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CHAPTER- I 

 

INTRODUCTION 

Insects are the most abundant form of animal life on the planet. One of the most 

important characteristics of insects is their ability to fly. The fossil record indicates 

that flying insects evolved at least 300 million years ago (Dalton 1977, Wootton 

1986). Humans often consider insects as pests and as disease spreading bugs. 

In fact, life as we know today would not be possible without insects. They play 

very important role in plant pollination and play a critical role in removing dead 

material from the biosphere-without insects we would soon be buried in debris. 

Flight is a form of locomotion that is dependent on a high rate of energy 

metabolism. The metabolic rate of flying insects can be 20-100 times that of 

resting animals and are among the highest known in nature (Beenakkers et al., 

1984; Kammer and Heinrich, 1978). This massive metabolic rate of flying insects 

provides an attractive model system to study regulation of metabolism during 

physiological exercise. Insects and vertebrates share many common metabolic 

pathways, thus are useful models that can assist our general understanding of 

biology.
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Flight fuels 

Insects have been classified broadly in different categories according to their 

usage of substrates as fuel for flight. Insects use carbohydrate, lipids, amino 

acids or a combination of two or more of these as flight fuel. Each fuel has 

advantages and disadvantages and insects have adopted particular substrates or 

combinations of substrates for optimum fuel selection in order to suit particular 

physiological requirements. 

Carbohydrates are a sole source of energy for most of the short distance 

flying insects including Diptera, Hymenoptera and some Lepidoptera. 

Carbohydrate is stored in the form of glycogen in flight muscles, fat body and gut, 

but the major carbohydrate pool in many insects is hemolymph trehalose (Rankin 

and Burchsted, 1992). Use of carbohydrates for flight is advantageous in some 

contexts because it is highly soluble in aqueous medium and easily available for 

immediate metabolism. The primary disadvantage of carbohydrates as a flight 

fuel source is their bulky nature i.e hydration of stored glycogen makes it 

approximately eight times heavier than isocaloric amounts of fat (Weis-Fogy, 

1952). 

The amino acid proline is used as a primary flight fuel in some insects. The 

dipteran tsetse fly, Glossina morsitans and Colorado potato beetle, Leptinotarsa 

decemlineata use partial oxidation of the amino acid, proline, as fuel for flight 

(Weeda, 1980; Bursell, 1981, Gade and Auerswald, 2002). Alanine and 

triglycerides (TG) are the major renewable source of proline synthesis from fat 

body (Weeda et al., 1979). The physiological advantage of using proline rather 
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than diacylglycerols is that proline is water-soluble and avoids the metabolic 

expense of lipoprotein carrier mechanisms (Wheeler 1989). However, the stored 

fuel utilized for long distance flight is stored lipids. 

Most of the long-distance flying insects, including Manduca sexta and 

locust, mobilize both carbohydrates and lipid reserves as fuels for flight. The 

initial short period of flight is powered mainly by carbohydrate; the flight fuel then 

switches to lipids for sustained flight (Weis-Fogh, 1952; Beenakkers et al., 1984). 

The majority of lipid is stored in masses and sheets of adipose tissue, collectively 

called the fat body (Law and Wells, 1989). The lipids are stored primarily as 

triacylglycerols, which comprise >90% of total fat body lipids (Bailey, 1975). 

According to Brusell (1963) the yield of energy per unit mass of material oxidized 

is 0.18 mol ATP/g for glucose and 0.52 for proline as compared with values of 

0.65 mol ATP/g of fat. In addition to high energy value, for weight economic 

reasons (since lipids do not require water for their storage), lipid appears to be by 

far the more desirable substrate for insect flight energetics.  

Fundamental endocrine regulation of energy homeostasis is observed 

from lower invertebrates to higher organisms. For example, bomboyxin, insulin-

related peptide of insects, reduces hemolymph sugar concentrations in a dose-

dependent manner in the silkworm Bombyx mori (Satake, et al., 1997). In 

addition, genes encoding Drosophila insulin-like peptides (dilp) have also been 

identified (Brogiolo et al. 2001), and transgenic ablation of dilp-producing neurons 

results in the elevation of total blood sugar (Rulifson et al. 2002). The most 

studied insect hormone to play a central role in energy metabolism is a functional 
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homolog of mammalian glucagon, adipokinetic hormone (AKH). AKH was first 

discovered as a lipid mobilizing hormone in migratory locusts (Beenakers, 1969; 

Mayers and Candy, 1969). AKHs are a large family of 8-10 amino-acids peptides 

secreted into hemolymph by the neurosecretory cells of the corpora cardiaca 

(Orchard, 1987; Arrese et al., 1996). These peptide hormones form the largest 

neuropeptide family in arthropods, including >30 isoforms identified in >80 

species encompassing all major insect phyla and several crustacean species 

(Gade et al., 1997). Since its discovery, several studies have shown that AKH not 

only mobilizes lipids (Arrese et al., 1997; Gade et al., 1997), but also mobilizes 

stored carbohydrate (Gade et al., 1997; Van der horst et al. 2001) and causes 

hyperporlinaemia in the hemolymph of beetle species (Gade and Auerswald, 

2002). Injection of AKH in adult M. sexta stimulates mobilization of stored TG by 

activating TG-lipase (Ziegler et al., 1990; Arrese et al, 1996), whereas in the 

larval stages the same hormone induces the mobilization of glycogen by 

activating glycogen phosphorylase (Ziegler et al., 1990). Other studies have 

reported similar effect of AKH in cockroaches (Bedford 1977), locusts (Gade et 

al., 1997) and fruit fly, D. melanogaster (Lee and Park 2004). In some insects, 

AKH has also been shown to mobilize one energy reserve and not another. For 

example, in the horse fly (Tabanus atratus), injection of AKH causes hyperlipemia 

but not hypertrehalosemia (Jaffe et al. 1989) and in the blow fly (Phormia 

terraenovae), it causes hypertrehalosemia and not hyperlipemia (Gade et al.

1990).  
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Since lipid is a major fuel for flight for most of the long distance flying 

insects, it is very important to understand lipid metabolism for; 1) advance 

knowledge of insect physiology, 2) economical reasons, since insects are pest to 

many crops, consume agriculture products and transmit diseases, 3) in many 

ways, fat metabolism in insects is less complex than in vertebrates, so it could 

serve as a simple model system to advance fundamental aspects of fat 

metabolism. Most of the current information about lipid metabolism in insects 

comes from studies carried out in L. migratoria and M. sexta. To advance the 

understanding of lipid metabolism in insects, in this study, we are using M. sexta 

as a model organism.  

Manduca sexta life cycle:

The tobacco hornworm, M. sexta, is a moth with three different life stages, the 

larva, pupa, and adult (Figure 1). During the larval period, ~20 days, insect feeds 

constantly, and the content of fat body increases continuously until the end of 

larval development. During the larval stage, the content of TG in the fat body 

increases from a few µg to ~80 mg (Fernando-Warnakulasuriya et al., 1988). 

During subsequent development, the lipid reserves are used to sustain the life of 

the adult insect, which feeds occasionally (Fernando-Warnakulasuriya et al., 

1988; Ziegler, R., 1991; Arrese et al., 2001; Canavosa et al., 2001). Due to these 

metabolic features, M. sexta represents an excellent model for studying the basic 

mechanisms involved in the mobilization of TG in adult insects (moth). 
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Figure 1: Manduca sexta life cycle 
(Source: http://insected.arizona.edu/manduca/Mand_cycle.html) 

 

Overview of lipid mobilization in M. sexta during flight activity 

Triacylglycerol (TG) is stored in fat body adipocytes as cytosolic lipid droplets 

(Willott et al., 1988). The mobilization of stored TG is induced by two kinds of 

hormones: adipokinetic hormone (AKH) (Beenakkers, et al., 1985) and 

octapamine (Orchard et al., 1982; Fields and Woodring, 1991). Unlike 

vertebrates in which stored lipids are mobilized as free fatty acids (FFA), insects 

mobilize lipids in the form of diacylglycerol (DG) (Chino and Gilbert, 1964; 

Beenakkers et al., 1985; Arrese et al., 1997). During energy demanding 

processes like flight and reproduction, AKH is secreted into hemolymph and 

exerts its effects on lipid mobilization via signal transduction (Figure 2).  
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Figure 2. Schematic overview of lipid mobilization and transport in M. sexta during flight activity: 
Adipokinetic hormone (AKH) stimulates diacylglycerol (DAG) production and secretion from the 
fat body. DAG is produced by the action of a lipase acting on the stored triacylglycerol (TAG) and 
is transported to the plasma membrane via a DAG-binding protein (DAG-BP). Once in the 
membrane, the DAG leaves the cell and is added to high-density lipophorin (HDLp) with the 
assistance of lipid transfer particle (LTP) to produce LDLp. LDLp is stabilized by binding 
apolipophorin-III (apoLp-III). LDLp moves to the muscle cell where the DAG is hydrolyzed by a 
lipophorin lipase. After delipidation, apoLp-III dissociates and LDLp is converted back to HDLp. 
HDLp then cycles back to the fat body to pick additional DAG and apoLp-III. FA, Fatty acid; R, 
receptor. (Source: Canavosa et al., 2001) 
 

The sequence of events leading to the stimulation of lipolysis induced by AKH is 

still not clear (Gade and Auerswald, 2003). Binding of AKH to its receptor (Ziegler 

et al., 1995) causes a sustained increase in intracellular calcium influx and 

activation of adenylate cycalse, giving rise to two intracellular messengers, 

calcium and cAMP (Gade and Holwerda, 1976; Lum and Chino, 1990; Arrese et 

al., 1999; Van der Horst et al., 1999). AKH has also been shown to increase 

intracellular concentration of inositol (1, 4, 5)-triphosphate in two locusts, 

Schistocerca gregaria (Stagg and Candy, 1996) and L. migratoria (Van Marrewijk 

et al., 1996; Vroemen et al., 1998). Injection of AKH in adult M. sexta also 
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increases intracellular cAMP dependent protein kinase A (PKA) activity, which 

confirms intracellular increase and involvement of cAMP in lipid metabolism 

(Arrese et al., 1999). In addition to increase in PKA activity, in adult M. sexta,

AKH activates fat body TG-lipase and this activation precedes the appearance of 

DG in hemolymph (Arrese et al., 1996b). AKH also has been shown to activate 

fat body TG-lipase in locust Schistocerca gregaria (Ogoyi et al., 1998). Beyond 

activation of TG-lipase, other roles of these intracellular messages have not been 

characterized. Once DG is synthesized, it is exported out of the fat body cell by 

an unknown mechanism, and loaded into high density lipophorin (HDLp), which 

requires lipid transfer particle (LTP) (Van Heusden and Law, 1989). This causes 

transformation of HDLp into low density lipophorin (LDLp), which transports DG 

to the sites of utilization, e.g. the flight muscle, and ovaries, where it is 

hydrolyzed to free fatty acids by a lipoprotein-lipase (Soulages and Wells, 1994).  

 Because the PKA activation by AKH precedes the activation of the TG-

lipase, which in turn precedes the appearance of DG in circulation, the 

stimulation of lipolysis is presumably regulated by phosphorylation reactions. 

Given the role of PKA in AKH-induced activation of the lipolysis, in this study, we 

are investigating the role of PKA and the role of proteins targeted by PKA in the 

activation of lipolysis in the insect fat body using in vivo and in vitro experiments.  
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CHAPTER-II 

cAMP-DEPENDENT PROTEIN KINASE OF MANDUCA SEXTA 

PHOSPHORYLATES BUT DOES NOT ACTIVATE THE FAT BODY 

TRIGLYCERIDE LIPASE 

INTRODUCTION 

Fatty acids are the primary substrate used by insects to fuel long-term flight. 

Fatty acids are stored as triacylglycerol (TG) and the vast majority of TG stores 

are in the fat body (Bailey, 1975; Canavoso et al., 2001) in the form of lipid 

droplets (Willott et al., 1988). In the tobacco hornworm, Manduca sexta, the 

maximum content of fat body TG occurs at the end of larval development, as a 

consequence of the accumulation of reserves during larval feeding (Fernando-

Warnakulasuriya et al., 1988). Afterwards, during the subsequent non-feeding 

pupal and adult periods, the TG stores decline (Ziegler, 1991). 

Utilization of the fatty acids stored in the fat body requires hydrolysis of TG 

in a reaction catalyzed by a TG-lipase. Unlike vertebrates, in which stored fatty 

acids are mobilized as free fatty acids (FFA), a great number of insects mobilize 

fatty acids as diacylglycerol (DG) (Beenakkers et al., 1985). Lipolysis is regulated 

by adipokinetic hormone (AKH) (Orchard, 1987; Van der Horst, 2003). The 

sequence of events leading to the stimulation of lipolysis induced by AKH still is 

not well understood (Gäde and Auerswald, 2003). The AKH receptors from the 

fruit fly Drosophila melanogaster and the silkworm Bombyx mori have been 
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recently identified (Hauser et al., 1997; Staubli et al., 2002). These receptors are 

related to the mammalian gonadotropin releasing hormone receptors (GnRHR), 

which is a G protein-coupled receptor that activates both inositol phosphate and 

cAMP signaling responses. This includes the activation of phospholipase C, 

adenylyl cyclase, and ion channels that regulate the intracellular levels of inositol 

phosphate, calcium, cAMP, and other second messengers (Arora et al., 1998). 

The present data supports a model in which binding of AKH to its receptor leads 

to a Gs-coupled activation of adenylyl cyclase. Besides the involvement of cAMP, 

the lipolytic response of AKH in M. sexta also induces a sustained increase in 

calcium influx but the processes mediated by Ca+2 remain unknown (Arrese et 

al., 1999). The influx of extracellular Ca+2 is also essential for lipid release from 

fat body of locust, Locusta migratory (Lum and Chino, 1990; Wang et al., 1990).  

Fat body TG-lipase catalyzes the hydrolysis of TG and it is expected to 

play a central role in the regulation of lipolysis in M. sexta (Arrese et al., 1996a; 

Arrese et al., 1997). The TG-lipase that has been purified from the fat body of 

adult M. sexta (Arrese and Wells, 1994) is the only purified lipase from insects. 

The enzyme is a single polypeptide of 76 kDa that has several properties in 

common with the vertebrate hormone-sensitive lipase (HSL), which catalyzes the 

rate-limiting step in mobilization of adipose tissue fatty acids (Kraemer and Shen, 

2002). In adult M. sexta, AKH activates the fat body TG-lipase and this activation 

precedes the appearance of DG in the hemolymph (Arrese et al., 1996b). 

Likewise, AKH rapidly activates cAMP-dependent protein kinase from the fat 

body of M. sexta (Arrese et al., 1999). Because the kinase activation precedes 
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the activation of the lipase, which in turn precedes the appearance of DG in 

circulation, the stimulation of lipolysis induced by AKH is presumably regulated 

by phosphorylation reactions. In this context, cAMP-dependent protein kinase 

emerges as a central player of the transduction of the stimulus that controls the 

mobilization of stored lipids in the fat body.  

AKH stimulation of the lipolysis promotes a rapid two-fold increase in the 

content of hemolymph lipids. DG comprises 95% of the total hemolymph lipids 

(Arrese and Wells, 1997) in adult M. sexta. Concomitant to the increase in 

hemolymph lipids, stimulation of lipolysis promotes an increase in the DG content 

of lipid droplets and the cytosolic fraction (Arrese et al., 2001).  

Given the apparent role of cAMP in AKH-induced activation of the 

lipolysis, we are investigating the role of PKA and the reversible phosphorylation 

of the TG-lipase on the lipolytic activity of the insect fat body. In order to 

investigate this issue, the catalytic subunit of the cAMP-dependent kinase was 

purified from the fat body of adult M. sexta insects. The properties of PKA and its 

role on the direct activation of purified lipase are described here. 

 

EXPERIMENTAL PROCEDURES 

Insects: M. sexta eggs were purchased from Carolina Biological Supplies (NC), 

and larvae were reared on artificial diet (Bell and Joachim, 1976). Adults were 

kept at room temperature without food. Two- or three-day-old adults M. sexta 

were used as experimental insects.
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Materials: [γ-32P]ATP was purchased from ICN Biomedical (Irvine, CA). cAMP, 

leupeptin, aprotonin, Triton X-100, benzamidine, bovine PKA catalytic subunit, 

histone II AS, all peptide substrates and inhibitors were obtained from Sigma (St 

Louis, MO). DEAE-cellulose (DE-52) and P81 phosphocellulose filter paper were 

purchased from Whatman (Hillsboro, OR). Q-Sepharose was purchased from 

Amersham Pharmacia (Piscataway, NJ). Anti-human catalytic subunit of PKA 

antibody was obtained from Upstate Biotechnology (Lake Placid, NY). All other 

chemicals were of analytical grades.  

Measurement of A-kinase activity: A-kinase activity was measured as 

described previously (Arrese et al., 1999). The final assay volume of 0.1 ml 

contained 50 mM MOPS (3-(N-morpholino)propane-sulfonic acid), pH 7.0, 

10 mM magnesium acetate, 0.5 mM EDTA (ethylenediaminetetraacetic acid), 

600 µM histone II AS, 0.2 mM [γ-32P]ATP (1.5×106 cpm/nmole) and 10 µM cAMP 

when required. After incubation at room temperature for 15 min, the reaction was 

terminated by the addition of 5 µl of 6 N HCl. Seventy µl of the reaction mixture 

was spotted onto a disc of phosphocellulose filter paper (2.5 cm), and the filters 

were washed for 20 min in 50 mM NaCl four times (Roskoski, 1983). The 

radioactivity associated with the dried filters was counted by liquid scintillation 

counter using a Packard Tricarb 1900 TR. Under these conditions the kinase 

activity was linear up to the addition of 0.5 mg of total protein in the incubation 

mixture. Kinase activity was expressed in nanomol of phosphate transferred to 

histone per minute.  
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When synthetic peptide was used as phosphate acceptor for the purified kinase, 

the reaction mixture contained 50 µM peptide substrate, 50 mM MOPS, pH 7.0, 

0.5 mM magnesium acetate, 0.25 mM EDTA, and 0.2 mM [γ-32P]ATP 

(0.5×105 cpm/nmole).  

Purification of M. sexta PKA catalytic subunit: All steps were carried out on 

ice or at 4 °C. Fat body tissue from 100 insects was collected in homogenizing 

buffer (20 mM Tris, pH 7.4, 0.25 M sucrose, 1 mM EDTA, 0.1 mM benzamidine, 

10 mg/l leupeptine, 1 mg/l aprotonin and 0.1% (v/v) 2-mercaptoethanol). The 

tissue was homogenized at a ratio of 3 ml per fat body using a Potter-Elvehjem 

homogenizer with a Teflon pestle. The homogenate was subjected to 

ultracentrifugation at 100,000×g for 1 h and the soluble extract was collected. 

The soluble extract was loaded onto a DE-52 column (3×10 cm) equilibrated with 

buffer A (50 mM Tris-HCl, pH-7.4, 1 mM EDTA, 0.1% 2-mercaptoethanol). The 

column was washed with 5 volumes of buffer A and developed with a linear salt 

gradient from 0–400 mM NaCl in buffer A. Fractions of 8 ml were collected and 

those containing PKA activity (eluted between 110–200 mM NaCl) were pooled, 

dialyzed against buffer A containing 30 mM NaCl and subjected to a second DE-

52 column (2×5 cm) equilibrated with buffer A containing 30 mM NaCl. After 

extensive wash of the column with equilibration buffer, a solution of 1 mM cAMP 

in buffer A was passed through the column. Fractions containing kinase activity 

were pooled and the concentration of NaCl was increased to 50 mM and loaded 

onto a Q-sepharose anion exchanger column (2×1 cm) equilibrated with buffer A 

containing 50 mM NaCl. Under this condition the majority of kinase activity did 



14

not bind to the resin and was found in the flow trough. These fractions were 

collected, pooled and stored on ice until further use. For prolonged storage, the 

enzyme activity was preserved for several months at −20 °C in the presence of 

50% glycerol.  

Other methods: Protein concentrations were determined by the Bradford dye-

binding assay (Bradford, 1976) using bovine serum albumin as standard. SDS-

polyacrylamide gel electrophoresis (SDS-PAGE) was performed according to 

Laemmli (1970) and proteins were visualized by Coomassie Brilliant Blue R 

staining.  

For Western analysis, proteins were transferred to nitrocellulose 

membrane in a Hoeffer transfer unit (Amersham Pharmacia). Immunoblot 

analysis was performed using 1 µg/ml of anti-catalytic subunit of human PKA 

(rabbit polyclonal). The positive signal recognized by anti-PKAc was detected 

using HRP-conjugated anti-rabbit secondary antibody (1:5000). Immunoreactive 

protein was visualized by autoradiography using chemiluminescence 

(Chemilucent detection system from Chemicon, Temecula, CA).  

For the Peptide Mass Fingerprinting, purified PKA catalytic subunit was 

separated on 10% SDS-PAGE and the band that was visualized by Coomassie 

staining was excised, minced and destained using 100% acetonitrile, followed by 

four washes in 1 ml water. The gel pieces were incubated for 20 min in 500 µl of 

100 mM ammonium bicarbonate followed by 20 min incubation with 500 µl of 

50% acetonitrile in 50 mM ammonium bicarbonate. Gel pieces were dried under 
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vacuum, rehydrated and digested with 50 ng/µl trypsin (sequencing grade, 

Promega, Madison, WI) in 25 mM ammonium bicarbonate at 4 °C overnight. 

Peptides were extracted and analyzed by MALDI-TOF mass spectrometry at the 

Department of Biochemistry, Oklahoma State University. Mass characterizations 

were performed using α-cyano-4-hydroxycinnamic acid as matrix, using external 

standards as calibrants. MSDB database was used to identify the peptides 

shown in Figure 5.

Phosphorylation of TG-lipase by PKAc: Fat body TG-lipase was purified 

as described previously (Arrese and Wells, 1994). TG-lipase (7 µg) was 

incubated in a final volume of 0.1 ml containing 50 mM MOPS, 1 mM magnesium 

acetate, 0.5 mM EDTA, 1 mM dithiothretiol, purified PKAc (0.25 units) and 

0.2 mM [γ-32P]ATP (5×106 cpm/nmol). After 15 min incubation at room 

temperature, the reaction was stopped by addition of electrophoresis sample 

buffer and the sample was analyzed by SDS-PAGE. Dried gels were then 

exposed to X-ray film. Control incubations in which purified PKAc was omitted 

indicated the absence of PKA activity, or other kinase activators, in the 

preparation of TG-lipase. On the other hand, when purified PKAc was incubated 

with [γ-32P]ATP neither phosphorylation of PKAc (autophosphorylation) nor any 

other phosphorylation of endogenous substrates was observed. Unlabeled 

phosphorylated TG-lipase was made using the same conditions, except 

unlabeled ATP was used and the reaction was stopped by addition of 5 mM 

EDTA. Lipase activity of the phosphorylated and non-phosphorylated (control) 
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form of the enzyme was measured using micellar [3H]-triolein as described 

previously (Arrese and Wells, 1994).  

Dephosphorylation and rephosphorylation of TG-lipase: A similar 

experiment was conducted using dephosphorylated TG-lipase. For this purpose, 

purified enzyme (7 µg) was first incubated with ten units of Alkaline Phosphatase 

Type VIII from Sigma in a buffer containing 20 mM Tris pH 8.8 and 1 mM MgCl2

for 30 min at room temperature. Then Phosphatase Inhibitor Cocktail I from 

Sigma was added (1:100 dilution) and the samples were dialyzed against the 

PKAc reaction buffer (50 mM MOPS, 1 mM magnesium acetate, 0.5 mM EDTA, 

1 mM DTT). The lipase was phosphorylated as indicated above, analyzed by 

SDS-PAGE followed by autoradiography, and the effect of phosphorylation on 

lipase activity was determined.  

Statistics: Results are presented as the mean±SEM. Statistical comparisons 

were made by t test and p 0.05 was considered to be significant. 
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RESULTS AND DISCUSSION 

Purification of M. sexta PKA catalytic subunit 

The occurrence of PKA activity in adult M. sexta fat body was studied in 

tissue homogenate. The kinase activity of homogenates increased 450 ± 33 % in 

response to stimulation by cAMP suggesting a high PKA activity. Moreover, this 

increase was abolished by the specific inhibitor of PKA, PKI. Previous studies 

have shown PKA activity in Locusta migratoria fat body (Pines and Applebaum, 

1978) and several other insect tissues (Bodnaryk, 1983; Baghdassarian-Chalaye 

et al, 1988; Bishoff et al.,1990; Cho et al 1999). 

cAMP-dependent protein kinase (PKA) is composed of two catalytic 

subunits and two regulatory subunits. The holoenzyme is inactive. Upon cAMP 

binding, the enzyme activates by releasing the catalytic subunits (Taylor et al, 

2004). The large difference between the isoelectric points of the free catalytic 

(basic) and the regulatory subunit (acidic) has been used to facilitate the 

purification of the catalytic subunit from vertebrate tissues (Reimann and Beham, 

1983). Using differential binding capacity on anion exchanger resin we developed 

a procedure for the purification of the catalytic subunit of PKA from the insect fat 

body (Table 1).  Preliminary studies indicated that the vast majority of PKA is 

associated with the cytosolic fraction which is obtained as the soluble material 

after centrifugation (100,000xg) of fat body homogenate and removal of the fat 

cake. This material was subjected to DE-52 column chromatography. A linear 

concentration gradient of NaCl was used to elute the proteins from the column. 

Kinase activity inducible by cAMP was monitored in individual fractions by 
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measuring the activity in the presence and absence of cAMP. Up to 400% 

increase of kinase activity induced by cAMP was found in fractions 16 to 35 (110-

220 mM NaCl) indicating that PKA holoenzyme was eluting in this region as a 

single peak (Figure 3). These fractions were pooled, dialyzed and subjected to a 

second DE-52 chromatography.  After extensive wash, the catalytic subunit of 

PKA was dissociated and eluted from the column using 1mM cAMP. 

 

Figure 3. Elution profile of PKA from DE-52(I) column. The soluble extract after 100,000x g 
centrifugation of adult M.sexta fat body homogenate was loaded into the column. The column 
was developed with 0-400 mM linear sodium chloride gradient in buffer A. Aliquots from fractions 
were assayed for A-kinase activity in presence (•) and absence (∆) of 10 µM cAMP. 
Absorbance was monitored at 280 nm (--0--) of individual fractions. 
 

The kinase activity eluted as a very sharp peak but was not pure (Figure 

4, lane 2). To remove the contaminants a strong anion exchanger, Q-Sepharose, 

was used. This was based on the observation that proteins co-eluting with PKA 

in DE-52 chromatography bind to the Q-Sepharose resin equilibrated in buffer 

containing 50 mM NaCl, while catalytic subunit of PKA does not bind. The 

majority (75%) of kinase activity was found in the flow through having a specific 

activity of 266 nmoles / mg-min (Table 1).  
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Table 1.Purification of the catalytic subunit of PKA from M. sexta fat body 

 Total protein 
(mg) 

Specific activity  
(nmol/mg-min) 

Recovery 
(%) 

Purification 
(fold) 

Cytosolic 
fraction 1662 0.15a 100 1

DE-52 (I) 226 0.78a 71 5

DE-52 (II) 1.60 54 35 360 

Q-Sepharose 0.12 266 13 1773 

a The enzyme activity was assayed in the presence of 10 µM cAMP. 

 

Figure 4. SDS-PAGE and Western blot analysis of purified PKA. A) Proteins were resolved in 
10%-acrylamide gel and stained with Coomassie Brilliant Blue. Lanes: (1) soluble extract; (2) 
after DE-52 (II); (3) after Q-Sepharose.  B) Western blot analysis of final preparation using human 
anti-catalytic subunit 
 

SDS-PAGE analysis showed that this preparation contained a single 

protein band with an apparent molecular mass of 45.1 ± 0.2 kDa (Figure 4A,

lane 3).  Similar sizes have been reported for the catalytic subunits of PKA from 

Drosophila melanogaster (Foster et al., 1984; Haracksa and Udvardy, 1992), the 

gall insects Epiblema scudderiana and Eurosta solidaginis (Pfister and Storey, 
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2002), and other animals (Taylor et al., 1990; Mehrani and Storey, 1995; Brooks 

and Storey, 1996). Moreover, Western blot analysis of the final preparation using 

polyclonal antibodies against human catalytic subunit of PKA recognized this 

protein band (Figure 4B). 

 

Figure 5. MALDI-TOF analysis of purified kinase after cleavage by trypsin. Table shows the 
predicted sequence of the peptides that matched to several regions along the sequence of 
Drosophila melanogaster PKA, C31751.  
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The identity of the protein was confirmed further by trypsin fragmentation 

followed by MALDI-TOF analysis (Figure 5)

The search for matching peptides identified 14 peptides that coincided 

precisely to the Drosophila melanogaster catalytic subunit of cAMP-dependent 

protein kinase (C31751) (Figure 6). The correlation of the match was significant 

and the peptide matches covered 31% of the drosophila sequence. Further NCBI 

Blast search of individual peptides gave 97% identity to Anopheles gambiae and 

Apis mellifera and 88% to human catalytic subunit of PKA. This similarity is in 

good agreement with the conclusion of other authors that the catalytic subunit of 

PKA is highly conserved from lower to higher eukaryotes (Foster et al., 1984; 

Taylor et al., 1990; Denis et al., 1991; Haq et al., 2000; Pfister and Storey, 2002). 

Figure 6. Aminoacid sequence of cAMP-dependent catalytic chain of Drosophila melanogaster 
(C31751). The matched peptides from M. sexta are shown underlined.  

 

Characterization of M. sexta PKA catalytic subunit 

The ability of purified enzyme to phosphorylate Kemptide was 

investigated. This is a synthetic heptapeptide corresponding to a part of the 

phosphorylation site of porcine liver pyruvate kinase that is an excellent substrate 

for PKA (Kemp et al., 1977; Foster et al., 1984; Denis et al., 1991; Haq et al., 

2000; Pfister and Storey, 2002). The enzyme showed a high affinity for Kemptide 
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(Figure 7).The apparent Km value obtained with this peptide was 31 µM and Km 

value for Mg-ATP was 39 µM. These values are within the range reported for the  

enzyme from other sources (Denis et al., 1991; Mehrani and Storey, 1995) 

including the goldenrod gall insects (Pfister and Storey, 2002).  

 

Figure 7. Concentration curve for Kemptide of Fat body PKA catalytic subunit activity. PKAc 
activity was measured  in the presence of various concentrations of Kemptide, 0.2 mM ATP and 
0.5mM magnesium acetate. Assays were performed at pH 7. Km value is 31 ± 7 µM.

Maximal activity was observed at pH 7 and 0.5mM Mg+2. Higher 

concentrations of magnesium inhibited the purified enzyme (IC50 ≈ 5 mM) (Table 

2). A similar effect has been reported for kinases from different sources (Strålfors 

and Belfrage, 1982, Cao et al, 1995).  It was of particular interest to examine 

whether Mn+2 could substitute Mg+2 as divalent cation, since drosophila catalytic 

subunit preferred manganese to magnesium for enzyme activity (Haracska and 

Udvardy, 1992). No kinase activity was found in the absence of Mg+2. Mn+2 could 

not replace Mg+2 as divalent cation, but instead inhibited strongly the enzyme 

activity (Table 2).  We also examined the effect of Ca+2 on the kinase activity 

since in adult M. sexta AKH increases intracellular calcium concentration and the 

processes mediated by Ca+2 are unknown (Arrese et al., 1999). The effect of 
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Ca+2 was tested on the activity of purified enzyme as well as in fat body 

homogenates. In both cases Ca+2 caused a strong inhibition of fat body kinase.  

 

Table 2. Effect of divalent cations on the activity of purified PKA 

 Relative activity Relative activity

0.5 mM Mg+2 100 0.5 mM Mn+2 0

1 mM Mg+2 77.4±2.1 0.5 mM Mn+2+0.5 mM Mg+2 6.20±0.2 

5 mM Mg+2 39.1±0.2 0.5 mM Ca+2+0.5 mM Mg+2 2.50±0.1 

The PKA activity was assayed in the presence of 50 µM kemptide and 0.2 mM ATP. The values 
shown are the relative activities, compared with the value obtained for 0.50 mM Mg+2 (nominally 
100%). Values represent the mean±SEM (n=3). 

 

Histones serve as substrates for many serine/ threonine kinases and can 

be utilized as in vitro PKA substrate (Foster et al., 1984; Haq et al., 2000). We 

used histones as phosphate acceptor to monitor the purification. However, 

histones are a much poorer substrate for the insect kinase than Kemptide, and 

the Km value for histones was 0.73 ± 0.01 mM.  

 

PKA inhibitors 

The effect of different kinase inhibitors on the ability of the purified enzyme 

to phosphorylate Kemptide was investigated (Figure 8). The strongest inhibition 

was found with the synthetic peptide corresponding to residues 5-24 of 

mammalian inhibitor protein (PKI) that is a potent and specific inhibitor of PKA 

(Cheng et al., 1986). Approximately 90% of the enzyme activity was inhibited in 

the presence of 70 nM PKI 5-24 whereas complete inhibition was reached at 700 
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nM (Figure 8). The fact that a specific inhibitor of PKA produced complete 

inhibition of the kinase activity of purified PKA indicated that the presence of 

contamining kinases is highly unlikely. H-89 is also a very potent inhibitor of PKA 

(Ki 48nM) and we also found high inhibitory effect on the M.sexta enzyme being 

70% of the activity inhibited by 700 nM. This effect is in the same range 

previously reported for other PKA kinases (Chijiwa et al., 1990).  

 

Figure 8. Effect of inhibitors on the activity of catalytic subunit of M.sexta fat body PKA. The 
percentage of inhibition was calculated using the activity in the absence of inhibitor. Results 
represent the mean ± SEM  (n=3).   

 

Staurosporine aglycon, which is a very potent PKC inhibitor (Fabre et al., 

1993), partially inhibited PKA at 50 nM and no further inhibition was observed 

even at micromolar range (1.5µM). HA1077, a selective calcium/calmodulin 

protein kinase inhibitor (Takizawa et al., 1993) and genistein, a potent tyrosine 

kinase inhibitor (Akiyama et al., 1987) also showed a partial inhibitory effect only 

in micromolar range. Inhibitory effect of non-specific inhibitors at higher 

concentration is a common observation among kinases, as they are highly 
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conserved and recognize very similar substrate sequence (Taylor et al., 1990). 

We also examined the role of thiol groups in the enzyme activity by pre-

incubating the enzyme with different concentrations of ethylmaleimide, a 

sulfhydryl group blocker. The activity decreased at increasing concentration of 

ethylmaleimide and complete inhibition was obtained at 2 mM. This result 

confirms that the catalytic activity of M. sexta PKA requires sulfhydryl groups as 

previously shown for PKA from other sources (Taylor et al., 1990; Haq et al., 

2000). 

 

Substrate specificity 

In general kinases are classified into two groups, serine/threonine and 

tyrosine kinases. PKA catalyzes the transfer of the γ-phosphate from ATP to 

serine / threonine residues of substrate proteins (Taylor et al., 1990). We 

examined the amino acid specificity of the purified enzyme by comparing the 

ability of the enzyme phosphorylating different synthetic peptides containing 

serine, threonine or tyrosine as phosphate acceptor residue. These peptides 

have sequences that are specifically recognized by different types of kinases and 

also they are compatible with the simple assay in which binding to 

phosphocellulose is used to separate 32P-labeled peptide from 32P-ATP and 32Pi. 

The threonine-containing peptide is a protein kinase C substrate derived from 

epidermal grow factor receptor (Heasly and Johnson, 1989) whereas tyrosine-

containing peptide derived from pp60src protein of Rous sarcoma virus (Casnelli 

et al., 1982)  As shown in Table 3, M. sexta fat body PKA only recognized serine 
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residues as phosphate acceptor, neither threonine nor tyrosine containing 

peptides were phosphorylated. Like mammalian PKA, which recognizes a serine 

in the physiologically relevant protein substrates (Hjelmquist et al., 1974; 

Strålfors and Belfrage, 1983), the insect enzyme is also a serine kinase. We 

further examined substrate sequence specificity of the purified enzyme using 

synthetic peptides containing a serine residue flanked by different amino acids. 

The PKA recognition motif has been identified to be Arg-Arg-X-Ser- and this 

sequence is present in the Kemptide substrate. Two basic residues, usually 

arginine dyad, separated by a single residue from the phosphorylation site have 

been observed to be important for primary sequence recognition and substrate 

binding (Kemp et al., 1977; Feramisco et al., 1980; Denis et al., 1991). 

Replacement of either of these Arg, even by another basic residue is sufficient to 

increases Km. Replacement of Arg→Lys at –3 position increased Km by 90 fold, 

while Arg→Lys at –2 position increased Km by 16 fold of vertebrate kinase 

(Kemp et al., 1977). A basic residue at –6 position relative to phosphorylation site 

enhance mammalian enzyme activity, while it had negative effect on the yeast 

enzyme (Prorok and Lawrence, 1989; Denis et al., 1991). We tested two 

peptides containing single Ser. One of them has a Thr at -2 instead of Arg. This 

is Syntide 2 which is a specific substrate for calcium/calmodulin protein kinase 

(Hashimoto and Soderling, 1987) and proved to be a poorer substrate than 

Kemptide (Table 3). A similar observation was reported for the Microsporum 

gypsum PKA which phosphorylates Syntide 2 although at a lower rate than 

Kemptide (Haq et al, 2000).   
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Table 3. Substrate specificity of M. sexta fat body PKA 

Substrate Sequence % 

Kemptide Leu-Arg-Arg-Ala-Ser-Leu-Gly 100 

Thr-kinase Lys-Arg-Thr-Leu-Arg-Arg 0

Tyr-kinase Arg-Arg-Leu-Ile-Glu-Asp-Ala-Glu-Tyr-Ala-Ala-Arg-Gly 0

Syntide 2 Pro-Leu-Ala-Arg-Thr-Leu-Ser-Val-Ala-Gly Leu-Pro-Gly Lys-Lys 67.0±0.4 

PKC Arg-Phe-Ala-Arg-Lys-Gly-Ser-Leu-Arg-Gln-Lys-Asn-Val 159.5±6.9

All peptides were assayed under the same conditions at a final concentration of 50 µM. Results 
are expressed as relative activity (%) to the activity obtained using Kemptide (0.39±0.05 µmol/ 
min-mg) and represent the mean±SEM (n=3). Underlined amino acids are phosphate acceptor. 

 

The second peptide has a basic residue at -6 in addition to the basic 

residues at -3 and -2 positions. This peptide is a specific substrate for Protein 

kinase C (PKC) (House and Kemp, 1987). In this case a considerable higher 

kinase activity (159.5 ± 6.9 %) was obtained against this substrate compared to 

Kemptide. It seems that for the insect kinase the enhancement of activity 

provided by the basic residue at -6 position is more important than the 

replacement of Arg at -2. The activity of a vertebrate PKA – bovine PKA catalytic 

subunit from Sigma- was also compared to the insect PKA phosphorylating the 

PKC peptide.  Interestingly, we also found that the activity of the mammalian 

kinase was higher against the PKC peptide (143 ± 8.3%) than Kemptide (100%). 

Altogether these results show that basic residues at -2 and -6 positions are 

important for the insect kinase activity. The fat body kinase recognizes substrate 

sequence similar to mammalian kinase compare to yeast.  
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The physiological substrates of M. sexta PKA are unknown. The 

components of the mechanism of TG mobilization in the insect fat body are 

potential targets of PKA action given the fact that AKH-induced lipid mobilization 

involves PKA activation (Arrese et al., 1999). The regulation of TG-lipase activity 

must be a critical point on the regulation of lipid mobilization. Previously we 

showed that TG- lipase is a phosphorylatable protein that can be phosphorylayed 

by the bovine catalytic subunit of PKA but the phosphorylation did not affect the 

lipase activity (Arrese and Wells, 1994). Because the possibility of having non-

specific phosphorylations due to the use of bovine PKAc could not be ruled out in 

that experiment, a definitive conclusion was not possible. The catalytic subunit of 

PKA from the insect was required in order to verify that observation.  For that 

purpose a preparation of fat body TG-lipase was incubated with purified kinase in 

the presence of [γ-32P]ATP. The preparation was analyzed by SDS-PAGE 

followed by autoradiography. Figure 9A shows the SDS-PAGE in which the 

major band of 76kDa corresponds to the TG-lipase. An other minor component 

can also be seen, particularly a protein band of 50kDa. This contaminant was 

present in the TG-lipase preparation. We do not have information on the nature 

of this protein rather than it co-purified with the TG-lipase after several 

chromatographic steps. It is unknown whether this protein is in some way related 

to the role of the lipase.  

The autoradiography (Figure 9B) shows that TG-lipase was 

phosphorylated in vitro by the purified catalytic subunit of PKA suggesting that 

the lipase could be a physiological substrate of this kinase 
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Figure 9. Phosphorylation of M.sexta fat body TG-lipase. Partially purified TG-lipase was 
incubated with [γ-32P]ATP and purified catalytic subunit from M.sexta fat body. After incubation 
proteins were separated on 12% SDS-PAGE. Gel was stained with Coomassie and dried (A), and 
exposed for autoradiography (B) to visualize 32P incorporation.  

The enzymatic activity of the phosphorylated and unphosphorylated form 

of the enzyme was compared hydrolyzing [3H]-triolein as micelles of Triton X-100. 

For this purpose two types of incubation were performed. On one hand TG-lipase 

was incubated with purified catalytic subunit of PKA in the presence 

(phosphorylated) and absence (control) of ATP as described in Material and 

Methods. Afterwards the lipase activity of both types of preparations was 

measured. We found that the phosphorylated and unphosphorylated (control) 

form of TG-lipase showed almost the same enzymatic activity hydrolyzing [3H]-

triolein as micelles of Triton X-100 (Figure 10A). The activity of phosphorylated 

lipase was slightly higher than the control (10 % increase) but this difference was 

not statistically significant. Panel 8-B shows the TG-lipase activity of fat body 

homogenates from control and AKH treated insects. As previously shown, AKH 

induced a significant increase -68%- in lipase activity of the homogenates.  
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Figure 10. A) Effect of Phosphorylation on the Activity of TG Lipase. Partially purified lipase was 
phosphorylated using ATP in the presence of the catalytic subunit of M. sexta PKA. In “Control” 
samples, the lipase activity was determined using the enzyme as obtained after the purification. 
In “Phosphorylated” samples, the lipase was phosphorylated by PKAc prior to measure the lipase 
activity. In “Dephosphorylated” samples, the lipase was dephophorylated by alkaline phosphatase 
prior to measure the activity and for “Rephosphorylated” samples, the lipase was incubated with 
alkaline phosphatase followed by PKAc incubation before to measure the lipase activity. The 
activity hydrolyzing [3H]-triolein was determined as described in Materials and Methods. Results 
represent the mean ± SEM (n=3). The difference of the means is not significant. B) Effect of AKH 
on the Activity of TG Lipase present in fat body homogenates. Results represent the mean ± SEM 
(n=3). The difference of the means is significant (P=0.026). 

The fat body TG-lipase has several properties in common with the 

hormone-sensitive lipase - HSL - from the vertebrate adipose tissue (Arrese and 

Wells, 1994). Among those is that HSL is phosphorylated by the catalytic subunit 

of PKA from adipose tissue. However the in vitro phosphorylation of isolated rat 



31

adipose tissue HSL with catalytic subunit of cAMP-dependent protein kinase 

results in an up to 3-fold increase in the lipase activity against triacylglycerol 

(Strålfors and Belfrage, 1983; Olsson et al., 1984). Several phosphorylation sites 

have been disclosed in HSL. Initially, phosphorylation of Ser 563 by PKA was 

identified as the regulatory site responsible for the phosphorylation-induced 

increase in hydrolytic activity. But PKA can also phosphorylate two other serines 

-659 and 660- and mutational analysis proved that phosphorylation of these two 

sites are responsible for in vitro activation of HSL. Also these sites are 

phosphorylated in adipocytes in response to stimulation of lipolysis. The role of 

phosphorylation of Ser 563 remains elusive. Apart from those three PKA 

phosphorylation sites, in quiescent cells HSL is phosphorylated in vivo at Ser 565 

named the basal site. Other kinases phosphorylate HSL at the basal site and this 

impairs the phosphorylation of Ser 563 by PKA. However, the finding that Ser 

563 is not essential for HSL activation raises some question about the 

antilipolytic role of Ser 565 phosphorylation (Holm et al., 2000).  In any case the 

in vitro phosphorylation of HSL by PKA increases the hydrolytic activity of this 

enzyme hydrolyzing TG in an artificial substrate. Unlike the vertebrate lipase, 

PKA phosphorylation of the insect TG-lipase did not increase its hydrolytic 

activity.  By analogy with HSL the insect lipase could have phosphorylated sites 

that impair the phosphorylation of regulatory sites. Even though the TG-lipase 

was purified from quiescent insects in which the enzyme is expected to be 

dephosphorylated the presence of previously phosphorylated sites on TG-lipase 

was examined.  For this purpose, TG-lipase was incubated with alkaline 
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phosphatase to promote dephosphorylation, and subsequently it was 

phosphorylated by incubation with PKAc and ATP. Parallel incubations that were 

done in the presence of [γ-32P] ATP and analyzed by SDS-PAGE followed by 

autoradiography showed the phosphorylation of the lipase (data not shown). The 

comparison of the activity of dephosphorylated and rephosphorylated lipase 

showed no significant differences (Figure 10A). Rephosphorylated lipase 

exhibited a slightly higher activity (8% increase) than the dephosphorylated 

lipase but this difference is not statistically significant.  This result indicates that 

phosphorylation of TG-lipase does not constitute the main or, at least, the only 

step required for activation of lipolysis. Other proteins and/or mechanisms of 

activation must be also involved in the activation of lipolysis in the insect fat body.          
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CHAPTER-III 

ACTIVATION OF THE LIPID DROPLET CONTROLS THE RATE OF 

LIPOLYSIS OF TRIGLYCERIDES IN THE INSECT FAT BODY 

 

INTRODUCTION 

Insects rely on lipid reserves to survive during physiological non-feeding periods, 

or to meet the energy requirements of developing eggs, flight, and starvation. 

The fat body is the principal site for storage of both glycogen and lipids. The fat 

body synthesizes most of the proteins found in the hemolymph, whereas also 

serving as the main storage site of triglycerides (TG), which constitute more than 

90% of the fat body lipids.  Therefore, functionally, the fat body accomplishes 

roles that in vertebrates are carried out by both liver and adipose tissue (Law and 

Wells, 1989). 

The tobacco hornworm, Manduca sexta, feeds constantly and the content of 

fat body TG increases continuously until the end of the larval development. 

During the larval period, ~20 days, the content of TG in the fat body increases 

from a few µg on hatching to ~80 mg at the end of larval stage (Fernando-

Warnakulasuriya et al., 1988). During subsequent development, the lipid 

reserves are used to sustain the life of the adult insect which feeds occasionally 

(Fernando-Warnakulasuriya et al., 1988; Ziegler, 1991; Arrese et al., 2001; 

Canavosa et al, 2001). Due to these metabolic features, M. sexta represents
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an excellent model for studying the basic mechanisms involved in either the 

synthesis/deposition of TG in larvae or the mobilization of TG in adult insects 

(moth).  

TG is stored in fat body adipocytes as cytosolic lipid droplets (Willott et al., 

1988). TG hydrolysis (lipolysis) is mediated by a TG-lipase that has been purified 

from the cytosol (Arrese et. al., 1994). Like hormone sensitive lipase (HSL), 

which catalyzes the rate-limiting step in mobilization of adipose tissue fatty acids 

(Holm et. al., 2000; Kraemer et. al., 2002), the TG-lipase from M. sexta fat body 

is an enzyme that can be phosphorylated. The end-product of insect lipolysis is 

sn-1,2-diacylglycerol (DG) that is released into the hemolymph (Arrese et al., 

1996; Arrese et al., 1997) and loaded into the hemolymph lipoprotein, lipophorin. 

This causes the transformation of high-density lipophorin (HDLp) into low- 

density lipophorin (LDLp), which transports DG to the sites of utilization e.g. the 

flight muscle, and ovaries, where it is hydrolyzed to fatty acids by a lipophorin-

lipase (Soulages and Wells, 1994).  

The lipolytic process is under hormonal regulation by the neuropeptide 

adipokinetic hormone, AKH (Gade and Auerswald, 2003). AKH action is 

comparable to that of glucagon in mammals. It contributes to hemolymph sugar 

homeostasis, and is also involved in the mobilization of sugar and lipids from the 

fat body during energy-requiring activities (Ziegler and Schulz, 1986a; Ziegler 

and Schulz, 1986b; Gade et al., 1997; Schoofs et al., 1997). AKH receptors from 

the fruit fly Drosophila melanogaster and the silkworm Bombyx mori have been 

recently identified (Staubli et al., 2002). These receptors are related to the 
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mammalian gonadotropin-releasing hormone receptor, which is a G protein-

coupled receptor that activates both inositol phosphate and cAMP signaling 

responses. In M. sexta, AKH mobilizes glycogen during the larval stages and 

promotes a massive lipolytic response in the adult stage (Ziegler et al., 1990). 

AKH promotes a rapid activation of fat body cAMP-dependent protein kinase 

(PKA). Supporting the role of PKA in lipolysis, agents that raise intracellular 

cAMP concentration, such as 8Br-cAMp and forskolin, also stimulate lipolysis in 

the adult insect (Arrese et al., 1999). Besides the involvement of cAMP, the 

lipolytic response of AKH also induces a sustained increase in calcium influx 

(Wang et al., 1990; Lum and Chino, 1990; Arrese et al., 1999). Moreover, 

calcium mobilizing agents such as thapsigargin or ionomycin strongly stimulate 

lipolysis (Arrese et al., 1999). Therefore unlike the vertebrate system in which the 

lipolytic process is activated by cAMP (Honnor et al., 1985) and inhibited by 

intracellular calcium (Xue et al., 2001), in insects both messengers cAMP and 

calcium stimulate lipolysis.  Protein phosphorylation mediated by PKA is 

expected to be part of the mechanism controlling the activation of lipolysis but the 

nature of the proteins targeted by PKA remains to be elucidated. It has been 

shown that TG-lipase can be phosphorylated in vitro by purified PKA from the 

insect fat body. However, this phosphorylation failed to increase the enzyme 

activity when assayed in vitro with an artificial substrate (Patel et al., 2004). In the 

present study the mechanism of activation of lipolysis was investigated using the 

native substrate of the TG-lipase, the lipid droplet, and a combination of in vivo 

and in vitro experiments. To study the role of PKA, and the impact of the 
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phosphorylation of the TG-lipase and the lipid droplet proteins, on the activation 

of lipolysis we used a novel approach in which the lipolytic process was 

reconstituted in vitro using in vivo TG-radiolabeled lipid droplets as the substrate 

of purified TG-lipase, and purified insect PKA. The studies presented here 

confirm the presumed role of PKA in activation of the lipolysis. More interestingly, 

the studies suggest that, contrary to previous assumptions, the main role of PKA 

is to activate the substrate of lipolysis, the lipid droplet, rather than the TG-lipase. 

The studies led to the identification of the “Lipid Storage Droplet Protein 1” as the 

main target of PKA activation as well as the main candidate to play a major role 

in the activation of lipolysis.   

EXPERIMENTAL PROCEDURES 

 

Materials: [32P]Orthophosphate and [γ-32P] ATP were purchased from MP 

Biochemicals (Irvine, CA). Labeled trioleoylglycerol ([tri-9,10-3H(N)] oleoyl-

glycerol) and [9,10 (n)3H]-Palmitic acid were from PerkinElmer Life Sciences 

(Boston, MA). Protease and phosphatase inhibitors were purchased from Sigma-

Aldrich (St. Louis, MO). DEAE Sepharose Fast Flow, Phenyl-Sepharose, and Q-

Sepharose were from Amersham Pharmacia (Piscataway, NJ). Hydroxyapatite 

Bio-Gel HT Gel was purchased from BioRad (Hercules, CA) M.sexta adipokinetic 

hormone (AKH) was obtained from Peninsula Laboratories (Belmont, CA). 

Electrophoresis items were from Invitrogen (Carlsbad,CA). Silica gel G plates 

were purchased from J.T. Baker (Phillipsburg, NJ). Trypsin sequencing grade 
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was purchased from Promega (Madison, WI). All other chemicals were of 

analytical grade. 

 

Experimental Insects: M. sexta eggs were purchased from Carolina Biological 

supplies (NC) and larvae were reared on artificial diet (Bell and Joachim, 1976).  

Adult insects were maintained at room temperature without food.  All experiments 

were carried out using adult insects, 48-72h after emergence. To achieve a 

consistent basal level of lipolysis the insects were decapitated 24 h ahead of the 

experiment. Two hours before the experiments the insects were injected with 13 

mg of trehalose dissolved in 20 µl of water (Arrese et al., 1996).   

 

Purification of TG-lipase: TG-lipase was purified from the cytosolic fraction of 

M. sexta fat body homogenates using anion-exchange, hydroxyl-apatite, and 

hydrophobic interaction chromatography as reported previously (Arrese and 

Wells, 1994).  

 

Purification of the Catalytic Subunit of PKA: The catalytic subunit of PKA was 

purified from the cytosolic fraction of M. sexta fat body homogenates using a 

combination of ion exchange chromatographies, as previously described (Patel 

et al., 2004). 

 

Subcellular Fractionation: Fat body tissue from two insects was combined and 

homogenized with a Potter-Elvehjem glass homogenizer fitted with Teflon pestle, 
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using 6 ml of homogenization buffer (20 mM Tris, pH 7.4, 0.25 M sucrose, 1 mM 

EDTA, 0.1 mM benzamidine, 10 mg/l leupeptine, 1 mg/l aprotonin, 0.1% 2-

mercaptoethanol, 2 mM imidazole, 2 mM sodium fluoride, 1.5 mM sodium 

molybdate, 1 mM sodium orthovanadate, and 4 mM sodium potassium tartrate). 

The homogenate was overlaid with 2 ml of buffer without sucrose, and 

centrifuged (100,000 x g for 1 hr). Three fractions were collected: fat cake, 

infranatant and pellet.  To ensure that the lipid droplets were free of cytosolic 

components, the fat cake was resuspended in homogenization buffer and gently 

vortexed.  The sucrose concentration was adjusted to 15% (w/v) and a layer of 2 

ml buffer without sucrose was laid on top. Samples were centrifuged in SW40 

rotor at 100,000g for 1 hr. Purified lipid droplets were collected from the top and 

resuspended in homogenization buffer without sucrose. Typically lipid droplets of 

two insect fat bodies were resuspended in 0.5 ml of buffer. The pellet was 

resuspended in buffer and re-centrifuged at 100,000 x g for 1 hr. The resulting 

pellet was dissolved in 1 ml of buffer and centrifuged at 500 x g for 15 min. The 

resulting supernatant was used as membranes fraction. The infranatant 

(cytosolic fraction) was passed through a small Q-Sepharose column equilibrated 

with buffer (10 mM Na2HPO4, pH-7.4, 1 mM EDTA, 0.1% 2-mercaptoethanol 

(v/v), 0.1 mM benzamidine 0.37 mM Triton-X-100, 10 mg/l leupeptine, 1 mg/l 

aprotonin, 2 mM imidazole, 2 mM sodium fluoride, 1.5 mM sodium molybdate, 1 

mM sodium orthovanadate and 4 mM sodium potassium tartrate). The column 

was extensively washed with equilibration buffer and the proteins eluted with a 

NaCl gradient (20 mM-150 mM) in the same buffer. TG-lipase was eluted with 



39

180 mM NaCl in the same buffer and all the fractions containing TG-lipase 

activity were pooled, dialyzed and concentrated to a final volume of 4 ml.  

 

In vivo Protein Phosphorylation Studies: Experimental insects were injected 

with 250 µCi of [32P] orthophosphate (carrier free), and 90 min later with 100 

pmol of AKH. Fat body tissue was dissected at various times after the hormonal 

injection. For each time, tissue from two insects was pooled and homogenized. 

The lipid droplets were isolated as indicated above. The lipid droplet associated 

proteins were separated by SDS-PAGE on 10% gels according to Laemmli, but 

in sample buffer containing 6% (w/v) SDS. Proteins were stained with Coomassie 

Blue. The gel was dried and phosphorylation was visualized by autoradiography. 

Gels and autoradiograms were scanned on an imaging densitometer (BIO-RAD 

model GS-700). The intensity of protein bands and phosphorylation were 

quantified from the gel and autoradiogram scans, respectively, using the Multi 

Analyst Macintosh software. 

 

Preparation of Endogenously [3H]-TG-Labeled Lipid Droplets: Fat body lipids 

were radiolabeled following a long-term procedure previously reported (Arrese 

and Wells, 1997; Arrese et al., 2001). Briefly, during the fifth larval instar, insects 

were fed 200 µCi of [9,10(n) 3H]-Palmitic acid and, after completion of 

development (32 days), adult insects were decapitated and injected with 

trehalose as indicated above. Lipolysis was stimulated by injection of 100 pmol of 

AKH whereas injection of buffer provided the level of basal lipolysis. Fat bodies 
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were dissected 20 minutes after injection and the lipid droplets isolated as 

described above. Lipid analysis of TG showed that the vast majority of the 

radiolabel (99.8%) was localized in the fatty acyl residues. The remaining 0.2% 

was found in the glycerol backbone. sn-1,3 positions of TG contained 88.4±2% of 

the label.  Analysis of the distribution of radioactivity among different neutral lipid 

classes of the lipid droplets showed that TG contained 97.4±0.5% of the 

radiaoctivity.  

 

TG-lipase Activity Against [3H]-TG-lipid droplets: An aliquot of the lipid droplet 

preparation containing 100 nmoles of TG was transferred to a glass tube 

containing lipase reaction buffer. The reaction was initiated by adding purified 

TG-lipase (7 µg) in a final volume of 150 µl. Final reaction conditions were 50 

mM Tris, pH 7.9, 500 mM NaCl, 0.02 % (w/v) BSA, 2 mM dithiothretiol, 0.67 mM 

TG, and 0.37 mM Triton X-100. The mixture was gently vortexed for 20 sec and 

incubated at 37°C with constant shaking. After 30 min the reaction was 

terminated by the addition of 750 µl of chloroform: methanol (2:1) and 5 µl of 6 N 

HCl. The mixture was vortexed for 1 minute, and centrifuged at 2000 g for 2 

minutes. The organic phase was collected, and cpm counted in an aliquot. The 

remaining organic phase was dried under a stream of nitrogen and the lipids 

separated by thin-layer chromatography on silica gel G plates using hexane: 

ethyl ether: formic acid (70:30:3) as the developing solvent (Arrese et al., 2001). 

The MG, DG, FFA and TG fractions were visualized by I2 vapors and scraped 

from the plates. After complete removal of the I2 the radioactivity associated with 
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each fraction was determined by liquid scintillation counting. Blank reactions, in 

which the TG-lipase was omitted, were used to obtain the basal level of 

distribution of radioactivity among the lipid classes and calculate the percentage 

of hydrolysis.  The lipase activity was expressed as nmol of TG hydrolyzed/min-

mg protein. All determinations were carried out in duplicate. Aliquots of lipid 

droplets resuspended in TG-lipase reaction buffer were freshly stained with Oil 

Red O and were observed under the microscope. We found numerous red-

colored spheres (0.6–3.5 µm) confirming the existence of the lipid droplets in the 

reaction mixture.  The size of lipid droplets in the final preparation was slightly 

smaller than the size of native lipid droplets (1.2 - 4.1 µm).  

 

In Vitro Phosphorylation Reactions of TG-Lipase and Lipid Droplets: The 

lipid droplets were phosphorylated in a reaction mixture (90 µl) containing kinase 

reaction buffer (50 mM MOPS, 1 mM magnesium acetate, 0.5 mM EDTA and 2 

mM dithiothreitol), purifed PKA (0.25 units), 7 µl lipid droplets (0.1 µmol TG), and 

0.2 mM [γ-32P]ATP (5 x 106 cpm / nmol). After 20 min of incubation at room 

temperature, the reaction was terminated by addition of electrophoresis sample 

buffer and analyzed by SDS-PAGE on 4-20% acrylamide gels followed by 

autoradiography. [32P]-labeled protein bands profile was performed by 

densitometric analysis.  

Purified TG-lipase was phosphorylated by insect PKA in the presence of [γ-

32P]ATP as described above. Phosphorylation of the lipase was confirmed by 

SDS-PAGE and autoradiography. 
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To study the effect of phosphorylation on the TG-lipase activity, [3H]-TG-lipid 

droplets and/or TG-lipase were phosphorylated as described above, but using 

unlabeled ATP. The reactions were terminated by addition of 5 mM EDTA.  

 

Measurement of LDL / HDL ratio of hemolymph: The content of DG in the 

hemolymph was assessed by measuring the relative mass of low-density 

lipophorin (LDLp) and high-density lipophorin (HDLp) after separation of the 

lipoproteins by ultracentrifugation in a KBr density gradient (Arrese et al., 1996). 

The LDLp / HDLp ratio was used as an index of lipolysis. 

 

Western blotting: Polyclonal antibodies against purified TG-lipase were raised 

in chicken at Cocalico Biologicals (Reamstown, PA). For Western Blotting, 

proteins were separated by SDS-PAGE (10%) and transferred to nitrocellulose 

membranes. Immunodetection was performed using anti-TG-lipase antibodies 

(1:200). After incubation of membranes with horseradish peroxidase-conjugated 

rabbit anti-chicken secondary antibody (1:50,000), peroxidase activity was 

detected using ECL chemiluminescence reagents (Amershan Pharmacia, NJ). X-

ray films were scanned and the intensity of the positive signal was quantified by 

densitometry.  

 

Protein and TG Content of Lipid Droplets: The lipid droplet-associated 

proteins were precipitated with acetone (85% v/v) at -20ºC for at least 2 h. 

Afterwards samples were centrifuged at 10,000 x g for 5 minutes and the 
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resultant pellet was dissolved in final 10% SDS (w/v). An aliquot was used to 

measure total protein using the BCA method (Pierce, Rockford, IL). 

TG was determined using the Infinity Triglyceride reagent kit as described by the 

manufacturer (ThermoTrace Ltd, Melbourne, Australia). Triolein was used as 

standard for the calibration curve.   

 

Statistics: Statistical comparisons were made by the Student’s t-test; P<0.05 

was considered to be significant. 

 

RESULTS  

Study of a potential translocation of the lipase from the cytosol to the lipid 

droplet 

Studies carried out in rat and 3T3 L1 adipocytes have shown that activation of 

lipolysis triggers the translocation of HSL from the cytosol to the substrate 

contained in the lipid droplets (Egan et al., 1992; Brasaemle et al., 2000). The 

potential role of this mechanism of lipolysis activation in M. sexta fat body was 

investigated by determining the relative distribution of TG-lipase between the 

cytosolic and lipid droplet fractions of the adipocytes. Immunoblotting was used 

to estimate the abundance of TG-lipase in the fractions. A comparison between 

the fractions obtained from control insects, and insects treated with AKH for 20 

min indicated that activation of lipolysis does not change the levels of cytosolic 

TG lipase (Figure 11). Moreover, we were not able to detect the presence of TG-

lipase in the lipid droplet fractions.  Regardless of the lipolytic condition, the fat 
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body TG-lipase was exclusively found in the cytosol, and its abundance was 

unaffected by the level of lipolysis (Figure 11).  

 

Figure 11. Subcellular distribution of TG-lipase among cytosol, lipid droplet, and membranes 
fractions under basal and stimulated lipolysis. Cytosol, membranes and lipid droplets from the fat 
body of control insects (C) and AKH-stimulated insects (AKH) were separated on 8 % SDS-PAGE 
and analyzed by Western blotting using anti-serum against TG-lipase. Normalization among 
control and stimulated samples for each subcellular fraction was accomplished loading equal 
percentages of each fraction onto each lane (0.5% of total for cytosol, 2% of total for lipid 
droplets, and 0.4% for membranes).  
 

Effect of TG-lipase phosphorylation on the enzyme activity against TG 

contained in the native substrate, the lipid droplet 

Previous studies from our laboratory have shown that PKA phosphorylates the 

TG-lipase (Arrese and Wells, 1994), but does not enhance the lipase activity 

(Patel et al., 2004). Because these studies were carried out using an artificial 

emulsion of TG that certainly does not have the structural and chemical 

properties of the lipid droplets, we investigated the role of the phosphorylation 

using the native lipase substrate, the lipid droplets. To obtain lipid droplets highly 

radiolabeled in the TG moiety M. sexta larvae were fed with [3H]-palmitic acid. 

Because the moths emerge one month after the larvae were fed there is a nearly 

identical distribution of radioactivity and mass among the lipid species (Arrese et 

al., 2001). The activity of purified lipase, and in vitro PKA-phosphorylated lipase 
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were determined using lipid droplets isolated from the adipocytes of control 

insects (basal lipolysis) and from AKH treated insects (20 min after injection). 

 

Figure 12. Effect of TG-lipase phosphorylation and AKH induced changes in the substrate on the 
lipase activity hydrolyzing TG present in the lipid droplets (LD). Purified TG-lipase from fat body 
tissue was in vitro phosphorylated by incubation with fat body cAMP-dependent protein kinase 
(PKA). The activity of purified TG-lipase was measured against in vivo radiolabeled ([3H]-TG)-lipid 
droplets isolated from insects with basal lipolysis (LD control). The effect of AKH on the substrate 
properties was studied using lipid droplets isolated from insects with stimulated lipolysis (20 min 
after injection of AKH) (LD AKH). Enzyme activities are expressed in nmol TG hydrolyzed/ min 
mg protein. Data represent the mean ± SEM (n=4). *P<0.05 vs control lipid droplets.LD: Lipid 
Droplet. 

Phosphorylation of the lipase did not modify the enzyme activity hydrolyzing 

TG contained in the lipid droplets from control insects (Figure 12). However, the 

activity of the lipase against lipid droplets isolated from AKH treated insects was 

significantly greater (2.4 fold-increase) than that measured against lipid droplets 

obtained from control insects (Figure 12).  
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It must be noted that no significant endogenous lipase activity was detected in 

lipid droplets from control or AKH treated insects. This was determined by 

incubating the lipid droplets in the reaction buffer but in the absence of TG-lipase 

for different time periods (0 to 60 min). This result is consistent with the absence 

of lipase associated to the lipid droplets inferred from the Western Blotting 

analysis (Figure 11).  

 

Time course of AKH-induced activation and phosphorylation of the lipid 

droplets 

AKH-induced activation of lipolysis involves a rapid 4-fold increase of fat body 

PKA activity that is reached 2 to 5 min after the injection of the hormone into the 

hemolymph (Arrese et al., 1999). Potential changes in the phosphorylation state 

of the proteins of the lipid droplets and its possible correlation with the “activity” of 

the lipid droplets against purified TG-lipase were investigated.  To study the time 

course of changes in protein phosphorylation together with the lipase activity 

measured against TG contained in the lipid droplets, we used lipid droplets 

containing both radiolabeled TG and 32P-radiolabeled proteins isolated from 

insects fed with [3H]-palmitic acid and injected with 32P-orthophosphate 90 min 

prior to the experiments.  

As shown in the Figure 13, the activity of purified TG-lipase was dependent 

on the time of isolation of the lipid droplets. Rapid and significant changes in the 

sensitivity of the lipid droplets towards the lipase were observed as early as 5 

min after the hormonal stimulation. The highest lipase activity (2.6 fold-increase 
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over basal) was observed against the lipid droplets that were isolated 10 min 

after the stimulation of lipolysis. 

 

Figure 13. Time course of the activation of the substrate induced by AKH on the activity of TG-
lipase. [3 H]-TG lipid droplets were isolated from insects with basal lipolytic activity (0) and AKH-
stimulated insects (5, 10, 20, and 30 min after treatment). Aliquots containing 100 nmol of TG 
were used to measure the TG-lipase activity. Incubations were done for 30 min at 37 ºC as 
indicated in Experimental Procedures.  Data are expressed in nmol TG hydrolyzed/ min mg 
protein and represent the mean ± SEM (n=4). *P < 0.05 vs. control.  
 

3H/32P-radiolabeled lipid droplets were also used to examine the time 

dependent changes in the pattern of [32P]-protein phosphorylation. Figure 14A 

depicts the protein profiles of lipid droplets separated in 10% SDS-PAGE. The 

autoradiogram of the same SDS-PAGE gel is shown in the panel B. Five minutes 

after the stimulation of lipolysis the only significant change in phosphorylation 

were observed in a band of ~43 kDa (2.7-fold increase). The change in 

phosphorylation of the 43 kDa band is very rapid reaching a maximum 10 min 

after the injection of the hormone (Figure 15A, B and C). Densitometric analysis 

of the gel indicated that the 43kDa band of the autoradiogram corresponded to 
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two close protein bands migrating with apparent masses of 42.8 and 44.2kDa 

(Figure 14B).  

Figure 15D shows that the changes in phosphorylation 42/44 kDa band are 

paralleled by the changes in the sensitivity of the lipid droplets to TG-lipase. The 

increase in the level of phosphorylation of this band correlated (r2 = 0.75) with the 

increase in TG-lipase activity. 

Changes in the phosphorylation of other protein bands with apparent masses 

of 52, 66, 95, and 110 kDa were also observed.  However, no correlation was 

found with the phosphorylation of these proteins and the lipase activity. For 

instance, phosphorylation of the 52, 66 and 110 kDa bands became more 

relevant at 20 and 30 min.   

Figure 14. Time dependent changes in phosphoproteins of the lipid droplets.  [32P]-Lipid droplets 
were isolated at different times after hormonal treatment and subjected to SDS-PAGE in 10% 
acrylamide gels. A) Coomassie blue stained gel; B) Autoradiogram of the gel shown in A. Control 
lipid droplets were loaded in lanes labeled 0. The remaining lanes were loaded with lipid droplets 
isolated 5, 10, 20 and 30 min after the injection of AKH, as indicated in the figure. Approximately 
15µg of protein was loaded into each lane. The intensity of protein bands and phosphorylation 
were quantified from the gel and autoradiogram scans, respectively, using an imaging 
densitometer as explained in Experimental Procedures. The phosphorylation state was calculated 
as the ratio between the intensity of phosphorylation and the intensity of the protein band.  
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Figure 15. Correlation between the phosphorylation of the lipid droplets and their activity as TG-
lipase substrates. A-C) show the gel and autoradiogram scans corresponding to control (0), 5 and 
10 min lipid droplets shown in Figure 14. The major phosphoprotein  is 42 kDa (52 mm). Other 
phosphoproteins are : 52 kDa (43 mm), 66 kDa (36 mm), 95 kDa (28 mm) and 110 kDa (26 mm);  
D) The time course of the AKH-induced changes in substrate activity showed in Figure 14 are 
correlated with the time dependent changes in the phosphorylation state of the 42 kDa lipid 
droplet-associated protein. The phosphorylation state and the lipase activity were expressed as 
fold increase over the basal condition. The ratio of low-density lipophorin (LDLp) to high-density 
lipophorin (HDLp) is proportional to the level of circulating diacylglycerol (DG). The increase in the 
LDLp/HDLp ratio is the consequence of AKH induced lipolysis. Data are the mean ± SEM; n=4 for 
lipase activity, n=3 for phosphorylation of 42 kDa protein and LDLp/HDLp ratio. 

 

As expected, the changes in lipase sensitivity of the lipid droplets preceded 

the lipolytic response measured by the increase in the content hemolymph DG 

that was estimated as the ratio of hemolymph low- and high-density lipophorin 

(LDLp and HDLp, respectively) (Figure 15D). In these insects the onset of lipid 

mobilization from the fat body into the hemolymph begins 10 min after the 

injection of 100 pmol of AKH (Arrese et al., 1996). 
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The highly phosphorylated 42/44 kDa band was identified as “Lipid Storage 

Droplet Protein 1” (Lsdp1) in the laboratory. In brief, the 32P-radiolabeled proteins 

were separated by two-dimentional electrophorosis. The highly phosphorylated 

42/44 kDa protein band was excised and subjected to identification by liquid 

chromatography mass spectometry/mass chromatography at Harvard 

Microchemistry Facility. For more details refer Patel et al. 2005. 

 

In Vitro activation of lipolysis from purified TG-Lipase, PKA, and lipid 

droplets 

The phosphorylation profiles of the lipid droplet-associated proteins obtained 

upon incubation of lipid droplets isolated from control insects (basal lipolysis) with 

purified fat body PKA in the presence of [γ-32P]-ATP  were compared to the 

phosphorylation profiles observed in vivo (Figure 16). This comparison showed 

similarities between the pattern of proteins phosphorylated in vitro by PKA and 

the pattern of phosphorylation observed in vivo when the lipolysis is stimulated 

by AKH. As observed in in vivo experiments, Lsdp1 was also the major 

phosphoprotein of the lipid droplet after in vitro phosphorylation indicating that 

Lsdp1 is the main substrate of PKA in the lipid droplets.  
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Figure 16. Comparison between the patterns of protein phosphorylation of the lipid droplets 
observed in vivo (AKH induced) and in vitro (PKA-catalyzed phosphorylation). Densitometric 
profiles of the autoradiograms of 32P-phosphoproteins of the lipid droplets. In vivo phosphorylation 
was induced by AKH injection into insects previously injected with 250 µCi of [32P] 
orthophosphate. Lipid droplets were isolated after 20 min of AKH treatment. For in vitro 
phosphorylation, lipid droplets were isolated from control insects (basal lipolysis) and incubated 
with purified cAMP-dependent protein kinase (PKA) and 0.2 mM [γ-32P]-ATP (5 x 106 cpm / nmol) 
for 20 min. Both samples were subjected to SDS-PAGE in 4-20% acrylamide, which provides a 
good resolution in a broad range of size (6 to 200 kDa). Autoradiograms were scanned on an 
imaging densitometer as explained in Experimental Procedures. The major peak corresponds to 
the 42 kDa band. 
 

In order to study the role of PKA on the activation of lipolysis, [3H-TG]-lipid 

droplets (from insects with basal lipolysis) were incubated with or without purified 

PKA and ATP. Following phosphorylation the lipid droplets were incubated with 

purified lipase and the enzyme activity determined. The results showed that in 

vitro phosphorylation of the lipid droplets with PKA promotes a significant 

enhancement, 2-fold, of the lipase activity (Figure 17).  
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Figure 17. Effect of cAMP-dependent protein kinase (PKA) mediated phosphorylation of lipid 
droplet (LD) proteins on the activity of TG-lipase and phosphorylated TG-lipase. In vivo 
radiolabeled ([3 H]-TG) lipid droplets (LD) were isolated from insects with basal lipolytic activity 
and incubated 20 min with 0.2 mM ATP in the presence of purified PKA (Phosphorylated-LD) or 
in the absence of PKA (Control LD). The reaction was terminated by the addition of 5 mM EDTA 
(final concentration). Subsequently the samples were used as the substrate for both TG-lipase 
and phosphorylated TG-lipase. Purified TG-lipase was phosphorylated in vitro by incubation with 
purified PKA and ATP. Data that are expressed in nmol TG hydrolyzed/ min mg protein represent 
the mean ± SEM (n=4).  * P < 0.05 vs LD control. 

 

The activity of PKA phosphorylated TG-lipase was also assessed against 

basal and phosphorylated lipid droplets. As previously shown with in vivo 

activated lipid droplets (Figure 12), the state of phosphorylation of the lipase did 

not increase the enzyme activity, even in the presence of phosphorylated lipid 

droplets (Figure 17). It is concluded that under these conditions the difference in 

the hydrolytic capacity of the enzyme is due to the phosphorylation state of the 

TG substrate and is unaffected by the phosphorylation state of the lipase. 
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DISCUSSION 

Understanding the regulation of the lipolytic process is essential to the full 

understanding of the metabolism of triglycerides. The mechanism of basal 

lipolysis and the mechanism of activation of lipolysis are complex processes 

whose details are far from being fully understood in any system (Londos et al., 

1999; Holm, 2003). The complexity of the lipolytic activation is given by the fact 

that the lipolytic process involves the interaction of an enzyme, whose properties 

are not well established, with a lipid surface whose structure is not well 

understood, either. The lipid droplet is recognized as an important organelle 

which accomplishes essential functions in adipocytes and therefore in the 

homeostasis of lipid metabolism of the organism. The lipid droplets contain a 

large number of proteins embedded in the lipid surface (Brasaemle et al., 2004; 

Liu et al., 2004). Many of these proteins could play an active role in the lipolytic 

response and other metabolic reactions. The importance of studying these 

proteins is currently recognized. However, none of the potentially important 

proteins have been fully characterized from a functional or structural point of 

view, yet. Most of the current understanding of the lipolytic process has been 

achieved from studies carried out in 3T3 adipocytes (Londos et al., 1999; Holm, 

2003). The current knowledge of lipolysis in insects is far more modest than that 

achieved in mammalian cells. The current study provided several advances on 

the mechanism of lipolysis in insects. Moreover, the experimental conditions for 

an in vitro system that allows the reconstitution of the lipolytic activation were 

established in this study. This in vitro system combined with the simplicity of 
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carrying out in vivo studies represents an important advance that will facilitate 

future studies on the molecular mechanism underlying the mobilization of TG 

stores in insects.   

 

Substrate activation plays a major role in the activation of lipolysis 

Our puzzling inability to observe phosphorylation-dependent activation of the 

lipase using an artificial substrate (Patel et al., 2004), led us to study the role of 

phosphorylation of the lipase using the native substrate, the lipid droplets. We 

thought that the artificial substrate, an emulsion of TG and TritonX-100 (1:5, 

mol/mol), prevented the observation of the activation of the lipase upon its 

phosphorylation. The ability to obtain homogenously TG-radiolabeled lipid 

droplets allowed the study of the role of lipase phosphorylation under 

experimental conditions that resembled the physiological conditions. Even in this 

condition phosphorylation of the lipase did not promote an increase in the lipolytic 

rate. However, the use of the native substrate led us to the main finding of this 

work which is that hormonal stimulation of TG lipolysis in insects involves the 

activation of the TG substrate, the lipid droplets. The fact that the activity of 

purified lipase was greater against lipid droplets isolated from insects with high 

levels of lipolytic activity than against lipid droplets isolated from insects in a 

basal lipolytic state (Figure 12 and 13), provided the first evidence indicating that 

the activation of the substrate was an important factor in the rate of lipolysis. The 

activation of the substrate could represent the major point of control of the 
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lipolytic rate. This information provides new evidence to the increasing notion that 

the lipid droplets, as organelles, are active participant in the process of lipolysis.   

 

Phosphorylation of the substrate activates the lipolysis 

As shown in Figure 14, hormonal activation of lipolysis alters the pattern of 

phosphorylation of the lipid droplets. The changes in phosphorylation are very 

fast and have a time course that correlates to a good extent with the activation 

state of the lipid droplets (Figure 15). These observations suggested a relevant 

role of substrate phosphorylation in the activation of lipolysis.  The importance of 

the phosphorylation of the lipid droplets in the activity of the lipase was clearly 

demonstrated when the activation of the lipid droplets was achieved in the 

reconstituted system containing the purified enzymes, PKA and lipase, and 

control lipid droplets (Figure 17). This in vitro assay allowed discarding the 

potential influence on the rate of lipolysis of other changes in structure and 

composition of the lipid droplets that could take place in vivo. Moreover, it proved 

that the combination of TG-lipase, PKA, and lipid droplets, without additional 

cellular machinery, reproduce to a great extent the activation observed with lipid 

droplets obtained from insects treated with AKH.   

 

Role of Lsdp-1 phosphorylation in the activation of lipolysis 

Inspection of the pattern of phosphorylation of the proteins of the lipid droplets 

showed that a 42-44 kDa protein was the main target of the phosphorylation 

cascade triggered by AKH. On the basis of its sequence identity with a full-length 
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sequence from Drosophila melanogaster, this protein was identified as Lipid 

storage droplet protein 1 (Lsdp1).  Lsdp1 is not highly abundant in the lipid 

droplets of adult insects; however it is the main phosphoprotein.  Lsdp1 was the 

prevalent target of in vivo phosphorylation, induced by AKH, as well as the main 

target of PKA when the lipid droplets are phosphorylated in vitro. Moreover, since 

the changes in phosphorylation of Lsdp1 correlated with the “activity” of the lipid 

droplets measured with purified lipase, the present studies suggest that Lsdp1 

could play a major role in the activation of TG lipolysis in the insect fat body. This 

study did not provide information on the role of the phosphorylation of the other 

phosphoproteins observed in the lipid droplets.   

 

Role of PKA in the activation of lipolysis 

Previous studies have shown that AKH promotes an increase in PKA activity, as 

determined by activation of glycogen phosphorylase (Gade and Auerswald, 

2003). On the other hand, supporting a role for PKA in the activation of lipolysis, 

other studies have shown that cAMP analogues and adenylate cyclase activators 

activate lipolysis (Arrese et al., 1999). Although these previous studies suggested 

a role of PKA in the activation of lipolysis, they did not provide direct 

experimental evidence linking PKA and lipolysis. The present study provided 

direct evidence supporting the role of PKA in activation of lipolysis. It showed that 

the pattern of in vitro phosphorylation of the lipid droplets with purified PKA is 

very similar to that observed upon in vivo stimulation of the insects with AKH 
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(Figure 16) and that the lipolytic activation can be reconstituted in vitro from 

isolated lipid droplets and purified PKA and lipase (Figure 17). 

In vitro phosphorylation of TG-lipase catalyzed by PKA did not enhance its 

activity against the native (Figure 12) or the artificial substrate (Patel et al., 

2004).This is a clear difference with the mammalian HSL that PKA in vitro 

phosphorylation induced a 3-fold increase of its activity (Stralfors and Belfrage, 

1983; Olsson et al., 1984). 

 

Role of lipase binding to the lipid droplet and kinetics of TG hydrolysis on 

the activation of lipolysis 

Hormonal stimulation of the lipolytic response in mammalian adipocytes induces 

the phosphorylation and translocation of HSL to the surface of the lipid droplet. 

This mechanism is the first critical step of lipolysis and explains at least partially 

the activation of lipolysis in mammalian adipocytes (Egan et al., 1992; Londos et 

al., 1999; Brasemle et al., 2000; Holm, 2003). We investigated a potential role of 

the translocation of the fat body lipase to the lipid droplet in the activation of 

lipolysis. We did not find evidence indicating the presence of the lipase in the 

lipid droplet of adipocytes obtained from insects with either basal or high lipolytic 

rates. This result indicates that activation of lipolysis in insects does not involve a 

tight association of the TG-lipase with its substrate, the lipid droplets. In other 

words, translocation of the enzyme to the lipid droplet does not seem to take 

place or, if it does, it involves a low binding affinity association, such that the 

enzyme would dissociate from the lipid droplet during the preparation of the 
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homogenate and centrifugation.  However, our studies demonstrated that 

activation of lipolysis does not involve a high affinity binding of the cytosolic 

lipase to the lipid droplet.  Therefore, a change in the kinetic properties of the 

lipase could be responsible for  the enhancement in the lipase activity that is 

observed when the lipid droplets are phosphorylated with PKA in vitro or, when 

the lipid droplets are isolated from AKH stimulated insects. This increase in the 

catalytic activity could be due to an increase in the accessibility of the lipase to 

the TG molecules. This study suggests that the investigation of the role of the 

structure and phosphorylation of Lsdp-1 in the accessibility of TG to the lipase 

could provide relevant information about the mechanism of activation.  

 

Concluding remarks 

This study provided direct evidence on the role of the lipid droplets in the 

activation of lipolysis in fat body adipocytes. The reconstitution of the lipolytic 

activation in vitro demonstrated a prominent role of PKA mediated 

phosphorylation of the lipid droplets in the lipolysis. Phosphorylation of Lsdp1 

emerges as a likely regulator of the lipolytic activation 
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CHAPTER-IV 

ADIPOKINETIC HORMONE-INDUCED MOBILIZATION OF FAT BODY 

TRIGLYCERIDE STORES IN MANDUCA SEXTA: ROLE OF TG-LIPASE AND 

LIPID DROPLETS 

 INTRODUCTION 

Free fatty acids are an essential source of energy for tissues. The flux of 

fatty acids is dependent on the lipolysis of stored triglycerides (TG) in the fat body. 

This organ is the principal site for storage of both glycogen and lipids, and plays a 

fundamental role in energy metabolism. The fat body fulfills many of the functions 

that in vertebrates are carried out by both the liver and adipose tissue (Law and 

Wells, 1989). Most of the information about lipid mobilization in insects comes from 

studies carried out in Locusta migratoria and Manduca sexta. In particular the adult 

(moth) M. sexta rely entirely on lipids as fuel for flight.  Lipids are stored in the fat 

body adipocytes as cytoplasmic lipid droplets (Bailey et al., 1975; Willott et al., 

1988). Lipid reserves in M.sexta are built up during the larval stages (Fernando-

Warnakulasuriya et al, 1988) and utilized to sustain the life of the adult insect. The 

fat body mobilizes TG as sn-1,2-diacylglycerol (DG), which is released into the 

hemolymph (Tietz et al., 1975; Arrese and Wells, 1997) and loaded into the 

hemolymph lipoprotein, lipophorin. Lipophorin transports DG to the sites of 

utilization such as the flight muscle (van Heusden and Law, 1989), and ovaries
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(van Antwerpen et al. 1998), where it is hydrolyzed to fatty acids by a lipophorin-

lipase ( van Antwerpen and Law, 1992).  

Lipolysis is regulated by the neuropeptide adipokinetic hormone (AKH) 

(Gäde and Auesrswald, 2003). In the adult M. sexta, AKH stimulates the 

mobilization of stored TG, whereas in the larval stages the same hormone induces 

the mobilization of glycogen (Ziegler et al., 1990). Agents that raise intracellular 

cAMP concentration such as 8Br-cAMP or forskolin, also stimulate lipolysis in the 

adult insect fat body (Arrese et al., 1999). Moreover, AKH rapidly activates the fat 

body cAMP-dependent protein kinase (PKA) (Arrese et al., 1999). Therefore, AKH 

seems to promote an increase in lipolysis by activation of adenylyl cyclase and 

subsequent activation of cAMP activated kinase, PKA.  AKH also induces a 

sustained increase in calcium influx in the fat body cells (Arrese et al., 1999, Lum 

and Chino, 1990; Wang et al., 1990), and agents that increase intracellular calcium 

concentration strongly stimulate lipolysis (Arrese et al., 1999).  

In order to identify the target proteins involved in the mechanism of 

activation of lipolysis induced by AKH we investigated the changes on protein 

phosphorylation on two components of the lipolytic pathway: the TG-lipase - the 

enzyme responsible for mediating TG hydrolysis- and the lipid droplets -the 

organelles containing the TG substrate-. AKH induces a rapid phosphorylation of a 

lipid-droplet associated protein, Lsdp1 - lipid storage droplet protein 1-. The level of 

phosphorylation of Lsdp1 correlates with the activity of purified TG-lipase 

hydrolyzing TG contained in the lipid droplets. Furthermore, in vitro 

phosphorylation of the lipid droplets confirmed that PKA catalyzes the 
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phosphorylation of Lsdp1 (Patel et al., 2005). On the other hand, the fat body TG-

lipase from adult M. sexta is a phosphorylatable protein of 76 kDa localized in the 

cytosol (Arrese and Wells, 1994). Given the role of PKA in activation of lipolysis, 

and the analogy between lipolysis in insects and vertebrates, it has been assumed 

that phosphorylation of the lipase would be involved in activation of lipolysis. 

However, recent studies showed that in vitro phosphorylation of TG-lipase 

mediated by PKA does not activate the enzyme (Patel et al, 2004, 2005). This 

observation raised the question of whether or not AKH actually promotes a change 

in the state of phosphorylation of TG-lipase in vivo. In the present study we 

performed in vivo phosphorylation experiments to monitor AKH-induced changes 

on TG-lipase phosphorylation. These studies along with a study of the lipase 

activity determined using an in vitro system containing in vivo radiolabeled TG-[3H] 

lipid droplets, as substrate, and the cytosolic fraction of the fat body as source of 

enzyme led to the following conclusions: a) AKH does not change the state of 

phosphorylation of TG-lipase ruling out a direct effect of lipase phosphorylation on 

the activation of lipolysis; b) AKH induces changes in some other, unidentified, 

cytosolic  factor/s which promote a moderate TG-lipase activation; c) It was 

confirmed that AKH-induced changes in the phosphorylation of the lipid droplet 

represents a major factor in the activation of the lipolytic cascade.  
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EXPERIMENTAL PROCEDURES  

Materials: [32P]-Orthophosphate was purchased from MP Biochemicals (Irvine, 

CA). Labeled trioleoylglycerol ([tri-9,10-3H(N)]oleoylglycerol) and [9,10-

(n)3H]palmitic acid were purchased from PerkinElmer Life Sciences (Boston, 

MA). Protease and phosphatase inhibitors were purchased from Sigma (St Louis, 

MO). Q-Sepharose was from Amersham Biosciences (Piscataway, NJ). M.sexta 

AKH was obtained from Peninsula Laboratories (Belmont, CA). Electrophoresis 

items were from Invitrogen (Carlsbad, CA). Silica gel G plates were purchased 

from J.T. Baker (Phillipsburg, NJ). All of the other chemicals were of analytical 

grade. 

 

Experimental Insects: Manduca sexta eggs were purchased from Carolina 

Biological supplies (NC), and larvae were reared on artificial diet (Bell and 

Joachim, 1976). Adult insects were kept at 25°C without food, and decapitated 

24 h prior to being used. Before use, insects were injected with 13 mg of 

trehalose (Arrese et al., 1996b).   

 

In vivo phosphorylation: Experimental insects were injected with 250 µCi of 

[32P] orthophosphate and 90 min later with 100 pmol of AKH. Fat body tissue was 

dissected 20 min after the hormonal injection. The tissue from four insects was 

pooled and homogenized with a Potter-Elvehjem glass homogenizer fitted with 

Teflon pestle, using 3 ml per fat body of homogenization buffer (Buffer H: 20 mM 

Tris, pH 7.4, 0.25 M sucrose, 1 mM EDTA, 0.1 mM benzamidine, 10 mg/l 



63

leupeptine, 1 mg/l aprotonin, 0.1 % 2-mercaptoethanol, 2 mM imidazole, 2 mM 

sodium fluoride, 1.5 mM sodium molybdate, 1 mM sodium orthovanadate and 4 

mM sodium potassium tartrate). The homogenate was layered with 2 ml of buffer 

H without sucrose and centrifuged at 100,000 x g for 1 hr. Tissue homogenates 

were fractionated into three fractions: cytosol (infranatant), membranes (pellet), 

and lipid droplets (fat cake).  

 The fat cake was resuspended in buffer H and gently vortexed. The 

sucrose concentration was adjusted to 15% (w/v) and a layer of 2 ml buffer H 

without sucrose was laid on top. Samples were centrifuged in a SW 40 rotor at 

100,000 X g for 1 h. Purified lipid droplets were collected from the top. Typically 

lipid droplets of two insect fat bodies were resuspended in 0.5 ml of buffer H.  

The pellet was resuspended in buffer H without sucrose and re-

centrifuged at 100,000 x g for 1 h. The resulting pellet was dissolved in 1 ml of 

same buffer and centrifuged at 500 x g for 15 min. The resulting supernatant was 

used as membranes fraction.  

The infranatant (cytosolic fraction) was passed through Q-Sepharose 

column equilibrated with buffer (10 mM Na2HPO4, pH-7.4, 1 mM EDTA, 0.1% 2-

mercaptoethanol (v/v), 0.1 mM benzamidine 0.02% Triton-x-100, 10 mg/l 

leupeptine, 1 mg/l aprotonin, 2 mM imidazole, 2 mM sodium fluoride, 1.5 mM 

sodium molybdate, 1 mM sodium orthovanadate and 4 mM sodium potassium 

tartrate). After extensive wash with equilibration buffer, proteins were eluted with 

a NaCl gradient (20 mM-150 mM) in the same buffer. TG-lipase was eluted with 



64

185 mM NaCl in the same buffer. The fractions containing TG-lipase activity were 

pooled, dialyzed, and concentrated.   

 

Assay of TG-lipase activity: Lipase activity was assayed using micellar TG 

substrate as described previously (Arrese at al., 1994). The final assay volume of 

0.1 ml contained 50 mM Tris, pH 7.9, 500 mM NaCl, 0.02 % (w/v) defatted 

bovine serum albumin, 0.5 mM EDTA, 2 mM dithiothreitol , 0.22 mM triolein 

[9,10-3H, 0.043 µCi] and 1 mM Triton X-100. The reaction was initiated by adding 

enzyme. The mixture was gently vortexed for 20 s and incubated at 37 ºC with 

constant shaking. After 30 min, the reaction was terminated by the addition of 

500 µl of an extraction mixture consisting of chloroform/ methanol/ benzene 

(2:2.4:1), containing 0.1 µmol of unlabeled oleic acid as carrier. Then, 40 µl of 1 

N NaOH. The mixture was vortexed for 1 min and centrifuged at 2000 x g for 2 

min. Aliquots of 150 µl from upper aqueous phase were transferred to scintillation 

vials for counting. Enzyme activity was expressed as nmol of TG hydrolyzed / 

min mg protein. 

 

Polyacrylamide gel electrophoresis, autoradiography and densitometry 

analysis: SDS-polyacrylamide gel electrophoresis (SDS-PAGE) was performed 

according to Laemmli (Laemmli, 1970). For the separation of lipid droplets-

associated proteins, the concentration of SDS in the sample buffer was 

increased to 6% (w/v). Proteins were visualized by Coommassie Blue. The gel 

was dried and phosphorylation was visualized by autoradiography. Gels and 
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autoradiograms were scanned on an imaging densitometer (Bio-Rad model GS-

700). The intensity of protein band and phosphorylation were quantified using the 

Multi analyst Macintosh software from the gel and autoradiogram scans, 

respectively. The intensity of phosphorylation was calculated as the ratio of the 

phosphorylation to the mass.  The mass of TG-lipase was quantified by 

immunoblotting using antibody raised against the fat body TG-lipase. 

Nitrocellulose membranes were exposed on X-ray films and the intensity of the 

phosphorylation of TG-lipase band was measured by densitometry. The level of 

phosphorylation of TG-lipase was estimated as the ratio of the intensity of 

phosphorylation and the mass. 

 

Western blot detection of TG-lipase: A polyclonal antibody against purified TG-

lipase was raised in chicken at Cocalico Biologicals (Reamstown, PA). For 

western blotting, proteins were separated by SDS-PAGE (10%), transferred to 

nitrocellulose membrane and immunodetection was performed using anti-TG-

lipase antibodies (1:200). After incubation of membranes with horseradish 

peroxidase-conjugated rabbit anti-chicken secondary antibody (1:50,000), 

peroxidase activity was detected using ECL chemiluminescence reagents 

(Amersham). X-ray films were scanned and the intensity of the positive signal 

was quantified by densitometry.  

 

Preparation of endogenously radiolabeled [3H]TG lipid droplets: Fat body 

lipids were radiolabeled during the fifth larval instar (Arrese and Wells, 1997). 
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Each insect was fed with 200 µCi of [9,10 (n)-3H]palmitic acid. Fat body tissue 

from adult insects 2-3 days old was dissected 20 minutes after hormonal injection 

and lipid droplets were isolated. Lipid droplet samples were analyzed for protein 

and TG concentration, and radioactivity associated to TG. Lipid analysis of lipid 

droplet TG showed that 99.8 % of the radiolabel was localized in the fatty acyl 

residues. sn-(1)3 positions of TG contained 89 ± 2% of the label. Analysis of the 

distribution of radioactivity among neutral lipid class of the lipid droplets showed 

that TG contained 97 ± 0.7 % radioactivity.  

 

TG-lipase activity hydrolyzing TG from [3H]TG-lipid droplets: An aliquot of 

the  lipid droplet preparation containing 100 nmol of TG was transferred to a 

glass tube containing lipase reaction buffer. The reaction was initiated by adding 

an aliquot of cytosol containing 7.5 µg of total protein in a final volume of 150 µl. 

Final reaction conditions were 50 mM Tris, pH 7.9, 500 mM NaCl, 0.02 % (w/v) 

bovine serum albumin, 0.67 mM TG, 0.37 mM Triton X-100, and 2 mM 

dithiothretiol. The mixture was gently vortexed for 20 s and incubated at 37 °C

with constant shaking. After 30 min, the reaction was terminated by addition of 

750 µl of chloroform: methanol (2:1) and 5 µl of 6 N HCl. The mixture was 

vortexed for 1 minute, and centrifuged at 2000 g for 2 minutes. The organic 

phase was collected, and counts/min was measured in an aliquot. The remaining 

solvent was dried under the stream of nitrogen, and the lipids were separated by 

thin-layer chromatography on silica gel G plates using hexane: ethyl ether: formic 

acid (70:30:3) as the developing solvent (Arrese and Wells, 1994). MG, DG, fatty 
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acid, and TG fractions were visualized by I2 vapors and scraped from the plates. 

Radioactivity associated with each fraction was determined by liquid scintillation 

counting. Blank reactions in which the cytosol was omitted, but incubated at 37ºC 

parallel to reactions samples were used to obtain the basal level of distribution of 

radioactivity among lipid classes and calculate the percentage of hydrolysis. The 

lipase activity was expressed as nmol of TG hydrolyzed / min mg protein. 

 

Protein and TG Content of Lipid Droplets: Lipid droplet associated proteins 

were precipitated with acetone (85% v/v) at -20 °C.  Afterwards samples were 

centrifuged at 10,000 X g for 5 min and the pellet was dissolved in 10% SDS 

(w/v). An aliquot of 50 µl (~15 µg of total protein) was used to measure total 

protein using the BCA method in a final volume of 1ml (Smith et al, 1985).  

TG concentration was determined using the Infinity Triglyceride reagent 

kit as described by manufacturer (ThermoTrace Ltd, Melbourne, Australia). 

Triolein was used as standard.   

Statistics: Statistical comparisons were made by the Student’s t test. P < 0.05 

was considered to be significant. 
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RESULTS 

Level of TG-lipase phosphorylation 

Although TG-lipase can be phosphorylated in vitro by PKA purified from 

M. sexta fat body, the phosphorylation did not modify the enzymatic activity to 

hydrolyze TG contained either in an artificial substrate (micelles of Triton X-100) 

or the native substrate (lipid droplets) (Patel et al., 2004; Patel et al., 2005). This 

information raised the question whether or not the phosphorylation state of lipase 

changes upon hormonal stimulation. To address this issue we performed in vivo 

phosphorylation experiments by 32P-radiolabeling the intracellular pool of ATP. 

Preliminary experiments showed that high and similar levels of protein 

phosphorylation were reached at 90 and 120 min after the injection of 32P-

orthophosphate into the hemolymph. Thus, for the rest of the experiments, 

insects were injected with 32P -orthophosphate for 90 min prior to the injection of 

hormone. Hormonal stimulation was done for 20 min, and unstimulated tissue 

provided the level of protein phosphorylation corresponding to basal lipolysis.  

TG-lipase is localized in the cytosol and has an electrophoretic mobility which is 

very close to that of the storage proteins. Because the storage proteins are very 

abundant accounting for more than 85 % of the cytosolic proteins to study the 

phosphorylation of TG-lipase it was necessary to remove them. This was done 

by passing each cytosol (stimulated and basal) through an anionic exchange 

resin (Q Sepharose) as indicated under Methods. Figure 18A shows the TG-

lipase activity of the fractions eluted from Q-Sepharose with 185 mM NaCl 

corresponding to the cytosol fractions obtained from insects control and treated 
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with AKH. A moderate (1.6 fold) increase of lipase activity was detected in the 

samples from stimulated tissue. The fractions containing the majority of lipase 

activity (32-34) were pooled, and subjected to SDS-PAGE. After transferring the 

proteins to nitrocellulose membranes, the mass and phosphorylation level of TG-

lipase were determined by immunoblotting and autoradiography as indicated in 

Methods. As shown in Panel B (Figure 18), the western blots show that the 

majority of the lipase was contained in the peak fractions 32-34 (lanes 2). The 

western blot of fractions 25-31 and 35-40 are shown in lanes 1 and 3, 

respectively. It should be noted that the amount of total protein loaded in lanes 1 

and 3 was twice (14 µg) the amount loaded in lane 2 (7µg). Figure 18 panel C 

shows the autoradiography of the proteins in fractions 32-34. Similar levels of 

TG-lipase phosphorylation were observed in control and AKH-treated insects. 

TG-lipase was found to be constitutively phosphorylated and in vivo stimulation 

of lipolysis induced by AKH did not affect the level of phosphorylation of TG-

lipase.  

Lipid droplet-associated proteins were also separated by SDS-PAGE. 

Coomassie blue stained gels revealed about twenty different proteins ranging 

between 31 to 120 kDa. Confirming previous observations, the autoradiograms of 

32P-phosphoproteins of AKH lipid droplets showed an important change in the 

phosphorylation state of Lsdp1 a protein that migrates as a doublet of 42.6 / 44.2 

kDa (Figure 19). 
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Figure 18. Panel A- Elution profile of TG-lipase from Q-Sepharose column: Adult Manduca sexta 
were injected with [32PO4H3] and, after 90 min, with buffer (control, —□—) or AKH (—■—). After 
20 min, the fat body tissue was isolated and homogenized. The cytosolic extract, 100,000 x g 
supernatant of homogenate, was loaded into the column. The column was developed using 
sodium chloride gradient in equilibration buffer. TG-lipase was eluted with 185 mM NaCl in the 
same buffer. Lipase activity was determined against an emulsion of [3H]-triolein and Triton X-100 
as indicated in Methods. Determinations were done in duplicate.  Panel B- Western Blotting: 7 µg
of protein from fractions 32 to 34 (lanes 2) and 14 µg from fractions 25 to 31 (lanes 1) and 35 to 
40 (lanes 3) were separated by SDS-PAGE, transferred to nitrocellulose and analyzed by western 
blotting using anti-lipase antibody as indicated in Methods. Panel C-Phosphorylation of M. sexta 
fat body TG-lipase: In vivo 32P radiolabeled proteins eluting in fractions 32 to 34 were pooled and 
separated on 8% SDS-PAGE, transferred to nitrocellulose followed by autoradiography. 7 µg of 
protein for the pool of fractions 32-34 was loaded in the gel. The position of TG-lipase is indicated 
by the arrow.   
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Figure 19. SDS-PAGE and Autoradiography of phosphorylated lipid droplet proteins: In vivo 32P-
radiolabeled lipid droplets proteins (10 µg) were resolved on 10% SDS-PAGE and stained with 
Coomassie Brilliant Blue followed by autoradiography. Lanes 1 and 3 show the gel and 
autoradiography, respectively, of control-lipid droplets; lanes 2 and 4 depict the gel and 
autoradiography of AKH- lipid droplets. The position of Lsdp1 is indicated by the arrow. 
 

The comparison of the level of phosphorylation of TG-lipase and Lsdp1 

showed that while the phosphorylation state of Lsdp1 increased 280%, the level 

of phosphorylation of TG-lipase increased 9 % and that difference was not 

statistically significant (P=0.31) (Figure 20). Comparisons of the level of 

phosphorylation among the proteins of the three subcellular fractions showed 

that the increase in the phosphorylation of lipid droplet associated protein Lsdp1 

was the major change induced by AKH (data not shown). 
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Figure 20. Level of phosphorylation of TG-lipase and Lsdp1 from the fat body of control and AKH-
stimulated insects. Phosphorylation was quantified by densitometry as the ratio of the intensity of 
phosphorylation (autoradiography) to the mass (western blot). Values are relative to control 
values. Data represent the mean ± S.E (n = 5). Asterisk denotes a significant difference versus 
the control 
 
Contribution of AKH-induced changes in the cytosol and lipid droplets to 

the activation of lipolysis 

Since AKH induced a moderate activation of TG-lipase from fat body cytosol and 

a significant activation of the lipid droplets; we decided to determine the overall 

effect of AKH on the lipolysis under in vitro conditions. For this purpose we 

determined the rates of TG-hydrolysis catalyzed by cytosols isolated from control 

and AKH-treated insects against in vivo radiolabeled [3H]TG-lipid droplets 

isolated from the corresponding insects. The comparison of the rates of TG-

hydrolysis (Figure 21, “a” and “d”) shows a significant difference between control 

and AKH samples (P<0.05). The lipase activity of AKH-cytosol hydrolyzing AKH-

lipid droplets (11.1 ± 2.1 nmol TG/ min-mg) was 3.1-fold higher than the lipase 

activity of control-cytosol hydrolyzing control-lipid droplets (3.6 ± 0.5 nmol TG/ 

min-mg).  



73

Figure 21. Effect of activation of the enzyme and substrate on the activity of TG lipase: [3H]TG-
lipid droplets and cytosolic fractions were isolated from basal (control) and AKH-stimulated (AKH) 
fat bodies. Aliquots of lipid droplets containing 100 nmol of TG were used to measure the TG-
lipase activity of cytosols which is expressed in nmol TG hydrolyzed/ min mg protein. Data 
represent the mean ± S.E (n=4); Pab =0.09, Pcd =0.09, Pac =0.02, Pbd =0.04, and Pad=0.006. The 
asterisks denote a significant difference versus the basal condition (control cytosol and lipid 
droplets).  
 

In order to estimate the contributions from cytosol and lipid droplets to the 

overall process we also determined the lipase activity of control-cytosol against 

AKH-[3H]TG-lipid droplets (Figure 21 “c”) and vice versa (Figure 21 “b”). 

Comparison of control- and AKH-cytosol measured against control-lipid droplets 

(“a” and “b” in Figure 21) showed an  increase in lipase activity from 3.6 ± 0.5 to 

5.8 ± 1.5 nmol TG / min-mg (P=0.09). A similar effect of AKH was also observed 

when the lipase activities of the cytosols were measured against AKH-lipid 

droplets (“c” and “d”), the activity increased  from 7.4 ±1.4 (control-cytosol) to 

11.1 ± 2.1 nmol TG/ min-mg (AKH-cytosol), (P=0.09). The significance of the 

differences observed is low. However, the data still suggest that changes in the 
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cytosol could contribute to the overall lipolytic response provoked by AKH 

stimulation. 

As shown in the Figure 21 (“a” and “c”), the lipase activity of control-

cytosol is significantly (P<0.05) lower hydrolyzing control-lipid droplets (“a”  3.6 ± 

0.5 nmol TG/ min-mg) than AKH- lipid droplets (“c”  7.4 ± 1.4 nmol TG/ min-mg). 

A similar conclusion was reached when the activity of cytosol isolated from AKH 

treated insects was determined against control- and AKH-lipid droplets. The 

activity of AKH-cytosol was also significantly lower (P<0.05) when measured 

against control-lipid droplets (“b” 5.8 ± 1.4 nmolTG / min-mg) than against AKH-

lipid droplets (“d” 11.1 ± 2.1 nmolTG / min-mg).  These results indicate that the 

changes induced by AKH on the lipid droplets contribute with approximately a 2-

fold increase to the overall rate of lipolysis.    
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DISCUSSION  

Triglycerides are contained in the lipid droplets of fat body adipocytes. The 

lipid droplets are complex organelles composed of an outer layer of phospholipid 

and protein and an inner core containing more hydrophobic molecules such as 

TG (Londos et al. 1999: Brown, 2001). In order to hydrolyze TG, the TG-lipase 

must access the substrate and therefore it must interact with the lipo-protein 

surface of the lipid droplet. Given the location of the lipase substrate, the lipase 

activity is expected to be dependent on a number of physical chemical factors 

that define the properties of the lipid droplet surface. Among these factors, the 

surface concentration of the lipase substrate, the phospholipid composition and 

charge of the surface, as well as on the interaction with other proteins that cover 

the lipid droplet surface could play key roles on the lipase activity. Thus, in order 

to study the biochemical factors involved in the activation of the lipase, it is 

important to use in vitro systems that resemble as much as possible the 

physiological conditions. We have recently described the use of in vivo TG-

radiolabeled lipid droplets to determine the TG-lipase activity and used this 

approach to study the activity of purified TG-Lipase (Patel et al., 2005). In the 

present study we extended the use of radiolabeled lipid droplet to assess the role 

of cytosol and lipid droplets in the activation of lipolysis.  

The results obtained with this in vitro system indicate that AKH promotes a 

~3.1-fold increase in the rate of lipolysis. This study clearly showed that AKH-

induced modifications in the lipid droplets play a major role in activation of the 

lipolysis. Independently of the metabolic condition of the insect, the lipolytic 
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activity of cytosols showed a 2-fold increase (2.1-fold with control cytosol and 

1.9-fold with AKH cytosol) with lipid droplets from AKH treated insects. A 

comparison with the overall increase in lipolysis indicates that AKH-induced 

changes in the lipid droplets accounts for ~70% of the lipolytic response elicited 

by AKH. As recently reported (Patel et al., 2005), and also observed in the 

present study, activation of the lipid droplets appears to be directly related to 

phosphorylation of Lsdp-1.  

 On the other hand, comparison of the TG-lipase activities of cytosols 

suggested that AKH evokes some changes in the cytosol. As described in 

Results, the lipase activity of AKH-cytosol was 1.6-fold (against control-lipid 

droplets) or 1.5-fold (against AKH-lipid droplets) greater than the activity of 

control cytosol. Although the significance of these individual increases is lower, 

the fact that similar values were obtained with control and AKH lipid droplets 

gives further significance to the activation of the cytosol. Furthermore, the 

activation of the cytosol would be supported by the fact that activation of the lipid 

droplets, which represent a 2-fold increase, can only account for 70% of the 

overall activation process (3.1-fold increase in lipolysis). The ~1.5-fold increase in 

the cytosol activity of AKH treated insects would account for the remaining 30%.  

Since AKH induces a rapid activation of fat body PKA ( Arrese et al., 

1999) as well as a moderate activation of TG-lipase ( Arrese et al, 1996, Patel et 

al., 2004), it was thought that, in analogy to the human sensitive lipase (Strålfors 

and Belfrage, 1983: Olsson et al., 1984), fat body lipase activation was induced 

by PKA catalyzed phosphorylation (Arrese et al., 1999). Because TG-lipase can 
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be phosphorylated in vitro by purified PKA from the insect fat body, but the 

phosphorylation of the lipase failed to increase the enzymatic activity (Patel et al., 

2004;  Patel et al., 2005), we investigated whether or not AKH induces the 

phosphorylation of the TG-lipase. This study showed that the fat body TG-lipase 

from Manduca sexta is phosphorylated under basal conditions, and unlike Lsdp1, 

its level of phosphorylation remains unchanged upon stimulation of lipolysis by 

AKH. Therefore the increase of lipase activity of the cytosols induced by AKH is 

independent of the phosphorylation state of this protein. This confirms our 

previous suggestion based on results using the purified lipase that other proteins 

could be involved in the activation of lipase (Patel et al., 2004). The contribution 

of the cytosol to the lipolytic response could arise from a factor other than the 

lipase. For instance, AKH could trigger changes in the association of the lipase 

with other protein partners and, thus, modify the accessibility of the enzyme to 

the substrate or its activity.  

The protein partners could be typical cytosolic protein or proteins detached from 

the lipid droplet (e.g. Lsdp1). The elucidation of this issue will be a matter of 

future studies.    
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CHAPTER V 

THE MAIN TRIGLYCERIDE-LIPASE FROM THE INSECT FAT BODY IS AN 

ACTIVE PHOSPHOLIPASE A1: IDENTIFICATION AND FUNCTIONAL 

CHARACTERIZATION OF THE PHOSPHOLIPASE ACTIVITY 

 

INTRODUCTION 

The fat body is the principal organ for storage of lipids in insects. 

Triglycerides (TG) constitute the main lipid form representing about 90% of the 

total fat body lipids (Bailey, 1975; Arrese and Wells, 1997). The content of TG in 

the fat body is influenced by several factors, including development stage, 

nutritional state, sex, migratory flight.  In the tobacco hornworm, Manduca sexta,

which is widely used as a model insect, the content of fat body TG increases 

continuously until the end of the larval (feeding) period from few micrograms to 

80 mg (Fernando-Warnakulasuriya et al., 1988). During subsequent 

development, lipid reserves are mobilized to sustain the life of the adult insect 

(moth), which feeds occasionally (Arrese et al., 2001; Ziegler, 1991). TG is stored 

in fat body adipocytes as lipid droplets within the cytoplasm (Willot et al., 1988). 

Unlike vertebrates, where stored fatty acids are mobilized as free fatty acids, 

most fatty acids are released from the fat body to hemolymph as sn-1,2-

diacylglycerol (DG) (Arrese and Wells, 1997; Arrese et al., 1996). In circulation 

DG is carried by lipophorin, the insect lipoprotein, for delivery to tissues, e.g. the 



79

flight muscle, and ovaries, where it is hydrolyzed to fatty acids by a membrane-

bound lipophorin-lipase (Van Antwerpen and Law, 1992). 

TG lipolysis is under hormonal regulation by the neuropeptide adipokinetic 

hormone (AKH) (Gade and Auerswald, 2003), which elicits a glucagon-like action 

mediated by G protein-coupled receptor that activates both inositol phosphate 

and cAMP signaling responses (Gade et al., 1997; Staubli et al., 2002). In M. 

sexta the effect of AKH on the mobilization of energy reserves is dependent on 

the developmental stage. During the larval stage AKH mobilizes glycogen 

through the activation of glycogen-phosphorylase whereas it promotes a massive 

lipolytic response in the adult stage (Ziegler et al., 1990).The lipolytic response 

induced by AKH is associated with a rapid activation of fat body cAMP-

dependent protein kinase A (PKA) and a sustained increase in calcium influx 

(Arrese et al., 1999). The mobilization of TG is mediated by lipolytic enzymes. 

The major TG-lipase of the fat body has been purified from adult M.sexta (Arrese 

and Wells, 1994). This is a cytosolic enzyme with a molecular mass of 76 kDa 

that can be phosphorylated in vitro by PKA. Contrary to expectations, 

phosphorylation of the lipase induces only minor changes in the lipase activity 

(Patel et al., 2004; Patel et al., 2005). TG-lipase is constitutively phosphorylated 

and the level of phosphorylation remains constant when lipolysis is stimulated 

(Patel et al., 2006). Recent in vivo and in vitro experiments have shown that the 

enzyme does not bind tightly to the lipid droplets and its activity is highly 

correlated with the phosphorylation level of a lipid droplet-associated protein, 

Lsdp1 (Patel et al., 2005). AKH-induced lipolysis provokes a rapid 
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phosphorylation of Lsdp1, a protein that shares a small region of sequence 

identity with perilipin A from mammalian lipid droplets (Miura et al., 2002), and 

this event accounts for the majority of the lipolytic response induced by AKH 

(Patel et al., 2005 and 2006). Although significant details of the mechanism of 

lipolysis are emerging, these studies and many studies carried out in adipocytes 

of vertebrates clearly show that activation of lipolysis is a complex process that 

involves cytosolic proteins and lipid droplets associated proteins (Marcinkiewicz 

et al., 2006). The details of the interactions and signals that ultimately lead to an 

increase in the rate of TG hydrolysis remain to be elucidated. Here, we report the 

identification of the TG-lipase from M. sexta as the homolog of CG8552 (FlyBase 

annotation) from the fruit fly, Drosophila melanogaster. This study shows that the 

enzyme is conserved among insects and shares significant sequence similarity 

with vertebrate phospholipases from PA-PAL1. The identification of the lipase 

prompted us to study its possible phospholipase activity. Our data demonstrate 

that fat body TG-lipase has phospholipase A1 activity, which allows the hydrolysis 

of the phospholipid monolayer of the lipid droplets.  This finding suggests that the 

phospholipase activity of the insect lipase is sufficient to allow access of the 

lipase to TG which for the most part is contained in the core of the lipid droplets. 
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EXPERIMENTAL PROCEDURES 

Materials: [32P]-Orthophosphate was purchased from MP Biochemicals (Irvine, 

CA). L-α-1-palmitoyl-2-[1-14C]-oleoyl-sn-glycerol-3-phospho-choline was 

purchased from American Radiolabeled Chemicals (St.Louis, MO). [tri-9,10-

3H(N)]oleoylglycerol was purchased from PerkinElmer Life Sciences (Boston, 

MA). DEAE Sepharose Fast Flow, Phenyl Sepharose, Q Sepharose, and Ni 

Sepharose High Performance were purchased from Amersham Biosciences 

(Piscataway, NJ). Hydroxyapatite Bio-Gel HT Gel was from Bio-Rad (CA). 

M.sexta AKH was obtained from Peninsula Laboratories (Belmont CA). BEL, 

DEDA and MAFP were purchased from Alexis Biochemicals (San Diego, CA). 

Protease and phosphatase inhibitors were purchased from Sigma-Aldrich. Silica 

gel K6 plates were purchased from Whatman (Maidstone, England). pIEx-1 

Ek/LIC vector, Escherichia coli strain NovaBlue, BL21(DE3), Insect Gene Juice  

were obtained from Novagen (Madison, WI). Total mRNA from adult Drosophila 

melanogaster, Taq HiFi polymerase, dNTPs, Sf9 cells and Sf-900 II SFM 

medium were purchased from Invitrogen Corporation (Carlsbad, CA). DNA 

sequencing was performed by the Department of Biochemistry (Oklahoma State 

University) Core Facility using an ABI Model 3700 DNA Analyzer. All other 

chemicals were of analytical grade. 

Experimental Insects: M. sexta eggs were purchased from Carolina Biological 

supplies, and larvae were reared on artificial diet (Bell and Joachim, 1976). Adult 

insects were maintained at room temperature without food. To achieve consistent 
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basal levels of lipolysis, the insects were decapitated 24 hours ahead of the 

experiment and injected with 13 mg of trehalose two hours before the 

experiments (Arrese et al., 1996). 

 

Purification of TG-lipase: TG-lipase was purified from the cytosolic fraction of 

M. sexta fat body homogenates as reported previously with minor modifications 

(Arrese and Wells, 1994). Fat body tissue from 200 insects was collected in ice 

cold homogenization buffer (buffer H: 20 mM Tris, pH 7.4, 0.25 M sucrose, 1 mM 

EDTA, 0.1 mM benzamidine, 10 mg/l leupeptin, 1 mg/l aprotonin, 0.1 % 2-

mercaptoethanol). The tissue was homogenized with a Potter-Elvehjem glass 

homogenizer fitted with Teflon pestle and centrifuged at 100,000 x g for 1 hr. The 

cytosolic fraction was used to purify TG-lipase using a combination of anion-

exchange (DEAE Sepharose and Q Sepharose), hydroxyapatite and hydrophobic 

interaction (Phenyl Sepharose) chromatography. 

 

Protein Identification by Mass Spectrometry: Purified TG-lipase was 

separated by SDS-PAGE on 8% gel. The gel was stained with Coomassie Blue 

and the band was excised from the gel. The protein was cleaved with trypsin and 

then sequenced by microcapillary reverse-phase high pressure liquid 

chromatography nanoelectrospray tandem mass spectrometry on a Finnigan 

LCQ DECA XP Plus quadrupole ion trap mass spectrophotometer at Harvard 

Microchemistry Facility. The MS/MS spectra were correlated with known 

algorithm Sequest and program developed in that laboratory (Chittum et al., 
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1998). Protein sequence analysis by Edman degradation of some peptides 

separated by HPLC after trypsin digestion was also performed at the same 

facility. 

Expression and partial purification of recombinant CG8552: Total mRNA 

from adult Drosophila melanogaster was reversed transcribed using oligod (T)18-

primer. The resulting cDNA was used to amplify the coding region of CG8552 

(Accesion number NP_609185) from position 4203 -corresponding to the second 

methionine, amino acid residue 1354- to the C term -amino acid residue 2016- by 

PCR. The primers were 5′-GACGACGACAAGATGGCAAGTGCCAGCAGCGA 

AAGGGCCA-3′ and 5′-GAGGAGAAGCCCGGTTCACATCGGCAACAGCGAGT 

GGCTAAC-3′. The 5′ end of the primers incorporated the ligation-independent 

cloning (LIC) sequences (underlined). The amplified product was ligated into the 

vector pIEx-1 Ek/LIC after being treated with LIC-qualified T4 DNA polymerase. 

pIEx vector contains N-terminal His-Tag and S-Tag coding sequences and is 

designed for transient transfection and protein expression in Sf9 cells. The 

generated plasmid (pIEx-CG8552) was then transformed into E. coli strain 

NovaBlue, and the positive clones were confirmed by DNA sequencing. Sf9 

(Spodoptera frugiperda ) cells that were cultured in Sf9-900 II SFM medium were 

transfected with pIEx-CG8552 dissolved in Insect Gene Juice (Novagen, EMD 

Biosciences) according to manufacturer’s instruction. Suspension cultures were 

grown at 28°C with shaking at 140 rpm. Cells contained in 30 ml culture were 

harvested 48-h post-transfection and sedimented by centrifugation. Cells were 

resuspended in 5 volumes of cold homogenization buffer (20 mM phosphate, pH 
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7.8, 20% glycerol, 5mM DTT, 1 mM EDTA, aprotinin 1 mg/l) and lysed by 

sonication on ice in two steps of 30 sec each. The crude lysate was centrifuged 

first at 300 g, 20 min and then at 100,000 x g (1 h, 4°C) to separate cytosolic and 

membrane fractions. The 100,00 x g pellet contained most of the recombinant 

protein and was used for the purification. The pellet that was resuspended in a 

volume of homogenization buffer equivalent to the volume of cytosol fraction was 

combined with an equal volume of a solution containing 20 mM Tris pH 7.9, 500 

mM NaCl, 2 M urea and incubated for 2 h at 4 °C with orbital shaking. The 

solution was adjusted to 40 mM imidazole and combined with 2 ml of resin pre-

equilibrated with the same buffer. The slurry was incubated for 4 h. The resin 

was washed with ten bed volumes of wash buffer I (20 mM Tris, 500 mM NaCl, 

40 mM imidazole,0.5 mM DTT, pH7.9), followed by five bed volumes of wash 

buffer II (20 mM Tris, 500 mM NaCl, 75 mM imidazole,0.5 mM DTT, pH7.9). The 

flow was stopped, and the column was incubated for 4 h with one volume of 

elution buffer (20 mM Tris, 500 mM NaCl, 75 mM imidazole, 50 mM EDTA, 0.5 

mM DTT, pH7.9). Fractions were assayed for TG-lipase activity as described 

below.  

Assay for TG-lipase Activity: The final assay volume of 0.1 ml contained 50 

mM Tris, pH 7.9, 500 mM NaCl, 0.02 % (w/v) defatted bovine serum albumin 

(BSA), 0.5 mM EDTA, 2 mM dithiothreitol (DTT), 0.44 mM [9,10-3H] triolein 

(1.9mci / mmol) and 2 mM Triton X-100 and purified TG-lipase (0.5µg). The 

mixture was incubated at 37 ºC with constant shaking. After 30 min, the reaction 

was terminated by the addition of 500 µl of a mixture of chloroform-methanol-
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benzene (2/2.4/1, v/v/v) and 40 µl NaOH 1N. Aliquots of 150 µl from upper 

aqueous phase were transferred to scintillation vials for counting. Blank reactions 

did not contain enzyme. Enzyme activity was expressed as nmol of FFA /min-mg. 

Assays for TG-lipase activity of recombinant protein was performed under 

the same conditions as indicated above using [9,10-3H] triolein (7.6 mci / mmol) 

as substrate. Reaction was stopped by addition of 500 µl of chloroform-methanol 

(2:1, v/v) and 40 µl HCl 1 N.  Radiolabeled lipids from the organic phase were 

separated on TLC using hexanes:ethyl ether:formic acid (70:30:3 v/v/v) as 

developing solvent.  Regions of plate corresponding to TG, DG, MG and FFA 

were scrapped and quantified by liquid scintillation counting.  

 

Assay of Phospholipase activity: The final assay volume of 0.1 ml contained 

50 mM Tris, pH 7.9, 500 mM NaCl, 0.02 % (w/v) defatted BSA, 0.5 mM EDTA, 2 

mM DTT, 2 nmol of 1-palmitoyl-2-[1-14C]oleoyl-sn-glycerol-3- phosphocholine (18 

mCi/ mmol) and 2 mM Triton X-100 and purified TG-lipase (0.5µg). The mixture 

was incubated at 37 ºC with constant shaking. After 30 min, the reaction was 

terminated by the addition of 500 µl of chloroform/ methanol (2:1) and 5 µl of 6 N 

HCl. The organic phase was collected and dried. The lipids were separated by 

thin-layer chromatography (TLC) on Silica Gel K6 plates using 

chloroform/methanol/water (50:25:4) as the developing solvent. Spots 

corresponding to PC, LPC (phospholipase A1 activity), and FFA (phospholipase 

A2 activity) were scraped and their radioactivity determined by liquid scintillation 

counting. Blank reactions did not contain enzyme. Enzyme activity was 
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expressed as nmol of LPC and FFA / min-mg. The activity against phosphatidic 

acid (PA) was assayed under the same experimental conditions. PA was 

prepared by incubating 1-palmitoyl-2-[1-14C]oleoyl-sn-glycerol-3- phosphocholine 

with phospholipase D (type IV from cabbage). PA was purified by TLC and eluted 

from silica using a mixture of chloroform/ methanol/ acetic acid/ water 

(50/39/1/10). In inhibition studies the purified enzyme was pre-incubated for 10 

min at room temperature with inhibitor prior to the measurement of activity 

 

Preparation of endogenously [32P]-phospholipid-labeled lipid droplets:  

Insects were injected with 200 µCi of [32P]-orthophosphate. After 36 hr, insects 

were decapitated and injected with trehalose as indicated above. Tissue from two 

insects was pooled and homogenized in 6 ml of buffer H. Lipid droplets were 

purified as previously described (Patel et al., 2005). Typically, lipid droplets of 2 

insect fat bodies were resuspended in 0.5 ml of buffer. For lipid droplets under 

high lipolysis conditions, lipolysis was stimulated by injection of 100 pmol of AKH, 

whereas injection of buffer provided the basal lipolysis. The adipokinetic effect 

was confirmed by the phosphorylation of Lsdp1- the major phosphoprotein of the 

lipid droplet whose phosphorylarion is induced by AKH- that was monitored by 

SDS-PAGE and autoradiography (data not shown). 

 

Lipid composition of lipid droplets: Total lipids were extracted by adding 5 

volumes of chloroform-methanol (v/v) (Folch et al., 1957). The lipids in the 

extracts were separated by TLC using hexane-ethyl ether-formic acid 70/30/3 
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(v/v/v) as the developing solvent (Arrese et al., 2001). Plates were sprayed with 

3% cupric acetate in 8% orthophosphoric acid (v/v) and heating at 200ºC for 

charring (Hamilton and Hamilton, 1992). Plates were scanned on an imaging 

densitometer (Bio-Rad model GS-700). The intensity of spots was quantified 

using the Multi Analyst Macintosh software.  Results were expressed as 

percentage of total lipids (PL, MG, DG, TG, FFA, cholesterol, and cholesterol 

ester). Neutral glycerides were determined in the lipid extracts using the Infinity 

triglyceride reagent kit as described by the manufacturer (ThermoTrace Ltd, 

Melbourne, Australia). Phospholipids were determined by measuring inorganic 

phosphorous after digestion in deionized water and perchloric acid for 1 h at 

180 °C followed by addition of ammonium molybdate and ascorbic acid (Rouser 

et al., 1970). The sample was further heated for 5 min in a boiling water bath and 

cooled, and the absorbance read at 800 nm to quantify total phosphorous.  The 

mole ratio of neutral glycerides to PL was 102 ±9.4:1. 

Polar lipids from lipid droplet lipids extract were separated by TLC using 

chloroform-methanol-ammonia 28% (65/25/5) or chloroform-methanol-acetic 

acid-water (50/30/8/4) as the developing solvent. Individual phospholipids of the 

lipid droplets were made visible by charring as described above. Phospholipids 

were identified by comparison with standards run on the same plates. When 

analyzing [32P]-phospholipid-labeled lipid droplets, 32P-phospholipid forms were 

visualized by autoradiography. The intensity of phospholipid spots from the plate 

and autoradiogram scans were quantified as indicated above. Results were 

expressed as percentage of total phospholipids or total radioactivity, respectively.  
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Phospholipase and TG-lipase activity against [32P]-labeled lipid droplets: 

An aliquot of lipid droplet preparation containing 1 nmol PL and 100 nmol of TG 

was transferred to a glass tube containing TG-lipase reaction buffer. The reaction 

was initiated by adding TG-lipase (3 µg) in a final volume of 150 µl. Final reaction 

conditions were 50 mM Tris, pH 7.9, 500 mM NaCl, 0.02% (w/v) BSA, 2 mM 

DTT, 0.60 mM TG and 0.17 mM Triton X-100 (Patel et al., 2005). The mixture 

was gently vortexed for 20 s and incubated at 37 ºC with constant shaking. After 

30-45 min, the reaction was terminated by the addition of 750 µl of 

chloroform/methanol (2/1) and 5 µl of 6 N HCl. The organic phase was collected 

and dried. The lipids were separated by TLC using chloroform/methanol/ 

ammonia (65/25/5) as the developing solvent. 32P-labeled phospholipids were 

visualized by autoradiography. Autoradiograms were scanned and analyzed as 

described above. Blank reactions in which TG-lipase was omitted were used to 

obtain basal level of distribution of radioactivity. For TG-lipase activity, the spots 

corresponding to FFA (visualized by I2 vapors) were scraped from the plate, and 

fatty acids were eluted from silica using chloroform. The amount of FFA was 

estimated using non-esterified fatty acid detection kit as described by 

manufacturer (Wako Chemicals USA, Inc). 

 

Other methods: Protein concentrations were determined by the Bradford dye-

binding assay (Bradford, 1976) using bovine serum albumin as standard. SDS-

PAGE was performed according to Laemmli (Laemmli, 1970) and proteins were 

visualized by Coomassie Brilliant Blue R staining. Two different anti-lipase 
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antibodies were generated in chickens at Cocalico Biologicals (Reamstown, PA). 

The first antibody was produced using purified Manduca sexta TG-lipase as 

antigen. A second antibody was obtained using a mixture of two peptides 

(ERPVSHESSVSHSL and VGRVEVLPISWHGHLHSEE) that were coupled to 

KLH. Anti-S.Tag monoclonal antibody was purchased from Novagen (Madison, 

WI). Immunodetection was performed using the corresponding horseradish 

peroxidase-conjugated secondary antibody and ECL chemiluminescence 

reagents (Amersham Biosciences).  

Statistical comparisons were made by the Student’s t test. p≤0.05 was 

considered to be significant. 

 

RESULTS 

Identification of fat body TG-lipase 

To identify the triglyceride-lipase from the insect fat body, TG-lipase from M. 

sexta was purified to homogeneity following a previously reported procedure 

(Arrese and Wells, 1994), in which the enzyme activity is monitored using [3H]-

triolein as substrate.  The final preparation showed a single band in a 2-D PAGE 

with a relative mass of 74-76kDa and a pI of 5.8-6.0. The protein band obtained 

after the separation by SDS-PAGE on 8% acrylamide was excised and subjected 

to identification by LC/MS/MS as indicated in Material and Methods. LC/MS/MS 

revealed the presence of three peptides sequences that matched to D. 

melanogaster (Dme) CG8552-PA: CSWFYK, SVEEVVDDFR, MHLELK.     

Figure 22 shows the region of CG8552-PA (Accesion number NP_609185) in 
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which these peptides are found. This region is 662 amino acids long and extends 

from the second methionine (amino acid residue 1354) to the C term (amino acid 

residue 2016).  In addition, internal sequence of M.sexta TG-lipase was obtained 

by Edman degradation. The following peptide sequences were obtained: 

VEVLPIS, ATSLQLVQSHYK, YHWFYSVDVEDK. The sequence VEVLPIS is 

found in CG8552-PA, whereas the other two peptides shared a high degree of 

identity with two regions also present in CG8552-PA (Figure 22).  

Partial transcripts from Anopheles gambiae (Aga, Accession number 

XP_312576) and Apis mellifera (Ama, Accession number XP_392149) similar to 

CG8552 have been reported.  Both translates also contain similar sequences to 

those found in M. sexta TG-lipase (Figure 22). The complete coding sequence of 

CG8552 from Dme encodes for a product of 2016- amino acid residues.  The 

alignment of the deduced amino acid sequences from different insects shows a 

region of high conservation (53-58% identity) localized between amino acid 1354 

to 2016 of the Dme product (Figure 22).  This region includes the lipase 

consensus sequence (GXSXG), containing the active site Ser essential for 

catalysis (29) (Figure 22). In addition, two conserved domains, a DDHD domain 

(Accession number: PF02862) and a WWE domain (Accession number: 

PF02825), are also found in the same region. The DDHD is a long domain (180 

residues) towards the C terminus named after these four residues that may form 

a metal binding site (Figure 22). The WWE domain that is named after three of 

its conserved residues is localized between amino acid residues 1368 and 1446 

of the Drosophila protein (Figure 22). The WWE domain has been identified in  
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Figure 22. Amino acid sequence alignment of the partial deduced sequence from transcript 
CG8552 from Drosophila melanogaster (Dme, fruit fly) and corresponding  homologues from 
Anopheles gambiae (Aga, mosquito) and Apis mellifera (Ame, honey bee). The amino acid 
microsequence obtained from Manduca sexta is underlined. The numbering on the left indicates 
the position of that amino acid in the deduced amino acid sequence. Lines in the sequence are 
gaps introduced by the program (ClustalW) to optimize the alignment. Identical residues in all the 
sequences are denoted by asterisks; conservative substitutions are denoted by dots. The putative 
lipase catalytic site is boxed. Conserved domains are boxed in gray. 



92

diverse proteins with predicted ubiquitin- and ADP-ribosylation-related functions, 

and it is predicted to mediate specific protein-protein interactions (Aravind, 2001). 

In order to confirm the identification of the Manduca sexta TG-lipase as 

the homolog of CG 8552 from the fruit fly, the region localized between the 

second methionine (amino acid 1354) to the C-term (aminoacid 2016) of the Dme 

product shown in Figure 22 was cloned and expressed in the insect cell line Sf9 

as indicated in Material and Methods. The protein was expressed as a fusion 

protein containing a His10-Tag and S-Tag at the N-Terminal with an estimated 

size of 80.6 kDa that was confirmed by Western blot using S-Tag antibody. A 

single band of the predicted size was displayed in homogenates of transfected 

cells and was absent in the corresponding control cells (Figure 23A). In addition 

Western blots using two antibodies that react with Manduca sexta lipase were 

also performed. The first anti-lipase antibody was generated against purified 

M.sexta TG-lipase whereas the second anti-lipase antibody was produced using 

a mixture of two peptides found in CG8552-PA sequence from Dme. Figure 23B 

shows the Western blots of purified Manduca sexta TG-lipase (76 kDa) and 

recombinant CG8552 (80.6 kDa) probed with different antibodies. The antibody 

against M.sexta TG-lipase recognized the recombinant protein from CG8552 

(Figure 23B-panel 1). On the other hand the antibody against the peptides 

recognized M.sexta TG-lipase (Figure 23B-panel 2). As expected the antibody 

against the S-tag only recognized the fusion protein and did not react with 

purified M.sexta TG-lipase (Figure 23B-panel 3). The immuno cross-reactivities 

of the proteins and the presence of the lipase consensus sequence in CG8552-
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PA are consistent with the identification of M.sexta fat body TG-lipase based on 

the MS/MS study and the internal peptide sequences obtained by Edman 

degradation.  

 

Figure 23. Western analysis of recombinant Dme CG8552-(His10-S.Tag). A) Homogenates of 
transfected (T) Sf9 cells (30 µg/lane) and control (C) cells (30 µg/lane) were separated by SDS-
PAGE, transferred to nitrocellulose, and probed with anti-S.Tag antibody mouse monoclonal. 
Immunoreactive bands were visualized by probing the blot with an anti-mouse IgG horseradish 
peroxidase conjugate followed by reaction with ECL reagents and exposure to film. B) Blots 
containing purified Manduca sexta TG-lipase (lanes a, 1 µg/lane) and expressing Sf9 cells 
homogenates (lanes b, 30 µg/lane) were analyzed by Western blot using three different 
antibodies. 1-Anti-Manduca sexta lipase; 2- Anti-peptides-CG8552; 3- Anti-S.Tag antibody.  
 

Figure 24. Western analysis of the subcellular distribution and Ni affinity purification of 
recombinant Dme CG8552-(His10-S.Tag). A) Cytosol (C) and membrane (M) proteins expressing 
Sf9 cells were separated by SDS-PAGE, transferred to nitrocellulose, and probed with anti-S-
Tag. To normalize the load, 0.002 volume of each sample was loaded in each well.  B)
Membrane fraction resuspended in homogenization buffer was incubated in a solution containing 
1M urea, 40 mM imidazole, 250 mM NaCl, 0.5 mM DTT, pH 7.9 with Ni Sepharose. Resin was 
loaded in a column and developed as indicated in Materials and Methods. Samples from all 
chromatographic steps were analyzed by Western blot using anti-S.Tag antibody. 1-sample 
loaded in the resin (30 µg); 2-flow through (30 µg); 3- 40mM imidazole (2 µg); 4- 75 mM imidazole 
(2 µg) ;5- 50 mM EDTA elution in the presence of 75 mM imidazole (4 µg).   

 

For further characterization the recombinant protein was affinity purified 

and its ability to hydrolyze triglyceride determined. The majority (82.1± 5.7%) of 

the recombinant CG8552 protein was associated with the membrane fraction 
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(Figure 24A). The pellet was incubated in the presence of 1 M urea as described 

in Materials and Methods. The mixture was adjusted to 40 mM imidazole and 

incubated with Ni Sepharose resin. Under these conditions most of the fusion 

protein (87± 13%) bound to the resin. After extensive washes with 40 and 75 mM 

imidazole, the fusion protein was eluted with 50 mM EDTA in the presence of 75 

mM imidazole. Elution of the fusion protein can be done with 200 mM imidazole. 

However imidazole was avoided because at high concentration inhibited M.sexta 

TG-lipase activity. The fractions were analyzed by Western blot and TG-lipase 

activity. The fraction eluted with 50 mM EDTA contained recombinant protein and 

also exhibited TG-lipase activity (130 ± 4 nmol TG hydrolyzed/ min-mg) (Figure 

24B).  

A Blast search revealed two proteins with high sequence similarity in two 

regions of CG8552: a phospholipase A1 (KIAA0725p) and p125, a Sec23-

interacting protein. CG8552 showed 40.9% and 34.3% identity in a 696 aa and 

1000 aa overlap with KIAA0725 and p125, respectively. Likewise a region of 

CG8552 (321 aa) containing the lipase conserved sequence exhibits 30.5% 

identity with the phosphatidic acid-preferring phospholipase A1 (PA-PLA1,

Accession number Q8NEL9) (not shown). As a note the lipase consensus 

sequence in PA-PLA1 has a serine residue instead of glycine (SHSLG) (Higgs et 

al., 1998). In mammals these three proteins (KIAA0725p, p125, and PA-PLA1)

are being referred as the PA-PLA1 family (Tina et al., 1999). 
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Phospholipase and TG-lipase activities co-purifiy and are inhibited or 

resistant to identical lipase inhibitors  

Preliminary experiments with M.sexta purified lipase indicated that the enzyme 

had phospholipase activity. In order to confirm that this activity was inherent to 

the TG-lipase rather than to a contaminant, fat body TG-lipase  

 

Table 4. TG-lipase and phospholipase activity during the purification of TG-lipase from M. sexta 
fat body 
 

Phospholipase  TG-Lipase 
nmol FFA /min-
mg nmol LPC /min-

mg 
nmol FFA /min-
mg        

Ratio 
TG/PL 
hydrolyz
ed 

Cytosol       0.27± 0.04   0.007± 0.001   0.012 ± 0.001       14 
DEAE I        8.5 ± 0.4    0.04 ± 0.004     0.064 ± 0.003          82 
DEAE II      17.2 ± 0.6       0.08 ± 0.001    0.098 ± 0.005          97 
Phenyl 
Sepharose I 

 38.0 ± 1.8    0.13 ± 0.002     0.18 ± 0.01        123 

Hydroxyapatite       565 ± 4    1.00 ± 0.01     0.58 ± 0.06        357 
Q Sepharose        730 ±18    1.50 ± 0.02     0.80 ± 0.04        317 
Phenyl 
Sepharose II 

 1086± 8     2.21± 0.07     0.89 ± 0.11        350 

Lipase activities hydrolyzing [3H]-triolein and 1-palmitoyl-2-[1-14C]-oleoyl-sn-glycerol-3-
phosphocholine were determined after each purification step as described in Material and 
Methods. Data represent the mean ± S.E. (n=3). 
 

was purified monitoring the lipase activity against [3H]-triolein and  determining 

phospholipase activity of the fractions containing TG-lipase activity. Table 4 

shows TG-lipase and PL-lipase activities during the purification. The preparations 

showed a significantly higher activity hydrolyzing TG than PL, and both specific 

activities were increasing with the purification. The final preparation represented 

a 4000–fold purification of TG-lipase, and showed a major protein band in a 

SDS-PAGE of molecular mass 76kDa   (Figure 25A). Western blotting analysis 
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confirmed that the band corresponds to TG-lipase (Figure 25B). The proportion 

of TG versus PL hydrolyzed was used to assess the progress of the lipase 

purification. This ratio increased during the first steps of the purification indicating 

the presence of other phospholipases. However, the ratio remained relatively 

constant through the last three chromatographic steps. At the same time the 

degree of purification of the TG-lipase was increasing as judged by the specific 

activity and the protein composition observed in the SDS-PAGE gel. Altogether 

the data indicated that the phospholipase activity associated with the TG-lipase is 

an intrinsic activity of the enzyme.  Moreover, Ni-affinity purified recombinant 

CG8552 protein was also assayed for phospholipase activity.  The recombinant 

protein hydrolyzed [14 C]-PC at a rate of 0.35± 0.01 nmol PC / min-mg. This result 

provides further support to the finding indicating that M.sexta TG-lipase also 

possesses phospholipase activity.   

The specificity of the phospholipase activity of the insect lipase was 

determined using 1-palmitoyl-2[1-14C]oleoyl-sn-glycerol-3-phosphocholine 

solubilized in Triton X-100 micelles. TLC analysis of the radiolabeled products of 

PL hydrolysis showed that 70 % was [14C]-lysoPC and 30 % [14C]-fatty acid 

indicating a lipase preference for the sn-1 position.  Moreover, as previously 

shown for the TG-lipase activity, the phospholipase activity was calcium 

independent.  
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Figure 25. M. sexta fat body TG-lipase purification. A) SDS-PAGE: a) and b) first and second 
DEAE (20 µg and 10 µg, respectively); c) first Phenyl Sepharose (8µg); d) hydroxyapatite (4.5µg); 
e)Q Sepharose (2.5 µg); f) second Phenyl Sepharose (1µg); B) Western Blot of the same 
fractions. 10 µg of protein was loaded in  lanes a), b) and c); 2 µg in lane d), and 1.4 µg and 1 µg
in lanes e) and f), respectively. The faint band at ~92 kDa seen in lane f was identified by maldi-
tof as glycogen phosphorylase.

Given the homology found between M. sexta lipase and vertebrate 

phospholipases from PA-PAL1 family, it was interesting to know whether the M. 

sexta TG-lipase hydrolyzes phosphatidic acid (PA). The enzyme hydrolyzed PA 

at a lower rate than PC under the same assay conditions, 1.07± 0.04 nmol PA 

/min-mg and 2.85 ± 0.04 nmol PC/ min-mg, respectively. Likewise, TG-lipase 

showed a strong preference for sn-1 position of PA. 

Phospholipases inhibitors were evaluated for their abilities to discriminate 

between the PL- and TG-lipase activities. DEDA (7,7-dimethyleicosadienoic acid) 

and BEL (bromoenol-lactone), which are PLA2 inhibitors, were unable to inhibit 

PL- or TG-lipase activities at the expected concentrations. On the other hand, the 

phospholipase activity was sensitive to MAFP, a methyl arachidonyl 

flurophosphonate analog of arachidonic acid, that binds irreversibley to serine 

residues and is a potent phospholipase inhibitor (IC50= 0.5-5 µM) (Lio et al., 
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1996). Preincubation of the enzyme with 5µM MAFP inhibited both lipase 

activities to a similar extent (83.5 ± 8.2 % inhibition of PLase and 84.5 ± 2.0 % of 

TG-lipase) providing further support to the notion that a single active site is 

involved in the hydrolysis of PL  and TG.  

The concentration-dependence of lipase activity with TG and PL 

substrates determined in micellar substrates of Triton X-100 micelles at pH 7.9, 

0.5 M NaCl, 0.5 mM EDTA, and 2 mM DTT showed saturation kinetics with 

apparent Kms of 152 ± 11 µM and 7.8 ± 1.1 µM, respectively, and Vmax of 560 ± 

10 nmol TG/ min-mg and 5.5 ± 0.3 nmol PC/min-mg, respectively. These values 

indicate that the enzyme has a strong (5-fold) preference for acylglycerides over 

phospholipids.  

 

Phospholipase activity against the native susbtrate (lipid droplets) 

The fact that TG-lipase has phospholipase activity against the micellar substrate 

suggested that the enzyme may catalyze the hydrolysis of native phospholipids 

present in the surface of the lipid droplets. As shown in Table 5, lipids of lipid 

droplets isolated from fat tissue of M. sexta consist of TG with small amounts of 

PL, DG, FFA and cholesterol ester. This lipid composition is consistent with lipid 

compositions of lipid droplets isolated from other sources (Okuda et al., 1994; 

Zweytick et al., 2000). PC and PE were the main phospholipid forms 

representing 60% of total phospholipids (Table 5). Although most lipid droplets 

isolated from other systems also exhibited PC as the major phospholipids 
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component, a higher content of PE and lysoPL was observed in M.sexta lipid 

droplets than in lipid droplets from vertebrate adipose tissue or plants.  

 

Table 5. Lipid composition of the lipid droplet isolated from M.sexta fat body 
 

Values of total lipid composition were expressed as percentage of total lipids (PL, phospholipids; 
CHO, cholesterol; CE, cholesterol ester; FFA, fatty acids; DG, diglyceride; TG, triglyceride). 
Values of phospholipid composition were expressed as percentage of total phospholipids (PC, 
phosphatydilcholine; PE, phosphatydilethanolamine; LPC, lysoPC; LPE, lysoPE; PS, 
phosphatydilserine; PI, phosphatydil-inositol; SM, shpingomyelin). Data represent the mean ± 
S.E. (n=3). 
 

In order to assay phospholipase activity of TG-lipase against the lipid 

droplets, cellular phospholipids were radiolabeled in vivo and lipid droplets were 

isolated. The distribution of radioactivity among radiolabeled phospholipids of 

lipid droplets was: PC and PE represented the 39.8 ± 1.9 and 20.2± 0.3% of total 

radioactive phospholipids, whereas radioactive LPC and LPE were radiolabeled 

14.9 ± 0.5 and 9.6 ± 1.2 %, respectively. PS and PI combined represented 14.6 ± 

0.14 %, and SM was 3.0 ± 0.3% of total radioactive phospholipids. The 

comparison of the distribution of radioactivity among phospholipids was very 

close to the distribution of mass (Table 5) indicating that the radiolabeling 

procedure yielded homogenously radiolabeled phospholipids. [32P]-lipid droplets 

were incubated with purified TG-lipase under the conditions previously identified 

to measure TG-lipase activity against the native substrate (Patel et al., 2005). 

Total Lipids (%)    Phospholipids (%)                                                  

TG 87.8 ± 0.4  PC 41.2 ± 1.1 
1,2-DG  3.5 ± 0.4  PE 21.0 ± 0.6 
FFA  3.4 ± 0.2  LPC 12.0 ± 1.0 
CE  3.2 ± 0.3  LPE  9.1 ± 1.0 
CHO  0.6 ± 0.2  PS+PI 12.0 ± 2.1 
PL  0.8 ± 0.1  SM  2.5 ± 0.5 
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After reaction, the main PL classes were separated by TLC and quantified by 

autoradiography.  The decrease of radioactivity associated with PC and PE with 

the concomitant increase of radioactivity in LPC and LPE proved that the enzyme 

has the ability to hydrolyze both PC and PE (Figure 26 A-B).  

 

Figure 26. Phospholipase activity of TG-lipase against endogenously [32P-phospholipids]-labeled 
lipid droplets. A) TG-lipase was incubated with [32P]PL-radiolabeled lipid droplets that were 
isolated from insects with basal lipolytic activity. PL classes were separated by TLC and 
quantified by autoradiography and densitometry.  The figure shows the autoradiogram of a 
representative TLC plate obtained with: (a) control lipid droplets (no lipase); (b) lipid droplets 
incubated with 3µg of purified TG lipase; (c) lipid droplets incubated with 6 µg of purified TG-
lipase. All reactions contained 1nmol of total phospholipids (100 nmol of TG) and were incubated 
for 45 min. PE, phosphatidylethanolamine; PC, phosphatidylcholine; LPE, lysoPE and LPC, 
lysoPC. B) Phospholipase activity expressed as nmol of PC and PE hydrolyzed / min by 3 µg and 
6 µg of TG-lipase. To calculate the amount of PC and PE hydrolyzed, the values of the blank 
(incubation of the substrate with 0 µg TG-lipase) were substracted to the corresponding amount 
of PC and PE.  Data represent the mean ± S.E. (n=4). 

 

A simultaneous analysis of the TG-lipase activity hydrolyzing PL and TG 

contained in the lipid droplets showed that the enzyme hydrolyzes 77 molecules 

of TG for every molecule of PL contained in the lipid droplets (Table 3). The ratio 
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of hydrolysis of TG to PL determined with lipid droplets was much lower than the 

corresponding ratio obtained with separate micellar substrates under similar 

conditions. Using the Km and Vmax values obtained with micelles, and the 

concentrations of TG and PL found in the lipid droplets one would expect a ratio 

of activities of 750.  The fact that the ratio of hydrolysis of TG to PL determined 

with lipid droplets is much lower than the ratio estimated from the data obtained 

with micelles is indicative of the lower accessibility of TG in the lipid droplets.  On 

the other hand, consistent with a surface location of PC in the lipid droplets, 

similar phospholipase activities were observed in micelles and lipid droplets 

(Table 6).  

 

Table 6.  Lipase activity of TG-lipase against native and artificial substrates 
 

Lipase activity 
(nmol/min-mg) 

Substrate Assay conditions a

TG   PL 

Lipid droplets 600µM TG, 2.8µM PC, 1.4 µM PE, 
0.17 mM Triton X-100,  

77.2 ± 1.2 1.07 ± 
0.05 

[3H]-Triolein in micelles 660µM TG, 2.7 mM Triton X-100 455 ± 12  

[14C]-PC in micelles  
 

4µM PC, 0.68 mM Triton X-100  1.63 ± 
0.02 

TG- and PL-lipase activities of the enzyme were determined with the native substrate (lipid 
droplets) and the artificial substrate (micelles of Triton X-100) as described in Material and 
Methods under the conditions specified in the table. Data represent the mean ± S.E. (n=3). 
a All reactions were performed in 50 mM Tris, 500 mM NaCl, 0.5 mM EDTA, 2 mM DTT, pH 7.9. 

In order to evaluate a possible role of the phospholipase activity in vivo,

the phospholipid compositions of the lipid droplets isolated from control and 

lipolyticaly stimulated insects (5, 10, 20 and 30 min after hormonal injection) were 

analyzed. This study showed that the relative content of PE and PC slightly 
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decreased in the lipid droplets isolated from stimulated tissue. Significant 

differences in the content of the major phospholipids of the lipid droplets were 

found 10 and 20 min after the hormonal stimulation (Figure 27A). The reduction 

of PL content was accompanied by a bigger reduction in the content of lipid 

droplets TG (Figure 27B).   

 

Figure  27. Effect of stimulation of lipolysis on the content of the major phospholipids of the lipid 
droplets. A) [32P]PL-radiolabeled lipid droplets were isolated from insects with basal and 
stimulated (5, 10, 20 and 30 min after AKH treatment) lipolysis and analyzed by TLC and 
autoradiography. The intensity of phospholipid spots from autoradiogram scans was quantified as 
indicated in Material and Methods. Values were expressed as percentage of total phospholipids. 
B) The content of TG and PE+PC of the lipid droplets is expressed as nmol / µg of total lipid 
droplet proten. Data represent the mean ± S.E. (n=4-8). *, p ≤ 0.05 vs control. 
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DISCUSSION 

Lipolysis of TG is extremely active during long-term flight in insects such 

as M. sexta, and this process can be mimicked by the injection of AKH in the 

hemolymph (Arrese et al., 1996). Mobilization of TG stores from lipid droplets is 

catalyzed by TG-lipases. The fat body of M.sexta has a major cytosolic TG-lipase 

that represents the only insect TG-lipase purified and characterized (Arrese and 

Wells, 1994). This study shows that TG-lipase is the homolog of D. melanogaster 

CG8552. Based on homology searches, the predicted functions for this gene are 

phospholipase A1 activity and metal ion binding. This work shows that a major 

function of CG8552 is the hydrolysis of TG in insect adipocytes and confirms 

that, as predicted, the enzyme has phospholipase activity. Furthermore, this 

gene appears to be conserved among insects (Figure 22).  

CG8552 has a 6.5 kb transcript that encodes for a 214 kDa putative 

protein. This translation product is larger than the M. sexta TG-lipase. However, 

analysis of the coding sequence using GeneMark.SPL identified the presence of 

alternative start codons. Although the consensus sequence for Drosophila 

(Cavener and Krasney, 1991) is not present at neither of these start codons, 

according to Kozak (Kozak, 2005) the sequence context in the proximity of the 

second start codon (at position 4203) seems more favorable for initiation of 

translation than the first start codon. This raises the possibility that the functional 

initiaton site could be located at the second start codon. Initiation of translation at 

the second start codon would result in a 662 amino acids long protein with a 

calculated molecular mass of 75kDa and a theoretical isoelectric point of 5.62. 
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These calculated parameters coincide with the experimental values obtained with 

the purified TG-lipase. All the peptide sequences obtained from M. sexta as well 

as the  sequence GHSLG identified as the active site corresponding to the 

consensus sequence GXSXG characteristic for lipases are present in that region 

of 662 amino acid depicted in Figure 22. The fact that the recombinant protein 

generated from the second initiation codon of CG8552 to the stop codon that was 

expressed in Sf9 cells showed both TG- and PL- lipase activites supports this 

possibility. Alternatively, initiation of translation at the first start codon would imply 

that the lipase is the result of post-translational modification of a much larger 

precursor. In that case an unusual protein of ~139kDa that lacks internal 

methionine residues would be also produced in addition to TG-lipase.   

 

Comparison between the insect lipase and other proteins 

Drosophila CG8552 has significant sequence similarities with the proteins p125, 

KIAA0725, and PA-PAL1. These proteins share a central and C-terminal region 

and were considered to form the PA-PLA1 mammalian family (Tani et al., 1999; 

Nakajima et al., 2002). KIAA0725 is a cytosolic phospholipase A1 ubiquitously 

expressed in human tissues whose physiological function is unknown (Nakajima 

et al., 2002) whereas PA-PLA1 is a cytosolic phospholipase highly expressed in 

human testis that preferentially hydrolyzes phosphatidic acid (Higgs et al., 1998). 

The expression of these enzymes in adipose tissue is unknown.  p125 localizes 

in endoplasmic reticulum (ER), and has high sequence similarity with KIAA0725. 

It also contains an N-terminal proline-rich region responsible for the interaction 
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with Sec23p (Tani et al., 1999), and seems to be involved in the organization of 

ER exit sites (Shimoi et al., 2005).  

At least three distinct regions can be recognized in Drosophila CG8552, 

the lipase consensus sequence, and the conserved domains WWE and DDHD. 

KIAA0725 is the only member of PA-PLA1 mammalian family that has all the 

regions present in CG8552. Moreover, PA-PLA1 possesses a coil-coil forming 

region and a potential transmembrane domain (Higgs et al., 1998). p125, 

KIAA00725, and CG8552 also exhibit a potential transmembrane region that is 

localized in a region that contains the lipase active site. On the other hand, there 

is no indication of potential coil-coil region in CG8552 nor KIA00725 as it is seen 

in PA-PLA1 and p125. Altogether the information suggests a closer functional 

relationship between CG8552 and KIAA00725 than between CG8552 and the 

other two proteins.  

Genes of the PA-PLA1 family were found in yeast (YORO22c), C. elegans 

(MO3A1.6), and plants (SGR2) (Kato et al., 2002). These genes encode proteins 

that share less similarity with TG-lipase. The proteins of this family have in 

common a sequence containing a lipase active site and a DDHD domain. 

However, phospholipase activity is exhibited by PA-PLA1 (Higgs et al., 1994), 

KIAA00725 (Nakajima et al., 2002) and CG8552 (this study) but not by p125 

(Nakajima et al., 2002) and SGR2 (Kato et al., 2002). The biological function of 

proteins of PA-PAL1 family is unknown or not well defined. The present study 

identifies CG8552 as a major player in the hydrolysis of TG in insects. This 
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information could be beneficial for the characterization of other proteins of this 

family. 

The lipase identified in this study is unrelated to the known TG-lipases 

identified so far from vertebrate adipocytes. The fat body TG-lipase shares 

several functional similarities with HSL (Stralfors et al., 1987) such as its 

preference for the primary ester bonds of TG, faster hydrolysis of DG than TG (2- 

and 10-fold for TG-lipase and HSL, respectively), phosphorylation by PKA, and 

reducing conditions for activity. On the other hand, HSL has no detectable 

phospholipase activity (Yeaman, 2004), and it does not have significant 

sequence similarity. In addition to the extensively studied HSL, four new TG-

lipases from vertebrate adipocytes have been recently disclosed (Jenkins et al., 

2004; Soni et al., 2004; Zimmermann et al., 2004).  Interestingly, three of them, 

adiponutrin, TTS-2.2, and GS2, are members of the calcium-independent 

phospholipase A2 family. These proteins have a high TG lipase activity and acyl-

transacylase activity and a much lower phospholipase activity (Jenkins et al., 

2004). TTS-2.2, also designated desnutrin or ATGL, might act coordinately in the 

catabolism of TG (Zimmermann et al., 2004) particularly under basal conditions 

(Langin et al., 2005). An ATGL homolog in Drosophila has been reported, and a 

functional role of this lipase on lipid homeostasis in Drosophila has been 

indicated, since the loss of ATGL activity causes obese flies whereas its 

overexpression depletes the fat stores (Gronke et al., 2005). The insect TG-

lipase identified in this study is unrelated to the ATGL homolog or any other 
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protein from Drosophila including the previously reported lipases lip1, lip2 and 

lip3 that have been identified through homology searches (Pistillo et al., 1998).  

 Lipoprotein lipase (LPL), hepatic lipase (HL), pancreatic lipase (PL) and 

endothelial lipase (EL) are enzymes of the lipase gene family that hydrolyze 

triglycerides and phospholipids to different extents (Hide et al., 1992; McCoy et 

al., 2002). The ratio of TG-lipase to PL-lipase activity for the human lipases is 

833, 139.9, 24.1 and 0.65 for PL, LPL, HL and EL, respectively (McCoy et al., 

2002; Verger et al., 1984). This ratio for M.sexta fat body TG-lipase activities 

measured with the artificial and natural substrates was 350 and 72, respectively.  

Within the limitation of this comparison due to the difficulties of comparing lipase 

activity determined under different conditions, these ratios indicate that the lipase 

activity M. sexta TG-lipase on phospholipids is intermediate between LPL and 

PL.   

 

Role of the Phospholipase Activity in the Activity of TG-lipase 

The action of the lipase on TG contained in the lipid droplets requires its intimate 

association with the lipid substrate. All types of lipid droplets identified so far are 

characterized by a hydrophobic core coated by a monolayer of phospholipids 

embedded with proteins (Zweytick et al., 2000). The process by which the lipase 

gains access to TG is unknown. Given the low solubility of TG in both water and 

phospholipids, the surface of the lipids droplets is likely to have a very low 

concentration of TG. Experimental estimation of the solubility of TG in PL bilayers 

and monolayers indicate that between 1 and 2 % of TG could be solubilized in 
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phospholipids surface (Spooner et al., 1987; Handa et al., 1992). A comparison 

of the kinetic data obtained in this study also suggests that the surface 

concentration of TG in the lipid droplet is very low. This low surface TG 

concentration is expected to limit the accessibility of the lipase to the TG 

substrate and thus the rate of lipolysis. However, in this context, one could 

envisage that the intrinsic phospholipase activity of the lipase could generate a 

higher local concentration of TG resulting in a higher rate of lipolysis. As shown 

in this study, the fat body TG-lipase was capable of hydrolyzing the main 

phospholipids of the insect lipid droplets, PC and PE, in vitro. On the other hand, 

analysis of the phospholipid composition of the lipid droplets isolated from insects 

under basal and stimulated lipolysis revealed that the lipolytic process stimulated 

by AKH involves partial hydrolysis of main phospholipids of the lipid droplets. 

Altogether these results support the notion that the dual phospholipase/TG lipase 

activity of the lipase could actually take place in vivo. Based on this information it 

is proposed that the phospholipase activity of the insect TG-lipase is sufficient to 

allow access of the lipase to TG molecules contained in the core of the lipid 

particles.  The fact that several TG-lipases from vertebrate adipocytes that have 

TG lipase activity also are capable of hydrolyzing phospholipids supports the 

idea that the dual lipase activity could be a requirement of lipases hydrolyzing TG 

in lipid droplets. On the other hand, TG-lipases lacking phospholipase activity, 

such as HSL, could require additional steps of activation to allow access of 

enzyme to the core of the lipid droplets as it has been previously speculated 

(Zweytick et al., 2000).  
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Chapter VI 

TG-LIPASE EXPRESSION IN THE FAT BODY OF M. SEXTA DURING 

DEVELOPMENT 

INTRODUCTION 

Larvae of the tobacco hornworm, Manduca sexta, feeds constantly and stores 

carbohydrates and lipids as a major energy reserves in a very short time 

(Beenakkers et al., 1985; Arrese et al 1997). The larvae weight less than 1 mg 

when they hatch and 2 weeks later weight more than 10 g. The content of the 

lipids increases from few µg on hatching to ~80 mg at the end of the larval stage 

(Fernando-Warnakulasuriya et al., 1988). During the pupal period, these lipid 

reserves are used to support metamorphosis and at the adult stage to support 

the energy demands of flight and reproduction (Ziegler, 1991). Thus, during 

development the fat body tissue changes from lipid-storing tissue to a lipid-

mobilizing tissue (Tsuchida and Wells, 1988). 

 The mobilization of these energy reserves depends upon the 

developmental stage and is under the hormonal regulation by the neuropeptide 

AKH. During the energy requiring activities, AKH mobilizes glycogen in the larval 

stage, whereas it promotes a massive lipolytic response in adult stage (Ziegler et 

al., 1990a). Also, AKH has been shown to mobilize lipids in M. sexta larva 

(Ziegler et al., 1995) and Locust (Mwangi and Goldsworthy, 1977); however the 

extent of lipids mobilized is small amount. Moreover, signal transduction of
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AKH also causes the intracellular increase of the same second messengers, 

cAMP and calcium, in larvae and adult stage (Wang et al., 1990; Vroemen et al., 

1995 and 1998; Arrese et al., 1999). These results indicate that identical AKH 

receptor and its second messengers exist in both stages of an insect. The down 

stream signal of AKH activates the respective enzymes in energy mobilization. In 

M. sexta, AKH has been shown to activate glycogen phosphorylase in the larval 

stage (Ziegler et al., 1990) and TG-lipase in the adult stage (Arrese et al, 1996). 

Moreover, Ziegler (1991) showed that AKH also activates glycogen 

phosphorylase in adult insects. However, nothing is known about the existence of 

TG-lipase in the larval fat body. Since we are interested in understanding 

mechanism of TG-lipase activation in adult M. sexta, it would be logical to ask, if 

TG-lipase is present in the larval fat body? If it is present, how AKH prevents its 

activation, since larvae does not mobilize lipids. This information will help us to 

understand the mechanism by which AKH regulates the fat body TG-lipase 

activity in the adult insect.  Availability of antibody against TG-lipase and 

knowledge of TG-lipase activity assay prompted us to investigate the expression 

pattern of TG-lipase during the developmental stages of M. sexta.
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EXPERIMENTAL PROCEDURES 

Homogenate 

All steps were carried out on ice or at 4 ºC. Fat body tissue from 5 insects was 

pooled and homogenized with a Potter-Elvehjem glass homogenizer fitted with 

Teflon pestle, using 6 ml of homogenization buffer (50 mM Tris, pH 7.4, 0.25 M 

sucrose, 2 mM EDTA, 0.2 mM benzamidine, 10mg/l leupeptin, 1 mg/l aprotonin, 

2 mM Dithiothreitol). The homogenate was overlaid with 2 ml of buffer without 

sucrose, and subjected to ultracentrifugation at 65,000 x g for 1 hr. The 

infranatant (cytosolic fraction) was collected and analyzed for TG-lipase activity 

and protein levels or was passed through Q-sepharose column equilibrated with 

buffer (10 mM Na2HPO4, pH 7.4, 1 mM EDTA, 0.1% 2-mercaptoethanol (v/v), 0.1 

mM benzamidine, 0.02 % Triton X-100, 10 mg/l leupeptin, 1 mg/l aprotonin). After 

extensive wash with equilibration buffer, proteins were eluted with a NaCl 

gradient (20-150 mM) in the same buffer. TG-lipase was eluted in one fraction 

with 300 mM NaCl in the same buffer.  

 

Assay for TG-lipase activity 

Lipase activity was assayed using micellar [3H] triolein substrate as described 

previously (Arrese and Wells, 1994). The final assay volume of 0.1 ml contained 

50 mM Tris, pH 7.9, 500 mM NaCl, 0.02 % defatted bovine serum albumin, 1 mM 

EDTA, 2 mM dithiothreitol, 0.22 mM [3H]triolein (4 µCi/µmol), and 1 mM Triton X-

100. The reaction was initiated by adding cytosolic fraction. The mixture was 

gently vortexed for 20 s and incubated at 37 ºC with constant shaking. After 30 
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min, the reaction was terminated by the addition of 500 µl of an extraction 

mixture consisting of chloroform/methanol/benzene (2:2.4:1), containing 0.1 µmol 

of unlabeled oleic acid as carrier. Then, 40 µl of 1 N NaOH were added to the 

mixture. The mixture was vortexed for 1 min and centrifuged at 2000g for 2 min. 

Aliquots of 150 µl from the upper aqueous phase were transferred to scintillation 

vials for counting. Enzyme activity was expressed as nmol of FFA formed 

/min/mg protein.   

 

Western-blot 

Polyclonal antibodies against purified TG-lipase were raised in chicken at 

Cocalico Biologicals (Reamstown, PA). For western blotting, proteins were 

separated by SDS-PAGE (8%) according to laemmli (1970), and transferred to 

nitrocellulose membranes. Immunodetection was performed using anti-TG-lipase 

antibody. After incubation of membrane with horseradish peroxidase-conjugated 

rabbit anti-chicken secondary antibody, peroxidase activity was detected using 

ECL chemiluminescence reagents (Amersham Biosciences).   
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RESULTS and DISCUSSION 

 

Expression of fat body TG-lipase  

The presence of TG-lipase activity during the development of M. sexta fat body 

was studies in tissue homogenate. Our results identified that TG-lipase activity is 

present in the larvae and adult insects (Figure 28). In the larval stage, TG-lipase 

activity increases as insect grows and the maximum activity was observed during 

early 5th instar. The activity then decreases in late 5th and wanderer stage, and 

finally no activity was detected during entire pupal stage. Since adult insect rely 

on lipids as a major energy source, we further plan to examine the expression of 

TG-lipase after eclosion. As shown if figure 28, we identified that minimal TG-

lipase activity was present in 1 hr adult insect after eclosion and there was no 

significant increase in lipase activity upto 6 hr of adult life. The lipase activity then 

increases and reaches its peak at 48 hrs after eclosion. The TG-lipase activity in 

48 hrs adult insect fat body was ~4 fold higher than that observed in 5th instar 

larvae insects. TG-lipase activity in adult insects is in good aggrement with a 

previous study carried out in adult M. sexta (Ziegler, 1984). Using hemolymph 

lipid levels as an indicator of AKH effect, Ziegler (1984) showed that the 

adiopokinetic response of adult M.sexta develops several hours after the 

imaginal molt and no or a very week response is found during the first 8 hrs of 

the adult life. After 16 hrs of adult eclosion the insect is sensitive to AKH, but the 

response is even greater on the second day of adult life.  



114

We also examined the TG-lipase protein levels during development using 

antibodies raised against purified TG-lipase from adult M. sexta. As shown in 

figure 29, the TG-lipase protein levels of larval samples coincide very well with 

the TG-lipase activity. These results indicate that the identical TG-lipase exist in 

larvae and adult insects. In adult insects, since TG-lipase is localized in the 

cytosol and has an electrophoretic mobility that is very close to that of the 

storage proteins (85% of cytosolic proteins), it was necessary to remove them. 

This was done by passing cytosol of each group of insects through an anionic 

exchanger resin (Q-sepharose) as indicated in Methods. Figure 29 shows the 

TG-lipase protein levels of the fraction eluted from Q-Sepharose with 300 mM 

NaCl corresponding to the cytosol fraction obtained from adult insects after 

different time of eclosion. The TG-lipase protein levels coincide with the TG-

lipase activity as observed in figure 29.
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Figure 28: Changes in TG-lipase activity in the fat body of M. sexta during development: The 
cytosolic fraction after 65,000 x g centrifugation of larval, pupa and adult M. sexta fat body 
homogenates were examined for TG-lipase activity (200 µg) against an emulsion of [3H-triolein] 
and Triton X-100 as indicated in Materials and Methods. Abbrevations: 2nd, 2nd instar larvae; 3rd,
3rd instar larvae; 4th, 4th instar larvae; HC, head cup; 5th 1st day, 5th instar 1 days old larvae; W,  
wanderer; P, pupa; A, adult; A-1 h, I h adult. Data represents means ± SE (n = 4). 

Figure 29: Changes in TG-lipase protein levels in the fat body of M. sexta during development: 
40 µg protein from larval fat body homogenates and 20 µg protein from 300 mM NaCl elution 
after Q-Sepharose chromatography of adult fat body homogenates were separated on SDS-
PAGE, transferred to nitrocellulose, and analyzed by Western blotting using anti-lipase antibody 
as indicated in Materials and Methods. Abbrevations: as shown in figure 28 
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The larva of tobacco hornworm, M. sexta, mobilizes mainly glycogen during 

energy demanding processes like starvation and molting. This is under the 

regulation of AKH. Moreover, AKH mobilizes very minimal amount of lipids in M. 

sexta larvae (Ziegler, et al., 1995). Since larval fat body contains 4 fold less TG-

lipase compared to adult insects, but the effect of AKH on lipid mobilization in 

larval insects is very minimal compared to adult insects (from 8 mg/ml to 40 

mg/ml, Ziegler, 1984), it seems very likely that AKH does not activate TG-lipase 

in larvae fat body. 

 We do not know the reason for the existence of TG-lipase in larval fat 

body, but molting larvae stop feeding for long times. This might influence the 

mobilization of lipids, the process which is independent of AKH. Also, the insect 

weight doubles during 5th instar period, which might require large amount of lipids 

for cell membrane synthesis and energy for growth. 
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CHAPTER VII 

TRANSACYLASE ACTIVITY OF TG-LIPASE 

 

INTRODUCTION 

Unlike vertebrates, where stored TG are mobilized as FFA, in insects, most, if not 

all mobilize stored TG as sn-1, 2-diacylglycerols (DG) (Beenakkers et al., 1985; 

Lum and Chino, 1990; Arrese and Wells, 1997). In the first step of lipid 

mobilization, TG must be hydrolyzed by the action of a lipase. This enzyme has 

been purified from fat body of M. sexta (Arrese and Wells, 1994). The in vitro 

hydrolysis of triolein catalyzed by the purified fat body TG-lipase produces sn-2-

MG (Arrese and Wells, 1994). However, using an in vivo radiolabeled TG 

experiment it was shown that the content of MG in the fat body of M. sexta 

remains unchanged after stimulation of lipolysis by AKH (Arrese and Wells, 

1997). Moreover, the reacylation of 2-MG seemed unlikely because 

monoacylglycerol-acyltransferase (MGAT) activity of the fat body is not affected 

by the stimulation of lipolysis. Thus it was concluded that the direct stereospecific 

hydrolysis of TG into sn-1, 2-DG is the pathway for DG synthesis in the fat body 

of M. sexta (Arrese and Wells, 1997). This was based on the observations that 

the only significant change among the fat body lipid components induced by AKH 

was an accumulation sn-1, 2-DG pool, whereas the free fatty acid (FFA), MG and 
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phosphatidic acid (PA) pool sizes remained unchanged. The de novo synthesis 

of DG from sn-glycerol-3 phosphate via phosphatidic acid pathway also seems 

highly unlikely because FFA and PA pools were unchanged (Arrese and Wells, 

1997).  

The discrepancy between the in vivo and in vitro experiments was attributed to 

an artifact of the experimental conditions, since in vitro enzyme activity was 

characterized using an artificial emulsion of TG that certainly does not have the 

structural and chemical properties of the native substrate of TG-lipase. We 

recently investigated the TG-lipase activity using in vivo radiolabeled native 

substrate of TG-lipase, the lipid droplets (Patel et al., 2005). Even under this 

condition, the purified fat body TG-lipase produced sn-2-MG as a major product 

instead of sn-1, 2-DG. Since the end product of in vitro TG-lipase activity using 

artificial and natural substrate is accumulation of 2-MG, and in in vivo condition 

stored TG is mobilized as sn-1, 2- DG, we hypothesize that TG is first hydrolyzed 

to sn-2-MG. Later, synthesized sn-2-MG are stereospecifcally transacylated (2-

MG + 2-MG = sn-1, 2 DG + glycerol) to give rise to sn-1, 2 DG, the form in which 

stored TG are mobilized. Because lipases are known to catalyze acyl-CoA-

independent transacylation reactions (Andrews et al., 1988; Jenkins et al., 2004) 

and given the proximity of TG-lipase during lipolysis, we consider the possibility 

that TG-lipase may be involved in the CoA-independent transacylation reaction 

between 2-MG pool to give rise to sn-1, 2 DG. To test this hypothesis, we 

examine the transacylase activity of TG-lipase using sn-2-MG as substrate.  
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EXPERIMENTAL PROCEDURE 

 

Substrate Preparation 

Radiolabeled sn-2-monooleoylglycerol was obtained from radiolabeled [tri-9,10-

3H(N)]oleoylglycerol using pancreatinc lipase (Brockman, 1981). Final reaction 

conditions were 20 mM Tris, pH 7.4, 150 mM NaCl, 1 mM CaCl2 and 6 mM Na-

taurocholate. The reaction was initiated by adding pancreatic lipase (50 units, 

Sigma) in a final volume of 350 µl. The mixture was gently vortexed for 20 s and 

incubated at 39 º C with constant shaking. After 60 min, the reaction was 

terminated by the adding of 1500 µl of chloroform: methanol (2:1) and 20 µl of 6 

N HCl. The mixture was vortexed for 1 min and centrifuged at 2000 x g for 2 min. 

The organic phase was collected, dried under a steam of nitrogen, and the lipids 

were separated by TLC on silica gel G impregnated with 1.2 % boric acid, using 

chloroform: acetone 96:4 (v/v) as the developing solvent (Arrese and Wells, 

1997). Lipids were visualized using iodine vapors and the spot corresponding to 

sn-2-MG was scraped from the plate. After complete removal of iodine, 2-MG 

was eluted from silica with chloroform : methanol (4:1) or diethyl ether (Arrese 

and Wells, 1997). A small aliquot of the extract was used for determination of 

radioactivity by liquid scintillation counter. The remaining extract of 2-MG was 

used for transacylation reaction. 
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Assay for Acylglycerol Transacylase Activity 

2-monoolein (Sigma) dissolved in chloroform were transferred to a large 

centrifuge tube, and solvent was removed under a steam of nitrogen. The 

reaction was initiated by adding purified TG-lipase (0.3 µg) in a final volume of 50 

µl. Final reaction conditions were 200 mM Tris, pH 7.9, 500 mM NaCl, 0.02 % 

BSA, 2 mM DTT and 0.05 % Triton X-100. 1 nmol (6.4 µCi/µmol) of radiolabeled 

[3H] 2-MG was added per reaction mixture. The mixture was gently vortexed for 

20 s and incubated at 37 º C with constant shaking. After 45 min, the reaction 

was terminated by the adding of 300 µl of chloroform: methanol (2:1) and 5 µl of 

6 N HCl. The mixture was vortexed for 1 min and centrifuged at 2000 x g for 2 

min. The organic phase was collected, dried under a steam of nitrogen, and the 

lipids were separated by TLC on silica gel G plates using hexane: ethyl ether: 

formic acid (70:30:3) as the developing solvent (Arrese et al., 2001). The MG, 

DG, FFA and TG fractions were visualized by iodine vapors and scraped from 

the plates. After complete removal of iodine, the radioactivity associated with 

each fraction was determined by liquid scintillation counting. Blank reaction did 

not contain enzyme. Enzyme activity was expressed as nmol of product formed/ 

min-mg protein.  
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RESULTS 

To determine if TG-lipase could catalyze the transacylase reaction, purified TG-

lipase was incubated with 2-monoolein. The transfer of oleoyl moiety from 2-

monoolein (donor) to 2-monoolein (acceptor) was examined, and the synthesis of 

diolein was determined. Our results identified that diolein was synthesized as a 

product in this incubation (Figure 30). This result suggests that fat body TG-

lipase is capable of catalyzing transacylation reaction to form diolein. The other 

product formed was FFA, which represented 66% while DG represented 33%. 

We did not detect any radiolabeled TG, suggesting that DG is not an acyl 

acceptor.  

 

Figure 30: Highly purified TG-lipase catalyzes transacylase activity of 2-monoolein to form 
diolein. Assay was performed by incubating purified TG-lipase with varying concentration of [2-
MG] as described under “Experimental Procedures. Radiolabeled products and remaining 
substrate were extracted into extraction mixture, resolved by TLC, and quantified by scintillation 
spectrometry”.  
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DISCUSSION 

Because lipases are known to catalyze transacylation reactions (Andrews et al., 

1988; Jenkins et al., 2004), and because it has been shown that in vitro 

hydrolysis of triolein catalyzed by the purified fat body TG-lipase produces sn-2-

MG (Arrese and Wells, 1994) instead of sn-1,2-DG the form in which stored TG 

are mobilized in insects (Arrese and Wells, 1997), we considered the possibility 

that fat body TG-lipase may be involved in the transacylation reaction for the re-

synthesis sn-1,2 DG in vivo. The assay of purified TG-lipase with 2-mono-olein 

incubation resulted in DG formation, suggesting that TG-lipase has transacylase 

activity. We also observed FFA as another product of reaction mixture. The FFA 

formed was two fold higher compare to DG. The source of FFA could be the 

result of hydrolysis of 2-MG or the hydrolysis of DG formed during the reaction. 

Since sn-2-MG is a very poor substrate of M.sexta fat body TG-lipase (Arrese 

and Wells, 1994) and the rate at which FFA are formed in our experiment, it is 

very unlikely that 2-MG was hydrolyzed by TG-lipase. It has been shown that M. 

sexta fat body TG-lipase hydrolyzes DG at much higher rate than TG. The Vmax 

for DG is two times that of TG (Arrese and Wells, 1994). These results support 

the conclusion that the source of FFA formed in transacylase reaction is the 

hydrolysis of DG. We did not detect any TG formation, suggesting that DG is not 

an acyl acceptor in transacylation reaction we examined.  

 

Recently, four new TG-lipases from vertebrate adipocytes have been 

disclosed (Soni et al., 2004; Zimmermann et al., 2004; Jenkins et al., 2004). 
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Three of them, adiponutrin, TTS-2.2 (ATGL), and GS2, have high TG-lipase and 

acyl-transacylase activity (Jenkins et al., 2004). In vertebrates, adipose 

triglyceride lipase (ATGL) has been implicated as the rate limiting enzyme in 

adipocytes lipolysis (Zimmermann et al., 2004). It has been envisaged that the 

presence of anabolic (transacylase) versus catabolic (lipase) activities provides a 

potential mechanism to rapidly switch cellular metabolic balance from energy 

storage to mobilization. The transacylase activity of M. sexta TG-lipase examined 

in this study is also ATP and Acyl-CoA independent. These dual activities of M. 

sexta TG-lipase could play an important role in regulating DG being mobilized 

from the fat body cell.  

 

Three different mechanisms were proposed for the stereospecific 

synthesis and secretion of sn-1, 2 DG: a) hydrolysis of TG into sn-2-MG followed 

by stereospecific acylation of sn-2-MG catalyzed by MGAT. MGAT activity is 

found in the fat body of L. migratoria (Tietz et al., 1975), Periplaneta Americana 

(Hoffman and Dower, 1979) and M. sexta (Arrese et al., 1996), b) de novo 

synthesis of DG from sn-glycerol-3 phosphate via phosphatidic acid (PA) using 

fatty acid produced by TG hydrolysis (Tietz et al., 1975; Arrese and Wells, 1994) 

c) the stereospecific hydrolysis of TG into sn-1, 2-DG (Spencer and Candy, 1976; 

Lum and Chino, 1990; Arrese and Wells, 1994). Although MGAT activity is 

observed in insect fat body, no effect of AKH on MGAT activity was observed on 

stimulation of lipolysis in M.sexta (Arrese et al., 1996). Moreover, the content of 

MG, FFA and PA in the fat body of M. sexta remains unchanged after stimulation 
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of lipolysis by AKH (Arrese and Wells, 1997). Additionally, the end product of in 

vitro TG-lipase activity using artificial and natural substrate is accumulation of 2-

MG (Arrese and Wells, 1994; Patel et al, 2005). Thus, in present study, we 

propose the fourth possibility for the synthesis of sn- 1,2 DG.  Because no 

significant change in sn-2-MG pool was observed on stimulation of lipolysis by 

AKH (Arrese and Wells, 1997), the rate of TG hydrolysis should be similar to rate 

of transacylase activity for this pathway to exist in cell. The maximum 

concentration of substrate used for transacylase reaction in this study was 200 

µM, which did not prove to be optimal. Further work with higher concentration of 

2-MG is required to obtain saturation kinetics. Also, the hydrolysis of DG formed 

by transacylation reaction should be prevented to have a better comparison of 

both the activities. Altogether our results suggest that TG-lipase has transacylase 

activity and might play a role in sn-1, 2 DG synthesis.  
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CHAPTER VIII 

SUMMARY 

In the present study we show that lipolysis in fat body adipocytes is mainly 

controlled by activation of the substrate. This activation is achieved by PKA 

mediated phosphorylation of the lipid droplet-associated proteins. The changes in 

the phosphorylation of Lsdp1 correlated with the increase in TG-lipase activity 

suggesting that this protein is a major player in the activation of lipolysis in 

insects. In contrast to previous understanding, that AKH might regulate lipolysis 

by regulating TG-lipase activity by phosphorylation/dephosphorylation 

mechanism, here we show that, AKH does not change the state of 

phosphorylation of TG-lipase on stimulation of lipolysis.  We further show that 

TG-lipase has phospholipase activity, which could play an important role in the 

hydrolysis of mono layer of phospholipids present on the surface of the lipid 

droplets.  

Several questions remain to be addressed to fully understand the 

mechanism of regulation of lipolysis in insects. Understanding the role of Lsdp1 

in the molecular mechanism of activation of the lipid droplets and lipolysis 

constitutes a challenge of future studies. AKH stimulates the phosphorylation of 

more than one protein on the surface of the lipid droplets. The role/s of those 

proteins in the mechanism of lipolysis needs to be elucidated. Once DGs are 

formed, they are likely to be transferred to a carrier. TG-lipase could interact with 
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such a carrier which would bind DG preventing its hydrolysis and transporting to 

the membranes for its export to the hemolymph. TG-lipase could be interacting 

with other proteins through the WWE domain which is involved in specific 

protein-protein interactions. The role of this domain in the function of the lipase is 

unknown. The enzyme could associate with other partner/s perhaps with some 

implication in the regulation of its activity. 

 

Figure 31. Current model for the mechanism of AKH-induced lipolysis 

 

The mechanisms of basal and stimulated lipolysis are complex processes 

whose details are not fully understood in any system. The complexity of the 
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process derives from the low solubility of the substrate and its products in 

aqueous medium which impose specialized mechanisms presumably involving 

multiple steps and proteins. The current information on the mechanism of AKH-

induced lipolysis in M.sexta anticipates the course of events that is depicted in 

Figure 31.

Binding of the hormone AKH to its receptor triggers activation of the 

adenylate cyclase (AC) and concomitant increase in the cAMP concentration 

followed by PKA activation (Arrese et al., 1999). PKA has multiple targets; 

however, phosphorylation of Lsdp-1 is the main target related to activation of 

lipolysis (Step1, Patel et al., 2005). Phosphorylation of Lsdp-1 enhances binding 

of the lipase to the surface of the lipid droplet and/or its catalytic activity (Step 2).  

Lipid droplet bound lipase catalyzes the hydrolysis of phospholipid (Step 3) 

allowing the access of TG to the lipid surface (step 4) and its subsequent 

hydrolysis also catalyzed by the lipase. The lipolytic process ends by release of 

the lipase form the lipid surface. Note that, unlike HSL (Brasaemle et al., 2000; 

Holm, 2003), the insect TG-lipase does not bind tightly to the lipid droplets, even 

under conditions of high lipolysis (Patel et al., 2005). Additional binding of the 

lipase to the lipid droplet would be prevented by de-phosphorylation of Lsdp-1 

mediated by a protein phosphatase (PP). 
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Insects are the largest group of organism on the planet. Because of 
economical and ecological reasons, it is important to understand insects. 
The main aim of this study was to advance the knowledge of lipid 
metabolism using Manduca sexta as a model organism. In vivo and in 
vitro experiments were used to investigate the intracellular signaling 
mechanisms involved in the activation of triglyceride (TG) lipase by the 
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Our results identified that adipokinetic hormone (AKH) stimulates lipolysis 
by highly phosphorylating “Lipid Storage Droplet Protein 1” (Lsdp1) of the 
lipid droplets and increase in TG-lipase activity of cytosol. The 
phosphorylation of Lsdp1 is important for lipolysis and is mediated by 
cAMP dependent protein kinase (PKA). The changes in the 
phosphorylation of Lsdp1 correlated with the increase in TG-lipase activity 
suggesting that this protein is a major player in the activation of lipolysis. 
Although AKH increases TG-lipase activity of cytosol isolated from 
hormone stimulated insects compare to control insects, it does not change 
the state of phosphorylation of TG-lipase, indicating that phosphorylation 
of the TG-lipase plays no role in the activation of lipolysis. Overall, the 
changes in the lipid droplets are responsible for ~70% of the lipolytic 
response to AKH. The remaining 30% appears to be due to AKH-
dependent changes in cytosol. We further identified that TG-lipase has 
phospholipase A1 activity and is able to hydrolyze phospholipids present 
on the surface of the lipid droplets. Altogether, it is concluded that lipolysis 
in fat body adipocyte is mainly controlled by activation of the substrate. 
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