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CHAPTER I 
 
 

INTRODUCTION 

 

Origin, Characteristics and Classification of Picochlorum oklahomensis 

Picochlorum oklahomensis, a unicellular halotolerant green alga, was isolated 

from shallow evaporitic pools at the Salt Plains National Wildlife Refuge (SPNWR) in 

northwestern Oklahoma, USA. Picochlorum sp is classified as belonging to the Domain 

Eukarya, Kingdom Protista, Division Chlorophyta and Class Trebouxiophyceae (Graham 

and Wilcox, 2000; Henley et al. 2002; 2004).  

 Picochlorum is a spherical green alga of approximately 2 μm in diameter. It has a 

nucleus, one lateral chloroplast and one mitochondrion. Members of the 

Trebouxiophyceae generally contain chlorophylls a and b, lutein, neoxanthin and ß-

carotene. Plasmalemma and cell walls are present but it lacks flagella and it is known to 

reproduce by autosporulation (Henley et al. 2002; 2004). 

 The SPNWR is characterized as being a hypersaline environment which has a warm-

temperate, semiarid, continental climate (Henley et al. 2002). Hypersaline environments, 

including the SPNWR usually have high salinity, exhibit fluctuations in their salt 

concentration over time because they are generally found in areas which are occasionally 

flooded by rain or seawater and are also subject to evaporation. Some minerals may 

precipitate as a result of the evaporation and this could lead to changes in the brine 
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composition (Eugster and Jones 1979; Nissenbaum 1980). Nutrient concentrations and 

ratios do vary with salinity and anion composition in saline lakes and these changes in 

salinity can potentially affect algal nutrient requirements (Schobert 1974; Cole et al. 

1986). Organisms living in the SPNWR are exposed to these variations in various 

environmental factors and may have develop ways to cope with these changes.  

 There is uncertainty about the effects of high and variable salinity on nutrient 

solubility and bioavailability. It is anticipated that high salinity would make nutrient less 

bioavailable to the organism because of precipitation and therefore organisms found in 

such environments may become adapted to low nutrient levels. There has been various 

interest in looking at the effect of salinity on algal and plant growth as well as separate 

studies investigating the effect of low nutrients on algae and plants. However, there has 

been very few studies looking at the effects of both salinity and low nutrients 

concurrently in algae or plants. Recent effort has been looking at either salinity and 

temperature, temperature and light or salinity and light, but no previous study has 

examined the effect of salinity and nutrients limitation relating to plants and algae 

particularly those from the SPNWR. 

 

Objective  

The main hypothesis for this study based on the issues raised about multiple stress 

factors in the previous paragraph is that the effect of salinity stress on growth and 

photosynthesis in Picochlorum will be different under high nutrient compared to limited 

nutrient levels. In order to test this hypothesis and understand how the nutrient level may 

affect the effect of salinity, I investigated the effects of three salinity levels under high 
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and low bicarbonate, phosphate and iron on the growth and photosynthesis of 

Picochlorum as a means to understanding part of its physiology. The specific objectives 

for this research were to:  

• determine the effect of salinity stress on growth rate and yield in Picochlorum at 

high nutrient and nutrient limitation levels, and also 

• examine the effects of salinity stress and nutrient limitation on photosynthesis and 

the photosynthetic apparatus in Picochlorum.  

I expected that increasing salinity will decrease growth rate, the rate of photosynthesis 

and yield under high nutrient. Low nutrients should also decrease growth rates, 

photosynthesis and finally yield. I expected different response to increasing salinity from 

10 to 50 to 100 ppt under high nutrient level from that under nutrient limitation. Since 

different nutrients are needed in different quantities in plants and algae as well as having 

specific functions they perform, I expected different responses to their limitations in 

Picochlorum oklahomensis (Geider et al. 1993). I decided to study the effects of carbon, 

phosphorus and iron limitations because these are essential nutrients to algae and plant 

growth and that phosphorus and iron may be limiting in the natural environment.   

Carbon 

Carbon is one of the most important elements necessary for plants and algal 

growth and development. Carbon forms the skeleton of all the biomolecules and 

structures found in living organisms. It may be taken in as either carbon dioxide 

commonly in terrestrial habitats and to some extent in aquatic environment or as 
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bicarbonate (HCO3
-) mostly in aquatic habitats.  There is always less amount of dissolved 

CO2 but more of HCO3
- available at alkaline pH which is the usual pH in marine and 

hypersaline environment. For example at a pH of about 8.2 when seawater is in 

equilibrium with air, there is only about 10 μM CO2 present and CO2 diffusion is known 

to be very slow in water (Round 1981). 

The problem of not having CO2 readily available and also the precipitation of 

HCO3
- may restrict the supply of inorganic carbon to marine photosynthetic organisms 

including microalgae. In order to overcome the challenge of carbon availability for 

photosynthesis, most microalgae have developed various mechanisms to efficiently take 

up dissolved inorganic carbon and making it available in the cells for use. The 

mechanisms include the active uptake of CO2 and HCO3
- from the growing medium, 

production of carbonic anhydrase and also an inorganic carbon concentrating mechanism 

(Falkowski and Raven 1997; Kaplan and Reinhold 1999; Giordano et al. 2005; Spalding 

2008).  

Apart from the normal diffusion of CO2 into cells which is slow (Riebesell et al. 

1993), some organisms have CO2 and HCO3
- protein transporters which help in active 

uptake of these inorganic carbon forms into the cells from their growing medium which 

require the use on energy (Rees 1984; Rotatore et al. 1995; Merrett et al. 1996; Sukenik 

et al. 1997; Huertas et al. 2000). Some marine microalgae have Cah genes which codes 

for the production of carbonic anhydrase (CA). There are different forms of these 

enzymes which operate under different inorganic carbon concentration levels. Depending 

on where they operate, there are external and internal carbonic anhydrases. The external 

CA catalyzes the conversion between HCO3
- and CO2, according to the formula: CO2 + 
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H2O ↔ H2CO3 ↔ H+ + HCO3
- outside the cell but closer to the cell membrane which 

ensures there is enough CO2 at the site of the CO2 transporter (Williams and Turpin 1987; 

Nimer et al. 1997, Roberts et al. 1997). There are also internal carbonic anhydrases which 

function within the cells. Some organisms also have pyrenoids which serve as a 

component of the carbon dioxide concentrating mechanism (CCM) within which CO2 is 

generated from HCO3
- or in the nearby thylakoid. The main purpose of CCM is to make 

CO2 more available and thus increase the CO2 / O2 ratio at the active site of ribulose-1,5-

bisphosphate carboxylase-oxygenase (Rubisco). This favours carbon fixation and prevent 

Rubisco from carrying out its oxygenase activity and therefore reducing photorespiration 

associated with C3 photosynthesis. Rubisco is an important component of pyrenoids in 

the chloroplast (Raven 1997; Raven and Beardal 2003).  

During photorespiration which also uses ATP and NADPH, oxygen instead of 

carbon dioxide is added to ribulose-1,5-bisphosphate producing one molecule of 3-

Phosphoglycerate and a molecule of 2-Phosphoglycolate. Within the chloroplast, 

phosphoglycolate is converted to glycolate releasing the inorganic phosphate. The 

glycolate is then sent to the peroxisome where oxygen is used and the glycolate is finally 

converted to glycine which is then sent to the mitochondria. In the mitochondria, serine is 

formed from glycine with the release of ammonia and CO2. The serine is then sent to the 

peroxisome where NADPH is used and finally glycerate is formed which is then sent 

back to the chloroplast. Within the chloroplast ATP is used and the phosphoglycerate 

formed enters into the Calvin cycle (Siedow and Day 2000). Limitation in the supply of 

carbon dioxide restrict photosynthesis since CO2 is the substrate for ribulose-1,5-

bisphosphate carboxylase-oxygenase, and thereby leading to decreases in growth. 
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Phosphorus 

Phosphorus is an essential nutrient needed for plant and algal growth (Davies 

1988; Wykoff et al. 1998). It is required for the formation of biomolecules such as 

nucleic acids (DNA and RNA), phospholipids, sugar phosphates and catalytic cofactors. 

It is also associated with energy transfer (ATP) and metabolic regulation. Formation of 

ATP from ADP and inorganic phosphate requires a lot of energy and so the bonds 

between two phosphorus atoms are at a higher energy level and when these are broken 

down energy is released and used by the cell. Phosphorus is usually taken up actively by 

algae as inorganic oxyanion phosphate (PO4
3-) from their growing medium. In marine 

environments P is mostly found dissolved organic phosphomonoesters as a result of 

phosphorus being esterified to organic compounds. In this form it is very difficult for 

algae to take them in and use.  

Some algae are able to produce extracellular phosphatases which are secreted to 

make phosphorus available under such P limited conditions from organic 

phosphomonoesters, (Weich and Graneli 1989; Hernández et al. 1993; Lee 2000). Some 

of these phosphatases are already in the cells while others are only produced under P 

limited conditions to increase their activities. Since algae are able to store phosphorus as 

inorganic phosphorus or polyphosphate when P is readily available (Lundberg et al. 

1989), they are able to use the stored phosphorus under P limited conditions thereby 

delaying or slowing the effects of the P limitation for a while. Low phosphorus is likely 

to affect the formation of nucleic acids and protein synthesis and subsequently affect cell 

division. Due to its involvement in the formation of ATP and the proper functioning of 

proton-ATPase, low P may affect active uptake and metabolism of nutrients such as 
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inorganic carbon and nitrogen and may also affect signal transduction. This could lead to 

decreases in photosynthesis and respiration, a decline in growth, and possibly result in the 

death of the cells if the limitation or starvation continues for a long time (Davies 1988; 

Plesnicar et al. 1994; Wykoff et al. 1998). 

Iron 

Iron is considered to be a micronutrient however it is very important for all 

organisms. It is commonly found in plants and algae as metalloproteins which are 

necessary for photosynthesis, respiration and nitrogen assimilation (Crosa 1997; Bulter 

1998). Cytochromes, iron-sulphur proteins and ferredoxin all contain iron (Guikema and 

Sherman 1983). Raven (1990) estimated that 80% of the iron in phytoplankton forms part 

of the photosynthetic electron transport chain. Iron is also needed in the biosynthesis of 

chlorophyll and is also required for nitrate and nitrite reductases activity. In saline water 

iron occurs as ferric hydroxides and it normally precipitate because it forms complexes 

with organic ligands which then affect its solubility and availability to algae (Motekaitis 

and Martell 1987, Millero et al. 1995, Sunda and Huntsman 1995).  

Some phytoplanktons have iron transporters to help with the uptake of iron from 

the environment. However a limitation encountered is that these are found to be 

responsive to only dissolved inorganic iron (Anderson and Morel 1982; Hudson and 

Morel 1990; 1993). Another mechanism for efficient iron uptake used by eukaryotic 

phytoplanktons is the production of siderophores which help to release the iron bound to 

organic ligands. The siderophores are usually produced under low iron and are thought to 

be low molecular weight chelators which form stable complexes with Fe (III) (Trick 

1989; Wilhelm and Trick 1994).  
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It has been observed that in order to easily release the iron bound to the 

siderophores, microorganisms and plants make use of ligand exchange at the cell surface, 

hydrolysis, and acidification and reduction of Fe (III) (Neilands 1974; Guerinot and Yi 

1994). Since iron is part of almost all the components of the photosynthetic electron 

transport chain, implies that photosynthesis would be greatly affected by iron deficiency. 

Doucette and Harrison (1991) have report of decrease in the size and structure of 

chloroplast in iron limited grown cells. 

Salinity 

Salinity refers to the salt content of water or the soil. It is considered to be a very 

important environmental factor because of its role in reducing crop yield in most part of 

the world (Komori et al. 2003). Apart from challenges experienced by organisms in the 

natural habitats such as marine and hypersaline environment, increases in salinity is also 

encountered as a result of inappropriate irrigation techniques employed by farmers in 

soils considered to be arid or semiarid. Salinity stress may affect plants and algae through 

osmotic and ionic stress. Water deficit bring about osmotic stress while as a result of 

excess Na+ and Cl- and reduction in the uptake of other mineral nutrients can bring about 

ionic imbalances or stress (Ashraf and Harris 2004). Plants which are sensitive to salinity 

stress are called glycophytes and those which are able to tolerate salt stress are referred to 

as being halotolerant or halophytes.  

Plants and algae may differ in the way they respond to salt stress. Some are able 

to tolerate the salt stress within certain limits without any problem. Others are able to 

exclude the salts through their leaves or salt glands. Still others produce compounds 
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making their tissues tolerant to the salt concentration. One of such common ways is the 

production of osmoprotectants or compatible solutes to lower the internal water potential 

of the cell and thus being able to take up water from the environment. The compatible 

solutes include mannitol and proline. Proline is produced in the cell from glutamate and 

the synthesis requires ATP and NADPH. Trying to maintain proper osmotic conditions 

nay therefore be at a high energy cost which may be manifested in reduced growth rates 

and decrease in photosynthetic electron transport activities (Gimmler et al. 1981; Kirst 

1989; Ashraf and Harris 2004). Lawlor (2002) suggested that these osmoprotectant may 

also play other roles in organisms such as being nitrogen sources during periods of 

reduced growth and photosynthesis. 

Salt stress also affects protein synthesis, the functioning of some enzymes and 

also the membrane integrity. Salinity may also cause disorganization of PSII. When 

salinity negatively affects membrane lipids, it leads to problems with membrane 

permeability, transporters and enzymes (Kerkeb et al. 2001).  
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CHAPTER II 
 
 

MATERIALS AND METHODS 

Organism 

The organism used in this study is Picochlorum oklahomensis, a unicellular green 

alga, which was isolated from the Salt Plains National Wildlife Refuge, Oklahoma, USA 

in 1998. 

 

Growth media 

The cultures were maintained in artificial seawater medium, AS100 (Starr and 

Zeikus, 1993) but with some modification. The sodium chloride (NaCl) content was 

changed to give a concentration of 10, 50 and 100 ppt. The salinity was checked using a 

hand-held refractometer (A366ATC). In preparing the AS100 medium, MgSO4, KCl, 

NaNO3, CaCl2, NH4Cl and Tris buffer (pH of 8.08) were added to the sodium chloride 

solution and then after autoclaving, the vitamins, sodium thiosulfate, chelated iron, 

sodium bicarbonate, and potassium dihydrogen phosphate solutions were added, using a 

syringe and Acrodisc 0.2-μm sterile syringe filters. 

Iron limitation was induced by not adding iron to the medium (though minute 

quantities of impurities may be present in the chemicals used). For low bicarbonate and 

low phosphate, the concentrations were 500 μM and 1.8 μM respectively. The control 

medium had 2 mM HCO3
-, 37 μM PO4

3- and 11.7 μM chelated iron. 50 ml of each
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treatment was poured into a 125-ml Erlenmeyer flask made from optically clear 

polycarbonate and plugged with cotton wool surrounded with aluminium foil. There were 

three flasks maintained for each treatment giving three replicate cultures of Picochlorum 

for each treatment. The preparation of the medium and the inoculation procedures were 

carried out in a laminar flow hood under sterile conditions. 

 

Growth conditions 

The experimental cultures were kept in a growth room at a day/night temperature 

regime of about 27° to 35° C and a photon fluence rate (PFD) of about 200 μmol 

photons·m -2· s-1. The source of light was a 1000-watt metal halide lamp at a 14:10-h 

light:dark (L:D) cycle.  For the experiments, the inoculum from the stock culture in Salt 

Plain medium (prepared from salt brine from the salt plains) was preacclimated in a 50 

ppt AS 100 medium for seven days before inoculating for the beginning of the two-stage 

experiment. Samples from the first culture were used to inoculate the second set of 

cultures in triplicate after ten days of growth.  The first stage of culture enabled the 

Picochlorum cells to acclimate to the nutrient treatments and to ensure that most of the 

stored nutrients had been completely used. Each treatment had three replicates. 

 

Determination of cell numbers and initial growth rate 

Samples were taken daily from each of the cultures throughout the experiment 

and actual cell counts performed. Total cell densities were determined by transferring 10 

μl of each sample unto a hemacytometer and performing total cell count. The initial 

growth rate (μ, d-1) was determined by fitting Jassby and Platt (1976) function of a 

 11



nonlinear curve to the graph of ln (cell density) versus time for each replicate culture 

using Sigma Plot 2000 software. The mathematical function by Jassby and Platt (1976) is 

given below:   

F = CDm x tanh {(µ x T)/CDm} + CDo  

where CDm is increase in In cell density, CDo is Initial In cell density, µ is growth rate 

(in d-1, which is the initial slope) and T is time in days. 

This equation was used because there was no prolonged exponential phase giving 

a linear line for the determination of initial growth rate. The cell densities at the end of 

day 10 were used as the final cell yield. 

In order to further analysis the curvature of the graphs as a way of getting more 

information from my growth data, I used Bannister’s function (1979) to obtain the 

convexity values. 

 F= CDm x (µ x d/{CDmc + (µ x d)c) (1/c)} + CDo 
 

where CDm is Final In cell density, CDo is initial ln cell density, µ is growth rate (in d-1, 

which is the initial slope), T is time in days, and c is convexity. 

 

Photosynthetic Measurement 

 Six days old second stage cultures were used for this experiment. Some of the 

cells were concentrated in order to obtain cell densities almost equal to all treatments and 

spiked with 8 mM NaHCO3. Photosynthetic light-response (P-I) curves were measured as 

whole cell oxygen exchange at 270C in a Hansatech DW water-jacketed, 9-mL electrode 

chamber with continuous stirring and connected to a computer. Samples were exposed to 

a series of 12 increments of photon flux densities (PFD) from darkness to > 1500 μmol 
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photons m-2 s-1 using a slide projector as source of light fitted with neutral density filters. 

Exposure to each PFD was 4 min after a 30-second equilibration period.  

 Photosynthetic rates (μmol O2 hr-1) were automatically calculated in real time by 

linear regression after each PFD. The calculated photosynthetic rates were also checked 

manually from the data generated and normalized to cell density. Light saturated 

photosynthesis (Pmax), initial slope (α) and dark respiration (Rd) were determined by 

fitting individual curves to a Jassby and Platt (1976) function using Sigma Plot 2000 

software.   

  F = Pm x tanh {(α x I)/Pm} - Rd  

where Pm is light-saturated photosynthetic rate, Rd is rate of respiration in darkness, α is 

the initial ascending slope and I is light intensity. 

 

Pigment Content 

In order to understand the effect of low nutrient and salinity stress on the 

pigments in Picochlorum, cultures in the second stage were harvested on day 6 and the 

chlorophyll content determined by filtering 3 mL of each culture suspension and 

transferring the cells together with filter paper into 3.5 mL dimethyl-formamide (DMF) 

and keeping them in the dark for 24 hours. I used DMF because it has been identified as 

being able to chemically stabilize chlorophyll and as well as preventing its oxidation. 

DMF is also able to extract a lot of chlorophyll from samples compared to other solvents 

commonly used (Porra et al. 1989). Extracts were centrifuged to remove cellular debris 

and the absorption spectra measured from 400 to 750 nm using a spectrophotometer with 
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2-nm band pass. The concentrations of chlorophylls a and b were determined using the 

equations by Porra et al. (1989): 

Chlorophyll a = 12.00 A664 – 3.11 A647 

Chlorophyll b = 20.78 A647 – 4.88 A664   

where A is the absorbance at the specified wavelength, corrected for scattering by 

subtracting A750. 

Total carotenoids were calculated using Wellburn’s equation (1994).  

Total carotenoids = (1000 A480 – 0.89 Ca – 52.02 Cb)/245 

where A480  is the absorbance at 480 nm, and Ca and Cb are concentrations of chlorophyll 

a and b respectively. 

 

Chlorophyll fluorescence 

Six days old second stage cultures were used for this experiment. Chlorophyll 

fluorescence quenching analysis was carried out at room temperature using a Dual–

Modulation Kinetic fluorometer (PhotoSystems Instruments, Czech Republic). The 

fluorometer was connected to a computer with data acquisition software, Fluowin. Two 

mL of culture was put into a cuvette and the cuvette placed into the sample compartment 

for the measurement to proceed. Each sample was dark-adapted for 10 min before 

starting with the measurement. The minimal fluorescence level in the dark-adapted state 

(Fo) was measured by activating the modulated light (ML) which was very low in order 

to prevent the induction of significant variable fluorescence. 

A 0.8 s flash of saturating white light (>1000 μmol photons·m -2· s-1) was then 

applied to determine the maximal fluorescence in the dark-adapted state, (Fm). After a lag 
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phase of 20 seconds, the actinic light, AL (about 400 μmol photons·m -2· s-1) from light-

emitting diode was turned on to provide continuous white illumination for 30 seconds. In 

order to determine the light-adapted maximal chlorophyll fluorescence (Fm’), saturating 

pulses were applied to the sample at different intervals during the period of actinic light 

driving photosynthesis.     

Using both the dark and light fluorescence parameters, I calculated the following 

for the fluorescence analysis: the maximum efficiency also known as optimal quantum 

yield of PS II photochemistry in the dark-adapted state, (Fv / Fm); the actual quantum 

yield of PSII electron transport in the light-adapted state, ΦPSII = (Fm’ - F’) / Fm’; the 

photochemical quenching coefficient, qP = (Fm’ - F’) / (Fm’- Fo’), which gives a measure 

of the proportion of open PSII reaction centers and the non-photochemical quenching, 

NPQ = (Fm – Fm’) / Fm’ (Genty et al. 1989; Bilger and Björkman 1990).  The 

fluorescence nomenclature used in this section follows van Kooten and Snel (1990). 

   

Experimental design & Statistical analysis 

A factorial design was used for the experiments with salinity as one factor at three 

levels (10 ppt, 50 ppt and 100 ppt) and nutrient as the other factor at two levels (high and 

low). Data of the initial growth rates, cell densities, photosynthetic parameters, pigment 

content and the fluorescence parameters were analyzed by using two-way analysis of 

variance (ANOVA) with replication at p = 0.05. The significance of the pairwise 

differences between treatments analyzed using Tukey HSD multiple comparison. I used 

SYSTAT 10 software for all the statistical analysis. 
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CHAPTER III 
 
 

RESULTS 

Growth Rates and Cell growth  

There were marked differences observed in the growth curves of Picochlorum due 

to nutrient limitation and salinity stress (Fig. 1, 5 & 8). The semilog growth curve of 

Picochlorum did not follow the usual hyperbolic growth curve. The initial linear part was 

too brief (2 to 3 data points) for the determination of the initial growth rate using linear 

regression. Jassby and Platt (1976) non-linear function was therefore used in fitting it to 

each replicate in order to determining initial growth rates of Picochlorum in this 

experiment (Fig. 2). The function is given as: 

F = CDm x tanh {(µ x T)/CDm} + CDo  

where CDm is Final In cell density, CDo is Initial In cell density, µ is growth rate (in d-1, 

which is the initial slope) and T is time in days.  

The curve fittings for the replicates for each treatment in determining the initial 

growth rates using the Jassby and Platt’s function are in appendix A and the Bannister’s 

function (1979) used in determining the convexity of the growth graphs are also in 

appendix B.  

Salinity, low bicarbonate and Growth 

Picochlorum growth is largely unaffected by salinity below 50 ppt, but is reduced 

by about one-third at 100 ppt in high bicarbonate (HC) (Figs. 3, 5 & 8). Low bicarbonate 
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Figure 1. Mean growth response of Picochlorum sp. to high bicarbonate (shaded 
symbols, HC) and low bicarbonate (open symbols, LC) at different salinities of 10, 50 
and 100 ppt (numbers after symbols). n = 3 for all treatments  
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Figure 2. Growth curves of triplicate cultures of Picochlorum sp. in a) high bicarbonate 
and b) low bicarbonate at 10 ppt showing the curve fitting of Jassby and Platt’s function 
to the logarithm of the cell densities as examples from which the initial growth rates, µ 
was obtained.  
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Figure 3. Initial growth rate of Picochlorum sp. to high bicarbonate (shaded symbols, 
HC) and low bicarbonate (open circles, LB) at different salinities of 10, 50 and 100 ppt. 
Mean values ± Standard deviation, n = 3 for all treatments (Error bars smaller than 
symbols). Different letters indicate significance 
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(LC) cultures exhibit the same pattern as HC but are shifted to lower growth rates.  

Primary effects of both salinity and bicarbonate were highly significant in two-way 

ANOVA (p<0.01).  All individual treatments were significantly different except high 

bicarbonate at 10 and 50 ppt (Tukey, p>0.05).  In addition, bicarbonate-salinity 

interaction was significant, because initial growth rates in high bicarbonate were the same 

at 10 ppt and 50 ppt but were reduced in the low bicarbonate treatment at 10 ppt. The 

effect of low bicarbonate was proportionately the same at 10 and 50 ppt (LC/HC = 0.6), 

but greater at 100 ppt. The absolute reduction of 0.2 d-1 at 100 ppt was the lowest 

compared to twice that value at 10 and 50 ppt.  

Cell yields at day 10 exhibited much the same patterns as initial growth rate, with 

the exception that high bicarbonate yields at 10 and 50 ppt differed, whereas low 

bicarbonate yields 10 and 50 ppt did not (Fig. 4).  Both primary effects of salinity and 

low bicarbonate and interaction were significant for cell yields (2-way ANOVA, p< 

0.01). The effect of low bicarbonate was greater on initial growth rate than on cell yields 

at day 10. 

 

Phosphorus limitation, salinity and Growth 

Low phosphate cultures exhibit the same pattern as high phosphate but are shifted 

to higher initial growth rates (Fig. 6). Primary effects of both salinity and phosphate were 

highly significant in two-way ANOVA (p<0.01).  All individual treatments were 

significantly different except high phosphate at 10 and 50 ppt and low phosphate at 10 

and 50 ppt (Tukey, p<0.05). The effect of low phosphate was proportionately the same at  
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Figure 4. Cell yield of Picochlorum sp. at day 10 in low bicarbonate (LC) compared with 
high bicarbonate (HC) at different salinities. Mean values ± Standard deviation, n = 3 for 
all treatments. Different letters indicate significance 
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Figure 5. Mean growth response of Picochlorum sp. to high phosphate (shaded symbols, 
HP) and low phosphate (open symbols, LP) at different salinities of 10, 50 and 100 ppt 
(numbers after symbols). n = 3 for all treatments  
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Figure 6 Initial growth rates of Picochlorum sp. to high phosphate (shaded symbols, HP) 
and low phosphate (open circles, LP) at different salinities of 10, 50 and 100 ppt. Mean 
values ± Standard deviation, n = 3 for all treatments (Error bars smaller than symbols) 
Different letters indicate significance 
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all salinities (LP/control = 1.2). The absolute reduction of 0.1 at 100 ppt was the lowest 

compared to twice that value at 10 and 50 ppt.  Thus, although the significant nutrient-

salinity interaction is consistent with my hypothesis, the effect is very small.   

Even though initial growth rates were significantly higher in low phosphate 

cultures compared to control, cell yields were significantly reduced in low phosphate. 

Cell yields at day 10 exhibited much the same response to salinity as initial growth rate, 

with the exception that high phosphate yields at 10 and 50 ppt differed (Fig. 7). The 

reduction in yield at day 10 was about 60% at 10 ppt, 50% at 50 ppt and 20% at 100 ppt. 

In low phosphate, cell yield at 50 and 100 ppt were not significantly different. Both 

primary effects of salinity and low phosphate and interaction were significant for cell 

yields (2-way ANOVA, p< 0.01). 

 

Iron limitation, salinity and Growth 

Low iron cultures exhibit the same pattern as cultures grown in added iron (+Fe) 

medium but were shifted to lower initial growth rates (Fig. 8 and 9). Primary effects of 

both salinity and iron were highly significant in two-way ANOVA (p<0.001).  All 

individual treatments were significantly different except +Fe at 10 and 50 ppt (Tukey, 

p<0.05).  In addition, iron-salinity interaction was significant, because initial growth rate 

was reduced at 10 ppt relative to 50 ppt in the -Fe treatment, but not in the +Fe grown 

cells. The effect of low iron was proportionately the same at all salinities (LFe/control = 

0.3). The absolute reduction of 0.6 d-1 at 100 ppt was the lowest compared to 0.8 d-1 at 10 

and 50 ppt. Cell yields at day 10 exhibited different patterns from the initial growth rate. 
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Figure 7. Cell yield of Picochlorum sp. at day 10 in low phosphate (LP) compared with 
high phosphorus (HP) at different salinities. Mean values ± Standard deviation, n = 3 
Different letters indicate significance. 
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Figure 8 Mean growth response of Picochlorum sp. to high iron (shaded symbols, +Fe) 
and no added iron (open symbols, -Fe) at different salinities of 10, 50 and 100 ppt 
(numbers after symbols). n = 3 for all treatments 
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Figure 9 Initial growth rates of Picochlorum sp. to high iron (shaded symbols, +Fe) and 
low iron (open circles, -Fe) at different salinities of 10, 50 and 100 ppt. Mean values ± 
Standard deviation, n = 3 for all treatments (Error bars smaller than symbols). Different 
letters indicate significance 
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Increasing salinity significantly decreased cell yield in the +Fe medium however in –Fe 

grown cells, an increase in salinity from 10 and 50 ppt rather increased cell yield at day 

10 (Fig. 10).  Both primary effects of salinity and low iron as well as the interaction 

between these two factors were significant for cell yields (2-way ANOVA, p< 0.01).  

  

Photosynthetic Measurements 

 In order to investigate the effect of nutrient limitation and salinity on 

photosynthesis in Picochlorum, oxygen evolution was measured and the following three 

fundamental parameters were calculated: The rate of respiration in darkness (Rd), the 

slope at limiting PFDs, α, (which comprises both light-harvesting efficiency and 

photosynthetic energy conversion efficiency), and the light-saturated photosynthetic rate 

(Pmax ). Pmax is normally limited by the rate of carbon fixation, either by enzymatic 

reactions of the Calvin cycle or by diffusion and transport processes (Sukenik et al. 1987, 

Henley, 1993). Photosynthetic rates (μmol O2 hr-1) were automatically calculated in real 

time by linear regression after 270 sec exposures to PFD (Figure 11). Photosynthetic 

light-response (P-I) curves are shown in figures 12 – 14. These parameters were obtained 

for each replicate of a particular treatment (3 per treatment) and then were analyzed using 

ANOVA. 

Neither salinity nor low bicarbonate significantly affected dark respiration, since 

variability was large relative to rate values (Table 1). Salinity, but not low bicarbonate, 

significantly affected α, (2-way ANOVA, p<0.05). However, none of the individual 

treatments differed in multiple pairwise comparisons (Tukey, P>0.05), probably due to 

inadequate statistical power with n=3.  Both salinity and bicarbonate treatments  
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Figure 10. Cell yield of Picochlorum sp. at day 10 in low iron (-Fe) compared with the on 
added iron (-Fe) at different salinities. Mean values ± Standard deviation, n = 3. Different 
letters indicate significance. 
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Figure 11. An example of a raw dissolved O2 trace during photosynthesis by Picochlorum 
oklahomensis from which the rates of photosynthesis were calculated. Each 270 seconds 
represents photosynthesis under different photo flux density with the first 30 seconds 
used for the equilibration of the electrode and sample. Photosynthetic rates were 
calculated by linear regression slope over the next 240 seconds. 
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Figure 12. Photosynthetic light-response curves of Picochlorum sp. cultured in high 
bicarbonate (HC, shaded symbols) and in low bicarbonate (LC, open symbols) at 
different salinities (indicated by the numbers next to symbols). Mean values, n = 3 for all 
treatments (Error bars not shown for clarity). 
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Table 1. P-I parameters Pmax (fmol O2.cell-1.hr-1), α and Rd (fmol O2.cell-1.hr-1) measured 
for Picochlorum sp. in high and low bicarbonate at different salinities. Mean ± Standard 
deviation, n = 3. Different letters indicate significance 
 
 
    Pmax  (fmol O2.cell-1.hr-1) 
 
   High Bicarbonate  Low Bicarbonate 
     

 10 ppt  21.51 ± 0.32 a   25.29 ± 3.87 a   
 

 50 ppt  20.96 ± 1.17 a   23.50 ± 0.50 a   
 

100 ppt 13.31 ± 1.37 b   15.15 ± 0.58 b  
 
 
   α  fmol O2.cell-1 (µmol photons m-2 s-1) -1 hr -1
 
   High Bicarbonate  Low Bicarbonate    
  
  10 ppt    0.12 ± 0.03      0.14 ± 0.03    
 
  50 ppt    0.14 ± 0.05       0.15 ± 0.02   
 

100 ppt   0.11 ± 0.06      0.07 ± 0.02   
 
 
   Dark Respiration (Rd )[fmol O2.cell-1.hr-1] 
 
   High Bicarbonate  Low Bicarbonate    
 
  10 ppt   -0.30 ± 0.93      -0.03 ± 0.87      
 
  50 ppt   -0.40 ± 0.49      -0.43 ± 0.76    
 

100 ppt  -0.27 ± 0.28      -0.15 ± 0.22    
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significantly affected Pmax (2-way ANOVA p<0.01).  In both high and low bicarbonate 

treatments, Pmax was lower at 100 ppt than at lower salinities.  Pmax was not significantly 

affected by low bicarbonate and the salinity-bicarbonate interaction was also not 

significant for any of these parameters. 

Neither salinity nor phosphate significantly affected dark respiration and light-

limited photosynthetic efficiency, α, (Table 2). Both salinity and phosphate significantly 

affected Pmax (2-way ANOVA p<0.01). In both high and low phosphate, Pmax was lower 

at 100 ppt than at 10 and 50 ppt. However, Pmax for high phosphate grown cells was not 

significantly different from the low phosphate cultures at salinities.  

 Only salinity affected light-limited photosynthetic efficiency, α, (Table 3).   Both 

salinity and iron treatment significantly affected Pmax (2-way ANOVA p<0.01).  In both 

+Fe and –Fe treatments, Pmax was significantly lower at 100 ppt than at lower salinities 

(Tukey, P<0.01).  Pmax was significantly lower at each salinities in –Fe grown cells than 

those cultured in +Fe medium (Tukey, P<0.05). There was also a significant interaction 

between salinity and low iron interaction for this parameter (2-way ANOVA p<0.01). 
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Figure 13. Photosynthetic light-response curves of Picochlorum sp. cultured in high 
phosphate (HC, shaded symbols) and in low phosphate (LP, open symbols) at different 
salinities (indicated by the numbers next to symbols). Mean values ± Standard deviation, 
n = 3 for all treatments (Error bars not shown for clarity).  
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Table 2. P-I parameters Pmax (fmol O2.cell-1.hr-1), α and Rd (fmol O2.cell-1.hr-1) measured 
for Picochlorum sp. in high and low phosphate at different salinities. Mean ± 
Standard deviation, n = 3. Different letters indicate significance 

 
 
    Pmax (fmol O2.cell-1.hr-1) 
 
   High Phosphate  Low Phosphate    
 

 10 ppt  21.51 ± 0.32 a   17.13 ± 1.69 a   
 
  50 ppt  20.96 ± 1.17 a   16.91 ± 3.35 a  
 

100 ppt 13.31 ± 1.37 b   11.25 ± 1.71 b    
 
 
   α  fmol O2.cell-1 (µmol photons m-2 s-1) -1 hr -1
 
   High Phosphate  Low Phosphate    
 

 10 ppt    0.12 ± 0.03       0.13 ± 0.01     
 

 50 ppt    0.14 ± 0.05       0.11 ± 0.06    
 

100 ppt   0.11 ± 0.06       0.21 ± 0.20  
 
 
   Dark Respiration (Rd )[fmol O2.cell-1.hr-1] 
 
 
   High Phosphate  Low Phosphate    
 

 10 ppt   -0.30 ± 0.93        -0.12 ± 0.32       
 

 50 ppt   -0.40 ± 0.49        -0.95 ± 0.97  
 

100 ppt  -0.27 ± 0.28        -0.30 ± 0.13     
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Figure 14. Photosynthetic light-response curves of Picochlorum sp. cultured in added 
iron medium (+Fe, shaded symbols) and in no added iron (-Fe, open symbols) at different 
salinities (indicated by the numbers next to symbols). Mean values, n = 3 for all 
treatments (Error bars not shown for clarity). 
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Table 3. P-I parameters Pmax (fmol O2.cell-1.hr-1), α and Rd (fmol O2.cell-1.hr-1) measured 

for Picochlorum sp. in high and low iron at different salinities. Mean ± Standard 
deviation, n = 3. Different letters indicate significance 

 
 
    Pmax (fmol O2.cell-1.hr-1)
 
   High Iron   Low Iron 
 
  10 ppt  21.51 ± 0.32 a   12.24 ± 0.49 b  
 
  50 ppt  20.96 ± 1.17 a   11.26 ± 0.95 b 
 

100 ppt 13.31 ± 1.37 b      7.51 ± 0.58 c 
 
 
   α  fmol O2.cell-1 (µmol photons m-2 s-1) -1 hr -1
 
 
   High Iron   Low Iron 
 

 10 ppt    0.12 ± 0.03       0.17 ± 0.11  
 

 50 ppt    0.14 ± 0.05       0.19 ± 0.08 
 

100 ppt   0.11 ± 0.06        0.15 ± 0.02 
 
 
   Dark Respiration (Rd )[fmol O2.cell-1.hr-1] 
 
   High Iron   Low Iron 
 

 10 ppt   -0.30 ± 0.93         -0.18 ± 1.26   
 

 50 ppt   -0.40 ± 0.49        -0.36 ± 0.86 
 

100 ppt  -0.27 ± 0.28        -0.33 ± 0.15 
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Pigment content 

 In order to understand how nutrient limitation and salinity stress affect the 

photosynthetic pigments in Picochlorum, these were extracted with DMF and analysed 

using a spectrophotometer.   

 

Salinity, carbon limitation and pigments 

Chlorophyll (a + b) per cell was significantly affected by salinity but not 

bicarbonate treatment. The interaction between salinity and bicarbonate was also 

significant (Fig. 15a; 2-way ANOVA, p<0.01). Chlorophyll decreased with increasing 

salinity, with most of the decrease occurring at 100 ppt. Chlorophyll levels were reduced 

by about 28% and 46% at 100 ppt in high and low bicarbonate cells, respectively, relative 

to 10 and 50 ppt.  Chlorophyll a/chlorophyll b ratio was not significantly affected by 

salinity or bicarbonate (Fig. 15b). Total carotenoids per cell were significantly affected 

by salinity, bicarbonate treatment and the interaction between these factors (Fig. 16a; 2-

way ANOVA, p<0.05).  Carotenoids decreased with increasing salinity, with most of the 

decrease occurring at 100 ppt in both high and low bicarbonate treatment.  Differences 

among 10 and 50 ppt cultures were small (<14%). At 100 ppt, carotenoids decreased by 

about 21-38% relative to 10 and 50 ppt. Chlorophyll/carotenoids ratio was significantly 

affected by salinity and the salinity-bicarbonate interaction (Fig. 16b; 2-way ANOVA, 

p<0.01), but not by bicarbonate alone (Fig. 16b; 2-way ANOVA, p>0.05). Low 

bicarbonate effect was inconsistent among salinities, and salinity effect differed between 

bicarbonate treatments.  However, none of the differences exceeded 17%. 
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(a) 

 
(b) 

 
 
 
Figure 15. Average total chlorophyll (a) and chlorophyll a/b ratio (b) of Picochlorum sp. 
grown in high (HC) and low bicarbonate (LC) and at different salinities. Mean values ± 
Standard deviation, n = 3 for all treatments. Different letters indicate significance. 
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     (a) 

 
(b)       

 
 

Figure 16. Average total carotenoids (a) and total chlorophyll / total carotenoids ratio (b) 
of Picochlorum sp. grown in high (HC) and low bicarbonate (LC) and at different 
salinities. Mean values ± Standard deviation, n = 3 for all treatments. Different letters 
indicate significance. 
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Salinity, phosphorus limitation and pigments 

Chlorophyll (a + b) per cell was significantly affected by salinity, phosphate 

treatment and the interaction between these factors (Fig. 17a; 2-way ANOVA, p<0.01). 

Chlorophyll decreased by about 25% and 14% at 100 ppt in high and low phosphate 

treatment respectively, relative to 10 and 50 ppt.  Differences among 10 and 50 ppt 

cultures were small (<5%). Chlorophyll a/ b ratio was not significantly affected by 

salinity or phosphate (Fig. 17b;  2-way ANOVA, p > 0.05) . 

 Total carotenoids per cell were significantly affected by salinity, phosphate 

treatment and the interaction between these factors (Fig. 18a; 2-way ANOVA, p<0.01).  

Total carotenoids decreased with increasing salinity in high phosphate cultures (about 

30% reduction at 100 ppt compared to 10 ppt). However within the low phosphate 

cultures increasing salinity did not affect total carotenoids. Low phosphate resulted in 

significant reductions of carotenoids at 10 and 50 ppt (25% and 14%, respectively), but 

not 100 ppt compared to high phosphate treatments. Chlorophyll / carotenoids ratio was 

significantly affected by salinity, phosphate treatment and the interaction between these 

factors (Fig. 18b; 2-way ANOVA, p<0.05).  The chlorophyll/carotenoids ratio was 

significantly increased at 50 ppt relative to 10 and 100 ppt for both high and low 

phosphate treatments. Low phosphate significantly increased chlorophyll/carotenoids 

ratio at 10 ppt (Tukey test, p<0.05) compared to high phosphate, though the difference 

did not exceed 8%. 
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 (a) 

 
(b)  

 
 

Figure 17. Average total chlorophyll (a) and chlorophyll a/b ratio (b) of Picochlorum sp. 
grown in high (HP) and low phosphate (LP) and at different salinities. Mean values ± 
Standard deviation, n = 3 for all treatments. Different letters indicate significance. 
 

 42



(a) 

(b)  
 

       
 

Figure 18. Average total carotenoids (a) and total chlorophyll / total carotenoids ratio (b) 
of Picochlorum sp. grown in high (HP) and low phosphate (LP) and at different salinities. 
Mean values ± Standard deviation, n = 3 for all treatments Different letters indicate 
significance. 
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Salinity, iron limitation and pigments 

 Total chlorophylls per cell were significantly affected by salinity, iron treatment 

and the interaction between these factors (Fig. 19a; 2-way ANOVA, p<0.05). 

Chlorophyll decreased with increasing salinity in added iron cultures (+Fe), with most of 

the decrease (28%) occurring at 100 ppt.  Iron limitation significantly decreased total 

chlorophyll per cell by 18% at 10 ppt and 41% at 50 ppt, but significantly increased by 

25% at 100 ppt (Tukey test, p<0.01) compared to +Fe grown cells. Chlorophyll a/ b ratio 

was significantly reduced by low iron (Fig. 19b; 2-way ANOVA, p<0.01), but not 

salinity or the interaction between these factors. The reduction by low iron was about 

43% at 10 and 100 ppt and 61% at 50 ppt.  

 Total carotenoids per cell were significantly affected by salinity and iron 

treatments as well as the salinity-iron interaction (Fig. 20a; 2-way ANOVA, p<0.01).  In 

+Fe cultures, total carotenoids decreased with increasing salinity but this was different in 

–Fe grown cells. At 100 ppt, carotenoids decreased by about 30% relative to 50 ppt in 

+Fe cultures. Low iron significantly reduced carotenoids at 10 and 50 ppt (22% and 42%, 

respectively), but not at 100 ppt which had a significant increase of 22%. The total 

chlorophylls / total carotenoids ratio was not significantly affected by salinity or iron 

treatment (Fig. 20b; 2-way ANOVA, p>0.05).  
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(a) 

 
(b) 

 
      
 

Figure 19. Average total chlorophyll (a) and chlorophyll a/b ratio (b) of Picochlorum sp. 
grown in added iron (+Fe) and no added iron (-Fe) and at different salinities. Mean values 
± Standard deviation, n = 3 for all treatments Different letters indicate significance 
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(a) 

     
(b) 

       
Figure 20. Average total carotenoids (a) and total chlorophyll / total carotenoids ratio (b) 
of Picochlorum sp. grown in added iron (+Fe) and no added iron (-Fe) and at different 
salinities. Mean values ± Standard deviation, n = 3 for all treatments. Different letters 
indicate significance. 
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Determination of Fluorescence Parameters 

 The determination of the chlorophyll a fluorescence parameters in Picochlorum 

by the saturation pulse method were calculated from the fluorescence measurements as 

demonstrated by those cultured in control medium (Fig. 21).  

 

Salinity, bicarbonate and fluorescence 

 The maximum quantum yield of PS II photochemistry in the dark-adapted state, 

(Fv / Fm) was significantly affected by only salinity but not low bicarbonate or the 

interaction between salinity and bicarbonate treatment (Fig. 22; 2-way ANOVA, p>0.05). 

Within the high bicarbonate cultures, there was a decrease of approximately 5% in Fv / 

Fm at 50 ppt relative to 10 ppt.  Low bicarbonate slightly increased Fv / Fm at 10 and 50 

ppt.  The effective quantum yield of PSII electron transport in the light-adapted state, 

ΦPSII given by (Fm’ – F’) / Fm’, was significantly affected by salinity and bicarbonate 

treatment (Fig. 22a; 2-way ANOVA, p<0.01) but not the interaction between these 

factors. Increasing salinity resulted in a decrease in ΦPSII. In high bicarbonate, the 

reduction was 26% and 21% respectively at 50 and 100 ppt compared to 10 ppt. Low 

bicarbonate significantly increased ΦPSII by 35% at 50 ppt (Tukey test, p<0.05) and an 

insignificant increase of about 23% at 10 ppt and 100 ppt.  

 The photochemical quenching coefficient, qP which is calculated as (Fm’ - F’) / 

(Fm’ – Fo’), was significantly affected by salinity and bicarbonate treatment (Fig. 22b; 2-

way ANOVA, p<0.01) but not the interaction between these factors. In the high 

bicarbonate treatment, increasing salinity decreased photochemical quenching by 25% 

and 31% at 50 and 100 ppt respectively compared to 10 ppt (Tukey test, p<0.05). Low  

 47



 
   
 
      

Time (s)

20 40 60 80 100 120 140

Fl
uo

re
sc

en
ce

 (V
)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fo

Fm

Fm'

Fo'

Ft

SL +AL -AL

 
 
 
 
 
 
 
 
 
 
Figure 21. Chlorophyll fluorescence of Picochlorum sp. grown in control media at 10 ppt 
by the saturation pulse method. SL is saturating flash of light to determine maximum 
fluorescence, Fm from initial fluorescence, Fo. Actinic light, +AL, was switched on to 
drive photosynthesis, -AL indicate when actinic light was switched off.  
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(a)  

 

 

(b)  

 
             
Figure 22. Changes in fluorescence parameters in Picochlorum sp. due to growth in low 
bicarbonate (LC) compared with high bicarbonate (HC) at different salinities. Fv/Fm is 
PSII maximum quantum efficiency, ФPSII is Quantum yield electron transport of PSII, 
qP, Photochemical quenching and NPQ, Non-photochemical quenching. Mean values ± 
Standard deviation, n = 3 for all treatments. Different letters indicate significance. 
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bicarbonate increased photochemical quenching by 10%, 27% and 20% at 10, 50 and 100 

ppt respectively. Neither salinity nor bicarbonate treatment significantly affected non-

photochemical quenching, NPQ, which is given as (Fm - Fm’) / Fm’, although low 

bicarbonate reduced non-photochemical quenching at all salinities (Fig. 22b). Large 

variability in NPQ values resulted in low statistical power. 

 

Salinity, phosphate and fluorescence 

 The maximum quantum yield of PS II photochemistry in the dark-adapted state, 

(Fv / Fm) was significantly affected by salinity and phosphate treatment (Fig. 23a; 2-way 

ANOVA, p<0.01). The interaction between salinity and phosphate treatment was also 

significant. Within the high phosphate samples, there was a significant decrease of 

approximately 5% in Fv / Fm at 50 ppt relative to 10 ppt.  Low phosphate treatment 

significantly decreased Fv / Fm by 14% at 10 ppt, but had no effect at 50 and 100 ppt 

compared to the high phosphate treatments. Within the phosphate treatments, Fv / Fm 

increased by 12% from 10 to 100 ppt. The effective quantum yield of PSII electron 

transport in the light-adapted state, ΦPSII given by (Fm’ – F’) / Fm’, was significantly 

affected by salinity and phosphate treatment as well as the interaction between these 

factors (Fig. 23a; 2-way ANOVA, p<0.05). In high phosphate cultures, ΦPSII decreased 

by 26% and 21% at 50 and 100 ppt, respectively, compared to 10 ppt. Low phosphate 

significantly decreased ΦPSII by 51%, 23% and 18% at 10 ppt, 50 ppt and 100 ppt 

respectively (Tukey test, p<0.05). Within the phosphate treatments, ΦPSII increased by 

24% from 10 to 100 ppt. 
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 (a)  

 
(b) 

 
 
Figure 23. Changes in fluorescence parameters in Picochlorum sp. due to growth in low 
phosphate (LP) compared with high phosphate (HP) at different salinities. Fv/Fm is PSII 
maximum quantum efficiency, ФPSII is Quantum yield electron transport of PSII, qP, 
Photochemical quenching and NPQ, Non-photochemical quenching. Mean values ± 
Standard deviation, n = 3 for all treatments. Different letters indicate significance. 
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The photochemical quenching coefficient, qP which is calculated as (Fm’ - F’) / 

(Fm’ – Fo’), was significantly affected by salinity (Fig. 23b; 2-way ANOVA, p<0.01) but  

not phosphate treatment nor the interaction between salinity and phosphate treatment. In 

high phosphate cultures, increasing salinity decreased photochemical quenching by 25% 

and 31% at 50 and 100 ppt respectively, compared to 10 ppt (Tukey test, p<0.05). Within 

the low phosphate treatments, qP was reduced by 27% from 10 ppt to 100 ppt. The non-

photochemical quenching, NPQ, was significantly affected by salinity, phosphate 

treatment and the interaction between these two factors (Fig. 23b; 2-way ANOVA, 

p<0.01). In low phosphate cultures, increasing salinity significantly decreased NPQ by 

29% and 42% at 50 and 100 ppt relative to 10 ppt (Tukey test, p<0.05), whereas salinity 

did not significantly affect NPQ in high phosphate cultures. Low phosphate significantly 

increased non-photochemical quenching by 125%, 135% and 75% at 10 ppt, 50 ppt and 

100 ppt respectively compared to the controls (Tukey test, p<0.01).  

 

Salinity, low iron and fluorescence 

 The maximum quantum yield of PS II photochemistry in the dark-adapted state 

(Fv / Fm) was significantly affected by salinity, iron treatments as well as the interaction 

between salinity and iron treatment (Fig. 24a; 2-way ANOVA, p<0.05). Iron limitation 

treatment significantly decreased Fv / Fm by 80% at 10 ppt, 77% at 50 ppt and 48% at 100 

ppt compared to the +Fe medium. Within the -Fe treatments, increasing salinity from 10 

and 50 ppt to 100 ppt increased Fv / Fm by about 150%. The effective quantum yield of 

PSII electron transport in the light-adapted state, ΦPSII, was significantly affected by low 

iron treatment (Fig. 24a; 2-way ANOVA, p<0.01) but not salinity or the interaction  
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(a) 

 
(b)  

 
 
Figure 24. Changes in fluorescence parameters in Picochlorum sp. due to growth in no 
added iron (-Fe) compared with added iron (+Fe) at different salinities. Fv/Fm is PSII 
maximum quantum efficiency, ФPSII is Quantum yield electron transport of PSII, qP, 
Photochemical quenching and NPQ, Non-photochemical quenching.  Mean values ± 
Standard deviation, n = 3 for all treatments. Different letters indicate significance. 
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between these factors. Low iron significantly decreased ΦPSII by 89% at 10 ppt and about 

80% at 50 ppt and 100 ppt (Tukey test, p<0.05) compared to the controls.  

The photochemical quenching coefficient, qP, was significantly affected by low 

iron treatment (Fig. 24b; 2-way ANOVA, p<0.01) but not salinity nor the interaction 

between salinity and low iron treatments. Low iron reduced qP by 80% at 10 ppt and 

63% at 50 and 100 ppt compared to the controls. The non-photochemical quenching, 

NPQ, was significantly affected by iron treatment (Fig. 24b; 2-way ANOVA, p<0.01) as 

well as salinity and the interaction between these factors. Increasing salinity significantly 

decreased NPQ by 29% and 24% at 50 ppt and 100 ppt respectively, relative to 10 ppt 

(Tukey test, p<0.01). Low iron treatment significantly increased non-photochemical 

quenching by 250% at 10 ppt (Tukey test, p<0.01) but caused a non-significant decrease 

of 41% and 25% at 50 ppt and 100 ppt respectively, compared to the controls.  
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CHAPTER IV 
 
 

DISCUSSION 

 

The hypothesis for this study is that the effect of salinity stress on growth and 

photosynthesis in Picochlorum will be different under high nutrient compared to limited 

nutrient levels. In other words the pattern of response by Picochlorum to the three 

different salinities of 10, 50 and 100 ppt will not follow the same pattern at the two 

nutrient levels. This may be due to the influence of the amount of the nutrient present. If 

there is a change in the response pattern from 10 ppt through 50 ppt to 100 ppt for the 

two nutrient levels, then there is a salinity-nutrient interaction. Examining the two factors 

together may result in the intensification of the stress in organisms or possibly the effect 

of one may reduce the effect of the other factor. The response of Picochlorum to the three 

salinities was investigated under low and high bicarbonate, low and high phosphate and 

under iron and no added iron conditions. The responses differed depending on the type of 

nutrient.  

Effect of Salinity and Bicarbonate  

 Salinity did not affect initial growth rate, µ, (Fig. 3) and Pmax (Table 1) at 10 and 

50 ppt but significantly reduced these parameters at 100 ppt at both bicarbonate levels. 

However, increasing salinity from 10 ppt to 50 ppt to 100 ppt also decreased cell yield on 

day 10 under HC (Fig. 4). The decreases caused by salinity are expected considering the 
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problems posed by high salinity in algae and plants. In order to overcome salinity stress 

and the problems they face such as osmotic and ionic stresses, these organisms may 

channel their efforts into producing compatible solutes for their survival. For example 

Picochlorum produces proline as an osmoticum (Hironanka 2000) and the biosynthesis of 

this compound from glutamate requires ATP and NADPH. Glutamate used in this 

synthesis will also not be available for growth. This may be produced at the expense of 

growth. Maximum quantum yield of PSII, Fv/Fm, was only reduced slightly at 50 ppt and 

effective quantum yield of PSII electron transport in light adapted state, Φ PSII, was not 

affected by salinity at either C level?, indicating that photoinhibition of photosynthesis 

was not influenced by salinity in Picochlorum, at least under the growth conditions used 

(Powles 1984; Adams et al. 1990).   Since Pmax expressed per cell was reduced at higher 

salinity and α was not affected (Table 1), this suggests that the size of the photosynthetic 

unit was not changed (Prézelin 1981). This is consistent with negligible changes in alpha 

and it is also consistent with relatively small changes in Chl a/b ratio (Fig. 15b). 

 Higher salinity decreased Φ PSII and the photochemical quenching, qP, by about 

20-25% compared to 10 ppt under HC (Fig. 22), an indication that actual electron flow 

was inhibited (Lu and Vonshak 2002). When there is less water due to salt stress, the 

water oxidation complex and PSII may be affected and subsequently electron transfer. 

When membrane potential is affected by salinity, ATP synthesis is also inhibited. Salinity 

affected reduced total chlorophylls and total carotenoids only at 100 ppt (Figs. 15a, 16a). 

Even though the pigments may not be affected, electron flow is interrupted and this may 

finally affect the dark reactions. El-Sheekh (2004) has reported that electron transfer from 

QA to QB was decreased by salinity stress in the green alga Chlorella vulgaris, a relative 
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of Picochlorum (Henley et al. 2004). Salt stress can inhibit protein synthesis such as the 

D1 protein which will in turn affects the rates at which damaged D1 proteins are replaced 

and subsequently affect photosynthesis (Allakhverdiev et al. 2002; Mohanty et al. 2007).  

In affecting protein synthesis, enzymes in the Calvin cycle may also be affected resulting 

in a decrease in carbon fixation. Membranes and the transport proteins associated with 

them are also affected by salinity stress and therefore may affect uptake of some 

nutrients.   

Low bicarbonate (LC) significantly decreased initial growth rate and cell yield at 

day 10 but did not affect Pmax and α at all salinities.  Low bicarbonate reduced initial 

growth rate by 38%, 36% and 30% at 10, 50 and 100 ppt respectively (Fig. 3), while Pmax 

was increased by 18%, 12% and 14% at 10, 50 and 100 ppt respectively (Table 1).  In 

LC, the cell yield at day 10 was decreased by 27%, 20% and 18% at 10, 50 and 100 ppt 

respectively (Fig. 4).  

The decrease in initial growth rate and cell yield at day 10 is expected. 

Considering that carbon is an important component of all biomolecules found in 

organisms, if it is limited in supply, then carbon fixation is likely to decline as well as the 

biosynthesis and build up of compounds which may lead to a reduction in growth. This is 

consistent with the report by Huertas et al. (2000) that the green alga, Nannochloris 

exhibited growth limitation at lower CO2 concentration. Marine members of the genus 

Nannochloris have been reassigned as Picochlorum (Henley et al. 2004) and therefore 

this is related to P. oklahomensis.  

Analysis of the curvatures of the growth curves revealed significantly lower 

convexity values for cells grown in LC medium compared to those in HC medium. HC 
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grown cells had convexity between 1.77 and 2.33 while those grown in LC medium 

ranged from 0.25 to 0.66 (Table 4). The lower values indicate that Picochlorum grown in 

LC were stressed as indicated by the nature of the curvature of the curves although this is 

not evident in the higher Pmax values in LC (Table 1). The increase in Pmax in LC is 

intuitively unexpected, although it was accompanied by increases by LC in maximum 

quantum yield of PS II photochemistry in dark-adapted state cells, Fv/Fm (except at 100 

ppt), effective quantum yield of PS II electron transport in light-adapted state, ΦPSII, and 

photochemical quenching, qP (Fig. 22 a and b) compared to HC.  

 The increase in Pmax may be attributed to the fact that photosynthesis was 

measured under high HCO3
- by adding 8 mM of HCO3

-. This was added to all the 

treatment samples in the photosynthetic set up chamber to ensure that there was enough 

carbon for photosynthesis. Therefore it appears that Picochlorum grown in LC 

environment may have become efficient in HCO3
-
 uptake, but not necessarily absolute 

photosynthesis at the growth CO2 concentration compared to the high bicarbonate (HC). 

However, during the fluorescence measurements no additional HCO3
- was added, yet 

ΦPSII and qP were slightly higher in LC grown cells (Fig. 22). The increase in Pmax, ΦPSII 

and qP by LC may be a way of getting more energy from the light reactions for active 

uptake of HCO3
- rather than being channeled into the dark reactions, as is evident in the 

lower initial growth rate (Fig. 3) and cell yield at day 10 (Fig. 4).  

Some photosynthetic microorganisms have developed mechanisms to help them 

adapt to low HCO3
-or CO2 conditions (Kaplan and Reinhold 1999; Giordano et al. 2005; 

Spalding 2008). One such mechanism is to enhance the acquisition of CO2 by producing  

carbonic anhydrase. This enzyme reversibly converts between HCO3
- and CO2, according  
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Table 4. Convexity values obtained by fitting the Bannister’s function to the growth 
curves of Picochlorum sp. in high and low nutrients at different salinities. Mean ± 
standard deviation, n = 3. Different letters indicate significance. 
 
 
     
   High Bicarbonate  Low Bicarbonate 
     

 10 ppt  1.80 ± 0.02 b    0.25 ± 0.01 f   
 

 50 ppt  1.65 ± 0.02 c   0.51 ± 0.00 e   
 

100 ppt 2.30 ± 0.04 a   0.64 ± 0.03 d  
 
 
    
   High Phosphate  Low Phosphate    
  

 10 ppt  1.80 ± 0.02 e   4.67 ± 0.03 a   
 

 50 ppt  1.65 ± 0.02 f   3.16 ± 0.09 b   
 

100 ppt 2.30 ± 0.04 d   2.45 ± 0.02 c  
 

 
 
    
   High Iron   Low Iron    
 

 10 ppt  1.80 ± 0.02 b   0.38 ± 0.02 d   
 

 50 ppt  1.65 ± 0.02 c   0.36 ± 0.01 d   
 

100 ppt 2.30 ± 0.04 a   0.32 ± 0.06 d  
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to the formula: CO2 + H2O ↔ H2CO3 ↔ H+ + HCO3
-. The external carbonic anhydrase is 

produced by the cell are located on the plasma membrane with direct communication 

with the immediate surrounding of the cell. Other cells also produce internal carbonic 

anhydrase which functions in the chloroplast within the cell. A second mechanism that 

may be used is the active transport of HCO3
-or CO2 across the plasma membrane and 

chloroplast envelope by transporters which require the use of energy (Huertas and Lubian 

1998; Moroney and Somanchi 1999; Huertas et al. 2000). The occurrence of an active 

CO2 transport system in two marine species of Nannochloris (=Picochlorum, Henley et 

al. 2004), N. atomus and N. maculata, which may explain their higher capacity for using 

CO2 than HCO3
- (Huertas and Lubian 1998; Huertas et al. 2000). Since Picochlorum can 

grow in media with either CO2 or HCO3
- as the source of DIC, although it may prefer 

CO2, probably both mechanisms are used by this species of Picochlorum depending on 

which of these sources of inorganic carbon is available in the environment.  

Some organisms also have pyrenoids which serve as a component of the carbon 

dioxide concentrating mechanism (CCM) within which CO2 is generated from HCO3
-. 

This makes CO2 more available and thus increases the CO2 / O2 ratio at the active site of 

ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco), which favours carbon 

fixation over oxygenase activity (photorespiration). Rubisco is an important component 

of pyrenoids in the chloroplast (Raven and Beardall 2003). Although Hironanka (2000) 

reported the absence of pyrenoid in Picochlorum, an examination of the micrographs of 

Picochlorum compared with that of some unicellular organisms which possess pyrenoids, 

and were surrounded by starch grains suggests P. oklahomensis may possess a pyrenoid 

which may play a role in CCM. Further transmission electron microscopy work on fresh 
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samples would be necessary to confirm this. Also performing molecular studies to 

confirm the presence and quantify the amount of carbonic anhydrase (CA) in 

Picochlorum under low and high bicarbonate media will help to resolve whether CA 

and/or CCM is active in Picochlorum. 

Under LC, carbon fixation is presumably reduced and this may also affect 

nitrogen and sulphur metabolism. When biomolecules such as nucleic acids and proteins 

are not available, cell division and growth rates are slowed down and eventually yield is 

also reduced. It appears that at LC, Picochlorum maintained and/or increased the light 

reaction process to supply energy (ATP) to meet the high energy requirement of active 

transport of HCO3
- and, at higher salinities, Na+ efflux and synthesis of glycerol. Because 

of limiting carbon in the environment and consequent diversion of energy, carbon 

fixation to support growth was reduced. The cells were probably producing only needed 

molecules to help them survive.  

 

Effect of Salinity and Phosphorus  

This study has shown that the effect of salinity stress on growth and 

photosynthesis may change under different phosphorus concentration. That is, the 

response to salinity depends on high or low phosphorus present in the growing 

environment. My results showed different responses to salinity under high and low 

phosphorus: cell yield at day 10 (Fig. 7), total chlorophyll (Fig. 17a), total carotenoids 

(Fig. 18a), total chlorophyll/total carotenoids ratio (Fig. 18b), maximum quantum yield of 

PSII, Fv/Fm (Fig. 23a), effective quantum yield of PS II electron transport in light-adapted 

state, ΦPSII (Fig. 23a), and non-photochemical quenching, NPQ (Fig. 23b).  
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In this study, low phosphorus (LP) significantly increased initial growth rate 

compared to cells grown in high phosphorus (HP) medium (Fig. 6). Even though initial 

growth rates were higher in LP cultures compared to HP, these increases could not be 

sustained once phosphate was depleted, as observed in the significantly reduced cell 

yields at day 10 in Picochlorum oklahomensis (Fig. 7). Low phosphorus also decreased 

Pmax by about 15 - 20% at all salinities but did not affect α. The analysis of the convexity 

values of the growth curves using Bannister’s function (Table 4,) indicate that growth in 

LP medium was less stressed compared to HP medium.   

The increase in the initial growth rate is unexpected considering that these cells 

were cultured in low phosphorus. A possible explanation for the increase in the initial 

growth rates is that growth in low phosphorus medium may have induced an efficient 

mechanism of acquiring P from the environment such as producing extracellular 

phosphatases to ensure maximum uptake of phosphate from the LP medium and store it 

for use. The cells are therefore able to undergo rapid cell divisions despite limited 

availability of phosphorus, as observed in the cell numbers within the first three days.  

Phosphorus is a component of biomolecules such as sugar phosphates and nucleic acids, 

which may affect protein synthesis. This may account for the increases in the initial 

growth rates. However, with the depletion of phosphorus without any replacement in the 

batch cultures, cell division is slowed, resulting in lower cell numbers and significantly 

reduced yield at day 10 (Fig. 7). In order to confirm the involvement of phosphatases, an 

experiment may be performed and the ambient phosphate and also the levels of 

phosphatase measured over time during batch growth.  
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In LP, cell yield at 50 ppt was higher compared to 10 ppt though neither differed 

from yield at 100 ppt (Fig. 7). Even though LP caused decreases in Pmax compared to HP, 

the absolute values are not significantly different (Table 2). This agrees with the 

chlorophyll a fluorescence measurements (Fig. 23). LP caused (1) a decrease in Fv/Fm 

only at 10 ppt, (2) significant decreases in ΦPSII and increases in NPQ at all salinities, but 

(4) did not affect photochemical quenching. Also, LP reduced total chlorophylls by about 

16% at 10 and 50 ppt but the chlorophyll a/b ratio was not affected. This is not surprising 

since P is not directly involved in the biosynthesis of chlorophyll.  

The decreases in Pmax by LP suggest that the photosynthetic capacity was 

negatively affected with respect to electron transport and carbon fixation. The main 

products of the light reactions of photosynthesis are ATP and NADPH which are used in 

the Calvin cycle. Low phosphorus in the chloroplast would imply insufficient availability 

of inorganic P to form ATP through photophosphorylation. This may lead to an increase 

in the energization of the thylakoid membrane and result in a decline in electron transfer 

(Heineke et al. 1989). The composition of the membrane may also be affected 

considering that phosphorus is a component of phospholipids which form part of 

membranes. As a result of insufficient ATP, the fixation of carbon in the Calvin cycle 

would also be decreased.  

P deficient conditions in the cytoplasm also may inhibit the chloroplast membrane 

triose phosphate-phosphate translocator, blocking transport of the triose phosphate 

produced in the Calvin cycle to the cytosol for use by the cell. This translocator moves 

glyceraldehyde-3-phosphate and dihydroxyacetone phosphate from the chloroplast to the 

cytosol, while at the same time transferring inorganic P from the cytosol to the 
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chloroplast (Giersch and Robinson 1987; Flügge 1995; Pieters et al. 2001). The triose 

phosphates which are not transferred from the chloroplast are converted to starch. The 

accumulation of starch in the chloroplast serves as a feedback signal which reduces 

carbon fixation. Slow growth also reduces the demand for biomolecules such as proteins 

and fatty acids, which leads to a decrease in the demand for photosynthates and finally a 

decrease in carbon fixation.  

LP significantly reduced Fv/Fm by less than 15% at 10 ppt only (Fig. 23a), 

suggesting minor inhibition of PSII. Even though Fv/Fm was only affected by LP at 10 

ppt, LP decreased ΦPSII at all salinities, with the most reduction occurring at 10 ppt. This 

agrees with the reduction in Pmax by LP observed in Picochlorum (Table 2). The 

reduction in ΦPSII agrees with the increases in non-photochemical quenching (NPQ) 

observed in LP grown cells (Fig. 23b). The increase in the protective mechanism NPQ 

suggests that cells grown in LP medium at this stage were somehow under stress and that 

the stress was more severe at 10 ppt. The increase in NPQ by LP indicates that LP caused 

excess excitation pressure (Maxwell et al. 1995) in Picochlorum, though the cells were 

able to dissipate this excess energy, possibly through the xanthophyll cycle.  

Photochemical quenching, qP, was not affected by LP suggesting that there were 

no changes in the proportion of opened PSII centers. This unexpected lack of effect of LP 

on qP is consistent with the absence of an effect of low phosphorus on α (Table 2) and 

Fv/Fm (Fig. 23a). It is possible that the effect of LP was insufficient to substantially 

impair PSII. Alternatively, Picochlorum may be adapted to low phosphate conditions 

considering the hypersaline nature and the expected low phosphate in its natural 

environment (Major et al. 2005).  

 64



Considering the response to salinity under high and low phosphate, it is noted that 

the effect of salinity on initial growth rate and Pmax in HP was the same as in LP, however 

the response was different for yield at day 10, total chlorophyll, total carotenoids, Fv/Fm, 

ΦPSII and NPQ. 

Effect of Salinity and Iron  

This study has shown that response to growth and photosynthesis is influenced by 

the interaction between salinity and iron concentration. The response to salinity is 

different under high and low iron, as evident in my data for initial growth rates (Fig. 9), 

cell yield at day 10 (Fig. 10), total chlorophyll (Fig. 19a), total carotenoids (Fig. 20a) 

maximum quantum yield of PSII, Fv/Fm (Fig. 24a) and non-photochemical quenching, 

NPQ (Fig. 24b).  

Low iron significantly reduced initial growth rate, cell yield at day 10 and 

photosynthetic capacity in Picochlorum oklahomensis. Increasing salinity did not affect 

initial growth rates and Pmax at lower salinities in the +Fe medium but significantly 

decreased these parameters at 100 ppt in the +Fe medium (Fig. 9) which led to a decrease 

in the cell yields.  

 This concept has been applied to P-I curves, but never before to batch grown 

cultures. However, I used this unusual analysis because of the shape of the µ curves. 

When an alga or a plant is stressed, the curvature of P-I curves is very low relative to 

unstressed organisms (Bannister 1979; Henley 1993). It is unclear whether this would 

also apply to the semi-log time course of cell densities. In my analysis, the growth curves 

of Picochlorum in +Fe had much higher convexity values than that of –Fe grown cells 

(Table 4), indicating that they were much stressed growing in -Fe medium. The effect on 
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initial growth rate by and cell yield salinity were both different under +Fe and –Fe grown 

cultures. 

 The reduction in initial growth rate of Picochlorum at 100 ppt salinity in +Fe 

medium is expected. Salinity stress affects algae and plants through osmotic stress, ion 

toxicity and ionic imbalance. Organisms adapted to high salinity try to overcome these 

effects by producing compatible osmolytes which require high energy cost leading to 

reduced growth rates and decline in photosynthetic electron transport (Gimmler et al. 

1981; Kirst 1989; Gilbert et al. 1998). This is also consistent with the Pmax values in +Fe 

medium. As mentioned earlier, Picochlorum produces and accumulates proline 

(Hironanka, 2000), a compound which has been reported to play a major role in salt 

tolerance in some organisms, and its production from glutamate requires much extra 

energy and carbon. Salt may also affect the repair of D1 proteins, which ultimately will 

increase excitation pressure and result in a decrease in electron transport. 

In -Fe medium, however, initial growth rate and day 10 cell yields were highest at 

50 ppt; day 10 yields were similarly reduced at 10 and 100 ppt but initial growth rate was 

significantly more reduced at 100 ppt than 10 ppt (Figs. 9, 10). This shows that the 

response of Picochlorum to salinity may be influenced by the level of iron present in the 

culture medium. This is consistent with my primary hypothesis that the response to 

growth and yield response of Picochlorum at the different salinities will show different 

patterns under high and low iron. Even though Pmax and initial growth rates were different 

at 10 ppt and 100 ppt in -Fe media, the cell yields at day 10 were the same. These 

differences may be due to changing physiology with time in the batch cultures as nutrient 

is depleted. Iron stress in Picochlorum may affect the acquisition of other nutrients such 
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as nitrate, as well as the assimilation of nitrogen in the chloroplast and therefore 

ultimately affecting growth and yield. Rueter and Ades (1987) reported decreased uptake 

of nitrate in the chlorophyte, Scenedesmus quadricauda, grown in iron-limited medium 

compared to those in iron sufficient cultured cells. Further experiments may be 

performed to study the uptake of nitrate by Picochlorum in low iron medium. 

The reduction in Pmax in -Fe medium suggests that the photosynthetic capacity 

was affected with respect to electron transport and/or carbon fixation. Iron is an essential 

cofactor of some components of the electron transport chain such as ferredoxin, 

cytochromes and the iron-sulphur proteins. Iron deficiency is likely to affect the amount 

of electron carriers available in the electron transport chain and the function they 

perform. If inadequate ATP and reductants are produced in the light reactions of 

photosynthesis, then assimilation of carbon in the Calvin cycle would be reduced.  

Low iron reduced Pmax in Picochlorum by about 45% at all salinities, but 

decreased initial growth rate by about 70% at lower salinities and 80% at 100 ppt, and 

decreased yield by more than 84% at all salinities. This indicates that photosynthesis may 

not be the only factor contributing to the reduced growth in Picochlorum. Iron is required 

for the functioning of nitrite reductase and nitrate reductase and therefore when iron is 

limiting, nitrogen assimilation is affected as well as protein synthesis. Cell division may 

be slowed down as a result of insufficient nitrogen for the formation of proteins and 

nucleic acids. 

As evidenced in my fluorescence results (Fig. 24a), low iron massively decreased 

the maximum quantum yield of PS II photochemistry in dark-adapted state cells (Fv/Fm), 

which indicates that there is photodamage to some portions of PS II. The LHCII may 
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have been decoupled from PSII due to iron deficiency (Morales et al. 2001) and may 

have contributed to the decrease. Fv/Fm was affected differently by salinity in 

Picochlorum grown in +Fe and -Fe media. Whereas there was little effect of salinity in 

+Fe medium, Fv/Fm increased at 100 ppt in -Fe medium, an indication of a salinity-

nutrient interaction. The likely explanation is that high salinity reduces iron stress, for 

example by reduced demand (lower growth rate at high salinity). Another interpretation 

for this decrease is that Picochlorum is adapted to coping with higher salinity at iron 

deficient conditions. This is consistent with my result that within the –Fe treatments, 

increasing salinity from 10 ppt to 100 ppt significantly decreased non-photochemical 

quenching (NPQ).  

Effective quantum yield of PS II electron transport in light-adapted state (ΦPSII) 

and photochemical quenching (qP), which is an indication of actual open reaction centers 

as well as indicating the redox state of plastoquinone (QA), were reduced in Picochlorum 

by low iron as expected (Fig. 24). The fewer open PSII reaction centers as indicated by 

qP, may be due to a reduced rate of replacement of damaged D1 proteins compared to the 

rate at which they were being destroyed (Allakhverdiev et al. 2002; Mohanty et al. 2007). 

As a result of iron deficiency, a reduction in electron carriers to accept and transfer 

electrons may cause excess excitation pressure with a concomitant decrease in qP. A 

reduction in the Fv/Fm may also indicate enhanced photoprotection to dissipate excess 

excitation pressure, for example through the xanthophyll cycle (Demmig-Adams and 

Adams 1992; Gilmore 1997; Lu et al. 2003). This is supported by the significant increase 

in non-photochemical quenching caused by low iron at 10 ppt which was not evident in 

+Fe medium. Interestingly, this elevated NPQ was not evident at 50 and 100 ppt. The 
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Fv/Fm data indicate that there was more photodamage to portions in PSII at 10 ppt than at 

100 ppt. This may explain the higher NPQ values at 10 ppt compared to 100 ppt under –

Fe medium. That most of the absorbed energy was not used for photochemical process. 

As expected, total chlorophyll and carotenoids per cell were decreased by low 

iron at 10 and 50 ppt (Figs. 19a and 20a), since iron is required for the synthesis of 

chlorophyll in algae and plants. However, at 100 ppt, low iron increased total chlorophyll 

and total carotenoids per cell. This is unexpected considering that iron is required in the 

biosynthesis of chlorophyll and carotenoids. A deficiency in iron should result in a 

decrease in the total chlorophyll and carotenoids concentrations in the cells. It is possible 

that under –Fe at higher salinity, the low growth rate slows the “dilution” of chlorophyll 

even in the absence of chlorophyll synthesis. Although total chlorophyll per cell was not 

affected by salinity at 10 and 50 ppt in +Fe medium, chlorophyll content decreased at 50 

ppt in -Fe treatment (Fig. 19a), indicating salinity-Fe interaction. The mean cell density at 

day 6 (when pigments and P-I were measured) for –Fe treatment was 4.4 x 106 at 50 ppt 

compared to 3.5 x 106 and 1.9 x 106 for 10 and 100 ppt respectively. The higher number 

of cells at 50 ppt may explain the decrease in the total chlorophyll per cell in the –Fe 

grown cells: a similar total amount of Chl in the culture may be spread over a larger 

population of cells. 

Salinity did not affect chlorophyll a/b ratio in +Fe or –Fe grown cells, but -Fe 

massively decreased chlorophyll a/b ratio (Fig. 19b). The ratios of about 1.2 to 1.7 in –Fe 

are extremely low. It is possible that this may be due to insensitivity of the 

spectrophotometer used because of the very low absorption values (<0.01) of pigment 

extracts of –Fe cultures. However, assuming the data to be accurate, a possible biological 
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explanation for the very low chlorophyll a/b ratios may in part be attributed to the 

decreases in chlorophyll a per cell caused by -Fe which indicates selective loss of 

reaction centers. The decrease may also be due to an increase in chlorophyll b per cell at 

all salinities in –Fe grown medium. This suggests -Fe cultured cells had a larger light-

harvesting antenna for absorbing at a high rate, though it appears they were not able to 

effectively convert the absorbed light into chemical energy as indicated by decreases in 

Fv/Fm, ΦPSII and qP. The decoupling of the LHCII from PSII may account for this 

inability to transfer the absorbed energy (Morales et al. 2001). The green alga 

Chlamydomonas reinhardtii grown in iron deficient medium had increased functional 

antenna size of PS II (Naumann et al. 2007). Similarly, some cyanobacteria form iron 

deficiency-induced protein A (idiA) and iron stress-induced protein A (isiA), which tend 

to surround the photosystems under iron limitation (Burnap et al. 1993; Boekema et al 

2001).    

The relatively high carotenoids at 100 ppt salinity in -Fe medium may be of 

importance to Picochlorum in protecting itself against the detrimental effects of high 

light. Pigments such as ß-carotene help in the quenching of reactive species and 

violaxanthin, antheraxanthin and zeaxanthin are involved in the xanthophyll cycle in 

dissipating excess heat (Demmig-Adams and Adams 1992; Gilmore 1997; Lu et al. 

2003). A further study measuring the amount of these pigments may indicate their 

involvement or otherwise, because I measured only crudely the total carotenoids but not 

the individual pigments. Also the relatively high total carotenoids at higher salinity may 

but rather a lack of decrease as a result of the low growth rate as explained earlier for 

chlorophyll and not an increase in itself considering that in –Fe media the total 
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carotenoids are the same at 10 ppt and 100 ppt (Fig. 20a), The mean cell density at day 6 

was 4.4 x 106 at 50 ppt compared to 3.5 x 106 and 1.9 x 106 for 10 and 100 ppt 

respectively (Fig. 8), and the pigment content and cell densities vary inversely and 

proportionately therefore having more cells explains the decrease in the total carotenoids 

per cell in –Fe grown cells. In order to test the explanation for the relative increase, 

further studies may be performed by measuring the carotenoids and chlorophyll contents 

daily through the growth curve. If total pigments in the culture do not change, then the 

amount per cell must decrease with successive cell divisions.  

In summary, some of the results in this study supported my hypothesis that 

response to the effect of salinity stress on growth and photosynthesis will differ under 

high iron and under no added iron. The response pattern was different in initial growth 

rate, cell yield at day 10, total chlorophyll, total carotenoids, Fv/Fm and NPQ. The 

different response in pigments and Fv/Fm seems to be due mainly to differences at 100 

ppt, which may be explained by the extremely low growth rate (slow depletion of Fe) at 

100 ppt, a likely survival mechanism. Since Picochlorum occurs in a hypersaline 

environment characterized by fluctuations in salinity and possibly nutrients, it makes 

sense that at higher salinities and during deficient nutrient periods, it tends to exhibit low 

growth rates pending more favourable conditions. This way it is able to survive and 

reproduce to continue its existence.  

 

Summary Perspective 

Photosynthetic organisms rarely experience optimal growth conditions in their 

natural habitat, and at any given time, two or more physical and chemical variables are 
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likely to be suboptimal.  It has been established that the extreme environment of the Great 

Salt Plains (GSP) results in low algal biomass (Major et al. 2005; Kirkwood et al. 2006; 

Henley et al. 2007), such that natural selection is likely driven by survival of multiple 

abiotic stresses rather than rapid growth and biotic interactions (grazing and 

intra/interspecific competition for resources).  This study is an initial effort to determine 

the effect of combined abiotic stress factors on an alga isolated from the GSP habitat, 

specifically salinity and the inorganic nutrients P, Fe and C.  These three nutrients were 

selected because of our a priori expectation that chemical interactions between PO4
3-, 

Fe3+ and HCO3
- with ions at high salinity may affect their bioavailability, whereas NH4

+ 

and NO3
- are less likely to complex with other salts. Moreover, the ratio of (NH4

+ +  

NO3
-)/PO4

3- in the groundwater at the GSP is much higher than the Redfield N:P ratio of 

16:1 (Major et al. 2005), which is the approximate “typical” composition of microalgae.  

Thus, P rather than N may limit algal biomass at the GSP. 

Various mineral nutrients such as nitrogen and phosphorus generally follow 

Liebig’s law of the minimum, such that only one is limiting at a time.  This concept may 

or may not apply to concurrent physical and nutrient stresses.  It remains largely 

unknown whether interacting stress factors have synergistic or antagonistic effects.  It 

was previously shown in the GSP chlorophyte algae P. oklahomensis and Dunaliella sp. 

that at 100 ppt, a salinity high enough to significantly reduce growth, cells are more 

tolerant of acute high temperature stress (Henley et al. 2002).  Similarly, in this study 

with P. oklahomensis, the chlorophyll fluorescence parameters Fv/Fm, ΦPSII and NPQ all 

exhibit smaller responses to limitation by phosphorus or iron when grown at 100 ppt 

compared to 10 ppt (Table 5); the response to limiting P and Fe at 50 ppt is 



Table 5. Ratio (%) of variables under low nutrient/high nutrient treatments. SDR is standard deviation for the ratio calculated from the 
means and corresponding standard deviations according to the formula SDR = RLC/HC . √{( SDLC/meanLC)2 + ( SDHC/meanHC)2} 
For any variable eg. yield, in which the ratio R, between means values under two treatments at 10 ppt, meanLC, is the mean yield at 
day 10 under low carbon at 10 ppt with SDLC as its standard deviation,  meanHC, is the mean yield at day 10 under high carbon at 10 
ppt with SDHC as its standard deviation. 
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C       LC/H          
  Whole cell level properties   Thylakoid level properties         

Salinity µ SD Yield SD Pmax SD
Chl 
a+b SD Fv/Fm  SD

 
ΦPSII SD qP SD NPQ SD

10 62 1 73 1 118 18 106 6 101 2 122 9 110 8 75 21
50 64 0 80 3 112 7 102 5 106 2 135 16 127 14 87 47

100 70 1 82 2 114 13 77 13 99 4 123 29 120 23 57 31
                 
       LP/H  P          
  Whole cell level properties   Thylakoid level properties         

Salinity µ SD Yield SD Pmax SD
Chl 
a+b SD Fv/Fm SD

 
ΦPSII SD qP SD NPQ SD

10 123 1 42 1 80 8 81 2 86 2 49 7 93 10 228 19
50 122 1 51 2 81 17 86 5 100 2 77 4 96 11 235 96

100 118 1 82 2 85 16 103 12 96 3 82 10 90 10 175 80
                 

       
-Fe/ 
+F  e          

  Whole cell level properties   Thylakoid level properties         

Salinity µ SD Yield SD Pmax SD
Chl 
a+b SD Fv/Fm SD

 
ΦPSII SD qP SD NPQ SD

10 27 1 11 0 57 2 82 3 20 20 11 16 21 48 354 31
50 31 0 16 1 54 5 59 14 23 8 19 12 34 31 141 83

100 19 0 12 0 56 7 133 15 52 2 19 18 37 38 75 58
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nutrient- and parameter-specific.  In part, this may be explained by slower growth rate  

at 100 ppt regardless of nutrient supply, which would slow the depletion of external and 

internal nutrient reserves due to dilution among more cells.  In other words, at the time of 

characterization, slower growing cells at high salinity may exhibit less nutrient stress than 

at low salinity.  However, in some cases the reduced nutrient-dependent fluorescence 

effect occurs between 10 and 50 ppt salinity, despite no salinity-induced growth rate 

difference.  Examples include NPQ in low Fe and ΦPSII in both low P and low Fe (Figs. 

23 and 24).  This indicates that the effect of nutrient dilution by cell division cannot be 

the only explanation for this phenomenon. 

Similarly, with respect to pigment content and most fluorescence parameters, P. 

oklahomensis cultured in low P or Fe exhibit smaller inhibition by 100 ppt salinity 

relative to 10 ppt (Table 6).  That is, high salinity stress appears to be reduced under low 

nutrient conditions.  Both this effect and the previously discussed reduction of low 

nutrient (P, Fe) stress by high salinity represent interaction between salinity and nutrients.  

However, it is unclear whether they represent distinct mechanisms or if they are different 

manifestations of the same phenomenon, and if so which is the primary cause.  It is 

difficult to envision nutrient limitation inducing a general protective response to physical 

stress factors such as salinity; in fact the opposite might be expected because nutrient 

stress reduces a cell’s ability to make certain essential cellular components.  Similarly, 

although low nutrients alone reduce growth rate, salinity is not a depletable resource, thus 

a dilution effect cannot be invoked as a simple explanation as it could in the case of the 

reverse effect of salinity on nutrient response.  Intuitively, it seems more likely that  

 



Table 6. Ratio (%) of 100ppt/10ppt for various parameters in high and low P, Fe and C. SDR is standard deviation for the ratio 
calculated from the means and corresponding standard deviations according to the formula SDR = R100/10 . √{( SD100/mean100)2 + ( 
SD10/mean10)2}For any variable eg. yield, in which the ratio R between means values under 100 ppt and 10 ppt for a specific treatment 
eg. low carbon (LC). 
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  Whole cell level properties   Thylakoid level properties       

  µ SD yield SD Pmax SD
Chl 
a+b SD Fv/Fm SD ΦPSII SD qP SD NPQ SD

HC 66 1 55 2 62 6 70 8 101 3 79 10 75 9 76 35 
                     

LC 74 1 62 0 60 9 51 7 99 4 80 17 82 13 58 23 
                                  
                 

                 
  Whole cell level properties   Thylakoid level properties       

  µ SD yield SD Pmax SD
Chl 
a+b SD Fv/Fm SD ΦPSII SD qP SD NPQ SD

HP 66 1 55 2 62 6 70 8 101 3 79 10 75 9 76 35 
                     

LP 63 0 109 2 66 12 90 2 113 3 132 18 73 7 58 4 
                                  
                 

                 
  Whole cell level properties   Thylakoid level properties       

  µ SD yield SD Pmax SD
Chl 
a+b SD Fv/Fm SD ΦPSII SD qP SD NPQ SD

+Fe 66 1 55 2 62 6 70 8 101 3 79 10 75 9 76 35 
                     

-Fe 45 1 64 1 61 5 113 5 257 255 141 257 134 344 16 10 
 

 



salinity stress induces a general protective response, as was suggested with respect to 

acute temperature stress at high salinity (Henley et al. 2002). 

How might a general stress response involving heat shock proteins and 

compatible osmolytes translate into reduced low nutrient stress, beyond what can be 

explained by lower demand due to slower growth at high salinity?  My data cannot 

indicate which mechanisms are occurring, but the apparent lessening of salinity stress by 

low P and Fe and/or the lessening of nutrient stress by high salinity are consistent with a 

general protective response to stress.  Similarly, a turfgrass was shown to be more salt 

tolerant when provided with limiting N compared to replete N (Bowman et al. 2006).   

The literature provides limited evidence for at least three types of inducible 

protective mechanisms: compatible osmolytes, heat shock proteins (Hsp), and protein 

phosphorylation cascades.  High salinity causes accumulation of organic compatible 

osmolytes which balance internal osmotic pressure with the saline exterior and protect 

macromolecules and membranes (Chen and Murata 2002; Munns and Tester 2008).  It is 

also likely that high salinity induces heat shock proteins that also protect macromolecules 

(Sairam and Tyagi 2004).  A chloroplast-localized HSP70 is protective with respect to 

PSII photodamage and repair (Schroda et al. 1999, Yokthongwattana et al. 2001).  Those 

studies only considered high light stress, not interaction among different stresses.  

However, small Hsp may be induced by a number of stresses (including osmotic) and 

may have a broad-spectrum protective role for proteins, possibly by acting as molecular 

chaperones (Hsieh et al. 2002; Sun et al. 2002).  Oxidative stress (H2O2) induces a 

mitogen-activated protein kinase cascade in Arabidopsis, and a related gene in transgenic 

tobacco is more tolerant of several stress factors in the absence of apparent signaling 
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pathways (Kotvun et al. 2000).  Thus, it is reasonable to suggest that the broadly 

halotolerant P. oklahomensis may possess similar mechanisms that confer multiple stress 

resistance in response to any one stress factor.  Stressors such as high light/UV, 

temperature, salinity and oxidation, and low nutrients likely co-occur on hypersaline flats.  

Evolution of general stress response mechanisms would optimize resources and 

physiological efficiency, in that the first stress factor would protect against subsequent 

environmentally inevitable stressors.  

 From the two-way ANOVA tables, the majority of the measured variables in the 

carbon experiment did not exhibit significant salinity-carbon interaction and a few did not 

show a significant primary effect of C.  In the P and Fe experiments, most of the 

variables showed significant primary nutrient effects and salinity-nutrient interaction.  

This may be attributable to a fundamental difference in the experimental delivery of C 

compared to P and Fe.  The latter nutrients are added in fixed amount at the beginning of 

batch cultures, thus can be completely depleted within a few days.  In contrast, the 

cultures are an open system with respect to C, which can diffuse through the cotton plug 

and also enter whenever the plugs are removed for sampling.  The equilibration of CO2 

from the headspace into the medium is probably slow in the absence of stirring, however 

it is likely nonzero so that growth rates but not cell yields are limited by C supply.  For 

this reason, absence of a large effect of low bicarbonate and salinity-C interaction is not 

surprising.  Carbon is also rarely if ever a limiting nutrient in situ. 

I cannot rigorously compare the P and Fe experiments because, based on 

magnitudes of responses in most variables, the -Fe cultures appeared more severely 

stressed than the low P cultures.  However, some qualitative differences in the responses 
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to limitation by P and Fe at the level of fluorescence properties are worth noting.  

Moderately P-stressed cultures exhibited a slight reduction in Pmax at all salinities, 

corresponding to reduced ΦPSII and increased NPQ, but minimal changes in Fv/Fm or qP.  

Taken together, these results suggest elevated thermal dissipation of energy under P 

stress, generally interpreted as a reversible photoprotective mechanism.  P is not a 

structural component of photosynthetic macromolecules, thus low P availability is not 

expected to severely impair the photosynthetic process at the level of electron transport.   

In contrast, -Fe cultures exhibited a much larger reduction in Pmax at all salinities, 

corresponding to greatly reduced Fv/Fm, ΦPSII and qP; in this case NPQ increased only at 

10 ppt salinity.  This combination of changes is consistent with severe and persistent 

inhibition of photosystem II by very low Fe.  Fe is an essential component of 

cytochromes, Fe/S complex and ferredoxin in photosynthetic electron transport, and the 

near absence of added Fe in my experiment consequently had a major effect on the 

efficiency of photosynthesis.  Ferredoxin may be replaced by flavodoxin under low Fe 

conditions (Vigara et al. 1998), but there is no equivalent for other Fe-containing electron 

transport components.   

I also cannot thoroughly compare corresponding changes in Pmax and fluorescence 

parameters, because the apparatus available to me necessitated making the two types of 

measurements under different conditions.  The actinic light level during fluorescence 

measurements was approximately 400 µmol m-2 s-1, which is close to saturation of the P-I 

curves for most cultures and roughly twice the growth irradiances.  It would be useful to 

repeat selected experiments with fluorescence measured concurrently with the P-I 

measurements, such that the saturation function of ΦPSII could be determined.  
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Fluorescence also could in principle be measured directly in the culture flasks for an “in 

situ” estimate of ΦPSII.   

 One additional series of experiments to resolve mechanisms of salinity-nutrient 

interaction would involve continuous cultures.  Chemostats at varying nutrient 

compositions but constant dilution (= growth) rate would factor out the dilution effect 

related to reduced growth rate at high salinity observed in batch cultures.  In addition, 

chemostats would eliminate the progressive physiological deterioration through time 

observed in batch mode.  This is especially problematic when comparing different 

nutrient treatments, which slow down at different rates and thus may not have the 

equivalent physiological “age” on a given day.  For example, based on low nutrient 

growth rates in batch cultures, operating chemostats at a dilution rate of 0.3 d-1 should 

allow all nutrient-salinity combinations to grow without washout.  If high and low P or Fe 

chemostat cultures at identical growth rates at all salinities exhibit the same physiological 

differences (e.g. Pmax, NPQ, ΦPSII, etc.) as observed in batch cultures, this would indicate 

that the salinity-induced dilution effect on nutrient demand is unimportant.  If on the 

other hand nutrient-dependent physiological differences seen in batch mode are largely 

eliminated in identical dilution rate chemostats, this result would imply that the salinity-

induced dilution effect is largely responsible for the physiological effects. 
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APPENDICES 
 
 
 

Appendix A.1  Table for non-linear regression parameters and graph showing Jassby and 
Platt’s function fit to the growth curve of Picochlorum at 10 ppt in high carbon for a 
replicate. This was used in obtaining the initial growth rates. 
 
F = CDm x tanh {(µ x d)/CDm} + CDo 
 
where CDm is increase in In cell density, CDo is Initial In cell density, µ is growth rate 
(in d-1, which is the initial slope) and d is time in day. 
 
 
Parameter Value  StdErr  CV(%)  Dependencies 
 
CDm   4.006e+0  1.931e-1  4.820e+0  0.7382476 
CDo   1.358e+1  1.793e-1  1.321e+0  0.8827076 
µ   1.120e+0  1.273e-1  1.137e+1  0.7420913 
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Appendix A.2  Table for non-linear regression parameters and graph showing Jassby and 
Platt’s function fit to the growth curve of Picochlorum at 50 ppt in high carbon for a 
replicate. This was used in obtaining the initial growth rates. 
 
 
Parameter Value  StdErr  CV(%)  Dependencies 
 
CDm   3.871e+0  1.640e-1  4.237e+0  0.7515646 
CDo   1.362e+1  1.532e-1  1.125e+0  0.8843859 
µ   1.123e+0  1.125e-1  1.002e+1  0.7331010 
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Appendix A.3  Table for non-linear regression parameters and graph showing Jassby and 
Platt’s function fit to the growth curve of Picochlorum at 100 ppt in high carbon for a 
replicate. This was used in obtaining the initial growth rates. 
 
 
Parameter Value  StdErr  CV(%)  Dependencies 
 
CDm   3.718e+0  1.546e-1  4.157e+0  0.6000434 
CDo   1.348e+1  1.240e-1  9.199e-1  0.8664265 
µ   7.308e-1  6.726e-2  9.203e+0  0.8191031 
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Appendix A.4  Table for non-linear regression parameters and graph showing Jassby and 
Platt’s function fit to the growth curve of Picochlorum at 10 ppt in low bicarbonate for a 
replicate. This was used in obtaining the initial growth rates. 
 
 
 
Parameter Value  StdErr  CV(%)  Dependencies 
 
CDm   3.440e+0  2.020e-1  5.871e+0  0.6128065 
CDo   1.389e+1  1.669e-1  1.202e+0  0.8682340 
µ   7.001e-1  9.291e-2  1.327e+1  0.8113591 
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Appendix A.5  Table for non-linear regression parameters and graph showing Jassby and 
Platt’s function fit to the growth curve of Picochlorum at 50 ppt in low bicarbonate for a 
replicate. This was used in obtaining the initial growth rates. 
 
 
 
Parameter Value  StdErr  CV(%)  Dependencies 
 
CDm   3.564e+0  1.834e-1  5.146e+0  0.6125890 
CDo   1.380e+1  1.515e-1  1.098e+0  0.8682052 
µ   7.254e-1  8.431e-2  1.162e+1  0.8114841 
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Appendix A.6  Table for non-linear regression parameters and graph showing Jassby and 
Platt’s function fit to the growth curve of Picochlorum at 100 ppt in low bicarbonate for a 
replicate. This was used in obtaining the initial growth rates. 
 
 
 
 
Parameter Value  StdErr  CV(%)  Dependencies 
 
CDm   3.471e+0  1.424e-1  4.101e+0  0.5966326 
CDo   1.372e+1  7.660e-2  5.582e-1  0.8533159 
µ   5.144e-1  3.510e-2  6.824e+0  0.8690241 
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Appendix A.7  Table for non-linear regression parameters and graph showing Jassby and 
Platt’s function fit to the growth curve of Picochlorum at 10 ppt in low phosphate for a 
replicate. This was used in obtaining the initial growth rates. 
 
 
 
 
Parameter Value  StdErr  CV(%)  Dependencies 
 
CDm  3.416e+0  1.888e-1  5.528e+0  0.8305890 
CDo   1.343e+1  1.796e-1  1.337e+0  0.8965843 
µ   1.374e+0  1.793e-1  1.305e+1  0.6551805 
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Appendix A.8  Table for non-linear regression parameters and graph showing Jassby and 
Platt’s function fit to the growth curve of Picochlorum at 50 ppt in low phosphate for a 
replicate. This was used in obtaining the initial growth rates. 
 
 
 
Parameter Value  StdErr  CV(%)  Dependencies 
 
CDm   3.347e+0  1.439e-1  4.300e+0  0.8326640 
CDo   1.352e+1  1.369e-1  1.012e+0  0.8969783 
µ   1.363e+0  1.384e-1  1.015e+1  0.6520586 
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Appendix A.9  Table for non-linear regression parameters and graph showing Jassby and 
Platt’s function fit to the growth curve of Picochlorum at 100 ppt in low phosphate for a 
replicate. This was used in obtaining the initial growth rates. 
 
 
 
 
Parameter Value  StdErr  CV(%)  Dependencies 
 
CDm   3.368e+0  8.304e-2  2.466e+0  0.7080920 
CDo   1.355e+1  7.598e-2  5.608e-1  0.8791384 
µ   8.674e-1  5.045e-2  5.817e+0  0.7604466 
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Appendix A.10  Table for non-linear regression parameters and graph showing Jassby 
and Platt’s function fit to the growth curve of Picochlorum at 10 ppt in no added iron for 
a replicate. This was used in obtaining the initial growth rates. 
 
 
 
 
Parameter Value  StdErr  CV(%)  Dependencies 
 
CDm   1.848e+0  8.902e-2  4.817e+0  0.5764223 
CDo   1.370e+1  5.789e-2  4.225e-1  0.8581245 
µ   3.040e-1  2.811e-2  9.248e+0  0.8520305 
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Appendix A.11  Table for non-linear regression parameters and graph showing Jassby 
and Platt’s function fit to the growth curve of Picochlorum at 50 ppt in no added iron for 
a replicate. This was used in obtaining the initial growth rates. 
 
 
 
 
Parameter Value  StdErr  CV(%)  Dependencies 
 
CDm   2.293e+0  1.332e-1  5.810e+0  0.5917021 
CDo   1.370e+1  7.417e-2  5.413e-1  0.8540949 
µ   3.452e-1  3.430e-2  9.937e+0  0.8663776 
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Appendix A.12  Table for non-linear regression parameters and graph showing Jassby 
and Platt’s function fit to the growth curve of Picochlorum at 100 ppt in no added iron for 
a replicate. This was used in obtaining the initial growth rates. 
 
 
 
 
Parameter Value  StdErr  CV(%)  Dependencies 
 
CDm   1.952e+4  4.348e+6  2.227e+4  0.0000000 
CDo   1.369e+1  4.930e-2  3.600e-1  0.7142857 
µ   1.369e-1  8.333e-3  6.088e+0  0.7142857 
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Appendix B.1  Table for non-linear regression parameters and graph showing Bannister’s 
function fit to the growth curve of Picochlorum at 10 ppt in high carbon for a replicate. 
This was used in obtaining the convexity value. 
 
F= CDm x (µ x d/{CDmc + (µ x d)c) (1/c)} + CDo 
 
where CDm is increase In cell density, CDo is Initial In cell density, µ is growth rate (in 
d-1, which is the initial slope), d is time in day and c is convexity. 
 
 
R = 0.99245806  R2 = 0.98497300   
 
Standard Error of Estimate = 0.1981 
 
 Coefficient Std. Error t P 
 
CDm 4.3916 0.5403 8.1281 <0.0001 
µ 1.2353 0.3245 3.8072 0.0067 
CDo 13.5924 0.1939 70.1100 <0.0001 
c 1.8103 0.7850 2.3062 0.0545 
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Appendix B.2  Table for non-linear regression parameters and graph showing Bannister’s 
function fit to the growth curve of Picochlorum at 50 ppt in high carbon for a replicate. 
This was used in obtaining the convexity value. 
 
 
R = 0.99546344  R2 = 0.99094745   
 
Standard Error of Estimate = 0.1479  
 
  Coefficient Std. Error t P  
 
CDm 4.3344 0.4207 10.3033 <0.0001  
µ 1.3151 0.2861 4.5968 0.0025  
CDo 13.5924 0.1457 93.2763 <0.0001  
c 1.6723 0.5452 3.0675 0.0181  
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Appendix B.3  Table for non-linear regression parameters and graph showing Bannister’s 
function fit to the growth curve of Picochlorum at 100 ppt in high carbon for a replicate. 
This was used in obtaining the convexity value. 
 
 
R = 0.99363407  R2 = 0.98730866   
 
Standard Error of Estimate = 0.1648  
 
  Coefficient Std. Error t P  
 
CDm 3.9067 0.6645 5.8791 0.0006  
µ 0.6834 0.1414 4.8321 0.0019  
CDo 13.5924 0.1518 89.5479 <0.0001  
c 2.2531 1.2651 1.7810 0.1181  
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Appendix B.4  Table for non-linear regression parameters and graph showing Bannister’s 
function fit to the growth curve of Picochlorum in low bicarbonate medium at 10 ppt for 
a replicate. This was used in obtaining the convexity value. 
 
 
R = 0.99898777  R2 = 0.99797657   
 
Standard Error of Estimate = 0.0615  
 
  Coefficient Std. Error t P  
 
CDm 21.9102 23.8645 0.9181 0.3891  
µ 8.9628 12.5193 0.7159 0.4972  
CDo 13.5924 0.0615 220.9781 <0.0001  
c      0.2897           0.1618              1.7902             0.1165  
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Appendix B.5  Table for non-linear regression parameters and graph showing Bannister’s 
function fit to the growth curve of Picochlorum in low bicarbonate medium at 50 ppt for 
a replicate. This was used in obtaining the convexity value. 
 
 
R = 0.99770484  R2 = 0.99541495   
 
Standard Error of Estimate = 0.0957  
 
  Coefficient Std. Error t P  
 
CDm 9.1393 5.5753 1.6392 0.1452  
µ 2.3195 1.6596 1.3976 0.2049  
CDo 13.5924 0.0955 142.2944 <0.0001  
c      0.5398           0.2769              1.9494              0.0922 
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Appendix B.6  Table for non-linear regression parameters and graph showing Bannister’s 
function fit to the growth curve of Picochlorum in low bicarbonate medium at 100 ppt for 
a replicate. This was used in obtaining the convexity value. 
 
 
 
R = 0.99853727  R2 = 0.99707668   
 
Standard Error of Estimate = 0.0690  
 
  Coefficient Std. Error t P  
 
CDm 10.0789 7.5682 1.3317 0.2247  
µ 1.0007 0.4473 2.2373 0.0603  
CDo 13.5924 0.0684 198.6128 <0.0001  
c 0.6293 0.3246 1.9385 0.0937  
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Appendix B.7  Table for non-linear regression parameters and graph showing Bannister’s 
function fit to the growth curve of Picochlorum in low phosphate medium at 10 ppt for a 
replicate. This was used in obtaining the convexity value. 
 
R = 0.99079953  R2 = 0.98168371   
 
Standard Error of Estimate = 0.1827  
 
  Coefficient Std. Error t P  
 
CDm 3.2224 0.2030 15.8740 <0.0001  
µ 1.0948 0.1773 6.1750 0.0005  
CDo 13.5924 0.1733 78.4426 <0.0001  
c      4.6946           2.7007              1.7383             0.1257 
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Appendix B.8  Table for non-linear regression parameters and graph showing Bannister’s 
function fit to the growth curve of Picochlorum in low phosphate medium at 50 ppt for a 
replicate. This was used in obtaining the convexity value. 
 
 
R = 0.99408090  R2 = 0.98819683  
  
Standard Error of Estimate = 0.1418  
 
  Coefficient Std. Error t P  
 
CDm 3.2679 0.1744 18.7362 <0.0001  
µ 1.2177 0.1873 6.5029 0.0003  
CDo 13.5924 0.1385 98.1326 <0.0001  
c 3.2201 1.1394 2.8261 0.0255  
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Appendix B.9  Table for non-linear regression parameters and graph showing Bannister’s 
function fit to the growth curve of Picochlorum in low phosphate medium at 100 ppt for a 
replicate. This was used in obtaining the convexity value. 
 
 
R = 0.99777462  R2 = 0.99555419   
 
Standard Error of Estimate = 0.0902  
 
  Coefficient Std. Error t P  
 
CDm 3.4824 0.1972 17.6622 <0.0001  
µ 0.8332 0.0943 8.8386 <0.0001  
CDo 13.5924 0.0855 159.0288 <0.0001  
c 2.4322 0.6016 4.0429 0.0049  
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Appendix B.10  Table for non-linear regression parameters and graph showing 
Bannister’s function fit to the growth curve of Picochlorum in no added medium at 10 
ppt for a replicate. This was used in obtaining the convexity value. 
 
 
R = 0.99687927  R2= 0.99376828   
 
Standard Error of Estimate = 0.0556  
 
  Coefficient Std. Error t P  
 
CDm 11.6888 23.3868 0.4998 0.6325  
µ 1.2848 1.9172 0.6702 0.5242  
CDo 13.5924 0.0555 245.0191 <0.0001  
c 0.3703 0.3649 1.0148 0.3440  
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Appendix B.11  Table for non-linear regression parameters and graph showing 
Bannister’s function fit to the growth curve of Picochlorum in no added medium at 50 
ppt for a replicate. This was used in obtaining the convexity value. 
 
 
R = 0.99609864  R2 = 0.99221251   
 
Standard Error of Estimate = 0.0752  
 
  Coefficient Std. Error t P  
 
CDm 17.6562 50.5880 0.3490 0.7373  
µ 1.3405 2.4021 0.5580 0.5942  
CDo 13.5924 0.0750 181.2874 <0.0001  
c 0.3623 0.4423 0.8190 0.4398  
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Appendix B.12  Table for non-linear regression parameters and graph showing 
Bannister’s function fit to the growth curve of Picochlorum in no added medium at 100 
ppt for a replicate. This was used in obtaining the convexity value. 
 
 
 
R = 0.98270919  R2 = 0.96571735   
 
Standard Error of Estimate = 0.1019  
 
  Coefficient Std. Error t P  
 
CDm 105.7465 2717.4034 0.0389 0.9700  
µ 0.2466 0.8076 0.3054 0.7690  
CDo 13.5924 0.1004 135.3321 <0.0001  
c 0.3864 2.8521 0.1355 0.8961  
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Appendix C.1 Analysis of variance (ANOVA) for cell yield at day 10 
 
 
ANOVA for Salinity and Bicarbonate effect 
 

Source Sum-of-Squares df Mean-Square F-ratio P

Salinity
 

1.17655E+15 2
 

5.88273E+14 1016.210 0.000

Carbon
 

3.56890E+14 1
 

3.56890E+14 616.509 0.000

Salinity * Carbon
 

4.98203E+13 2
 

2.49101E+13 43.031 0.000

Error
 

6.94667E+12 12
 

5.78889E+11
 
 
ANOVA for Salinity and Phosphate effect 
 

Source Sum-of-Squares df Mean-Square F-ratio P

Salinity
 

4.01092E+14 2
 

2.00546E+14 338.713 0.000

Phosphorus
 

1.51525E+15 1
 

1.51525E+15 2559.186 0.000

Salinity * Phosphorus
 

4.42403E+14 2
 

2.21201E+14 373.598 0.000

Error
 

7.10500E+12 12
 

5.92083E+11
 
 
 
ANOVA for Salinity and Iron effect 
 

Source Sum-of-Squares df Mean-Square F-ratio P

Salinity
 

5.34455E+14 2
 

2.67228E+14 465.418 0.000

Iron
 

5.45838E+15 1
 

5.45838E+15 9506.619 0.000

Salinity * Iron
 

3.16910E+14 2
 

1.58455E+14 275.974 0.000

Error
 

6.89000E+12 12
 

5.74167E+11
 
 
 
 
 
 
 

 119



 
Appendix C.2 Analysis of variance (ANOVA) for Initial Growth Rate 
 
 
ANOVA for Salinity and Bicarbonate effect 
 

Source Sum-of-Squares df Mean-Square F-ratio P

Salinity
 

0.330 2
 

0.165 7718.798 0.000

Carbon
 

0.537 1
 

0.537 25140.415 0.000

Salinity * Carbon
 

0.038 2
 

0.019 891.641 0.000

Error
 

0.000 12
 

0.000
 
 
ANOVA for Salinity and Phosphate effect 
 

Source Sum-of-Squares df Mean-Square F-ratio P

Salinity
 

0.789 2
 

0.395 17654.729 0.000

Phosphorus
 

0.203 1
 

0.203 9088.248 0.000

Salinity * Phosphorus
 

0.015 2
 

0.007 326.170 0.000

Error
 

0.000 12
 

0.000
 
 
ANOVA for Salinity and Iron effect 
 

Source Sum-of-Squares df Mean-Square F-ratio P

Salinity  
0.330 2

 
0.165 8249.734 0.000

Iron  
2.390 1

 
2.390 119589.639 0.000

Salinity * Iron  
0.039 2

 
0.020 979.033 0.000

Error
 

0.000 12
 

0.000
 
 
 
 
 

 120



Appendix C.3 Analysis of variance (ANOVA) for Pmax 
 
 
ANOVA for Salinity and Bicarbonate effect 
 

Source Sum-of-Squares df Mean-Square F-ratio P

Salinity
 

299.145 2
 

149.572 47.447 0.000

Carbon
 

33.320 1
 

33.320 10.570 0.007

Salinity * Carbon
 

2.913 2
 

1.457 0.462 0.641

Error
 

37.829 12
 

3.152
 
 
 
ANOVA for Salinity and Phosphate effect 
 

Source Sum-of-Squares df Mean-Square F-ratio P

Salinity
 

188.131 2
 

94.065 27.798 0.000

Phosphorus
 

55.020 1
 

55.020 16.259 0.002

Salinity * Phosphorus
 

4.706 2
 

2.353 0.695 0.518

Error
 

40.607 12
 

3.384
 
 
ANOVA for Salinity and Iron effect 
 

Source Sum-of-Squares df Mean-Square F-ratio P

Salinity
 

149.791 2
 

74.896 92.996 0.000

Iron
 

306.942 1
 

306.942 381.123 0.000

Salinity * Iron
 

13.708 2
 

6.854 8.510 0.005

Error
 

9.664 12
 

0.805
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Appendix C.4 Analysis of variance (ANOVA) for α 
 
 
ANOVA for Salinity and Bicarbonate effect 
 

Source Sum-of-Squares df Mean-Square F-ratio P

Salinity
 

0.011 2
 

0.005 4.115 0.044

Carbon
 

0.000 1
 

0.000 0.106 0.750

Salinity * Carbon
 

0.003 2
 

0.001 1.051 0.380

Error
 

0.016 12
 

0.001
 
 
 
ANOVA for Salinity and Phosphate effect 
 

Source Sum-of-Squares df Mean-Square F-ratio P

Salinity
 

0.004 2
 

0.002 0.238 0.792

Phosphorus
 

0.004 1
 

0.004 0.462 0.510

Salinity * Phosphorus
 

0.014 2
 

0.007 0.853 0.450

Error
 

0.098 12
 

0.008
 
 
 
ANOVA for Salinity and Iron effect 
 

Source Sum-of-Squares df Mean-Square F-ratio P

Salinity
 

0.004 2
 

0.002 0.499 0.619

Iron
 

0.010 1
 

0.010 2.208 0.163

Salinity * Iron
 

0.000 2
 

0.000 0.011 0.989

Error
 

0.053 12
 

0.004
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Appendix C.5 Analysis of variance (ANOVA) for Rd
 
 
ANOVA for Salinity and Bicarbonate effect 
 

Source Sum-of-Squares df Mean-Square F-ratio P

Salinity
 

0.134 2
 

0.067 0.258 0.777

Carbon
 

0.001 1
 

0.001 0.002 0.964

Salinity * Carbon
 

0.053 2
 

0.026 0.102 0.904

Error
 

3.109 12
 

0.259
 
 
 
ANOVA for Salinity and Phosphate effect 
 

Source Sum-of-Squares df Mean-Square F-ratio P

Salinity
 

0.729 2
 

0.364 1.441 0.275

Phosphorus
 

0.076 1
 

0.076 0.301 0.594

Salinity * Phosphorus
 

0.429 2
 

0.214 0.848 0.452

Error
 

3.035 12
 

0.253
 
 
 
ANOVA for Salinity and Iron effect 
 

Source Sum-of-Squares df Mean-Square F-ratio P

Salinity
 

0.055 2
 

0.027 0.059 0.943

Iron
 

0.005 1
 

0.005 0.010 0.922

Salinity * Iron
 

0.024 2
 

0.012 0.026 0.974

Error
 

5.592 12
 

0.466
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Appendix C.6 Analysis of variance for Salinity and Bicarbonate on pigments analysis 
 
ANOVA for Total chlorophyll 

Source Sum-of-Squares df Mean-Square F-ratio P

Salinity
 

4988.273 2
 

2494.136 111.879 0.000

Carbon
 

27.421 1
 

27.421 1.230 0.289

Salinity * Carbon
 

348.790 2
 

174.395 7.823 0.007

Error
 

267.518 12
 

22.293
 
 ANOVA for Chlorophyll a/b ratio 

Source Sum-of-Squares df Mean-Square F-ratio P

Salinity
 

0.025  2
 

0.012 0.268 0.770

Carbon
 

0.034 1
 

0.034 0.735 0.408

Salinity * Carbon
 

0.101  2
 

0.050 1.092 0.367

Error
 

0.553 12
 

0.046
 
ANOVA for Total Carotenoids 

Source Sum-of-Squares df Mean-Square F-ratio P

Salinity
 

323.967 2
 

161.983 58.312 0.000

Carbon
 

15.097 1
 

15.097 5.435 0.038

Salinity * Carbon
 

22.998 2
 

11.499 4.139 0.043

Error  
33.335 12

 
2.778

 
ANOVA for Chlorophyll/Carotenoids ratio 

Source Sum-of-Squares df Mean-Square F-ratio P

Salinity
 

0.456  2
 

0.228 39.723 0.000

Carbon
 

0.027 1
 

0.027 4.683 0.051

Salinity * Carbon
 

0.612 2
 

0.306 53.376 0.000

Error
 

0.069 12
 

0.006
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Appendix C.7 Analysis of variance for Salinity and Phosphate on pigments analysis 
 
ANOVA for Total Chlorophyll 

Source Sum-of-Squares df Mean-Square F-ratio P

Salinity
 

1236.230 2
 

618.115 47.948 0.000

Phosphorus
 

372.561 1
 

372.561 28.900 0.000

Salinity * Phosphorus
 

303.453 2
 

151.727 11.770 0.001

Error
 

154.696 12
 

12.891
 
ANOVA for Chlorophyll a/b ratio 

Source Sum-of-Squares df Mean-Square F-ratio P

Salinity
 

0.171  2
 

0.086 3.841 0.051

Phosphorus
 

0.016 1
 

0.016 0.705 0.417

Salinity * Phosphorus
 

0.047  2
 

0.024 1.060 0.377

Error
 

0.267 12
 

0.022
 
ANOVA for Total Carotenoids 

Source Sum-of-Squares df Mean-Square F-ratio P

Salinity
 

95.769 2
 

47.885 21.933 0.000

Phosphorus
 

57.899 1
 

57.899 26.520 0.000

Salinity * Phosphorus
 

51.832 2
 

25.916 11.871 0.001

Error
 

26.199 12
 

2.183
 
ANOVA for Chlorophyll/Carotenoid ratio 

Source Sum-of-Squares df Mean-Square F-ratio P

Salinity
 

0.400  2
 

0.200 45.753 0.000

Phosphorus
 

0.038  1
 

0.038 8.740 0.012

Salinity * Phosphorus
 

0.055  2
 

0.027  6.285 0.014

Error
 

0.052 12
 

0.004
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Appendix C.8 Analysis of variance for Salinity and Iron on pigments analysis 
 
ANOVA for Total Chlorophyll 

Source Sum-of-Squares df Mean-Square F-ratio P

Salinity
 

479.479 2
 

239.740 6.605 0.012

Iron
 

477.798 1
 

477.798 13.164 0.003

Salinity * Iron
 

2505.014 2
 

1252.507 34.508 0.000

Error
 

435.549 12
 

36.296
 
ANOVA for Chlorophyll a/b ratio 

Source Sum-of-Squares df Mean-Square F-ratio P

Salinity
  

0.320  2
 

 0.160  1.814 0.205

Iron
 

10.102  1
 

10.102 114.660 0.000

Salinity * Iron
  

0.301  2
 

 0.151 1.710 0.222

Error
  

1.057 12
 

 0.088
 
ANOVA for Total Carotenoids 

Source Sum-of-Squares df Mean-Square F-ratio P

Salinity
 

129.048 2
 

64.524 21.162 0.000

Iron
 

85.945 1
 

85.945 28.188 0.000

Salinity * Iron
 

192.542 2
 

96.271 31.575 0.000

Error
 

36.588 12
 

3.049
 
ANOVA for Chlorophyll/Carotenoids 

Source Sum-of-Squares df Mean-Square F-ratio P

Salinity
 

0.418  2
 

0.209 1.420 0.279

Iron
 

0.162 1
 

0.162 1.102 0.315

Salinity * Iron
 

0.022 2
 

0.011 0.075 0.928

Error
 

1.764 12
 

0.147
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Appendix C.9 Analysis of variance for Salinity and Bicarbonate on fluorescence analysis 
 
ANOVA for Fv/Fm 

Source Sum-of-Squares df Mean-Square F-ratio P

Salinity
 

0.003 2
 

0.002 10.043 0.003

Carbon
 

0.001 1
 

0.001 3.630 0.081

Salinity * Carbon
 

0.001 2
 

0.000 2.852 0.097

Error
 

0.002 12
 

0.000
 
ANOVA for ΦPSII 

Source Sum-of-Squares df Mean-Square F-ratio P

Salinity
 

0.011 2
 

0.006 9.824 0.003

Carbon
 

0.011 1
 

0.011 19.525 0.001

Salinity * Carbon
 

0.000 2
 

0.000 0.173 0.843

Error
 

0.007 12
 

0.001
 
ANOVA for qP 

Source Sum-of-Squares df Mean-Square F-ratio P

Salinity
 

0.059 2
 

0.030 12.703 0.001

Carbon
 

0.033 1
 

0.033 14.311 0.003

Salinity * Carbon
 

0.002 2
 

0.001 0.535 0.599

Error
 

0.028 12
 

0.002
 
ANOVA for NPQ 

Source Sum-of-Squares df Mean-Square F-ratio P

Salinity
 

0.075 2
 

0.038 2.581 0.117

Carbon
 

0.064 1
 

0.064 4.419 0.057

Salinity * Carbon
 

0.012 2
 

0.006 0.424 0.664

Error
 

0.175 12
 

0.015
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Appendix C.10 Analysis of variance for Salinity and Phosphate on fluorescence analysis 
 
ANOVA for Fv/Fm  

Source Sum-of-Squares df Mean-Square F-ratio P

Salinity
 

0.005 2
 

0.003 22.139 0.000

Phosphorus
 

0.006 1
 

0.006 50.275 0.000

Salinity * Phosphorus
 

0.006 2
 

0.003 25.248 0.000

Error
 

0.001 12
 

0.000
 
ANOVA for ΦPSII  

Source Sum-of-Squares df Mean-Square F-ratio P

Salinity
 

0.001 2
 

0.001 5.331 0.022

Phosphorus
 

0.017 1
 

0.017 123.077 0.000

Salinity * Phosphorus
 

0.006 2
 

0.003 23.012 0.000

Error
 

0.002 12
 

0.000
 
ANOVA for qP 

Source Sum-of-Squares df Mean-Square F-ratio P

Salinity
 

0.076 2
 

0.038 28.883 0.000

Phosphorus
 

0.005 1
 

0.005 3.459 0.088

Salinity * Phosphorus
 

0.001 2
 

0.000 0.251 0.782

Error
 

0.016 12
 

0.001
 
ANOVA for NPQ 

Source Sum-of-Squares df Mean-Square F-ratio P

Salinity
 

0.345 2
 

0.172 15.847 0.000

Phosphorus
 

1.107 1
 

1.107 101.714 0.000

Salinity * Phosphorus
 

0.109 2
 

0.055 5.030 0.026

Error
 

0.131 12
 

0.011
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Appendix C.11 Analysis of variance for Salinity and Iron on fluorescence analysis 
 
ANOVA for Fv/Fm 

Source Sum-of-Squares df Mean-Square F-ratio P

Salinity
 

0.048 2
 

0.024 8.064  0.006

Iron
 

0.725 1
 

0.725 244.748 0.000

Salinity * Iron
 

0.029 2
 

0.014 4.829 0.029

Error
 

0.036 12
 

0.003
  

ANOVA for ΦPSII 
Source Sum-of-Squares df Mean-Square F-ratio P

Salinity  
0.002 2

 
0.001 2.070 0.169

Iron
 

0.113 1
 

0.113 223.352 0.000

Salinity * Iron
 

0.004 2
 

0.002 3.893 0.050

Error
 

0.006 12
 

0.001
 
ANOVA for qP 

Source Sum-of-Squares df Mean-Square F-ratio P

Salinity
 

0.019 2
 

0.009 0.564 0.583

Iron
 

0.459 1
 

0.459 27.407 0.000

Salinity * Iron
 

0.023 2
 

0.011 0.676 0.527

Error
 

0.201 12
 

0.017
 
NPQ 

Source Sum-of-Squares df Mean-Square F-ratio P

Salinity
 

2.675 2
 

1.337 18.762 0.000

Iron 
 

0.989 1
 

0.989 13.875 0.003

Salinity * Iron
 

1.831 2
 

0.915 12.841 0.001

Error
 

0.855 12
 

0.071
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Appendix C.12 Analysis of variance (ANOVA) for convexity values 
 
 
ANOVA for Salinity and Bicarbonate effect 
 

Source Sum-of-Squares df Mean-Square F-ratio P

Salinity
 

0.667 2
 

0.333 501.583 0.000

Carbon
 

9.354 1
 

9.354 14068.519 0.000

Salinity * Carbon
 

0.229 2
 

0.115 172.580 0.000

Error
 

0.008 12
 

0.001
 
 
ANOVA for Salinity and Phosphate effect 
 

Source Sum-of-Squares df Mean-Square F-ratio P

Salinity
 

2.872 2
 

1.436 1120.826 0.000

Phosphorus
 

10.273 1
 

10.273 8017.525 0.000

Salinity * Phosphorus
 

5.525 2
 

2.762 2155.997 0.000

Error
 

0.015 12
 

0.001
 
 
 
ANOVA for Salinity and Iron effect 
 

Source Sum-of-Squares df Mean-Square F-ratio P

Salinity
 

0.287 2
 

0.143 123.513 0.000

Carbon
 

11.024 1
 

11.024 9499.627 0.000

Salinity * Carbon
 

0.398 2
 

0.199 171.551 0.000

Error
 

0.014 12
 

0.001
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Appendix D.1  Table for non-linear regression parameters and graph showing Jassby 
and Platt’s function fit to the P-I curve of Picochlorum at 10 ppt in high carbon for a 
replicate.  
 
F = Pm x tanh {(α x I)/Pm} + Rd
 
where Pmax is light saturated photosynthetic rate , Rd is dark respiration, α is the initial 
slope and I is the light intensity. 
 
 
Parameter Value  StdErr  CV(%)  Dependencies 
 
Pmax   2.130e+1  1.819e+0  8.539e+0  0.5357220 
Rd   5.239e-1  1.413e+0  2.696e+2  0.7191460 
α   1.523e-1  3.777e-2  2.479e+1  0.5106309 
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Appendix D.2  Table for non-linear regression parameters and graph showing Jassby 
and Platt’s function fit to the P-I curve of Picochlorum at 50 ppt in high carbon for a 
replicate.  
 
 
Parameter Value  StdErr  CV(%)  Dependencies 
 
Pmax   2.203e+1  1.189e+0  5.400e+0  0.5025115 
Rd  -6.028e-1  8.969e-1  1.488e+2  0.7004436 
α   1.323e-1  2.065e-2  1.561e+1  0.5007885 
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Appendix D.3  Table for non-linear regression parameters and graph showing Jassby 
and Platt’s function fit to the P-I curve of Picochlorum at 100 ppt in high carbon for a 
replicate.  
 
 
 
Parameter Value  StdErr  CV(%)  Dependencies 
 
Pmax   1.387e+1  7.684e-1  5.540e+0  0.4632024 
Rd   1.018e+0  5.595e-1  5.498e+1  0.6798591 
α   6.870e-2  1.098e-2  1.599e+1  0.4928269 
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Appendix D.4  Table for non-linear regression parameters and graph showing Jassby 
and Platt’s function fit to the P-I curve of Picochlorum at 10 ppt in low bicarbonate 
(LC) for a replicate.  
 
 
 
Parameter Value  StdErr  CV(%)  Dependencies 
 
Pmax   2.441e+1  1.614e+0  6.613e+0  0.4514992 
Rd  -6.980e-1  1.163e+0  1.666e+2  0.6740419 
α   1.145e-1  2.184e-2  1.907e+1  0.4912931 
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Appendix D.5  Table for non-linear regression parameters and graph showing Jassby 
and Platt’s function fit to the P-I curve of Picochlorum at 50 ppt in low bicarbonate 
(LC) for a replicate.  
 
 
Parameter Value  StdErr  CV(%)  Dependencies 
 
Pmax   2.331e+1  2.611e+0  1.120e+1  0.5348006 
Rd  -9.308e-1  2.026e+0  2.177e+2  0.7186153 
α   1.654e-1  5.395e-2  3.261e+1  0.5103264 
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Appendix D.6  Table for non-linear regression parameters and graph showing Jassby 
and Platt’s function fit to the P-I curve of Picochlorum at 100 ppt in low bicarbonate 
(LC) for a replicate.  
 
 
 
Parameter Value  StdErr  CV(%)  Dependencies 
 
Pmax   1.511e+1  1.209e+0  8.002e+0  0.4825794 
Rd   1.620e-1  8.959e-1  5.530e+2  0.6897774 
α   8.229e-2  1.898e-2  2.306e+1  0.4962012 
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Appendix D.7  Table for non-linear regression parameters and graph showing Jassby 
and Platt’s function fit to the P-I curve of Picochlorum at 10 ppt in low phosphate 
(LP) for a replicate.  
 
 
Parameter Value  StdErr  CV(%)  Dependencies 
 
Pmax   1.639e+1  9.584e-1  5.849e+0  0.5673629 
Rd   7.541e-2  7.657e-1  1.015e+3  0.7376853 
α   1.385e-1  2.380e-2  1.719e+1  0.5221345 
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Appendix D.8  Table for non-linear regression parameters and graph showing Jassby 
and Platt’s function fit to the P-I curve of Picochlorum at 50 ppt in low phosphate 
(LP) for a replicate.  
 
 
Parameter Value  StdErr  CV(%)  Dependencies 
 
Pmax   1.725e+1  1.550e+0  8.985e+0  0.5983775 
Rd  -1.915e+0  1.273e+0  6.648e+1  0.7565408 
α   1.722e-1  4.608e-2  2.676e+1  0.5360453 
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Appendix D.9  Table for non-linear regression parameters and graph showing Jassby 
and Platt’s function fit to the P-I curve of Picochlorum at 100 ppt in low phosphate 
(LP) for a replicate.  
 
 
Parameter Value  StdErr  CV(%)  Dependencies 
 
Pmax   1.080e+1  3.672e-1  3.399e+0  0.5975630 
Rd  -7.910e-1  3.014e-1  3.810e+1  0.7560352 
α   1.072e-1  1.086e-2  1.013e+1  0.5356355 
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Appendix D.10  Table for non-linear regression parameters and graph showing Jassby 
and Platt’s function fit to the P-I curve of Picochlorum at 10 ppt in no added iron (-
Fe) medium for a replicate.  
 
 
Parameter Value  StdErr  CV(%)  Dependencies 
 
Pmax   1.178e+1  1.072e+0  9.100e+0  0.7727544 
Rd  -1.487e+0  9.876e-1  6.642e+1  0.8576216 
α   2.766e-1  7.594e-2  2.745e+1  0.6473311 
 
 
 
 

Photon flux density (umol.m-2.s-1 )

0 500 1000 1500

N
et

 o
xy

ge
n 

ex
ch

an
ge

 (u
m

ol
.1

0-9
.c

el
ls

-1
.h

r-1
) 

-5

0

5

10

15

20

25

30

10 -Fe1 
10 -Fe2 
10 -Fe3 
Fitting curve 

 
 
 
 
 
 

 140



Appendix D.11  Table for non-linear regression parameters and graph showing Jassby 
and Platt’s function fit to the P-I curve of Picochlorum at 50 ppt in no added iron (-
Fe) medium for a replicate.  
 
 
Parameter Value  StdErr  CV(%)  Dependencies 
 
Pmax   1.279e+1  1.548e+0  1.211e+1  0.7009229 
Rd  -7.735e-1  1.385e+0  1.790e+2  0.8205483 
α   2.101e-1  8.067e-2  3.840e+1  0.6039127 
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Appendix D.12  Table for non-linear regression parameters and graph showing Jassby 
and Platt’s function fit to the P-I curve of Picochlorum at 100 ppt in no added iron (-
Fe) medium for a replicate.  
 
 
Parameter Value  StdErr  CV(%)  Dependencies 
 
Pmax   8.078e+0  4.890e-1  6.054e+0  0.7503222 
Rd  -5.043e-1  4.480e-1  8.884e+1  0.8469803 
α   1.671e-1  3.158e-2  1.890e+1  0.6359717 
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