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CHAPTER I 

INTRODUCTION 

A common problem for regional economists is that empirical models designed for 

policy analysis tend to perform poorly in forecasting applications in comparison to 

parsimonious models, while empirical forecasting models tend to be inadequate policy 

analysis tools.  Parsimonious models such as vector autoregression (VAR) models, or 

simple reduced-form econometric models, tend to forecast well, but they are unable to 

offer insights into the impacts of policy decisions.  Structurally elaborate models for 

policy analysis, such as regional computable general equilibrium (CGE) models, 

necessitate extensive parameterization that requires data beyond what is routinely 

available in time series form.  These models therefore are almost exclusively formulated 

as static models that are calibrated to a benchmark-year data set with no ability to track or 

forecast time series.  An ideal model of a regional economy would marry the policy 

analysis strengths of regional CGE models with the forecasting capabilities of 

parsimonious models.  

Increasingly, regional analysts are turning to Bayesian methods of integrating 

economic structure to otherwise atheoretical forecasting models.  Though econemetric 

models continue to be implemented and improved for regional forecasting and policy 

analysis, the paucity of regional economic data renders econometric methods of 

estimating regional structure arduous.  Paring down the structure of the model gives rise 

to ad-hoc restrictions that may lead to model bias from misspecification and lead to poor
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model forecasts. 

Since data alone are not sufficient in determining the structure of regional 

economies, methods of combining sample and non-sample information into model 

specification is increasingly sought.  One ideal method is through Bayesian estimation of 

otherwise atheoretical model structures.  The atheoretical structure emphasizes the role of 

past observations on current observations, while Bayesian priors impose economic 

structure to these atheoretical structures.  Indeed the resulting specifications advantage 

from accurate forecasts while allowing for full structural responses to changes.   

The current study proceeds by surveying this integrating process to reveal the 

progress and opportunities for integrating atheoretical structures and economic theory 

with Bayesian methods.  Therefore a survey of Bayesian estimation in regional 

forecasting models is introduced.   

Though Bayesian estimation is integral in combining sample and non-sample 

information in estimating economic structure, Bayesian methods are limited in the 

difficulty of specifying Bayesian estimators for large-scale forecasting and theoretical 

models.  An alternative Bayesian methodology to estimation, called entropy estimation, is 

introduced that eases the complexity constraint of traditional Bayesian methods allowing 

the estimation of large-scale, complex economic structures.   

A structural policy simulation and forecasting model is constructed and estimated 

employing a variant of the entropy methodology that allows the simultaneous fit of the 

model structure to economic time-series.  Within this structure is the essence of the 

economic linkages of a static general equilibrium model that facilitates the fit of data over 

time.  This historical fit facilitates forecasting where the full time-path responses of 
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structural change can be captured for policy and development analysis.   

In summary, the proposed model integrates the forecasting accuracy of a regional 

VAR/econometric model with a policy-relevant structure that is representative of that 

associated with a regional CGE model.  It extends current regional modeling by 

estimating the model employing a maximum entropy (ME) approach.  The ME approach 

can be used to estimate models that contain numerous parameters in cases where data are 

limited.  The ME approach also allows for calibrating the model to the time-series 

movement of key variables in true dynamic fashion, and for imposing Bayesian-type 

prior information.  It facilitates this by specifying the estimation problem as non-linear 

programming problem.   
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CHAPTER II 

SURVEY OF BAYESIAN METHODS IN FORECASTING REGIONAL ECONOMIES 

INTRODUCTION 

The goal of any regional forecasting system is to systematically make the best 

possible judgment about future events.  Good forecasts are vital to good decision-making, 

and the better the forecast, the better-informed decision makers are.  Furthermore, the 

higher are the stakes, the more vital good decision-making is.  Given this, it is no wonder 

that so much effort has been applied to the development of accurate forecasting systems.   

Two formidable constraints exist in creating viable regional forecasts.  The first 

and most severe constraint is the paucity of usable regional economic data.  The second 

constraint is the properties of econometric estimators.  The second constraint is arguably 

less binding if sufficient regional data are available, but the absence of such data puts 

limitations on the procedures used to model regional economic behavior.   

The paucity of good economic data has been a persistent problem for economists 

and is an especially acute problem for regional economists.  Many variables available at 

the national level are not available at the regional level, and the more disaggregate the 

region of study the more limited regional economic data and industry detail becomes.  

Therefore regional econometric models are restricted by availability of histories as well 

as detail of the regional data.  This makes regional models less functional than their 

national counterparts and restricts their ability to accurately represent economic 

relationships dictated by economic theory.  
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Limitations to effective procedures of estimating econometric relationships are 

especially problematic for situations where regional data is scarce.  Traditional ordinary 

least squares relies on asymptotic properties for inferences and small sample estimators 

espouse a high degree of variation.  In small samples, ordinary least squares is subject to 

over-fitting where too many parameters are estimated relative to the observations 

available to estimate those parameters.  In such cases, the degrees of freedom are eroded 

leading to estimators with poor sampling performance.  Furthermore, since regional 

economic variables tend to share co-movements, traditional least squares procedures 

suffer from multicollinear regressors.  This is a common problem associated with 

estimating relationships from explanatory variables that share co-movements across time.   

This chapter discusses Bayesian methods of correcting for such data deficiencies 

in estimating economic models.  Primarily, this section presents applications of Bayesian 

methods of estimation used in regional models where regional models comprise multiple 

equations of multiple endogenous variables with or without direct feedback relationships.   

Regional econometric models consist of a system of stochastic equations and 

identities.  Individual industries comprising regional econometric models can be modeled 

with atheoretical relationships, entailing no linkages predicted by theory, or with 

structural relationships, where linkages from economic theory are incorporated into 

equation estimation.  Missing the important linkages that capture economic relationships, 

atheoretical models tend to perform well in short-term forecasts but poorly relative to 

structural models in long-term forecasts.  The relative long-term forecast success of 

structural models over atheoretical models can be attributed to additional use of 

information contained in structural linkages.  Valid structural linkages assure that the 
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related variables do not meander in some random-walk manner, but rather share co-

movements with other economically related variables. 

Sims (1980) cautions against imposing undue structure in econometric models 

when noting that incorrectly imposed structure causes model misspecification.  Particular 

misspecification errors occur when the extent of endogeneity of included variables is 

questionable.  Rather than imposing structure on econometric models, Sims recommends 

treating each variable symmetrically and allowing the estimation procedure to determine 

the extent of endogeneity of the model.  He advocates vector autoregressive models 

(VAR) as alternatives to structural econometric models in estimating econometric 

systems.  Stock and Watson (2001) review the VAR methodology and investigate their 

use in forming dynamic impact analysis, while Cromwell and Hannan (1993) do likewise 

for regional applications. 

VARs are very general representations of data generating processes that facilitate 

ease in specifying, estimating, and forecasting (Zellner 1979).  They allow a full range of 

structural relationships limited only by the inclusion of endogenous variables.  

Furthermore, VAR models allow the data to empirically dictate the economic structure. 

Therefore VAR models are relatively easy to implement having no structural 

relationships to set a priori.  While forecasts from VARs are inexpensive, there are 

several inherent problems with VAR models.  Economists rarely have sufficient time-

series data to construct regional VAR models.  Even when sufficiently long histories do 

exist, structural breaks render older observations irrelevant, limiting economists to 

smaller historical series.  Because constructing VARs, with even a small number of 

variables, requires a considerable number of observations, VARs tend to be 



7 

overparameterized, having too many parameters to estimate from too few data points.  

Such overparameterized systems lead to good in-sample fit but poor out-of-sample 

forecast performance (Litterman 1986c).  Overparameterized models cannot distinguish 

the systematic relationships (signal) comprising the data generating process from the 

random variation (noise) when fitting model parameters.  Therefore VARs tend to be 

smaller than structural models implying that they use less information (Fair and Shiller 

1990).   

VAR models are characterized as a system of equations of endogenous variables 

in lags of all system variables.  For example, an n variable, unrestricted VAR in reduced 

form follows, 
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where Yit is the ith endogenous variable at time t, Ci is the constant term in equation i, Uit 

is a stochastic term assumed to be characterized as white noise, and the matrix of 

parameter terms Aij are estimated with least squares.  The vector lag operator L is defined 

as the vector lag operators [L1 L2  ··· Ls]', where LkYit = Yi(t-k) such that for equation i, 

it
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Equation (2.2) specifies Yit is as a function of its own s lags and the s lags of the other n 

endogenous variables in the system.  Because each equation in the traditional reduced 

form VAR model has the same regressors, each equation can be estimated separately 

using lease squares with no loss in efficiency (Judge et al. 1988, pp. 450).  While the 

strength of the VAR specification is the ease of formulating the model, two empirical 
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weaknesses are noted.  Since each equation in the VAR system requires n x s+1 

parameter estimates, there is a rapid decline of degrees of freedom for each endogenous 

variable added to the system.  Furthermore, since many economic variables share co-

movements over time, VAR models generally suffer from a high degree of 

multicollinearity.  The Bayesian framework has been employed to mitigate these 

weaknesses in VAR estimation.   

This chapter reviews the current state of Bayesian methods in creating regional 

forecasting systems.  Bayesian methods have been applied to a host of estimation 

problems in regional analysis.  The third section surveys Regional Bayesian vector 

autoregressive (BVAR) models, which draw primarily on the use of the Minnesota prior 

specification (Doan et al. 1984) and forms the keystone of Bayesian forecasting.  These 

models are mostly atheoretical in that prior distributions generally do not reflect 

economic theory.  The forth section surveys Bayesian applications that impose economic 

theory on parameter estimates through informative prior distributions.  The sixth section 

surveys recent applications of accounting for spatial location of regions.  

THE BAYESIAN PARADIGM 

All forecasting models combine sample and non-sample information to derive 

forecasting equations.  The process of combining these sources of information is one of 

the most controversial topics in applied econometrics and econometric forecasting.  The 

controversy surrounds two competing statistical paradigms.  The frequentists or 

traditionalists treat equation parameters as unknown constants and rely on repeated 

sampling for estimation, while the subjectivists or Bayesians treat equation parameters as 

unknown variables and rely on the combination of prior information and the data for 
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estimation.  Succinctly, the frequentists focuse on the probabilities of various possible 

sample outcomes resulting from a given population while the Bayesians view an 

observed sample as given and consider the probabilities of various populations from 

which the sample might have come (Kmenta 1986, pp. 192).    

In formulating model equations, the frequentists rely on classical estimation 

methods that entails including only a few explanatory variables suggested by theory when 

formulating the forecast equations.  This is equivalent to claiming no prior information 

concerning the relationship of included variables and absolute knowledge of no 

relationship for excluded variables (Litterman 1986b).  Rather than employing these 

extreme options, Bayesians introduce prior information that accounts for the expected 

value of the estimate and the degree of confidence in their expectation of that estimate.  

The subjectivists postulate that imposing informal exact prior restrictions creates more 

formidable bias than the formal prior restrictions imposed by Bayesian methods (Poirier 

1995, pp. 482).  The frequentists contend that prior information may not be conveniently 

expressed in a formal prior, in which case it is better to incorporate such prior 

information in a thoughtful, ad-hoc way (Kennedy 1998, pp. 215). 

The paucity of regional times-series data makes regional forecasting ideally suited 

for Bayesian methods since Bayesian estimation offers an objective means of correcting 

for insufficient quality and quantity of data (West and Theil 1991).  The stage for 

Bayesian forecasting is set by Friedman (1953, pp. 8-9) and supported in Zellner (1985) 

in stating that,  “[t]he only relevant test of the validity of a hypothesis is comparison of its 

predictions with experience.”  Hence, regardless of the methods employed in forecasting, 

the acid test of the efficacy of the model is its ability to forecast well.   
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Bayesian methods have been applied extensively over the past 40 years for 

national economic forecasting (Zellner 1985) and, to a lesser and more recent extent, to 

regional economic forecasting models.  Evidence of the usefulness of Bayesian methods 

in regional forecasting models can be found in their application to business cycle 

forecasting (DeJong et al. 2000; LeSage 1991; Otrok and Whiteman 1998), to vector 

autoregression and error correction forecasting models (LeSage 1990; Litterman 1980, 

1986b; Liu 2002; McNees 1986), and to forecast model selection (Geweke 2001; LeSage 

and Rey 2002; Rickman and Miller 2002).  In fact, Bayesian methods of estimation and 

forecasting have a seemingly unlimited set of applications.   

The first application of Bayesian methods to forecasting regional data is found in 

West and Theil (1991), who employed a Stein-like shrinkage estimator to forecast 

industry employment for 20 Florida MSAs.  Their purpose for using Stein effects is to 

help mitigate deficiencies in the quality and quantity of sub-national data.  Since West 

and Theil’s seminal paper on regional forecasting, a host of other Bayesian applications 

in regional forecasting models has emerged.  The general rationale for these efforts 

centers on the need to augment deficient regional data for forecasting purposes.   

The building block of the Bayesian paradigm is Bayes’ theorem.  Using Poirier’s 

(1995) notation, set y equal to some vector of observations, X equal to some matrix of 

predetermined explanatory variables of y, and let θ be some vector of parameters that 

together with X describes the observation vector y.  Bayes’ theorem can be written as, 

)|(),|(
)|(

)|(),|(),|( XθgXθyf
Xyf

XθgXθyfXyθg ∝= , (2.3) 

where g(θ | y, X) is known as the posterior probability distribution, g(θ|X) is the prior 

distribution depicting subjective beliefs of the values the parameters can take and is 
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independent of the sample, f(y |θ , X)  is the conditional probability of the observed y’s 

given the values of θ and X generally known as the likelihood function, and f(y|X) is the 

marginal likelihood of y and does not depend on θ.  The denominator, f(y|X), is known 

and invariant to θ and ensures that g(θ | y, X) integrates to unity.1   

The posterior distribution is the product of the data and subjective prior beliefs.  

To see this, note that an equivalent statement of Bayes’ theorem can be stated as, 

Posterior Distribution µ Likelihood Function ×  Prior Distribution,  (2.4) 

which is an equivalent statement of the relationship in Equation (2.3).  Bayes’ theorem 

combines information from two sources to derive the posterior distribution.  The relative 

influence of these sources of information on determining the posterior distribution 

depends on the relative precision sources take.  The stronger the researcher’s belief in 

their prior knowledge, the more precise the prior distribution relative to the likelihood 

and the more influence the prior has on the posterior estimates.  Furthermore the larger 

the sample size, the less weight is placed on the prior.  By the theory of large numbers, as 

the sample size increases the variance of the likelihood estimator decreases placing more 

weight on the likelihood function relative to the prior distribution.  For large samples, the 

Bayesian and the classical approaches tend to converge as all precision is established on 

the likelihood function determined by the data (Dorfman 1997). 

Prior distributions are generally classified as being either non-informative, 

reflecting no prior expectations, or informative, where some outside prior expectations 

are specified.  Non-informative Bayesian priors rely on Jeffreys’ (1967) vague or 

                                                 
1 The presence of stochastic regressors, X, as found in forecasting applications is generally assumed away 
in application.  For detailed descriptions of applying Bayesian methods refer to any combination of (1971), 
Box and Tao (1973), and Poirier (1995). 
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indifference priors which distributes equal likelihood to all values of the parameter across 

the parameter support.  For Equation (2.1), this is specifying the prior distributions as,  

⎪⎩

⎪
⎨
⎧ <<=

otherwise.,0

,0,1
)( aθ

aθg  (2.5) 

Equation (2.5) states that equal prior probability is given for all possible values of the 

parameters θ, but it does not constitute a proper probability distribution function since the 

integral over all possible values of θ does not equal unity.  Such continuous distribution 

in which the integral over the support of the distribution does not sum to unity is known 

as an improper distribution (Birkes and Dodge 1993, pp. 146).   

Though, a proper prior distribution is sufficient for a unique solution to the 

posterior (Press 1989, pp. 29), the posterior distribution is invariant up to a multiplicative 

constant, and henceforth an improper non-informative prior is sufficient for a unique 

solution to the posterior distribution.  By noting that the maximum likelihood estimator of 

the parameter θ of a linear function is equivalent to the least squares estimate (Judge et 

al. 1988, pp. 223-224), and recalling that f(y|θ,X) is the likelihood function for the linear 

relationship in parameters θ, it can easily be seen that imposing non-informative priors 

into the Bayesian Equation (2.3) gives the least squares estimates of θ.  To see this, note 

that f(y) in Equation (2.3) is the marginal likelihood of y and is some function of the 

known observations only and therefore constant.  Restating Equation (2.3) as, 

)(),|()(),|( 1 θgXθyfyfXyθg −=  

).,|()(
, therefore,constant and )('  where),,|(')(

,constant a is and )(c  where),(),|()( 1

Xθyfθ|y,Xg
θcgcXθyfcθ|y,Xg

yfθgXθycfθ|y,Xg

∝
==

== −

 

By specifying g(θ) as a constant non-informative prior, it is absorbed into the constant 
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term of the posterior distribution.  Since the posterior distribution is invariant to a 

multiplicative constant the non-informative prior does not influence the optimal values of 

θ, but only the value of the posterior distribution for all θ∈n.  For a non-informative 

prior, the resulting posterior distribution is the likelihood function of the data and 

completely dominated by the sample information.  For a more complete proof and 

discussion refer to Judge et al. (1988, pp. 281-288). 

Informative priors use subjective information to determine the distribution the 

researcher expects the model parameters to take prior to estimation.  This information can 

come from a variety of sources such as prior research findings, or expert opinion.  In 

most cases this prior information is with some uncertainty, which is reflected in the 

specification of the prior variance.  A more common measure of uncertainty is the prior 

precision, which is simply the inverse of the variance.  Practitioners that have a high 

degree of certainty a priori of the values the parameters should take will place a low 

degree of variance or a high degree of precision on the prior distribution.  As described 

below, this causes the estimator to place greater weight on the prior distribution relative 

to the data. 

For convenience, informative priors are usually specified as conjugate prior 

distributions, which simplify the math required in calculating the posterior distribution.  

A conjugate prior distribution is a distribution that when multiplied by the specified 

likelihood function, creates a distribution of the form of the prior distribution, while a 

natural conjugate prior distribution produces a distribution in the form of the likelihood 

function (Poirier 1995, pp. 291).  In either case, the choice of prior distribution is often 

made on the basis of computational convenience rather than on the belief of the 
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representation of the prior on the actual distribution.  Convenience priors have the benefit 

of producing analytically tractable solutions to posterior distributions that take a 

recognizable form of a known probability distribution, thereby saving the analyst the 

need to analytically integrate over these complex functions.   

Increases in computational power of modern computers have decreased the 

practitioner’s reliance on conjugate priors.  Recent, computationally intensive methods of 

integration rely on computational power and limit the need to restrict prior specification 

to those of convenience priors.  Rather than deriving statistics from the posterior 

distribution using calculus, Monte Carlo methods of numerical integration employ 

pseudo-random number generation to investigate the empirical properties of posterior 

probability distributions.  Though numerical methods of deriving results from Bayesian 

inference leads to approximation error, the precision of the estimates is determined by the 

number of samples drawn from the posterior distribution, and so is within the analyst’s 

control.  The advent of numerical methods of estimating posterior distributions gives 

researchers greater flexibility in specifying prior distributions avoiding complexities of 

intractable posterior distributions.  

Because Bayesian applications of regional forecasting are well established and 

because new applications continue to be developed, the time is ripe to review these 

applications and assess their merits over traditional methods.  Furthermore, the current 

body of literature is broad enough and mature enough to reflect trends in applications of 

Bayesian forecasting techniques at the regional level.  Therefore the current study 

surveys the current literature on Bayesian applications of regional forecasting by 

describing issues relating to Bayesian applications, describing the methods of and the 
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rationale for their applications, and reporting the results of those applications.  This study 

further reflects on the trend of these applications as sequenced over time and assesses the 

direction of growth as well as gaps in the current literature. 

The following section presents the regional Bayesian vector autoregressive model 

employing an atheoretical prior distribution devised by Litterman that creates a marriage 

of univariate time-series forecasting with structural forecasting methods.  The resulting 

estimator is the keystone to many applications of regional models to be presented in 

subsequent sections.   

REGIONAL BAYESIAN VECTOR AUTOREGRESSIVE MODELS AND THE 
MINNESOTA PRIOR 

Noting weaknesses in the vector autoregressive (VAR) models of Sims, Litterman 

(1986a) presents the Bayesian variant, BVAR models, employing what is now known as 

the Minnesota prior.  Litterman’s BVAR methodology incorporates the forecaster’s prior 

beliefs of the values the coefficients aijk in Equation (2.2) should take.  Litterman's priors 

are atheoretical in that the priors do not specify any theoretical underpinnings of the data, 

but merely act to control for weaknesses in the VAR methodology.  His prior 

specification takes the form of normally distributed prior densities, which can be 

completely defined by means and variances.   

Understand the Minnesota prior first requires introducing the method of imposing 

this prior on estimation.  Litterman’s BVAR system is estimated by an application of 

Theil’s mixed estimation.  In the traditional reduced form VAR, each equation regresses 

a dependent variable on lags of itself and other variables in the system.  Therefore, each 

equation has identical regressors, and because there is no loss in efficiency in estimating 
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each equation individually using lease squares , each equation is estimated independently 

and takes the form, 

uXβy += , where ( )I0u 2,~ σN , (2.7) 

where y is a T×1 vector of observations on the dependent variable, X is a T×m matrix of 

predetermined explanatory variables with rank m, and u is a T×1 vector of disturbances, 

where, E[u] = 0, E[u u '] = σ2I.  The matrix of estimated coefficients, β, is an m×1 vector 

and assumed to be normally distributed, where m (= n·k + 1) is the product of the number 

of variables in the VAR and the number of lags plus the intercept.  Extraneous 

information not derived from the data is represented as linear stochastic restrictions of the 

form, 

υRβr += , where ( )ψ0υ 2,~ σN  (2.8) 

where r is an m×1 vector of prior means, R is an m dimensional identity matrix, υ is an m 

dimensional vector of stochastic restriction error terms, where E[υ] = 0, E[υ υ '] = ψ, and 

ψ is a positive-definite, non-singular, symmetric matrix of the prior expected variance-

covariance matrix of the prior means. 

Theil’s mixed estimation is to apply Aitken’s (1935) generalized least squares to 

the system of stacked Equations (2.7) and (2.8) forming, 
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Theil's generalized least squares estimator of the parameter vector β in Equation (2.9) is, 

( ) ( )rψR'yX'RψR'XX'β 1
Theil

−−− ++=
11 , (2.10) 

and can be viewed as a weighted average of the means and prior distribution for the 

vector of coefficients β (Birkes and Dodge 1993, pp. 167).  Expanding Equation (2.10) 
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and multiplying the first term by )'()'( 1 XXXX −  gives, 

( ) ( ) ( ) rψRRψRXXβXXRψRXXβ 1
olsTheil

−−−−− +++= '''''' 1111 . (2.11) 

This arrangement of Equation (2.10) shows that βTheil is a weighted average of the least 

squares estimator βols and the prior predicted means r with weighting matrices, 

( ) XXRψRXX ''' 11 −−+  and ( ) 1ψRRψRXX −−−+ ''' 11 .  The weighting matrices are both 

positive definite and sum to the identity matrix.  The prior covariance matrix ψ is 

specified by prior beliefs and drives the weights.  In the extreme event of no confidence 

in the prior restriction, the prior covariance matrix approaches infinity such that Equation 

(2.10) verges on to βTheil = I·βols + 0 = βols, resulting in OLS estimates.  In the opposite 

extreme of perfect confidence in the prior means, the prior covariance matrix approaches 

the zero matrix such that Equation (2.10) converges to βTheil = 0 + I·r = r.  That is Theil's 

parameter estimates revert back to the imposed restriction with no variance.  In practice 

prior precision is set somewhere in between the two extremes offering a flexible channel 

in which to impress non-sample information on parameter estimates. 

Litterman integrates a random-walk Bayesian prior to the self specifying structure 

found in VAR estimates through Theil's GLS.  Litterman notes that many economic time-

series follow a random-walk implied by the efficient markets hypothesis, 

Yit = Yi(t-1) + Uit. (2.12) 

The random-walk model implies that aside from past observations, there is no method of 

determining what future values an economic time-series will take.  For each equation in 

Equation (2.1), the Minnesota prior specifies a prior distribution based on the belief that 

the series espouses a random-walk, where the specified prior mean for the single lag 

coefficient for equation i, aij,1 is set equal to unity, and all remaining prior means on own-
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lags and cross-lags are set equal to zero.  Therefore the Minnesota prior specifies a one-

to-one relationship between future values of a series with it’s immediate past value and 

assigns a prior value of zero for all subsequent lags and cross-equation relationships.  

Drift can be included in the Minnesota prior by defining a diffuse prior distribution for 

the constant a constant term Ci, 

Yit = Ci + Yi(t-1) + Uit (2.13) 

This specification says that the best guess of a variable’s current value is the value the 

variable took last period.  Forecasts from this overly simple specification often fit as well 

as complex structural models (Crone and McLaughlin 1999). 

In Litterman’s specification, the elements of the prior variance-covariance matrix 

ψ  are specified as, 

( )( )22 )(),( jiiiiijl SSlgljfθ=λ . (2.14) 

The hyperparameter θ determines the overall tightness of the prior variances and reflects 

confidence in the prior means.  For cases with certainty about the set of prior means, this 

parameter should be near zero.  The set of parameters f(i,j) specifies the relative tightness 

on variable i to variable j.  The decay rate parameter g(s) specifies the rate of decay of 

uncertainty over lags.  The decay rate incorporates greater confidence that the prior 

means equal the specified prior mean of zero as the lag length increases. 

The parameter values in Equation (2.13) reflect the prior weight placed on the 

prior random-walk means in estimation.  Large parameter values imply greater precision 

and impose the random-walk priors with more certainty.  The coefficients relating Yit to 

lags of itself, aiik, are scale invariant such that multiplying both the left- and the right-

hand side of equation i by some constant, leaves the own-lag coefficients unchanged.  
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Therefore the scaling term Si/Sj=1 for i=j.  For cross-variable specification, the ratio Si/Sj 

scales the variances to correct for different units of measures.  The Minnesota prior 

systematically places more confidence that the actual means of the own- and cross-lags 

are close to zero the further the lag through the decay rate parameter g(s).  The decay 

parameter is usually specified as a harmonic decay as, g(s) = s-1, where s is the lag length.  

Doing so asserts that the less important a lag is believed to be, the more confident the 

forecaster should be that the lag’s true coefficient value is zero and the tighter the 

precision values should be.  Finally the relative tightness parameter, f(i,j) is generally 

specified as unity for own lags where i=j and some value less than unity otherwise 

(Litterman 1986b).  This specification augments the VAR model by emphasizing the 

autoregressive properties of the prior means 

The usual procedure in specifying the hyperparameter is to begin with a small 

value that imposes the random-walk on estimation firmly.  Then sequentially increase it 

such that the weight is diverted to the least squares estimator.  The performance of the 

new specification is compared to the prior by out-of-sample model performance.  The 

process is continued until the forecaster is satisfied that the specification produces the 

model with the best out-of-sample fit (Crone and McLaughlin 1999).   

In regional BVAR models where national variables are introduced to the VAR, it 

is common to specify one-way relationships from national variables to state variables.  

This specification is achieved through the f(i,j) matrix of Equation (2.14), where a large 

value, specifying a loose prior of zero, is chosen for national variables in regional 

equations, and a small value, specifying a tight prior of zero, is chosen for regional 

variables in national equations.  This is the Litterman “circle-star” structure where star 
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(national) variables are specified to influence both star and circle (regional) variables, and 

circle variables influence only circle variables (Doan et al. 1984). 

Several benefits are derived from the Bayesian estimation of VAR forecasting 

models.  Namely, incorporating stochastic restrictions in estimation recovers a degree of 

freedom for every restriction, partially mitigating the sample size problems in regional 

models.  This property of BVARs allows the estimation of systems that, because of 

insufficient histories, cannot be estimated in unrestricted VARs.  Less apparent is the 

corrective properties through shrinkage-like estimation; particularly of the Minnesota 

priors.  The benefits of shrinkage and ridge regressions when forecasting models with 

multicollinear regressors is well documented (Birkes and Dodge 1993, pp. 173-187; 

Vinod 1978).  The shrinkage-like properties of the Minnesota priors come about from 

specifying all same- and all cross-lag prior means as zero, (except the same variable, one 

lag coefficient) thereby shrinking the estimated coefficients toward zero in a similar 

manner of ridge estimators.   

Furthermore, the Minnesota prior specified BVAR encompasses the univariate 

AR model and the structural UVAR model as special cases, adjusting on the precision of 

the priors.  This specification enables the desirable properties of both specifications while 

controlling for multicollinear relationships among explanatory variables.  The strengths 

of these benefits are evident in increased forecast accuracy found in the following studies.  

Several studies do not benchmark their results with alternative model 

specifications.  Amirizadeh and Todd (1984) and Todd (1984) forecasts non-farm 

employment, earned income, and retail sales applying the atheoretical Minnesota prior in 

BVAR models of the five states comprising the Ninth Federal Reserve District.  National 
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drivers drive their models through the circle-star specified priors.  Crone and McLaughlin 

(1999) compare BVAR forecasts of a system composed of the City of Philadelphia, the 

Philadelphia MSA, and the nation.  The Minnesota prior with "circle-star" structure is 

used to guide unidirectional causality from the nation to the MSA to the city.   

Other studies compare BVAR model performance against alternative 

specifications.  Puri and Soydemir (2000) employ the Minnesota BVAR model to 

forecast employment for three key industries and aggregate employment for five 

Southern California counties.  Rather than assigning prior variances informally, the 

author’s apply Theil’s U statistic (1966) in systematically selecting the optimal in-sample 

model fit with national drivers.  They further find that loose priors provide estimates that 

outperform more restrictive priors suggesting that the strength of the Minnesota prior is 

its shrinkage like properties.  Two papers make comparisons with exogenous drivers in 

the circle-star structure.  Kinal and Ratner (1986) compare forecast accuracy from a 

Minnesota prior specified BVAR, its unrestricted VAR model, univariate ARIMA, and 

multivariate ARIMA models employing a transfer function .  Fullerton (2001) uses the 

BVAR specification as a benchmark comparison for forecasts of a borderplex 

econometric model.  Doing so raises the bar over other atheoretical benchmark models 

that his model must surpass.   

Shoesmith (1990) compares the out-of-sample forecast performance of quarterly 

BVAR models and VAR models for North Caroline, New York, and Texas when the 

models are misspecified.  Drawing from prior research that shows that forecasts from 

unrestricted VAR models are sensitive to model specification while BVAR models are 

much less sensitive (Shoesmith 1988), Shoesmith sets out to show that BVAR models 
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mitigate the effect of model misspecifications on forecast performance.  The test consists 

of drawing a random series from a standard normal distribution and either substituting it 

or adding it to the national variables in two models thereby creating three misspecified 

models.  National variables are chosen to represent a wide range of national economic 

activity.  The author then compares both short- and long-run forecasts and finds that the 

Minnesota prior with Litterman’s “circle-star” structure outperforms VAR models in 

ninety percent of the trials.  Because the BVAR model mitigates the effects of 

multicollinearity, the BVAR models outperform the VAR models for virtually every 

long-run forecast and for the vast majority of short-run forecasts.  The results also show 

that forecast performance varies significantly across model specification for VAR models 

while BVAR models do not appear sensitive to the inclusion or exclusion of irrelevant 

national variables.  This is because the Minnesota specified BVAR model shrinks 

estimates toward a univariate AR model thereby de-emphasizing the role of these 

irrelevant variables in forecasts.   

LeSage (1990) and Shoesmith (1992) expand on the VAR methodology by 

incorporating an error correction term to the estimation equations.  The vector error 

components model (VEC) is a straightforward generalization of the VAR framework that 

takes advantage of long-run relationships across variables characterized as linear 

combinations with reduced orders of integration.  VEC models are formed from the same 

VAR system specification in Equation (2.1) in differences and augmented by an error 

correction term.  The error correction term measures the distance between variables from 

their equilibrium states.  Engle and Granger (1987) show that omitting the error-

correction term from the estimation of the VAR in differences leads to model 
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misspecification if a cointegrating relationship across any subsystem of variables exists.  

Since a VEC model with no cointegrating relationship reduces to a VAR model in 

differences the VAR model is a special case of the more general VEC model. 

Because VAR models are nested in VEC models, comparing forecast 

performance entails testing the contribution of specifying cointegrating relationships in 

forecasting models.  On theoretical grounds, VEC models are expected to outperform 

VAR models in long-run forecast horizons since VEC models incorporate long-run 

relationships in model estimation.  If short-run dynamics lead to long-run relationships, 

VEC models are also expected to outperform unrestricted VAR models in short-run 

forecasts (Engle and Granger 1987; Engle and Yoo 1987; Granger 1986).   

Following the neoclassical labor demand model, LeSage (1990) constructs a VAR 

system in man-hours of employment, nominal wages and prices for 50 industries in Ohio.  

VAR estimates of industries that espouse a cointegrating relationship across variables 

will be biased without augmenting the models with an error-correction term, (Engle and 

Granger 1987) so all VARs are replicated in the VEC format by the additional error-

correction term.  Forecasts from unrestricted estimates and Bayesian restricted estimates, 

with the Minnesota prior, of the 50 VAR and similarly specified VEC models are 

compared.  While Shoesmith (1992) compares unrestricted VAR and VEC models in 

personal income, retail sales, and a host of national variables as drivers, designed to 

capture a broad range of national economic activity.  Forecasts from these unrestricted 

models are compared to forecasts made by similarly specified Bayesian variants with the 

Minnesota prior and circle-star specification.   
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Both studies find that forecasts from the Bayesian specification of the VEC model 

(BVEC) outperform those by the BVAR models for long-run forecasts while the 

Minnesota prior specified BVAR generally produces better short-term forecasts.  This is 

expected since cointegrated series exhibit a long-run tendency to revert to some 

equilibrium relationship.  The empirics show that imposing this long-run relationship on 

short-term dynamics restricts the short-term forecasts even when a long-run cointegrating 

relationship exists.  This finding counters Engle and Yoo (1987), and Granger’s (1986) 

expectation of improved short-run prediction with cointegration.  Relative long-run 

forecast performance for variables where cointegrating relationships exists, show an 

advantage to the BVEC formulation.  They further find that the BVEC specification often 

produces superior long-run forecasts over the Minnesota prior VAR specification even 

for those industries where a cointegrating vector does not exist.  This result is not 

especially troubling since an over-specified model does not induce forecast bias but the 

added multicollinear relations can cause forecast deterioration only if the collinear 

relationship does not hold over time.   

The current state of research indicates that the application of Bayesian methods to 

regional VAR modeling contributes to out-of-sample forecast performance.  Greater 

forecast performance over traditional VAR models can be attributed to the shrinkage-like 

property of the Bayes estimator in reducing the effects of multicollinearity in estimation, 

and the stochastic imposition of the AR specification, which has been shown to 

outperform more complex structural forecasting models (Fair and Shiller 1990).  

Furthermore, the Minnesota prior BVAR embodies, as a special case, the unrestricted 

VAR and the univariate AR models, depending on the tightness of the priors.  The 



25 

Minnesota BVAR methodology offers a range of flexibility in specifying the degree of 

cross-variable dependence.  An alternative to applying the atheoretical Minnesota prior is 

to structure prior distributions based on economic theory.  The structure of input-output 

models is one such source of theoretical structure that has been applied to regional 

econometric models.   

VAR INTEGRATION OF INPUT-OUTPUT AND ECONOMETRIC MODELS 

Early applications of Bayesian methods in regional modeling focused on the need 

to assist statistical estimators in capturing patterns across time as exemplified by the 

atheoretical Minnesota prior.  The attributes of the simple random-walk prior 

specification of the Minnesota prior BVAR prompted researchers to seek more 

theoretical priors to impart interindustry linkages to the otherwise atheoretical VAR 

framework.  This step is quite logical since the unrestricted VAR is instrumental in 

objectively identifying linkages, and the Minnesota prior BVAR mitigates the effects of 

multicollinear relationships across explanatory variables.  If it is true that the strength of 

the Minnesota BVAR prior is the shrinkage-like property of the estimator, then a 

systematic way of introducing industry linkages back into the estimation will improve 

forecasts from VARs while retaining the interindustry interaction.   

While parsimonious atheoretical models may be affective in short-run forecasting 

models, long-run forecasting and policy analysis models require greater detail to capture 

the economic structure underlying the data.  A way of employing Bayesian methods to 

otherwise atheoretical models was desired for imposing economic structure and therefore 

economic theory.  Input-output models, with their linear general equilibrium 

relationships, present an opportune way of combining theory in an objective way. 
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Input-output (IO) models have long held a presence in regional economic 

analysis.  Several reasons contribute to the continued application of IO models in regional 

analysis.  First is the appeal of a completely interlinking set of relationships across 

industries in a region that forms the basis of IO models.  Furthermore, regional IO models 

present intuitive measures that are easy to comprehend and put to use.  More recently, IO 

models have won favor by many regional analysts because of the low costs of 

implementing regional IO models produced from the competitive industry of ready made 

IO software (Brucker et al. 1990; Hastings and Brucker 1993).   

Nevertheless, IO models alone are imperiled with several weaknesses stemming 

from their inert assumptions and structure.  For instance, IO models are developed around 

the assumptions of linear production technologies, constant returns to scale, 

homogeneous consumption functions, and price inflexibility (Rey 2000).  Furthermore, 

IO models are strictly static and offer no time-path responses to changes in final 

demands.  Regional econometric models are not restricted to such assumptions, thereby 

offering greater flexibility in specifying the underlying theory of the model and modeling 

dynamic responses to changes.  Though regional econometric models offer greater 

opportunities for policy analysis, their use as a regional modeling tool remains somewhat 

limited (Rey 1997).   

While the similarities between IO models and large-scale macroeconometric 

models have long been recognized by modelers, empirical work on integrating the two 

has not.  Gerking (1976) explored estimating IO linkages econometrically, while Klein 

(1989) discussed incorporating IO models into large-scale macroeconometric models and 

LeSage and Magura (1991) apply information contained in the national IO table in 
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specifying a national VAR employment system for forecasting.  More recently, IO 

models have facilitated the specification and estimation of regional econometric models 

in Glennon and Lane (1990), Treyz, Rickman, and Shao (1992), Fawson and Criddle 

(1994), and Magura (1987). 

The intuition for impressing the IO table into econometrically estimated regional 

models becomes clear when considering the structure of closed IO models.  A closed IO 

model is a linear representation of interindustry transactions and industry final demands.  

A representation equation may take the form as, 
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(2.15)

 

Aside from the exogenous final demand driver F, Equation (2.15) captures the essence of 

the VAR model of Equation (2.1), differing only in contemporaneous rather than lag 

relationships and in the stochastic error term.  The IO transactions table does not have a 

time subscript because the IO transactions table is specified with no time element.  The 

direct input coefficient aij represents the dependence of output in industry j on the inputs 

from industry i similar to the dynamic Aij(L) coefficient in the VAR equations. 

Placing exclusion restrictions on the appropriate cross industry relationships 

coefficients of Equation (2.1) found in the representative coefficients aij of Equation 

(2.15) creates a structural set of equations that can be modeled with econometric models, 

assuming the data for such a model exists.  Where data is lacking, mixed estimation 
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recovers the ability to econometrically model the set of relationships found in Equation 

(2.15) through imposing IO relationships in the form of prior expectations. 

A striking benefit of specifying prior distributions from the direct requirements 

matrix is the ability to impose economic structrure on the VAR framework.  IO models 

offer point estimate impacts with no time-path response, while econometric models offer 

testable time-path responses to changes in the system but generally lacks the ability to 

model complex structure at the regional level.  Integrating interindustry relationships into 

the atheoretical regional VAR model provides structural relationships to the forecasting 

model.  The resulting models produce impact multipliers that are both testable and have a 

time-path response (Rey 2000). 

Though several non-Bayesian applications of integrating regional IO and 

econometric models have materialized2, two non-Bayesian approaches have been adopted 

by regional analysts within the Bayesian VAR specification.  The first follows Magura 

(1987) in utilizing a representative IO table to guide in anticipated Aij(L) coefficient 

values.  Since the Bayesian methodology allows full enclosure of the IO transactions 

table, it is an intuitive way of incorporating the direct requirements matrix into the VAR 

forecasting model.  In Magura’s strategy, industries that are primary users of the output 

of the dependent variable industry are included as explanatory variables to capture 

relevant intermediate demand linkages from the IO transactions table.  The resultant 

VAR system of industry forecast equations are then structurally determined by the IO 

table.  Critical of this method, is that this ad-hoc method of exclusion restrictions may 

lead to misspecification errors by excluding otherwise key explanatory variables from 

                                                 
2 See West and Jackson (1998), West (1995) for surveys of integrating IO models with econometric models 
for policy simulation and Rey (1997) and Rey (1998) for surveys for forecasting models. 
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estimation.   

The second approach follows Moghadam and Ballard (1987) in collapsing the IO 

table into a single variable that captures the interindustry relationships.  This approached, 

known as the I-SAMIS method, integrates IO models with econometric models by 

summarizing interindustry linkages by a set of interindustry demand variables (IDV) that 

estimate the demands for output of one industry from other industries within the region.  

The IDV variable for industry j in time t is computed as, 

∑
=

=
n

j
itijit XrIDV

1

, for i ≠ j,  (2.16) 

where the vector Xit is the total regional output for industry i in time t, and rit is the direct 

requirements matrix from the national or regional IO transactions table.  This variable of 

aggregate interindustry relationships is then included as an explanatory variable in the 

time series equations of industry i to capture interindustry linkages3.  This approach has 

the benefit of capturing interindustry linkages without imposing unattainable data 

requirements and introducing multicollinearity, but suffers in that cross-industry 

parameter restrictions are implicitly assumed in the aggregation (LeSage and Rey 2002; 

Rickman and Miller 2002) and explicitly fixes intermediate demand to industry output 

(West 1995).   

The first integration strategy, within the BVAR context, is found in Magura 

(1990).  Magura starts with the Minnesota prior specification of zero means on all but the 

own-first lag coefficients with advancing precision on lag length.  The prior precision 

parameter f(i,j) of Equation (2.14) is altered based on the national IO table; decreasing 

                                                 
3 For a comprehensive study of non-Bayesian methods of integrating regional IO and econometric models, 
see Rey (2000).  For a generalization of the I-SAMIS methodology, see Glennon and Lane (1990). 
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precision where the IO table reflects interindustry linkages and increasing precision 

where no interindustry linkage appears.  By decreasing the precision more weight is 

applied to the data in estimating the slope coefficients while increasing precision places 

more weight on the zero slope prior of the random-walk prior.   

Comparing out-of-sample forecast performance from this prior against various 

atheoretical univariate and multivariate AR, or VAR models reveals that regional 

employment in basic industries are best modeled with an atheoretical univariate AR 

specifications, while forecasts of non-basic industries favors the BVAR model with IO 

priors. This finding concludes that relaxed prior precision on the Minnesota prior 

random-walk restriction facilitates employment forecasts of non-basic industries while 

stringent prior precisions on the random-walk restriction facilitates basic industry 

employment forecasts.  This is not surprising given that basic industries are subject to 

changes outside of the region while the health of non-basic industries depends on local 

economic conditions. 

While Bayesian estimates from this specification transcends the ad-hoc 

misspecification issue associated with exclusion restrictions based on the transactions 

table of Magura (1987), Magura’s BVAR specification suffers some short-commings.  

Magura’s reliance on intermediate demand linkages omits the induced effects of final 

demand linkages found in national IO transactions tables.  In addition, employing the 

national IO table, though suitable as a first approximation, omits regional specific 

information that can otherwise be imparted by a regionalized IO table.  Furthermore, 

Magura’s specification does not link his model to the national and world economy 

typically found in regional econometric models.   
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Partridge and Rickman (1998) employ ready made regionalized IO tables reported 

by IMPLAN rather than relying on the national IO table as a first best approximation to 

the interindustry linkages.  They further capture the full set of endogeneities by solving 

the IO relationships for reduced-form employment relationships that entails both 

intermediate and regional final demand components.  Long-run responses relating 

changes in one industry to changes in another are calculated as elasticities with simple 

log-derivatives of the reduced form equations.  Similar elasticity responses are calculated 

for export final demand components.  These elasticity responses are then incorporated 

into the random-walk means specification as the precision variable, f(i,j) in Equation 

(2.14).  They further use IO information in forming prior means in a separate analysis for 

comparisons.  These prior means are set with diffuse precisions to account for uncertainty 

of timing and lack of prior studies to appropriate values.  Finally, they link their regional 

models to the nation through the exogenous domestic and world export final demand 

components for forecasting purposes.   

The authors note that forecast performance depended on three factors, the length 

of the forecast, whether the industry was primary or tertiary, and if there existed an 

economic turning point in the forecast horizon.  Supporting the findings of Magura 

(1990) and LeSage and Magura (1991), forecast accuracy of models restricting 

interindustry linkages such as AR and the Minnesota prior BVAR models deteriorated 

with the forecast horizon showing that interindustry linkages are important in long-run 

forecasting.  Similarly, tertiary employment forecasts benefit from interindustry linkages 

relative to basic industries.  Further analysis shows that interindustry linkages facilitate 

forecasting turning points.  Where AR specifications rely solely on past trends, capturing 
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correlations across industries facilitates cross industry relationships essential in capturing 

downturns across industries.   

In two articles Rickman (2001) and Rickman (2002) compare forecast 

performance from this specification over differing closure assumptions.  Depending on 

the extent of final demand inclusion in calculating prior means restrictions, Rickman 

creates prior means entailing Type I, Type II, and the extended multipliers described in 

Batey and Rose (1990).  The first article focuses on out of sample predictive power, 

while the second discusses the estimated multiplier responses by imposing prior means in 

two polar extremes.  Imposing tight priors from the IO relationship imposes near exacting 

restrictions to the IO table multipliers provided by IMPLAN, while the opposite of 

diffuse prior precision gives ordinary least squares estimates.  Distributing the weights 

evenly between the prior distribution and the likelihood function gives mixed estimation 

results allowing a combination of prior means and the data to determine interindustry 

relationships.  Forecasts based on these three estimators are carried out to assess which 

will produce the best impact multipliers.  Results of these exercises are diverted until 

later.  

Using similar analysis, LeSage and Rey (2002) and Rickman and Miller (2002) 

examine the relative performance of Bayesian and non-Bayesian approaches to 

integrating IO and econometric models in forecasting.  LeSage and Rey (2002) forecast 

employment for 20 industries in 88 counties in Ohio and compares forecast performance 

of four groups of models.  The first group collapses intermediate demand linkages into a 

single IDV variable (Moghadam and Ballard 1987), the second econometrically identifies 

industries to include in the calculation of the IDV variable (Glennon and Lane 1990; 
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Glennon et al. 1987; Glennon et al. 1986), the third specifies a BVAR with IO linkages 

as priors, and the forth econometrically specifies interindustry linkages for inclusion in a 

VAR.   

Likewise, Rickman and Miller (2002) present three sets of overlapping strategies 

in forecasting employment in 30 state level industries.  The first strategy entails VAR 

models from the I-SAMIS model of collapsing demand components into an IDV variable.  

The second set compares forecast accuracy over different degrees of endogeneity of the 

model specification and selection criteria.  The final set compares forecasts from 

econometrically specified models to those in which variable inclusion is determined by 

the IO transactions table.   

Both papers employ the Bayesian model selection in econometrically selecting 

variables for inclusion.  The selection criteria follows from the Bayesian model averaging 

algorithm of Raftery, et al. (1997).  The BMA procedure follows a Markov chain Monte 

Carlo methodology that generates a process that moves through model space in search of 

an optimal combination of explanatory variables based on the fit of the model.  

Conditional probabilities, conditioned on calculated posterior distributions, are assigned 

to model specifications by comparing model posterior distributions to the subset-best 

distribution, thereby placing more chance of drawing the most probable model 

specification.  The procedure is continued, where draws of a variable into the model are 

based on how often that variable shows up in past model draws.  The procedure is similar 

to the stepwise regression procedure in that it accounts for model specification 

uncertainty, but it benefits in applying posterior probability densities rather than the 

flawed coefficient of determination measure in comparing model specifications. 
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The cumulative results of these four articles show that IO linkages increase 

relative forecast performance for long-term forecasting and for forecasts of tertiary 

employment.  Partridge and Rickman (1998) and Rickman (2001) further show that the 

univariate autoregressive model produces relatively more accurate forecasts for 

employment in goods-producing sectors.  Furthermore, Partridge and Rickman and 

Rickman and Miller (2002) show that inclusion of the interindustry linkages facilitates 

forecasts of turning points, and that imposing the technical coefficients on the prior 

means rather than the prior variances does not generally improve forecast performance, 

but it does improve turning point forecasts.   

Comparing results across model closure assumptions shows that the more 

parsimonious Type I multiplier closure assumption tends to produce the best out-of-

sample forecasts.  The more endogeneity imposed on the estimated equation, the greater 

the forecast errors tended to be, even for long-term forecasts.  This result is robust for 

both the I-SAMIS specification and the individual industry VAR specifications.  Counter 

intuitive, parsimonious models that entail some interindustry linkages produce better 

long- and short-term forecast relative to their more detailed counterparts.   

Since the results indicate that the Type I multiplier concept should be applied to 

regional employment forecasts, and that limiting the set of interindustry intermediate 

demands increases forecast performance, it appears instructive to further test the extent to 

which interindustry variables should enter the equations.  LeSage and Rey (2002) find 

that the Bayesian model selection procedure to econometrically screen cross-industry 

inclusion of explanatory variables outperforms using the IO transactions tables as prior 

weights in the Minnesota prior framework and all methods of collapsing interindustry 
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linkages into a single IDV variable.  Rickman and Miller show that using intermediate 

demand linkages alone to select five explanatory industries in each equation outperforms 

forecasts methods employing the IDV variable.  Conversely to LeSage and Rey, they 

further show that selecting the interindustry linkages from the IO transactions table 

outperforms econometrically screening cross-industry relationships for inclusion.  Since 

the regions of study in both papers do not overlap, differences in result may be attributed 

to regional specific characteristics.   

This series of articles shows that imposing restriction through the Bayesian 

framework consistently improves out of sample forecast performance.  Furthermore 

improvements in forecast accuracy are found in incorporating the industry-by-industry 

transactions table into the random-walk prior specification.  Partridge and Rickman 

(1998) and Rickman (2001) find that increases in forecast accuracy from these IO 

specified priors are the result of both the shrinkage-like properties of the random-walk 

assumption and the use of IO information by comparing weighted and un-weighted 

priors.   

Though this series of articles shows that Bayesian methods of estimation produce 

forecasts with relatively smaller out-of-sample errors, Rickman (2001) warns that the 

Minnesota-type prior can lead to biased aggregate forecasts.  Forecast errors of unbiased 

industry forecasts will tend to cancel out over aggregation.  That is positive errors are 

offset by negative errors in aggregation.  Biased industry forecasts may not have this 

attribute if industry forecasts are biased negatively or positively over the complete set of 

disaggregate industries.  Therefore biased forecasters that produce more precise industry 

forecasts, may lead to worse aggregate forecast than their less precise but unbiased 
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counterparts.   

Rickman and Miller further cautions on the use of intermediate demand linkages 

for policy analysis.  Though the authors show that restricting explanatory variables to five 

intermediate demand relationships produce the best out-of-sample forecasts, the 

multipliers implied by such parsimonious representations can give inadmissible 

multipliers.  The multipliers implied by the IDV framework are much more consistent 

with expectations.   

BAYESIAN SPATIAL MODELS 

Because regional economies are interdependent, spatial relationships across 

contiguous regions are instrumental in modeling any one region.  The econometric 

rationale for this is that spatially related industries exhibit co-movement over time due to 

common influences.  It seems intuitive that capturing this co-movement across regions 

can facilitate more accurate regional forecasts.  Recognition of the interdependence of 

regions sprung from Isard’s Channels of Synthesis (1960), while capturing the 

interregional relationship with spatial econometric methods has developed largely around 

the work of Anselin (1980; 1988b).   

Central to spatial econometrics is the construction of the contiguity matrix.  The 

contiguity matrix for first order spatial autocorrelation4 is constructed on the basis of 

binary indicators between spatial units such that the structure of neighbors is expressed 

by 0-1 values (Anselin 1988a, Pg. 17).  The dimension of the square contiguity matrix is 

the number of possible interrelated regions, where each region is represented by 

                                                 
4 The term first order is in reference to the time-dependent first order autoregression, where in the spatial 
autocorrelated model, the first order case is to include the dependence on those regions that are 
immediately contingent.  Second order autocorrelation would entail those regions contingent and those 
regions contingent with those immediately contingent. 
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corresponding row and column.  The matrix element comprising the row-column 

intersection of contiguous regions is set to one.  A region is not contiguous with itself, so 

the diagonal is set equal to zero.  To form contiguous weights requires standardizing the 

contiguity matrix by dividing the row elements by the sum of the respective row such that 

each row of the contiguous weighting matrix sums to one.   

What is considered a contiguous relationship becomes somewhat murky.  

Consider the contiguous relationships across counties.  Generally contiguous neighbors 

are neighboring counties that share borders and or corners.  Potter County in Texas is a 

good example of a square county with four counties sharing its border and four counties 

sharing corners.  Inclusion of the corner counties as contiguous is subjective.  Tulsa 

County in Oklahoma, at the other extreme, is oddly shaped and shares borders with seven 

counties.  No county intersects Tulsa County at the corner without also sharing a border, 

though Muskogee County, which does not border or share a corner with Tulsa County, 

very nearly does and would have if it were not for strange politicking.  Muskogee County 

is 3.5 miles short of intersecting Tulsa County while Pawnee county borders Tulsa 

County by less than 2 miles.  In the case of Tulsa County, constructing the contiguity 

matrix requires a good deal of discretion.  Regardless of the shape and proximity of 

spatial systems, care must be given to account for relevant regions that share some causal 

relationship across boarders.   

Failure to account for contiguous relationships by applying ordinary least squares 

to estimates produces prediction errors that vary systematically over space.  Since the 

errors espouse some form of systematic variation across space, the error is said to be 

spatially autocorrelated.  In time-series models, autocorrelation causes consistent but 
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inefficient estimates henceforth, correcting for autocorrelation entails correcting for 

inefficiency in parameter estimates.  Spatial autocorrelation can be analogously modeled.  

To exemplify, consider the spatial error model (SEM), 

y = Xβ + u 
u = ρW + ε 
ε ~ N(0,σ2In),

  (2.17)
 

where y is the n vector of cross-sectional observations for a region, X is an nxk matrix of 

explanatory variables, β is a vector of parameters to be estimated, ρ is a vector of 

correlation terms to be estimated and describes the relationships of errors across 

contiguous regions, W is the nxn contiguity matrix described above, and ε is a vector of 

Gaussian disturbances (LeSage 1997).  This specification is analogous to a moving 

average error process over space rather than over time, and results in a conditional 

covariance matrix of y given X that is non-scalar.  The OLS estimator for β, though 

unbiased, is inefficient.  Efficient estimates of the vector of parameters β and ρ can be 

derived with the Cochrane-Orcutt procedure of iterative solves (1949).   

Anselin (1980) shows that this approach is appropriate only in a limited class of 

spatial processes.  Another class of spatially dependent models that results in biased 

parameter estimates is the spatial autoregressive models (SAR) represented as, 

y = ρWy + Xβ + ε 
ε ~ N(0,σ2In),

  (2.18) 

where y is the n element vector of dependent variables, X nxk matrix of explanatory 

variables, W is a known nxn matrix of contiguous weights, and ρ is a correlation 

coefficient on the spatially lagged dependent variable to be estimated.  Equation (2.18) is 

analogous to the lagged dependant variable regression model.  Anselin (1980, pp. 58) 

recommends standardizing the variables for estimating Equation (2.18) where the 
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estimated parameter ρ measures the variation in the vector of observations in y that are 

explained by the average neighboring observations (LeSage 1997) and the error term ε 

has the usual Gaussian distribution.  Anselin shows that the parameter estimates of 

Equation (2.18) using ordinary least squares produces biased and inconsistent estimates 

(1980, pp. 58) resulting from simultaneity across explanatory variables.   

Anselin (1980, Pg. 9) identifies two broad motivations for the special treatment of 

space in econometric models leading to the application of different methods for inclusion 

of spatial relationships.  The first is accounting for spatial dependence, which is the 

functional relationship between events occurring in two points in space.  Omitting these 

interregional relationships across space, results in the omission of systematic information 

useful in producing accurate forecasts.  The second motivation is accounting for 

heterogeneous relationships across regions.  Including interregional relationships in 

estimation equations is not sufficient to account for contiguous relationships.  Lack of 

uniformity across space requires that particular features of each interrelated region be 

accounted for in model specifications.  Heterogeneous regions are expected to have 

abruptly or slowly evolving changes in the spatial relationships over time.  The traditional 

estimation assumption of constant relationship over time is inappropriate in this setting.  

The first motive is ideally suited for VAR estimation where parameter estimates are free 

to denote spatial interdependence.  The second motivation is best suited for time-varying 

parameter estimates.  The Kalmon filter is one approach to this heterogeneous 

relationship problem and is beyond the scope of this inquiry. 

A single variable VAR representation of a multi-regional system is characterized 

as an n variable VAR in n regions.  A multiple variable VAR representation of a multi-
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regional system models k regionally specific variables in n regions resulting in an nxk 

variable VAR.  Adding s lags will require estimating (nxkxs+1) coefficients per equation.  

Such a large VAR system will generally suffer from the over-fitting and sever 

multicollinearity for which the Bayesian VAR framework was designed to correct.  

Therefore several authors have pursued Bayesian methods in fitting multiregional VARs 

to data.   

Bayesian solutions to Anselin’s spatial framework have been addressed by 

augmenting multiregional BVAR forecasting systems with contiguous regional variables.  

In such a multiregional setting, regional economic variables such as employment for the n 

included regions are included as single equations in the n variable VAR system.  Spatial 

relationships are integrated into the BVAR with the Litterman’s random-walk prior 

means specification replacing the prior variance-covariance matrix with a modified 

contiguity matrix that accounts for contiguous relationships.  Specifically, this replaces 

the relative weight matrix f with the contiguity matrix w, producing a prior variance-

covariance matrix of Equation (2.14) as, 

( )( )22 )()(  jiijk SSsgi,jwθλ = . (2.19) 

The contiguity matrix, is characterized has having ones down the main diagonal and in 

positions associated with contiguous entities.  Values less than one are placed on all off-

diagonal positions associated with non-contiguous entities.  This spatial allocation of 

weights relaxes zero mean restrictions of the random-walk specified Minnesota prior for 

those variables expected to influence the current observation, and tightens estimation to 

the prior means of zero for those postulated to be without relationship.   
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In this, LeSage (LeSage 1989) models monthly average hourly wages by industry 

for Ohio’s four major MSAs in a VAR framework for forecasting.  The strategy follows 

LeSage and Magura (1986) in that empirically linking regional industry employment to 

neighboring industry employment provides useful information unique to other regional 

variables and national variables.  Twenty sets of VARs are constructed for 20 industry 

sectors.  Similarly a BVAR variant is devised based on the Minnesota prior random-walk 

means but incorporates the contiguity matrix in assigning prior precision.  Contiguous 

relationships are not determined by spatial proximity, but rather by general outside 

knowledge of interspatial linkages across the 20 industries.  Tightness and decay 

parameters are assigned across industry groups to reflect the type of industry and historic 

knowledge of their respective AR structure.  Out-of-sample predictions shows that this 

BVAR model with contiguous weights gives superior forecasts over univariate AR and 

UVAR models, giving strong evidence that UVAR models are not viable forecasting 

models for spatially related models.   

Though LeSage finds that his spatial BVAR model outperforms unrestricted 

VARs, his study fails to discern the source of forecast improvement.  The relative 

performance of the contiguous priors found by LeSage may be the result of the shrinkage 

properties of the random-walk prior and not a function of the contiguous information.  To 

discern the two requires comparing symmetrically specified Minnesota priors against 

similarly specified priors that also account for contiguous relationships.  If the two priors 

produce equally compelling forecasts, then the shrinkage property of the random-walk 

prior is accountable for the forecast performance.  Otherwise, an improvement in 
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forecasts from contiguous priors over symmetric priors indicates that the induction of 

spatial information aids in forecast precision.   

Three studies pursue this line of inquiry.  Pan and LeSage (1995) employ 

contiguous priors to BVAR equations for forecasting corn production of 15 major corn 

producing states along two strategies.  The first strategy is simply to form a 15 state VAR 

system of corn production where each state is regressed across the remaining 14 states.  

The second strategy develops 15, two-variable VARs in corn production and price with 

deterministic lagged acreage and production of the 14 remaining states as exogenous to 

the system.  Contiguous priors are used to introduce co-movements across neighboring 

regions by relaxing weights to the set of random-walk prior means.  LeSage and Pan 

(1995) expand the prior study of corn production by adding a third model to the second 

forecasting procedure that imposes a non-contiguous weight matrix of the Minnesota 

prior of contiguous state output.  Further evidence is shed in Dowd and LeSage (1997) in 

modeling contiguous price-level relationships across states.  The authors test contiguous 

relationships and estimate state BVAR models along contiguous states using the 

Minnesota and contiguous random-walk priors.  The authors further compare results to 

unrestricted VAR models to assess the benefits of the random-walk prior.   

In all three studies, the authors find that relaxing the Minnesota prior means 

restriction of zero on contiguous state variables increases forecast performance and 

supports the importance of contiguous regions' information in forecasting regional 

economies.  Dowd and LeSage also reinforce the benefits to shrinkage estimation by 

comparing results to unrestricted VAR forecasts.  Hence BVAR estimators with 

contiguous priors benefit from both the shrinkage property of the random-walk prior in 
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correcting for multicollinearity and the systematic imposition of contiguous information 

in estimation that aids in capturing co-movements across neighboring regions. 

LeSage and Pan further generalize the contiguous BVAR by including an error 

correction term in the Bayesian Error Correction (BECM) framework.  A cointegrating 

relationship across contiguous regions will cause miss-specification bias if not accounted 

for.  Generally it seems plausible that regional variables should some equilibrium growth 

relationship, so LeSage and Pan further generalize the contiguous BVAR of Pan and 

LeSage by including an error correction term in the Bayesian Error Correction (BECM) 

framework.  Contrasting BECM and BVAR forecasts, testing the inclusion of contiguity 

relationships, and testing the incorporation of contiguity weight matrix over the 

Minnesota prior specification shows that including the contiguous relationships 

contribute to forecast accuracy and that relaxing of the AR1 restrictions of the Minnesota 

prior specification for contiguous regions extends those accuracy gains. 

Though not directly reported in LeSage and Pan's two papers, the Bayesian gains, 

from the contiguous priors, to forecast accuracy tends to erode for long forecast horizons.  

Rickman and Miller (2002) find that inclusion of inter-industry structural linkages aids in 

producing accurate long-run forecast.  Though Rickman and Miller specified inter-

industry linkages as structure, it is conceivable that modeling inter-regional structure 

should produce similar results.  The random-walk structure of the priors in LeSage and 

Pan's papers restricts the inclusion of the spatial structure while the unrestricted VAR 

places greater emphasis on modeling the full intra-regional structure indicating that 

industry structure facilitates long-run forecast accuracy while inter-regional structure 
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does not.  The reasoning for the prior can be found in Anselin’s second motivation for 

accounting for inter-regional relationships; heterogeneous relationships.  

Further evidence as to why forecast accuracy systematically erodes over forecasts 

horizons relative to unrestricted VARs are found in a subsequent paper by LeSage and 

Krivelyova (1999) discussed below.  Prior VAR applications that integrate Bayesian 

priors to impose spatial structure on the model have relied on the random-walk prior 

means specification and a prior variance structure that allows nearby entities to exert 

more influence than more spatial entities.  LeSage and Krivelyova (1999) develop a set of 

prior means for use in forecasting spatial models that place greater influence on one-lag 

contiguous observations and less emphasis on the own one lag observations.  The authors 

note that their spatial prior is more appropriate for estimating regional models since the 

priors generalize the priors observed to this point by entail both spatial means and 

weights.  They apply their prior specification to BVAR monthly forecasts employment 

for eight states 

Noting that the first order spatial autoregressive model for cross-sectional data 

specified in Anselin (1988a) as, 

y = ρWy + ε 
ε ~ N(0,σ2In), 

 (2.20) 

suggesting a prior distribution different from the spatial random-walk process discussed 

to this point.  In Equation (2.20), y is an nx1 vector of dependent variables of regions, ρ is 

a scalar coefficient to be estimated, and W is an n x n, first-order weight matrix with zeros 

along the main diagonal values representing shared influences of contiguous regions.  

The weight matrix is row-normalized such that the rows sum to unity producing a spatial 

lagged variable Wy that gives the average values of neighboring regions.  Because this 
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prior specification creates a series as an average value of neighboring regions, it is 

necessary to scale or transform the series such that they have similar magnitudes. 

Equation (2.20) suggests a prior means specification different from the Minnesota 

prior, which emphasizes the random-walk.  A reduced form VAR framework, which adds 

a time element to Equation (2.20), suggests placing emphasis on first lags of observations 

from contiguous regions and less influence on lags greater than one.  Rather than 

specifying a random-walk prior, the spatial autocorrelation model suggests a random-

walk prior of the average of the first-order autoregressive influences from contiguous 

regions.  The prior variance structure is based on the belief that non-contiguous 

influences should have no direct influence on a region, and there is a decline in influence 

over time such that distant lags should have no influence on prediction, and that variation 

in lags of contiguous regions captures the full-extent of lag influences.  The prior 

variance structure is designed such that own lags, geographically distant lags, and 

temporally distant lags have tight prior variances imposing prior means of zero tightly, 

while the first lags of contiguous regions have loose prior variances imposing loose prior 

means that distributes influence equally across contiguous regions. 

The authors compare out-of-sample forecasts for all industry-state employment 

combinations and find that overwhelmingly, this Bayesian spatial prior outperforms other 

spatial priors employing AR1 means.  They also find that this specification outperforms 

error correction and Bayesian error correction models based on the random-walk means.  

They further find that adding a cointegrating term to this spatial structure does not 

increase model performance, suggesting that the emphasis on contiguous regions captures 

cointegrating relationships.  Even relaxing the zero restriction on the own-lag coefficient 
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does not increase forecast performance, highlighting the importance of contiguous 

regions in forecasting regional economies.  

In this regard, the BVAR method of accounting for spatial correlation has left a 

point unaddressed.  The SEM model of spatial autocorrelation, gives unbiased yet 

inefficient parameters, while the SAR model of spatial correlation, results in biased 

coefficient estimates if not corrected for.  Anselin devises efficient and unbiased 

estimators for both.  Since Bayesian estimators are necessarily biased to the data, does 

Bayesian integration improve upon the maximum likelihood estimators of Anselin, or do 

they offer convenience at the expense of biasedness?  A hint toward the answer appears 

throughout the literature.  That is the random-walk prior means mentioned throughout 

reveals that the shrinkage property of the BVAR lead to superior out-of-sample forecasts.  

The attributes of shrinkage estimators in macroeconomic forecasting is well known 

(Diebold 1998).  The questions as to whether the forecasts BVAR models introduced here 

benefit from the inclusion of relevant outside information, or if forecast predictions are 

improved through mitigating multicollinear effects needs more attention.   

If employing both the IO table and the contiguity matrix in formulating the 

Bayesian priors for BVAR models improve forecast accuracy in isolation, it seems 

intuitive that entailing both simultaneously may contribute further gains in forecast 

accuracy.  Along this line of inquiry, Magura (1998) integrates both national inter-

industry structure and inter-regional relationships in specifying prior weights within the 

random-walk prior means specification for forecasting Ohio and the surrounding states' 

employment.  The exercise limits industries to four tradable industries excluding tertiary 

industries that tend to not trade over regions.  This results in a 20 variable VAR system 
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that is estimated in its unrestricted form, BVAR with Minnesota priors, and three 

random-walk priors models: one with interindustry, another with spatial, and the third 

with a combined industry and special linkages as prior weights.  Industry forecasts are 

compared across all models to discern the gains to the Minnesota prior, industry linkages, 

spatial linkages, and combined industry-spatial linkages.  The findings favor combining 

industry and spatial information in model estimation. 

Magura’s limitation to tradable industries leaves open the possibilities that his 

findings are not general.  Restricting the analysis to tradable goods producing sectors, 

that have deep inter-industry linkages and deep spatial linkages, fails to capture the 

general benefit of combining IO and spatial information in estimation.  A more general 

set of industries has yet to be analyzed.   

OTHER APPLICATIONS 

As previously noted, there are endless ways to apply Bayesian methods to model 

specification.  So far this review of applications have found Bayesian priors used to 

impose diss-information in the form of the random-walk prior of the Minnesota prior, to 

integrate empirical structure to VAR models through the IO table, and finally to impose 

spatial structure to model estimation with the contiguous priors.  This section reviews 

other, less common Bayesian applications in modeling regional economies.   

One such approach has been the integration of national and regional information 

in estimation.  LeSage and Magura (1988) employ Bayesian mixed estimation in 

combining pooled time series estimates to a regional forecasting model of SMSA 

employment in levels.  Their regional forecasting model entails several regional and 

national variables that capture leading and contemporaneous relationships thought to 
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describe the eight Ohio SMSAs.  The authors estimate the pooled coefficients for the 

eight SMSAs using ordinary least squares and apply those estimated coefficients to 

individual SMSA OLS estimates using the Bayesian mixed estimation, 

( ) ( )ββX'XIX'Xβ 1
i

~ˆ
iiiiiii λλ ++= − . (2.22) 

The mixed estimator iβ  is the weighted average of the OLS estimator for industry i iβ̂  

and the pooled estimator β~.  The value of the weighting parameter iλ  is determined by 

the value of the parameter that gives the best out of sample forecast.   

The authors compare the forecast performance of the pooled Bayesian estimates 

against a random-walk specification, and identically specified OLS and Ridge regression 

models.  They find that the Ridge and Bayesian mixed estimation models outperform the 

more traditional AR and OLS models.  They further find evidence that Ridge regression 

models tended to outperform the Bayesian mixed estimation models, suggesting that the 

shrinkage like properties of the Bayesian mixed estimation is the source of forecast 

efficiency in Bayesian applications.  But strength of this application is its ability to 

mitigate deficient regional data through Bayesian means.  Bayesian estimators recover a 

degree of freedom for every estimated coefficient.   

The paucity of regional data has led many regional modelers to turn to national or 

pooled national estimates in specifying regional equations (Jones and Whalley 1989; 

Kraybill et al. 1992; Treyz et al. 1992).  Doing so leaves out regional specific 

relationships for which a regional model is designed to replicate.  Rickman (1995) shows 

that multipliers derived by REMI, a widely used regional modeling system differ from 

multipliers that are derived from local data.  But the paucity of this local data hinders 

analysts’ ability to derive them in the first place.  As an alternative, Rickman advocates 
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use of national or pooled relationships in Bayesian estimates of regional equations.  The 

Bayesian estimator corrects for insufficient degrees of freedom while national priors offer 

a first best guess value for parameters to take.   

In this Rickman re-estimates the pooled nationally estimated equations in the 

REMI (Treyz et al. 1992) system with identically specified regionally specific equations 

for the Las Vegas economy.  Bayesian priors are specified from the native pooled 

estimates of REMI to varying degrees of precision.  Diffuse priors return OLS estimates 

while tight priors replicate the pooled estimates of REMI.  He then calculates impact 

multipliers and finds substantial variations across those produced by REMI and those 

from local data.   

Otrok and Whiteman (Otrok and Whiteman 1998) seek to identify an 

unobservable regional coincident and leading indicator for forecasting that summarily 

present the projected state of the economy for the state of Iowa.  Motivating the study is 

the difficulty in expressing economic projections in a usable form for casual users.  Their 

method follows that of Stock and Watson (1989; 1992) but differs in the method of 

identifying the latent dynamic factor.  Rather than employing the Kalmon filter to 

estimate the unobservable indicator, the authors employ the Chib-Greenberg Markov-

chain procedure (Chib and Greenberg 1994) to estimate the unobserved factor.  Through 

the Markov-chain, a posterior distribution of the unobserved variable is derived from the 

conditional posterior distributions.  The parameters are estimated using the means of the 

posterior distribution.  

Otrok and Whiteman (1997) employ a noninformative Bayesian prior in an 

ongoing multivariable VAR of real and nominal income, employment and population.  In 
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forecasting tax revenues conditioned on the state VAR, the authors account for structural 

changes in tax code, and produce forecast probability distributions by specifying 

asymmetric loss functions and sampling from the posterior distribution.  These draws 

numerically calculate the expected loss from the posterior distributions.  The asymmetry 

of the loss function accounts for increased costs of over predicting tax revenues relative 

to under predicting them.  The result is prediction distributions that accurately reflect 

asymmetric costs of failure and that corrects for data and reporting deficiencies in tax 

revenue data.   

SUMMARY, TRENDS, AND CONCLUSION 

This chapter has reviewed several applications of Bayesian methods of integrating 

non-data information into data estimation.  Within the VAR methodology, Bayesian 

methods of integrating the random-walk prior to model estimates reveals unambiguous 

forecast improvement.  Experimentation shows that much of that improvement rests on 

the shrinkage-like property of the Minnesota prior, where Bayesian estimates shrink 

coefficient estimates toward zero for own- and cross-variable lags. 

Bayesian methods offer solutions to a host of empirical problems for regional 

model builders.  Bayesian restrictions recover degrees of freedom lost from parameter 

estimation, therefore allows the estimation of models that otherwise are rendered 

impossible by data constraints.  Furthermore, given that unrelated economic variables 

tend to share co-movements, the Bayesian methodology, along with the random-walk 

prior, produces shrinkage-like estimation that has been shown to mitigate the ill affects of 

multicollinearity.  Within the Bayesian paradigm, the extent of outside information 

influence is under the control of the practitioner.  The Bayesian VAR methodology grants 
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flexible means of combining prior and observational information to form estimates that 

entail more than mechanistically determined values.   

While frequentists are apprehensive about this joint determination of estimates 

that give rise to biased estimates, the true test of methodological merit lies in out-of-

sample performance.  Unambiguous out-of-sample forecast enhancements are found in 

all cases of imposing the Minnesota prior to VAR models.  Further objections on 

objectivity grounds are generally unfounded in the application of Litterman's prior that 

treats all parameter coefficients symmetrically, imposing only an atheoretical random-

walk process as prior information in estimation.   

The desire to incorporate economic structure in forecasting models has led to 

several adaptations of the random-walk prior.  It is rather difficult to maintain objections 

of the random-walk prior in light of its success in enhancing forecast accuracy.  

Nonetheless, the random walk prior does little to facilitate structure in forecasting 

models.  Within the shadow of parsimonious forecasting models is the desire to capture 

not only trends in data but also correlation and causal relationships that will aid in 

understanding and capturing dynamic linkages within the economy.  Forming objective, 

asymmetric priors that facilitate some outside source of information about co-movements 

in data is desirable for capturing these dynamic linkages.  Capturing inter-industry wage, 

employment, and output relationships within VAR models has relied on national or 

regional input-output tables.  Initial applications relied on the random-walk prior means, 

and prior precisions on those means representing input-output relationships.  

Exclusionary restrictions based on the input-output table entail tight prior precisions on 

the prior means of zero, and loose precision on relevant linkages.   
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Partridge and Rickman (1998) generalize this approach by employing the input-

output model to specify prior means rather than precision.  Rather than strict adherence to 

the random-walk prior, the authors calculate cross-industry responses from the input-

output table and impose these responses as prior means in BVAR estimation.  This 

facilitates differing closure assumptions by incorporating different degrees of 

endogeneity in setting prior means.  Aside from increasing forecast accuracy, this 

approach presents the opportunity to test the soundness of the input output matrix.  By 

testing the input-output table against historical data, the validity of the input-output 

linkages is verifiable.  This appears to be a promising application to testing the structure 

of other general equilibrium models such as computable general equilibrium models.   

Avoiding the criticism fronting Bayesian estimation, Bayesian applications have 

been employed in selecting appropriate linkages in regional forecasting models.  Markov-

chain, Monte-Carlo models test posterior distributions across different model 

specifications to locate the combination of right hand side variables that best replicate the 

dependent variable.  This procedure is analogous to step-wise regression but avoids the 

deficiencies associated with compare measures of the determination of variation.  The 

final selected model specification can be estimated with least-squares methods or can be 

estimated with mixed estimation using priors derived from the posterior distributions of 

tested models.  The posterior distribution can be used as weights in mixed estimation to 

assign prior probabilities to inclusive model formulations through Bayesian model 

averaging.  Non-relevant variables are weighted heavily toward exclusion based on the 

while others are weighted toward their weighted probable representation based on the 

Markov-chain posteriors.   
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Similarly to incorporating the input-output table, spatial proximity has been 

applied in specifying prior precisions on the random-walk prior means.  On the 

assumption of co-movements across economic variables across regions, relaxing the 

atheoretical random-walk structure for contiguous regions is perceived to improve 

forecast precision.  The intuition arises in that the interdependence of open economies are 

translated into co-movement across economic variables.  Forecasting applications that 

utilize these co-movements will benefit in the inclusion of additional relevant 

information.  In the Bayesian VAR application, relaxing the random-walk prior for  

spatial relationships offers both the shrinkage-like qualities of the Minnesota priors while 

advantaging from relevant spatial interdependence. 

Bayesian vector error-correction models have been specified for the random-walk 

prior means with symmetric precisions based on the Minnesota prior and based on 

informative precision priors of the input-output table as well as the spatial contiguity 

matrix.  Cointegrating relationships are expected to be found across non-basic industries 

to both basic and non-basic industries but not generally so across basic to basic 

industries.  Likewise manufacturing industries that produce tradable goods are likely to 

see cointegrated relationships across regions, while non-basic industries are likely to be 

insulated from inter-regional relationships.  Generally Bayesian applications are not 

suitable methods of estimating cointegrating relationships since estimates will be biased.  

But if capturing cointegrating relationships across industries and regions benefit forecast 

performance, it is practical to employ it.   

Bayesian application offers a host of opportunities for imposing economic theory 

on otherwise atheoretical estimates.  Limiting the support space of coefficients with prior 
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expectations aids proper estimation of those coefficients with no prior expectations.  To 

exemplify, consider a single linear equation to be estimated with two co-linear 

explanatory variables.  If prior knowledge of possible values of one of the coefficients 

can be derived from prior studies or theory, then a restriction on the parameter space can 

be incorporated on this coefficient based on theory.  The second coefficient is specified 

with a non-informative prior.  Coefficient estimates of such a specification reduce the 

problem of multicollinear relationships by limiting the variability of the dependant 

variable and leaving the second coefficient to be determined by the remaining variability.  

Smaller support space and greater prior precision on the coefficient with expected values 

leaves more variation associated with the second at the possible expense of biased 

estimation if the prior is indeed false.   

In the VAR approach where all prior coefficient values except the own first lag, 

are place at zero corrects for multicollinearity by imposing zero restrictions with greater 

confidence on those coefficients expected to take on zero values.  The remaining 

variability is left for those coefficients on recent lags.  The same concept applies to 

imposing economic theory.  Coefficients assumed to be exclusionary are tightly bound 

toward zero allowing those coefficients assumed to be influential to capture co-variation 

in estimation.   

Bayesian applications also mitigate degrees of freedom problems which are 

essentially extreme cases of multicollinearity.  Restrictions placed on parameter estimates 

returns a degree of freedom lost to estimation.  Alternative methods of mitigating degree 

of freedom shortages at the regional level has been the application of pooled time series 

methods where no systematic way exists to emphasize the importance of the local region 
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to the over-all pooled coefficients.  LeSage and Magura (1988) base their Bayesian 

pooled estimator on this bases.  Though the authors find that forecast improvement is 

accounted for only in the shrinkage properties of the estimator, the finding is limited in 

that explanatory variables are limited to leading indicators.  No attempt as been employed 

to impose national economic linkages to local Bayesian pooled estimation.  For example, 

if increased auto manufacturing is found to cause an increase in steel production 

nationally, an associated relationship should be expected locally and the use of this 

estimated national coefficient can help guide local model specification.   

No study to date tests the implied structural relationships resulting from BVAR 

models with informative priors.  This is not surprising given that the applications 

presented above focus on forecast accuracy of alternative informative priors.  Informative 

priors that affectively capture the structure of the underlying economy should aid in 

policy simulations as well as long-run forecasting.  But the question of policy analysis is 

hardly covered in the current regional BVAR literature as it is in popular 

macroeconomics literature (Sims 1982; Sims 1986; Walsh 2003).  An affirmative finding 

of accurate policy analysis with the successful forecasting strengths of informative 

BVAR models would clearly indicate a superior modeling paradigm sought by regional 

economists (Treyz et al. 1992). 

Partridge and Rickman (1998) and Rickman (2002) hint at such a test by 

comparing estimated policy shocks to those derived from the IO table.  An alternative 

methodology is the application of the Blanchard-Qua decomposition (Blanchard and 

Quah 1989) which separates out short- and long-term components of change.  Intuitively, 

the policy impacts, or multipliers, found in computable general equilibrium and input-
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output models, reflect equilibrium-to-equilibrium responses to change.  The implication 

is that these impact measures only reflect long-run adjustments and that disequilibrium 

transition period entails the lengthy adjustment process.  If this is the case, time-series 

policy impact models based on such multipliers should return the same multipliers once 

the disequilibrium adjustment process is exhausted. 

There clearly exists other structural information that can be useful in imposing 

structure on the otherwise atheoretical BVAR model with Minnesota priors.  As 

computing capacity increases, regional analyst are increasingly turning to computable 

general equilibrium models to capture regional economic structure.  These models are 

generalizations of the fixed-price input-output models, and represent a more generalized 

set of priors in estimation.   
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CHAPTER III 

ENTROPY ESTIMATION OF THE OKLAHOMA POLICY SIMULATION AND 
FORECASTING MODEL 

 

INTRODUCTION 

Regional models for policy analysis and forecasting differ in approaches to model 

calibration.  Policy analysis models are generally calibrated from outside sources based 

on optimizing behavior.  First order conditions for optimizing behavior are derived and 

elasticity responses to changes in prices are specified from a host of sources that may or 

may not accurately reflect those responses of the region under study.  Forecasting models 

tend to abstract from economic theory and optimizing behavior in favor or capturing 

historical relations over time.  These models may or may not entail economic theory as 

the primary goal is to be able to replicate and interpolate historical series.  While 

theoretical forecasting models capture economic relationships through correlations across 

theoretically related variables, forecasts from such models tend to be inferior to 

atheoretical forecasting models that rely on correlations with past observations in 

interpolating future expectations.  This chapter explores the differences between policy 

and forecasting models and postulates a merger in the two that offers superior application 

of both policy analysis and forecasting.  It concludes by presenting an estimation 

procedure known as entropy in estimating such models. 

A common problem for regional economists is that empirical models designed for 
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policy analysis tend to perform poorly in forecasting applications in comparison to 

parsimonious models, while empirical forecasting models tend to be inadequate policy 

analysis tools.  Parsimonious models such as vector autoregression (VAR) models, or 

simple reduced-form econometric models, tend to forecast well, but they are unable to 

offer insights into the impacts of policy decisions.  Structurally elaborate models for 

policy analysis, such as regional computable general equilibrium (CGE) models, 

necessitate extensive parameterization that requires data beyond what is routinely 

available in time-series form.  These models therefore are almost exclusively formulated 

as static models that are calibrated to a benchmark-year data set with no ability to track or 

forecast time-series.  The ‘ideal’ model of a regional economy would marry the policy 

analysis strengths of regional CGE models with the forecasting capabilities of 

parsimonious models.  

REGIONAL CGE POLICY MODELING 

Because of its detailed theoretical structure derived from neoclassical economic 

theory, regional CGE models allow for the examination of a plethora of regional policy 

issues (Partridge and Rickman 1988).  The high degree of endogeneity that results from 

the general equilibrium structure of a CGE model provides insights into policy impacts 

that simpler partial equilibrium models fail to capture (Pereira and Shoven 1988).  

Unfortunately, implementation of a CGE models require the specification of a large 

number of parameters, which are often unavailable; this requires the use of ‘best guess’ 

values at the expense of model precision (West 1995), while requiring the routine use of 

comparative static CGE models.  Specifically, insufficient time-series data requires 

calibration to a benchmark-year data set (Mansur and Whalley 1984), and ignoring any 
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available time-series information imparts bias into the model that is difficult to detect 

(Jorgenson 1984; McKitrick 1995, 1998).  The absence of a mapping between the CGE 

model and time-series data for a region begs the question of whether the model accurately 

describes the region under study.  In addition, static CGE models are inadequate for 

applications where the time-path of returns and costs are crucial to policy maker 

decisions. 

Dynamically-sequenced CGE models have been proposed as alternatives to 

comparative static CGE models, however, with few exceptions, regional CGE models 

have been static (Partridge and Rickman, 1998).5  Nevertheless, most dynamic CGE 

models rely on the consumption component to create the time-path responses of policy 

shocks (Pereira and Shoven 1988), in which there is a trade-off between current 

consumption and savings for future consumption.  The time-path responses are obtained 

by either simulating a balanced growth path through sequencing equilibria over time, by 

augmenting existing supplies of labor and capital, or by choosing parameters of the 

dynamic CGE model that produce a reasonable time paths based on known co-

movements between variables (Partridge and Rickman 1988).   

Several weaknesses exist in the dynamically-sequenced approach.  With 

regionally mobile capital, the link between regional savings and long-run growth 

becomes tenuous, creating doubt about the wisdom of making the inter-temporal 

consumption choice the dominant source of a regional model’s dynamic properties 

(Partridge and Rickman 1988).  In addition, dynamic CGE models impose inter-temporal 

market clearing with perfect foresight, and require calibration over a time-path that is 

subjective depending upon the arbitrarily imposed timing of factor expansion (Partridge 
                                                 
5 Exceptions include McGregor, Swales and Ping (1996) and West and Deepak (2001). 
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and Rickman 1988; Pereira and Shoven 1988).  Finally, the sequencing of static short-run 

equilibria is typically made on the assumption that each period reaches equilibrium.  In 

short, dynamically-sequenced CGE models are not ‘truly’ dynamic in the sense that they 

do not allow for disequilibrium for any discrete time periods, and the time dimension is 

arbitrarily imposed.  This makes them ill-suited for forecasting, and less able to 

demonstrate that they reflect known co-movements in the economy for historical time 

periods. 

PARSIMONIOUS REGIONAL FORECASTING MODELS 

Regional econometric models consist of systems of either recursive or 

simultaneous stochastic equations and identities (Bolton 1985).  Unlike regional CGE 

models that are typically calibrated to a benchmark-year data-set, regional econometric 

models estimate parameters with time-series data.  Econometric estimation contributes to 

model fit to the time-series data for the region, allowing them to be used for forecasting.  

Nevertheless, econometric model structure is limited by the availability of time-series 

data, which often leads to the omission of key general equilibrium features of regional 

economies.  For example, regional econometric models often follow Keynesian theory by 

implicitly assuming perfectly elastic supply and fixed prices, resulting in endogenous 

impacts proportionate to exogenous change in demand (Partridge and Rickman 1988).  

This parsimony limits the range of policy uses regional econometric models can address. 

Vector autoregressive models are generally employed in modeling economic 

systems and are generally considered generalizations of structural econometric models 

(Zellner, 1979).  VAR models are generalizations of their structural counterparts because 

imposing exclusion restrictions on the VAR system to capture theoretical economic 
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structure reverts the VAR to a structural econometric system.  Sims (1980) cautions 

against imposing undue structure in econometric models noting that imposition of 

incorrect structure causes model misspecification, particularly where the extent of 

endogeneity of variables is questionable.  Rather than imposing structure on econometric 

models, Sims recommends treating each variable symmetrically and allowing the 

estimation procedure to determine the extent of endogeneity of the model.  He advocates 

the use of vector autoregressive models (VAR) as alternatives to structural econometric 

models, and argues that VARs are innate foundations for modeling dynamic 

relationships.   

All variables entering a regional VAR model are considered endogenous, which 

greatly reduces the time costs of developing the model.  Although they have enjoyed 

some success in forecasting (Litterman 1986a; Sims 1986), reduced-form VARs are not 

well adept to policy analysis.  The structural vector autoregression (SVAR) model has 

been proposed as a solution to the limitations of the VAR for use in policy analysis (Sims 

1986).  But that brings back, full-circle, to Sim's claim of incredible restrictions in which 

the VAR methodology was designed to correct.   

REGIONAL STRUCTURAL MODELS FOR POLICY ANALYSIS AND 
FORECASTING 

An ‘ideal’ regional model would encompass structural attributes found in regional 

CGE models, while maintaining the dynamic fit of a regional econometric/VAR model.  

To be sure, the marriage is under way, as attempts to incorporate more structure into 

econometric models for policy analysis has ‘blurred’ the distinction between regional 

econometric models and regional CGE models (West, 1995).  For example, some 

econometric models include neoclassical production functions and price responsive 
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product demands.  Yet, data considerations limit the amount of structure that can be 

incorporated, and the additional structure often comes at the expense of forecast 

accuracy. 

A noteworthy attempt at such a marriage is the widely used model by Regional 

Economic Models, Inc. (REMI) (Treyz et al. 1992).  The REMI model has its origins in 

the Massachusetts Economic Policy Analysis Model (MEPA) for the state of 

Massachusetts (Treyz et al. 1980).  The structure of the MEPA model was subsequently 

used to construct similar models for other states, becoming publicly available in 1980 

under the name REMI (Treyz et al. 1981).  The first generation of commercially available 

REMI models, often referred to as the TFS modeling approach, is described in Treyz and 

Stevens (1985).  In his review, Bolton (1985) observes that relative to other econometric 

models, the MEPA/TFS modeling system “…is a world apart in complexity, reliance on 

interindustry linkages, and modeling philosophy.”   

The TFS/REMI model bears some resemblance to CGE models in that it includes 

price responsive demands and supplies in the product and factor markets, interindustry 

transactions, and endogenous final demands.  Unlike static regional CGE models, the 

REMI model integrates econometrically estimated parameters, and does not require all 

markets to clear continuously (Treyz et al. 1992).  The econometric parameters, along 

with those exogenously specified, determine the time paths of economic responses to 

policy shocks.   

However, the REMI model still falls short of the ‘ideal’ regional model.  For one, 

many parameters are estimated outside the full set of general equilibrium constraints 

placed upon them as a system.  Although these statistically estimated parameters may 
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improve the fit of each equation, the model taken together may not be consistent with the 

economy it is intended to represent (Arndt et al. 2002), and may limit forecast accuracy.6  

Moreover, due to limited time-series data for a region, econometric estimates obtained 

from pooling time-series data for cross-sections are routinely used.  Pooled estimates may 

be biased for a particular region, reducing the forecast accuracy of the model for that 

region (Rickman 1995).  Many other parameters used from benchmark input-output 

tables/data are imposed as exact restrictions.  The benchmark year may not be 

representative of other years in the region, and employing input-output information in the 

form of stochastic restrictions (Bayesian priors), rather than exact restrictions, improves 

forecast performance (Rickman 2001, 2002; Rickman and Miller 2002).   

In short, because of the absence of system-wide calibration, the REMI model 

cannot be demonstrated to be representative of the economy under study, which is a 

legitimate concern of policy makers.  In addition, the methods used to parameterize the 

REMI model have been shown to be inferior to other approaches in terms of forecast 

accuracy.  To both improve model forecast accuracy and demonstrate its policy analysis 

capabilities, an approach is required that calibrates the entire model to movements of key 

variables in the local economy.  Fortunately, recent advances in computer intensive 

computation have made system estimation of complex dynamic systems more feasible. 

RECENT SYSTEM ESTIMATION APPROACHES 

System approaches have become routinely used to calibrate dynamic stochastic 

general equilibrium (DSGE) macroeconomic models (Kim and Pagan 1995).  Calibration 

                                                 
6 Rickman and Treyz (1993) examined the out-of-sample forecast performance of the REMI model and 
several versions with alternative labor market closures.  However, the parameterization of the versions was 
fixed, not being adjusted to improve forecast accuracy. 
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of DSGE models proceeds by specifying parameters of the model and simulating data 

from the model, and comparing properties of the simulated data with actual data.  If the 

simulated data correspond well to the actual data, the DSGE model is considered to be 

representative of the underlying economy.  Parameters can be adjusted to improve the 

‘fit’ between the simulated and actual data, thereby, dynamically calibrating the model.  

Advances in dynamic calibration of DSGE models have come in the form of Bayesian 

approaches (Dejong et al. 1994, 1996), which purport to provide sounder statistical 

frameworks to evaluate model performance and provide a formalized means for 

incorporating available prior information into calibration of the model.  Nevertheless, the 

DSGE models implemented are usually small-scale, and typically are linearized for 

estimation purposes.  Implementing a regional model for both forecasting and policy 

analysis necessitates an estimation procedure that can yield parameter estimates for a 

nonlinear large-scale model, which incorporates general equilibrium restrictions, based 

on data that is limited or missing for many structural variables.   

An approach advocated for use where data is limited and the number of 

parameters to be estimated is large, is the maximum entropy (ME) approach (Golan et al. 

1996).  Arndt et al. (2002) applied the generalized maximum entropy (GME) approach to 

calibrating a large-scale static CGE model for Mozambique.  In this formalism, Arndt et 

al. calibrate the static model to a base year and then adjust elasticities of substitution so 

that the model better tracks the historical data for key target variables.7  Their approach is 

similar to that of Jorgenson (1984) and McKitrick (1995) in that parameters are 

simultaneously estimated using time-series data, which produces parameter estimates that 

                                                 
7 Robertson, Tallman and Whiteman (Robertson et al. 2002) also use an entropy approach to impose 
moment restrictions derived from theoretical models on forecasts produced by atheoretical macroeconomic 
VAR models. 
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are consistent with the overall system.  Nevertheless, their method of simulating the time-

path of the economy involves a series of equilibrium solves of a static model.  While their 

entropy approach results in improved model performance for comparative static policy 

analysis, the model is not truly dynamic, and therefore precludes accurate quantitative 

assessments of regional economic dynamics for policy simulation or forecasting. 

RECENT APPLICATIONS OF ENTROPY METHODS IN ECONOMICS 

The method of maximum entropy and its cousin the general maximum entropy 

(generalizes the ME approach by taking into account noisy data) are versatile tools for 

economists.  These robust approaches to estimation require minimal distributional 

assumptions, yet can solve ill-posed problems that are not possible with traditional 

methods.  The ME formalisms are versatile and employ all available data, all relevant 

constraints, and prior information in the estimation process without requiring the input 

information to be complete (Arndt et al. 2002).  Because the ME principle is so versatile, 

it has been applied to many problems where information must be extracted from data.  

Golan et al. (1996) have made important contributions to ME applications in econometric 

models that has initiated a variety of literature applying the ME principle to econometric 

problems.   

One such application is the recovery of information from incomplete economic 

data.  Golan et al. (1994) apply entropy in recovering flows from a multisectoral SAM 

framework.  The method applied is similar to the RAS method of bi-proportional 

adjustment.  The problem is to employ a complete data matrix for a particular year and 

estimate a matrix of flows based only on the row and column sums of the next year.  

Because this problem requires the use of prior expectations of the distributions of 
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observations, the cross-entropy formalism is applied.  The authors specified the priors, q 

from the completed table of the prior year and estimated the succeeding year’s completed 

table as those values that minimized the Kullback-Leibler Information Criterion objective 

function subject to the constraints of the row and column totals.   

Paris and Howitt (1998) propose an application of ME to the specification of 

flexible functional form (FFF) production functions to farm level data from European 

Union member countries.  Empirically estimated FFF production functions often require 

a great number of restrictions for estimation since unrestricted estimates often give 

inappropriate curvature conditions (Diewert and Wales 1987).  Since imposing exact 

restrictions to assure proper second-order conditions may give biased results, application 

of stochastic restrictions, may produce useful results with proper second-order conditions.  

The use of Bayesian stochastic restrictions to FFF production functions are uncommon, 

most probably because establishing Bayesian prior restrictions of such productions 

functions is difficult.  The CE framework is a practicable method of estimating FFF 

production functions with proper curvature conditions.   

Paris and Howitt (1998), apply a two-stage process to recover FFF cost functions 

from very little data with the ME formalism.  The three-stage process determines the 

functional form and estimates the form’s parameters even though the data is insufficient 

and results in an ill-posed problem.  This process exactly reproduces the base period so 

no outside estimates are required to calibrate the model.  The authors further show the 

estimated model is robust to policy simulations. 

Rather than estimating a production system, Golan et al. (2001) apply the ME 

formalism to estimating an almost ideal demand system (AIDS) of the Mexican market 
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for meat products.  The ME formalism allows the AIDS to be estimated with binding 

nonnegativity constraints.  Because the AIDS framework requires estimating budget 

shares, the ME formalism is applied to recover the unknown parameters of a nonlinear, 

censored demand system.  The authors note three benefits derived from applying the ME 

formalism to AIDSs over previous methods.  The first is that the system can be estimated 

with binding nonnegativity constraints without requiring the usual two-stage process of 

estimation.  The second advantage is that the estimates are robust to assumptions of the 

distribution of the error terms.  Especially relevant to regional modeling, the third benefit 

is that the ME method is applicable when data availability impedes other methods.   

Robertson et al.  (2002) apply the CE formalism to impose moment restrictions on 

simulated forecast distributions.  The process is unique in that the authors apply 

importance sampling from the synthetic probability measure described in Csisrár (1975).  

The result is an expected forecast sampling distribution that satisfies the set of moment 

conditions that are imposed by economic theory or prior beliefs.  Applications of this 

process include forecasting and policy analysis, where the extent of the structure imposed 

is up to the modeler. 

Arndt et al. (2002) attempt to transcend the calibration and estimation problem in 

the absence of sufficient economic data by combining calibration with entropic 

estimation to simultaneously capture economic structure and the historical record in 

model estimation.  Because their model is calibrated to a base year, the model still suffers 

the bias imposed with exact calibration to a base year (McKitrick 1998; Roberts 1994).  

Furthermore, their dynamic specification relies on a series of equilibrium solutions of the 

model rather than allowing the data to fully dictate the time-path responses.  A complete 
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method of estimating CGE parameters without calibration is in order to fully track 

history.   

The current research proposes a model that integrates the forecasting accuracy of 

a regional econometric model with a policy-relevant structure that is representative of 

that associated with a regional CGE model.  It extends current regional modeling by 

estimating the modeled relationships employing a maximum entropy (ME) approach that 

produces parameter estimates that satisfy the full set of general equilibrium constraints.  

The ME approach can be used to estimate models that contain numerous parameters in 

cases where data are limited.  This approach allows for calibrating the model to the time-

series movements of key variables in true dynamic fashion, while imposing Bayesian-

type prior information; in short, the approach provides a sound empirical foundation for 

the model’s quantitative predictions for both policy analysis and forecasting.  

MAXIMUM ENTROPY AND CROSS ENTROPY ESTIMATION 

This section introduces the theory behind entropic estimation and applies this to 

systems estimation.  As described below, maximum entropy, ME and cross-entropy, CE 

are themselves merely ways in which probabilities of discrete events can be assigned.  In 

its most basic form, the ME approach seeks to distribute equal probabilities to all 

prespecified discrete events, unless evidence supports otherwise.  The CE approach seeks 

to distribute probabilities to all prespecified discrete events to the exact prior distribution 

imposed, unless evidence supports otherwise.  In generalizing the ME and CE approach, 

the discrete set of events are mapped into parameter space identifying the structure of the 

data generating process. 

The ME method follows Shannon (1948) and Jaynes (1957a; 1957b), who built 
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on the work of Boltzman on the second law of physics.  The ME formalism is founded on 

information theory and seeks to transform the empirical moments of the observed data 

into a distribution of probabilities.  This section describes the foundation of the ME 

procedure and follows closely to Golan et al.  (1996). 

To formulate the development of ME, suppose an experiment of N trials with M 

discrete possible outcomes.  Denote the number of times that an outcome m is observed 

as Nm, such that, 

∑ =
m

m NN ,  0>mN  and m = 1, 2,…, M. (3.1) 

There are MN possible outcomes since there are N trials with M possible outcomes.  The 

probability of outcome m converges in probability as, 
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Forming the monotonic, log transformation of W produces, 
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Applying Stirling’s approximation gives,  
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and further substituting Equation (3.1) into Equation (3.5) gives,  
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Applying the second relationship in Equations (3.1) to Equation (3.6) and rearranging 

gives, 
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which is Shannon’s measure.  The probability measure for event m, pm is restricted to be 

between zero and unity, and the sum of the m probabilities must sum to one.  This is a 

measure of uncertainty of the combination of events and is maximized when, 

Mppp M 1,...,21 ==== . (3.8) 

That is, Shannon’s measure is maximized when the probabilities of the M discrete events 

are equally distributed. 

By maximizing Shannon’s measure subject to the restriction imposed by the data, 

we maximize the number of ways in which we can observe the probabilities that is 

consistent with the data (Jaynes 1957a, 1957b).  The maximum of Shannon’s measure is 

consistent with Laplace’s notion of the principle of insufficient reason, which states that 

mutually exclusive events should be assigned equal probabilities in the absence of 

evidence to the contrary (Jaynes 1957a; Press 1989, pp. 47; Sinn 1980).  Because the ME 

formalism assigns equal probabilities in the absence of contrary restrictions, the solution 

is the most conservative estimates in terms of Laplace’s principle of insufficient reason.  

The means of imparting evidence derived from the data is presented below. 

A related measure to Shannon’s measure is the Kullback-Leibler Information 

Criterion (KLIC), of relative entropy.  The KLIC is applied to a variant of the ME 

formalism known as the cross-entropy (CE) formalism.  The CE formalism deviates from 
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the ME formalism in how prior knowledge is presented in the estimation process.  Rather 

than maximizing Shannon’s measure of uncertainty, the CE method proposes minimizing 

the Kullback-Leibler distance (Good 1963; Kullback 1959) from the specified priors.  

The Kullback-Leibler Information Criterion (KLIC) is specified as, 
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where the M-dimensional vector p is as defined above and the M-dimensional vector of q 

is the prior expected value of p.  The elements of the probability p and prior q vectors are 

restricted to be between zero and one and to sum to unity.  The extent of shrinkage on the 

estimates of p toward the prior is determined by the distribution of the prior vector q.  If 

the M values of q are equal, then the KLIC reduces to Shannon’s measure.  If the bulk of 

the prior probability mass is centered on a single qm, then estimate of pm will be shrunk 

toward qm.  Through this, the CE formalism is an efficient method of imposing stochastic 

restrictions without specifying prior and posterior distributions since CE makes no 

distributional assumptions.   

Mapping the probabilities into parameter support space generalizes the ME and 

CE formalisms.  This is done by assuming the parameter to be estimated, βk, as a discrete 

random variable with a compact support of M>2 discrete monotone increasing sequence 

of states, zm.  Because the pre-specified support set defines the upper and lower bounds, 

[z1, zM], that βk can take, care must be exercised to include the true parameter values.  The 

less theory tells us about the true parameter value the wider the support bounds should be.  

Mapping the discrete probabilities into βk recovers parameter estimates by expressing βk 

as a convex combination of the zm discrete states, 
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∑
=

=
M

m
mkmkk pz

1
,,β . (3.11) 

Parameter estimates are specified as weighted averages of the support space zk weighted 

by the probabilities pk.  The optimum values of pkm from optimizing Shannon’s measure 

or the KLIC subject to actual observations produces optimal values of βk that fully 

utilizes the combination of data and prior information in estimation. 

Since the CE formalism entails the combination of prior information with 

parameter estimates consistent with the data, the CE formalism runs parallel with 

Bayesian estimation methods that shrink parameter estimates toward prespecified 

expected values.  Though shrinkage techniques coax parameter estimates away from the 

maximum likelihood values, biased parameter estimates may improve forecast 

performance by reducing the forecast error variance (Birkes and Dodge 1993).  Such 

shrinkage estimation has had a long history in nonstructural model forecasting.  A case in 

point is the Minnesota prior specification of Bayesian vector autoregression models 

(Doan et al. 1984).  In an excellent introduction to the new challenges of macroeconomic 

forecasting, Francis Diebold (1998) speculates that shrinkage estimation will play a key 

role in estimating DSGE models. 

Following the notation of Arndt, Robinson and Tarp (Arndt et al. 2002), consider 

the following representation of a structural economic model to be estimated,  

F(Yt,Xt,B) – et = 0, for ∀ t∈T, (3.12) 

where F is a vector valued function that includes the model structure and dynamic 

linkages, Y is a vector of endogenous variables, X is a vector of exogenous variables, B 

is a K dimensional vector of behavioral parameters to be estimated, and e is a vector of 

stochastic error terms.  Lagged values of both endogenous and exogenous variables can 
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enter any given time t as contemporaneously exogenous variables such that Xt can be 

separated into exogenous variables that enter the model exogenously, t
t
XX  lagged 

endogenous variables, 1−t
t
YX .  Therefore, substituting t

t
XX  and 1−t

t
YX  into Equation (3.12) 

and subscripting time t gives the theoretical model to be estimated as, 

( ) 0eBXXY YX =−−
tttt ,,F tt 1, , for ∀ t∈T (3.13) 

Traditional econometric methods of estimating such a system require a two-stage process.  

Entropy estimation allows the simultaneous estimation of all parameters with 

simultaneous restrictions to be carried out in a single step. 

The method of estimating the K behavioral parameters, B, follows Golan et al.  

(1996).  The kth behavioral parameter Bk is treated as a discrete random variable with 

compact support and 2 ≤ M ≤ ∞ possible outcomes.  Bk is stated as a convex set of the 

upper and lower bounds of its support, zk,1 and zk,M, and all the support points in between 

as, 

∑
=

=
M

m
k,mk,mk zpβ

1
, for 0 ≤ pk,m ≤ 1, M ≥ 2, and 1

1
, =∑

=

M

m
mkp , (3.14) 

In compact matrix notation, Equation (3.14) is, 
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m
k,mp , (3.15) 

where Z is (K×KM), p is (KM×1), and zk is (M×1) in dimension support set for the 

associated probability pk,m.  In Equation (3.15) the support set Z is determined in 

advanced such that the behavioral parameters are recovered by finding appropriate values 

of the probability-set p. 
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The vector of error terms, e, is treated in a similar manner when solving for the 

optimal behavioral parameter values.  The error terms are assumed to be discrete random 

variables with compact support and 2 ≤ J ≤ ∞ possible outcomes, 

∑
=

=
J

j
t,jt,jt wve

1
, for 0 ≤ wt,j ≤ 1, J ≥ 2, and 1

1
=∑

=

J

j
t,jw , (3.16) 

In compact matrix notation Equation (3.16) is: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==

TT w

w
w

v'.00
....
0.v'0
0.0v'

Vwe
.

2

1

2

1

, for 10 , ≤≤ jtw  and 1
1

=∑
=

J

j
t,jw , (3.17) 

where V is (T×TJ), w is (TJ×1), and vi is (J×1) in dimension.  The support set in Equation 

(3.17), V is determined a priori such that the errors of the system can be recovered using 

the estimated probability of the convex set. 

Substituting Equations (3.15) and (3.17) into Equation (3.12) gives, 

F(Yt,Xt,Zp) – Vtwt = 0, for ∀ t∈T. (3.18) 

There exist an infinite number of combinations of p and w that satisfy Equation (3.18) 

and yield valid estimates of the probability weights.  Shannon’s (Jaynes 1957a, 1957b; 

Shannon 1948) entropy measure, H(p,w), assures a unique solution given the data, 

∑∑ −−≡
t

tt
k

kk wwppH lnln),( wp . (3.19) 

Shannon’s measure, H(p,w) quantifies the degree of uncertainty in the distribution of 

probabilities (Golan et al. 1996, pp. 10).  Systems estimation is made through Shannon’s 

measure subject to the fit of the model and the consistency constraints specified as, 
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Equation (3.9) seeks to maximize the claim of absolute disinformation of the structure of 

the underlying parameters, while Equation (3.20) augments this objective function with 

sample information in the form of optimization constraints.  The first constraint imposes 

information in the form of the systems model fit against Shannon’s measure, which is 

maximized with perfect disinformation.  The second and third restrictions are the 

summation restrictions that assure the probabilities sum to one.  The vector 1K is a K 

dimensional unit vector, and IK is an identity matrix of size K.  A similar vector and 

identity matrix of T dimension are created for the error terms.  The symbol, ⊗, is the 

Kroneker product of matrices.  The solution to the constrained optimization of Equation 

(3.20) offers the best-fit relationship between yt and xt.  The parameter coefficients and 

the error terms are recovered as ZpB =  and e = Vw, respectively. 

The KLIC measure imposes shrinkage like properties to the distribution estimates.  

The estimated coefficients are shrunk toward the values that economic theory imposes 

through properly setting prior probabilities.  The KLIC objective measure for the 

generalized cross entropy problem is specified as, 

( ) ( )∑∑ ++≡
t

ttt
k

kkk uwwqppl /ln/ln),( wp , (3.21) 

where l(p,w) is minimized when pk = qk, βk∈K, and wt = ut, ∀t∈T.  The GCE formalism 

therefore seeks to minimize the KLIC subject to the fit of the model and the summing up 

constraints of the probabilities, 
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Equation (3.22) seeks to minimize the log difference of qk from pk for all k explanatory 

variables and the log difference of ut from wt, for all t subject to the data and summing up 

constraints.  The first restriction in Equation (3.22) is merely the statement of relationship 

between yt and xt.  The second and third restrictions are the summation restrictions that 

assure the probabilities sum to one.  The solution to the constrained optimization problem 

of Equation (3.22) gives values of the behavioral parameters and error terms that 

optimizes the KLIC measure, l(p,w), where the parameter coefficients and the error terms 

are recovered as B = Zp and e = Vw, respectively. 

The model structure to be estimated is imposed on the objective function through 

the moment constraints of Equation (3.18).  Without such constraint Shannon's measure 

would be optimized where all states are equally likely and the KLIC would be optimized 

at the prior means specified by the prior probabilities.  The data moments impose 

information to the contrary of absolute disinformation, in the case of Shannon's measure, 

and absolute prior knowledge in the case of the KLIC.  The systems fit restriction is 

comparable to the exact identifying restrictions on single-year, static CGE models 

proposed by Shoven and Whalley (1972; 1984).  Since the proposed model is to fit 

multiple years, the system of identifying relations must account for non-exact fits for 

particular years.  The calibration process of dynamic general equilibrium models of 

Kydland and Prescott (1982) entails calibrating successive years, adjusting the calibrated 
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parameters for the combined fit over all years (Hansen and Heckman 1996).  This 

procedure is analogous to econometric estimation where the loss function is subjectively 

chosen by the modeler in deciding what the best overall fit of the data is.   

CONCLUSION 

The present study incorporates entropy estimation of the model described in 

Chapter IV over time.  Relative to least-squares methods, entropy estimation has the 

advantage of utilizing all relevant outside knowledge about the parameter coefficient 

values.  Loss functions are created for both parameter coefficients and prediction errors, 

where the full set of identifying restrictions can be posed with error.  Formulating a loss 

function about the prior expected parameter values to be estimated corresponds to 

specifying a prior distribution for parameter estimates in Bayesian methods of estimation.  

For example, in specifying prior expected values of linear slope parameters, Bayesian 

analysts often assume lower and upper probable bounds postulated to represents one’s 

own beliefs of the true, or population values, of the slope coefficients.  Reinterpreting the 

upper and lower bounds as confidence intervals with confidence level alpha, a complete 

prior expected distribution can be created representing the expectations of the population 

data generating function.   

Analogously, Cross-Entropy specification of prior beliefs requires at least a 

compact closed set representing an upper and lower absolute bound.  A two-point support 

set can only represent the first and second moment about the mean prior and estimate of 

the parameter.  Higher moments for prior specification and for estimation may be added 

by the addition of more support points offering a greater breadth of distribution 

assumptions (Golan et al. 1996, pp. 87).   
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In Chapter IV a three-point support set is built for both parameter coefficients and 

error terms allowing the structure of symmetric loss distributions corresponding to 

approximations of the normal distribution.  Prior weights are initially assigned 

symmetrically, where subsequent trial and error warranted some alteration.  The structure 

of the model is then assigned as the data moment restrictions to the CE formalism where 

optimizing the KLIC returns parameter estimates used to calibrate the model for 

forecasting and policy simulation. 
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CHAPTER IV 

SPECIFYING AND ESTIMATING A REGIONAL POLICY SIMULATION AND 
FORECAST MODEL FOR THE STATE OF OKLAHOMA 

INTRODUCTION 

A common problem for regional economists is that empirical models designed for 

policy analysis tend to perform poorly in forecasting applications in comparison to 

parsimonious models, while empirical forecasting models tend to be inadequate policy 

analysis tools.  Parsimonious models such as vector autoregression (VAR) models, or 

simple reduced-form econometric models, tend to forecast well, but they are unable to 

offer insights into the impacts of policy decisions.  Structurally elaborate models for 

policy analysis, such as regional computable general equilibrium (CGE) models, 

necessitate extensive parameterization that requires data beyond what is routinely 

available in time series form.  These models therefore are almost exclusively formulated 

as static models that are calibrated to a benchmark-year data set with no ability to track or 

forecast time series.  The ‘ideal’ model of a regional economy would marry the policy 

analysis strengths of regional CGE models with the forecasting capabilities of 

parsimonious models.  

The proposed model integrates the forecasting accuracy of a regional 

VAR/econometric model with a policy-relevant structure that is representative of that 

associated with a regional CGE model.  It extends current regional modeling by 

estimating the model employing a maximum entropy (ME) approach.  The ME approach 
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can be used to estimate models that contain numerous parameters in cases where data are 

limited.  The ME approach also allows for calibrating the model to the time-series 

movement of key variables in true dynamic fashion, through imposing Bayesian-type 

prior information; in short, the approach provides a sound empirical foundation for the 

model’s quantitative predictions for both policy analysis and forecasting. 

An ‘ideal’ regional model would encompass structural attributes found in regional 

CGE models, while maintaining the dynamic fit of a regional econometric/VAR model.  

As West (1995) has observed, attempts to incorporate more structure into econometric 

models for policy analysis has ‘blurred’ the distinction between regional econometric 

models and regional CGE models; for example, some econometric models include 

neoclassical production functions and price responsive product demands.  Yet, data 

considerations limit the amount of structure that can be incorporated, and the additional 

structure often comes at the expense of forecast accuracy. 

A noteworthy attempt at such a model is the widely used model by Regional 

Economic Models, Inc. (REMI) (Treyz, et al. 1992).  The REMI model has its origins in 

the Massachusetts Economic Policy Analysis (MEPA) Model (Treyz, et al. 1980); the 

structure of the MEPA model was subsequently used to construct similar models for 

other states, becoming publicly available in 1980 (Treyz, et al. 1981).  The first 

generation of commercially available REMI models, often referred to as the TFS 

modeling approach, is described in Treyz and Stevens (1985).  In his review, Bolton 

(1985) observes that relative to other econometric models, the MEPA/TFS modeling 

system “…is a world apart in complexity, reliance on interindustry linkages, and 

modeling philosophy.”   
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The TFS/REMI model bears some resemblance to CGE models in that it includes 

price responsive demands and supplies in the product and factor markets, interindustry 

transactions, and endogenous final demands.  Unlike static regional CGE models, the 

REMI model integrates econometrically estimated parameters, and does not require all 

markets to clear continuously (Treyz, et al. 1992).  The econometric parameters, along 

with those exogenously specified, determine the time-path of economic responses to 

policy shocks.   

However, the REMI model still falls short of the ‘ideal’ regional model.  For one, 

many parameters are estimated outside the full set of general equilibrium constraints 

placed upon them as a system.  Although statistically estimated parameters may improve 

the fit of each equation, the model taken together may not be consistent with the economy 

it is intended to represent and may limit forecast accuracy (Arndt, et al. 2002).  

Moreover, due to limited time-series data for a region, econometric estimates obtained 

from pooling time-series data for cross sections are routinely used.  Pooled estimates may 

be biased for a particular region and are found to reduce the forecast accuracy of the 

model for that region over regional estimates (Rickman 1995).  Many other parameters 

used from benchmark input-output tables/data are imposed as exact restrictions.  The 

benchmark year may not be representative of other years in the region, and employing 

input-output information in the form of stochastic restrictions (Bayesian priors), rather 

than exact restrictions, improves forecast performance (LeSage and Magura 1991; 

Magura 1987, 1990; Rickman 2001, 2002; Rickman and Miller 2002).     

In short, because of the absence of system-wide calibration, the REMI model 

cannot be demonstrated to be representative of the economy under study, which is a 
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legitimate concern of policy makers.  In addition, the methods used to parameterize the 

REMI model have been shown to be inferior to other approaches in terms of forecast 

accuracy.  To both improve model forecast accuracy and demonstrate its policy analysis 

capabilities, an approach is required that calibrates the entire model to movements of key 

variables in the economy.  Fortunately, recent advances in computation have made 

system estimation of complex dynamic systems more feasible. 

OUTPUT BLOCK 

Building the regional simulation model requires the combined use of a benchmark 

set of input-output (IO) relationships and time-series observations on those series that are 

readily available with continuous histories.  In the following section the IO table is 

specified that defines the structure of the regional economic system.  To place this 

structure in the form of time-series observations requires placing observable and non-

observable historical time-series into the structure of the IO table.  Ideally a continuous 

history of IO tables can be stacked to track historical changes alleviating the need for 

fitting outside estimates to the structure.  Because of frequent data revisions, the expense 

of complete IO tables, and the limiting restrictions placed on the assumptions of the 

Leontief system, a full set of IO tables that tracks history is not feasible.  Therefore, 

following the presentation of the IO structure, focus is turned to the fitting of time-series 

to the IO structure. 

The IO table is both an analytical framework for analyzing impacts of policy, and 

a descriptive tool for identifying key inter-sectorial linkages (Richardson 1972).  In this 

latter context, use of the descriptive relationships is employed in developing the structure 

of final demands and production linkages based on a benchmark year.  The production 
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function interpretation of the benchmark IO table is utilized to specify the complex set of 

linkages across industries.  Figure 1 presents a “dog-leg” two-sector IO table that omits 

the institution-by-institution linkages found in the more complete social accounting 

matrices (SAM) representation. 

The IO table is useful in describing the linkages comprising economic 

transactions in terms of value.  The rows in the table specify the sales of industry i to all 

other industries, for intermediate demands, and sales for final consumption, for 

investment, to state & local and federal governments, and for exports less imports.  The 

columns show the purchases of industry j from industry i, for intermediate inputs, and 

from primary factor inputs such as capital labor and land.  The primary factor inputs 

comprise payments to factor inputs, or total value-added output, while sales to 

Figure 3.1:  Partial Transactions Table. 
 Q1,1 + Q1,2  + C1 + I1 + SLG1 + FED1 + X1 - M1 = Q1 

+ Q2,1 + Q2,2  + C2 + I2 + SLG2 + FED2 + X2 - M2 = Q2 

                   
+ EC1  EC2                
+ YPROP1  YPROP2                
+ IBT1  IBT2                
= Q1  Q2                
 

 VAi = ECi + YPROPi + IBTi         
 FDi = Ci + Ii + SLGi + FEDi + Xi - Mi   

 
 Qi,j  Intermediary inputs from industry i to industry j. 
 Qi  Output in industry i. 
 Ci  Consumption component of final demand of industry i. 
 Ii  Investment component of final demand of industry i. 
 SLGi  State & local final demand for output of industry i. 
 FEDi  Federal government final demand for output of industry i. 
 Mi  Imports of goods for final demand for industry i. 
 Xi  Export component of final demand for goods of industry i. 
 ECi  Employee compensation in industry i. 
 YPROPi  Property type income earned in industry i. 
 IBTi  Indirect business tax paid from producers in industry i. 
 VAi  Total value-added production of industry i. 
 FDi  Final demand of industry i. 
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consumption investment, government and net exports reflect expenditures of income, or 

GSP.  In equilibrium, total industry output (column sums) must equal total industry 

demand (row sums).  Furthermore, since industry intermediate inputs must equal 

intermediate supply, total value-added output must equal total GSP.  This completes the 

equilibrium requirement that output equates with demand.   

Total regional output is defined as the sum of regional intermediate and final 

demands as defined by the regional counterpart to the national accounts identity.  The 

regional accounts identity equation over time, t, is defined as, 

itititititititit MXFEDSLGICINTQ −+++++= , 

where Q is total output and is defined as the sum of intermediate goods produced in the 

region and of the final demand components, C, I, SLG, FED, and X-M.  These final 

demand components are defined as C, consumption expenditures, I, investment, SLG and 

FED, state & local government and federal government expenditures respectively, and X-

M as net exports.   

Regional imports, M, are defined as the intermediate and final demands imported 

from outside the region.  Defining imports as a proportional value, m, of total local 

demand gives, 

.ititititititititititit FEDmSLGmImCmINTmM ++++=  

Substituting for M in the regional accounts identity gives, 

( ) ( ) ( ) ( ) ( ) ititititititititit

N

j
ijtitit XFEDmSLGmImCmQmQ +−+−+−+−+−= ∑

=

11111
1

, 

further defining (1-mit) = rpcit and simplifying gives, 

( ) itititititititit XrpcFEDSLGICINTQ +++++= . 
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This is the regional account identity that is common in the regional IO literature 

(Richardson 1972). 

To get historical series structured on the IO table requires fitting observable and 

estimates of non-observable time-series values to the output equation defined above.  

Since regional total output data is not collected and distributed on a regular basis, 

developing a time-sequenced model requires the regional accounts identity to be stated in 

value-added output or employment terms that are readily available.  Industry value-added 

output, VAi, is derived by assuming some non-constant proportional relationship between 

total output and value-added output, λVA,it = VAit/Qit, such that, 

( )( ) itVAititititititititVAitit XrpcFEDSLGICINTQVA ,, λλ +++++== . 

Furthermore, value-added measures are transformed into employment terms by some 

proportional relationship of employment to value-added output, epvit = Lit / VAit, which is 

easily calculated given available data from the Bureau of Economic Analysis.  

Substituting this relationship for industry value-added output above gives, 

( )( ) ititVAitititititititititit epvXrpcFEDSLGICINTepvVAL ⋅+++++=⋅= ,λ . (4.1) 

Equation (1) simply depicts employment derived from total output where the Bureau of 

Economic Analysis (BEA) reports industry employment Lit and value-added output 

annually.  Employment reports are generally considered more accurate measures of 

economic activity than value-added output given the long duration of value-added output 

data revisions.   

The BEA does not readily report historical estimates of intermediate inputs.  

Therefore estimates of historical intermediate inputs must be made.  Intermediate inputs, 

Qij, are assumed proportionately related to total industry output by defining the technical 
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requirements coefficient, as aij = Qij / Qi.  The n×n matrix of technical requirements 

coefficients make up what is known as the technical coefficients matrix in the IO 

literature.  Defining the variable INTi as the row sum of intermediate inputs gives, 

∑ =
=

n

j iji QINT
1

. 

Further, substituting the technical coefficient relationship for Qij and adding the time 

subscript gives, 

jt
n

j ijit QaINT ∑ =
=

1
. (4.2) 

Equation (2) is used to estimate intermediate demands over history.  The technical 

coefficient, aij, is assumed fixed at the benchmark-year such that changes in intermediate 

demands are driven by a constant proportional relationship with total regional output. 

Similar to intermediate demands, annual values of industry final demand 

components must be estimated, as complete histories are not readily available.  Historical 

estimates of such are derived from fixed proportional relationships of regional 

endogenous drivers and national exogenous drivers.  Define Yi as the region’s final 

demand component for industry i and Y, without the industry subscript, as the aggregate 

final demand component over all industries.  Further define the variable Z as the regional 

driver of the local final demand component, then, 

U
tU

t

t
Yiit Y

Z
ZY
∧

∧

⋅= γρ , where UUY ZY
ZY

=γ  and Y
Yi

i =ρ , 

where variables with no time subscript, t, are benchmark-year observations derived from 

the IO relationship, the character hats (
∧

X ) denote system estimated variables, and the U 

superscript denotes national exogenous drivers.  The benchmark ratio ρi denotes the 
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proportion of the industry final demand to the total final demand components, and the 

ratio γY scales the estimated final demand component to that of the benchmark year.  For 

completeness, each final demand component equation is described, starting with the 

private consumption component.   

The private consumption component of final demand is characterized as being 

some constant proportion to real disposable income.  Let b represent the average regional 

marginal propensity to consume such that b= C / RYD, and 10 << b  where C is the total 

consumption component of final demand in the region.  Further let consumption demand 

for industry i be some fixed proportion of total consumption, then, 

( )
.1  where,

and ,

1
=⋅=

=

∑ =

n

i iii pceCpceC

RYDbC
 

Substituting the first into the second gives, 

Ci = pcei ·b(RYD) 

Dividing this by an equally specified national consumption equation, rearranging, and 

adding time subscripts give, 

U
ttCi

U
tU

t

t
Ciit bRYDpceC

RYD
RYDpceC ⋅⋅⋅=⋅= γγ , (4.3) 

where γC = b/bU.  The first relationship implies that relative regional real disposable 

income to the nation, U
tt RYDRYD , and total national consumption U

tC  drives regional 

consumption of industry i.  A more intuitive way of viewing this is found in the second 

relation that implies the regional propensity to consume follows the nation’s propensity to 

consume, U
tb , such that an increase in the national marginal propensity to consume or an 

increase in the region’s real disposable income results in an increase in regional 
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consumption of good i.  

Regional investment demand of industry i is expanded into fixed residential 

investment and capital investment components since different economic drivers are 

assumed to drive the two components.  First, total expenditures on fixed residential 

investment, IR, is assumed to be some proportion of total real disposable income, RYD, 

IR = kR·RYD, 

and fixed residential investment of industry i is assumed to account for a fixed proportion 

of total fixed residential investment, 

IRinvIR
iRi = , where 1

1
=∑ =

n

i Ri
inv . 

Substituting the prior into the latter gives industry expenditures on fixed residential 

investment as a function of real disposable income,  

RYDkinvIR RRi i
⋅⋅= . 

Defining the same for the nation, taking the ratio of the region to the nation and 

rearranging gives, 

U
UIRIRi IR

RYD
RYDinvIR

i
γ⋅= , 

where U
RRIR kk=γ  and UU

R IRinv
i

 is substituted for U
iIR .  Assuming that γIR and 

iRinv  are 

invariant over time, and adding a time subscript gives,  

U
tU

t

t
IRIRit IR

RYD
RYDinvIR

i
γ⋅= , (4.4a) 

which implies that regional fixed residential investment expenditures on output from 

industry i are related to the relative real disposable income to the nation and the level of 

national fixed residential investment. 



89 

Regional expenditure on non-residential investment is assumed to be 

proportionately related to regional output, and industry expenditures on non-residential 

investment is assumed to be proportionately related to total regional non-residential 

investment such that,  

INR = kNR·GSP, and 

INRinvINR
iNRi = , where 1

1
=∑ =

n

i NRi
inv . 

Combining the two, defining the same for the nation, taking the ratio of regional to 

national, rearranging and adding a time subscript gives, 

U
t

t

t
NRNRit INR

GDP
GSPinvINR

i
γ⋅= . (4.4b) 

The time invariant parameter γNR defines the benchmark observations of the ratio of 

regional to national proportion of output invested in productive capital and inventories, 

U
NRNRNR kk=γ .  Equation (4.4b) implies that regional expenditures on industry i change 

as non-residential investment demand responds to changes in the relative level of output 

to the nation and the nation's level of total non-residential investment.  If state output 

grows at the same rate as the nation, then the growth in regional non-residential 

investment grows at the rate of the nation.   

Total regional investment is the sum of residential fixed investment and capital 

investment, 

U
t

t

t
NRNR

U
tU

t

t
IRIRit INR

GDP
GSPinvIR

RYD
RYDinvI

ii

^^

γγ ⋅+⋅= . (4.4) 

An increase in relative personal income, value-added output, national fixed residential 
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investment, or national expenditures on non-residential investment will reflect in 

increases regional investment. 

The government component of final demand is expanded into state & local (SLG) 

and federal (FED) government components based on different drivers.  Federal 

government final demands are not contingent on local economic activity, so are therefore 

driven solely by the nation.  This regional final demand component is the sum of regional 

federal government industry demands.   

Assuming some constant proportional relationship of industry demand to total 

regional federal government final demand, the federal government component of regional 

industry final demand is specified as,  

FEDi = fgovi·FED, where 1
1

=∑ =

n

i ifgov , 

and FED is total federal government expenditures in the region in the benchmark year.  

Similarly defining national federal government industry expenditures, taking the ratio of 

the two and solving for the regional federal government component of industry final 

demand gives, 

U
iUU

i

i
i FED

FED
FED

fgov
fgovFED = , or 

U
FEDii FEDfgovFED ⋅⋅= γ , 

where γFED is the ratio of total regional to total national federal government final 

demands, γFED=FED/FEDU.  The parameters fgovi and γFED are held constant at the 

benchmark-year observation.  Adding time subscripts, the federal government component 

of industry i final demand gives, 

U
tFEDiit FEDfgovFED ⋅⋅= γ , (4.5) 
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and the total regional federal government final demand is ∑ =
=

n

t itt FEDFED
1

. 

The total state & local government component of final demand is assumed driven 

by and proportional to the region's population.  For the benchmark year, this gives,   

SLG = kSLG·N, 

where kSLG relates total regional state & local expenditures to population, N.  Further 

defining industry regional state & local government expenditures as some proportion of 

total regional state & local government expenditures gives, 

SLGi = govi·SLG, where 1
1

=∑ =

n

i igov . 

Substituting the first into the latter and dividing by the same for the nation gives, 

UU
SLG

SLG
U
i

i
U
i

i

N
N

k
k

gov
gov

SLG
SLG

= , 

defining U
SLGSLGSLG kk=γ  and UU

i
U
i SLGgovSLG ⋅= , adding a time subscript, and 

rearranging gives,  

U
tU

t

t
SLGiit SLG

N
NgovSLG γ⋅= , (4.6) 

where parameters govi and γSLG are held constant at the benchmark-year observation.  

Equation (4.6) implies that regional state & local government expenditures change with 

the region's relative population to the nation, and the nation's level of state & local 

government expenditures.  Total regional state & local government expenditure is the 

sum of the industry expenditures, ∑ =
=

n

t itt SLGSLG
1

.   

The export component of regional final demand is the sum of domestic and 

international exports.  The superscripts N and W denote the region’s exports to the nation 
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and the world respectively.  The region's industry i exports to the nation is specified as 

some function of the share of the region's contribution to total industry output for the 

nation and the relative costs to the nation as,  
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where the share parameter N
iS  is calculated from the benchmark-year regional and 

national IO tables and assumed invariant over time, and the ratio of industry comparative 

costs of production, RACit, relates comparative disadvantage to decreasing export 

demand.  The benchmark-year RACi scales the equation to match the benchmark-year 

observation.  Equation (4.7a) shows that if the selling price of domestically produced 

goods increases relative to the nation export demand from the region will decline.  The 

cost functions are derived in the production block and described below.   

International exports of industry i for the region are modeled as a constant fixed 

share of total national exports as follows, 
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where XW denotes the region’s exports to areas outside of the nation and XU is the nation’s 

exports.  The share parameter W
iS  is calculated from the benchmark-year regional and 

national IO tables as the share of region’s international exports to national exports and is 

invariant over time.  Total industry exports from the region is expressed as the sum of the 

nation and world export final demands, 
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where the region’s exports respond to changes in national economic activity and national 

exports and changes in the region’s comparative production advantage. 

All final demand components are designed to reproduce the benchmark-year 

observations for the benchmark year if the drivers themselves equal the benchmark-year 

values.  During estimation the drivers may take on values different from the benchmark-

year observations since all relationships must simultaneously hold.  Therefore care is 

exercised in estimation to coax the benchmark-year solution toward the benchmark-year 

observations.  That is the associative loss function, defined below, becomes more 

sensitive to missing the benchmark-year observations than it is on other years.   

Returning to the regional accounts identity in employment terms, Equation (4.1), 

for any given year in which the complete IO accounts are available, this can be stated as 

an identity by definition.  Estimating a complete history, based on a benchmark-year set 

of observations, will induce error over actual employment observations and requires 

estimating a historical relationship.  Restating Equation (1) in a statistical form to be 

estimated as,  

ititVAitFDiititititititFDiit epvXrpcFEDSLGICINTL ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅+⎟

⎠
⎞

⎜
⎝
⎛ ++++= ,2,1,

^
λφφ , (4.8) 

where the linear coefficients ΦFDi,k map employment for local and export demands into 

total industry employment and character hats (^) denote systems estimated variables.  

Estimates of the final demand components (INT, C, I SLG, FED, and X) are described 

above.  Aggregate employment is simply the sum of predicted industry employment or, 

∑
∈

=
Ni

itt LL
^^

. (4.9) 

The historical values of rpc, λVA, and epv are systems estimated for optimal model fit as 
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described below, while the linear coefficients, ΦFD,ik are estimated based on the best fit of 

the equation to the historical series given rpc, λVA, and epv.  Since the parameter 

coefficients are simultaneously estimated with the variable fit of the system, the 

parameter coefficients are also estimated for the optimal model fit.   

For Equation (4.8) to track the historical series that it is designed to mimic 

requires some method of referencing the actual historic series.  To impose this mimicking 

behavior a shrinkage-like relationship is imposed that shrinks the prediction values 

toward the actual observed values through the entropy function from defining the 

prediction error as,   

ititit leLL =−
^

, (4.10) 

where the character hat, itL
∧

 denotes the model predicted industry employment, and Lit 

denotes actual observations.  The difference between actual and predicted industry 

employment is leit.  Estimates of leit are provided in the entropy function where 

optimizing the entropy will result in shrinking leit toward zero for all observations.   

The multiplicands of Equation (4.8), rpc, epv, and λVA are estimated over time 

along with the parameter estimates of ΦFDi,1 and ΦFDi,2 maximizing the systems fit.  In fact 

the complete systems fit is required to estimate Equation (4.8) since rpc, epv, and λVA are 

identified by the system itself for any given year.  Similar to the static CGE model of 

Shoven and Whalley (1972; 1984), the structure of the model is instrumental in 

identifying the values within the model.  Without the full structure of the model, Equation 

(4.8) can not be estimated. 

Prior to model estimation, bounds and expected values must be specified for the 
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coefficient support space.  Expected values of the parameters ΦFDi,1 and ΦFDi,2 can be 

deduced from the structure of this Equation (4.8).  All variables in Equation (4.8) can be 

identified for the benchmark year in which the identity-form of Equation (4.8), Equation 

(4.1) holds.  For the benchmark year, the slope coefficients ΦFDi,1 and ΦFDi,2 equal unity.  

If the benchmark-year IO table is an accurate representation of the regional economy, the 

estimates of the regional final demand components are reasonable, and the relationships 

are stable over time, then coefficient estimates will be near unity.  Otherwise the 

coefficient estimates will differ from unity.  Assuming that Equation (4.8) is a sufficient 

representation of the regional economy, the best prior estimate of the slope coefficients 

should be centered at unity with tight bounds as shown in Table 3.1 

The proportion of demand filled by local production responds to changes in 

relative selling prices of goods and services.  If locally produced goods become more 

expensive relative to nationally produced goods then regional customers are likely to 

switch to the relatively less expensive nationally produced goods.  Therefore the 

proportion of final and intermediate demands filled by regional output, or the industry 

regional purchase coefficient (rpci), responds to changes in relative selling prices of 

locally produced goods to those of the nation.  Furthermore, since regional preferences 

for locally produced goods and services, and industry production change over time, a 

trend component is added to capture systematic changes in industry regional purchase 

coefficient over time.  The regional purchase coefficient is modeled as,  

itirpctirpciit ACtimerpcrpc ⋅+⋅+= 2,,1,, φφ ,  (4.11) 
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where rpci is the benchmark-year observation, ACit is the average industry cost of 

production relative nation described below, time is a unit counter by year, and the 

parameters Φrpc,ii are coefficients to be estimated.   

The benchmark-year industry rpci is reported from the construction of the 

benchmark-year IO table and historical values of the rpc is systems estimated with 

Equation (4.8) to optimize the total fit of the model.  Since industry regional purchase 

coefficients are not observable overtime, the linear coefficients frpc,i,k are simultaneously 

estimated along with the left-hand-side values of the rpc to maximize the overall model 

fit.   

Economic theory is silent on the expected relationship of industry regional 

purchase coefficients to time, therefore a diffuse prior centered at zero is in order for 

Φrpc,i,2.  The law of demand guides the coefficient values for the relative average cost 

relationships.  As local production cost increases relative to the nation, locally produced 

goods become less competitive and the demand for locally produced goods and services 

will tend to decline.  Therefore, an inverse relationship is expected between the industry 

regional purchase coefficients and industry relative average costs.  That is, a priori Φrpc,i,1 

is expected to be negative, and the prior probabilities and support set is shifted toward 

negative values as shown in Table 3.1.   

The ratio of value-added output to total output by industry, λVA = VAit / Qit, is 

assumed to adjust gradually over time.  This ratio relates the total proportion of total 

output attributable to value-added output excluding intermediate inputs.  For modeling 

purposes, λVA is stated as a function of time as, 

2
2,,1,,,, tiVAtiVAiVAitVA timetime ⋅+⋅+= φφλλ , (4.12) 
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where timet takes the value of zero on the benchmark-year restricting the value of λVA to 

the known benchmark value for the benchmark year.   

The ratio of value-added output to total output, lVA, can only be identified within 

the employment Equation (4.8) that can only be estimated with a complete system fit as 

described below.  Therefore prior expected values for the slope coefficients can not be 

ascertained by the data.  Since neither data nor theory give insight to the ratio of value-

added output to total output over time, diffuse priors should be used for the slope 

coefficients centered on zero with wide bounds.  Similar to estimating industry regional 

purchase coefficients, the parameters ΦVA,i,k are systems estimated such that values of λVA 

depend on the optimal fit of the model. 

Industry labor productivity is captured in the variable epv, which measures the 

employment per dollar of value-added output, epvit = Lit / VAit.  Productivity 

enhancements are captured by a decrease in this variable.  While epvit is well defined 

from this relationship and solving Equation (4.8) for epvit, returns the same, a similar 

equation for epv comes from the production block and links the production side of the 

economy with the demand side discussed here.  

Predictions of industry employment and employment per value-added output 

imply predictions for industry value-added output VA.  Industry value-added output is the 

industry contribution to gross state product, GSP and is calculated as, 

it
it

it L
epv

VA ⋅=
∧ 1 . (4.13) 

Decreases in labor productivity; or rather increases in epv, while holding employment 

constant, results in decreases in VA.  Total value-added output, or gross state product, 

GSP, is simply the sum of industry value-added output or,  
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∑
∈

=
Ni

itt VAVA . (4.14) 

Increases in labor productivity or increases in labor, as defined by increases in final 

demand components, will lead to increases in industry value-added output and increases 

in total GSP. 

BEA reports industry value-added output estimates and those reported values are 

used in guiding the model estimation.  The difference between predictions of industry 

value-added output and those reported from the BEA are minimized subject to the 

complete model fit.  Define the difference between predicted and actual values as, 

ititit veVAVA =−
∧

. (4.15) 

Similar to Equation (4.10), entropy estimation minimizes, or shrinks the values of 

veit toward zero.   

PRODUCTION BLOCK 

The production block assumes that factor demands are derived from cost 

minimization.  The model assumes three factor inputs to production; labor (Lit), capital 

(Kit) and fuel (Fit) with prices Wit, rit, and eit respectively.  Factor input prices are 

annualized rates per unit input.  A Cobb-Douglas production function with constant 

returns to scale transforms factor inputs into value-added output.  Furthermore, perfect 

capital markets are assumed such that factor costs are strictly linear in factor inputs.  This 

gives the cost minimization problem as, 
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where the first equation is the primitive objective function and the second is called the 

optimization constraint.  For constant returns, the sum of the parameter exponents in the 

production function must sum to one, or αi + βi + γi = 1.  The variable Ait is a measure of 

total factor productivity.  A higher value of total factor productivity implies greater 

output for any given level of input and is termed Hick's neutral because an increase in 

this term does not lead to a change in factor intensities.   

Industry conditional factor demand functions for time t are derived from cost 

minimization as, 
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i
it VA

e
F γ
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Substituting these values into the optimization constraint, and noting that the sum of the 

exponents equal unity gives, 
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Further, solving the industry conditional labor demand function for value-added output, 

VAit = (Wit/αit) Lit and substituting this for the right hand side VAit gives, 

it
i

it

it

i

it

i

it

i
itit LW

erW
AVA

iii

α
γβα

γβα

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= , or by rearranging, 

iii

i

it

i

it

i

it

itit

it erW
AVA

L
γβα

γβα ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−1
1 . 

Doing the same for the nation and dividing by the nation gives, 
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By assuming equal factor cost shares for the nation and region ( ,, U
ii

U
ii ββαα == and 

U
ii γγ = ) the prior reduces to, 

iii

U
it

it
U
it

it
U

it

it

it

U
it

U
it

it

U
it

U
it

it

it

e
e

r
r

W
W

A
A

epv
epv

VA
L

VA
L

γβα

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

−1

, or 

U
itititititit epvRFCRCCRLCRFepv iii ⋅⋅⋅⋅= −− γβα 11 , (4.16) 

where U
ititit AARF =  is the industry relative total factor productivity at time t, and RLCit, 

RCCit, and RFCit are relative labor, capital and fuel costs respectively.  If total factor 

productivity increases locally relative to the nation (RFit increases), then local production 

will require fewer workers and epvit will decrease given the national productivity 

measure, U
itepv .   

Cost minimization implies that as the cost of one input increases compared to the 

costs of others, the firm will substitute other inputs in place of the now comparatively 

more expensive input.  Likewise, if the relative cost of one input increases compared to 

the nation, the region will substitute other inputs for the now comparatively more 

expensive input.  Therefore cost minimization implies that an increase in labor cost 

compared to the nation will induce firms to substitute capital and energy for labor, 

thereby decreasing epvit.  Increases in the relative costs of other factor inputs, RCC, and 

RFC, will induce firms to shift to the relatively less expensive labor, increasing epvit. 
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Solving the cost minimization derivation of industry epv, Equation (4.16), for RF 

gives, 

γβα
ititit

it

U
it

it RFCRCCRLC
epv
epvRF ⋅⋅= −1 . (4.17) 

Predictions of RFit maintain all the properties of cost minimization discussed above.  An 

increase in employment cost, RLCit, or required employment per value-added output, VAit, 

will reduce relative total factor productivity, RFit. 

The Relative cost functions, RLC, RCC, and RFC represent the regional cost of 

the respective input compared to the nation.  For example, relative labor cost is modeled 

simply as the ratio of regional wage rates to the nation,  

U
it

it
it W

WRLC = , (4.18) 

where Wit and U
itW  are average industry annual wage rates for the region and nation 

respectively.  In estimation, it is assumed that both RCC and RFC are constant and equal 

to unity.  The latter two are free to vary with policy analysis. 

Industry average cost, ACi, similarly relies on the assumption of regional cost 

minimization.  The industry cost function, which assumes cost minimizing combination 

of inputs, is used to measure the regional cost of production.  Substituting the conditional 

factor demands into the primal cost function, noting that constant returns to scale imply 

that the sum of the share parameters equal unity, and simplifying gives, 
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Dividing both sides of the cost function by VA to get cost per dollar of value-added 

output, or the average cost of production in industry i, gives, 
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AC is non-decreasing in factor prices W, r, and e, and decreasing in total factor 

productivity.   

Relative industry average cost to the nation, RAC, is specified by calculating the 

industry AC function for the nation and taking the ratio of the region to the nation to get, 
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Continuing the assumption that national and regional shares are equal and simplifying 

gives, 
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or by substitution, 
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RAC is non-decreasing in relative factor prices RLC, RCC, and RFC, and increases with 

increases in relative total factor productivity RF. 

Calculations of relative industry labor costs rely on estimates of industry wage 

rates.  Estimates of the wage rate rely on the local labor market conditions, the local price 

index, national wage rate and local amenities.  A lagged endogenous relationship is 

captured with a lag term such that the industry wage rate is described as, 

( )1,,,, −= itt
U

itttit WAmenitiesWCPREOfW  
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Since measures of local amenities are not directly observable, regional amenity effects 

are captured by the intercept term, which is allowed to change with time.  The estimation 

equation for industry wage rate is specified as, 

1,,,,, −+++++= itlagWittimeWi
U

itWWitCPWitREOWiWiit WtimeWCPREOW U φφφφφφ . (4.20) 

Relative employment opportunity, REO, measures the nature of employment opportunity 

in the region relative to that of the nation as described below.  An increasing REO 

indicates that employment opportunities in the region are growing faster than that of the 

nation.  The source of increased employment opportunities can come from two offsetting 

changes; an increase in demand for workers and a decrease in the supply of workers.  If 

an industry labor market is historically characterized by changes in demand for workers, 

REO will enter the equation positively.  Otherwise, supply changes will enter the wage 

equation negatively.  Therefore it is not possible to sign the REO coefficient ΦWi,REO a 

priori, and a diffuse prior about zero is used.   

Local industry wage rates should respond positively to changes in wage rates at 

the nation, therefore ΦWi,W
U should be in the neighborhood of unity with wide positive 

bounds.  Furthermore, regional wage rates should poses a positive autocorrelation with 

past values of itself but not be explosive such that ΦWi,lag should be in the range of 0 ≤ 

ΦWi,lag < 1.   

Variations of wage rates across regions should reflect, among other things, 

differences in local amenities (Beeson and Eberts 1989; Hoehn et al. 1987; Roback 

1982).  Residents in amenity rich regions are willing to forego higher wages offered in 

other regions to retain access to the benefits of living in an amenity rich region.  Regional 

amenity and productivity effects on regional industry wage rates are modeled as, 
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ΦWi+ΦWi,time·timet, where the inclusion of the time variable allows for systematic changes 

over time.   

Since actual values of Wit are known over histories, comparisons of the model 

predictions to actuals are instrumental in judging the fit of the model.  To assure that the 

wage relationships actually track history, a shrinkage estimator is added that minimizes 

the historical difference between the model prediction and the actual observations as, 

ititit weWW =−
∧

. (4.21) 

Similar to Equations (4.10) and (4.13) the difference between the observed and the 

predicted values, weit, are minimized through the entropy function such that the predicted 

values of wage rates track historical values known to exist.   

Wages are further subject to the consistency constraint that the regional aggregate 

wage rate, or overall wage rate, is a weighted average of industry wage rates weighted by 

the proportion of employment by industry.  The overall wage rate is calculated as, 

∑
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itit
t L

LWW
1

. (4.22) 

Wages make up a sizeable proportion of total regional income.  Equation (4.22) ensures 

that aggregate wage & salary disbursement (WSDt) is simply the sum of industry 

disbursements (WSDit).  Both are described below in the income block. 

INCOME BLOCK 

Personal income is calculated by BEA component.  The fundamental component 

of personal income is wage & salary disbursements.  Total wage & salary disbursement 

(WSD) is obtained as the sum of the product of industry wage rates and employment.  

The remaining personal income components are calculated based on the corresponding 
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national component, economic activity, scaled to the benchmark-year component value of 

personal income.  These personal income components for estimation include property 

income; transfer payments; social insurance payments; other labor income; and taxes.   

A region-specific deflator transforms nominal total personal income into real 

regional income.  This index is calculated as a function of the national consumer price 

index and the relative regional to national cost of production.   

To begin, personal income is the sum of wage & salary disbursements, 

proprietor’s income, other labor income, and property type income less contributions to 

social insurance, 

YPt = WSDt + YOLt + YPROPt ─ TWPERt
8. (4.23) 

The variable YPt is personal income, WSDt is non-farm wage & salary disbursements, 

YOLt is other labor income and farm and non-farm proprietary income, YPROPt is 

dividends, interest, and income from real-estate, and TWPERt, is contributions to social 

insurance.  All components of personal income are measured in thousands of current 

dollars.   

Wage & salary disbursement, WSD, is measured in thousands and is the sum of 

industry wage & salary disbursements,  

000,1
tt

t
LWWSD ⋅= . (4.24) 

Industry wage & salary disbursement is computed as the product of the industry wage 

rate and employment as, 

000,1
itit

it
LWWSD ⋅= , (4.25) 

                                                 
8 Residential adjustment for place of work is abstracted away from the model formulation as its proportion 
to total state employment is miniscule.  Smaller regional specifications will warrant full attention to 
residential adjustments. 
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where Wit is the average wage rate and Lit is labor in industry i at time t.   

Projections of the remaining components of personal income are modeled with 

regional and national drivers as,   
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where Yt is the personal income component to be estimated and Xt is the appropriate 

datum for that component at time t.  The absence of a t subscript implies benchmark-year 

observations, and the U superscript denotes national values.  The first multiplicative 

relationship in parenthesis is a scaling function that scales the national and regional driver 

to the benchmark-year value of the personal income component Y.  This formulation 

assures that benchmark-year values are returned for benchmark years for drivers that 

similarly replicate benchmark-year observations.  The relationship in the second 

parenthesis forms the response to regional specific economic activity relative to the 

nation.  If the regional economic activity grows faster than the nation, the region’s 

income component, Yt will grow faster than the nation’s U
tY .  The final multiplicand is 

simply the national driver.  Holding all else constant, the regional income component 

should grow at the pace of the nation.  For completeness, the remaining personal income 

components, YOL, YPROP, and TWPER, along with TAX and TRAN are presented.   

Other labor income, YOL, is driven by national other labor income and relative 

employment as, 
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Property-type income YPROP, is driven its national counterpart and by population as, 
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Finally, contributions to social insurance TWPER, is driven by the national TWPER and 

WSD, as, 
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The proceeding projection and estimation equations give all the components necessary to 

compute regional personal income through Equation (4.23).   

To model actual spending income requires netting out taxes from personal income 

to get disposable personal income, or net personal income.  Treating income transfers as a 

negative tax, disposable income is defined as, 

ttt NTAXYPYD −= , (4.29) 

where NTAX is net taxes and is defined as tax payments and non-tax payments to state, 

local, and federal government less government transfers to businesses and households, 

ttt TRANTAXNTAX −= . (4.30) 

The BEA measure of tax payments is the personal tax and non-tax payments of the PSI 

series 50 and includes taxes on income, transfers, and personal property and non-tax 

payments of donations, fees, fines and forfeitures.  Projections of local area tax payments 

are structured like projections on personal income components with wage & salary 

disbursement as the regional driver as, 
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Transfer payments are payments made to persons for which no services are performed.  

They include payments by governments and businesses to individual and nonprofit 

institutions, and are reported in the PSI series 50.  State population drives projections of 

transfer payments,  
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Holding all else constant, both tax and transfer payments move in step with the national 

tax and transfer payments respectively.  If regional conditions change relative to the 

nation, tax and transfer payments will respond accordingly.   

Real disposable income is disposable income adjusted by the regional specific 

cost of living index as, 

ttt cpiYDRYD = , (4.33) 

where cpit is a regional specific price index that differs from the nation to the extent that 

regional production cost differ.   

The local cost of living index, cpiit is calculated as the weighted average of 

relative local selling price of production to the US, weighted by the distribution of local 

final demands, 
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The weights, FDi / FD are the proportion of total final demand component of total output 

for industry i calculated in the benchmark year.  The selling price of regionally produced 

goods and services, Spit reflects the costs of regional production relative to the nation.   

The industry relative selling price Spi is assumed to directly reflect costs of 

production such that an increase in relative average costs, RACit, will result in an increase 

in the relative selling price.  Since the relative selling price is a ratio, it is centered on 

unity.  The relative selling price of import competing goods and services are assumed to 

equal the national price since locally produced goods must compete at a national level.  

The relative selling price of non-goods producing industries are assumed to reflect the 

comparative cost advantage or disadvantage the region has over the nation, such that, 
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it . (4.35) 

This structure reflects that local producers producing transportable goods are strictly 

price takers in the national economy, and that local producers of non-transportable goods 

and services do have some degree of market power.  Finally, the ratio of domestic price 

index to the national consumer price index is calculated as, 

U
t

t
t cpi

cpiCP = , (4.36) 

which is centered on one.  It measures the extent to which the regional price index 

changes relative to that of the nation.   

POPULATION BLOCK 

The population block follows closely to the migration assumption found in Harris 

and Todaro (1970; Todaro 1969) generalized with (Plaut 1981).  Harris and Todaro limit 
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migration motives to economic gains.  Plaut expands upon the Harris-Todaro model by 

recognizing that relative amenities also influence migration decisions.  Accepting Plaut’s 

modification, local migration responds to changes in the relative labor markets and 

changes in relative amenities.  If local market conditions favor employees through 

increasing employment opportunities or through increasing wages, then economic 

migration into the region should increase.  Furthermore, if local amenities are viewed 

favorably relative to amenities offered in other locations, then migrants seeking better 

living environments will migrate to this area.   

Purely economic migrants respond to changes in the labor market conditions.  The 

Harris-Todaro interpretation of economic migration predicts that economic migrants will 

relocate to regions that offer greater expected income, where expected income is the 

expected value of the aggregate wage rate times the proportion of the population actually 

employed.  Relative wage rate is defined as the relative aggregate wage rate, 

U
t

t
t W

WRWR = , (4.37) 

and relative employment opportunity is substituted by the relative employment rate to the 

nation, as, 

U
t
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tt
t NL

NLREO = . (4.38) 

The latter reflects the relative probability of finding employment in the region.  Expected 

relative earning is defined as RWR·REO.  The assumption is that migration continues as 

long as expected relative earnings is greater than one (Harris and Todaro 1970; Todaro 

1969).   
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Rather than modeling each specific amenity variable’s effect on migration, 

amenity effects are captured as residual determinants of migration.  That is migration is 

driven by purely economic factors such as the relative employment rates and wage rates, 

and driven by non-economic factors, 

1,,,,0 −⋅+⋅+⋅+⋅+= tNlagNttimeNtRWRNtREONNt NtimeRWRREON φφφφφ . (4.39) 

The effect of expected relative earnings on regional migration is estimated as 

ΦN,REOּREO+ΦN,RWRּRWR where the coefficients reflect the relative contribution to the 

migration decision of changes in the respective employment opportunities.  The 

remaining terms capture hysteric and amenity affects.  The combined intercept and time 

response, (ΦN0+ΦN,timeּtime), allows amenity effects to change over time while the lag 

response captures inertia in migration. 

Model predictions of population should mimic historical observations of 

population.  The difference between the actual observation and model’s predicted value 

is, 

ttt neNN =−
∧

, (4.40) 

where the absolute value of net is minimized in estimation.  Optimizing model fit 

partially entails minimizing the values of net. 

HISTORIC FIT 

Four equations form the shrinkage relationships that reduce the difference 

between observed values and actual values observed in the estimation period.  Aside from 

the forty equations that describe the model’s relationships and prediction errors, four 
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additional equations are added that define the error terms in Equations (4.10), (4.15), 

(4.21), and (4.39) as entropy error terms, 
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As described in Chapter III the vector of support sets w in the error equations are 

centered about zero.  With the prior support probabilities also centered about zero, the 

entropy function is optimized when the error is as close to zero as possible for all 

observations while allowing the remaining forty sets of equations to hold.  Stacking the 

vectors leit, veit, weit, and net over all i and t forms the error vector e in Equation (4.16) of 

Chapter III. 

DATA ISSUES 

Data for estimation and forecasting comes from a wide range of sources.  

Industrial sector data, including value-added output, and employment, along with income 

components, and tax & transfer payments, originates with the Bureau of Economic 

Analysis (BEA).  Regional income components are derived by the CA05 series of the 

Regional Economic Information System (REIS) CD-ROM in SIC industries.  SIC 

industry employment is obtained by the CA25 series of the REIS CD-ROM and is 

aggregated to the model’s aggregation scheme.  And state population is derived from 
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series CA1-3.  Wage rates are calculated from series CA06 as total industry employee 

compensation normalized to wage & salary disbursement and divided by industry 

employment giving an annualized rate.   

Estimates of interindustry linkages are derived from the 1997 Census of Business.  

The Census of Business is conducted every five years and produces a detailed survey 

concerning the purchases of intermediate goods, payments to factors (labor, capital, land 

and entrepreneurship), and taxes of companies in the United States.  The Census of 

Business does not report regional relationships but rather national statistics.  Adjustments 

to the national survey data are required to apply the Census of Business to any particular 

region.  The Minnesota IMPLAN Group Inc. Impact Analysis for Planning (IMPLAN) 

regionalizes data for the state of Oklahoma.  The IMPLAN program uses recent state-

level employment data to scale national-level industrial data down to the size of a state 

for policy analysis.  Though the IMPLAN program is a policy analysis tool in its own, it 

is merely the starting point for the model described above.   

The IMPLAN data set comprises the full-regionalized IO and social accounting 

matrices used in static IO models of policy analysis.  Production relationships are all 

derived from IMPLAN’s SAM matrix for Oklahoma.  Factor shares, intermediate 

demand linkages, total output, total value-added output, and intermediate inputs are 

revealed in the IMPLAN data set.  Demand components for the region are also 

represented including all intermediate and final demand components.  Housed within the 

IMPLAN databank are labor values, factor incomes, household income distribution, and 

price indices in high detail.  Furthermore, a comparable data set accompanies the 

Oklahoma data for the nation, in which national relationships are derived. 
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Since IMPLAN data is single year and relies on the five-year interval of the 

Census of Business survey, inter-census years are extrapolated from employment figures 

produced from the BEA.  The last such survey was 1997.  The 1999 IMPLAN data set is 

used in the accompanying model.  All benchmark-year observations are made from this 

benchmark year.  Time-series histories of relevant state employment, value-added output, 

income, and taxes are reported in REIS CD-ROM of the BEA.  Since these sources are 

subject to revisions, the actual BEA reported values differ from those reported from the 

IMPLAN program.  All relevant series are normalized to those values found in IMPLAN 

for consistency.   

Employment histories are aggregated into their respective industries.  These 

values are checked against IMPLAN’s reported aggregated industry employment for the 

benchmark year, then normalized such that the benchmark-year equates with the 

IMPLAN value.  Total employment is then calculated as the aggregate of industry 

employment.  

The model uses three factor inputs, capital/land, labor, and energy.  IMPLAN 

does not treat energy as a factor input.  To adopt energy as a factor input, a separate 

IMPLAN data set is created isolating energy as a single industry.  Taking energy out of 

the industry-by-industry IO table, it is then added as a component of factor payments.  

Since the row entries denote expenditures per dollar of sales, the proportional relationship 

is retained and the measure of energy input is comparable to that of capital and labor.  To 

allocate the energy sector demands for other industry output, industry input into energy, 

is factored into the new energy factor row proportional to the industry purchase of energy 

inputs.  This results in total energy expenditures by industry that also includes the energy 
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sector’s expenses on other sector inputs.   

Constant returns to scale in the production process are assumed and a Cobb-

Douglas production function is used.  Therefore factor share coefficients, αi, βi, and γi are 

simply calculated as the proportion of total value-added paid to the respective factor in 

the benchmark year.  Factor shares are assumed to remain constant over time.  A similar 

set of national factor shares are derived.  The accompanying forecasting model assumes 

identical production processes for Oklahoma and the U.S. so the average of the two are 

used with the restriction that they sum to unity for constant returns to scale.  

All reported historical industry values are aggregated into their respective 

aggregate industry class.  Values of the benchmark-year observations are compared to 

IMPLAN’s, then normalized to equate with that value.  From these histories, initial-

valued series of industry total output can be derived from the benchmark ratio of value-

added output to total output.  From which, the difference between industry output and 

value-added output gives initial values of intermediate inputs over time.  Since the ratio 

of value-added output to total output is subject to change over time, these initial values 

are not the final estimates, but they do serve as valid starting points when estimating the 

full system.  A similar process is applied to national data. 

The regional purchase coefficient is derived from the IMPLAN data set for the 

benchmark year.  Initial-valued observations of the regional purchase coefficients over 

time are calculated by solving Equation (11) for rpcit assuming a constant benchmark-

year value of λVA and calculating epvit as epvit = Lit/VAit.  These initial values of rpcit are the 

starting values used in optimizing the model. 

Starting values of relative labor costs, RLC, wage rates, RWR, and employment 
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opportunity, REO, are calculated from known observations reported by the BEA.  From 

which, starting values of relative total factor productivity, RF, relative average cost of 

production, epv, and the full set of price and relative price index, CP, can be derived.  

For the production block equations, initial values of RFit from observable time-

series are used to calculate initial values of RACit, which are then used to calculate initial 

values of Spit, CPt, and cpit.  These initial historical values are then used as starting points 

to the optimization problem over all time periods t.  

Though not conforming to the full system fit, the starting values are all derived 

from the structure of the model, and therefore should be in the neighborhood of the full 

model solution.  Therefore, the starting values are instrumental in placing upper and 

lower bounds on the feasible solution sets by year.  Adding and subtracting some 

multiple of the starting value gives the upper and lower bounds respectively for the 

solution space.  In estimation, care must be given that the bounds are not part of the 

solution.  That is, model solutions on the bounds indicate that either the system is non-

stable or that the bounds are too tight for a proper solve.  Efforts to solve the system show 

that some bounds required widening while others required tightening to facilitate a 

solution.   

Along with model endogenous variables, parameter estimates, and error 

predictions require upper and lower bounds and initial starting values.  These are defined 

by the three-point support sets and prior probabilities.  Table 3.1 presents these three-

point support sets and the prior expected probabilities that define the prior values of the 

systems estimated parameters.  The prior expected value of the parameter is found by the 

dot product of the 3×1 support set and the 3×1 probability set for a weighted average of 



117 

the support, weighted by the mutually exclusive probabilities of the support point being 

the true value.  For symmetric support points and weights, this value is the second or 

middle support point.   

Error terms are also estimated to record and minimize the difference between 

model predictions and known values of those variables.  Unlike static general equilibrium 

models that require all equations fit with certainty, parameter values are identified by the 

single year fit of the equations (Shoven and Whalley 1972, 1984), the accompanying 

model requires single parameter estimates for all years in the sample period to hold.  

Such dynamic systems, at best, overidentify the parameters.  Parameters that fit the model 

exactly for one year’s data may not necessarily fit a second year’s data leading to the 

necessity of adding an error term to one or more of the equations.  In the current 

application, more than one error term is added to the model to facilitate the overall fit of 

the model.   

ESTIMATION 

The 28 system coefficients described above and the corresponding error terms are 

systems estimated with cross-entropy described in Chapter III.  The modeling 

environment used is the GAMS IDE software version 2.0.26.8, Build VIS 21.3 138 

(Brooke et al. 1998) , while optimization is solved numerically through the MINOS 5.51 

system (Murtagh and Saunders 1987; Murtagh et al. 2002).   

The MINOS package is a highly useful optimization package based on the 

MINOS algorithm for medium to large-scale optimization problems with or without 

equality or inequality constraints.  It is also a very general and flexible environment for 

solving linear or nonlinear optimization problems subject to linear or nonlinear 
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constraints.  The problem presented in Equation (3.11) of Chapter III is to maximize a 

nonlinear objective function subject to the nonlinear constraints that make up the 

structure of the model.  For solving such nonlinear problems in the objective function and 

constraints, the MINOS package implements a Projected Augmented Lagrangian 

Algorithm.  Augmented Lagrangian algorithms are based on successive optimizations of 

the augmented Lagrangian function subject to the linearly approximated constraints.  

MINOS augments the Lagrangian function with the addition of a quadratic penalty 

function that measures the square of the differences between the linearly approximated 

values of the constraints and the primitive values of the constraints (Murtagh et al. 2002; 

Nocedal and Wright 1999, pp. 524).  In its simplest description, this algorithm linearly 

approximates the nonlinear constraints at some initial value and optimizes the augmented 

objective function subject to those linearly approximated constraints as a subproblem.  

Once the subproblem is sufficiently solved with a standard reduced-gradient algorithm, a 

new subproblem is optimized by linearly approximating the constraints at the previous 

solved values.  The procedure is iterated until the difference in successive subproblem 

solves is sufficiently small.   

Because the problem presented here constitutes a nonlinear objective function 

with a set of nonlinear equality constraints, assessing whether a global or a local optimum 

has been reached is problematic.  The general procedure for assessing whether a local 

optimum has been reached is to alter the starting values and resolving such that the 

iterative procedure moves the solution over a different region of the solution space.  

Though no systematic method is employed to evaluate the sensitivity of the solution to 

various starting values, several alternative bounds and starting values are attempted 
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throughout the estimation process and results are compared.  Generally, parameter 

estimates are robust over several attempts.  Though parameter estimates are robust over 

several starting values, the ability of the MINOS program to find a feasible solution is 

not.   

There is no guarantee that MINOS will be able to find a global optimal that 

satisfies the full set of constraints.  Experiments with the current model found that most 

starting values and systems of bounds and constraints will either reach a consistent 

solution or fail to converge.  It is further found that changing the solver parameters such 

as step-size and penalty parameters, alters the speed of convergence but not the optimal 

solution.   

As with any complex optimization packages, there are several parameters that 

alter the way the solver progresses.  At the core of the Projected Augmented Lagrangian 

Algorithm for nonlinear constraints, is the penalty parameter that adjusts the importance 

of the difference of the linearized and primal constraint values on the augmented 

Lagrangian.  Though parameter estimates are robust to the specified penalty parameter, 

the ability of the MINOS algorithm to attain a feasible solution and the speed of 

convergence is not.  Locating a feasible solution is contingent upon properly specifying a 

penalty parameter.  In application, it is found that only through trial and error can an 

appropriate penalty parameter be found that will not cause MINOS to fail to reach a 

feasible optimum.   

Further experimentation revealed that the penalty parameter and other solver 

parameters interact such that finding a successful combination of solver parameters for 

the MINOS program to reach a feasible optimal solution required a great deal of trial and 
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error.  Altering prior parameter values, starting values, and/or bounds often required 

altering the solver parameters for a feasible solution without significantly changing the 

final solution.   

Aside from experimenting with solver parameters, the process of formulating a 

solvable model required experimentation with the inclusion and exclusion of slack terms 

within the model structure.  The general attempt is to minimize the inclusion of slack 

terms in the model while allowing the solver to attain a feasible solution.  Inclusion of too 

many slack terms left variables indeterminate, while inclusion of too few left the model 

equations too rigid to solve.  Experiments favored adding a slack variable to the 

equations for industry rpcit, Equation (4.11), allowing the constraints to relax rigidities in 

the model.  Without these slack variables in place, a solution is not feasible.  Adding 

slack variables to the income block did not have an effect on the ability of the model to 

solve.   

Further rigidities across few equations posed an unexpected problem to the ability 

of the MINOS solver to reach an optimal solution.  The ability of the MINOS solver to 

find an optimal solution given the four equations for industry and aggregate wage rates 

and wage & salary disbursements Equations (4.20, 4.21, 4.24, and 4.25) was somewhat 

nonsensical and related to the rigidity of these four equations at initial iterations of the 

solver.  That is if the solver is able to get through the initial hurdle of finding an initial 

interim solution to these six equations the solver is able to complete the solution given 

that no other infeasible or nonoptimal constraints in the solution exists. 

More interesting is that the form of Equation (4.24) makes a difference in the 

ability of the solver to find a solution but has no bearing on the value of the solution 
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itself.  Equation (4.24) is equivalently stated as,  
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which verifies that the two are equivalent statements.  Stating Equation (4.24) as WSDt = 

ΣWSDit creates a more formidable hurdle for MINOS to surmount than stating it as WSDt 

= Wt·Lt/1000.  Nonetheless, those solutions that were attainable with this second 

formulation were not different from those from Equation (4.24).  In some instances, a 

feasible solution required that Equation (4.24) be specified as the sum of the industry 

wage & salary disbursements.  Other instances required a slack variable be added to 

aggregate WSD while others did not.  The final solution required both specifications to 

exist coincidently for a feasible solution.  My thoughts are that I might as well err on the 

side of over-specifying than under-specifying the relationships. 

The four equations specifying WSD implies the solution to industry and aggregate 

employment.  This was found to create a source of rigidity in the system that could not be 

alleviated without the specification of a slack variable, defined over the range of ± 800 

and taking a value of zero at the optimal solution, onto Equation (4.9) for aggregate 

employment.  The difficulty arises because aggregate employment is defined within 

Equations (4.20, 4.21, 4.24, and 4.25).  Proof: From before, define, 
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Defining Lt = Σ Lit and dropping the first equality gives, 
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Since Wt = Σ Wit·Lit/Lt, and WSDit = Wit·Lit/1000, substituting these for Wt and WSDit, 

gives, 
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divide by (Σ Wit·Lit / Lt) / 1000 to get 
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completing the proof.  Technically, the aggregate employment Equation (4.9) is 

redundant in that it is fully defined elsewhere.  But a feasible solution could never be 

attained from eliminating Equation (4.9).   

Further sensitivity issues arise with equal specifications of single equations.  

Equations with endogenous denominator terms may hinder MINOS from finding a 

feasible solution.  Shifting the endogenous denominators to the left hand side of the 

equation by multiplication can often result in a feasible solution.  For example, industry 

relative average cost is defined as, 
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Restating this as, 

iii
ititititit RFCRCCRLCRFRAC γβα ⋅⋅=⋅ , 

will often allow the MINOS program to find an optimal, feasible solution when it could 

not with the prior specification.  The problem is not related to a division-by-zero problem 
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since RFit is bounded sufficiently far from zero.  Several such relationships exist and 

much experimentation was done to locate the optimum combinations of specifications, 

slack variables, boundaries, starting values, support sets, and solver parameters that gave 

robust and consistent feasible solutions.  As unsettling as this is, some experiments 

showed that the latter specification above hampers a feasible solution for some equations 

when the prior does not.  There just does not seem to be any rhyme or reason to what 

hinders and what facilitates a solution.  It often changes for the same equation under 

different bounds, other equation specifications, slack variable locations, and solver 

parameters.   

Table 4.1 displays the support sets, prior probabilities, implicit prior means and 

variances, and the system estimates of the 29-parameter coefficients.  The support sets 

are initiated from theory or least-squares estimation and adjusted through 

experimentation.  From the combination of solution attempts it was found that widening 

some support sets while contracting others were instrumental in attaining a solution.  

Multiplying the support set with the corresponding prior probabilities (q in Chapter III) 

gives the implicit prior values of the estimates.  The cross-entropy objective function will 

shrink estimates of the parameter coefficients to these values to the extent that the data 

allows.  Implicit prior standard deviations (Std. Dev.) of the parameter coefficients are 

derived from the 99% confidence bounds of the normal distribution, and solving for the 

implicit standard deviation. 

Finally, the parameter coefficient estimates are presented in the last column of 

Table 4.1.  Estimation is made with the complete set of equations shown in Appendix I as 

constraints to the optimization problem,  
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The 43 equations over i∈G,N  represent the system of restrictions F(Y,XZp)-Vw=0.  

Minimizing the objective function returns parameter coefficient point estimates and error 

estimates from the compared observed series.   

The error support sets and prior probabilities are set by first specifying large 

bounds around zero, then by adjusting through symmetric increases or decreases around 

zero.  The optimal error bounds were found to be plus or minus fifteen percent of the 

observed variable bounds.  Since the error terms shrink model predicted values to actuals 

the bounds for them can rely on historical observations. 

PARAMETER ESTIMATES 

Estimated coefficients for Equation (4.8), a priori, are expected to take values 

near unity.  The surprisingly high coefficients for goods producing sectors indicate that 

the benchmark-year estimates may not accurately represent the structure of the Oklahoma 

economy.  Care should be applied when interpreting these coefficients since there is no 

intercept coefficient to act as a scale adjustment.  The theoretical relationship does not 

call for one, so any scale adjustment must necessarily be made with slope adjustments.  

Several reasons may exist to cause this discrepancy.  Firstly, the relationship across final 

demands and employment may be understated such that the epv for the benchmark year 

for goods manufacturing may be artificially low.  It could also be an indication that the 

benchmark-year value of intermediate goods production is overstated, or that the regional 
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purchase coefficient is suppressed for the benchmark year.  Nonetheless, the purpose for 

stating Equation (4.8) as a statistical relationship is to account for such measurement 

inaccuracies, not necessarily identifying them.   

Coefficient estimates for the wage rate equations reported in Table 4.1 are 

particularly interesting.  Since the estimates are systems made, coefficient estimates 

depend not only on the right-hand-side variables, but also all the variables that affect 

those variables, including the left-hand-side variable being estimated.  This is the result 

of internalizing the full set of feedback effects in estimation.  Evident from the parameter 

estimates is that wages in goods producing sectors respond to variables quite differently 

than the non-goods producing sectors.  Noteworthy is that the coefficients mapping wage 

rates to relative employment opportunity enters the two wage equations with opposite 

signs.  Rationalizing the signs requires inquiring as to the source of the employment 

opportunities.  Relative employment opportunity is calculated as ratios of employment to 

population relative to the nation.  Both a decrease in supply and increase in demand of 

workers relative to the nation cause relative employment opportunity to increase while 

having opposite affects on wages.  If industry wages are driven by local supply shocks, 

REO will enter the wage equation inversely, if driven by demand shocks, it will enter 

positively.  The market conditions in goods producing sectors can be quite different from 

that in non-goods producing sectors leading to opposing signs as seen here.  For instance, 

the negative sign associated with REO in non-goods producing sectors implies supply 

side changes in the labor market, while the positive relation for goods producing sectors 

signifies a labor demand-pull market.  Furthermore, the time coefficients reflect the 

general decline in goods manufacturing employment in the U.S.  Though both goods and 
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non-goods producing sector reflect a negative relationship between wages and time, this 

negative relationship is more acute for goods producing sectors.  Furthermore, 

coefficients to the relative cost of living index, CP, reflect that nominal wages respond 

positively to increases in the standard of living.  

The estimated population equation reflects the Harris-Todaro (1970; Todaro 

1970) theory of economic migration and augments it with Plaut’s (1981) expression of 

non-economic migration.  Coefficient estimates reflect the expected positive response to 

the general economic welfare of the region.  If either wages or employment opportunities 

arise locally relative to the nation, net migration is expected to be positive.  Furthermore 

the magnitudes of the coefficients tend to support the notion of risk aversion in economic 

migrants (Greenwood 1975).  Since the coefficient for REO is greater than that of RWR, 

migrants are more sensitive to job availability than to wage differentials.   

CONCLUSION 

This chapter presents the model equations defining the structure of the Oklahoma 

Policy and Forecasting Model, describes data sources and cleaning, and explains model 

assumptions.  This structure is then substituted as the moment restrictions in the cross-

entropy problem that allows the model parameter coefficients to be estimated such that 

the model maintains optimal fit over history through minimizing the errors of key 

observable variables.  Once estimates of these parameter coefficients are defined, the 

regional model is completely defined which has more structure and economic content 

than the traditional econometrically estimated model.  The contention is that this process 

of completely structuring the relationships and estimating key parameter coefficients 
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based on historic fit of the model will offer greater flexibility for analyzing the time-path 

response to policy changes that are not possible with static policy analysis models.   

In application, it was found that optimizing such a complex non-linear objective 

with complex, non-linear restrictions is extremely taxing on the optimization algorithm.  

Nonetheless the ability of the estimated system to replicate history was found to be robust 

over many attempted model specifications, and the estimated parameter coefficients were 

nearly as robust.  Furthermore, the fully estimated system fully replicates the base year 

observations with minimal coaxing; assuring the full set of equations and data properly 

conforms to the model specification.   

What remains is to forecast the system and to perform policy simulations 

assessing the ability of the model to produce viable policy responses.  This and in-sample 

diagnostics checks are presented in the next Chapter V.   
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Table 4.1: Prior Parameter Support Sets, Probabilities, and Estimates 
  Prior Support Sets  Prior Probabilities  Implicit Priors Estimates

  1 2 3  1 2 3  Mean
Std. 
Dev.   

fFD,G,1 0.75 1 1.25   0.05 0.9 0.05   1 3.50E-01 1.17115 

fFD,G,2 0.75 1 1.25  0.05 0.9 0.05  1 3.50E-01 1.18511 

fFD,N,1 0.75 1 1.25  0.05 0.9 0.05  1 3.50E-01 1.0954 

fFD,N,2 0.75 1 1.25  0.05 0.9 0.05  1 3.50E-01 0.98952 

fW,G -2000 0 2000  0.1 0.8 0.1  0 2.80E+03 173.89238 

fW,G,REO -150 0 150  0.1 0.8 0.1  0 2.10E+02 0.49445 

fW,G,CP -150 0 150  0.1 0.8 0.1  0 2.10E+02 5.16958 
fW,G,WU 0 1 2  0.1 0.8 0.1  1 1.40E+00 0.12785 

fW,G,time -2500 0 2500  0.1 0.8 0.1  0 3.50E+03 -86.44293 

fW,G,lag 0 0.5 1  0.1 0.8 0.1  0.5 7.00E-01 0.91616 

fW,N -2000 0 2000  0.1 0.8 0.1  0 2.80E+03 -831.93193 

fW,N,REO -150 0 150  0.1 0.8 0.1  0 2.10E+02 -8.10858 

fW,N,CP -150 0 150  0.1 0.8 0.1  0 2.10E+02 -2.73789 
fW,N,WU 0 1 2  0.1 0.8 0.1  1 1.40E+00 0.82397 

fW,N,time -2500 0 2500  0.1 0.8 0.1  0 3.50E+03 -243.3425 

fW,N,lag 0 0.5 1  0.1 0.8 0.1  0.5 7.00E-01 0.09659 

fN -8E+06 0 8E+06  0.1 0.8 0.1  0 1.12E+07 825553.16 

fN,REO -4000 0 10000  0.1 0.8 0.1  600 1.40E+04 589.42946 

fN,RWR -4000 0 10000  0.1 0.8 0.1  600 1.40E+04 370.38196 

fN,time -8000 0 8000  0.1 0.8 0.1  0 1.12E+04 7953.40068 

fN,lag -1 0 1  0.1 0.8 0.1  0 1.40E+00 0.73517 

fVA1,G -0.1 0 0.1  0.15 0.7 0.15  0 1.40E-01 -0.006472 

fVA2,G -0.1 0 0.1  0.15 0.7 0.15  0 1.40E-01 0.000074 

fVA1,N -0.1 0 0.1  0.15 0.7 0.15  0 1.40E-01 0.004925 

fVA2,N -0.1 0 0.1  0.15 0.7 0.15  0 1.40E-01 0.00027 

frpc1,G -0.025 -0.015 0.02  0.1 0.8 0.1  -0.01 4.90E-02 0.002571 

frpc2,G -0.1 -0.05 0  0.1 0.8 0.1  -0.05 7.00E-02 -0.022445 

frpc1,N -0.025 -0.015 0.02  0.1 0.8 0.1  -0.01 4.90E-02 0.000818 

frpc2,N -0.1 -0.05 0   0.1 0.8 0.1   -0.05 7.00E-02 -0.000055 
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CHAPTER V 

 
POLICY SIMULATIONS AND FORECASTS OF THE OKLAHOMA POLICY 

SIMULATION AND FORECAST MODEL 

INTRODUCTION 

Chapter IV described the process of estimating parameter coefficients for the 

Oklahoma Policy Simulation and Forecast Model.  Within this system, several equations 

were defined by their parameter estimates while others were held as identities.  This 

chapter applies the set of equations, the parameter coefficients, and the predicted values 

of unobservable variables defined in Chapter IV to a new system of equations for 

forecasting.  National drivers remain exogenous to the system and the equations in the 

forecasting system take the form of that found in Chapter IV.   

The first section of this chapter explores the numerical solution to a system of 

non-linear equations, and defines the sufficient condition for this solution to exist.  The 

second section presents the system of forecasting equations, tests the condition for a 

solution, and presents the forecasting system.  The third section reviews the forecasting 

experiment and is followed by policy simulations that can be applied over the forecast 

horizon.  The final section concludes. 

EXISTENCE OF FIXED-POINT SOLUTIONS TO PROJECTIONS 

Chapter IV presented a square system of nonlinear equations to be estimated.  

Unlike estimation, projecting the model does not entail simultaneously estimating 

parameter coefficients and fitting the set of nonlinear equations in the form of 
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optimization constraints.  Parameter coefficients are fixed throughout the forecasting 

horizon such that forecasting requires the simultaneous fit of the N endogenous variables 

over N equations defined in the estimation stage.   

Projecting the model forecast equations beyond the sample years creates 

forecasts.  The mere existence of a solution to the estimation process implies a solution 

exists for the out-of-sample period.  As described in Chapter IV, efforts to estimate model 

parameters while the full set of equation constraints hold failed, and industry slack 

variables had to be added to the regional purchase coefficient equations, the existence of 

a solution to the full set of model equations has not been established.  So this section 

presents the sufficient conditions necessary for a solution of single-year solves of the 

system of non-linear equations to exist.  The existence of an out-of-sample solution 

requires a fixed-point solution to the system of equations.   

The existence of this solution is verified by a generalized contraction-mapping 

theorem.  Defining the system of linear or nonlinear equations as, 
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defines a set of n equations, fi, in n unknown endogenous variables zi.  Those equations 

estimated in Chapter IV retain the estimated parameter coefficients derived from the 

system fit throughout the forecasting and policy simulation stage.  Similarly, since the 

error terms denoting deviations from observed values are assumed a random process with 

expected value of zero, their out-of-sample values are set to their expected values and 

therefore dropped from the forecasting equations.  Therefore all functional relationships 
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are treated as identities in the forecasting system.  A transformation G: n → n defines 

the vector system of relationships as a mapping of n endogenous variables, into itself as, 
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An equivalent vector relation is stated as,  

G(z): n→ n where z ∈ n,   

where G(z) represents the vector functional relationships mapping the endogenous 

variables z into themselves.  A solution z* is said to exist if there exists a vector z* such 

that z* = G(z*).  The existence of such a solution is assured through the well known 

Banach’s Fixed Point, or Contraction Mapping Theorem which states that a contraction 

mapping on a complete metric space has a unique fixed point (Bartle and Sherbert 1992, 

pp. 368; Sydsaeter et al. 1999, pp. 36, 119).  Therefore determining the existence of a 

fixed-point solution for the system at hand requires defining and testing the system for 

existence of a contraction mapping. 

An n dimensional mapping into itself, G(z): n → n, is a contraction mapping if 

there exists some constant k in [0,1) such that  

|| G(x) – G(y) || ≤ k • || x – y ||, 

where ||·|| denotes the Euclidean distance between x and y,  for all x, y = z: ∈ n and is 

sufficient to define a complete metric space (Sundaram 1996, pp. 366).  If such k exists, 

then the sequence { }∞=0
)(

l
lz  converges to a unique fixed point by the fixed-point algorithm, 

z(l) = G(z(l-1)), 

z* in n such that G(z*) = z*.  Moreover, for any starting point, z(0) ∈ n, z(l) → z* as l 
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→ •, where z(l) = G(z(l-1)) for l ∈  (Burden and Faires 1989, pp. 531).  Ortega (1972, 

pp. 153) provides proof of the theorem, while Moore (1977) proposes that convergence 

of the fixed point algorithm is proof of the existence of a local solution. 

PROJECTION EQUATIONS AND SYSTEMS FORECASTS 

The forecasting equations defining the projection relationships retain the exact 

structure of the estimating equations.  Several supporting equations in the estimation 

stage are not present in the projection stage.  For instance, the projection stage assumes 

that all relationships hold with certainty.  In a different form, the expected value of the 

error terms described in Equations (4.41-4.42) is zero for all t ∈ Tf where Tf ⊂  is the 

forecast horizon.   

The complete set of projection equations are presented in Appendix II.  For the 

current two-sector model, there exist 54 equations and 54 unknowns for each forecast 

period.  The forecast horizon comprises 11 annual forecast periods from the year 2000 to 

2010.  Together, there are 54x11 = 594 variables to solve for in batches of 54, where each 

set of 54 solved variables are solved as a complete system fit of the closed 54 set 

equations.  That is, they comprise the unique fixed point solution to the system for any 

given forecast year. 

The system of equations has several lagged relation terms that link prior-year 

predictions to current-year predictions, but no lead relation terms.  Therefore, for each t ∈ 

Tf, a solution to t-1 must be complete for a solution of t to be complete.  Since there is no 

lead, or forward-looking relationships, the converse is not necessary.  Therefore, the 

solution to the full set of Tf projection years can be performed sequentially from the 

lowest to the highest forecast year.   
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Since the solution proceeds sequentially over time with a lagged relationship, a 

set of starting values are required for t1 = min{Tf}.  As described in chapter IV, the 

benchmark year is the last year of estimation and the solution is devised such that the 

benchmark year is fully replicated.  For t1 the lagged reference year, t-1, is the 

benchmark-year 1999, and the lagged relationships for the first year projection is simply 

the benchmark year values that are known to replicate the benchmark year observations.   

Because there are equal number equations and endogenous variables, the usual 

counting rule holds for a unique solution to a system of equations but does not guarantee 

a solution (Sydsaeter et al. 1999, see pp. 38 for details).  Proof of the existence of a 

unique solution rests on the contraction mapping theorem described above and requires a 

solution of the contractivity constant, k.  Verification that k ∈ [0,1) is sufficient for there 

to be a unique fixed-point solution to the set of projection equations for a single forecast 

period.   

The calculation of the contractivity constant k is derived from the contraction 

mapping theorem itself.  Take the relationship, || G(x) – G(y) || ≤  k || x – y ||.  Replacing 

the inequality with equality and dividing by || x – y || gives, 
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Analytically, it is difficult to actually calculate a value of k from G(x).  Numerically the 

solution is inexpensive.  Select any two vectors (x,y) within the domain of G and solve 

G(x) and G(y), then solve for k by substituting these vectors into the equation above.  The 

solution of k is invariant to different vectors (x,y) as long as x and y are contained in the 

domain of G.   

For the current context, y is defined as the benchmark values of the 54 
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endogenous equations and the vector of functional relationships, G, is defined as the 54 

equations in Appendix II.  Values of x are derived as x = G(y) and G(x) is defined from 

this solution.  The constant k is then simply calculated as the ratio of the two Euclidean 

distances and found to be .97, which is within the necessary bounds required to define the 

system as a contraction mapping.  Since the function G is a contraction mapping, by the 

Contraction Mapping Theorem, there exists a unique solution z* such that z* = G(z*) 

(Sundaram 1996, pp. 293). 

The current application requires eleven years of consecutive fixed-point solutions 

to create a time-series projection over the forecast horizon.  Convergence of the fixed-

point algorithm confirms the solution of the n equations in n unknowns for a single year 

vector of unknowns, but not for the complete forecast horizon.  Since the model is not 

forward looking and the equation parameters are fixed over time, the vector solution z* 

of any projected year is independent of other years and the constant k holds for all years.  

Therefore for k ∈ [1,0) for one observation is sufficient for all projected years to have a 

fixed point solution9.  Appendix IV presents the MATLAB 6.1 program to create the 

Gauss-Seidel forecast projections. 

FORECAST MODEL SPECIFICATIONS AND FORECASTS 

The equations defined in Chapter IV define the estimation structure of the model.  

This section describes the similar structure of the forecast equations.  The difference 

comes about because in forecasting with the model, structures placed to coax the 

estimation toward observable known values are not necessary.  Furthermore, much of the 

                                                 
9  Sharp changes in national drivers from one year to the next may cause a single year to not solve, but such 

a sharp change over time is not considered likely and following Moore (1977) proof of the contraction is 
found in the solution of all forecast periods.  
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haphazard complexities associated with estimation do not exist for prediction.  For 

example, there is no need to be concerned with multiplying out a divisor to facilitate a 

solution in projections.  In fact, it is essential that all equations have a single left-hand 

side variable, as the solution method employing a fixed-point algorithm requires mapping 

the set of variables onto itself.  Therefore a square system of N unknown variables in N 

equations is imperative for a solution to the projection.   

There are N = 52 variables and equations to estimate within the system.  That is, 

there are 52 variables that feed back into the system and several that do not.  For a system 

solution to exist, there must be a fixed-point value of the N-vector z* such that z* = 

G(z*).  Projections are derived by iterating the fixed-point algorithm,  

( ){ }∞=−= 0
)1()(

l
ll G zz , 

to convergence. 

Two sets of model predictions are made.  One set replicates historical values to 

assess the dynamic fit of the in-sample predictions to the in-sample observations.  This 

set of model predictions tests to ability of the model to replicate history.  The second set 

of model predictions is the projection of the sample into 11 future, or out-of-sample 

predictions.  Both sets are dynamic projections such that lagged relationships enter as 

past predicted values not actual observations.   

IN-SAMPLE PREDICTIONS 

To test the model’s ability to replicate history, comparisons are made over known 

observations.  Since known data is exhausted up to the benchmark year, this requires a 

comparison of in-sample observations.  This gives the model a bit of unfair advantage 

since the data points the model is charged with replicating are the same points used in 
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estimating the parameter coefficients.  The exercise is nonetheless instructional in 

assessing whether the model can replicate history without including the error terms and 

therefore a useful tool for forecasting.   

Table 5.1 shows the model percent prediction errors for the in-sample period of 

1995 to 1999 and the mean percent squared errors (MAPE) of this range.  The in-sample 

results show that there is reason to believe that the fixed point algorithm on the complete 

set of equations in Appendix III does produce results that mimic actual observations.   

Care should be noted that the in-sample performance may be biased toward 

replicating the historical series, since the historical series the predictions are compared 

with are used in estimating the predictor.  Notably, the equations for wage and population 

were particularly effective at replicating the benchmark-year observations.  This is a 

reflection of the structure of the estimating relationship that seeks to replicate the 

benchmark-year observations.   

To facilitate comparison of in-sample tracking of the simulation model to more 

generalized econometric methods, Table 5.2 presents the in-sample prediction MAPEs 

for a seven variable VAR estimated over the same period.  The VAR system is made up 

Table 5.1: Oklahoma Policy Simulation and Forecasting Model: 
In-Sample Percent Errors and Mean Absolute Percent Error* 

  1995 1996 1997 1998 1999 MAPE 
 L  1.38 0.00 0.00 -0.64 2.10 0.83 
 L_G  1.46 1.45 0.26 1.19 1.81 1.23 
 L_N  1.36 -0.32 -0.05 -1.05 2.17 0.99 
 VA  1.01 -0.99 -0.48 -0.11 2.90 1.10 
 VA_G  4.78 -2.36 -3.32 0.07 2.69 2.64 
 VA_N  -0.25 -0.50 0.53 -0.17 2.96 0.88 
 W  -0.26 -0.13 -0.05 -0.08 -0.03 0.11 
 W_G  1.54 3.29 2.38 -2.20 0.00 1.88 
 W_N  -0.96 -1.58 -0.98 0.44 0.00 0.79 
 N  -0.48 -0.42 -0.35 -0.28 0.00 0.31 
*Percent errors are computed for in-sample prediction against actaual reporte values.  MAPE is 
calculated as the average of the absolute percent errors over the reported range 



137 

of industry employment, wage rates, and value-added output, and population with one-

year lags and national drivers.  Estimation and prediction is facilitated in the EViews 4.1 

programming environment and shown in Appendix V.  Facilitating comparison, the in-

sample MAPEs represent the same prediction advantage in predicting a subset of the 

estimation set.  Comparing Table 5.1 and 5.2 shows that both compare equitably with 

neither showing any tendency for improved historical replication over the other. 

OUT-OF-SAMPLE FORECASTS 

As previously noted, the system of equations is solved for eleven out-of-sample 

years to form long-term projections of the model.  These forecasts are conditional in that 

the forecasts are based on the condition that the national drivers take the value of their 

projections.  National projections are the January 2000 National Forecast Model 

projections from Global Insights (2000) and are shown in Appendix V.   

Modifying the fixed-point algorithm above to the Gauss-Seidel algorithm speeds 

convergence.  The fixed-point algorithm described above updates variables between 

iterations.  The Gauss-Seidel algorithm continuously updates the predicted values by 

immediately placing the new calculated value into the pool of z variables.  For instance, 

Table 5.2: Oklahoma Policy VAR Model: 
In-Sample Percent Errors and Mean Absolute Percent Errors 

 1995 1996 1997 1998 1999 MAPE 
L -0.68 0.03 0.91 1.21 -2.14 0.99 
L_G -0.13 -0.15 1.20 2.84 -5.86 2.04 
L_N -0.80 0.06 0.85 0.87 -1.44 0.80 
VA -0.40 -0.57 -0.13 3.95 -2.18 1.45 
VA_G -0.55 -1.04 0.84 6.97 -4.43 2.77 
VA_N -0.33 -0.37 -0.53 2.82 -1.38 1.09 
W 0.10 -0.47 0.19 -0.15 1.65 0.51 
W_G -0.91 -0.16 1.59 -1.91 5.26 1.97 
W_N 0.36 -0.54 -0.28 0.21 0.92 0.46 
N 0.05 -0.02 0.08 -0.08 -0.59 0.16 
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rather than storing the new calculated values between iterations, the Gauss-Seidel 

algorithm employs new values in the calculation of the remaining variables within the 

iteration (Burden and Faires 1989, pp. 534).  Depending on the ordering of the equations, 

this gives closer inter-iteration values to the fixed-point solution.   

To properly order equations to facilitate convergence, variables that are both 

exogenous to the system and less dependent on the solutions of other endogenous 

variables should be solved first within the iterations.  If not, highly endogenous variables 

will not benefit from the increased proximity to the fixed-point value of those variables.  

The ordering of equations is represented in Appendix IV.  The equation numbers are 

retained from Chapter IV. 

Forecasts are derived from the full set of equations by iterating on the Gauss-

Seidel fixed-point algorithm.  The system stopping rule is defined as the Euclidean 

distance between iterative solutions, or, 

|| x – y || < 1.0E-9, 

where y is the vector of new values and x is the vector of the previous solution.  The 

complete conditional forecasts of the regional model for the forecast horizon 2001 to 

2010 are reported in Appendix VI. 

Table 5.3 shows the 11-year conditional forecasts from 2000 to 2010 for key 

economic variables.  Of primary interest is how the model captures the recession of 2001.  

Figure 5.1 shows the percent change in industry and aggregate employment from 1987 

through the projection period to 2010.  As evident in the graph, goods producing 

employment declined in 1999 dragging down aggregate employment.  The 2001  
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Tables 5.3 and 5.5 here 
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recession is accurately captured by the projections of the national economy.  That is, 

Global Insight’s (2000) national projection for a 2001 decline drives the state model to 

similar declines. 

In summary, the model forecast is predicting a growth rate in total employment 

that exceeds the sample period.  Across the sample period of 1987 to 1999, the average 

growth rate in aggregate employment is 1.8 percent while the projection years of 2000 to 

2010 project a mean growth rate of 2.1 percent.  Goods producing industries are expected 
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Figure 4.1: Growth Rates of Employment
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to shed more employment at an increasing rate over the projection period, but non-goods 

producing sectors will take up the slack for a net gain in aggregate employment growth. 

Though employment is not driven directly by national employment, it is indirectly 

influenced through the ratio of national and regional employment per unit of value-added.  

An increase in national productivity is captured with a similar increase in regional 

productivity.  Final demand components determine regional value-added output, which 

are driven by national final demand components.  Together, productivity and final 

demand components determine regional employment.   
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Industry wage rates, on the other had, depend directly on a combination of 

national and regional drivers.  Primarily the national/regional linkage is made with 

relative employment opportunities in the region relative to the nation.  The estimated 

parameter coefficient relating relative employment opportunity to industry wage rates 

reflects the national/regional linkage to industry wage rates.  Furthermore, national 

industry wages directly influence regional wages through the estimated parameter 

coefficient relating national wages to those of the region.  Figure 5.2 shows the growth 

rates of industry and aggregate nominal wage rates.  The model shows that the 

anticipated recession of 2001 will adversely affect non-goods production wages more 

than goods production.  The model further projects nominal wage growth to exceed 

historical series, with growth in non-goods producing sector wages more than offsetting 

the losses in goods producing wages. 

It is little surprise that the projected values of employment, wages, value-added 

output, and population are generally more correlated with national values than are the 

histories since the national values directly or indirectly drive the regional projections.  

Table 5.5 shows the correlation across these variables for the sample period and across 

the projections.  With the exception of population, all projection correlations are 

Table 5.5: Correlations of State to Nation 
  Sample Projection 
 L  0.449 0.685 
 L_G  0.363 0.969 
 L_N  0.285 0.326 
 VA  0.422 0.941 
 VA_G  0.500 0.991 
 VA_N  -0.189 0.905 
 W  0.851 0.822 
 W_G  0.284 0.349 
 W_N  0.789 0.982 
 N  0.253 -0.284 
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consistent or stronger than actuals.  Population is the exception because national 

population is not a driver of the regional population in the model, but it does indirectly 

influence it through relative employment opportunity, REO. 

Table 5.4 shows regionalized aggregate and industry final demand and output 

projections.  The sum of regionalized final demands defines value-added output, 

representing local and export demand for goods and services produced locally.  The 

model is projecting a slowdown in the growth of all final demand components except for 

investment, which sees a short reversal.  This exposes the highly sensitive nature of 

investment to economic shocks.   

PRODUCTION BLOCK 

Key components of the production block include labor productivity and the 

relative average cost of production.  Table 5.6 presents the model projections of key 

production variables.  The variables employment per value-added output, epv, and 

relative total factor productivity, RF, are two sides of the same coin.  If less labor per 

dollar value of output is required, then labor productivity has increased.  Since relative 

labor input is the only endogenous variable input in the production process, the same 

productivity increases measured in epv reflect in increases in RF.  Relative capital and 

energy costs are allowed to deviate in policy simulations where both can alter profit-

maximizing behavior and therefore total factor productivity.   

Similarly, because the cost function of profit maximization is a function of 

variable factor payment, relative average cost, RAC is inversely related to total factor 

productivity RF.  Furthermore, RAC is an inverse function of total factor productivity as 

shown in Equation (4.19) of Chapter IV.  Therefore all the production relationships are 
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closely linked with RLC as the outside driver.  This variable is determined by the wage 

rate equations and the national wage rates, but directly drives the remaining production 

equations.   

INCOME BLOCK 

Projections of the income block equations are shown in Table 5.7.  The national 

slowdown in personal income growth is reflected in the region with a concurrent drop in 

Oklahoma income projections.  Figure 5.3 shows the annual growth rates for wage and 
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Figure 4.3: Growth Rates of Income Components
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INSERT TABLE 5.6 AND 5.7
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salary disbursements, personal income, disposable personal income, and real disposable 

personal income over both the sample and the projection periods.  Clearly evident is that 

the model is projecting a substantial increase in personal income over the forecast 

horizon, aside from the 2001 recessionary period, while growth in real personal income 

lags from the general increase in the region’s price index.   

POPULATION BLOCK 

Population growth in the region is expected to make hefty gains.  Comparing 

projection growth rates for the region to the nation, the average annual growth rate for the 

nation is expected to drop to 0.7% in the projection period from 1.0% in the sample, 

while the region is expected to maintain increase rates of population growth from 0.4% to 

0.8%.   

OUT-OF-SAMPLE COMPARISONS 

This section compares forecast predictions of growth rates to out-of-sample actual 

observations.  To facilitate comparisons, out-of-sample forecast accuracy of the current 

application is compared to forecast from the structurally specified Oklahoma State 

Econometric Model and a set of simplified vector autoregressive models.  The three 

models represent three approaches to regional forecasting systems.  The out-of-sample 

forecast horizon for comparison is limited to the years 2000 to 2003 by data release 

dates10.   

The Oklahoma State Econometric model (CAER, 2001) is structural in design, 

integrating economic theory and statistical relationships in specifying forecasting 
                                                 
10 To facilitate out-of-sample comparisons, forecasts are compared to the BEA sources from which the 
estimation sample was derived.  At current, the last BEA observation for wage rates, wage & salary 
disbursements, and employment are for the calendar year ended 2003, and 2002 for value-added estimates.  
Because of the short out-of-sample range for value-added, no comparisons are made for this measure. 
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relationships.  These structural models tend to be expensive to design but effective as 

forecasting tools.  The Mid-Year Update of the Oklahoma State Econometric model for 

2001 produced a ten-year forecast that is the baseline for comparison.  This forecasting 

model is a structural forecasting model designed to capture co-movements of key 

variables to the nation.  Though it is structural it is not designed as a simulation tool for 

lacking the key linkages necessary to affectively capture policy responses.   

A set of bivariate VAR models, with national drivers, are specified as atheoretical 

econometric forecasting models.  These models are extremely general in structure and 

lack policy response linkages necessary for policy simulations.  Large VAR models are 

argued to be affective policy analysis tools (Sims, 1982) but require substantial data 

histories for estimation.  Bivariate VARs capture the essence of the methodology, without 

eroding the degrees of freedom necessary for estimation.  Finally, the current application 

presents a completely structural approach to estimating structural relationships in 

forecasting models.  All three approaches attempt to capture correlations across both time 

and inter-related variables to project the likely growth path of the economy into the 

foreseeable future.   

Three bivariate VAR models are constructed through goods and non-goods 

manufacturing sectors for employment, wage rates, and value-added output.  These 

variables represent the observable histories modeled with the current simulation model.  

Aggregates are further compared for total employment, wage rates, and value-added 

output.   

The bivariate VAR specifications are as, 



149 

∑∑ ∑
∈∈ ∈

− +⋅=
NGi

U
i

NGi s
sitisit XXaX

,, 2,1

, 

where i is the industry sector, s is the lag length from time t, Xit is the endogenous VAR 

variable and U
itX  is the exogenous national driver.  The parameter coefficient, ais, is to be 

estimated with least squares and captures the co-movements across time and industries of 

the endogenous variables.  Industry aggregates are estimated as the sum of industry 

estimates. 

Out-of-sample mean absolute percent errors (MAPES) across three key economic 

measures and the three forecasting methodologies are compared in Table 5.8.  The first 

column shows the MAPEs of the policy simulation model forecasts (PSM: CLOSE) 

discussed above, the second shows the MAPEs for the bivariate vector autoregressive 

models (VAR), the third column shows the MAPEs for the Oklahoma State Econometric 

Model (CAER), and discussion of the fourth column will be taken up later.  The last row 

gives average MAPEs across all nine forecast variables and indicates favoritism for the 

CAER model while revealing that the bivariate VAR models as least accurate.  Bold 

numbers indicate lowest MAPEs.   

Table 5.8: Out-of-Sample MAPE to Actuals* 
  PSM: CLOSE VAR CAER PSM: OPEN 
WSD_G 3.14 6.03 2.59 2.90 
WSD_N 1.59 1.36 1.09 1.64 
WSD 1.45 2.23 1.22 1.20 
L_G 3.18 4.06 2.39 3.00 
L_N 1.02 1.63 0.98 1.21 
L 1.05 1.73 1.13 0.88 
W_G 3.33 4.72 3.76 4.48 
W_N 1.37 0.51 1.03 1.14 
W 0.70 0.62 0.71 0.56 
Mean 1.87 2.54 1.66 1.89 

 *Forecast horizon: 2000-2003; Bold indicates lowest observation. 
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Table 5.8 shows that the two structural models produce comparable out-of-sample 

MAPEs with the average MAPE for the CAER model showing an advantageous low 

overall average MAPE.  The current model for Oklahoma generally offers lower out-of-

sample precision than the structural state econometric model, while the bivariate VAR 

provided wildly varying MAPEs across sectors. 

To be sure, a second comparison is made to statistically infer the comparative 

performances of the models.  Since data revisions render the relative forecast values 

incomparable, the relative growth rates should remain comparable.  That is, given 

identical national drivers, the projected growth rates of all three models should be 

comparable.  To facilitate inference, the relative average growth rates are tested for 

equality with a two-sample t-test for equal means (Wackerly et al. 2002, pp. 492).  With 

no assumption of equal variances, the test is specified as, 

N
ss
XXt
ba

ba
22 +

−
= , 

where a and b are the comparative models and a≠b, X  is the average projected growth 

rate from the year 2000 to 2003, s2 is the sample variance, and N is the common sample 

size.  The calculated t is distributed as a student's t-distribution with v=2·N-2 degrees of 

freedom under the null hypothesis of equal average growth rates.  With N=4, v=6 and the 

two-tailed critical values are ±1.94 at confidence α = .10.  The policy simulation, the 

VAR, and the CAER model projects equal growth rates to actuals under the null 

hypothesis.   
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Table 5.9 reports the calculated t-stats and compares mean growth projections 

against the CAER model.  Table 5.9 shows that the test indicates scant evidence that the 

models are producing average growth rates different from the out-of-sample 

observations.  More so, the signs of the t-statistics reveal a general tendency for over 

prediction.  This is generally the product of estimating the sample over the economic 

growth spurt of the 1990's with the inclusion of time as right-hand-side variables.   

IMPACT MULTIPLIERS AND POLICY SIMULATIONS 

Up to this point, projections have been made of the baseline forecast.  That is, the 

projections are conditional on the projections of the national economy assuming all 

endogenous components maintain their historical relationships.  Forecasts from simulated 

changes in the regional relationships are compared to the baseline forecasts in what is 

generally termed impact analysis.  These calculated impact responses measure the 

response of the regional economy to some exogenous change.  To this effect, two types 

of comparisons are discussed below.  The first is a unit specific response calculated as 

impact multipliers.  Two sets of model closures are assumed to isolate the contributions 

of the current model to traditional IO model responses.  The second type of comparison is 

Table 5.9: Relative Student's t-Statistics of Equality of Relative Growth Rates* 
  PSM: CLOSE VAR CAER PSM: OPEN 
WSD_G -0.03 1.35 0.74 0.04 
WSD_N 0.94 0.88 0.72 1.25 
WSD 0.53 1.16 0.78 0.75 
L_G -0.18 1.12 1.23 -0.08 
L_N 0.95 1.84 0.84 1.46 
L 0.69 1.87 1.15 1.12 
W_G 0.11 0.63 0.10 0.25 
W_N 0.89 -0.22 0.41 0.63 
W 0.75 0.42 0.44 0.43 

     *Forecast horizon: 2000-2003; Bold indicates significance at 10 percent confidence. 
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a unit-free measure of response to exogenous stimuli calculated as elasticity responses.  

Elasticity responses are useful in that elasticity responses can be compared over a wide 

range of studies given the unit-free measures. 

IMPACT MULTIPLIERS 

Impact multipliers can be readily attained from the model through counter-factual 

forecasts.  The structure of the model facilitates analysis of total output and employment 

multipliers.  Impact responses come from three sources; direct, indirect, and induced 

effects.  The direct effect is the actual exogenous change in final demand that may arise 

from increased export demand or government projects.  The indirect effect results from 

interindustry demand for inputs from other industries that produces a chain of responses 

across all industries.  The combined direct and indirect effects are associated with the 

Type I multiplier responses through interindustry transactions found in traditional input-

output models.  Adding the induced effect expands the endogeneity in recognizing that 

greater regional output leads to more jobs and more regional income, some of which is 

spent locally.  This leads to greater output and the continuation of the chain of responses 

found in closed input-output models.   

In closed models as this, multiplier effects arise through two avenues.  One is 

through the open-model linkages and the other is through model closure.  In the input-

output literature, open models only account for direct interindustry linkages through 

interindustry sales and generally associated with Type I impact multipliers.  In these open 

models, regional households are exogenous to the system and merely contribute to total 

final demands.  Since changes in household incomes resulting from increases in final 
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demand do not contribute additional economic activity, changes in household incomes 

are considered leakages to open models and do not interact with the production sector.   

Closed models impart the effect on households in changes to output and are 

associated with Type II impact responses.  Regional households earn their incomes 

through labor services and spend their income as consumers.  Increasing output requires 

more employment and household income, which is partially spent locally across all 

industries inducing further increases in the total regional output.  Therefore, closed 

models treat households as endogenous to the system allowing households to interact 

with the production sector.  The increased closure of endogenizing household income 

increases the multiplier size.   

The current application extends the Type II responses to the extended multiplier 

responses of Batey and Rose (1990) that include induced investment and government 

expenditure responses.  The additional closure offers greater feedback effects and lead to 

larger impact multipliers.  To compare the current application to the traditional Type II 

multipliers reported by IMPLAN (Rickman and Schwer 1993, 1995) requires opening the 

model by the exclusion of these extended multiplier responses.  Therefore, in contrast to 

the traditional terminology, openness refers to the restrictive Type II model closure and 

closeness refers to the extended model closure that up to this point has described the 

current model.   

Restricting the model to Type II responses requires restricting investment and 

state & local government responses to exogenous behavior.  To do so the investment and 

state & local final demand linkages, Equations (4.4 and 4.6 respectively) are restated as 

proportionally related to their respective national drivers as, 
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U
tiit ZZ γ= , 

where Zit is the final demand component re-specified as exogenous for industry i, U
tZ  is 

the national aggregate driver, and γi is the calculated proportional relationship to the 

national aggregate driver calculated at the benchmark year as the ratio of Zt and UZ . 

Specifying the current model to this relatively open Type II response specification 

does not certify equal comparisons of Type II multiplier responses to input-output 

models.  If this re-specification erodes the model's ability to track historical values and 

forecast well, then the re-specified model will not produce valid multiplier responses.  

That is the accuracy of the multipliers are tested against the data by assessing the model's 

fit over time (Rickman 2002).  In doing so, a second set of forecasts are derived by 

setting investment and state & local government final demand components exogenous, 

and these forecasts are compared to actual observations.   

The forth columns of Tables 5.8 and 5.9 (PSM: OPEN) compare these projections 

to actual observations.  Evident from comparing the PSM: CLOSE columns to PSM: 

OPEN, is that the open version of the model that replicates Type II model closure 

compares admirably to the closed version.  The closed model does relatively poorly for 

goods producing industries tending to over predict where multiplier linkages are more 

pronounced.  In fact there's a tendency for the open model to further over-predict all 

variables than the closed model.  Nonetheless, the open formed model returns a 

comparable average MAPE over all industries, produces growth rates not significantly 

different from actuals, and produces MAPEs sufficiently lower than the bivariate VAR 

models.  Accepting that both the open and the closed form of the model sufficiently 
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tracks historical values and forecasts well, impact responses can by analyzed with the 

assurance that the model relationships reflect the historical pattern.    

Impact studies generally report two types of impact responses.  The first 

calculates the change in the value of total output given an exogenous increase in industry 

i output demand,  

i
Q Q

QM
∆
∆

=' , 

while the second measures the change in total employment given a change in industry i 

employment valued exogenous output, 

i
L L

LM
∆
∆

=' . 

Both measures reflect on the expected outcome of a change to some exogenous demand 

that causes a resulting chain of demand linkage responses.  The greater the closure of the 

model the greater will be the multiplier.   

Impact multipliers based on the current applications are analogous to those 

derived in the input-output literature in that a cumulative measure of total response is 

derived from an exogenous change in a final demand segment.  Whether measured in 

output or in employment terms, impact multipliers are calculated as the ratio of the total 

effect of a change to the direct effect, or the change itself.  Numerically, they are 

calculated by imposing a single-year shock to exports in the goods producing industry, 

projecting the model over the forecast horizon, summing the difference between the base 

projection and the prior over the forecast horizon and dividing by the value of the initial 

shock, or, 
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where H is the forecast horizon, s is the forecast observation, ∆Qt is the difference 

between the baseline projection and that of the shocked series, and ∆Xt is the shock at 

year t.  The total effect is calculated as the sum difference in the counterfactual projection 

to that of the baseline projections.  

Deriving employment multipliers requires transforming the change in final 

demand into employment terms.  To do so, output is simply restated in employment terms 

similar to that shown in Equation (4.1) of Chapter IV.  Converting output, Qit, into 

employment terms requires first converting industry output into value-added output, VAit, 

with the multiple λVAit.  Next, value-added output is transformed into employment terms 

through the multiple epvit, or,  

itVAititit epvQL ⋅⋅= λ . 

Having the direct effect in labor terms the next step is to calculate the sum-difference of 

the counterfactual projections to the baseline projections and divide it by the initial 

change measured in employment terms to derive the employment multiplier,  
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This is identical to the output multiplier except that the numerator and denominator are 

stated in employment terms.   

Impact multipliers derived from the present application do not suffer the 

criticisms of static input-output and CGE model multipliers, in that the derived 

multipliers are based on dynamic relationships and follow a time-path response.  Where 
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static models are limited to long-run multipliers, they cannot assess the timing of the 

impacts.  Several attempts have been made to garner the full time-path responses with 

estimates of dynamic multipliers over well-defined time periods (see for example: 

Kraybill and Dorfman 1992; Krikelas 1992; LeSage and Reed 1989); these studies are 

limited by the econometric techniques that estimate the dynamic relationships.  A short-

coming of these attempts is the use of single equation estimation that leaves the absence 

of full-model closure in measuring multipliers.  That is, the multiplier responses are 

partial, not general equilibrium estimates.  General equilibrium estimates recognize the 

inter-dependence of industry sectors.  The current application effectively tracks the time-

path responses as well as the general equilibrium structure of a closed-formed CGE 

models relaxing the fixed-price restrictions of IO models.   

Furthermore, the traditional Type II IO multipliers implicitly assume perfectly 

elastic supply responses implicit in long-run constant returns to scale (Isard et al. 1998, 

pp. 306) abstracting from short run adjustment.  This is a primary reason for their 

denotation with long-run multipliers.  In the short-run, capacity may not be sufficient for 

all industries to respond with constant costs to all changes.  The current application 

allows for partial fixed responses in the labor market leaving capital and energy markets 

unconstrained.  An increase in employment demand will result in wage pressures that will 

cause the strained wage market to increase wage rates.  Since a proportion of regional 

income is spent on locally produced goods and services, this increase in wage rates 

reflects in greater demand for locally output sparking further increases in output.   

This increase in wages will also erode the relative competitiveness of regional 

producers to national producers.  Following the REMI model, increases in wage-costs to 
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regional producers will impel local producers to increase the selling prices (Rickman and 

Schwer 1993).  Cost minimizing consumers will be encouraged to switch to competing 

regional imports as reflected in a decline in the regional purchase coefficient, Equation 

(4.11).   

Multipliers derived from the traditional IO table implicitly assume no price 

responses, but the current application allows the comparison of the two effects if 

compared with those multipliers based on the IO table.  Impact responses that are greater 

than those of IMPLAN give evidence in support of the dominance of the wage impact on 

increased demand, while those smaller than IMPLAN's gives evidence in support of the 

dominance of resource constraints (Rickman and Schwer 1993).   

Calculated open and closed model output and employment multipliers from the 

current policy simulation model and Type II impact multipliers of a similarly aggregated 

IMPLAN IO model are calculated and compared.  The closed policy simulation model 

entails more closure than IMPLAN by endogenizing investment and state & local 

government final demand components.  Therefore multipliers are calculated based on 

relatively more open specification that restrict feedback effects to the consumption 

component of final demand only.  Limiting the feedback of investment and state & local 

government components to exogenous requires that impact responses be excluded from 

these components in counterfactual projections.  This is facilitated by restricting these 

values to there baseline forecasts for all s∈H and all i∈N. 

Table 5.10 shows that the unrestricted open model projects greater impact 

responses than IMPLAN, indicating that the feedback responses, through induced 

consumption, investment, and state & local government final demands, outweigh the 
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offsetting resource constraints.  Relatively large impact multipliers for the open model to 

those of IMPLAN show that the income effect dominates the offsetting effect of the loss 

of relative competitiveness of regional producers from labor supply adjustments.  The 

results counter those of Rickman and Schwer (1993, 1995) who find that the supply 

response dominates the REMI extended multipliers resulting in lower multiplier 

responses against a comparably specified IMPLAN model.  

The more comparable model multipliers, that restricts closure to that of IMPLAN 

is not as revealing.  By restricting feedback responses to the consumption component of 

final demand, the upward bias to IMPLAN's Type II multiplier is partially mitigated by 

restricting the feedback through investment and local government channels.  This results 

in smaller multipliers than those for the closed model.  Furthermore, the relative impacts 

to those of IMPLAN are not congruent in that basic production has a relatively larger 

impact than IMPLAN and non-basic has a relatively smaller impact.  Succinctly, the 

offsetting resource constraint is shown through estimation to not be as great for 

manufacturing as it is for service industries.  This result is consistent with Rickman and 

Schwer's (1993, 1995) findings that the REMI and IMPLAN models give consistent 

impact multipliers adjusting for industry classification, and closure assumptions. 

Given that the present model gives greater multiplier responses is evidence to the 

feedback of prices that are absent from IO models.  Increases in export demand cause an 

increase in derived labor demands for both the export and tertiary industry output.  IO 

Table 5.10: Calculated Output and Employment Multipliers 
  PSM: OPEN PSM: CLOSE IMPLAN Type II 
  G N G N G N 
Output 2.664 2.412 2.318 2.001 2.248 2.153 
Employ 4.470 2.177 3.710 1.867 3.540 1.997 
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models fail to capture the price effects on wages while the present model fully 

endogenizes price movements.  The increased wages lead to greater regional income, 

some of which is spent locally but the offsetting decrease in the region's national 

competitiveness also reduces this demand.  This wage response dynamic is not captured 

in IO models.   

ELASTICITY OF RESPONSE 

Several policy simulations can be performed to study the impact transmission 

mechanism within the model.  These simulations rely on some policy change or 

exogenous change that alters variables within the model exogenously.  For example, the 

Quality Jobs Program of Oklahoma results in lower employment costs by subsidizing 

Oklahoma firms with cash subsidies for new job creation.  Furthermore investment 

subsidies are reflected in regional capital cost reductions.  These simulation responses are 

measured in elasticity responses because elasticities are unit free measures of responses 

allowing comparisons across many different responses. 

Elasticity responses are defined as the percent change in a variable given a 

percent change in another.  In the current context of dynamic responses, and given that 

the full extent of a response is not fully accounted for until the full adjustment period is 

complete, the elasticity responses are calculated from a permanent, or persistent, 

exogenous change as, 
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where s is the forecast observation, H is the forecast horizon, Y is the endogenous 

variable of interest and X is the exogenous shock.   

Bartik (1991) summarizes the elasticity responses across various exogenous 
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shocks to state and MSA economies.  Few studies are directly comparable given the 

breadth of model assumptions, geography considered, model closure, and measures that 

are used to calculate elasticity responses.  Generally, most studies attempt to explain 

policy shifts on regional unemployment not employment itself.  Comparisons of these 

studies to studies on employment responses are blurred by the implied migration 

responses found in unemployment responses.  Nonetheless, they are useful as first 

approximations.  

To facilitate comparison to the current model, Bartik concludes that the elasticity 

response of wages on changes in demand driven employment change is around .15 to .6 

(Treyz and Stephens 1985, Topel 1986).  Bartik further finds a wide band of elasticity 

responses of business activity to tax changes from past studies.  The difficulty associated 

with testing such responses is that the mode of distributing proceeds of the tax, the 

reallocation of the tax, and the timing of the response empirically changes the response, 

such that a generalized finding is not generally achievable.  For example, if it is true that 

firms and owners of firms seek avoid paying higher taxes, a relative increase in business 

or personal taxes will induce business activities to relocate to low tax regions, but if the 

government revenues are reallocated in such a way to create business amenity effects that 

fosters productivity gains, economic activity will be drawn to the region.  The two 

mitigating effects may or may not be fully offsetting.  Therefore the literature tends to 

indicate a range of elasticity responses of -.90 to .04, with most evidence indicating that 

the negative effect dominates (Testa 1989, Wasylenko 1988, Romans and Subrahmanyam 

1979).  Canto and Webb (1987) find that the elasticity response on personal income from 

changes in state incidence of tax is -.35. 
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Table 5.11 reports key elasticity responses to four exogenous changes derived 

from counterfactual projections from the model.  The elasticity experiments consists of 

the elasticity of responses changes in capital and energy costs, changes in tax burden, and 

to changes in exogenous employment.  The first three constitutes changes in factor costs 

of production while the forth column gives responses to government imposed net taxes 

and the fifth to exogenous growth.   

Starting with factor price responses, Factor input relationships such as labor 

inputs, are determined in the indirect cost function, or simply the cost function, such that 

profit maximization implicitly states factor demands as conditional factor demands, 

conditioned on the vector of factor rental rates.  As the cost of one factor input increases 

the profit maximizing response is to shift away from that factor and into the now 

relatively less expensive remaining factors.  Berndt and Wood (1975) and Griffin and 

Gregory (1976) extend factor inputs to include energy.  In the current context the factor 

elasticity of substitution is limited to unity by the application of the Cobb-Douglas 

production function, which imposes strict substitutability across labor, capital, and energy 

factors (Chung 1994, pp. 97).   

Berndt and Wood (1975), and Griffin and Gregory (1976) estimate cross-price 

elasticities across OECD countries and U.S. manufacturing industries respectively.  

Where these studies attempt to estimate factor elasticities from the translog production 

function, they are limited in that estimates are produced within a partial-equilibrium 

framework and are limited to static relationships.  The current application is limited in 

that the general-equilibrium framework relies on the restrictive Cobb-Douglas production 

function, but the inclusion of full-equilibrium constraints at estimation offers a 
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formidable improvement over partial-equilibrium estimations.   

Table 5.11 shows that the own-price labor elasticity is -.78, and the cross-price 

elasticities of labor to capital and energy costs are .02 and .01 respectively.  The 

calculated own price is higher than those of the previous two studies that find -.47 and -

.27 for Berndt and Wood and Griffin and Gregory respectively.  The cross-price 

elasticities are more consistent with Berndt and Wood who finds .05 for capital costs and 

.03 for energy.  Griffin and Gregory find .12 and .15 for capital and energy respectively.   

The RLC shows that changes in relative labor costs lead to atomistic changes in 

employment per unit of value-added (epv) output since value-added output changes in 

near lockstep with labor inputs.  In general, epv is expected to be inversely related to 

labor costs as labor productivity gains would be expected as capital and energy deepening 

takes place.  Though the model gives slight evidence of this productive gain the 

adjustment is rigid because of the offsetting changes in both relative total factor 

productivity (RFit) and relative labor costs (RLCit).  From Equation (4.16), epv is defined 

as, 
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where RCC and RFC is assumed one throughout the forecast period.  The percent change 

from the baseline solution in epvit is found by taking logs and the total differential, 

Table 5.11: Key Simulation Elasticities 
  RLC RCC RFC TAX Growth 
L -0.775 0.020 0.007 -0.087 1.646 
VA -0.773 0.009 -0.004 -0.084 1.738 
W -0.020 -0.029 -0.036 -0.012 0.153 
WSD -0.773 0.635 -0.016 -0.100 1.802 
YP -0.629 0.530 -0.005 -0.078 1.432 
YD -0.496 0.420 -0.003 -0.148 1.122 
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holding the exogenous variables constant, to get, 

( )
it

it
i

it

it

it

it

RLC
RLC

RF
RF

epv
epv ∆

−+
∆

−=
∆ 1α , or in percent deviation, 

( ) ititiit RFRLCepv ∆−∆−≈∆ %%1% α , 

where the positive share parameter αi < 1.  For %∆epvit to be zero requires that 

( ) itiit RFRLC ∆−≈∆ − %1% 1α  which is found to be approximately true for all t ∈ H.11  

Ultimately, changes in the relative labor costs lead to slightly less than one-to-one 

proportional changes in labor, value added output, and wage & salary disbursements.  

Despite this overly restrictive assumption, Griffin and Gregory (1976) show the Cobb-

Douglas representation provides a good representation of substitutability across factor 

inputs.   

Changes in capital costs reflect government policy toward subsidizing local 

production development as characterized by regional business recruitment packages of 

low business taxes, subsidized utility expenses, supplying developed land for factories, 

and even sharing construction expenses.  Low variable capital costs translate into capital 

deepening and lower per-unit employment.  Returns to capital are not limited to the 

region as benefits to high capital returns in the region are allowed to flow across the 

nation without cost.  

Table 5.11 reports key industry and aggregate elasticity responses to increases in 

relative capital costs to the nation, RCC.  The direct result of an increase in RCC is an 

increase in employment per unit of value-added output, and is a reflection of the 

                                                 
11 Different orderings of the system of equations was attempted to coax the solution away from this 
apparent anomaly, but it was found that any ordering of epvit after RLCit caused a razor’s edge solution that 
was unstable to the policy simulation but not to the baseline solution.  For lack of a more appropriate 
alternative, the current solution was deemed appropriate.  
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substitution of labor for capital when capital costs increase.  The elasticity response of 

employment to capital costs of .02 is lower that those found by Crihfield and Panggabean 

(1996) who report cross-price elasticities of about .45 for MSA production.  Furthermore, 

value-added output is negatively related, as the rate of change in epv is greater than the 

rate of change in employment arising from increases in RCC;   

ititit epvLVA ∆−∆≈∆ %%% . 

Since the conversion of increased capital costs into property-type income is disseminated 

over the nation and not limited to the state, there is no negative impact on local incomes, 

such that the positive output impact is derived through greater reliance on employment.   

Similar to changes in relative costs of capital, changes in relative energy costs 

(RFC) cause a direct response to employment per value-added output but secondary 

affects to value-added output.  Table 5.11 shows that the region’s responses to changes in 

relative energy costs are similar to those for relative capital costs (RCC) but less 

pronounced since energy makes up a smaller share of total factor expenditures.   

Given that personal income and total regional value-added output responds with 

opposite signs, the increase in income must represent increased demand for goods made 

outside of the region.  Recall from Chapter IV that an increase in imported goods relative 

to regionally produced goods is the same as a decrease in the regional purchase 

coefficient.  The results here indicate that the regional purchase coefficient moves in the 

same direction as RCC and RFC. 

Wage responses to changes in factor costs are consistent across all factor costs.  

Since the wage linkage does not represent supply and demand linkages, wage responses 

are limited to projections of past correlations and can not discern supply and demand 
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responses.  As described in Chapter IV, the estimated response parameter of wages to 

relative labor opportunity reflects whether the segment's labor market is historically 

supply driven or demand driven.  In comparison Bartik (1991, pp. 148-149) finds no long 

run  relationship between employment growth and wage rates, but reports several surveys 

that show a positive relationship. 

Increases in the personal tax burden decrease disposable income, consumption 

expenditures, and output, leading to further decreases in income through a reduction in 

relative employment opportunities and wages.  Since an increase in personal tax burden 

decreases personal income, ultimately, the increase in tax revenue is partially offset by a 

reduction in tax receipts through reductions in wage and salary disbursements.  This 

implies that the elasticity response of personal income to changes in taxes will be less 

than unity in absolute terms as shown in Table 5.11.  The elasticity response of 

employment to taxes of .087 is consistent with those of local taxes found in Crihfield 

(1989) who finds -.07 for increases in the incident of local tax. 

CONCLUSION 

In this chapter, the system for projecting the forecast and simulation model was 

presented.  The existence of the model solution required for projection is found through 

the contraction mapping theorem and verified with actual model solutions for all out-of-

sample forecast periods.  The time-series projections are driven by national projections 

and internal model linkages allowing the model to affectively capture the national 

economic correction of 2001.  Furthermore, the anticipated continuation of national 

productivity gains of the 1990's is reflected in the regional projections of higher than 

average growth rates through the forecast period.   
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These projections from the model have the advantage in capturing not only trends 

in the data, but also the structural co-movements of economically related variables.  The 

added attribute grants the ability to conduct policy simulations with the projects through 

counter-factual forecasts.  comparing simulations to analogous IMPLAN simulations 

shows that impact multipliers exceeds those given by the more restrictive Type II 

multipliers of IMPLAN attributed to price responses.  The wage price response 

dominates the regional selling price responses reflecting growth in real disposable 

personal income.  Though policy impact multipliers are not tested against observations, 

generalizations of fixed price policy responses are generally considered to be preferred to 

fixed price responses (Isard et al. 1998, Chp. 7).   

In general, sub-national elasticity responses of employment growth to changes in 

exogenous demand follow the findings in economic growth theory that postulates growth 

can only be altered in the short-run.  In the long-run the growth rate of employment and 

economic activity reverts back to its long-run trend.  Two offsetting effects can dominate 

and alter the long-run activity trend.  First agglomeration effects imply that acceleration 

of regional economic growth causes productivity spillovers that will continue building 

causing a long-run increase in economic growth rate.  Second, congestion effects act to 

reduce the rate of economic growth as increases in economic activity taxes the regions 

resources and capital structure.  If the two are offsetting, then changes in the short-run 

growth of employment and economic activity will eventually revert to a long-run natural 

rate of growth.  Bartik's survey supports this long-run natural rate of growth in that 

exogenous increases in economic activity lead to only short-term gains in economic 

growth (Bartik 1991, pp. 64 and 95).
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CHAPTER VI 

CONCLUSION 

Bayesian methods offer opportunities to surmount the common problem for 

regional economists of the trade-off between policy analysis and forecast accuracy.  It 

transcends this trade-off by accommodating sampling and non-sampling information in 

model estimation.  Rather than exacting restrictions imposed by variable exclusion, this 

methodology imposes prior information only to the degree that the practitioner imposes 

allowing the two extreme cases of no prior influence and exacting restrictions be special 

cases of the general estimator.   

As the survey of Bayesian applications shows, there exist virtually no limit to the 

extent in which Bayesian priors can represent economic theory.  The full account of past 

application can only be a partial representation of the applicability of Bayesian methods 

of integrating non-sample information in estimation.  Many opportunities exist to 

implement stochastic Bayesian restrictions to estimating economic relationships at the 

regional level. 

One such Bayesian application, presented here, utilizes the entropy variant of 

Bayesian methods that eases computational difficulties of specifying Bayesian estimators 

and results in a simple non-linear math programming problem.  In application, the 

analytical complexities of the Bayesian formalism is supplanted with numerical 

complexities and the anticipation of a fluid method of estimating the complete structure 
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of a theoretical regional model over time was soon squelched12.  Though not living up to 

its anticipation, the complete systems estimation through cross-entropy offers a viable 

alternative to traditional econometric approaches that do not fully account for the 

complete set of general equilibrium constraints.  The Bayesian-like restrictions in 

estimation impose a varying degree of non-sample information on the otherwise sample 

estimation.  It is also viable for estimating relationships that are ill-conditioned and 

otherwise not estimable with traditional methods.  Though protracted to implement, the 

system estimates of the structural set of equations representing the Oklahoma economy 

produce viable forecasts and policy simulations.   

The underlying structure of the model follows that of the commercially successful 

Regional Econometric Modeling Incorporated REMI model (Treyz et al. 1992).  This 

structure is similar to static general equilibrium models in that it integrates both supply 

and demand linkages, but adds a time-adjustment mechanism that is estimated over 

historical data.  Where the REMI model relies on national pooled estimates for 

parameterization, entropic estimation allows the structure to be fully estimated within the 

region of study.  By transcending the need for national estimates, the full set of regional 

specific relationships can be represented.  The benefit of doing so is that peculiar 

relationships that are specific to the region are incorporated in estimation increasing 

accuracy of both regional forecasts and simulations.   

Contrasting the proposed model forecast accuracy to out-of-sample observations 

shows that this systems estimation methodology produces forecasts in line with a 

traditional econometrically estimated forecasting model and forecasts that are superior to 

                                                 
12  On a theoretical account, the same could be said of other numerical Bayesian methods.  See Dorfman 

(1997) 
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bivariate vector autoregression models.  Though forecasts projections are not universally 

better than existing methods, the strength of the entropic estimation method, and the 

existing model, is the ability to estimate the inclusive structure of the model.  This 

inclusive structure allows policy and growth analysis not available to traditionally 

estimated regional forecasting models.   

Policy simulations show that derived multiplier responses are characteristic of 

those found in the IMPLAN model that is used to set benchmark values.  Differences 

from the IMPLAN multipliers arise from increased market structure and time-path 

responses.  The time-path responses are induced through estimating the economic 

structure over time, while the market structure generalizes the assumptions of the 

IMPLAN structure.   

Similar to IMPLAN's calculated multipliers, the current model accounts for 

direct, indirect, and induced effects in calculating multiplier responses.  But unlike 

IMPLAN's multipliers induced effects are extended to include induced investment and 

government expenditure responses and the elastic supply response assumption is relaxed 

to account for resource supply constraints.   

Resource supply constraints are assumed to exist through labor market linkages.  

Supply pressures from rapid economic growth will likely lead to wage rate increases.  

Increasing wage rates create two offsetting responses.  First, wage rate increases inject 

more income into the local economy that is then partially re-spent locally causing an 

increase in the total economic impact for a given exogenous change.  Second, wage rate 

increases force businesses to cut back on employment dampening the economic impact 

for a given exogenous change.  IMPLAN's Type II multiplier assumes that the two 
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offsetting effects are netted out.  The current model offers the alternative of letting the 

structure and data determine the offsetting effects through the complete set of model 

linkages.   

Empirically it is found that the prior positive effect dominates exogenous changes 

in the goods producing sectors, while the latter effect dominates exogenous changes in 

the non-goods producing sectors.  By specifying the model to comparative closure 

assumptions, the cumulative impact on exogenous changes in goods producing sectors 

give multiplier responses greater than, and exogenous changes in non-goods producing 

sectors give multiplier responses less than those of a comparably closed IMPLAN model. 

Empirically the full-structural model is computationally expensive.  A natural 

extension of the current model is to increase the level of desegregation including greater 

industry detail.  Computationally, this is seen as impractical.  The current experience 

shows that increasing structural complexity necessitates decreasing estimation 

parameters.  Several issues contribute to this.  First, moment restrictions of the current 

application that induce the structure to the model are non-linear and lead to more 

localized instability in estimation.  Though locally optimum solutions were not generally 

encountered in this application, locally infeasible solutions where common.  Second, 

unobserved or latent variables proved to be a particular source of contention in 

estimation.  Increasing industry detail necessarily requires a one-for-one increase in the 

number of regional purchase coefficients and output per value added.  This also increases 

the number of estimated final demand components five-to-one and two-to-one increase in 

production relationships.  Small increases in industry detail lead to large increases in 

model structure.   
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Structurally, the model deviates from the commercially successful REMI model 

little.  Complexities are added in estimating the relationships of final demand components 

to total final demand rather than restricting this relationship to unity.  Estimation 

complexities rest on the complete closed-form estimation.  An extension to the current 

application is to test if full model inclusion in estimation contributes to accurate 

parameter estimates over single-equation methods.  If not, single-equation estimates, 

hard-coded into the model structure in estimation, will benefit model estimation by 

reducing the total number of systems-fit estimation coefficients.  In the current context, 

these equations include Equations (4.16, 4.20, and 4.39) with appropriate proxies for 

relative prices, and relative total factor productivities.  Imposing REMI-like restrictions 

of unity to final-demand component responses to aggregate final demand can further limit 

the number of parameters to estimate drawing less information contained in the data to 

estimates of the regional purchase coefficients and value-added to output parameters.  

This comes with the cost of less generalized results that depend absolutely on the validity 

of the benchmark-year input-output table.   

A final extension is to relax the complexities of non-linear restrictions of the 

relationships on estimation.  The generally econometric approach to relaxing non-

linearities is a first-order Taylor-series expansion that linearizes non-linear relationships 

contingent on a specified point.  Assuming an interior-point solution exists, the 

mathematical optimization will be assured a global solution with linear constraints by the 

nature of the entropy objective function (Golan, et al. 1996, pp. 101).  By specifying such 

linear approximations, the computational complexities of systems estimation with 

entropy will be greatly reduced.  
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APPENDIX I 

 
MODEL ESTIMATION EQUATIONS 
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APPENDIX II 

GAMS ESTIMATION PROGRAM 

$eolcom # 
set ful            "time"            / 1980 * 2010 /; 
set smpl(ful)      "sample period"   / 1987 * 1999 /; 
set hist(ful)      "history"         / 1980 * 1999 /; 
set fcst(ful)      "forecast period" / 2000 * 2010 /; 
set m              "parameter support set" / 1*3 /; 
set j              "error support set"     / 1*3 /; 
set ind            "industry ident"        / G N /; 
set k              "parameters to be estimated" 
/ 
         LG_g1*LG_g2 
         LN_g1*LN_g2 
         WG_g0*WG_g2 
         WN_g0*WN_g2 
         WG_g3*WG_g5 
         WN_g3*WN_g5 
         N_g0*N_g4 
         lvaG_g1*lvaG_g2 
         lvaN_g1*lvaN_g2 
         rpcg_g1*rpcg_g2 
         rpcn_g1*rpcn_g2 
 /; 
 
table z(k,m) "parameter support" 
                         1           2          3 
(LG_g1*LG_g2)          0.75        1.00        1.25 
(LN_g1*LN_g2)          0.75        1.00        1.25 
(WG_g0)               -2000        0.00        2000 
(WN_g0)               -2000        0.00        2000 
(WG_g1)               -0150        0.00        0150 
(WN_g1)               -0150        0.00        0150 
(WG_g2)               -0150        0.00        0150 
(WN_g2)               -0150        0.00        0150 
(WG_g3)                  0         1.00          2 
(WN_g3)                  0         1.00          2 
(WG_g4)               -2500        0.00        2500 
(WN_g4)               -2500        0.00        2500 
(WG_g5)                 0.0        0.50         1.0 
(WN_g5)                 0.0        0.50         1.0 
N_g0               -8000000        0.00      8000000 
N_g1                  -4000        0.00        8000 
N_g2                  -4000        0.00        8000 
N_g3                  -8000        0000        8000 
N_g4                  -2.00        0.00        2.00 
(lvaG_g1*lvaG_g2)     -0.10        0.00        0.10 
(lvaN_g1*lvaN_g2)     -0.10        0.00        0.10 
rpcg_g1               -0.025      -0.015       0.02 
rpcg_g2               -0.10       -0.05        0.00 
rpcn_g1               -0.025      -0.015       0.02 
rpcn_g2               -0.10       -0.05        0.00 
; 
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table qq(k,m) "parameter probability priors" 
                         1          2           3 
(LG_g1*LG_g2)          0.05        0.90        0.05 
(LN_g1*LN_g2)          0.05        0.90        0.05 
(WG_g0*WG_g2)          0.15        0.70        0.15 
(WN_g0*WN_g2)          0.15        0.70        0.15 
(WG_g3*WG_g5)          0.10        0.80        0.10 
(WN_g3*WN_g5)          0.10        0.80        0.10 
(N_g0)                 0.10        0.80        0.10 
(N_g1)                 0.10        0.80        0.10 
(N_g2)                 0.10        0.80        0.10 
(N_g3)                 0.10        0.80        0.10 
(N_g4)                 0.10        0.80        0.10 
(lvaG_g1*lvaG_g2)      0.15        0.70        0.15 
(lvaN_g1*lvaN_g2)      0.15        0.70        0.15 
(rpcg_g1*rpcg_g2)      0.10        0.80        0.10 
(rpcn_g1*rpcn_g2)      0.10        0.80        0.10 
; 
 
set eqn "equations to estimate with entropy" 
/ 
         L_G 
         L_N 
         W_G 
         W_N 
         ne 
         vaeg 
         vaen 
         rpcg 
         rpcn 
/ 
; 
table v(eqn,smpl,j)  "error support set" 
                                1         2         3 
(L_G).(1987*1999)           -2800         0       2800 
(L_N).(1987*1999)           -2800         0       2800 
(W_G).(1987*1999)           -13000        0       13000 
(W_N).(1987*1999)           -10000        0       10000 
(ne).(1987*1999)            -65000        0       65000 
(vaeg).(1987*1999)         -900000       0.00     900000 
(vaen).(1987*1999)         -900000       0.00     900000 
(rpcg).(1987*1999)         -.01200       0.00     .01200 
(rpcn).(1987*1999)         -.01200       0.00     .01200 
; 
 
table u(eqn,smpl,j) "error pobability priors" 
                               1          2          3 
(L_G).(1987*1999)             .10        .80        .10 
(L_N).(1987*1999)             .10        .80        .10 
(W_G).(1987*1999)             .10        .80        .10 
(W_N).(1987*1999)             .10        .80        .10 
(ne).(1987*1999)              .10        .80        .10 
(vaeg).(1987*1999)            .10        .80        .10 
(vaen).(1987*1999)            .10        .80        .10 
(rpcg).(1987*1999)            .020       .96        .020 
(rpcn).(1987*1999)            .020       .96        .020 
; 
 
*Calculated Sets 
$include "c:\stevestuff\dis\gams\start.prn"; 
*National set and table of parameters 
$include "c:\stevestuff\dis\gams\national.prn"  ; 
*Regional set and table of parameters 
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$include "c:\stevestuff\dis\gams\regional.PRN"  ; 
scalar bob1; 
scalar bob2; 
bob1=(p_L_G/regional('L_G','1999')); 
bob2=(p_L_N/regional('L_N','1999')); 
display bob1, bob2; 
 
regional('N',smpl)=regional('N',smpl)*(p_pop/regional('N','1999')); 
national('N',smpl)=national('N',smpl)*(p_pop_u/national('N','1999')); 
regional('L_G',smpl)=regional('L_G',smpl)*(p_L_G/regional('L_G','1999'))
; 
regional('L_N',smpl)=regional('L_N',smpl)*(p_L_N/regional('L_N','1999'))
; 
regional('L',smpl)=regional('L_G',smpl)+regional('L_N',smpl); 
national('L_G',smpl)=national('L_G',smpl)*(p_L_G_u/national('L_G','1999'
)); 
national('L_N',smpl)=national('L_N',smpl)*(p_L_N_u/national('L_N','1999'
)); 
national('L',smpl)=national('L_G',smpl)+national('L_N',smpl); 
regional('VA_G',smpl)=regional('VA_G',smpl)*(p_VA_G/regional('VA_G','199
9')); 
regional('VA_N',smpl)=regional('VA_N',smpl)*(p_VA_N/regional('VA_N','199
9')); 
regional('VA',smpl)=regional('VA_G',smpl)+regional('VA_N',smpl); 
national('VA_G',smpl)=national('VA_G',smpl)*(p_VA_G_u/national('VA_G','1
999')); 
national('VA_N',smpl)=national('VA_N',smpl)*(p_VA_N_u/national('VA_N','1
999')); 
national('VA',smpl)=national('VA_G',smpl)+national('VA_N',smpl); 
regional('epv_G',smpl)=regional('L_G',smpl)/regional('VA_G',smpl); 
regional('epv_N',smpl)=regional('L_N',smpl)/regional('VA_N',smpl); 
national('epv_G',smpl)=national('L_G',smpl)/national('VA_G',smpl); 
national('epv_N',smpl)=national('L_N',smpl)/national('VA_N',smpl); 
regional('W',smpl)=(regional('L_G',smpl)*regional('W_G',smpl)+ 
                                         
regional('L_N',smpl)*regional('W_N',smpl))/regional('L',smpl); 
regional('WSD_G',smpl)=regional('W_G',smpl)*regional('L_G',smpl)/1000; 
regional('WSD_N',smpl)=regional('W_N',smpl)*regional('L_N',smpl)/1000; 
regional('WSD',smpl)=regional('WSD_G',smpl)+regional('WSD_N',smpl); 
regional('PY',smpl)=regional('WSD',smpl)+regional('YOL',smpl)+regional('
YDIR',smpl)-regional('TWPER',smpl); 
regional('YD',smpl)=regional('PY',smpl)-
regional('TAX',smpl)+regional('TRAN',smpl); 
regional('cpi',smpl)=national('cpi',smpl)*(1.65090214/national('cpi','19
99')); 
regional('RYD',smpl)=(regional('YD',smpl)/regional('cpi',smpl)); 
display p_cpi; 
display regional; 
 
$include "c:\stevestuff\dis\gams\nat_pp.prn" 
$include "c:\stevestuff\dis\gams\reg_pp.prn" 
$include "c:\stevestuff\dis\gams\inverstime.prn" 
display national,regional,invtime; 
$include "c:\stevestuff\dis\gams\vatest1.txt"; 
*#######################################################################
*Run fixed exogenous variables 
$include "c:\stevestuff\dis\gams\finaldemand.ins"; 
$include "c:\stevestuff\dis\gams\nfinaldemand1.ins"; 
p_LamVA_G=regional('VA_G','1999')/NFD('Q_G','1999'); 
p_LamVA_N=regional('VA_N','1999')/NFD('Q_N','1999'); 
display p_LamVA_G,p_LamVA_N; 
*####################################################################### 
vatest('LamVA_G',smpl)=regional('VA_G',smpl)/NFD('Q_G',smpl); 
vatest('LamVA_N',smpl)=regional('VA_N',smpl)/NFD('Q_N',smpl); 
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DISPLAY VATEST; 
vatest('LamVA_G',smpl)=(regional('VA_G',smpl)/NFD('Q_G',smpl))*(p_LamVA_
G/vatest('LamVA_G','1999')); 
vatest('LamVA_N',smpl)=(regional('VA_N',smpl)/NFD('Q_N',smpl))*(p_LamVA_
N/vatest('LamVA_N','1999')); 
display vatest; 
*#######################################################################
$include "c:\stevestuff\dis\gams\production.ins"; 
$include "c:\stevestuff\dis\gams\py.ins"; 
 
scalar bnd; 
bnd=.12; 
v('L_G',smpl,'1')=-bnd*regional('L_G',smpl); 
v('L_N',smpl,'1')=-bnd*regional('L_N',smpl); 
v('L_G',smpl,'3')=bnd*regional('L_G',smpl); 
v('L_N',smpl,'3')=bnd*regional('L_N',smpl); 
v('L_G','1999','3')=0; 
v('L_N','1999','3')=0; 
v('L_G','1999','1')=0; 
v('L_N','1999','1')=0; 
bnd=.12; 
v('W_G',smpl,'1')=-bnd*regional('W_G',smpl); 
v('W_N',smpl,'1')=-bnd*regional('W_N',smpl); 
v('W_G',smpl,'3')=bnd*regional('W_G',smpl); 
v('W_N',smpl,'3')=bnd*regional('W_N',smpl); 
v('W_G','1999','3')=0; 
v('W_N','1999','3')=0; 
v('W_G','1999','1')=0; 
v('W_N','1999','1')=0; 
v('ne','1999','1')=0; 
v('ne','1999','3')=0; 
*v('L_G','1987','1')=-.10*regional('L_G','1987'); 
*v('L_G','1987','1')= .10*regional('L_G','1987'); 
DISPLAY V; 
 
######################################################################## 
 
variables 
$ontext 
         REOL(smpl) 
         REOLL(smpl) 
         RWRL(smpl) 
         RWRLL(smpl) 
         NL(smpl) 
         NLL(smpl) 
$offtext 
         INT_G(smpl) 
         INT_N(smpl) 
         GSL_G(smpl) 
         GSL_N(smpl) 
         GF_G(smpl) 
         GF_N(smpl) 
         LD_G(smpl) 
         LD_N(smpl) 
         X_G(smpl) 
         X_N(smpl) 
         C_G(smpl) 
         C_N(smpl) 
         I_G(smpl) 
         I_N(smpl) 
 
         YPROP(ful) 
         TWPER(ful) 
         TRAN(ful) 
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         TAX(ful) 
         NTAX(ful) 
         YOL(ful) 
         YP(ful) 
         YD(ful) 
         RYD(ful) 
         WSD(ful) 
         WSD_G(ful) 
         WSD_N(ful) 
 
 
         VA_G(smpl) 
         VA_N(smpl) 
         VA(smpl) 
         L_G(smpl) 
         L_N(smpl) 
         L(smpl) 
         LamVA_G(smpl) 
         LamVA_N(smpl) 
         epv_G(smpl) 
         epv_N(smpl) 
         RF_G(smpl) 
         RF_N(smpl) 
         AC_G(smpl) 
         AC_N(smpl) 
         sP_G(smpl) 
         sP_N(smpl) 
         cpi(smpl) 
         CP(smpl) 
         rpc_G(smpl) 
         rpc_N(smpl) 
         RLC_G(smpl) 
         RLC_N(smpl) 
         REO(smpl) 
         RWR(smpl) 
 
         W_G(smpl) 
         W_N(smpl) 
         W(smpl) 
         WLag_G(smpl) 
         WLag_N(smpl) 
         N(smpl) 
         NL(smpl) 
 
         obj 
         p(k,m)            parameter support space probabilities 
         ww(eqn,smpl,j)     error support space probabilities 
; 
bnd=.20; 
 
RLC_G.l(smpl)=pro('RLC_G',smpl); 
RLC_G.lo(smpl)=.75*pro('RLC_G',smpl); 
RLC_G.up(smpl)=1.25*pro('RLC_G',smpl); 
RLC_N.l(smpl)=pro('RLC_N',smpl); 
RLC_N.lo(smpl)=.75*pro('RLC_N',smpl); 
RLC_N.up(smpl)=1.25*pro('RLC_N',smpl); 
REO.l(smpl)=pro('REO',smpl); 
REO.lo(smpl)=0.75*pro('REO',smpl); 
REO.up(smpl)=1.25*pro('REO',smpl); 
 
RWR.l(smpl)=pro('RWR',smpl); 
RWR.lo(smpl)=.5; 
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CP.l(smpl)=pro('CP',smpl); 
CP.lo(smpl)=.01; 
rpc_G.l(smpl)=pro('rpc_G',smpl); 
rpc_N.l(smpl)=pro('rpc_N',smpl); 
 
rpc_G.lo(smpl)=.8*pro('rpc_G',smpl)$(.8*pro('rpc_G',smpl) gt 
0.00)+0.1$(.8*pro('rpc_G',smpl) le 0.00); 
rpc_N.lo(smpl)=.8*pro('rpc_N',smpl)$(.8*pro('rpc_N',smpl) gt 
0.00)+0.1$(.8*pro('rpc_N',smpl) le 0.00); 
rpc_G.up(smpl)=1.2*pro('rpc_G',smpl)$(1.20*pro('rpc_G',smpl) lt 
1.00)+1.00$(1.20*pro('rpc_G',smpl) gt 1.00); 
rpc_N.up(smpl)=1.2*pro('rpc_G',smpl)$(1.20*pro('rpc_N',smpl) lt 
1.00)+1.00$(1.20*pro('rpc_N',smpl) gt 1.00); 
rpc_G.lo(smpl)=.25; 
rpc_N.lo(smpl)=.25; 
rpc_G.up(smpl)=.99; 
rpc_N.up(smpl)=.99; 
rpc_G.fx('1999')=p_rpc_g; 
rpc_N.fx('1999')=p_rpc_n; 
LamVA_G.l(smpl)=pro('LamVA_G',smpl); 
LamVA_N.l(smpl)=pro('LamVA_N',smpl); 
LamVA_G.lo(smpl)=.75*pro('LamVA_G',smpl); 
LamVA_N.lo(smpl)=.75*pro('LamVA_N',smpl); 
LamVA_G.up(smpl)=1.25*pro('LamVA_G',smpl); 
LamVA_N.up(smpl)=1.25*pro('LamVA_N',smpl); 
*LamVA_G.fx('1999')=p_lamVA_G; 
*LamVA_N.fx('1999')=p_lamVA_N; 
epv_G.l(smpl)=regional('epv_G',smpl); 
epv_N.l(smpl)=regional('epv_N',smpl); 
epv_G.lo(smpl)=.75*regional('epv_G',smpl); 
epv_N.lo(smpl)=.75*regional('epv_N',smpl); 
epv_G.up(smpl)=1.25*regional('epv_G',smpl); 
epv_N.up(smpl)=1.25*regional('epv_N',smpl); 
VA_G.l(smpl)=regional('VA_G',smpl); 
VA_N.l(smpl)=regional('VA_N',smpl); 
VA.l(smpl)=regional('VA',smpl); 
VA_G.lo(smpl)=.80*regional('VA_G',smpl); 
VA_N.lo(smpl)=.80*regional('VA_N',smpl); 
VA.lo(smpl)=.80*regional('VA',smpl); 
VA_G.up(smpl)=1.20*regional('VA_G',smpl); 
VA_N.up(smpl)=1.20*regional('VA_N',smpl); 
VA.up(smpl)=1.20*regional('VA',smpl); 
L_G.l(smpl)=regional('L_G',smpl); 
L_N.l(smpl)=regional('L_N',smpl); 
 
 
L.l(smpl)=regional('L',smpl); 
L_G.lo(smpl)=(1-bnd)*regional('L_G',smpl); 
L_N.lo(smpl)=(1-bnd)*regional('L_N',smpl); 
L.lo(smpl)=(1-bnd)*regional('L',smpl); 
L_G.up(smpl)=(1+bnd)*regional('L_G',smpl); 
L_N.up(smpl)=(1+bnd)*regional('L_N',smpl); 
L.up(smpl)=(1+bnd)*regional('L',smpl); 
bnd=.25; 
W_G.l(smpl)=regional('W_G',smpl); 
W_N.l(smpl)=regional('W_N',smpl); 
WLag_G.l(smpl)=regional('W_G',smpl); 
WLag_N.l(smpl)=regional('W_N',smpl); 
W.l(smpl)=regional('W',smpl); 
N.l(smpl)=regional('N',smpl); 
NL.l(smpl)=regional('N',smpl); 
NL.lo(smpl)=0.75*regional('N',smpl); 
NL.up(smpl)=1.25*regional('N',smpl); 
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cpi.l(smpl)=pro('cpi',smpl); 
cpi.lo(smpl)=.1; 
 
AC_G.lo(smpl)=.75*pro('AC_G',smpl); 
AC_N.lo(smpl)=.75*pro('AC_N',smpl); 
AC_G.up(smpl)=1.25*pro('AC_G',smpl); 
AC_N.up(smpl)=1.25*pro('AC_N',smpl); 
AC_G.l(smpl)=pro('AC_G',smpl); 
AC_N.l(smpl)=pro('AC_N',smpl); 
RF_G.l(smpl)=pro('RF_G',smpl); 
RF_N.l(smpl)=pro('RF_N',smpl); 
RF_G.lo(smpl)=.55; 
RF_N.lo(smpl)=.55; 
RF_G.up(smpl)=1.45; 
RF_N.up(smpl)=1.45; 
 
INT_G.l(smpl)=GFD('INT_G',smpl); 
INT_N.l(smpl)=GFD('INT_N',smpl); 
C_G.l(smpl)=GFD('C_G',smpl); 
C_N.l(smpl)=GFD('C_N',smpl); 
I_G.l(smpl)=GFD('I_G',smpl); 
I_N.l(smpl)=GFD('I_N',smpl); 
GSL_G.l(smpl)=GFD('GSL_G',smpl); 
GSL_N.l(smpl)=GFD('GSL_N',smpl); 
GF_G.l(smpl)=GFD('GF_G',smpl); 
GF_N.l(smpl)=GFD('GF_N',smpl); 
X_G.l(smpl)=GFD('X_G',smpl); 
X_N.l(smpl)=GFD('X_N',smpl); 
 
WSD.l(smpl)=regional('WSD',smpl); 
WSD_G.l(smpl)=regional('WSD_G',smpl); 
WSD_N.l(smpl)=regional('WSD_N',smpl); 
WSD.lo(smpl)=(1-bnd)*regional('WSD',smpl); 
WSD_G.lo(smpl)=(1-bnd)*regional('WSD_G',smpl); 
WSD_N.lo(smpl)=(1-bnd)*regional('WSD_N',smpl); 
WSD.up(smpl)=(1+bnd)*regional('WSD',smpl); 
WSD_G.up(smpl)=(1+bnd)*regional('WSD_G',smpl); 
WSD_N.up(smpl)=(1+bnd)*regional('WSD_N',smpl); 
YPROP.l(smpl)=pinc('YPROP',smpl); 
TWPER.l(smpl)=pinc('TWPER',smpl); 
TRAN.l(smpl)=pinc('TRAN',smpl); 
TAX.l(smpl)=pinc('TAX',smpl); 
YOL.l(smpl)=pinc('YOL',smpl); 
YP.l(smpl)=pinc('YP',smpl); 
NTAX.l(smpl)=pinc('NTAX',smpl); 
YD.l(smpl)=pinc('YD',smpl); 
RYD.l(smpl)=pinc('RYD',smpl); 
N.lo(smpl)=.95*(regional('N',smpl)); 
N.up(smpl)=1.05*(regional('N',smpl)); 
 
L_G.fx('1999')=regional('L_G','1999'); 
L_N.fx('1999')=regional('L_N','1999'); 
*epv_G.fx('1999')=regional('epv_G','1999'); 
*epv_N.fx('1999')=regional('epv_N','1999'); 
VA_G.fx('1999')=regional('VA_G','1999'); 
VA_N.fx('1999')=regional('VA_N','1999'); 
RF_G.fx('1999')=pro('RF_G','1999'); 
RF_N.fx('1999')=pro('RF_N','1999'); 
 
p.lo(k,m)=.0001;          p.up(k,m)=.999;            p.l(k,m)=1/3; 
ww.lo(eqn,smpl,j)=.0001;  ww.up(eqn,smpl,j)=.999;    
ww.l(eqn,smpl,j)=1/3; 
 
variables 
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         ne(smpl) 
*         le(smpl) 
         eewsd(smpl) 
         vaeg(smpl) 
         vaen(smpl) 
*not entropied 
         rfg(smpl) 
         rfn(smpl) 
         err(smpl) 
         rpcg(smpl) 
         rpcn(smpl) 
         fudgeg(smpl) 
         fudgen(smpl) 
         ex1 
         ex2 
; 
rfg.lo(smpl)=-.025; 
rfn.lo(smpl)=-.025; 
rfg.up(smpl)= .025; 
rfn.up(smpl)= .025; 
err.lo(smpl)=-800; 
err.up(smpl)= 800; 
*le.up(smpl)= 260; 
*le.lo(smpl)=-260; 
fudgeg.lo(smpl)=-.1; 
fudgen.lo(smpl)=-.1; 
fudgeg.up(smpl)= .1; 
fudgen.up(smpl)= .1; 
rpcg.lo(smpl)=-.020; 
rpcn.lo(smpl)=-.020; 
rpcg.up(smpl)= .020; 
rpcn.up(smpl)= .020; 
 
ex1.lo=-1.5; 
ex2.lo=-1.5; 
ex1.up=0; 
ex2.up=0; 
equations 
         tNL(smpl) 
         tWLag_G(smpl) 
         tWLag_N(smpl) 
 
         eINT_G(smpl) 
         eINT_N(smpl) 
         eGSL_G(smpl) 
         eGSL_N(smpl) 
         eGF_G(smpl) 
         eGF_N(smpl) 
*         eLD_G(smpl) 
*         eLD_N(smpl) 
         eX_G(smpl) 
         eX_N(smpl) 
         eC_G(smpl) 
         eC_N(smpl) 
         eI_G(smpl) 
         eI_N(smpl) 
 
         eYPROP(ful) 
         eTWPER(ful) 
         eTRAN(ful) 
         eTAX(ful) 
         eYOL(ful) 
         eYP(ful) 
         eNTAX(ful) 
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         eYD(ful) 
         eRYD(ful) 
         eWSD(ful) 
         eWSD_G(ful) 
         eWSD_N(ful) 
         pWSD(smpl) 
 
 
         eepv_G(smpl) 
         eepv_N(smpl) 
         eVA_G(smpl) 
         eVA_N(smpl) 
         eVA(smpl) 
*         wL_G(smpl) 
*         wL_N(smpl) 
         pL_G(smpl) 
         pL_N(smpl) 
         pL(smpl) 
         pRF_G(smpl) 
         pRF_N(smpl) 
         eAC_G(smpl) 
         eAC_N(smpl) 
         esP_G(smpl) 
         esP_N(smpl) 
         ecpi(smpl) 
         eCP(smpl) 
         erpc_G(smpl) 
         erpc_N(smpl) 
         eRLC_G(smpl) 
         eRLC_N(smpl) 
         eREO(smpl) 
         eRWR(smpl) 
 
         pW_G(smpl) 
         pW_N(smpl) 
         pW(smpl) 
         pN(smpl) 
         pLamVA_G(smpl) 
         pLamVA_N(smpl) 
 
 
 
         fne(smpl) 
         wne(smpl) 
*         fewsd(smpl) 
*         fle(smpl) 
         fl_g(smpl) 
         fl_n(smpl) 
         fva_g(smpl) 
         fva_n(smpl) 
         fW_G(smpl) 
         fW_N(smpl) 
 
         objective        objective function to max 
         add1(k)          parameter additivity constraint 
         add2(eqn,smpl)   error additivitiy constraint 
; 
 
*####################################################################### 
tNL(smpl)..     NL(smpl)=e=regional('N','1986')$(ord(smpl) eq 1)+N(smpl-
1)$(not ord(smpl) eq 1); 
tWLag_G(smpl)..   WLag_G(smpl)=e=regional('W_G','1986')$(ord(smpl) eq 
1)+W_G(smpl-1)$(not ord(smpl) eq 1); 
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tWLag_N(smpl)..   WLag_N(smpl)=e=regional('W_N','1986')$(ord(smpl) eq 
1)+W_N(smpl-1)$(not ord(smpl) eq 1); 
 
eINT_G(smpl)..   INT_G(smpl)=e= 
p_agg*(VA_G(smpl)/LamVA_G(smpl))+p_agn*(VA_N(smpl)/LamVA_N(smpl)); 
eINT_N(smpl)..   INT_N(smpl)=e= 
p_ang*(VA_G(smpl)/LamVA_G(smpl))+p_ann*(VA_N(smpl)/LamVA_N(smpl)); 
 
eC_G(smpl)..     C_G(smpl)  =e= 
p_pce_G*p_gamma_c*((RYD(smpl)/national('RYD',smpl))*national('CONS',smpl
)); 
eC_N(smpl)..     C_N(smpl)  =e= 
p_pce_N*p_gamma_c*((RYD(smpl)/national('RYD',smpl))*national('CONS',smpl
)); 
eI_G(smpl)..     I_G(smpl)  =e= 
p_invr_G*p_gamma_IR*(RYD(smpl)/national('RYD',smpl))*national('IR',smpl) 
                                 
+p_invnr_G*p_gamma_INR*(VA(smpl)/national('VA',smpl))*national('INR',smp
l); 
eI_N(smpl)..     I_N(smpl)  =e= 
p_invr_N*p_gamma_IR*(RYD(smpl)/national('RYD',smpl))*national('IR',smpl) 
                                 
+p_invnr_N*p_gamma_INR*(VA(smpl)/national('VA',smpl))*national('INR',smp
l); 
eGSL_G(smpl)..   GSL_G(smpl)=e= 
p_gov_G*p_gamma_gsl*(N(smpl)/national('N',smpl))*national('GSL',smpl); 
eGSL_N(smpl)..   GSL_N(smpl)=e= 
p_gov_N*p_gamma_gsl*(N(smpl)/national('N',smpl))*national('GSL',smpl); 
eGF_G(smpl)..    GF_G(smpl) =e= 
p_fgov_G*p_gamma_fed*national('GF',smpl); 
eGF_N(smpl)..    GF_N(smpl) =e= 
p_fgov_N*p_gamma_fed*national('GF',smpl); 
 
eX_G(smpl)..     X_G(smpl)  =e= 
p_S_G_N*((pro('AC_G','1999')/AC_G(smpl)))*national('VA_G',smpl) 
                                 +p_S_G_W*national('EX',smpl); 
eX_N(smpl)..     X_N(smpl)  =e= 
p_S_N_N*((pro('AC_N','1999')/AC_N(smpl)))*national('VA_N',smpl) 
                                 +p_S_N_W*national('EX',smpl); 
*####################################################################### 
eYPROP(smpl)..   YPROP(smpl)=e= 
((regional('YDIR','1999')/regional('N','1999'))/ 
                         
(national('YPROP','1999')/national('N','1999'))) 
                         
*(national('YPROP',smpl)/national('N',smpl))*N(smpl); 
eTWPER(smpl)..   TWPER(smpl)=e= 
((regional('TWPER','1999')/regional('WSD','1999')) 
                         
/(national('TWPER','1999')/national('WSD','1999'))) 
                         
*(national('TWPER',smpl)/national('WSD',smpl))*WSD(smpl); 
eTRAN(smpl)..    TRAN(smpl) =e= 
((regional('TRAN','1999')/regional('N','1999')) 
                         /(national('VP','1999')/national('N','1999'))) 
                         
*(national('VP',smpl)/national('N',smpl))*N(smpl); 
eTAX(smpl)..     TAX(smpl)  =e= 
((regional('TAX','1999')/regional('WSD','1999')) 
                         
/(national('TAX','1999')*1000000/national('WSD','1999'))) 
                         
*(national('TAX',smpl)*1000000/national('WSD',smpl))*WSD(smpl); 
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eYOL(smpl)..     YOL(smpl)  =e= 
((regional('YOL','1999')/regional('L','1999')) 
                                 
/(national('YOL','1999')/national('L','1999'))) 
                                 
*(national('YOL',smpl)/national('L',smpl))*L(smpl); 
eYP(smpl)..      YP(smpl)   =e= WSD(smpl)+YOL(smpl)+YPROP(smpl)-
TWPER(smpl); 
eNTAX(smpl)..    NTAX(smpl) =e= TAX(smpl)-TRAN(smpl); 
eYD(smpl)..      YD(smpl)   =e= YP(smpl)-NTAX(smpl); 
eRYD(smpl)..     RYD(smpl)  =e= YD(smpl)/cpi(smpl); 
eWSD_G(smpl)..   WSD_G(smpl)=e= ((W_G(smpl)*L_G(smpl))/1000); 
eWSD_N(smpl)..   WSD_N(smpl)=e= ((W_N(smpl)*L_N(smpl))/1000); 
eWSD(smpl)..     WSD(smpl)  =e= W(smpl)*L(smpl)/1000; 
pWSD(smpl)..     WSD(smpl)  =e= WSD_G(smpl)+WSD_N(smpl); 
*####################################################################### 
eRLC_G(smpl)..   RLC_G(smpl)=e= (W_G(smpl)/national('W_G',smpl)); 
eRLC_N(smpl)..   RLC_N(smpl)=e= (W_N(smpl)/national('W_N',smpl)); 
eREO(smpl)..     REO(smpl)  =e= 
(L(smpl)/N(smpl))/(national('L',smpl)/national('N',smpl)); 
eRWR(smpl)..     RWR(smpl)  =e= W(smpl)/national('W',smpl); 
$ontext 
eAC_G(smpl)..    AC_G(smpl) =e= 
(1/RF_G(smpl))*(RLC_G(smpl)**(p_alpha_G));                #rlc into ac 
causes problem 
eAC_N(smpl)..    AC_N(smpl) =e= 
(1/RF_N(smpl))*(RLC_N(smpl)**(p_alpha_N)); 
$offtext 
eAC_G(smpl)..    AC_G(smpl)*RF_G(smpl) =e= (RLC_G(smpl)**(p_alpha_G));# 
+rfg(smpl); 
eAC_N(smpl)..    AC_N(smpl)*RF_N(smpl) =e= (RLC_N(smpl)**(p_alpha_N));# 
+rfn(smpl); 
*####################################################################### 
esP_G(smpl)..    sP_G(smpl) =e= 1; 
esP_N(smpl)..    sp_N(smpl) =e= AC_N(smpl); 
ecpi(smpl)..     cpi(smpl)  =e= 
((p_FD_G/p_FD)*sP_G(smpl)+(p_FD_N/p_FD)*sP_N(smpl))*national('cpi',smpl)
; 
eCP(smpl)..      CP(smpl)   =e= cpi(smpl)/national('cpi',smpl); 
*#######################################################################
pRF_G(smpl)..    
RF_G(smpl)*epv_G(smpl)=e=(national('epv_G',smpl))*RLC_G(smpl)**(p_alpha_
G-1)        +rfg(smpl); 
pRF_N(smpl)..    
RF_N(smpl)*epv_N(smpl)=e=(national('epv_N',smpl))*RLC_N(smpl)**(p_alpha_
N-1)        +rfn(smpl); 
$offtext 
pRF_G(smpl)..    
RF_G(smpl)=e=((national('epv_G',smpl))*RLC_G(smpl)**(p_alpha_G-
1))/epv_G(smpl)      +rfg(smpl); 
pRF_N(smpl)..    
RF_N(smpl)=e=((national('epv_N',smpl))*RLC_N(smpl)**(p_alpha_N-
1))/epv_N(smpl)      +rfn(smpl); 
*####################################################################### 
pW_G(smpl)..     (W_G(smpl))=e=(sum(m,z('WG_g0',m)*p('WG_g0',m))) 
                         
+((REO(smpl))*(sum(m,z('WG_g1',m)*p('WG_g1',m)))) 
                         
+((CP(smpl))*(sum(m,z('WG_g2',m)*p('WG_g2',m)))) 
                         
+((national('W_G',smpl))*(sum(m,z('WG_g3',m)*p('WG_g3',m)))) 
                         +((national('time',smpl)-
1986)*(sum(m,z('WG_g4',m)*p('WG_g4',m)))) 
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+((WLag_G(smpl))*(sum(m,z('WG_g5',m)*p('WG_g5',m)))) 
; 
pW_N(smpl)..     (W_N(smpl))=e=(sum(m,z('WN_g0',m)*p('WN_g0',m))) 
                         
+((REO(smpl))*(sum(m,z('WN_g1',m)*p('WN_g1',m)))) 
                         
+((CP(smpl))*(sum(m,z('WN_g2',m)*p('WN_g2',m)))) 
                         
+((national('W_N',smpl))*(sum(m,z('WN_g3',m)*p('WN_g3',m)))) 
                         +((national('time',smpl)-
1986)*(sum(m,z('WN_g4',m)*p('WN_g4',m)))) 
                         
+((WLag_N(smpl))*(sum(m,z('WN_g5',m)*p('WN_g5',m)))) 
; 
pW(smpl)..       W(smpl)  
=e=(W_G(smpl)*L_G(smpl)+W_N(smpl)*L_N(smpl))/L(smpl)          
+err(smpl); 
 
*####################################################################### 
pN(smpl)..       N(smpl)   =e=  sum(m,z('N_g0',m)*p('N_g0',m)) 
                                
+((L(smpl)/regional('N',smpl))/(national('L',smpl)/national('N',smpl)))*
sum(m,z('N_g1',m)*p('N_g1',m)) 
                                + 
(RWR(smpl))*sum(m,z('N_g2',m)*p('N_g2',m)) 
                                + (national('time',smpl)-
1986)*sum(m,z('N_g3',m)*p('N_g3',m)) 
                                + 
NL(smpl)*sum(m,z('N_g4',m)*p('N_g4',m)); 
 
wne(smpl)..      ne(smpl)   =e= regional('N',smpl)-N(smpl); 
*####################################################################### 
pLamVA_G(smpl).. LamVA_G(smpl)=e=p_LamVA_G 
                   
+sum(m,z('lvaG_g1',m)*p('lvaG_g1',m))*(national('time',smpl)-1999) 
                   
+sum(m,z('lvaG_g2',m)*p('lvaG_g2',m))*sqr(national('time',smpl)-1999) 
; 
pLamVA_N(smpl).. LamVA_N(smpl)=e=p_LamVA_N 
                   
+sum(m,z('lvaN_g1',m)*p('lvaN_g1',m))*(national('time',smpl)-1999) 
                   
+sum(m,z('lvaN_g2',m)*p('lvaN_g2',m))*sqr(national('time',smpl)-1999) 
; 
 
*####################################################################### 
 
erpc_G(smpl).. rpc_G(smpl)=e=p_rpc_G 
                   
+sum(m,z('rpcg_g1',m)*p('rpcg_g1',m))*(national('time',smpl)-1986) 
                   +sum(m,z('rpcg_g2',m)*p('rpcg_g2',m))*(AC_G(smpl)) 
                   +sum(j,v('rpcg',smpl,j)*ww('rpcg',smpl,j)); 
; 
erpc_N(smpl).. rpc_N(smpl)=e=p_rpc_N 
                   
+sum(m,z('rpcn_g1',m)*p('rpcn_g1',m))*(national('time',smpl)-1986) 
                   +sum(m,z('rpcn_g2',m)*p('rpcn_g2',m))*(AC_N(smpl)) 
                   +sum(j,v('rpcn',smpl,j)*ww('rpcn',smpl,j)); 
; 
*####################################################################### 
fne(smpl)..     ne(smpl)    =e= sum(j,v('ne',smpl,j)*ww('ne',smpl,j)); 
fVA_G(smpl)..   regional('VA_G',smpl)-
VA_G(smpl)=e=sum(j,v('vaeg',smpl,j)*ww('vaeg',smpl,j)); 
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fVA_N(smpl)..   regional('VA_N',smpl)-
VA_N(smpl)=e=sum(j,v('vaen',smpl,j)*ww('vaen',smpl,j)); 
fL_G(smpl)..   regional('L_G',smpl)-
L_G(smpl)=e=sum(j,v('L_G',smpl,j)*ww('L_G',smpl,j)); 
fL_N(smpl)..   regional('L_N',smpl)-
L_N(smpl)=e=sum(j,v('L_N',smpl,j)*ww('L_N',smpl,j)); 
fW_G(smpl)..    regional('W_G',smpl)-
W_G(smpl)=e=sum(j,v('W_G',smpl,j)*ww('W_G',smpl,j)); 
fW_N(smpl)..    regional('W_N',smpl)-
W_N(smpl)=e=sum(j,v('W_N',smpl,j)*ww('W_N',smpl,j)); 
 
*####################################################################### 
pL_G(smpl)..    L_G(smpl)=e=( 
                   
+sum(m,z('LG_g1',m)*p('LG_g1',m))*(INT_G(smpl)+C_G(smpl)+I_G(smpl)+GSL_G
(smpl)+GF_G(smpl)) 
                   *rpc_G(smpl) 
                   
+sum(m,z('LG_g2',m)*p('LG_g2',m))*(X_G(smpl)))*LamVA_G(smpl) 
                   *epv_G(smpl) 
; 
pL_N(smpl)..    L_N(smpl)=e=( 
                   
+sum(m,z('LN_g1',m)*p('LN_g1',m))*(INT_N(smpl)+C_N(smpl)+I_N(smpl)+GSL_N
(smpl)+GF_N(smpl)) 
                   *rpc_N(smpl) 
                   
+sum(m,z('LN_g2',m)*p('LN_g2',m))*(X_N(smpl)))*LamVA_N(smpl) 
                   *epv_N(smpl) 
; 
pL(smpl)..      L(smpl)=e=L_G(smpl)+L_N(smpl); 
*####################################################################### 
$ontext 
eepv_G(smpl)..   epv_G(smpl)=e=(1/RF_G(smpl))*(RLC_G(smpl)**(p_alpha_G-
1))*national('epv_G',smpl)  +rfg(smpL); 
eepv_N(smpl)..   epv_N(smpl)=e=(1/RF_N(smpl))*(RLC_N(smpl)**(p_alpha_N-
1))*national('epv_N',smpl)  +rfn(smpl); 
$offtext 
eepv_G(smpl)..   epv_G(smpl)=e=L_G(smpl)/VA_G(smpl)  +rfg(smpL); 
eepv_N(smpl)..   epv_N(smpl)=e=L_N(smpl)/VA_N(smpl)  +rfn(smpl); 
*####################################################################### 
eVA_G(smpl)..    VA_G(smpl)=e=L_G(smpl)/epv_G(smpl); 
eVA_N(smpl)..    VA_N(smpl)=e=L_N(smpl)/epv_N(smpl); 
eVA(smpl)..      VA(smpl)=e=VA_G(smpl)+VA_N(smpl); 
 
*####################################################################### 
objective..      obj        =e= 200* 
(1*(sum(k,sum(m,p(k,m)*log(p(k,m)/qq(k,m)))) 
                                
+1*sum(eqn,sum(smpl,sum(j,ww(eqn,smpl,j)*log(ww(eqn,smpl,j)/u(eqn,smpl,j
))))) ) ); 
add1(k)..           sum(m,p(k,m))  =e=  1; 
add2(eqn,smpl)..    sum(j,ww(eqn,smpl,j))  =e=  1; 
 
*####################################################################### 
 
model ent / all /; 
option nlp=minos; 
option domlim=1000000; 
option iterlim=900000000; 
*option sysout=on; 
ent.workspace=150; 
ent.reslim=60000; 
*ent.optfile=1; 
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ent.scaleopt=1; 
solve ent minimizing obj using nlp; 
*####################################################################### 
options decimals=8; 
parameter betap(k) 
          errorsp(eqn,smpl) 
          betam(k) 
          errorsm(eqn,smpl) 
          e_hat_G(smpl) 
          e_hat_N(smpl); 
betap(k)=sum(m,p.l(k,m)*z(k,m)); 
errorsp(eqn,smpl)=sum(j,ww.l(eqn,smpl,j)*v(eqn,smpl,j)); 
betam(k)=sum(m,p.m(k,m)*z(k,m)); 
errorsm(eqn,smpl)=sum(j,ww.m(eqn,smpl,j)*v(eqn,smpl,j)); 
display V,Z; 
display p.l,p.m,ww.l,ww.m; 
display betap, betam; 
display errorsp, errorsm; 
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APPENDIX III 

 
ORDER OF MODEL EQUATIONS FOR GUASS-SEIDEL ALGORYTHM 
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APPENDIX IV 

MATLAB PROJECTION PROGRAM 

clear all 

 

load blow32_11_d_todaro.mat 
%blow32e_test11 todaro d 
LG_g1 = 1.17115392 
LG_g2 = 1.18510548 
LN_g1 = 1.055396962 
LN_g2 = 0.989519074 
WG_g0 = 173.8923752 
WG_g1 = 0.494450216 
WG_g2 = 5.169576145 
WN_g0 = -831.9319289 
WN_g1 = -8.108580925 
WN_g2 = -2.737893979 
WG_g3 = 0.127846229 
WG_g4 = -86.44292651 
WG_g5 = 0.916158812 
WN_g3 = 0.823968122 
WN_g4 = -243.3424988 
WN_g5 = 0.096589167 
N_g0 = 825553.1598 
N_g1 = 589.4294556 
N_g2 = 370.3819609 
N_g3 = 7953.400684 
N_g4 = 0.73516576 
lvaG_g1 = -0.006471975 
lvaG_g2 = 7.36292E-05 
lvaN_g1 = 0.0049251 
lvaN_g2 = 0.000270035 
rpcg_g1 = 0.002570914 
rpcg_g2 = -0.022445243 
rpcn_g1 = 0.000817961 
rpcn_g2 = -0.000055 
 
 
flag_pol=1; 
flag_rates=1; 
policy=ones(6,24); 
policy(4:5,:)=0; 
 
%output multilpiers 
%policy(4,14:14)=1000;   %Goods 
%policy(5,14:14)=1000;   %Goods 
 
% TAX MULTIPLIERS in percents 
%  policy(6,14:24)=1.05; 
 
% COST RATIOS in percents 
% %RLC 
%  policy(1,14:24)=1.10; 
% %RCC 
%  policy(2,14:24)=1.05; 
% %RFC 
%  policy(3,14:24)=1.05; 
nation=national; 
regional=initial;
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for yr=14:24 
     
sse=100000; 
count=1; 
while sse>.000000010;                 %inner loop 
if count==1 
    if yr~=1 
    regional(:,yr)=regional(:,yr-1); 
    progress(:,count)=regional(:,yr); 
    end 
end 
z0=regional(:,yr);        %Begining values 
 
%###############################################################################    
regional(22,yr) = rparam(42) + lvaG_g1*(nation(41,yr)-1999) + 
lvaG_g2*((nation(41,yr)-1999)^2);           %LamVA_G 
    regional(23,yr) = rparam(43) + lvaN_g1*(nation(41,yr)-1999) + 
lvaN_g2*((nation(41,yr)-1999)^2);           %LamVA_N 
%###############################################################################    
regional(51,yr) = rparam(64)*(rparam(80)/regional(1,yr))*nation(44,yr)  +  
rparam(65)*nation(13,yr)... 
        + policy(4,yr);                                                                       
%X_G 
    regional(52,yr) = rparam(66)*(rparam(81)/regional(2,yr))*nation(45,yr)  +  
rparam(67)*nation(13,yr)... 
        + policy(5,yr);                                                                       
%X_N 
%###############################################################################    
regional(9,yr)  = rparam(20)*rparam(23)*nation(15,yr);                                        
%GF_G 
    regional(10,yr) = rparam(21)*rparam(23)*nation(15,yr);                                   
%GF_N  
%###############################################################################    
regional(11,yr) = 
rparam(29)*rparam(25)*(regional(26,yr)/nation(28,yr))*nation(16,yr);                    
%GSL_G 
    regional(12,yr) = 
rparam(30)*rparam(25)*(regional(26,yr)/nation(28,yr))*nation(16,yr);                    
%GSL_N 
%###############################################################################    
regional(13,yr) = 
rparam(33)*rparam(27)*(regional(36,yr)/nation(36,yr))*nation(19,yr)... 
        +  rparam(31)*rparam(26)*(regional(42,yr)/nation(43,yr))*nation(18,yr);               
%I_G 
    regional(14,yr) = 
rparam(34)*rparam(27)*(regional(36,yr)/nation(36,yr))*nation(19,yr)... 
        +  rparam(32)*rparam(26)*(regional(42,yr)/nation(43,yr))*nation(18,yr);               
%I_N 
%###############################################################################    
regional(15,yr) = 
rparam(1)*(regional(43,yr)/regional(22,yr))+rparam(2)*(regional(44,yr)/regional(
23,yr));%INT_G 
    regional(16,yr) = 
rparam(5)*(regional(43,yr)/regional(22,yr))+rparam(6)*(regional(44,yr)/regional(
23,yr));%INT_N 
%###############################################################################    
regional(3,yr)  = 
(rparam(48))*(rparam(22))*((regional(36,yr)/nation(36,yr))*nation(1,yr));               
%C_G 
    regional(4,yr)  = 
(rparam(49))*(rparam(22))*((regional(36,yr)/nation(36,yr))*nation(1,yr));               
%C_N 
%############################################################################### 
    regional(20,yr) = 
(LG_g1*(regional(15,yr)+regional(3,yr)+regional(13,yr)+regional(11,yr)+regional( 
9,yr))... 
        
*regional(33,yr)+LG g2*(regional(51,yr)))*regional(22,yr)*regional(7,yr);                     
%L_G 
    regional(21,yr) = 
(LN_g1*(regional(16,yr)+regional(4,yr)+regional(14,yr)+regional(12,yr)+regional(
10,yr))... 
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*regional(34,yr)+LN g2*(regional(52,yr)))*regional(23,yr)*regional(8,yr);                     
%L_N 
    regional(19,yr) = regional(20,yr)+regional(21,yr);                                        
%L 
%############################################################################### 
    regional(7,yr)  = 
nation(11,yr)*(1/regional(29,yr))*(regional(31,yr)^(rparam(3)-
1))*(policy(2,yr)^rparam(7))... 
        *(policy(3,yr)^rparam(24));                                                           
%epv_G 
    regional(8,yr)  = 
nation(12,yr)*(1/regional(30,yr))*(regional(32,yr)^(rparam(4)-
1))*(policy(2,yr)^rparam(8))... 
        *(policy(3,yr)^rparam(28));                                                           
%epv_N 
%############################################################################### 
    regional(43,yr) = regional(20,yr)/regional(7,yr);                                        
%VA_G 
    regional(44,yr) = regional(21,yr)/regional(8,yr);                                         
%VA_N 
    regional(42,yr) = regional(43,yr)+regional(44,yr);                                        
%VA 
%############################################################################### 
    if yr==1 
            regional(46,yr) = WG_g0 + WG_g1*regional(28,yr) + 
WG_g2*regional(5,yr) + WG_g3*nation(48,yr)... 
                + WG_g4*(nation(41,yr)-1986) + WG g5*regional(46,yr);                         
%W_G  first year 
            regional(47,yr) = WN_g0 + WN_g1*regional(28,yr) + 
WN_g2*regional(5,yr) + WN_g3*nation(49,yr)... 
                + WN_g4*(nation(41,yr)-1986) + WN_g5*regional(47,yr);                         
%W_N  first year 
    else 
            regional(46,yr) = WG_g0 + WG_g1*regional(28,yr) + 
WG_g2*regional(5,yr) + WG_g3*nation(48,yr)... 
                + WG_g4*(nation(41,yr)-1986) + WG_g5*regional(46,yr-1);                      
%W_G  other years 
            regional(47,yr) = WN_g0 + WN_g1*regional(28,yr) + 
WN_g2*regional(5,yr) + WN_g3*nation(49,yr)... 
                + WN_g4*(nation(41,yr)-1986) + WN_g5*regional(47,yr-1);                       
%W_N  other years 
    end  
    regional(45,yr) = (regional(46,yr)*regional(20,yr) + 
regional(47,yr)*regional(21,yr))/regional(19,yr);                                             
%W   
%############################################################################### 
    regional(49,yr) = ((regional(46,yr)*regional(20,yr))/1000);                               
%WSD_G 
    regional(50,yr) = ((regional(47,yr)*regional(21,yr))/1000);                               
%WSD_N 
    regional(48,yr) =   regional(49,yr)+regional(50,yr);                                      
%WSD 
%############################################################################### 
    regional(31,yr) = (regional(46,yr)/nation(48,yr))*policy(1,yr);                           
%RLC_G 
    regional(32,yr) = (regional(47,yr)/nation(49,yr))*policy(1,yr);                           
%RLC_N 
%############################################################################### 
    regional(35,yr) = regional(45,yr)/nation(47,yr);                                          
%RWR 
%###############################################################################    
regional(29,yr) = (nation(11,yr)/regional(7,yr))*(regional(31,yr)^(rparam(3)-
1))*(policy(2,yr)^rparam(7))... 
        *(policy(3,yr)^rparam(24));                                                           
%RF_G 
    regional(30,yr) = 
(nation(12,yr)/regional(8,yr))*(regional(32,yr)^(rparam(4)-
1))*(policy(2,yr)^rparam(8))... 
        *(policy(3,yr)^rparam(28));                                                           
%RF_N 
%############################################################################### 
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    regional(1,yr)  = 
(1/regional(29,yr))*(regional(31,yr)^rparam(3))*(policy(2,yr)^rparam(7))... 
        *(policy(3,yr)^rparam(24));                                                           
%AC_G 
    regional(2,yr)  = 
(1/regional(30,yr))*(regional(32,yr)^rparam(4))*(policy(2,yr)^rparam(8))... 
        *(policy(3,yr)^rparam(28));                                                           
%AC_N 
%############################################################################### 
    regional(37,yr) = 1;                                                                      
%SP_G 
    regional(38,yr) = regional(2,yr);                                                         
%SP_N  
%###############################################################################    
regional(33,yr) = rparam(60) + rpcg_g1*(nation(41,yr)-1986) + 
rpcg_g2*regional(1,yr);                     %rpc_G 
    regional(34,yr) = rparam(61) + rpcn_g1*(nation(41,yr)-1986) + 
rpcn_g2*regional(2,yr);                     %rpc_N    
%###############################################################################    
regional(6,yr)  = 
((rparam(17)/rparam(19))*regional(37,yr)+(rparam(18)/rparam(19))*regional(38,yr)
)*... 
        nation(2,yr);                                                                        
%CPI 
    regional(5,yr)  = regional(6,yr)/nation(2,yr);                                            
%CP 
%############################################################################### 
    if yr==1 
        regional(26,yr) = N_g0 + N_g1*regional(28,yr) + N_g2*regional(35,yr) + 
N_g3*(nation(41,yr)-1986)... 
            + N g4*regional(26,yr);                                                           
%N first year 
    else 
        regional(26,yr) = N_g0 + N_g1*regional(28,yr) + N_g2*regional(35,yr) + 
N_g3*(nation(41,yr)-1986)... 
            + N_g4*regional(26,yr-1);                                                         
%N other years 
    end 
%###############################################################################    
regional(28,yr) = 
(regional(19,yr)/regional(26,yr))/(nation(20,yr)/nation(28,yr));                        
%REO 
%###############################################################################    
regional(58,yr) = 
((initial(58,13)/initial(26,13))/(nation(62,13)/nation(28,13)))*... 
        (nation(62,yr)/nation(28,yr))*regional(26,yr);                                        
%YPROP 
    regional(41,yr) = 
((initial(41,13)/initial(48,13))/(nation(42,13)/nation(50,13)))*... 
        (nation(42,yr)/nation(50,yr))*regional(48,yr);                                        
%TWPER 
    regional(40,yr) = 
((initial(40,13)/initial(26,13))/(nation(46,13)/nation(28,13)))*... 
        (nation(46,yr)/nation(28,yr))*regional(26,yr);                                        
%TRAN 
    regional(39,yr) = 
((initial(39,13)/initial(48,13))/(nation(37,13)/nation(50,13)))*... 
        (nation(37,yr)/nation(50,yr))*regional(48,yr).*policy(6,yr);                          
%TAX  
    regional(56,yr) = 
((initial(56,13)/initial(19,13))/(nation(58,13)/nation(20,13)))*... 
        (nation(58,yr)/nation(20,yr))*regional(19,yr);                                        
%YOL 
    regional(57,yr) = regional(48,yr)+regional(56,yr)+regional(58,yr)-
regional(41,yr);                        %YP 
    regional(27,yr) = (regional(39,yr)-regional(40,yr));                                      
%NTAX 
    regional(55,yr) = regional(57,yr)-regional(27,yr);                                        
%YD 
    regional(36,yr) = regional(55,yr)/regional(6,yr);                                         
%RYD 
%###############################################################################   
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z1=regional(:,yr);            %ending values 
ze=z0-z1; 
sse=ze'*ze; 
count=count+1; 
progress(:,count)=regional(:,yr); 
if count>1000; 
    break 
end 
end 
[yr count-1] 
end 
 
if flag_pol==1; 
    load baseline.mat; 
 regional(59:61,:)=0;    
 regional(60,:)=regional(43,:)./regional(22,:); 
 regional(61,:)=regional(44,:)./regional(23,:); 
 regional(59,:)=regional(60,:)+regional(61,:); 
    chg1=regional-base; 
    if flag_rates==1; 
        chg1=chg1./base; 
    end 
    chg2=cumsum(chg1,2); 
    chg=cat(1,chg1,zeros(1,24),chg2); 
    wk1write('C:\stevestuff\dis\change.wk1',chg,1,1); 
end 
 
out=regional; 
out2=((out(:,2:yr)-out(:,1:yr-1))./out(:,1:yr-1))*100; 
[rows cols]=size(out2); 
out2=cat(2,zeros(rows,1),out2); 
[rows cols]=size(out2); 
out2=cat(1,zeros(1,cols),out2); 
out=cat(1,out,out2); 
err=((regional(1:58,1:13)-initial)./initial)*100; 
wk1write('C:\stevestuff\dis\out.wk1',out,1,1); 
wk1write('C:\stevestuff\dis\regionalout.wk1',regional,1,1); 
wk1write('C:\stevestuff\dis\error.wk1',err,1,1); 
'done' 
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APPENDIX V: EVIEWS PROGRAMS FOR VAR MODELS 
 

subroutine in_sample 
 
smpl 1987 1999 
 equation eW_G.ls @pch(W_G) c @pch(W_G(-1)) @pch(W_N(-1)) @pch(L_G(-1)) 
@pch(L_N(-1)) @pch(VA_G(-1)) @pch(VA_N(-1))  @pch(W_G_U) '@pch(N(-1))  
 equation eW_N.ls @pch(W_N) c @pch(W_G(-1)) @pch(W_N(-1)) @pch(L_G(-1)) 
@pch(L_N(-1)) @pch(VA_G(-1)) @pch(VA_N(-1))  @pch(W_N_U)  '@pch(N(-1)) 
 
 equation eL_G.ls @pch(L_G) c @pch(W_G(-1)) @pch(W_N(-1)) @pch(L_G(-1)) 
@pch(L_N(-1)) @pch(VA_G(-1)) @pch(VA_N(-1))   @pch(L_G_U) '@pch(N(-1)) 
 equation eL_N.ls @pch(L_N) c @pch(W_G(-1)) @pch(W_N(-1)) @pch(L_G(-1)) 
@pch(L_N(-1)) @pch(VA_G(-1)) @pch(VA_N(-1))  @pch(L_N_U) ' @pch(N(-1)) 
 
 equation eVA_G.ls @pch(VA_G) c @pch(W_G(-1)) @pch(W_N(-1)) @pch(L_G(-1)) 
@pch(L_N(-1)) @pch(VA_G(-1)) @pch(VA_N(-1))  @pch(VA_G_U) ar(1)  '@pch(N(-1))  
 equation eVA_N.ls @pch(VA_N) c @pch(W_G(-1)) @pch(W_N(-1)) @pch(L_G(-1)) 
@pch(L_N(-1)) @pch(VA_G(-1)) @pch(VA_N(-1))  @pch(VA_N_U) ar(1)  '@pch(N(-1))  
 
 equation eN.ls @pch(N) c @pch(W_G(-1)) @pch(W_N(-1)) @pch(L_G(-1)) @pch(L_N(-
1)) @pch(VA_G(-1)) @pch(VA_N(-1)) @pch(N(-1)) @pch(N_U)  
 
!exists=@isobject("var1") 
if !exists=1 then 
    delete var1 
endif 
 
model var1 
 var1.merge eW_G  
 var1.merge eW_N 
 var1.merge eL_G 
 var1.merge eL_N  
 var1.merge eVA_G 
 var1.merge eVA_N 
 var1.merge eN 
smpl 2000 2010 
 var1.solve 
 
 
 genr w_0 =(l_g_0*w_g_0+l_n_0*w_n_0)/(l_g_0+l_n_0) 
 genr l_0 =l_g_0+l_n_0 
 genr va_0=va_g_0+va_n_0 
 
 genr dw_g=100*abs(w_g-w_g_0)/w_g 
 genr dw_n=100*abs(w_n-w_n_0)/w_n 
 genr dw  =100*abs(w-w_0)/w 
 
 genr dl_g=100*abs(l_g-l_g_0)/l_g 
 genr dl_n=100*abs(l_n-l_n_0)/l_n 
 genr dl  =100*abs(l-l_0)/l 
 
 genr dva_g=100*abs(va_g-va_g_0)/va_g 
 genr dva_n=100*abs(va_n-va_n_0)/va_n 
 genr dva  =100*abs(va-va_0)/va 
 
 genr dn   = 100*abs(n_0-n)/n 
 
!exists=@isobject("t") 
if !exists=1 then 
    delete t 
endif
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 group t dw_g dw_n dw dl_g dl_n dl dva_g dva_n dva dn 
' show t 
 t.stats 
 
 genr aw_g=(w_g-w_g_0)/w_g 
 genr aw_n=(w_n-w_n_0)/w_n 
 genr aw  =(w-w_0)/w 
 
 genr al_g=(l_g-l_g_0)/l_g 
 genr al_n=(l_n-l_n_0)/l_n 
 genr al  =(l-l_0)/l 
 
 genr ava_g=(va_g-va_g_0)/va_g 
 genr ava_n=(va_n-va_n_0)/va_n 
 genr ava  =(va-va_0)/va 
 
 genr an   = (n_0-n)/n 
 
!exists=@isobject("s") 
if !exists=1 then 
    delete s 
endif 
 
 group s aw_g aw_n aw al_g al_n al ava_g ava_n ava an 
' show s 
 
 group r w_g_0 w_n_0 l_g_0 l_n_0 va_g_0 va_n_0 'l_0 w_0  va_0 n_0 
 show r 
 
end sub 
 
'################################################ 
 
subroutine out_sample 
 
call clearv("emp") 
smpl 1987 1999 
 var emp.ls 1 2 @pch(L_G) @pch(L_N) @ @pch(L_G_U) @pch(L_N_U)  
call clearv("empmod") 
 emp.makemodel(empmod) 
smpl 2000 2010 
 empmod.solve 
genr L_0=L_G_0+L_N_0 
 
call clearv("va") 
smpl 1987 1999 
 var va.ls 1 2 @pch(VA_G) @pch(VA_N) @ @pch(VA_G_U) @pch(VA_N_U)  
call clearv("vamod") 
 va.makemodel(vamod) 
smpl 2000 2010 
 vamod.solve 
genr VA_0=VA_G_0+VA_N_0 
 
call clearv("wr") 
smpl 1987 1999 
 var wr.ls 1 2 @pch(W_G) @pch(W_N) @ @pch(W_G_U) @pch(W_N_U)  
call clearv("wrmod") 
 wr.makemodel(wrmod) 
smpl 2000 2010 
 wrmod.solve 
genr W_0=(W_G_0*L_G_0+W_N_0*L_N_0)/L_0 
 
smpl 1987 2010 
 group r L_G_0 L_N_0 L_0 VA_G_0 VA_N_0 VA_0 W_G_0 W_N_0 W_0  
 show r 
 
subroutine clearv(string %name) 
!exists=@isobject(%name) 
if !exists=1 then 
    delete %name 
endif 
endsub 
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Table 5.3: Projection of Key Indicators 
  2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
L  2,056,203 2,040,289 2,040,403 2,083,574 2,141,936 2,195,834 2,248,132 2,306,784 2,374,101 2,450,194 2,538,349
L_G  354,710 332,988 307,688 309,202 316,427 318,712 320,281 319,507 316,801 316,004 315,538
L_N  1,701,492 1,707,302 1,732,714 1,774,373 1,825,509 1,877,123 1,927,850 1,987,277 2,057,299 2,134,190 2,222,811
VA ($Mil) 95,279 97,184 99,406 106,520 114,150 121,673 129,897 139,232 149,992 161,972 175,539
VA_G ($Mil) 24,189 24,130 23,947 25,133 26,358 27,504 28,781 30,327 32,209 34,205 36,422
VA_N ($Mil) 71,090 73,054 75,460 81,387 87,792 94,169 101,116 108,905 117,783 127,767 139,116
W 22,185 23,009 23,380 24,294 25,299 26,167 27,104 28,068 29,049 30,143 31,348
W_G 32,252 33,559 35,075 36,581 38,001 39,402 40,826 42,375 44,151 46,125 48,338
W_N 20,086 20,951 21,303 22,153 23,098 23,919 24,825 25,768 26,723 27,776 28,936
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Table 5.4 :Regionalized Components of Final Demands and Output 
  2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
Q 154,744 157,256 160,236 171,115 182,711 193,938 206,078 219,754 235,396 252,560 271,793
Q_G 48,231 48,760 49,228 52,635 56,333 59,980 64,031 68,764 74,328 80,324 87,028
Q_N 106,513 108,496 111,007 118,480 126,378 133,957 142,047 150,990 161,068 172,235 184,765
INT 46,121 47,016 47,920 51,256 54,778 58,211 61,952 66,235 71,211 76,646 82,733
INT_G 14,785 15,105 15,383 16,489 17,654 18,805 20,075 21,561 23,317 25,221 27,353
INT_N 31,336 31,911 32,537 34,767 37,124 39,406 41,877 44,673 47,893 51,425 55,380
VA 108,623 110,240 112,316 119,859 127,933 135,726 144,126 153,520 164,186 175,914 189,060
VA_G 33,446 33,655 33,845 36,146 38,679 41,176 43,955 47,203 51,011 55,103 59,675
VA_N 75,178 76,584 78,471 83,713 89,254 94,551 100,171 106,317 113,175 120,811 129,385
C 58,605 60,175 61,743 65,952 70,242 74,499 79,084 84,111 89,708 95,996 103,088
C_G 9,828 10,128 10,426 11,163 11,913 12,665 13,477 14,374 15,377 16,500 17,768
C_N 48,777 50,047 51,317 54,789 58,329 61,834 65,607 69,737 74,331 79,496 85,320
I 13,314 12,166 12,051 13,246 14,547 15,569 16,726 18,180 19,964 21,937 24,239
I_G 6,051 5,575 5,539 6,079 6,668 7,141 7,674 8,343 9,162 10,066 11,128
I_N 7,263 6,590 6,512 7,167 7,880 8,429 9,052 9,837 10,802 11,871 13,111
GSL 11,806 12,557 13,099 13,680 14,375 15,092 15,798 16,538 17,325 18,154 19,037
GSL_G 798 852 892 934 984 1,035 1,087 1,141 1,199 1,261 1,326
GSL_N 11,009 11,705 12,207 12,746 13,392 14,057 14,711 15,397 16,125 16,894 17,711
GF 6,370 6,626 7,105 7,525 7,933 8,306 8,663 8,991 9,313 9,670 10,088
GF_G 746 779 838 890 940 987 1,032 1,074 1,116 1,163 1,217
GF_N 5,624 5,847 6,267 6,635 6,993 7,319 7,631 7,916 8,196 8,507 8,872
X 18,528 18,716 18,317 19,457 20,835 22,260 23,854 25,700 27,876 30,157 32,607
X_G 16,023 16,321 16,149 17,080 18,174 19,348 20,685 22,270 24,156 26,114 28,236
X_N 2,505 2,395 2,168 2,376 2,661 2,912 3,169 3,430 3,720 4,044 4,371
rpc_G 0.649 0.652 0.655 0.658 0.660 0.662 0.665 0.668 0.671 0.674 0.677
rpc_N 0.868 0.868 0.869 0.870 0.871 0.872 0.872 0.873 0.874 0.875 0.876
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Table 5.6: Production Block 
  2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
Epv_G 0.0147 0.0138 0.0128 0.0123 0.0120 0.0116 0.0111 0.0105 0.0098 0.0092 0.0087
Epv_N 0.0239 0.0234 0.0230 0.0218 0.0208 0.0199 0.0191 0.0182 0.0175 0.0167 0.0160
AC_G 0.9602 0.9210 0.8920 0.8974 0.9121 0.9165 0.9154 0.9024 0.8813 0.8673 0.8530
AC_N 0.9824 0.9807 0.9759 0.9720 0.9706 0.9691 0.9677 0.9668 0.9661 0.9660 0.9665
RF_G 0.9778 1.0000 1.0173 1.0140 1.0052 1.0026 1.0033 1.0110 1.0240 1.0328 1.0421
RF_N 0.8536 0.8543 0.8560 0.8575 0.8580 0.8586 0.8591 0.8595 0.8597 0.8598 0.8596
RLC_G 0.8723 0.8366 0.8103 0.8152 0.8286 0.8326 0.8316 0.8198 0.8006 0.7879 0.7749
RLC_N 0.7358 0.7345 0.7309 0.7280 0.7269 0.7258 0.7247 0.7241 0.7236 0.7235 0.7239

 
 
 
Table 5.7: Income Components ($1000000) 
    2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
  WSD 45,616 46,945 47,704 50,618 54,190 57,458 60,934 64,747 68,964 73,855 79,572
+ YOL 14,423 14,839 15,496 16,619 17,603 18,715 20,005 21,439 23,038 24,766 26,757
+ YPROP 14,679 15,050 14,835 15,808 16,692 17,438 18,341 19,240 20,358 21,688 23,119
- TWPER 3,347 3,409 3,442 3,641 3,887 4,109 4,349 4,614 4,910 5,254 5,657
= YP 71,371 73,425 74,592 79,405 84,598 89,502 94,930 100,812 107,451 115,055 123,790
- TAX 10,672 10,552 10,305 10,827 11,446 12,052 13,057 14,172 15,079 16,090 17,269
+ TRAN 12,552 13,495 14,486 15,201 16,030 17,009 18,077 19,286 20,671 22,141 23,693
= YD 73,251 76,369 78,773 83,779 89,181 94,459 99,950 105,926 113,043 121,106 130,214
∏ Cpi 1.70 1.75 1.78 1.81 1.86 1.91 1.96 2.01 2.07 2.13 2.19
= RYD 43,005 43,591 44,316 46,165 47,912 49,465 50,986 52,577 54,569 56,859 59,400
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