REGIONAL DEVELOPMENT - A COMPUTABLE GENERAL EQUILIBRIUM (CGE) ANALYSIS OF THE BENEFITS TO LOCAL RESIDENTS, COMMUTERS

 AND MIGRANTS

 AND MIGRANTS}

By
KYLE DAVID DEAN

Bachelor of Business Administration in Management Information Systems
University of Oklahoma
Norman, OK
1989

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY

December, 2008

REGIONAL DEVELOPMENT - A COMPUTABLE GENERAL EQUILIBRIUM (CGE) ANALYSIS OF THE BENEFITS TO LOCAL RESIDENTS, COMMUTERS AND MIGRANTS

Dissertation Approved:

Dr. Michael J. Applegate
Dissertation Adviser
Dr. Mary N. Gade
Dr. Kent W. Olson
Dr. Francis Epplin
Dr. A. Gordon Emslie
Dean of the Graduate College

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor, Dr. Michael Applegate. His willingness to guide me to completion and his thoughtful critiques and advice were invaluable. I would also like to extend thanks to Dr. Dan S. Rickman who provided the inspiration for this project as well as guidance through the first phases. Additional appreciation is extended to my other committee members, Dr. Mary N. Gade, Dr. Francis M. Epplin and Dr. Kent Olson for their spark of inspiration during my coursework and suggestions for the draft thesis.

I would also like to thank Dr. Keith D. Willett who, as department chair encouraged my matriculation and provided financial assistance. I would also like to thank our current department chair, Dr. Jim Fain, for his positive encouragement and assistance in finishing my thesis.

My wife, Dr. Seana H. Dean deserves the highest accolades for her patience, encouragement and willingness to sacrifice during the course of my studies. Without her support I could never have finished. My children Kellen D. and Ainsley R. Dean have attended many camps and activities so that I could work on this dissertation.

Lastly, I would like to thank my friend, fellow graduate student and business partner Russell Evans who provided support and with whom I look forward to many years of scholarly and business research as well as fellowship.

I dedicate this degree to my mother Barbara F. Dean who, attended college while raising two children, holding a full time job and managing all of our household affairs. I hope to someday live up to her legacy of self-sacrifice.

TABLE OF CONTENTS

ChapterPage
I. INTRODUCTION 1
Problem Statement 1
Study Objectives 4
Study Organization 4
II. THEORETICAL BACKGROUND 6
Who Benefits from Regional Development? 6
The Timing of Benefits 12
Income Distribution Effects 13
What is a Region? 14
Why Oklahoma County? 15
CGE Analysis 17
III. REGIONAL CGE MODEL SPECIFICATION 21
Production 25
Value Added. 28
Intermediate Goods Demand 30
Exports and Zero Profits 30
Government 34
Saving and Investment 34
Armington Function 35
Market Equilibria 36
Labor Supplies 37
Labor Force Participation 37
Labor Migration 38
Commuters 38
IV. DATA DEVELOPMENT AND STRUCTURE 40
Data Sources 40
Micro-Consistent Database 41
Production Data 42
Household Aggregation 49
Labor Supply 49
Income, Saving, and Consumption Demand 51
Government 55
Exports 56
Commuting 56
Leontief Share Parameters 61
CES Production Parameters 61
Elasticity of Substitution Transformation 62
CES Share Parameters 62
CES Shift Parameters 63
Household CES Parameters 64
Model Parameterization 66
Trade 66
Production 67
Labor Migration 69
Commuting 69
Household Consumption 70
V. SIMULATIONS AND RESULTS 71
Simulation Short Descriptions 72
Simulation Results 72
Simulation 1 72
Simulation 2 77
Simulation 3 79
Simulation 4 81
Simulation 5 82
VI. STUDY CONCLUSIONS AND AREAS FOR FURTHER RESEARCH 94
Study Objectives and Methodology 95
Study Conclusions 97
Study Limitations 99
Areas for Further Research 100
REFERENCES 102
APPENDIX A.1. CGE PRIMARY MODEL EQUATIONS 107
APPENDIX A.2. VARIABLE AND PARAMETER DEFINITIONS 110
APPENDIX B. 1 GAMS CODE LISTING 113

LIST OF TABLES

Table
Page
4.1 GAMS Sector Codes ... 43
4.2 Intermediate Input Requirements - Local Inputs (Millions of U.S. Dollars) 45
4.3 Intermediate Input Requirements - Imported Inputs (\$M)................................. 46
4.4 Value Added Requirements (\$M) ... 47
4.5 Miscellaneous Producer Payments (\$M) .. 48
4.6 Household Categories ... 49
4.7 Labor Income by Household and Skill (\$M) .. 51
4.8 Income by Household (\$M) .. 52
4.9 Consumption Demand by Household (\$M) .. 52
4.10 Capital Investment by Local Producers (\$M) ... 53
4.11 Capital Demand for Local Production (\$M) ... 54
4.12 Government Demand for Local Production (\$M) ... 55
4.13 Export Demand for Local Production (\$M).. 56
4.14 County of Residence for Oklahoma County Workers 57
4.15 Labor Dollars by Region (\$M) ... 59
4.16 Input (Calculated) Parameters... 65
4.17 Elasticity of Substitution: Armington Local/Import ... 67
4.18 Capital-Labor Substitution Elasticities ... 68
4.19 Labor Skill Substitution Elasticities.. 68
4.20 Labor Migration Elasticities 69
4.21 Commuter Elasticities 70
5.1 Regional Development Impacts on Local, Commuter and Migrant Labor Supplies85
5.2 Regional Development Impacts on Total Local Production (\$M) 86
5.3 Regional Development Impacts on Export Production (\$M) 87
5.4 Regional Development Impacts on Production for Local Use (\$M) 88
5.5 Regional Development Impacts on Imports (\$M) 89
5.6 Regional Development Impacts on Composite Good Demand (\$M) 90
5.7 Regional Development Impacts on Household Income and Consumption (\$M) 91
5.8 Price Index and Wages 92
5.9 Commuter Income (\$M) 93

LIST OF FIGURES

Figure

Page

2.1 Labor Market - Inelastic Supply.. 7
2.2 Labor Market - Elastic Supply ... 8
2.3 Labor Market - Elastic Supply with Increased Participation 11
3.1 Regional Economic Flows .. 23
3.2 Equation Flow Diagram .. 24
3.3 Production Nest... 27
3.4 Local Household Nest... 33
4.1 Benchmark Output (Shares).. 42
4.2 Benchmark Income Distribution... 50
4.3 Benchmark Worker Shares ... 60
5.1 Low Skilled Workers - Simulation 1 ... 73
5.2 High Skilled Workers - Simulation 1.. 73
5.3 Percentage Change in Income - Simulation 1... 74
5.4 Low Skilled Workers - Simulation 2 ... 77
5.5 High Skilled Workers - Simulation 2 ... 78
5.6 Percentage Change in Income - Simulation 2 ... 78
5.7 High Skilled Workers - Simulation 3 ... 79
5.8 Low Skilled Workers - Simulation 3 ... 80
5.9 Percentage Change in Income - Simulation 3... 80
5.10 Low Skilled Workers - Simulation 4 81
5.11 High Skilled Workers - Simulation 4 81
5.12 Percentage Change in Income- Simulation 4 82
5.13 Low Skilled Workers - Simulation 5 83
5.14 High Skilled Workers - Simulation 5 83
5.15 Percentage Change in Income - Simulation 5 84
6.1 Local Household Income (\$M) 97

CHAPTER I

INTRODUCTION

Problem Statement

Throughout the U.S., regional communities tout economic growth as the panacea for all that ails. Economic development holds the promise of an increased tax base, increased quantity and variety of jobs, more amenities and a greater sense of community pride. The terms "development" or "growth" are often used to justify state, local, or even federal tax policies or business location incentives. Many Americans accept the idea that "if growth depends on the passage of a particular initiative then I must vote for the initiative...," whatever the initiative is. This willingness to support these "growth" initiatives is puzzling given that there is disagreement among regional economists about the nature and beneficiaries of such initiatives.

This "beneficiary" question might be of particular interest to low-income residents of a city, county, or other community considering a new pro-growth package aimed at attracting new business. Conventional wisdom holds that new jobs will attract migrants who relocate due to employment prospects or real-wage differentials. Indeed, Bartik (1991) finds that 77 percent of all new jobs within a state go to in-migrants. Topel (1994) and Greenwood (1997) found evidence that higher skilled workers exhibit greater propensities to migrate and thus quickly move to take advantage of local labor demand policies. Where does this leave lower skilled laborers? Certainly persistent poverty areas
are testimonies to the inability or perhaps unwillingness of low income or low skilled laborers to relocate to take advantage of better prospects. How do these mobility issues impact high and low skilled workers, and, in the end disparate households? If such policies are implemented, do the local laborers actually receive the benefits or do the benefits primarily accrue to migrants or even commuters?

Existing regional economic models inadequately address the effectiveness of development policies. They tend to focus on aggregate growth benefits but fail to address the specific income benefactors. Input-output models are inadequate due to general elastic labor supply assumptions. The elastic assumptions derive from perfect labor mobility assumptions. While this may be largely true in the U.S., input-output models shed no light on the magnitude of the benefits that accrue to original residents.

Econometric models lack detailed industry composition and linkages. Insufficient time-series data exist to econometrically reveal all the channels of influence between regional and extra-regional labor markets. Morgan, Mutti and Partridge (1989) argue that econometric models are incapable of completely revealing structural interdependencies that exist in a local economy because of the absence of required time-series data on key features of regional economies. They are also much less able to establish the interdependencies that exist between local economies. Econometric models are better suited for estimating reduced-form relationships, e.g., the percentage reduction in the poverty rate for a percent increase in employment growth. This is of little assistance in the formulation of policies to promote job growth and income maximization for residents.

Regional Computable General Equilibrium (CGE) models are perhaps best suited to address this issue. They offer the flexibility to incorporate economic linkages and econometric behavioral estimates to implement a wide spectrum of assumptions. This flexibility allows the modeler to provide the appropriate level of detail where necessary to address very specific, and often, complex linkages.

To speak to the specific benefits of regional development policies, one must understand the impact of policy changes on local residents, commuters and migrants as well as changes to income distribution between dissimilar income groups. To date, the focus of most regional CGE models has been the broad community impacts of economic development or tax policy changes with little discussion of the issues listed above ${ }^{1}$. These existing regional models typically address household income in the aggregate as returns to aggregate factors of production (Morgan et al. 1989; Morgan et al. 1996; Groenewold et al 2003) or may even distinguish between rural and urban income as in the case of farm subsidy reduction policies (Kilkenny 1993) but fail to address the size distribution effects of policy changes. Kim and Kim (2003) address income distribution using 10 representative households but miss the mark by assuming a fully mobile homogeneous labor supply. This assumption removes the possibility of differing migration responses among heterogeneous labor groups to labor demand shocks. Given the assumption of homogeneous labor, it is difficult to distinguish who benefits from local demand policies - local (low-skilled) residents or new (high-skilled) migrants. Employing both heterogeneous households and skill groups would allow migration

[^0]responses to be accurately incorporated into the model yielding more accurate policy prescriptions ${ }^{2}$.

Study Objectives

This study attempts to quantify the affect of local development policies on local residents, commuters and migrants. A Computable General Equilibrium model for Oklahoma (OKCGE) is developed to address these effects. An additional component of the model is the distribution of these effects among nine distinct household types. These results will provide policymakers with more complete information to address specific community issues such as growth and income distribution.

The specific objectives of this study are:

1. To construct a consistent data set for a regional area that includes multiple households with disparate incomes, two labor skills and imports and exports.
2. To develop a general equilibrium model that addresses the broad effects of local development efforts to identify the benefactors of the initiative policies.
3. To discuss policy implications and suggest areas for further research.

Study Organization

The historical background for regional development policies and the underpinning assumptions for the model used in this study are outlined in Chapter 2. The model is derived and its technical features are discussed in Chapter 3. Chapter 4 details the specific data sources and development of the micro-consistent data set. Chapter 5

[^1]presents the specific results from simulations and Chapter 6 discusses the study conclusions and areas for further research.

CHAPTER II

THEORETICAL BACKGROUND

Who Benefits from Regional Development?

The question of who benefits from local development policies has been on the minds of researchers for some time. The issue is tightly integrated with other labor market questions that have garnered serious study. In 1971, a seminal paper written by Muth discussed whether labor migration caused job growth or job growth caused labor migration. This paper set off a vast series of studies addressing this same topic. Consider a local labor market. There is a supply of labor based on local residents, commuters, and, in the medium to long run, migrants. The demand for labor is derived from local production activities. Suppose there is an increase in labor demand. As the labor demand curve shifts to the right, the effects on wages and employment growth depend on the elasticity of the demand for labor and the elasticity of the labor supply. If the demand curve is relatively elastic and the supply curve is inelastic due to high participation rates and no migration possibilities, the increase in labor demand will lead to higher wages with little or no employment growth (see Figure 2.1). This position is untenable in the U.S. due to the mobility of labor.

Figure 2.1: Labor Market - Inelastic Supply

A second possibility in this argument is that a labor demand increase causes employment growth (and possibly wage increases). Suppose that the labor supply is relatively elastic due to potential migrants. Neo-classical analysis indicates that an increase in labor demand will increase employment through migration. The supply increase should continue until point B on Figure 2.2 is reached leaving wages unchanged and local residents unaffected. This stems from the nearly perfect mobility of the U.S. labor force (Blanchard and Katz, 1992). Indeed, Marston (1985) indicates that 'shocks that disturb the steady-state relationship among the unemployment rates of metropolitan areas tend to be eliminated by mobility within a year'.

Figure 2.2: Labor Market - Elastic Supply

There is another strain of research that indicates local job growth directly benefits local residents (Bartik, 1991, 1993, 2001, Partridge and Rickman, 2003). There are a couple of reasons for this view. First, Cross (1988) and Bartik (1991, 1993) point to possible hysteresis effects - movement from initial trend to a new permanent trend due to some known or unknown shock. Bartik (1993) puts it this way: 'Hysteresis effects may occur because short-run job experience increases human capital. For example, local growth may cause some local residents to have jobs in the short-run who otherwise would be out of work. These local residents learn skills and increase their self-confidence and reputation among employers. These local residents will be more employable in the longrun.'

Another argument for local resident effects stems from the possibility that labor migration responses are less than perfect, especially in the short-run. Partridge and Rickman (1997) point to dispersions in state unemployment rates as evidence for this argument. Eberts and Stone (1992) find that wage differentials are more persistent over time than unemployment differentials. Surely, wage and unemployment differentials can exist as other utility differentials such as amenities cause increased migration to some areas, but limit migration to others (Roback 1982, Beeson and Eberts 1989, Treyz et al. 1993, Rauch 1993). Indeed, unemployment rate differentials, wage differentials, and participation rate differentials all point to some labor market inflexibility.

Assuming some inflexibility for reasons listed above, labor market adjustment is multifaceted providing opportunity for local nonparticipants, migrants and commuters. Local nonparticipants benefit from local information concerning labor opportunities. Nonparticipants will move to fill excess labor demand if participation rates are low ${ }^{3}$. Where labor force participation rates are high, local residents are likely to receive less direct wage benefit of development policies.

Consider Figure 2.3. Suppose the labor demand curve shifts to the right as in $L_{D 1}$. Seeing new employment opportunities, local nonparticipants respond by increasing their supply of labor to $\mathrm{L}_{\mathrm{s} 1}$. Eberts and Stone (1992) ${ }^{4}$ state that employers adjust employment rather than wages in response to disturbances and that wage differentials exist longer than unemployment differentials between regions. At the current wage w_{0} and employment

[^2]N_{B} there still exists an excess demand for labor. In a full employment economy, excess labor demand alone isn't enough to entice migration to underserved areas (Partridge and Rickman, 1997). Likewise, potential commuters won't pursue opportunities that increase commute cost while providing no increase in their nominal wage. Indeed, choosing to pursue this commuting opportunity would yield a net wage loss indicating irrational behavior ceteris paribus.

When nonparticipants don't alleviate the entire excess labor demand, the excess demand leads firms to slowly increase wages $\left(\mathrm{w}_{1}\right)$ to attract additional workers. The increase in wages causes increased commuting as nominal wages less commuting costs outpace nearby nominal wages. Migrants respond when real wages increase relative to U.S. real wages. Wage, migration, participation, and commuting responses continue until final equilibrium is reached at C with wage w_{1} and employment N_{c}.

Figure 2.3: Labor Market - Elastic Supply with Increased Participation

What Figures 2.2 and 2.3 point out is that employment increases when labor demand shocks occur. When labor is fully mobile and responsive to excess demand, wages are unaffected as migration quickly responds to mitigate all excess demand as in Figure 2.2. When migrants are unresponsive to excess demand either because of full employment conditions nationally or for low amenity areas, increases in local labor force participation rates and commuting can increase the welfare of local and nearby residents. However, incomplete local and commuter responses may fail to alleviate the entire excess demand causing wage increases and thus long-term migration. The result is higher employment and wages as in Figure 2.3.

The Timing of Benefits

Identifying the timing of potential benefits to local residents is a difficult task subjective to a variety of local factors such as labor force participation rates, labor mobility and the proximity of potential commuters, local amenities and industry and labor skill mix. However, understanding the timing of the results would lead to benefits to both researchers and policymakers. First, the timing of the responses from each potential labor force participant cohort determines the magnitude of benefits that accrue to each. Knowing the magnitude of yearly responses by local nonparticipants sheds light on the adjustment of wages and thus the response of commuters and migrants. Second, policymakers might be more likely to participate in development policies if they know when the benefits could be expected. The nature of election cycles might affect the willingness of politicians to implement short versus long run policies.

Most studies concerning development policy benefits are undertaken using econometric methods and discuss only the long-run results. Bartik (1993) points out that most regress the change in employment rates, labor force participation rates or net migration rates on job growth over some period of time (Muth 1971, Bradbury et al. 1982, Plaut 1982, Greenwood and Hunt 1984, Gordon 1985, Greenwood et al. 1986, Summers 1986, Bound and Holzer 1991, and Eberts and Stone 1992). He states that the problem with these models is that they don't examine both the long and short run effects of job growth. He claims that only Bartik (1991, 1992), Gruidl and Pulver (1991), and Blanchard and Katz (1992) examine both the short and long run effects of job growth. Even still, they don't report the specific timing of the benefits.

While demonstrating that Input-Output (IO) models effectively replicate the long run results given by Computable General Equilibrium (CGE) models, McGregor, Swales and Yin (1996) estimate that the effects of job growth on the local economy are 95% complete by period 12. However, they don't differentiate the beneficiaries of those effects. They use a generic labor supply elasticity to represent labor responses to demand shifts. Additionally, there appears to be no correlation between their term "period" and an actual passage of time. This fails to provide the timeframe expectation policymakers require.

Providing an accurate account of the timing of specific responses is difficult because correct period-by-period econometric estimates are unavailable. In the opinion of this author, any attempt to model the timing of these responses using, for example, a dynamic CGE model is likely to lead to faulty assumptions and thus policies. For this reason a static CGE model is used to estimate the long run impacts only.

Income Distribution Effects

Another feature of the OKCGE is the determination of income distribution effects. The model includes nine household income groups and two labor skill sets. Treyz et al. (1993) found that employment possibility has a greater impact on migration than wages. Other studies (Flaim and Sehgal 1985, Topel 1986) point out a divergence in migration propensities between low and high skilled labor. Migration can be more costly (relative to income) to low income households than to higher income households. Certainly this divergence creates a discrepancy in outcomes for varying household groups. One would expect a policy targeted to low-income households to have a greater impact on local workers then one targeting high-income households.

Topel (1986) found that wages have the greatest variance among groups with the least mobility. This would lead one to conclude that in low participation/high poverty areas, changes in employment possibilities are likely to impact local low skilled employment more than regions where low skilled workers are fully participating and employed. Only when local low skilled markets become "tight" requiring increased wages will low skilled workers migrate. Including two skill sets provides the ability to report results on income distribution that would otherwise be omitted.

What is a Region?

To answer the fundamental questions of this paper, we must first decide what constitutes a region. Policymakers are likely concerned about the location of their voters. From this standpoint, one might consider sections of cities, entire cities, rural townships, counties, multi-counties, or even states (Blanchard and Katz, 1992). At some point, however, the size of the region is so large that specific regional policies may not provide relevance to all regional citizens. For instance, development policies implemented in the western half of a state may increase the income of western residents and provide a boost to statewide income measures, but leave eastern residents seeing only minimal to zero local impact. ${ }^{5}$

Perhaps the best way to delineate a region is to ensure the boundaries encompass the local labor market. In cities, a local labor market may be a central city, a central city and surrounding (midtown) areas, a group of suburbs, or perhaps a mix of all of the

[^3]above. Most studies ${ }^{6}$ define a city as a Metropolitan Statistical Area (MSA) due to data availabilities. An MSA often includes multiple counties clustered by proximity and labor markets. This study looks at the Oklahoma City MSA which includes the Oklahoma City labor market and therefore defines the region as the area that accounts for that labor market. The region is described in two parts - the central region which encompasses Oklahoma County, and the nearby region which includes the remaining counties surrounding Oklahoma County. The Oklahoma Department of Commerce estimates that the surrounding counties provide 25% of the Oklahoma City MSA labor market participants. The nearby region includes the following counties: Canadian, Cleveland, Grady, Lincoln, Logan and McClain.

Why Oklahoma County?

When policymakers define a policy for a specific region, they need to delineate the potential benefactors. In the U.S., many regions cross multiple city, county and sometimes state boundaries. Within each physical boundary there may be many political boundaries as well. Political boundaries provide unique regional decision areas responsive to the whims of local voters. If we assume that elected officials behave rationally, they seek to maximize their utility function, which requires that they win local elections. Assuming that politicians increase utility by winning elections, their fates may lie with their ability to increase the economic viability of their voter region of influence. As Haughwout and Inman (2002) point out, the nearby regional jurisdictions may have development goals that are joined directly or indirectly with those of the local region.

[^4]Specifically, they describe benefits that accrue to suburban areas from central city development. Quigley (2002) discusses cooperation among rural jurisdictions. Some of the more obvious benefits include centralized amenities such as entertainment, transportation networks (air, rail, access to interstates, etc.), social organizations, and other civic and private enterprises. Many of these amenities serve to make the central city more productive by attracting a skilled labor force and increasing various agglomeration effects. These agglomeration effects may accrue to a smaller degree to the nearby suburban areas as increased population leads to decentralized demand for civic and business services and amenities. Additionally, increased population leads to a larger tax base and economic growth. Much of the growth can be attributed directly to increased income from workers who reside within the suburb and commute to the central city. In this case the growth of the central city can directly impact suburban income.

In a metropolitan area, commuters play a significant role in the labor market. The availability of a large commuter pool provides policymakers opportunities to participate in broader regional initiatives due to a larger pool of potential beneficiaries. However, suburban policymakers may be reluctant to cooperate with metropolitan initiatives for two reasons. First, they are likely to benefit from the passage of metropolitan growth initiatives whether they provide support for the initiatives or not (the classic free-rider problem). There is little incentive for them to provide financial support if they perceive the central city will fund the initiative alone. Second, suburban policymakers have difficulty quantifying the benefits. Politicians are unlikely to provide funding without adequate quantification. This study will provide an estimate of the
direct income benefit that accrues to nearby regions due to increased commuting to the central metropolitan area.

The state of Oklahoma has five Metropolitan Statistical Areas ${ }^{7}$. With the exception of Oklahoma City and Tulsa, Oklahoma MSAs are relatively small and have largely rural commuter pools. The Oklahoma City MSA has the largest labor force (571,166 participants ${ }^{8}$) and is the most central, pulling commuters from most of the counties throughout the state. As outlined in Chapter 4, Oklahoma County has a significant number of workers already commuting from the surrounding counties, indicating that regional cooperation is a potentially attractive option likely to yield growth benefits to all of central Oklahoma. Oklahoma County provides a unique opportunity to study the important questions addressed in the study.

The majority of U.S. production, consumption and labor force data are organized at the county level. The Minnesota IMPLAN Group consolidates county level data from a variety of government and private sources to obtain a balanced database also organized at the county level directly reflecting the organization choices of the input data sources. These organization issues require that the model be built around Oklahoma County rather than the Oklahoma City MSA.

CGE Analysis

Regional economists have many modeling tools at their disposal to address a variety of local and state questions. Some of the more popular include input-output

[^5]analysis, export base analysis, econometric analysis and forecasting, and CGE modeling. Input-output (IO) analysis is frequently used in impact studies to estimate long run output and employment effects deriving from some policy stimulus or business endeavor. IO analysis is appropriate when the general structure of the economy is assumed to remain constant and slack resources exist in the short run or capital and labor are perfectly mobile in the long run (McGregor, Swales and Yin, 1996). Examples of IO use include impact studies of sports teams, constructions projects, universities, and development organizations on local or state economies.

Economists often use IMPLAN, RIMS or other IO tables to calculate direct, indirect and induced effects that derive from a specific project. IO tables employ fixed proportion production and consumption coefficients to provide an estimate of the direct changes to production and consumption resulting from the policy change. Keynesian multipliers are calculated and used to estimate indirect growth due to the additional expenditure resulting from increased household and firm income. The technology does not allow substitution of inputs or changes in prices making it unsuitable for studying policy effects when resources are constrained. In the absence of slack resources, Keynesian multipliers tend to overstate aggregate effects as the availability of inputs limits production. Neo-Classical theory would require price adjustments resulting from input shortages leading to input substitution and more modest growth. IO analysis lacks this flexibility and is unsuitable for this effort.

As stated earlier in this chapter, most studies of migration and local labor markets tend to be econometrically based and long run focused. Econometric models yield important results but lack flexibility when modeling specific features. In some
circumstances they are excellent for estimating elasticities or aggregate results but lack the theoretical underpinnings necessary to model specific economic linkages required for model flexibility and detailed reporting. This inability renders an econometric implementation inappropriate.

There is a long tradition of using CGE models to address a variety of policy questions. Their mathematical flexibility provides the pallet necessary to model a wide swath of behavior not available using other techniques such as input-output or econometric analysis. Indeed, CGE models can and often do incorporate the economic linkages of IO models while allowing empirically tractable substitution and feedback effects inherent in econometric models. They are quite popular for tax policy analysis (Ballard et al. 1985, Shoven and Whalley 1992, Iregui 2001), development policy analysis (Dervis et al. 1982, Lofgren et al. 2002), poverty reduction analysis (Adelman and Robinson 1979, Filho and Horridge 2004), and statewide policy analysis (Berck, Golan, and Smith 1997).

CGE models are tailored to meet the needs of the analyst. For instance, tax policies may be concerned with revenue generation and economic loss due to changing tax scenarios, but less interested in development or income distribution effects. Poverty reduction policies may be less interested in tax revenue or overall economy effects and more interested in size distribution effects. As such, the specific interest of the modeler dictates the model details. CGE models allow each analyst to tailor the economic details to address each question specifically without concern for tertiary policies or results.

The OKCGE is designed to provide understanding about the regional effects of local development policy on the implementing and surrounding (and perhaps cooperating) regions. Specifically, the questions addressed by the OKCGE are:

1. What benefits accrue to local residents from development?
2. How much income accrues to surrounding counties?
3. What impact do development policies have on the distribution of local income?

These specific questions are addressed using a CGE model that incorporates regional income and expenditure linkages and a detailed local labor market that specifically models local, commuter and migrant worker behavior.

CHAPTER III

REGIONAL CGE MODEL SPECIFICATION

To assess the regional benefits of development policies, a multi-nested CGE model must be used to assess the intricacies of firm and household decisions. Firms are the primary producers of goods and services and households derive utility from consuming goods and services and spending time in leisure activities. In addition to local households and firms, economic agents who exist outside the study region actively participate in the regional model. Extra-regional firms provide goods and services that are imported by local households for consumption and local firms for use in the production process as intermediate goods. Extra-regional households participate in the domestic region as migrants and commuters who make location and commuting decisions based on regional real wages and amenities. Other facets of any CGE model that must be addressed include saving and investment and federal and local government decisions. Each is developed in detail later in this chapter.

The model uses a consistent syntax for greater readability. Variables begin with capital Latin letters. All subscripts are excluded except where uniquely required for ease of reading. Price variables begin with a capital "P" and contain a descriptive language consistent with the related quantity variables. Lower case Greek letters/words are used to denote empirical and calibrated parameters. Most parameters include additional English
descriptors to enhance readability. Benchmark values of all variables are denoted with lower case Latin letters and end in the number zero. Model equations, parameter and variable definitions are given in Appendix A.

The OKCGE is a traditional static CGE model that reports long run results derived from dynamic flows of capital and labor into the region. It incorporates the usual flows of goods, income, and inputs. Figure 3.1 represents the regional flows represented in the model.

Firms produce commodities using value added factors and intermediate inputs. Firms supply commodities to, and purchase intermediate inputs from extra-regional and local sources. Local demand for commodities comes from firms (intermediate inputs), households, and local and federal governments. Local firms also fulfill a portion of investment demand.

Households purchase goods for consumption using income from factors supplied and other exogenous income sources. ${ }^{9}$ Local households and commuters own the initial labor endowment of both skilled and unskilled labor. Labor demand shocks can be met by increased labor force participation rates, migration or increased commuting.

The specific model equations are detailed within this chapter. A comprehensive equation flow diagram is included below as Figure 3.2 for quick reference.

[^6]Figure 3.1 - Regional Economic Flows

Figure 3.2 - Equation Flow Diagram

Production

The production technology is multi-tiered to represent the complexity of assumptions for the regional economy. At the top of the production 'nest,' is sectoral production. A Leontief production function is used for complementary input of intermediate goods and value added factors. Production sectors determine the quantity of value added and intermediate goods inputs based on benchmark shares and sectoral output.

Below the top level Leontief function, the model aggregates capital and aggregate labor into a Value Added Constant Elasticity of Substitution (CES) function. Capital is nonspecific while labor is the aggregate of two labor skill types, high and low skilled labor (see Chapter 4 for detailed specification). These skill types are aggregated at a lower level of the production nest via another CES function. The Value Added CES function incorporates aggregated labor from the lower level nest and capital. The Value Added CES function allows for smooth substitution between aggregate labor and capital based on an empirical elasticity of substitution.

Locally produced or imported goods may be used as intermediate inputs. An Armington (1969) CES function is used to determine the quantity of imported intermediate input goods. This function allows for imperfect substitution of local and imported goods based on price and perceived quality differences.

Local production is consumed locally or exported. Typical international CGE models incorporate a Constant Elasticity of Transformation (CET) function to transition production from local to export goods as exported goods typically have different quality requirements based on export region. However, as Berck et al. point out (1997), in a U.S.
regional model, most exports are shipped within the U.S. Because of largely universal standards within the U.S. most regional exports tend to have little variance with regard to quality. Therefore a CET function is not necessary. The entire production nest is graphically represented in Figure 3.3.

Figure 3.3: Production Nest

The model includes 20 firms representing 19 aggregated production sectors and one aggregated government. Each firm maximizes a fixed-coefficient (Leontief) production function. For every dollar of production, the firm chooses a fixed fraction of value added factors of production and intermediate input goods as inputs into the production process. The firms' production function is given by:

(3.1) TotalOutput $=\min ($ ValueAdded/VACoefficient, Intermediate/INTCoefficient)

Here, TotalOutput represents total production for a given sector i. All sectors incorporate the same production function. ValueAdded represents aggregate value added factors to meet sectoral demand and Intermediate represents aggregate intermediate inputs required by the sector. VACoefficient and INTCoefficient represent the Leontief shares of each input.

Value Added

At the second level of the nested production function, two value added factors of production, capital and aggregate labor, are combined via a Constant Elasticity of Substitution (CES) aggregator function.

(3.2) TotalOutput $=\alpha F\left(\gamma F \cdot \text { CapitalDemand }^{-\rho F}+(1-\gamma F) \cdot \text { LaborDemand }^{-\rho F}\right)^{-1 / \rho F}$

Where αF is a CES shift parameter, γF is a CES share parameter and ρF is a transformation of the CES elasticity of substitution σ F such that:

$$
\text { (3.3) } \sigma F=1 /(1+\rho F)
$$

For each level of output the firm faces value added costs equal to the dollar value of capital and aggregate labor inputs. The dual problem faced by the firm is the minimization of these costs subject to the CES aggregator function given in (3.2). This is represented by the LaGrangian function:
(3.4) \mathcal{L} CapitalDemand, LaborDemand, λ) $=$ PLabor \cdot LaborDemand + PCapital \cdot

CapitalDemand $+\lambda \cdot\left(\right.$ TotalOutput $-\alpha F\left(\gamma F \cdot\right.$ CapitalDemand $^{-\rho F}+(1-\gamma F) \cdot$ LaborDemand $\left.{ }^{-\rho F}\right)^{-1 / \rho F}$)

By differentiating (3.4) with respect to the value added factors and the LaGrange multiplier λ, the individual factor demands are determined. Capital demand is given by:
(3.5) CapitalDemand $=\gamma F^{\text {of }} \cdot$ PCapital $^{-\sigma F} \cdot\left(\gamma F^{\sigma F} \cdot\right.$ PCapital $^{(1-\sigma F)}+(1-\gamma F) \cdot$ PLabor $^{(1-}$ $\left.{ }^{\sigma F}\right){ }^{\sigma F /(1-\sigma F)} \cdot($ TotalOuput/ $\alpha F)$

Aggregate labor demand is given by:
(3.6) LaborDemand $=(1-\gamma F)^{\sigma F} \cdot$ PLabor $^{-\sigma F} \cdot\left(\gamma F^{\sigma F} \cdot\right.$ PCapital $^{(1-\sigma F)}+(1-\gamma F) \cdot$ PLabor $^{(1}$
$-\sigma F))^{\sigma F /(1-\sigma F)} \cdot($ TotalOuput/ $\alpha F)$
Aggregate labor price is given by the labor demand zero profit equation (3.7). Each firm's aggregate labor price is determined by the quantity and price of high and low skilled labor employed. Aggregate labor demand is the sum of low and high skilled labor demanded.
(3.7) PLabor \cdot LaborDemand = PLaborH \cdot LaborHDemand + PLaborL \cdot

LaborLDemand

The model further segregates labor into two skill types - high and low skilled. Demand for each skill type is derived similarly to capital and aggregate labor above with the dual problem of minimizing labor expenditure subject to the CES aggregator function for high and low skilled labor. Producer cost minimization requires that demand for each labor skill type be given by (3.8) and (3.9) respectively:
(3.8) LaborHDemand $=\gamma L^{\sigma_{L}} \cdot$ PLabor $^{-\sigma_{L}} \cdot\left(\gamma^{\sigma_{L}} \cdot P L a b o r H^{\left(1-\sigma_{L}\right)}+(1-\gamma L)\right.$. PLaborL ${ }^{\left(1-\sigma_{L)}\right)}{ }^{\left.\sigma_{L /(1}-\sigma_{L}\right)} \cdot($ LaborDemand $/ \alpha L)$

```
(3.9) LaborLDemand \(=(1-\gamma L)^{\sigma_{L}} \cdot\) PLabor \(^{-\sigma_{L}} \cdot\left(\gamma L^{\sigma_{L}} \cdot P L a b o r H^{\left(1-\sigma_{L}\right)}+(1-\gamma L)\right.\).
    PLaborL \(\left.{ }^{1}-\sigma_{L}\right){ }^{\sigma_{L}\left(1-\sigma_{L}\right)} \cdot(\) LaborDemand/ \(\alpha L)\)
```

Where LaborHDemand represents high skilled labor demand, LaborLDemand is low skilled labor demand, PLaborH is the price of high skilled labor and, PLaborL is the price of low skilled labor. The Greek parameters are labor aggregator versions of the parameters given in the value added equation (3.2).

Intermediate Goods Demand

Intermediate goods are purchased from local and imported sources. Imports are considered imperfect substitutes for local goods for producers, consumers, and investors. As such, producers, consumers, and investors choose between imported and locally produced goods using a common Armington (1969) function. The Armington function is specified later in this chapter.

Given import and local goods choices as determined by the Armington function, firms choose composite intermediate goods for input into the production process based on an input-output fixed coefficient matrix:

(3.10) InputOutput $_{i j}=$ Intermediate $_{i j} /$ TotalOutput $_{i}$

Here, InputOutput ${ }_{i j}$ represents the dollar input of intermediate good j for every dollar output of good i. InputOutput is determined by benchmark values and serves as an exogenous parameter in the model.

Exports and Zero Profits

Each firm has the choice of selling its commodities on local or extra-regional markets. As stated above, international firms typically produce different goods for local and foreign use for a variety of reasons such as differing quality or environmental standards or perhaps just different preferences. Because regional exports are produced largely for consumption within the U.S., standards and preferences are chiefly the same and thus local firms typically don't differentiate between export and local production. Therefore, production (TotalOutput) is used for both local and extra-regional consumption without the need for a separate Constant Elasticity of Transformation (CET)
function. Export demand is determined by changes to relative prices and export demand elasticity. The export demand equation is:

$$
\text { (3.11) ExportDemand = exportdemand0 } \cdot\left(\text { PWorld / POutput) }{ }^{\sigma x p}\right.
$$

Where ExportDemand represents export demand, exportdemand0 represents the benchmark value of exports, PWorld is the exogenous world price of the particular good, POutput is the endogenous price of the particular good and $\sigma \exp$ is the elasticity of export demand.

Finally, as is typical in CGE models, constant returns to scale for firms is assumed and thus each earns zero economic profits. The firm's zero profit function is:
(3.12) POutput \cdot TotalOutput $=$ PCapital \cdot CapitalDemand + PLaborH \cdot

LaborHDemand + PLaborL \cdot LaborLDemand $+\Sigma_{j}$ InputOuput ${ }_{j i} \cdot$ TotalOuput \cdot
PComposite + misccost0
Households maximize utility through the consumption of goods, services and leisure. The household nest is three-tiered. At the top of the household nest, households maximize utility by choosing between consumption goods using a CES utility function. The total of all income net of taxes, transfers, and savings is spent on composite goods as aggregated by the Armington aggregator function. Household savings shares are calculated as fixed proportions of disposable income from base year data. The local household nest is given in Figure 3.4.

There are nine household classifications based on household income as given by IMPLAN. Each household maximizes utility based on total consumption of goods. Each
chooses the optimal goods/leisure bundle subject to their budget and time constraints. ${ }^{10}$ Each household is made up of workers of one (in one case two) skill type based on income. The breakdown of labor by skill type is covered in Chapter 4.

[^7]Figure 3.4: Local Household Nest

Household consumption expenditure is equal to total household income less taxes, transfers, and saving. Total household income is:

(3.13) HHDIncome $=$ PCapital \cdot HHDCapitalSupply + PLaborH \cdot HHDLaborHSupply
 + PLaborL \cdot HHDLaborLSupply

Where HHDIncome is total household income, HHDCapitalSupply is capital owned by the household, HHDLaborHSupply is high skilled labor supplied by the household and HHDLaborLSupply is low skilled labor supplied by the household. Consumption expenditure is given by disposable income net of taxes, transfers and saving:

$$
\text { (3.14) CBUD }=(1-m p s) \cdot \text { HHDIncome }
$$

Where CBUD is disposable income and mps represents the fixed share of income that goes to taxes, transfers and savings.

Households spend their entire consumption budget on the 20 goods and services. The expenditure mix is determined by a CES utility function as defined in Shoven and Whalley (1992):

$$
\begin{aligned}
& \text { (3.15) } \text { HHDConsumption }_{i}=\text { acons }_{i}^{\text {ocons }} \cdot \text { CBUD } \\
& \text { /PComposite }_{i}^{\text {ocons }} \cdot \Sigma_{j} \alpha c o n s_{j} \cdot \text { PComposite }_{j}^{(1-\sigma c o n s)}
\end{aligned}
$$

Where α cons is a consumption share parameter and σ cons is an elasticity of substitution parameter.

Government

IMPLAN gives federal and state and local government expenditure data. The federal data is used to set the exogenous level of federal government expenditure that is used to clear the goods market. The federal expenditures are fixed, as they are not dependent upon regional changes. Benchmark state and local government expenditures are used to set initial expenditure levels. Changes in government expenditure depend directly upon changes in regional income as the state has a balanced budget requirement. Government participation is relegated to local consumption of final demand composite goods. Federal expenditure is given by:

(3.16) FederalGovtDemand $=$ fedgovtdemand0

State and local expenditures are given by:

(3.17) StateLocalGovtDemand $=$ statelocalgovtdemand0 $\cdot($ TotalOutput $/$ totaloutput0)

Saving and Investment

Within the U.S., capital is assumed to be perfectly mobile. This assumption implies that local saving and local investment are unrelated. Capital moves freely from region to region to equilibrate investment returns. Thus, local saving is unimportant with regard to model results and is therefore not specifically modeled. Investment is
determined by capital requirements relative to initial investment levels and capital requirements.
(3.18) Investment $=$ investment0 $\cdot($ CapitalDemand / capitaldemand0)

Likewise, investment demand for local goods is proportional to total investment:
(3.19) InvestmentDemandLocal = investmentdemandlocal0•(Investment / investment0)

Armington Function

There is one primary Armington function that aggregates local and imported goods into composite goods. These composite goods become the supply of local goods used for intermediate inputs, household consumption, government demand, and investment demand. According to the Armington assumption, there is an "aggregator" firm that minimizes its total cost:
(3.20) PWorld •ImportDemand + PLocal-LocalDemandForLocal

Subject to the constant elasticity of substitution production function:

$$
\begin{gathered}
\text { (3.21) CompositeGood }=\alpha A \cdot\left(\gamma A \cdot \text { ImportDemand }^{-\rho_{A}}+(1-\gamma A)\right. \\
\left.\cdot \text { LocalDemandForLocal }{ }^{-\rho_{A}}\right)-1 / \rho_{A}
\end{gathered}
$$

Minimizing (3.20) subject to (3.21) leads to the following supply equations for imported and local goods:
(3.22) ImportDemand $=\gamma A^{\sigma_{A}} \cdot$ PWorld ${ }^{-\sigma_{A}} \cdot\left(\gamma A^{\sigma_{A}} \cdot P W o r l d\left(1-\sigma_{A}\right)+(1-\gamma A)^{\sigma_{A}}\right.$. PLocal $\left.{ }^{\left(1-\sigma_{A}\right)}\right)^{\sigma_{A} /\left(1-\sigma_{A}\right)} \cdot($ CompositeGood / $\alpha A)$

```
(3.23) LocalDemandForLocal \(=(1-\gamma A)^{\sigma A} \cdot\) PLocal \(^{\sigma A} \cdot\left(\gamma A^{\sigma A} \cdot\right.\) PWorld \(^{(1-\sigma A)}+(1-\gamma A)\)
\({ }^{\sigma A} \cdot\) PLocal \(\left.^{(1-\sigma A)}\right)^{\sigma A /(1-\sigma A)} \cdot(\) CompositeGood/ \(\alpha A)\)
```

The following zero profit function completes the Armington aggregation:

(3.24) PComposite \cdot CompositeGood = PWorld \cdot ImportDemand + PLocal \cdot LocalDemandForLocal

Market Equilibria

There are three factor markets and one commodity market for each commodity in the model. In general, equilibrium is attained by price adjustment. In the case of the goods markets, the composite commodity prices adjust to clear the markets. In the capital market, the capital supply is perfectly elastic due to the perfect mobility of capital outlined in the investment section. Therefore, the supply of capital is equal to the sum of capital demanded by all firms and the price of capital is fixed at one.
(3.25) CapitalDemand = CapitalSupply
(3.26) PCapital = 1

Each labor market clears similarly:
(3.27) LaborHDemand = LaborHSupply
(3.28) LaborLDemand = LaborLSupply

Goods market clearance requires that demand for composite goods equal the supply of composite goods as given by the Armington equations above and that demand for locally only produced goods equals the supply. The Armington composite good clearance
condition is given in equation (3.29) and the total local production clearance is given in equation (3.30).

(3.29) CompositeGood $=\Sigma_{j}\left(\right.$ InputOutput ${ }_{i j} \cdot$ TotalOutput $)+$ StateLocalGovtDemand + HHDConsumption + InvestmentDemandLocal + MigrantLConsumption +

 MigrantHConsumption + fedgovtdemand0(3.30) TotalOutput $=$ ExportDemand + LocalDemandForLocal

Price Deflator

The price deflator is used to estimate regional cost of living. Regional cost of living estimates provide information necessary for calculating real regional wages relative to the rest of the U.S. To calculate the regional cost of living, a standard Consumer Price Index (CPI) is used.
(3.31) CPI $=\left(\Sigma_{i}\right.$ PComposite $_{i} \cdot$ compositegood0 $\left._{i}\right) /\left(\Sigma_{i}\right.$ pcomposite $_{i} \cdot$ compositegood0 $\left._{i}\right)$

Labor Supplies

Total labor supplied for each skill type is the sum of local and commuter labor. Local labor is supplied by households who reside within the study region. It is dynamic in that participation rates increase as opportunities increase and local households change as migration occurs. Commuter labor belongs to households who reside in the nearby region and is a source of income for that region.

Labor Force Participation

Labor force participation depends on the consumption/leisure decision that individuals weigh. As real wages increase, labor force participation increases relative to
initial participation rates and the elasticity of participation. This is true for both labor skills as outlined in equations (3.32) and (3.33).
(3.32) LocalHLabor $=$ localhlabor0 $\cdot((\text { PLaborH } / \text { CPI }) /(\text { plaborh0 } / \text { cpi0 }))^{\text {olaborh }}$
(3.33) LocalLLabor $=$ localllabor0 $\cdot((\text { PLaborL } / \text { CPI }) /(\text { plaborl0 } / \text { cpi0 }))^{\text {olaborl }}$

Labor Migration

Migrants respond to regional amenity adjusted real wage differentials. Assuming world real wages are constant relative to the study region implies that regional inmigration would occur as regional real wages increase. The amount of migration depends on the wage differential and the labor migration elasticity. The labor migration equations are similar to those in Schreiner (1999):
(3.34) MigrantLaborHSupply =laborHsupply0 \cdot sigmaLaborH $\cdot \log (($ PLaborH / CPI) / (plaborh0 / cpi0))
(3.35) MigrantLaborLSupply = laborLsupply0 sigmaLaborL $\cdot \log ((P L a b o r L / C P I) /$ (plaborl0 / cpi0))

Commuters

While local participants and migrants respond to real wage changes, commuters are unconcerned about local cost of living conditions as their primary residence and thus the majority of their consumption decisions occur within their "commute from" region. Therefore, commuters are responsive to regional changes in nominal wages only.
(3.36) CommuterHLabor $=$ commuterhlabor0 $\cdot(\text { PLaborH } / \text { plaborh0 })^{\text {ocomlaborh }}$
(3.37) CommuterLLabor $=$ commuterllabor0 $\cdot(\text { PLaborL } / \text { plaborl0 })^{\text {ocomlaborl }}$

The regional labor supply is then the sum of participants, migrants and commuters:

$$
\begin{gathered}
\text { (3.38) LaborHSupply }=\text { HHDLaborHSupply }+ \text { MigrantLaborHSupply }+ \\
\text { CommuterHLabor } \\
\text { (3.39) } \text { LaborLSupply }=\text { HHDLaborLSupply }+ \text { MigrantLaborLSupply }+ \\
\text { CommuterLLabor }
\end{gathered}
$$

Migrant and Commuter Consumption

The model does not incorporate direct commuter consumption due to difficulty assessing their local consumption patterns and the fact that their primary residence exists outside the local region. Migrants become local consumers once they arrive in the local region. The model incorporates two migrant households to capture the consumption activities of low and high skilled workers. It is assumed that migrant consumption patterns mirror those of the original low and high-income household residents. For simplicity, low skilled migrant consumption behavior mirrors household 4 and high skilled migrant consumption behavior mirrors household 7. The two migrant household consumption equations are:

$$
\begin{aligned}
& \text { (3.40) } \text { MigrantHConsumption }_{i}=\alpha c o n s_{i}{ }^{\text {ocons. }} \text {.(MigrantLaborHSupply / }
\end{aligned}
$$

(3.41) MigrantLConsumption $_{i}=\alpha c o n s_{i}{ }^{\text {orons }}$.(MigrantLaborLSupply /
HHDLaborLSupply) \cdot CBUD / PComposite $i_{i o n s}^{\sigma r o n s} \cdot \Sigma_{j}$ acons $_{j} \cdot$ PComposite $_{j}^{(1-\sigma o o n s)}$

CHAPTER IV

DATA DEVELOPMENT AND STRUCTURE

This chapter details the data sources used in developing the data and the creation of the micro-consistent data set. It also explains the calibration procedures for all parameters.

Data Sources

The primary source of data is the 2004 micro IMpact Analysis for PLANning (IMPLAN) ${ }^{11}$ database for Oklahoma County Oklahoma. IMPLAN was developed by the US Forestry Service and is currently maintained by Minnesota IMPLAN Group, Inc. The IMPLAN data was chosen because it is the most comprehensive source of data and data linkages for countywide regions available.

Other sources were used to augment the IMPLAN data in creating the initial OKCGE database. IMPLAN does not provide sufficient information to complete the model in two specific areas. First, IMPLAN provides no information concerning the breakdown of labor skills on either the producer or supplier (households, commuters, etc.) sides of the market. Second, it provides limited information concerning the number and residence of commuters. To address both of these deficiencies, the author used

[^8]external data to impute model values consistent with the actual Oklahoma County economy and that provide data set balance. Labor by skill input use was imputed from national shares derived from dollar payments to labor skills provided by the Bureau of Labor Statistics ${ }^{12}$. Commuter by residence and work location data was derived using IMPLAN household payment shares and actual commuter data provided by the Oklahoma Department of Commerce ${ }^{13}$. The details concerning actual data creation are outlined in the paragraphs that follow.

Micro-Consistent Database

CGE models use two primary methods of data input. The most widely used is the Social Accounting Matrix (SAM). SAMs provide a snapshot of the economy at a given point in time. They track all economic flows and are used to recreate the structural linkages within the economy. A SAM was created from the IMPLAN database for the given region under consideration. In this case, a SAM for Oklahoma County, OK was created using 2004 IMPLAN data.

Many times, models don't need every piece of data that a SAM contains. Depending on the desired economic structure, many of the SAM features such as exports for a closed economy or, say, federal government taxes/services, etc. aren't important for the project under study. In these cases, a micro-consistent data set can be used. The micro-consistent data set is a snapshot of the economic flows necessary to create the

[^9]conditions under study. The OKCGE uses a micro-consistent data set derived by the author from the IMPLAN SAM data ${ }^{14}$ and the other sources listed above.

Production Data

Production data
for Oklahoma County is calculated by summing total payments to each sector as extracted from IMPLAN industry-byindustry detail. Figure
4.1 illustrates the size of
 each local sector.

IMPLAN provides the data in different formats for different uses. These include industry-by-commodity detail as well as industry-by-industry detail. When specific commodity detail is required, the modeler should consider using the industry-bycommodity detail to ensure that all appropriate linkages for commodity production are incorporated. Many firms produce multiple commodities for sale in different markets. For example, Nike produces shoes and golf equipment. Industry-by-commodity detail would provide specific links between the sports equipment manufacturers and golf and shoe retailers.

[^10]This level of detail would be handy for reporting information about the impacts that a specific firm or firms who produce multiple goods from disparate sectors on a given locale. However, in a study such as the current undertaking, the higher level, dollar input per dollar output linkages are required. For intermediate inputs, only dollar input for dollar output by industry is required. This is readily available in the industry-by-industry detail. The industry data in
the OKCGE is aggregated to 20 producing sectors at the 2-digit NAICS level. GAMS sector codes for each industry are listed in Table 4.1.

Each sector produces goods for local consumption (10001 - 10009) ${ }^{15}$, local investment (14001, 14002), local (12001 - 12003) and federal government (11001 11003) consumption, export consumption (25001 - 28001) and intermediate input use. Each of these is determined by payments to the producing sector as outlined in the paragraphs that follow.

[^11]
Intermediate Demand

Sectors require intermediate goods to create the final products they produce. Intermediate goods come from a variety of sectors and locations. Some goods are produced locally and some are imported. Local intermediates are given in IMPLAN as payments from the producing sector to the intermediate goods sector. For instance, a transportation input into agriculture is listed as a payment from AGRI to TRAN.

Local producers require some inputs that aren't produced locally and thus must import these from outside Oklahoma County. Aggregation of these inputs is listed in the IMPLAN SAM in a format that provides insufficient detail to determine the specific intermediate input requirement of each sectoral input. For instance, total imported intermediate inputs for agriculture (AGRI) show up in the IMPLAN SAM as payments from AGRI to the rest of the world (ROW). However, the model requires specific information on each input industry. To model the economy, one must know how much of TRAN is required by AGRI. This includes both TRAN inputs produced locally and those imported into the region. The industry-by-industry import matrix details the specific industry inputs that are imported and, when added to intermediate inputs produced locally, provide the total intermediate input requirement for each sector. Intermediate input requirements are given in Tables 4.2 and 4.3. The production sector is given by column as the "payee" and the input sector is given by row.

Table 4.2: Intermediate Input Requirements - Local Inputs (Millions of U.S. Dollars)

		Purchasing Sector (Payment)									
		AGRI	MINE	UTIL	CONS	MFTG	WHOL	TRAN	RETA	INFO	FINC
	AGRI	0.666	0.035	0.000	0.243	29.671	0.005	0.001	0.013	0.007	0.001
	MINE	0.067	218.184	71.986	7.611	174.351	0.908	3.361	0.837	1.660	0.222
	UTIL	0.367	70.033	1.129	6.061	148.635	16.617	7.680	42.195	11.626	10.735
	CONS	0.106	0.410	19.708	1.609	20.984	5.628	5.509	12.259	11.760	10.255
	MFTG	1.856	181.835	13.069	152.909	1161.511	29.142	65.342	27.624	53.216	9.103
	WHOL	1.005	71.875	6.147	59.808	707.258	63.695	39.417	15.241	38.134	4.741
¢	TRAN	0.489	73.974	74.970	30.390	284.991	46.964	156.061	55.848	31.238	38.945
区্ष்	RETA	0.047	13.567	0.924	196.435	36.162	22.014	16.500	45.915	7.879	4.848
$\stackrel{8}{8}$	INFO	0.090	18.863	3.913	18.088	93.647	29.306	16.214	37.495	294.138	39.071
	FINC	0.405	60.312	8.945	24.302	124.168	34.688	33.759	55.486	31.707	704.619
\sim	REAL	1.242	212.210	4.647	23.198	104.262	58.866	44.685	148.635	60.314	106.536
$\stackrel{00}{5}$	PROF	0.489	132.705	25.476	95.026	354.594	96.521	52.102	137.097	173.585	148.996
I	MGMT	0.016	145.957	0.523	1.974	252.418	45.351	9.645	122.819	11.012	22.139
	ADMI	0.037	12.331	4.763	19.359	55.968	59.541	53.707	60.530	43.565	37.892
	EDUC		1.464	3.101	0.233	7.927	2.618	0.980	2.097	4.839	1.431
	HEAL							0.478	0.009		0.006
	ARTS	0.012	39.559	0.272	0.908	9.017	2.685	0.483	2.531	18.532	3.981
	ACCO	0.017	4.383	6.531	3.055	53.437	13.324	19.857	18.831	12.792	29.604
	OTHR	0.271	7.823	1.737	19.480	133.658	22.316	19.757	21.736	32.470	14.078
	GNNC	0.121	25.620	2.528	4.407	78.295	11.074	14.333	16.918	17.508	20.911

		Purchasing Sector (Payment)									
		REAL	PROF	MGMT	ADMI	EDUC	HEAL	ARTS	ACCO	OTHR	GNNC
	AGRI	0.365	0.022		1.154	0.002	0.139	0.054	1.887	0.060	0.039
	MINE	0.727	1.107	0.172	0.803	0.146	4.350	0.154	3.662	2.033	4.516
	UTIL	72.914	14.522	12.061	11.988	2.107	30.503	5.924	34.364	16.680	9.307
	CONS	40.797	8.648	7.363	2.799	7.699	15.381	3.279	10.972	11.626	43.912
	MFTG	20.174	35.553	6.557	25.377	4.595	134.142	4.940	111.572	62.325	24.440
	WHOL	8.819	15.851	2.435	18.281	3.574	61.304	2.571	65.547	27.694	11.927
.	TRAN	27.347	50.629	1.463	25.425	4.022	59.632	3.944	23.300	20.619	9.412
$\overline{\widetilde{U}}$	RETA	37.274	19.842	0.026	47.937	0.682	24.135	2.293	20.215	27.355	29.507
$\stackrel{1}{c}$	INFO	30.427	77.830	27.846	24.555	7.046	52.930	5.669	21.027	21.902	5.018
O	FINC	83.758	46.373	2.183	21.296	6.235	73.374	6.719	27.155	17.996	60.311
\sim	REAL	202.389	127.654	41.402	37.763	42.422	211.513	19.383	70.831	97.072	33.809
$\begin{aligned} & \text {.00 } \\ & \hline \end{aligned}$	PROF	113.239	230.040	82.918	60.484	10.365	130.832	16.357	44.564	44.436	35.746
응	MGMT	6.105	9.352		21.589	0.614	33.152	3.453	5.188	9.029	0.097
\%	ADMI	141.330	125.974	0.865	64.650	10.055	135.682	8.813	19.763	38.201	20.200
	EDUC	1.150	3.548		0.767	2.226	5.690	0.700	0.339	1.223	0.135
	HEAL		0.403		0.228	0.212	42.081	0.168	0.006	0.329	
	ARTS	3.801	11.667	0.148	2.972	0.916	3.556	26.858	7.563	3.976	0.152
	ACCO	23.495	45.799	0.102	17.111	1.436	64.204	1.589	15.168	7.985	0.654
	OTHR	26.319	24.157	12.651	24.083	3.639	27.177	5.466	14.650	17.395	19.389
	GNNC	31.507	11.993	4.877	6.430	1.544	16.563	2.343	13.497	8.184	6.234

Table 4.3: Intermediate Input Requirements - Imported Inputs (Millions of U.S. Dollars)

Purchasing Sector (Payment)

Purchasing Sector (Payment)

Value Added Demand

Value Added (VA) includes only capital and labor inputs. Capital inputs are derived from the IMPLAN SAM as payments from each sector to Other Property Income (7001). Labor inputs are determined by payments to Employee Compensation (5001) and Proprietor Income (6001). Labor is divided into skilled and unskilled labor based on national labor payments by industry ${ }^{16}$. Total VA requirements are given in Table 4.4.

Table 4.4: Value Added Requirements
(Millions of U.S. Dollars)

	Total Labor	High Skilled Labor	Low Skilled Labor	Capital
AGRI	14.0494	0.4159	13.6335	5.5139
MINE	1517.9547	338.6557	1179.2990	2232.5640
UTIL	277.0536	209.2586	67.7950	423.8078
CONS	921.8353	159.2931	762.5422	155.9931
MFTG	2385.1638	639.9394	1745.2244	910.1260
WHOL	993.9951	369.7662	624.2289	404.8234
TRAN	974.1135	167.8398	806.2737	172.0872
RETA	1297.4367	79.0139	1218.4228	325.5238
INFO	614.5794	420.1879	194.3915	460.6338
FINC	1126.4551	738.3913	388.0638	977.6404
REAL	596.5538	133.3894	463.1644	1124.9280
PROF	1664.8895	1046.3831	618.5064	205.4951
MGMT	333.0403	182.1730	150.8673	114.6357
ADMI	1015.5708	113.4393	902.1315	162.7832
EDUC	179.9020	116.2707	63.6313	29.8541
HEAL	2346.1216	893.8723	1452.2493	345.9371
ARTS	154.0085	14.4614	139.5471	46.2229
ACCO	603.5754	15.7533	587.8221	174.1708
OTHR	700.5389	64.9400	635.5989	143.2437
GNNC	5353.3060	2316.3755	3036.9305	1685.7330

[^12]In addition to value added and intermediate inputs, producing sectors make payments to other IMPLAN accounts that aren't individually modeled in the OKCGE. These payments are treated as miscellaneous payments by producers. They are included in order to balance the value of production with production income. They include direct payments to households, State and Local Government, Federal Government, and indirect business taxes. Payments to households (other than factor payments) typically represent household production. Household production is minor relative to industry production, is complex to model, and provides little insight into the primary objective of this study. Government activity is modeled relative to the size of regional income alleviating the need to specifically model tax or other government payments.

Table 4.5: Miscellaneous Producer Payments
(Millions of U.S. Dollars)

Sector	Miscellaneous Payment
AGRI	1.9330
MINE	391.0994
UTIL	141.2532
CONS	15.5113
MFTG	147.8410
WHOL	413.1466
TRAN	56.5018
RETA	455.0218
INFO	122.7390
FINC	107.0352
REAL	243.9794
PROF	41.6059
MGMT	7.2216
ADMI	27.7796
EDUC	7.9552
HEAL	45.2948
ARTS	28.7351
ACCO	105.7323
OTHR	84.5586
GNNC	252.2883

Household Aggregation

IMPLAN provides data for 9 distinct households. All nine households are used in the model to provide a

Table 4.6: Household Categories
rich range of income distribution analysis.

The 9 households are categorized in IMPLAN by household income as detailed in Table 4.6.

Household	Income Range	
HHD1	$<\$ 10,000$	
HHD2	$\$ 10,000$	$-\$ 15,000$
HHD3	$\$ 15,000-\$ 25,000$	
HHD4	$\$ 25,000-\$ 35,000$	
HHD5	$\$ 35,000$	$-\$ 50,000$
HHD6	$\$ 50,000$	$-\$ 75,000$
HHD7	$\$ 75,000$	$-\$ 100,000$
HHD8	$\$ 100,000-\$ 150,000$	
HHD9	$\geq \$ 150,000$	

Labor Supply

The IMPLAN SAM contains income inconsistencies that make determining actual labor income by skill determination for each household impossible without using external data and imputation techniques. IMPLAN uses household income data given by the Consumer Expenditure Survey ${ }^{17}$ and notes that problems exist with the fact that many households in lower income classes spend more than they earn. They attribute this to underreporting of income. IMPLAN acknowledges the deficiency and accounts for it in payments to capital as saving (or in this case dissaving). Coupled with the lack of labor

[^13]skill breakout, this problem requires that the household data be somewhat imputed. A description of the process is given in the following paragraphs.

Household labor supply was divided into high and low skilled categories based on the income of the household and the total local supply used by local producers. Labor by skill demanded is met by local households and commuters. The share of local labor requirements met by each was determined by the share of workers from each group who work in Oklahoma County. According to the Oklahoma Department of Commerce (2006), 72.4% of Oklahoma County labor requirements are met by households residing within the county. Thus, of the total labor expenditure by county producers, roughly $\$ 16,709$ billion is paid to local workers. This amount is divided among the 9 local households in shares equal to their IMPLAN labor income shares. Starting with the lowest income household (HHD1), low skilled labor income is allocated until all low skilled payments are exhausted. This implies that Households 1 through 6 are assumed to supply only low skilled labor. Households 8 through 9 are assumed to supply only high skilled labor. Household 7 supplies both low and high skilled labor. High and low skilled labor determination is discussed in the Value Added

Figure 4.2: Benchmark Income Distribution

Demand section earlier in this chapter. Table 4.7 details the allocation of high and low skilled labor income by household. Figure 4.2 shows the initial income distribution.

Table 4.7: Labor Income by Household and Skill (Millions of U.S. Dollars)

Household	Share of Local Labor Income	Calculated Labor Income	Low Skilled Income	High Skilled Income
HHD1	0.0126	210.8127	210.8127	0.0000
HHD2	0.0211	353.3550	353.3550	0.0000
HHD3	0.0704	1176.9281	1176.9281	0.0000
HHD4	0.0989	1652.7628	1652.7628	0.0000
HHD5	0.1582	2642.7952	2642.7952	0.0000
HHD6	0.2558	4273.8233	4273.8233	0.0000
HHD7	0.1464	2445.7362	589.0515	1856.6846
HHD8	0.1293	2159.8053	0.0000	2159.8053
HHD9	0.1072	1791.5084	0.0000	1791.5084

Income, Saving, and Consumption Demand

Traditionally, total household income is the sum of factor incomes plus miscellaneous income from interest, transfers, household production, etc. In this model, miscellaneous income is imputed to balance total income and consumption. Miscellaneous income is calculated as the (negative) difference between consumption expenditure and factor income. For lower income households, this yields a consumption budget exactly equal to factor income plus miscellaneous income (Marginal Propensity to Save (MPS) equal to zero). For Higher income households, factor income alone is greater than their consumption expenditures yielding a positive saving differential. Their MPS is calculated as their positive saving differential divided by their total income. As stated in Chapter 3 and outlined in the Saving and Investment section below, household
saving is not important in the regional model, as local saving does not equal local investment. Household income and consumption are detailed in tables 4.8 and 4.9 respectively.

Table 4.8: Income by Household (Millions of U.S. Dollars)

Household	Low Skilled Income	High Skilled Income	Capital Income	Misc Income	Total Income
HHD1	210.8402	0.0000	18.9758	1044.0992	1273.9151
HHD2	353.4011	0.0000	31.4129	519.7302	904.5441
HHD3	1177.0815	0.0000	104.4347	705.0759	1986.5921
HHD4	1652.9782	0.0000	148.0241	498.4743	2299.4766
HHD5	2643.1397	0.0000	238.5636	650.8201	3532.5234
HHD6	4274.3804	0.0000	392.1888	0.0000	4666.5692
HHD7	589.1283	1856.9267	225.5672	0.0000	2671.6222
HHD8	0.0000	2160.0868	198.4497	0.0000	2358.5365
HHD9	0.0000	1791.7420	160.3901	0.0000	1952.1321

Initial payments to local and import producers determine consumption demand.
These payments are combined to yield total consumption demand. The consumption budget (CBUD) is equal to total income multiplied by ($1-$ MPS) which happens to equal total initial consumption.

Table 4.9: Consumption Demand by Household
(Millions of U.S. Dollars)

Household	Local Consumption	Import Consumption	Total Consumption (and CBUD)	Income less Consumption	MPS
HHD1	921.3048	352.6103	1273.9151	0.0000	0.0000
HHD2	643.0572	261.4869	904.5441	0.0000	0.0000
HHD3	1440.7089	545.8832	1986.5921	0.0000	0.0000
HHD4	1634.8767	664.5999	2299.4766	0.0000	0.0000
HHD5	2518.8900	1013.6334	3532.5234	0.0000	0.0000
HHD6	2893.8500	1119.5942	4013.4442	653.1249	0.1400
HHD7	1836.2287	669.3715	2505.6003	166.0219	0.0621
HHD8	1436.2518	523.5656	1959.8174	398.7191	0.1691
HHD9	1036.2261	377.7417	1413.9678	538.1643	0.2757

Saving Dollars and Local Investment

Typical national CGE models link saving and investment to some degree. Limitations to capital mobility require that local saving provide a significant portion of loanable funds required for capital expenditures. At a regional level in the United States, the high degree of capital mobility allows loanable funds to flow in and out of the region seamlessly. This mobility provides for little relationship between local saving and capital investment. Therefore, local investment decisions are made based largely on national interest rates yielding no link between local saving and investment.

Benchmark investment by producers is determined by initial payments to capital (IMPLAN code 14001) and inventory (14002). Benchmark investment in capital goods is detailed in Table 4.10.

Table 4.10: Capital Investment by Local Producers (Millions of U.S. Dollars)

Investment Sector	Sectoral Investment Expenditure
AGRI	5.5139
MINE	2232.5640
UTIL	423.8078
CONS	155.9931
MFTG	910.1260
WHOL	404.8234
TRAN	172.0872
RETA	325.5238
INFO	460.6338
FINC	977.6404
REAL	1124.928
PROF	205.4951
MGMT	114.6357
ADMI	162.7832
EDUC	29.8541
HEAL	345.9371
ARTS	46.2229
ACCO	174.1708
OTHR	143.2437
GNNC	1685.7330

Investment Demand for Local Goods

Investment demand for local goods is determined by payments from capital (14001) and inventory (14002) to local sectors. Investment demand is detailed in Table 4.11.

Table 4.11: Capital Demand for Local Production (Millions of U.S. Dollars)

Sector	Demand for Sector Production
AGRI	0.024
MINE	281.384
UTIL	0.123
CONS	1518.111
MFTG	561.246
WHOL	216.490
TRAN	18.087
RETA	79.684
INFO	56.173
FINC	3.918
REAL	74.327
PROF	233.034
MGMT	
ADMI	0.512
EDUC	
HEAL	
ARTS	0.418
ACCO	0.183
OTHR	0.287
GNNC	16.233

Government

Government expenditure is determined by payments from state and local (12001, $12002,12003)$ and federal $(11001,11002,11003)$ government to local production sectors. Other government activities are not specifically modeled in the OKCGE. Government demand is detailed in Table 4.12.

Table 4.12: Government Demand for Local Production (Millions of U.S. Dollars)

Sector	State \& Local Gov't Demand	Federal Gov't Demand
AGRI	0.484188	0.000021
MINE	4.074497	3.201743
UTIL	90.591618	94.954879
CONS	622.378160	2.429542
MFTG	105.722650	104.508327
WHOL	63.442078	0.384841
TRAN	44.279659	0.399966
RETA	0.376602	6.710979
INFO	45.952435	36.326786
FINC	60.619661	3.590565
REAL	71.450091	0.957406
PROF	111.267450	332.105754
MGMT		
ADMI	60.803704	22.664710
EDUC	7.996143	22.924770
HEAL	15.868410	1.928122
ARTS	1.132114	0.655354
ACCO	44.512622	0.008594
OTHR	48.404536	50.493882
GNNC	2211.752048	2707.560763

Exports

The IMPLAN SAM provides export information on U.S. and extra-regional demand for local production. Extraregional exports are given

Table 4.13: Export Demand for Local Production (Millions of U.S. Dollars)

pa	(illions of U.S. Dollars)	
	Producing Sector	Total Export Demand
IMPLAN code 25001 and	AGRI	1.673
	MINE	6326.859
local (U.S.) exports are	UTIL	324.412
	CONS	0.182
given as payments from	MFTG	8924.067
	WHOL	355.201
	TRAN	721.355
IMPLAN code 28001.	RETA	557.421
	INFO	1549.479
These two categories are	FINC	1638.984
	REAL	709.698
	PROF	308.055
aggregated into one export	MGMT	49.626
	ADMI	783.331
demand payment for each	EDUC	80.151
	HEAL	1556.395
producing sector. Exports	ARTS	0.730
	ACCO	491.585
	OTHR	296.130
for each sector are given	GNNC	354.630

in Table 4.13.

Commuting

Like many U.S. regions, Oklahoma County relies on a significant number of commuters to augment the labor force. In 2006, roughly 26.9% of Oklahoma County workers came from outside the county. 25.1% of workers came from the surrounding counties of Canadian, Cleveland, Grady, Lincoln, Logan, McClain and Pottawatomie for roughly 91% of the total commuter work force. For Oklahoma workforce data, see

[^14]Table 4.14: County of Residence for Oklahoma County Workers ${ }^{18}$

County of Residence	Number Commuters	Shares
Adair	21	0.00537\%
Alfalfa	4	0.00102\%
Atoka	16	0.00409\%
Beaver	5	0.00128\%
Beckham	42	0.01074\%
Blaine	106	0.02712%
Bryan	41	0.01049\%
Caddo	489	0.12509\%
Canadian	25,060	6.41055\%
Carter	98	0.02507\%
Cherokee	44	0.01126\%
Choctaw	22	0.00563\%
Cimarron		0.00000\%
Cleveland	46,421	11.87487\%
Coal	26	0.00665\%
Comanche	303	0.07751\%
Cotton	14	0.00358\%
Craig	2	0.00051%
Creek	79	0.02021\%
Custer	177	0.04528\%
Delaware	70	0.01791\%
Dewey	11	0.00281\%
Ellis	4	0.00102\%
Garfield	170	0.04349\%
Garvin	553	0.14146\%
Grady	4,797	1.22711\%
Grant	9	0.00230\%
Greer	13	0.00333\%
Harmon		0.00000\%
Harper	13	0.00333\%
Haskell	19	0.00486\%
Hughes	90	0.02302\%
Jackson	22	0.00563\%
Jefferson	13	0.00333\%
Johnston	20	0.00512\%
Kay	95	0.02430\%
Kingfisher	759	0.19416\%
Kiowa	19	0.00486\%
Latimer	9	0.00230\%
LeFlore	32	0.00819\%
Lincoln	3,677	0.94061\%
Logan	8,367	2.14035\%

[^15]| Love | 17 | 0.00435% |
| :--- | ---: | ---: |
| McClain | 3,850 | 0.98486% |
| McCurtain | 24 | 0.00614% |
| McIntosh | 147 | 0.03760% |
| Major | 23 | 0.00588% |
| Marshall | 60 | 0.01535% |
| Mayes | 4 | 0.00102% |
| Murray | 85 | 0.02174% |
| Muskogee | 54 | 0.01381% |
| Noble | 109 | 0.02788% |
| Nowata | 11 | 0.00281% |
| Okfuskee | 179 | 0.04579% |
| Oklahoma | 283,105 | 72.42056% |
| Okmulgee | 32 | 0.00819% |
| Osage | 31 | 0.00793% |
| Ottawa | 3 | 0.00077% |
| Pawnee | 26 | 0.00665% |
| Payne | 693 | 0.17728% |
| Pittsburg | 106 | 0.02712% |
| Pontotoc | 171 | 0.04374% |
| Pottawatomie | 5,937 | 1.51873% |
| Pushmataha | 27 | 0.00691% |
| Roger Mills | 3,781 | 0.00077% |
| Rogers | 390,918 | 0.01663% |
| Seminole | 65 | 0.12969% |
| Sequoyah | 507 | 0.01049% |
| Stephens | 41 | 0.07393% |
| Texas | 289 | 0.00205% |
| Tillman | 8 | 0.00179% |
| Tulsa | 7 | 0.16269% |
| Wagoner | 636 | 0.00409% |
| Washington | 16 | 0.00691% |
| Washita | 27 | 0.01995% |
| Woods | 78 | 0.00051% |
| Woodward | 2 | 0.00819% |
| Resident Workers | 28 | 72.42056% |
| Tn State Commuters State Commorkers | | 0.7140% |

Because of data inconsistencies, these numbers do not match the employment numbers given by IMPLAN. However, the percentages can be used to impute commuter employment and income. According to IMPLAN, total labor payments by Oklahoma County producers were $\$ 23,070.143$ million. Multiplying the various sector payments by the national industry labor skill share matrix outlined in the Value Added section above yields total high and low skilled labor payments of $\$ 8,019.820$ million and $\$ 15,050.324$ million respectively. Because there is little information available on high versus low skilled labor commuting patterns in Oklahoma, it is assumed that high and low skilled labor have equal commuter shares for simplicity. Using the commuter/local worker percentages given by the department of commerce would yield $\$ 6,362.617$ million attributed to commuter labor of which $\$ 5,789.932$ million was imported from the counties directly neighboring Oklahoma County.

Table 4.15: Labor Dollars by Region (Millions of U.S. Dollars)

Residence of Workers	High Skilled	Low Skilled Aggregate Labor	
	$5,807.998$	$10,899.528$	$16,707.527$
Oklahoma County	$2,012.740$	$3,777.192$	$5,789.932$
Surrounding Region	142.027	266.535	408.563
Rest of Oklahoma	57.053	107.068	164.122
Out of State	$2,211.820$	$4,150.795$	$6,362.617$
Total Commuter Labor			
	$8,019.820$	$15,050.324$	$23,070.143$

Location shares of benchmark high and low skilled labor participants are illustrated in
Figure 4.3. Of course, migration occurs post policy, so initial migrant shares are zero.

Parameter Calibration

Within the OKCGE model, parameters are either input directly from IMPLAN data or they are calculated based on the model's underlying equations. The calculated, or endogenous parameters are said to be calibrated in that they are the calculated values that will yield the benchmark solution given the exogenous parameters and model equations. This section details the methodology used to calibrate each of the endogenous parameters. All calibration parameters and their equations are listed in Table 4.16.

Leontief Share Parameters

The top of the production nest uses Leontief input technology to scale aggregate intermediate input and aggregate value added requirements. The parameter InputOutput represents the amount of intermediate good ' i ' required for the production of one unit of good ' j '. InputOutput is calculated by dividing sectoral demand for each intermediate input by own sectoral output.

CES Production Parameters

The value added nest aggregates capital and labor using a CES production function. A similar CES function is used to aggregate labor skill types and as an Armington (1969) aggregator for local and imported intermediate inputs, investment goods, and consumption goods. Each CES function has three calibrated parameters share, shift, and elasticity of substitution transformation. Calibration of each is detailed below.

Elasticity of Substitution Transformation

For each CES function an exogenous elasticity of substitution σ is given by literature estimates. CES derivations often call for a transformation of this parameter for simplification. All transformations in the OKCGE model are given by the parameter ρ and are calculated as:

$$
\sigma=\frac{1}{1+\rho}
$$

CES Share Parameters

To demonstrate the calibration of the CES share parameters, consider a CES equation of the standard form:

$$
Q=a \cdot\left(\gamma \cdot X 1^{-\rho}+(1-\gamma) \cdot X 2^{-\rho_{i}}\right)^{-1 / \rho}
$$

We would like to calibrate the share parameter γ. Recall, the firm's dual problem is to minimize cost subject to their expenditure constraint. Solving the dual problem, the first order conditions for this equation subject to its expenditure constraint $P X 1 \cdot X 1+P X 2$. $X 2=P Q \cdot Q$ gives the standard share parameter calibration function:

The variables X1 and X2 represent two substituted inputs. For instance, in the case of labor and capital substitution, let X1 be capital and X2 be labor. A typical labor/capital share calibration equation looks like:

For the OKCGE, the benchmark values of capital and labor demanded for each sector and the corresponding benchmark prices are used to calibrate the capital/aggregate labor CES share parameter ${ }^{19}$:

The above calibration equation is derived from equation (3.2). The share parameters for all the other CES functions are calculated in the same manner.

CES Shift Parameters

The shift parameters for each CES function are easily calculated once the share and elasticity transformation parameters are calculated. To calibrate the shift parameter, the CES function is solved for the shift parameter. Using the generic language of the original CES share parameter calibration example above, the equation for calibrating the shift parameter is simply:

[^16]\[

$$
\begin{aligned}
& \text { a- } \\
& 0
\end{aligned}
$$
\]

In the OKCGE example above, the production shift parameter of the OKCGE is:

$$
\alpha F=\frac{\text { totaloutput } 0}{\left(\gamma F \cdot \text { capitaldemand } 0^{-\rho F}+(1-\gamma F) \cdot \text { labordemand } 0^{-\rho F}\right)^{-\frac{1}{\rho F}}}
$$

The above calibration procedures are used for the top of the value added nest and all CES production and Armington equations. The remaining CES production and Armington calibration equations are given in Table 4.15.

Household CES Parameters

The household CES utility parameters are somewhat different to calibrate than the traditional CES production parameters due to the differences in the CES functions. The elasticity of substitution in consumption parameter σC is determined by literature estimates. The share parameter αC is calibrated for each household and good as ${ }^{20}$:

$$
\alpha C_{h, i}=\frac{\text { hhdconsumption } 0_{h, i}{ }^{1 / \sigma c_{h}}}{\sum_{i} \text { hhdconsumption } 0_{h, i}^{1 / \sigma c_{h}}}
$$

[^17]Table 4.16: Input (Calculated) Parameters
Parameter Parameter Calibration/Calculation Equation

Armington Shift Parameter

$$
\alpha \mathrm{A}_{\mathrm{i}} \quad \alpha A_{i}=\frac{\text { compositegood } 0_{i}}{\left(\gamma A_{i} \cdot{\text { importdemand } 0_{i}^{-\rho A_{i}}+\left(1-\gamma A_{i}\right) \cdot \text { domesticdemandfordomestic } 0_{i}^{-\rho A_{i}}}^{i}\right.}
$$

Household Consumption Share Parameter

$$
\alpha \mathrm{C}_{\mathrm{h}, \mathrm{i}} \quad \alpha C_{h, i}=\frac{\text { hhdconsumption } 0_{h, i}^{1 / / c_{h}}}{\sum_{i} \text { hhdconsumption } 0_{h, i}^{1 / / c_{h}}}
$$

Value Added (Factor) Shift Parameter

$$
\alpha \mathrm{F}_{\mathrm{i}} \quad \alpha F_{i}=\frac{\text { totaloutput }_{i}}{\left(\gamma F_{i} \cdot \text { capitaldemand } 0_{i}^{-\rho F_{i}}+\left(1-\gamma F_{i}\right) \cdot \text { labordemand } 0_{i}^{-\rho F_{i}}\right)^{-\frac{1}{\rho F_{i}}}}
$$

Labor Skill Shift Parameter

$\alpha \mathrm{L}_{\mathrm{i}}$

$$
\alpha L_{i}=\frac{\text { labordemand }_{i}}{\left(\gamma L_{i} \cdot \text { laborhdemand0 }_{i}^{-\rho L_{i}}+\left(1-\gamma L_{i}\right) \cdot \text { laborldemand }_{i}^{-\rho L_{i}}\right)^{-\frac{1}{\rho L_{i}}}}
$$

Armington Share Parameter

$$
\gamma A_{i}=\frac{1}{1+\frac{\text { pdomestic }^{0}}{\text { pworld }_{i}} \cdot\left(\frac{\text { importdemand } 0_{i}}{\text { domesticdemandfordomestic } 0_{i}}\right)^{-\frac{1}{\sigma A_{i}}}}
$$

Value Added (Factor) Share Parameter

$$
\gamma F_{i}=\frac{1}{1+\frac{{\text { plabor } 0_{i}}^{\text {pcapital }_{i}} \cdot\left(\frac{\text { capitaldemand }_{i}}{\text { labordemand }_{i}}\right)^{-\frac{1}{\sigma F_{i}}}}{}}
$$

$\gamma \mathrm{F}_{\mathrm{i}}$

Labor Skill Share Parameter
$\gamma \mathrm{L}_{\mathrm{i}}$

$$
\gamma L_{i}=\frac{1}{1+\frac{\text { plaborl }_{i}}{\text { plaborh }_{i}} \cdot\left(\frac{\text { laborhdemand } 0_{i}}{\text { laborldemand }_{i}}\right)^{-\frac{1}{\sigma L_{i}}}}
$$

Household Expenditure Budget

Initial Prices	
pcapital0	pcapital0 $=1$
pcomposite0	pcomposite $0=1$
plocal0	plocal0 $=1$
plabor0	plabor $0=1$
plaborh0	plaborh $0=1$
plaborl0	plaborl0 $=1$
pworld0	pworld $0=1$

Model Parameterization

The choices of elasticities certainly influence the results of any model. The variety of estimates for all elasticities is vast. While many elasticity decisions provide ample fodder for controversy, care was taken to pick the most appropriate elasticities from the literature to provide the most palatable results. The elasticity estimates for each of the required functions are listed in the remaining sections of Chapter 4.

Trade

Trade incorporates local and export production as well as local and import consumption. Many trade elasticity estimates are given for exports as well as imports in the international trade literature. As Berck et al. (1997) point out, regional economies are much more open to trade than national economies and thus higher trade elasticities are appropriate for use. Most studies estimate elasticity ranges between low, medium and high values. The "high" values are typically used in this model to reflect the openness of the regional economy. Table 4.17 gives the elasticity of substitution between imported and locally produced goods and services.

Table 4.17: Elasticity of Substitution: Armington Local/Import

Sector	Elasticity	Source
Agriculture	1.5	Berck, Golan and Smith 1997
Mining	1.062	Berck, Golan and Smith 1997
Utilities	1.5	Berck, Golan and Smith 1997
Construction	1.5	Berck, Golan and Smith 1997
Manufacturing	0.55	Berck, Golan and Smith 1997
Wholesale Trade	0.5	Rickman and Snead, 2007
Transportation	1.5	Berck, Golan and Smith 1997
Retail Trade	0.5	Rickman and Snead, 2007
Information	1.5	Rickman and Snead, 2007
Finance and Insurance	1.5	Berck, Golan and Smith 1997
Real Estate	1.5	Rickman and Snead, 2007
Professional Services	1.5	Oregon Tax Incidence Model, 2001
Management of	0.5	Oregon Tax Incidence Model, 2001
Companies		
Administrative	1.5	Berck, Golan and Smith 1997
Services		
Education Services	0.5	Rickman and Snead, 2007
Health Services	0.5	Oregon Tax Incidence Model, 2001
Arts \& Entertainment	0.5	Oregon Tax Incidence Model, 2001
Accommodation	0.5	Rickman and Snead, 2007
Services		
Other Services	1.5	Berck, Golan and Smith 1997
Government	0.5	Rickman and Snead, 2007

Production

Production elasticities involve substitution between value added factors labor and capital and at a lower level high and low skilled labor. Capital and Labor substitutability taken from de Melo and Tarr (1992) is mostly consistent with Rickman and Snead (2007) who vacillate between 0.8 and 0.9 . Specific capital and labor substitution elasticities are given in Table 4.18.

Table 4.18: Capital-Labor Substitution Elasticities

Sector	Elasticity	Source
Agriculture	0.61	de Melo and Tarr, 1992
Mining	0.8	de Melo and Tarr, 1992
Utilities	0.8	de Melo and Tarr, 1992
Construction	0.8	de Melo and Tarr, 1992
Manufacturing	0.8	de Melo and Tarr, 1992
Wholesale Trade	0.8	de Melo and Tarr, 1992
Transportation	0.8	de Melo and Tarr, 1992
Retail Trade	0.8	de Melo and Tarr, 1992
Information	0.8	de Melo and Tarr, 1992
Finance and Insurance	0.8	de Melo and Tarr, 1992
Real Estate Professional Services Management	0.8	de Melo and Tarr, 1992
Companies	0.8	de Melo and Tarr, 1992
Administrative	0.8	de Melo and Tarr, 1992
Services		
Education Services Health Services Arts \& Entertainment	0.8	de Melo and Tarr, 1992
Accommodation	0.8	
Services	0.8	de Melo and Tarr, 1992
Other Services Government	0.8	de Melo and Tarr, 1992

As Rickman and Snead (2007) point out, labor skills tend to be relatively inelastic in substitution. A low value would be most appropriate for implementation. The literature provides little guidance for this so the author chose an elasticity of 0.15 .

Table 4.19: Labor Skill Substitution Elasticities

Sector	Elasticity	Source
All	0.15	Author

Labor Migration

Migration elasticities are taken from Berck et al. (1997). Higher skilled labor is assumed to be more mobile than lower skilled labor as is reflected in their elasticities in Table 4.20.

Table 4.20: Labor Migration Elasticities

Labor Skill	Elasticity	Source
High-Skilled	2.3	Berck, Golan, and Smith, 1997
Low-Skilled	1.3	Berck, Golan, and Smith, 1997

Commuting

Commuting elasticities measure the percentage change in commuters given a 1% change in nominal wages. Commuters are less impacted by real wages because they merely spend their workday in the commute-to county. Commuting elasticities can be impacted by any number of factors including the quantity and quality of transportation options, commute distance and congestion. Additionally, Mills and Hamilton (1994) point out that income has a significant impact on the decision to commute as the value of time increases with income, longer commutes become more expensive. However, commuters are willing to trade some income (lost time) to live in a more desirable location. These factors vary significantly around the country making one specific commuting elasticity estimate untenable. This is particularly troubling for county-tocounty commutes considering that each county exhibits a large number of unique characteristics such as area (size), location of commuter, type of roads available, etc.

Having no commuter elasticity estimates, the author has chosen a variety of elasticities related to distance and skill level. Nearby locations and higher skill levels are attributed higher commuter elasticities. Clearly, locations closer to the central county exhibit lower commute costs. Higher skilled workers are more likely to have access to reliable transportation. The commuting elasticities used for Oklahoma County are given in Table 4.21.

Table 4.21: Commuter Elasticities

Location	High Skilled	Low Skilled
Nearby Counties	1.5	1.0
Other Oklahoma Counties	0.15	0.1
Out of State	0.015	0.01

Household Consumption

The elasticity of substitution between consumable goods and services by households is 0.75 . This estimate was taken from Rickman and Snead (2007). This estimate is large enough to account for the variety of goods and services included in each of the 20 sectors while still maintaining some degree of inelasticity.

CHAPTER V

SIMULATIONS AND RESULTS

The primary objective of the OKCGE is to provide insight about the final beneficiaries of local development initiatives. Specifically, the model attempts to determine the magnitude of the benefits that accrue to the residents who originally voted for a specific initiative. A second objective of the study is to decompose the development effects into income distribution cohorts. Finally, some measure of the broader regional impacts needs to be addressed to provide a minimal measure of needed regional cooperation. To address each of the stated objectives, a number of model simulations are performed to provide counterfactual analysis.

Economic development is a somewhat nebulous term. Referenced here, it implies policies that aim to increase the economic activity of the region. Increasing export demand for one or more of the region's production sectors can simulate the transmission of such policies. For example, suppose a policy is enacted to spur increased manufacturing. The increased manufacturing can be simulated by exogenously increasing world demand (export) for local manufacturing production. The simulations addressed below each include a 50% increase in export demand for local manufacturing production. Each simulation provides insight about the impacts on local residents by
allowing changes to commuter nominal wage rates elasticities and migration elasticities. The specifics are described below.

Simulation Short Descriptions

The following simulations are performed:

- Simulation 1: Realistic Labor Supply, Commuter and Migration Elasticities
- Simulation 2: Low Commuter Elasticities
- Simulation 3: High Commuter Elasticities
- Simulation 4: Low Migration Elasticities
- Simulation 5: High Migration Elasticities

Simulation Results

The results from all simulations are reported in the following paragraphs. For comparison, Tables 5.1-5.9 present the values of key model variables for all five simulations.

Simulation 1

Simulation 1 provides an estimate of development impacts for Oklahoma County given the baseline parameter specifications described in Chapter 4. The benchmark model is shocked by increasing export demand for locally manufactured goods to provide estimated impacts on the labor market, output, income and consumption.

Labor Impacts - Local Residents, Commuters and Migrants

The results from Simulation 1 provide some interesting evidence concerning the primary and secondary objectives of the study. First, the increased economic activity has a direct impact on real wages for both low and high skilled workers. While there is a 1.39% increase in local consumer prices, nominal wage increases lead to increased real wages of 2.54% and 2.98% for low and high skilled workers (see Table 5.8). This increase in real earning power induces increased labor force participation of 7.82%

Figure 5.1: Low Skilled Workers - Simulation 1

and 2.38% for low and high skilled workers (Table 5.1). Migrants stole labor force share from both commuters and local households. Local workers' share of the low skilled labor

in labor share to 68.78% of the high skilled workforce. While their share of labor force declined, actual labor force participation by all local households increased. The increases in real wages and participation rates lead to increases in household income and consumption. Income is increased on average by 7.83% leading to an average increase in consumption of 6.45% (Table 5.7).

The model also predicts some interesting distributional effects. The distributional effects are greatest among the middle four income cohorts (HHD3 - HHD7). The greatest income impact occurs among the cohort earning $\$ 50,000$ to $\$ 75,000$ (HHD6) as

Figure 5.3: Percentage Change in Income - Simulation 1

their nominal household income increases by 11.08%. Households 1 (Less than $\$ 10,000$) and $2(\$ 10,000$ to $\$ 15,000)$ are the least impacted as their nominal incomes increase by 2.0% and 4.73% respectively. The top income households ($100-150 \mathrm{k}, 150 \mathrm{k}+$) experience modest 6.3% increases in income. Based on these results, there appears to be some unequal distributional effects of local growth policy. The data provides some clues to this inequality. First, while high skilled labor experiences a greater increase in real wages than low skilled labor, the difference is relatively small. Second, low skilled labor experiences a larger increase in labor force participation. The significant participation
differential between high and low skilled workers is going to cause households who supply low skilled labor to receive the greater proportion of the development benefits given that the real wage change differences are small. Households $1-7$ supply low skilled labor while households 7 - 9 supply high skilled labor. To get the full picture, we must also analyze labor income shares for each household. Households 1 and 2 receive only 16.6% and 39.1% of their income from low skilled labor services initially. ${ }^{21}$ Households 4, 5 and 6 receive $71.9 \%, 74.8 \%$ and 91.6% of their income from low skilled labor services providing a more substantial income boost from increased low skilled wages. Household 7 receives only 22.1% of income from low skilled labor and 69.5% from high skilled labor. Households 8 and 9 receive no income from low skilled labor services and 91.6% and 91.8% of household income from high skilled labor services.

The simulation does indicate that local households are not the only beneficiaries of the local development. Both low and high skilled migrants matriculated and account for 2.3% of low skilled labor and 4.1% of high skilled labor post simulation. Both of these are up from the initial 0% benchmark.

Low and high skilled commuting also increases by 3.64% and 6.13% respectively. Nearby counties experience a 9.24% increase in income from commuters. Other counties in Oklahoma receive an additional 4.62% in commuter income and other states receive an increase of 4.17%. Total commuter income increases by 8.81%.

[^18]
Demand

Total output for Oklahoma County increased by 12.5% as a result of the manufacturing stimulus. While the counterfactual experiment was initiated by a 50% increase in manufacturing export demand, rising input and therefore output prices led to an equilibrium increase in manufacturing exports of only 48.66%. Total manufacturing output increased by 39.93%. The increase in manufacturing led to increased demand and competition for regional resources causing all sectoral prices to increase above world prices leading to a drop in production of exports in every sector but manufacturing. However, higher regional income increased local consumption of all sectors by an average of 10.2%. The increase in local use caused total production increases in every local sector. The biggest beneficiary of the regional expansion is the agricultural sector whose output increased 28.61% due primarily to a 29.75% increase in local consumption. The mining sector showed the least impact (0.33%) likely because of the export nature of mining.

The local expansion also had a positive impact on regional imports as import demand increased by an average of 16.35%. Again the largest increase occurred in Agriculture (30.32\%) while the smallest occurred in health services (6.57\%).

Regional Prices

Overall, regional prices were up. The price index (CPI) used to calculate real wages was up 1.39%. Nominal Low (3.97\%) and High (4.41\%) Skilled wages increased sufficiently to cause real wage increases of 2.54% and 2.98% respectively. These wage
increases are to be expected as factor markets tightened due to the initial increase in export demand.

Simulation 2

This simulation demonstrates the impact of development with less response from commuters. Specifically, commuter elasticities are halved for all commuters. With lesser commuting one would expect greater impacts accruing to the primary county residents as well as migrants.

Simulation 2 Impacts

As expected, decreased commuter availability forced firms to increase wages even more to satisfy labor demand requirements. Low and high skilled nominal wages
 increased by 4.25 and 4.90\% respectively while real wages increased by 2.68 and 3.31% respectively. These increases in wages led to greater increases in participation (8.24\% for
low skilled and 2.64% for high skilled) and increased incomes of local residents by 7.97% on average. This is a 0.14 percentage point increase over Simulation 1. The distributional effects witnessed in Simulation 1 are present and magnified slightly in Simulation 2.

Commuter participation increases were less than those experienced in Simulation
1 leading to lower increases in commuter income. Migrants supplied more labor in both

high skilled labor is off slightly indicating that some substitution between high and low skilled labor is likely occurring.

Overall production impacts are nearly equal to those experienced under

Simulation 1 although some export production was shifted to local production to supply increased local goods to local residents and migrants. Local consumption increased as
local residents experienced increases in income and migrant consumption demand increased.

Simulation 3

This simulation demonstrates the impact of development with greater response from commuters. Specifically, commuter elasticities are doubled for all commuters. With increased commuting one would expect lesser impacts accruing to the primary county residents as well as migrants.

Simulation 3 Impacts

Increasing commuter elasticities has the opposite effect of the decreased
 elasticities from Simulation 2. More commuters provide a larger labor pool in the nearby area. This increased supply (when compared with Simulation 2) relieves wage pressure experienced in Simulations

1 and 2. Low and high skilled nominal wages increased by 3.49% and 3.65% respectively while real wages increased by 2.31% and 2.47% respectively. When compared to Simulations 1 and 2, these wage gains are modest and lead to a lower increase in participation and migration responses. Lower participation and migration responses led to smaller increases in resident income (7.59% on average) and migrant income. The
distributional effects witnessed in Simulations 1 and 2 are present, but slightly weakened in Simulation 3. Commuter participation increases were considerable at 6.52% and 10.41% for low and high skilled labor. Total low and high skilled labor increased relative to simulations 1 and 2.

All simulations yield similar overall production increases of
 12.50%. In Simulation 3, the increase in production for export is greater than Simulations 1 and 2 as local households consume less due to smaller local household

income increases due to a larger share of income leaving the county with commuters. The production shift to exports is also due to smaller migration responses as increased commuting suppressed real wages.

Simulation 4

In this simulation, migration elasticities are halved for both low and high skilled workers. Migrants choose locations based on a combination of amenities and real wages. In some locales, increased real wages induce lower migration responses than others largely due to the desirability of the area (Roback 1982, Treyz et al 1993).

Simulation 4 Impacts

With locals, commuters and migrants all competing for local jobs, one would expect a lower migration elasticity to result in higher

Figure 5.10: Low Skilled Workers Simulation 4

participation rates for commuters and locals. In Simulation 4, such a result occurs.

Local high skilled workers are more affected due to higher mobility for both high skilled migrants and commuters. Local household low skilled worker shares actually increase when compared to

benchmark values. Local household high skilled worker shares decrease relative to the benchmark, but increase relative to the previous two simulations.

As seen in previous simulations, higher participation rates yield increases in local income. Income distribution effects are minimal although as Figure 5.12 indicates, households 3, 4 and 5 all increased their shares.

Simulation 5

In Simulation 5, migration elasticities were doubled for both labor skills. This simulated increased worker mobility. As pointed out earlier, increased amenities enhance the desirability of an area leading to greater migration (Roback 1982, Treyz et al 1993).

Simulation 5 Impacts

Like the commuter simulations, increasing the migration elasticities had the opposite effect of decreasing the same elasticities. Increased mobility made migrants much more responsive to real wage differentials. As a result, migrant workers comprise a
 high skilled workers. The low skilled labor force increased by 9.28% and the high skilled labor force increased by 8.07%. The quick response of migrants alleviated wage pressure
 household response of all the simulations. The commuter response to the nominal wage change was also tepid. Only in Simulation 2, when commuter elasticities were halved
was the response smaller.
When coupled with lower wages, local participation rates led to the smallest increase in local household income and consumption. Lower local prices induced by lower local demand caused the largest shift in average export production of all the simulations as firms sought to take advantage of relatively higher export prices.

\％L0＇8	EE＇L99＇8		01＇EZ9＇8	$\%$ \％ $66^{\circ} \mathrm{L}$	6E＇LS9＇8	$\%$ \％ $2 \times$	ゅで 6 E9 ${ }^{\text {¢ }} 8$	\％ $188^{\circ} \mathrm{L}$	$8 t^{\prime} 9+9^{\prime} 8$	$28.610{ }^{\circ} 8$	
s / u	9［ 89 t	o／u	9 9で9をz	v / u	てİ£6乙	D / u	L6＇16E	D／u	$01 \cdot \varsigma \varsigma \varepsilon$	$00^{\circ} 0$	sturaio！ N
\％66＇ \mathcal{E}	Lで66z＇z	\％Lで8		\％It゙0I	LI「Itt゙て	\％¢E．	01＇s8z＇z	\％EL＇9	［90．9をE゙Z	$90^{\circ} \mathrm{ILZ}$（	
\％to 0	96.95	\％60＇0	6695	\％II 0	00.15	\％t0 0	9695	\％90＇0	8695	＋695	2193 jo mo
\％Et＊	9 9「てゅ！	\％980	LI＇EtI	\％80 ${ }^{\text {I }}$	$6 \pm$ ¢ ¢ I	\％9ど0		\％¢90	L8でっ！	¢6．ItI	
\％¢どャ	¢ $L^{\circ} 6600^{\prime}$ て	\％968	6 がZ6I＇z	\％9ع＇ l	$89^{\circ} 0+z^{\text {c }}$ \％	\％S9＇${ }^{\text {c }}$	$89^{\circ} \mathrm{S} 80{ }^{\text {¢ }}$	\％69 9	$9 L^{\prime} 9$ か1「て	LI＇ZIO＇z	
$\%$ LS ${ }^{\text {P }}$	$68^{\circ} 6688^{\prime} \varsigma$	\％61＇${ }^{\text {c }}$	$61^{\circ} \mathrm{t} 66^{\circ} \mathrm{s}$	\％L6 ${ }^{\text {I }}$		\％ ¢9 $^{\text {c }}$	91＇z96＇s	\％8\＆゙て	$L L^{\prime} 9+6{ }^{\prime} \mathrm{S}$	9L＇808＇§	sployesno［［POOT
\％8で 6	$9 て ゙ 9 t \downarrow$ 91	\％80\％	8で91t「9I	\％Eで6	$68^{\circ} 8$ Et＇91	\％が「6	Ls＇92t＇9I	\％8I＇6	$6 \varepsilon^{\prime \prime}$ IEt ${ }^{\text {a }} 9$ I	てE゙0¢0＇¢	
D / u	8S＇S09	p / u	01＇tIて	v／u	てI＇tロE	D / U	カt＊L6E	D／U	ZL＇LLE	$00^{\circ} 0$	Sturasi N
\％0L $~ 乙 ~$	ts＇ 19 \％${ }^{\text {c }}$	\％¢E゙ャ		\％zs ${ }^{\circ}$	S8\％6It゙t	\％${ }^{\circ}{ }^{\text { }}$		\％$\dagger 9$ ¢	$8 z^{\circ} 00 \varepsilon^{\prime} \downarrow$	LE゙6tI＇t	
\％$\varepsilon^{\circ} 0$	68.90 I	\％50 0	16901	\％LO＇0	E6901	$\%$ Z0＇0	$88^{\circ} 90$ I	$\%$ \％ $0^{\circ} 0$	0690 I	98.90 I	2191S Jo mo
\％6で0	LI＇L9	\％9t＇0	£9＇L9	\％69 0	Eで89て	\％Iで0	¢6．992	\％6ど0	Et＇L9て	$6 \varepsilon^{*} 997$	виочено ләчо
$\%$ \％ 6 を	$8 \downarrow^{\circ} \mathrm{L} 88^{\prime}$ ¢	\％SL＇t	เセ＇¢¢6＇E	\％II＇L	$69^{\text {T }}$＋0＇t	\％ H ＇$冖$		\％L6＇ \mathcal{E}	¢6＇sz6＇${ }^{\text {c }}$	E1＇9LL＇${ }^{\text {c }}$	sa！̣uno〕 Kq．rean s．əənuuwo）
\％で「 9	ti＇6LS＇It	\％I6 8	£でてL8「II	\％01＇L	$\mathcal{E} 6{ }^{\circ}+\angle 9^{\prime} \mathrm{II}$	\％セで8	$69^{\circ} 66 L^{\prime} \mathrm{II}$	$\% 28 . L$	6 6＇EsL＇II	¢6006 ${ }^{\circ} \mathrm{I}$	spioyosno［［POOT
											．
จธีแฺบ．\％	UU！S	จธันеч）\％	UU！		UU！S		U1！S	วธันยけ．\％	UU！S		
ς ¢oụpunuel				ε แо！̣ए［nแШ！				I Шо！̣⿺𠃊иu！			

$\% L L .9 I$	SİLzて＇6z	$\% 8 S^{\prime} \varsigma I$	$09.086^{\circ} 8 \tau$	\％Et＇9I	8s＇ztI＇6z	$\% \mathcal{E} 6 \subseteq I$	2で810＇6z	\％$\%$ I＇9I	82＇990＇62	$96.620 \times 5 z$	
\％ $\mathrm{Sz}^{+} \mathrm{I}^{-}$	8I＇0¢E	\％$\% \chi^{\prime} \chi^{-}$	$0 ¢^{\circ} 9 \mathrm{t}$ ¢	$\% \mathrm{tc} \mathrm{S}^{-1}$	scimte	\％86 ${ }^{\text {I }}{ }^{-}$		\％ $\mathrm{IP}^{\text {a }} \mathrm{I}^{-}$	$00^{*} 8 t \varepsilon$	¢ 9 ＇ts	ұшәшшәлоп
\％ 560^{-}	でとを6て	\％${ }^{\text {co }}{ }^{-}$	$90 \cdot 16 z$	\％8101－	¢9 て6て	\％0S ${ }^{\text {l }}$	69.162	\％8E゙ ${ }^{-}$	¢0゙て6て	$\varepsilon 1^{\prime} 96 \square$	
\％ 580^{-}	しちゃ 8 ¢	\％Lが「－	9 ¢゙ャ8t	\％to ${ }^{-1}$	$8 t^{\circ} 98$ t	$\% 0 \varepsilon \mathrm{I}^{-}$	00^{\prime} ¢8t	$\% 0 \mathrm{Cl}^{-}{ }^{-}$	$89.58 t$	$85^{\circ} 16 t$	
$\% S L 0^{-}$	zLO	\％\downarrow ¢ I^{-}	$z L \cdot 0$	$\% 260^{-}$	ZL＇0	\％LI＇I ${ }^{-}$	$z L^{\circ} 0$	$\% 80{ }^{\circ} \mathrm{I}^{-}$	ZL＇0	\｛ $2 \cdot 0$	
\％0S I^{-}	60° E S ${ }^{\text {c }}$ I	\％て9「て－	z9＇sis＇I	\％ $\mathrm{IP}^{\circ} \mathrm{I}^{-}$	¢I．8zs ${ }^{\text {d }}$	\％8でで	£8．0zs＇I	\％0I＇で	t9．ezss	$6 \varepsilon^{\circ} 9 s^{*}$ I	
\％てで1－	LI＇6L	\％Iどで	0 O 81	\％IS＇I－	16．8L	\％L6＇${ }^{-}$	LS＇8L	\％6L＇I－	2L＇8L	¢1＇08	saว！a．as uolpronpl
$\% \pm \mathcal{E}^{-} \varepsilon^{-}$	$81^{\circ} \mathrm{LSL}$	\％IS＇s	LT0tL	$\% 66{ }^{\text {c }}$－	$60{ }^{\circ} \mathrm{zc} /$	\％06 ${ }^{-}$	¢6 $6^{\circ} \mathrm{tc} /$	$\% 9 c^{\text {＇t－}}$	¢9 $9^{\circ} \mathrm{LtL}$	EE＇E8L	
\％¢ぐで	$9 E 8 t$	$\% \mathrm{~S} 8^{\text {t }}$	でくしt	\％ 81 ＇ε－	S0．8t	\％tl＇t－	LS＇Lt	\％LL＇${ }^{-}$	SLLLt	¢96t	
$\%$ ¢ $\varepsilon^{*} \varepsilon^{-}$	SL＇LGZ	\％9E．9－	$9 \downarrow^{\circ} 88 \mathrm{C}$	\％LI＇t－	00^{\prime} ¢6	\％Et＇s－	で「16て	\％S6 ${ }^{\text {b }}$	28．26\％	S0＇80E	Seotalas jeuotssajoid
\％セど0－	てE゙LOL	\％91＇${ }^{-}$	8t 10 L	\％LS 0^{-}	S9＇s0L	\％ 260^{-}	0でと0L	\％ $8 L^{\circ} 0^{-}$	£1 ${ }^{\text {¢ }} 0$ L	0L60L	
\％Z9＇${ }^{-}$	ガでで9「1	\％81＇ E^{-}	¢698s＇I	$\%$＋0 ${ }^{\text {2－}}$	95＇s09＇1	\％69＇て－	$26^{\circ}+6 s^{\prime} 1$	\％ttrで	t0 $0^{665}{ }^{\text {c }}$ I	$86889^{\text {¢ }}$ I	รəว！nıas［e！pueut
\％SI＇I ${ }^{-}$	¢9＇IES＇I	\％St＇で	Lt＇IIS＇I	\％ $\mathrm{Sc}^{\text {I }} \mathrm{I}^{-}$	ゅで9\％s＇I	\％to z^{-}	z8＇LIS＇I	\％E8 ${ }^{\text {［ }}$－	80° Izs ${ }^{\text {c }}$	$8 t^{\circ} 6 \mathrm{ts}$ ¢ 1	
\％じが	2l＇scs	\％ $\mathrm{E}^{\circ} 0^{-}$	tでてSs	\％LS＇0－	$9 て ゙ \downarrow$ ¢s	\％ $6 L^{\circ} 0{ }^{-}$	to csc	\％ $0 L^{\circ} 0$－	0¢＇ES¢	てがLSS	эрепц \downarrow
$\%$ ¢8 χ^{-}	96.00 L	\％00＇s－	8 ¢＇c89	$\%$ Lがを－	£E．969	\％ 8 ¢ ${ }^{\text {¢ }}$	EL＇689	\％t0 ${ }^{\text {¢ }}$	£でて69	¢¢゙İL	
\％ 20 I	¢885¢	\％6z\％	¢で95¢	\％ 280	1185¢	\％IS0	\＆0LLS	\％$\% 90$	St－LSE	0でScs	әре．ı әеSәочм
\％+ を6 6	$8 L^{\circ} 97 \varepsilon^{\prime} \varepsilon$ I	\％II $8+$	IどくIで¢	\％868t	$\varepsilon \varepsilon \times \varsigma 6 \chi^{\prime} \varepsilon$ I	\％Lt゙8t	$6 \varepsilon^{\prime} 6 \downarrow z^{\prime} \varepsilon$ I	\％99＇8t	t6．997＇ε I	L0＇tて6 ${ }^{\text {8 }}$	8u！uprejnuew
$\% \varepsilon 9 \varepsilon^{-}$	$8 \mathrm{I}^{\circ} 0$	\％LI＇9－	LI＇0	\％8を＇t－	LI＇0	\％St＇s－	LT＇0	\％＋0 s^{-}	LI＇0	$8 \mathrm{I}^{\circ} 0$	บо！̣п．！suoว
\％0¢ 0	ع0＇92を	$\% \mathrm{I} 8^{\circ} 0^{-}$	$6 L^{\circ} \mathrm{L}$ ¢	\％91＇0	£6＇ャてع	$\% 6 \varepsilon^{\circ} 0^{-}$	$9{ }^{\text {「 }}$ ¢ $¢ \varepsilon$	\％LI＇0－	¢8．$¢ \Sigma \varepsilon$	เナ゙カてを	งวบ！
\％LO I－	6688sz＇9	\％S6 ${ }^{\text {I }}$	［9＇E0で9	\％EE゙ I^{-}	$06^{\circ} \mathrm{\tau}$ で9	\％69 I^{-}	59＇6Iで9	\％Sc＇I－	0¢＇8zz＇9	98．9てを＇9	8u！u！
\％60＇0	L9＇I	\％$E^{6} 0^{-}$	99.1	$\%$ \％で0－	L9＇1	\％S9 0^{-}	99° I	\％6t＇0－	L9 ${ }^{\text {I }}$	L9＇1	อ．m！ nou＊$^{\text {a }}$
әธ็цџ．）\％	UuIS	2ธ゙แ์ч．\％	UuIS	әธแхч．）\％	um！	әธّтеч，\％	UuIS	әธันеч．）\％	UuIS		
¢ U0！̣｜${ }^{\text {anum！}}$		\dagger U0！̣｜num！		ε นо！̣⿺𠃊nu！		て U0！̣⿺｜nu！		｜U0！̣｜${ }^{\text {anu！}}$ S			

[^19]| \％LL6 | $0 \tau^{\prime}$ ¢0¢＇ $\mathcal{E} t$ | \％IS＇OI | $9 て ゙ \nmid 6 ¢^{\prime}$ Et | \％ 10.01 | II L6E＇Et | $\%$ \％ど0I | $9661 S^{\prime} \mathcal{E} t$ | \％0で0I | L6＇ELt＇Et | 91．6tが 6 E | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\%$ LS S | E6．St8\％ | $\% z z \%$ | $\mathcal{E} 8^{\circ} \mathrm{E} 68^{\circ} \mathrm{L}$ | \％LL＇${ }^{\text {S }}$ | 98．098 ${ }^{\circ} \mathrm{L}$ | \％¢0．9 | 91＇188＊ | \％ 66 ¢ | $\varepsilon \mathcal{E}^{\circ} \mathrm{E} L 8^{\circ} \mathrm{L}$ | $9 L^{\prime} \mathrm{IEt} \mathrm{t}^{\prime} \mathrm{L}$ | дшәшшәлоп |
| \％じ8 | IStis＇l | \％LS 6 | ¢0 0 Zs＇ 1 | $\% 898$ | $89^{\circ 915}$ | \％しで6 | L0＇tzs 1 | \％106 | 9でしてく「1 | ¢csccerl | |
| \％IS＇9 | 0t＇ $20 \mathrm{~S}^{\text {a }}$－ | \％Lt＇8 | 900 0 ¢ ${ }^{\text {c }}$ I | $\% 60{ }^{\circ}$ | 8S．0IS ${ }^{\text {c }}$ | \％ 26.4 | ゅででくら1 | \％09 L° | 18＊LS ${ }^{\text {c }}$ | 9¢゙01t＇I | sәэ！л．гя иоп̣ерошшоэоу |
| $\%$ \％ 5 | 9 9＊\dagger て \dagger | $\% L 0^{\circ} \mathrm{L}$ | | $\%$ ¢8．ς | \＆t 9 ¢ \downarrow | \％LS 9 | けt6で | \％6て＇9 | 8で8で | \＆6\％0t | |
| \％6L＇ \mathcal{L} | カ¢＇90で¢ | \％ 29 ¢ | カ1「E9でと | \％9ど \dagger | て0＇tてで¢ | \％\＆1＇s | $86 \angle t て^{\text {c }}$ ¢ | \％+8 ＋ | $9688 \chi^{\text {c }}$ ¢ | St＇680 ${ }^{\text {c }}$ ¢ | |
| \％Eで乌 | LSCSIE | \％969 | $96^{\circ} 0$ を | \％SL＇S | ¢「しIE | \％8t＇9 | ナE゙6IE | \％Iで9 | IS＇8IE | 06.66 C | |
| $\% E 0 \mathrm{~L}$ | ts＇Etrit | \％99＇9 | 6S6ET＇t | \％+69 | \＆SてかTit | $\% 8 L^{\circ} 9$ | 060tr＇t | \％ 589 | tsititit | | |
| \％ちでし」 | 81×128 | \％L891 | 65818 | \％SI＇LI | ESO28 | \％6691 | St＇618 | \％ ¢ $^{\circ} \mathrm{LI}$ | L8．618 | \＆t．00L | selueduoz јо 7 \％ N |
| \％LS＇0I | 16．00て＇ε | \％LI＇0I | £ど681＇${ }^{\text {c }}$ | \％8t＇0I | เナ゙86I「E | \％で00 | 89^{\prime} ¢61＇E | \％6ど0I | $8 \varsigma^{\circ} ¢ 61^{\circ} \mathrm{E}$ | E6＇เ68＇乙 | sestalas［buotssajord |
| \％とでし | $8+8+9^{\prime} \mathrm{Z}$ | $\%+6 \mathrm{~L}$ | 21999＇て | \％9t＇L | カでけら9「て | \％LL＇L | $9 L^{\prime} 199^{\prime} \mathrm{Z}$ | $\% 59{ }^{\circ}$ | $96859^{\text {¢ }}$ | $\varepsilon 669 t^{\prime}$ Z | |
| \％809 | $98^{\circ} 509{ }^{\prime} \mathrm{Z}$ | \％LS＇9 | 18＊L19 ${ }^{\text {a }}$ | \％9で9 | 6と0019\％ | \％Lt＇9 | LSSI9＇Z | \％0t＇9 | てL｀¢19て | 2S．9St＇て | seotnias［epoueuta |
| $\% 66^{\circ}$ | $08^{\circ} 8 \pm \mathcal{E}^{\prime} \mathrm{I}$ | \％\＆t ${ }^{\text {L }}$ | I0＇8tčI | $\%$ \％${ }^{\text {c }}$ | $80^{\circ} 6 \pm \varepsilon^{\prime} \mathrm{I}$ | \％0S＇L | E8＇8tE＇I | \％IS＇L | $86^{\circ} 8 \pm \mathcal{E}^{\text {¢ }}$ I | $9 L^{\prime}+¢ z^{\prime} \mathrm{I}$ | |
| \％+6.9 | ¢ $L^{\circ} 9688^{\prime} \mathrm{Z}$ | \％ 006 | 21－cserz | \％8S＇L | $91.716^{\circ} \mathrm{z}$ | \％6ts | 6L＇8E6＇ | \％S18 | ガ゚6て6て | LL＇80L＇Z | эреı」 \downarrow |
| \％${ }^{\text {cs＇zI }}$ | เが96s＇I | \％8t＇zI | | $\%$ \％¢゙で | ガ．96s ${ }^{\text {a }}$ | \％LS＇zI | Lで96s ${ }^{\text {a }}$ | \％LS゙てI | ¢ ¢ $96 \mathrm{~s}^{\text {¢ }}$ I | て8815゙1 | иопренодsue．L |
| \％t9 81 | 8L＇9IL＇て | \％6ど6I | LOtEL＇て | \％8881 | しでひひじて | \％0で6I | て9＊6をL＇て | \％8066 | L8．9Zじて | $9668 z^{\text {c }}$ 亿 | әре．L әеsәоч： |
| \％6681 | Lt＇S6t＇t | \％0¢6 61 | 0L＇tIS＇t | \％SI＇6I | 6s＇t0s＇t | \％LE＇6I | $L L^{\prime} 60 S^{\prime} \downarrow$ | \％6で6I | 0 $L^{\circ} 90 \mathrm{~s}^{\prime} \dagger$ | $00^{\circ} 8 \angle L^{\prime} \mathrm{E}$ | |
| \％St＇9I | OLSLL＇Z | \％81＇LI | 91＇E6L＇て | \％L9 91 | 10＇184「て | \％8691 | 6ど88L＇て | \％98991 | $09^{\circ} \mathrm{S} 8 L^{\circ} \mathrm{Z}$ | ว9 $9^{\circ} 8 \varepsilon^{\text {čz }}$ | ио！̣юn．пsuop |
| \％Sで0I | L6ESでI | \％LI＇tI | 0t＇t9で「 | $\%$ \％${ }^{\circ} \mathrm{OL}$ | でどLSでI | \％$\% 601$ | LL＇T9でI | \％6L＇0］ | It＇097＇I | 0 がLE「「 | |
| \％0ع＇¢ | 00.686 | \％Z9＇tI | て¢＇¢E6 | \％II＇SI | $8 \mathrm{t}^{\circ} \mathrm{LE} 6$ | \％¢8＇tI | 6 I ＇¢£6 | \％$+6 . \downarrow$ I | L0．9E6 | でいで8 | 8ิu！u！ |
| \％6で0E | $90^{\circ} 9$ ¢ | \％Lど6て | t9 ¢s | \％00＇0E | 16Ss | \％6S＇6z | $9 L \cdot \varsigma \subseteq$ | $\%$ ¢ L＇6て | E8＇ss | E0＇$¢$ | 2．mnous V |

$\% 6 t \square 1$	21＇290＇t	$\% 8 \pm て I$	0＜＇190＇t	$\% 0 ¢ \square I$	ES＇290＇t	$\% 0 ¢ \square$ I	st＇290＇t	$\% 0 ¢ \square I$	ts＇290＇t		pubura Poon anls
\％6t＇zI	$66^{\circ} \mathrm{LPt} \mathrm{t}^{\text {c }}$	\％ 8 t＇zI	tL＇L8t「て	\％0c＇zI	tで88t「て	\％ $0 ¢ \sim$ LI	$61^{\prime} 88 t^{\prime} \mathrm{Z}$	\％nc＇zi		SL＇JIでZ	чшәшшәлоп
\％6がで	Stots	\％8がで	カtots	\％0¢゙で	$9 \mathrm{t}^{\text {tots }}$	\％0¢゙てI	Strts	\％0¢゙てI		0 ¢ 8 t	
\％6tでて	L0．0s	\％8t＇で	L0．0s	\％0c＇zI	$80^{\circ} \mathrm{O}$	\％os＇zI	$80^{\circ} \mathrm{O}$	\％0¢＇zI	$80^{\circ} \mathrm{S}$	LStt	
$\% 6{ }^{\circ} \mathrm{CI}$	$L Z^{\prime} \mathrm{I}$	\％8t＇で	LZ＇ı	\％0s＇zI	$L Z^{\prime}$	\％os＇zI	$L Z^{\prime} \mathrm{I}$	\％0s＇zI	$L \chi^{\prime} \cdot$	£1＇t	
\％6t゙で	S8＇L1	\％8t＇で	58.41	\％0¢゙で	S8．L1	\％0¢゙で	58.11	\％0¢゙で	S8．21	$\angle 8.91$	
\％6がで	$66^{\circ} 8$	\％8t で	668	\％0s＇で	00.6	\％0sで	$00 \% 6$		00.6	$00 \cdot 8$	
$\% 6 \square_{\text {¢ }}$ T	$0+89$	$\% 8 t て$ ¢	6889	\％0¢゙てI	$0 \downarrow 89$	$\% 0 ¢ \mathrm{cI}$	$0 \vdash 89$	\％0s＇z	$0 \downarrow 89$	08.09	
\％00＇0	00°	\％00＇0	00°	\％00＇0	00°	\％00＇0	$00^{\circ} 0$	\％00＇0	00°	$00^{\circ} 0$	Sว！
\％6tでて	91＇SZI	\％8t＇で	¢1「¢Z」	$\% 0 ¢ \%$ I	8 l ＇¢てI	\％O¢ ¢－	LI＇SてI	\％0¢＇zI		LでIII	sajnimas［euorssajo．${ }_{\text {d }}$
$\% 6$ 「で	Lど08	$\% 8 t て 1$	LE08	\％0ぐてし	8 808	\％0ざで	8808	\％0¢゙て1	$88^{\circ} 08$	St゙J	
\％6tで	61＇89	\％8t＇てI	8189	\％0¢゙てI	0で89	\％0¢ 2 I	0で89	\％0¢ ${ }^{\text {c }}$ I	0z＇89	29＇09	seopnias［e！puru！
\％6げてI	69.15		69.15	$\% 0 ¢ \square$ I	OL＇IS	\％n¢＇zI	n＇is	$\% n ¢ ゙ Z I$	02＇IS	¢6St	Sวoparas uotpewioju
\％ 6 がてl	で・	\％ 8 ＋でて	でし	\％0¢゙て1	で0	\％0¢゙てI	で0	\％0c゙z	で0	$88^{\circ} 0$	
\％6t゙で	18．6t	\％8t＇で	08．6t	\％0¢゙てI	28.6 t		186t	\％0¢゙てI	28．6t	$8 て ゙ カ$ t	
\％6tで	LE．IL	\％8t＇zI	9 9\％IL	\％0¢゙てI	LE＇IL	\％0s Cl	LE＇IL	\％0s＇zI	LE＇TL	ttic9	
\％6t゙で	ع6．8II	\％8t＇で	16．811	\％0čzI	＋6：811	\％0¢゙てI	＋6．8II	\％0s＇zı	t6\％8II	ZL＇s0I	su！̣mprjnuew
\％6t＇zI	［100	\％8t＇zı	t0．002	\％0šてI	81.00 L	\％0¢ $\mathrm{cl}^{\text {l }}$	LIOOL	\％0¢ $\mathrm{cl}^{\text {I }}$	$81^{\circ} 00 \mathrm{~L}$	8\＆゙てz9	
\％6がてI	I6．101	\％8t＇で	06 I01	\％0¢゙てI	26101	$\% 0 \leq$ ¢I	I6 $\mathrm{I}_{0} \mathrm{I}$	\％0s＇zI	26.101	6506	งวบ！！！
\％6t゙で	$8 s^{\prime}$＇t	\％8t＇で	$85^{\circ} \mathrm{t}$	\％0¢＇zI	$8 s^{\prime}$＇t	\％0¢゙てI	$8 s^{\prime}$＇	\％0¢＇zI	$8 s^{\circ} \mathrm{t}$	L0＇t	Su！u！
\％6t゙で	ts＇0	\％8t＇てI	ts．0	\％0¢＇ZI	ts＇0	\％0¢＇てI	ts＇0	\％0¢＇てI	ts＇0	$8 t^{\prime} 0$	ว．mบกทฺเธิ V

\％ 686	$82^{\prime} 188^{\circ} 02$	$\% 6 S^{\circ} \mathrm{L}$	8＊＇668＇Iz	\％LL＇S	＊6\％980＇Iz	\％L8＇9	$69^{\prime} \mathrm{SS}^{\prime}$＇IZ	\％らち＇9	28＇ZLI＇IZ	88＇688＇61	uoludunsuos ployshoil lkli
\％ cz＇t $^{\text {d }}$		\％689 9	IL＇sics ${ }^{\text {c }}$	\％68 ${ }^{\text {t }}$	E0，08t＇ 2	\％ 08 ¢	¢9＇tos＇z	\％St＇S	$8 t^{\prime} \varepsilon 6 t^{\prime} \tau$	IS＇t9e＇z	чиәишәлор
\％6s＇t	6でIto ${ }^{\text {a }}$	\％ちI＇L	L9．990＇I	$\% \downarrow \varepsilon$ ¢	$69^{\circ} 8+0^{\circ}$ I	\％Iが9	LE＇6S0＇I	\％00＇9	$0 \varepsilon ¢ ¢ ¢ 0{ }^{\text {c }}$	¢¢ \＄66	
\％06＇t	$69^{\prime} 90 z^{\text {b }} \mathrm{I}$	\％S9＇L	£E8EでI	\％IL＇S	L6¢SIでI	\％L8＇9	6で 6 で＇I	\％Et＇9	で＇tてでI		
\％ $16{ }^{\circ} \mathrm{t}$	LEくStE	\％SL＇L	てL＇tSE	\％ \mathcal{L}＇S	$60^{\circ} 8 \pm \varepsilon$	\％E69	¢0＇zse	\％Lt＇9	Esose	で6てを	
\％98＇ \mathcal{E}	81＇t6é ${ }^{\text {c }}$	\％6L＇¢	91＇LSt＇E	\％9t＇t	¢c＇EIt＇E	\％Lで¢	0で0tt＇E	\％96＇t	910 0 ¢t＇ε	$96^{\circ} \mathrm{L9}$＇E $^{\text {c }}$	sәว！n．as ч\％
\％9t＇t	6 6゙LZE	\％S69 ${ }^{\text {a }}$	61 ＇SEE	\％0でS	IL＇6z\＆	\％sで9	00 －¢ ¢	\％ 58.5	$\bigcirc L^{\prime}$＇$\varepsilon \varepsilon$	เヵ゙とเย	
\％0S＇t	LS＇LOI	\％ $80{ }^{\circ} \mathrm{L}$	¢でoIl	\％9z＇s	¢c゙801	\％SE＇9	Lt＇60I	\％E6 ¢	S0．60I	t6 zoI	
o／u	000	D／u	00°	D／u	00°	D／u	$00^{\circ} 0$	D／u	$00^{\circ} 0$	00°	
$\% 8 \varepsilon$＇t	0で¢1E	\％です	8 8゙ıてE	$\% \mathrm{zos}$	¢1゙Lİ	$\% 68{ }^{\circ} \mathrm{S}$	9L\％6IE	$\% 9 \mathrm{~S}$ ¢	8L．81E	86.10ε	
\％てt＇s	¢1826	\％60＇8	¢9156	\％tで9	$885 ¢ 6$	$\% L E L L$	¢£゙st6	\％t69	85126	tt＇088	9\％19y
\％LE＇S		\％0E＇8	68＇zsL＇I	\％sで9	ご＇6IL「I	\％6tr ${ }^{\text {L }}$	LL＇6EL＇I	$\%$ C0＇L	81 ＇Zel＇I	Es＇8I9＇I	saoin．as［emouruta
\％tts	9LOSL	\％しで8	をE゙てLL	\％SE9 9	UでLSL	\％E9 L	EE99L	\％tl＇L	L829L	10 ZIL	รәэ！ләя иопршшодй
$\%$ ¢で乌	$8186 z^{\text {c }}$	\％S6L	LI＇LSE「て	\％ 509	EL＇sıÉz	\％61＇L	1900ヶE゙て	\％92＇9	91＇1をE゙て	19＇E81＇z	
\％ $\mathrm{ES}^{\text {＇t }}$	09 ¢ ¢ t	$\%$ \％0＇L	8 8＊t9t	$\%$ \％でS	8L＇9¢t	$\%$ ¢E゙9	て¢゙19t	$\%$ \％6s	$09.65 t$	£6．εt	
\％169	9 9て868	\％6ど6	21616	\％L9＇L	99＇ャ06	\％ZL＇8	8 ¢＇¢ ¢ $^{\text {c }}$	\％とを゙8	¢1．016	$6 \mathrm{I}^{\circ} 0+8$	эре．IL эpsejotm
\％99＇s	ts 886	\％988	LS LTO ${ }^{\text {¢ }}$	\％19＇9	L6E96\％	$\% 96{ }^{\circ}$	$8 \mathrm{I}^{\text {ctiot }}$	\％St＇L	ZI＇§66．	61＇8IL＇E	8ธu！upeynuew
D／u	$00^{\circ} 0$	${ }^{\circ} / \mu$	$00^{\circ} 0$	D／u	000	D／u	$00^{\circ} 0$	D／u	00°	$00^{\circ} 0$	ио！̣n．nsuoว
\％ 58.5	$80 \% 9 \mathrm{t}$	\％68：8	¢ $¢ 08 \mathrm{t}$	\％t9＇9	6c＇zLt	$\%$ CL＇L	LE：LLt	$\%$ \％どL	8 $5^{\circ} \mathrm{S}$ L t	si＇ett	Sอบ！
\％LS＇S	てど6てI	$\% ¢ ¢ \cdot 8$	で゙๕ย1	\％てく＇9	$8 \mathbf{t}^{\circ} 0$ EI	\％98＇L	で「とを	$\%$ ¢E＇L	$0 ¢^{\prime} \mathrm{I}$ ¢ 1	0s＇zzI	8u！u！
\％89 ¢	8L＇LII	\％ 268	0 がしてし	\％ 599	98.811	\％20 8	88001	\％ 0 S ${ }^{\text {L }}$	08.611	くがい	ขแци๐แิจ

											purura uoụdunsuoつ 9 dH
\％ 26 ¢	89＇976＇zz	\％88．6	9 9で6Lく「Ez	\％669	$6 t^{\prime} 891$ c εz	\％¢S＇8	カでて6t「とz	$\%+6{ }^{\circ}$	$00 \cdot \varsigma 9 \varepsilon^{\prime} \varepsilon z$	16．St9 ${ }^{\text {a }}$ Iz	
\％EI＇t	L9てEOて	\％IS 8	$00^{\text {criáz }}$	\％で「	$0 \mathrm{I}^{\circ} \mathrm{tSO} 0^{\text {r }}$	$\%+0 \mathrm{~L}$	LS $6800^{\circ} \mathrm{Z}$	\％$\%$ ¢ 9		E1＇zs6＇t	（＋Yosi）604HH
$\%$ とl＇t	E9sstr	\％6t8	¢L＇8ss゙て	\％しで乌		$\%$ OL	とで七てs゙て	$\%$ ¢゙9	0 がLOs゙て	カら゙8Sどて	（\％ost－00t）8（1HH
\％6］＇S	0 O＇018 $^{\text {c }}$	\％ss＇6	69．926 ${ }^{\text {¢ }}$	\％¢E．9	81＇tナ8「て	\％LI＇8	9L＇688「て	\％9け＇L	L8．0L8＇	て9＇IL9「て	（ $\mathrm{Y} 00 \mathrm{I}-\mathrm{SL}$ ）LUHH
\％LS 8	$6 \varepsilon^{\prime \prime} 990{ }^{\text {¢ }}$	\％06てI	カti89でs	\％ 666	¢00et＇s	\％LL＇IT	28 SIでS	\％80 ${ }^{\text {IT }}$	L9＇E81＇s	L5999＇t	（\％SL－0¢）904HH
$\% 00{ }^{\circ}$		\％tc＇01	0L＇t06 ${ }^{\text {c }}$	\％［1．8	21＇618＊E	\％196		\％ 50%	$8 \chi^{\prime} \mathrm{Cs} 8^{\text {¢ }}$ ¢	ZS＇zess	
$\%$ UL＇9	$60^{\prime} \mathrm{tSt}$＇	\％己r＇0I	\＆゙でと¢¢って	\％6LL	IL＇8Lt「て	\％ちで6	$888^{\text {IIS゙て }}$	\％0L＇8	St＇66tiz	8 ¢ $^{\prime} 66 て^{\text {c }}$ て	（Ys¢－¢ ）tah
\％tçs	$69^{\circ} 960{ }^{\circ} \mathrm{Z}$	\％ゅど8	ガてくばて	\％です	とでちII「て	\％I9 ${ }^{\text {L }}$	¢8＇LEI＇Z	\％LI＇L		$6 \mathrm{~S}^{\prime} 986^{\text {＇}}$	（Yร̧－¢ı）\＆のHH
\％ $\mathrm{Sq}^{\text {¢ ¢ }}$	09° LE6	\％ 0 s ＇ s	โ๕゙ャ¢6	\％かでけ	$988^{\text {²t6 }}$	\％ 20 ¢	96.6 tb	\％LL＇\downarrow	0どしゃ6	ts＇t06	（YSI－0I）乙GHH
\％SS＇${ }^{\text {I }}$	59＇E6でI	$\%$ \％${ }^{\text {c }}$	$09^{\prime} \varepsilon 0 \varepsilon^{\text {¢ }} 1$	\％6L＇I	$8 L^{\prime} 96 \chi^{\text {c }}$＇	\％EI＇Z	I0＇ $0 \varepsilon^{\text {c }}$ I	\％00＇z	で「66でI	Z6＇ELで ${ }^{\text {¢ }}$	（Y01 LT）IGHH
วร์นеч，\％	U！${ }^{\text {S }}$	วภบрч，\％	U！S	วธิบขч，\％	U！S	วรูะчบ．\％	U！S	วริบечว \％	U！${ }^{\text {S }}$		

[^20]| \％ $96{ }^{\circ}$ | 20.1 | $\% 10{ }^{\circ}$ | t0 ${ }^{\circ}$ | $\%$ \％ | 20° | $\%$ \％ | 80° | $\% 86$ を | 80＇1 | 00° | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \％ 888^{\prime} 乙 | E0＇I | \％ 68 S | $90^{\circ} \mathrm{I}$ | $\%$ \％${ }^{\text {¢ }}$ ¢ | to ${ }^{\text {I }}$ | \％06＇t | S0＇I | \％ It＇t $^{\text {d }}$ | to ${ }^{\text {I }}$ | 00^{\prime} I | |
| | | | | | | | | | | | |
| $\%$ \％${ }^{\text {＇}}$ | 20.1 | $\% 68{ }^{\prime}$ 乙 | $\varepsilon^{1} 0^{\circ} \mathrm{I}$ | $\% \mathrm{IE}$ \％ | 20^{\prime} I | \％ $89{ }^{\circ}$ て | E0＇I | $\%$ \％ s^{\prime}＇ | E0＇I | 00^{\prime} I | |
| $\% ¢ 6{ }^{\text {r }}$ | \＆0＇ I | $\%$ ¢L＇\downarrow | $¢_{0}{ }^{\circ}$ | \％6ヶ＇ | \＆0＇${ }^{\text {I }}$ | \％¢で \downarrow | to ${ }^{\text {I }}$ | $\% L 6$ ¢ | to ${ }^{\text {I }}$ | $00^{\prime} \mathrm{I}$ | |
| | | | | | | | | | | | |
| \％060 | $10^{\circ} \mathrm{I}$ | \％181 | 201 | \％91＇1 | 10° | \％ts 1 | 201 | \％ 6 ¢ 1 | $10^{\circ} 1$ | $00{ }^{\text {I }}$ | |
| จรึupप\ \％ | UU！ | | U！S | ครินрй \％ | UuS | ครึนрчО \％ | U！ | จงิuрч，\％ | U！ | | |
| ¢ uо̣⿺𠃊nu！ | | \dagger U0！ | ［nu！ | ε บо！ | ［nu！ | τ บo！ | num！ | I U0！ | ［nu！${ }^{\text {ne }}$ | | |
| | | | | | | | | | | | |

\％LI＇9		\％がい	$90690{ }^{\circ} \mathrm{L}$	\％0L＇।	09 ＊01\％	$\% 10{ }^{\circ}$	Lt．908＇9	\％188	20＇1269	tt＇098＇9	
\％96て	59891	$\%$ しで	£どてLし	$\%$ \％$\%$ ¢	SL＇691	\％ハS゙t	$81^{\circ} 121$	\％LI＇t	¢90L1	08.91	saters neyto
$\% L Z$ ¢	IL＇Izt	\％$\%$ L＇ S	t6 IEt	\％ 0 t＇\dagger	$\varepsilon \varepsilon \cdot 97 t$	$\% S L \cdot \downarrow$	SLLLLt	$\%$ \％9＇t	Iでくてt	tE 80t	
\％9t＇9	LE＇291＇9	\％69＇II	$6<1.9 t^{\prime} 9$	\％かtでで1	E5 805．9	\％tでし	t5 Loz＇9	\％ちで6	LI EzE＊9	0¢ 88L＇S	salyuno，ryaran lato
\％9t＇9	$\varepsilon \varepsilon \subset \varepsilon L \varepsilon$	\％69＇ll	¢9 168	$\%$ がでで	0どか6\＆	\％＋でし	90.928	\％tで 6	L0＇888	L90se	эпшодемедоб
\％9t＇9	$00^{\circ} \mathrm{Otz}$	\％69＇ı	15 ZSz	\％がでで1	ででっくて	\％tでし	9t＇でて	\％ちで6	86.9 tz	60972	
\％9t＇9	19 ¢ ¢ ¢	$\% 69$＇II	0t＇ISS	\％tざてI	£1＇ऽऽs	$\%$ \％でし	9 t ＇625	\％ちで6	วย＇6をร	0LE 6 t	บセธิ๐
\％9t＇9	L80¢E	\％69＇${ }^{\text {II }}$	$0 て ゙ て ゙ て ~$	\％がでで	＋8＇Etc	\％っでし	L¢＇z\＆	\％かで6	06.9 を	98.91%	щоги！ 1
\％9t＇9	01＇ 20ε	\％69＇II	E6．91E	\％がでで	L0＇6IE	\％さでし	て¢゙ャ0¢	\％ちで6	86.60ε	$9{ }^{\text {c }}$ ¢8 8	кре．．
\％9t「 9	$0 t^{\prime}$ SI6 ${ }^{\text {c }}$	\％69＇I	Lt＇8S0＇\＆	\％かtでてI	91＊6LO＇${ }^{\circ}$	\％\downarrow でし	L＇9E6＇	\％+ Z＇6	Lt＇I66 ${ }^{\text {c }}$	Et＇8EL＇乙	ритралә
\％9ヶ＊ 9	9 ¢＇tLs ${ }^{\text {c }}$	\％69＇${ }^{\text {I }}$	E9 ${ }^{\text {I }}$ S9 $9^{\text {¢ }}$ I	\％がでで	08＇ 299 ＇${ }^{\text {c }}$	\％セでし	06 ¢ $8 s^{\text {c }}$ I	\％かで6		08＇8LがI	ие！реиед

CHAPTER VI

STUDY CONCLUSIONS AND AREAS FOR FURTHER RESEARCH

Summary

Local development initiatives have enjoyed wide support in Oklahoma, and in particular the Oklahoma City Metropolitan Statistical Area (MSA) since the early 1990s. Many native residents were skeptical when the Metropolitan Area Projects (MAPS) initiative was proposed by then mayor Ron Norrick. Perhaps the best indicator of the success of the MAPS projects is the results from the MAPS for Kids ballot initiative and the existing interest in a potential MAPS3 proposal by current Mayor Mick Cornett. ${ }^{22}$ The sense of pride in a vibrant, developing local area is undeniable. The city has recently received a National Basketball Association (NBA) team - a testament to the success of the MAPS initiatives.

While the voters of Oklahoma County believe that development initiatives are beneficial to growth and prospects of local residents, regional economists have mixed opinions. Certainly, the goal of any initiative should be to provide benefits to the local voters who approved such an initiative. Whether local unemployment rates are high or labor force participation is low, development initiatives are often implemented to benefit

[^21]local workers. Winnick (1966) decried, however, that the primary beneficiaries were the real estate agents, bankers and migrants with little or no benefit accruing to the local target population. Marston (1985) found evidence that local labor force shocks are eliminated by mobility within a year. Blanchard and Katz (1992) found mixed results for labor force participation rates due to different model specifications. Bartik (1991) found evidence that local development does increase local labor force participation rates. While focusing on the migrant versus local resident discussion, these studies rarely address commuters as competitors for local jobs and thus the benefits they provide. Bartik (1993) discussed the need to specify a model that delineated labor groups by skill (and thus migration propensities) to estimate the effects of policies on different income groups without mention of commuters. The OKCGE addresses the local beneficiary question by incorporating two skill groups, nine local representative households, migrants and commuters from multiple regions. This design provides a more complete specification of the local labor market, as it is sensitive to commuter and labor skill issues not addressed in previous studies.

Study Objectives and Methodology

The objectives of the study are to estimate the effects of local development on local residents, migrants and commuters. The primary question addressed is whether the local residents who approve development projects receive pecuniary benefits that result. A secondary question concerns the distribution of local benefits between local
households of disparate income classes. Lastly, the study addresses the impact of commuters who, like migrants, respond to wage differentials and enter the local labor market to take advantage of nominal wage disparities between the study area labor market and their primary location of residence.

A Computable General Equilibrium (CGE) model is used to incorporate the necessary economic linkages to represent the Oklahoma County region. The modeled labor market includes Oklahoma County residents as well as commuters from the surrounding counties within the Oklahoma City MSA, commuters from the remaining Oklahoma counties and commuters from out of state based on current commuter patterns. The model segregates local households, commuters and migrants to provide a long run analysis of the impacts of local development on each.

The data for this research was compiled primarily from the IMPLAN 2004 data set for Oklahoma. Using IMPLAN, labor demand by skill estimated from national labor data and local IMPLAN labor payments, and commuter data estimated from Oklahoma commuter patterns, a micro-consistent database was created and read into the model. The model is created using the General Algebraic Modeling System (GAMS) programming language and solved with a CONOPT nonlinear solver.

Local development is simulated by incorporating an export demand shock to the manufacturing sector consistent with a 50% increase in final demand. Five separate simulations incorporating ranges of commuting and migration propensities are run to estimate the development effects on the local residents. Income changes for nine local households are reported to provide clarity to the primary study objective.

Study Conclusions

Five simulations were run to demonstrate the impacts of local development policy. The first simulation used reasonable commuter and migration elasticity estimates to demonstrate the impact local development has on local residents who are the target of the development. The simulation reported that local residents, commuters and migrants all benefited from development. Local household income increased by 7.83% on average with positive income increases for all nine household groups. While the increases were not distributed uniformly, they were significant for most cohorts. The middle to mid-

high income groups benefited the most, while the two poorest income groups benefited the least. Indeed, the lowest income group only received a 2% increase in income. However, this increase is likely understated due to unreported income in benchmark data. Local income effects from all simulations are illustrated in Figure 6.1.

Commuter and migrant benefits are evidenced in the fact that they chose to increase their participation in the regional workforce as a result of the development policy. The tangible benefits measured by this model are increased income by commuters and migrants. Nearby counties received a 9.24% increase in income flowing from the study region due to increased commuting from nearby residents. Commuter income effects were distributed to other Oklahoma counties and other states also.

Simulations 2 and 3 measured the development impacts with variable commuter rates to provide a range of possible outcomes. In Simulation 2, low commuter elasticities led to lower commuter participation and higher local and migrant participation. Local resident income increased by 0.59% points over aggregate income from Simulation 1 as local participation increased by 0.42% and 0.26% points over rates reported from Simulation 1 for low and high skilled residents respectively. Increasing commuter elasticities in Simulation 3 served to increase commuter income while decreasing resident income and migration.

Simulations 4 and 5 measured the development impacts with variable migration elasticities to estimate a range of local outcomes in the face of changing migration. Migration decreased in Simulation 4 and increased in Simulation 5. Fewer migrants led to increased local participation rates and income and increased commuter participation and income when compared to Simulation 1. Increased migration led to decreased local and commuter participation and income.

Migration had the greatest impact on local income as changing migration elasticities provided the largest variation, however, all simulations provided local
residents with increased income. All local households benefited the most from decreased migration as demonstrated by Simulation 4 with middle-income households (HHD4 HHD6) receiving the greatest boost. Indeed the middle-income households increased their aggregate share of household income from 48.5% to 49.3%. This increase in middle-income shares derived mostly from the three lowest income households. Their share of total household income declined from 19.2% to 18.6% leaving the highestincome households (HHD7 - HHD9) losing only 0.2% points of the aggregate distribution from 32.26% to 32.06%.

The OKCGE demonstrates that regardless of whether commuter or migration elasticities are high or low, local residents do indeed benefit from local development as all households experienced income increases in all simulations. Additionally, these results provide some insight into the equity vs. efficiency tradeoff for development policy. In this particular case, development increased income for all households, but at unequal distributional rates.

Study Limitations

This study is limited by several factors including the accuracy and availability of local data including, but not limited to the supply and demand of specific labor skills and commuter and migrant elasticities. Labor by skill was attributed to local households and commuters based on ad-hoc assumptions that may not represent the actual distribution. Labor demand by skill was based on total labor payments by sector as given by IMPLAN and a national labor demand by skill matrix developed from data reported by the Bureau of Labor Statistics. Local firms may require different skill shares as industries may differ across regions.

Migration elasticities were taken from a model developed for the California economy. These elasticities are specific to California and the wage/amenity mix that is unique to that region. As such, it is not likely that they represent Oklahoma migration rates. The study attempted to account for possible discrepancies by running simulations with increased and decreased elasticities to provide sensitivity analysis.

The commuter elasticities are particularly problematic because they are based on conjecture alone. As stated in Chapter 4, actual elasticities are not available, and difficult if not impossible to estimate. As in the migration elasticity case, a range of commuter elasticities was used to provide sensitivity analysis.

Areas for Further Research

This study provides the long run impacts of development on local residents, commuters and migrants. It addresses these impacts through changes in income. Another study should address tax implications for the study and commuter regions. A sophisticated tax model that might report changes to income, property, sales and other taxes would be of particular interest to policymakers. Simulations could provide information about the optimality of the local tax mix and provide guidance concerning possible tax changes available due to increased development. Such a model would require specific linkages between actual government services and tax receipts at the city and county level. Unfortunately, difficulty may arise when compiling such data.

Other benefits and costs could also be studied. Agglomeration effects could lead to exponential growth not accounted for in the current model. These effects would require extensive knowledge of the study area as it relates to the optimal city size
literature. Such a study would also need to include congestion and environmental impacts.

Regional cooperation impacts could be more specifically modeled using a multiregion model that incorporated all of the distinct features of the OKCGE as well as those not included but addressed in the preceding paragraphs. There may be a multitude of benefits and costs that accrue to nearby and distant regions due to increased commuting such as increased road use and congestion, decreased (or increased) local development in the commuter region, increased quality of life effects due to increased amenities, etc. Such a study might provide policymakers with a more accurate estimate of the costs and benefits of regional cooperation leading to the appropriate coordination of regional governments.

REFERENCES

Adelman, Irma and Sherman Robinson, 1979.Income Distribution Policy in Developing Countries: A Case Study of Korea. Stanford: Stanford University Press (for the World Bank).

Armington, P. S., 1969."A Theory of Demand for Products Distinguished by Place of Production." IMF Staff Papers, 16: 159-178.

Ballard, C.L., D. Fullerton, J.B. Shoven, and J. Whalley, 1985. A General Equilibrium Model for Tax Policy Evaluation. University of Chicago Press, Chicago IL.

Bartik, Timothy J., 1991.Who Benefits from State and Local Economic Development Policies? W.E. Upjohn Institute for Employment Research, Kalamazoo, MI.
___, 1992. "Economic Development and Black Economic Success." Draft Final Report for the Economic Development Administration, US Department of Commerce, W.E. Upjohn Institute for Employment Research, Kalamazoo MI.
___ 1993. "Who Benefits from Local Job Growth: Migrants or the Original Residents?" Regional Studies 27(4): 297 - 311.
___, 2001.Jobs for the Poor: Can Labor Demand Polices Help? New York: Russell Sage Foundation.

Beeson, Patricia E. and Randall W. Eberts, 1989."Identifying Productivity and Amenity Effects in Interurban Wage Differentials," The Review of Economics and Statistics, 71: 443-452.

Berck, Peter, Elise Golan, and Bruce Smith, 1997. "State Tax Policy, Labor, and Tax Revenue Feedback Effects." Industrial Relations, 36(4): 339-418.

Blanchard, Olivier J., and Lawrence F. Katz, 1992. "Regional Evolutions." Brookings Papers on Economic Activity (1): 1-75.

Bound, John and Harry J. Holzer, 1991. "Industrial Shifts, Skill Levels, and the Labor Market for White and Black Males," PSC Research Report Number 91-211.

Bradbury, K., A. Downs and K. Small, 1982. Urban Decline and the Future of American Cities. Brookings Institution, Washington DC.

Cross, R. (edited), 1988. Unemployment, Hysteresis and the Natural Rate Hypothesis. Basil Blackwell, New York.
de Melo, Jaime and David Tarr, 1992.A General Equilibrium Analysis of U.S. Extraregional Trade Policy. The MIT Press, Cambridge Massachusetts.

Dervis, Kemal, Jaime De Melo, and Sherman Robinson, 1982.General Equilibrium Models for Development Policy. Cambridge University Press

Eberts, Randall W. and Joe A. Stone, 1992. Wage and Employment Adjustment in Local Labor Markets. Kalamazoo MI: WE Upjohn Institute for Employment Research.

Filho, J.B.D.F and J.M. Horridge, 2004. "Economic Integration, Poverty and Regional Inequality in Brazil." Center of Policy Studies and the Impact Project, General Working Paper No. G-149.

Flaim, Paul O. and Ellen Sehgal, 1985. "Displaced Workers of 1979 - 1983: How Well Have They Fared?" Monthly Labor Review 108: 3 - 16.

Greenwood, Michael J. and Gary L. Hunt, 1984. "Migration and Interregional Employment Redistribution in the United States," American Economic Review 74: 957 969.

Greenwood, Michael J., Gary L. Hunt and J.M. McDowell, 1986. "Migration and Employment Change: Empirical Evidence on the Spatial and Temporal Dimensions of the Linkage." Journal of Regional Science 26:223-234.

Gordon, Ian R., 1985. "The Cyclical Interaction Between Regional Migration, Employment and Unemployment: A Time Series Analysis for Scotland." Scottish Journal of Political Economy 32: 135 - 158.

Gruidl, S. and C. Pulver (1991). "A Dynamic Analysis of Net Migration and State Employment Change." Review of Regional Studies, 21(1): 21-38.

Haughwout, Andrew F., and Robert P. Inman, 2002. "Should Suburbs Help their Central City?" Brookings-Warton Papers on Urban Affairs, 45 - 94.

Iregui, Ana Maria, 2001. "Tax Exporting: An Analysis Using a Multiregional CGE Model." Borradores de Economia number 171, Banco de la Republica de Colombia.

Lofgren, Hans, Rebecca Lee Harris, Sherman Robinson, Marcelle Thomas, and Moataz El-Said, 2002. "A Standard Computable General Equilibrium Model in GAMS." International Food Policy Research Institute, Microcomputers in Policy Research 5.

Marston, Stephen T., 1995. "Two Views of the Geographic Distribution of Unemployment," Quarterly Journal of Economics, 100: 57-79.

McGregor, Peter G., J. Kim Swales, and Ya Ping Yin, 1996."A Long-Run Interpretation of Regional Input-Output Analysis," Journal of Regional Science 36(3): 479 - 500 .

Mills, Edwin S. and Bruce W. Hamilton, 1994.Urban Economics, Fifth Edition, Harper Collins Publishing.

Moomaw, Ronald L., 1981. "Productivity and City Size: A Critique of the Evidence," Quarterly Journal of Economics, 96(4): 675 - 688.

Muth, R.F., 1971. "Migration: Chicken or Egg?" Southern Economic Journal 37: 295 306.

Partridge, Mark D. and Dan S. Rickman, 1997. "The Dispersion of US State Unemployment Rates: The Role of Market and Non-market Equilibrium Factors." Regional Studies 31(6): 593-606.
\qquad , 2003. "Do We Know Economic Development When We See It?" The Review of Regional Studies, 33(1): 17 - 39.

Plaut, Thomas R., 1982. "Economic Base, Labor Force Migration and Regional Employment Growth in the United States." Papers in Regional Science, 50: 75-94.

Quigley, John M., 2002. "Rural Policy and the New Regional Economics: Implications for Rural America," in The New Power of Regions: A Policy Focus for Rural America, Federal Reserve Bank of Kansas City: Kansas City, MO.

Rauch, James E., 1993. "Productivity Gains from Geographic Concentration of Human Capital: Evidence from the Cities." Journal of Urban Economics, 34: 380-400.

Rickman, Dan S. and Mark C. Snead, 2005. "A Regional Comparative Static CGE Analysis of Subsidized Childcare." Report to Oklahoma Department of Human Services.

Roback, Jennifer, 1982. "Wages, Rents, and the Quality of Life." The Journal of Political Economy, 90 (6): 1257 - 1278.

Summers, L.H., 1986."Why is the Unemployment Rate so Very High Near Full Employment?" Brookings Papers on Economic Activity 2:339-383.

Topel, Robert H., 1986. "Local Labor Markets," Journal of Political Economy, 94(3): S111-43.

Treyz, George I., Dan S. Rickman, Gary L. Hunt, and Michael J. Greenwood, 1993. "The Dynamics of U.S. Internal Migration." The Review of Economics and Statistics, 75(2): 209 - 214.

Winnick, Louis, 1966."Place prosperity vs. people prosperity: welfare considerations in the geographic redistribution of economic activity," Essays in Urban Land Economics in Honor of the Sixty-Fifth Birthday of Leo Grebler. Real Estate Research Program, University of California at Los Angeles, Los Angeles, CA.

APPENDIX A

VARIABLES, PARAMETERS, EQUATIONS

APPENDIX A. 1

CGE PRIMARY MODEL EQUATIONS

Firms

Capital Demand

$$
\begin{gather*}
\text { CapitalDemand }=\gamma F^{\sigma F} \cdot P C \underset{\sigma F(1-\sigma F)}{ } \cdot\left(\text { TotalOuput }^{\sigma} \alpha F\right) \tag{3.5}
\end{gather*}
$$

Aggregate Labor Demand

$$
\begin{gather*}
\text { LaborDemand }=(1-\gamma F)^{\sigma F} \cdot P \text { Labor }^{-\sigma F} \cdot\left(\gamma F^{\sigma F} \cdot \text { PCapital }{ }^{(1-\sigma F)}+(1-\gamma F) \cdot(\text { TotalOuput } \alpha F)\right.
\end{gather*}
$$

High Skilled Labor Demand

$$
\begin{gather*}
\text { LaborHDemand }=\gamma L^{\sigma L} \cdot P L a b o r H^{-\sigma L} \cdot\left(\gamma L^{\sigma L} \cdot \text { PLabor }^{(1-\sigma L)}+(1-\sigma L) \cdot(\text { LaborDemand/ } \alpha L)\right. \tag{3.8}
\end{gather*}
$$

Low Skilled Labor Demand

$$
\begin{gather*}
\text { LaborLDemand }=(1-\gamma L)^{\sigma L} \cdot \text { PLabor }^{-\sigma L} \cdot\left(\gamma L^{\sigma L} \cdot \text { PLabor }^{(1-\sigma L)}+(1-\gamma L) \cdot \text { PLabor }^{(1-}\right)^{\sigma L(1-\sigma L)} \cdot(\text { LaborDemand/ } \alpha L) \tag{3.9}
\end{gather*}
$$

Aggregate Labor Demand Zero Profit

$$
\begin{equation*}
\text { PLabor } \cdot \text { LaborDemand }=\text { PLaborH } \cdot \text { LaborHDemand }+ \text { PLaborL } \cdot \text { LaborLDemand } \tag{3.7}
\end{equation*}
$$

Zero Profit
POutput \cdot TotalOutput $=$ PCapital \cdot CapitalDemand + PLaborH \cdot LaborHDemand + PLaborL \cdot LaborLDemand $+\Sigma_{j}$ InputOuput ${ }_{j i} \cdot$ TotalOuput \cdot PComposite + misccost0

Extra-regional Sector

Export Demand

$$
\begin{equation*}
\text { ExportDemand }=\text { exportdemand } 0 \cdot(P \text { World } / \text { POutput })^{\text {oxp }} \tag{3.11}
\end{equation*}
$$

Armington Import Demand

$$
\begin{gather*}
\text { ImportDemand }=\gamma A^{\sigma A} \cdot P W o r l \text { P }^{\sigma A} \cdot\left(\gamma A^{\sigma A} \cdot P W o r l \text { W }^{(1-\sigma A)}+(1-\gamma A)^{\sigma A} \cdot \text { PLocal }^{(1-\sigma A)}\right)^{\sigma A /(I)} \cdot(\text { CompositeGood / } \alpha A) \tag{3.22}
\end{gather*}
$$

Armington Local Demand

$$
\begin{gather*}
\text { LocalDemandForLocal }=(1-\gamma A)^{\sigma A} \cdot P \text { Local }^{-\sigma A} \cdot\left(\gamma A^{\sigma A} \cdot P W o r l d d^{(1-\sigma A)}+(1-\gamma A)^{\sigma A} .\right. \\
\text { PLocal } \left.{ }^{(1-\sigma A)}\right)^{\sigma A /(1-\sigma A)} \cdot(\text { CompositeGood } / \alpha A) \tag{3.23}
\end{gather*}
$$

Armington Zero Profit

$$
\begin{align*}
& \text { PComposite } \cdot \text { CompositeGood }=\text { PWorld } \cdot \text { ImportDemand }+ \text { PLocal } \tag{3.24}\\
& \text { LocalDemandForLocal }
\end{align*}
$$

Households, Migrants and Commuters

Consumption (CES)

$$
\begin{align*}
& \text { HHDConsumption }_{i}={\alpha c^{\prime} o n s}_{i}{ }^{\text {ocons }} \cdot \text { CBUD } / \text { PComposite }_{i}{ }^{\text {ocons }} \cdot \Sigma_{j} \alpha \text { cons }_{j} \cdot \text { PComposite }_{j}{ }^{(1-\text { ocons })} \tag{3.15}\\
& \text { MigrantHConsumption }_{i}=\alpha^{\text {cons }}{ }_{i}^{\text {ocons }} .(\text { MigrantLaborHSupply } / \text { HHDLaborHSupply) } . \\
& \text { CBUD / PComposite }{ }_{i}{ }^{\sigma \text { ocons }} \cdot \Sigma_{j} \alpha \text { cons }_{j} \cdot \text { PComposite }_{j}^{(l-\text {-cons })} \\
& \text { MigrantLConsumption }_{i}=\text { cons }_{i}^{\text {ocons. }} \cdot(\text { MigrantLaborLSupply } / \text { HHDLaborLSupply }) . ~_{\text {. }} \text {. } \\
& \text { CBUD / PComposite }{ }_{i}{ }^{\sigma \text { cons }} \cdot \Sigma_{j} \alpha \text { cons }_{j} \cdot \text { PComposite }_{j}^{(l-\text {-cons })}
\end{align*}
$$

Income

$$
\begin{gather*}
\text { HHDIncome }=\text { PCapital } \cdot \text { HHDCapitalSupply }+ \text { PLaborH } \cdot \text { HHDLaborHSupply }+ \\
\text { PLaborL } \cdot \text { HHDLaborLSupply }+ \text { hhdmiscincome } 0 \tag{3.13}\\
\text { CBUD }=(1-\mathrm{mps}) \cdot \text { HHDIncome } \tag{3.14}
\end{gather*}
$$

Labor Supplies

$$
\begin{align*}
& \text { LocalHLabor }=\text { localhlabor } 0 \cdot((\text { PLaborH } / \text { CPI }) /(\text { plaborh0 } / \text { cpi0 }))^{\text {olabor }} \tag{3.32}\\
& \text { LocalLLabor }=\text { localllabor } 0 \cdot((\text { PLaborL } / \text { CPI }) /(\text { plaborl0 } / \text { cpiO }))^{\text {otaborl }} \tag{3.33}\\
& \text { MigrantLaborHSupply }=\text { laborHsupply0 } \cdot \text { sigmaLaborH } \cdot \log ((\text { PLaborH / CPI) / } \tag{3.34}\\
& \text { (plaborh0 / cpi0)) } \\
& \text { MigrantLaborLSupply =laborLsupply0 } \cdot \text { sigmaLaborL } \cdot \log ((\text { PLaborL / CPI) / } \tag{3.35}\\
& \text { (plaborl0 / cpi0)) }
\end{align*}
$$

$$
\begin{gather*}
\text { CommuterHLabor }=\text { commuterhlabor } 0 \cdot(\text { PLabor } H / \text { plaborh } 0)^{\text {ocomlabort }} \tag{3.36}\\
\text { CommuterLLabor }=\text { commuterllabor } 0 \cdot(\text { PLaborL } / \text { plaborl0 })^{\text {ocomlaborl }} \tag{3.37}
\end{gather*}
$$

LaborHSupply = HHDLaborHSupply + MigrantLaborHSupply + CommuterHLabor
LaborLSupply = HHDLaborLSupply + MigrantLaborLSupply + CommuterLLabor

Government

$$
\begin{equation*}
\text { StateLocalGovtDemand }=\text { statelocalgovtdemand0 } \cdot(\text { TotalOutput } / \text { totaloutput } 0) \tag{3.17}
\end{equation*}
$$

Market Clearing

Investment

$$
\begin{align*}
& \text { CapitalDemand }=\text { CapitalSupply } \tag{3.25}\\
& \text { LaborHDemand }=\text { LaborHSupply } \tag{3.27}\\
& \text { LaborLDemand }=\text { LaborLSupply } \tag{3.28}
\end{align*}
$$

$$
\text { CompositeGood }=\Sigma j(\text { InputOutputij } \cdot \text { TotalOutput })+\text { StateLocalGovtDemand }+
$$

HHDConsumption + InvestmentDemandLocal + MigrantLConsumption + MigrantHConsumption + fedgovtdemand0

$$
\begin{equation*}
\text { TotalOutput }=\text { ExportDemand }+ \text { LocalDemandForLocal } \tag{3.30}
\end{equation*}
$$

APPENDIX A. 2

VARIABLE AND PARAMETER DEFINITIONS

Variables

Variable
misccost
CapitalDemand
CompositeGood
LocalDemandForLocal
ExportDemand
HHDCapitalSupply
HHDConsumption
CBUD
HHDIncome
HHDLaborSupply
ImportDemand
InputOutput
LaborDemand
LaborHDemand
LaborLDemand
PCapital
PComposite
PLocal
PLabor
PLaborH
PLaborL
POutput
PWorld

Description

Miscellaneous costs included for zero profit balance (U.S. Dollars / year)

Aggregate capital demand (U.S. Dollars / year)
Aggregated import and local good for local consumption (U.S. Dollars / year)
Local demand for local production (U.S. Dollars / year)
Export demand for local production (U.S. Dollars / year)
Local household capital ownership (U.S. Dollars / year)
Local household consumption demand (U.S. Dollars / year)
Local household disposable income used for consumption (U.S. Dollars / year)
Local household total income (U.S. Dollars / year)
Local household labor supply (U.S. Dollars / year) Local demand for imported goods (U.S. Dollars / year)
Input output coefficients matrix (U.S. Dollars / year)
Aggregate labor demand (U.S. Dollars / year)
High skilled labor demand (U.S. Dollars / year)
Low skilled labor demand (U.S. Dollars / year)
Price of aggregate capital (U.S. Dollars)
Price of composite Armington good (U.S. Dollars)
Price of local production in local market (U.S. Dollars)
Price of aggregate labor (U.S. Dollars)
Price of high skilled labor (U.S. Dollars)
Price of low skilled labor (U.S. Dollars)
Price of total output produced by local firms (U.S. Dollars)
World price of sectoral production - exogenously fixed (U.S. Dollars)

StateLocalGovtDemand

TotalOutput

Parameters

Parameter

$\alpha \mathrm{A}$
α cons
αF
$\alpha \mathrm{L}$
$\gamma \mathrm{A}$
$\gamma \mathrm{F}$
$\gamma \mathrm{L}$
σA
σ cons
бехр
σF
σ L
σ MigLaborH
σ MigLaborL

Local government demand for local production (U.S. Dollars / year)
Total production by local producers (U.S. Dollars / year)

Description

Technology shift parameter - Armington aggregator function
Household CES consumption share parameter Technology shift parameter - Value added aggregator function
Technology shift parameter - Labor aggregator function
Share parameter - Armington aggregator function
Share parameter - Value added aggregator function
Share parameter - Labor aggregator function Elasticity of substitution - Armington aggregator function
Elasticity of substitution in consumption
Export demand elasticity
Elasticity of substitution - Value added aggregator function
Elasticity of substitution - Labor aggregator function High Skilled Labor Migration Elasticity Low Skilled Labor Migration Elasticity

APPENDIX B

GAMS CODE

APPENDIX B. 1

GAMS CODE LISTING

```
$Title OK County Regional Cooperation CGE
$Stitle 2008 Dissertation Model
$Stitle Kyle Dean
$Stitle Oklahoma State University
*********************************************************************************
* *
* The OKCGE uses Oklahoma County data to determine the impact of local
* development policies on local residents, commuters and migrants. It also
* decomposes local impacts by income distribution. Five simulations are
* performed using various labor force participation, commuter and migration
* scenarios.
*
\
* The OKCGE was created by Kyle Dean for the purpose of fulfilling *
* dissertation requirements for Oklahoma State University, Department of
* Economics, Fall 2008.
*
* The OKCGE is comprised of 6 modules to perform the following functions: *
*
* - OKCGE Master.gms - Master Control Module used to call all other modules
* - OKCGE Microdata.gms - Input Microdata Set
* - OKCGE Calibration.gms - Calibrate Model Parameters
* - OKCGE Model.gms - Set Model Variables and Equations and Run Simulations *
* - OKCGE Report Writer.gms - Report Simulation Results
* - OKCGE Excel.gms - Place Results into Parameter and Unload to Excel
*
********************************************************************************
```

*\# Master Control Module \#

*

* PROGPATH is the folder where the primary gams program files are located. *
* *

\$setglobal PROGPATH C:\gamsdat\Diss08\OKCGE\}

* *
* DATAPATH is the folder where the IMPLAN data files are located.
*


```
$setglobal DATAPATH C:\gamsdat\Diss08\OKCGE\
* Declare Parameters and Set Benchmark Values
$include '%PROGPATH%OKCGE Microdata.gms'
hhdconsumption0(sec,h) = hhddomesticconsumption0(sec,h)
    + hhdimportconsumption0(sec,h);
cbud0(h) = sum(sec, hhdconsumption0(sec,h));
totaloutput0(sec) = sum(sec2, intermeddomestic0(sec,sec2))
    + sum(h, hhddomesticconsumption0(sec,h))
    + exportdemand0(sec) + statelocalgovtdemand0(sec) + fedgovtdemand0(sec)
    + investdemand0(sec);
```

```
inputoutput(sec,sec2) = (intermeddomestic0(sec,sec2)
    + intermedimport0(sec,sec2)) / totaloutput0(sec2);
domesticdemandfordomestic0(sec) = totaloutput0(sec) - exportdemand0(sec);
importdemand0(sec) = sum(h, hhdimportconsumption0(sec,h))
    + sum(sec2, intermedimport0(sec,sec2));
compositegood0(sec) = domesticdemandfordomestic0(sec) + importdemand0(sec);
capitalsupply0 = sum(sec, capitaldemand0(sec));
laborhsupply0 = sum(h, hhdlaborhsupply0(h))
    + sum(location, commuterlaborhsupply0(location));
laborlsupply0 = sum(h, hhdlaborlsupply0(h))
    + sum(location, commuterlaborlsupply0(location));
hhdincome0(h) = hhdlaborlsupply0(h) + hhdlaborhsupply0(h) + hhdcapitalsupply0(h)
    + hhdmiscincome0(h);
migranthconsumption0(sec) = 0;
migrantlconsumption0(sec) = 0;
pcapitalo = 1;
pcomposite0(sec) = 1;
pdomestic0(sec) = 1;
plabor0(sec) = 1;
plaborh0 = 1;
plaborl0 = 1;
poutput0(sec) = 1;
pworld0(sec) = 1;
cpi0=1;
* Calibrate Model Parameters
$include '%PROGPATH%OKCGE Calibration.gms'
* Check Parameter Calibration
$include '%PROGPATH%OKCGE Calibration Check.gms'
****************************************************** Run the Benchmark Model
$include '%PROGPATH%OKCGE Model.gms'
* Unload the Solution into an Excel Spreadsheet
parameter solution(*,*) Parameter to store results;
$include '%PROGPATH%OKCGE Excel.gms'
execute_unload 'OKCGESOL.gdx',solution;
execute 'gdxxrw OKCGESOL.gdx par=solution Rng=Benchmark!al';
**************************************************** Run the Model for Simulation 1
* Increase Manufacturing Export Demand to Simulate Development
exportdemand0('MFTG') = exportdemand0('MFTG') * 1.5;
SOLVE OKCGE using NLP Maximizing TRICK;
* Unload the Solution into an Excel Spreadsheet
$include '%PROGPATH%OKCGE Excel.gms'
execute_unload 'OKCGESOL.gdx',solution;
execute 'gdxxrw OKCGESOL.gdx par=solution Rng=Sim1!a1';
*********************************** Simulation 2: Decreased Commuter Elasticities
* Cut Commuter Elasticities in Half
SigmaComLaborH(location) = SigmaComLaborH(location) * 0.5;
SigmaComLaborL(location) = SigmaComLaborL(location) * 0.5;
SOLVE OKCGE using NLP Maximizing TRICK;
display exportdemandO;
* Unload the Solution into an Excel Spreadsheet
```

```
$include '%PROGPATH%OKCGE Excel.gms'
execute_unload 'OKCGESOL.gdx',solution;
execute 'gdxxrw OKCGESOL.gdx par=solution Rng=Sim2!a1';
*********************************** Simulation 3: Increased Commuter Elasticities
* Increase Commuter Elasticities to Twice their Benchmark Values
SigmaComLaborH(location) = SigmaComLaborH(location) * 4;
SigmaComLaborL(location) = SigmaComLaborL(location) * 4;
SOLVE OKCGE using NLP Maximizing TRICK;
display exportdemand0;
* Unload the Solution into an Excel Spreadsheet
$include '%PROGPATH%OKCGE Excel.gms'
execute_unload 'OKCGESOL.gdx',solution;
execute 'gdxxrw OKCGESOL.gdx par=solution Rng=Sim3!a1';
****************************************** Simulation 4: Low Migration Elasticities
* Return Commuter Elasticities to their Benchmark Values
SigmaComLaborH(location) = SigmaComLaborH(location) * 0.5;
SigmaComLaborL(location) = SigmaComLaborL(location) * 0.5;
* Cut Migration Elasticities in Half
SigmaMigLaborH = SigmaMigLaborH * 0.5;
SigmaMigLaborL = SigmaMigLaborL * 0.5;
SOLVE OKCGE using NLP Maximizing TRICK;
display exportdemandO;
* Unload the Solution into an Excel Spreadsheet
$include '%PROGPATH%OKCGE Excel.gms'
execute_unload 'OKCGESOL.gdx',solution;
execute 'gdxxrw OKCGESOL.gdx par=solution Rng=Sim4!a1';
*************************************** Simulation 5: High Migration Elasticities
* Increase Migration Elasticities to Twice their Benchmark Values
SigmaMigLaborH = SigmaMigLaborH * 4;
SigmaMigLaborL = SigmaMigLaborL * 4;
SOLVE OKCGE using NLP Maximizing TRICK;
display exportdemandO;
* Unload the Solution into an Excel Spreadsheet
$include '%PROGPATH%OKCGE Excel.gms'
execute_unload 'OKCGESOL.gdx',solution;
execute 'gdxxrw OKCGESOL.gdx par=solution Rng=Sim5!a1';
*######################### Micro Data Set Module ###############################
```

sets
sec
Production Sectors
$/$
AGRI
MINE
UTIL
CONS
MFTG
WHOL
TRAN
RETA

```
INFO
FINC
REAL
PROF
MGMT
ADMI
EDUC
HEAL
ARTS
ACCO
OTHR
GNNC
/
h
location
nearloc(location)
;
alias (sec,sec2), (h,h2);
scalar
almostzero
A Value that approaches zero for zero items
/0.00000000000000000000000001/
Capital Demand
\(/\)
AGRI 5.513865
MINE 2232.564000
UTIL 423.807800
CONS 155.993100
MFTG 910.126000
WHOL 404.823400
TRAN 172.087200
```

	RETA 325.523800
	INFO 460.633800
	FINC 977.640400
	REAL 1124.928000
	PROF 205.495100
	MGMT 114.635700
	ADMI 162.783200
	EDUC 29.854050
	HEAL 345.937100
	ARTS 46.222890
	ACCO 174.170800
	OTHR 143.243700
	GNNC 1685.733000
	/
capitalsupply0	Regional Capital Supply
cbud0(h)	Household Consumption Budget
compositegood0(sec)	Aggregate Goods for Local Use
commuterlaborhsupply0(location)	```Commuter High Skilled Labor Supply /```
	canadian 514.070445
	cleveland 951.952602
	grady 98.643783
	lincoln 75.386305
	logan 171.624142
	mcclain 78.594233
	pottawatomie 121.901260
	otherokla 141.950809
	outofstate 56.940720
	/
commuterlaborlsupply0(location)	```Commuter Low Skilled Labor Supply /```
	canadian 964.725741
	cleveland 1786.473409
	grady 185.118980
	lincoln 141.473042
	logan 322.076925
	mcclain 147.493171
	pottawatomie 228.764918
	otherokla 266.390727
	outofstate 106.857297
	/
cpio	Regional Price Index
domesticdemandfordomestic0(sec)	Local Demand for Local Production /
	AGRI 43.030749
	MINE 814.420074
	UTIL 1137.398846
	CONS 2383.623111
	MFTG 3777.997045
	WHOL 2289.958294
	TRAN 1418.817289
	RETA 2708.774732
	INFO 1254.763896
	FINC 2456.521806
	REAL 2469.926518
	PROF 2894.931829
	MGMT 700.433064
	ADMI 1068.419711
	EDUC 299.897352
	HEAL 3089.454651
	ARTS 402.931069
	ACCO 1410.556671
	OTHR 1395.548493
	GNNC 7431.757281
	/
exportdemand0 (sec)	Export Demand /
	AGRI 1.673366
	MINE 6326.859000
	UTIL 324.412484
	CONS 0.182296

	MFTG 8924.067000
	WHOL 355.201400
	TRAN 721.354500
	RETA 557.420612
	INFO 1549.478990
	FINC 1638.984100
	REAL 709.697500
	PROF 308.054840
	MGMT 49.625880
	ADMI 783.331122
	EDUC 80.151129
	HEAL 1556.394977
	ARTS 0.729726
	ACCO 491.584682
	OTHR 296.129510
	GNNC 354.629600
	/
fedgovtdemand0(sec)	Federal Government Demand for Production /
	AGRI 0.000021
	MINE 3.201743
	UTIL 94.954879
	CONS 2.429542
	MFTG 104.508327
	WHOL 0.384841
	TRAN 0.399966
	RETA 6.710979
	INFO 36.326786
	FINC 3.590565
	REAL 0.957406
	PROF 332.105754
	MGMT 0.000000
	ADMI 22.664710
	EDUC 22.924770
	HEAL 1.928122
	ARTS 0.655354
	ACCO 0.008594
	OTHR 50.493882
	GNNC 2707.560763
	/
hhdcapitalsupply0(h)	Capital Supplied by Local Households /
	HHD1 18.975802
	HHD2 31.412902
	HHD3 104.434669
	HHD4 148.024105
	HHD5 238.563587
	HHD6 392.188790
	HHD7 225.567216
	HHD8 198.449686
	HHD9 160.390137
	/
hhdconsumption0(sec, h)	HHD Consumption Demand
hhddomesticconsumption0(sec, h)	HHD Consumption of Domestic Production /
	AGRI.HHD1 0.542112
	AGRI.HHD2 0.428877
	AGRI.HHD3 0.918002
	AGRI.HHD4 1.031506
	AGRI.HHD5 1.447971
	AGRI.HHD6 1.583495
	AGRI.HHD7 0.939856
	AGRI.HHD8 0.735132
	AGRI.HHD9 0.530383
	MINE.HHD1 1.917397
	MINE.HHD2 1.418925
	MINE.HHD3 2.840977
	MINE.HHD4 3.563672
	MINE.HHD5 5.402823
	MINE.HHD6 5.861974
	MINE.HHD7 3.364300

MINE. HHD8	2.631471
MINE.HHD9	1.898552
UTIL. HHD1	36.156410
UTIL. HHD2	27.374540
UTIL. HHD3	57.410210
UTIL. HHD4	57.078740
UTIL. HHD5	72.644350
UTIL. HHD6	81.333550
UTIL. HHD7	40.180150
UTIL. HHD8	31.427900
UTIL. HHD9	22.674580
CONS. HHD1	0.000000
CONS. HHD2	0.000000
CONS. HHD3	0.000000
CONS. HHD 4	0.000000
CONS. HHD 5	0.000000
CONS. HHD 6	0.000000
CONS. HHD7	0.000000
CONS. HHD8	0.000000
CONS. HHD 9	0.000000
MFTG. HHD 1	58.372810
MFTG. HHD2	43.222200
MFTG. HHD 3	86.551360
MFTG. HHD 4	108.601200
MFTG. HHD 5	164.673200
MFTG. HHD 6	178.818700
MFTG. HHD 7	102.705200
MFTG. HHD 8	80.333400
MFTG. HHD 9	57.958890
WHOL. HHD1	52.006370
WHOL. HHD2	39.373950
WHOL. HHD3	82.573780
WHOL. HHD 4	94.559500
WHOL. HHD5	146.733900
WHOL. HHD6	163.208100
WHOL. HHD7	87.731860
WHOL. HHD8	68.621670
WHOL. HHD9	49.509120
TRAN. HHD1	21.344080
TRAN. HHD2	14.849220
TRAN. HHD3	31.059230
TRAN. HHD4	37.780910
TRAN. HHD5	54.408740
TRAN. HHD6	65.460530
TRAN. HHD7	47.511120
TRAN. HHD8	37.162000
TRAN. HHD9	26.811620
RETA. HHD1	137.780300
RETA. HHD 2	95.624310
RETA. HHD 3	200.540200
RETA. HHD 4	235.360600
RETA. HHD5	388.574500
RETA. HHD6	432.547100
RETA. HHD 7	246.333100
RETA. HHD8	192.675500
RETA. HHD9	139.011400
INFO. HHD1	18.299170
INFO. HHD 2	14.165680
INFO. HHD3	28.983560
INFO. HHD 4	34.420560
INFO. HHD5	51.606530
INFO. HHD 6	59.422510
INFO. HHD7	35.942600
INFO. HHD8	28.113400
INFO. HHD9	20.283230
FINC. HHD1	45.637630
FINC.HHD2	39.928020
FINC. HHD3	84.823010
FINC.HHD4	110.964400
FINC. HHD 5	190.829400
FINC.HHD6	209.957700

FINC. HHD7	120.376100
FINC.HHD8	94.155160
FINC. HHD 9	67.931020
REAL. HHD1	72.597250
REAL. HHD 2	48.156540
REAL. HHD3	100.992400
REAL. HHD4	109.924900
REAL. HHD5	135.940000
REAL. HHD6	102.415100
REAL. HHD7	44.463890
REAL.HHD8	34.778540
REAL. HHD9	25.092000
PROF. HHD1	13.777830
PROF. HHD2	11.791750
PROF. HHD 3	24.758450
PROF. HHD4	28.928180
PROF. HHD5	38.255270
PROF.HHD6	48.149410
PROF. HHD7	28.678620
PROF. HHD 8	22.431690
PROF. HHD 9	16.184000
MGMT. HHD1	0.000000
MGMT. HHD2	0.000000
MGMT. HHD3	0.000000
MGMT. HHD4	0.000000
MGMT. HHD5	0.000000
MGMT. HHD6	0.000000
MGMT. HHD7	0.000000
MGMT. HHD8	0.000000
MGMT. HHD9	0.000000
ADMI.HHD1	4.208035
ADMI.HHD2	3.098941
ADMI.HHD3	6.795226
ADMI. HHD4	7.487379
ADMI. HHD 5	11.768500
ADMI. HHD 6	14.279770
ADMI.HHD7	10.047190
ADMI. HHD8	7.858656
ADMI.HHD9	5.669858
EDUC.HHD1	9.768647
EDUC.HHD2	6.379629
EDUC.HHD3	19.128560
EDUC. HHD4	19.328210
EDUC.HHD5	28.973780
EDUC.HHD6	47.242270
EDUC. HHD7	41.631640
EDUC.HHD8	32.563220
EDUC.HHD9	23.493690
HEAL. HHD1	234.453800
HEAL. HHD 2	138.811200
HEAL. HHD 3	349.810500
HEAL. HHD 4	359.748100
HEAL. HHD5	487.638500
HEAL. HHD6	555.149300
HEAL. HHD7	384.457000
HEAL. HHD8	300.712600
HEAL. HHD9	216.957900
ARTS. HHD 1	12.885420
ARTS. HHD2	9.038076
ARTS. HHD 3	25.208430
ARTS. HHD4	27.941530
ARTS. HHD 5	40.937870
ARTS. H HD6	50.375180
ARTS. HHD 7	40.378920
ARTS. HHD 8	31.583360
ARTS. HHD 9	22.786750
ACCO. HHD 1	47.162660
ACCO. HHD 2	29.208710
ACCO. HHD 3	83.923230
ACCO. HHD 4	108.293600
ACCO. HHD5	195.054500

```
ACCO.HHD6 229.198900
ACCO.HHD7 142.185500
ACCO.HHD8 111.213900
ACCO.HHD9 80.238560
OTHR.HHD1 47.232910
OTHR.HHD2 38.059210
OTHR.HHD3 79.816520
OTHR.HHD4 97.070310
OTHR.HHD5 129.322100
OTHR.HHD6 159.855400
OTHR.HHD7 126.466300
OTHR.HHD8 98.918740
OTHR.HHD9 71.367830
GNNC.HHD1 107.162000
GNNC.HHD2 82.127460
GNNC.HHD3 174.575300
GNNC.HHD4 192.793400
GNNC.HHD5 374.678100
GNNC.HHD6 488.991000
GNNC.HHD7 332.835400
GNNC.HHD8 260.335500
GNNC.HHD9 187.826700
/
Household High Skilled Labor Supply
/
HHD1 0.000000
HHD2 0.000000
HHD3 0.000000
HHD4 0.000000
HHD5 0.000000
HHD6 0.000000
HHD7 1856.926663
HHD8 2160.086814
HHD9 1791.741953
/
Household Low Skilled Labor Supply
/
HHD1 210.840176
HHD2 353.401057
HHD3 1177.081531
HHD4 1652.978200
HHD5 2643.139725
HHD6 4274.380364
HHD7 589.128312
HHD8 0.000000
HHD9 0.000000
/
HHD Consumption of Imports
/
AGRI.HHD1 6.884396
AGRI.HHD2 5.451597
AGRI.HHD3 11.642720
AGRI.HHD4 13.083970
AGRI.HHD5 18.358850
AGRI.HHD6 20.052060
AGRI.HHD7 11.854530
AGRI.HHD8 9.272319
AGRI.HHD9 6.689787
MINE.HHD1 6.210516
MINE.HHD2 4.596014
MINE.HHD3 9.202439
MINE.HHD4 11.541520
MINE.HHD5 17.496720
MINE.HHD6 18.983930
MINE.HHD7 10.894710
MINE.HHD8 8.521567
MINE.HHD9 6.148135
UTIL.HHD1 1.429858
UTIL.HHD2 1.082587
UTIL.HHD3 2.270453
UTIL.HHD4 2.257672
```

UTIL. HHD5	2.875613
UTIL. HHD6	3.220809
UTIL. HHD7	1.592728
UTIL. HHD8	1.245792
UTIL. HHD9	0.898813
CONS. HHD1	0.000000
CONS.HHD2	0.000000
CONS. HHD3	0.000000
CONS. HHD 4	0.000000
CONS. HHD5	0.000000
CONS. HHD6	0.000000
CONS. HHD7	0.000000
CONS. HHD8	0.000000
CONS. HHD9	0.000000
MFTG. HHD1	188.087600
MFTG. HHD 2	139.188400
MFTG. HHD3	278.648000
MFTG. HHD4	349.786700
MFTG. HHD5	530.453400
MFTG. HHD 6	575.527200
MFTG. HHD 7	330.391000
MFTG. HHD 8	258.423500
MFTG. HHD 9	186.447200
WHOL. HHD1	3.704792
WHOL. HHD2	2.804894
WHOL. HHD3	5.882332
WHOL. HHD 4	6.736162
WHOL. HHD5	10.452920
WHOL. HHD6	11.626500
WHOL. HHD7	6.249780
WHOL. HHD8	4.888422
WHOL. HHD9	3.526895
TRAN. HHD1	6.189160
TRAN. HHD 2	4.305841
TRAN. HHD3	9.006270
TRAN. HHD 4	10.955360
TRAN. HHD5	15.776950
TRAN. HHD6	18.981640
TRAN. HHD7	13.776840
TRAN. HHD8	10.775900
TRAN. HHD9	7.774587
RETA. HHD1	7.671303
RETA. HHD 2	5.324152
RETA. HHD 3	11.165640
RETA. HHD 4	13.104360
RETA. HHD5	21.634980
RETA. HHD6	24.083270
RETA. HHD7	13.715290
RETA. HHD8	10.727750
RETA. HHD9	7.739852
INFO. HHD 1	26.615210
INFO. HHD 2	20.470990
INFO. HHD3	41.717600
INFO. HHD 4	49.653930
INFO. HHD5	75.118360
INFO. HHD6	85.763230
INFO. HHD7	51.752980
INFO. HHD8	40.479880
INFO. HHD9	29.205390
FINC. HHD1	30.109440
FINC.HHD2	26.655520
FINC. HHD3	56.653650
FINC. HHD 4	74.565860
FINC. HHD5	129.315800
FINC. HHD6	143.239000
FINC.HHD7	82.414450
FINC. HHD8	64.462510
FINC.HHD9	46.508380
REAL. HHD1	22.185540
REAL. HHD2	14.716520
REAL. HHD 3	30.863020

4	33.592790
5	41.542940
	0
8	10.628240
REAL.HHD9	7.
	4.089327
PROF.HHD2	3.487341
3	7.
PROF.HHD4	8.
	11
OF. HHD6	14.260960
PRO	8
PROF.HHD8	6.651552
	7
MGMT. HHD1	0.000000
	0.000000
MGMT. HHD 3	0.000000
MGMT. HHD4	00
5	0.000000
	0.000000
	0.000000
MGMT. HHD8	0.000000
9	0.000000
	55
	1.387129
	0
4	3.352966
	5.239096
	6.340314
	4.465622
ADMI.HHD8	3.492897
	2.520053
	3.629580
	2.370377
3	7.107295
ED	7.
	10
ED	17.553050
EDUC.HHD7	15.468400
ED	12.0990
	8.729176
HEAL. HHD1	18.601700
HEAL. HHD2	11.013360
3	27.7541
	28
5	38.689520
HEAL. HHD6	44.045870
HEAL. HHD7	30
	23
9	17.213
	3.359423
	2.356462
	6.572117
	7.284734
5	10.672860
	13.133300
	10.5267
ARTS. HHD 8	8.233727
	5.940465
	5.708008
	3.536529
ACCO. HHD 3	10.144240
D4	13.080730
ACCO. HHD 5	23.532290
O. HHD 6	27.625530
ACCO. HHD 7	17.129060
ACCO. HHD 8	13.397920
O.HHD9	9.666322
OTHR.HHD1	8.211442
OTHR.HHD2	6.616629

	OTHR.HHD3 13.876170
	OTHR.HHD4 16.875710
	OTHR.HHD5 22.482680
	OTHR.HHD6 27.790930
	OTHR.HHD7 21.985760
	OTHR.HHD8 17.196700
	OTHR.HHD9 12.407070
	GNNC.HHD1 8.036864
	GNNC.HHD2 6.122560
	GNNC. HHD3 13.014380
	GNNC. HHD 414.449110
	GNNC.HHD5 27.863740
	GNNC.HHD6 36.068810
	GNNC.HHD7 24.558670
	GNNC. HHD8 19.209180
	GNNC.HHD9 13.859020
	/
hhdincome0 (h)	Total Household Income
hhdmiscincome0(h)	Miscellaneous Household Income /
	HHD1 1044.099166
	HHD2 519.730181
	HHD3 705.075924
	HHD4 498.474312
	HHD5 650.820111
	HHD6 0.000000
	HHD7 0.000000
	HHD8 0.000000
	HHD9 0.000000
	/
importdemand0(sec)	Local Demand for Imports
inputoutput(sec,sec2)	Input-Output Coefficient Matrix
intermeddomestic0(sec,sec2)	Intermediate Input Purchased Domestically /
	AGRI.AGRI 0.665582
	AGRI.MINE 0.035106
	AGRI.UTIL 0.000367
	AGRI.CONS 0.243362
	AGRI.MFTG 29.670690
	AGRI.WHOL 0.004504
	AGRI.TRAN 0.001359
	AGRI.RETA 0.013452
	AGRI.INFO 0.006979
	AGRI.FINC 0.001407
	AGRI.REAL 0.365475
	AGRI.PROF 0.021808
	AGRI.MGMT 0.000000
	AGRI.ADMI 1.153993
	AGRI.EDUC 0.001548
	AGRI.HEAL 0.138915
	AGRI.ARTS 0.054203
	AGRI.ACCO 1.886993
	AGRI.OTHR 0.059718
	AGRI.GNNC 0.039325
	MINE.AGRI 0.066798
	MINE.MINE 218.184300
	MINE.UTIL 71.986290
	MINE.CONS 7.611319
	MINE.MFTG 174.351300
	MINE.WHOL 0.908359
	MINE.TRAN 3.361138
	MINE.RETA 0.837169
	MINE.INFO 1.660122
	MINE.FINC 0.221590
	MINE.REAL 0.727207
	MINE.PROF 1.107276
	MINE.MGMT 0.172473
	MINE.ADMI 0.803422
	MINE.EDUC 0.145780
	MINE. HEAL 4.349598
	MINE.ARTS 0.154003

MINE.ACCO 3.661668
MINE.OTHR 2.033102
MINE.GNNC 4.516460
UTIL.AGRI 0.366760
UTIL.MINE 70.033070
UTIL.UTIL 1.129073
UTIL.CONS 6.060678
UTIL.MFTG 148.635200
UTIL.WHOL 16.616600
UTIL.TRAN 7.680413
UTIL.RETA 42.195460
UTIL.INFO 11.626350
UTIL.FINC 10.734520
UTIL.REAL 72.914390
UTIL. PROF 14.521850
UTIL.MGMT 12.061120
UTIL.ADMI 11.987830
UTIL.EDUC 2.107307
UTIL. HEAL 30.502900
UTIL.ARTS 5.923954
UTIL.ACCO 34.364000
UTIL.OTHR 16.679680
UTIL.GNNC 9.307366
CONS.AGRI 0.105779
CONS.MINE 0.409956
CONS.UTIL 19.707650
CONS.CONS 1.608930
CONS.MFTG 20.983500
CONS.WHOL 5.627998
CONS.TRAN 5.508753
CONS.RETA 12.259190
CONS.INFO 11.759800
CONS.FINC 10.255330
CONS.REAL 40.797050
CONS.PROF 8.648234
CONS.MGMT 7.363369
CONS.ADMI 2.798665
CONS.EDUC 7.699459
CONS. HEAL 15.381430
CONS.ARTS 3.279276
CONS.ACCO 10.971780
CONS.OTHR 11.625780
CONS.GNNC 43.912480
MFTG.AGRI 1.855735
MFTG.MINE 181.835200
MFTG.UTIL 13.069370
MFTG.CONS 152.908900
MFTG.MFTG 1161.511000
MFTG.WHOL 29.141930
MFTG.TRAN 65.342260
MFTG.RETA 27.623960
MFTG.INFO 53.215840
MFTG.FINC 9.102745
MFTG.REAL 20.174440
MFTG.PROF 35.553300
MFTG.MGMT 6.556956
MFTG.ADMI 25.377440
MFTG.EDUC 4.594595
MFTG.HEAL 134.142000
MFTG.ARTS 4.940357
MFTG.ACCO 111.572100
MFTG.OTHR 62.324870
MFTG.GNNC 24.439970
WHOL.AGRI 1.004954
WHOL.MINE 71.875110
WHOL.UTIL 6.146931
WHOL.CONS 59.807830
WHOL.MFTG 707.257800
WHOL. WHOL 63.695400
WHOL.TRAN 39.416900
WHOL.RETA 15.240820

L. INFO	
WHOL.FINC	4.741089
WHOL. REAL	8.819109
WHOL. PROF	15.850820
WHOL. MGMT	2.435498
WHOL. ADMI	18.280770
WHOL.EDUC	3.573939
WHOL. HEAL	61.304490
WHOL.ARTS	2.570565
WHOL. ACCO	65.546840
WHOL.OTHR	27.693520
WHOL. GNNC	11.926550
TRAN.AGRI	0.489085
TRAN.MINE	73.973990
TRAN.UTIL	74.970400
TRAN.CONS	30.390340
TRAN.MFTG	284.990600
TRAN.WHOL	46.964050
TRAN.TRAN	156.061300
TRAN.RETA	55.848310
TRAN.INFO	31.238450
TRAN.FINC	38.944960
TRAN. REAL	27.346610
TRAN. PROF	50.629410
TRAN.MGMT	1.462710
TRAN.ADMI	25.425170
TRAN.EDUC	4.022041
TRAN. HEAL	59.631610
TRAN.ARTS	3.943894
TRAN.ACCO	23.299660
TRAN.OTHR	20.619140
TRAN.GNNC	9.411531
RETA.AGRI	0.046942
RETA.MINE	13.567090
RETA.UTIL	0.923770
RETA. CONS	196.434500
RETA.MFTG	36.162190
RETA.WHOL	22.013680
RETA.TRAN	16.500300
RETA.RETA	45.915260
RETA.INFO	7.878970
RETA.FINC	4.847683
RETA. REAL	37.274180
RETA. PROF	19.842340
RETA. MGMT	0.025931
RETA.ADMI	47.937420
RETA.EDUC	0.681764
RETA. HEAL	24.135120
RETA.ARTS	2.292591
RETA.ACCO	20.214880
RETA. OTHR	27.355020
RETA.GNNC	29.506920
INFO.AGRI	0.090262
INFO.MINE	18.863120
INFO.UTIL	3.913149
INFO.CONS	18.087610
INFO.MFTG	93.646950
INFO.WHOL	29.305930
INFO.TRAN	16.214380
INFO.RETA	37.495160
INFO.INFO	294.138300
INFO.FINC	39.071430
INFO.REAL	30.426820
INFO.PROF	77.829570
INFO.MGMT	27.845770
INFO.ADMI	24.554960
INFO.EDUC	7.045538
INFO. HEAL	52.929920
INFO.ARTS	5.668813
INFO.ACCO	21.027030
INFO.OTHR	21.901830

INFO.GNNC	5.
FINC.AGRI	0.405471
FINC.MINE	60.312290
FINC.UTIL	8.944800
FINC.CONS	24.302480
FINC.MFTG	124.167700
FINC.WHOL	34.687710
FINC.TRAN	33.758510
FINC.RETA	55.486160
FINC.INFO	31.706810
FINC.FINC	704.618700
FINC.REAL	83.758170
FINC.PROF	46.373240
FINC.MGMT	2.182659
FINC.ADMI	21.295990
FINC.EDUC	6.235458
FINC.HEAL	73.374220
FINC.ARTS	6.718875
FINC.ACCO	27.155000
FINC.OTHR	17.995570
FINC.GNNC	60.310860
REAL.AGRI	1.242324
REAL.MINE	212.209500
REAL.UTIL	4.647207
REAL.CONS	23.198070
REAL.MFTG	104.261600
REAL.WHOL	58.866070
REAL.TRAN	44.685260
REAL.RETA	148.635000
REAL.INFO	60.314330
REAL.FINC	106.535800
REAL. REAL	202.389100
REAL. PROF	127.653500
REAL.MGMT	41.401560
REAL. ADMI	37.762660
REAL.EDUC	42.421890
REAL.HEAL	211.513100
REAL.ARTS	19.382560
REAL.ACCO	70.831140
REAL.OTHR	97.071890
REAL.GNNC	33.808780
PROF.AGRI	0.488668
PROF.MINE	132.704500
PROF.UTIL	25.475750
PROF.CONS	95.025700
PROF.MFTG	354.594300
PROF.WHOL	96.520890
PROF.TRAN	52.101620
PROF.RETA	137.096500
PROF.INFO	173.584600
PROF.FINC	148.995600
PROF.REAL	113.238700
PROF.PROF	230.040000
PROF.MGMT	82.918110
PROF.ADMI	60.484490
PROF.EDUC	10.364970
PROF.HEAL	130.832400
PROF.ARTS	16.357060
PROF.ACCO	44.563590
PROF.OTHR	44.435940
PROF.GNNC	35.746030
MGMT.AGRI	0.015663
MGMT.MINE	145.956800
MGMT. UTIL	0.522560
MGMT. CONS	1.974303
MGMT. MFTG	252.418200
MGMT. WHOL	45.351460
MGMT. TRAN	9.645301
MGMT. RETA	122.819000
MGMT.INFO	11.011830
MGMT.FINC	22.139100

```
MGMT.REAL 6.105235
MGMT.PROF 9.352163
MGMT.MGMT 0.000000
MGMT.ADMI 21.588820
MGMT.EDUC 0.613872
MGMT.HEAL 33.152480
MGMT.ARTS 3.452754
MGMT.ACCO 5.187511
MGMT.OTHR 9.028913
MGMT.GNNC 0.097099
ADMI.AGRI 0.036981
ADMI.MINE 12.330750
ADMI.UTIL 4.763295
ADMI.CONS 19.358520
ADMI.MFTG 55.967660
ADMI.WHOL 59.540570
ADMI.TRAN 53.706960
ADMI.RETA 60.530340
ADMI.INFO 43.564960
ADMI.FINC 37.892280
ADMI.REAL 141.329600
ADMI.PROF 125.974200
ADMI.MGMT 0.864892
ADMI.ADMI 64.650470
ADMI.EDUC 10.055350
ADMI.HEAL 135.682400
ADMI.ARTS 8.813200
ADMI.ACCO 19.762660
ADMI.OTHR 38.200950
ADMI.GNNC 20.199510
EDUC.AGRI 0.000000
EDUC.MINE 1.464029
EDUC.UTIL 3.100648
EDUC.CONS 0.232534
EDUC.MFTG 7.926968
EDUC.WHOL 2.618211
EDUC.TRAN 0.979604
EDUC.RETA 2.097137
EDUC.INFO 4.839476
EDUC.FINC 1.430970
EDUC.REAL 1.150342
EDUC.PROF 3.548268
EDUC.MGMT 0.000000
EDUC.ADMI 0.767121
EDUC.EDUC 2.225501
EDUC.HEAL 5.689630
EDUC.ARTS 0.700253
EDUC.ACCO 0.338849
EDUC.OTHR 1.222692
EDUC.GNNC 0.134560
HEAL.AGRI 0.000000
HEAL.MINE 0.000000
HEAL.UTIL 0.000000
HEAL.CONS 0.000000
HEAL.MFTG 0.000000
HEAL.WHOL 0.000000
HEAL.TRAN 0.478069
HEAL.RETA 0.008562
HEAL.INFO 0.000000
HEAL.FINC 0.005737
HEAL.REAL 0.000000
HEAL.PROF 0.402804
HEAL.MGMT 0.000000
HEAL.ADMI 0.227565
HEAL.EDUC 0.212231
HEAL.HEAL 42.081030
HEAL.ARTS 0.167584
HEAL.ACCO 0.006434
HEAL.OTHR 0.329202
HEAL.GNNC 0.000000
ARTS.AGRI 0.011639
```

ARTS.MINE	39.558800
ARTS.UTIL	0.271760
ARTS.CONS	0.908338
ARTS.MFTG	9.016811
ARTS. WHOL	2.685351
ARTS.TRAN	0.483499
ARTS.RETA	2.531410
ARTS.INFO	18.532140
ARTS.FINC	3.981034
ARTS.REAL	3.801083
ARTS.PROF	11.666800
ARTS.MGMT	0.148485
ARTS.ADMI	2.971850
ARTS.EDUC	0.916306
ARTS. HEAL	3.556260
ARTS.ARTS	26.858100
ARTS.ACCO	7.563195
ARTS.OTHR	3.976062
ARTS.GNNC	0.151592
ACCO.AGRI	0.016840
ACCO.MINE	4.383390
ACCO.UTIL	6.531071
ACCO.CONS	3.055462
ACCO.MFTG	53.437360
ACCO. WHOL	13.324320
ACCO.TRAN	19.856520
ACCO.RETA	18.831030
ACCO.INFO	12.792060
ACCO.FINC	29.604360
GNNNC.	

intermedimport0(sec,sec2)	GNNC.MGMT 4.876816
	GNNC.ADMI 6.430217
	GNNC.EDUC 1.544314
	GNNC.HEAL 16.562710
	GNNC.ARTS 2.343422
	GNNC.ACCO 13.497490
	GNNC.OTHR 8.184114
	GNNC.GNNC 6.233780
	1
	Intermediate Input Imported /
	AGRI.AGRI 8.523177
	AGRI.MINE 0.273127
	AGRI.UTIL 0.003680
	AGRI.CONS 3.113107
	AGRI.MFTG 379.915200
	AGRI.WHOL 0.046403
	AGRI.TRAN 0.015655
	AGRI.RETA 0.162008
	AGRI.INFO 0.007603
	AGRI.FINC 0.001352
	AGRI.REAL 4.664010
	AGRI.PROF 0.228764
	AGRI.MGMT 0.000000
	AGRI.ADMI 14.764800
	AGRI.EDUC 0.015800
	AGRI.HEAL 1.763988
	AGRI.ARTS 0.573729
	AGRI.ACCO 24.130620
	AGRI.OTHR 0.747240
	AGRI.GNNC 0.503186
	MINE.AGRI 0.220335
	MINE.MINE 852.233300
	MINE.UTIL 282.235700
	MINE.CONS 26.445420
	MINE.MFTG 658.111000
	MINE.WHOL 2.940317
	MINE.TRAN 11.731370
	MINE.RETA 2.709877
	MINE.INFO 5.373736
	MINE.FINC 0.717601
	MINE.REAL 2.438441
	MINE.PROF 3.624025
	MINE.MGMT 0.558415
	MINE.ADMI 2.600639
	MINE.EDUC 0.471883
	MINE.HEAL 14.081930
	MINE.ARTS 0.498499
	MINE.ACCO 11.861760
	MINE.OTHR 6.584706
	MINE.GNNC 17.185400
	UTIL.AGRI 0.014495
	UTIL.MINE 3.061534
	UTIL.UTIL 0.144133
	UTIL.CONS 0.243072
	UTIL.MFTG 6.061165
	UTIL.WHOL 0.656427
	UTIL.tRAN 0.305220
	UTIL.RETA 1.666741
	UTIL.INFO 0.459455
	UTIL.FINC 0.424263
	UTIL.REAL 2.880419
	UTIL.PROF 0.573764
	UTIL.MGMT 0.476429
	UTIL.ADMI 0.473547
	UTIL.EDUC 0.083239
	UTIL.HEAL 1.204912
	UTIL.ARTS 0.234001
	UTIL.ACCO 1.357437
	UTIL.OTHR 0.658876
	UTIL.GNNC 0.372877

CONS.AGRI	0.003009
CONS.MINE	0.011663
CONS.UTIL	0.560685
CONS.CONS	0.045774
CONS.MFTG	0.596983
CONS.WHOL	0.160117
CONS.TRAN	0.156725
CONS.RETA	0.348775
CONS.INFO	0.334568
CONS.FINC	0.291765
CONS.REAL	1.160681
CONS.PROF	0.246043
CONS.MGMT	0.209489
CONS.ADMI	0.079622
CONS.EDUC	0.219051
CONS. HEAL	0.437604
CONS.ARTS	0.093296
CONS.ACCO	0.312149
CONS.OTHR	0.330755
CONS.GNNC	1.249316
MFTG.AGRI	5.983962
MFTG.MINE	582.403100
MFTG.UTIL	41.127490
MFTG.CONS	490.491500
MFTG.MFTG	3743.058000
MFTG.WHOL	89.786980
MFTG.TRAN	209.046600
MFTG.RETA	82.970780
MFTG.INFO	164.109300
MFTG.FINC	22.432730
MFTG.REAL	59.960240
TRAN.CONS	8.812311
TRAN.MFTG	82.638960
TRFTG.PROF	104.270200
TRAN.WHOL	13.618200
TRAN.	

TRAN. PROF 14.681050
TRAN.MGMT 0.424143
TRAN.ADMI 7.372559
TRAN.EDUC 1.166275
TRAN. HEAL 17.291430
TRAN.ARTS 1.143614
TRAN.ACCO 6.756222
TRAN.OTHR 5.978949
TRAN.GNNC 2.729069
RETA.AGRI 0.002614
RETA.MINE 0.755386
RETA.UTIL 0.051433
RETA.CONS 10.937040
RETA.MFTG 2.013432
RETA.WHOL 1.225673
RETA.TRAN 0.918700
RETA.RETA 2.556461
RETA.INFO 0.438684
RETA.FINC 0.269908
RETA. REAL 2.075345
RETA.PROF 1.104778
RETA.MGMT 0.001444
RETA.ADMI 2.669050
RETA.EDUC 0.037959
RETA. HEAL 1.343791
RETA.ARTS 0.127646
RETA.ACCO 1.125520
RETA.OTHR 1.523068
RETA. GNNC 1.642881
INFO.AGRI 0.077166
INFO.MINE 12.027860
INFO.UTIL 2.719107
INFO.CONS 15.774650
INFO.MFTG 99.734020
INFO.WHOL 33.005360
INFO.TRAN 18.453360
INFO.RETA 40.456100
INFO.INFO 435.917200
INFO.FINC 41.355510
INFO.REAL 32.575580
INFO.PROF 91.141880
INFO.MGMT 32.543450
INFO.ADMI 30.352050
INFO.EDUC 9.598519
INFO. HEAL 65.334950
INFO.ARTS 6.685371
INFO.ACCO 26.972230
INFO.OTHR 28.326460
INFO.GNNC 3.137465
FINC.AGRI 0.255336
FINC.MINE 37.421520
FINC.UTIL 6.096604
FINC.CONS 16.348650
FINC.MFTG 83.820240
FINC.WHOL 22.810080
FINC.TRAN 22.455920
FINC.RETA 35.376660
FINC.INFO 20.717280
FINC.FINC 485.544000
FINC.REAL 53.850170
FINC.PROF 29.496570
FINC.MGMT 0.667015
FINC.ADMI 13.970830
FINC.EDUC 3.451444
FINC. HEAL 46.476780
FINC.ARTS 4.255585
FINC.ACCO 17.352330
FINC.OTHR 10.477680
FINC.GNNC 41.056290
REAL.AGRI 0.379651
REAL.MINE 64.850710

REAL.UTIL	1.420175
REAL. CONS	7.089273
REAL.MFTG	31.862100
REAL. WHOL	17.989330
REAL.TRAN	13.655710
REAL.RETA	45.422500
REAL.INFO	18.431910
REAL.FINC	32.557070
REAL.REAL	61.849600
REAL.PROF	39.010610
REAL.MGMT	12.652220
REAL.ADMI	11.540180
REAL.EDUC	12.964020
REAL. HEAL	64.637890
REAL.ARTS	5.923264
REAL.ACCO	21.645820
REAL.OTHR	29.664940
REAL.GNNC	10.331880
PROF.AGRI	0.140524
PROF.MINE	38.118130
PROF.UTIL	7.321145
PROF.CONS	27.330730
PROF.MFTG	102.193000
PROF. WHOL	27.847490
PROF.TRAN	15.034820
PROF.RETA	39.521100
PROF.INFO	51.970820
PROF.FINC	42.937810
PROF.REAL	32.639070
ADRMI	

ADMI.EDUC	4.614709
DM	62.270690
ADMI.ARTS	4.042209
DMI.ACCO	9.060664
ADMI.OTHR	17.529380
C	9.268073
ED	0.000000
EDUC.M	0.543966
EDUC.UTIL	1.152058
EDUC.C	0.086399
ED	2.945297
EDUC.WHOL	0.972807
EDUC.TRAN	0.363976
EDUC	0.779199
EDUC.INFO	1.798127
EDUC.FINC	0.531683
EDUC.REAL	0.427414
EDUC.PROF	1.318373
EDUC.MGMT	0.000000
EDUC.ADMI	0.285027
EDUC.EDUC	0.826894
ED	2.114005
ED	0.260182
EDUC.ACCO	0.125900
EDUC	0.454296
EDUC.GNNC	0.049996
HE	0.000000
HEAL.MINE	0.000000
HEAL.	0.000000
HE	0.000000
HE	0.000000
HEAL. WHOL	0.000000
HEAL.	0.037930
HEAL. RETA	0.000679
HEAL.INFO	0.000000
HEAL.FINC	0.000455
HEAL.	0.000000
HEAL. PROF	31959
HEAL.MGMT	0.000000
HEAL. ADMI	0.018055
HEAL.EDUC	0.016839
	3
HEAL.ARTS	0.013296
. ACCO	0.000511
HEAL.	0.026119
HEAL.GNNC	0.000000
.	0.003057
ARTS.MINE	10.317860
A	0.072037
AR	0.241246
ARTS.MFTG	2.367055
ARTS.W	0.704518
A	0.128482
ARTS.R	0.666302
ARTS.INFO	4.838780
ARTS.FINC	1.044729
A	0.996139
ARTS.PROF	3.051949
ARTS.MGMT	0.042605
ARTS.ADMI	0.777502
ARTS.	0.239335
ARTS. HEA	0.933144
ARTS.ARTS	7.001745
ARTS.ACCO	1.973557
ARTS. 0	1.038509
ARTS.GNNC	0.041198
ACCO.AGRI	0.002592
ACCO.MINE	0.624036
ACCO.UTIL	0.787982
ACCO.CONS	0.378215

```
ACCO.MFTG 6.477439
ACCO.WHOL 1.630077
ACCO.TRAN 2.409624
ACCO.RETA 2.333545
ACCO.INFO 1.566691
ACCO.FINC 3.610711
ACCO.REAL 2.919173
ACCO.PROF 5.568925
ACCO.MGMT 0.031085
ACCO.ADMI 2.076072
ACCO.EDUC 0.192067
ACCO.HEAL 7.821733
ACCO.ARTS 0.200005
ACCO.ACCO 1.857416
ACCO.OTHR 1.004995
ACCO.GNNC 0.094056
OTHR.AGRI 0.047193
OTHR.MINE 1.366447
OTHR.UTIL 0.303241
OTHR.CONS 3.391048
OTHR.MFTG 23.251970
OTHR.WHOL 3.884060
OTHR.TRAN 3.437094
OTHR.RETA 3.785326
OTHR.INFO 5.652926
OTHR.FINC 2.454554
OTHR.REAL 4.580678
OTHR.PROF 4.210666
OTHR.MGMT 2.203332
OTHR.ADMI 4.189521
OTHR.EDUC 0.633182
OTHR.HEAL 4.730793
OTHR.ARTS 0.951068
OTHR.ACCO 2.548884
OTHR.OTHR 3.026026
OTHR.GNNC 3.372230
GNNC.AGRI 0.014921
GNNC.MINE 2.774060
GNNC.UTIL 0.654705
GNNC.CONS 0.579632
GNNC.MFTG 6.931949
GNNC.WHOL 1.261349
GNNC.TRAN 2.155462
GNNC.RETA 1.962121
GNNC.INFO 1.736296
GNNC.FINC 2.591461
GNNC.REAL 2.883918
GNNC.PROF 1.689407
GNNC.MGMT 0.468054
GNNC.ADMI 0.726872
GNNC.EDUC 0.314530
GNNC.HEAL 2.346054
GNNC.ARTS 0.243495
GNNC.ACCO 1.210990
GNNC.OTHR 1.046735
GNNC.GNNC 0.634455
/
Investment Demand for Local Goods
/
AGRI 0.024419
MINE 281.384370
UTIL 0.123397
CONS 1518.111000
MFTG 561.246140
WHOL 216.489940
TRAN 18.086952
RETA 79.683590
INFO 56.173038
FINC 3.918466
REAL 74.327060
PROF 233.034008
```

	MGMT 0.000000
	ADMI 0.512193
	EDUC 0.000000
	HEAL 0.000000
	ARTS 0.417549
	ACCO 0.182611
	OTHR 0.286785
	GNNC 16.232624
	$/$
investnewcapital0(sec)	Investment by Sectors in New Capital /
	AGRI 0.002247
	MINE 0.359201
	UTIL 0.018918
	CONS 0.161420
	MFTG 2.753216
	WHOL 0.300008
	TRAN 0.465498
	RETA 0.192876
	INFO 0.787383
	FINC 0.867791
	REAL 0.637877
	PROF 0.293428
	MGMT 0.083676
	ADMI 0.141298
	EDUC 0.010813
	HEAL 0.294280
	ARTS 0.034141
	ACCO 0.287900
	OTHR 0.149243
	GNNC 0.197180
	/
labordemand0(sec)	Aggregate Labor Demand by Sector /
	AGRI 14.049380
	MINE 1517.954700
	UTIL 277.053600
	CONS 921.835300
	MFTG 2385.163800
	WHOL 993.995050
	TRAN 974.113470
	RETA 1297.436700
	INFO 614.579360
	FINC 1126.455100
	REAL 596.553800
	PROF 1664.889500
	MGMT 333.040290
	ADMI 1015.570800
	EDUC 179.902035
	HEAL 2346.121600
	ARTS 154.008490
	ACCO 603.575440
	OTHR 700.538890
	GNNC 5353.306000
	/
laborhdemand0 (sec)	High Skilled Labor Demand /
	AGRI 0.415862
	MINE 338.655694
	UTIL 209.258584
	CONS 159.293140
	MFTG 639.939448
	WHOL 369.766159
	TRAN 167.839751
	RETA 79.013895
	INFO 420.187908
	FINC 738.391318
	REAL 133.389430
	PROF 1046.383051
	MGMT 182.173039
	ADMI 113.439258

	EDUC 116.270685
	HEAL 893.872330
	ARTS 14.461397
	ACCO 15.753319
	OTHR 64.939955
	GNNC 2316.375506
	/
laborhsupply0	Regional High Skilled Labor Supply
laborldemand0(sec)	Low Skilled Labor Demand /
	AGRI 13.633518
	MINE 1179.299006
	UTIL 67.795016
	CONS 762.542160
	MFTG 1745.224352
	WHOL 624.228891
	TRAN 806.273719
	RETA 1218.422805
	INFO 194.391452
	FINC 388.063782
	REAL 463.164370
	PROF 618.506449
	MGMT 150.867251
	ADMI 902.131542
	EDUC 63.631350
	HEAL 1452.249270
	ARTS 139.547093
	ACCO 587.822121
	OTHR 635.598935
	GNNC 3036.930494
	/
laborlsupply0	Regional Low Skilled Labor Supply
migranthconsumption0(sec)	High Skilled Migrant Consumption
migrantlconsumption0(sec)	Low Skilled Migrant Consumption
misccost0 (sec)	Miscellaneous Production Costs
	/
	AGRI 1.932955
	MINE 391.099361
	UTIL 141.253196
	CONS 15.511344
	MFTG 147.840996
	WHOL 413.146604
	TRAN 56.501828
	RETA 455.021764
	INFO 122.739006
	FINC 107.035246
	REAL 243.979368
	PROF 41.605947
	MGMT 7.221616
	ADMI 27.779631
	EDUC 7.955191
	HEAL 45.294803
	ARTS 28.735149
	ACCO 105.732316
	OTHR 84.558632
	GNNC 252.288291
	/
mps (h)	Household Marginal Propensity to Save /
	HHD1 0.000000
	HHD2 0.000000
	HHD3 0.000000
	HHD4 0.000000
	HHD5 0.000000
	HHD6 0.139958
	HHD7 0.062143
	HHD8 0.169054
	HHD9 0.275680
	/
pcapital0	Returns to Capital
pcomposite0(sec)	Composite Good Price


```
Price of Domestic Prod in Local Mkt
Aggregate Labor Bill
High Skilled Labor Price
Low Skilled Labor Price
Producer Price of Output
World Price of Production
S&L Government Demand for Production
/
AGRI 0.484188
MINE 4.074497
UTIL 90.591618
CONS 622.378160
MFTG 105.722650
WHOL 63.442078
TRAN 44.279659
RETA 0.376602
INFO 45.952435
FINC 60.619661
REAL 71.450091
PROF 111.267450
MGMT 0.000000
ADMI 60.803704
EDUC 7.996143
HEAL 15.868410
ARTS 1.132114
ACCO 44.512622
OTHR 48.404536
GNNC 2211.752048
/
Total Local Production
```

* Calibrated Parameters
* Tech Coefficients
alphaF(sec)
alphaL(sec)
alphaA(sec)
* Share Coefficients
gammaF (sec)
gammaA(sec)
gammaL (sec)
* Substitution Elasticities
sigmaA(sec)
sigmaF(sec)

```
Technology Coeff - Value Added
Tech Coeff - Labor
Tech Coeff - Armington Function
```

VA Share
Armington Share
Labor Share

```
Initial substitution elasticities of Armington fn
/
AGRI 1.500000
MINE 1.062000
UTIL 1.500000
CONS 1.500000
MFTG 0.550000
WHOL 0.500000
TRAN 1.500000
RETA 0.500000
INFO 1.500000
FINC 1.500000
REAL 1.500000
PROF 1.500000
MGMT 0.500000
ADMI 1.500000
EDUC 0.500000
HEAL 0.500000
ARTS 0.500000
ACCO 0.500000
OTHR 1.500000
GNNC 0.500000
/
CES capital-labor substitution elasticity
```

```
/
AGRI 0.610000
MINE 0.800000
UTIL 0.800000
CONS 0.800000
MFTG 0.800000
WHOL 0.800000
TRAN 0.800000
RETA 0.800000
INFO 0.800000
FINC 0.800000
REAL 0.800000
PROF 0.800000
MGMT 0.800000
ADMI 0.800000
EDUC 0.800000
HEAL 0.800000
ARTS 0.800000
ACCO 0.800000
OTHR 0.800000
GNNC 0.800000
/
CES labor skill substitution elasticity
/
AGRI 0.150000
MINE 0.150000
UTIL 0.150000
CONS 0.150000
MFTG 0.150000
WHOL 0.150000
TRAN 0.150000
RETA 0.150000
INFO 0.150000
FINC 0.150000
REAL 0.150000
PROF 0.150000
MGMT 0.150000
ADMI 0.150000
EDUC 0.150000
HEAL 0.150000
ARTS 0.150000
ACCO 0.150000
OTHR 0.150000
GNNC 0.150000
/
* Household Labor Supply Elasticities
    sigmalaborH
sigmalaborL
* Migrant Labor Supply Elasticities
sigmaMigLaborH
sigmaMigLaborL
* Commuter Labor Supply Elasticities
    sigmaComLaborH(location)
High Skilled Household Labor Supply Elasticity
/0.8/
Low Skilled Household Labor Supply Elasticity
/3.0/
High Skilled Migrant Elasticity
/1.5/
Low Skilled Migrant Elasticity
/1/
\begin{tabular}{lr} 
High Skilled Commuter Elasticity \\
/ canadian & 1.500000 \\
cleveland & 1.500000 \\
grady & 1.500000 \\
lincoln & 1.500000 \\
logan & 1.500000 \\
mcclain & 1.500000 \\
pottawatomie & 1.500000 \\
otherokla & 0.150000 \\
outofstate & 0.015000
\end{tabular}
```

```
/
    sigmaComLaborL(location)
Low Skilled Commuter Elasticity
/
canadian 1.000000
cleveland 1.000000
grady 1.000000
lincoln 1.000000
logan 1.000000
mcclain 1.000000
pottawatomie 1.000000
otherokla 0.100000
outofstate 0.010000
* Export Demand Elasticities
    sigmaExp(sec)
Export Demand Elasticities
/
AGRI 1.650000
MINE 1.650000
UTIL 1.650000
CONS 1.650000
MFTG 1.650000
WHOL 0.650000
TRAN 1.650000
RETA 0.650000
INFO 1.650000
FINC 1.650000
REAL 1.650000
PROF 1.650000
MGMT 1.650000
ADMI 1.650000
EDUC 0.650000
HEAL 0.650000
ARTS 0.650000
ACCO 0.650000
OTHR 0.650000
GNNC 0.650000
/
;
```

*\# Parameter Calibration Module \#

* Calibrate Paramters
* CES Production parameters
gammaF(sec) \$totaloutput0(sec) = 1/(1+(capitaldemand0(sec)
/labordemand0(sec))**(-1/sigmaF(sec)));
alphaF(sec) \$totaloutput0(sec) = totaloutput0(sec) / (gammaF(sec)*capitaldemand0(sec)**
((sigmaF(sec)-1)/sigmaF(sec)) +
(1-gammaF (sec)) *labordemand0 (sec) **
((sigmaF (sec)-1)/sigmaF(sec)))
**(sigmaF (sec)/(sigmaF (sec)-1))
;
* CES Labor Skill parameters
gammaL(sec) \$totaloutput0(sec) $=1 /(1+($ laborhdemand0(sec)
/laborldemand0(sec))**(-1/sigmaL(sec)));
alphaL(sec)\$totaloutput0(sec) = labordemand0(sec) / (gammaL(sec)*laborhdemand0(sec)**
((sigmaL(sec)-1)/sigmaL(sec)) +

```
(1-gammaL(sec))*laborldemand0(sec)**
((sigmaL(sec)-1)/sigmaL(sec)))
**(sigmaL(sec)/(sigmaL(sec)-1))
;
* Armington function parameters
gammaA(sec)$domesticdemandfordomestic0(sec) = 1/(1+(importdemand0(sec)
    /domesticdemandfordomestic0(sec))**(-1/sigmaA(sec)));
alphaA(sec)$domesticdemandfordomestic0(sec) =
compositegood0(sec)/(gammaA(sec)*importdemand0(sec)**
        ((sigmaA(sec)-1)/sigmaA(sec))+
        (1-gammaA(sec))*domesticdemandfordomestic0(sec)**
        ((sigmaA(sec)-1)/sigmaA(sec)))
        **(sigmaA(sec)/(sigmaA(sec)-1));
* CES Utility Function Parameter
scalars
        sigmaC substitution elasticity /.75/
;
variable alpha Consumption Share Parameter;
alpha.l(sec,h) = (hhdconsumption0(sec,h)**(1/sigmac))/
        (sum(sec2, hhdconsumption0(sec2,h)**(1/sigmaC)));
parameter
        alphaC(sec,h) Consumption Share Parameter
;
alphaC(sec,h) = alpha.l(sec,h);
$Title CGE Calibration Check
* Program to check the validity of the calibrated parameters
* Declare Check Parameters
parameters
```

```
    kdemchck(sec) Check capital demand
```

 kdemchck(sec) Check capital demand
 kdemtmp(sec) Temp capital demand place holder
 kdemtmp(sec) Temp capital demand place holder
 ldemchck(sec) Check aggregate labor demand
 ldemchck(sec) Check aggregate labor demand
 ldemtmp(sec) Temp labor demand place holder
 ldemtmp(sec) Temp labor demand place holder
 lsdemtmp(sec) Temp skilled labor demand
 lsdemtmp(sec) Temp skilled labor demand
 ludemtmp(sec) Temp unskilled labor demand
 ludemtmp(sec) Temp unskilled labor demand
 lsdemchck(sec) Check skilled labor
 lsdemchck(sec) Check skilled labor
 ludemchck(sec)
 ludemchck(sec)
 zeroprofitcheck(sec) Check Zero Profit Equation
 zeroprofitcheck(sec) Check Zero Profit Equation
 ;
;

* Check Zero Profit Equation
* Check Zero Profit Equation
* EQZEROPROFIT(sec)..
* EQZEROPROFIT(sec)..
zeroprofitcheck(sec) = round(
zeroprofitcheck(sec) = round(
poutput0(sec) * totaloutput0(sec)
poutput0(sec) * totaloutput0(sec)
 - pcapital0 * capitaldemand0(sec)
 - pcapital0 * capitaldemand0(sec)
 - plaborh0 * laborhdemand0(sec)
 - plaborh0 * laborhdemand0(sec)
 - plaborl0 * laborldemand0(sec)
 - plaborl0 * laborldemand0(sec)
 - sum(sec2, inputoutput(sec2,sec) * totaloutput0(sec)
 - sum(sec2, inputoutput(sec2,sec) * totaloutput0(sec)
 * pcomposite0(sec))
 * pcomposite0(sec))
 - misccost0(sec)
 - misccost0(sec)
,6)
,6)
;
;
display zeroprofitcheck;

```
display zeroprofitcheck;
```

```
* Check capital and labor demand parameters
* EQK..
kdemtmp(sec) = (totaloutput0(sec)/alphaF(sec))*
                                    (gammaF(sec)/(pcapital0))**sigmaF(sec)*
    (gammaF(sec)**sigmaF(sec)*(pcapital0)
    **(1-sigmaF(sec))+(1-gammaF(sec))**sigmaF(sec)
    *(plabor0(sec))**(1-sigmaF(sec))
    )**(sigmaF(sec)/(1-sigmaF(sec)))
;
* EQL..
ldemtmp(sec) = (totaloutput0(sec) / alphaF(sec)) *
                                    ((1-gammaF(sec))/(plabor0(sec)))**sigmaF(sec)*
    (gammaF(sec)**sigmaF(sec)*(pcapital0)
    **(1-sigmaF(sec))+(1-gammaF(sec))**sigmaF(sec)
    *(plabor0(sec))**(1-sigmaF(sec)))
    **(sigmaF(sec)/(1-sigmaF(sec)))
;
kdemchck(sec) = round((capitaldemand0(sec) - kdemtmp(sec)),6);
ldemchck(sec) = round((labordemand0(sec) - ldemtmp(sec)),6);
display kdemchck, ldemchck;
* Check High and Low skilled labor
* EQLS(sec)..
lsdemtmp(sec) = (ldemtmp(sec) / alphaL(sec))*
    (gammaL(sec)/(plaborh0))**sigmaL(sec)*
    (gammaL(sec)**sigmaL(sec)*(plaborh0)
    **(1-sigmaL(sec))+(1-gammaL(sec))**sigmaL(sec)
    *(plaborl0)**(1-sigmaL(sec))
    )**(sigmaL(sec)/(1-sigmaL(sec)))
    ;
* EQLU(sec)..
ludemtmp(sec) = (ldemtmp(sec) / alphaL(sec))*
    ((1-gammaL(sec))/(plaborl0))**sigmaL(sec)*
    (gammaL(sec)**sigmaL(sec)*(plaborh0)
    **(1-sigmaL(sec))+(1-gammaL(sec))**sigmaL(sec)
    *(plaborh0)**(1-sigmaL(sec)))
    **(sigmaL(sec)/(1-sigmaL(sec)))
    ;
lsdemchck(sec) = round((laborhdemand0(sec) - lsdemtmp(sec)),6);
ludemchck(sec) = round((laborldemand0(sec) - ludemtmp(sec)),6);
display lsdemchck,ludemchck;
**************** Check Zero Profit Eqution
variable zpcheck(sec) Check Zero Profit;
*EQZP(sec)..
zpcheck.l(sec) = round(poutput0(sec) * totaloutput0(sec) - (pcapital0
    * capitaldemand0(sec) + plaborh0 * laborhdemand0(sec) + plaborl0
    * laborldemand0(sec) + sum(sec2, inputoutput(sec2,sec)
    * totaloutput0(sec) * pcomposite0(sec))
    + investdemand0(sec) + misccost0(sec)), 6);
display zpcheck.l;
*************** Check Labor Market clearing conditions
parameters
```

```
        lsmrktchck Check skilled labor market
        lumrktchck
;
* EQMARKETLS..
lsmrktchck = round((sum(sec, laborhdemand0(sec))
    - sum(h, hhdlaborhsupply0(h))
    - sum(location, commuterlaborhsupply0(location))),6)
;
* EQMARKETLU..
lumrktchck = round((sum(sec, laborldemand0(sec)) - sum(h, hhdlaborlsupply0(h))
    - sum(location, commuterlaborlsupply0(location))),6)
;
display lsmrktchck, lumrktchck;
*************** Check Armington parameters
parameters
    qarmprofchck(sec) Check armington zero profit
    qcomptmp(sec) Temp composite place holder
    qdomimpchck(sec) Check domestic share of armington
    qimpchck(sec)
    Check imports
    qimpchck(sec)
    qdomdomtmp(sec)
;
* EQIMPORT(sec)..
qimptmp(sec)$importdemand0(sec) = (compositegood0(sec)
    /alphaA(sec))*(gammaA(sec)/pworld0(sec))**sigmaA(sec)
    *((gammaA(sec)**sigmaA(sec))*
    (pworld0(sec)**(1-sigmaA(sec))) +
    ((1-gammaA(sec))**sigmaA(sec))
    *(pdomestic0(sec)**(1-sigmaA(sec))))
    **(sigmaA(sec)/(1-sigmaA(sec)))
;
* EQARMD(sec)..
qdomdomtmp(sec)$importdemand0(sec) = (compositegood0(sec)
    /alphaA(sec))*((1-gammaA(sec))/pdomestic0(sec))
    **sigmaA(sec)*((gammaA(sec)**sigmaA(sec))*
    (pworld0(sec)**(1-sigmaA(sec))) +
    ((1-gammaA(sec))**sigmaA(sec))
    *(pdomestic0(sec)**(1-sigmaA(sec))))
    **(sigmaA(sec)/(1-sigmaA(sec)))
    ;
* EQPROFITA(sec)..
qcomptmp(sec) = (pworld0(sec)*importdemand0(sec)
    + pdomestic0(sec)*domesticdemandfordomestic0(sec))
    /pcomposite0(sec)
;
qimpchck(sec)$importdemand0(sec) = round((qimptmp(sec) - importdemand0(sec)),6);
qdomimpchck(sec) = round((qdomdomtmp(sec) - domesticdemandfordomestic0(sec)),6);
qarmprofchck(sec) = round((qcomptmp(sec) - compositegood0(sec)),6);
display qimpchck, qdomimpchck, qdomdomtmp, domesticdemandfordomestic0, alphaA,
    qarmprofchck;
*********************** Check Foreign sector parameters
parameters
    qoutchck(sec)
    Check zero profit (CET)
```

```
        qouttmp(sec)
        Temp output place holder
;
* EQPROFITT(sec)..
qouttmp(sec) = (pworld0(sec)*exportdemand0(sec) + pdomestic0(sec)
    *domesticdemandfordomestic0(sec)) / poutput0(sec);
qoutchck(sec) = round((qouttmp(sec) - totaloutput0(sec)),6);
display qoutchck;
************************ Check Households
```

parameters
cpichk Check CPI
cpitmp Temp cpi place holder
pxcomptmp(sec) Temp pxcomp place holder
qconschk(sec) Check consumption parameters
qconstmp(sec,h) Temp consumption place holder
;
qconstmp (sec,h) = alpha.l(sec,h)**sigmaC*cbud0(h) / (pcomposite0(sec)**sigmaC *
sum(sec2, alpha.l(sec2,h)**sigmaC*pcomposite0(sec2)**(1-sigmaC)))
;
qconschk(sec) $=$ round ((sum(h,qconstmp(sec,h))
- sum(h, hhdconsumption0(sec,h))),6);
display qconschk;
*\# OKCGE Model \#

* Declare Model Variables

VARIABLES

CBUD(h)	Regional Consumption Budget
CPI	Consumer Price Index
INVESTNEWCAPITAL(sec)	New Regional Investment
CAPITALDEMAND(sec)	Sectoral Capital Demand
CAPITALSUPPLY	Regional Capital Supply
COMMUTERLABORHSUPPLY(location)	High Skilled Commuters
COMMUTERLABORLSUPPLY(location)	Low Skilled Commuters
HHDLABORHSUPPLY(h)	Household High Skilled Labor Supply
HHDLABORLSUPPLY(h)	Household Low Skilled Labor Supply
LABORDEMAND(sec)	Sectoral Aggregate Labor Demand
LABORHDEMAND(sec)	Sectoral Skilled Labor Demand
LABORHSUPPLY	Regional Skilled Labor Supply
LABORLDEMAND(sec)	Sectoral Unskilled Labor Demand
LABORLSUPPLY	Regional Unskilled Labor Supply
MIGRANTHCONSUMPTION(sec)	High Skilled Migrant Consumption
MIGRANTLCONSUMPTION(sec)	Low Skilled Migrant Consumption
MIGRANTLABORHSUPPLY	High Skilled Migrant Labor
MIGRANTLABORLSUPPLY	Low Skilled Migrant Labor
PCAPITAL	Returns to Capital
PLABOR(sec)	Sectoral Returns to Aggregate Labor
PLABORH	Returns to Skilled Labor
PLABORL	Returns to Unskilled Labor
POUTPUT(sec)	Regional Producer Output Price
PCOMPOSITE(sec)	Composite Good Price
COMPOSITEGOOD(sec)	Composite Good

```
HHDCONSUMPTION(sec,h)
DOMESTICDEMANDFORDOMESTIC(sec)
EXPORTDEMAND(sec)
IMPORTDEMAND(sec)
INVESTNEWCAPITALDEMAND(sec)
TOTALOUTPUT(sec)
STATELOCALGOVTDEMAND (sec)
TRICK
HHDINCOME(h)
;
```

* Set Initial Variable values

CBUD.L(h)	$=$
CPI.L	$=$
INVESTNEWCAPITAL.L(sec)	$=$
CAPITALDEMAND.L(sec)	$=$
CAPITALSUPPLY.L	$=$
COMMUTERLABORHSUPPLY.L(location)	$=$
COMMUTERLABORLSUPPLY.L(location)	$=$
HHDLABORHSUPPLY.L(h)	$=$
HHDLABORLSUPPLY.L(h)	$=$
HHDCONSUMPTION.L(sec, h)	$=$
LABORDEMAND.L(sec)	$=$
LABORHDEMAND.L(sec)	$=$
LABORHSUPPLY.L	$=$
LABORLDEMAND.L(sec)	$=$
LABORLSUPPLY.L	$=$
MIGRANTHCONSUMPTION.L(sec)	$=$
MIGRANTLCONSUMPTION.L(sec)	$=$
MIGRANTLABORHSUPPLY.L	$=$
MIGRANTLABORLSUPPLY.L	$=$
PLABOR.L(sec)	$=$
PLABORH.L	$=$
PLABORL.L	$=$
POUTPUT.L(sec)	$=$
PCOMPOSITE.L(sec)	$=$
COMPOSITEGOOD.L(sec)	$=$
DOMESTICDEMANDFORDOMESTIC.L(sec)	$=$
EXPORTDEMAND.L(sec)	$=$
IMPORTDEMAND.L(sec)	$=$
INVESTNEWCAPITALDEMAND.L(sec)	$=$
TOTALOUTPUT.L(sec)	$=$
STATELOCALGOVTDEMAND.L(sec)	$=$
TRICK.L	$=$
HHDINCOME.L(h)	$=$
	$=$

* Set Variable Bounds

CBUD.LO(h)	$=$
CPI.LO	$=$
INVESTNEWCAPITAL.LO(sec)	$=$
CAPITALDEMAND.LO(sec)	$=$
CAPITALSUPPLY.LO	$=$
COMMUTERLABORHSUPPLY.LO(location)	$=$
COMMUTERLABORLSUPPLY.LO(location)	$=$
LABORDEMAND.LO(sec)	$=$
LABORHSUPPLY.LO	$=$
LABORHDEMAND.LO(sec)	$=$
LABORLDEMAND.LO(sec)	$=$
MIGRANTHCONSUMPTION.LO(sec)	$=$
MIGRANTLCONSUMPTION.LO(sec)	$=$
MIGRANTLABORHSUPPLY.LO	$=$
MIGRANTLABORLSUPPLY.LO	$=$
PLABOR.LO(sec)	$=$
PLABORH.LO	$=$
PLABORL.LO	$=$
POUTPUT.LO(sec)	$=$
PCOMPOSITE.LO(sec)	$=$
COMPOSITEGOOD.LO(sec)	$=$
DOMESTICDEMANDFORDOMESTIC.LO(sec)	$=$

Consumption Demand
Domestic Production for Domestic Use Domestic Production for Export Use Import Good
Investment Final Demand
Total Domestic Production
S\&L Government Expenditure
Dummy Objective Variable
Household Income

cbud0 (h)cpio	
investnewcapital0(sec)	
capitaldemand0(sec)	
capitalsupply0	
commuterlaborhsupply0(location)	
commuterlaborlsupply0(location)	
hhdlaborhsupply0(h)	
hhdlaborlsupply0(h)	
hhdconsumption0(sec,h)	
labordemand0 (sec)	
laborhdemand0 (sec)	
laborhsupply0	
laborldemand0 (sec)	
laborlsupply0	
migranthconsumption0(sec)	
migrantlconsumption0 (sec)	
0	
0	
plabor0(sec)	
plaborh0	
plaborl0	
poutput0(sec)	
pcomposite0(sec)	
compositegood0(sec)	
domesticdemandfordomestic0(sec)	
exportdemand0(sec)	
importdemand0 (sec)	
investdemand0 (sec)	
totaloutput0(sec)	
statelocalgovtdemand0 (sec)	
1	
hhdincome0(h)	

almostzero	;
almostzero	;
almostzero	;
almostzero	;
almostzero	;
0	;
0	;
almostzero	;
almostzero	;
almostzero	;
almostzero	;
0	;
0	;
0	;
0	;
almostzero	;
almostzero	;
almostzero	;
almostzero	;
almostzero	;
almostzero	;
almostzero	;

EXPORTDEMAND.LO(sec)	$=$	almostzero	;
IMPORTDEMAND.LO(sec)	$=$	almostzero	;
INVESTNEWCAPITALDEMAND.LO(sec)	$=$	almostzero	;
TOTALOUTPUT.LO(sec)	$=$	almostzero	;
STATELOCALGOVTDEMAND.LO(sec)	$=$	almostzero	almostzero
HHDINCOME.LO(h)	$=$		
*Fix the Numeraire			
PCAPITAL.FX	$=$	pcapitalo	

* Declare the Model Equations

EQUATIONS

* Firms
EQCAPITALDEMAND (sec)
EQAGGREGATELABORDEMAND (sec)
EQLABORHDEMAND (sec)
EQLABORLDEMAND (sec)
EQLABORZEROPROFIT (sec)
EQZEROPROFIT (sec)

Capital Demand Equation
Aggregate Labor Demand Equation High Skilled Labor Demand Equation Low Unskilled Labor Demand Equation Aggregate Labor Zero Profit Equation Firm Zero Profit Equation

* Foreign Sector

```
EQEXPORTDEMANDOUT(sec)
EQEXPORTDEMAND(sec)
EQARMDOM(sec)
EQARMIMP(sec)
EQARMZP(sec)
```

Export Supply
Export Demand
Armington Domestic Demand Equation
Armington Import Demand Equation Armington Zero Profit Equation

* Households

EHHDCONSUMPTION(sec,h)
Household Consumption Equation
Household (Regional) Income Equation
Household Consumption Budget Equation
Price Deflator Equation
HHD High Skilled Labor Supply
HHD Low Skilled Labor Supply
High Skilled Migrant Consumption
Low Skilled Migrant Consumption

* Market Clearing

EQMKTK
EQMKTLABORL
EQMKTLABORH
EQMKTGOOD (sec)
Capital Market Clearing Equation
Low Skilled Labor Market Clearing Equation High Skilled Labor Market Clearing Equation Goods Market Clearing Equation

* Investment

EINVESTNEWCAPITALDEMANDEST(sec) Aggregate Regional Investment Equation EINVESTNEWCAPITALDEMANDDEM(sec) Investment Demand Equation

* Labor Supplies

EQLABORHSUPPLY High Skilled Labor Supply Equation EQLABORLSUPPLY Low Skilled Labor Supply Equation EQMIGRANTLABORHSUPPLY High Skilled Migrant Equation EQMIGRANTLABORLSUPPLY Low Skilled Migrant Equation EQCOMMUTERLABORHSUPPLY(location) Commuter High Skilled Labor Supply Equation EQCOMMUTERLABORLSUPPLY(location) Commuter Low Skilled Labor Supply Equation

* Govt

EQSLGOV (sec)
Government Final Demand

* Dummy Objective

OBJ
Dummy Objective Equation

```
;
* Model Equations
* Firms
EQCAPITALDEMAND(sec)..
CAPITALDEMAND(sec) =E= gammaF(sec)**sigmaF(sec) * PCAPITAL
    **(-sigmaF(sec)) *(gammaF(sec)**sigmaF(sec) * PCAPITAL
    **(1-sigmaF(sec))+(1-gammaF(sec))**sigmaF(sec)
    * PLABOR(sec)**(1-sigmaF(sec)))**(sigmaF(sec)
    /(1-sigmaF(sec))) * (TOTALOUTPUT(sec) / alphaF(sec))
;
EQAGGREGATELABORDEMAND(sec )..
LABORDEMAND(sec) =E= (1-gammaF(sec))**sigmaF(sec) * PLABOR(sec)
    **(-sigmaF(sec))*(gammaF(sec)**sigmaF(sec) * PCAPITAL
    **(1-sigmaF(sec))+(1-gammaF(sec))**sigmaF(sec)
    * PLABOR(sec)**(1-sigmaF(sec)))**(sigmaF(sec)
    /(1-sigmaF(sec))) * (TOTALOUTPUT(sec) / alphaF(sec))
;
EQLABORHDEMAND(sec)..
LABORHDEMAND(sec) =E= gammaL(sec)**sigmaL(sec) * PLABORH
    **(-sigmaL(sec))* (gammaL(sec)**sigmaL(sec) * PLABORH
    **(1-sigmaL(sec)) + (1-gammaL(sec))**sigmaL(sec)
    * PLABORL**(1-sigmaL(sec)))**(sigmaL(sec)
    /(1-sigmaL(sec))) * (LABORDEMAND(sec) / alphaL(sec))
;
EQLABORLDEMAND(sec)..
LABORLDEMAND(sec) =E= (1-gammaL(sec))**sigmaL(sec) * PLABORL
    **(-sigmaL(sec))* (gammaL(sec)**sigmaL(sec) * PLABORH
    **(1-sigmaL(sec)) + (1-gammaL(sec))**sigmaL(sec)
    * PLABORL**(1-sigmaL(sec)))**(sigmaL(sec)
    /(1-sigmaL(sec))) * (LABORDEMAND(sec) / alphaL(sec))
;
EQLABORZEROPROFIT(sec)..
PLABOR(sec) * LABORDEMAND(sec) =E= PLABORH * LABORHDEMAND(sec)
    + PLABORL * LABORLDEMAND(sec)
;
EQZEROPROFIT(sec)..
POUTPUT(sec) * TOTALOUTPUT(sec) =E= PCAPITAL * CAPITALDEMAND(sec)
    + PLABORH * LABORHDEMAND(sec)
    + PLABORL * LABORLDEMAND(sec)
    + sum(sec2, inputoutput(sec2,sec) * TOTALOUTPUT(sec)
    * PCOMPOSITE(sec))
    + misccost0(sec)
;
* Foreign Sector
EQEXPORTDEMANDOUT(sec)..
TOTALOUTPUT(sec) =E= EXPORTDEMAND(sec) + DOMESTICDEMANDFORDOMESTIC(sec)
;
EQEXPORTDEMAND(sec)..
EXPORTDEMAND(sec) =E= exportdemand0(sec) * (pworldO(sec)/POUTPUT(sec))
    **sigmaexp(sec)
;
```

```
EQARMDOM(sec)..
DOMESTICDEMANDFORDOMESTIC(sec) =E= (1-gammaA(sec))**sigmaA(sec)
    * POUTPUT(sec)**(-sigmaA(sec)) * (gammaA(sec)
    **sigmaA(sec) * pworld0(sec)**(1-sigmaA(sec))
    + (1-gammaA(sec))**sigmaA(sec) * POUTPUT(sec)
    **(1-sigmaA(sec)))**(sigmaA(sec) / (1-sigmaA(sec)))
    * (COMPOSITEGOOD(sec) / alphaA(sec))
;
EQARMIMP(sec)..
IMPORTDEMAND(sec) =E= gammaA(sec)**sigmaA(sec) * pworld0(sec)
    **(-sigmaA(sec)) * (gammaA(sec)**sigmaA(sec)
    * pworld0(sec)**(1-sigmaA(sec)) + (1-gammaA(sec))
    **sigmaA(sec) * POUTPUT(sec)**(1-sigmaA(sec)))
    **(sigmaA(sec) / (1-sigmaA(sec))) * (COMPOSITEGOOD(sec)
    / alphaA(sec))
;
EQARMZP(sec)..
PCOMPOSITE(sec) * COMPOSITEGOOD(sec) =E= pworld0(sec)
    * IMPORTDEMAND(sec) + POUTPUT(sec)
    * DOMESTICDEMANDFORDOMESTIC(sec)
;
* Households
EHHDCONSUMPTION(sec,h)..
HHDCONSUMPTION(sec,h) =E= alphaC(sec,h)**sigmaC * CBUD(h)
    / (PCOMPOSITE(sec)**sigmaC
    * sum(sec2, alphac(sec2,h)**sigmaC * PCOMPOSITE(sec2)
    **(1-sigmaC)))
;
EQINCOME(h)..
HHDINCOME(h) =E= PCAPITAL * hhdcapitalsupply0(h) + PLABORL
    * HHDLABORLSUPPLY(h) + PLABORH * HHDLABORHSUPPLY(h)
    + hhdmiscincome0(h)
;
EQCBUD(h)..
CBUD(h) =E= HHDINCOME(h) * (1 - mps(h))
;
EQCPI..
    CPI =E= sum((sec,h), PCOMPOSITE(sec) * hhdconsumption0(sec,h)) /
sum((sec,h), pcomposite0(sec) * hhdconsumption0(sec,h))
;
EQHHDLABORHSUPPLY(h)..
HHDLABORHSUPPLY(h) =E= hhdlaborhsupply0(h) * ((PLABORH / CPI)
    / (plaborh0 /cpi0))**sigmalaborh
;
EQHHDLABORLSUPPLY(h)..
HHDLABORLSUPPLY(h) =E= hhdlaborlsupply0(h) * ((PLABORL / CPI)
    / (plaborl0 /cpi0))**sigmalaborl
;
EQMIGRANTHCONSUMPTION(sec)..
MIGRANTHCONSUMPTION(sec) =E= alphaC(sec,'HHD7')**sigmaC
                        * (MIGRANTLABORHSUPPLY / HHDLABORHSUPPLY('HHD7'))
```

```
        *CBUD('HHD7') / (PCOMPOSITE(sec)**sigmaC
        * sum(sec2, alphaC(sec2,'HHD7')**sigmaC
        * PCOMPOSITE(sec2)**(1-sigmaC)))
;
EQMIGRANTLCONSUMPTION(sec)..
MIGRANTLCONSUMPTION(sec) =E= alphaC(sec,'HHD4')**sigmaC
    * (MIGRANTLABORLSUPPLY / HHDLABORLSUPPLY('HHD4'))
    * CBUD('HHD4') / (PCOMPOSITE(sec)**sigmaC
    * sum(sec2, alphaC(sec2,'HHD4')**sigmaC
    * PCOMPOSITE(sec2)**(1-sigmaC)))
;
* Market Clearing
EQMKTK..
sum(sec, CAPITALDEMAND(sec)) =E= CAPITALSUPPLY
;
EQMKTLABORL..
sum(sec, LABORLDEMAND(sec)) =E= LABORLSUPPLY
;
EQMKTLABORH..
sum(sec, LABORHDEMAND(sec)) =E= LABORHSUPPLY
;
EQMKTGOOD(sec)..
COMPOSITEGOOD(sec) =E= sum(sec2, inputoutput(sec,sec2)
                        * TOTALOUTPUT(sec2)) + STATELOCALGOVTDEMAND(sec)
                        + fedgovtdemand0(sec) + sum(h, HHDCONSUMPTION(sec,h))
                        + INVESTNEWCAPITALDEMAND(sec)
;
* Investment
EINVESTNEWCAPITALDEMANDEST(sec)..
INVESTNEWCAPITAL(sec) =E= investnewcapital0(sec) * CAPITALDEMAND(sec)
        / capitaldemand0(sec)
;
EINVESTNEWCAPITALDEMANDDEM(sec)..
INVESTNEWCAPITALDEMAND(sec) =E= investdemand0(sec)
    * sum(sec2, INVESTNEWCAPITAL(sec2))
    / sum(sec2, investnewcapital0(sec2))
;
* Labor Supplies
* Equilibria
EQLABORHSUPPLY..
```

 LABORHSUPPLY \(=\mathrm{E}=\boldsymbol{s u m}(\mathrm{h}, \operatorname{HHDLABORHSUPPLY}(\mathrm{h}))+\) MIGRANTLABORHSUPPLY
 + sum(location, COMMUTERLABORHSUPPLY(location))
 ;
EQLABORLSUPPLY..
LABORLSUPPLY $=\mathrm{E}=\mathbf{s u m}(\mathrm{h}, \operatorname{HHDLABORLSUPPLY(h))}+\mathrm{MIGRANTLABORLSUPPLY}$
+ sum(location, COMMUTERLABORLSUPPLY(location))
;
EQMIGRANTLABORHSUPPLY..

MIGRANTLABORHSUPPLY =E= laborhsupply0 * sigmaMigLaborH * log((PLABORH /CPI)/(plaborh0/cpi0))
;
EQMIGRANTLABORLSUPPLY..
MIGRANTLABORLSUPPLY =E= laborlsupply0 * sigmaMigLaborL * log((PLABORL /CPI)/(plaborl0/cpi0))
;

* Commuters

EQCOMMUTERLABORHSUPPLY(location)..
COMMUTERLABORHSUPPLY(location) =E= commuterlaborhsupply0(location) * (PLABORH / plaborh0) ** sigmaComLaborH(location)
;
EQCOMMUTERLABORLSUPPLY(location)..
COMMUTERLABORLSUPPLY(location) =E= commuterlaborlsupply0(location)

* (PLABORL / plaborl0) ** sigmaComLaborL(location)
;
* Govt

EQSLGOV (sec)..
STATELOCALGOVTDEMAND(sec) =E= statelocalgovtdemand0(sec)

* sum(sec $2, ~ T O T A L O U T P U T(\sec 2))$
/ sum(sec2, totaloutput0(sec2))
;
* Dummy Objective

OBJ. .
TRICK =E= 1
;
option iterlim = 5;
MODEL OKCGE /all/;
SOLVE OKCGE using NLP Maximizing TRICK;

* Solve Counterfactuals
option iterlim = 2000;
parameters

exportdemandtmp(sec)	Temporary Export Demand Placeholder
commuterhincome(location)	High Skilled Commuter Income
commuterhincchange(location)	Percent Change in income
commuterlincome(location)	Low Skilled Commuter Income
commuterlincchange(location)	Percent Change in income
commutertotincome(location)	Total Commuter Income by Location
commutertotincome0(location)	Bench Total Commuter Income
commutertotincchange(location)	Percent Change in Income
commuternearincome	Commuter Income to Nearby Counties
commuternearincome0	Bench Commuter Income to Nearby Counties
commuternearincchange	Percent Change in Income

;
exportdemandtmp(sec) = exportdemand0(sec);
commutertotincome0(location) = commuterlaborlsupply0(location)

```
        + commuterlaborhsupply0(location);
commuternearincome0 = sum(nearloc, commutertotincome0(nearloc));
* Simulation 1: No Change to LFPR, Commuter or Migration Elasticities
*exportdemandO('MFTG') = exportdemandO('MFTG') * 1.5;
SOLVE OKCGE using NLP Maximizing TRICK;
* set benchmark export demand back to original value for comparison
exportdemand0(sec) = exportdemandtmp(sec);
commuterhincome(location) = PLABORH.L * COMMUTERLABORHSUPPLY.L(location);
commuterlincome(location) = PLABORL.L * COMMUTERLABORLSUPPLY.L(location);
commutertotincome(location) = commuterhincome(location)
    + commuterlincome(location);
commuternearincome = sum(nearloc, commutertotincome(nearloc));
commuterhincchange(location) = (commuterhincome(location)
    - commuterlaborhsupply0(location))
    / commuterlaborhsupply0(location) * 100;
commuterlincchange(location) = (commuterlincome(location)
    - commuterlaborlsupply0(location))
    / commuterlaborlsupply0(location) * 100;
commutertotincchange(location) = (commutertotincome(location)
    - commutertotincome0(location))
    / commutertotincome0(location) * 100;
commuternearincchange = (commuternearincome - commuternearincome0)
    / commuternearincome0 * 100;
* Create Reports
$include '%PROGPATH%OKCGE Report Writer.gms'
```

*\# Report Writer Module \#

* *
* This module creates an output file and reports results *
* *

* Create the report file
FILE Report / "\%PROGPATH\%Report.txt" /;
PUT Report;
* Set output parameters
Report.lw=0;
Report.nr $=0$;
Report.nw = 0;
Report.nd $=4$;
Report.nz = 0;
* Create Change Parameters for Reporting
PARAMETER DIFF(*);
SCALAR DIFF1;
PARAMETER PERDIFF(*);
SCALAR PERDIFF1;
* Write the output report
put//////;
put

*" /;

```
put "*
*"/;
put "* Report on the Impact of Increased Economic Activity on
*"/;
put "* Regional Cooperation and Income Distribution
*"/;
put "*
*"/;
put "* Kyle Dean - Dissertation 2008
*"/;
put "*
*"/;
put "* File Written on: ", system.date," at ", system.time,"
*"/;
put "*
*"/;
put
"********************************************************************************************
*"/;
put/////;
put "--------------------------------- Factor Supply -----------------------------------------------
-----" /////;
put "HHDLABORLSUPPLY", @30, HHDLABORLSUPPLY.ts //;
put @15, 'Benchmark', @35, 'Counterfactual', @55, 'Difference', @75, 'Percent Diff'//;
DIFF(h) = HHDLABORLSUPPLY.L(h) - hhdlaborlsupply0(h);
PERDIFF(h) = 0;
PERDIFF(h)$hhdlaborlsupply0(h) = 100*DIFF(h)/hhdlaborlsupply0(h);
loop(h, put @3, h.tl, @15, hhdlaborlsupply0(h), @35, HHDLABORLSUPPLY.L(h), @55, DIFF(h),
@75, PERDIFF(h) /);
put//;
put "---------------------------------------------------------------------------------------------------
-----" //;
put "MIGRANTLABORLSUPPLY", @30, MIGRANTLABORLSUPPLY.ts //;
put @15, 'Benchmark', @35, 'Counterfactual'//;
put @15, '0.0000', @35, MIGRANTLABORLSUPPLY.L /;
put//;
put "------------------------------------------------------------------------------------------
-----" //;
put "COMMUTERLABORLSUPPLY", @30, COMMUTERLABORLSUPPLY.ts //;
put @15, 'Benchmark', @35, 'Counterfactual', @55, 'Difference', @75, 'Percent Diff'//;
DIFF(location) = COMMUTERLABORLSUPPLY.L(location) - commuterlaborlsupply0(location);
PERDIFF(location) = 0;
PERDIFF(location) = 100*DIFF(location)/commuterlaborlsupply0(location);
loop(location, put @3, location.tl, put @15, commuterlaborlsupply0(location),
            @35, COMMUTERLABORLSUPPLY.L(location),@55, DIFF(location), @75,
PERDIFF(location) /);
put /;
DIFF1 = sum(location, COMMUTERLABORLSUPPLY.L(location)) - sum(location,
commuterlaborlsupply0(location));
PERDIFF1 = 100*DIFF1/sum(location, commuterlaborlsupply0(location));
put "Total: ";
put @15, sum(location, commuterlaborlsupply0(location)), @35, sum(location,
COMMUTERLABORLSUPPLY.L(location)), @55, DIFF1, @75, PERDIFF1 /;
put//;
DIFF1 = sum(nearloc, COMMUTERLABORLSUPPLY.L(nearloc)) - sum(nearloc,
commuterlaborlsupply0(nearloc));
PERDIFF1 = 100*DIFF1/sum(nearloc, commuterlaborlsupply0(nearloc));
put "Total Near:";
put @15, sum(nearloc, commuterlaborlsupply0(nearloc)), @35, sum(nearloc,
COMMUTERLABORLSUPPLY.L(nearloc)), @55, DIFF1, @75, PERDIFF1 /;
put//;
put "-------------------------------------------------------------------------------------------------
-----" /////;
```

```
put "LABORLSUPPLY", @30, LABORLSUPPLY.ts //;
put @15, 'Benchmark', @35, 'Counterfactual', @55, 'Difference', @75, 'Percent Diff'//;
DIFF1 = LABORLSUPPLY.L - laborlsupply0;
PERDIFF1 = 0;
PERDIFF1 = 100*DIFF1/laborlsupply0;
put @15, laborlsupply0, @35, LABORLSUPPLY.L, @55, DIFF1, @75, PERDIFF1 /;
put//;
put "
-----"//;
```

parameters
totallaborhsupply0 Total Benchmark High Skilled Supply
totallaborhsupplyC Counterfactual total HS Supply
totallaborlsupply0 Total Benchmark Low Skilled Supply
totallaborlsupplyC Counterfactual total LS Supply
;
totallaborlsupply0 $=$ sum(h, hhdlaborlsupply0(h)) + sum(location,
commuterlaborlsupply0(location));
totallaborlsupplyC $=$ sum(h, HHDLABORLSUPPLY.L(h)) + sum(location,
COMMUTERLABORLSUPPLY.L(location))
+ MIGRANTLABORLSUPPLY.L;
put @30, "Low Skilled Labor Supply Summary"//;
put @15, "Local Households", @35, "Commuters", @55, "Migrants", @75, "Total"//;
put 'Benchmark:', @15, sum(h, hhdlaborlsupply0(h)), @35, sum(location,
commuterlaborlsupply0(location)), @55, '0.0000', @75, totallaborlsupply0/;
put 'Share of Tot:', @15, (sum(h,hhdlaborlsupply0(h)) / totallaborlsupply0), @35,
(sum(location, commuterlaborlsupply0(location))/totallaborlsupply0), @55, '0.0000'/////;
put 'Counterfac:', @15, sum(h, HHDLABORLSUPPLY.L(h)), @35, sum(location,
COMMUTERLABORLSUPPLY.L(location)), @55, MIGRANTLABORLSUPPLY.L, @75, totallaborlsupplyC/;
put 'Share of Tot:', @15, (sum(h,HHDLABORLSUPPLY.L(h)) / totallaborlsupplyC), @35,
(sum(location, COMMUTERLABORLSUPPLY.L(location))/totallaborlsupplyc), @55,
(MIGRANTLABORLSUPPLY.L/totallaborlsupplyC)//;
put//;
put "--
-----" //;
put "HHDLABORHSUPPLY", @30, HHDLABORHSUPPLY.ts //;
put @15, 'Benchmark', @35, 'Counterfactual', @55, 'Difference', @75, 'Percent Diff'//;
DIFF(h) $=$ HHDLABORHSUPPLY.L(h) - hhdlaborhsupply0(h);
PERDIFF(h) $=0$;
PERDIFF (h)\$hhdlaborhsupply0(h) = 100*DIFF(h)/hhdlaborhsupply0(h);
loop(h, put @3, h.tl, @15, hhdlaborhsupply0(h), @35, HHDLABORHSUPPLY.L(h), @55, DIFF(h),
@75, PERDIFF(h) /);
put//;

-----" //;
put "MIGRANTLABORHSUPPLY", @30, MIGRANTLABORHSUPPLY.ts //;
put @15, 'Benchmark', @35, 'Counterfactual'//;
put @15, '0.0000', @35, MIGRANTLABORHSUPPLY.L /;
put//;

-----" //;
put "COMMUTERLABORHSUPPLY", @30, COMMUTERLABORHSUPPLY.ts //;
put @15, 'Benchmark', @35, 'Counterfactual', @55, 'Difference', @75, 'Percent Diff'//;
DIFF (location) = COMMUTERLABORHSUPPLY.L(location) - commuterlaborhsupply0(location);
PERDIFF(location) $=0$;
PERDIFF (location) $=100 *$ DIFF(location)/commuterlaborhsupply0(location);
loop(location, put @3, location.tl, put @15, commuterlaborhsupply0(location),
@35, COMMUTERLABORHSUPPLY.L(location), @55, DIFF(location), @75,
PERDIFF(location) /);
put /;

```
DIFF1 = sum(location, COMMUTERLABORHSUPPLY.L(location)) - sum(location,
commuterlaborhsupply0(location));
PERDIFF1 = 100*DIFF1/sum(location, commuterlaborhsupply0(location));
put "Total: ";
put @15, sum(location, commuterlaborhsupply0(location)), @35, sum(location,
COMMUTERLABORHSUPPLY.L(location)), @55, DIFF1, @75, PERDIFF1 /;
put//;
DIFF1 = sum(nearloc, COMMUTERLABORHSUPPLY.L(nearloc)) - sum(nearloc,
commuterlaborhsupply0(nearloc));
PERDIFF1 = 100*DIFF1/sum(nearloc, commuterlaborhsupply0(nearloc));
put "Total Near:";
put @15, sum(nearloc, commuterlaborhsupply0(nearloc)), @35, sum(nearloc,
COMMUTERLABORHSUPPLY.L(nearloc)), @55, DIFF1, @75, PERDIFF1 /;
put//;
put "-
-----" //;
put "LABORHSUPPLY", @30, LABORHSUPPLY.ts //;
put @15, 'Benchmark', @35, 'Counterfactual', @55, 'Difference', @75, 'Percent Diff'//;
DIFF1 = LABORHSUPPLY.L - laborhsupply0;
PERDIFF1 = 0;
PERDIFF1 = 100*DIFF1/laborhsupply0;
put @15, laborhsupply0, @35, LABORHSUPPLY.L, @55, DIFF1, @75, PERDIFF1 /;
put//;
put
-----" //;
totallaborhsupply0 = sum(h, hhdlaborhsupply0(h)) + sum(location,
commuterlaborhsupply0(location));
totallaborhsupplyC = sum(h, HHDLABORHSUPPLY.L(h)) + sum(location,
COMMUTERLABORHSUPPLY.L(location))
    + MIGRANTLABORHSUPPLY.L;
put @30, "High Skilled Labor Supply Summary"//;
put @15, "Local Households", @35, "Commuters", @55, "Migrants", @75, "Total"//;
put 'Benchmark:', @15, sum(h, hhdlaborhsupply0(h)), @35, sum(location,
commuterlaborhsupply0(location)), @55, '0.0000', @75, totallaborhsupply0/;
put 'Share of Tot:', @15, (sum(h,hhdlaborhsupply0(h)) / totallaborhsupply0), @35,
(sum(location, commuterlaborhsupply0(location))/totallaborhsupply0), @55, '0.0000'/////;
put 'Counterfac:', @15, sum(h, HHDLABORHSUPPLY.L(h)), @35, sum(location,
COMMUTERLABORHSUPPLY.L(location)), @55, MIGRANTLABORHSUPPLY.L, @75, totallaborhsupplyC/;
put 'Share of Tot:', @15, (sum(h,HHDLABORHSUPPLY.L(h)) / totallaborhsupplyC), @35,
(sum(location, COMMUTERLABORHSUPPLY.L(location))/totallaborhsupplyc), @55,
(MIGRANTLABORHSUPPLY.L/totallaborhsupplyC)//;
put//;
put "-------------------------------------------------------------------------------------------
-----" //;
put "hhdcapitalsupply0", @30, hhdcapitalsupply0.ts //;
put @15, 'Benchmark', @35//;
loop(h, put @3, h.tl, @15, hhdcapitalsupply0(h) /);
put//;
put "--------------------------------------------------------------------------------------------
-----" //;
put "CAPITALSUPPLY",@30, CAPITALSUPPLY.ts //;
put @15, 'Benchmark', @35, 'Counterfactual', @55, 'Difference', @75, 'Percent Diff'//;
DIFF1 = CAPITALSUPPLY.L - capitalsupply0;
PERDIFF1 = 0;
PERDIFF1 = 100*DIFF1/capitalsupply0;
put @15, capitalsupply0, @35, CAPITALSUPPLY.L, @55, DIFF1, @75, PERDIFF1 /;
put//;
put "---------------------------------------------------------------------------------------------
-----"/////;
put "------------------------------- Factor Demand
------------------------------------------
-----" /////;
```

```
put "LABORHDEMAND",@30, LABORHDEMAND.ts //;
put @15, 'Benchmark', @35, 'Counterfactual', @55, 'Difference', @75, 'Percent Diff'//;
DIFF(sec) = LABORHDEMAND.L(sec) - laborhdemand0(sec);
PERDIFF(sec) = DIFF(sec)*100 / laborhdemand0(sec);
loop(sec, put @3, sec.tl, @15, laborhdemand0(sec), @35, LABORHDEMAND.L(sec), @ 55,
DIFF(sec), @75, PERDIFF(sec) /);
put//;
put
-----"//;
put "LABORLDEMAND",@30, LABORLDEMAND.ts //;
put @15, 'Benchmark', @35, 'Counterfactual', @55, 'Difference', @75, 'Percent Diff'//;
DIFF(sec) = LABORLDEMAND.L(sec) - laborldemand0(sec);
PERDIFF(sec) = DIFF(sec)*100 / laborldemand0(sec);
loop(sec, put @3, sec.tl, @15, laborldemand0(sec), @35, LABORLDEMAND.L(sec), @55,
DIFF(sec), @75, PERDIFF(sec) /);
put//;
put "-
-----" //;
put "LABORDEMAND",@30, LABORDEMAND.ts //;
put @15, 'Benchmark', @35, 'Counterfactual', @55, 'Difference', @75, 'Percent Diff'//;
DIFF(sec) = LABORDEMAND.L(sec) - labordemand0(sec);
PERDIFF(sec) = DIFF(sec)*100 / labordemandO(sec);
loop(sec, put @3, sec.tl, @15, labordemand0(sec), @35, LABORDEMAND.L(sec), @ 55,
DIFF(sec), @75, PERDIFF(sec) /);
put /;
DIFF1 = sum(sec, LABORDEMAND.L(sec)) - sum(sec, labordemandO(sec));
PERDIFF1 = 100*DIFF1/sum(sec, labordemand0(sec));
put "Total: ";
put @15, sum(sec, labordemand0(sec)), @ 35, sum(sec, LABORDEMAND.L(sec)), @55, DIFF1, @75,
PERDIFF1 /;
put//;
put//;
put "-
-----" //;
put "CAPITALDEMAND",@30, CAPITALDEMAND.ts //;
put @15, 'Benchmark', @35, 'Counterfactual', @55, 'Difference', @75, 'Percent Diff'//;
DIFF(sec) = CAPITALDEMAND.L(sec) - capitaldemand0(sec);
PERDIFF(sec) = DIFF(sec)*100 / capitaldemand0(sec);
loop(sec, put @3, sec.tl, @15, capitaldemand0(sec), @35, CAPITALDEMAND.L(sec), @ 55,
DIFF(sec), @75, PERDIFF(sec) /);
put /;
DIFF1 = sum(sec, CAPITALDEMAND.L(sec)) - sum(sec, capitaldemand0(sec));
PERDIFF1 = 100*DIFF1/sum(sec, capitaldemand0(sec));
put "Total: ";
put @15, sum(sec, capitaldemand0(sec)), @ 35, sum(sec, CAPITALDEMAND.L(sec)), @55, DIFF1,
@75, PERDIFF1 /;
put//;
put "------------------------------------------------------------------------------------------
-----" /////;
put "--------------------------- Production Quantities
-----" /////;
put "TOTALOUTPUT",@30,TOTALOUTPUT.ts//;
put @15, 'Benchmark', @35, 'Counterfactual', @55, 'Difference', @75, 'Percent Diff'//;
DIFF(sec) = TOTALOUTPUT.L(sec) - totaloutput0(sec);
PERDIFF(sec) = 0;
PERDIFF(sec)$totaloutput0(sec) = 100*DIFF(sec)/totaloutput0(sec);
loop(sec, put @3, sec.tl, @15, totaloutput0(sec), @35, TOTALOUTPUT.L(sec), @ 55,
DIFF(sec), @75, PERDIFF(sec)/);
put /;
DIFF1 = sum(sec, TOTALOUTPUT.L(sec)) - sum(sec, totaloutput0(sec));
PERDIFF1 = 100*DIFF1/sum(sec, totaloutput0(sec));
```

```
put "Total: ";
put @15, sum(sec, totaloutput0(sec)), @ 35, sum(sec, TOTALOUTPUT.L(sec)), @55, DIFF1, @75,
PERDIFF1 /;
put//;
put "-------------------------------------------------------------------------------------------
-----"//;
put "EXPORTDEMAND",@30, EXPORTDEMAND.ts //;
put @15, 'Benchmark', @35, 'Counterfactual', @55, 'Difference', @75, 'Percent Diff'//;
DIFF(sec) = EXPORTDEMAND.L(sec) - exportdemandO(sec);
PERDIFF(sec) = 0;
PERDIFF(sec)$exportdemand0(sec) = 100*DIFF(sec)/exportdemand0(sec);
loop(sec, put @3, sec.tl, @15, exportdemand0(sec), @35, EXPORTDEMAND.L(sec), @55,
DIFF(sec), @75, PERDIFF(sec) /);
put /;
DIFF1 = sum(sec, EXPORTDEMAND.L(sec)) - sum(sec, exportdemand0(sec));
PERDIFF1 = 100*DIFF1/sum(sec, exportdemand0(sec));
put "Total: ";
put @15, sum(sec, exportdemand0(sec)), @35, sum(sec, EXPORTDEMAND.L(sec)), @55, DIFF1,
@75, PERDIFF1 /;
put//;
put "-------------------------------------------------------------------------------------------
-----" //;
put "DOMESTICDEMANDFORDOMESTIC",@30, DOMESTICDEMANDFORDOMESTIC.ts //;
put @15, 'Benchmark', @35, 'Counterfactual', @55, 'Difference', @75, 'Percent Diff'//;
DIFF(sec) = DOMESTICDEMANDFORDOMESTIC.L(sec) - domesticdemandfordomestic0(sec);
PERDIFF(sec) = 0;
PERDIFF(sec)$domesticdemandfordomestic0(sec) =
100*DIFF(sec)/domesticdemandfordomestic0(sec);
loop(sec, put @3, sec.tl, @15, domesticdemandfordomestic0(sec), @35,
DOMESTICDEMANDFORDOMESTIC.L(sec), @55, DIFF(sec), @75, PERDIFF(sec) /);
put /;
DIFF1 = sum(sec, DOMESTICDEMANDFORDOMESTIC.L(sec)) - sum(sec,
domesticdemandfordomestic0(sec));
PERDIFF1 = 100*DIFF1/sum(sec, domesticdemandfordomestic0(sec));
put "Total: ";
put @15, sum(sec, domesticdemandfordomestic0(sec)), @35, sum(sec,
DOMESTICDEMANDFORDOMESTIC.L(sec)), @55, DIFF1, @75, PERDIFF1 /;
put//;
put "--------------------------------------------------------------------------------------------
-----"//;
put "IMPORTDEMAND",@30, IMPORTDEMAND.ts //;
put @15, 'Benchmark', @35, 'Counterfactual', @55, 'Difference', @75, 'Percent Diff'//;
DIFF(sec) = IMPORTDEMAND.L(sec) - importdemand0(sec);
PERDIFF(sec) = 0;
PERDIFF(sec)$importdemand0(sec) = 100*DIFF(sec)/importdemand0(sec);
loop(sec, put @3, sec.tl, @15, importdemand0(sec), @35, IMPORTDEMAND.L(sec), @55,
DIFF(sec), @75, PERDIFF(sec) /);
put /;
DIFF1 = sum(sec, IMPORTDEMAND.L(sec)) - sum(sec, importdemand0(sec));
PERDIFF1 = 100*DIFF1/sum(sec, importdemand0(sec));
put "Total: ";
put @15, sum(sec, importdemand0(sec)), @35, sum(sec, IMPORTDEMAND.L(sec)), @55, DIFF1,
@75, PERDIFF1 /;
put//;
put "-
-----" //;
put "COMPOSITEGOOD", @30,COMPOSITEGOOD.ts //;
put @15, 'Benchmark', @35, 'Counterfactual', @55, 'Difference', @75, 'Percent Diff'//;
DIFF(sec) = COMPOSITEGOOD.L(sec) - compositegood0(sec);
PERDIFF(sec) = 0;
PERDIFF(sec)$compositegood0(sec) = 100*DIFF(sec)/compositegood0(sec);
loop(sec, put @3, sec.tl, @15, compositegood0(sec), @35, COMPOSITEGOOD.L(sec), @55,
DIFF(sec), @75, PERDIFF(sec) /);
```

```
put /;
DIFF1 = sum(sec, COMPOSITEGOOD.L(sec)) - sum(sec, compositegood0(sec));
PERDIFF1 = 100*DIFF1/sum(sec, compositegood0(sec));
put "Total: ";
put @15, sum(sec, compositegood0(sec)), @35, sum(sec, COMPOSITEGOOD.L(sec)), @55, DIFF1,
@75, PERDIFF1 /;
put//;
put "--------------------------------------------------------------------------------------------
-----" /////;
put "-------------------------------------- Final Demand
-----" /////;
put "HHDCONSUMPTION",@30,HHDCONSUMPTION.ts//;
put @15, 'Benchmark', @35, 'Counterfactual', @55, 'Difference', @75, 'Percent Diff'//;
DIFF(sec) = sum(h,HHDCONSUMPTION.L(sec,h)) - sum(h,hhdconsumption0(sec,h));
PERDIFF(sec) = 0;
PERDIFF(sec)$(sum(h,hhdconsumption0(sec,h))>almostzero) =
100*DIFF(sec)/sum(h,hhdconsumption0(sec,h));
loop(sec, put$(sum(h,hhdconsumption0(sec,h))>0.00000001) @3, sec.tl, @15,
sum(h,hhdconsumption0(sec,h)), @35, sum(h,HHDCONSUMPTION.L(sec,h)), @55, DIFF(sec), @75,
PERDIFF(sec)/);
put /;
DIFF1 = sum((sec,h), HHDCONSUMPTION.L(sec,h)) - sum((sec,h), hhdconsumption0(sec,h));
PERDIFF1 = 100*DIFF1/sum((sec,h), hhdconsumption0(sec,h));
put "Total: ";
put @15, sum((sec,h), hhdconsumption0(sec,h)), @ 35, sum((sec,h),
HHDCONSUMPTION.L(sec,h)), @55, DIFF1, @75, PERDIFF1 /;
put//;
put "----
put "INTERMEDIATE",@30,"Intermediate demand for Domestic..."//;
put @15, 'Benchmark', @35, 'Counterfactual', @55, 'Difference', @75, 'Percent Diff'//;
DIFF(sec) = sum(sec2, inputoutput(sec,sec2)*TOTALOUTPUT.L(sec2)) - sum(sec2,
inputoutput(sec,sec2)*totaloutput0(sec2));
PERDIFF(sec) = 100*DIFF(sec)/sum(sec2, inputoutput(sec,sec2)*totaloutput0(sec2));
loop(sec, put @3, sec.tl, @15, sum(sec2, inputoutput(sec,sec2)*totaloutput0(sec2)), @35,
sum(sec2, inputoutput(sec,sec2)*TOTALOUTPUT.L(sec2)), @55 DIFF(sec), @75, PERDIFF(sec)/);
put /;
DIFF1 = sum((sec2,sec), inputoutput(sec,sec2)*TOTALOUTPUT.L(sec}2)) - sum((sec2,sec)
inputoutput(sec,sec2)*totaloutput0(sec2));
PERDIFF1 = 100*DIFF1/sum((sec2,sec), inputoutput(sec,sec2)*totaloutput0(sec2));
put "Total: ";
put @15, sum((sec2,sec), inputoutput(sec,sec}2)*totaloutput0(sec2)), @ 35, sum((sec 2,sec)
inputoutput(sec,sec2)*TOTALOUTPUT.L(sec2)), @55, DIFF1, @75, PERDIFF1 /;
put//;
put "--
-----"//;
put "INVESTNEWCAPITALDEMAND",@30,INVESTNEWCAPITALDEMAND.ts//;
put @15, 'Benchmark', @35, 'Counterfactual', @55, 'Difference', @75, 'Percent Diff'//;
DIFF(sec) = INVESTNEWCAPITALDEMAND.L(sec) - investdemandO(sec);
PERDIFF(sec) = 0;
PERDIFF(sec)$(investdemand0(sec)>almostzero) = 100*DIFF(sec)/investdemand0(sec);
loop(sec, put$(investdemand0(sec)>0.00000001) @3, sec.tl, @15, investdemand0(sec), @35,
INVESTNEWCAPITALDEMAND.L(sec), @55, DIFF(sec), @75, PERDIFF(sec)/);
put /;
DIFF1 = sum(sec, INVESTNEWCAPITALDEMAND.L(sec)) - sum(sec, investdemand0(sec));
PERDIFF1 = 100*DIFF1/sum(sec, investdemand0(sec));
put "Total: ";
put @15, sum(sec, investdemand0(sec)), @35, sum(sec, INVESTNEWCAPITALDEMAND.L(sec)), @55,
DIFF1, @75, PERDIFF1 /;
put//;
put
-----" //;
```

```
put "STATELOCALGOVTDEMAND",@ 30,STATELOCALGOVTDEMAND.ts//;
put @15, 'Benchmark', @35, 'Counterfactual', @55, 'Difference', @75, 'Percent Diff'//;
DIFF(sec) = STATELOCALGOVTDEMAND.L(sec) - statelocalgovtdemand0(sec);
PERDIFF(sec) = 0;
PERDIFF(sec)$(statelocalgovtdemand0(sec)>almostzero) =
100*DIFF(sec)/statelocalgovtdemand0(sec);
loop(sec, put$(statelocalgovtdemand0(sec)>0.00000001) @3, sec.tl, @15,
statelocalgovtdemand0(sec), @35, STATELOCALGOVTDEMAND.L(sec), @55, DIFF(sec), @75,
PERDIFF(sec)/);
put /;
DIFF1 = sum(sec, STATELOCALGOVTDEMAND.L(sec)) - sum(sec, statelocalgovtdemand0(sec));
PERDIFF1 = 100*DIFF1/sum(sec, statelocalgovtdemand0(sec));
put "Total: ";
put @15, sum(sec, statelocalgovtdemand0(sec)), @ 35, sum(sec
STATELOCALGOVTDEMAND.L(sec)), @55, DIFF1, @75, PERDIFF1 /;
put//;
put
-----" //;
put "MIGRANTHCONSUMPTION",@30,MIGRANTHCONSUMPTION.ts//;
put @15, 'Benchmark', @35, 'Counterfactual'//;
loop(sec, put @3, sec.tl, @15, '0.0000', @35, MIGRANTHCONSUMPTION.L(sec)/);
put /;
put "Total: ";
put @15, '0.0000', @35, sum(sec, MIGRANTHCONSUMPTION.L(sec))/;
put//;
put
-----"//;
put "MIGRANTLCONSUMPTION",@30,MIGRANTLCONSUMPTION.ts//;
put @15, 'Benchmark', @35, 'Counterfactual'//;
loop(sec, put @3, sec.tl, @15, '0.0000', @35, MIGRANTLCONSUMPTION.L(sec)/);
put /;
put "Total: ";
put @15, '0.0000', @35, sum(sec, MIGRANTLCONSUMPTION.L(sec))/;
put//;
put "------------------------------------------------------------------------------------------
-----"/////;
put "-------------------------------------- Prices
-----" /////;
put "CPI",@30,CPI.ts//;
put @15, 'Benchmark', @35, 'Counterfactual', @55, 'Difference', @75, 'Percent Diff'//;
DIFF1 = CPI.L - cpi0;
PERDIFF1 = 0;
PERDIFF1$cpi0 = 100*DIFF1/cpi0;
put @15, cpi0, @35, CPI.L, @55, DIFF1, @75, PERDIFF1 /;
put//;
put "---------------------------------------------------------------------------------------------
-----" //;
put "POUTPUT",@30,POUTPUT.ts//;
put @15, 'Benchmark', @35, 'Counterfactual', @55, 'Difference', @75, 'Percent Diff'//;
DIFF(sec) = POUTPUT.L(sec) - poutputO(sec);
PERDIFF(sec) = 0;
PERDIFF(sec)$poutput0(sec) = 100*DIFF(sec)/poutput0(sec);
loop(sec, put @3, sec.tl, @15, poutput0(sec), @ 35, POUTPUT.L(sec), @55, DIFF(sec), @75,
PERDIFF(sec)/);
put//;
put "-------------------------------------------------------------------------------------------
-----"//;
put "PCOMPOSITE",@30,PCOMPOSITE.ts//;
put @15, 'Benchmark', @35, 'Counterfactual', @55, 'Difference', @75, 'Percent Diff'//;
DIFF(sec) = PCOMPOSITE.L(sec) - pcomposite0(sec);
```

```
PERDIFF(sec) = 0;
PERDIFF(sec)$pcomposite0(sec) = 100*DIFF(sec)/pcomposite0(sec);
loop(sec, put @3, sec.tl, @15, pcomposite0(sec), @35, PCOMPOSITE.L(sec), @55, DIFF(sec),
@75, PERDIFF(sec)/);
put//;
put "-------------------------------------------------------------------------------------------
-----" //;
put "PCAPITAL",@30,PCAPITAL.ts,"Fixed at 1.0000"//;
put @15, 'Benchmark', @35, 'Counterfactual', @55, 'Difference', @75, 'Percent Diff'//;
DIFF1 = PCAPITAL.L - pcapital0;
PERDIFF1 = 0;
PERDIFF1$pcapital0 = 100*DIFF1/pcapital0;
put @15, pcapital0, @35, PCAPITAL.L, @55, DIFF1, @75, PERDIFF1/;
put//;
put
-----" //;
put "PLABOR",@30,PLABOR.ts//;
put @15, 'Benchmark', @35, 'Counterfactual', @55, 'Difference', @75, 'Percent Diff'//;
DIFF(sec) = PLABOR.L(sec) - plabor0(sec);
PERDIFF(sec) = 0;
PERDIFF(sec)$plabor0(sec) = 100*DIFF(sec)/plabor0(sec);
loop(sec, put @3, sec.tl, @15, plabor0(sec), @35, PLABOR.L(sec), @55, DIFF(sec), @75,
PERDIFF(sec)/);
put//;
put "-------------------------------------------------------------------------------------------
-----" //;
put "PLABORL",@30,PLABORL.ts//;
put @15, 'Benchmark', @35, 'Counterfactual', @55, 'Difference', @75, 'Percent Diff'//;
DIFF1 = PLABORL.L - plaborl0;
PERDIFF1 = 100*DIFF1/plaborl0;
put @15, plaborl0, @35, PLABORL.L, @55, DIFF1, @75, PERDIFF1/;
put//;
put
-----" //;
put "PLABORL Real", @30, "Real Low Skilled Wage"//;
put @15, 'Benchmark', @35, 'Counterfactual', @55, 'Difference', @75, 'Percent Diff'//;
DIFF1 = PLABORL.L/CPI.L - plaborl0;
PERDIFF1 = 100 * DIFF1/plaborl0;
put @15, plaborl0, @35, (PLABORL.L/CPI.L), @55, DIFF1, @75, PERDIFF1/;
put//;
put "-------------------------------------------------------------------------------------------
-----" //;
put "PLABORH",@30,PLABORH.ts//;
put @15, 'Benchmark', @35, 'Counterfactual', @55, 'Difference', @75, 'Percent Diff'//;
DIFF1 = PLABORH.L - plaborh0;
PERDIFF1 = 100*DIFF1/plaborh0;
put @15, plaborh0, @35, PLABORH.L, @55, DIFF1, @75, PERDIFF1/;
put//;
put "
-----"//;
put "PLABORH Real", @30, "Real High Skilled Wage"//;
put @15, 'Benchmark', @35, 'Counterfactual', @55, 'Difference', @75, 'Percent Diff'//;
DIFF1 = PLABORH.L/CPI.L - plaborh0;
PERDIFF1 = 100 * DIFF1/plaborh0;
put @15, plaborh0, @35, (PLABORH.L/CPI.L), @55, DIFF1, @75, PERDIFF1/;
put//;
put "---------------------------------------------------------------------------------------
-----" /////;
```

```
put "-------------------------------- Households
-----" /////;
put "HHDINCOME", @30, HHDINCOME.ts//;
put @15, 'Benchmark', @35, 'Counterfactual', @55, 'Difference', @75, 'Percent Diff'//;
DIFF(h) = HHDINCOME.L(h) - hhdincomeO(h);
PERDIFF(h) = 0;
PERDIFF(h) = 100*DIFF(h)/hhdincome0(h);
loop(h, put @3, h.tl, @15, hhdincome0(h), @35, HHDINCOME.L(h), @55, DIFF(h), @75,
PERDIFF(h)/);
put /;
DIFF1 = sum(h, HHDINCOME.L(h)) - sum(h, hhdincome0(h));
PERDIFF1 = 100*DIFF1/sum(h, hhdincome0(h));
put "Total: ";
put @15, sum(h, hhdincome0(h)), @ 35, sum(h, HHDINCOME.L(h)), @55, DIFF1, @75, PERDIFF1 /;
put//;
put "-------------------------------------------------------------------------------------
-----"//;
put///;
put "--------------------------------- End Run
-----"/;
*############################ OKCGE Excel Module ################################
* Output
solution(sec,'TotalOutput') = TOTALOUTPUT.L(sec);
solution('TOTAL','TotalOutput') = sum(sec, TOTALOUTPUT.L(sec));
solution(sec,'ExportDemand') = EXPORTDEMAND.L(sec);
solution('TOTAL','ExportDemand') = sum(sec, EXPORTDEMAND.L(sec));
solution(sec,'LocalDemand') = DOMESTICDEMANDFORDOMESTIC.L(sec);
solution('TOTAL','LocalDemand') = sum(sec, DOMESTICDEMANDFORDOMESTIC.L(sec));
* Imports
solution(sec,'ImportDemand') = IMPORTDEMAND.L(sec);
solution('TOTAL','ImportDemand') = sum(sec, IMPORTDEMAND.L(sec));
* Composite Goods
*solution(sec,'CompositeGood') = COMPOSITEGOOD.L(sec);
*solution('TOTAL','ImportDemand') = sum(sec, COMPOSITEGOOD.L(sec));
* HHD Consumption
solution(sec,h) = HHDCONSUMPTION.L(sec,h);
solution('TOTAL',h) = sum(sec, HHDCONSUMPTION.L(sec,h));
* State & Local Demand
solution(sec,'S&L Demand') = STATELOCALGOVTDEMAND.L(sec);
solution('TOTAL','S&L Demand') = sum(sec, STATELOCALGOVTDEMAND.L(sec));
* Investment Demand
solution(sec,'InvDemand') = INVESTNEWCAPITALDEMAND.L(sec);
solution('TOTAL','InvDemand') = sum(sec, INVESTNEWCAPITALDEMAND.L(sec));
* Intermediate Demand
solution(sec,'IntermedDemand') = sum(sec2, inputoutput(sec,sec2)*TOTALOUTPUT.L(sec));
solution('TOTAL','IntermedDemand') = sum((sec2,sec),
inputoutput(sec,sec2)*TOTALOUTPUT.L(sec));
* hHD Income
solution(h,'Income') = HHDINCOME.L(h);
```

```
solution('TOTAL','Income') = sum(h, HHDINCOME.L(h));
* Commuter Income
solution(location,'Income') = COMMUTERLABORLSUPPLY.L(location) * PLABORL.L +
    COMMUTERLABORHSUPPLY.L(location) * PLABORH.L;
* Labor Supplies
* HHD Labor
solution(h,'HSkilledHHD') = HHDLABORHSUPPLY.L(h);
solution('TOTAL','HSkilledHHD') = sum(h, HHDLABORHSUPPLY.L(h));
solution(h,'LSkilledHHD') = HHDLABORLSUPPLY.L(h);
solution('TOTAL','LSkilledHHD') = sum(h, HHDLABORLSUPPLY.L(h));
* Commuters
solution(location,'HSkilledCOM') = COMMUTERLABORHSUPPLY.L(location);
solution('TOTAL','HSkilledCOM') = sum(location, COMMUTERLABORHSUPPLY.L(location));
solution(location,'LSkilledCOM') = COMMUTERLABORLSUPPLY.L(location);
solution('TOTAL','LSkilledCOM') = sum(location, COMMUTERLABORLSUPPLY.L(location));
* Migrants
solution('TOTAL','HSkilledMIG') = MIGRANTLABORHSUPPLY.L;
solution('TOTAL','LSkilledMIG') = MIGRANTLABORLSUPPLY.L;
* Prices
solution('Price','CPI') = CPI.L;
solution(sec,'POutput') = POUTPUT.L(sec);
solution(sec,'PComposite') = PCOMPOSITE.L(sec);
solution('Price','PLaborH') = PLABORH.L;
solution('Price','PLaborL') = PLABORL.L;
solution(sec,'PLabor') = PLABOR.L(sec);
solution('Price','PCapital') = PCAPITAL.L;
```

VITA

KYLE DAVID DEAN

Candidate for the Degree of
Doctor of Philosophy

Dissertation: REGIONAL DEVELOPMENT - A COMPUTABLE GENERAL EQUILIBRIUM (CGE) ANALYSIS OF THE BENEFITS TO LOCAL RESIDENTS, COMMUTERS AND MIGRANTS

Major Field: Urban and Regional Economics
Biographical:
Personal Data: Born in Seville, Spain in January 1966. Currently reside in Edmond OK with wife and two children.

Education: Received Bachelors of Business Administration in Management Information Systems from the University of Oklahoma in May 1989. Completed the requirements for the Doctor of Philosophy in Economics at Oklahoma State University, Stillwater, Oklahoma in December, 2008.

Experience: Partner, Economist, Economic Impact Group, Edmond, OK, 2005 to present. Adjunct Professor of Economics, University of Central Oklahoma, Edmond, OK, 2005 to present. Adjunct professor, MBA Program, Oklahoma Christian University, Edmond, OK, 2007 - 2008. Graduate Teaching Associate, Oklahoma State University, Stillwater, OK, 2000 - 2005. Lead Network Analyst, Dobson Communications Corporation, Edmond, OK, 1997 - 1999. Vice President, Comtrek Computing Solutions, Oklahoma City, OK 1996 - 1997, Systems Engineer, Electronic Data Systems, Midwest City, OK, 1995-1996. Information Systems Specialist, Department of the Air Force, Tinker AFB, OK, 1989 - 1995.

Professional Memberships and Boards: Oklahoma State Board of Examiners of Psychologists, 2006 - Present. Oklahoma State Board of Dentistry, 2006.

Institution: Oklahoma State University
Location: Stillwater, Oklahoma

Title of Study: REGIONAL COOPERATION - A COMPUTABLE GENERAL EQUILIBRIUM (CGE) ANALYSIS OF THE BENEFITS TO LOCAL RESIDENTS, COMMUTERS AND MIGRANTS

Pages in Study: 160
Candidate for the Degree of Doctor of Philosophy
Major Field: Urban and Regional Economics
Scope and Method of Study: This study uses a Computable General Equilibrium (CGE) model to estimate the impacts of local development on the original residents of the local region. The study addresses the aggregate and distributional income effects of a 50% increase in export demand for manufacturing for production in Oklahoma County, Oklahoma. The model includes nine disparate households, two labor skill types, commuters and migrants. Five simulations are used to provide a reasonable impact estimate with sensitivity analysis based on a range of commuter and migration elasticities.

Findings and Conclusions: Local development increased local household income for all nine households regardless of commuter or migration elasticities. The distributional impacts were not uniform across all simulations, however, differences were relatively minor. The greatest aggregate income increase occurred when migration elasticities were decreased. Increased migration elasticities led to the smallest increase in aggregate income. Changes in commuter elasticities led to smaller changes in aggregate local household income. Commuter income was enhanced in every scenario with greater commuter elasticities resulting in greater commuter income.

[^0]: ${ }^{1}$ See Partridge and Rickman (1998) for a survey of the literature.

[^1]: ${ }^{2}$ Persons unable to work because of mental or physical disabilities require specific assistance policies and are not addressed here.

[^2]: ${ }^{3}$ When participation rates are high, it is less likely that nonparticipants are actually discouraged unemployed workers and more likely that their labor supply choice is one made from a preference to pursue leisure or home based activity.
 ${ }^{4}$ See page 128.

[^3]: ${ }^{5}$ It is possible that increases in government revenues from increased tax revenues may lead to additional spending in the eastern part of the state. Those effects are not considered in this paper.

[^4]: ${ }^{6}$ For a typical example see Eberts and Stone (1992)

[^5]: ${ }^{7}$ Oklahoma MSAs include: Enid MSA, Fort Smith MSA, Lawton MSA, Oklahoma City MSA and Tulsa MSA. Source: OMB Bulletin 08-01, Office of Management and Budget, November 20, 2007.
 ${ }^{8}$ Oklahoma Employment Security Commission: Oklahoma Labor Force Data 2007

[^6]: ${ }^{9}$ See Chapter 4 for a complete specification of exogenous sources

[^7]: ${ }^{10}$ For elasticity estimates see Berck, Golan and Smith (1997)

[^8]: ${ }^{11}$ Minnesota IMPLAN Group (MIG), Inc., Stillwater, MN.

[^9]: ${ }^{12} 2003$ National NAICS Three Digit Wage Information, Bureau of Labor Statistics.
 13 "2006 Demographic State of the State, A Report to the Governor and Legislature on Commuting Patterns and Daytime Population," Oklahoma Department of Commerce, June 2006.

[^10]: ${ }^{14}$ For detailed information on the IMPLAN SAM, see "Elements of the Social Accounting Matrix," MIG IMPLAN Technical Report, TR-98002, Minnesota IM

 Table 4.1: GAMS Sector Codes

[^11]: ${ }^{15}$ Codes listed in parentheses indicate IMPLAN reference numbers. For example, Household 1 is represented by the number 10001, household 9 by 10009, etc. For a complete list of IMPLAN codes, see "IMPLAN Pro, User’s Guide, Analysis Guide, Data Guide," MIG Inc., February 2004.

[^12]: ${ }^{16}$ Local industry labor by skill shares were derived from national industry wage payment data. Workers earning less than $\$ 35,000 /$ year are considered low skilled. Remaining workers are high skilled. Local wage by skill payments were estimated by multiplying national skill shares by local industry labor bills. National wage payment data source: BLS, 2003 National NAICS 3-digit wage information, www.bls.gov.

[^13]: ${ }^{17}$ The U.S. Census Bureau collects the Consumer Expenditure Survey quarterly for the Bureau of Labor Statistics. See www.bls.gov for more information.

[^14]: Table 4.14.

[^15]: ${ }^{18}$ Source: "2006 Demographic State of the State, A Report to the Governor and Legislature on Commuting Patterns and Daytime Population," Oklahoma Department of Commerce, June 2006.

[^16]: ${ }^{19}$ All OKCGE benchmark variables are indicated by a lowercase version of their variable name followed by the number ' 0 '.

[^17]: ${ }^{20}$ For a more detailed derivation of the utility calibration equation, see Shoven and Whalley (1992).

[^18]: ${ }^{21}$ As stated in Chapter 4, labor income for lower income households is likely underreported. This may cause labor income increases to also be underreported by the model.

[^19]:

[^20]:

[^21]: ${ }^{22}$ For information about all MAPS initiatives, see the MAPS3 website www.maps3.org.

