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CHAPTER 1

INTRODUCTION

The fungi are important in turnover of biomass and other materials, and some of them 

cause diseases in plants and animals, including humans, through direct attack and/or through 

toxin secretion.  Many fungi have the ability to synthesize compounds, which have 

significant value in the food, drug, and chemical industries.  Fungi that are either parasitic on 

plants or saprophytic produce a wide range of plant cell wall degrading enzymes.  

Aspergillus nidulans is one such saprophytic filamentous fungus, which survives on 

dead and decaying organic matter (Prade et al., 1999).  The advantages of using A. nidulans

in the lab include rapid growth on defined media, compact colony morphology, asexual 

spores, meiotic genetics (sexual) and mitotic analysis (parasexual).  Besides, the genome has 

been recently sequenced and the sequence data has been released by the Whitehead Institute 

of Genomics Research (http://www.broad.mit.edu/annotation/fungi/aspergillus/).  The 

relative ease of handling A. nidulans in the lab facilitates the investigation of genetics and 

molecular biology of this fungus and has made this organism a model one to study.    

The most abundant materials encountered by the fungus, A. nidulans while surviving 

on decayed organic matter are plant cell walls, which are rich in pectin, cellulose, and 

hemicellulose.  Apart from providing mechanical strength, plant cell walls serve as an 

extracellular pathway for the continuous movement of water and ions within the plant and 

provide protection against invaders.
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Primary plant cell walls are a complex assembly of polysaccharides, which include 

cellulose, hemicellulose, pectins and proteins with small quantities of phenols.  Secondary 

cell walls are heavily thickened; contain almost no pectin, less protein and almost 30% of 

lignin by weight (McNeil et al., 1984). 

Cellulose, the main carbohydrate made by plants is a linear polymer of glucose 

subunits connected by β-(1->4) glycosidic linkages (Beguin P 1990, Beguin et al., 1994). 

Cellulolytic microorganisms breakdown cellulose to glucose.  Induction of the cellulase 

genes is brought about by cellulose, its derivatives, and sophorose (Saloheimo et al., 2000).  

Repression in the presence of glucose is brought about by CreA protein that negatively 

regulates genes encoding cellulases, hemicellulases and pectinases (Strauss et al., 1995, 

Margolles-Clark et al., 1997, Ruijter et al., 1997).  CreA is a DNA binding protein that binds 

the target consensus sequence 5’-SYGGRG-3’ through a pair of C2H2 zinc fingers which 

show 84% identity at the amino acid level with the DNA binding region of the Mig1 protein 

of Saccharomyces cerevisae (Drysdale et al., 1993, Orejas et al., 1999). 

Hemicellulose is composed of complex carbohydrates like xyloglucan (XG) in 

primary walls and xylans (XY) in secondary walls.  Endoxylanases attack xylan at the D-

xylose backbone and reduces the degree of polymerization which facilitates uptake by cells 

(Thompson JA 1993).  The transcriptional activator, XlnR regulates the expression of genes 

coding for the main xylanolytic enzymes as well as genes involved in cellulose degradation 

(Van Peij et al., 1998). 

Pectins constitute about 40% of the primary plant cell wall.  There are two types of 

backbones in pectin that are most likely covalently linked (Ridley et al., 2001, Prade et al., 

1999). They are: homogalacturonan (HG) and rhamnogalacturonan (RG).   HG consists of 
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long stretches of 1,4 linked α-D-galactopyranosyluronic acid residues, some of which are 

methyl esterified (Thibault et al., 1993).  The other backbone, RG, contains galacturonic acid 

and rhamnose (GalA-Rha) dimer repeats with variable side chains containing arabinose and 

galactose.  Enzymes that degrade RG side chains are: arabinases, α-L arabinofuranosidase, 

and galactanases (Ruijter et al., 1997, Yamaguchi et al., 1995). 

Fungi and bacteria are highly effective in hydrolyzing pectin into metabolizable 

energy sources. Currently there is little information about what controls the level of gene 

expression of many cell wall degrading enzymes and the extent to which the central 

metabolism changes when fungi are given cell wall polysaccharides like pectin as their 

source of food. 

Previous studies demonstrated that A. nidulans produces a wide range of enzymes 

when grown on a mixture of complex plant cell wall polysaccharides and a limited number of 

enzymes when grown on a single polymer (Mort and Prade, unpublished results).  In order to 

understand the regulation of genes encoding enzymes required to degrade complex 

carbohydrates, it was essential to isolate the genes involved in the process.  The studies 

conducted here using Negative Subtraction Hybridization as described in Chapter 2 helped us 

to isolate the cDNAs of messages induced during fungal growth on complex carbohydrates.  

Microarray studies conducted with the isolated cDNAs revealed an interesting pattern as 

discussed in Chapter 3, thus giving a snapshot of the fungal metabolism at different times and 

growth conditions.  Chapter 2 in this thesis has been published in 2004 in BMC Genomics 

and Chapter 3 has already been submitted.  
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CHAPTER 2

NEGATIVE SUBTRACTION HYBRIDIZATION: AN EFFICIENT METHOD TO 

ISOLATE LARGE NUMBERS OF CONDITION-SPECIFIC CDNAS

Introduction

High throughput analysis of differentially expressed genes has been widely used to 

address a multitude of biological questions.  For such analysis, a large collection of cDNA 

molecules representing the potential genes of interest is useful.  A variety of techniques have 

been used to identify the cDNAs representing genes of interest associated with various 

biological processes.  Some of the techniques include characterization of expressed sequence 

tags (EST) (Adams et al., 1991), suppressive subtractive hybridization (SSH) (Diatchenko et 

al., 1996, 1999), and representational difference analysis (RDA) (Lisitysn et al., 1993).

EST sequencing first became popular in 1991 (Adams et al., 1991).  The basic 

scheme of an EST sequencing project relies on a cDNA library constructed from a tissue of 

interest under a particular condition from which randomly isolated clones are sequenced until 

further sequencing no longer yields an acceptable frequency of identifying novel cDNAs.  A 

drawback faced in this method is the repeated sequencing of abundant transcripts and, hence, 

the expense and effort of sequencing them. 

The abundance of mRNAs in a typical eukaryotic cell can be divided into rare 

transcripts present at 1-15 copies per cell, moderately abundant transcripts present at 100-500 

copies per cell, and abundant transcripts present at over 1,000 copies per cell (Soares et al., 
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1994).  The identification of rare mRNAs from a cDNA library, based on a random selection 

scheme, can be difficult because of their low representation.  Construction of normalized 

cDNA libraries based on reassociation kinetics has been used to significantly reduce the 

representation of abundant transcripts, thereby increasing the chances of obtaining the rare 

cDNAs (Soares et al., 1994).  However, normalization often results in a bias towards small 

inserts (Carninci et al., 2000).  Widely used techniques such as SSH can be useful for 

identifying gene expression differences at the mRNA level, but do not adequately address the 

problem of redundant transcripts (Hedrick et al., 1984). 

Another technique called RDA has been used to clone differentially expressed 

cDNAs (Welford et al., 1998).  However, this technique does not solve the problem of 

isolating rare mRNAs from the population of abundant mRNA species (Hubank et al., 1994).  

There are other methods such as mRNA differential display and RNA fingerprinting by 

arbitrary primed PCR but both of these methods are unsuitable for experiments where the 

expression levels of relatively few of the genes are expected to vary (Liang et al., 1992, 

Welsh et al., 1992, Bauer et al., 1994, Malhotra et al., 1998).  In addition, the sensitivity of 

these methods depends on the primer sequences, the concentration of the template, and its 

potential binding sites, and sometimes both of the above methods report a high number of 

false positives (Wan et al., 1996).

Here we report a simple and very effective method to isolate cDNAs for transcripts 

induced by changes in growth conditions or differentiation.  For this study we were interested 

in isolating cDNAs induced by switching a fungus from growth on glucose to growth on 

selected polysaccharides.  Approximately 4,700 contigs from 12,320 ESTs were already 

available from a cDNA library representing transcripts isolated from glucose-grown A. 
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nidulans during asexual development (Prade et al., 2001).  Our goals were to expand the 

cDNA collection without repeated sequencing of previously identified ESTs and to find as 

many cDNAs as possible that are specifically induced in complex polysaccharide 

metabolism. 

Materials and Methods

Isolation of RNA and construction of cDNA library

The A. nidulans strain FGSC C26 (genotype: biA1 veA1) was inoculated at 106 spores 

per ml of minimal medium containing 1% glucose and grown at 37°C for 18 hr with constant 

shaking at 300 rpm.  Minimal medium with the appropriate supplements was prepared as 

described by Pontecorvo (Pontecarvo G., 1969).  Fungal mycelia present in 100 ml of the 

culture were collected, washed with water and added to different 250 ml flasks containing 

minimal medium supplemented with 1% of a single complex carbon source representing 

those found in plant polysaccharides.  The fungal cultures were then grown at 37°C, pH 6.5 

at 200 rpm for an additional 8 hr in minimal medium supplemented with one of the following 

carbon sources: carboxy methyl cellulose (Sigma), xyloglucan (Megazyme), 

rhamnogalacturonan (Megazyme), pectin (Sigma), karaya gum (Sigma), gum arabic (Sigma), 

locust bean gum (Sigma), arabinogalactan protein (provided by Dr. Jinhua An, 

Pharmagenesis), arabinoxylan (Megazyme), pectic galactan (Megazyme), xylan (Sigma) or 

arabinan (Megazyme).  Total RNA from lyophilized mycelia of A. nidulans was isolated 

using Tri reagent (Life Technologies) based on the guanidinium thiocyanate-phenol-

chloroform extraction method (Chomczynski P., 1993).  Equal amounts of the total RNA 

from cultures grown in each medium were combined to create a single pool of total RNA.  A 
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non-normalized cDNA library from the pooled RNA from A. nidulans was constructed by 

Life Technologies, Inc. using the vector, pCMVSport 6.0.  The titer of the non-normalized 

library was 5.06 Х 106 cfu/ml, and 98% of the clones from the library had inserts with the 

average insert size being 1.49 kb.  The plasmid library was plated on 150 mm petridishes 

containing LB-Amp (100 µg/ml) such that each 150 mm plate had approximately 1,000 

colonies. 

Screening of cDNA library and negative subtraction hybridization 

Probes used for screening the cDNA library were made from cDNA reverse 

transcribed from total RNA of A. nidulans grown in Minimal Medium containing 1% glucose 

at 37°C for 18 hr, collected, washed and transferred to fresh medium of the same 

composition and grown for an additional 8 hr.  The cDNAs were PCR amplified using 

Advantage ® cDNA PCR Kit according to the manufacturer’s instructions and labeled with 

the Digoxygenin (DIG) labeling and detection system from Roche Molecular Biochemicals 

using the random prime labeling method according to the manufacturer’s instructions.  DIG-

labeled cDNAs used as probes were adjusted to a final concentration of 20 ng of probe/ml of 

hybridization buffer.  The labeled probes were used to screen the cDNA library of A. 

nidulans by colony hybridization (Sambrook et al., 1989).  

Stringency washes following hybridization were performed according to the 

manufacturer’s instructions supplied by Roche Molecular Biochemicals.  The membranes 

were exposed to the chemiluminescent substrate CDP-Star between two plastic sheets, 

allowed to incubate for 5 min, sealed in plastic bags and then exposed to Lumi-film (Roche 

Molecular Biochemicals) for detection.  Exposure times of 5 min, 10 min and 20 min were 
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taken.  The X-Ray films were aligned to the nylon membranes attached in the 

autoradiography cassettes, then aligned to the LB-Amp plates containing the colonies and the 

positively hybridized colonies were flagged.  Those colonies which did not hybridize to the 

probe (cDNAs from glucose-grown fungus) were selected and grown in 200 µl of LB-Amp 

(100 µg/ml) in a 96-well plate at 37οC for 14-16 hr. 

Cultures from the 96-well plates were gridded on nylon membranes (Amersham 

Pharmacia Biotech) (Buitkamp et al., 2000) for secondary hybridization using the same probe 

as used in the primary hybridization.  Glycerol stocks of the clones selected at the primary 

hybridization stage were also maintained.

The clones which were negative after the second round of hybridization were selected 

and 100 µl of their glycerol stocks were added to 1000 µl of Terrific Broth (Amp, 100 µg/ml) 

in 96-well culture blocks and grown at 37οC for 16 hr with shaking at 200 rpm.  Plasmid 

DNAs were prepared using the 96-well alkaline lysis miniprep kit from Edge Biosystems 

according to the manufacturer’s instructions.  The DNAs were PCR amplified in 96-well 

thin-walled V-bottom microtitre plates (USA Scientific) using DyeDeoxy “Terminator 

PRISM” mix using the following program: 96οC for 30 s, 45οC for 15 s, 60οC for 4 min for 

49 cycles (Gong et al., 2001).  The PCR products were purified to remove unincorporated 

dyes and primers using the 96-well gel filtration and purification kit from Edge Biosystems 

and sequenced on an ABI 3700 sequencer. 

The raw sequences (ABI chromatograms) were processed using PipeOnline 

(http://bioinfo.okstate.edu/pipeonline) (Ayoubi et al., 2002) for functional annotation.  

PipeOnline (POL) is a fully automated EST processing program designed to take raw 
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sequence trace files as input, call bases, remove vector sequences, assemble contigs and 

annotate function to them wherever possible. 

Testing of the negatives using microarray experiments

Inserts from the clones from our inventory of negatives were PCR amplified using T7 

and SP6 primers.  Thermal cycling conditions consisted of an initial denaturation of 96οC for 

3 min, followed by 35 cycles of 94οC for 30 s, 45οC for 45 s, 72οC for 1 min 30 s with a final 

extension at 72οC for 10 min.  The quality of the PCR products was examined by 

electrophoresis by using 5 µl of the products on 1% agarose gel where 98% of the PCR 

products revealed a single band of 500 bp or longer and were chosen for microarray analysis.  

The unpurified PCR products (Diehl et al., 2002) were resuspended in Micro Spotting Plus 

Solution (Telechem).  They were printed at a final concentration of 250 ng/µl on amino-

silane coated slides (Corning Cat # 40005) in quadruplicate at room temperature and 50% 

relative humidity using a PixSys 5500 microarrayer (Genomic Solutions) fitted with Majer 

Precision Pins.  Various heterologous external controls, control sets from Ambion, as well as 

different negative (empty vectors) and internal positive controls including pooled cDNAs 

which were PCR amplified from the non-subtracted cDNA library were used in the arrays.  

After printing, each slide was rehydrated by holding the slide with the array side down over a 

beaker of steaming water for 1 s and snap-dried on a warm hot plate.  The slides were baked 

at 85οC for 3 hr followed by UV cross-linking using a Stratalinker.  Prior to hybridization 

with labeled cDNAs, the features immobilized on the slides were denatured by immersing the 

slides in boiling water for 2 min followed by snap-cooling on a bed of ice.  The slides were 
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dried by brief centrifugation followed by prehybridization at 42οC in 0.5% SDS, 0.01% BSA, 

6 X SSC and 25% formamide for 1 hr and washed with nanopure water at room temperature. 

Preparation of labeled cDNAs and the hybridization procedure 

Total RNA was isolated from A. nidulans grown in different complex carbohydrates 

as described before, and 5 µl of RNA isolated from tissues grown in each condition was 

checked in a denaturing formaldehyde/agarose gel.  RNA samples with an A260/A280 ratio 

between 1.8 and 2.0 and sharp ribosomal RNA bands were selected for use in preparing 

labeled cDNAs for hybridization.  Twenty-five micrograms of total RNA was used for 

labeling using Genisphere’s Array 350 hybridization kit according to the manufacturer’s 

instructions.  Each hybridization for a particular condition tested was repeated three times for 

statistical validation.  Labeled cDNAs for the replicate hybridizations were prepared from 

three independent fungal cultures.  They were incubated at 80οC for 10 min followed by 

42οC for 10 min before applying to the prewarmed and prehybridized array.  The formamide 

based hybridization buffer (provided with the kit) used for the experiments enabled us to 

perform the hybridization at 42οC.  A 22 Х 40 mm cover slip (Grace Bio-Lab, Bend, OR) 

was carefully placed on the slide taking care not to create any bubbles, and the slides were 

incubated overnight in a CMT-Hybridization chamber (Corning Inc., Corning, NY).  The 

humid atmosphere inside the chamber was maintained by applying 15 µl of 3 X SSC in the 

reservoir wells.  The hybridization and the stringency washes were also done according to the 

manufacturer’s instructions.  The arrays were scanned using Scan Array Express from 

Perkin-Elmer.
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Image extraction and data analysis 

Scanned images were analyzed using the software package, Gene Pix Pro 4.0 (Axon 

Inc.).  Spots with signal intensities lower than background, scratched spots and spots covered 

with dust were flagged and excluded from further analysis.  Local background was subtracted 

from the signal intensity of each spot on the array.  For between-slide normalization, a 

normalization factor was calculated from the mean of the background subtracted median 

pixel intensities of the A. nidulans pooled non-subtracted cDNAs which were used as internal 

controls.  This normalization factor was then used in Gen Pix Pro 4.0 to normalize the feature 

signal intensities in each slide.  Normalized signals from replicate spots within each 

treatment were averaged, and the values were used to determine the detection of cDNAs 

under particular conditions.  Detection of cDNAs was done by comparing the normalized 

signal intensities of each spot to the mean of the background subtracted median pixel 

intensities of the negative controls.  Visualization of the intensities of cDNAs across the wide 

spectrum of inducing substances was done by using GENESIS software (Sturn et al., 2002).  

All the array results are deposited at NCBI Gene Expression Omnibus under the platform 

accession number GPL566 and the series number GSE783 

(http://www.ncbi.nlm.nih.gov/geo).

Northern Analysis

Northern blots were prepared following standard methods (Sambrook et al., 1989) 

using 10 µg of A. nidulans total RNA per lane.  The cDNAs used as probes were selected 

from our collection of negative clones, digested with Eco RI and Hind III, separated by 

electrophoresis on a 1% agarose gel, gel-extracted (Qiagen Gel Extraction Kit) and labeled 



14

with DIG random prime labeling system from Roche Molecular Biochemicals according to 

the manufacturer’s instructions.  The membranes were hybridized with the labeled probe in 

DIG Easy Hyb at a final concentration of 20 ng/ml according to the manufacturer’s 

instructions.  Before re-use, each blot was stripped twice in 100 ml of boiling water 

containing 0.1% SDS and shaken on a rocking platform for 10 min, and washed twice in 1 X 

wash buffer (100mM maleic acid pH 7.5; 150mM NaCl; 0.3 % (v/v) Tween 20) for 10 min. 

Results

Isolation, sequencing, and classification of NSH-derived ESTs 

A non-normalized, non-amplified cDNA plasmid library was constructed from pooled 

RNAs extracted from A. nidulans grown on different polysaccharides (see materials and 

methods).  If a fungal culture is given a mixture of complex polysaccharides the cells will 

most likely utilize one class of polysaccharide preferentially over another (Mort et al., 

unpublished results).  Keeping this in mind, we grew fungal cultures individually in twelve 

different polysaccharides.  RNA was extracted from each culture and pooled to make a 

composite cDNA library.  We hoped these twelve different polysaccharides would represent 

all of the sugars and sugar linkages present in plant cell walls and would thereby induce a 

wide variety of enzymes necessary for the degradation and metabolism of the complex 

carbohydrates. 

About 100,000 colonies from the cDNA library were screened with DIG-labeled 

cDNAs reverse transcribed from RNAs extracted from glucose-grown fungus.  Colonies 

showing no or very faint hybridization signals (negatives), indicating potentially condition-

specific transcripts, were selected and transferred to 96-well plates, and then subjected to 
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secondary hybridization using the same probe.  Out of a total of approximately 100,000 

colonies plated, 8,000 negatives were counted and then finally 3532 (3.5% of those screened) 

well isolated colonies were selected as negatives for further analysis.  Plasmid DNAs were 

isolated, the plasmid inserts were end-sequenced and the sequence data were processed using 

PipeOnline (POL) (Ayoubi et al., 2002), which generated a database containing 2,039 unique 

contigs assembled from overlapping sequences.  All NSH derived EST sequences were 

deposited at NCBI’s dbEST database (http://www.ncbi.nlm.nih.gov/dbEST) with accession 

numbers ranging from CK445320 to CK449149 and from CK468506 to CK468532.

Figure 1 shows the distribution of predicted functions of the proteins represented by 

the ESTs as classified by POL using the best BLASTX hit with an expectation value E ≤ 1e-

3.  The ESTs were grouped as follows: 1% into cell structure, 4% into cell wall enzymes, 4% 

into electron transport, 4% into signal transduction, 5% into membrane transport, 9% into 

information pathways, 21% into metabolism and bioenergetics, 37% were unclassified and 

15% were unknown.  Unclassified ESTs are those sequences that had a BLASTX hit with an 

expectation value E ≤ 1e-3, but no "known" function attributed to them. ESTs with no 

significant similarity to known peptides were designated "unknown".   From Figure 1 it is 

evident that genes of unclassified and unknown function gave rise to half of the ESTs found 

in the NSH screen.

Figure 2 shows the percentage of contigs containing a given number of NSH-ESTs 

plotted against the number of ESTs per contig.  The majority (75%) of contigs contain one 

NSH-EST, which indicates low sequence redundancy in the NSH collection and the sampling 

from our library may also have been far from being complete.
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Validation of the negatives using slide-based hybridization

If the NSH method worked as predicted, one would expect most clones selected to 

contain cDNA inserts from genes not expressed in glucose-grown fungus but induced by 

forcing the fungus to utilize a complex carbohydrate as its carbon source or de-repressed 

after removal of glucose.  To test this, clones representing about half of the contigs from our 

inventory of negatives which were also not present in the previous EST collection were PCR 

amplified and microarrayed on glass slides.  A subset of the polysaccharides used for library 

construction namely pectin, arabinan, carboxymethyl cellulose, locust bean gum, and gum 

arabic were used separately as substrates for fungal cultures, and from those individual 

cultures labeled cDNAs were prepared.  Cultures grown on glucose and incubated in the 

absence of glucose (starved) were also used to prepare cDNAs.  The cDNAs prepared from 

each condition were used in single channel non-competitive slide-based hybridizations.  

For each carbohydrate tested, background-subtracted hybridization signals were 

normalized between slides based on the intensity of the controls and ranked from 0-3 

depending on the normalized signal intensity.  Figure 3 summarizes all of the results by 

representing the average relative fluorescence intensity of each gene in each treatment by one 

of three shades of red or by black if it was deemed non-detectable.  The order of the features 

appearing in the figure is relative to the intensity of signal obtained from glucose grown 

labeled fungal cDNA (right-hand column) ranked from the highest to the lowest and 

secondarily by the sum of relative fluorescence intensity levels in all the other hybridizations.  

The features can be grouped into four categories: 1) Those that appear to be expressed at high 

levels in glucose and at high or lower levels in starvation or complex carbohydrates 2) Those 
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that are expressed to a low extent in glucose-grown cultures but are expressed to higher 

levels when grown in other conditions tested 3) Those that are non-detectable in the glucose-

grown cultures but are expressed in one or more of the other conditions 4) Those that are 

apparently not expressed under any condition tested

These results also revealed substrate-specific expression of genes.  For instance, 

cDNA encoding exopolygalacturonase hybridized only to labeled cDNA made from pectin-

grown fungal mycelium.  Similarly, cDNA encoding endo-arabinanase hybridized only to 

labeled cDNA made from arabinan and arabinogalactan protein-grown fungal cultures but 

not to labeled cDNA extracted from fungal cultures grown in glucose (Figure 3). 

The intensity of hybridization to several cDNAs for which there was a relatively high 

redundancy in our NSH collection were investigated to determine whether they were actually 

highly expressed in fungal cultures grown in any of the conditions other than glucose.  A 

cDNA encoding phosphoenol pyruvate carboxykinase (PEPCK), involved in 

gluconeogenesis, (picked 9 times during the NSH screen) hybridized at very high levels to 

labeled cDNA extracted from starved cultures but only weakly to labeled cDNA prepared 

from glucose-grown fungal cultures.   

Twenty-one clones selected during the NSH procedure contained inserts with 

sequences matching that of a 30 kDa heat shock protein.  The corresponding cDNA 

hybridized very strongly to labeled cDNAs from fungus grown on all carbon sources, 

including glucose.  Another cDNA, sequenced 14 times and with an unknown function, 

hybridized to a lesser extent to labeled cDNA from glucose-grown fungus compared to that 

of fungus grown on all of the complex polysaccharides or incubated in no carbon source.  

The cDNA encoding cell wall galactomannoprotein (sequenced 6 times in the NSH 
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collection) gave no signal from glucose-grown fungus, but a low signal in starvation and 

three of the complex carbohydrates.  There were also 80 features on the microarray which did 

not hybridize to any of the labeled cDNAs tested.

Northern evaluation of the negative subtraction technique and microarray data  

Several of the cDNAs reported above were labeled and used to perform northern 

analysis using RNA extracted from fungal cultures grown on all of the different carbon 

sources used for the library construction, glucose, and incubated on no carbon source, i.e. 

starvation to mimic growth on a complex carbon source the fungi could not digest.  Figure 4 

shows these results.  All of the results indicated that clones selected as negatives in the NSH 

and examined further by northern hybridization were indeed either not expressed or 

expressed only to a low extent in glucose-grown fungus, but induced to considerably higher 

levels in one or more of the complex carbohydrates or starved fungal cultures. 

Discussion

Our goal was to isolate cDNAs induced in A. nidulans grown on complex 

carbohydrates rather than glucose and to greatly expand the number of ESTs available for A. 

nidulans without re-sequencing those generated from a glucose-grown conidiating culture 

(Prade et al., 2001).  In the previous EST project randomly picked clones were end-

sequenced and 12,320 ESTs were assembled into 4,595 contigs.  Some of the clones 

(especially some coding for heat shock proteins) were sequenced hundreds of times reflecting 

their high transcript abundance.  Approximately 100,000 colonies from the cDNA library 

made from fungus growing on complex polysaccharides were screened with probes made 
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from glucose-grown fungus.  This allowed us to discriminate against colonies harboring 

cDNAs representing transcripts present in glucose-grown fungus.  The screen eliminated 

~92% of the colonies from further analysis.  This suggests that over 90% of the messages in 

the complex carbohydrate-grown fungus are common to fungus grown on glucose.  We 

expect that a large fraction of the messages are from abundant transcripts.  About half of the 

colonies which were negative in the initial screen were not picked because of lack of 

separation, small size, or failure to test negative in the secondary screen.  From the original 

100,000 colonies plated, 3,532 were finally picked for sequencing.  After processing the 

3,532 resulting ESTs 2,039 unique contigs were obtained.  Of these 1,772 had not been found 

previously within the glucose-grown conidiating library.  Thus, the NSH method was very 

efficient in selecting for the desired cDNAs.    

It had been estimated that A. nidulans codes for approximately 8,000 genes (Kupfer et 

al., 1997) although recently 9,500 ORFs have been predicted from the whole genome 

sequence (http://www-genome.wi.mit.edu/annotation/fungi/aspergillus/). The combination of 

these two EST libraries accounts for almost 70% of the predicted transcripts. 

The technique was also successful in avoiding redundancy.  For example, the cDNA 

encoding a particular 30 kDa heat shock protein was isolated 411 times during the random 

screening of the cDNA library made from glucose-grown conidiating fungus whereas it was 

found only three times during the NSH screen.  It was most likely abundant in the original 

cDNA library but was removed through the NSH screening procedure. 

Since our library was constructed from pooled RNAs of fungal cultures grown in 

twelve different plant polysaccharides, the isolated cDNAs could be from one or more 

conditions.  To test if the isolated cDNAs are expressed in the manner expected (i.e. are 
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induced by one or more of these polysaccharides but absent when grown on glucose) we 

selected unique cDNAs representing 728 contigs and hybridized them by conducting single-

channel, slide-based microarray hybridization to labeled cDNAs made from fungal cultures 

grown on individual polysaccharides.  Approximately 65% of the ESTs probed did not 

hybridize to labeled cDNAs from glucose-grown fungal cultures.  Of these, some of the 

cDNAs were detected very specifically in hybridization using labeled cDNAs prepared from 

cultures grown on single or a few different carbon sources, but many were detected in 

hybridization using labeled cDNAs from a variety of cultures.  This perhaps indicates a 

generalized shift in metabolism caused by the switch from glucose as carbon source to less 

readily metabolized polysaccharides with concomitant release from carbon catabolite 

repression which invites further study. 

Although we initially designed the NSH system to find de-repressed and induced 

transcripts, it is clear from previous work (Nelson et al., 1999) that transcripts which are of 

low abundance, including those in glucose-grown fungus, could be detected as negatives in 

this type of screen because the corresponding labeled cDNA used to screen the library would 

be at too low a concentration to produce a detectable signal.  Nelson et al., screened 

macroarrays of randomly picked colonies of a cDNA library from human prostrate tissue 

with labeled cDNA from the same tissue and selected the non-hybridizing colonies as rare 

transcripts.  It is therefore likely that some of the 80 “selected negatives” which did not 

hybridize in our single channel microarray studies also represent rare transcripts.  It could 

also be possible that some of the 80 non-hybridizing arrayed negatives may be transcripts 

specific to one of the six carbon sources used in preparing the cDNA library but not tested in 

the microarray analysis. 
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Despite our efforts to eliminate transcripts found in glucose-grown fungus, 

approximately 35% of the ESTs from our collection of NSH-ESTs arrayed on the glass slides 

hybridized to labeled cDNAs extracted from fungus grown in glucose.  Of these, one-quarter 

hybridized strongly under all nutritional conditions whereas three-quarters hybridized more 

strongly in some of the complex carbon sources compared to glucose. Selection of “false-

negatives” can be attributed to experimental limitations common to hybridization screening.  

For example, colonies may have been in a region of the membrane that was not uniformly 

exposed to the labeled cDNA probe or mistakes could have been made in selecting negative 

colonies from over-crowded plates.  Repressed growth of individual colonies or incomplete 

transfer of colonies during membrane lifts would also result in a reduction or complete loss 

of hybridization signal.  These types of mistakes could account for the occasional selection of 

cDNA clones which gave a high degree of hybridization to glucose-grown fungal cDNA in 

microarray experiments. 

A few of the clones showing intense hybridization to glucose-grown labeled fungal 

cDNAs used in the microarray experiments, were picked multiple times using NSH, thus, 

making it unlikely that they were the result of repeated double selection during the screening.  

In addition, most of the false negatives were not present in the previously characterized EST 

collection made from a glucose-grown conidiating library. Some of the selected negative 

cDNA clones may have produced a weakly positive signal in northern or microarray 

hybridization experiments due to fairly small stretches of sequence similarity to transcripts 

present in glucose-grown fungus resulting in cross-hybridization.  For example, in the 

combined EST libraries, we observed five different cDNA sequence contigs presumed to 

code for 30 kDa heat shock proteins, but the EST found by NSH (derived from 21 cDNA 
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sequences) contains about 100 nucleotide stretch with high homology to the other four heat 

shock proteins.  We believe this would be sufficient to allow cross-hybridization with 

different heat shock protein transcripts from glucose-grown fungal cDNA and yield a 

positive signal in microarray and northern hybridizations.  

The question remains as to why it behaved as a negative during the NSH experiment 

yet was positive in northern hybridization.  The cDNA probe concentration used in the 

various hybridization experiments could provide another factor in the selection of false 

negatives in NSH.  Considering that the probes were applied in the hybridization methods at 

the same total DNA concentration, the effective concentration of a particular cDNA probe 

species was much lower in the NSH hybridization as it consisted of heterogeneous mixtures 

containing thousands of different sequences, compared to that used in northern blots which 

consisted of single, homogeneous cDNA probes.  Several apparent discrepancies between 

NSH, northern blots and microarray hybridizations may also be related to basic technical 

differences and limitations of these methods.  Further, while NSH method worked well in 

this study, the potential for cross-hybridization within gene families is likely if applied to 

organisms with highly complex genomes.

Some of the advantages of NSH are listed: This technique should be applicable to any 

preferably non-normalized cDNA library as long as it contains a low percentage of empty 

vectors which would, of course, appear as negatives.  The absence of a PCR step in the 

construction of the library reduces the risk of disproportionate amplification of some 

sequences.  There are no restriction digestion steps involved during the construction of the 

cDNA library, which lead to small insert size.  Since the library used in the NSH method is 

made from potentially full-length cDNAs, each negative selected has a good chance of 
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containing a full-length cDNA.  It should be straightforward to automate most of the steps in 

the NSH procedure.  Thus, NSH is an efficient method for isolation of cDNAs for 

differentially expressed and, very likely, rarely expressed transcripts.  

Figure 1.  Functional classification of ESTs isolated by NSH

NSH-ESTs were classified into the major functional categories according to PipeOnline. The 

percentages indicate distribution of predicted EST functions in broad functional categories.  

All of the broad categories defined by PipeOnline are represented.
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Figure 2.  Bar graph showing the redundancy rates of NSH-ESTs

The NSH-ESTs were assembled into contigs and the number of ESTs per contig was 

determined, against which was plotted the percentage of contigs containing that number of 

NSH-ESTs.   Seventy-five percent of the contigs are composed of one NSH-EST.
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Figure 3. Heatmap representation of normalized hybridization signals

For each carbohydrate tested, background-subtracted hybridization signals were normalized 

between slides to the intensity of the controls and then assigned a number between 0 and 3 
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depending on the normalized intensity.  Signal intensities of 0-4999 were assigned a number 

of 0 and were colored black in the heatmap; those 5000-19,999 were assigned a number of 1 

and were colored light red; those 20,000-39,999 were assigned a number of 2 and were 

colored medium red; and any intensities above 40,000 were assigned a number of 3 and were 

colored bright red to assist in visualization of the hybridization signals.  Signal intensities of 

the selected cDNAs coding for heat shock protein (HSP), unknown peptide, 

phosphoenolpyruvate carboxykinase (PEPCK), galactomannoprotein, endo-arabinosidase 

and exopolygalacturonase are shown on the right hand side of the diagram. 
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Figure 4. Northern analysis

Northern blot expression pattern of A. nidulans mRNAs corresponding to the cDNAs 

encoding (from top to bottom) phosphoenolpyruvate carboxykinase (Pepck), heat shock 

protein, protein with an unknown function, endoglucanase, exopolygalacturonase, xylanase, 

xylose reductase, and cell wall galactomannoprotein.  Total RNA was isolated from fungal 

mycelia and ~10 µg of RNA was separated by electrophoresis on a 1% agarose/ 

formaldehyde gel, blotted on nylon membranes, UV cross crosslinked and hybridized to 

cDNA probes as indicated.  The order of total RNA in the gel from left to right are: glucose 

plus (GLC), glucose minus or starved (STV), rhamnogalacturonan (RHG), xylan (XYL), 
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arabinogalactan protein (AGP), carboxy methyl cellulose (CMC), arabinan (ARA), locust 

bean gum (LBG), pectic galactan (PEG), gum arabic (GAR), pectin (PEC), arabinoxylan 

(ARX), karaya gum (KAG), xyloglucan (XYG).     
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CHAPTER 3

COMPARISON OF TRANSCRIPTIONAL CHANGES IN ASPERGILLUS 

NIDULANS GROWN ON THE COMPLEX CARBOHYDRATE PECTIN OR 

WITHOUT A CARBON SOURCE

Introduction

When microorganisms begin a colonization cycle on plants, regardless of whether the 

association is pathogenic or saprophytic (i.e. biomass decays), the initial complex carbon 

source they come across is pectin (Prade et al., 1999).  Pectins are a family of 

heteropolysaccharides that are comprised of predominantly 1, 4-linked α-D- 

galactopyranosyl uronic acid residues (Prade et al., 1999).  Beyond pectin, large quantities of 

cellulose and hemicellulose, but little of free glucose, are available to the microorganisms 

while spreading through the plant tissues (Aristidou et al., 2000).  Many bacteria and fungi 

are effective in depolymerizing and metabolizing pectin, cellulose, and hemicellulose as 

energy and carbon sources.  Complete decomposition of the above substrates involve 

numerous enzymes, some of which are at least partially dependent on the action of one or 

more prior enzymes (Seiboth et al., 1997).  The natural interactions that happen at this level 

are of importance to several aspects of biology and play a key role in the biotechnological 

utilization of biomass.  

The filamentous fungus, A. nidulans adapts among competing microorganisms in an 

environment with restricted resources by adjusting to varying nutrient conditions (Flipphi et 
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al., 2003).  The genetic components and the regulation of the genes involved in such 

adaptations are not very well known.  Since most polysaccharide degrading fungal enzymes 

are present at only trace levels when only simple carbon sources (e.g. glucose) are present, 

little is known about the recognition mechanism that discriminates between different classes 

of polysaccharides.  

In A. nidulans, enzyme specific induction and carbon catabolite repression (CCR) are 

two known genetic regulatory mechanisms that enable flexibility in utilizing a wide range of 

carbon sources.  There may be common regulatory mechanisms involved in induction of 

enzymes for the degradation of entire classes of polymers.  For example, in the presence of a 

metabolite of polygalacturonic acid, enzymes such as exopolygalacturonase, 

endopolygalacturonase, pectinmethylesterase, arabinosidase and several other enzymes could 

also be present.  In the case of CCR, CreA, a DNA-binding transcriptional repressor becomes 

functional in response to repressing carbon sources.  The creA gene from A. nidulans encodes 

a C2H2-zinc finger protein that binds to a 5’-SYGGRG-3’ consensus sequence in the 

promoter region of genes subject to CCR (Strauss et al., 1999).  Much is known about the 

target genes for creA binding and the involvement of creA in the regulation of xylan, proline, 

and ethanol utilization in A. nidulans (Orejas et al., 1999, Cubero et al., 2000, Felenbok et al., 

2001) but very little is known about the processes by which CreA senses, responds, and 

adapts to repressing carbon sources (Flipphi et al., 2003).            

The first step we took towards understanding transcriptional changes for the 

utilization of a complex carbon source was to isolate a nearly complete set of genes 

potentially involved in the process.  We devised a Negative Subtraction Hybridization (NSH) 

procedure (Ray et al., 2004) to isolate cDNAs for a large group of genes that are induced by 
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switching glucose-grown fungal mycelia to one of twelve different complex polysaccharides.  

The twelve polysaccharides represent almost all structural polysaccharide structures present 

in plant tissues.  Analysis of the isolated cDNAs by sequence homology indicated a 

generalized shift in metabolism caused by the switch from glucose as carbon source to less 

readily metabolized polysaccharides.  

Here we describe the change in expression profiles of mRNAs when the fungus is 

withdrawn from glucose and instead provided an alternative complex substrate, pectin, which 

we expected would provide release from carbon catabolite repression and/or induction.  We 

also describe the effect of glucose starvation (no carbon source), which we expected would 

result in release from carbon catabolite repression in the initial stages of incubation on 

minimal medium devoid of any carbon source followed by upregulation of genes involved in 

survival.  Our specific objectives were: 1) to identify transcripts that are upregulated or 

derepressed in pectin only but not in glucose starvation, 2) to identify transcripts that are 

upregulated or derepressed in glucose starvation only but not in pectin, and 3) to identify 

transcripts that show a “shared response” i.e. upregulated or derepressed by pectin and 

glucose starvation.  

Xie et al., in previous studies with Neurospora crassa (N. crassa), reported 

transcriptional profiling of glucose-grown cultures compared to glucose-starved cultures (Xie 

et al., 2004).  N. crassa is known to ferment glucose to ethanol in aerobic culture (Colvin et 

al., 1973) whereas A. nidulans is known to utilize glucose primarily through respiration with 

low levels of fermentation (Kelly et al., 1990, Lockington et al., 1997).  

This is the first study in A. nidulans designed to monitor the transcriptional response 

to glucose starvation and pectin using microarray analysis.  Our results revealed changes in 
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transcript levels for about 32% of the cDNAs printed on our arrays after a switch in carbon 

source from glucose to glucose starvation and /or pectin.   

Materials and Methods

Strain, media and culture conditions 

A. nidulans FGSC C26 strain was used in all experiments.  Minimal and complete 

media with appropriate supplements were prepared as suggested by Kafer (Kafer E 1977) 

and manipulated as described by Pontecorvo and co-workers (Pontecorvo et al., 1953).  A 

two stage vegetative growth and forced carbon shift induction system was used where 

vegetative mycelia were initially produced by inoculating 1×108 conidia per ml in minimal 

medium supplemented with 1% glucose and incubated at 37°C, pH 6.5 with continuous 

shaking at 200 rpm for 18 h.  Mycelia were recovered by filtration, washed with sterile water, 

and transferred to fresh minimal medium containing no glucose, 1% glucose or 1% pectin 

(Sigma Chemical Co., St. Louis, Mo.), and grown for 3 h, 6 h, 9 h, and 12 h at 37°C, pH 6.5

with continuous shaking at 200 rpm.  For examination of the fungal growth in glucose, 

pectin, and no carbon source (i.e. glucose starvation), 20 ml of the samples were withdrawn 

using sterile pipette tips at 2 h intervals over a period of 12 h and filtered through pre-

weighed filter papers.  The filter papers were dried in a freeze drier for 16 h and the dry 

weight of the mycelia was determined.  The culture filtrates were collected and kept frozen at 

-20°C in sterile 50 ml corning tubes for further analysis.  

HPLC Gel filtration chromatography
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For examination of the degradation of pectin by the fungus, 20 ml of the culture 

filtrates were withdrawn at 2 h intervals over a period of 12 h.  Aliquots of 1 ml of the culture 

medium were fractionated by gel filtration on a column of Toyo pearl HW 40(S) from 

Supelco Inc (fractionation range for carbohydrates was from 100-7,000 molecular weight).  

Beads were packed in a steel column (10mm×500mm) and the column was equilibrated with 

50mM ammonium acetate, pH 5.2, with a flow rate of 1.0 ml/min.  The sugars were detected 

by refractive index (SHODEX R1-71). 

Capillary Zone Electrophoresis (CZE)

Glucose levels remaining in the culture filtrates were determined by CZE.  An aliquot 

of the medium (10 µl) was mixed with 10 µl of 20 mg/ml cellobiose as an internal standard 

and diluted 100 fold.  A 2 µl aliquot of this was derivatized with aminonaphthalene 

trisulfonic acid (ANTS) by heating it at 80οC for 1 h with 10 µl of 30 mM ANTS in 3% 

acetic acid and 1 µl of 1M NaCNBH3 in dimethylsulfoxide (Zhang et al., 1996).  The 

resulting solution was analyzed by CZE using a custom built instrument, and the 

electrophoresis conditions reported previously (Merz et al., 1998).  The ratios of peak areas 

for the glucose to cellobiose were compared to that obtained from a standard mixture of a 10 

mg/ml glucose solution with cellobiose.  Galacturonic acid levels in the medium of pectin 

grown fungus were determined the same way, except that 2 µl of the undiluted medium and 2 

µl of 100 fold diluted cellobiose solution were directly derivatized.  Oligosaccharides could 

also be observed (Mort et al., 1996), but not quantitated because of lack of separation and 

necessary standards.

Microarray analysis
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For expression profiling using microarray analysis, A. nidulans was grown as 

mentioned above.  Cultures for each time point and condition tested were grown in 

quadruplicate and the tissues were harvested, blotted dry, frozen and lyophilized prior to 

RNA isolation.  The procedure for printing of the slides, the probes, and the treatment of the 

slides were exactly as previously reported (Ray et al., 2004).  

Preparation of labeled cDNAs and the hybridization procedure 

Total RNA was isolated from A. nidulans grown in pectin or glucose-starved 

condition using TRIZOL reagent (Sigma Chemical Co., St. Louis, Mo.).  The quality of RNA 

samples was assessed by electrophoresis using a denaturing formaldehyde/agarose gel.  RNA 

samples with an A260/A280 ratio between 1.8 and 2.0 having intact ribosomal RNA bands 

were selected for use in preparing labeled cDNAs for hybridization.  Twenty-five 

micrograms of total RNA was used for labeling using Genisphere’s Array 350 hybridization 

kit according to the manufacturer’s instructions.  Total RNA samples from each time point 

from glucose-grown fungus were labeled with Alexa 546 and used as reference and total 

RNA samples from pectin-grown fungus at each corresponding time point were labeled with 

Alexa 647 and used as experimental RNA.  Similarly, for the glucose-starved experiments, 

the reference was the Alexa 546 labeled RNA from glucose-grown fungus, and the 

experimental sample was Alexa 647 labeled RNA isolated from glucose-starved fungus at 

each time point.  Replicated RNA samples from each time point were pooled before labeling 

and hybridization.  Each hybridization for a particular condition tested per time point was 

repeated two times with pooled total RNA samples from four replicates of each time point.  

There were four spots per cDNA on each slide thereby yielding eight data points per cDNA 
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for each condition and time tested.  The hybridization and the wash procedure were 

according to the manufacturer’s instructions.  The arrays were scanned using a Scan Array 

Express from Perkin-Elmer.

Data analysis from the scanned slides 

The images were processed using GenePix Pro 4.0 (Axon Inc.).  Pre-processing of 

data was accomplished using GenePix Autoprocessor (GPAP) 

(http://darwin.biochem.okstate.edu/gpap/) (Ayoubi et al., unpublished results).  This analysis 

included: 1) exclusion of data where the fluorescence signal intensity in both channels was 

less than the background plus two standard deviations; 2) exclusion of data where the signal 

in both the channels was less than 200 Relative Fluorescence Units; 3) exclusion of spots 

which failed quality control and were flagged during processing of the images using GenePix 

Pro; 4) log2 transformation of the background subtracted Alexa 647/Alexa 546 median ratios.  

After pre-processing, the expression results were normalized using print tip LOWESS 

normalization (Yang et al., 2002) and a statistic was calculated for each gene based on the 

Empirical Bayes approach using the R-project statistical environment (http://www.r-

project.org) with the Bioconductor (http://www.bioconductor.org) and Limma (Smyth et al., 

2004) packages through the GPAP web site (http://darwin.biochem.okstate.edu/gpap/) 

(Ayoubi et al., unpublished results).

The EST sequences of all the probes used for these microarray studies have been 

submitted to NCBI dbEST database with accession numbers ranging from CK445320-

CK449149 and CK468506-CK468532.  All the microarray data are deposited at the NCBI 
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Gene Expression Omnibus (GEO) under the platform accession number GPL 566 and the 

series accession number GSE 2417.

Detection of exopolygalacturonase activity

The filtrates from the fungal cultures grown for 3 h, 6 h, 9 h, and 12 h were used to 

assess exopolygalacturonase activity using CZE (Zhang et al., 1996).  Oligosaccharides of 

ten α 1-4 linked galacturonic acid residues were purified (Nothnagel et al., 1983), labeled 

with aminopyrene trisulphonic acid (APTS) (Evangelista et al., 1995), desalted by gel 

filtration chromatography, and used as a substrate for detection of oligogalacturonan 

degrading activities.  The labeled substrate was diluted to about 100 ng/µl with water and 1 

µl of it was mixed with 1 µl of the culture filtrate and buffered with 18 µl of sodium acetate 

buffer pH 4.0.  After incubation for 5 min, 15 min, or 1 h at 37οC the enzyme was heat killed 

at 90οC for 10 min.  The products were subjected to CZE on a BioRad Biofocus 2000 

instrument with excitation by a 488 nm argon-ion laser with fluorescence collected through a 

520 nm bandpass filter.  Electrophoresis was conducted at 15 KV in 0.1M phosphate buffer, 

pH 2.5 on a 31 cm 50 µ ID capillary.

Results

Physiological response of the fungus to changes in carbon source

The effect of a switch in carbon source on fungal growth was investigated by 

following the change in dry weight of the mycelia through a 12 h growth period.  In parallel, 

we followed the disappearance of glucose and pectin from the culture filtrates. The dry 

weight of fungal mycelia per 20 ml of culture was determined at 2 h intervals after the 
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transfer to the test medium.  Figure 5 shows that, as expected, the fungal dry weight 

gradually declined in glucose-starved condition.  In pectin, the fungal dry weight was 

maintained in the initial time points then showed an increase after 8 h while in glucose, the 

fungal dry weight increased slowly.

The decline in the amount of pectin in the medium of pectin-grown fungus was 

estimated by passing an aliquot of the medium through a gel permeation column and 

integrating the area of the peak eluting in the void volume.  Fragments of pectin fewer than 

about 5 sugar residues would elute later than the polymer peak.  Chromatography of a 

corresponding aliquot of medium from glucose-grown fungus gave only a very small peak in 

the void volume, suggesting that the area of the void volume peak from the pectin-grown 

fungus truly reflects the amount of pectin polymer.  After about a 3 h lag, the concentration 

of pectin declined rapidly (Figure 5 inset).  We could estimate the concentration of free 

galacturonic acid and oligomers of it by labeling an aliquot of the medium with 

aminonaphthalene trisulfonic acid (ANTS) and then analyzing the products with capillary 

zone electrophoresis (data not shown).  For the first 6 h free galacturonic acid could not be 

distinguished among the background of other minor components in the medium.  However, 

at 6 h the level of free galacturonic acid rose to about 1 mg/ml and remained at that level for 

the remainder of the experiment (data not shown).  There was no apparent accumulation of 

the short GalA oligomers that are the end products of digestion of homogalacturonan by 

endopolygalacturonases.  However, we could see an accumulation of longer more complex 

oligomers that appeared to become shorter as time progressed.  The fungus did not increase 

in dry weight until 8 h indicating that it took several hours to switch its metabolism to use 

galacturonic acid presumably as a source for making glucose required for its growth. 



41

The concentration of glucose in the medium of the glucose-grown fungus was 

determined by labeling an aliquot of the medium with ANTS and subjecting it to CZE.

After the transfer to growth on glucose the fungal dry weight slowly increased concomitant 

with a steady uptake of glucose from the medium (Figure 5 inset). 

Gene expression analysis

We chose transcriptional profiling using microarrays to observe the effect of 

derepression and/or induction and to monitor those genes which play a key role during the 

growth of A. nidulans when shifted from growth on glucose to growth on pectin or glucose-

starved conditions.  We collected mycelium at various time points of incubation of A. 

nidulans following the medium shift as outlined in materials and methods.  Based on the 

observed loss of pectin from the cultures combined with the increase in dry weight, we chose 

four different time points of growth i.e. 3 h, 6 h, 9 h, and 12 h after shifting the carbon source 

to pectin and glucose-starved conditions (arrows in Figure 5).  Total RNA was extracted 

from the pooled tissue at each time point as mentioned above, labeled and hybridized to the 

microarrays.  The raw data were processed using the GPAP program 

(http://darwin.biochem.okstate.edu/gpap/) and the output files were used for further analysis.  

We used a stringent method of B-statistics based on the Empirical Bayes approach to 

generate a list of 312 genes which had at least a two-fold change in expression (log2 ratio of 

1) and a B-statistic value of 1 or greater at one or more of the time points under the 

conditions tested.  

These 312 genes were placed into three different categories. 1) Those with a glucose 

starvation specific response were significantly up or downregulated in at least one of the 
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times tested under the glucose-starved condition but not in pectin-grown condition, 2) Those 

with a pectin-specific response were significantly up or downregulated in at least one of the 

times tested in pectin-grown condition but not in glucose-starved condition, and 3) Those 

with a shared response were significantly up or downregulated in both conditions, in at least 

one of the times tested, but not necessarily at the same time.

Figure 6 shows a bar graph depicting the distribution of pectin-regulated or glucose 

starvation-regulated genes.  The gray segments reflect the number of genes that were 

upregulated or downregulated at each time point in either glucose-starved condition (panel 

A) or pectin-grown condition (panel B) at 3 h, 6 h, 9 h, and 12 h but not under both 

conditions.  Hence, these genes are examples of condition specific regulation.  The white 

segments reflect the numbers of genes showing a shared response that were upregulated or 

downregulated at each time point under both glucose-starved condition and pectin-grown 

condition (i.e. shared response).

Hierarchical cluster diagrams of the three different categories of differentially 

expressed genes are shown (Figure 7).  They are divided into three panels A, B, and C 

depending on whether they depict genes which respond to only glucose starvation, pectin or 

both glucose starvation and pectin.  Panel A depicts the hierarchical cluster diagram of the 

109 genes which show a glucose starvation specific response at any one of the time points.  

Of these, 62 genes have no known function (BLASTX search, E-value ≤ 1e-20).  These 

genes are probably examples of derepression by release from carbon catabolite repression.  

We observed 89 genes with a pectin-specific response (panel B) out of which 38 genes have 

no known function (BLASTX search, E-value ≤ 1e-20).  Finally, there are a total of 114 

genes with a shared response (panel C) out of which 56 genes have no known function 
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(BLASTX search, E-value ≤ 1e-20).  Table I lists the genes grouped into different metabolic 

pathways and other functional categories.

Polymer degradation and sugar transport

 Presumably the complex polysaccharide pectin is degraded and utilized by A. 

nidulans using several different enzymes and pathways.  We expected some enzymes will be 

expressed as a result of derepression by release from carbon catabolite repression while 

others will be specifically induced in the presence of a complex carbon source like pectin.  

The backbone of the pectin chain, predominantly α (1-4) galacturonic acid (GalA), is 

degraded by polygalacturonases and lyases into oligomers and then degraded to monomers 

for uptake by the fungus.  Exopolygalacturonases cleave one residue at a time from the non-

reducing end of polymers and oligomers. High amounts of exopolygalacturonase activity 

were detected by capillary electrophoresis of the culture filtrate from fungus growing on 

pectin for 3, 6, 9, and 12 hours (data not shown).  Correspondingly, a transcript encoding an

exopolygalacturonase was significantly upregulated in pectin-grown cultures at all the time 

points (10.7-fold, 3.0-fold, 4.3-fold, and 3.9-fold) but not under glucose-starved condition.  

In contrast, transcripts encoding arabinosidase (an enzyme involved in the degradation of the 

side chains of pectin), xylosidase and alpha-mannosidase did not show any significant 

change in expression in pectin-grown cultures.  This suggests the need for both induction and 

derepression.  

Out of the seven predicted sugar transporters (AN6804.2, AN6669.2, AN2466.2, 

AN2794.2, AN4148.2, AN8400.2, and AN2585.2) included on the microarray, transcript 

levels for four of these revealed a shared response with elevation in glucose-starved 
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condition at least initially and in pectin-grown condition towards the later times.  The 

expression level of AN6669.2 (clone Set1P5D6), which encodes a high-affinity sugar 

transporter subject to carbon catabolite repression (vanKuyk et al., 2004), was upregulated at 

3 h (3.6-fold) in glucose-starved condition and at 9 h (4.0-fold) and 12 h (4.8-fold) in pectin-

grown condition. 

 The expression level of AN6035.2 (clone Set1P3F8) was upregulated in pectin-

grown cultures at 9 h (3.8-fold) and at 12 h (4.2-fold) but was not significantly expressed in 

the glucose-starved cultures.  A domain located within the predicted peptide sequence 

(http://www.broad.mit.edu/annotation/fungi/aspergillus/) suggests this protein belongs to a 

family of muconate lactonizing enzymes which function in the beta-ketoadipate pathway 

used in the catabolism of aromatic compounds in fungi and yeasts (Mazur et al., 1994).  

Glycolysis

Seven transcripts encoding glycolytic enzymes were on our arrays.  The transcripts 

encoding hexokinase, phosphofructokinase, and alcohol dehydrogenase III did not show any 

significant change in expression at any of the times tested under the glucose-starved 

condition or the pectin-grown condition.  Transcription of the gene encoding 

phosphoglycerate kinase was downregulated in glucose-starved condition while the 

transcription of fructose bisphosphate aldolase was upregulated (2.7-fold) only at 12 h in the 

glucose-starved condition and did not show any change in expression in the pectin-grown 

cultures.  The transcripts from the glycolytic pathway that were significantly upregulated at 9 

h and 12 h in glucose starvation and in pectin-grown condition were glyceraldehyde-3-

phosphate dehydrogenase (AN8041.2) and enolase (AN5746.2).  The expression of 
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glyceraldehyde-3-phosphate dehydrogenase was upregulated in glucose-starved cultures at 9 

and 12 hours (3.1-fold and 2.3-fold, respectively) and in pectin-grown cultures at 9 and 12 

hours (2.4-fold and 2.1-fold, respectively).  The expression of enolase was upregulated 3.1-

fold and 2.2-fold in glucose-starved cultures at 9 and 12 hours, respectively, and 2.2-fold and 

3.8-fold in pectin-grown cultures at 9 and 12 hours, respectively.  

Gluconeogenesis/Pyruvate branchpoint

Previous work in yeast has shown that the degradation of mRNA for phosphoenol 

pyruvate carboxykinase (PEPCK) involved in gluconeogenesis can be triggered by 

< 0.02% glucose concentration in its medium (Yin et al., 2000).  PEPCK (AN1918.2) 

converts oxaloacetate to phosphoenolpyruvate and plays a key role in gluconeogenesis.  In 

our study, transcription of PEPCK was significantly upregulated (4.7-fold, 4.9-fold, 5.5-fold, 

and 3.6-fold) at all of the times during growth under glucose-starved condition and at 3 h 

(2.2-fold) in pectin-grown condition.  The transcription of the gene encoding pyruvate 

dikinase (AN5843.2) was significantly upregulated in glucose-starved condition at 3 h (2.1-

fold), 6 h (4.8-fold), 9 h (3.3-fold), and 12 h (3.4-fold) and initially in pectin-grown cultures 

(2.3-fold).  Pyruvate dikinase catalyzes the reversible conversion of pyruvate to 

phosphoenolpyruvate.  Interestingly, the expression pattern of pyruvate carboxylase was not 

significantly changed under either glucose-starved or pectin-grown condition.  The gene 

expression pattern of acetyl-coenzyme A synthetase which activates acetate to acetyl-CoA 

showed upregulation on pectin-grown cultures towards the later times but did not show any 

change in its expression under glucose-starved condition.  Acetyl-CoA is effectively carried 

into the mitochondria by a shuttle mechanism in which carnitine acetyltransferase 
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(AN6279.2) plays a key role (Stemple et al., 1998), and the expression of this gene increased 

3.4-fold in glucose-starved condition and 2.6-fold in pectin-grown condition. 

TCA cycle

Several transcripts for TCA cycle enzymes on our arrays showed interesting 

expression patterns.  The transcript encoding ATP-dependent citrate synthase (AN2436.2) 

was downregulated under both the glucose-starved and pectin-grown conditions.  The 

expression level of succinate dehydrogenase did not show any significant differential 

expression in glucose-starved and pectin-grown fungal cultures.  However, transcripts 

including isocitrate dehydrogenase (AN2999.2), oxoglutarate dehydrogenase (AN5571.2), 

and succinyl-CoA synthetase (AN2295.2) were upregulated at one or more times in either the 

pectin-grown or the glucose-starved condition or in both the conditions.  The expression of 

AN2999.2 was upregulated during 6 h (2.0-fold), 9 h (3.8-fold), and 12 h (4.0-fold) of 

growth under glucose-starved condition and during 3 h (7.8-fold), 9 h (2.1-fold), and 12 h 

(2.9-fold) of fungal growth in pectin.  Isocitrate dehydrogenase catalyzes the oxidative 

decarboxylation of isocitrate to 2-oxoglutarate, which can lead to the synthesis of glutamate.  

This reaction is the rate-limiting step of the TCA cycle and is an important branchpoint 

between catabolic and anabolic processes (Szewczyk et al., 2001).  Transcripts for glutamate 

synthase and glutamine synthase were upregulated in the pectin-grown cultures but did not 

show any significant change in expression in the glucose-starved cultures.  Transcription of 

the gene encoding glutamate dehydrogenase did not show any significant change in 

expression under glucose-starved condition but was downregulated in pectin-grown 

condition.  The expression level of AN4869.2, which encodes a proteasome subunit involved 
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in protein catabolism, was upregulated in glucose-starved condition but repressed in pectin-

grown condition.  Expression of genes (AN0913.2, AN6731.2, AN4135.2, AN1176.2) (Table 

1) involved in lipid metabolism were downregulated in glucose starvation as compared to 

glucose-grown cultures.     

Electron transport chain and oxidative phosphorylation     

Alternative oxidase (AN2099.2) showed an interesting expression pattern in glucose 

starvation and in pectin grown condition.  In our studies, the transcription of alternative 

oxidase was upregulated in the initial stages of the fungal growth under glucose-starved 

condition but did not show any significant difference in expression in the later stages.  In the 

case of fungal growth on pectin, the alternative oxidase cDNA was upregulated at 3 h (3.3-

fold) but then downregulated at 9 h and 12 h (-3.8-fold and -5.5-fold, respectively) as 

compared to the glucose-grown condition.  Alternative oxidase is a second oxidase (in 

addition to cytochrome c oxidase) present in mitochondria of plants, fungi, protists, and 

yeasts (Lorin et al., 2001).  Alternative oxidase receives electrons from ubiquinone and 

catalyzes the direct reduction of oxygen to water, thereby circumventing Complex III and 

Complex IV and hence, two of the proton pumping steps.  In contrast to alternative oxidase, 

the transcript for cytochrome c reductase (Complex III) was upregulated at 9 h (2.1-fold) and 

12 h (3.0-fold) in pectin-grown cultures.  Also, the gene encoding a subunit of ATP synthase 

was upregulated at 9 h (2.0-fold) and 12 h (2.6-fold) in pectin-grown fungal cells.  ATP 

synthase utilizes ADP and Pi in the endergonic synthesis of ATP which is needed for cellular 

growth.  Additionally, a gene encoding ADP/ATP translocase was upregulated at 9 h (2.0-

fold) in pectin-grown fungal cells but downregulated at 3 h in glucose-starved fungal cells. 
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ADP/ATP translocase catalyzes the ADP/ATP exchange across the mitochondrial membrane.  

This is the terminal step of mitochondrial oxidative phosphorylation (Nelson et al., 1998).  

Cell wall biogenesis

A gene (AN7657.2) encoding a β (1-3) glucanosyltransferase was found to be 

upregulated at 9 h and 12 h in pectin-grown fungus (2.3-fold and 1.9-fold, respectively).  In 

previous studies on a homologous glucanosyltransferase from the opportunistic fungus A.

fumigatus, the enzyme was shown to play an active role in the biosynthesis of the fungal cell 

wall during growth (Mouyna et al., 2000).  It first cleaves a β (1-3) glucan molecule present 

in the cell wall and then transfers the newly generated reducing end to the non-reducing end 

of another molecule of β (1-3) glucan, thereby forming a new linkage and resulting in 

elongation of the β (1-3) glucan chain.  Also, the transcript (AN8484.2) for a cell wall 

galactomannoprotein was upregulated at 9 h and 12 h in pectin-grown cultures.  There have 

been reports regarding fungal cell wall structure indicating that mannoproteins are important 

components of the cell wall and galactomannoproteins have been isolated from the cell wall 

of A. fumigatus (Woo et al., 2002).

Another gene (AN8244.2) encoding a spindle pole body-associated protein (SNAD) 

was upregulated (2.0-fold and 2.1-fold) in pectin-grown cultures towards the later times (9 h 

and 12 h, respectively).  SNAD is likely to be involved in temporal regulation of septation in 

A. nidulans (Liu et al., 2000). 
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Transcription factors    

Some of the transcription factors showed interesting expression patterns in pectin-

grown as well as glucose-starved fungal cells.  xlnR (AN0388.2), encoding a transcriptional 

activator coordinating xylanolytic enzyme expression, was found to be upregulated at 9 h 

(2.0-fold) and 12 h (1.9-fold) in pectin but did not show any significant difference in 

expression at the early hours of the pectin-grown cultures or at any stage of growth under 

glucose-starved condition.  The observed expression pattern of xlnR could be due to trace 

amounts of D-xylose in the commercial citrus pectin used in our experiments (Zhan et al., 

1998). There have been reports indicating that only trace amounts of xylose are sufficient to 

induce xlnR in A. niger (van Peij et al., 1998).  Another transcriptional activator, cpcA

(AN3675.2), belonging to the family of c-Jun-like transcriptional activators, was upregulated 

in glucose starvation but did not significantly change its expression when the fungus was 

grown in pectin.  In A. nidulans it has been shown that CpcA acts as a central transcription 

factor in the “cross pathway control” network that regulates the synthesis of amino acids 

(Hoffman et al., 2001).  Such networks become activated under amino acid starvation.  creA 

(AN3179.2), encoding a DNA-binding regulatory protein, which plays a key role in carbon 

catabolite repression, was upregulated during growth of the fungus on pectin as well as under 

glucose-starved condition.  

In silico promoter analysis     

 The region 1 kb upstream of the predicted translational start site of the genes that 

were upregulated in pectin only and upregulated in glucose starvation only were analyzed for 

the occurence of the putative CreA binding site of a pair of [5’-(G/C) (C/T) GG (G/C) G-3’] 
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sequences, where the pairs are separated by a spacer nucleotide sequence (3).  The analysis 

was accomplished using the Motif-finder-auto program of the cDNA microarray and 

promoter analysis tool-kit (Shah et al., 2003).  A p-value was calculated by the Motif-finder-

auto program to obtain the statistical significance of the frequency of occurrence of the 

particular motif in the upregulated groups of genes when compared to the entire genome. The 

CreA binding motif was found in 16 genes out of 62 upregulated in pectin only at any time 

point but not in glucose starvation and had a p-value of 0.000978.  The CreA binding motif 

was found in the promoter region of 21 genes out of 82 upregulated in glucose starvation 

only with a p-value of 0.00702.   Considering that one-quarter of the genes in the above 

groups were likely influenced by CreA, it appears likely that some other regulatory 

mechanisms exist, apart from carbon catabolite repression, that play a regulatory role in the 

induction of genes under low glucose conditions.     

Discussion   

Our aim was to describe the transcriptional differences between fungal cultures 

grown on glucose and cultures grown on pectin by following the progression of changes 

occurring after shifting cultures from growth on glucose to growth on pectin compared to 

shifting from growth on glucose to growth on fresh glucose-containing medium.  Since it is 

known that carbon catabolite repression is relieved under low glucose conditions, and it was 

likely that the fungus would be effectively carbon starved after the transfer to pectin until 

pectin degrading enzymes and enzymes for metabolism of the resulting sugar units had been 

produced, we also compared the transcription of the fungus switched to a medium lacking a 

carbon source (i.e. glucose starvation) to that of fungus grown on glucose. The physiological 
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experiments indicate that there is about a 6 h lag before monomeric galacturonic acid 

accumulates in the medium of the pectin-grown fungus, so the fungus growing on pectin is 

essentially as carbon starved as the fungus with no carbon source (glucose starvation) to that 

point. 

The initial response (3 h) of the fungus to glucose starvation was an increase in 

transcription of a little over 60 genes, represented on our arrays of which at least 50% are 

upregulated during glucose starvation but not during growth in pectin.  Some of the 

identifiable glucose starvation-specific genes encode transcription factors, or proteins which 

interact with transcriptions factors, and probably initiate dramatic changes in the fungus 

required for its survival under glucose-starved condition.  The upregulated genes that are 

common to both glucose-starved and pectin-grown conditions are mostly associated with 

sugar uptake and carbohydrate metabolism.  Genes required for production of enzymes 

involved in gluconeogenesis along with an alternative oxidase are also upregulated.  

In the case of switching to growth on pectin, only 20 genes present on our arrays were 

upregulated after the initial 3 h, with only 6 being specific to growth on pectin.  Not 

surprisingly, the most highly upregulated gene coded for a pectinase.  Only a small 

proportion of genes upregulated rapidly in glucose starvation were also upregulated in pectin-

grown fungus, suggesting that the fungus does indeed recognize the pectin and responds by 

producing pectin-degrading enzymes rather than making dramatic changes needed to survive 

prolonged carbon deprivation.  

At 6 h the glucose-starved cultures continued to show enhanced expression of various 

transcription factors and enzymes for gluconeogenesis, but over half of the genes expressed 

at elevated levels at 3 h had returned to expression levels found in glucose-grown fungus at 6 
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h. The same situation held for pectin-grown fungus.  Unfortunately most of these genes have 

not yet been ascribed a function.

After 9 h galacturonic acid levels had risen to ~1 mg/ml in the culture medium and 

presumably all of the enzymes needed for utilization of galacturonic acid as a carbon source 

had been produced.  Over 20 genes specific to growth on pectin were upregulated along with 

another 20 upregulated by both pectin and glucose-starved conditions.  Almost an equal 

number of genes were expressed at significantly lower levels than found in glucose-grown 

fungus and most of these have not yet been ascribed a function.  Quite a few of the genes 

regulated similarly in glucose starvation and pectin-grown condition were strongly 

upregulated at 3 h and then downregulated at 9 h and 12 h.

At 12 h the gene expression levels in pectin-grown fungal cultures were about the 

same as at 9 h, indicating that the fungus had adapted satisfactorily to growth on pectin, 

whereas the starving cultures had increased the numbers of both upregulated and 

downregulated genes.

Previous studies have shown that unlike S. cerevisae (Wiame et al., 1985), A. 

nidulans can use amino acids as its sole carbon source (Hynes et al., 2002).  The significant 

upregulation of the gene encoding PEPCK under glucose-starved condition is consistent with 

that view since PEPCK plays a key role in gluconeogenesis using non-carbohydrate 

precursors (amino acids) for synthesis of glucose.  It would be futile from an energy point of 

view for any organism to carry out glycolysis and gluconeogenesis at the same time; hence, 

from our results, we infer that the fungus carries out gluconeogenesis to survive in the 

absence of glucose and in the initial stages of growth on pectin, which mimics the glucose-

starved condition.  Most of the transcripts encoding enzymes of the glycolytic pathway that 
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were on the arrays were not altered in expression in pectin-grown or glucose-starved 

condition except for transcript levels of glyceraldehyde-3-phosphate dehydrogenase and 

enolase, which were significantly upregulated in both the above conditions.  These two 

enzymes are shared between glycolysis and gluconeogenesis, and based on our observation, 

we infer that these two enzymes play an active role in gluconeogenesis under the conditions 

tested.  Another transcript (AN5843.2) upregulated in glucose starvation which is likely to 

play an active role in gluconeogenesis is pyruvate water dikinase.  The expression level of 

AN5843.2 (clone N11GD2) was significantly upregulated at all times tested in glucose-

starved condition and initially in pectin-grown cultures.  The predicted peptide sequence of 

AN5843.2 has putative domains for pyruvate binding, phosphoryl group transfer and 

phosphoenolpyruvate binding (http://www.broad.mit.edu/annotation/fungi/aspergillus/) often 

found associated with pyruvate dikinase activity (Pfam).  Pyruvate dikinases are involved in 

pyruvate metabolism and carbon fixation catalyzing the conversion of pyruvate to 

phosphoenolpyruvate.  Interestingly, homology searches of available fungal protein 

sequences (BLASTP of the NBCI nr database) and public fungal EST databases (TBLASTX 

of NCBI dbEST) revealed only one predicted homologous protein in the Gibberella zaea

genome and no homologous ESTs in G. zaea or in any fungal species other than A. nidulans.  

Homology searches of peptide sequence from the NCBI nr database (BLASTP, E-value ≤ 1e-

20) suggest this protein is more similar to the bacterial pyruvate water dikinases 

(phosphoenolpyruvate synthases) as opposed to the pyruvate phosphate dikinases of plants.  

The expression of this gene under the conditions of glucose starvation and in the early hours 

of growth on pectin as a carbon source suggests a role for it in gluconeogenesis.  In silico 

analysis of the promoter region beginning at 1 kb upstream of the genes encoding pyruvate 
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water dikinase and phosphoenolpyruvate carboxykinase revealed both creA and cpcA binding 

sites involved in carbon catabolite repression and regulation of amino acid synthesis 

respectively.

creA in the presence of glucose is also known to repress the alcA gene encoding 

alcohol dehydrogenase I in A. nidulans (Cubero et al., 1994, Flipphi et al., 2001).  There are 

three alcohol dehydrogenase genes in A. nidulans capable of utilizing ethanol as a substrate 

(Jones et al., 2001), of which only alcohol dehydrogenase III (alcC) gene was present on our 

array and this gene did not show any significant change in expression.  This result would be 

expected since alcC is preferentially transcribed under anaerobic conditions (Kelly et al., 

1990).  Microarray studies conducted in another filamentous fungus, A. oryzae showed that 

the alcohol dehydrogenase I (adhA) gene was upregulated in glucose-abundant condition and 

downregulated during glucose-starved condition and adhA from A. oryzae shows high

similarity to both alcC (E-value 10-151) and alcA (E value 10-150) of A. nidulans (Maeda et al., 

2004). 

 In the absence of glucose (glucose-starved or pectin-grown condition), most of the 

transcripts of the TCA cycle tested were upregulated relative to the glucose-grown condition, 

indicating TCA cycle genes are possibly derepressed to provide carbon intermediates for 

gluconeogenesis to generate glucose.  The transcript levels of genes involved in protein 

catabolism under glucose-starved condition and initially in pectin were significantly 

upregulated as compared to glucose-grown cultures.  Amino acids can enter into the TCA 

cycle at several branchpoints, ultimately providing intermediates for gluconeogenesis.  The 

gene encoding the transcriptional activator cpcA, was upregulated under glucose-starved 

condition and its expression was most likely upregulated due to amino acid starvation.  At the 
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later times transcript levels of glutamate synthase and glutamine synthase increased in pectin-

grown cultures but not in glucose-starved cultures.  This indicates a shift towards synthesis of 

amino acids in pectin-grown cultures, which correlates with a decrease in transcription of 

gluconeogenic genes.    

A transcript for alternative oxidase was upregulated initially in glucose-starvation and 

pectin-grown conditions but became downregulated towards the later times in pectin-grown 

cultures.  It has been hypothesized that the alternative oxidase prevents a buildup of high 

levels of reductant that would otherwise lead to the production of damaging amounts of 

reactive oxygen species.  Alternative oxidases are believed to act as alternative terminal 

oxidases bypassing two proton-translocating sites associated with ATP production thus 

allowing turnover of the citric acid cycle intermediates (Vanlerberghe et al., 1997).  In later 

stages of A. nidulans growth in pectin this alternative oxidase is repressed while cytochrome 

C reductase, ADP/ATP translocase and ATP synthase transcripts increased in abundance 

indicating a return to normal aerobic oxidative phosphorylation.  

Analysis of 1000 nucleotides upstream of this alternative oxidase gene (AN2099.2) 

reveals two interesting putative transcription factor binding sites 

(http://www.cbrc.jp/research/db/TFSEARCH.html) and provides additional evidence for the 

metabolic role of this gene product.  Beginning at position 968 from the putative translation 

start site is a Gcn4-like motif (score 97.4).  In yeast Gcn4 is a general activator of genes 

involved in protein and purine biosynthesis (Hope et al., 1985).  The Gcn4 homolog in A. 

nidulans is (CpcA) whose corresponding transcript is specifically upregulated under amino 

acid starvation conditions (Hoffman et al., 2001).  Beginning at position 667 from the 

putative translation start site, an Ap-1-like motif (score 98.3) was found.  In yeast, Ap-1 is a 
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transcriptional activator involved in response to oxidative stress, oxygen detoxification and 

metal resistance (Wu et al., 1993).  Combined, these observations are consistent with the 

suggested functions of fungal alternative oxidases and expression of this gene by A. nidulans

under the conditions tested.  In the initial stages of growth (at 3 h) on pectin, the alternative 

oxidase gene and other genes may have been upregulated following transfer to fresh media as 

cells experienced general amino acid starvation conditions during acclimatization to pectin as 

a carbon source or the lack of a carbon source.  One would expect the consequence of such 

induction to result in decreased ATP synthesis, yet allowing citric acid cycle turnover.  

However, this alternative oxidase was later repressed following acclimatization to pectin 

condition (but not occurring in glucose-starved condition) possibly to permit increased ATP 

synthesis and overall culture growth.

In conclusion, microarray expression data presented here provide useful fundamental 

results about the response of A. nidulans on a transcriptional level to a complex carbohydrate 

like pectin and under glucose-starved conditions at different times of growth.  These results 

provide evidence of the manner in which A. nidulans modulates the expression of genes 

involved in carbon utilization and central metabolism. 
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Figure 5. Growth curves of the fungus after the transfer from growth in glucose 

containing medium for 18 h to medium containing glucose, pectin, or no carbon source.  

The inset shows the degradation of pectin and disappearance of glucose from the medium 

during fungal growth.  Fungal cultures incubated on pectin, glucose and no carbon source 

were collected at 2 h intervals and the dry weight of the mycelia was determined.  The pectin 

remaining in the medium in which the fungus was growing was estimated by passing an 
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aliquot through a gel filtration column.  The area of the void volume peak, representing 

relatively undegraded pectin, was integrated and compared to the peak obtained at 0 h 

(control).  The concentration of the glucose in the glucose-grown medium was determined by 

labeling an aliquot of the medium with aminonapthalene tri-sulphonic acid (ANTS) and 

subjecting it to capillary electrophoresis.  The black arrows at 3 h, 6 h, 9 h, and 12 h show the 

time points at which the mycelia were collected to perform the microarray experiments.  The 

data are averages of three independent experiments.
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Figure 6.  Distribution of pectin-regulated or starvation-regulated genes

DNA microarrays containing A. nidulans cDNA PCR products (1,184 unique genes) were 

used to assay gene expression in A. nidulans FGSC C26 following incubation in liquid media 

(A) devoid of a carbon source (glucose starved condition) or (B) containing 1% pectin.  The 

bars reflect the number of genes that were induced or repressed at each time point tested.  

The gray segments reflect the number of genes that were specifically induced (upward) or 

repressed (downward) in either glucose starvation (panel A) or pectin (panel B) (i.e., 
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condition specific regulation).  The white segments reflect the number of genes, affected in at 

least one of the time points with the fungus growing on pectin and one of the time points with 

the fungus subjected to glucose starvation, that were induced (upward) or repressed 

(downward) at each time point (i.e., shared response). 
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Figure 7. Hierarchical clustering of differentially expressed genes

The expression pattern of 312 genes is divided into three different panels depending on the 

observed responses.  Panel A contains a total of 109 genes with a glucose starvation specific 

response, Panel B contains 89 genes with a pectin specific response, and Panel C contains 

114 genes which showed a shared response.  For each panel, the four time points of the 

glucose starvation growth condition are on the left while the four time points of the pectin 

growth condition are on the right.  The expression patterns of select genes from each 

category is shown on the right-hand side of the diagram.  Red indicates genes with increased 

transcript abundance and green indicates genes with decreased transcript abundance.  
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Log2 Ratios
Glucose Starvation Pectin

EST IDa An ORFb Annotation 3h 6h 9h 12h 3h 6h 9h 12h

Disaccharide/Polysaccharide metabolism, Sugar transport
PCRP9C7 AN8891.2 Exopolygalacturonase -0.230 -0.711 -0.258 -0.465 3.423 1.600 2.106 1.978
N13F9 AN2466.2 Glucose transporter 2.718 2.092 1.823 2.083 0.741 0.754 1.970 1.266
N7F12 AN6804.2 Related to myo-inositol transport protein 1.338 0.115 0.567 2.083 0.472 0.328 1.161 1.268
Set1P5D6 AN6669.2 MSTA protein 1.882 -0.041 0.005 -0.239 0.691 1.545 2.015 2.269
N13F9 AN2466.2 Glucose transporter 2.718 2.092 1.823 2.083 0.741 0.754 1.970 1.266
N12B2 AN2794.2 Hexose transporter 1.222 0.695 0.032 -0.088 -0.161 0.501 2.085 0.552
pncs919aG05 AN4148.2 Sugar transporter 0.453 -0.160 -0.922 -1.210 -1.213 0.531 0.942 -0.654
N11GF5 AN8400.2 Glucose transporter; TrHXT1 -0.398 0.899 0.236 -0.732 -0.769 1.091 1.359 1.269
pncs915aA3 AN2585.2 Monosaccharide transporter 0.451 0.312 -0.183 -0.390 0.560 0.162 -1.353 -1.415
MA96P1H12 AN3390.2 Pectinmethylesterase 0.509 0.355 0.208 1.038 0.706 0.211 0.553 0.227
Set1P3F8 AN6035.2 RTS beta -0.018 0.174 -0.124 -0.378 2.301 0.769 1.935 2.092

Glycolysis/Gluconeogenesis/Pyruvate Metabolism

N15GG7 AN8041.2 Glyceraldehyde 3-phosphate dehydrogenase -0.283 0.133 1.633 1.221 0.009 0.473 1.310 1.124
N6C1 AN5746.2 Enolase -0.410 0.993 1.306 1.195 -0.128 0.129 1.190 1.929
N5F5 AN1918.2 Phosphoenolpyruvate carboxykinase 2.237 2.316 2.485 1.856 1.176 0.421 0.466 0.807
N11GD2 AN5843.2 Pyruvate Dikinase 1.119 2.268 1.757 1.787 0.721 1.220 0.955 0.880
Set1P5E3 AN5626.2 Acetyl-coenzyme A synthetase 0.126 0.896 0.053 0.785 0.363 0.461 1.177 2.127
N6C5 AN2875.2 Fructose biphosphate aldolase -0.187 0.456 0.957 1.477 0.247 -0.181 0.391 0.944
N8D1 AN1246.2 Phosphoglycerate kinase -1.187 0.485 0.930 0.768 -0.118 0.324 0.938 0.584
N7A11 AN8689.2 Glucokinase 1.113 0.220 0.100 1.011 0.146 0.209 -0.676 -0.416

TCA/Glyoxylate
102H3 AN2999.2  Isocitrate dehydrogenase 0.511 1.061 1.939 2.004 2.977 0.400 1.109 1.550
N12G5 AN2295.2 Succinyl-coa ligase 0.254 0.332 1.205 0.960 0.722 0.643 1.406 1.478
N12A4 AN2436.2 ATP-citrate synthase subunit 1 -1.021 -0.572 -0.078 0.187 -1.461 0.070 0.227 -0.315
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N6H6 AN5634.2  Isocitrate Lyase 0.451 0.423 0.015 -0.660 -0.174 0.192 -0.471 -0.248
Set1P3D2 AN6521.2 Homoaconitase 1.023 0.147 0.008 -0.444 0.232 0.489 -0.244 -0.009
pncs919aF10 AN5571.2 Oxoglutarate dehydrogenase precursor 0.768 0.018 0.374 0.606 1.344 0.286 0.023 -0.043
N7E8 AN2916.2 Succinate dehydrogenase 0.310 -0.004 0.238 0.479 -0.030 0.039 0.088 0.016
N12G5 AN2295.2 Succinyl-coa ligase 0.254 0.332 1.205 0.960 0.722 0.643 1.406 1.478

Oxidative Phosphorylation
pncs918aE07 AN9315.2 Apoptosis-inducing factor 1.299 -0.534 -0.345 -0.333 0.940 -0.312 -1.113 -0.148
101C11 AN2099.2 Mitochondrial alternative oxidase 1.764 0.142 -0.242 -0.097 1.044 -0.372 -1.933 -2.483
N13C6 AN4064.2 ADP-ATP translocase -1.115 -0.146 -0.560 -0.448 -0.638 -0.375 1.068 0.331
N6A5 AN1523.2 ATP Synthase Alpha Chain -1.388 -0.239 -0.174 -0.135 -0.302 -0.049 1.061 1.410
N5B9 AN2332.2 Succinate dehydrogenase -0.024 0.405 -0.249 0.001 0.172 0.062 0.808 1.006
Set1P5E8 AN2306.2 Ubiquinol-cytochrome c reductase -0.321 -0.294 -0.027 -0.311 -0.268 0.468 1.118 1.612
pncs920aB06 AN0357.2 Cytochrome c1, heme protein -0.935 -0.632 -0.121 0.065 -0.546 -0.311 1.043 0.636

Lipid Metabolism
pncs910aB11 AN6279.2 Carnitine acetyl transferase 1.787 -0.085 -0.399 0.804 1.397 -0.018 -1.677 -0.636
pncs917aD06 AN1037.2 Oleate delta-12 desaturase -1.417 -1.360 -0.545 -1.130 -1.405 -0.304 0.659 0.330

Set1P5B11 AN0913.2
Cdp-diacylglycerol--inositol 3-
phosphatidyltransferase -1.978 -3.118 -1.097 -1.994 1.738 -0.411 -2.066 -0.792

N8E10 AN3662.2 Phytoceramidase, alkaline 0.500 1.621 1.244 0.606 0.360 0.421 0.341 -0.089
N5C5 AN6731.2 Stearic acid desaturase -1.651 -1.699 -0.894 -1.326 -0.820 -0.641 -0.051 -0.226
N12A3 AN4135.2 Stearoyl-CoA desaturase -1.925 -2.086 -0.825 -2.201 -0.837 -0.892 0.030 -0.206
N14GE4 AN8907.2 C-4 methyl sterol oxidase -3.028 -3.619 -1.034 -2.151 -1.098 -1.755 0.582 0.224
N15GG10 AN4991.2 Aureobasidin-resistance protein -0.687 0.308 -0.945 -2.060 -0.290 0.302 -0.581 -0.491
pncs919aB02 AN1176.2 Involved in sphingolipid biosynthesis -1.065 -0.329 -0.242 -0.325 0.246 0.004 0.596 0.405
Set1P5H1 AN0054.2 Adenylate-forming enzyme -0.630 -0.714 -0.288 -0.893 -0.891 -0.303 1.026 0.197

N7C1 AN2154.2 Phosphatidylethanolamine methyltransferase 0.321 0.470 0.450 0.663 0.209 0.297 0.585 0.542
pncs910aE06 AN3376.2 Squalene synthase 0.004 0.224 0.395 0.512 -0.219 0.096 0.688 0.508
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Protein and Amino Acid Metabolism, Protein turnover
pncs916aF04 AN4376.2 Glutamate Dehydrogenase -0.966 -2.074 -0.528 -0.725 -1.270 0.238 0.174 0.142
N11GC4 AN5134.2 Glutamate synthase 0.416 0.544 0.047 -0.083 0.545 0.868 1.261 1.565
N14GA7 AN4218.2 Elongation factor 1-alpha -0.833 0.206 0.289 0.059 -0.914 -0.057 2.002 1.238
Set1P5F9 AN4159.2 Glutamine synthetase -0.711 -0.055 0.274 -0.243 -0.655 0.103 1.070 0.433
N8G10 AN0856.2 Choline transport protein -0.737 -0.665 0.227 -0.098 -0.082 -0.219 1.167 0.519
Set1P3B11 AN5783.2 20s proteasome component (beta 7 ) -0.485 -0.077 0.028 0.237 -0.854 0.081 0.955 1.468
pncs918aF04 AN5055.2 Methionine aminopeptidase -0.202 0.356 -0.050 0.551 -0.832 0.233 0.403 1.395
pncs917aD03 AN5444.2 Bifunctional tryptophan synthase TRPB -0.051 -0.681 0.183 0.185 -0.713 -1.380 -0.618 -0.067
N5F11 AN0314.2 Aspartyl-tRNA synthetase 0.064 0.081 -0.258 -0.418 -0.565 -0.064 -1.052 -0.740
Set1P5H10 AN4869.2 Proteasome subunit 1.788 -0.227 0.969 1.255 1.565 0.146 -1.290 -1.155
N8D6 AN4794.2 40s ribosomal protein 0.490 0.301 0.853 1.497 0.108 0.001 0.329 0.364
N12H5 AN3359.2 Amino-acid permease 0.367 0.150 0.595 1.243 0.825 0.500 0.552 0.799
pncs910aC10 AN4925.2 NAAG-peptidase II -0.297 0.009 0.661 1.054 -0.182 -0.149 0.597 0.242
N5H9 AN8881.2 Mitochondrial carrier AMCA -1.287 -0.234 -0.365 -1.347 0.090 -0.018 0.406 -0.130

Regulation of Transcription

Set1P3C9 AN0083.2
Related to transcription initiation factor IIF 
30K chain 1.131 0.528 -0.069 -0.239 0.462 -0.026 -0.560 -1.572

pncs918aB12 AN3179.2 Epa5p 1.310 -0.110 0.530 1.516 0.716 0.295 -1.723 -1.376

N11GG8 AN6195.2
DNA-binding protein creA (Carbon catabolite 
repressor) 1.343 0.712 1.093 1.301 0.518 0.625 0.466 1.143

pncs917aA02 AN3650.2 Binuclear zinc transcription factor -0.817 0.385 0.454 1.104 -0.055 0.090 1.574 1.119
pncs916aB03 AN0388.2 Transcriptional activator xlnR -0.129 -0.052 0.117 -0.119 -0.349 0.088 1.045 0.929
N11GA4 AN3675.2 CPCA 1.188 0.895 0.176 1.063 0.364 0.872 0.633
pncs907aA02 AN3436.2 GATA-factor 1.739 0.456 0.357 1.047 0.287 0.283 0.323 0.614

Cytoskeleton, cytokinesis, cell cycle and signal transduction
N8C2 AN6523.2 Cytokinesis protein sepA -0.010 -0.137 -0.072 -0.416 1.793 0.520 -0.846 -0.223
N12B11 AN8244.2 SNAD -0.729 0.255 0.300 0.288 0.371 0.742 1.046 1.111
N12B12 AN8838.2 Tpr1 protein -0.442 -0.053 -0.158 -0.260 0.106 0.367 1.088 0.597
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Cell wall biogenesis
pncs907aF12 AN5586.2 Mannose-1-phosphate guanylyltransferase -1.571 -0.845 -0.427 -1.008 -0.811 -0.431 0.347 0.187
N6G7 AN8484.2 Cell wall galactomannoprotein 1.534 0.701 0.281 1.064 0.886 0.759 3.424 2.536
N11GB1 AN4390.2 Cell wall biogenesis protein 0.457 1.833 1.555 1.858 0.274 0.802 0.477 0.519
N15GA1 AN7950.2 Glucosidase -0.856 -0.519 -0.807 -0.623 -0.362 0.024 -0.501 -0.839
N7G2 AN7657.2 GEL1 protein -0.962 0.137 -0.194 0.165 -0.339 0.000 1.239 0.936

Table 1. Genes grouped into different metabolic pathways and other functional categories
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CHAPTER 4

DISCUSSION AND SIGNIFICANCE

The work described here helped us to isolate genes induced during growth in complex 

carbohydrates in the filamentous fungus, Aspergillus nidulans.  The NSH technique helped 

us to obtain some of the genes and the microarray experiments helped us to characterize 

them.  One of the problems faced by the A. nidulans community, inspite of the genome being 

completely sequenced, is the unavailability of a complete genome chip.  Hence 

transcriptional profiling of A. nidulans using microarray experiments is not possible with the 

complete gene set.  

We hoped to find many of the genes encoding cell wall degrading enzymes using the 

NSH method.  However, we only found a rather small number of genes encoding cell wall 

degrading enzymes along with a large class of genes related to metabolism and genes with no 

known function.  The cDNA library that we screened was constructed from fungal mycelia 

grown at pH 6.5 and many of the genes (xylanolytic and pectinolytic) encoding cell wall 

degrading enzymes are regulated by pH.  Thus, it is likely that the growth conditions which 

we used would not have been conducive for the induction of all of the genes encoding cell 

wall degrading enzymes.  The main factor involved in pH-dependent regulation in 

Aspergillus is the pH regulatory protein, PacC (de Vries et al., 2001).  PacC activates 

alkaline-expressed genes at alkaline pH and represses genes activated at acidic pH.  Under 

alkaline conditions, the C-terminal region of PacC undergoes proteolytic modification, which 
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helps it to bind to target regions (GCCARG with R being A or G) in the promoter regions of 

target genes (de Vries et al., 2001).  

The results obtained from transcriptional profiling showed a shift in metabolism 

caused by the switch from glucose as carbon source to less readily metabolized 

polysaccharides.  The effect of CreA binding on the promoter region of genes was 

investigated by analyzing the promoter region of genes upregulated in pectin only but not in 

glucose starvation and that group of genes upregulated in glucose starvation only but not in 

pectin.  Our microarray studies indicate that mere derepression (i.e. removal of repressing 

carbon source) will not result in upregulation of all the genes.  Similarly mere induction in 

the presence of an inducer will not result in upregulation of all the genes.  Besides CreA, 

there could also be other regulatory factors and pathways playing a likely role in the 

upregulation of genes.  Further studies with a creA mutant is essential to have a detailed idea 

about the gene expression mediated by carbon catabolite repression in A. nidulans.   

In the past a wide variety of microorganisms has been screened for production of 

commercially useful polysaccharide degrading enzymes.  The recent release of the complete 

genomic sequence of several fungi reveals that the redundancy of these enzymes is greater 

than was previously thought (http://afmb.cnrs-mrs.fr/CAZY/).  Determination of the mode of 

action of each enzyme and a thorough analysis of the expression pattern of the various 

enzymes under a range of conditions in one convenient organism like A. nidulans should 

shed light on the biological rational of saprophytic growth on biomass.     
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