk to wheat productivity.   
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Table 1. Source of Rhizoctonia isolates. 
 

Isolate Species Host Year Geographic
origin Source 

G-24 R. solani Peanut Unknown Texas T.A. Wheeler 
JY-1 R. solani Peanut Unknown Georgia T. Brenneman
RS-00-07 R. solani Peanut Unknown Georgia T. Brenneman 
RSP R. solani Peanut 1982 Oklahoma H.A. Melouk 
Fellers R. cerealis Winter wheat 2004 Oklahoma R.M. Hunger 
Marshall R. cerealis Winter wheat 2004  Oklahoma R.M. Hunger 
Altus R. cerealis Winter wheat 2004 Oklahoma R.M. Hunger 
Lahoma R. cerealis Winter wheat 2004 Oklahoma R.M. Hunger 

Table 2. Hyphal growth rates of isolates of Rhizoctonia. 

Isolate Species Host Anastamosis
group 

Growth rate
(mm/24 hr) 

G-24 R. solani Peanut AG 4  32.6 b*

JY-1 R. solani Peanut AG 4 36.1 a 
RS-00-07 R. solani Peanut AG 4 28.6 c 
RSP R. solani Peanut AG 4 19.3 d 
Fellers R. cerealis Winter wheat CAG 1 15.3 e 
Marshall R. cerealis Winter wheat CAG 1 15.4 e 
Altus R. cerealis Winter wheat CAG 1 15.2 e 
Lahoma R. cerealis Winter wheat CAG 1 15.5 e 

*Means in the same column followed by the same letter are not   
 significantly different according to LSMEANS at P≤0.05.
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Table 3. Disease severity, shoot height, shoot fresh weight and root fresh 
weight of winter wheat seedlings over genotypes as affected by pre-emergence 
inoculation with Rhizoctonia isolates. 
 

Isolate Disease 
severitya

Shoot 
height 
(cm)b

Shoot 
fresh 

weight 
(g) 

Root 
fresh 

weight 
(g) 

Non-inoculated 1.6 a* 18.1 a 0.15 a 0.05 a 
G-24  3.4 b 11.8 b 0.11 b 0.04 b 

Fellers 1.6 a 18.2 a 0.14 a 0.05 a 
aDisease severity rating on a scale of 1-6 (1= healthy; 2= slight   

 discoloration of leaf sheath or inner stem; 3= distinct lesion on the          
 leaf sheath or inner stem; 4= rotting at the base of the stem;  
 5=damping off or yellowing; 6=no emergence). 

b Measured from the base of the stem to the tip            of the 
second leaf. 

*Means in the same column followed by the same letter are not   
 significantly different according to LSMEANS at P≤0.05.

Table 4. Disease severity, shoot height, shoot fresh weight and root fresh 
weight of winter wheat seedlings over Rhizoctonia isolates as affected by 
cultivar in a pre-emergence test. 
 

Cultivar Disease 
severitya

Shoot 
height 
(cm)b

Shoot 
fresh 

weight 
(g) 

Root 
fresh 

weight 
(g) 

Jagger  2.0 b* 16.0 a 0.13 a 0.05 a 
2137  2.3 ab 15.3 a 0.13 a 0.05 a 
2174 2.4 a 16.8 a 0.14 a 0.04 a 

aDisease severity rating on a scale of 1-6 (1= healthy; 2= slight   
 discoloration of leaf sheath or inner stem; 3= distinct lesion on the          
 leaf sheath or inner stem; 4= rotting at the base of the stem;  
 5=damping off or yellowing; 6=no emergence). 

b Measured from the base of the stem to the tip of the second leaf. 
*Means in the same column followed by the same letter are not   

 significantly different according to LSMEANS at P≤0.05.
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Table 5. Rhizoctonia disease severity of wheat seedlings as affected by isolate 
and cultivar in a pre-emergence pathogenicity test. 
 

Isolate Disease Severitya

Jagger 2137 2174
Non-inoculated 1.2 a* 1.6 a 2.1 a 

G-24 3.3 b 3.4 b 3.5 b 
Fellers 1.6 a 1.8 a 1.5 a 

aDisease severity rating on a scale of 1-6 at 14 days after 
inoculation (1= healthy; 2= slight discoloration of leaf sheath or 
inner stem; 3= distinct lesion on the leaf sheath or inner stem; 4= 
rotting at the base of the stem; 5=damping off or yellowing; 
6=no emergence). 

*Means in the same column followed by the same letter are not   
 significantly different according to LSMEANS at P≤0.05.

Table 6. Shoot height of wheat seedlings as affected by isolate and cultivar in a 
pre-emergence pathogenicity test. 
 

Shoot height (cm)b
Isolate 

Jagger 2137 2174 
Non-inoculated 19.1 a* 16.9 a 18.3 a 

G-24 11.5 b 10.4 b 13.7 a 
Fellers 17.3 a 18.7 a 19.6 a 

bMeasured from the base of the stem to the tip of the second leaf. 
*Means in the same column followed by the same letter are not   

 significantly different according to LSMEANS at P≤0.05. 

 
Table 7. Shoot fresh weight of wheat seedlings as affected by isolate and 
cultivar in a pre-emergence pathogenicity test. 
 

Shoot Fresh Weight (g) 
Isolate 

Jagger 2137 2174 
Non-inoculated 0.16 a* 0.14 a 0.14 a 

G-24  0.10
ab 0.09 b 0.13 a 

Fellers 0.13 a 0.15 a 0.14 a 
*Means in the same column followed by the same letter are not   

 significantly different according to LSMEANS at P≤0.05. 
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Table 8. Root fresh weight of wheat seedlings as affected by isolate and 
cultivar in a pre-emergence pathogenicity test. 
 

Root Fresh Weight (g) Isolate 
Jagger 2137 2174 

Non-inoculated 0.06 a* 0.04 a 0.04 a 
G-24 0.05 a 0.04 a 0.03 a 

Fellers 0.05 a 0.05 a 0.05 a 
*Means in the same column followed by the same letter are not   

 significantly different according to LSMEANS at P≤0.05.

Table 9. Disease severity, shoot fresh weight and root fresh weight of winter 
wheat plants as affected by post-emergence inoculation of Rhizoctonia 
isolates. 
 

Isolate Disease 
severitya

Shoot 
fresh 

weight 

(g) 

Root 
fresh 

weight 
(g) 

Non-inoculated 1.0 a* 0.61 a 0.49 a 
G-24 1.4 c 0.59 a 0.44 a 

Fellers 1.1 b 0.62 a 0.47 a 
aDisease severity rating at 14 days after inoculation on a scale of 1-6 
(1= healthy; 2= slight discoloration of leaf sheath or inner stem; 3= 
distinct lesion on the leaf sheath or inner stem; 4= rotting at the base 
of the stem; 5=damping off or yellowing; 6=complete death). 

 *Means in the same column followed by the same letter are not   
 significantly different according to LSMEANS at P≤0.05.
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Table 10. Disease severity, shoot fresh weight and root fresh weight of winter 
wheat plants as affected by cultivar in post-emergence test. 
 

Cultivar Disease 
severitya

Shoot 
fresh 

weight 

(g) 

Root 
fresh 

weight 
(g) 

Jagger 1.1 a* 0.53 b 0.45 a 
2137  1.2 ab 0.66 a 0.49 a 
2174  1.3  b 0.63 a 0.47 a 

aDisease severity rating at 14 days after inoculation on a scale of 1-6 
(1= healthy; 2= slight discoloration of leaf sheath or inner stem; 3= 
distinct lesion on the leaf sheath or inner stem; 4= rotting at the base 
of the stem; 5=damping off or yellowing; 6=complete death). 

 *Means in the same column followed by the same letter are not   
 significantly different according to LSMEANS at P≤0.05.

Table 11. Disease severity of wheat plants as affected by isolate and cultivar in 
post-emergence pathogenicity test. 
 

Disease Severitya
Isolate 

Jagger 2137 2174 
Non-inoculated  1.0 a* 1.0 a 1.0 a 

G-24 1.3 b 1.3 b 1.6 b 
Fellers 1.1 a 1.1 a 1.1 a 

aDisease severity rating on a scale of 1-6 (1= healthy; 2= slight   
 discoloration of leaf sheath or inner stem; 3= distinct lesion on the          
 leaf sheath or inner stem; 4= rotting at the base of the stem;  
 5=damping off or yellowing; 6= complete death). 

*Means in the same column followed by the same letter are not   
 significantly different according to LSMEANS at P≤0.05. 
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Table 12. Shoot fresh weight of wheat plants as affected by isolate and cultivar 
in post-emergence pathogenicity test. 
 

Shoot fresh weight (g) Isolate 
Jagger 2137 2174 

Non-inoculated  0.57 a* 0.62 a 0.62 a
G-24 0.49 a 0.65 a 0.60 a

Fellers 0.51 a 0.69 a 0.62 a
*Means in the same column followed by the same letter are not   

 significantly different according to LSMEANS at P≤0.05.

Table 13. Root fresh weight of wheat plants as affected by isolate and cultivar 
in post-emergence pathogenicity test. 
 

Root fresh weight (g) Isolate 
Jagger 2137 2174 

Non-inoculated 0.50 a* 0.48 a 0.47 a
G-24  0.39 ab 0.43 a 0.48 a

Fellers 0.45 b 0.53 a 0.40 a
*Means in the same column followed by the same letter are not   

 significantly different according to LSMEANS at P≤0.05.

Table 14. Disease severity, shoot height, shoot fresh weight of peanut 
seedlings as affected by inoculation of Rhizoctonia isolates. 
 

Isolate Disease 
severitya

Shoot 
height 

(cm) 

Shoot 
fresh 

weight 
(g) 

Non-inoculated 1.0 a* 16.1 a 2.9 a 
G-24 4.1 b 10.3 b 1.9 b 

Fellers 1.1 a 16.1 a 2.9 a 
aDisease severity rating on a scale of 1-6 (1= no symptoms, 2=  

 discoloration and/or small pinpoint lesions, 3 = small, distinct  
 necrotic lesions, 4 = large necrotic lesions, 5 = girdling lesion, and         

 6 = dead seedling.  
 *Means in the same column followed by the same letter are not   
 significantly different according to LSMEANS at P≤0.05. 
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Table 15. Disease severity, shoot height, shoot fresh weight of peanut 
seedlings as affected by genotype. 
 

Cultivar Disease 
severitya

Shoot 
height 

(cm) 

Shoot 
fresh 

weight 
(g) 

Okrun  2.1 a* 13.9 b 2.2 c 
Tamspan 90 2.0 a 17.8 a   2.5 bc 

Southwest Runner 2.0 a 15.1 b 2.9 a 
C-209-660 2.1 a 10.1 c 2.5 b 

aDisease severity rating on a scale of 1-6 (1= no symptoms, 2=  
 discoloration and/or small pinpoint lesions, 3 = small, distinct  
 necrotic lesions, 4 = large necrotic lesions, 5 = girdling lesion, and         
 6 = dead seedling.  
 *Means in the same column followed by the same letter are not   
 significantly different according to LSMEANS at P≤0.05. 

Table 16. Disease severity rating of peanut seedlings as affected by isolate and 
genotype. 
 

Disease severity ratinga
Isolate 

Okrun Tamspan 90 Southwest Runner C-209-660 
Non-inoculated 1.0 a* 1.0 a 1.0 a 1.0 a 

G-24 4.1 b  3.7 b  4.0 b  4.4 b 
Fellers 1.2 a 1.3 a 1.0 a 1.1 a 

aDisease severity rating on a scale of 1-6 (1= no symptoms, 2= discoloration 
and/or small pinpoint lesions, 3 = small, distinct necrotic lesions, 4 = large 
necrotic lesions, 5 = girdling lesion, and 6 = dead seedling.  
*Means in the same column followed by the same letter are not   
significantly different according to LSMEANS at P≤0.05.

Table 17. Shoot height of peanut seedlings as affected by isolate and genotype. 
 

Shoot height (cm) Isolate 
Okrun Tamspan 90 Southwest Runner C-209-660 

Non-inoculated 14.8 a* 20.4 a 17.4 a 11.5 a 
G-24 11.2 b 12.5 b 10.1 b    7.2 b 

Fellers 15.1 a 20.6 a 17.7 a  11.3 a 
*Means in the same column followed by the same letter are not   
significantly different according to LSMEANS at P≤0.05.
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Table 18. Shoot fresh weight of peanut seedlings as affected by isolate and 
genotype. 
 

Shoot fresh weight (g) 
Isolate 

Okrun Tamspan 90 Southwest Runner C-209-660 
Non-inoculated 2.4 a* 2.8 a 3.3 a 2.9 a 

G-24 1.8 b 1.7 b 2.1 b 1.9 b 
Fellers 2.4 a 2.9 a 3.7 a 2.7 a 

*Means in the same column followed by the same letter are not   
significantly different according to LSMEANS at P≤0.05.

Table 19. Formation of infection cushions by isolates of Rhizoctonia on 
cellophane membrane in response to stimulation by peanut root system. 
 

Isolate Infection cushions 
 per squarea

G-24  3.1 a*

RSP 1.4 b 
Fellers 0.3 c 

aMean number of infection cushions per 2 cm2

cellophane. 
 * Means in the same column followed by the same    
 letter are not  significantly different according to        
 LSMEANS at P≤0.05.

Table 20. Formation of infection cushions on cellophane membrane by 
Rhizoctonia spp. in response to stimulation by peanut root system. 
 

Cultivar Infection cushions 
per squarea

Okrun  2.4 a*

Tamspan 90  2.0 ab
Southwest Runner 1.6 b 

C-209-660  1.9 ab
No host   0.0 c 

aMean number of infection cushions per 2 cm2

cellophane. 
 * Means in the same column followed by the same    
 letter are not  significantly different according to   
 LSMEANS at P≤0.05 
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Table 21. Formation of infection cushions by isolates of Rhizoctonia on 
cellophane membrane in response to stimulation by peanut root system. 

Infection cushions per squarea
Isolate Control Okrun Tamspan 90 Southwest Runner C-209-6-60
G-24  0.0 a* 4.8 b 3.7 b 3.8 b 2.8 b 
RSP 0.0 a 1.8 a 1.9 a 0.9 a 2.6 b 

Fellers 0.0 a 0.6 a 0.5 a 0.7 a 0.4 a 
aMean number of infection cushions per 2 cm2 cellophane. 
*Means in the same column followed by the same letter are not   
significantly different according to LSMEANS at P≤0.05.

Table 22. Formation of infection cushions on cellophane membrane by isolates 
of Rhizoctonia in response to stimulation by wheat roots. 
 

Isolate Infection cushions 
 per squarea

G-24  2.2 a*

Fellers 2.7 a 
aMean number of infection cushions per 2 cm2

cellophane. 
 * Means in the same column followed by the same    
 letter are not  significantly different according to    
 LSMEANS at P≤0.05. 
 
Table 23. Formation of infection cushions by Rhizoctonia spp. on cellophane 
membrane in response to stimulation by roots of different winter wheat 
cultivars. 
 

Cultivar Infection cushions 
 per squarea

Jagger 4.5 a*

2137 1.0 b 
2174 3.7 a 

No host 0.0 b 
aMean number of infection cushions per 2 cm2

cellophane. 
 * Means in the same column followed by the same    
 letter are not  significantly different according to   
 LSMEANS at P≤0.05
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Table 24. Formation of infection cushions on cellophane membrane by isolates 
of Rhizoctonia in response to stimulation by roots of winter wheat cultivars. 
 

Infection cushions per squarea
Isolate 

Control Jagger 2137 2174 
G-24  0.3 a* 3.5 a 1.2 a 3.4 a 

Fellers 0.0 a 5.5 a 1.0 a 3.9 a 
aMean number of infection cushions per 2 cm2 cellophane. 

 *Means in the same column followed by the same letter are   
 not significantly different according to LSMEANS at P≤0.05.
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CHAPTER IV

PATHOGENICITY OF 

SCLEROTIUM ROLFSII ON PEANUT AND WINTER WHEAT

ABSTRACT

Sclerotium rolfsii Sacc. is an economically important pathogen on many crops in 

warmer regions of the world. The fungus can cause wide spread damage on 

peanut and to some extent on winter wheat, which are important crops in 

Oklahoma. The objective of this study was to determine the pathogenicity of 

isolates of S. rolfsii on peanut and winter wheat cultivars of Oklahoma.  

Pathogenicity of four isolates of S. rolfsii from peanut (Melouk, Ft. Cobb, Power 

St and Durant) and two from wheat (Wheat and ZP-3082) was determined on 

three peanut (Okrun, Southwest Runner and Tamspan 90) and three winter 

wheat cultivars (Jagger, 2137 and 2174) in greenhouse studies. Four plants of 

each cultivar were inoculated at the R-2 growth stage (peanut) or the two-leaf 

stage (winter wheat) by placing a 0.5 cm agar disk removed from a 3-day-old 

culture onto a 1 cm diameter filter paper that was then pressed to the base of the 

stem. Non-inoculated plants were used as the control. After inoculation, pots 

were covered with polythene sheets to maintain a high relative humidity, which 

were than maintained at 25 ± 2°C in the greenhouse. First assessment of disease 
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was made three days after inoculation (DAI) and every 2 days thereafter for a 

total of 6 assessments. An additional assessment was made on peanut at 24 DAI. 

A 1-6 scale was used for all disease assessments (1=no lesion; 6=complete death 

of plant). Additionally, lesion lengths were measured at each disease assessment 

on peanut and estimates of relative water content (RWC) of leaves were taken at 

the end of the experiment. On peanut, all isolates except Wheat and ZP-3082 

induced blight symptoms. Wilting of plants occurred at nine DAI. On wheat, 

lesions were initially superficial, yellowish and water soaked. Lesions expanded 

and resulted in damping-off of seedlings. Disease severity was lowest at three 

and five DAI and highest at fifteen and twenty-four DAI. Peanut isolates 

(Melouk, Ft. Cobb, Power St and Durant) significantly (P≤0.05) produced a high 

disease severity on peanut and wheat cultivars compared to wheat isolates 

(Wheat and ZP-3082). In the peanut study, averaging across cultivars, isolate 

Durant significantly (P≤0.05) had a higher disease severity with longer lesions 

and lower RWC by the end of the experiment compared to the non-inoculated 

control and the wheat isolates. Averaging across isolates, Southwest Runner 

significantly (P≤0.05) had the lowest disease severity with shorter lesions and 

higher RWC. In the wheat study, averaging across cultivars, isolate Power St 

significantly (P≤0.05) had the highest disease severity by the end of the 

experiment compared to the control and the wheat isolates. Averaging across 

isolates, Jagger significantly (P≤0.05) had the lowest disease severity. Even 

though S. rolfsii is not expected to pose any significant risk to winter wheat 
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production, infection of wheat may enhance survival of S. rolfsii and facilitate 

infection and losses in a peanut crop following wheat. This is especially 

important in certain areas of Oklahoma where a wheat-peanut rotation is 

occasionally practiced. 

 
INTRODUCTION

Sclerotium rolfsii Sacc. is a soilborne fungus that is widespread in tropical  

and warmer portions of the temperate zones. This fungus has a wide host range 

from mosses to composites and includes a large number of economically 

important crops (1). S. rolfsii causes stem and pod rot in peanut where losses are 

estimated at 7-10% annually (8). S. rolfsii is not known to significantly damage 

wheat even though sporadic occurrence of southern blight has been reported 

from some parts of wheat growing regions of the world (2, 4). 

 Currently, the pathogenicity of isolates collected from peanut growing 

regions of Oklahoma on Oklahoma peanut cultivars is unknown. Additionally, 

an isolate of S. rolfsii was collected in recent years from diseased winter wheat 

seedlings in OK, for which the pathogenicity is unknown. Host resistance can be 

used as an important component of an integrated management of S. rolfsii (10). 

Evidence of varietal resistance to S. rolfsii was demonstrated in runner peanuts 

(3, 6, 7, 9). Such resistance was attributed mainly to an impervious cuticle, thick-

walled cortical cells and cork cambium activity (5). However, studies have not 

been found relating to resistance identification towards S. rolfsii in wheat 
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cultivars grown in United States.  Currently, Okrun, a widely grown peanut 

cultivar in Oklahoma, is known to be susceptible towards southern blight 

(personal communication with Dr. Hassan Melouk). Hence, screening for 

resistance to identify tolerance in peanut and winter wheat cultivars to S. rolfsii 

infection is needed. Field experiments are not always reliable to confirm the 

reaction to the disease since distribution of sclerotial inoculum is non-uniform in 

the field (11). Hence, the objective of this research was to quantify the reaction of 

peanut and winter wheat to S. rolfsii under greenhouse conditions. 

 
MATERIALS AND METHODS

Origin and maintenance of S. rolfsii isolates

The S. rolfsii isolates used in this study, along with their origin, host, and 

sources are given in Table 1.  Isolates were maintained by placing surface 

disinfested (10% aqueous NaOCl for 2 min) sclerotia on SPDA [Potato Dextrose 

Agar amended with streptomycin sulfate (0.14 g/L)].  Mycelial plugs (0.5 cm) 

from three-day-old cultures were transferred onto fresh SPDA plates and 

incubated at 23 ± 2 C for three weeks to allow for sclerotial formation. Sclerotia 

were then collected and air-dried, placed into coin envelopes and stored at 23 ± 2 

C in a desiccator containing anhydrous calcium sulfate. 

Pathogenicity tests

Pathogenicity of six isolates of S. rolfsii (Table 1) obtained from peanut and 

wheat was determined on three peanut cultivars (Okrun, Tamspan 90 and 
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Southwest Runner) and three winter wheat cultivars (Jagger, 2137 and 2174) 

under greenhouse conditions. Reaction of peanut and wheat cultivars used in 

this study, to S. rolfsii infection is not known previously. Experiments were 

conducted separately on peanut and winter wheat. Except for Okrun, none of the 

other cultivars of peanut and winter wheat had been tested previously for their 

reaction to S. rolfsii under controlled conditions.  

Peanut study

Peanut seeds were germinated in plastic containers lined with moist 

Whatman # 1 filter papers in an incubator at 30 C for 48 h.  Four germinated 

seeds with good radical growth were selected and planted into 15 cm x 30 cm 

pots containing a mixture of sand, peat moss and topsoil (2:1:1;v/v/v).  

Six weeks after planting, seedlings were inoculated using the mycelial 

disk technique (12). In this technique, a 0.5-cm mycelial disk was removed from a 

3-day-old active Sclerotium culture and appressed to the base of the central stem 

of designated plants.  A 1-cm diameter filter paper was placed underneath each 

mycelial disk to prevent contact with the soil. After inoculation, pots were 

wrapped with clear polyethylene bags to create a humid environment near the 

soil surface and plant crowns. Plants were watered as needed.  

Disease assessment

First assessment of disease was made three days after inoculation (DAI) 

and every 2 days thereafter for a total of 6 assessments. An additional assessment 

was made 24 days after inoculation. A 1-6 scale was used for all disease 
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assessments, where, (1= no lesion on any of the three stems; 2= lesion on one 

stem per plant; 3= lesion on two stems per plant; 4= lesion on three stems per 

plant; 5= wilting or death of at least one stem;6= wilting or death of plant). Also, 

lesion lengths were taken at each disease assessment on each plant, and an 

average lesion length was calculated. 

Relative Water Content

Relative water content (RWC) is the measure of plant water status in 

terms of the physiological consequence of cellular water deficit. RWC estimates 

the current water content of the sampled tissue. On the day of final disease 

assessment, three compound leaf samples were collected from each plant, 

totaling 4 samples from each pot.  Using a cork borer, one cm diameter leaf disks 

were cut from each leaf, one per leaf.   Leaf disks were weighed immediately to 

obtain a leaf sample fresh weight (W), after which the samples were hydrated to 

fully turgidity for 12 hrs. After 12 hrs, samples were taken out of water and dried 

of any surface moisture with filter paper and immediately weighed to obtain full 

turgid weight (TW). Samples were than oven dried at 70°C for 24 hrs and 

weighed to determine the oven dry weight (DW). RWC (%) was calculated as 

follows: 

RWC (%) = [W-DW] / [TW-DW] x 100  

Where, 

W = sample fresh weight 

TW= sample turgid weight 
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DW=sample dry weight. 

 

Wheat study

Three hard red winter wheat cultivars, Jagger, 2137 and 2174 that are 

cultivated in Oklahoma, and which were never tested before for their reaction to 

S. rolfsii infection, were used in this study.  Ten certified wheat seeds of each 

cultivar were planted in 12 cm dia. plastic pots at a depth of 2 cm containing a 

mixture of sand, soil and shredded peat moss (2:1:1; v/v/v). Four days after 

planting, seedlings were thinned to four seedlings per pot.  

Inoculation with S. rolfsii was made at stage 1 on the Feekes’ scale when 

the plants are at the two-leaf stage. A mycelial disk technique was used for 

inoculation (12). A 0.5-cm mycelial disk was removed from a 3-day-old active 

fungal culture and appressed to the base of the pseudostem of designated plants.  

A 1-cm dia. filter paper was than placed underneath each mycelial disk to 

prevent contact with the soil. After inoculation, pots were wrapped with clear 

polyethylene bags to create a humid environment near the soil surface and plant 

crowns. Plants were watered as needed.  

Disease assessment

First assessment of disease was made three days after inoculation and 

every 2 days thereafter for a total of 6 assessments. A 1-6 scale was used for all 

disease assessments, where, 1= no infection on stem; 2= initial lesion on the stem; 
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3= expanded lesion on the stem; 4= expanded lesion with outer sheath lodging;    

5= expanded lesion with whole plant lodging; 6= complete death of the plant. 

Data analysis

The effect of isolate, time and cultivar on pathogenicity was determined 

using analysis of variance techniques with repeated measures. Data analyses 

were performed using PROC MIXED (SAS Version 9.1, SAS Institute Inc., Cary, 

NC). In the peanut study, the response variables considered were disease 

severity, lesion length and RWC (%) and independent variables were isolate, 

time and cultivar. In the wheat study, the effect of isolate, time and cultivar on 

disease severity was determined. 

 
RESULTS

Peanut study

Isolates of S. rolfsii from peanut produced blight symptoms that included 

light brown lesions on main stems and branches, and wilting of leaves (Fig. 1b). 

Severity of disease varied significantly over the 24-day duration of the 

experiment depending on the isolate and peanut cultivar. Isolates from peanut 

showed a progressive increase in disease severity and lesion development with 

time whereas the wheat isolates were non-pathogenic during the entire duration 

of the experiment (Figs. 2 and 3).   
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Disease severity as affected by isolate x cultivar

Averaging across days when assessments were made, disease severity by 

isolates Durant and Ft. Cobb was significantly lower (P≤0.05) on Southwest 

Runner whereas Tamspan 90 exhibited the highest disease severity (Table 4). No 

significant differences (P>0.05) in disease severity were observed among 

cultivars when inoculated with the other isolates and the non-inoculated control 

(Table 4). 

Disease severity as affected by isolate

Disease severity was lowest at three and five days after inoculation and 

highest at 15 and 24 days after inoculation (Table 2). Severity of disease was 

relatively high on plants inoculated with peanut isolates (Durant, Ft. Cobb, 

Melouk and Power St) compared to wheat isolates (ZP-3082 and Wheat). Wheat 

isolates (Wheat, ZP-3082) did not differ significantly (P>0.05) from the non-

inoculated control during the entire duration of the experiment (Table 2). At 3 

DAI, disease severity of isolates Power St and Durant were significantly different 

(P≤0.05) from the non-inoculated control and Wheat. No significant differences 

were observed among other isolates (Table 2).  Starting from 5 DAI, peanut 

isolates Durant, Ft Cobb, Melouk and Power St had significantly (P≤0.05) higher 

disease severity ratings compared to Wheat, ZP-3082 and the non-inoculated 

control. Isolate Durant recorded significantly (P≤0.05) highest disease severity 

starting from 7 DAI, followed by isolate Power St (Table 2). Symptoms of wilting 

appeared on some of the infected plants starting at 11 DAI and became more 
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pronounced from 15 DAI. Disease severity on plants inoculated with isolate 

Durant and Power St was at its peak at 24 DAI and resulted in complete lodging 

and death of plants. 

Disease severity as affected by cultivar

Significant differences in disease severity were observed among peanut 

cultivars Okrun, Southwest Runner and Tamspan 90 starting from 11 DAI (Table 

3). Southwest Runner had a significantly lower disease severity from this period 

as compared to Okrun and Tamspan 90 (Table 3).  

Lesion length as affected by isolate x cultivar

The length of lesions produced by isolates Durant and Ft Cobb was 

significantly higher (P≤0.05) on Tamspan 90 and low on Southwest Runner 

(Table 7). No significant differences (P>0.05) in lesion lengths were observed 

among cultivars when inoculated with other isolates and non-inoculated control 

(Table 7). 

Lesion length as affected by isolate

Early stage lesions were observed with peanut isolates at 3 DAI and no 

lesions were formed on plants inoculated with wheat isolates. No significant 

differences (P>0.05) in lesions lengths were observed among isolates during the 

initial period (Table 5). However, length of lesion produced by peanut isolates 

was significantly higher starting from 7 DAI, as compared to the non-inoculated 

control and the Wheat isolates (ZP-3082 and Wheat). Lesion length produced by 
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wheat isolates (ZP-3082 and Wheat) was not significantly different from the non-

inoculated control during the entire period of the experiment (Table 5). Length of 

lesion produced by the isolate Durant was significantly higher than other isolates 

starting from 13 DAI, followed by Power St (Table 5).  

Lesion length as affected by cultivar

No significant differences (P>0.05) in lesion length were observed among 

cultivars Okrun, Southwest Runner and Tamspan 90 during the initial period 

(Table 6). However, significant differences (P≤0.05) appeared starting from 9 

DAI. From this period, Tamspan 90 significantly (P≤0.05) had large lesions 

compared to other cultivars (Table 6). By the end of the experiment (24 DAI), 

Southwest Runner had significantly (P≤0.05) smaller lesions followed by Okrun 

and Tamspan 90 (Table 6). 

Relative water content

Significant differences (P≤0.05) in RWC were observed among cultivars 

when inoculated with isolates Durant and Ft Cobb (Table 8). When inoculated 

with these isolates, Southwest Runner had the highest RWC  whereas Tamspan 

90 had lowest RWC (Table 8). No significant differences were observed among 

cultivars when inoculated with other isolates and non-inoculated control. 

Wheat study

Isolates of S. rolfsii used in this study produced blight symptoms on young 

wheat seedlings (Fig. 1a). Lesions were initially yellowish and later turned light 

brown in color. Disease severity varied significantly over the 15-day duration of 
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the experiment depending on the isolate and winter wheat cultivar. All isolates 

showed a progressive increase in disease severity (Fig. 4).  Disease severity was 

lowest at three and five days after inoculation and highest at fifteen days after 

inoculation (Table 9). 

Disease severity as affected by isolate x cultivar

Averaging across days when disease assessment was made, disease 

severity of isolate Durant was significantly low (P≤0.05) on Jagger compared to 

2137 (Table 11). No other significant differences (P>0.05) in disease severity were 

observed among cultivars when inoculated with other isolates and the non-

inoculated control (Table 11).  

Disease severity as affected by isolate

Disease severity of peanut isolates (Durant, Ft. Cobb, Melouk and Power 

St) was significantly (P≤0.05) higher starting from 5 DAI, compared to the non-

inoculated control and the wheat isolates, ZP-3082 and Wheat (Table 9).  The 

wheat isolates (Wheat, ZP-3082) had a significantly (P≤0.05) higher disease 

severity compared to the non-inoculated control starting from 7 DAI (Table 9). 

Disease severity among peanut isolates did not differ significantly by the end of 

the experiment (15 DAI).  

Disease severity as affected by cultivar

No significant differences in disease severity were observed among winter 

wheat cultivars (Table 10) at 3, 11 and 13 DAI. However, differences in disease 

severity appeared at 5, 7, 9 and 15 DAI (Table 10). At 5 and 9 DAI, 2137 had a 
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significantly (P≤0.05) higher disease severity compared to 2174 but was not 

significantly (P>0.05) different from Jagger (Table 10). At 7 DAI, 2137 had 

significantly (P≤0.05) high disease severity compared to Jagger and 2174 (Table 

10). However, by the end of the experiment (15 DAI) 2174 has significantly 

higher disease compared to Jagger but was significantly different from 2137 

(Table 10). Overall, the effect of cultivar on disease severity was not consistent 

over the duration of the experiment 

 

DISCUSSION

Isolates of Sclerotium rolfsii used in this study came from two crops, peanut 

and wheat. S. rolfsii is known to cause major damage on peanut (1). However, 

pathogenicity on wheat is relatively unknown. Results from the experiments 

presented in this paper demonstrated that isolates of S. rolfsii from peanut were 

highly pathogenic on both peanut and winter wheat cultivars. Alternatively, S. 

rolfsii isolates from wheat were less virulent on winter wheat and non pathogenic 

on peanut cultivars.  

Sclerotia of S. rolfsii of peanut isolates produced in culture were 

considerably larger than those of the wheat isolates.  Isolate Wheat from 

Oklahoma had the smallest sclerotia of all the isolates used in this study followed 

by ZP-3082. Moreover, isolate Wheat had sparse mycelial formation both on 

plant tissue and on artificial media. Scleortial initials were formed as early as 4 

days after incubation and this could be one reason that the isolate has the least 
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capability to proliferate and invade the host tissue (observation derived from 

Sclerotinia minor after personal communication with Dr. H.A. Melouk).  

In the peanut study, isolate Durant was highly virulent on peanut 

cultivars compared to the other isolates. Both disease severity and length of 

lesions were significantly higher for this isolate. Wheat isolates, Wheat and ZP-

3082 were non pathogenic on peanut cultivars and were not significantly 

different from the non-inoculated control. In the wheat study, both Power St and 

Ft. Cobb were highly pathogenic on winter wheat cultivars followed by the 

isolate Durant. The wheat isolates, Wheat and ZP-3082 showed limited virulence 

but were significantly higher than non-inoculated control. 

To assess pathogenicity on peanut, disease severity (1-6 scale), lesion 

length and relative water content of the plant (RWC) were measured and the 

results from all three parameters agree with each other. Hence, any one of these 

parameters can be used to assess pathogenicity of the causal organism. However, 

under field conditions, disease severity is recommended, since measuring lesion 

lengths and RWC is impractical. S. rolfsii infection can initiate on any one or all of 

the branches in peanut plant. Rating the disease on just the main stem could bias 

the results if the infection occurs on side branches.  Hence we devised our rating 

scale based on all three stems (main stem and two side branches). Lesion lengths 

were the average of measurements on all three stems.  Our results clearly 

indicate that RWC in infected plants is a good indicator of disease severity. 
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Virulent isolates such as Durant that produced high disease severity resulted in 

low RWC plants and vice-versa with non-pathogenic isolates such as Wheat. 

Among peanut cultivars, Southwest Runner had the lowest disease 

severity rating, smaller lesions and higher RWC compared to Okrun and 

Tamspan 90 suggesting that this runner market type has some resistance to        

S. rolfsii infection. Field studies in this aspect are needed. Tamspan 90 

consistently had a higher disease severity rating and large lesions suggesting 

susceptibility to S. rolfsii infection. These observations agree with the general 

notion that plants with an upright growth habit such as Tamspan 90 are least 

resistant to S. rolfsii compared to cultivars with a spreading growth habit such as 

Okrun and Southwest Runner. However, reports on this concept were conflicting 

(3, 9). 

Our data suggest that S. rolfsii from peanut has the potential to cause early 

damage on winter wheat seedlings in Oklahoma when warm temperatures 

prevail during the early part of the growing season. However, late infections on 

mature plants are not expected given the cold conditions that prevail during the 

later part of the crop-growing season. Greenhouse studies suggest that the isolate 

Wheat that was found in Oklahoma poses no risk to peanut or winter wheat 

production in Oklahoma. However, winter wheat planted in a peanut field with 

a history of Southern blight may have a risk of an early infection if conditions 

favor the pathogen. Alternatively, infection of wheat may enhance survival of S. 

rolfsii and facilitate infection and losses in a following peanut crop. This is 
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especially important in certain areas of Oklahoma where a wheat-peanut rotation 

is occasionally practiced. 

 



73

LITERATURE REVIEW

1. Aycock, R. 1966. Stem rot and other diseases caused by Sclerotium rolfsii.
N. C. Agric. Exp. Stn. Tech. Bull. 174. 202 pp.  

 
2. Choppakatla, V., Hunger, R.M., Melouk, H.A., and Siegerist, C. 2006. First 

Report of Sclerotium rolfsii on wheat in Oklahoma. Plant Disease 90: 686. 

3. Garren, K.H., and Bailey, W.K. 1963. Comparative responses of Virginia 
runner and Virginia bunch peanut to cultural control of stem rot. Agron. J. 
55:290-293.  

 
4. Godfrey, G.H. 1918. Sclerotium rolfsii on wheat. Phytopathology 8: 64-66. 

 
5. Higgins, B.B. 1927. Physiology and parasitism of Sclerotium rolfsii Sacc. 

Phytopathology 17:417-448. 
 

6. McClintock, J.A. 1917. Peanut-wilt caused by Sclerotium rolfsii. J. Agr. 
Research 8:441-448. 

 
7. McClintock, J.A. 1918. Further evidence relative to the varietal resistance 

of peanuts to Sclerotium rolfsii. Science (NS) 47: 72-73. 
 

8. Melouk, H.A., and Backman, P.A. 1995. Management of soilborne fungal 
pathogens. Pages 75-82. In Melouk, H.A., and Shokes, F.M. Eds. Peanut 
Health Management. The American Phytopathological  Society, St. Paul, 
MN. 

 
9. Muheet, A., Chandran, L.S., and Agrwall, O.P. 1975. Relative resistance in 

groundnut varieties for Sclerotial root rot (Sclerotium rolfsii Sacc.). Madras 
Agric. J. 62:164-165. 

 
10. Punja, Z.K. 1985. The biology, ecology and control of Sclerotium rolfsii.

Ann. Rev. Phytopathology 23: 97-127. 
 

11. Shew, B.B., Beute, M.K., and Campbell, C.L. 1984. Spatial pattern of 
southern stem rot caused by Sclerotium rolfsii in six North Carolina peanut 
fields. Phytopathology 74:1290-1295.  

 
12. Shokes, F.M., Rozalski, K., Gorbet, D.W., Brenneman, T.B., and Berger, 

D.A. 1996. Techniques for inoculation of peanut with Sclerotium rolfsii in 
the greenhouse and field. Peanut Science 23:124-128. 

 



74

Fig. 1. (a) Southern blight on wheat  (b) Sclerotium wilt on peanut. 

Fig. 2. Disease severity of S. rolfsii isolates on peanut cultivars. 
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Fig. 3. Lesion development by S. rolfsii isolates on peanut cultivars. 
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Fig. 4. Disease severity of S. rolfsii isolates on winter wheat cultivars. 
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Table 1. Isolates of Sclerotium rolfsii used for pathogenicity studies on peanut 
and winter wheat. 
 

Isolate Host Year Location Source 
Melouk Peanut 1992 Stillwater, OK H.A. Melouk
Power St Peanut 1997 Stillwater, OK H.A. Melouk
Durant Peanut 1992 Durant, OK H.A. Melouk

Ft. Cobb Peanut 1998 Ft. Cobb, OK H.A. Melouk
Wheat Wheat 1998 Stillwater, OK R.M. Hunger

ZP-3082 Wheat 1993 Nepal Z.K. Punja 

Table 2. Disease severity of Sclerotium rolfsii on peanut cultivars as 
affected by isolate. 
 

Disease severity at (X) days after inoculationa

Isolate 
3 5 7 9 11 13 15 24 

Non-inoculated 1.0 a* 1.0 a 1.0 a 1.0 a 1.0 a 1.0 a 1.0 a 1.0 a 

Wheat 1.0 a 1.0 a 1.0 a 1.0 a 1.0 a 1.0 a 1.0 a 1.0 a 

ZP-3082 1.1 a 1.1 a 1.2 a 1.2 a 1.3 a 1.3 a 1.3 a 1.3 a

Melouk 1.3 a 1.5 b 1.5 b 1.7 b 1.9 b 2.1 b 2.3 b 2.8 b

Ft. Cobb 1.3 a 1.5 b 1.7 bc 2.0 b 2.0 b 2.1 b 2.3 b 3.0 b

Power St   1.4 ab 1.6 b 1.8 bc 2.1 c 2.4 c 2.8 c 3.1 c 3.5 c

Durant 1.6 b 1.8 b 2.1 c 2.6 d 2.9 d 3.3 d 3.6 d 4.1 d

aDisease severity rating on a scale of 1-6 (1= No lesion on any of the    
three stems; 2= Lesion on one stem per plant; 3= Lesion on two stems   
per plant; 4= Lesion on three stems per plant; 5= Wilting or death of at   
least one stem;6= Wilting or death of plant). 

*Means within a column followed by the same letter are not   
 significantly different according to LSMEANS at P≤0.05.
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Table 3. Disease severity of Sclerotium rolfsii on peanut as affected by 
cultivar. 
 

Disease severity at (X) days after inoculationa

Cultivar 
3 5 7 9 11 13 15 24

Okrun  1.3 a* 1.4 a 1.5 a 1.6 a 1.8 ab 2.0 b 2.2 b 2.5 b

Southwest Runner 1.2 a 1.3 a 1.4 a 1.6 a 1.6 a 1.7 a 1.8 a 2.1 a 

Tamspan 90 1.2 a 1.4 a 1.5 a 1.7 a 1.9 b 2.1 b 2.2 b 2.6 b

aDisease severity rating on a scale of 1-6 (1= No lesion on any of the    
three stems; 2= Lesion on one stem per plant; 3= Lesion on two stems   
per plant; 4= Lesion on three stems per plant; 5= Wilting or death of at   
least one stem;6= Wilting or death of plant). 

*Means within a column followed by the same letter are not   
 significantly different according to LSMEANS at P≤0.05.

Table 4. Disease severity of isolates of Sclerotium rolfsii on peanut in 
response to cultivar. 
 

Disease severitya

Cultivarb
Control Durant Ft. 

Cobb Melouk Power 
St Wheat ZP-3082 

OK  1.0 a* 2.9 b 1.8 a 2.1 a 2.5 a 1.1 a 1.2 a 
SW 1.0 a 2.3 a 1.7 a 1.8 a 2.2 a 1.0 a 1.1 a 
TS  1.0 a 3.1 b 2.5 b 1.7 a 2.3 a 1.0 a 1.3 a 

aDisease severity rating on a scale of 1-6 (1= No lesion on any of the    
 three stems; 2= Lesion on one stem per plant; 3= Lesion on two stems   
 per plant; 4= Lesion on three stems per plant; 5= Wilting or death of at   
 least one stem;6= Wilting or death of plant). 

bOK=Okrun; SW=Southwest Runner; TS=Tamspan 90. 
 *Means within a column followed by the same letter are not   
 significantly different according to LSMEANS at P≤0.05.
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Table 5. Length of lesions caused by Sclerotium rolfsii on peanut 
cultivars as affected by isolate. 
 

Length of lesion in cm at (X) days after inoculation 

Isolate 
3 5 7 9 11 13 15 24 

Non-inoculated 0.0 a* 0.0 a 0.0 a 0.0 a 0.0 a 0.0 a 0.0 a 0.0 a 

Wheat 0.1 a 0.1 a 0.1 a 0.1 a 0.1 a 0.1 a 0.1 a 0.1 a 

ZP-3082 0.2 a 0.3 a 0.4 a 0.5 a 0.5 a 0.5 a 0.6 a 1.0 a 

Melouk 0.8 a 1.5 a 2.2 ab 3.1 b 3.5 b 4.7 b 5.7 b 11.3 b

Ft. Cobb 0.9 a 1.6 a 2.2 ab 3.0 b 3.0 b 4.1 b 5.5 b 9.3 b 

Power St 1.1 a 2.2 a 3.0 b 4.2 b 5.7 bc 7.9 c 10.3 c 15.1 c

Durant 1.6 a    2.4  ab 3.6 b 5.5 bc 8.0 c 10.7 d 13.8 d 21.9 d

*Means within a column followed by the same letter are not significantly   
 different according to LSMEANS at P≤0.05.
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Table 6. Length of lesion caused by Sclerotium rolfsii on peanut as 
affected by cultivar. 
 

Length of lesion in cm at (X) days after inoculationa

Cultivar 
3 5 7 9 11 13 15 24

Okrun 0.6 a* 1.0 a 1.3 a 1.9 ab 2.1 a 3.1 a 3.9 a 7.6 b 

Southwest Runner 0.6 a 1.0 a 1.4 a 1.7 a 2.2 a 2.7 a 3.3 a 5.2 a 

Tamspan 90 0.9 a 1.5 a 2.3 a 3.3 b 4.6 b 6.2 b 8.1 b 12.2 c

*Means within a column followed by the same letter are not   
 significantly different according to LSMEANS at P≤0.05.

Table 7. Lesion lengthsa of isolates of Sclerotium rolfsii on peanut in 
response to cultivar. 
 

Isolate 
Cultivarb

Control Durant Ft. 
Cobb Melouk Power 

St Wheat ZP-3082 

OK  0.0 a* 7.1 a 2.1 a 3.9 a 5.1 a 0.1 a 0.4 a 
SW 0.0 a 4.4 a 2.4 a 3.0 a 5.9 a 0.0 a 0.2 a 
TS  0.0 a 13.8 b 6.6 b 5.4 a 7.5 a 0.1 a 1.0 a 

aLength of lesion measured in cm. 
 bOK=Okrun; SW=Southwest runner; TS=Tamspan 90. 
 *Means within a column followed by the same letter are not   
 significantly different according to LSMEANS at P≤0.05.
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Table 8. Relative water contenta in peanut cultivars as affected by 
inoculation of different isolates of Sclerotium rolfsii.

Isolate 

Cultivarb
Control Durant Ft. 

Cobb Melouk Power 
St Wheat ZP-3082 

OK  95.9 a* 78.6 b 95.2 b 84.8 a 81.0 a 93.2 a 92.0 a 
SW 93.1 a  80.5 b   90.6 ab 91.1 a 82.9 a 94.4 a 92.6 a 
TS  91.8 a 67.5 a 85.2 a 90.5 a 81.2 a 93.8 a 91.9 a 

aRelative water content in %  = [W-DW] / [TW-DW] x 100 Where,                    
 W =sample fresh weight, TW= sample turgid weight, DW=sample dry   
 weight. 
 bOK=Okrun; SW=Southwest runner; TS=Tamspan 90. 
 *Means within a column followed by the same letter are not   
 significantly different according to LSMEANS at P≤0.05.

Table 9. Disease severity in winter wheat as affected by Sclerotium rolfsii 
isolates. 
 

Disease severity at (X) days after inoculationa
Isolate 

3 5 7 9 11 13 15
Controlb 1.0 a* 1.0 a 1.0 a 1.0 a 1.0 a 1.0 a 1.0 a 
ZP-3082 1.1 a 1.3 a 1.4 b 1.6 b 1.8 b 2.3 b 3.0 b 
Wheat 1.2 a 1.4 a 1.6 b 1.8 b 2.0 b 2.5 b 3.0 b 
Durant   1.5 ab 2.1 b 2.4 c 2.7 c 2.9 c 3.4 c 4.0 c 
Melouk  1.7  b 2.3 b 2.7 c 2.9 c 3.3 c 3.5 c 3.9 c 
Ft. Cobb   1.5 ab 2.4 b 2.8 c 3.1 c   3.4 cd 3.8 c 4.3 c 
Power St   1.6 ab 2.5 b   3.1 cd   3.3 cd   3.6 cd   3.9 cd 4.3 c 

aDisease severity rating on a scale of 1-6 (1= No infection on stem; 2= Initial   
 lesion on the stem; 3= Expanded lesion on the stem; 4= Expanded lesion with  
 outer sheath lodging; 5= Expanded lesion with whole plant lodging; 6=   
 Complete death of the plant). 

bNon-inoculated. 
 *Means within a column followed by the same letter are not   
 significantly different according to LSMEANS at P≤0.05.



81

Table 10. Disease severity in winter wheat caused by isolates of 
Sclerotium rolfsii. 

Disease severity at (X) days after inoculationa
Cultivar 

3 5 7 9 11 13 15
Jagger  1.3 a* 1.8 ab 2.1 a 2.3 ab 2.4 a 2.7 a 3.2 a 
2137 1.5 a   2.1 b 2.4 b     2.5 b 2.7 a 3.0 a    3.4 ab 
2174 1.3 a   1.7 a 2.0 a     2.2 a 2.6 a 3.0 a   3.5 b 

aDisease severity rating on a scale of 1-6 (1= No infection on stem; 2= Initial   
 lesion on the stem; 3= Expanded lesion on the stem; 4= Expanded lesion with  
 outer sheath lodging; 5= Expanded lesion with whole plant lodging; 6=   
 Complete death of the plant). 

*Means within a column followed by the same letter are not   
 significantly different according to LSMEANS at P≤0.05.

Table 11. Disease severity in winter wheat in response to cultivar caused 
by isolates of Sclerotium rolfsii. 

Disease severitya

Cultivar 
Control Durant Ft. 

Cobb Melouk Power 
St Wheat ZP-3082 

Jagger  1.0 a* 2.3 a 3.1 a 2.7 a 3.2 a 1.9 a 1.6 a 
2137 1.0 a 3.0 b 3.2 a 3.1 a 3.4 a 2.1 a 1.8 a 
2174 1.0 a  2.8 ab 2.9 a 2.8 a 3.0 a 1.7 a 2.0 a 

aDisease severity rating on a scale of 1-6 (1= No infection on stem; 2= Initial   
 lesion on the stem; 3= Expanded lesion on the stem; 4= Expanded lesion with  
 outer sheath lodging; 5= Expanded lesion with whole plant lodging; 6=   
 Complete death of the plant). 

*Means in the same column followed by the same letter are not   
 significantly different according to LSMEANS at P≤0.05.
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CHAPTER V

PRODUCTION OF ENDO-POLYGALACTURONASE AND OXALIC ACID 

BY ISOLATES OF SCLEROTIUM ROLFSII

ABSTRACT

Sclerotium rolfsii produces endo-polygalacturonase (endo-PG) and oxalic acid to 

facilitate infection and degradation of host tissues. Our previous studies on 

pathogenicity showed that isolates of S. rolfsii from peanut are highly virulent on 

peanut and wheat, whereas isolates from wheat are less virulent on wheat and 

non-pathogenic on peanut. A study was initiated to determine the activity of 

endo-PG and oxalic acid by one isolate of S. rolfsii from peanut (Melouk) and one 

isolate from wheat (Wheat) and observe the relationship of this activity with the 

virulence. This study was conducted as three separate experiments. In the first 

experiment, production of endo-PG and oxalic acid were studied at different 

culture ages (3, 5 and 7 days) using sodium polypectate (Napp) as the source of 

carbon for fungal growth. In the second experiment, different carbon sources 

were used including glucose, Napp, fresh-, oven dried- and frozen-dried peanut 

and wheat stems. Activity of endo-PG and oxalic acid were then determined in 7-

day old culture filtrates. In the third experiment, peanut (Okrun; 6 week-old) and 

winter wheat (Jagger; 11 day-old) plants were inoculated with S. rolfsii isolates 
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and activity of endo-PG and oxalic acid were determined in diseased tissues 7 

and 14 days after inoculation in wheat and peanut, respectively. Endo-PG 

activity was determined using viscosity reduction and reducing sugar assays. 

Oxalic acid production was determined using a commercial oxalate test kit. 

Results from the first experiment indicated that culture filtrates from the peanut 

isolate Melouk had significantly higher endo-PG activity than the isolate Wheat. 

Oxalic acid concentration did not differ significantly between the two isolates. 

Results from the second experiment indicated that isolates produced negligible 

amounts of endo-PG in the presence of glucose. As determined by the reducing 

sugar assay, culture filtrates of the isolate Melouk had significantly higher 

activity of endo-PG in the presence of Napp, fresh peanut, or oven-dried wheat 

stems. Oxalic acid concentrations did not differ significantly between the two 

isolates except in the presence of fresh wheat stems, where the isolate Wheat had 

a significantly higher oxalic acid concentration than the isolate Melouk. Results 

from the third experiment indicated significantly higher endo-PG and oxalic acid 

activity in living tissues infected with the isolate Melouk as compared to the 

isolate Wheat, which suggested a positive correlation between isolate virulence 

and production of endo-PG and oxalic acid. However, the in vitro studies 

(experiments 1 and 2) indicate a correlation only with endo-PG and not with 

oxalic acid. In conclusion, results from these studies suggest that production of 

endo-PG and oxalic acid are influenced by the nature and type of carbon source. 

Use of host plant material as a carbon source for in vitro studies will support 
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abundant production of endo-PG and oxalic acid. However, use of host plant 

material as a carbon source does not necessarily simulate the actual conditions 

present in living host tissue. Further, our results suggest that in vitro studies by 

themselves are not always a good indicator of the actual nature of the pathogen 

in terms of production of endo-PG and oxalic acid.   

 
INTRODUCTION

Production of endo-polygalacturonase (endo-PG) and oxalic acid are 

important for the infection process by Sclerotium rolfsii Sacc (7, 9, 11). Both of 

these compounds are reported to act synergistically and account for a rapid 

collapse and death of infected tissues (4). S. rolfsii is also known to produce other 

extracellular enzymes such as cutinase, phosphatidase and galactanase but their 

role in pathogenesis is not conclusively established (1, 13, 14). Previous reports 

have shown that virulence of S. rolfsii isolates is positively correlated with the 

production of endo-PG and oxalic acid and lowering the oxalic acid levels has 

been reported to result in less disease (9, 11).  

Oxalic acid is proposed to remove calcium ions attached to pectin 

molecules and expose host cell walls to fungal enzymes such as endo-PG (4). 

Oxalic acid also reduces the pH of plant tissues close to the optimum for 

enzymes such as endo-PG (4). Oxalic acid was shown to alter guard cell 

osmoregulation and interferes with abscisic acid (ABA)-induced stomatal closure 

(12). Despite such reports, the role of oxalic acid in pathogenesis is not clearly 
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established and is subject to certain limitations. Virulence of an isolate is not 

affected until the oxalic acid levels are at the minimum concentration injurious to 

plant tissue. Hence final concentrations are needed when attempting to correlate 

differences in virulence with the observed differences in oxalic acid 

concentrations (9).  

Past studies on production of endo-PG and oxalic acid were mostly 

conducted in vitro using different carbon sources that support abundant endo-PG 

and oxalic acid production (5, 10, 11). Sodium polypectate was normally used as 

a substrate during endo-PG assays. Sodium polypectate is a polymer of 

galacturonic acid molecules and endo-PG acts on the polymer by breaking it 

down into individual galacturonic acid molecules. In one study, bean seedlings 

inoculated with S. rolfsii exhibited a rapid reduction in galacturonic acid content 

due to the activity of endo-PG (3). Similarly, various carbon sources were defined 

for a culture medium that would support abundant oxalic acid production 

without affecting mycelial growth (10). However, studies have not been reported 

in which host plant material was used as the source of carbon. In this respect, 

studies were initiated with the following objectives: 

1. Determine the activity of endo-PG and oxalic acid concentration in  
 

filtrates from different culture age using sodium polypectate as a carbon  
 

source. 
 

2. Determine the activity of endo-PG and oxalic acid concentration in  
 

filtrates from cultures grown in media with different carbon sources. 
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3. Determine the activity of endo-PG and oxalic acid concentration in host  
 

tissue in response to infection by S. rolfsii.

MATERIALS AND METHODS

Origin and maintenance of Sclerotium rolfsii isolates

Sclerotium rolfsii isolates (Melouk & Wheat) were used throughout this 

investigation. Isolate Melouk was collected from a S. rolfsii infected peanut in 

Oklahoma in 1992 (Courtesy: Dr. H. A. Melouk). Isolate Wheat was originally 

collected from winter wheat seedlings showing symptoms of Sclerotium blight in 

Oklahoma in 1998 (Courtesy: Dr. R.M. Hunger). Pathogenic studies have shown 

that isolate Melouk was virulent on both peanut and winter wheat cultivars 

whereas the isolate Wheat was non-pathogenic on peanut and less virulent on 

wheat (Data presented previously).  

Isolates were maintained by placing surface disinfested (10% aqueous 

NaOCl for 2 min) sclerotia on SPDA [Potato Dextrose Agar amended with 

streptomycin sulfate (0.14 g/L)].  Mycelial plugs (0.5 cm) from three-day-old 

cultures were transferred onto fresh SPDA in plates and incubated at 23 ± 2 C for 

three weeks for production of sclerotia. Sclerotia were then collected from the 

cultures, air-dried, placed into coin envelopes and stored at 23 ± 2 C in a 

desiccator containing anhydrous calcium sulfate. 
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In vitro activity of endo-PG and oxalic acid concentration in cultures of 

different ages

Culturing procedure and culture-filtrate collection

Isolates of S. rolfsii (Melouk and Wheat) were grown on a liquid basal 

medium containing KNO3 10 g; KH2PO4, 5g; MgSO4.7H2O, 2.5g; FeCl3, 0.02g that 

had been supplemented with 0.5% of sodium polypectate (NaPP). Fifty ml of the 

medium was placed in to 125 ml Erlenmeyer flasks and autoclaved for 20 min at 

121 C. After autoclaving, flasks were inoculated with three mycelial plugs (0.5 

cm) of 3-day-old fungus and incubated on a rotary shaker (110 rpm) at 25 C. 

Culture filtrates were collected 3, 5, and 7 days after incubation by filtration 

through glass microfibre filter paper (Whatman®). One hundred µl of 20% 

sodium azide was added to the filtrate which was stored at 4 C until used. The 

combination of two isolates, non-inoculated control, and three culture ages (3, 5 

and 7 days) resulted in 9 treatments. Each treatment was replicated three times 

(i.e., three flasks), and the experiment was conducted twice. 

Determination of endo-PG activity

Endo-PG activity of the culture filtrates was determined by both the 

viscosity reduction assay and the reducing sugar assay using Napp in a 0.05 M

acetate buffer (pH 5.0) as the substrate. The viscosity reduction assay was 

conducted as follows: Equal volumes of culture filtrate and Napp solution were 

mixed for 10 seconds and transferred to a Cannon-Fenske viscometer tube No. 

300, which was immersed in a water bath at 30 C. Initial viscosity was measured 
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one minute after adding culture filtrate to the substrate. Subsequent readings 

were taken at suitable intervals. Viscosity was expressed as time required in 

seconds for the solution to flow from one mark point to another in a Cannon-

Fenske viscometer tube. Relative activity (RA) of the enzyme was expressed as 

the reciprocal value of incubation time (t) in minutes required to reduce the 

initial viscosity of mixture of culture filtrate and the 2% sodium polypectate 

solution at 30 C by 50%, multiplied by 100, i.e. 1/t x 100 (8).  

The reducing sugar assay was based on the hydrolytic release of reducing 

groups from polygalacturonic acid (6). A reaction mixture (1.8 ml total volume) 

containing 1.35 ml of 0.1% Napp solution, 0.225 ml of 50 mM Na-acetate buffer 

(pH 5.0) and 0.225 ml of culture filtrate were incubated at 30 C in a water bath. In 

order to quantify released reducing sugars with 2-cyanoacetamide, reactions 

were terminated at four regular intervals (0, 2.5, 5.0 and 7.5 min) by mixing with 

1.2 ml of cold 100 mM borate buffer (pH 9.0) containing 0.2% 2-cyanoacetamide 

(Sigma-Aldrich, St. Louis, USA) and immersion into a boiling water bath for 10 

min. Samples were allowed to cool to room temperature and absorbance at 276 

nm was determined using a Beckman Model 25 spectrophotometer.  Enzyme 

activity (EA) was measured in units (i.e. µmole/min) per ml of culture filtrate 

and calculated as follows: 

Units per ml of culture filtrate = (∆A276/min) C (6.29) C (1/ml of enzyme in 1.8  
 
ml of reaction mixture). 
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Determination of oxalic acid concentration in culture filtrates

Oxalic acid concentration in culture filtrates was determined using the  
 
oxalate test kit (Trinity Biotech USA, St. Louis, MO). The enzymatic reactions  
 
involved in the assay procedure are as follows: 
 

Oxalate oxidase 
Oxalate + O2                              2CO2 + H2O2 
 

Peroxidase 
H2O2 + MBTH + DMAB                        Indamine Dye+ H2O. 
 

Oxalate is oxidized to carbon dioxide and hydrogen peroxide by oxalate 

oxidase. The hydrogen peroxide reacts with 3-methyl-2-benzothiazolinone 

hydrazone (MBTH) and 3-(dimethylamino) benzoic acid (DMAB) in the presence 

of peroxidase to yield an indamine dye which has an absorbance maximum at 

590 nm. The absorbance of the color produced is linear with the concentration of 

oxalate in the sample. Thus, the oxalate concentration was calculated as: 

Oxalate concentration (mM/L) = ((Asample – Ablank) / (Astandard - Asample))  

where, 

Asample = Absorbance of sample at 590 nm 

Ablank = Absorbance of blank at 590 nm 

Astandard = Absorbance of standard at 590 nm 

Data analysis

The effect of isolate and culture age on endo-PG activity and oxalic 

acid concentration were performed using PROC MIXED (SAS Version 9.1, SAS 

Institute Inc., Cary, NC). The response variables considered were the relative 
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activity (RA) of an enzyme obtained from the viscosity reduction assay, the 

enzyme activity (EA) obtained from the reducing sugar assay and the oxalic acid 

concentration obtained from the oxalic acid assay. Isolate and culture age were 

considered as independent variables.  

In vitro activity of endo-PG and oxalic acid concentration in culture filtrates 

collected from media containing various carbon sources

Culturing procedure and culture-filtrate collection

Isolates of S. rolfsii (Melouk and Wheat) were grown in a liquid basal 

medium containing KNO3 10 g; KH2PO4, 5g; MgSO4.7H2O, 2.5g; FeCl3, 0.02g and 

supplemented with one of the following carbon sources listed in Table 1. Fifty ml 

of the medium was placed in each 125 ml Erlenmeyer flask and autoclaved for 20 

min at 121 C. After autoclaving, medium in flasks were inoculated with three 

mycelial plugs (0.5 cm) excised from a 3-day-old fungus culture. These were 

incubated on a rotary shaker (110 rpm) at 25 C. Culture filtrates were collected 7 

days after inoculation by filtration through glass microfibre filter paper 

(Whatman®, New Jersey, USA). One hundred µl of 20% sodium azide were 

added to the filtrate, which was stored at 4 C until used. Endo-PG activity and 

oxalic acid concentration were measured in the sample as previously described. 

The combination of two isolates and nine carbon sources (including a no 

carbon source control) resulted in 18 treatments. Each treatment had three 

replicated flasks, and the experiment was conducted twice. 
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Data analysis

The effect of isolate and carbon source on endo-PG activity and 

oxalic acid concentration was determined using PROC MIXED (SAS Version 9.1, 

SAS Institute Inc., Cary, NC). The response variables considered were the 

relative activity of the enzyme obtained from the viscosity reduction assay, the 

enzyme activity obtained from the reducing sugar assay and the oxalic acid 

concentration obtained from the oxalic acid assay. Isolate and carbon source 

were used as independent variables.  

Activity of endo-PG and oxalic acid concentration in host tissue subjected to 

inoculation with S. rolfsii

Peanut study

Peanut seeds of cultivar Okrun were germinated in plastic containers 

lined with moist Whatman # 1 filter papers in an incubator at 30 C for 48 h.  

Three germinated seeds with uniform radical growth were planted in 2:1:1 (v/v) 

mixture of sand, peat moss and topsoil contained in 15 cm x 30 cm pots. Six 

weeks after planting, seedlings were inoculated using a mycelial disk technique. 

In this technique, a 0.5-cm mycelial disk was removed from a 3-day-old active 

Sclerotium culture (Isolate Melouk or Wheat) and appressed to the base of the 

central stem.  A 1-cm diameter filter paper was placed underneath each mycelial 

disk to prevent contact with the soil. After inoculation, pots were wrapped with 

clear polyethylene bags to maintain high humidity near the soil surface and plant 
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crowns. Pots were watered as required. Non-inoculated plants were used as the 

control. 

Fourteen days after inoculation, a 2 cm length of main stem measured 

from the base was cut from each inoculated plant and macerated in 10 ml of 

deionized water using a Tekman Tissuemizer (1 min at 24,000 RPM). Samples 

were then centrifuged at 10,000 g for 10 min and the supernatant was collected. 

One hundred µl of 20% sodium azide were added to the supernatant and stored 

at 4 C. Endo-PG activity and oxalic acid concentration were measured in the 

sample as previously described. 

The experiment tested the production of endo-PG activity and oxalic acid 

concentration in vivo for the two Sclerotium isolates. Hence, the combination of 

two isolates and the non-inoculated control resulted in three treatments. The 

treatments were arranged in a randomized complete block design with three 

replications, and the experiment was conducted twice.  

Wheat study

Twelve certified seeds of the winter wheat cultivar Jagger were planted 2 

cm deep in a mixture of sand, soil and shredded peat moss (2:1:1; v/v/v) 

contained in 12 cm dia. plastic pots. Four days after planting, seedlings were 

thinned to eight seedlings per pot. The seedlings were inoculated with the 

fungus at growth stage 1 (two leaf stage) on the Feekes’ scale. A mycelial disk 

technique was used for inoculation as described previously for peanuts. After 

inoculation, pots were wrapped with clear polyethylene bags to maintain high 
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humidity near the soil surface and plant crowns, and plants were watered as 

needed.  

Seven days after inoculation, a 2 cm length of the main stem measured 

from the base was cut from each inoculated plant and macerated in 10 ml of 

deionized water using a Tekman Tissuemizer (1 min at 24,000 RPM). Samples 

were then centrifuged at 10,000 g for 10 min and the supernatant was collected. 

A 100 micro liter of 20% sodium azide was added to the supernatant, which was 

stored at 4 C. Endo-PG activity and oxalic acid concentration were measured in 

the sample as previously described for the in vitro experiment. 

The experiment tested the in vivo endo-PG activity and oxalic acid 

concentration for the two Sclerotium isolates. Hence, the combination of two 

isolates and the non-incoulated control resulted in three treatments. The 

treatments were arranged in a randomized complete block design with three 

replications and the experiment was conducted twice.  

Data analysis

The effect of isolate on endo-PG activity and oxalic acid 

concentration was determined using PROC MIXED (SAS Version 9.1, SAS 

Institute Inc., Cary, NC). The response variables considered were as described 

previously for the peanut study.  
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RESULTS

In vitro activity of endo-PG and oxalic acid concentration in cultures of 

different ages

Endo-PG activity and oxalic acid concentration were significantly (P ≤

0.05) affected by isolate and age of culture (Tables 2, 3 and 4). Endo-PG activity 

found in 3-, 5-, and 7-day-old cultures of S. rolfsii and as determined by viscosity 

reduction assay and reducing sugar assay are shown in Tables 2 and 3. Highest 

enzyme activity was detected in filtrates from cultures 7 days old. Both assays 

revealed a significantly higher (P ≤ 0.05) endo-PG activity in filtrates of the          

S. rolfsii isolate Melouk from peanut as compared to the isolate Wheat which in 

turn, showed a greater activity than the non-inoculated control (Tables 2 and 3).  

 Concentration of oxalic acid was highest in filtrates from 5- and 7- day-old 

cultures (Table 4). When compared across 3-day-old cultures, oxalic acid 

concentration was significantly higher in filtrates of the isolate Melouk compared 

to the isolate Wheat which, in turn, was significantly higher than the control       

(P ≤ 0.05). However, oxalic acid concentration increased dramatically by day 5 in 

filtrates of isolate Wheat and was not significantly different from isolate Melouk 

(P > 0.05).  Data also show that oxalic acid concentration stopped increasing from 

5- to 7-day-old cultures. 
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In vitro activity of endo-PG and oxalic acid concentration in culture filtrates 

collected from media containing various carbon sources

Endo-PG activity and oxalic acid concentration were significantly (P ≤

0.05) affected by the type of carbon source, but were not affected by isolate 

(Tables 5, 6 and 7). When comparing between the two isolates (Melouk and 

Wheat), endo-PG activity as determined by a viscosity reduction assay was not 

significantly different (P > 0.05) between the two isolates except when sodium 

polypectate was used as a carbon source (Table 5). For sodium polypectate, the 

activity of endo-PG in culture filtrates of the isolate Melouk was significantly 

higher than for the isolate Wheat (Table 5). When compared across different 

carbon sources, culture filtrates with sodium polypectate as a carbon source tend 

to have higher activity of endo-PG (Table 5). This particular trend was observed 

with isolate Melouk but not with isolate Wheat (Table 5). 

 In the reducing sugar assay, endo-PG activity was not significantly 

different (P ≤ 0.05) between the two isolates except when sodium polypectate, 

fresh peanut stems, or oven dried wheat stems were used as a carbon source 

(Table 6). In these cases, the culture filtrates of isolate Melouk had a significantly 

higher endo-PG activity compared to the isolate Wheat (Table 6). When 

compared across different carbon sources, culture filtrates of isolate Melouk or 

isolate Wheat suspended with either plant material (fresh, oven-dried and frozen 

dried peanut and wheat stems) or sodium polypectate had a significantly           

(P ≤ 0.05) higher endo-PG activity compared to the control and glucose (Table 6). 
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In particular, culture filtrates of isolate Melouk suspended with sodium 

polypectate, fresh peanut stems, fresh wheat pseudo stems or frozen dried wheat 

stems had significantly (P ≤ 0.05) higher endo-PG compared to the other carbon 

sources. Similarly, culture filtrates of isolate Wheat suspended with fresh wheat 

pseudo stems had a significantly (P ≤ 0.05) higher endo-PG activity compared to 

the other carbon sources (Table 6). 

 No significant difference (P > 0.05) in oxalic acid concentrations was 

observed between the two isolates except when fresh wheat pseudo stems were 

used as carbon source, where the culture filtrate of the isolate Wheat had a 

significantly (P ≤ 0.05) higher oxalic acid concentration compared to isolate 

Melouk (Table 7). Isolates grown on media containing different carbon sources 

had a significantly (P ≤ 0.05) higher amounts of oxalic acid compared to control 

(Table 7). However, oxalic acid concentrations did not vary significantly among 

different carbon sources except with culture filtrates of isolate Melouk 

suspended with fresh wheat pseudostems, where a significantly (P ≤ 0.05) lower 

oxalic acid concentrations compared to the other carbon sources was observed 

(Table 7). 
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Activity of endo-PG and oxalic acid concentration in host tissue subjected to  

inoculation with S. rolfsii

Peanut study

Apparent endo-PG activity in peanut stems as determined by a viscosity 

reduction assay and a reducing sugar assay was not significantly (P > 0.05) 

affected by isolate (Table 8). However, concentration of oxalic acid was 

significantly (P ≤ 0.05) affected by the isolate Melouk, where a significantly 

higher concentration of oxalic acid was observed as compared to the isolate 

Wheat and the non-inoculated control   (Table 8). 

Wheat study

Activity of endo-PG in wheat seedlings as determined by the viscosity 

reduction assay and the reducing sugar assay was significantly (P ≤ 0.05) affected 

by isolate (Table 9). Endo-PG activity as determined by viscosity reduction assay 

was significantly (P ≤ 0.05) higher in stems of the winter wheat variety Jagger 

inoculated with the isolate Melouk as compared to the isolate Wheat which in 

turn was significantly (P ≤ 0.05) higher than the control (Table 9). As determined 

by reducing sugar assay, endo-PG activity was significantly (P ≤ 0.05) higher in 

stems of the winter wheat variety Jagger inoculated with the isolate Melouk as 

compared to the isolate Wheat and the non-inoculated control and isolate Wheat 

did not differ significantly (P > 0.05) from the non-inoculated control (Table 9). 
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The concentration of oxalic acid also was significantly (P ≤ 0.05) affected 

by isolate (Table 9). Wheat seedlings inoculated with the isolate Melouk had a 

significantly (P ≤ 0.05) higher concentration of oxalic acid compared to the isolate 

Wheat and the non-inoculated control (Table 9). 

 

DISCUSSION

Production of endo-polygalacturonase (endo-PG) and oxalic acid by 

Sclerotium rolfsii was reported to play a vital role in the pathogenesis of the 

fungus (7, 9, 11) and our studies did observe the production of these constituents 

during the infection process. Presence of endo-PG and oxalic acid in young 

cultures (3 days old) where mycelial growth was limited indicates that secretion 

of these components does not necessarily require high mycelial growth. 

 Results from the first experiment have shown that the isolate Melouk from 

peanut produced significantly higher levels of endo-PG as compared to the 

isolate Wheat from wheat. However, oxalic acid levels did not differ between the 

two isolates and we did not observe a rapid mycelial growth rate as previously 

reported for some virulent strains of S. rolfsii (11).  

Production of endo-PG and oxalic acid is induced in presence of carbon 

source. However, the activity of these substances varies based on the type of 

carbon source (10). In our second experiment, we tested the effect of different 

carbon sources on production of endo-PG and oxalic acid in culture. Production 
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of endo-PG in the presence of glucose as a carbon source was negligible. 

However, production of oxalic acid was not affected. These observations suggest 

that production in the presence of a readily available carbon source such as 

glucose, enzyme production is not required by the fungus to obtain carbon.  

Plant material (peanut or wheat) had an effect similar to that of sodium 

polypectate in the production of endo-PG, as determined by the viscosity 

reduction assay. However, the reducing sugar assay revealed differences among 

type of plant materials (fresh, oven dried or freeze dried) as a carbon source. 

Plant material induced similar amounts of oxalic acid from two isolates as 

sodium polypectate and no differences were observed among fresh, oven dried 

or freeze dried material.  

In the in vivo study, the isolate Melouk produced distinct lesions on 

peanut and wheat stems whereas isolate Wheat had limited pathogenicity. Water 

related activity of endo-PG and concentration of oxalic acid were relatively high 

in plant tissues infected with isolate Melouk whereas plant tissues inoculated 

with isolate Wheat had these constituents at very low levels. These results 

indicate that isolate virulence is correlated with the production of endo-PG and 

oxalic acid. Our results also support previous work by Bateman and Beer (1965), 

which showed the necessity of simultaneous production and synergistic action of 

oxalic acid and polygalacturonase during pathogenesis by Sclerotium rolfsii (4). 

Water related activity of endo-PG and concentration of oxalic acid 

measured in the in vivo study are of fungal origin since control plants did not 
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show presence of these constituents, eliminating the possibility of host origin.  

This is important since higher plant tissues are known to produce oxalic acid. 

However, it is to be noted that endo-polygalacturonase has not been found as a 

normal constituent of higher plant tissues (2).  

 A previous study with Rhizoctonia solani demonstrated that endo-PG from 

diseased tissue converted sodium polypectate to three lower molecular weight 

polymers, whereas culture produced endo-PG converted this substrate to 

galacturonic acid (2). These results indicate that enzyme systems differ from 

culture and disease tissue. We currently do not know if this is true with S. rolfsii 

and further studies in this aspect are needed.   

 Activity of endo-PG and concentration of oxalic acid produced by two 

isolates in host tissues are no way close to what was found in culture filtrates 

grown on synthetic media.  Even though isolate virulence appears to be 

correlated with activity of endo-PG and oxalic acid concentration from the in vivo 

study, it did not appear to be true from the results of the in vitro study. Various 

factors could have been attributed to this difference which may include but not 

limited to the nature and availability of carbon source. The production of endo-

PG and oxalic acid in vitro may have been impacted by soluble nature of carbon 

source in the basal medium.    

 In conclusion, results from these studies suggested that production of 

endo-PG and oxalic acid are influenced by the nature and type of carbon source. 

Use of host plant material as a carbon source for in vitro studies will support 
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abundant production of endo-PG and oxalic acid. However, use of host plant 

material as a carbon source does not necessarily simulate the actual conditions 

present in living host tissue. Further, our results suggest that in vitro studies by 

themselves are not always a good indicator of actual nature of pathogen in terms 

of production of endo-PG and oxalic acid.   
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Table 1.  Carbon sources used to measure in vitro endo-PG activity and oxalic 
acid concentration produced by two isolates of Sclerotium rolfsii.

Carbon source Concentration (% w/v)
Control  0.0 
Glucose 0.5 
Sodium polypectate  0.5 
Fresh peanut stems  2.0 
Fresh wheat pseudostems  2.0 
Oven dried, ground peanut stems  2.0 
Oven dried, ground wheat pseudostems  2.0 
Frozen dried, ground peanut stems  2.0 
Frozen dried, ground wheat pseudostems 2.0 

Table 2. Activity of endo-PG produced in vitro by Sclerotium rolfsii isolates as 
determined by a viscosity reduction assay. 
 

Endo-PG activity at (X) days of culture age*
Isolate 

3 5 7

Control 0.0 a A**  0.0 a A  0.0 a A 

Wheat  5.2 a A 21.3 b B 32.2 b C 

Melouk 13.8 b A 52.0 c B 52.0 c B 

*Activity expressed as reciprocal value of incubation time (t) in 
minutes required to reduce the initial viscosity of mixture of culture 
filtrate and 2% sodium polypectate solution at 30 C by 50%, 
multiplied by 100 i.e. (1/t x 100).  

 **Means in the same column followed by the same lower case letter,   
 and means in the same row followed by the same upper case letter   
 are not significantly different according to LSMEANS at P≤0.05.
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Table 3. Activity of endo-PG produced in vitro by Sclerotium rolfsii isolates as 
determined by a reducing sugar assay. 
 

Endo-PG activity at (X) days of culture age*
Isolate 

3 5 7

Control 0.04 a   A** 0.12 a A 0.04 a A 

Wheat  0.09 ab A 0.49 b B 1.32 b C

Melouk 0.29 b   A 1.09 c B 1.88 c C 

*Activity expressed as units per ml of culture filtrate. 
 **Means in the same column followed by the same lower case letter,   
 and means in the same row followed by the same upper case letter   
 are not significantly different according to LSMEANS at P≤0.05.

Table 4. Concentration of oxalic acid produced in vitro by Sclerotium rolfsii 
isolates as determined by an oxalate assay. 
 

Oxalate concentration at (X) days  
of culture age*Isolate 

3 5 7

Control  0.00 a A** 0.03 a A 0.09 a A 

Wheat 1.78 b A 3.70 b B 3.70 b B 

Melouk 2.90 c A 3.70 b B 3.70 b B

* Concentration expressed as mmol/L. 
 **Means in the same column followed by the same lower case letter,   
 and means in the same row followed by the same upper case letter   
 are not significantly different according to LSMEANS at P≤0.05.
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Table 5. Activity of endo-PG produced in vitro by Sclerotium rolfsii isolates in 
media containing different carbon sources. 
 

Endo-PG activity*
Carbon source Isolate Melouk Isolate Wheat
Control         0.2  a  A**  0.0  a  A 
Glucose       5.1  a  A   3.6  a  A 
Sodium polypectate       142.7  b A 33.8  a  B 
Fresh peanut stems     30.8  a  A 27.2  a  A 
Fresh wheat pseudostems     23.3  a  A 30.9  a  A 
Oven dried, grounded peanut stems     14.5  a  A 17.6  a  A 
Oven dried, grounded wheat pseudostems     19.8  a  A 17.3  a  A 
Frozen dried, grounded peanut stems     16.7  a  A 21.9  a  A 
Frozen dried, grounded wheat pseudostems 35.1  a  A 32.7  a  A 
*Enzyme activity was determined by viscosity reduction assay, where activity 
expressed as reciprocal value of incubation time (t) in minutes required to reduce 
the initial viscosity of mixture of culture filtrate and 2% sodium polypectate 
solution at 30 C by 50%, multiplied by 100 i.e. 1/t x 100.  
**Means in the same column followed by the same lower case letter,   
and means in the same row followed by the same upper case letter   
are not significantly different according to LSMEANS at P≤0.05.

Table 6. Activity of endo-PG produced in vitro by Sclerotium rolfsii isolates in 
media containing different carbon sources. 
 

Endo-PG activity*
Carbon source Isolate Melouk Isolate Wheat
Control        0.1  a  A**  0.0  a  A 
Glucose      0.1  a  A   0.0  a  A 
Sodium polypectate          2.3  d  A    1.2  b  B 
Fresh peanut stems       2.2  d  A    1.5  d  B 
Fresh wheat pseudostems       2.5  d  A    3.1  f  A 
Oven dried, grounded peanut stems      1.4  b  A     1.5  d  A 
Oven dried, grounded wheat pseudostems      1.7  c  A     1.0  b  B 
Frozen dried, grounded peanut stems      1.6  c  A     1.4  c  A 
Frozen dried, grounded wheat pseudostems 2.3  d A     2.2  e  A 
* Enzyme activity was determined by reducing sugar assay, where activity was 
expressed as units per ml of culture filtrate. 
**Means in the same column followed by the same lower case letter,   
and means in the same row followed by the same upper case letter   
are not significantly different according to LSMEANS at P≤0.05.
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Table 7. Concentration of oxalic acid produced by Sclerotium rolfsii isolates in 
media containing different carbon sources. 
 

Oxalate concentration*
Carbon source Isolate Melouk Isolate Wheat
Control    0.5  a  A** 0.5  a  A 
Glucose 1.8  c  A 1.9  b  A 
Sodium polypectate 1.9  c  A 2.3  b  A 
Fresh peanut stems 1.9  c  A 2.0  b  A 
Fresh wheat pseudostems 1.3  b  A 1.9  b  B 
Oven dried, grounded peanut stems 1.8  c  A 1.8  b  A 
Oven dried, grounded wheat pseudostems 1.8  c  A 1.9  b  A 
Frozen dried, grounded peanut stems 1.9  c  A 2.0  b  A 
Frozen dried, grounded wheat pseudostems 2.0  c  A 2.0  b  A 
* Concentration expressed as mmol/L. 
**Means in the same column followed by the same lower case letter,   
and means in the same row followed by the same upper case letter   
are not significantly different according to LSMEANS at P≤0.05.

Table 8. In vivo activity of endo-PG and oxalic acid concentration produced by 
Sclerotium rolfsii isolates in the peanut cv “Okrun”. 
 

Peanut  Isolate 
VRAa RSAb OAc

Control  0.0 a* 0.00 a 0.03 a 

Wheat 1.7 a 0.13 a 0.04 a 

Melouk 3.9 a 0.21 a 0.14 b

aActivity of endo-PG in units of reciprocal time, as determined by 
viscosity reduction assay. 
bActivity of endo-PG in units per ml of culture filtrate, as determined 
by reducing sugar assay. 
cConcentration of oxalic acid in mmol/L as determined by oxalate 
assay. 

 *Means in the same column followed by the same letter   
 are not significantly different according to LSMEANS at P≤0.05.
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Table 9. In vivo activity of endo-PG and oxalic acid concentration produced by 
Sclerotium rolfsii isolates in the winter wheat cv “Jagger”. 
 

Winter wheat 
Isolate 

VRAa RSAb OAc

Control  0.0 a* 0.09 a 0.01 a 

Wheat 3.9 b 0.15 a 0.04 a 

Melouk 5.0 c 0.44 b 0.10 b

aActivity of endo-PG in units of reciprocal time, as determined by 
viscosity reduction assay. 
bActivity of endo-PG in units per ml of culture filtrate, as determined 
by reducing sugar assay. 
cConcentration of oxalic acid in mmol/L as determined by oxalate 
assay. 

 *Means in the same column followed by the same letter   
 are not significantly different according to LSMEANS at P≤0.05.
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CHAPTER VI

GENETIC VARIABILITY OF RHIZOCTONIA SPP. ISOLATED FROM 

PEANUT AND WINTER WHEAT

ABSTRACT

Rhizoctonia spp. is a soilborne fungus responsible for important diseases in 

peanut and wheat. Rhizoctonia isolates that appear to be closely related may 

differ genetically but such differences are difficult to identify using conventional 

techniques. In such cases, molecular techniques such as the random amplified 

polymorphic DNA-polymerase chain reaction (RAPD-PCR) technique are 

helpful in identifying the genetic variability among closely related isolates. In 

this study, RAPD-PCR was used to identify genetic variability among isolates of 

Rhizoctonia solani (RSP, JY-1, G-24 and RS-00-07) and Rhizoctonia cerealis (Altus, 

Lahoma, Marshall and Fellers) obtained from peanut and wheat, respectively. 

DNA polymorphisms were detected among the isolates using 15 oligonucleotide 

primers. Fragment profiles were analyzed using the RAPDistance program 

version 1.04 and a dendrogram was generated using the Neighbor-joining 

method. Isolates were clearly separable into two distinct groups based on the 

species. Among the isolates of R. solani, JY-1, G-24 and RS-00-07 appeared to be 

more closely related to each other, than to RSP. This differentiation supports the 
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variation in virulence of the isolates, since RSP was least virulent compared to 

the other three isolates. Geographical origin may also have impacted isolate 

placement within the dendrogram since isolates JY-1 and RS-00-07, which were 

obtained from Georgia, were clustered more closely than RSP, that was obtained 

from Oklahoma. No major genetic divergence was observed among     R. cerealis 

isolates. However, Fellers, Lahoma and Marsall were clustered relatively closely 

than Altus. The results indicate that RAPD-PCR is a valuable technique for 

differentiating isolates of Rhizoctonia spp. 
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INTRODUCTION

Rhizoctonia spp. is an important soilborne pathogen associated with 

diseases of many crops including peanut and wheat (2, 23). In peanut, Rhizoctonia 

solani causes seedling disease on young plants, pods and pegs and limb rot on 

mature plants (2). In wheat, R. solani is associated with damping off and root rot 

(5, 6, 13). Additionally, a binucleate species of Rhizoctonia called Rhizoctonia 

cerealis (teleomorph: Ceratobasidium gramineum), causes sharp eye spot in wheat 

and other cereals (3, 10). This pathogen, however, was not reported to cause any 

damage on peanut. 

 Isolates of R. solani and R. cerealis are classified based on anastomosis 

groups (AGs) (17).  Isolates within a particular anastomosis group (AG) are 

reported to be closely related in terms of pathogenicity and hosts they infect. 

However, evidence from some studies suggest that variation in pathogenicity 

exists among strains belonging to the same AG (16, 21). In such cases, a further 

attempt to classify isolates into subgroups is a difficult task using conventional 

techniques. 

 Molecular tools such as random amplified polymorphic DNA-polymerase 

chain reaction (RAPD-PCR) are used to detect variation among closely related 

strains of fungi and in population analysis (12, 19, 22, 24). The technique was 

used previously to determine variation among several AGs of Rhizoctonia solani 



112

(5, 18). This technique has also been used successfully in place of conventional 

diagnosis to detect the presence of fungi in plants (15, 20).      

 The objective of this study was to determine the genetic relatedness 

among the isolates of R. solani and R. cerealis obtained from peanut and wheat 

respectively, using the RAPD-PCR technique. 

 
MATERIALS AND METHODS

Collection and maintenance of Rhizoctonia isolates

Isolates of Rhizoctonia were obtained from different sources during 2004 

(Table 1).  Peanut isolates, which were obtained from cooperators were 

maintained on SPDA [Potato Dextrose Agar amended with streptomycin sulfate 

(0.14 g/L)]. Isolates from wheat were obtained from wheat collected from 

northern and southwestern Okalahoma that exhibited characteristic sharp eye 

spot symptoms. Small sections of the infected tissue having the sharp eye lesion 

were cut and surface sterilized for 3 minutes with 2% sodium hypochlorite, 

rinsed in sterile distilled water, plated on 2% water agar and incubated at room 

temperature (~24° C). After 48 h, fungal colonies with mycelia characteristics of 

Rhizoctonia spp. were transferred and maintained on SPDA. The isolates were 

reinoculated to wheat to fulfill Koch’s postulates.  

 



113

DNA extraction

Isolates were grown in potato dextrose broth for seven days on a rotary 

shaker at 24ºC and the mycelial mat harvested by vacuum filtration and blotted 

dry. Dried mycelial mats were stored at -80°C until used. A Sclerotium rolfsii 

isolate (Melouk) was included as an out group. 

 Genomic DNA was extracted according to the protocol of Lee & Taylor 

(9). Fifty mg of dry mycelia was finely ground in a mortar and pestle, suspended 

in 400 µL of lysis buffer (50 mM Tris-HCl at 7.2 pH, 50 mM EDTA, 3% SDS and 

1% 2-mercaptoethanol) and incubated at 65°C for 1 hr. The supernatant obtained 

after centrifuging at 10,000 g for 15 min at 25°C, was extracted with an equal 

volume of chloroform : TE- saturated phenol (1:1, v:v) and precipitated with 0.54 

volumes of isopropanol. Samples were then centrifuged at 10,000 g for 2 min at 

25°C and the genomic DNA pellet was washed with 70% ethanol and air dried 

for 30 min at 25°C. The dried DNA pellet was resuspended in 100 µL of sterile 

Tris-EDTA (TE) buffer and stored at -20°C until used. DNA was quantified using 

a spectrophotometer (Beckman DU-7000). 

RAPD fingerprinting

A 50 µL volume of PCR reaction mixture was prepared for each sample 

containing 36.5 µL distilled water, 5 µL 10X PCR buffer (Qiagen Inc, Valencia, 

CA), 4 µL of dNTPs (Promega, Madison, WI) 1 µL of primer (50 picomoles/µL), 

0.5 µL Taq polymerase (5U) (Qiagen Inc, Valencia, CA), 2 µL MgCl2 and 1 µL of 

template DNA.  Template DNA was amplified using 15 different primers (Table 
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2). PCR reactions were carried out in a thermal cycler (PTC-100, MJ Research, 

Watertown, MA) programmed to 40 cycles of 94°C for 1 min (2 min at first cycle), 

35°C for 1 min and 72°C for 3 min (10 min at final cycle).   

 The amplified products were loaded into 1.0% agarose/Tris-Acetate 

EDTA (TAE) buffer gel followed by electrophoresis (75 V for 3 hrs) and staining 

with ethidium bromide.  Each reaction was performed in triplicate to verify the 

reproducibility of banding patterns.  

Band scoring and analysis

Bands obtained for each primer were visualized using BioRad gel 

documentation system (Bio-Rad laboratories, Hercules, CA). Amplified bands 

were scored as 1 when the band was present and 0 when the band was absent. 

The data were analyzed using the RAPDistance program version 1.04 (1). A 

matrix of genetic distance values was calculated and a dendrogram was 

generated using the Neighbor-joining method (NJTREE, version 2.0 and TDRAW 

version 1.14).   

RESULTS AND DISCUSSION

All isolates used in this study were initially characterized using 

conventional methods such as determination of the nuclear condition and 

anastamosis grouping. Isolates from peanut were found to be multinucleate 

whereas the isolates from winter wheat were binucleate. Hence isolates from 

peanut were categorized as Rhizoctonia solani and those from winter wheat as 
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Rhizoctonia cerealis. When isolates were anastamosed with tester isolates, all 

peanut isolates anastamosed with the AG-4 tester isolate whereas the isolates 

from winter wheat all anastamosed with the CAG-1 tester isolate. Hence, a clear 

distinction was identified between the isolates of peanut and winter wheat in 

terms of nuclear condition and anastomosis grouping. However, it is difficult to 

identify variation within isolates that belong to the same anastomosis group 

using conventional methods. So, RAPD-PCR was employed to identify variations 

among closely related isolates.  

PCR reactions with the fifteen different primers gave amplification 

products that generated consistently reproducible polymorphisms. Using the 

band data for all isolates from 15 primers (Table 1), pair-wise distances between 

the samples were calculated using 15 different algorithms in the form of a 

triangular matrices. This triangular matrix was used to show the degree of 

relatedness between the isolates in the form of a dendrogram (Fig. 1). 

Dendrograms generated by 15 different algorithms were similar and the one 

generated by algorithm 5 (14) was chosen for further analysis. 

Some bands were common among isolates RSP, JY-1, G-24 and RS-00-07 

that were recovered from peanut, as can be seen in the pattern generated by 

primer 324 and 327 (Fig. 2 and 3). However, there also were bands that were 

unique to a particular isolate (Fig. 2 and 3; depicted with yellow circles). There 

were fewer commonalities in band pattern between the isolates of Altus, 

Lahoma, Marshall and Fellers from winter wheat.  



116

Results from the RAPD-PCR test did not suggest a major genetic 

divergence within the isolates obtained from the same host and that belonged to 

the same AG. However, as seen from the dendrogram (Fig. 1), isolates were 

clearly demarcated into two groups based on the species. Group 1 (G-1) 

consisted of R. solani isolates RSP, JY-1, RS-00-07 and G-24 that were recovered 

from peanut from different geographical locations in Oklahoma, Georgia and 

Texas. Within this group, isolates JY-1, RS-00-07 and G-24 clustered more closely 

than isolate RSP (Fig.1). Group 2 (G-2) consisted of R. cerealis isolates Altus, 

Lahoma, Marshall and Fellers that were recovered from winter wheat in 

Oklahoma. Isolate Melouk belonging to Sclerotium rolfsii which was used as an 

out group, separated clearly from other groups as expected. It is also to be noted 

that even though S. rolfsii separated out clearly, group 2 (G-2) representing         

R. cerealis isolates appear to be relatively close to the out group than R. solani 

isolates. This may suggest the proximity of R. cerealis to S. rolfsii in evolutionary 

stand point.      

 Among the R. solani isolates from peanut, isolate RSP branched out 

differently from rest of the peanut isolates. This could indicate differences in 

virulence, effect of geographical location and other factors. Previous 

investigations have confirmed the significant inter-isolate variability within 

subgroups of R. solani and variations seem to be correlated with geographical 

origin and virulence (5, 11, 18, 21). Genetic relatedness of isolates of R. solani is 

influenced greatly by the geographic origin (7, 18). Isolates of R. solani belonging 
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to AG1-IA that was recovered from the same area but from different hosts were 

clustered more closely than isolates from a different location (18). However, in 

our study, the relationship between geographical location, i.e. where isolates 

were collected and grouping is not clear. For example, isolates collected from the 

same location in Georgia (JY-1 and RS-00-07) were clustered closely with isolate 

obtained from Texas (G-24). These results indicate a high level of genetic 

relatedness which could be explained by cross introduction into the two 

locations. Among R. cerealis isolates collected from winter wheat in Oklahoma, 

Marshall, Fellers and Lahoma were clustered more closely than Altus. It is to be 

noted that Marshall, Fellers and Lahoma were collected from Northern 

Oklahoma whereas Altus was collected from the Southwestern Oklahoma, which 

explains partly, the possible relatedness of the three isolates (Marshall, Fellers 

and Lahoma) as a result of geographical proximity.   

 Variation in terms of virulence is possible either due to the heterokaryotic 

nature of the fungus or by the teleomorph (4, 8). RAPD analyses of R. solani 

isolates belonging to AG1-IA have shown that highly virulent isolates were 

clustered more closely as one group and least virulent as another group (18). Our 

preliminary testing of virulence of peanut isolates on peanut cultivar Okrun has 

indicated that RSP was least virulent whereas G-24, JY-1 and RS-00-07 were 

highly virulent (Table 3). Results from the dendrogram are also in line with the 

variation observed in virulence test. The highly virulent isolates    G-24, JY-1 and 

RS-00-07 were clustered together whereas RSP has branched out separately 
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(Fig.1). Virulence of R. cerealis isolates was very less and the variation was not 

significant (Table 4). Even though non-significant, Altus was relatively less 

virulent compared to other R. cerealis isolates. The branching pattern among       

R. cerealis isolates as seen from the dendrogram is partially in line with the slight 

variation that was observed in the virulence test (Fig.1). Altus which was slightly 

less virulent has branched out separately whereas the other three isolates 

(Fellers, Marshall and Lahoma) were clustered more closely (Fig.1).  

 Our study may have found more variation among isolates of R. solani and 

R. cerealis if additional isolates obtained from outside the U.S.A or from different 

hosts would have been included. Previous studies have demonstrated such 

differences among fungal isolates obtained from different geographical locations 

(18, 19). Even though, occurrence of R. cerealis on peanut is not known, presence 

of R. solani on wheat roots is well known and results would have been more 

interesting if we would have obtained R. solani isolates from wheat root rots. 

However, no R. solani isolates from wheat were ever found in the sampled fields 

during this study. 

 In summary, this study demonstrated that RAPD-PCR is a reliable tool for 

detecting genetic variation within isolates of Rhizoctonia spp. and is sensitive and 

useful for detecting genetic differences among closely related strains.  
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Figure 1. Dendrogram generated using fifteen primers in RAPD analysis of 8 
Rhizoctonia isolates. Isolates of group G-1 belong to Rhizoctonia solani and 
were obtained from peanut. Isolates of group G-2 belong to Rhizoctonia 
cerealis and were obtained from winter wheat.   
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Figure 2. Random amplified polymorphic DNA banding pattern of 
Rhizoctonia isolates collected from peanut and winter wheat generated with 
primer 324. Lanes, M, marker (100 bp ladder); 1-8 (Isolates RSP, JY-1, G-24, RS-
0007, Altus, Lahoma, Marshall and Fellers respectively); OG (out group; 
Sclerotium rolfsii); C (Control; no template). Yellow circles indicate bands that 
are unique to a particular isolate within the same species. 

M 1 2 3 4 5 6 7 8 OG C M
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Figure 3. Random amplified polymorphic DNA banding pattern of 
Rhizoctonia isolates collected from peanut and winter wheat generated with 
primer 327. Lanes, M, marker (100 bp ladder); 1-8 (Isolates RSP, JY-1, G-24, RS-
0007, Altus, Lahoma, Marshall and Fellers respectively); OG (out group; 
Sclerotium rolfsii); C (Control; no template). Yellow circles indicate bands that 
are unique to a particular isolate within the same species. 

M 1 2 3 4 5 6 7 8 OG C M
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Table 1. Isolates of Rhizoctonia used to determine the genetic variability 
 

Isolate Species Host Year Geographic
Origin Source 

G-24 R. solani Peanut Unknown Texas T.A. Wheeler 
JY-1 R. solani Peanut Unknown Georgia T. Brenneman
RS-00-07 R. solani Peanut Unknown Georgia T. Brenneman 
RSP R. solani Peanut 1982 Oklahoma H.A. Melouk 
Fellers R. cerealis Winter wheat 2004 Oklahoma R.M. Hunger 
Marshall R. cerealis Winter wheat 2004  Oklahoma R.M. Hunger 
Altus R. cerealis Winter wheat 2004 Oklahoma R.M. Hunger 
Lahoma R. cerealis Winter wheat 2004 Oklahoma R.M. Hunger 

Table 2. Sequence of oligonucleotide primers used for RAPD analysis along 
with the number of amplified and polymorphic bands generated. 
 

Primer Sequence 5’-3’ Total amplified bands Polymorphic bands
P14 CCACAGCACG 38 16 
R28 GATAACGCAC 41 15 

RC09 ATGGATCCGC 32 12 
308 AGCGGCTAGG 23 14 
318 CGGAGAGCGA 26 8 
320 CCGGCATAGA 24 9 
324 ACAGGGAACG 39 14 
327 ATACGGCGTC 62 19 
329 GCGAACCTCC 44 15 
335 TGGACCACCC 45 11 
337 TCCCGAACCG 47 15 
340 GAGAGGCACC 44 7 
350 TGACGCGCTC 45 10 
353 TGGGCTCGCT 52 9 
361 GCGAGGTGCT 55 6 

Total 617 180 
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Table 3. Disease severity of peanut seedlings of cv. Okrun as affected by 
inoculation of Rhizoctonia solani isolates from peanut. 
 

Isolate Disease severitya

Control  1.0 a*

G-24 5.0 c 
JY-1 4.6 c 
RS-00-07 4.8 c 
RSP 2.6 b 

aDisease severity rating on a scale of 1-6 (1= no symptoms, 2=  
 discoloration and/or small pinpoint lesions, 3 = small, distinct  
 necrotic lesions, 4 = large necrotic lesions, 5 = girdling lesion, and         

 6 = dead seedling.  
 *Means in the same column followed by the same letter are not   
 significantly different according to LSMEANS at P≤0.05. 

Table 4. Disease severity of winter wheat seedlings of cv. Jagger as affected by 
pre-emergence inoculation of Rhizoctonia cerealis isolates from wheat. 
 

Isolate Disease severitya

Control  1.0 a*

Fellers 1.6 a 
Marshall 1.5 a 
Altus 1.3 a 
Lahoma 1.6 a 

aDisease severity rating on a scale of 1-6 (1= healthy; 2= slight   
 discoloration of leaf sheath or inner stem; 3= distinct lesion on the          
 leaf sheath or inner stem; 4= rotting at the base of the stem;  
 5=damping off or yellowing; 6= complete death). 
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