
 

THYMIC EPITHELIAL CELL TRANSPLANTATION 

TO THE HOST THYMUS: STUDIES  

IN IMMUNOMODULATION AND  

TOLERANCE INDUCTION 

 
 
 

By 
 

SANDRA SORAYA SANDS 
 

Doctor of Osteopathic Medicine 
College of Osteopathic Medicine, Oklahoma State 

University  
Tulsa, Oklahoma 

1997 
 
 
 
 
 
 

Submitted to the Faculty of the  
Graduate College of the  

Oklahoma State University  
in partial fulfillment  
of the requirements  
for the Degree of  

DOCTOR OF PHILOSOPHY 
May, 2005



 

 

 

 

 

 

 

 

 

COPYRIGHT 

By 

Sandra Soraya Sands 

May, 2005 

 

 

 

 

 

 



 
 

THYMIC EPITHELIAL CELL TRANSPLANTATION 

TO THE HOST THYMUS: STUDIES  

IN IMMUNOMODULATION AND  

TOLERANCE INDUCTION 

 
 

Dissertation Approved: 
 

Robert J. Ketchum, Ph.D. 
  

Dissertation Advisor 
 

William D. Meek, Ph.D. 
  

 
 

Joseph A. Price III, Ph.D. 
  

 
 

Gary H. Watson, Ph.D. 
  

 
 

Charlotte L. Ownby, Ph.D. 
  

 
 

A. Gordon Emslie, Ph.D., D.Sc. 
  

Dean of the Graduate College 

ii



 

 

 

 

 

 

 

 

 
This work is dedicated to: 

 

Mr. Bob Jones, 

Dr. Thomas Wesley Allen, 

Osteopathic Medicine, 

and my dad.   

 

 

 

 

 

 

 

 

iii



ACKNOWLEDGEMENTS 

 

I am indebted to Gregg Hott who accepted me into his life and treated me like a 

partner.  Thanks to his constant support, unsurpassed patience, skillful technical 

assistance and editing, and words of hope, all of which allowed me to prioritize 

the completion of this project over all other things. 

 

A special thank you to three people who not only helped in the technical aspects 

of this work, but who also have become dear friends: Oza McClain, Carolyn 

Christel, and Jeff McCosh.   

 

Also, thanks to all of those special people who have helped me with the 

production of this work: my brother Dr. Steven Sands, my mom Gail Sands, 

Steve Phillips, Crystal Remy, Ginger Hendricks, Crystal Schulz, Dr. Eric Shupe, 

Dr. Geoff Filmore, Dr. James Burleson, and Dr. Lisa Roche.   

 

Special thanks to Dr. Joseph Price, Dr. Gary Watson, and Dr. David John, who 

introduced me to Biomedical Research; Dr. Thomas Wesley Allen, who always 

believed in me and suggested I pursue this Ph.D. with Dr. Robert Ketchum as my 

advisor; Dr. Bill Meek for his leadership, support, and friendship; Dr. Charlotte 

Ownby for her approachability and words of wisdom; Dr. Kirby Jarolim 

iv



for more words of wisdom; Dr. Lee Rickords for his collaboration; Dr. Jun 

Hayashi for offering advice and generously donating cells for our preliminary 

research; the late Dr. James Taylor who was my friend and confidant; and to my 

dissertation advisor, Dr. Robert Ketchum, for his expertise, his ambition, and for 

taking me on as his first graduate student. 

 

This work could not have been completed without intramural funds from the 

Oklahoma State University Center for Health Sciences Department of Anatomy 

and Cell Biology under the advisement of Dr. Kirby Jarolim and the Department 

of Research under the advisement of Dr. Gary Watson.   Also, thank you to the 

Oklahoma State University Graduate Department for three years of stipend 

support under the advisement of Dr. David John.  

v



TABLE OF CONTENTS 
 
Table of Contents vi 
List of Tables x 
List of Figures xi 
List of Abbreviations and Symbols xiii 
 
 ABSTRACT 1 
  
CHAPTER 1. TRANSPLANTATION, THE IMMUNE SYSTEM, AND THYMIC  6 
 EPITHELIAL CELLS IN TOLERANCE INDUCTION  
 
1.1. INTRODUCTION 6 
1.2. THE HISTORY OF TRANSPLANTATION 7 

1.2.1. Immunology and Transplantation 11 
1.3. THE EVOLUTION OF 21ST CENTURY TRANSPLANTATION 13 

1.3.1. Blood Transfusion 13 
1.3.2. Vascularized Transplantation 14 
1.3.3. Nonvascularized Transplantation 18 
1.3.4. Cellular Transplantation 20 

1.4. COMMON CHARACTERISTICS OF TRANSPLANTATION 22 
1.5. THE MAJOR HISTOCOMPATIBILITY COMPLEX (MHC) 23 

1.5.1. Presentation Through MHC Class II 24 
1.5.2. Presentation Through MHC Class I 25 

1.6. OVERVIEW OF IMMUNE SYSTEM DEVELOPMENT 27 
1.6.1. Arrangement of the Thymus Gland 29 
1.6.2. Origin of TECs  32 
1.6.3. TEC Function in Immune System Development 33 
1.6.4. Positive and Negative Thymic Selection 34 

1.7. OVERVIEW OF HUMORAL AND CELL-MEDIATED IMMUNITY 35 
1.7.1. Requirement of Antigen Presentation 41 

1.7.1.a. Presentation of Alloantigens 42 
1.7.1.b. The Second Signal or Costimulatory Factor 43 

1.7.2. Cells Capable of Antigen Presentation 45 
1.7.2.a. Cell Types and Their Distribution 45 
1.7.2.b. Origin of APCs  45 

1.7.3. Functions of TECs in Antigen Presentation 46 
1.8. OVERVIEW OF THE IMMUNE RESPONSE TO TRANSPLANTATION 47 

1.8.1. The Normal Physiologic Response to Graft Placement 47 
1.8.2. The Immunologic Process of Graft Rejection 50 

1.8.2.a. Hyperacute Graft Rejection 51

vi



1.8.2.b. Acute and Delayed Accelerated Graft Rejection 52 
1.8.2.c. Chronic Graft Rejection 55 
1.8.2.d. Graft vs. Host Disease 56 

1.9. PREVENTING GRAFT REJECTION 57 
1.9.1. Immunosuppression  59 
1.9.2. Immunomodulation and Donor-Specific Immune Tolerance 65 

1.9.2.a. Intrathymic (IT) Transplantation and Central Tolerance 67 
 Induction Through Thymic Reeducation 

1.9.2.a.1. Maintenance of the T Cell Repertoire 68 
1.9.2.b. Intrathymic Inoculation of Soluble Proteins and Non-Viable  71 
 Cells and Tolerance Induction  
1.9.2.c. Intrathymic Inoculation of Cells and Tolerance Induction 73 

1.9.2.c.1. Tolerance Induction with Islets of Langerhans 73 
1.9.2.c.2. Tolerance Induction with Renal Glomeruli 73 
1.9.2.c.3. Tolerance Induction with Bone Marrow 74 
1.9.2.c.4. Tolerance Induction with Spleen Cells 74 

1.9.2.d. Use of TECs in Thymic Reeducation  75 
1.9.2.d.1. Primary Culture of Mammalian TECs 75 

1.9.2.d.1.a. The Demand for Interest in Primary  75 
 Keratinocyte Cell Lines and Application to TEC 

Cultures  
1.9.2.d.1.b. Previous Reports of TEC Isolation 79 
1.9.2.d.1.c. Culture Conditions and Supplements 79 

1.9.2.d.2. Immortalization (Transformation vs. 83 
Nontransformation) 

1.9.2.e. Tolerance Induction and Gene Therapy 84 
 
CHAPTER 2. ESTABLISHMENT AND MAINTENANCE OF A RAT  86 

PRIMARY THYMIC EPITHELIAL CELL LINE 
 
2.1. INTRODUCTION 86 
2.2. MATERIALS AND METHODS 88 

2.2.1. Animals 88 
2.2.2. Neonatal Thymus Gland Excision 88 
2.2.3. Preparation of Thymic Cell Suspension -- Enzymatic In Vitro  89 

TEC Isolation 
2.2.4. Pure Thymic Epithelial Cell Culture 91 

2.2.4.a. Passaging of Thymic Epithelial Cells 94 
2.2.4.b. Cryopreservation and Cryogenic Storage of Thymic 95 

Epithelial Cells 
2.2.5. Morphological Analysis of Thymic Epithelial Cells by Light  95 

Microscopy  
2.2.5.a. Immunocytochemical Labeling of Thymic Epithelial Cells 95 

for Keratin  
2.2.5.b. Immunocytochemical Labeling of Thymic Epithelial Cells 97 

for Vimentin  

vii



2.2.5.c. Staining Procedure using Diaminobenzidine as Chromogen 98 
2.2.6. Morphological Analysis of Thymic Epithelial Cells by Phase  99 

Contrast Microscopy  
2.2.7. Morphological Analysis of Thymic Epithelial Cells by 99 

Transmission Electron Microscopy  
2.3. RESULTS 100 

2.3.1. Establishing Primary Cultures of WF Thymic Epithelial Cells 101 
2.3.1.a. Maintaining Primary Cultures of WF Thymic Epithelial  104 

Cells 
2.3.2. Establishing Primary Cultures of LDA Thymic Epithelial Cells 104 

2.3.2.a. Maintaining Primary Cultures of LDA Thymic Epithelial  106 
Cells  

2.3.2.b. Effects of Cholera Toxin Concentration 107 
2.3.3. Establishing Primary Cultures of Lewis Thymic Epithelial Cells 108 

2.3.3.a. Maintaining Primary Cultures of Lewis Thymic Epithelial 111 
Cells 

2.3.4. Establishing Primary Cultures of DA Thymic Epithelial Cells 111 
2.3.4.a. Maintaining Primary Cultures of DA Thymic Epithelial 113 

Cells 
2.3.5. Immunocytochemistry and Verification of TECs 113 
2.3.6. Electron Microscopy and Verification of TECs 115 

2.4. DISCUSSION 118 
 
CHAPTER 3. EVALUATION OF INDUCED MORPHOLOGICAL 120 
 CHANGES IN THYMIC EPITHELIAL CELLS 
 
3.1. INTRODUCTION 120 
3.2. MATERIALS AND METHODS 121 

3.2.1. Phase Contrast Microscopy of TEC 121 
3.2.2. Light Microscopy and Immunocytochemistry 121 

3.2.2.a.  Staining Procedure using Diaminobenzidine as  123 
Chromogen  

3.2.3. Transmission Electron Microscopy 123 
3.2.3.a. Quantification of Adherent Junctions and Apposed 124 

Membranes 
3.3. RESULTS  125 

3.3.1. Light Microscopy: Morphological Analysis of Calcium-Induced 126 
Thymic Epithelial Cell Changes 

3.3.1.a. Phase Contrast Morphological Analysis of Thymic  127 
Epithelial Cell Changes to Compare Effects of Differing  
Culture Conditions on TEC Morphology 

3.3.1.b. Immunocytochemistry to Compare Effects of Differing  129 
Culture Conditions on TEC Morphology 

3.3.2. Transmission Electron Microscopy to Compare Effects of  134 
Differing Culture Conditions on TEC Morphology 

3.3.2.a. Length of Apposed Membranes 135 

viii



3.3.2.b. Number of Desmosomes 136 
3.3.2.c. Length of Desmosomes 137 

3.4. DISCUSSION 138 
 
CHAPTER 4. IMMUNOMODULATION WITH TECs 139 
 
4.1. INTRODUCTION 139 
4.2. MATERIALS AND METHODS 143 

4.2.1. Animals 143 
4.2.2. Intraperitoneal Injection of Antilymphocyte Serum 144 
4.2.3. Bone Marrow Harvest 145 
4.2.4. Intrathymic Transplantation 145 

4.2.4.a. Cell Preparation and Concentration of TECs 145 
4.2.4.b. Cell Preparation and Concentration of BMCs 146 
4.2.4.c. Intrathymic Inoculation Procedure 146 

4.2.4.c.1. Intrathymic Inoculation of TECs 148 
4.2.4.c.2. Intrathymic Inoculation of BMCs 148 

4.2.5. Challenge Grafts – Harvest and Preparation 148 
4.2.5.a. Challenge Grafts - Pancreas Harvest and Preparation 149 
4.2.5.b. Challenge Grafts - Thyroid Harvest and Preparation 150 
4.2.5.c. Placement of Challenge Grafts 151 

4.2.6. Excision and Processing of Grafts 153 
4.2.6.a. Macroscopic Evaluation of Grafted Tissue 153 
4.2.6.b. Renal Subcapsular Graft Excision 153 
4.2.6.c. Fixation, Embedding, Sectioning, and Mounting 154 
4.2.6.d. Staining for Histological Examination 155 

4.2.7. Histological Examination and Immune Scoring of Grafts 156 
4.2.7.a. Statistical Analysis 163 

4.3. RESULTS 163 
4.3.1. The Natural History of Allograft Rejection: Temporal Studies  163 
  in the Course of Immune Rejection 
4.3.2. Allogeneic Transplantation from DA to Lewis Rats 170 
4.3.3. Allogeneic Transplantation from Lewis to DA Rats 176 

4.3.3.a. DA Syngeneic and Lewis Syngeneic Graft Controls 182 
4.4. DISCUSSION 184 
 
CHAPTER 5. DISCUSSION AND OVERVIEW 186 
 
5.1. THYMIC EPITHELIAL CELL CHARACTERISTICS 187 
5.2. GENERATION OF IMMUNOLOGICAL UNRESPONSIVENESS TO 195 

INTRATHYMIC TRANSPLANTATION OF ALLOGENEIC TISSUE  
5.3. GENETIC TRANSFECTION OF THYMIC EPITHELIAL CELLS 197 
5.4. ROLE OF TECs FOLLOWED BY A SECOND GRAFT 199 
 
APPENDICES 205 
CITATIONS 206 

ix



LIST OF TABLES 
 

 
Table Page 
 
1.1. Side Effects of Corticosteroid Therapy 63 
 
2.1. Media Formulations Assayed for Applications in Primary TEC 92 

Culture  
 

3.1. Effects of Medium Calcium Concentrations on TEC Morphology 129 
3.2. Analysis of TECs for Juxtaposed Membrane Length 135 
3.3. Analysis of Desmosome/Membrane Relationship Between TECs 137 
3.4. Analysis of Desmosome Length in TECs 137 
 
4.1. Bone Marrow Transplantation and IT Tolerance Induction 142 
4.2. Lymphocytic Infiltration Scoring System 162 
4.3. Allograft Viability Scoring System 162 
4.4. DA to Lewis Challenge Grafts Followed by Varied IT Treatments 171 
4.5. Lewis to DA Challenge Grafts Followed by Varied IT Treatments 177 

 
A. Historical Events in Transplantation (Appendix) 205 

 

x



LIST OF FIGURES 

 
Figure Page 
 
2.1. Isolation of TECs with Cloning Cylinders 93 
2.2. Initial Appearance of Thymic Cells from the WF Strain 102 
2.3. Variety of Cell Types in Primary Thymic Culture 103 
2.4. Monolayer of Proliferative TECs from the LDA Hybrid Strain 106 
2.5. Lewis TECs in Primary Culture 111 
2.6. DA TECs at Moderate Density 112 
2.7. Immunocytochemistry on TECs with an Anti-cytokeratin Primary  114 
 Antibody 
2.8. Electron Microscopy of TEC Intermediate Filaments 116 
2.9. Electron Microscopy of TEC Desmosomes 117 
2.10. TECs Maintained in Low Calcium Medium 118 
 
3.1. Hoffman Phase Microscopy of TECs Maintained in Low Calcium  128 
 Medium 
3.2. Hoffman Phase Microscopy of TECs Maintained in High Calcium 128 
 Medium  
3.3. Low Magnification View of TECs in Low Calcium WAJC Medium 132 
3.4. Higher Magnification View of TECs in Low Calcium WAJC Medium 132 
3.5. Low Magnification View of TECs in High Calcium WAJC Medium 133 
3.6. Higher Magnification View of TECs in High Calcium WAJC Medium 133 
3.7. Transmission Electron Microscopy of TECs 134 
 
4.1. Graft Rejection and Lymphocytic Infiltration Scoring Systems 158 
4.2. Graft Fibrosis 159 
4.3. Graft Necrosis 159 
4.4. Graft Neutrophilic Infiltration 160 
4.5. Graft Macrophage Infiltration 160 
4.6. Graft Foreign Bodies 161 
4.7. Pancreatic Graft 2 Days Following Allogeneic Transplantation 164 
4.8. Pancreatic Graft 4 Days Following Allogeneic Transplantation 165 
4.9. Thyroid Graft 7 Days Following Allogeneic Transplantation 166 
4.10. Pancreatic Graft 10 Days Following Allogeneic Transplantation 166 
4.11. Pancreatic Graft 12 Days Following Allogeneic Transplantation 167 
4.12. Pancreatic Graft 14 Days Following Allogeneic Transplantation 168 
4.13. Pancreatic Graft 21 Days Following Allogeneic Transplantation 168

xi



LIST OF FIGURES (CONTINUED) 
 
Figure  Page 
 
4.14. Lymphocytic Infiltration Scores in the Natural History of Graft  169 
 Rejection 
4.15. Graft Rejection Scores in the Natural History of Graft Rejection 169 
4.16. Adolescent Rat Thymus Following Indian Ink Injection 170 
4.17. DA to Lewis Control Groups 172 
4.18. DA to Lewis Experimental Groups 174 
4.19. The Effect of Allogeneic IT TECs on Syngeneic Grafts 175 
4.20. Hoffman Phase Microscopy of Freeze-Thawed TECs 178 
4.21. Lewis to DA Control Groups 178 
4.22. Lewis to DA Experimental Groups 180 
4.23. Untreated Groups in Various Strain Combinations 183 
4.24. Lewis to Lewis Syngeneic vs. Lewis to DA Allogeneic Transplants 183 
4.25. DA to DA Syngeneic vs. Lewis to DA Allogeneic Transplants 184 
 
5.1. Light Microscopy of TECs Transfected Using Varied Techniques 198

xii



LIST OF ABBREVIATIONS AND SYMBOLS 

ALS antilymphocyte serum 
APC antigen presenting cell 
BM bone marrow 
BMC(s) bone marrow cell(s) 
CTLA cytotoxic T lymphocyte associated antigen 
DA Dark Agouti inbred rat strain (MHC haplotype Rt1a) 
DM dexamethasone 
DMSO dimethyl sulfoxide 
FCS fetal calf serum 
ECM extracellular matrix 
EGF epidermal growth factor 
ER endoplasmic reticulum 
ES equine serum 
ETOH ethanol 
GWAJC  WAJC media from GibcoBRL 
HBSS Hank’s Balanced Salt Solution 
IFs intermediate Filaments 
IL interleukin 
IFN-γ Interferon-gamma 
IP intraperitoneal 
IT intrathymic 
LDA 1st filial generation of Lewis crossed with Dark Agouti rat 
Lew Lewis inbred rat strain (MHC haplotype Rt1l) 
LFA leukocyte function associated antigen 
n number 
PBS phosphate buffered saline 
PSF penicillin/streptomycin/fungizone 
RPM revolutions per minute 
RSC renal subcapsular space 
SCS supplemental calf serum 
TEA3A1 TEC line of Lewis/DA strain from Dr. Hayashi 
TECs thymic epithelial cells 
TEM transmission electron microscopy 
TNF tumor necrosis factor 
VLA very late antigen 
WAJC W. Alton Jones Cell Research Center media

xiii



ABSTRACT 

 

The most significant determining factor in successful allotransplantation is the 

ability to avert graft rejection.  Innovative transplantation techniques have 

evolved to include presurgical and postsurgical immunosuppressive regimens, 

some of which continue to pose serious short- and long-term health risks.  The 

intrathymic (IT) inoculation of certain donor cell types into an adolescent recipient 

thymus gland in the circumstance of short-term immune ablation with a single 

intraperitoneal injection of antilymphocyte serum has been shown to induce 

tolerance to a variety of subsequent donor-specific grafts in many animal models 

of allogeneic transplantation.  Using this technique of immune re-programming, 

the resultant peripheral immune population has shown long-lasting efficacy in 

tolerance induction even after the withdrawal of non-donor-specific, systemically 

acting immunosuppressive drug regimens.  Cellular inoculates for IT tolerance 

induction have included donor splenocytes, spleen-derived dendritic cells, bone 

marrow cells, bone marrow-derived dendritic cells (included in the class of cells 

known as antigen presenting cells), renal glomeruli, and pancreatic islets of 

Langerhans.  To date, the potential of primary culture-immortalized thymic 

epithelial cells (TECs) to modify the host immune system using a similar 

experimental regimen has not been investigated in a rat model of allogeneic 
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transplantation.  This may be due to the difficulty in deriving and maintaining 

these cells as a readily available source for extensive experimentation.  

 

Although the mechanism by which IT inoculation of antigenic cells induces 

tolerance has not been fully elucidated, numerous studies have demonstrated 

the efficacy of this technique in inducing specific unresponsiveness in a host.  

These studies have confirmed a significant role for the thymus in immune 

maturation, antigen recognition, and induction of specific unresponsiveness 

(central tolerance).  It is believed that cell/tissue grafts within the thymus allow 

presentation of foreign antigens to immature host T cells, resulting in reeducation 

of the host immune system through clonal deletion of target specific cells by 

apoptosis.  The proven efficacy of IT bone marrow transplantation in tolerance 

induction studies has served as background for the use of bone marrow 

transplantation in several of today’s pre-transplant conditioning regimens for 

human tissue transplantation.  Some of the techniques used for total 

myeloablation prior to allogeneic bone marrow reconstitution in human pre-

transplantation conditioning regimens are associated with significant health risks 

related to a severely immunocompromised state.  Hematopoietic cell 

transplantation is not trivial as bone marrow is also limited in supply.  

Additionally, bone marrow lacks cellular uniformity, sometimes harbors viral 

contaminants, and current technologies aimed at primary bone marrow culture 

are limited.  TECs were chosen for this investigation based on their thymic origin, 

epithelial nature, cellular uniformity, and ability to be maintained and manipulated 
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in vitro.  Bone marrow cannot offer these same benefits.  In light of the ability of 

certain cells to induce intrathymic tolerance, it was initially hypothesized that a 

combination of gene therapy on TECs and intrathymic transplantation of the 

genetically altered TECs might form a new paradigm for the prevention or 

treatment of transplant rejection.  Before embarking on this project, the effects of 

unmanipulated TECs transplanted to the intrathymic environment had to be 

investigated.  It was hypothesized that peripheral reactive lymphocyte depletion 

with antilymphocyte serum followed by TEC transplantation to the thymic 

environment would result in repopulation of the immune repertoire with cells 

recognizing TEC antigens as self.  In such a paradigm, the immunogenic proteins 

expressed by TECs within the host thymus would function as tolerogens, 

resulting in the modification of the host immune repertoire.  This approach would 

allow the host immune system to be specifically modified to accept grafted tissue 

or cells without impinging on its ability to effectively respond to other foreign 

immunogens.   

 

The early studies outlined in this project sought to identify techniques of 

establishing primary cultures of TECs from a variety of donor rat strains.  TEC 

primary cultures were characterized in varying growth medium conditions using 

several parameters, including morphological changes, proliferative capacity, 

junction formation, cell contact, and terminal differentiation.  The best suitable 

culture conditions were defined for the establishment of the primary cultures as a 

cell line.  These TECs were then used in transplantation experiments to 
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determine their ability to induce allogeneic tolerance to subsequent donor 

matched grafts.  The experimental design in this project used a rat model of 

allogeneic tissue transplantation.  Graft rejection was based on rejection scores 

determined by a histological analysis of donor matched and mismatched 

transplanted tissue.  The tolerogenic effects of TECs upon intrathymic 

transplantation were compared to the tolerogenic effects of bone marrow cells 

upon intrathymic transplantation.  The comparison evaluated the ability of the 

intrathymic treatments to modify the natural history of graft rejection as quantified 

by the extent of lymphocytic infiltration, general inflammation, and preservation of 

structural architecture.  On a scale of 0 to 4, with a score of 4 indicative of the 

most aggressive graft rejection processes, intrathymic transplantation 

experiments revealed a reduction in mean graft lymphocytic infiltration from 

1.78±0.47 in the negative control groups (intrathymic saline, IP saline; n=10) and 

1.50±0.60 (intrathymic saline, IP ALS; n=8) to 0.25±0.25 (p < 0.01) in the positive 

control group (intrathymic bone marrow + ALS; n=8).  A reduction in graft mean 

lymphocytic infiltration to 1.00±0.31 in the experimental group (intrathymic TEC, 

IP ALS; n=16) occurred, but the p value did not reach statistical significance.  

Overall, the results revealed that IT inoculation of TECs results in some 

immunomodulation, although not reaching the same effectiveness as bone 

marrow.  This might be related to previous reports of a dual role for the TEC in 

both positive and negative selection.  Overall, it appears that intrathymic 

inoculation of TECs can be used to reeducate the host immune system following 

reactive peripheral lymphocyte depletion and may provide an opportunity for 
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future research using in vitro cellular manipulation techniques to further 

investigate pre-transplant conditioning regimens employing tolerance induction.   
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CHAPTER 1.  

TRANSPLANTATION, THE IMMUNE SYSTEM, AND THYMIC EPITHELIAL 

CELLS FOR TOLERANCE INDUCTION 

 

 

1.1. INTRODUCTION 

 

Transplantation offers a means of replacing absent or dysfunctional tissue with 

viable cells, tissues, or organs to meet the physiologic demands of the body.  

Autotransplantation involves transplantation within one individual; homogeneic or 

syngeneic transplantation involves transplantation between two histocompatibly 

matched individuals; and allogeneic transplantation (allotransplantation) involves 

transplantation between two histocompatibly mismatched individuals.  Xenogeneic 

transplantation involves transplantation between individuals from separate 

species.  Although there are documented reports of attempts to successfully 

transplant animal organs or tissues to humans dating as early as ancient Egypt 

and China circa 8,000 B.C. [1, 2], allotransplantation has been the mainstay of 

current investigations into successful human transplantation.  Great strides have 

been achieved in the successful replacement of organs, tissues, and cells.  

Advances in surgical techniques and graft treatments prior to transplantation have 

led to technical success in the placement of grafted organs and tissues.  
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Pharmacological discoveries have led to the development of immunosuppressive 

agents that are almost universally administered to prevent acute and chronic graft 

rejection.  New treatment regimens can even offer the possibility of graft survival in 

the transplantation of a completely genetically mismatched organ.  Nevertheless, 

pharmacological agents used to prevent graft rejection are associated with 

significant complications, indicating a need for an alternative treatment which is as 

effective in reducing immune rejection process. 

 

This chapter will summarize the history of transplantation through the 21st century, 

explain normal immune system development and mechanisms of immune function, 

describe categories of graft rejection and ways of preventing it, and introduce 

tolerance induction mechanisms as a method of bypassing toxic 

immunosuppressive regimens and inducing antigen-specific immune 

unresponsiveness.  

 

 

1.2. THE HISTORY OF TRANSPLANTATION  

 

Blood transfusions and dental transplantation have been documented as far back 

as the 15th century.  Prior to the late 18th century, transplantation focused on 

replacement of limbs and teeth, and transferring skin and other body parts from 

one animal to another.  By the late 19th and early 20th centuries, a number of 

unsuccessful animal transplants were attempted using animal organs, including 
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kidney transplants between dogs.  The first reliable report of a human transplant 

surgery was a skin graft performed by Dr. Carl Bunger in 1823, although it is not 

reported whether this surgery was successful.  It was not until early in the 20th 

century that successful transplants between humans were reported, offering new 

avenues of renewed health.  The concerted efforts of researchers and 

physiologists helped to develop the surgical techniques needed for performing 

successful transplants, but rejection still remained a problem.   

 

Through the late 19th and early 20th centuries, corneal transplants, skin allografts, 

joint and vascular reconstruction, and blood transfusions became commonplace.  

In the 1920’s and 1930’s, the concept of "self versus non-self" was starting to 

become recognized and the field of transplant immunology was born.  Dr. Emile 

Holman, a young Boston surgeon, suggested from his results in skin 

transplantation that host immunity increased after a second grafting from the 

initial donor but not from a third party.  [1]  In 1937, Dr. J. B. Brown transplanted 

skin between identical twins and made a comparison between the indefinite 

survival of these grafts and the gradual “absorption” of maternal skin on burned 

patients.  In 1942, Oxford zoologist, Dr. Peter Medawar, was able to demonstrate 

the impracticality of allografts compared to autografts and reported hastened 

destruction of second allografts, concluding that accelerated rejection involved 

the “destruction of foreign epidermis…brought about by a mechanism of active 

immunization.”  These ingenious perceptions led to the induction of Sir Medawar 
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as “the father of transplantation biology”.  [3]  A more detailed outline of historical 

events in transplantation can be found in tabular form at Table A. 

 

“The replacement of diseased organs by healthy ones has been a milestone of 

medicine in the mid-twentieth century.”  [1]  However, organ transplant success is 

quite limited due to a number of factors, including availability of donor organs, 

immune graft rejection, and the side effects of immunosuppression.  One way to 

eliminate graft rejection is to use the recipient’s own tissue when possible (blood, 

skin, bone marrow, blood vessels).  Although successful experiments in renal 

transplantation in animals can be documented as early as 1902, it was 50 years 

later before the first successful living-related human kidney transplant. [4]  This 

was followed by venous allografts, kidney transplants between genetically 

mismatched siblings, cadaveric kidney, liver, lung, kidney-pancreas, heart, and 

pancreas transplantation.   

 

The accomplishments of early transplant surgeons and the growing popularity of 

organ transplantation led to many practical and ethical issues related to donor 

organ availability.  The establishment of brain death criteria in 1968 served to 

increase the supply of viable donor tissue for transplantation.  [5]  However, most 

of today’s graft recipients still must remain on a waiting list.  (In 2004, according 

to the United Network for Organ Sharing [UNOS], there were approximately 

14,000 donors available for nearly 90,000 recipients on the transplant waiting list 
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in the United States alone.)  The establishment of UNOS in the 1980’s supported 

organ procurement organizations and outlawed the purchase and sale of organs.   

 

Cryopreservation and biologist Dr. Jean-Francois Borel’s discovery of the 

immunosuppressant cyclosporine in 1972 (not clinically used until 1982) have 

been pivotal in the development of modern transplantation techniques.  The 

development of organ preservation solutions (e.g. Viaspan or University of 

Wisconsin [UW] solution) for improved organ preservation during cold storage 

and transport has led to significant improvements and greater success rates in 

transplantation by reducing the incidence of primary graft non-function (heat 

shock, reperfusion injury, ischemia).  [6] Simultaneous multiple organ 

transplantation has also led to increased success.  As success in transplantation 

has progressed, the demand for donors has grown.  In order to supply increasing 

demands, artificial tissue has been used to replace missing or dysfunctional 

tissue.  Through the 1980’s, artificial heart, single-lung, heart-liver, double-lung, 

and liver-small intestine transplantation techniques and protocols were 

established.   

 

Still, the increasing demand for viable transplantable tissues has led researchers 

to explore other avenues, such as advanced immunotherapies that would 

improve transplantation efficacy and xenotransplantation techniques that would 

allow extrahuman expansion of the donor pool.   

 

10



1.2.1. Immunology and Transplantation 

 

In 1863, it became well documented that tissues transplanted from one person to 

another resulted in graft rejection.  Forty years later, this graft rejection was 

classified as immunologic in nature.  Irradiation by X-rays became the first 

available method of immunosuppression in the 1950’s, and after the 1958 

discovery of the histocompatibility gene complex and the development of tissue 

typing and matching, transplantation underwent a transformation from a technical 

science to an immunological science.  Namely, transplant surgeons had 

previously focused on technical aspects of transplantation, but the limited 

success of transplants impeded by the immunologic process of graft rejection led 

to a focus on preventing immune mechanisms that would destroy a technically 

well-placed graft.  Minimizing histocompatibility differences, along with early anti-

rejection medications like prednisone, azathioprine (Imuran), and anti-lymphocyte 

serum, offered some limited protection from rejection, but greatly increased the 

risk of postoperative infection.   

 

Lymphocytes were functionally distinguished and divided into T and B cell 

subsets in the late 1960’s, and not until the 1970’s were subsets of T cells 

defined using antibodies developed with recently discovered monoclonal 

antibody technology.  [1] Overall improvements in graft survival coincided with 

the conceptualization by Dr. Alfred Singer of subpopulations of T helper/inducer 

cells and the T cell receptor-MHC antigen interaction.  Since the FDA’s approval 
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of cyclosporine, there has been significantly reduced graft rejection and longer 

graft survival times with improved quality of life in many transplant recipients.  

The Nobel Prize for Medicine was shared between Dr. Joseph Murray in 1990 for 

his work in kidney transplantation and Dr. George Hitchings for his work in 

chemical immunosuppression.  Dr. E. Donnall Thomas was also awarded the 

Nobel Prize for bone marrow transplantation as a practical therapy in the 

treatment of leukemia.  Transplantation techniques have increased in complexity 

even since the 1990’s, employing newer, more sophisticated immunosuppressive 

agents whose mechanisms of action can be defined at the cellular level, and in 

some cases, the molecular level.  These agents continue to offer improved graft 

survival with fewer side effects.  The later part of the 20th century (1980-1999) 

also brought advances in immunology, tissue typing, and surgical techniques; as 

well as advances in organ donation, distribution, and preservation. In addition, 

the passage of several laws has provided additional support and direction to 

organ donation and transplantation in the United States. The Uniform Anatomical 

Gift Act of 1968 and the National Organ Transplant Act of 1984 began the 

process of establishing the organ donation and transplantation system that we 

know today. [7-9] Over the years, other federal polices and laws have provided 

for Medicare coverage and medication funding for some qualified transplant 

recipients.   

 

Because of the disparity between donor supply and recipient demand, transplant 

waiting lists are rapidly growing.  A combination approach has been developed to 
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curtail this disparity: the expansion of the donor pool and the advancement of 

immunosuppressive therapy, despite its side effects.  Many transplant centers 

have come to accept the use of living, unrelated donors in kidney 

allotransplantation.  The immunosuppressive regimens of today have allowed 

biologically unrelated donors the option of transplantation.   

 

The 21st century holds the promise of many new and exciting advances in the 

field of transplantation which include artificial organs and support devices, stem 

cells as sources of functional transplantable tissue, xenotransplantation (the use 

of animal cells and organs), advances in living and cadaveric organ donation, 

splitting of organs to help multiple recipients, and development of better anti-

rejection medications.  At the forefront of transplantation science, future studies 

may allow a better understanding of the immune system and specific applications 

of immunomodulatory treatments in the prevention of graft rejection.   

 

 

1.3. THE EVOLUTION OF 21ST CENTURY TRANSPLANTATION 

 

1.3.1. Blood Transfusion 

 

The most common form of transplantation performed in modern medicine is the 

blood transfusion.  The first successful blood transfusion was performed in 1818 

by Dr. James Blundell.  Transfusions became more widespread in World War I 
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following the discovery of blood group antigens by Dr. Karl Landsteiner, and the 

first use of an effective anticoagulant for stored blood, sodium citrate, in 1914.  

[10, 11]  Early blood transfusions were associated with transfusion reactions and 

infections, but over the past 90 years, advances in immunology and chemistry 

have transformed blood transfusions from harrowing experiences to a routine 

and relatively safe form of treatment.  The allogeneic blood supply is screened 

for viral antibodies, antigens, and nucleic acids, elevated enzyme levels, and 

evidence of syphilis.  The ability to screen for these particular elements, and to 

remove contaminated blood from the blood supply, has greatly increased the 

success of transfusion.  In terms of transplantation immunology, transfusion may 

elicit the formation of antibodies reactive to antigens on the donor red blood cells, 

leukocytes, or platelets.  Many transfusion recipients will become transiently 

febrile.  Significant transfusion reactions are generally limited to blood group 

antigen disparities, mostly commonly due to human error. 

 

1.3.2. Vascularized Transplantation 

 

An organ is a fully differentiated unit of tissues with specific cellular architecture 

that is specialized to work in concert to perform specific functions.  Each organ’s 

survival and function is dependent upon the provision of an adequate blood 

supply, and transplanted organs require the maintenance of patent vascularity 

following transplantation.   
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Among the most frequently transplanted single organs are the kidney, heart, liver, 

pancreas and lung.  An alternative to multiple single organ transplantation is the 

option of combined organ transplantation.  Combined organ transplants are 

designed to share a common, extensive vascular supply, and are therefore more 

likely to survive.  Frequently combined transplants include heart-lung.  

Bowel/cluster transplants or multivisceral transplants can be used to replace the 

function of multiple organs including the small bowel.  Additionally, large flaps of 

tissue (full thickness skin, muscle) that require an extensive blood supply can be 

successfully transplanted with vascular anastomoses.  While graft rejection 

following vascularized transplantation is still a common complication, the major 

cause of hospitalization during the first post-transplant year is infection [12], with 

graft versus host disease a significant complication in cluster transplantation. 

 

Immunosuppressive drug regimens that include multiple agents, each working 

through a different mechanism of action, have evolved to effectively reduce graft 

rejection and support survival of transplanted organs.  Although conventional 

immunosuppression includes triple therapy with sirolimus, cyclosporine, and 

prednisone, the specifics of which will be discussed in following sections, individual 

drug-related toxicity, recipient-related risk factors, and donor organ characteristics 

are all taken into account when deciding upon an immunosuppressive treatment 

regimen [13].  Most protocols combine a primary immunosuppressant (e.g. 

cyclosporine or tacrolimus) with one or two adjunctive agents (e.g. azathioprine, 

mycophenolate mofetil, sirolimus, corticosteroids).  These improvements in 
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immunosuppression have made allograft rejection “the exception rather than the 

rule” [14], reducing acute cellular rejections to about 10-20%.  [15] The reduced 

incidence of acute and chronic renal graft rejection has allowed renal 

transplantation to replace hemodialysis as the preferred hemofiltration option in 

end-stage renal disease.  [14]   

 

Heart, lung, and combined heart-lung transplants have been clinical options for 

resuming adequate circulation and gaseous exchange in congenital heart disease 

patients and those patients with end-stage heart and lung disease, and have been 

a standard part of the treatment paradigm for selected patients with these 

diseases over the past 35 years.  Emphysema and chronic obstructive pulmonary 

disease account for the pathology associated with the majority of single lung 

transplants, while the most frequently reported indication for heart transplantation 

in the United States is coronary artery disease.  The recipient’s medical condition 

is the most important factor in patient survival following lung transplantation, while 

the recipient’s age, gender, and race are the significant determining factors for 

successful heart transplant outcomes. [12] 

 

The indications for liver transplantation have expanded greatly, and techniques 

have been simplified over the years.  As the waiting list for liver transplantation 

continues to grow, and numbers of cadaveric donors remains static, the 

availability of transplantable livers cannot keep up with need.  The proliferative 

capacity of hepatocytes has made the use of live donors and the procurement of 
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split-liver grafts for two recipients a scientifically and medically sound approach 

towards reducing the shortage of donor organs.  [16] For unknown reasons, the 

liver is known to be associated with a downregulated immune response and 

excellent graft survival.  Although it has been reported that up to 70% of patients 

develop acute liver rejection, this often spontaneously resolves and chronic 

rejection is rarely seen.  [17] Because of the relatively forgiving nature of liver 

transplantation, cadaveric donors, living-unrelated related donors, and older 

donors with co-morbidities and moderate elevations in liver function tests can be 

added to the relatively small pool of living related donors to address the 

increasing demands for donors.  [16] Exploring beyond the realm of human 

transplantation, xenotransplantation (transplantation of tissue between disparate 

species) has been attempted to expand the donor pool for heart, liver, and kidney 

transplantation.  Attempts at xenotransplantation from chimpanzees and baboons 

to humans have been limited by hyperacute rejection due to preformed 

antibodies.  Molecular genetic techniques offer the option of knocking out genes 

that encode cell surface antigens prior to xenotransplantation.  Large offspring 

numbers and appropriate organ size for human transplantation make porcine to 

human xenotransplantation a realistic option for meeting increased demands for 

donors.  There is still concern about the threat of latent viruses in animal tissue.   

 

In diabetic patients, pancreas transplantation is routinely performed along with the 

scheduled kidney transplantation (often due to renal failure secondary to diabetes) 

and dramatically improves the quality of life of the patient.  The probability of 
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success of pancreas transplantation has reached that of other organ transplants.  

However, the inherent cotransplantation of surrounding exocrine pancreatic tissue 

along with the endocrine pancreatic islets is unnecessary and associated with 

complications such as enzymatic tissue damage.  Isolated islet transplantation, as 

will be described below, offers a more specific means of resupplying the recipient 

with needed insulin producing beta cells.   

 

1.3.3. Nonvascularized Transplantation 

 

Tissues are composed of uniform cells which are organized to perform a specific 

function.  Unlike an organ, a tissue’s viability does not depend on an organized 

vascular supply.  When faced with removal from its source of vascular perfusion, a 

tissue, if placed in a nurturing environment, will be infiltrated and perfused by 

surrounding blood vessels through the process of neovascularization.  Commonly 

transplanted tissues include skin, bones, ligaments/tendons, corneas, and heart 

valves.   

 

Skin transplantation is usually used to replace epidermal regions damaged by 

trauma (e.g. burns) or by disease (e.g. cancer).  Split thickness skin grafting 

involves a skin harvest which is processed to form a mesh, allowing expansion of 

the graft for greater surface area coverage compared to a full thickness skin graft.  

The prognosis for autologous skin engraftment is usually excellent but allogeneic 

skin engraftment still presents a challenge.   
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Bone transplantation may involve the use of live autologous cortical bone 

harvested from the ilium of the patient.  However, the recovery from this procedure 

is painful and associated with excessive bleeding.  Cryopreserved bone matrix 

(fibular strut) allografts are commonly used as structural support for osteogenesis 

in spinal fusion surgery.  The recipient’s blood is used to infiltrate the non-living 

graft with autologous cells.  Minimal graft rejection is associated with this process. 

 

Structural reinforcement can be accomplished with the proper placement of dense 

connective tissue, such as ligaments or tendons.  Most of the time this involves 

autologous grafting.  These tissue allografts are associated with very little 

complications other than ischemia. 

 

Corneal transplantation is used to replace a damaged cornea.  The avascularity of 

the cornea is the principal feature which determines its immunologic privilege.  The 

trauma of corneal transplantation surgery can compromise this privilege, exposing 

the graft to the host immune system. Studies over the past 50 years have 

demonstrated that inflammation and neovascularization predispose a corneal graft 

to the cell-mediated immune rejection response.  Fortunately, the antigenicity of 

corneal cells is comparatively low.  Topically applied immunosuppressive 

compounds can be used to prevent inflammation and vascularization, thus 

blocking T cell activation.  Blocking antibodies (to CTLA4, for example) and soluble  

coreceptor blocking agents have led to a considerable reduction of corneal 

allograft rejection.  [18] 
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Although the procedure is associated with significant mortality risks, replacement 

of the native aortic valve with a heart valve prosthesis has become one of the most 

frequently performed procedures in cardiac surgery. [19] Biologic valve 

prostheses, although limited in durability, offer an alternative to lifelong 

anticoagulation associated with mechanical prostheses. 

 

1.3.4. Cellular Transplantation 

 

Individual cells or cell clusters can be transplanted to a recipient to replace 

important physiologic roles lost to disease or damage.  When applicable, cellular 

transplantation offers a safer, less costly alternative to organ transplantation.  

Cellular transplantation involves the transplantation of such small volumes that 

the benefits of immunologically privileged site placement can be exploited.  

Immunologically privileged sites are parts of the body where the immune system 

is prevented from mounting an effective attack. They include the eye, testis, 

brain, placenta, and thymus gland, but only the eye's privileged status has so far 

been exploited (for corneal grafting) in humans. Many factors are involved in 

immune privilege, such as tight junctions between the cells of the tissue, little 

expression of MHC Class I molecules, and expression of the apoptotic-inducing 

ligands on the cell surface (such as Fas).   

 

Although pancreatic islets of Langerhans may be considered as tissues, or even 

as organs, due to their variety of interacting cell types and independent vascular 
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supply, they are included in this section.  Islet transplantation is a more specific 

alternative to pancreas transplantation for the replacement of insulin producing 

beta cells and can significantly reduce surgical morbidity.  Unfortunately, reduced 

beta cell mass occurs with organ dispersal and islet purification.  Recent progress 

in the field of pancreatic islet transplantation, most notably in Edmonton, Canada, 

has led to recipient insulin independence following single donor islet 

transplantation.  [20] However, current immunosuppressive drug regimens are 

complicated by the potential of dangerous systemic comorbidities associated with 

a non-specific mode of action.  Many immunosuppressive agents also 

demonstrate significant islet cell toxicity.  (Chaib, 1994) Diabetogenic 

immunosuppressants should be eliminated in order to allow optimal survival and 

function of the grafted islets, since lack of glycemic control can influence the 

survival of newly transplanted islets.  [21] Immunosuppressants such as 

mycophenolate mofetil and rapamycin do not appear to be as toxic as 

corticosteroids and cyclosporine.  [15] Cellular transplantation also offers the 

possibility of donor-specific tolerance induction.   

 

Other cellular transplants include bone marrow, epithelial cells, neural cells, 

myoblasts, and hepatocytes.  Bone marrow transplantation is performed to replace 

the hematogenous cell population.  This is most commonly secondary to 

myeloablative diseases.  Bone marrow has also been shown to induce donor-

specific tolerance in a variety of transplantation models, as will be discussed 

further in Chapter 4.  Neural cell and myoblast replacement procedures are still in 
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experimental stages.  Hepatocyte transplantation through the inferior mesenteric 

vein is growing in popularity as an alternative to liver transplantation for the 

correction of acute liver failure, inherited liver based metabolic diseases and 

coagulopathies, and  

chronic liver diseases.  [22-24]  

 

 

1.4. COMMON CHARACTERISTICS OF TRANSPLANTATION 

 

Successful transplantation of organs, tissues, or cells requires adequate tissue 

perfusion and reduced graft rejection.  Tissue perfusion in organ transplantation is 

dependent upon the infusion technique used to reduce intravascular debris, the 

skilled surgical anastomosis of the donor and host vessels, and the ability to 

maintain an unimpeded vascular supply to the graft.  Tissue perfusion in non-

vascularized transplantation is dependent upon a supportive nutritive environment 

and an accommodating immune milieu that allows the development of a new 

vascular supply.  Reduction of graft rejection in most cases is achieved by ABO 

blood type matching between the donor and the recipient and by prevention of 

immune mechanisms involved in infiltration of the graft by effector cells. 
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1.5. THE MAJOR HISTOCOMPATIBILITY COMPLEX (MHC) 

 

Antigen presentation in allogeneic transplantation and discussions of the MHC go 

hand in hand.  This section is included to review the MHC complex as it relates to 

allogeneic transplantation.  The MHC is an array of genes on the small segment 

of chromosome 6 that encodes three structurally, functionally, and distributionally 

different products: 1) cell surface glycoprotein antigens designated as MHC 

Class I antigens, 2) cell surface glycoprotein antigens designated as MHC Class 

II antigens, and 3) soluble protein components of the complement system.  The 

MHC gene is designated Rt1 in the rat and H-2 in the mouse.   

 

The rat MHC was discovered at the turn of the 19th century when the growth of 

rat tumor cell lines could not be supported across mismatched strains.  [25] The 

genes of the MHC are the most polymorphic known, and it was not until 1999 

that the MHC of humans was sequenced.   

 

The principal physiologic function of class I and class II cell surface MHC 

molecules is to "present" antigenic peptides of foreign proteins to the appropriate 

antigen-specific T cells of the immune system.  T cells can recognize only 

membrane bound antigens (as opposed to B cells).  The MHC antigen is 

structured to form a small groove which holds a very small antigenic peptide in 

place on the surface of an antigen presenting cell for signal recognition by a T 

cell receptor (TcR).  [25] The antigenic peptide, usually about 9 amino acids long, 
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fits into a groove at the surface of either an MHC Class I or MHC Class II 

molecule.  The TcR is not able to recognize these small antigenic peptides 

without presentation in the context of an MHC because of the many stepwise 

signals involved in the TcR-MHC binding that are necessary for antigen 

presentation.  These peptides can include fragments of protein antigens derived 

from intracellular or extracellular parasites (viruses, bacteria, etc.).   

 

1.5.1. Presentation Through MHC Class II 

 

The Class II molecules consist of two transmembrane polypeptides: an alpha 

chain and a beta chain, and a groove is formed by the interaction of these 2 

chains.  Class II molecules are not as widely expressed in the body as the class I 

molecules are, being constitutively expressed primarily on hematogenously 

derived cells.  However, cells where inflammation is occurring may be induced to 

express class II strongly and provide a powerful stimulus to the immune system.   

 

In general, class II molecules present exogenous antigens (e.g. extracellular 

microbes, soluble proteins) that are first internalized and processed in the 

endosomes or lysosomes.  Peptides resulting from proteolytic cleavage then 

associate with class II heterodimers assembled in the endoplasmic reticulum (ER).  

Finally, the peptide MHC complex is transported to the cell surface, where it can 

be recognized by CD4+ helper T cells.  In this interaction, the CD4 molecule acts 

as a coreceptor.  Because CD4+ T cells can recognize antigens only in the context 
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of self class II molecules, they are referred to as “class II restricted.”  The role of 

class II antigens in the induction of helper T cells has an important bearing on the 

genetic regulation of the immune response.  The absence of MHC Class II positive 

APCs reduces islet graft immunogenicity.  [26] 

 

1.5.2. Presentation Through MHC Class I 

 

The Class I molecule consists of a transmembrane protein heterodimer that 

noncovalently binds a polymorphic molecule of beta-2 microglobulin to a 

polymorphic short alpha peptide chain.  A groove is formed in its quaternary 

structure.  Class I molecules are expressed at the surface of platelets and almost 

all the nucleated cells of the body.  They are not expressed in RBCs or the 

central nervous system.   

 

Biochemical analyses of several different class I alleles have revealed that 

almost all polymorphic residues line the sides or the base of the peptide binding 

groove.  As a result, different class I alleles bind to different peptide fragments.  

In general, class I MHC molecules bind to those peptides that are derived from 

proteins, such as viral antigens, synthesized within the cell.  The generation of 

peptide fragments within cells, their association with MHC molecules, and 

transport to the cell surface is a complex process.  Analogous to CD4+ T cell 

restriction to the MHC Class II antigen, the CD8 molecule acts as a coreceptor in 

MHC Class I antigen binding to the T cell receptor.   
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The human MHC antigen is known as the HLA (Human Leukocyte Antigen) 

complex.  The HLA was initially detected on leukocytes, hence its name.  The 

HLA system is highly polymorphic.  Class I HLA antigens (HLA A, B, and Cw) 

and class II HLA antigens (HLA DR, DQ, & DP) are further subdivided into types.  

There are 22 different HLA A, 42 different HLA B, 9 different HLA Cw, and 18 

different HLA DR antigens.  The great diversity of class I and class II HLA alleles, 

including ones that result in increased resistance to developing certain diseases, 

has helped to ensure that no single parasite can eliminate the entire human 

population, but such diversity also has made a perfectly compatible tissue match 

for transplantation between two humans almost nearly impossible (except in the 

case of identical twins).  The detection of antigens (genetic markers) such as the 

HLA on the surface of lymphocytes, known as tissue typing, was developed in 

efforts to overcome barriers in human organ transplantation, and has helped to 

reduce the incidence of graft rejection prior to the development of more effective 

immunosuppressive drug regimens.  Serologic and DNA-based methods can be 

used for tissue typing.  Serological methods are used most commonly and work 

to identify tissue cells that are reactive to antibodies specific for known HLA-A, 

HLA-B, and HLA-DR antigens.  DNA typing is being used to improve the 

sensitivity and specificity of tissue typing, especially with the HLA-D antigens.  

The United Network for Organ Sharing (UNOS) screens organs using 6 HLA 

antigens: two each at HLA-A, HLA-B, and HLA-DR.   
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Even if it were possible to match the donor and recipient at every locus of the 

MHC, some tissue incompatibility would still remain and immune rejection would 

occur because of minor histocompatibility antigens.  Few of these antigens have 

been identified, but they include: H-Y, an antigen encoded on the Y chromosome 

and thus present in male, but not female, tissue, and HA-2, an antigen derived 

from the molecular motor protein myosin.  Therefore, even transplantation of an 

MHC-matched organ to a non-identical host requires some degree of 

immunosuppression to avoid graft rejection.  This is why many pre-

transplantation protocols are ignoring tissue typing mismatches and maintaining 

their attention on ABO matching and immunosuppression.  

 

 

1.6. OVERVIEW OF IMMUNE SYSTEM DEVELOPMENT  

 

The process by which circulating hematopoietic stem cells emigrate from the 

bone marrow and take residence in the thymus gland is known as thymopoiesis.  

[27, 28]  The commitment of these stem cells to the T cell lineage is based upon 

a response to signals from the cellular microenvironment within the gland.  [29] 

Following commitment to the T cell lineage, these cells will undergo changes 

induced by close associations with discrete thymic epithelial cell 

microenvironments or compartments.  The specific sequence of events 

experienced by each T cell will determine its compartmentalization into a 

particular T cell subset.  These processes are surveyed in a series of physiologic 
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checkpoints prior to release of the T cell into the circulating pool of mature 

lymphocytes.  If the T cell does not meet standards deemed necessary by the 

thymic epithelium, it will not be rescued from apoptosis; instead, it will be 

destroyed via apoptosis as part of the process of positive selection.  [30-34]   

 

There are different types of thymic epithelial cells (TECs), and their classification 

is location based.  [35] Ultrastructural studies have demonstrated at least four 

types of TECs: those found at the cortical surface, those found within the cortex, 

those found in the medulla, and those within Hassall’s corpuscles.  [36] Those 

found in the thymic medulla are referred to as medullary TECs.  Similarly, those 

found in the thymic cortex are referred to as cortical TECs.  Both the cortical 

TECs and medullary TECs have been shown to present antigens in the context 

of the MHC, but the medullary TECs may do so more rapidly.  [37] It appears that 

in terms of MHC class II-restricted CD4 T cell development, the cortical 

epithelium functions to regulate positive selection, whereas a particular subset of 

medullary epithelium regulates negative selection.  [38]  

 

Specificities of the interactions between T cells and the thymic stroma determine 

the fate of immature T cells.  The thymic stroma includes TECs, interdigitating 

reticular cells, macrophages, and fibroblasts.  It is suggested that the thymic 

stromal environment is mutually dependent upon the differentiation status of 

developing T cells, “a phenomenon designated as 'crosstalk'.”  [39] Namely, 

thymocyte subsets are believed to influence the development and organization of 
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the thymic epithelium: the organization of the thymic medulla “depends upon 

activating signals provided by mature thymocytes to epithelial and dendritic 

cells.”  [40] Disorganization of the corticomedullary thymic epithelial junction and 

abnormal clonal selection was found to occur as a consequence of lack of these 

important activating signals even in the presence of normal thymocyte 

maturation.  [40]   

 

Although lymphocyte clonal selection occurs as a consequence of both thymic 

epithelial and bone marrow cell participation [41], the focus of this review will be 

immune system development and responsiveness as it relates to the thymus 

gland and thymic epithelium.    

 

1.6.1. Arrangement of the Thymus Gland  

 

In the neonate, the thymus gland is a bilobed structure that occupies almost the 

entire mediastinal space, is situated anterior to the great vessels, and is 

separated laterally from the lungs by mediastinal pleura and from the heart 

inferiorly by pericardium.  Each lobe is characterized by a superior prominence of 

tissue referred to as a horn, with the right lobe being characteristically larger than 

the left.   

 

The thymus gland is largest relative to body size at birth.  At puberty or during an 

illness early in life, the human thymus reaches its greatest size, weighing 
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approximately 40 grams.  In the adult, the thymus is seen as a remnant located 

within the retrosternal fat pad.  The atrophy of the gland is attributed to depletion 

of T cells, primarily by the process of apoptosis.   

 

The name “thymus” originates from the Greek language, meaning “warty-bumpy” 

and “feel good.”  This warty consistency occurs due to a fibrous capsule from 

which fibrous septa extend, dividing the gland into lobules.  The thymic 

parenchyma is divided into a cortical region and a medullary region, and does not 

contain lymphoid nodules.  The primary vascular supply to the thymus is from the 

internal thoracic arteries, with venous drainage via the internal thoracic veins.  

Small arteries follow the septa, branching into arterioles running between the 

cortex and medulla of the thymus.  Capillary loops enter the substance of the 

cortex.  A few small efferent lymphatics flow within the walls of blood vessels and 

in connective tissue septae.   

 

The thymus gland is derived from embryonic endoderm (TECs or epithelial 

reticular cells) and mesoderm (lymphocytes).  During embryogenesis, the thymus 

develops from the third and fourth pharyngeal pouches.  Connective tissue growth 

factor (CTGF) is involved in cellular “proliferation, survival, migration, adhesion, 

and extracellular matrix production” during embryogenesis, with specific detection 

by day 13.5 in mice.  [42] Epidermal growth factor (EGF) also modulates fetal 

thymocyte growth and differentiation.  [43] Non-thymic lymphoid tissue is derived 

solely from mesoderm. 
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The thymic cortex (“bark”) is the layer directly beneath the capsule and consists 

of mostly tightly packed small (resting) lymphocytes and some capillaries 

surrounded by spaces consisting of a mixture of immune cells surrounded by 

cuboidal-shaped TECs possessing a single large, ovoid, light staining nucleus 

which often displays a nucleolus.  The space around the endothelium-lined 

capillaries is bound by a thin layer of collagen (perivascular connective tissue) 

and a complete covering of TEC processes with their basal laminae.  This 

layered coating prohibits blood from directly contacting cortical T cells.  This 

coating is also known as the blood-thymus barrier and prevents large 

macromolecules from traversing the vessel wall and entering the cortex.  The 

blood-thymus barrier exists in the cortex only, making it immunologically 

protected from connective tissue septae and from the thymic medulla.  This 

ensures that antigens escaping from the bloodstream do not reach developing T 

cells in the thymic cortex.  Large numbers of immature T cells (thymocytes) are 

found in various stages of differentiation within the thymic cortex.  The influx of 

thymocytes into the thymus gland induces the formation and extension of cellular 

processes from these TECs, which form the thymic stromal network or 

cytoreticulum that helps to segregate thymocytes from antigens during their 

maturation.  TEC-induced apoptosis of immature thymocytes that have been 

exposed to antigens involves a unique apoptotic pathway, while acceptable 

thymocytes, rescued from apoptosis by the TECs, migrate toward the medulla as 

they mature.  [44] Medullary TECs have a particular receptor associated with 
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apoptosis.  Binding of this Fas medullary cell membrane receptor to its ligand 

results in cellular apoptosis.  [45] The majority of thymocytes in the cortex are 

eventually phagocytosed by macrophages. 

 

The medulla is the central portion of the thymus and is where T cells complete 

their maturation and exit the thymus via venules and efferent lymphatic vessels.  

The T cells then migrate to non-thymic lymphoid structures.  The medulla is 

continuous throughout the gland and is not separated by lobules.  It consists of a 

variety of cell types, but TECs, small T cells, macrophages, dendritic cells, 

eosinophils, and plasma cells are among the more commonly observed in this 

region of the thymus.  Hassall’s corpuscles are concentrically arranged whorl-like 

nests of squamous thymic epithelium that increase in number and size with age.  

They display various stages of keratinization and their specific function, if any, 

remains unclear.  In contrast to vessels within the thymic cortex, there is no 

barrier around capillaries in the medulla.  These medullary thymic capillaries, or 

sinusoids, allow trafficking to occur freely throughout the medulla.  Large 

numbers of TECs and loosely packed mature T cells cause the medulla to stain 

differently from the cortex.   

 

1.6.2. Origin of TECs 

 

TECs are endodermally and ectodermally derived from the third pharyngeal 

pouch and branchial cleft.  They are also derived from cranial neural crest cells.  
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Because vascularization of the primordial thymus gland has not yet occurred, 

early hematopoietic populants of the thymic rudiment must extravasate through 

the pharyngeal vessels and home to the thymus through the perithymic 

mesenchyme.  This suggests that the stem cells are “responding to a gradient 

of…diffusible chemoattractant factors” that are reported to originate from fetal 

MHC class II+ TECs.  “A number of chemokine receptors expressed by thymic 

precursors and several chemokines, including thymus-expressed chemokine 

(TECK), are expressed by thymic epithelial cells, resulting in chemotactic activity 

for isolated thymic precursors.”  [27, 46]  

 

1.6.3. TEC Function in Immune System Development  

 

The TECs of the thymic cortex are believed to positively select thymocytes, so that 

only cells with a self MHC-restricted T cell receptor (TcR) are allowed to mature. 

[47] The bone marrow-derived antigen presenting cells (APCs) found mainly at the 

corticomedullary junction, are believed to be largely responsible for negative 

selection, which leads to deletion of T cells with high affinity for self MHC and/or 

self antigen/self MHC complexes.  However, recent studies both in vitro using TEC 

cultures [48], and in vivo, using thymic transplantation models in mice, [41, 49] 

suggest that the thymic epithelium may also be involved in negative selection.  

Lymphocytes have long been known to reside in close contact with TECs, and 

have even been found within TEC vacuoles months following initial harvesting of 

thymic tissue.  [50]   
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1.6.4. Positive and Negative Thymic Selection  

 

The MHC restricted, two-signal model of antigen recognition serves as the 

framework for understanding cellular immunity.  [51-53] The thymus plays a 

significant role in developing and maturing T cells which exhibit this pattern of 

specific MHC restriction.  [54-56]; [57] Thymocytes develop this specificity by 

undergoing selective elimination during their maturation and differentiation.  [58] 

In the process of thymocyte development, bone marrow stem cells migrate to the 

thymus, are retained there by binding of the CD2 molecule, and commit to the T 

cell lineage under the influence of the thymic microenvironment.  [29] The 

expression of co-receptor molecules CD4 and CD8 characterize the major 

lineages of T cells thereafter.  The earliest precursors are CD4-/CD8- (double 

negative), which later become CD4+/CD8+ (double positive) cells.  Immature 

CD4+/CD8+ T cells able to interact in a productive manner with self-MHC 

molecules are retained through the process of positive selection.  It is believed 

that MHC molecules on the surface of the thymic epithelium select which of the 

double positive cells will mature into CD4+/CD8- or CD8+/CD4- (single positive) 

cells.  [59] [60] Positive selection involves the “positive” recognition by developing 

T cells of self-MHC proteins expressed on non-lymphoid cells resident within the 

thymus, particularly TECs.  [34, 59, 61, 62].  Bone marrow derived cells or 

fibroblasts have also been shown to participate in positive selection.  [34]   
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Thymocytes recognizing and targeting self-proteins bound by self-MHC are 

eliminated by negative selection.  Negative selection occurs via the high-affinity 

recognition by developing T cells of self-peptides bound to MHC proteins 

expressed on IT APCs, specifically thymic dendritic cells and macrophages.  [63] 

 

 

1.7. OVERVIEW OF HUMORAL AND CELL-MEDIATED IMMUNITY 

 

The lymphatic system consists of several discrete organs (thymus, spleen, 

tonsils, and lymph nodes), diffuse lymphoid tissue, and cells including T cells, B 

cells, and macrophages.  This system functions to defend the organism by 

mounting humoral immune responses against foreign substances (antigens) and 

cell-mediated immune responses against microorganisms, tumor and 

transplanted cells, and virus-infected cells.  An allogeneic immune response 

involves the coordination of many cell types.  There are both general and specific 

responses to this stimulus.  The three main cell types involved in this response 

are T cells, B cells, and APCs.  Other cell types include eosinophils for 

opsonization of antigens and neutrophils for local inflammation to enhance the 

overall immune response.  Cellular infiltration at the rejection site occurs early in 

the process of allogeneic graft rejection.  The general properties and functions of 

specific immune cells will be reviewed as background material for the 

descriptions and evaluations of cellular infiltrates found upon histological 

evaluations of tissue grafts in this project.  
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APCs may degrade antigens into small peptides during “processing”.  These 

antigenic peptides are then linked to an MHC molecule expressed within or on 

the surface of the APC.   

 

In 1961, studies demonstrated that thymectomized neonatal mice never 

underwent normal lymphoid tissue development, exhibited weak immune 

responsiveness, and easily developed infection.  Because of the B cell 

response from the intact bone marrow in these animals, antibody responses 

remained, but the absence of T cells resulted in an immunocompromised 

state.  In 1967, it was shown that antigen-stimulated lymphocyte populations, 

now known to be T cells, responded by proliferating, but that these cells did 

not secrete antibodies.  The cells of the immune system include exponential 

numbers of clones of T- and B cells that are able to recognize and respond to 

a single antigenic determinant (epitope), or a small group of closely related 

epitopes.  Exposure to an antigen and a second signal (one or more 

cytokines) induces activation of resting T and B cells, leading to their 

proliferation and differentiation into effector cells.  The population of effector 

cells may also include APCs (e.g. macrophages, lymphoid dendritic cells, 

Langerhans’ cells, follicular dendritic cells, M cells, and B cells) as well as 

mast cells and granulocytes.  Although B cells can present antigenic epitopes 

to T cells, and thus are APCs, their role in this function probably is limited to 

the secondary (anamnestic) immune response rather than the primary immune 

response. 
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As described above, T cell maturation occurs in the thymus and involves 

immunoincompetent progenitor T cells migrating from the bone marrow to the 

thymus, where they are termed thymocytes.  Within the thymic cortex, 

thymocytes undergo gene rearrangements and begin to express antigen-

specific T cell receptors, which are integral membrane proteins.  Hence, the 

cells are now immunocompetent.  The cortical thymocytes also begin to 

express thymus-induced CD (cluster of differentiation) markers, designated 

CD2, CD3, CD4, and CD8 on their surface.  In the thymic medulla, some 

thymocytes lose CD4 and develop into CD8+ cells; others lose CD8 and 

develop into CD4+ cells.  Medullary thymocytes also develop class I or class II 

MHC antigens. 

 

T cell subtypes include T helper (Th) and T cytotoxic (Tc) cells.  T helper (Th) 

cells are CD4+ cells which synthesize and release numerous growth factors, 

known as cytokines (lymphokines), following their activation.  The cytokines 

interleukin 2 (IL-2) and interleukin 4 (IL-4) induce B cells to respond to an 

antigenic stimulus.   

 

T cytotoxic cells (Tc) are CD8+ cells.  They also produce cytokines, and are 

involved in the effector stage of graft rejection.   

 

37



Suppressor T cells (Ts) are also CD8+ cells that can modulate the extent of 

the immune response by suppressing the activity of Th cells.  They may serve 

an important role in preventing autoimmune responses.   

 

T memory cells are long-lived, committed, immunocompetent cells that are 

formed during proliferation in response to an antigenic challenge.  They 

remain relatively dormant in the circulation or in specific regions of the 

lymphoid system, and when activated, function to increase the size of the 

original clone and thereby provide a faster and greater anamnestic response 

against a future challenge by the same antigen.   

 

B cells originate and mature into immunocompetent cells within the bone 

marrow.  They have surface immunoglobulins (antibodies) attached to the 

external aspect of their plasma membrane; all the immunoglobulin (Ig) 

molecules on a given B cell clone recognize and bind to the same antigen 

determinant, or epitope.  They are responsible for the humoral immune 

response.  They proliferate and differentiate following an antigenic challenge 

to form plasma cells and B memory cells.  Plasma cells actively synthesize 

and secrete antibody specific for the challenging antigen.  B memory cells 

have the same properties as T memory cells.   
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Null cells, designated Th0, are part of a small selection of peripheral 

lymphocytes that lack antigens which would characterize them as T or B cells.  

Natural killer (NK) cells are one type of null cell, exhibiting nonspecific 

cytotoxicity against tumor cells and virus-infected cells.  The mechanism by 

which NK cells recognize these target cells is not yet understood.  They also 

can kill specific target cells that have antibodies bound to their surface 

antigens in a process known as antibody-dependent cell-mediated cytotoxicity 

(ADCC).   

 

Macrophages function as both APCs and as cytotoxic effector cells in ADCC.  

They produce IL-1 which helps activate TH cells, and several other cytokines 

that influence the immune response or hematopoiesis.  They also secrete 

prostaglandin E2 which decreases certain immune responses.  They are 

activated by interferon gamma which is also known as macrophage activating 

factor; this activation increases the phagocytic and cytotoxic activity of 

macrophages.  Macrophages recognize foreign cells, cellular debris, foreign 

material, and apoptotic cells through the process of target recognition.  

Phagocytosis is triggered by binding of macrophage surface receptors to 

target ligands, and accomplished by the formation of a coated pit which 

creates a vesicle known as a phagosome.  The phagosome fuses to a 

lysosome, exposing the engulfed material to hydrolytic enzymes.  [64]   
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The major histocompatibility complex, as described previously, encodes two 

main classes of antigenic molecules: class I molecules, which are expressed 

by nearly all nucleated cells, and class II molecules, which are expressed by 

the various cells that function as APCs.  Antigens are molecules that have the 

capability of inducing an immune response.  The word antigen comes from 

“generating antibody.”  Immunogens are antigenic molecules that can react 

with an antibody or a T cell receptor.  Some exogenous antigens are 

endocytosed or phagocytosed by APCs and degraded intracellularly.  Involved 

in this sequence are proteolytic complexes, proteasomes, which digest 

antigenic proteins into short peptides, and transport proteins, which ferry 

peptide fragments from the cytoplasm to the ER.  Within the ER, antigenic 

peptides bind to the antigen binding cleft of newly synthesized class I heavy 

chains, which will associate with beta 2 microglobulin to form a stable trimer.  

(MHC alloantigens do not require intracellular degradation for antigen 

presentation.)  The epitope-class II HLA complexes are transported to the cell 

surface for epitope presentation, where they are presented to CD8+ cytotoxic 

T cells.  Endogenous immunogens are produced within host cells (e.g. viral 

proteins synthesized within virus-infected cells and tumor proteins synthesized 

within cancerous cells).  They are degraded within host cells, yielding antigen 

peptides that associate with class I HLA molecules.  The peptide-class I HLA 

complexes are transported to the cell surface, where they are displayed 

(presented) to T cells.   
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T cells exhibit HLA restriction: T cells of each type (except T memory cells) 

only recognize epitopes that are associated with either class I or class II HLA 

molecules as follows.  Th cells recognize class II HLA molecules.  Tc cells and 

the majority of Ts cells recognize class I HLA molecules.  T memory cells 

recognize both class I and class II HLA molecules.   

 

1.7.1. Requirement of Antigen Presentation  

 

Before any pro-inflammatory cells infiltrate an area (monocytes, lymphocytes), 

there must be an immune stimulus.  This stimulus is either mismatched MHC 

antigen or a minor histocompatibility antigen difference strong enough to elicit a 

response.  This antigen must be properly “presented” to the immune system to in 

the context of MHC and followed by a co-stimulatory ligand binding signal.  A 

strong and organized immune response will not occur without the second signal.  

APCs may degrade antigen into small peptides during “processing”.  These 

antigens are then linked to an MHC molecule expressed within or on the surface 

of the APC.  Almost simultaneously, release of the second signal of activation by 

costimulatory ligand binding of the TcR-MHC on the APC elicits an immune 

response.  This second step is crucial.  Non-APCs are capable of presenting 

antigen per se, but they are not capable of eliciting an immune response 

because the second signal remains absent. 
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1.7.1.a. Presentation of Alloantigens  

 

During “presentation”, allogeneic MHC on a graft cell can act as an antigen 

without the intracellular processing and transport back to the cell surface that 

other antigens must undergo.  Generally, the MHC molecules of allograft tissue 

belong to Class I, but the Class II MHC antigen expressed by enough donor cells 

carried into the host site within the parenchyma of a graft can elicit a significant 

rejection response.  In terms of non-MHC antigens, they may be bound to either 

MHC Class I or Class II, but are restricted to whichever one is bound.  As a 

general rule, if the antigen is found within the cell (endogenous), then that 

antigen will be bound to a Class I MHC molecule, and exogenous antigens are 

bound to Class II molecules.  Dendritic cells are the most potent of the APCs. 

 

Antigen presentation restricted to Class I MHC involves antigen degradation by 

proteasomes.  The antigens are marked for degradation by two mechanisms: 1) 

natural degradation and 2) labeling by ubiquitin.  There are gene-encoded 

endopeptidases that provide the phagocytic cell with molecules to assist with 

degradation.   

 

APCs (B cells, macrophages, dendritic cells, and Langerhans cells), together 

with TECs, endothelial cells, and activated T cells are the only cells in the body 

that naturally express MHC II proteins on their surface, although almost any cell 

can be induced to express MHC II molecules by cytokines, namely γ-interferon 
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[65].  Exogenous antigens, usually recruited by phagocytosis or endocytosis, are 

bound to MHC Class II molecules within the cell and this complex is transported 

to the cell surface, where it is made available for interaction with a T cell receptor 

(TcR).  When this MHC II molecule-antigen complex surfaces on the APC, it is 

recognized by a TcR.  This is referred to as the “First Signal.”  There are other 

first signal binding complexes than the MHC-TcR.  But again, this first signal(s) 

cannot provide enough of stimulus to activate T cells.   

 

1.7.1.b. The Second Signal or Costimulatory Factor  

 

There are co-stimulatory molecules on the APC that induce activation of T cells.  

This is referred to as the “Second Signal.”  The second signal may be a chemical 

signal, such as interleukin 1, or the binding of B7-1 on the antigen presenting cell 

with CD28 on the T cell.  This binding will lead to the production of IL-2 (also 

known as T cell growth factor), initially from APCs and later in greater amounts 

from T cells.  The end product of this cascade is the mass proliferation of a 

particular clone of T cells due to interleukin stimulated activation of transcription 

factors.  

 

There are other molecules that do not directly participate in antigen presentation, 

but assist in the process.  Two main types of cluster designation (or CD) 

molecules are present on T cells.  CD4 and CD8 (depending on the MHC 

molecule class) stimulate intercellular events and lead to T cell activation.  CD4 
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molecules help to anchor the bond between MHC Class I molecules and antigen 

with the TcR and CD8 molecules help to anchor the bond between MHC Class II 

molecules and antigen with the TcR.  These events promote greater affinity in 

TcR-MHC binding, stimulating T cell activation and proliferation.  Other 

molecules that assist with this binding are LFA-1 (on T cell) with ICAM-1 (on 

APCs) and LFA-3 (on APCs) with CD2 (found on all T cells).   

 

Both CD8+ cytotoxic and CD4+ helper T cells are needed for complete rejection.  

Helper T cells express the CD4 molecule and assist in the clonal expansion of 

more T cells and B cells by the secretion of various interleukins.  Helper T cells 

can either participate in cell-mediate immunity (Th1 cells) or antibody-mediated 

immunity (Th2 cells).  The main chemical mediators involved in cell-mediate 

immunity are IL-12 and interferon-γ.  The main chemical mediators of antibody-

mediated immunity are IL-4, IL-5, and IL-10.   

 

Cytotoxic and suppressor T cells express CD8 molecules.  Cytotoxic T cells 

destroy cells which express the antigen that they recognize, and suppressor T 

cells lower cytotoxic T cell activity.  Cellular killing is accomplished in part with 

the pore-forming lytic protein, perforin. 
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1.7.2. Cells Capable of Antigen Presentation  

 

1.7.2.a. Cell Types and Their Distribution 

 

Bone marrow derived macrophages, monocytes, B cells, and dendritic cells are 

characterized by the relevant costimulatory molecules (B7-1 and B7-2) required for 

antigen presentation to T cells bearing an MHC-restricted TcR.  These cells mostly 

originate from the bone marrow and the thymus gland, and are mostly present in 

lymphoid organs, the circulating lymph, and the skin.  Other MHC Class Ia-positive 

macrophages are found in the peritoneum, the liver, the lungs, and the blood.  

“Non-professional” APCs include cells of epithelial origin that are able to present 

antigens when activated.”  [66]   

 

1.7.2.b. Origin of APCs 

 

Dendritic cells, included in the class of APCs, were discovered in both skin (termed 

Langerhans cells) and lymphoid tissues in 1973, and found to be up to 100 times 

as efficient as B cells in antigen presentation.  [67] These cells, also known as 

passenger leukocytes, are capable of transferring antigens from peripheral tissues 

back to lymphoid tissues where they present these antigens to naive antigen-

specific T cells within lymphoid tissue, initiating an immune response.  Dendritic 

cells are involved in the initiation of autoimmune diseases and are largely 

responsible for the initiation of graft rejection.  [68, 69]  Like other APCs, dendritic 
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cells express MHC Class II antigens.  Splenic dendritic cells are believed to derive 

from a “thymus-independent bone marrow precursor”.  [70] 

 

1.7.3. Function of TECs in Antigen Presentation  

 

Immature thymocytes able to express MHC-restricted T cell receptors (TcR) on 

their cell surfaces are selected to mature.  [71-73] Likewise, immature CD4+ and 

CD8+ T cells must also express appropriate MHC-TcR interactions to continue in 

the process of thymic maturation and survival following release to the periphery.  

A sufficient naive thymocyte population is regulated by cytokine signals that 

induce a baseline level of expansion.  Weak TcR-MHC interactions allow 

constant immune surveillance feedback between circulating T cells and the 

thymus gland, signifying the expansion of reactive clones when necessary.  For T 

cells to be surveyed on a constant basis, they must remain free for split second 

interactions with MHC expressing cells.  This requires a combination of high TcR-

MHC specificity and low affinity.  Taking advantage of peripheral immune 

surveillance mechanisms, investigators have used intravenous infusion of 

specific T cell populations as a modality to influence T cell subset selection in 

models of autoimmune disease.  [74] The diversity of the mature T cell 

population can be attributed by the diversity of self-peptides bound to MHC.  [75] 

The long-term maintenance of a peripheral T cell population that remains 

sensitive to the self-peptide/MHC complex suggests that extrathymic surveillance 
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continues long after positive selection of mature lymphocytes by TECs has taken 

place.  [76] 

 

The thymus gland, as discussed, is key to the establishment of self-recognition 

and self-tolerance.  [54] [57].  This is evidenced by the fact that neonatal 

thymectomy has been shown to induce autoimmune disease.  [77, 78]  In the 

establishment of tolerance to peripheral tissue-specific antigens, the interaction of 

the thymus gland with the periphery has not been fully explained, since clonal 

ignorance, deletion, and anergy can occur independent of thymic selection.  The 

mechanism of thymic dependent active suppression of aggressive responses to 

autoantigens that are not expressed intrathymically, also known as infectious 

tolerance, still remains unknown.  [79-81] In any case, the thymus gland is 

important in immune surveillance as evidenced by in vivo studies showing that the 

intravenous administration of various molecular weight antigens results in  

their rapid transit to the thymus gland for antigen presentation. [82]   

 

 

1.8. OVERVIEW OF THE IMMUNE RESPONSE TO TRANSPLANTATION 

 

1.8.1. The Normal Physiologic Response to Graft Placement  

 

Anatomical and physiological events following transplantation or other 

immunological stimulus include massive shifts in lymphocyte migration to host 
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lymphoid tissues and away from nonlymphoid tissues.  Under normal conditions, 

T cells recirculate continuously between blood, various native tissues, and the 

lymph system.  In the event of an antigenic stimulus, whether via the gut, from a 

site of skin inflammation such as a delayed hypersensitivity response, or from 

placement of a vascularized graft, these recirculation patterns change to allow 

dissemination of the antigenic message as widely and promptly as possible 

throughout the host immune system.  A few lymphocytes will appear in 

perivascular areas, ready for interaction with APCs.  Lymphoid tissues are an 

important point of interaction between circulating lymphocytes and graft antigen 

brought by APCs, or with cytokines released into the circulation from the graft 

site by antigen-activated immune and, potentially, non-immune cells.  They also 

facilitate antigen recognition and activation by naive host immune cells.  Also, 

some of the prompt changes in lymphocyte migration patterns following an 

antigenic stimulus can be attributed to the activity of adhesion molecules, both on 

antigenic cell surfaces and on lymphocyte membranes.  For instance, 

upregulated LFA-1 expression causes lymphocyte binding to high endothelial 

venules, allowing lymphocytic infiltration into lymph nodes by diapedesis.  It has 

been suggested that there are high endothelial venular-like structures in the 

vessels of organs which allow leukocyte migration at particular sites.  Other such 

molecules on endothelial surfaces, endothelial-leukocyte adhesion molecules, or 

intracellular adhesion molecules, may also alter migration of recirculating 

lymphocytes, increasing the immunological message to the entire host. Over the 

span of two to four days, large numbers of lymphocytes and macrophages enter 
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the area(s) of graft tissue.  As progressive disruption of vessels and other 

structures associated with tissue necrosis occurs, lymphocytic cells fill recipient 

lymphoid compartments.  A general inflammatory response occurs to the surgical 

trauma.  Tissue damage resulting from the actual transplantation procedure is 

surveyed by T cells, while pathogen eradication occurs via cell-mediated 

immunity.  Release of proinflammatory factors, like Hageman factor (factor XII), 

triggers a cascade of events such as the clotting cascade.  Fibrinopeptides 

promote vascular permeability and attract neutrophils and macrophages with 

subsequent cytokine production.  Antigen-antibody complexes target pathogens 

for phagocytosis and stimulate macrophages to secrete cytokines (tumor 

necrosis factor β or cachectin, and tumor necrosis factor, interferon γ released 

locally by infiltrating cells, and interleukin-1), stimulating proinflammatory 

endothelial responses.  Nitric oxide may also be involved in the inflammatory 

response.  T cells activate the classical complement cascade (e.g. C3a and 

C5a), while mast cell degranulation (histamine, 5-hydroxytryptamine) increases 

vascular permeability.  In the absence of pathogens, macrophages promote 

repair and structural reinforcement of damaged tissues (regeneration and 

neovascularization).  Endothelial cells, smooth muscle cells, fibroblasts 

stimulated by fibroblast growth factor, extracellular matrix with its integrin 

adhesion molecules, interleukin-1, interleukin-6, transforming growth factor, and 

platelet derived growth factor, all aid in tissue repair. 
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1.8.2.The Immunologic Process of Graft Rejection  

 

Graft rejection is a cell-mediated response to alloantigens.  Based upon its 

stimulus, severity, and timing, graft rejection can be classified as hyperacute, 

acute, and chronic.  These stages of graft rejection do not necessarily follow a 

chronological course.   

 

Normally, T cells recognize the foreign peptides presented in the context of a 

self-MHC molecule. Different individual T cells, or T cell clones, recognize 

different peptides. After a transplant, the foreign (allogeneic) MHC molecules, 

with or without peptide ligands, are recognized as non-self-MHC-peptide 

complexes by many types of T cells.  CD8+ and CD4+ cell subsets proliferate in 

response to the alloantigens on the surface of the foreign cells.  The activation of 

these specific T cell clones triggers the effector stage. 

 

These activated lymphocytes that accumulated by active proliferation in the host 

lymphoid tissue during early phases of immune responsiveness then migrate to 

the graft site to act in an effector role toward its destruction.  The effector stage 

involves a large influx of macrophages and T cells to the graft site.  Cytolytic T 

cells lyse cells bearing the specific MHC alloantigen target, in this case the 

endothelial and parenchymal cells of the graft.  Helper T cells, mostly CD4+ cells, 

activate macrophages and initiate a delayed-type hypersensitivity reaction. 
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Finally, graft blood vessels are compromised by alloantibodies that bind to the 

endothelium. 

 

1.8.2.a. Hyperacute Graft Rejection 

 

Hyperacute rejection may occur as early as minutes following transplantation.  In 

general, rejection that occurs up to 24 hours following transplantation is classified 

as hyperacute.  In these cases, the etiology is usually associated with a 

significant number of preformed antibodies, either generated from memory cells 

in the case of specific sensitization, or from non-specific cross-reactivity with the 

graft alloantigens.  Once antibodies present in the host encounter donor MHC 

antigens, particularly on a donor organ’s surface endothelial cells, antigen 

binding triggers the complement system.  Neutrophils flood the grafted tissue and 

platelets aggregate.  The graft soon fails as massive inflammation and emboli 

block the blood flow to the grafted tissue.  

 

The severity of antibody-mediated rejection can vary from case to case.  In fact, 

not all transplant recipients with donor-specific antibodies actually go on to 

develop hyperacute rejection.  In the worst cases, it begins immediately after 

establishing vascular reperfusion of the allograft.  This may be as early as 20 

minutes following transplantation.  A blood group (ABO) mismatch could cause a 

hyperacute graft rejection even in the presence of immunosuppressive drug 

therapy, but such a mistake rarely occurs. [83] The transplanted organ becomes 
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grossly mottled, cyanotic, and loses its previous function.  The organ may 

enlarge due to marked edema and rupture of the graft may occur.  A 

multisystemic syndrome such as shock may be the first signal that hyperacute 

graft rejection is occurring. 

 

1.8.2.b. Acute and Delayed Accelerated Acute Graft Rejection 

 

Acute rejection is a T cell mediated response which typically occurs within the 

first week following transplantation.  The most characteristic feature involves the 

progressive infiltration of the site by host mononuclear cells.  Early experiments 

have shown that this inflammatory immune response, consisting of diffuse 

lymphocytic infiltration with CD8+ cytotoxic T cells (Tc cells) and CD4+ T helper 

cells (Th cells), is capable of stimulating acute destruction of an allogeneic graft.  

Additional supportive evidence includes the fact that neonatal thymectomy 

results in a blunting of the rejection response to allogeneic skin transplantation, 

while injection of normal T cells can restore this capacity.  Extensive damage 

occurs to the blood vessels and effector mechanisms cause massive tissue 

destruction.  The two-signal process of lymphocyte activation involves binding of 

transplantation antigens to the T cell surface receptors (signal 1), which receive, 

at the same time, a co-stimulatory signal 2 from an antigen-presenting cell (e.g. 

macrophage, dendritic cell, B cell, etc.).  The co-stimulatory signal(s), CD28 and 

B7 ligand binding, are increased by the adhesion molecules CD2, LFA-1, and 

VLA-4 and act to stimulate interleukin-2 (IL-2) production.  The CTLA4 adhesion 
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molecule present on activated Th and Tc cells is structurally similar to CD28 and 

also binds to the B7 ligand.  Extracellular matrix basement membrane proteins 

serve as a substratum for cell adhesion, stimulating lymphocyte migration and 

exerting co-mitogenic effects upon lymphocyte activation.  T cell activation can 

be increased in vivo by the co-mitogenic effects and can be influenced by factors 

affecting extracellular matrix components.  Antigen binding alone without the co-

stimulatory signal is not sufficient for activation and differentiation of CD8+ T 

cells.  T cell proliferation follows IL-2 stimulation.  T cell subsets are MHC 

restricted, in that Tc cell precursors are activated by class I MHC antigens and 

Th cell precursors are activated by class II MHC antigens.  IL-1 produced by 

antigen-activated antigen presenting cells stimulates the proliferation of Th cells.  

IL-2 produced by the T-helper cells in turn stimulates the differentiation and 

proliferation of Tc cells.  Tc cells recruited secondarily to the site complete the 

acute rejection process. Cell killing may occur via specific T cell products, 

granzyme B, a serine esterase protein, and perforin.  Alloantigen-stimulated B 

cells differentiate into antibody-producing plasma cells, secreting both specific 

and non-specific anti-donor antibodies.  Macrophages act as both APCs early in 

the immune cascade and later as aggressive effector cells contributing to graft 

destruction.  As previously mentioned, products such as IL-1, which activates Th 

lymphocytes to produce their own cytokines, particularly IL-2, and other 

macrophage-derived cytokines, upregulating donor MHC antigens on graft cells, 

leading to even more effective target recognition as the graft response ensues.  

Pro-inflammatory cytokines may directly injure graft tissue, while IL-4 and IL-10 
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may counteract these effects.  Two myelomonocyte differentiation antigens 

(MRP8 and MRP14) are expressed during acute rejection and act as calcium-

binding proteins with cell activation and differentiation.  Natural killer cells, a 

population of cytotoxic non-T, non-B immune cells, have been found adhering to 

exposed Fc portions of molecules during antigen-antibody interactions. 

 

Vasculitis results from antibody formation.  The T cell mediated response is 

followed by destruction of the tissue by invading effector cells such as 

macrophages and lymphocytes.   The pathogenesis of antibody-mediated 

rejection occurring within the first few days of transplantation is believed to be 

due to preformed antibodies reactive against donor antigens. These antibodies 

develop during a prior exposure of the recipient to donor-derived antigens in 

connection with a blood transfusion, pregnancy or abortion.  If the titer of these 

antibodies has dropped, a few days or even weeks may elapse before an 

amnestic immune response can develop.  Antibody mediated rejection in such 

cases may be somewhat delayed and less severe.   

 

Cytokine production plays an important role in the immune response.  In 

addition to graft parenchymal cells, both donor and host activated immune 

cells and APCs can participate in the immune response by producing 

cytokines.  Proinflammatory cytokines include Th1 derived IL-1, IL-3, IL-5, IL-

6, interferon gamma (IFN-γ), and tumor necrosis factor (TNF).  In 

transplantation, cytokines produced locally by injured vascular endothelium, 
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particularly IFN-γ and TNF-α, work in many ways to stimulate the immune 

response.  These cytokines work by increasing MHC Class II expression and 

detection of the T cell receptors on infiltrating host lymphocytes, upregulating 

both donor (target) and host (recognition) molecules.  Adhesion molecules and 

other mediators expressed or upregulated on vascular endothelium may 

influence both early and late graft behavior.  Selectins are a family of 

molecules which are associated with the rolling phase of leukocyte adhesion.  

Intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 

(VCAM-1), LFA-3, and endothelial-leukocyte adhesion molecule-1 (ELAM-1) 

are all molecules associated with a proinflammatory response and allograft 

rejection.   

 

The diagnosis and treatment of acute rejection can be extremely difficult at times, 

as it may even occur in the first 6 to 12 months following transplantation.  

Rejection is related to levels of adequate immunosuppression, and may be 

delayed by several weeks if sensitization to donor antigens has occurred in the 

remote past.  For most organs, the only way to show unequivocally that rejection 

is occurring is by organ biopsy.   

 

1.8.2.c. Chronic Graft Rejection  

 

Chronic rejection has taken the lead in graft rejection since routine preventive 

and immunosuppressive techniques commonly prevent hyperacute and acute 
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rejection, respectively.  Unfortunately, there are still many undiscovered concepts 

in the multifactorial process of chronic graft rejection.  There may be multiple 

etiologies resulting in delayed and long-term immune compromise of a graft.  The 

definitive diagnosis of chronic rejection is generally made by organ biopsy.  

Chronic cardiac graft rejection is often manifest, as in many other grafts, by 

accelerated graft atherosclerosis caused by smooth muscle cell proliferation. 

This may be a form of delayed-type hypersensitivity caused by recipient 

macrophage smooth muscle cell growth factor stimulation.  Chronic renal graft 

rejection is characterized by fibrosis and damage to the microscopic blood 

vessels in the substance of the kidney.  Livers with chronic rejection have a 

decreased number of bile ducts on biopsy, a condition known as "vanishing bile 

duct syndrome". Transplanted lungs with chronic rejection are said to have 

"bronchiolitis obliterans", a type of fibrosis of the lung.   

 

1.8.2.d. Graft vs. Host Disease 

 

When a graft containing enough lymphocytes is placed, donor lymphocyte clonal 

expansion can occur and result in an immunologic response by donor cells 

directed against host cells and tissues.

56



1.9. PREVENTING GRAFT REJECTION  

 

The first method used to lower the risk of graft rejection is cross matching 

between a particular donor and recipient to decrease the likelihood of acute 

rejection.  Because a perfect match is rarely available, other techniques for 

preventing graft rejection are included in the transplantation treatment regimen.  

Despite precautionary measures, chronic rejection can occur weeks or years 

after the initial graft was accepted.  Various immunosuppressive drugs, including 

mitotic inhibitors such as azathioprine, lymphocyte migration inhibitors such as 

corticosteroids, and generalized immunosuppressives such as cyclosporine A, 

FK 506, and rapamycin, can be used to effectively reduce graft rejection.  The 

first successful long-term kidney transplants were between monozygotic twins, 

biological clones known to inherit the same histocompatibility antigens.  

Transplants were therefore donor matched.  Using a relative and therefore 

someone with similar inherited histocompatibility antigens as the donor can also 

reduce graft rejection.  Many techniques have been developed to widen the 

donor pool.  One of the most widely used methods of achieving renal allograft 

success is the use of routine tissue typing on cadaver organs to select matches 

with the closest histocompatibility.  Although retrospective studies comparing 5 

year kidney graft survival rates show direct proportionality to lack of HLA 

mismatches, techniques used to prevent graft rejection have resulted in 80% of 

all kidneys functioning by the end of the first year, even with mismatches of all 6 

HLA antigens.  Most transplantation protocols today depend on ABO blood group 
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matching but have eliminated tissue typing.  While reducing the severity of graft 

rejection, many of these highly potent immunosuppressive drugs are cytotoxic to 

both the recipient and sometimes to the graft of interest.   Even if a recipient can 

survive potentially lethal side effects due to toxicity, the effects of long-term 

generalized immunosuppression leave the recipient vulnerable to disease 

secondary to infectious pathogens and cancer secondary to blunted immunologic 

surveillance mechanisms.  From 1% to 5% or more of transplant recipients will 

develop cancer within a few years of receiving their allograft.  This represents a 

100-fold increase in risk compared to the general population. Allograft recipients 

are particularly prone to developing B cell lymphomas.  Their risk is 350 times 

higher than that of the general population.  In most cases, stopping the 

immunosuppression leads to regression of the cancer, but often rejection of the 

transplant as well.  More precise methods of immunosuppression would prevent 

rejection without the dangerous side effects of infection and cancer.  

Immunosuppressive drugs are also responsible for a significant financial and 

psychological burden to the recipient.  Patient compliance is another significant 

factor. 

 

Solid organ transplantation success continues to improve, allowing for longer 

periods of graft survival.  Unfortunately, the longer the graft survives in the host, 

the greater the chances for adverse events and comorbidities.  [84] Most 

protocols combine a primary immunosuppressant (cyclosporine or tacrolimus) 

with one or two adjunctive agents (azathioprine, mycophenolate mofetil, 
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sirolimus, corticosteroids).  While the benefits of today’s immunosuppressive 

regimens essentially guarantee graft survival, and are necessary and vital to the 

successful outcome of the transplant, immunosuppressive agents taken over 

long periods may be associated with the onset of hypertension, hyperlipidemia, 

osteoporosis, nephrotoxicity, islet cell toxicity, neoplasia, and may possibly 

contribute to other comorbid conditions.  Immunosuppressive treatments may 

also cause cosmetic changes, such as gingival hyperplasia, hirsuitism, alopecia, 

and weight gain, leading to patient noncompliance.  [84] When toxic levels are 

reached, both cyclosporine and tacrolimus may cause neurological symptoms 

such as major speech or language abnormalities, delirium, seizures, tremors, or 

even coma.  Vasogenic white matter edema (as seen on MRI) may lead to 

apoptosis and cytotoxic edema.  Enhanced nitric oxide production may cause 

blood-brain barrier dysfunction and may inhibit drug clearing from the central 

nervous system.  Drug interactions are common and the source of significant 

complications/comorbidities.  These drug side effects have traditionally been so 

significant that ethical arguments against their usage have sometimes 

outweighed arguments supporting transplantation in non-life threatening 

diseases.   

 

1.9.1. Immunosuppression 

 

Immunosuppressive agents are used to inhibit the recipient's immunological 

response against the transplanted antigens.  The application of generalized 
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immunosuppressive drugs in transplantation has dated since the commencement 

of azathioprine and steroid use in the early 1950’s, and has continued with the 

development of antilymphocyte globulin in 1960, and the first specific 

immunosuppressive agent, cyclosporine, discovered in 1970.  [85] Over recent 

years, “improved knowledge of the immune mechanisms underlying 

transplantation rejection has resulted in the development of new 

immunosuppressive agents capable of selectively blocking various steps of the 

immune response.” [86] Specifically acting immunosuppressive agents are 

associated with fewer side effects, maintaining the necessary balance between 

immunosuppression and immunocompetence (preservation of general immune 

protective mechanisms) in order to maintain the general health of the transplant 

recipient.  A regimen which is effective, easy to follow, less costly, and has fewer 

side effects can dramatically improve patient compliance and morale.   

 

Acute graft rejection is the most significant factor in short-term graft outcome.  

Real-time ultrasound-guided allograft biopsy and routine histological evaluation 

using Banff criteria has permitted close monitoring of each graft. [14] The use of 

erythropoietin to treat anemia allows patients to avoid transfusions, thereby 

reducing potential immune sensitization which could trigger acute and/or 

hyperacute rejection episodes.  Sirolimus and everolimus have antiproliferative 

effects on smooth muscle that retard vascular remodeling that is characteristic of 

chronic allograft nephropathy.  Avoiding drug-drug interactions, especially in 
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pregnancy, intravenous dosing, and caring for minority patients [87], is of extreme 

importance.   

 

Triple immunosuppressive therapy is a common strategy used to reduce the 

incidence and severity of graft rejection, and includes the use of a calcineurin 

inhibitor such as cyclosporine A (CsA, trade name Sandimmune, Neoral), 

Tacrolimus (FK-506, trade name Prograf), or Sirolimus (Rapamycin, trade name 

Rapamune); an antimetabolite such as mycophenolate mofetil (MMF, trade name 

CellCept) or azathioprine (trade name Imuran); and a corticosteroid, such as 

prednisone, methylprednisolone, or hydroxycorticosone.   

 

Calcineurin inhibitors are natural products isolated from microbial fungal cultures of 

Streptomyces tsukubaensis (CsA and FK-506) and actinomycetes found in the 

fermented soil of Rapa Nui (Rapamycin).  These macrolide immunosuppressants 

inhibit the signaling pathway used by T cells to turn on their genes for activation, 

e.g. IL-2 secretion.  They work by forming complexes with intracellular receptors 

(cyclophilins or FK-506 binding proteins [FKBPs]).  These complexes block the 

calcium/calmodulin dependent serine-threonine protein phosphatase, or 

calcineurin (CaN), lymphocyte activation pathway, preventing activation of specific 

T cell transcription factors involved in cytokine (IL-2) production and thus signal 

transduction.  [86]   
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Antimetabolite purine analogs are potent, selective, non-competitive, reversible 

inhibitors of inosine monophosphate dehydrogenase (IMPDH), inhibiting DNA de 

novo synthesis, and thus lymphocyte proliferation, without incorporation.  Like 

cancer drugs, purine analogs may induce side effects associated with rapidly 

dividing cells (e.g., lining of the intestine, hair follicles) and myelosuppression.  The 

active metabolite of MMF, mycophenolic acid (MPA), “selectively targets activated 

lymphocytes” and works to augment the actions of standard immunosuppressive 

agents without adding to toxicity.  It works by inhibiting purine synthesis and thus B 

and T cell proliferation.  The addition of MMF will allow a dose reduction of 

cyclosporine, tacrolimus, or corticosteroids while still avoiding acute graft rejection.  

MMF is also used in the definitive and prophylactic treatment of graft versus host 

disease (GVHD).  [88]   

 

Prior to the development of the latest pharmaceuticals, corticosteroid 

immunosuppression was a mainstay in triple therapy treatment of graft rejection.  

Corticosteroids are still sometimes administered at high intravenous doses 

intraoperatively, and at moderately high intravenous doses 1 to 2 days 

postoperatively.  Higher doses initially induce lymphocyte migration to the 

extravascular space through effects on adhesion molecules and impedance of 

leukocyte rolling.  Later, there is non-specific blockage of antigen recognition by 

the reduction of IL-1, TNF, and IL-6 through transcriptional inhibition of 

macrophage mRNA, and modulation of T cell, B cell, and monocyte activity by 

glucocorticoid receptor effects.  High doses can result in lymphocyte death with 
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resultant shrinkage of lymphoid tissues, decreased cytokine production, decreased 

antibody synthesis, and inhibition of the complement pathway due to increased cell 

membrane lipid accumulation.  Corticosteroids are tapered to moderate oral doses 

over the postoperative week, and further tapered over the following two to three 

months.  Lower doses are actually associated with elevated antibody synthesis, 

possibly accounting for rebound graft rejection following discontinuation of 

steroids.  The final dose is usually 0.2 to 0.3 mg/kg/day, which is still associated 

with significant clinical comorbidities.   

 

Table 1.1. Side Effects of Corticosteroid Therapy.  Multisystemic side effects can 
occur in transplant patients with long-term steroid treatment. 
 

Side Effect Features 

Cushing’s syndrome  (excess glucocorticoids stimulate lipogenesis in face,
neck, and trunk) 

Osteoporosis  (increased osteoclast:osteoblast activity; reduced 
gastrointestinal calcium absorption) 

Myopathy  (fluorinated steroids) 
Cataracts  (toxicity) 
Peptic ulcers  (mucosal irritation) 
Skin fragility  (atrophy) 
Adrenal suppression  
Hypertension  (mineralocorticoids) 
Insulin resistance/Diabetes  
 
 
 

Despite improved renal allograft survival over the past 30 years, drug-related 

nephrotoxicity and chronic rejection remain obstacles in successful kidney 

transplantation in a significant number of cases.  Development of laboratory 

assays focused on identifying patients with donor antigen-specific hyporeactivity 
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may help to customize the immunosuppressive drug regimen in stable renal 

allograft patients.  [14]  

 

Antilymphocyte serum (ALS) is antibody-rich serum derived from an animal that 

has been immunized against lymphocytes.  It is used as a potent, non-

specifically-acting immunosuppressive agent that destroys circulating 

lymphocytes.  Because of its lot-to-lot variability in potency, it is generally used 

for animal research.  The gamma globulin component of ALS is antithymocyte 

globulin (ATG, or thymoglobulin, trade name Atgam).  Antithymocyte globulin has 

been used clinically to modulate the immune response.  However, due to its 

relatively non-specific mechanism of action, it has been replaced by more 

targeted immunosuppressive agents.   

 

New drugs available offer the potential to achieve optimal immunosuppression 

while reducing toxicity by combining lower doses of toxic drugs or replacing them.  

[85, 86, 89]  Newest to the armamentarium against graft rejection are the 

monoclonal antibodies directed against specific molecules key to the 2-signal 

model of T cell activation.  Immunosuppressants as well as treatments that recruit 

leukocytes to allografts are some of the strategies used to study allograft tolerance 

[17], and many of these studies have led to the development of new monoclonal 

antibodies for the inhibition of T cell signaling in graft rejection.  

Modern immunosuppressants, such as basilixumab (trade name Simulect) and 

daclizumab (trade name Zenepax), are monoclonal antibodies that target specific 
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receptors ligands in the immune response (such as IL-2), and other soluble 

receptor hybrid molecules may serve to reduce required doses of toxic chemical 

immunosuppressants and provide more specific immune suppression.  [14, 17, 86]  

Moromonab-CD3 (OKT3, trade name OrthocloneCD3) targets the CD3 

component of T cell receptors, inhibiting the Signal 1 of T cell activation.  [90]  

Daclizumab targets the IL-2 receptor and thus inhibits only activated T cells.  

Efalizumab (trade name Raptiva) is a humanized monoclonal antibody that targets 

the T cell lymphocyte function-associated antigen-1 (LFA-1) receptor through the 

CD11a side chain.  [91] Monoclonal antibodies that inhibit B7-1 and CD28 ligand 

binding are being developed to inhibit Signal 2 of T cell activation.  [92]   

 

1.9.2. Immunomodulation and Donor-Specific Immune Tolerance  

 

Immunosuppressive agents are invariably required for all allografts as of today, 

although immunologic tolerance induction techniques may reduce or perhaps 

someday eliminate the need for these agents.  With continued improvements in 

transplantation outcomes, the drawbacks associated with conventional 

immunosuppression regimens become increasingly apparent.  If allograft tolerance 

could be established, immunosuppression and its accompanying risks could be 

withdrawn.  Further identification and development of novel agents that target 

specific components of the allograft response will help achieve greater target-

specific immunosuppression, and will aid in the development of true donor-specific 
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tolerance, “the Holy Grail of solid organ transplantation,” as described by Luke and 

Jordan. 

 

Generally, the introduction of an immunogen at a period following the completion 

of immune development in the presence of some inflammatory stimulus will 

sensitize the recipient to subsequent exposures of that immunogen.  However, IT 

inoculation of antigenic tissue with concomitant depletion of the extent of the 

peripheral lymphocyte population has been shown to specifically modify recipient 

immunity, although the mechanism by which immune reeducation occurs has not 

been fully elucidated.  Numerous studies have demonstrated that the introduction 

of specific polypeptide sequences to the immunologically privileged IT site with 

depletion of circulating and noncirculating peripheral lymphocytes will induce 

tolerance. 

 

The ability to induce donor-specific tolerance in an allogeneic host raises the 

possibility of introducing specific antigens into the thymus to study the ability of 

these known antigens to act as tolerogens, and induce antigen specific 

unresponsiveness.  [93-96] By altering conditions such as the timing and route of 

administration of antigenic peptides or the genes encoding them, it may be 

possible to induce specific tolerance to subsequent exposure to that same antigen.   
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1.9.2.a. Intrathymic (IT) Transplantation and Central Tolerance Induction Through 

Thymic Reeducation 

 

Selection processes that occur within the thymus, prior to T cell differentiation, 

are referred to as “central” selection processes, while post-differentiation T cell 

regulatory mechanisms on the effective immunological repertoire of lymphocytes 

are referred to as “peripheral” selection processes.  It has been concluded that 

“only recent thymic emigrants, but not peripheral resident mature T cells are 

susceptible to this process of functional education, which also requires exposure 

to specific antigens and occurs entirely in the periphery.” [97] Based upon the 

cellular type, timing, and route of administration, cellular inoculation treatments 

can be used to harness natural central or peripheral tolerance induction 

mechanisms.  [47] The thymus is of great importance in T cell development and 

self-recognition, but its function was unknown until the current century.  [54] [57].  

It plays an essential role in the establishment of self-tolerance to antigens 

expressed on its stroma by clonal elimination or functional inactivation of self-

reactive T cells.  [98] Cortical TECs are believed to positively select self-MHC-

restricted thymocytes for maturation.  [47] The bone marrow-derived APCs found 

mainly at the corticomedullary junction are believed to be largely responsible for 

negative selection [99], which leads to deletion of T cells with high affinity for self 

MHC and/or self antigen/self MHC complexes.  This hypothesis is supported by  
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recent studies demonstrating that TECs can regulate the functional maturation of 

CD4+ thymocytes.  [100, 101] 

 

1.9.2.a.1. Maintenance of the T Cell Repertoire 

 

Models of autoimmune disease serve to elucidate mechanisms of immune 

function.  In these models, autoantigens serve as naturally occurring foreign 

antigen representatives, and are classified as either intrathymic or extrathymic.  

[74] The binding of immature autoreactive T cells signals a process that results in 

apoptosis and thus clonal deletion [98].  In comparing the autoimmune response 

to the normal cell-mediated immune response, antigen presentation studies have 

been used to detect abnormalities in the normal 2-signal model of antigen 

recognition.  Cells bearing autoantigens are thought to be presented to T cell 

receptors by APCs that are missing key costimulatory molecules.  [102] [66]  

Activation of signal 1 without coactive signal 2 renders autoreactive T cells either 

anergic or indifferent.  [103-105]  

 

This is how passive self-tolerance is said to occur.  However, self-tolerance to 

autoantigens may also require active suppression mechanisms to address the 

autoreactive potential of cells that somehow are neither clonally deleted nor 

rendered anergic.  [106, 107]  Likewise, it has been shown that IT selection of the 

T cell repertoire is dependent upon peripheral fallback mechanisms regulated by 
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circulating mature suppressor T cells, answering the question of how tolerance to 

peripheral self-antigens is achieved.  [74] 

 

In terms of tolerance induction, if deletion (anergic) mechanisms were 

responsible for unresponsiveness, the persistence of thymic tissue unexposed to 

donor alloantigen would permit normal maturation of alloreactive T cells, 

preventing donor-specific tolerance.  Donor alloantigen introduced into one 

thymic lobe would result in clonal reeducation in that part of the thymus, but the 

remainder of the thymus gland would remain naive to the donor alloantigen.  This 

would indicate why it would be important to inoculate both lobes with antigenic 

tissue for successful tolerance induction.  If a suppression mechanism were 

responsible unresponsiveness, then the presence of alloantigen-naive thymic 

tissue would not affect the IT induction of tolerance.  IT tolerance induction 

studies support the clonal deletion mechanism.  It was shown that “inoculation of 

bone marrow into only one lobe of the native thymus and/or ectopic thymus did 

not promote consistent survival of subsequent…cardiac allografts.”  [108] 

Tolerant hosts actually had reduced numbers of precursor cytotoxic lymphocytes 

targeted against donor alloantigens.  “Adoptive transfer of spleen cells from 

tolerant WF hosts harboring longstanding cardiac allografts led to permanent 

survival of LEW cardiac allografts in secondary recipients, indicating that the 

unresponsive state after IT inoculation of bone marrow cells is primarily mediated 

by deletion and/or inactivation of donor-specific T cell precursors maturing in a 

chimeric thymus.”  [108] These findings reflect that persistence of donor 
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alloantigen supplied by cells in the allograft is key to the maintenance of an 

unresponsive state.  “Adoptive transfer of spleen cells from tolerant WF hosts 

treated with LEW bone marrow but not transplanted with cardiac allografts did 

not lead to permanent survival of LEW cardiac allografts in naive secondary 

recipients.”  [108] Immune mechanisms are never quite so straightforward, 

however.   

 

The intravenous infusion of specific T cell populations to induce tolerance or to 

prevent autoimmune disease takes advantage of the immune surveillance capacity 

of these cells in the peripheral immune system.  It has been shown that as few as 

600,000 CD4+/CD8- cells collected from the donor thoracic duct and injected 

intravenously into lymphopenic rats can protect approximately half of the animals 

from diabetes.  [74] The mechanisms of immunomodulation associated with 

peripheral administration of lymphocyte populations may not fall under the 

category of tolerance induction per se, as T cell-mediated suppression of immunity 

may be the cause of perceived donor-specific unresponsiveness.   

 

Transplantation biology remains a very complicated science.  The very same 

immunosuppressive methods used to treat one of the major obstacles in the 

success of transplantation, graft rejection, may also lead to graft failure and other 

intolerable side effects.  Familiarity with current techniques in transplantation 

combined with an intricate understanding of the immune response will guide the 

development of modern strategies to reduce graft rejection, and at the forefront of 

70



this field, to induce transplantation tolerance.  It is hypothesized that more 

specifically targeted approaches towards reducing immune graft rejection that 

avoid chronic therapy would eliminate both the threat of graft rejection and the 

secondary complications of long-term immunosuppression. 

 

1.9.2.b. Intrathymic Inoculation of Soluble Proteins and Non-Viable Cells and 

Tolerance Induction  

 

In the establishment of tolerance to peripheral tissue-specific antigens, the role of 

the thymus is much less clear, since recessive mechanisms of peripheral 

tolerance (ignorance, deletion, anergy, immunodeviation) do not require thymic 

selection.  The mechanism of thymic dependent specific suppression of 

aggressive responses to autoantigens that are not expressed intrathymically still 

remains unknown.  [79-81] It is known that the expression of autoantigen mRNA 

and protein in the thymus correlates with resistance to autoimmune disease, 

supporting the idea that introduction of antigens into the thymus could be used to 

establish central tolerance. [109] Allogeneic and xenogeneic murine thymic 

tissue transplantation has been shown to induce donor-specific tolerance.  

Similarly, allogeneic thymic tissue transplantation in a euthymic miniature swine 

model supported host thymopoiesis.  These studies suggested that thymic 

transplantation could be adapted into a donor-specific xenogeneic tolerance 

induction regimen.  [110] The specific mechanism by which tolerance induction 

occurs has not been characterized, but it has been proposed that TECs are 
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primarily responsible for imprinting MHC-restricted specificity, and bone marrow 

derived macrophages or dendritic cells are responsible for the elimination of high 

affinity bound self-reactive T cells.   

 

IT inoculation of soluble alloantigens, including MHC, has been shown to induce 

donor-specific tolerance to murine cardiac allograft, [93, 111-114] and IT 

inoculation of sonicated cells has also been shown to induce donor-specific 

allograft tolerance via the oral route in a mouse model of corneal 

allotransplantation.  [115] Allograft tissue presented intrathymically in this fashion 

is not recognized as foreign and rejection processes are avoided.  The exact 

mechanisms behind IT soluble alloantigen inoculation induced tolerance 

induction are not well explained, and the IT inoculation of specifically functioning 

cells bearing antigens may be a more targeted approach towards tolerance 

induction. 

 

Further studies have demonstrated that this thymic reeducation is also 

efficacious in an autoimmune setting.  In some models of autoimmune disease, 

such as experimental autoimmune uveoretinitis, a correlation has been shown 

between “constitutive expression of autoantigens in the thymus (mRNA and 

protein)” and resistance to disease.  [109] This naturally occurring central 

tolerance to the “relevant autoantigen” could explain why certain individuals are 

more susceptible to autoimmune diseases than others.  [109, 122] 
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1.9.2.c. Intrathymic Inoculation of Viable Cells and Tolerance Induction  

 

1.9.2.c.1. Tolerance Induction with Islets of Langerhans 

 

IT islet transplantation in prediabetic BB/Wor rats was shown in several studies 

to inhibit the progression towards the diabetic state.  [116-121]  These historical 

studies are further discussed in Chapter 4. 

 

In many of the studies involving IT cell transplantation for tolerance induction, it is 

difficult to determine whether the reduced immunogenicity is related to the type of 

cells transplanted or simply due the presence of allogeneic antigens in the 

transplantation milieu.  It is hypothesized that genetically altering and then 

transplanting a specific cell type would further specify the mechanism by which 

tolerance induction occurs. 

 

1.9.2.c.2. Tolerance Induction with Renal Glomeruli 

 

An IT glomerular inoculation study was published just after a similar study showing 

that IT inoculation of donor islet cells induced tolerance to subsequent donor 

matched islet grafts, as described above.  [123] The IT inoculation of isolated renal 

glomeruli into the thymus of MHC incompatible rats pretreated with cyclosporine 

was shown to induce long-term donor-specific tolerance to subsequently 

transplanted kidney grafts while medium only injected rats rejected their grafts 
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within 7 to 9 days.  [124] This study expanded upon the specificity of tolerance 

induction because it demonstrated that the tolerance induction was not only MHC-

specific, but it was tissue-specific.   

 

1.9.2.c.3. Tolerance Induction with Bone Marrow  

 

Donor-matched tolerance to a variety of tissues, including skin, has been 

achieved following the IT injection of donor-matched bone marrow cells into each 

lobe of the thymus coadministered with a single 1 mL intraperitoneal injection of 

ALS. [125-128]  Studies supporting this tolerance induction strategy are 

discussed in greater detail in Chapter 4. 

 

1.9.2.c.4. Tolerance Induction with Spleen Cells 

 

IT inoculation of MHC mismatched splenocytes with a concomitant single 

intraperitoneal dose of ALS led to donor-specific unresponsiveness in a model of 

rat cardiac allotransplantation.  Graft survival was dependent upon the route of 

inoculation (intravenous splenocytes did not induce tolerance) and the present of 

ALS coadministration. [129]  
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1.9.2.d. Use of TECs in Thymic Reeducation  

 

TECs were chosen for this investigation based on their thymic origin, epithelial 

nature, and their ability to be maintained and manipulated in vitro.  It is 

hypothesized that TEC expression and presentation of an antigenic gene product 

in the thymic environment will result in the recognition of the antigen as self, 

preventing immune targeting of this antigen.  In such a paradigm the immunogenic 

proteins within the host thymus, whether native products such as allogeneic MHC, 

or transgenic products from novel transferred genes, would function as tolerogens, 

resulting in the modification of the host’s immune repertoire.  It is hypothesized 

that this approach would allow the host immune system to be specifically modified 

to accept transplanted tissues or cells without impinging on its ability to effectively 

respond to other foreign immunogens.   

 

1.9.2.d.1. Primary Culture of Mammalian TECs  

 

1.9.2.d.1.a. The Demand for Interest in Primary Keratinocyte Cell Lines and 

Application to TEC Cultures  

 

It is hypothesized that deriving and culturing TECs would allow for studies on the 

role of TECs in thymic education and tolerance induction.  The development of 

new and intriguing in vitro manipulation techniques which function to isolate and 

effectively maintain cells in prolonged culture have allowed more efficient 
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individual and throughput research protocols to materialize.  Harvesting and 

culturing primary cells is a tedious process associated with inconsistency, 

inconvenience, and expense.  Consistency depends upon the reliability of a 

harvesting source, sensitivity of specific processing techniques, timing of crucial 

steps in the harvesting process, and technical skill of the tissue harvesting team.  

Tissue and cell harvesting can be labor intensive, sometimes requiring repeated 

mid-process sampling to ensure adequate product yields.  To maintain genetic 

consistency between harvest sources, littermates of the same gender are often 

chosen.  Therefore, many other factors, including the reproductive capacity of an 

animal colony and the availability of appropriately sexed offspring can be 

technically and financially limiting.  Even when the protocols for high yield 

harvesting from multiple animals have been established, some technologies are 

not suited for tissues or cells from multiple animals.  For example, the gene 

therapeutic techniques that might potentially be used on cells require that they 

originate from a single animal source and that the cells are “carried for multiple 

passages”.  The ability to cryopreserve the cells would also be advantageous for 

repeating experiments and comparing results among primary cell lines.  [130] To 

obtain sufficient numbers of cells for experimental manipulation and evaluation, 

the development of a method allowing continuous culture of thymus-derived 

epithelial cells becomes necessary [131-133].  Typically, culture protocols for 

epithelial-derived cells require a high density of cells to sustain viability in primary 

culture.   
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Epidermal keratinocytes are an epithelial-derived cell type which have been 

extensively studied in in vitro systems, and when plated at a high density, 

demonstrate proliferation and improved overall viability compared to cells cultured 

at low density [134].  Studies also demonstrate increased plating efficiency for 

human epidermal keratinocytes derived from newborn as compared to adult 

donors, signifying the advantage of using partially undifferentiated or immature 

cells for establishing cell lines.  It is reported that even though some keratinocyte 

cultures can be established and subcultured, there is a limited lifetime in culture 

ranging from 20 to 50 cell generations.  [135] 

 

While the culture and subculture of human keratinocytes from a single biopsy 

have been well documented, culture techniques for murine keratinocytes have 

required plating at high density for seeding of sufficient numbers of cells, and 

poor division capacity has necessitated pooling from several animals.  [135] [136]  

[137]  These limitations in murine keratinocyte culture highlight the demand for 

an interest in primary keratinocyte cell lines.   

 

General aspects of primary keratinocyte culture can be applied to TEC culture, 

as TECs may be included in the category of keratinocytes.  TECs express keratin 

in the form of keratin intermediate filament bundles, or tonofilaments, and 

desmosomes, defining them as epithelial in nature.  [36] Additionally TECs 

express an endocrine function, secreting thymosin, serum thymic factor, and 

thymopoietin in cytoplasmic secretory granules.  These hormones all function in 
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the transformation of immature T cells into immunocompetent T cells, though 

they may have other functions.  Thymosin has been connected to functions in 

reproductive physiology, wound repair, angiogenesis, and tumorigenesis.   

 

The thymic microenvironment controls IT T cell differentiation via influence by 

prolactin (PRL) and growth hormone (GH).  Both of these hormones, along with 

thyroid stimulating hormone, stimulate thymulin secretion by TECs. [138] 

Thymulin, also a hormone, has been shown to regulate GH secretion [139] while 

inducing T cell differentiation [140], and is controlled by TEC negative feedback 

mechanisms.  [141] Insulin-like growth factor 1 (IGF-1) works synergistically with 

GH to upregulate thymulin secretion.  Prolactin and GH receptors have been 

located on both TECs and thymocytes.  [142] Established TEC lines secrete 

thymic hormones and promote thymocyte proliferation in vitro.  One group refers 

to these secretory products as thymic hormonal factors (THFs).  [143] 

 

Minced human thymic tissue has been cultured with and without trypsinization.  

Cuboidal shaped epithelial cells can appear in a layer within the first 24 to 48 

hours, and the in vitro thymic epithelial cells were able to influence thymocyte 

proliferation for at least two weeks.  [144]   

 

The differentiation of TECs toward a “neural-oriented cell fate” occurs under the 

influence of epidermal growth factor (EGF).  [145] Neural-oriented differentiation 
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also appears to be calcium dependent.  [146] This could be related to TEC 

derivation from cranial neural crest cells.   

 

1.9.2.d.1.b. Previous Reports of TEC Isolation  

 

The isolation and culture of TECs in humans, mice, and rats has been described 

previously.  Many of the advances in TEC isolation and culture have resulted from 

studies aimed at the characterization of monoclonal antibodies for immunology 

research.  These studies are discussed further in Chapter 2. 

 

1.9.2.d.1.c. Culture Conditions and Media Supplements  

 

Many techniques for isolation and culture of TECs have been described, mostly 

employing conventional primary tissue culture techniques combined with 

hormonal supplementation and intermittent chelation therapy to reduce fibroblast 

overgrowth.  Other manipulations used to enhance specific growth of this cell 

type include the deletion of serum from the culture medium, supplementation of 

the medium with D-valine [147-149], growth of cells on extracellular matrix-

coated surfaces [150], growth of cells over “irradiated fibroblasts as filler cells” 

[135, 149], and culture of cells in low calcium medium.  [146, 151-155]  Using this 

background knowledge, it is hypothesized that TEC culture isolation can be 

developed to supply the need for proliferative TEC lines (Chapter 2).   
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TECs may be distinguished from other thymic cells based on characteristics 

specific to epithelial-derived cells.  The presence of cytoplasmic keratin 

intermediate filaments (IFs) or tonofilaments interacting with desmosomal 

junctions are the primary morphological features allowing identification and 

characterization of TECs. [156, 157] 

 

Thymic epithelial cell cultures are highly susceptible to overgrowth by fibroblasts.  

The substitution of horse serum for fetal calf serum has been shown to reduce 

fibroblast overgrowth. [158]  Various serum-free methods of primary keratinocyte 

culture have proven effective in establishing and maintaining cells through 

several passages.  Types of keratinocytes studied have included but are not 

limited to epidermal keratinocytes and prostatic epithelial cells.  Supplements 

used in prostatic epithelial cultures include transferrin (1 microgram/mL), EGF 

(10 ng/mL) and insulin (3.7 micrograms/mL or 0.1 IU/mL).  Glucocorticoids like 

dexamethasone and retinoids like retinyl acetate have also been added as 

supplements to regulate epithelial proliferation by dose dependent synergism 

with the effects of insulin and EGF. [159, 160]  It is suggested that the TECs 

exhibit paracrine glucocorticoid activity on thymocytes [161] and that reduction of 

glucocorticoid production by TECs with age may be the cause of thymic 

involution.  [162] It has been shown that hydrocortisone treatment of 

glucocorticoid expressing TECs augments their adhesion to thymocytes, thymic 

hormone secretion, cytokeratin expression, and extracellular matrix production.  

These cells have been shown to express glucocorticoid receptors and are 
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sensitive to hydrocortisone in terms of thymic hormone secretion, cytokeratin 

expression, and ECM production.  Additionally, dexamethasone treatment in vitro 

has been shown to induce keratin distribution changes in vitro in TECs.  [163] It 

is not known how these effects correlate with in vitro primary culture per se, 

although several growth factors have been used to maintain cultured 

keratinocytes.  [164]; [146, 165] [166]  Insulin-like growth factor-1, GH, and PRL 

have been shown to enhance in vivo expression of high molecular weight 

cytokeratins and to stimulate in vitro TEC proliferation.  [142]. 

 

Already employing serum-free methods of primary keratinocyte culture, one group 

investigated the effects of glucose and electrolytes.  Titration experiments showed 

that optimal glucose concentration is 0.8 mM and sodium chloride concentration is 

100 mM.  There appeared to be an abnormal lipid profile in keratinocytes in 

primary culture, but the lipid profile normalized with the adjustment of glucose and 

sodium chloride levels. [167] The accumulation of lipid granules within TECs might 

indicate a need for culture medium glucose and electrolyte optimization.  

 

A common denominator in the formulation of culture medium for the development 

of primary murine cell lines has been the maintenance of cells in medium 

containing low levels of calcium.  Several studies report on the impact of reduced 

medium calcium concentration on the proliferation and effortless passaging of 

epidermal keratinocytes [146, 151-155].  Media containing calcium 

concentrations less than 0.09mM supported continued growth and proliferation of 
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keratinocytes, while higher calcium levels initiated terminal differentiation and 

decreased cell proliferation.  [165] Further, the expression of biochemical 

markers indicative of late stage epidermal differentiation occurred following 

culture of cells in media depleted of growth factors and containing calcium at a 

high concentration (0.15mM) [168].  Keratinocytes from newborn mice were 

grown on dishes coated with collagen IV and maintained in fibroblast-conditioned 

medium containing 0.06 mM calcium and added growth factors.  By removing 

growth factors and increasing the medium calcium level to 0.15 mM, 

keratinocytes were induced to produce mouse keratin I.  However, this 

expression was lost by the 15th passage.  [130] Other groups also reported that 

higher calcium levels initiated terminal differentiation and decreased cellular 

proliferation.  [146] [169]  The calcium-induced response of TECs is discussed in 

Chapter 3. 

 

Another supportive investigation showed that monolayers of human prostatic 

epithelial cells have been grown to the 4th passage using collagenase digestion 

of prostatic acini, low calcium concentrations, supplementation with “a growth 

factor that is concentrated in bovine neural tissue” and subculturing before 

confluence reaches a certain threshold.  [170] Trypsinization with EDTA may not 

be as effective in passaging cells due to their tight adherence to growth surfaces 

and to each other.  Gentle collagenase IV digestion for 5 minutes at 37° C, then 

rinsing with PBS and 0.02% EDTA, followed by pelleting at 600 to 800 rpm and 

replating can allow passaging of especially adherent cells.   
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Limited dilution cloning is a technique that has been used to isolate and expand 

small numbers of epithelial cells.  (Figure 2.1.)  [171] Additionally, the reduction 

of incubation temperatures from the usual 37° C to 31° C has been shown to 

increase epidermal cell proliferation.  [164] 

 

1.9.2.d.2. Immortalization (Transformation vs. Nontransformation)  

 

“Subculturable cell lines” can be established with the cellular application of 

carcinogen treatments.  [164] TEC lines derived from thymomas and malignant 

thymomas were compared to those derived from normal rat thymus tissue and 

shown to exhibit differential expression of proto-oncogenes and tumor suppressor 

genes in vitro.  [172] These thymoma-derived cell lines produced cells of a larger 

size than cells derived from normal thymic culture, and were “stabilized” to a fully 

differentiated TEC phenotype with the addition of 1µm dexamethasone.  [163, 173]  

Alternately, TEC lines have been transformed using oncogenic viral vectors, such 

as SV40, an oncogenic simian polyoma virus.  [174-176]  Because of the 

differences between TEC lines derived by induced transformation vs. spontaneous 

transformation, a spontaneously transformed cell line might be preferable.  It was 

hypothesized that altering culture conditions would allow the cultivation of 

spontaneously transformed primary TEC lines for further use.  The isolation and 

culture of several TEC lines, one of which spontaneously transformed, is covered 

in Chapter 2. 
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1.9.2.e. Tolerance Induction and Gene Therapy  

 

Statistical analyses of the number of transplantation recipients suffering from 

significant systemic side effects of routine immunosuppressive agents would 

lead one to conclude that an alternative to current strategies should be closely 

investigated.  Induction of specific immunologic tolerance to subsequent grafts 

would offer a safe alternative to long-term immunosuppression and combat 

donor organ shortage.  Tolerance induction would be an ideal way to treat 

autoimmune diseases.  The possibility of imparting specific immunologic 

tolerance to autoimmune diseases such as diabetes mellitus, autoimmune 

thyroiditis, or system lupus erythematosus serves as a great impetus for 

working towards a new treatment paradigm that would simply and effectively 

prevent some of the world’s most common diseases.  [177] Gene therapy has 

been and continues to be examined as a means to introduce novel genes into 

the cells of a graft in an effort to modify graft immunogenicity, introduce 

localized/microlocalized immunosuppression, modify the graft environment to 

improve engraftment, and/or modify the function of transplanted cells/tissues.  

One method of introducing a protein antigen within the thymic 

microenvironment is via the insertion of genetic material encoding that antigen 

using gene transfer techniques.  [178] 

 

“Gene therapy is currently being used in attempts to induce immune tolerance to 

a variety of immune mediated diseases.  In transplantation, gene therapy 
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strategies to prolong graft survival involve gene transfer and expression of 

immunomodulatory or graft-protecting molecules.”  [179] Induction of 

immunologic tolerance to alloantigens is a major goal in the field of 

transplantation.  The recent addition of stable gene transfer vectors that can be 

expressed in a controlled manner has allowed focus towards clinical applications 

of gene therapy in transplantation of various organs, including the heart.  [179] 

 

While many studies support the IT route of administration for inoculation of 

genetically modified cells for tolerance induction, one showed that neither 

intraperitoneal nor intrathymic inoculation of genetically modified fibroblasts 

induced recipient tolerance to the protein encoded by the transgene without the 

use of immunosupression (cyclosporine A).  In fact, when later compared to the 

intraperitoneal/cyclosporine A treated control group, recipients of intrathymic cells 

mounted a heightened antibody response to the protein, suggesting sensitization 

rather than tolerance induction.  [180] 

 

It is hypothesized that the combination of gene therapy and tolerance induction 

strategies, resulting in the production and expression of specific novel proteins 

and their expression as tolerogens within the thymus, offers a highly attractive 

paradigm for developing novel therapeutic approaches to transplantation 

immunology, autoimmune disease(s), and potentially other immune-related 

issues.  [182] The desire to use genetic manipulation necessitates a method 

allowing continuous TEC culture.  [135-137]   
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CHAPTER 2.  

ESTABLISHMENT AND MAINTAINANCE OF A RAT PRIMARY THYMIC 

EPITHELIAL CELL LINE  

 

 

2.1. INTRODUCTION 

 

Induction of specific unresponsiveness has been demonstrated following IT 

transplantation of whole cells, cell clusters (i.e. islets), and IT inoculation of 

soluble proteins and non-viable cells.  It was hypothesized that the IT injection of 

donor MHC-mismatched TECs, native residents of the thymic environment, 

would demonstrate improved transplantability and survivability at the transplant 

site, and, as demonstrated for other cell types, would induce donor-specific 

tolerance.  The successful establishment of a proliferating population of TECs 

would be the first step in demonstrating the feasibility of this hypothesis.  The 

desire to utilize large numbers of TECs for in vitro manipulation and 

characterization, transplantation experiments, and for other future studies 

including genetic manipulation in a rat model necessitated the establishment of at 

least one primary TEC line.  The best suitable conditions for isolation of TECs 

and establishment of a TEC line were investigated by modifying previously 

published techniques, and by varying culture and medium conditions.  
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Previously, studies focusing on ontogeny of the thymus gland and defining the in 

vitro effects of TECs on T cell maturation in normal and diseased animal and 

human models required the ability to establish and maintain TECs in primary 

culture. [183-188] Some groups applied the results of research on thymomas to 

normal TEC responses.  [189-194] Other studies focused on raising monoclonal 

hybridoma antibodies against TECs for studies characterizing the in situ 

architecture of the thymic cortex as it related to the blood-thymus barrier and 

clonal selection.  [195-209] Murine-derived TECs and other cells which express 

keratin intermediate filaments are reported as difficult to establish and maintain, 

possibly explaining why a primary rat TEC line has not been made commercially 

available.  [135] [136]  [137]  Like primary TEC cultures, primary keratinocyte 

cultures are often complicated by fibroblast overgrowth.  [158] Additionally, 

primary keratinocyte cultures have been established using serum free and low 

calcium growth conditions [146, 151-155].  These varied conditions of primary 

culture, common to keratin-expressing cells, were applied to the primary TEC 

cultures derived from four different rat strains, the Lewis, Dark-Agouti, LDA 

(Lewis x Dark Agouti), and Wistar Furth strains, outlined below.   
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2.2. MATERIALS AND METHODS  

 

2.2.1. Animals  

 

Three to fourteen day old Wistar Furth (WF, RT1u), Lewis (Lew, RT1l), Dark 

Agouti (DA, RT1a), and Lewis-Dark Agouti (LDA, RT1a,l, F1 offspring of Lew x 

DA) rat perinates were used as tissue donors.   

 

2.2.2. Neonatal Thymus Gland Excision 

 

Perinates were sacrificed using craniocervical dislocation, the neck and thoracic 

regions were prepared with 70% ethanol, and thymic dissection was performed in 

an aseptic environment.  Using aseptic technique, a midline vertical skin incision 

was made beginning in the mid epigastric region and extending towards the 

neck.  The skin was retracted laterally.  Forceps were used to lift the epigastric 

musculature and scissors were used to puncture the musculature of the 

diaphragm, and an incision was made through both the musculature and the ribs, 

just lateral to the sternum, extending cranially all the way through the clavicle.  

The ribs were retracted laterally, and the gray, bilobed thymus gland was 

identified overlying the great vessels.  Microforceps were used to separate the 

thymus tissue from the great vessels.  To minimize cellular autolytic changes, the 

fresh thymic tissue was placed in 15 to 20 mL of cold (0°C) Ca++/Mg++ free 

Hank’s balanced salt solution in a glass Petri dish over ice.   
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2.2.3. Preparation of Thymic Cell Suspension – Enzymatic In Vitro TEC Isolation  

 

Freshly harvested neonatal thymi were placed in a sterile glass microconcavity 

slide with a small volume of Ca++/Mg++ free HBSS. (Fisher Scientific, St. Louis, 

MO)  Sharp dissection with microforceps and a microscalpel under a dissecting 

microscope, was used to remove any visible capsular and pericapsular 

connective tissue, fat, coagulum, blood vessels, and debris.  Under a positive 

pressure laminar flow hood, the tissue was minced in the sterile microconcavity 

slide using curved 9 cm surgical scissors, producing approximately 2-3 mm2 

particles in a viscous cellular mix.  Occasionally rinsing the scissors with a small 

volume of Ca++/Mg++ free HBSS helped to clean it of adherent tissue.  The 

minced particles were pipetted into a 50 mL centrifuge tube containing a sterile-

filtered collagenase (Boehringer Mannheim, Mannheim, Germany) solution (15 

mL, 1 mL solution/perinate, 1 mg/mL collagenase in Ca++/Mg++ free HBSS) and 

incubated for 30 minutes at 37°C in a water bath with vigorous agitation every 10 

minutes.  The addition of cold Ca++/Mg++ free HBSS was used to arrest 

enzymatic activity, and the digest was centrifuged at 1500 rpm for 5 minutes.  

Following centrifugation, the supernatant was removed and the digested tissue 

washed and centrifuged with Ca++/Mg++ free HBSS two additional times.  A 

pipette was used to remove the supernatant from the pellet of minced thymic 

tissue.  (Depending on the donor strain, cells were treated with 0.05% EDTA in 

Ca++/Mg++ free HBSS.)  The pellet was resuspended to a total of 7 mL in 

growth medium (type varied with strain of rat), and plated to T25 tissue culture 
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flasks (approximately 3 thymi per flask).  (Falcon, Fisher Scientific, St. Louis, 

MO)  Plated thymic explants were maintained in a water-jacketed incubator at 

37°C with an atmosphere of 5% CO2 in air.  On day 7 of culture, the tissue was 

refed by removing and replenishing approximately half the media volume.  

Depending on the donor strain, 0.05% EDTA in Ca++/Mg++ free HBSS or PBS 

was used to chelate calcium from the culture medium, inhibiting fibroblast 

overgrowth.  Unattached thymic cells and tissue explants removed with the 

media change were pelleted by centrifugation for 5 minutes at 1500 RPM, the 

supernatant discarded, and the pellet resuspended and replated to a new flask in 

fresh media.  

 

All flasks were refed and EDTA-treated every 3 days thereafter.  The thymic cells 

attached to the culture dish surface and cellular outgrowth occurred, eventually 

forming a monolayer.  Culture supernatants were collected daily for one week 

and used for subculture to conserve any unattached cells, providing them further 

opportunity to settle down, attach, and thrive.  The cultures were observed daily 

under an inverted tissue culture microscope.  Unattached non-epithelial thymic 

cells such as thymocytes were discarded with the supernatant and attached 

fibroblasts were eliminated over a period of approximately 3 weeks by exclusion 

of supplements required for their growth and by differential trypsinization of 

cultures.   

 

90



2.2.4. Pure Thymic Epithelial Cell Culture 

 

Initial culture techniques included collagenase and EDTA treatment followed by 

plating of minced tissue for two hours, re-plating of collected centrifuged 

supernatant mixture (500 rpm), and refeeding with fresh medium.  The effects of 

collagenase and EDTA treatment of the thymic suspension and the supernatant 

were evaluated.  The medium used for the initial plating was adjusted over time 

to optimize primary TEC culture.  (Table 2.1)  Evaluation of early cell populations 

revealed a majority of cells with a fibroblast-like phenotype, with a minority of 

epithelial-appearing cells.  Sterile poly-L-lysine was used to treat the growth 

surface of tissue culture flasks in attempts to increase cellular attachment.  

Incubation settings were also optimized.  Re-evaluation of the culture techniques 

eventually led to the following modifications in the protocol:  The collagenase and 

EDTA-treated minced tissue was plated into T25 culture flasks containing the 

medium best suited for each rat strain and maintained at incubation settings of 

37°C, 5% CO2.  The strain-specific optimization of media was empirically 

determined using a variety of media and media combinations (Table 2.1.).  

Depending on the rat strain, the tissue was again EDTA treated on day 7 and 

every 3 days thereafter until the epithelial nature of the monolayered cells was 

confirmed using light microscopy, immunocytochemical staining, and electron 

microscopy.   
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Table 2.1. Media Formulations Assayed for Applications in Primary TEC Culture.  
Various formulations with differing concentrations of medium components.  
GWAJC supplements = cholera toxin, EGF, insulin, transferrin, and DM. 
 
 
Base 
medium 

2° medium 
(conc.) 

serum  
(conc.) 

Buffer 
(conc.) 

antibiotic  
(conc.) 
1% 

Supplements
(conc.) 

DMEM N/A equine (15%) HEPES (1%) PSF  NaPy (1%) 
DMEM Ham’s F12 

(50%) 
N/A NaHCO3 PSF  N/A 

WISH  fetal calf (15%) NaHCO3 PSF  L-glutamine 
(1%) 

GWAJC DMEM 
(7.5%) 

fetal calf (7.5%) HEPES and 
NaHCO3 

PSF  GWAJC  

GWAJC DMEM 
(2.5%) 

supplemental calf (2%) HEPES and 
NaHCO3 

PSF  GWAJC  

GWAJC DMEM 
(7.5%) 

supplemental calf (2%) HEPES and 
NaHCO3 

PSF  GWAJC  

GWAJC DMEM 
(2.5%) 

supplemental calf (7.5) HEPES and 
NaHCO3 

PSF  GWAJC  

DMEM N/A N/A NaHCO3 PSF  GWAJC  
DMEM N/A supplemental calf (2%) NaHCO3 PSF  GWAJC  
DMEM N/A supplemental calf 

(7.5%) 
NaHCO3 PSF  GWAJC  

DMEM N/A supplemental calf 
(10%) 

NaHCO3 PSF  GWAJC  

DMEM N/A fetal calf (10%) NaHCO3 PSF  GWAJC  
Ham’s F12 N/A supplemental calf (2%) NaHCO3 PSF  GWAJC  
Ham’s F12 N/A fetal calf (7.5%) NaHCO3 PSF  GWAJC  
Ham’s F12 N/A fetal calf (10%) NaHCO3 PSF  GWAJC  
Ham’s F12 N/A supplemental calf 

(10%) 
NaHCO3 PSF  GWAJC  

GWAJC DMEM 
(50%) 

supplemental calf (5%) HEPES and 
NaHCO3 

PSF  GWAJC  

GWAJC DMEM 
(50%) 

supplemental calf 
(7.5%) 

HEPES and 
NaHCO3 

PSF  GWAJC  

GWAJC DMEM 
(50%) 

supplemental calf 
(10%) 

HEPES and 
NaHCO3 

PSF  GWAJC  

Promocell N/A N/A N/A PSF  N/A 
GWAJC N/A N/A HEPES and 

NaHCO3 
PSF  Promocell  

Promocell N/A N/A N/A PSF  GWAJC 
Promocell N/A supplemental calf (2%) N/A PSF  Promocell  
Promocell N/A supplemental calf (5%) N/A PSF  Promocell  
Promocell N/A supplemental calf 

(7.5%) 
N/A PSF  Promocell  

Promocell N/A supplemental calf 
(7.5%) 

N/A PSF  Promocell + 
D-valine 

Promocell N/A supplemental calf (2%) N/A PSF  GWAJC  
Promocell N/A supplemental calf (5%) N/A PSF  GWAJC  
Promocell N/A supplemental calf 

(7.5%) 
N/A PSF  GWAJC  
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A culture isolation technique using sterile vacuum grease and cloning cylinders 

was used to isolate and expand cuboidal, epithelial appearing cells or cell 

clusters.  (Figure 2.1.)  When a small cluster of adherent cells was found in early 

stages of primary culture, the area was marked, medium volume was reduced, 

sterile vacuum grease was applied to one end of the cloning cylinder, and under 

sterile conditions, the cylinder was applied with the cylinder lumen surrounding 

the cell cluster.  The isolated cells were lightly trypsinized, and they were passed 

to a new growth surface, thereby increasing their purity and relative 

concentration.  This technique was used to increase cell-to-cell contact and 

maintain a pure population of cells. 

 

 

 

 

 

 

 

 

 

 
Figure 2.1. Isolation of TEC
showing isolation technique
large culture plate using a c
 

The primary cell line and cu
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n this project were refed every 3 days with the 
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medium that supported their continuous growth.  Cells were maintained in T25 

tissue culture flasks at 37° C in 5% CO2.  Doubling times were approximately 48 

hours long.  A completely confluent flask of TECs usually contained 1 x 106 

TECs, as shown by cytometric analysis.  During the in vitro experiments, the 

isolated cells from thymic suspensions were regularly investigated for the 

presence of cytoskeletal cytokeratin.   

 

2.2.4.a. Passaging of Thymic Epithelial Cells 

 

Adherent cells were passaged when they approached confluence, with replating 

at a density of approximately 2 x 105 cells per T25 flask.  For trypsinization, 

media was removed and cells were rinsed with room temperature calcium free 

PBS.  Trypsin was prepared by adding 20 mL of calcium free PBS to 5 mL 

aliquots of thawed 0.25% stock solution.  Cells were immersed in this 0.05% 

trypsin solution for 10 minutes at 37° C.  Cold calcium free PBS was used to 

inactivate the trypsin.  Cells were agitated off of the flask by jet pipetting, then 

collected and centrifuged in 50 mL centrifuge tubes at 1500 RPM for 5 minutes.  

The supernatant was removed from the pellet and the cells were suspended in 

25 cc flasks in fresh supplemented GWAJC medium.  LDA cells were trypsinized 

and reseeded at a 1:2 or 1:3 concentration, while WF, Lewis, and DA cells were 

reseeded at a 1:1 concentration.   
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2.2.4.b. Cryopreservation and Cryogenic Storage of Thymic Epithelial Cells 

 

Cells from the continuous cell line were stored at a density of 1 x 106 TECs in 

GWAJC medium supplemented with 10% cryoprotectant, DMSO.  Nearly 

confluent LDA TECs grown in antibiotic free media for 3 passages were 

trypsinized, triple washed in calcium free saline solution, and 1 x 106 cells were 

frozen in a vial containing 1 cc of GWAJC media containing 10% DMSO, and 

stored at –80° C.  For reconstitution, the vial was thawed at room temperature, 

cells and media were transferred to a T25 flask, and 6 mL of GWAJC medium 

added to the flask for incubation at 25° C, 5% CO2.  Cells were refed every 3 to 4 

days with fresh GWAJC medium. 

 

2.2.5. Morphological Analysis of Thymic Epithelial Cells by Light Microscopy  

 

2.2.5.a. Immunocytochemical Labeling of Thymic Epithelial Cells for Keratin 

 

The immunocytochemical labeling of keratin within epithelial-appearing cells 

derived from the rat thymus was used to determine whether the neonatal rat 

thymic tissue cultures included TECs.  Like other endodermally-derived epithelial 

cells, TECs should express cytoplasmic keratin IFs.  A modified avidin-biotin-

peroxidase immunocytochemical technique was used.  [210, 211]  Early attempts 

at staining had been performed using a mouse anti-human anti-keratin 

monoclonal antibody. (DAKO N Series Mouse anti-human cytokeratin, MNF 
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1166, class IgG, kappa, Carpenteria, CA); however, experimental results and 

negative controls (monoclonal mouse antibody, isotype IgG1, kappa, clone DAK-

GO1, toward Aspergillus niger glucose oxidase, code no X 0931, Lot 047, 100 

mg/L) were poorly differentiated when using an avidin biotin complex-

diaminobenzidine (ABC-DAB) staining technique with the DAKO LSAB 2 kit 

(Carpenteria, CA).  Therefore, the cytokeratin antigen was labeled with a rabbit 

anti-bovine polyclonal anti-cytokeratin antibody (keratin wide spectrum screening 

20622, DAKO, Carpenteria, CA).   

 

Immunocytochemical staining was successfully performed using a modified 

avidin-biotin-horse radish peroxidase technique with the polyclonal anti-

cytokeratin primary antibody described above to characterize adherent primary 

cultured thymic cells.   

 

Thymic epithelial cells were cultured in filter-top culture flasks (Fisher Scientific, 

St. Louis, MO) over a period of 5 to 6 weeks.  Attempts to lift the cells by 

trypsinization and subsequently passage them into chamber slides did not initially 

yield adequate numbers of adherent cells for staining.  Thus, following the 

establishment of a confluent monolayer of cells, staining was performed within 

the culture flasks.  Cells on the flask’s growth surface were not allowed to dry at 

any time.  All reagents were equilibrated to room temperature prior to usage, 

except as specified. 
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Monolayered cells adhering to the bottom of the plates were washed 3 times with 

calcium-free phosphate buffered saline (PBS) (Fisher Scientific, St. Louis, MO).  

Cells were fixed by the addition of absolute methanol (2 mL per flask) at –4°C for 

5 to 6 minutes, then washed with PBS, and treated with peroxide (0.1 mL of 3% 

H202 in 10 mL of methanol at room temperature for 5 minutes) to quench 

endogenous peroxidase activity, after which cells were again washed with PBS.  

Whole goat serum (diluted 1:50 with PBS, 2 mL per flask) was applied to fixed 

cells for 15 minutes at 37° C to block non-specific binding by the secondary 

antibody, followed immediately by application of primary antibody diluted 1:250 in 

PBS for one hour at 37°C.  PBS was used in place of the primary antibody to 

control for non-specific binding of the secondary antibody or the avidin-HRP 

complex.  After removal of the primary antibody solution, cells were washed in 

PBS for 10 minutes, followed by application of a goat anti-rabbit biotinylated 

secondary link antibody (2 mL per flask) for 1 hour at 37° C, after which cells 

were washed again with PBS for 10 minutes.  Avidin (streptavidin conjugated to 

horseradish peroxidase [HRP]) (2 mL per flask) was then applied to the cells for 

15 minutes at 37°C to allow binding to the biotinylated secondary antibody.  Cells 

were again washed and then immersed in PBS before the staining procedure. 

 

2.2.5.b. Immunocytochemical Labeling of Thymic Epithelial Cells for Vimentin 

 

The same modified avidin-biotin-peroxidase immunocytochemical technique was 

used for vimentin staining of TECs.  A monoclonal anti-mouse vimentin antibody 
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(DAKO V9 vimentin, MO 725) diluted 1:10 in PBS was applied using the same 

ABC-DAB technique as described above.  Equine serum was used to block non-

specific secondary antibody staining. 

 

2.2.5.c. Staining Procedure using Diaminobenzidine as Chromogen 

 

3,3-Diaminobenzidine (DAB, DAKO, code k3465, Carpenteria, CA) was used as 

the chromogenic substrate to react with HRP.  [210, 212, 213]  For TEC staining, 

DAB was diluted (80 microliters of DAB in 3.92 mL of buffer) approximately 30 

minutes prior to use.  Excess solution was removed from the cells and 2 mL of 

the DAB solution were placed in each flask to react with the avidin-conjugated 

HRP at room temperature.  Flasks were observed under the microscope for 

deposition of the DAB reaction product.  Development was continued until 

optimum staining was achieved, usually in approximately 5 minutes.  Gentle 

rinsing with distilled water helped to wash away unbound excess reaction product 

in each flask.  For cells stained in flasks, initial viewing was accomplished with an 

inverted light microscope.  For counterstaining and coverslipping of thymic 

epithelial cells stained in flasks, the growth surface of the flask that contained 

DAB-stained cells was removed, a hematoxylin counterstain was applied for 2 

minutes and then rinsed.  The flask surface was glued face up over a glass slide 

with melted gelatin (28-30°C) and a coverslip was applied over the cells with a 

few drops of fructose mounting media (Fisher Sci., prepared by heating a 3:1 

solution of fructose in distilled water, to 55°C and then chilled) containing thymol 
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(J.T. Baker) as an antifungal preservative.  Subsequently, optimization of culture 

techniques and conditions allowed the successful adherence and growth of TECs 

on chamber slides, which greatly simplified the immunocytochemical processing 

of culture TECs, and allowed coverslipping with Permount mounting medium.  

 

2.2.6. Morphological Analysis of Thymic Epithelial Cells by Phase Contrast 

Microscopy 

 

The growth surface of flasks containing living media fed cell cultures was 

visualized using an inverted microscope using Hoffman phase contrast 

illumination.  Cells were photographed using a digital camera.   

 

2.2.7. Morphological Analysis of Thymic Epithelial Cells by Transmission Electron 

Microscopy  

 

Transmission electron microscopy of TECs allows detection of cytoplasmic 

keratin IFs and a desmosomal type of intercellular junction between cells.  

Cultured TECs were evaluated as either cell monolayers grown on coverslips, or 

as a pelleted cell mass.   

 

For cells grown on coverslips, approximately 1x106 cells suspended in 0.5mL low 

calcium medium (WAJC with standard supplements) were plated onto Thermanox 

coverslips in 30mm tissue culture plates and incubated for 2hr (37°C, 5% CO2).  
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This allowed for a concentrated number of TECs to seed to the coverslip surface.  

After the 2hr incubation, an additional 1.5mL of WAJC medium was added to each 

plate, and cells were incubated an additional 24hr, after which time cells were fixed 

and embedded for transmission electron microscopy.  Coverslips were released, 

fragmented, glued to Polybed812 bullets, sectioned at 70nm, and stained with 

uranyl acetate and lead citrate.   

 

Alternately, Bouin’s fixative was extracted from previously fixed cells using 2 

washes of 70% ETOH, followed by rehydration in graded solutions of 50% 

ETOH, 25% ETOH, and buffer.  These fixed cells were then pelleted into a 

microfuge tube by centrifugation, and infiltrated with 10% neutral buffer 

formaldehyde (NBF), rinsed with buffer, submerged in gelatin at 37° C for 1-2 

hours, and cooled in ice.  The hardened gelatin was overlaid with toluene 

saturated with Polybed embedding medium.  After baking, the cell button was cut 

out of the microfuge tube for sectioning.   

 

 

2.3. RESULTS  

 

Thymic cells, derived from neonatal WF, Lew, DA, and/or LDA rats were isolated 

and primary cultures were established under reduced calcium conditions.  Cells 

derived from Lew, WF, and DA strains were maintained up to the 5th passage, 

while cells derived from LDA rats were maintained through over 65 passages.  
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Cultures were refed at varying intervals and subcultured at varying levels of 

confluence, as empirically determined to be appropriate by experimentation.   

 

2.3.1. Establishing Primary Cultures of WF Thymic Epithelial Cells  

 

Initial attempts toward TEC isolation and culture in the WF strain employed the 

use of thymic fragmentation, in vitro enzymatic dissociation, and plating in either 

Nutrient Mixture (Ham’s) F12 medium or Dulbecco’s Modified Eagle Medium.  

(Figure 2.2.)  These high calcium medium formulations resulted in the growth of a 

variety of cell types with limited proliferative capacity.  Some cells appeared 

cuboidal, while others appeared more fusiform (fibroblast-like), with the majority 

of cells appearing as anuclear, membrane bound ghostlike structures adherent to 

the flask growth surfaces. (Figure 2.3.)  After cells grew to a higher confluence, 

trypsinization and replating resulted in a morphologic change of cells from 

epithelioid to a more fibroblast-like appearance.  Plating into glass chamber 

slides resulted in minimal to no adhesion.  Likewise, replating into plastic 

chamber slides resulted in insufficient cell adhesion to allow processing of the 

cells for microscopy.  It was concluded that greater numbers of adherent cells 

were required in the initial phases of culture establishment, and that once 

cultures had been established, expansion of small cell clones was not a feasible 

approach.   
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Figure 2.2. Initial Appearance of Thymic Cells from th
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surrounding a small yet intact nucleus, rounded cells with a central nucleus, and 

oblong, spindle shaped cells.  (Figure 2.3.)  Many cells appeared vacuolated, and 

some appeared to have a frothy cytoplasm.  Other cells appeared to be anuclear.   
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ure 2.3. Variety of Cell Types in Primary Thymic Culture.  Drawing 
monstrating the 3 general types of cells seen in early stages of primary culture 
ng thymic tissue fragments. 

spite of improvements in the initial yields of WF TECs from primary cultures, 

 proliferative capacity of these cells remained limited.  However, following a 

itch in culture medium within a week of plating from the DMEM with 10% SCS 

d supplements, used for the initial plating process, to WAJC medium, a low 

cium formulation from the W. Alton Jones Cell Research Center, the cells 

monstrated a continued proliferation, producing sufficient numbers of cells for 

ssaging without dilution.  This represented a considerable improvement in the 

ablishment of primary cultures of WF TECs compared to initial results. 
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2.3.1.a. Maintaining Primary Cultures of WF Thymic Epithelial Cells 

 

Established cells were maintained in WAJC media.  Cells were refed by 

aspiration of spent medium and replacement with fresh medium.  Due to the 

relatively limited proliferative capacity of TECs of the WF strain, completely 

confluent TECs were lightly trypsinized and reseeded without dilution.  Cell 

numbers diminished over the span of approximately 5 passages, with eventual 

loss of cellular colonies due to lack of proliferation and terminal differentiation.  

Because thinning of cell numbers resulted in loss of cellular colonies, populations 

of cells grown in several flasks were consolidated, centrifuged, and subcultured 

into a single new flask.  This failure of the cells to thrive in conditions of low cell 

density seemed to indicate that a certain amount of intercellular contact was 

necessary to induce proliferation, and proliferative rates of this cell population 

were never sufficient enough to allow the spontaneous transformation of the WF 

TECs into a cell line.   

 

2.3.2. Establishing Primary Cultures of LDA Thymic Epithelial Cells  

 

LDA TECs were isolated by the in vitro enzymatic tissue digestion technique with 

tissue plating in specialized low calcium medium (WAJC) supplemented with 2% 

Supplemental Calf Serum (SCS, Hyclone, Logan, UT), cholera toxin, 

dexamethasone, insulin, transferrin, and EGF.  WAJC medium has previously 

been used for the isolation and maintenance of the TEA3A1 primary cell line 
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derived from LDA rats.  [132] Both the TEA3A1 cell line and WAJC medium were 

donated as generous gifts by Dr. Jun Hayashi at the University of Maryland to aid 

in the derivation and characterization of new primary TEC lines.  This medium 

formulation was later custom ordered through GibcoBRL.  Gibco WAJC 

(GWAJC) supplemented with 2% SCS, 2.5% DMEM, cholera toxin 20 ng/mL, 

dexamethasone 10 nM, insulin 10 µg/mL, transferrin 10 mg/mL, and EGF 10 

ng/mL was used to establish a primary LDA TEC line for this project.  (Figure 

2.4.) 

 

The initial protocol for establishing LDA TEC primary cultures involved surgical 

excision and enzymatic digestion of the thymus, and culture in WAJC media (low 

calcium, 0.098mM), supplemented as described above.  Later, primary cultures 

of LDA TECs were maintained in GWAJC (GibcoBRL, Gaithersburg, MD) 

supplemented with 2% SCS.  Each T25 flask was able to accommodate thymic 

fragments for 3 neonatal rats.  Contact inhibition was noted with tissue densities 

which exceeded this level.  

 

The above techniques resulted in establishment and proliferation of partially 

differentiated epithelial cells with concomitant depletion of lymphocytes and other 

non-epithelial cells.  Cells were refed after the formation of a sufficient cell 

monolayer and maintained proliferative capacity indefinitely.  Upon microscopic 

examination, cells cultured in low calcium medium displayed round to spindle 

shaped morphology and failed to establish physical contact between cells even 
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at confluence.  In passaging cells, single cell suspensions were easily obtained 

by light trypsinization, further indicating a paucity of intercellular contact.  Isolated 

LDA TECs maintained under reduced calcium conditions (using WAJC media 

supplemented with growth factors) retained a high in vitro mitotic frequency and 

spontaneously transformed into a cell line, designated OKTE4-01.   
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igure 2.4. Monolayer of Proliferative TECs from the LDA Hybrid Strain.  
hymus-derived cells displayed the above morphology in primary culture at high 
onfluence.  These cells remained proliferative when maintained in GWAJC 
edium supplemented with 2% SCS and growth factors.  135 X. 

.3.2.a. Maintaining Primary Cultures of LDA Thymic Epithelial Cells 

nce LDA TEC primary culture was established, cells were maintained in T25 

lasks containing 7 cc’s of medium until subculture became necessary.  

assaging of the cells was imperative before they became overly confluent.  

ven though these cells normally appeared to have increased intercellular 
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spacing, a morphological change resulted from excessive confluence, and the 

cells began to exhibit cobblestoning and occasionally some cellular inclusions, 

typical of TECs from other strains which had lost proliferative capacity.  The 

cause of this was unknown, although it was speculated that release of calcium 

from intracellular stores in cultures of overpopulated cells might have been the 

causative factor.  Thus, cells were gently trypsinized at approximately 80% 

confluence (i.e. approximately 80% of the growth surface was occupied by cells). 

 

Cells were cryopreserved for storage and future use at multiple passages.  

Frozen cells were easily reconstituted, and appeared to be relatively unaffected 

by the cryogenic procedure.  No changes in morphology or proliferative capacity 

were observed following cryopreservation. 

 

2.3.2.b. Effects of Cholera Toxin Concentration  

 

Cholera toxin levels were increased to determine their effects on TEC 

morphology.  The original concentration of cholera toxin in the WAJC solution 

was 20 ng/mL.  No significant changes in TEC morphology were seen at cholera 

toxin concentrations of 40, 80, and 200 ng/mL.  However, primary culture of 

TECs was dependent on maintaining minimal cholera toxin concentrations of at 

least 20 ng/mL in the growth medium.  Exclusion of this supplement from the 

medium used for initial plating resulted in the inability to establish TEC primary 

culture.  Once TECs were established in primary culture, the cholera toxin could 
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be excluded from the medium without any apparent deleterious effects on TEC 

morphology or proliferative capacity.   

 

2.3.3. Establishing Primary Cultures of Lewis Thymic Epithelial Cells  

 

Using a calcium free thymic tissue fragmentation and collagenase digestion 

method, numerous media types were tested for their capacity to allow 

establishment of Lewis TEC colonization and proliferation.  Each media type was 

supplemented with cholera toxin, EGF, insulin, dexamethasone, and transferrin.  

GWAJC and Promocell media, despite supplementation with 2%, 5%, 7.5%, and 

10% serum, were the least permissive medium for initial Lewis TEC survival.  

The use of equine serum resulted in fibroblast overgrowth and limited TEC 

proliferation.  Cells initially collagenase-digested and then chelated with EDTA 

appeared to retain a greater proliferative capacity and could be maintained for 

longer periods than cells initially treated with collagenase but never exposed to 

EDTA treatment.   

 

The EDTA chelation of the medium is believed to have reduced available 

calcium, thereby preventing cell/tissue exposure to calcium levels high enough to 

induce irreversible terminal differentiation.  Serum free WAJC resulted in minimal 

to no growth while supplementation with 7.5% SCS allowed the formation of 

minimal cell colonies.  Serum free DMEM with hormonal supplements initially 

allowed small numbers of scattered cells and cellular remnants to attach, but 
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within a week, there was differentiation of some cells and almost complete loss of 

attached cellular material.  Interestingly, use of calcium-free medias did not 

improve initial culture success as much as EDTA chelation of calcium from 

higher calcium medias. 

 

Primary culture of Lewis TECs was possible following comparative studies using 

DMEM with 2% to 10% SCS and Ham’s F12 with 2% to 10% SCS.  DMEM with 

2% SCS and supplements allowed the formation of small nests of TECs that 

expanded over the first week of culture.  DMEM with 7.5% SCS and supplements 

had similar results.  DMEM with 10% SCS and supplements allowed the initial 

formation of even larger nests of TECs, but these cells became less well 

organized over time and were eventually overgrown by fibroblasts.  Similarly, use 

of Ham’s F12 and WAJC supplements with 2% SCS resulted in some scattered 

nests of cells, and with 10% SCS exhibited larger nests containing mitotic figures 

despite increased fibroblast contamination compared to other media types.  Both 

DMEM and Ham’s F12 with 10% SCS and supplements allowed the formation of 

larger, better organized TEC colonies.  This might have been due to the higher 

serum concentrations in the media, although this would not explain why GWAJC 

with 10% serum did not support Lewis TEC colonization.  Unfortunately, over 

time, even the most robust TEC colonies dwindled in number due to loss of 

proliferative capacity and terminal differentiation.  As time passed, some cells 

appeared to display effects of toxicity, as reflected by accumulation of lipid 

droplets.  Cells cultured in Ham’s F12 transformed into dendritic appearing cells.  

109



Eventually, mitotic cells disappeared and all of the cells appeared to be 

senescent.   

 

DMEM was mixed 50/50 with GWAJC to take advantage of the positive effects of 

both types of media; however no beneficial effect as evidenced by TEC growth 

was observed with serum supplementation of 5%, 7.5%, or 10% SCS.  The 

application of extracellular matrix (ECM) or poly-L-lysine (PLL) to the cellular 

surface prior to thymic tissue seeding did not improve cellular attachment over 

control flasks without ECM or PLL.   

 

Finally, it was hypothesized that an initial establishment of TEC colonies using 

DMEM with high serum followed by a switch to GWAJC media containing only 

2% SCS at a critical stage in the establishment of primary TEC culture would 

prevent or minimize loss of proliferative capacity.  Lewis TEC primary cultures 

were established by initially plating the tissue in DMEM with 10% SCS.  After a 

period of approximately 7 days when colonies of cuboidal cells appeared, the 

medium was switched to GWAJC, the low calcium medium used to establish 

LDA TECs.  This switch allowed the establishment of TEC colonies in high 

calcium and the subsequent proliferation of TECs in low calcium medium.  Once 

Lewis TEC culture was established, TECs were maintained by refeeding with 

GWAJC every 3 to 4 days.  (Figure 2.5.)  However, Lewis TECs did not 

spontaneously transform into a cell line. 
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2.3.3.a. Maintaining Primary Cultures of Lewis Thymic Epithelial Cells 

 

After colonies of TECs were established with DMEM containing 10% SCS and 

supplements, switching the media to CGWAJC prolonged cell survival of these 

primary TECs to the 7th passage.  The ability to establish colonies in one type of 

medium and maintain them in another type of medium suggested that this 

medium switching technique could be applied to the establishment of TEC 

culture from other rat strains.  It also suggested that application of this strategy 

might make feasible the establishment of primary cultures of other keratinocyte 

types not previously shown to be amenable to primary culture.  
 

 

 

 

 

 

 

 

Figure 2.5. Lewis TECs in Primary Culture.  Cells derived from Lewis thymic are 
polygonal in shape and are moderately flattened.  135 X. 
 

2.3.4. Establishing Primary Cultures of DA Thymic Epithelial Cells  

 

Primary culture of TECs from the DA strain initially demonstrated similar 

responses, as did primary cultures of Lewis and WF TECs.  Like TECs derived 
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from WF and Lewis strains, TECs derived from the DA strain did not demonstrate 

growth and proliferation in response to initial culture in either high calcium or low 

calcium medium.  After the first passaging, cells terminally differentiated into 

fibroblast-like cells.  Some cells had a dendritic appearance.  Employing the 

medium switch strategy in which initial plating was accomplished using high 

calcium medium (DMEM with 10% SCS and supplements) and then after 

establishment of TEC colonies, switched to low calcium medium (GWAJC) within 

the first week of tissue culture, the cells maintained an epithelial cell morphology, 

retained some proliferative capacity, and could be passaged without dilution.  

This represented a significant improvement in DA TEC primary culture over initial 

attempts, allowing the establishment of monolayers of adherent DA TECs, 

although the cultures did not spontaneously transform into a primary TEC line.   

 
Figure 2.6. DA TECs at Moderate Density.  A pyknotic cellular outline (arrow), 
with blebbing at the upper right hand corner, and scattered cuboidal cells at a 
late passage of TEC culture derived from the DA strain.  135 X. 

112



2.3.4.a. Maintaining Primary Cultures of DA Thymic Epithelial Cells 

 

As with TECs from other rat strains, once TEC culture from the DA strain was 

established, cells were refed every 3 days with low calcium GWAJC medium with 

supplements and 2% SCS. 

 

2.3.5. Immunocytochemistry and Verification of TECs 

 

The purpose of immunocytochemical evaluation of established TEC colonies was 

to demonstrate definitive epithelial cell characteristics in the isolated cells 

obtained from neonatal rat thymic tissue harvests, thereby validating that these 

cells were indeed TECs.  The definitive identification of cultured thymic cells as 

epithelial was of interest in related studies that would take advantage of both the 

thymic origin and the epithelial nature of these cells.  Keratin IFs are known to 

exist within epithelial or epithelial-derived cells of ectodermal origin in the form of 

intracytoplasmic bundles and are also known to insert into desmosomes.  Other 

thymus-derived cells would express IFs of a different type, uncharacteristic of 

endodermally derived epithelial cells, and would not be characterized by 

desmosomes.  Therefore, the expression of cytokeratin within these cells, as 

visualized by light microscopic immunostaining, was used as the defining 

characteristic to identify these thymus-derived cells as epithelial.  Because TECs 

contain the antigen cytokeratin, this demonstration was accomplished by staining 

with anti-cytokeratin antibodies.  Positive specific staining would definitely 
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establish the thymus-derived cells to be epithelial in nature, and thus TECs.  

(Figure 2.7.) 
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igure 2.7. Immunocytochemistry on TECs with an Anti-cytokeratin Primary 
ntibody.  Cytokeratin staining was performed on the experimental flask (top), 
ith DAB-labeled TECs throughout with prominent cytoplasmic uptake in a 
ytoskeletal pattern and no uptake in the nucleus which was highlighted by the 
urrounding stain.  The negative control flask (bottom) demonstrates no specific 
AB staining.  425 X. 

ot shown, immunocytochemistry on TECs with an anti-vimentin primary 

ntibody was also negative.  
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2.3.6. Electron Microscopy and Verification of TECs 

 

Electron microscopy of cultured thymic cells was also used to discriminate 

thymus-derived epithelial cells from other thymic cell types, including non-

ectodermally derived epithelial (e.g. endothelial) cells.  Since these cells were 

isolated from the thymus gland, demonstration of characteristics unique to 

epithelial cells would define the cells as TECs.  In previous studies examining 

thymic epithelium [149, 214, 215], both in situ and in vitro, characteristics of 

TECs have been described.  Common to many epithelial-derived cells, these 

cells demonstrate keratin IFs and desmosomes (as described above) and display 

undulating cell membranes that possess microvilli.  Further, TECs have been 

noted to possess significant numbers of intracytoplasmic lipid droplets, 

lysosomes, and residual bodies.   

 

The presence of individual keratin intermediate filaments and filament bundles 

indicates the epithelial derivation of these cells. [157] Endothelial cells, 

fibroblasts, and other connective tissue cells do not demonstrate these 

characteristic filament bundles.  [31, 35, 156, 158]  Rather, they express vimentin 

as individual IFs, the appearance of which tend to be more curved or spiral in EM 

examination than keratin IFs.  The EM demonstration of desmosomes also 

indicates the epithelial derivation of these cells.  These desmosomes, or macular 

adherens junctions, are associated with keratin IFs which insert into components 

of the junction.   
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All of these characteristics, distinctive for epithelial cells, and specifically for 

TECs, have been observed within both the TEA-3A1 and OKTE4-01 cell lines, 

confirming these thymus-derived cells as TECs.  Standard TEM was performed 

using methanol fixed, osmium/lead stained cell clusters to localize ultrastructural 

characteristics definitive of epithelial cells.  (Figures 2.8. and 2.9.)  The definitive 

identification of cultured cells as TECs was important in establishing the ability to 

isolate and maintain a thymic specific cell.   

 

 

 

 

 

 

 

 

 

 
Figure 2.8. Electron Microscopy of TEC Intermediate Filaments.  Cells cultured 
in high calcium WAJC media contained individual and bundled cytoplasmic 
keratin IFs coursing through the cytoplasm (arrow).  42,500 X. 

 

 

 

Cells grown in high calcium medium were adjoined by desmosomes, further 

confirming their TEC nature.  (Figure 2.9.)   
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Figure 2.9. Electron Microscopy of TEC Desmosomes.  A typical desmosome 
with keratin IFs (arrow) attaching into dense plaques.  80,000 X. 
 

Maintenance of TECs in low calcium medium was not associated with the typical 

arrangement of keratin IFs and formation desmosome structures.  Cytosolic 

keratin IF bundles were considerably less numerous although individual IFs 

remained visible and were scattered throughout the cytoplasm.   

 

An incidental finding noted in the evaluation of electron micrographs of TECs 

grown in low calcium media was the presence of IFs arranged in whorls, 

complete and incomplete concentric rings, and other curvilinear bundles.  

Some of these structures demonstrated a dense laminar structure, while 

others appeared to possess more diffuse laminae.  These unique IF 

arrangements were observed in regions containing linear keratin filaments, 

present as either individual filaments or as filament bundles.  (Figure 2.10.) 
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Figure 2.10. TECs Maintained in Low Calcium Medium.  Concentric whorls 
and curvilinear structures (arrows) are visible throughout the cytoplasm of 
TECs maintained in medium containing low calcium levels.  37,500 X. 
 

 

2.4. DISCUSSION 

 

As noted by authors of previous reports, TECs are difficult to obtain and maintain 

in culture.  While LDA TECs spontaneously transformed into a cell line when 

plated and maintained in low calcium medium, WF, Lewis, and DA TECs 

required plating in high calcium medium (DMEM with 10% SCS) and switching to 

low calcium medium (WAJC) for maintenance.  Though not previously reported, it 

appears that rat TEC primary culture is dependent upon the specific strain from 

which the thymic tissue is derived.  These calcium-dependent characteristics of 
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rat TECs are further evaluated by morphological and functional studies in 

Chapter 3. 

 

Because the ability to obtain sufficient TECs was limited to the LDA rat strain and 

its MHC expression, further studies using an allogeneic model of rat 

transplantation tolerance induction were directed towards respectively MHC 

mismatched donors and recipients (Chapter 4).  Additionally, preliminary studies 

on in vitro manipulation and genetic transfection of TECs (discussed briefly in 

Chapter 5) were also limited to LDA TECs. 

 

It is hypothesized that it may be of value to employ a medium change like the 

one used to expand upon the proliferative capacity of WF, Lewis, and DA TECs 

during the crucial period of cellular attachment in primary cultures of other cell 

types that could not previously be established using other techniques.   
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CHAPTER 3.  

EVALUATION OF INDUCED MORPHOLOGICAL CHANGES IN THYMIC 

EPITHELIAL CELLS 

 

 

3.1. INTRODUCTION 

 

The common denominator which led to the successful culture of TECs was 

knowledge of the TEC response to medium calcium levels.  To establish and 

maintain cell populations proportionate to the demands of this project, the 

calcium-related morphological and proliferative responses of TECs became a 

primary focus.  These responses of TECs to varying medium calcium 

concentrations were evaluated in great detail following the establishment of their 

primary culture.   

 

Attempts at primary culture of TECs derived from WF, LDA, Lewis, and DA rat 

strains revealed that there were strain dependent differences in responses to cell 

culture conditions, and only the LDA derived TECs spontaneously transformed 

into a cell line.  It is known that there is a causal relationship between medium 

calcium levels and desmosome formation.  Desmosomes, or macular adherens, 

are structures composed of protein plaques with attaching keratin IFs, and they 
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function in maintaining structural enforcement between keratin-expressing cells.  

“The IF bundle system in epidermal cells appears to be involved in shape 

formation, shape maintenance, the establishment of desmosomes, nuclear 

centration, and cell-cell contact.”  [216] A relationship between desmosome 

formation and calcium exposure has been demonstrated in many cell types [217-

219], but this relationship has not been defined in TECs.  It was hypothesized 

that TEC proliferative capacity was dependent upon desmosome formation.  The 

morphological studies that ensued were aimed at interrelating the effects of 

medium calcium levels, TEC proliferative capacity, and desmosome formation.    

 

 

3.2. MATERIALS AND METHODS 

 

3.2.1. Phase Contrast Microscopy of TECs 

 

The growth surface of a flask containing living media fed cell cultures was 

visualized using an inverted Hoffman phase contrast microscope.  Cells were 

photographed using a digital camera.   

 

3.2.2. Light Microscopy and Immunocytochemistry  

 

The immunostaining protocol using a modified ABC-DAB technique was 

previously described in Chapter 5, and was used on TECs maintained in varying 
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culture conditions.  Cells were maintained and treated in chamber slides.  

Primary cultured LDA TECs maintained in WAJC medium with 2% DMEM were 

compared to LDA TECs which had originally been maintained in WAJC medium 

with 2% DMEM and then switched to a higher calcium medium (WAJC with 7.5% 

DMEM).  During the immunocytochemical labeling process, cells were not 

allowed to dry at any time.  All reagents were equilibrated to room temperature 

prior to usage, except as specified.  Immunocytochemical staining was 

performed using an avidin-biotin-horse radish peroxidase technique with 

polyclonal rabbit anti-bovine anti-cytokeratin primary antibody (keratin wide 

spectrum screening 20622, DAKO, Carpenteria, CA) and DAB as chromogen to 

characterize adherent primary cultured thymic cells.  Cells in chamber slides 

were fixed in absolute methanol at –4°C for 5 to 6 minutes and treated with 

peroxide (0.1 mL of 3% H202 in 10 mL of methanol at room temperature for 5 

minutes) to quench endogenous peroxidase activity, after which cells were again 

washed with PBS.  Fixed cells were treated with blocking serum diluted 1:50 with 

PBS for 15 minutes, incubated with rabbit anti-bovine cytokeratin polyclonal 

primary antibody diluted 1:250 in PBS for one hour at 37°C, washed again, 

incubated with goat anti-rabbit biotinylated secondary antibody diluted 1:250 in 

PBS, washed again, and incubated with avidin HRP solution for 15 minutes at 

37°C.  DAB was used as the chromogenic substrate, and hematoxylin 

counterstaining was also applied. 
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3.2.2.a. Staining Procedure using Diaminobenzidine as Chromogen 

 

The same DAB staining technique described in Chapter 5 was used to stain 

TECs exposed to varied medium calcium concentrations.  Briefly, DAB was 

diluted (80 microliters of DAB in 3.92 mL of buffer) approximately 30 minutes 

prior to use.  Excess solution was removed from the cells and 2 mL of the DAB 

solution were placed in each flask.  Flasks were observed under the microscope 

for deposition of the DAB reaction product.  Gentle rinsing with distilled water 

was used to wash away excess reaction product.  Cells were counterstained for 

2 minutes with hematoxylin and then rinsed, and a coverslip was applied with 

Permount mounting medium. 

 

3.2.3. Transmission Electron Microscopy  

 

As described in Chapter 5, TEM of TECs allowed detection of a desmosomal 

type of junction between cells and cytoplasmic IFs.  Quantitative analysis of 

these calcium-dependent morphologic structures in TECs could therefore be 

compared in TECs exposed to varying calcium concentrations with a TEM study 

on cells grown on coverslips. 

 

Approximately 1x106 cells suspended in 0.5mL low calcium medium (GWAJC with 

standard supplements) were plated onto Thermanox coverslips in 30mm tissue 

culture plates and incubated for 2hr (37°C, 5% CO2).  This allowed for a 
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concentrated number of TECs to seed to the Thermanox coverslip.  After the 2hr 

incubation, an additional 1.5mL of GWAJC medium was added to each plate.  

Cells were allowed to adhere for 18hr, at which time medium calcium levels were 

adjusted, as appropriate, to 0.0925 mM for the low calcium condition by 

maintaining cells in GWAJC with 2% SCS and 2.5% DMEM, and to 0.188mM for 

the high calcium condition by maintaining cells in GWJAC with 2% SCS and 7.5% 

DMEM.  Cells were incubated an additional 24hr, after which time cells were fixed 

and coverslips were embedded for transmission electron microscopy.  Embedded 

coverslips were released, fragmented, glued to Polybed812 bullets, sectioned at 

70nm, and stained with uranyl acetate and lead citrate.   

 

3.2.3.a. Quantification of Adherent Junctions and Apposed Membranes 

 

To characterize and compare TEC morphological changes, cells were 

systematically scanned from low magnification (135 X) to high magnification 

(between 3,600 and 7,200 X).  Fields of cells were visualized with TEM and 

photographed.  The numbers of cells per field were counted, apposed membranes 

between cells traced and measured, desmosomes between cells counted, and 

length of desmosomes measured in electron micrographs which were analyzed 

(measured to scale) using MetaMorph cell analysis computer software (Universal 

Imaging Corporation, Nikon Instruments, Lewisville, TX).  Data variables examined 

included number of cells per field, number of juxtaposed cell membranes, 
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juxtaposed cell membrane length, number of desmosomes, and length of 

desmosomes.  Data was analyzed using chi squared analysis and student’s T test.   

 

 

3.3. RESULTS 

 

TECs maintained in low calcium medium displayed different morphological 

characteristics from TECs maintained in high calcium medium, and these 

morphological characteristics could be induced by elevating medium calcium 

levels.   

 

A minimum medium calcium concentration was required for the establishment 

and maintenance of TEC cultures.  When culture conditions were modified from 

low to high calcium concentrations, thymic cell morphology was dramatically 

altered.  In high calcium (0.188mM) medium, cultured cells were more densely 

populated, forming confluent monolayers lacking intercellular spacing, and were 

resistant to trypsinization (using 0.05% trypsin/EDTA).  This morphological 

change from a partially differentiated spindle-like monolayer to a fully 

differentiated cobblestone-like monolayer was freely inducible in all thymic cell 

cultures maintained in WAJC media by increasing the media calcium content.  

Culture conditions were altered from low calcium media to high calcium media by 

incrementally increasing DMEM supplementation to assess morphological 

changes.  (Figures 3.5. and 3.6.)  Trypsinization at concentrations sufficient to lift 
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cells (0.05%) resulted in detachment of cells in sheets, and induced cellular 

damage (blebbing and cell lysis).  Further, thymic cells maintained in high 

calcium media became quiescent and no longer exhibited logarithmic growth.  

Immortalized TECs established in low calcium media, once exposed to higher 

calcium levels, converted to a morphology similar to primary TECs grown in high 

calcium media.  This differentiated state appeared to be permanent and 

irreversible, as returning cells to the low calcium culture condition after an 18 

hour period in the high calcium condition failed to restore the cellular morphology 

and spacing observed in cells never exposed to high calcium culture conditions.   

 

3.3.1. Light Microscopy: Morphological Analysis of Calcium-Induced Thymic 

Epithelial Cell Changes  

 

As mentioned above, culture conditions were altered from low calcium media to 

high calcium media by incrementally increasing DMEM supplementation.  

Histological characteristics of TECs cultured at both low calcium and high 

calcium concentrations were evaluated by immunocytochemistry for keratin 

distribution and light and electron microscopy to determine the effects of media 

calcium levels on cellular structure and ultrastructure.  These morphological 

analyses were also used to confirm that immortalized TECs retain the ability to 

fully differentiate following exposure to high calcium media.   
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3.3.1.a. Phase Contrast Morphological Analysis of Thymic Epithelial Cell 

Changes To Compare Effects of Differing Culture Conditions on TEC 

Morphology 

 

High calcium GWAJC medium (7.5% DMEM supplemented) has a calcium 

concentration of 0.188 mM.  To further investigate the effects of medium calcium 

levels on TEC morphology, medium calcium levels were incrementally increased 

from 0.098 mM to 0.280 mM in increments of 0.012 mM by adding DMEM.  After 

24 hours, cells were visualized using Hoffman phase contrast microscopy.  As 

opposed to technology behind a normal phase contrast microscope, which allows 

visualization of cells using the interference between a central light path and a 

halo of light around a cell caused by an annular ring, Hoffman phase contrast 

microscopy employs technology that modulates the phase contrast light path with 

a slit lamp effect to produce a three-dimensional image of cells.  The percentage 

of cells transformed from an appearance consistent with cellular proliferation 

(greater intercellular spacing, more three dimensional texture) to an appearance 

consistent with cellular differentiation and decreased proliferation (reduced 

intercellular spacing, more two dimensional texture) was recorded. 

A three dimensional appearance was seen in TECs maintained in low calcium 

while a two dimensional appearance was seen in TECs maintained in high 

calcium, reflecting the flat morphology of cells grown in high calcium medium.  

(Figure 3.1. and 3.2.) 
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igure 3.1. Hoffman Phase Microscopy of TECs Maintained in Low Calcium 
edium.  Cells have more intercellular spacing and a three dimensional 
ppearance than those maintained in high calcium medium.  135 X. 
igure 3.2.  Hoffman Phase Microscopy of TECs Maintained in High Calcium 
edium.  Cells have decreased intercellular spacing and a 2 dimensional 
ppearance, indicating their squamous, adherent nature.  135 X. 

ncrementally increasing the medium calcium concentration resulted in an 

lteration of TECs from the proliferative morphology to the non-proliferative 
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morphology.  These results correlate with the earlier immunocytochemical results 

demonstrating that the GWAJC medium containing a high calcium level (0.188 

mM) induces a morphological change in TECs.  (Table 3.1.) 

 

Table 3.1. Effects of Medium Calcium Concentration on TEC Morphology.  Areas 
of altered cells appeared when medium calcium concentrations were between 
0.184 and 0.196 mM.   
 

Calcium 
(mM) 
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.172 0 
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3.3.1.b. Immunocytochemistry To Compare Effects of Differing Culture 

Conditions on TEC Morphology 

 

Two populations of cells were employed in this investigation.  TEA-3A1 cells 

(LDA TECs) were previously derived, and have been established as an immortal 

line of TECs [132] by Dr. Hayashi at the University of Maryland.  Primary cultures 

of TECs (designated OKTE4-01) were derived in our laboratory using the 

129



techniques described above.  Both TEA-3A1 and OKTE4-01 cells were 

maintained in low calcium medium, as described above.  For this study, culture 

conditions for some cells were altered from low calcium medium to high calcium 

medium by increasing the concentration of supplemented Dulbecco’s Modified 

Eagle’s Medium (DMEM) from 2.5% to 7.5%.  (TECs did not thrive in DMEM 

concentrations below 2.5%.)  Because DMEM was originally added to Ca++ free 

WAJC medium (GibcoBRL, Gaithersburg, MD) to introduce a minimal calcium 

level necessary for cell viability (creating low calcium WAJC404A), we used 

DMEM accordingly to further increase calcium levels to make high calcium 

WAJC404A.  DMEM was chosen over serum or other supplements for increasing 

medium calcium levels because of the number of unknown components and 

sometimes intangible effects of serum on the cultured cells.  These four cell 

populations (TEA-3A1, low Ca++; TEA-3A1, high Ca++; OKTE4-01, low Ca++; 

OKTE4-01, high Ca++) were evaluated by light and electron microscopy to 

determine the effects of medium calcium concentration on histological and 

ultrastructural characteristics.  Quantitative analysis of macula adherens density 

was performed on the OKTE4-01 cells.  

 

Immunocytochemistry was used to visualize the keratin IF distribution pattern of 

TECs exposed to low calcium WAJC medium (with 2.5% DMEM) (Figures 3.3. 

and 3.4.) and TECs exposed to high calcium WAJC medium (with 7.5% DMEM) 

(Figures 3.5. and 3.6.).  Evaluation of stained cells demonstrated differences in 

130



distribution of keratin IFs between the cells cultured in low vs. high calcium 

media.   
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igure 3.3. Low Magnification View of TECs in Low Calcium WAJC Medium.  
mmunocytochemical keratin staining demonstrated a diffuse distribution of 
eratin IFs with increased intercellular spacing and spindle-like morphology even 
t confluence.  135 X. 

igure 3.4. Higher Magnification View of TECs in Low Calcium WAJC Medium.  
mmunocytochemical keratin staining demonstrated keratin IFs arranged in a 
eticular pattern through the cytoplasm without visible condensation of filaments 
n any particular area.  Spherical cells were common and in these a darker  
taining pattern was apparent.  640 X. 
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igure 3.5. Low Magnification View of TECs in High Calcium WAJC Medium.  
mmunocytochemical keratin staining demonstrated decreased intercellular 
pacing with a cobblestoned appearance at confluence.  135 X. 

igure 3.6. Higher Magnification View of TECs in High Calcium WAJC Medium.  
mmunocytochemical keratin staining demonstrated increased specific staining 
ith linear profiles of keratin IFs evident near cell borders. (arrow)  640 X. 
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3.3.2. Transmission Electron Microscopy To Compare Effects of Differing Culture 

Conditions on TEC Morphology  

 

Transmission electron microscopy was used to further characterize and compare 

the nature of TECs cultured in low calcium WAJC media, and TECs cultured in 

low calcium WAJC media and subsequently transferred to high calcium WAJC 

media (supplemented with 7.5% DMEM).  Any steps in the EM processing 

protocol that might expose TECs maintained in low calcium to elevated calcium 

levels were performed following fixation to avoid inadvertent induction of 

morphological changes.  The two cell populations, TECs exposed to high calcium 

and TECs exposed to low calcium, were analyzed by counting cell number, 

number and length of areas of apposed membranes (examples given in Figure 

3.7.), number of desmosomes between cells, and length of each desmosome. 
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igure 3.7. Transmission Electron Microscopy of TECs.  Three cells (1-3) and 
pposed membranes (highlighted by drawn in lines) were counted in a typical 

ield of TECs exposed to low calcium. 
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In total, examination of 87 distinct TEM fields identified 222 cells from high 

calcium cultures (total apposed membrane length of 1489.3µm in 153 discrete 

areas), and assessment of 48 distinct TEM fields identified 124 cells from low 

calcium cultures (total apposed membrane length of 627.3µm in 48 discrete 

areas).   

 

3.3.2.a. Length of Apposed Membranes 

 

Statistics were calculated for 87 fields of high calcium cells and 48 fields of low 

calcium cells.  The average number of cells observed per field was not 

significantly different (2.55±0.10 cells/field, high calcium; 2.58±0.12 cells/field, 

low calcium; p>0.05); however the length of apposed membranes between cells 

differed significantly between the high and low calcium cultured TECs 

(6.59±0.49µm/cell, high calcium; 4.88±0.41µm/cell, low calcium; p<0.02).  These 

results support the subjective finding that TECs maintained in low calcium 

medium appear to retain greater intercellular spacing than TECs maintained in 

high calcium medium.  (Table 3.2.) 

Table 3.2. Analysis of TECs for Juxtaposed Membrane Length.  Number of cells 
per field and length of apposed membranes between cells.  Analysis revealed no 
difference between cells per field but there was a significant difference between 
lengths of apposed membranes between the two cell populations. 
 

 High Ca++ Low Ca++ p* 
n 87 48  

cells/field 2.55 + 0.10 2.58 + 0.12 NS 
apposed 

membrane 
length µm 

6.59+0.49 4.88 + 0.41 p < 0.02 
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3.3.2.b. Number of Desmosomes 

 

Morphological changes were characterized by a quantitative analysis of 

desmosome formation.  In the 222 high calcium cultured cells, a total of 239 

desmosomes were identified, while in the 124 low calcium cultured cells, only 

a single desmosome was observed in all of the juxtaposed cells evaluated.  To 

assess desmosomal density (desmosomes/µm of apposed membrane), the 

number of desmosomes per micrometer of membrane length was calculated 

for each observed region of apposed membrane, and averaged with values 

derived from other regions.  These extrapolations revealed one desmosome 

per 6.23µm of cell membrane (total apposed membrane length/total number of 

desmosomes) in TECs maintained in high calcium medium 

(GWAJC/7.5%DMEM/2%serum).  For statistical evaluation, the number of 

desmosomes per unit membrane length (µm) was calculated for each region 

of apposed membrane examined and averaged to provide a mean value of 

desmosomal density biased by desmosomal distribution within the observed 

membrane regions.  This calculation yielded a value of 0.263±0.035 

desmosomes/µm of apposed membrane (one desmosome per 3.8µm) for 

TECs cultured in high calcium medium vs. 0.001±0.001 desmosomes/µm of 

apposed membrane (one desmosome per 690.7µm) for TECs cultured in low 

calcium medium.  This represented a significant difference between the 

distribution-biased densities of desmosomes in TECs cultured in high vs. low 

calcium medium (p<0.001).  (Table 3.3.) 

136



Table 3.3. Analysis of Desmosome/Membrane Relationship Between TECs.  
TECs exposed to high calcium levels had a significant number of 
desmosomes while TECs exposed to low calcium levels had essentially no 
desmosomes. 
 

 High Ca++ Low Ca++ p* 
n 87 48  

cells/field 2.55 + 0.10 2.58 + 0.12 NS 
desmosomes/µm 

membrane 
2.63+0.35 .001 + .001 p<0.001 

 
 

3.3.2.c. Length of Desmosomes 

 

Average desmosome length was approximately 416±19 nm for the high calcium 

TECs, and was 201 nm for the single desmosome observed in low calcium 

TECs.  A valid statistical comparison of desmosome length between the cells 

grown in high calcium and low calcium was not feasible due to the small sample 

size (n=1) of desmosomes in the low calcium condition.  Nevertheless, the single 

desmosome’s 201 nm length was within size ranges documented for normal 

desmosomes.  [220]  (Table 3.4.) 

Table 3.4. Analysis of Desmosome Length in TECs.  There was no significant 
difference between the length of desmosomes in TECs exposed to high calcium 
levels and TECs exposed to low calcium levels.   
 

 High Ca++ Low Ca++ p* 
n 240 1  

desmosome 
length 

0.416 + 0.019 0.201 NS 
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3.4. DISCUSSION 

 
The differences in growth and proliferative characteristics of TECs isolated and 

maintained in medium with varying calcium concentrations appeared to be 

related to irreversible changes in their morphology.  These relationships 

appeared to be especially well demonstrated by the steep rise in morphological 

alteration in the phase contrast microscopy study.  (Table 3.1.).  Also, the almost 

all-or-none phenomenon of desmosome formation as it related to medium 

calcium levels would indicate that desmosome formation is an important 

signature of decreased cellular proliferation in TECs.  While hemidesmosome 

formation has been demonstrated within 5 minutes of exposure to elevated 

calcium levels in other cell types [221], the relationship of desmosome formation 

and TEC exposure to calcium is unique to this project.
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CHAPTER 4. 
IMMUNOMODULATION WITH THYMIC EPITHELIAL CELLS 

 

 

4.1. INTRODUCTION 

 

The introduction of "foreign" antigens into the thymus has been shown to 

reeducate the immune system by selectively restricting the T cell repertoire such 

that the "foreign" antigen may be considered "self."  This finding has great 

implications for the potential therapeutic strategies in the prevention of organ graft 

rejection and in autoimmune diseases, particularly Type I diabetes.  Although the 

mechanism by which IT inoculation of antigen or antigenic tissue has not been fully 

elucidated, numerous studies have demonstrated the efficacy of this technique in 

inducing specific unresponsiveness in a host, and have resulted in decreased 

numbers of target-specific effector T cells.  [222] These studies also confirm a 

significant role for the thymus in immune maturation, antigen recognition, and 

induction of specific unresponsiveness (central tolerance).  This has led to the 

development of the hypothesis that cell/tissue grafts within the thymus allow 

presentation of foreign antigens to immature host T cells, resulting in depletion of 

cells bearing TcR specific for the reeducation of the foreign antigen.  The overall 

effect is reeducation of the host immune system leading to specific 
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unresponsiveness.  Recent experimental work in an animal model has shown that 

preconditioning of a transplant recipient by IT injection of donor antigen can induce 

donor-specific unresponsiveness, eliminating the necessity for subsequent long-

term immunosuppression.  This pioneering work described the transplantation of 

allogeneic pancreatic islet tissue into the thymus of streptozotocin (STZ)-induced 

diabetic recipient rats, and reported the induction of unresponsiveness to a 

subsequent, donor-matched, extrathymic islet graft placed at the renal subcapsular 

site.  [223] It was hypothesized that IT placement of allogeneic adult islets 

prevented the rejection of the subsequent islet graft, and the recurrence of the 

recipient’s STZ-induced diabetes, due to tolerogenic presentation of the donor-

specific MHC antigen within the host thymus.   

 

Some studies have compared the effects of intrathymic inoculation to extrathymic 

inoculation.  It has been confirmed that the IT site is specific for tolerance 

induction, whereas neither the renal subcapsular nor the intravenous route of 

inoculation can induce tolerance.  [126, 224]  Authors proposed that IT inoculation 

of cells exposes T cell precursors to B cell-specific autoantigen(s), resulting in 

clonally selective deletion.   

 

In these studies, antilymphocyte serum (ALS) was used to transiently deplete 

peripheral T cells.  The generalized immunosuppressive effect of ALS abates in 

14 to 21 days and permits T cell repopulation through IT maturation of 

lymphocytes.  It has been suggested that alloreactive maturing thymocyte clones 
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encountering their specific target molecule in the host thymus undergo central 

deletion while peripheral alloreactive lymphocytes are eliminated by ALS 

administration.  It is proposed that IT inoculation with a large amount of donor-

specific cells/antigen allows for a more complete central deletion, reducing the 

number of peripherally reactive lymphocytes while the effect of ALS is still 

present.  In a skin model of allograft transplantation using a similar tolerance 

induction mechanism with bone marrow, 21 days passed before a challenge skin 

graft was placed and graft survival was prolonged from 8 days to 24 days with 

treatment.  [128] Similarly, donor-specific unresponsiveness to murine cardiac 

allografts has been induced induced by IT administration of soluble alloantigens.  

[111] Allograft tissue presented intrathymically in this fashion is not recognized as 

foreign and rejection processes are avoided.   

 

This central tolerance induction hypothesis has now been tested in a number of 

rodent models of allogeneic transplantation.  Studies have been conducted using 

pancreatic islet [223, 225], renal [226], cardiac [227-229], skin [230], liver [231, 

232], and small bowel [233] allotransplantation.  Induction of specific 

unresponsiveness has been demonstrated following IT inoculation with whole 

cells, cell clusters (i.e. islets), or soluble cell proteins.  

 

Several studies have shown that the IT inoculation of genetically mismatched 

donor BMCs has been shown to induce long-lasting allogeneic tolerance to 

subsequent grafts.  [128, 234]  Injection of donor-matched bone marrow cells into 
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each lobe of the thymus coadministered with a single intraperitoneal injection of 1 

mL of ALS has been shown to induce tolerance to a variety of tissues [125-127], 

including the “gold standard of transplantation tolerance,” skin.  [128]  (Table 

4.1.) 

Table 4.1. Bone Marrow Transplantation and IT Tolerance Induction.  Donor-
specific tolerance induction to allograft tissue induced by intrathymic bone 
marrow inoculation with single concomitant immunosuppression. 
 

Year Author Intrathymic donor cells Donor Tissue 

1992 Posselt, et al. BM + ALS islets 

1992 Odorico, et al. BM + ALS cardiac 

1993 Matsuura, et al. BM + ALS cardiac 

1993 Campos, et al. BM + ALS liver 

1994 Hara, et al. BM + ALS cardiac 

1995 Alfrey, et al. BM + ALS liver 

1998 Li, et al. BM + tacrolimus lung 

1999 Cober, et al. BM + ALS skin 

2000 Wekerle, et al. BM + anti-CD154 + 

anti-CTLA4 Ig 

skin 

 

 
 

Based upon the results of these previous studies, it was hypothesized that the IT 

administration of genetically mismatched TECs might result in specifically tailored 

immune modification.  To assess this possibility, IT preparations of equivalent 

numbers of TECs or bone marrow cells (BMCs) were used as treatments prior to 

challenges with donor-specific tissue grafts.  Animals received either IT TECs, 
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BMCs, or saline accompanied by an IP injection of either saline or ALS.  After a 

designated in situ period, challenge grafts were removed and analyzed for 

significant differences in rejection responses using a graft rejection scoring 

system.   

 

To establish a baseline to assess immune unresponsiveness in study animals, a 

series of renal subcapsular allografts to recipient rats, biopsied at sequential time 

points, was performed.  This made possible a visual comparison of the 

histological changes between the various study groups.  Those grafts in the 

treatment groups whose histological features appeared to resemble less mature 

stages of acute graft rejection in the control groups could be characterized as 

coming from recipients which experienced some level of immune modification.   

 

 

4.2. MATERIALS AND METHODS 

 

4.2.1. Animals 

 

Both Lewis (Rt1l) and DA rats (Rt1a) were used as donors and recipients (DA to 

Lewis, Lewis to DA challenges) for transplantation studies.  Donors were over 60 

days old and recipients were males 4 to 6 weeks of age.  For baseline graft 

rejection studies, 6 week old DA males received thyroid and pancreatic challenge 

grafts from adult male Lewis donors without concomitant immunosuppression.  
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Grafts were harvested at 2, 4, 6, 8, 10, 12, 14, and 21 days following 

transplantation.   

 

The MHC mismatched TEC inoculum was limited to the spontaneously 

transformed LDA (F1 cross between Lewis and Dark Agouti, Rt1a,l) cell line 

established in the first arm of the project.  Therefore, for parallel studies using 

bone marrow instead of TECs, adult LDA rats were used as bone marrow 

donors.  It was hypothesized that the Rt1a haplotype from IT inoculation of LDA 

(Rt1l/a) TECs into Lewis (Rt1l) recipients would induce donor-specific tolerance to 

DA (Rt1a) allografts.  Likewise, it was hypothesized that the Rt1a haplotype from 

IT inoculation of LDA (Rt1l/a) TECs into DA (Rt1a) recipients would induce donor-

specific tolerance to Lewis (Rt1l) allografts.  Also, it was hypothesized that this 

low responder donor-recipient combination of Lewis to DA strains might have a 

less robust alloresponse than the high responder donor-recipient combination of 

DA to Lewis strains.  [235] Fully allogeneic IT Lewis bone marrow with ALS was 

used as an overall positive control. 

 

4.2.2. Intraperitoneal Injection of Antilymphocyte Serum 

 

Sterile frozen 1 mL ALS (rabbit-anti-rat ALS, Accurate Chemical, Westbury, NY) 

aliquots were thawed at room temperature, aspirated into tuberculin syringes, and 

slowly injected intraperitoneally (IP) into 4 to 6 week old recipients approximately 4 

to 5 hours prior to IT transplantation.  [236] If a group of younger animals appeared 
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to experience a violent reaction to the injection, two separate 0.5 mL injections 

were administered approximately 15 minutes apart.  [237, 238]  Sham controls 

used IP saline as treatments.   

 

4.2.3. Bone Marrow Harvest 

 

Bone marrow donors were anesthetized with isofluorane via general inhalation 

and the lower extremities shaven and washed with 70% ethanol.  An incision was 

made just over the hip joint and extended toward the knee.  Sharp calipers were 

clamped through the tibial plateau to stabilize the proximal tibia.  With downward 

traction on the leg, the acetabulum was disjointed and the femur was removed by 

sharp dissection of knee ligaments.  Muscular tissue was cleaned from the femur 

and both ends were sharply removed with a sterile splicing instrument.  A 12-

gauge needle on a syringe of cold HBSS was used to flush bone marrow cells 

from the bone marrow cavity into a centrifuge tube.  [239] 

 

4.2.4. Intrathymic Transplantation  

 

4.2.4.a. Cell Preparation and Concentration of TECs 

 

As mentioned previously, each confluent T25 flask yielded 1 x 106 TECs.  

Cells were trypsinized and triple washed in Ca++/Mg++ free HBSS, and 

concentrated numbers were disbursed into microfuge tubes for centrifugation 
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(1500 RPM, 5 minutes) and volume adjustment to make 50 microliter aliquots 

containing 5 x 105 TECs per microfuge tube.  

 

4.2.4.b. Cell Preparation and Concentration of BMCs 

 

Bone marrow harvests were consolidated into one centrifuge tube and spun at 

1500 RPM to form a pellet.  The pellet was resuspended in 10 mL of sterile, 

endotoxin free water (Hyclone, Logan, UT) for 30 seconds and then 

centrifuged in 50 mL of HBSS; the supernatant was decanted.  To gauge 

experiments, cell counts were evaluated by cytometric analysis.  Following 

erythrocyte lysis, the number of cells derived from two rat femurs was reduced 

from between 1.3 and 1.5 x 106 to 7 x 105 cells.  Pellets were resuspended in 

enough HBSS to make 50 µl aliquots containing 5 x 105 BMCs per tube.   

 

The same number of TECs and BMCs were prepared for each recipient.  

Cellular inoculates were concentrated via centrifugation to 5 x 105 cells in 50 

microliters of HBSS/1 mL microfuge tube for inoculation of each thymic lobe (2 

tubes per recipient).  [240] [241] [74] [234]   

 

4.2.4.c. Intrathymic Inoculation Procedure 

 

Donor cells (either BMCs or TECs) were prepared and concentrated as 

described.  Recipient rats, aged 4 to 6 weeks, were anesthetized with 

isofluorane via inhalation technique and prepared for surgery.  The neck and 
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upper thorax were shaven and washed with 70% ethanol, and the animal was 

placed supine with the neck extended by placement of a towel roll beneath the 

scapulae.  Forceps were used to lift the skin overlying the trachea and a 

midline incision was created using straight scissors.  Similar to documented 

techniques [242], sharp dissection techniques were used to retract the skin 

laterally, to expose the sternohyoid muscle overlying the trachea, and to incise 

the muscle.  Rongeurs were used to remove the manubrium down to the first 

sternebra.  The two halves of the sternohyoid muscle were further separated 

down to the cut end of the manubrium, revealing the cephalad portion of the 

thymus gland.  A cotton-tipped applicator was used to further delineate the 

edges of the thymus gland.  With a 27-gauge butterfly syringe, the cell 

suspension was gently aspirated and expelled to disperse any settled cells at 

the bottom of the microfuge tube.  The 50 microliter solution containing cells 

for inoculation was finally aspirated into the syringe.  Any liquid at the tip of the 

needle was removed and the solution carefully injected into one lobe of the 

thymus.  As the needle was removed, a sterile cotton tipped applicator was 

used to cover the puncture in the thymus and absorb any leakage.  The 

process was then repeated on the other lobe of the thymus.  Grossly visible 

leakage was recorded as a technical difficulty and considered upon statistical 

analysis.  The feasibility and accuracy of IT injection was initially tested by 

injecting ink into the thymus gland (Figure 4.16.) using the above described 

technique.   
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4.2.4.c.1. Intrathymic Inoculation of TECs 

 

Primary cultured LDA (Rt1l/a hybrid) TECs were transplanted intrathymically 

into 4-6 week old Lewis males (Rt1l).  5 x 105 cells were injected into each 

lobe of the thymus, resulting in a total of 1 x 106 IT TECs.  Concomitantly, 

recipients received either IP saline (1mL, sham control) or anti-lymphocyte 

serum (1mL, rabbit anti-rat ALS, Accurate Chemical, Westbury, NY) for 

peripheral lymphocyte depletion.  

 

Freeze-thawed TECs were prepared by exposing the cells to 4 freeze-thaw 

cycles between liquid nitrogen and a 65°C heating block to supply dead TECs 

(FT-TECs).  (Figure 4.28.)  Cell death was confirmed by a cellular replating 

and incubation technique in supplemented GWAJC medium at 37°C, 5% CO2.   

 

4.2.4.c.2. Intrathymic Inoculation of BMCs 

 

LDA or Lewis BMCs were transplanted intrathymically into 4-6 week old DA or 

Lewis recipients.  5 x 105 cells were injected into each lobe of the thymus, 

resulting in a total of 1 x 106 IT BMCs.   

 

4.2.5. Challenge Grafts—Harvest and Preparation 

 

After a period following IT TEC or BMC inoculation with or without concomitant 

IP ALS, recipients received a challenge graft placed in the renal subcapsular 
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space, and the graft site carefully documented.  (DA recipients received Lewis 

challenge grafts.)  After an in situ period, the graft was recovered, fixed in 

Bouin’s solution, prepared for routine paraffin histology (5µm sections, H&E 

staining) and analyzed histologically for graft rejection.   

 

The harvesting techniques for pancreatic and thyroid tissue challenges were 

similar.  A sterile Petri dish was filled with 25 mL of HBSS (GibcoBRL, 

Gaithersburg, MD) and placed over ice.  Lewis, DA, or LDA rats of sexual 

maturity were used as the source of tissue.  Animals were anesthetized with 

isoflurane via inhalation technique.   

 

4.2.5.a. Challenge Grafts - Pancreas Harvest and Preparation  

 

The abdominal area was shaven and washed with 70% alcohol. Using aseptic 

technique, blunt forceps were used to lift the skin of the right upper quadrant.  

Straight scissors were used to extend a skin incision across to the left upper 

abdomen.  Blunt dissection was used to separate the skin from the underlying 

connective tissue, and the skin was retracted.  The underlying muscular layer 

was lifted with forceps and incised from right to left in a similar fashion.  The 

peritoneum was incised and separated using blunt dissecting techniques.  The 

spleen was lifted with clean blunt forceps and clean scissors were used to 

dissect the tail of the pancreas from the spleen and the greater curvature of the 

stomach.  A fragment of pancreatic tissue was sharply excised and placed in the 

149



Hank’s solution over ice.   The animal was either prepared for thyroid tissue 

excision or sacrificed via carbon dioxide asphyxiation.  The pancreatic tissue was 

cleaned of connective tissue, fat, and blood vessels under a dissecting 

stereomicroscope (Hitschfel SZX-ZB9, St. Louis, MO), and then dissected into 2 

mm fragments for immediate transplantation to the renal subcapsule.  The 

unused tissue was discarded.   

 

4.2.5.b. Challenge Grafts - Thyroid Harvest and Preparation  

 

The neck was shaven, and the surgical field was washed with 70% alcohol. 

Using aseptic technique, blunt forceps were used to lift the skin overlying the 

trachea.  Straight scissors were used to extend a skin incision cephalad from the 

jugular notch cranially to the submandibular region.  The scissors were spread to 

separate the skin from the underlying connective tissue, and the skin was 

carefully retracted.  The connective tissue surrounding the each lobe of the 

thyroid gland was separated using a scissors opening technique and blunt 

forceps were used to stabilize the thyroid gland while a fresh pair of curved 

scissors was used to harvest a large fragment of tissue.  The parathyroid glands 

and unwanted material were carefully dissected away and the cleaned thyroid 

tissue was minced to 2 mm fragments and placed in Hank’s solution over ice for 

immediate transplantation to the renal subcapsule.   

 

150



4.2.5.c. Placement of Challenge Grafts 

 

Recipient animals were labeled and identified by metal numbered ear tags 

(National Brand & Tag Company, Newport, KY) to eliminate confusion or 

misidentification, and the recipient animal’s ID number was recorded prior to 

beginning the procedure.  The kidney subcapsule (Serie et al 1983, Hegre et al 

1984) provided a convenient site for easy graft placement.  The animal was 

anesthetized using ether or isofluorane and one or both flanks were shaven with 

an electric shaver.  The area was washed with 70% ethanol, and the animal was 

placed in a lateral decubitus position.   

 

The costal margin was located and used as an anatomical landmark.  The skin 

was opened with scissors at a point slightly inferior to the costal margin.  Blunt 

dissection was used to separate the adipose and loose connective tissue 

underlying the dermis from the underlying lateral muscular wall of the abdominal 

cavity prior to incision of the muscular wall.  This layered dissection was used to 

minimize the development of adhesions.  Irrigation was performed with HBSS. 

 

The kidney was isolated and delivered out of the wound.  A mosquito hemostat 

was applied to the fat pad associated with the renal capsule, stabilizing the 

kidney during placement of the graft tissue.  A #11 blade scalpel was used to 

make a 1-2 mm incision in the renal capsule.  One arm of a blunt forceps, such 

as a #5 eye-dressing forceps, was inserted and angled approximately 
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30 degrees both clockwise and counterclockwise to create a pocket for tissue 

placement, taking care not to injure the underlying renal cortex.  The blunt 

forceps were used to hold the capsule open while other forceps were used to 

advance an appropriately sized intact tissue fragment under the capsule about 1 

cm.  Donor tissue fragments were prepared immediately prior to transplantation 

as described above and stored in cold HBSS over ice.  The capsule was gently 

replaced, and the fragment manipulated through the capsule by gentle pressure 

to prevent the transplanted tissue fragment from slipping out of the subcapsular 

space.  The mosquito hemostats for kidney stabilization were unclamped, and 

the kidney was returned to the body cavity.  Sterile HBSS was used for wound 

irrigation and to replenish lost fluids.  The wound was closed by first 

reapproximating the two edges of the muscle wall incision, and suturing with 4-0 

Vicryl suture (Ethicon, Inc., Somerville, NJ) using simple running suture.  

Subsequently, the skin edges were brought together and stapled with sterile 

wound clips or sutured with nonabsorbable suture in a simple interrupted or 

uninterrupted fashion.  Once the closure of the skin layers was complete, generic 

triple antibiotic ointment was topically applied.   

 

The animal was returned to normal caging after recovery from anesthesia, where 

it was carefully monitored for complications during a one hour recovery period.  

All procedures were documented, and any irregularities noted.   
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4.2.6. Excision and Processing of Grafts 

 

4.2.6.a. Macroscopic Evaluation of Grafted Tissue 

 

At harvest, transplanted tissue was examined macroscopically as part of the 

protocol to assess the host’s immune response.  The graft was evaluated in 

terms of general appearance, visible necrosis, neovascularity, purulence, 

coagulation, and scarring.  The overall assessment was rated as either accepted, 

or partially to completely rejected.  Macroscopic evaluation was included for 

correlation with subsequent histological evaluation, but had no bearing on the 

actual immune scores assessed by histologic evaluation.   

 

4.2.6.b. Renal Subcapsular Graft Excision 

 
Animals were placed under general anesthesia, the surgical site shaven and 

prepped with ethanol, and the skin incised at the same location as the original 

incision.  Blunt and sharp dissection were used to open the layers of the wound, 

separating subcutaneous fat and connective tissue from the underlying muscular 

layer, and noting any excessive adhesion formation, hematoma, or abscess.  The 

previous incision was reopened with scissors, mosquito hemostats were applied, 

and the kidney was delivered through the wound and stabilized.  The graft was 

located based on previous documentation, and macroscopically evaluated as 

described above.  After recording macroscopic observations, the graft area was 

excised using sharp curved scissors to fashion an oval shaped wedge including
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3 mm of kidney cortex with the overlying graft.  An alternative to the scissors 

technique was the use of a #11 scalpel blade (Becton Dickinson and Co., Lincoln 

Park, NJ) to incise the kidney cortex circumferentially around the graft site, 

although the renal capsule tended to slip and distort the graft placement with this 

technique.  The specimen was retrieved with blunt forceps, rinsed in saline 

solution, and placed in Bouin’s fixative solution. 

 

4.2.6.c. Fixation, Embedding, Sectioning and Mounting  

 

Harvested graft tissue was bathed in 5 mL Bouin’s fixative solution for 

approximately 18 to 24 hours.  The Bouin’s solution was then decanted off and 

the tissue was immersed in approximately 25 mL of 70% ethanol.  Ethanol was 

replaced daily for 4 to 5 days to ensure more complete clearing of Bouin’s 

solution from the tissue.  Porous paper embedding bags were labeled 

appropriately, and samples were placed within each bag.  Samples were then 

rinsed twice more, 3 minutes each time, in fresh 70% ethanol, and air bubbles 

were eliminated by piercing the bags with a needle.  A silk tie was stapled to the 

bags which were then hung into a fleaker of fresh 70% ethanol, with continuous 

agitation of the solution by a magnetic stir bar for one hour.  Bathing solutions 

were replaced hourly thereafter with 2 changes of 95% ethanol and 3 changes of 

100% ethanol, resulting in dehydration of the tissue sample.  The sample was 

placed in toluene (3 changes, each an hour long) until tissue translucence was 

confirmed with a flashlight.   
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Paraffin (Surgipath, Richmond, IL) embedding was accomplished with the aid of 

a Sakura Finetech Tissue Tek II tissue processing station.  Tissue samples were 

immersed in three successive paraffin baths, followed by placement of the tissue 

within a mold filled with molten paraffin with the aid of a Leica EG1160 

histological embedding station.  The paraffin block was allowed to cool and 

separated from the mold.  The block was placed in a Leica RM2155 microtome 

and sectioned rapidly until the tissue was encountered.  Chemically etched single 

frosted glass slides (Anapath, Statlab, Lewisville, TX) were labeled with pencil or 

etched with a diamond pen using a numbering system corresponding to 

treatment groups.  Serial tissue sections of 5µm thickness were obtained and 

mounted to the labeled slides using a water bath floatation technique.  The entire 

tissue sample was serially sectioned to ensure that the entire graft could be 

evaluated.  Blocks were stored for later sectioning and referral.    

 

4.2.6.d. Staining for Histological Examination 

 

Harris’ Hematoxylin was prepared as follows.  One hundred grams of aluminum 

potassium sulfate (Sigma, St. Louis, MO) were dissolved in a 2 liter flask 

containing 1 liter of water.  In a 250 mL beaker, 25 mL propylene glycol, 25 mL 

70% ETOH, and 5 gm Hematoxylin (Kodak, C.I. No. 75290, Rochester, NY) were 

combined and stirred at 50-60°C until dissolved.  The two formulations were 

combined at room temperature.  In place of mercuric oxide, 0.5 gm potassium 

iodate was added.  
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For deparaffinization and staining, slides with sections were baked at 60° C and 

washed twice in xylene to clear them of paraffin, and then rehydrated in graded 

ethanol solutions (two washes each of 100% ethanol; then 95% ethanol; then 

85% ethanol).   

 

Rehydrated slides were rinsed in tap water and stained for 15 minutes in filtered 

Harris’ Hematoxylin.  This was followed by a 5 minute water rinse, differentiation 

in acid alcohol, and refining of stain color in ammonia water.  After a final water 

rinse of 10 minutes, slides were dehydrated to 85% ETOH and counterstained to 

the desired intensity with Eosin (Polysciences, Warrington, PA) which had been 

prepared within a week by mixing equal stock solutions of 0.178% eosin Y (C.I. 

No. 45380) and 0.026% phloxine B (C.I. No. 45410), each dissolved in 83.3% 

ETOH.  The working stain was acidified with 0.7 mL glacial acetic acid (EM 

Science, Cherry Hill, NJ) per 150 mL of the mixture.  The dehydration process 

was continued on stained slides through 2 changes each of 95% and 100% 

ethanol and back through 2 washes with xylene before coverslipping with 

Permount mounting medium.   

 

4.2.7. Histological Examination and Immune Scoring of Grafts  

 

Grafts were evaluated using a graft rejection scoring system reflecting: (1) 

allograft viability based upon morphological integrity of the graft, and (2) a graft 

rejection scoring system based upon the mononuclear cell infiltration into the 
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region of the graft.  Scores ranged from 0 to 4, where 0 signified the least altered 

graft viability or the lowest number of mononuclear cells infiltrating the graft; and 

4 signified the most significant reduction in graft viability to the formation of a scar 

and the most significant mononuclear cell destruction of the graft.  (Figure 4.1.)  

The graft scoring system used in the histological analysis of the challenge tissue 

and surrounding graft site has been used in other transplantation study protocols, 

and makes an objective measure of the immunologic response feasible.  (Tables 

4.2. and 4.3.)  As lymphocytic infiltration occurs in focused concentrations, 

accurate cell counts are difficult to obtain based upon 5 µm section samplings 

through grafts measuring between 1 and 2 mm.  The quantification and sizing of 

lymphocytic foci, along with the application of the graft grading system, was 

therefore used to assign graft scores above zero.  Graft fibrosis (Figure 4.2.), 

necrosis (Figure 4.3.), polymorphonuclear cell infiltration (Figure 4.4.), 

macrophage infiltration (Figure 4.5.), and vascularity were also evaluated.   
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Figure 4.1. Graft Rejection and Lymphocytic Infiltration Scoring Systems.  
Overall graft rejection (left column) is scored 0, 1, 2, 3, and 4 from top to bottom; 
graft lymphocytic infiltration (right column) is scored 0, 1, 2, 3, and 4 from top to 
bottom.  Score descriptions can be found in Tables 4.2. and 4.3. Each image = 
100 X. 
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Figure 4.2. Graft Fibrosis.  Eosinophilic collagen fibers replaced viable graft 
tissue as the rejection process ensued 90 X.   
 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Graft Necrosis.  Involution of graft structure exceeded the level of 
lymphocytic infiltration expected to cause this extent of graft destruction.  100 X. 
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igure 4.4. Graft Neutrophilic Infiltration.  Neutrophilic bands are concentrated 
etween nucleated cells in acute stages of graft inflammation. 135 X. 
igure 4.5. Graft Macrophage Infiltration.  Macrophages and multinucleated giant 
ells phagocytose graft tissue remnants. 240 X. 
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Grafts sometimes contained foreign bodies including fur.  (Figure 4.6.)  When fur 

was seen, it was usually associated with a histological graft appearance 

consistent with late stages of graft rejection, suggesting that its presence 

heightened the immune response by elevating proinflammatory cytokine levels.  

This is not an unexpected finding, as rejected third party grafts can also induce 

rejection of previously accepted donor-matched allografts by localized alteration 

of cytokine milieu.  [243]  
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igure 4.6. Graft Foreign Bodies.  White fur from a Lewis rat (top) and brown fur 
rom a DA rat (bottom) are seen within challenge grafts. 240 X. 
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Lymphocytic infiltration and graft viability (preservation of histological 

architecture) were evaluated, as described above, using separate grading 

systems based on criteria for allograft evaluation developed by Hegre and 

Ketchum.  (Hegre et al 1984)  (Figure 4.1.) 

 

Grafts of pancreatic and thyroid fragments were histologically examined and 

assigned graft scores based upon lymphocytic infiltration of the graft, and relative 

immune-related destruction of graft tissue by the following sets of criteria:  

 
Table 4.2. Lymphocytic Infiltration Scoring System.  Scores of 0 to 4 were 
assigned based upon presence and size of lymphocytic foci.   
 

Lymphocytic 
infiltration Score Description 

0 Graft site free of lymphocytic proliferation, allowing for a few 
scattered lymphocytes. 

1 
Graft site with one or more small distinct lymphocytic 

infiltrates containing between 10 and 30 cells. 

2 
Graft site with one or more distinct lymphocytic infiltrates 

containing 40 or more cells. 

3 
Graft site with several large lymphocytic infiltrates with 

some overlap or extensive infiltration throughout. 

4 
Graft without almost complete, indistinct lymphocytic 

infiltration obscuring normal graft tissue. 
 

Table 4.3. Allograft Viability Scoring System.  Scores of 0 to 4 were assigned 
based upon histological architecture. 

 

Allograft  
Viability Score Description 

0 Viable graft, no evidence of immune involvement 

1 Viable graft, structurally intact tissue with limited 
mononuclear infiltrate 

2 
Immune response, with a largely intact graft with evidence of 

mononuclear infiltrate and minimal evidence of graft 
destruction 

3 
Immune response, with recognizable tissue with significant 

mononuclear infiltrate and evident significant 
destruction of graft tissue 

4 Rejection, remnant scar tissue only, with complete resolution 
of mononuclear infiltrate 
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4.2.7.a. Statistical Analysis 

 

Fisher’s Exact Probability Test was initially used to identify statistically significant 

overall differences in outcome among smaller treatment groups.  The chi squared 

test was also used to determine the statistical significance of the qualitative 

preliminary data between preliminary treatment groups.  The student’s T test was 

then used to evaluate differences between the graft scores of individual 

treatment groups, with a one-way ANOVA for comparisons between numbers of 

groups.  [244]  Graphpad Prism 4 and GraphPad InStat (GraphPad Software, 

San Diego, CA) computer software programs were used for statistical outputs. 

 

 

4.3. RESULTS  

 

4.3.1. The Natural History of Allograft Rejection: Temporal Studies in the Course 

of Immune Rejection  

 

As described in Chapter 1, the immunologic response to graft rejection differs 

from the natural response to graft placement, i.e. inflammatory response 

associated with unavoidable surgical trauma, such as in the case of an autograft.  

These graft rejection events are dependent upon factors such as the extent of 

the surgical wound, immunocompetence of the recipient, histocompatibility 
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between the donor and recipient, cellular composition of the graft, antibody 

formation following engraftment, and immunosuppressive regimens. 

 

Almost no immune response to allogeneic transplantation occurs 2 days 

following graft placement.  (Figure 4.7.)  There is retention of pancreatic acinar 

structure and minimal lymphocytic infiltration.   

 

 

 

 

 

 

 

 

 
 

Figure 4.7. Pancreatic Graft 2 Days Following Allogeneic Transplantation.  
Tissue demonstrates normal pancreatic acinar structure and a minimal number of 
infiltrating mononuclear cells.  120 X. 

Day 2Day 2

 

By Day 4 following allogeneic transplantation, there is a significant change in 

graft morphology with loss of basophilic staining pancreatic acini.  (Figure 4.8.)  

Ductal elements are still supported by an intact, eosinophilic staining basal 

lamina, making it still evident that this is glandular tissue.  Compared to the day 2 

graft with minimal lymphocytic infiltration, there is some mild perivascular 
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lymphocytic infiltration.  There is no evidence of scarring or deposition of fibrotic 

tissue.   
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Day 4Day 4
igure 4.8. Pancreatic Graft 4 days Following Allogeneic Transplantation.  
ormal acinar appearance is lost but ductal elements remain supported by an 
osinophilic basal lamina.  Mild mononuclear cell infiltration.  120 X. 

imilar findings to the 4 day pancreatic graft are seen in this thyroid graft at 7 

ays.  (Figure 4.9.) Follicular elements are seen, and there is increased 

ymphocytic infiltration compared to the 2 day graft.  Loss of tissue density 

etween the follicular elements and replacement with lightly eosinophilic fibers 

ignify early fibrotic changes.  
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Figure 4.9. Thyroid Graft 7 Days Following Allogeneic Transplantation.  Follicular 
elements of thyroid glandular tissue remain while lymphocytic infiltration ensues 
along fibrotic areas of the graft.  115 X. 
 

By day 10 following allotransplantation, pancreatic ductal elements are losing 

structural integrity, suggested by loss of the smooth appearance to the ductal 

lumen.  (Figure 4.10.)  This may be due to lack of support from the disintegrating 

basal lamina.  There is increased lymphocytic infiltration around the ductal 

elements compared to the 4 and 7 day grafts, occupying loose fibrotic areas.   

 

 

 

 

 

 

 

 

Day 10 Day 10 
Figure 4.10. Pancreatic Graft 10 Days Following Allogeneic Transplantation.  
Ductal lumina appear less well preserved and lymphocytic infiltration continues to 
destroy the graft.  125 X. 
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Tissue destruction continues until basal laminae are no longer evident after 12 

days.  (Figure 4.11.)  Lymphocytes and macrophages predominate.  

Neovascularization is also noted.  This tissue is no longer identifiable as 

glandular in structure.  Much of the tissue has been replaced by lightly 

eosinophilic staining collagen fibers.   
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Day 12Day 12

igure 4.11. Pancreatic Graft 12 days Following Allogeneic Transplantation.  
uctal elements are replaced by eosinophilic collagen fibers while lymphocytic 

nfiltration destroys graft viability.  125 X. 

t 14 days, the majority of the graft takes on a lightly eosinophilic, fibrotic 

ppearance but there is still a moderate lymphocytic infiltrate.  (4.12.) 
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igure 4.12. Pancreatic Graft 14 Days Following Allogeneic Transplantation.  A 
ew lymphocytic foci remain at the junction between the graft and the renal 
ubcapsule.  Eosinophilic collagen fibers account for the majority of the graft.  
00 X. 

Day 14Day 14

inally, by day 21, all that remains of the graft is a scar devoid of nuclei.  (Figure 

.13.)  Paucity of lymphocytes in the area indicate that the immunologic process 

f rejection has resolved.   

Day 21Day 21

igure 4.13. Pancreatic Graft 21 Days Following Allogeneic Transplantation.  A 

c
o

ar of eosinophilic collagen is all that remains of the tissue graft which overlies 
rmal kidney tissue.  Lymphocytic infiltration has resolved. 100 X. 
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Graft score categories of overall graft rejection and lymphocytic infiltration were 

plotted, and this reflected the expected natural history of the immunologic 

response to allotransplantation.  (Figure 4.14.)   

 

 

 

 

 

 

 

 

 

Figure 4.14. Lymphocytic Infiltration Scores in the Natural History of Graft 
Rejection.  Lymphocytic infiltration was elevated 2 days post transplant, and 
peaked at 8 days post transplant.   
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Figure 4.15.  Graft Rejection Scores in the Natural History of Graft Rejection.  
Graft rejection rose and became relatively steady past day 4. 
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Rejection scores were similar from days 4 through 14, and therefore not as 

useful for comparing graft scores in treatment groups.  Averages of combined 

rejection and lymphocytic infiltration scores were not as physiologically relevant 

but fit a more bell shaped distribution (not shown) with a peak between 8 and 10 

days.  The findings in the natural history of graft rejection helped to outline the 

time frames chosen for challenge graft harvesting to determine a treatment-

related shift in graft immune response from the normal response.   

 

4.3.2. Allogeneic Transplantation from DA to Lewis Rats  

 

As mentioned in the Materials and Methods, 4 to 6 week old recipients received a 

total IT inoculation of 1 x 106 LDA BMCs or TECs, or 50 µL saline, with a 

concomitant intraperitoneal injection of 1 cc ALS or saline.   

 

Successful IT injection with retention of inoculum was easily established and 

documented using India ink, as described in p. 142.   

 

 

 

 

 

 

Figure 4.16. Adolescent Rat Thymus Following India Ink Inoculation.  The 
intrathymic injection technique was tested for accuracy using an ink injection.   
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After a treatment to challenge period of 10 days, DA challenge grafts of thyroid 

and pancreatic tissue fragments were placed in the renal subcapsule.  DA Grafts 

were harvested for processing and analysis after 21 days in situ.  Any technical 

difficulties were recorded.  This was referred to as the “10/21” time frame. 

 

To determine whether the in situ period had an effect on graft recovery studies, 

the treatment to challenge frame was extended to 21 days and the in situ 

challenge time was reduced to 10 days.  This was referred to as the “21/10” time 

frame. 

 

To control for sensitization, syngeneic Lewis graft responses were evaluated 

following IT TEC and IP ALS or saline on the 21/10 time frame. 

 

The DA to Lewis transplantation experiments are summarized in Table 4.4. 

Table 4.4. DA to Lewis Challenge Grafts Following Varied IT Treatments.  Lewis 
recipients received either IP ALS or saline and either IT cells or saline for 
tolerance induction studies. 
 
Group Donor Recipient IT inoculum ALS Challenge 

(Days post Rx) 
Harvest  

(days post-
challenge) 

1 DA Lew saline N 10 21 
2 DA Lew saline Y 10 21 
3 DA Lew LDA BMC Y 10 21 
4 DA Lew LDA BMC N 10 21 
5 DA Lew LDA TEC Y 10 21 
6 DA Lew LDA TEC N 10 21 
7 DA Lew LDA TEC Y 21 10 
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Figure 4.17. DA to Lewis Control Groups.  There was a statistically significant 
elevation (ANOVA, p<0.02) in lymphocytic infiltration in the ALS/ LDA BMC 
(positive control, group 3) compared to negative controls (groups 1, 2 and 4).  
There were no statistically significant differences among the negative control 
groups (1, 2 and 4).   

 

 

A one-way ANOVA of the control groups revealed significant overall differences 

between the groups with a p<0.02.  A Dunn’s multiple comparison post-test 

revealed no significant differences between the negative control groups, 

indicating that ALS alone or BMCs alone did not exert statistically significant 

immunomodulatory effects compared to saline.  There were significant 

differences (p<0.05) between group 3 (positive control, ALS + BMCs, mean 

lymphocytic infiltration 2.1+0.27, n=13) and negative controls, including group 1 

(saline + saline, mean lymphocytic infiltration 0.83+0.65, n=6, p<0.05) and group 

4 (saline + BMCs, mean lymphocytic infiltration 0.63+0.26, n=8, p=.002).  The 

immunological effects of intrathymic LDA BMCs (group 4) were significantly 

enhanced by the addition of IP ALS to the BMC protocol.  Of interest, there was 
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no significant difference between group 3 and group 2 (ALS + saline, mean 

lymphocytic infiltration 1.5+0.87, n=4, p NS) in a 10/21 time frame.  The ALS only 

group was also used to control for the effects of IT BMCs.  The brief IT 

reeducation period and lingering effects of ALS during the in situ challenge 

period might have been the cause of these results, and the impetus behind the 

protocol switch to the 21/10 time frame.   

 

The saline negative control and the IP ALS/IT LDA BMC positive control were 

used as direct comparisons to the treatment group of IT LDA TECs with 

concomitant IP ALS.  (Figure 4.18)  As mentioned previously, the period from 

ALS administration and IT inoculation to challenge graft placement was either 21 

or 10 days, and the in situ graft period was either 10 or 21 days, respectively.  

These time periods were evaluated for their significance and to highlight any 

outcomes between the treatment groups as related to the period of thymic 

reeducation.   
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Figure 4.18. DA to Lewis Experimental Groups.  The degree of 
immunomodulation was significantly higher (ANOVA, p=0.006) in the positive 
control group (3, ALS+BMCs) compared to the IP ALS/IT TEC treatment groups 
(5 and 7).  Group 6 (saline+TECs) was associated with immunomodulation not 
significantly different from group 3, suggesting a physiological role for TECs.   
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A one-way ANOVA including group 3 (positive control) and experimental TEC 

treatment groups revealed statistically significant differences between the groups 

(p=.006).  A Dunn’s multiple comparison post-test revealed significantly higher 

mean graft lymphocytic infiltration scores between group 3 (ALS+BMCs) and the 

treatment groups 5 (ALS+TECs, 10/21 time frame, mean lymphocytic infiltration 

0.86+0.25, n=12, p<0.05) and 7 (ALS+TECs, 21/10 time frame, mean 

lymphocytic infiltration 0.63+0.32, n=4, p<0.05).  There were no significant 

differences among any of the TEC treatment groups despite differences in time 

frames, and despite the addition of ALS to the TEC treatment protocol.  This was 

different from the effect of adding ALS to the BMC treatment protocol, which 

resulted in a synergistic immunomodulatory effect, even though the ALS came 

from the same source.  Of interest, there was not a statistically significant 
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difference between group 3 and group 6 (saline+TECs, mean lymphocytic 

infiltration 1.6+0.34, n=17, p<0.05), suggesting that IT TECs have significant 

immunomodulatory effects when administered without ALS.  However, group 6 

was not significantly different from group 1 (saline control) in host 

immunomodulation (not shown, p NS).  This was confirmed by a t-test between 

the two groups.  Therefore, the potential clinical significance of IT TEC 

inoculation remains limited due to the lack of statistical significance when 

comparing the TEC group with the saline negative control. 

 

Overall, when compared directly, it appeared that TECs alone were as effective 

as BMCs with concurrent ALS administration, suggesting a physiologic role for IT 

injected TECs.  The determine the safety of IT TEC inoculation, syngeneic Lewis 

recipients were treated with IT LDA TECs without concomitant ALS.  (Figure 

4.19.) 

 Lewis Syngeneic +
LDA TEC vs. Saline/Saline

LDA TEC Saline/Saline
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

**ly
m

ph
oc

yt
ic

 in
fil

tr
at

io
n

 

 

 

 

 

 

 
 
Figure 4.19. The Effect of Allogeneic IT TECs on Syngeneic Grafts.  IT 
inoculation of LDA TECs resulted in reduced graft lymphocytic infiltration 
(average score 0), indicating no deleterious effects in syngeneic recipients. 
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Cases in which technical difficulties led to leakage of the TEC inoculum into the 

mediastinal cavity were recorded.  Not shown, a comparison between the IT TEC 

inoculations without technical difficulties and those with technical difficulties 

(“leaks”) revealed a statistically significant (p<0.05) loss of graft viability.  The 

relevance of these results appears dimmed by the lack of significant change in 

graft lymphocytic infiltration or rejection scores between the groups.   

 

4.3.3. Allogeneic Transplantation from Lewis to DA Rats   

 

Strain-dependent differences have been reported to affect the success of 

allograft survival following IT inoculation of donor BMCs with concomitant ALS.  

[245]  The Rt1a haplotype of DA rats has been reported to induce a stronger 

response to allograft placement compared to the Rt1l haplotype of Lewis.  A 

combination of rat strains which results in such a response is referred to as a 

“high responder” combination.  [235]  Therefore, the DA to Lewis transplantation 

direction was reversed to create a “low responder” combination.  This was done 

to highlight any observed modulations in the immune response following the 

hypothesis that TECs might induce donor-specific tolerance.   

 

Recipients aged 4 to 6 weeks received an IT inoculation of 1 x 106 LDA BMCs or 

TECs, or 50 µL saline, with a concomitant IP injection of 1 cc ALS or saline.   

The negative control group was treated with IP and IT saline.  As a control for IT 

cellular immunomodulation, animals received IP ALS and saline as a treatment.  
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After a treatment to challenge period of 21 days, Lewis challenge grafts of thyroid 

and pancreatic tissue fragments were placed in the renal subcapsule.  Lewis 

grafts were harvested for processing and analysis after 10 days in situ.  Again, 

any technical difficulties were recorded. The Lewis to DA experiments are 

summarized in Table 4.5.   

Table 4.5. Lewis to DA Challenge Grafts Following Varied IT Treatments.  DA 
recipients received either IP ALS or saline and either IT cells or saline for 
tolerance induction studies. 
 
Group Donor Recipient IT inoculum ALS Challenge 

(Days post Rx) 
Harvest  

(days post-
challenge) 

1 Lew DA saline N 21 10 
2 Lew DA saline Y 21 10 
3 Lew DA Lew BMC Y 21 10 
4 Lew DA LDA BMC Y 21 10 
5 Lew DA LDA TEC Y 21 10 
6 Lew DA LDA TEC N 21 10 
7 Lew DA LDA FT-TEC Y 21 10 

 

To control for the tolerance inducing capacity of the partially mismatched Rt1 

haplotype, Lewis BMCs (Rt1l) (ALS/Lew BM) were substituted for LDA BMCs 

(Rt1l/a) for the IT treatment with IP ALS in a 21/10 time frame (ALS/LDA BM).   

 

The target experimental group was given ALS and TECs (ALS/TEC).  To control 

for a physiological role for TECs as opposed to a purely antigenic role, freeze-

thawed LDA TECs were injected intrathymically with IP ALS in a 21/10 time 

frame.  (Figure 4.20.) 
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Figure 4.20. Hoffman Phase Microscopy of Freeze-Thawed TECs.  TECs 
immediately following 4 freeze-thaw cycles; cells were injected intrathymically as 
a negative control to confirm a physiologic role for live TECs.  260 X. 
 

To control for an allogeneic Lewis to DA response and for graft necrosis, 

syngeneic DA controls were included in a 21/10 time frame, as were syngeneic 

Lewis controls.   
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Figure 4.21. Lewis to DA Control Groups.  As expected, compared to the saline 
control (group 1), IP ALS without an IT cellular treatment (group 2) did not 
significantly modulate the host immune system.  Compared to negative control 
groups (1 and 2), group 3 (ALS+Lewis BMCs) and group 4 (ALS+LDA BMCs) 
resulted in reductions in mean lymphocytic infiltration of the grafts (ANOVA, 
p=0.08).   
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As a positive control, allogeneic BMCs were injected intrathymically with a 

concomitant IP injection of ALS.  A one-way ANOVA of the Lewis to DA control 

groups revealed not quite statistically significant overall differences between the 

groups (p=0.08).  However, a selected Dunns analysis revealed the mean 

lymphocytic infiltration for group 1 (saline control, mean lymphocytic infiltration 

1.78+0.47, n=10) to be statistically different from group 3 (ALS+Lewis BMCs, 

n=6, p=0.01), indicating that Lewis BMCs resulted in significant modulation of the 

host immune system.  The reversed direction of graft scores from high to low in 

the positive control was felt to reflect the 21/10 time frame as it related to the 

natural history of graft rejection.  Though appearing to reduce lymphocytic 

infiltration to some degree, the lack of statistically significant immunomodulation 

by group 4 (ALS+LDA BMCs, mean lymphocytic infiltration 0.9+0.41, n=6) 

compared to group 1 (p NS) may have been related to strain specific differences 

in the allograft response, or it may have been a function of the new 21/10 time 

frame.  In this specific strain combination, the inclusion if a Lewis-Dark Agouti 

hybrid bone marrow plus ALS treatment group was more experimental when 

compared to the use of fully allogeneic Lewis bone marrow plus ALS as a 

positive control treatment group, although there was no statistically significant 

difference in the mean lymphocytic infilration scores between group 4 to group 3.  

The comparison of group 4 to group 2 (ALS+saline, mean lymphocytic infiltration 

1.5+0.6, n=8, p NS) was included to control for the effects of IT LDA bone 

marrow, suggesting that the addition of ALS to the IT BMC treatment regimen 

was not as effective in immunomodulating the host immune system in this low 
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responder strain combination, compared to the DA to Lewis strain combination.  

The difference in the mean lymphocytic infiltration scores between group 2 and 

group 3 approached statistical significance (p=0.07), suggesting a physiologic 

role for IT Lewis BMCs in DA recipients and a synergistic role for ALS in host 

immunomodulation when combined with fully allogeneic Lewis BMCs.  

 

The immunomodulatory effects of IT LDA TECs were compared to those of IT 

Lewis and LDA BMCs.   

 

 

 

 

 

 

 

 

 

Figure 4.22. Lewis to DA Experimental Groups.  Immunomodulation as 
demonstrated by reduced lymphocytic infiltration scores was higher (ANOVA, 
p=0.07) in the positive control group (3, ALS+Lewis BMCs) compared to the IP 
ALS/IT TEC treatment groups (5 and 6).  Treatment groups 5 and 6 were not 
significantly different from group 4 (ALS+LDA BMCs).  Group 7 (ALS+FT-TECs) 
showed the least immunomodulation compared to saline controls (not shown).   
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A one-way ANOVA of the Lewis to DA experimental groups comparing the 

immunomodulatory effects of groups 5 and 6 (IT TEC treatment groups with ALS, 

mean lymphocytic infiltration 1.0+0.33, n=14, or without ALS, mean lymphocytic 
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infiltration 0.88+0.3, n=11) to those of groups 3 (ALS+Lewis BMCs) and 4 

(ALS+LDA BMCs) revealed statistically not quite significant overall differences 

(p=0.07).  Using Dunn’s multiple comparison test to compare groups 4, 5, and 6 

to group 3, there was no significant difference between the use of ALS and live 

LDA TECs or the use of LDA BMCs with concomitant ALS administration in the 

Lewis to DA strain combination.  There was a statistically significant difference 

between group 3 and group 7 (ALS+IT freeze-thawed TECs, mean lymphocytic 

infiltration 2.33+0.67, n=6, p<0.01), reflecting the difference between 

physiologically active BMCs and dead cells such as TECs.  The lack of 

significant differences between the immunomodulatory response to freeze-

thawed TECs with ALS vs. the saline control group further suggests a 

physiological role for both live TECs and BMCs in this experimental model.  

Although a comparison between recipients receiving live TECs and ALS vs. 

recipients receiving freeze-thawed TECs and ALS did not quite reach statistical 

significance (p=0.7), these findings are suggestive of a physiological role for the 

TECs as opposed to a simply antigenic role.   

 

As with the majority of experiments, graft rejection score inconsistencies within 

the treatment groups made those scores unreliable indicators of host 

immunomodulation.  Therefore, mean lymphocytic scores were used.  Overall, 

the Lewis to DA allotransplantation studies revealed the lowest mean 

lymphocytic infiltration scores in the positive control group (ALS+Lew BMCs), 

similar results between experimental groups (ALS+LDA TECs vs. ALS+LDA 
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BMCs), and similar results between negative controls (saline control vs. ALS + 

freeze-thawed TECs).  These results were exactly opposite the results of DA to 

Lewis allotransplantation studies, where highest mean lymphocytic infiltration 

scores occurred in the positive control group (ALS+LDA BMCs), and the lowest 

scores occurred in the negative control groups.  A striking similarity between the 

groups, however, was the placement of the TEC treatment groups somewhere in 

the middle between positive and negative controls.  Intrathymic TECs with 

concomitant intraperitoneal ALS immunomodulated graft lymphocytic infiltration 

scores when compared to saline controls, but not with any statistical significance 

in either strain direction.  Additionally, a comparison between treatment with IT 

TECs and ALS vs. ALS alone failed to demonstrate a statistically significant 

physiologic role for TECs in the Lewis to DA strain combination.  Perhaps this 

reflects the relatively reduced synergistic effect of ALS with IT cellular treatments 

in the Lewis to DA transplants.   

 

The results of the above transplantation studies may be meaningful from an 

educational standpoint, but they may not become clinically relevant if 

immunomodulatory responses are strain dependent.  Therefore, it was 

hypothesized that the differences in treatment responses were related to strain 

combinations.   

 

4.3.3.a. DA Syngeneic and Lewis Syngeneic Graft Controls  

 

Syngeneic and allogeneic transplant results were compared.  (Figure 4.23)
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Figure 4.23. Untreated Groups in Various Strain Combinations.  LDA to DA 
transplants and Lewis to DA transplants resulted in stronger alloresponses, 
providing a plausible explanation for differences between the immunomodulatory 
responses using reversed strain combinations.     
 

Syngeneic grafts were included as controls for host immunomodulation.  Both 

graft rejection scores and lymphocytic infiltration scores were significantly lower 

in the control groups as compared to the Lewis to DA allograft group.  (Figure 

4.24 and 4.25)  Not shown, the graft rejection score was 2.83+0.44 for the Lewis 

syngeneic group and 3.33+0.25 for the DA syngeneic group, significantly lower 

than the Lewis to DA allograft group at 3.67+0.22, p<0.05. 
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Figure 4.24.  Lewis to Lewis Syngeneic vs. Lewis to DA Allogeneic Transplants.  
Syngeneic Lewis challenge grafts had statistically significant reductions in graft 
lymphocytic infiltration compared to allogeneic challenge grafts. 
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Figure 4.25. DA to DA Syngeneic vs. Lewis to DA Allogeneic Transplants.  
Syngeneic DA challenge grafts had statistically significant reductions in graft 
lymphocytic infiltration compared to allogeneic challenge grafts. 
 

To further analyze the findings, the strain direction was directly compared to 

determine whether a “high responder” strain combination was the cause of these 

differences in allogeneic response.  There was found to be no significant 

difference between the DA to Lewis compared to the Lewis to DA TEC/ALS 

treatment group in a 21/10 time frame.   

 

 

4.4. DISCUSSION 

 

The transplantation studies used to plot the natural history of allograft rejection 

served to put in perspective the results of the experimental transplantation 

studies.  The original 10/21 time frame, where animals received IP ALS and IT 

inoculation with a 10 day time period before challenge graft placement to the 

RSC that remained in situ for a period of 21 days, was chosen because of its 
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expected success.  The results indicating that TECs were not as effective as 

hypothesized led to a shift in the time frame to the 21/10 day protocol.  

Although some of the results were suggestive of immunomodulation by TECs, 

the null hypothesis was disproven.  One reason might have been the effect of 

prolonged in vitro culture of TECs prior to their use.  Repeated trypsinization at 

cellular passaging could have resulted in down regulation of surface antigen 

molecule expression, particularly MHC antigens, making the cells less 

tolerogenic.  Since BMCs had neither been cultured for a prolonged period in 

vitro nor exposed to trypsinization, down regulation of surface antigenicity 

would not have been likely.  The trypsinization of BMCs would have been an 

educational control, but would not have been clinically applicable since BMCs 

in current pre-transplantation tolerance induction protocols are not exposed in 

such a way.  Another reason for the lack of robust tolerance inducing capacity 

in TECs might have been their proposed dual role in both positive and 

negative T cell selection.  [246] Foreign TECs might be effective in eliminating 

MHC mismatched clones in the host via negative selection while also 

recruiting donor-matched clones via positive selection.  The end result would 

have been void due to this dual role.  The results of these transplantation 

studies are further discussed in Chapter 5.  
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CHAPTER 5.  

DISCUSSION AND OVERVIEW 

 

 

Successful organ, tissue, or cell transplantation is dependent on two primary 

factors: 1) achieving technical success, which maximizes tissue/organ 

engraftment and survival, and 2) avoiding immune rejection of the graft.  

Previous transplant protocols have focused on minimizing deleterious immune 

responsiveness, and allograft rejection, by either minimizing graft 

immunogenicity or by modifying the host immune environment by systemically 

suppressing immunoreactivity.   

 

Interest in the thymus, and thymic induction of central tolerance, has increased 

over the last several years as a consequence of studies demonstrating the 

induction of immunological tolerance following the placement of donor antigen 

within a host thymus with concomitant depletion of the peripheral lymphocyte 

population.  In the initial landmark report, isolated pancreatic islets of 

Langerhans, transplanted to the thymus of adolescent rats with a concomitant 

single dose of anti-lymphocyte serum, were challenged after 200 days of graft 

residence by a second graft of donor-matched pancreatic islets placed in the 

renal subcapsular space [247].  Apparent immunological tolerance was 
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observed, as indicated by the failure of the host to reject the challenge islet graft.  

This tolerance was proven to be donor-specific because of the rejection of third 

party control grafts.  Subsequently, numerous other studies have reported similar 

outcomes using a variety of cell types and/or antigen sources as the IT inoculum 

[121, 124, 126, 127, 129, 248-251].  It was hypothesized from these studies that 

the IT administration of novel antigens resulted in immune reeducation and 

specific tolerance to the introduced antigens.  These reports stimulated 

significant interest in the thymus and the thymic cells involved in this process, 

including the TEC.  The epithelial nature of TECs would suggest that these cells 

would be highly amenable to culture and to in vitro manipulation.  To show the 

efficacy of this paradigm, the feasibility of TEC isolation and proliferative culture 

had to be demonstrated and established.  TECs were isolated and cultured from 

neonatal thymi of several rat strains.  The cells were manipulated for extensive 

characterization in differing culture conditions.  Valuable information was 

gathered regarding the establishment, maintenance, and manipulation of primary 

keratinocyte cultures.   

 

 

5.1. THYMIC EPITHELIAL CELL CHARACTERISTICS 

 

A continuous cell line of TECs was necessary for disproving the null hypothesis 

that IT inoculation of TECs with concomitant ALS would induce donor-specific 

tolerance.  It was soon discovered that these cells could not be easily established 
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in primary culture, and this led to investigations on these limitations.  Initial 

attempts using mammalian cell culturing techniques in commonly used media 

formulations for epithelial culture led to the outgrowth of scattered, slow 

proliferating cells that mostly resembled fibroblasts.  Literature review on the 

primary culture establishment of specialized epithelial cells (keratinocytes) 

pointed towards the supplementation of medium with various growth factors 

(insulin-like growth factor, bovine pituitary extract) and the reduction/removal of 

serum from the medium.  The combined focus of previous experience with 

primary culture of other cell types and further literature searches finally pointed to 

references [252] which alluded to the low calcium culture methods that eventually 

led to successful establishment of a rat TEC line.   

 

Calculations of the calcium levels in the medium varieties that were initially used 

for this project showed them to be significantly higher than the calcium levels 

maintained in reported keratinocyte permissive media formulations.  In 

retrospect, the inability to easily trypsinize those higher calcium cultured cells that 

were able to attach to the growth surface, the limited proliferative capacity of the 

cells, and the early differentiation of the cells into a dendritic phenotype 

suggested an interrelated cause--calcium levels were suspected.  

 

Histologic techniques used to identify the cells as TECs demonstrated the 

presence of structures and proteins (desmosomes and keratin IFs) characteristic 
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of epithelial-derived keratinocytes.  This led to the question of why these 

particular keratinocytes would not proliferate in culture. 

 

Following a low calcium, serum free method for establishing primary TECs in 

culture proved difficult despite correspondence with authors who reported ease 

of culture.  Attempts to recapitulate experiments using the reported components 

(approximately 70 additives) were technically difficult due to the trace 

concentrations necessary.  To assist the learning process, Dr. Jun Hayashi at the 

University of Maryland generously donated a sample of the custom formulation, 

WAJC, to the laboratory.  The TEA-3A1 cell line was derived from neonates of 

the LDA strain of rat (Lewis/Dark Agouti cross) [132] and is of the same genetic 

background as the new line of TECs derived in this study.  Not coincidentally, the 

use of WAJC medium in the initial establishment of primary cultures of rat TECs 

was limited to the LDA strain.  As presented in the results section on primary 

culture isolation of TECs (Chapter 2), thymic tissue isolated from the other rat 

strains did not respond as favorably as thymic tissue from LDA rats.  The LDA rat 

cell line for this project, designated OKTE4-01, was compared to the TEA-3A1 

cell line by examining for cytokeratin content and structural elements.  The 

presence of desmosomes and tonofilament bundles is typical and characteristic 

of epithelial cells, and the ultrastructural visualization of these structures allowed 

these thymus-derived cells to be characterized as TECs.  These cells appeared 

identical in morphology and cellular proliferation to the LDA TEC cell line 

established for this project.  While the OKTE4-01 cell cultures spontaneously 
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transformed, it was a struggle to obtain a monolayer of cells from the other strain.  

It was hypothesized that the ability to establish rat TEC primary culture might be 

strain specific.  Further, it was hypothesized that the morphological nature and 

proliferative capacity of TECs was calcium related.   

 

Indeed, it was demonstrated that TECs maintained in medium containing low 

calcium levels expressed significant differences from TECs maintained in 

medium containing high calcium.  Specifically, proliferative capacity, morphologic 

appearance, intercellular spacing, and macula adherens density were found to 

be dependent upon calcium levels in the media.  (Chapter 3)  

 

The information gained from these findings was applied to primary culture 

techniques.  It was hypothesized that the failure of DA TECs to attach early in 

the process of the in vitro isolation and culture using the low-calcium GWAJC 

medium could be due to lack of calcium-dependent cellular attachment.  When 

the medium calcium concentrations were increased, DA thymic tissue 

responded as expected—there was adequate tissue attachment to the tissue 

growth surface.  Unfortunately, when medium with higher calcium 

concentrations was used, the attached DA tissue would adhere so tightly to 

the surface that trypsinization was nearly impossible due to lifting of cells in 

sheets.  Within a short time frame, approximately 7-10 days, the DA cells 

consistently assumed a terminally differentiated, dendritic appearance.  After 

many attempts to grow the cells in different types of media with different 
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supplements, the idea to establish attachment to the growth surface early in 

the primary culture establishment process with higher calcium medium 

followed by the withdrawal and replacement of medium with lower calcium 

medium resulted in the successful culture isolation of DA rat TECs.  This 

technique of early high calcium culture followed by a switch to low calcium 

culture was applied to the other strains of thymic tissue and resulted in 

successful culture establishment of primary TECs.  As part of this project, 

primary rat TEC cultures were derived from several different strains.  It is 

hypothesized that the application of this new method of high to low calcium 

medium switch technique could lead to the successful primary culture 

establishment of many other types of keratinocytes in varying strains and 

species.   

 

Thymic epithelial cell lines, both OKTE4-01 and TEA-3A1, grown in WAJC 

medium supplemented with 2.5% DMEM were highly proliferative (with doubling 

times of ≈48hrs), and were readily passaged via light trypsinization (0.05%).  

Increasing medium calcium concentration induced a distinct change in cell 

morphology, including the approximation of cell boundaries, and the formation of 

increased areas of cell contact.  Upon examination with electron microscopy, 

cells maintained in high calcium medium appeared more closely spaced, with 

confluent TECs closely apposed to adjacent cells and spread evenly across the 

growth surface.  Cells maintained in low calcium medium appeared more widely 
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spaced, with visible gaps between adjacent cells and fewer regions of closely 

apposed TECs.   

 

As stated above, the in vitro maintenance of the new OKTE4-01 cell line, as 

well as the TEA-3A1 line, required a significantly reduced medium calcium 

concentration to 0.098mM, which was achieved using WAJC404A medium 

supplemented with 2.5% DMEM.   (DMEM alone has a calcium concentration 

of 1.815 mM.)  Previous studies have reported using Nutrient Mixture (Ham’s) 

F12, whose calcium levels are already extremely low (0.299mM calcium) in 

comparison to other media, to achieve the low calcium levels required for 

successful TEC culture [149, 157].  However, culture of both OKTE4-01 and 

TEA-3A1 in Ham’s F12 resulted in conversion of the cultured cells to a non-

proliferative state, displaying closely approximated adherent cell boundaries 

and increased adherence to the growth surface similar to that observed in our 

TEC populations cultured in high calcium WAJC404A medium. 

 

These observations indicate that increased desmosome formation results from 

increased medium calcium concentrations, and would explain the strong 

adherence characteristics, both between cells and to the growth surface, 

demonstrated by cells maintained in high calcium conditions.  This is the first 

instance in which the calcium-dependent morphological changes in TECs 

have been quantified and statistically analyzed.  These calcium-dependent 

adherence characteristics may not be limited to thymic epithelium only.  
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Desmosome formation in mouse epidermal keratinocytes was documented 

ultrastructurally just one to two hours following elevations in medium calcium 

levels.  [221] An unexpected finding upon TEM examination of TECs 

maintained in low calcium medium was the presence of laminar, whorled and 

curvilinear cytoplasmic densities.  These structures were found near keratin 

IFs and were thought to be immature keratin protein structures.  Their 

significance was not determined, although future studies using labeling 

techniques in combination with electron microscopy might be useful in 

determining their composition. 

 

Numerous studies demonstrate induction of desmosome formation and cell 

differentiation by increasing extracellular calcium levels [253] In fact, a 

“dramatic reorganization” was shown to occur concurrently between 

microtubules, microfilaments, and keratin IFs only hours after cell culture 

medium calcium changes in human epidermal keratinocytes [254].  Many 

studies attempt to demonstrate that calcium induced cell differentiation 

mechanisms are not all-or-none phenomena [255].  While the observations 

presented here indicate that once exposed to higher levels of calcium, cells 

form adherent junctions with other cells that cannot be reversed, in some 

epithelial cell cultures it may be of value to reduce medium calcium 

concentrations with the intent of decreasing intercellular adhesion to allow for 

increased cell proliferation.   
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Serendipitously, the LDA rat thymic tissue culture isolation and maintenance in 

GWAJC as described in the techniques section resulted in spontaneous 

transformation into the OKT4-01 cell line, allowing a constant supply of TECs for 

the remainder of this project.  Additionally, the OKT4-01 cell line allowed for the 

focused studies on calcium-dependent cellular changes and served as a control 

cell for comparison with the TECs from other rat strains.  The evaluation of the 

effects of calcium on TECs revealed that TECs maintained in high calcium media 

became highly differentiated and did not exhibit logarithmic growth, while TECs 

maintained in low calcium media supplemented with specific growth factors could 

be used to maintain these partially differentiated cells at high mitotic frequency in 

vitro.  It was also an important finding that a minimum calcium level was 

necessary for TEC establishment and maintenance.   

 

Based on the irreversible nature of changes induced by high calcium exposure, 

we have concluded that our ability to passage these cells was based primarily on 

initial culture conditions, strain of donor tissue, and lack of exposure to calcium, 

rather than on the passaging protocol.  This could explain why a limited number 

of thymus-derived epithelial cell lines have been documented among humans, 

mice, and rats.  [214, 256-261].    
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5.2. GENERATION OF IMMUNOLOGIC UNRESPONSIVENESS TO 

INTRATHYMIC TRANSPLANTATION OF ALLOGENEIC TISSUE 

 

Due to their organ of origin and their hypothesized role in the process of 

immune education, modified TECs were considered excellent candidate cells 

for induction of immune tolerance in models of autoimmunity and/or 

transplantation.  Statistical analysis of the graft scores in allograft recipients 

pretreated with IT TECs and ALS comparing negative controls (sham 

experiments) and positive controls (IT BMCs and ALS) reflected some 

reduction in lymphocytic infiltration, effectively shifting the time course of graft 

rejection to the left (reducing the expected level of rejection at a given time 

point).  However, numerical values did not reach statistical significance to 

support the hypothesis that TECs and ALS would be better candidates than 

BMCs and ALS for inducing donor-specific tolerance, despite changing the 

treatment to challenge time frame, changing the in situ challenge graft time 

frame, altering the type of donor tissue to avoid autolysis, switching from a 

high responder to a low responder strain combination, and increasing 

treatment group sizes.  The comparison between positive and negative control 

groups did reach statistical significance with p values < 0.3, indicating that the 

IT inoculation of cells previously proven to induce donor-specific tolerance was 

effective in this particular animal model of allograft rejection.  A comparison 

between the donor-specific tolerance inducing capacity of living and non-living 

TECs with ALS also did not reach statistical significance, despite the fact that 
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non-living TECs were also not significantly more effective than saline in 

inducing donor-specific tolerance.  In many of the transplantation experiments, 

p values reached near statistical significance, suggesting a dual role for TECs 

that might have confounded the results.  If both positive and negative 

tolerance induction mechanisms were in effect, one would have expected 

equivalent results.  Following peripheral lymphocyte depletion, allogeneic 

TECs injected intrathymically might be retaining immature T cell clones 

specific for the allogeneic MHC, thus actually sensitizing the host.  

Simultaneously, they might be inducing tolerance in the host by eliminating T 

cells that are reactive to the new “self” antigens, thus buffering the 

sensitization, producing an overall neutral effect.   

 

Evidence of sensitization, as demonstrated by accelerated graft rejection, was 

not seen in the transplant recipients.  This could be related to the dual role of 

foreign IT TECs, or the immunoprivileged graft site.  The relatively placid effect 

of TECs compared to BMCs might actually be of benefit when considering the 

use of TECs as a platform cell for gene therapeutic techniques.  The effects of 

genetically altered TECs on the host immune system have yet to be evaluated.   

 

Terminal differentiation of cells exposed to high calcium levels in vivo might 

also affect the results of TEC transplantation to the host thymus.  Specifically, 

inoculating TECs that were originally maintained in low calcium in vitro 

conditions into relatively high calcium in vivo conditions might have resulted in 

terminal differentiation of these proposed immunomodulatory cells, inhibiting a 
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physiologic role.  In view of the sensitivity of TECs to calcium levels, gene 

therapeutic protocols employing higher calcium levels might have negative 

effects on the physiologic role of TECs. 

 

Another possible explanation for the less than statistically significant results 

was the use of TECs derived from an F1 hybrid rat strain due to limitations in 

cell supply.  Future studies might involve a different animal model with the 

unlimited availability of fully allogeneic TECs. 

 

 

5.3. GENETIC TRANSFECTION OF THYMIC EPITHELIAL CELLS 

 

Integrating gene therapy techniques with IT transplantation of TECs could 

provide a potential transgene platform for transfection of novel antigens and 

subsequent IT transplantation of genetically altered TECs to modify host 

immunity.  Sufficient numbers of TECs were made available by early experiments 

to pave the way for future gene transfer studies.  As a sideline to transplantation 

studies, the feasibility of TECs to serve as such a vehicle for the delivery of novel 

genes was investigated using various gene therapeutic techniques.  TECs were 

transfected with green and red fluorescent protein reporter genes using liposome 

techniques and electroporation, and with humanized green fluorescent protein 

using adenoviral-associated vectors with transient expression encoded proteins 

with all gene therapy technique applications.   
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5.4. ROLE OF TECs FOLLOWED BY A SECOND GRAFT 

 

TECs are normal thymic residents, representing a significant portion of the 

cells which constitute the stroma of the thymus.  Although their precise 

function has not been definitively elucidated, it is known that TECs are 

involved in the process of T cell development and immune education.  

Experimental evidence indicates that TECs are involved in the process of 

positive thymic selection, which selects a population of immature T cells for 

retention within the thymus based on the ability of their TcR to interact with 

self-recognizing MHC proteins expressed on TECs [62, 263, 264].  Other 

reports suggest an ability of TECs to act as an APC within the thymus, and to 

present antigens to maturing thymocytes in the process of negative selection, 

in which T cell subsets with a high affinity for self-MHC antigen are selected 

and deleted, thereby excluding cells capable of recognizing and responding to 

autologous antigens from the peripheral immune repertoire.  [62, 73, 265, 

266].  Some reports go so far as to ascribe both positive and negative 

selection functions to TECs, with functional effects determined by the cellular 

location within the thymus [99, 267], or by the degree of expression of MHC 

antigens [268].  Almost all nucleated cells, TECs included, express MHC Class 

I antigen, and as APCs, TECs also express MHC Class II molecules.  The 

objective of this project was to employ in vitro TECs most closely mimicking an 

in vivo functional role.  Hence, the effects of donor-MHC-specific tolerance 

induction studies were expected to potentially reveal new information about 
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how TECs function in the immune response and clonal selection.  While it has 

been shown that interferon gamma (IFN-γ) can induce the upregulation of 

MHC Class I and II molecules on TECs [269], this was felt to be less reflective 

of usual in vivo conditions.  Additionally, a direct comparison between the 

effects of unaltered IT allogeneic bone marrow with concomitant 

immunosuppression and the effects of unaltered IT allogeneic TECs with 

concomitant immunosuppression is a novel approach, and altering the TECs 

with IFN-γ might be interesting as a focus for future experiments. 

 

As with any treatment, significant potential complications may occur in 

performing IT cellular transplants for tolerance induction.  One complication 

considered was accelerated graft rejection.  In one background study, it was 

shown that IT injection of purified liver and spleen derived allogeneic dendritic 

cells (DC) “…plus a single dose of ALS did not prolong allogeneic islet graft 

function but rather induced accelerated rejection of islet allografts” 

administered intraportally.  [240]  

 

Intrathymic inoculation of LDA TECs prior syngeneic Lewis challenges were used 

to control for accelerated graft rejection, and no such response was found.    

 

This project took advantage of the high mitotic frequency and proliferative 

capacity of culture immortalized TECs for a continuous supply of cells to use in 

transplantation experiments investigating the ability of TECs to induce donor-
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MHC specific tolerance to subsequent allografts, a novel approach towards to 

tolerance induction because of the inherent nature of the TECs.  Successful 

transplantation and gene transfer experiments using TECs derived from primary 

culture were performed once cells were established.  These studies appeared to 

demonstrate the modulation of host immunity, with reduced allograft rejection 

following IT TEC transplantation.  Despite indications of modified immunity, 

success, as gauged by complete protection of the challenge graft from immune 

destruction, was not achieved.  Initial essays at transfection of a novel gene into 

these cells demonstrated definite expression of the reporter gene in primary 

cultures of TECs.  However, stable transfer of novel genes to these sensitive 

primary cell lines will require further optimization.  The immunomodulatory 

capacity of transgenic TECs upon IT transplantation will be the focus of a future 

project. 

 

The above works, while unique in revealing potentially widespread 

applications of conditions associated with primary epithelial culture, TECs from 

many different strains, and the donor-specific tolerance inducing capacity of 

TECs, served as precursors towards the development of a treatment paradigm 

combining IT transplantation with gene therapy to allow introduction and 

prolonged expression of antigens within the thymus.  The application of gene 

therapy to TECs destined for IT inoculation for tolerance induction is also a 

novel approach. 
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The use of cultured-isolated MHC-mismatched TECs for host IT inoculation as 

a model to induce donor-specific tolerance is a unique approach.  Since the 

inception of this project, a research group at the Tohoku University School of 

Medicine in Japan chose to investigate the effects of IT thymic stromal cell 

transplantation in a mouse model of allogeneic skin transplantation, 

demonstrating prolongation of graft survival. [269]   

 

Combining gene therapy with IT transplantation using a unique cell type, the 

TEC, is hypothesized to serve as a means to introduce immunogenic proteins 

into the thymus of a host.  Once successful TEC transfection protocols can be 

established, follow-up studies would include IT transplantation of TECs 

transfected with genes encoding specific novel antigens and investigations 

into the successful expression of these genes within the thymic environment.  

An indirect measure of gene expression would be an assessment of 

modification of host immunity following IT transplantation of genetically 

modified TECs.  Further investigations would be necessary to optimize the 

preliminary TEC transfection results before going forward with such an 

ambitious project.   

 

“Donor/recipient MHC class II matching permits survival of experimental 

allografts without permanent immunosuppression, but is not clinically 

applicable due to the extensive polymorphism of this locus.” [95] The 

transplantation tolerance induction arm of this project using MHC mismatched 
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TECs served as a precursor towards the use of IT transplantation of 

genetically modified TECs expressing novel donor MHC molecules for 

induction of graft specific tolerance in virtually any population of 

transplantation recipients.  Since TECs are amenable to culture techniques, 

they were hypothesized to provide an appropriate transgene platform for the 

transfection of novel antigens and subsequent transplantation of altered cells.  

Based on the finding that the majority of transplant rejection is due to an MHC 

Class I mismatch between the donor and the recipient, using donor-matched 

TECs transfected with a mismatched MHC Class I specific gene sequence for 

IT inoculation might provide insight into transplantation tolerance induction 

mechanisms.  Follow-up studies would investigate the ability of TECs 

transfected with a gene sequence encoding a specific antigen and inoculated 

into the thymus to induce antigen specific tolerance.  In these experiments, 

genetically modified syngeneic TECs transplanted to the thymic 

microenvironment would be assessed regarding their ability to present a 

foreign antigen to the developing immune system of a young recipient, 

resulting in permanent modification of host immunity.  Host specific TECs 

would be transfected with the gene encoding a specific antigen and injected IT 

following a single IP injection of ALS.  Finally, the immune response to 

subsequent peripheral administration of this antigen would be viewed as a 

reflection of central tolerance induction.   
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The most successful donor-specific tolerance induction strategies would benefit 

graft recipients suffering from various comorbidities associated with non-donor-

specific immunosuppressive drug regimens.  The clinical relevance and 

practicality of this approach in the prevention and treatment of immune diseases 

and hypersensitivity states is yet to be determined, but as researchers continue 

to discover and genetically sequence the autoantigens responsible for the 

development of specific autoimmune diseases, the feasibility of using such an 

approach becomes more realistic.  For example, IT transgenic TEC expression of 

autoantigens targeted by the immune system in type I diabetes mellitus could 

induce tolerance to these autoantigens, resulting in the prevention of the immune 

mediated destruction of insulin producing pancreatic beta cells.  Most ambitious, 

due to the risk of inadvertently exposing a healthy recipient to a serious lifelong 

autoimmune disease, is the idea of applying a combination of IT tolerance 

induction strategies combined with gene therapy to potentially be used as a 

cellular vaccine in children to prevent the early onset of autoimmune diseases 

such as autoimmune thyroiditis or diabetes. 
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Procedure or Event Date Surgeon or Scientist 
Limb and tooth tr.  Late 1700’s John Hunter 
Xenogeneic skin tr.  Late 1700’s G. Baronio 
First skin autograft 1823 Carl Bunger 
Allograft tr.  1863 Paul Bert 
Skin allografts 1880’s Astley Cooper 
Corneal tr. Late 1800’s Edward Zim 
Surgical tr. techniques Early 1900’s Alexis Carrel, Charles Guthrie 
Renal tr. (dogs/goats) 1902  
Skin allograft 1908 Jacques Louis Reverdin 
Cadaveric knee joint replacement  1908 Eric Lexer 
First blood transfusions 1918  
United States Navy Tissue Bank  1949  
x-radiation  1950’s Main and Prehn 
Living-related human kidney tr. 
between identical twins 

1954 Joseph E. Murray, David Hume, 
Harrison, Merrill 

Histocompatibility system  1958 Jean Dausset 
Non-twin kidney tr.  1959 Joseph E. Murray 
Heart valve tr.  1962  
Cadaveric kidney tr.   1962 David Hume 
Liver tr.   1963 Thomas Starzl 
Lung tr. 1963 James Hardy 
Kidney-pancreas tr. 1966  
Human heart tr.  1967 Christian Bernard 
Pancreas tr. 1966 Richard C. Lillehei, William D. Kelly 
Cryopreservation  1970’s  
Living related pancreas tr.   1979  
Heart-lung tr.   1981 Norman Shumway, Bruce Reitz 
Cyclosporine 1982 Clinical use 
Artificial heart tr. 1982  
Single-lung tr. 1983  
Cyclosporine  1983 FDA approval 
Heart-liver tr. 1984 Thomas Starzl 
Baboon to human heart tr.  1984  
Establishment of UNOS 1984  
Double lung tr. 1987  
Partial lung tr. 1991  
Small intestine tr. 1991  
Split-liver tr. 1996  
Islet tr.   1999 James Shapiro, Edmonton protocol 

Table A. Historical Events in Transplantation.  List of major events from late 18th 
century through the 21st century.  tr. = transplantation
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