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CHAPTER I 
 
 

INTRODUCTION 

The ability to alleviate pain through the use of substances derived from opium has 

been known for centuries. With the discovery of exogenous compound derived treatment of 

pain, extensive research has been conducted on the endogenous-opioid system (Terenius 

and Wahlstrom, 1975). The body’s innate ability to produce, secrete and elicit opioid induced 

analgesia spurred on the interest for the discovery of opioid binding sites of both 

endogenous opioid peptide and exogenous opioid compounds. Since the early 1950’s, 

researchers have postulated the existence of multiple opioid receptor types (Lasagna and 

Beecher, 1954; Veatch et al., 1964). Early studies in the 1970’s using the dog analgesic model 

provided the first real evidence for the expression of multiple opioid receptor types, 

identifying three distinct opioid receptors located at the spinal and supraspinal levels 

(Mansour et al., 1994; Martin et al., 1976). These three receptors types were termed μ (for 

morphine), κ (after ketocyclazocine) and δ (after mouse van deferens) (Holtzman, 1980; 

Hughes et al., 1975; Lord et al., 1977). All three opioid receptors have been confirmed by 

molecular cloning and have been pharmacologically identified as μ (MOR), κ (KOR) and δ 

(DOR) (Chen et al., 1993a; Chen et al., 1993b; Evans et al., 1992; Kieffer et al., 1992; Raynor 

et al., 1994; Yasuda et al., 1993) 

Chronic pain and other neuroinflammatory associated disorders usually persist for 

months and even years, therefore the use of opioids to alleviate chronic pain is common. 

However, long-term use of prescribed opioids to treat chronic pain often leads to opioid-
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induced tolerance and addiction.  Both exogenous opioids and endogenous opioids 

may contribute to the addictive properties of several drugs of abuse including opioids (e.g. 

morphine and heroin), psychostimulants (cocaine and amphetamine), alcohol, cannabinoids 

and nicotine (Bailey and Connor, 2005). Opioid receptor expression (transcription and 

translation) and function (G-protein coupling, phosphorylation opioid receptor 

internalization and recycling) have been postulated as playing a role in opioid-induced 

tolerance. By definition, opioid tolerance, results in pain patients requiring a higher dose of 

opioids to maintain a desired level of analgesia. 

There has been tremendous interest in the endocytic trafficking of opioid receptors 

and their functional changes in response to acute and chronic opioid treatment. However 

less attention has been paid to understanding the various cellular factors that may contribute 

to the expression and function of opioid receptors, independent of opioid-ligand and 

receptor binding events. From the time when the discovery of opioid receptor expression on 

immune and glial cells became apparent (Chuang et al., 1995), extensive research has aimed 

at discovering the role opioids may have on the immune system. Studies on the effect of 

opioids on the immune system have been well-defined as immuno-suppressive, worsening 

the disease conditions associated with neuroinflammation and autoimmune disorders 

(Ballard et al., 2006; Bayer et al., 1990).  

Extensive research has been conducted on studying the effects of opioids on the 

functions of the immune system, however little research has been conducted on 

understanding the role of immune or glia cells and their released cytokines on the expression 

and function of opioid receptors in neurons. Neuroinflammatory diseases are complex and 

involve an array of cell types, immune, glial and neuronal cells. Understanding the 
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interactions between these cell types will allow us to gain insight into various 

neuroinflammatory diseases.  

The answers to the following questions should allow us to better understand the 

interactions between the neuro-immune system and opioids. Which immune cell derived 

factors affect the expression and function of opioid receptors? Are different opioid receptor 

types differentially targeted and/or affected? Is the expression of opioid receptor in different 

cell types affected?  

The extent of this dissertation is to report our investigations on the possible 

mechanism(s) for the regulation of mu opioid receptor type (MOR) in a neuronal cell line 

(SK-N-SH) by morphine and the pro-inflammatory cytokine interleukin-1 beta (IL-1β). 
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CHAPTER II 

 
 

REVIEW OF LITERATURE 

2.1 The Anatomy of Pain 

Pain is a complex physiological, behavioral and subjective response to nociceptive 

inputs. The term “nociception” is defined as detection of noxious stimuli or stimuli that can 

damage the tissue (Basbaum, 2000). Pain has two components which involve dedicated 

projection systems from spinal cord to higher centers in the brain (Basbaum, 2000). One 

component is a modality of somatic sensory perception.  Somatic sensory perception permits 

the localization of pain and enables discrimination among different pain stimuli. The second 

component is affective. Which activates circuits in the brain that result in negative emotions.  

2.1.1 Neuropathic Pain.  

The ability of an animal to detect and react appropriately to an aversive stimulus is of 

fundamental importance to its survival (Clatworthy, 1998). Pain is the natural consequence 

of tissue injury and can serve as a biologically useful defense mechanism that warns against 

existing or imminent damage (Tsuda et al., 2005). In contrast to this nociceptive and acute 

pain, neuropathic pain (chronic, intractable pain due to nerve injury) serves no biological 

purpose and can be debilitating and cause extreme physical, psychological and social distress 

(Colburn et al., 1999). Therefore neuropathic pain fails to play a protective role in disease or 

injury, rather the feeling of chronic pain exists long after the healing process and eventually 

becomes the disease. Neuropathic pain typically develops after central or
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peripheral nerve damage caused by trauma, surgery, cancer, diabetes or infections and usually 

persists long after the initiating event has healed (Woolf and Salter, 2000). Neuropathic pain 

can also develop after nervous system dysfunction (Merskey, 1994), as in multiple sclerosis 

(MS) (Svendsen et al., 2005) and amyotrophic lateral sclerosis (ALS) (Galer et al., 2000). 

Ironically, data suggests patients suffering from these diseases are not receiving the correct 

pharmacological therapy and further, that almost one quarter are receiving no treatment for 

pain (Berger et al., 2004). It was found that a large percentage of patients received a short-

acting opioid (53.2%), and opioid of any class were most commonly used (53.9%) (Berger et 

al., 2004). The mechanism of opioid analgesics used to treat neuropathic pain is poorly 

understood. At best opioids provide partial relief and therefore are used inappropriately and 

in excess leading to the most common disease associated with opioid use - addiction 

(Colburn et al., 1999). Currently, there is no universally effective treatment for neuropathic 

pain that parallels the use of morphine for nociceptive pain (Hansson and Dickenson, 2005; 

Woolf, 2004; Woolf and Salter, 2000; Zimmermann, 2001). 

 

2.2 Role of the Immune system in the modulation of Pain and 

 Neuroinflammation 

2.2.1  Pain modulation  

Nerve injury and neuroinflammation are known to make changes to neurons at the 

molecular and cellular level, often resulting in neuronal plasticity and anatomical re-

organization (Tsuda et al., 2005; Woolf, 2004; Woolf and Salter, 2000; Zimmermann, 2001). 

The cellular mechanisms that initiate and maintain long-term neuropathic pain are poorly 

understood, however there are various mechanisms in the nervous system that have been 

suggested to play a major role (Fig. 1). Some examples of these players include: changes in 
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neural behavior and /or chemical environment leading to increased activity and increase 

neuronal cell degeneration in surrounding areas of the initial injury (Devor et al., 1994; 

Waxman et al., 1999), changes in neurotransmitter levels through alterations in Ca2+ 

channels, (Furukawa et al., 2008; Matthews and Dickenson, 2001; Yamamoto and Sakashita, 

1998) Na+ channels (Hains et al., 2003; Lindia et al., 2005), spinal neuroma hyper excitability 

(sensitization) (Huang et al., 2008) and increases in descending pain facilitation (Bee and 

Dickenson, 2008; Vera-Portocarrero et al., 2006). 

 

Fig. 1 Neuropathic pain arises following nerve injury. A: following nerve damage, axonal 

transport of Na2+ and K+ ions are enhanced and diminished respectively, resulting in 

neuron hypersensitivity. B: at the cell body of the peripheral afferent neurons within the 

DRG, sympathetic neuron sprouting occurs. C: Nerve injury induced multitude of 

cellular changes, eliciting hypertrophy of glial cells (microglia) within the grey matter of 

the spinal cord, releasing pro-nociceptive cytokines, e.g. IL-1. Released cytokines 

exacerbate nociceptive transmission, contributing to the sensitization and maintenance 

of neuropathic pain (Gilron et al., 2006).   
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2.2.2 Neuroinflammation  

 Many studies have concentrated on the role of the immune system and glial cells in 

neuropathic pain states associated with neurodegenerative diseases (Colburn et al., 1999; 

Ledeboer et al., 2005; McMahon et al., 2005; Moalem and Tracey, 2006; Song and Zhao, 

2001; Watkins et al., 2007). The role of glial cells in pain and the neuroplasticity associated 

with neuropathic pain has been known for over 15 years (Muller, 1992) and it has been 

estimated that over 50% of all neuropathic pain clinical cases are associated with 

neuroinflammation (Said and Hontebeyrie-Joskowicz, 1992). Additionally, stimuli that 

initiate neuropathic pain also initiate the activation of microglia cells within the CNS, 

underscoring the significance of glial cells in neuropathic pain state. 

The relationship between the immune system, glial cells and pain has been discussed 

in depth in a few review articles: (Romero-Sandoval et al., 2008; Watkins and Maier, 2002). 

As much as it may seem contradictory, neuropathic pain is defined clinically as “non-

inflammatory” pain despite years of research on neuro-immuno modulatory cascades at the 

site of injury are central to the development of sensitization (Ledeboer et al., 2005; 

Machelska and Stein, 2000; Marchand et al., 2005; Moalem and Tracey, 2006; Omoigui, 

2007; Raghavendra et al., 2002; Rittner et al., 2006; Saurer et al., 2008; White et al., 2005; 

Williams and Lambert, 2005). Although the clinical view of neuropathic pain is centered 

around and mediated by neurons, today accumulating suggests that spinal cord glial cells 

contribute to immuno-mediated pain enhancement (Moalem and Tracey, 2006). 

2.2.3 Role of Microglia cells  

Glial cells account for approximately 90% of the cells in the CNS and provide 

support and nutrients, maintain homeostasis, form myelin and participate in signaling in the 

CNS. Glial cells are divided into three groups: oligodendroglia, astroglia and microglia. 
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 Microglia cells represent 5-10% of glial cells in the CNS, acting as sensors for a range 

of stimuli released in response to physiological changes, CNS trauma, ischemia and 

infections (Tsuda et al., 2005). Under basal conditions, microglia are in a resting, ramified 

form  (Brierley and Brown, 1982) and undergo functional phenotypical changes that awaken 

microglia cells into a amoeboid reactive form. These changes in microglia phenotype have 

been linked to their change in function: from ‘surveying’ microglia in the ‘resting’ state to 

‘effector’ microglia in the ‘activated’ state seen following disease and challenge. 

  Activated spinal microglia have been observed in various rodent models of chronic 

pain, including spinal nerve injury (Raghavendra et al., 2003; Sweitzer et al., 2001), peripheral 

inflammation (Bao et al., 2001; Chacur et al., 2004; Sun et al., 2006; Sweitzer et al., 1999; 

Watkins et al., 1997), peripheral tissue injury (Fu et al., 2006), spinal cord injury (Hains and 

Waxman, 2006), and bone cancer pain (Zhang et al., 2005). Microglia cell activation have no 

definitive marker (Guillemin and Brew, 2004), but studies have relied on OX-42 

immunoreactivity,  which  labels complement receptor 3 (CR-3) to identify them. For 

example, increased levels of OX-42 in microglia have been measured in spinal cord injuries 

(SCI) (McMahon et al., 2005). 

2.2.4  Consequences of microglia activation  

Activated microglia produce numerous inflammatory mediators (IFMs), e.g. IL-1β, 

TNF-α, IL-6, PGE2, NO and BDNF, which are produced following spinal cord injury and 

have been implicated in pain facilitation (Arruda et al., 2000; Coull et al., 2005; DeLeo and 

Yezierski, 2001; Marchand et al., 2005; Sweitzer et al., 2001). Also the RNA and protein 

levels of microglia produced IFMs are elevated (DeLeo et al., 1997; Hashizume et al., 2000; 

Raghavendra et al., 2004b; Sweitzer et al., 1999).  
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2.2.5 Opioid analgesia and proinflammatory cytokines 

Activated microglial cells release inflammatory mediators, the release of which can 

become imbalanced, toxic in disease and induce pain facilitation. Thus, there are multiple 

pathways that inflammatory mediators that are released from activated microglia which can 

induce pain facilitation and other neuro-excitatory substances. Several of these pathways 

might also be activated by morphine and therefore create a neuro-excitation opposing 

morphine induced analgesia. There is strong evidence that nerve injury activates spinal 

microglia and that their activation is involved in the induction and maintenance of 

neuropathic pain. Opioids, described in more detail in sections 2.5 through 2.8, are used 

clinically to treat neuropathic pain, but of recent there has been a negative association 

between the development of neuropathic pain and morphine –induced analgesia (Mayer et 

al., 1999). Possible explanation for the decrease in morphine analgesia include morphine-

induced activation of microglia as indicated by the increased phosphorylation of extracellular 

signal-regulated kinase (ERK1/2) (Takayama and Ueda, 2005). Morphine also increases the 

release of NO (Stefano, 1998) and proinflammatory cytokines (Peterson et al., 1998). 

Intriguingly, microglia exposure to morphine or proinflammatory cytokines enhances their 

expression of MOR (Mahajan et al., 2002; Ruzicka et al., 1996). Therefore, it is natural to 

extend the question to how microglia released inflammatory mediators may be involved in 

reduced morphine analgesia.  

The first link between glial cells and morphine-induced analgesia was reported when 

chronic morphine increased astrocyte activation in the spinal cord, where co-administration 

of fluorocitrate (a glial metabolic inhibitor) with morphine significantly attenuated both glial 

activation and morphine-induced analgesia in vivo (Song and Zhao, 2001). Therefore, work 

rapidly followed to extend and support these initial observations. Some of the work to 
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support the effect of chronic morphine on glial cells includes: (a) up-regulated TNF, IL-1 

and IL-6 release in the spinal cord (Johnston et al., 2004; Raghavendra et al., 2002), (b) up-

regulated TNF, IL-1 and IL-6 in microglia but not in neurons (Tai et al., 2006), and (c) 

reduced opioid analgesia in response to glial activation and increased release of 

proinflammatory cytokines (Raghavendra et al., 2004a). Interestingly and more importantly, 

reduced morphine analgesia was slowed or blocked by either inhibition of spinal 

inflammatory cytokines (Johnston et al., 2004; Raghavendra et al., 2002; Shavit et al., 2005) 

or by knocking out IL-1 signaling (Shavit et al., 2005). Furthermore, proinflammatory 

cytokines have been shown to oppose opioid-induced acute and chronic analgesia. 

Combined, Cui et al., (2006, 2008), Shavit et al., (2005) and Hutchinson et al., (2008) studies 

have concluded the following: (a) acute in vitro morphine-increased the release of 

proinflammatory cytokines and chemokines (IL-1β, IL-6, Fractalkine, MCP-1 and TNF-α), 

(b) chronic morphine and methadone administration in rats increased proinflammatory IL-1 

mRNA expression in the lumbar dorsal spinal cord,  (c)  chronic morphine and methadone 

administration in rats increased proinflammatory mRNA expression (IL-1β, IL-6 and TNF-

α) in the lumbar dorsal spinal cord, (d) ≤ 5 min after intrathecal opioid, endogenous, spinal 

IL-1 reduced (8-fold) morphine analgesia, (e) IL-1RA potentiated morphine analgesia in < 5 

minutes, (f) p38 MAPK inhibitor, SB203580 potentiated morphine-induced analgesia 

(Hutchinson et al., 2008). This last study not only added to the work linking 

proinflammatory cytokines to reduced morphine analgesia but also showed that glial 

activation and proinflammatory cytokines contribute to opioid tolerance and opioid-induced 

hyperalgesia. It also showed that opioid actions are opposed by proinflammatory mediators 

following both acute and chronic administration. This and other studies, namely Shavit et al., 
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(2005) suggest the potential therapeutic utility of targeting opioid-induced proinflammatory 

mediators to attenuate the development of opioid tolerance.  

Mechanisms underlying proinflammatory induced regulation of morphine analgesia 

are likely to be complex. For example, IL-1 might inhibit binding of opioids to receptors 

expressed in guinea pig brain-enriched membrane preparations (Ahmed et al., 1985) or not 

as demonstrated in rat brain cells in vitro (Wiedermann, 1989). Whether IL-1 influences 

opioid binding in the spinal cord under normal, neuropathic or chronic morphine conditions 

remains unknown. Therefore, this dissertation will attempt to address how IL-1β regulates 

the expression of opioid receptors (MOR) in vitro and mechanistically provide a better 

understanding of MOR mRNA expression in response to both IL-1β and morphine 

treatment.  

 

2.3  Neuro-Immune interactions 

Until two decades ago, the CNS and immune system were thought to act 

independently. However, there have been numerous studies demonstrating that the immune 

system and CNS interact in a concerted manner. Supporting studies include the discovery of 

the synthesis of opioid peptides (Galin et al., 1990; Galin et al., 1991; Harbour et al., 1991; 

Lyons and Blalock, 1997) and the expression of their receptors in  T cells  (Wybran et al., 

1979). Similar discoveries were also made in the CNS, where it is was found that the 

proinflammatory cytokine, IL-1, was endogenously expressed in neurons (Breder et al., 

1988). IL-1 (IL-1α and IL-1β) was also expressed in the lymphoma cell line U937 as 

discovered by cDNA cloning (Nishida et al., 1987) and in neuroblastoma cell lines 

(Stephanou et al., 1992). Furthermore, identification of IL-1 receptor (IL-1RI) expression in 

T-cell (immune cell) (Sims et al., 1989; Sims et al., 1988) and later in the human 
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hypothalamus (Hammond et al., 1999) confirmed that the immune system and the CNS are 

undergoing a complex level of bidirectional communication. 

2.3.1 Bi-directional communication between immune system and the CNS    

 There is no doubt that the immune system communicates with the CNS (Hosoi et 

al., 2002; Kleine and Benes, 2006),  however the BBB still presents a physical barrier for this 

communication, so how do inflammatory mediators enter the CNS? Because the BBB’s role 

is to exclude circulating proteins and macromolecules from the brain (e.g. albumin) it was 

thought that cytokines would also fit this description and be excluded from the brain, 

making the brain “immune privileged”. It has been shown that the brain is highly 

immunologically active as seen in neuroinflammatory diseases (Rothwell et al., 1997). Several 

pathways that cytokines use to enter the CNS have been studied, these include: (1) BBB 

dependent pathways – It was demonstrated in the late 1980’s  (Banks et al., 1989) that IL-1 

is actively transported through the BBB (Banks, 2005). Little evidence existed in support of 

this theory of cytokine transport through the brain. How does a peripheral immune stimulus, 

following peripheral insult, increase levels of IL-1 in the brain? This level of communication 

was first demonstrated in the mid-1990’s, where the peripheral injection of IL-1 induced 

intense transcriptional (c-fos) activity in cells of the BBB (Brady et al., 1994). Later, in situ 

hybridization studies showed that cells of the BBB respond to peripheral immune 

stimulation by producing IL-1 (Quan et al., 1998). Thus, during systemic immune challenge, 

production of IL-1 by cells of the BBB may result in widespread IL-1 activity in the CNS. 

(2) BBB independent pathways – Cytokines have also been shown to relay inflammatory 

signals to the CNS by pathways that bypass the BBB. Two of the main pathways include: (a) 

Circumventricular organs (CVOs) – cytokines traveling in the blood to the CNS via CVOs in the 

brain occurs in capillary beds that do not form a BBB. Therefore CVOs are considered 
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portals for circulating cytokines to reach the CNS. However, the role of CVOs in cytokine 

entry to the CNS does not go without controversy. For example, lesions of organum 

vasculosm laminae terminalis (OVLT), a CVO close to the hypothalamic thermoregulatory 

center, suppressed i.p. LPS-induced fever (Blatteis et al., 1983) and in support, the removal 

of the area postrema (AP), a CVO close to the nucleus of the solitary tract (NTS), blocked 

IL-1-induced c-fos expression in the hypothalamic paraventricular nucleus (PVN) (Lee et al., 

1998). In contrast, no change in c-fos expression in the PVN was found following AP lesion 

(Ericsson et al., 1997). (b) Vagus nerve - Since the early 1980’s, studies have demonstrated that 

peripheral LPS-induced CNS effects can be blocked by vagotomy, and suggested that 

afferent vagal pathway innervating specific regions of brain as a key connection between 

peripheral and CNS immune responses (Pitterman et al., 1983). This was later confirmed 

when a vagotomy blocked the induction of IL-1β in the hypothalamus after peripheral 

injection of IL-1β and LPS (Hansen et al., 1998; Laye et al., 1995). 

 Nonetheless, via in situ hybridization, most of the IL-1β mRNA expression has been 

localized in the hypothalamus in non-neuronal cells (Buttini and Boddeke, 1995; Eriksson et 

al., 2000a; Quan et al., 1998; Yabuuchi et al., 1993). Even though the majority of cytokines 

act locally in a paracrine manner, in pathological conditions such as neuropathatic pain, 

cytokines can act in an endocrine manner.  

Inflammatory cytokine IL-1β, which promotes or enhances neuroinflammatory 

processes, is often described as a prototypic cytokine and was originally identified because of 

its action in the brain: IL-1β was originally described as an “endogenous pyrogen” i.e. 

mediator of fever. Therefore, IL-1β has long been associated with the brain 

microenvironment. It and other cytokines are produced by endogenous brain cells – 

microglia and astrocytic cells, where they are up-regulated during peripheral damage, brain 
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trauma, CNS infection (neuroAIDS), ultimately effecting the homeostatic processes by de-

regulating the normal protective roles into potent neurotoxic roles (Rothwell and Luheshi, 

2000). 

 

2.4 The Interleukin-1 (IL-1) Family 

2.4.1 IL-1 Cytokine family  

 The IL-1 family, which is composed of at least 10 molecules has an important role in 

neuroinflammation and host defense. Following the identification of  IL-1 as a endogenous 

pyrogen over 50 years ago, it became apparent that that IL-1 consisted of two ligands, IL-1α 

and IL-1β (March et al., 1985). Following the identification of IL-1α and IL-1β expression in 

macrophages, it became obvious that the two ligands where highly homologous and identical 

despite being the products of different genes. Both IL-1 cytokines are synthesized as a result 

of truncation of large precursor peptides inside cells such as lymphocytes and monocytes. 

Pro-IL-1α is biologically active and cleaved to its mature form by calpain and both forms of 

the cytokine remain intracellular unless released due to cellular death (Huising et al., 2004). 

By contrast, pro-IL-1β is biologically inactive and requires cleavage by caspase I (Thornberry 

et al., 1992) to produce an active 17 kDa protein that is released from the cells in a non-

classical mechanism still unknown today. IL-1β expression in the CNS under basal 

conditions is minimal but becomes elevated following infections, insult and injury. For 

example IL-1β has been detected in the brain following kainic acid treatment, which is used 

to mimic a neuroexcitotoxic or epileptogenic event in the brain  (Yabuuchi et al., 1993). The 

third member of the IL-1 is well characterized as the IL-1-receptor antagonist (IL-RA), 

which was discovered to be naturally occurring in human monocytes (Hannum et al., 1990). 

IL-1RA is expressed in the same cells as IL-1 and is present in three intracellular isoforms 
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(icIL-1RA1, icIL-1RA2 and icIL-1RA3) and one secreted form (sIL-1RA), which functions 

as a competitive antagonist by binding IL-1RI and preventing IL-1 intracellular signaling 

(Malyak et al., 1998). The role of IL-1RA in disease models of neuroinflammation has been 

one of neuroprotection (Liu et al., 2008; Loddick et al., 1997; Vogt et al., 2008), with its 

release being “activated microglia cell” dependent (Pinteaux et al., 2006) (See Fig. 2 

illustrating members of the IL-1 family and its actions). 

 

 

Fig. 2 Actions of IL-1: IL-1 family members include ligands (IL-1α and IL-1β), 

antagonist (IL-1RA) and the two receptors (Type I and II). (Rothwell and Luheshi, 

2000).   
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2.4.2 IL-1 receptors and CNS expression  

 IL-1α and IL-1β exert similar biological effects by binding to membrane-bound 

receptors – type I (IL-1RI) and type II (IL-1RII). The IL-1RI, when bound with IL-1 

ligands, associates with IL-1 receptor accessory protein (IL-1RAcP), forming a complex that 

allows intracellular signaling (Korherr et al., 1997). In contrast to IL-1RI, IL-1RII lacks the 

intracellular signaling domain important for downstream effector mechanisms. Therefore, 

the IL-1RII is considered a decoy receptor acting as a scavenger for the uptake of excess IL-

1 (Bourke et al., 2003). A more recent study demonstrated an engaging relationship between 

the IL-1RI signaling protein (IL-1RAcP) and the IL-1RII and thus speculated that IL-1RII 

may function to reduce the amount of signaling IL-1RI-IL-1RAcP-agonist complexes when 

IL-1 is bound (Malinowsky et al., 1998). IL-1 receptors belong to the Toll-like receptor 

(TLR) superfamily. The IL-1 receptor and TLRs share cytosolic regions found to be 

conserved in all TLRs involved in triggering a complex series of signaling cascades that result 

in the activation of NF-κB as well as stress-activated mitogen-activated protein kinases 

(MAPKs) (Dunne and O'Neill, 2003). This then leads to the transcription of multiple 

inflammation-associated genes: chemokines (e.g. CXCL8), cytokines (IL-1, IL-6 and TNF) 

and adhesion molecules (E-selectin) (Subramaniam et al., 2004).  

Both IL-1 receptor types have been cloned and are expressed in numerous tissues in 

the human body including the endothelial cells that make up the BBB  (Boraschi et al., 1991). 

In addition to IL-1RI expression in the BBB, IL-1RI and IL-1RII are expressed throughout 

the brain in neurons and non-neuronal cell types (Ban et al., 1993; Pinteaux et al., 2002; 

Takao et al., 1990; Wong and Licinio, 1994; Yabuuchi et al., 1994a). Also, IL-1β induces 

mRNA expression of IL-1RI and IL-1RII in the rat brains following 15 and 120 minute 

treatments (Parker et al., 2000). In the case of IL-1RII, the expression pattern mirrors that of 
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IL-1RI, but the exact nature for the expression is still unknown and is in need of more 

exploration now that the human gene for IL-1RII has been cloned and expressed in 

recombinant E.coli BL21 (Hu et al., 2004). (See Fig. 3 illustrating members of the IL-1 family 

and their receptors). 

 

Fig. 3 The interleukin-family and receptors. (Allan et al., 2005). 

 

2.4.3 Regulation of IL-1β 

 All members of the IL-1 cytokine family are expressed endogenously by brain cells. 

However IL-1 expression is at low levels in the healthy CNS. The specific cellular source of 

these proteins is unclear and little is known about regulation of the IL-1 system in the brain. 

Microglia, which express caspase-1, release IL-1β and express IL-1RI  (Pinteaux et al., 2002; 

Touzani et al., 1999; Wang et al., 2008a), appear to be the early, primary source of IL-1 

following experimental CNS injury, infections or inflammation (monocytyes and 

macrophages are the major peripheral sources of IL-1) (Davies et al., 1999). Astrocytes also 

produce IL-1, however their source is slightly delayed compared to microglia after an acute 

insult (Pearson et al., 1999). The IL-1RA expression is stimulated by the same cellular stimuli 

that result in production of IL-1, however IL-1RA expression occurs in neurons at a later 

time point (1-3 hr) compared to IL-1 expression (Loddick et al., 1997). 
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The expression of genes that encode IL-1 is induced by various proinflammatory 

stimuli, e.g. bacterial and viral products, cytokines (TNF), cellular injury and hypoxia. Most 

of these observations have been made with peripheral cells (macrophages), but given that 

microglia and macrophages have a common monocytic progenitor, it is probably safe to 

correlate these findings to the CNS. The promoter region of the IL-1β gene contains a 

TATA box, which is the TATA-binding protein (TBP) binding site, and a CAAT box, which 

controls the efficiency of the promoter for initiating transcription. On the IL-1β gene 

promoter, several regions have been identified for tissue-specific factors, including nuclear-

factor-βA (NF-βA) and SP1, which determine cell-type-specific expression. The level of IL-1 

gene transcription is also affected by factors that recognize and bind DNA regulatory sites, 

such as the cAMP-response element, activator protein 1 (AP1), NF-κB binding site, and the 

LPS-response enhancer site (Watkins et al., 1999). Lastly, several intracellular signals (e.g. 

caspase-1) can be stimulated by many extracellular stimulus (e.g. kainic acid) which function 

to increase or decrease the rate of IL-1β transcription. (Eriksson et al., 2000b; Liu et al., 

2005). 

2.4.3.1 Post-transcriptional regulation and cellular release of IL-1β 

 Translation of IL-1β is increased by epidermal growth factor (EGF), corticotrophin-

releasing hormone and ICAM1, whereas dexamethasone inhibits IL-1β translation (Watkins 

et al., 1999), therefore, indicating that the expression of IL-1β protein can be regulated in 

response to exogenous compounds. Until recently, the post-translational regulation of IL-1β 

has not been studied in CNS disease and injury model. Neuronal injury can induce the 

release of pro-IL-1β from LPS-activated microglia in vitro, providing the overdue correlation 

between nerve damage alone and increased IL-1β release from microglia cells (Wang et al., 

2008a). 
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The cellular release of IL-1β is dependent on the following two mechanisms: (1) 

P2X7 (purinergic receptor and ligand-gated ion channel) activation. P2X7 is activated by 

LPS, which induces the release of pro-IL-1β by ATP-dependent cleavage of mature IL-1β 

through a caspase-I-dependent mechanism and subsequent release (Le Feuvre et al., 2002). 

(2) The process of IL-1β release depends on calcium from intracellular stores and on the 

activation of phopholipase C (PLC) and phopholipase S (PLS) (Andrei et al., 2004; Brough 

et al., 2003). (See Fig. 4 illustrating the regulation of IL-1β production and action). 

 

Fig. 4 Regulation of IL-1β production and action: diagram illustrating the regulation of 

expression of the gene encoding, cellular release of IL-1β and its biological activity. 

(Allan et al., 2005). 

 

2.4.4 Overview of IL-1β’s role in CNS injury and Neuronal diseases 

 The expression of both IL-1α and IL-1β are up-regulated within minutes at the 

mRNA level and within hours at the protein level in response to a neurotoxic stimulus. Most 

studies suggest that IL-1β signaling is harmful to the injured CNS as shown in different 
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models of brain injury (Boutin et al., 2001; Lu et al., 2005; Relton and Rothwell, 1992; 

Yamasaki et al., 1995) and infection (Brabers and Nottet, 2006; Das et al., 2008). Some 

however have reported a neuroprotective role of IL-1β and it appears to be dependent on 

the concentration of the cytokine and timing of the response relative to the insult (Carlson et 

al., 1999; Strijbos and Rothwell, 1995). In regards to IL-1β’s neuroprotective role, it has been 

proposed as being IL-1RI-independent and dependent on the regulation of Na+ and K+ 

currents in neurons (Diem et al., 2003). Importantly, IL-1 alone, in the absence of additional 

CNS impairment, has been found not to be neurotoxic (Loddick and Rothwell, 1996; Relton 

and Rothwell, 1992; Shaftel et al., 2008; Yamasaki et al., 1995). Therefore, studies have 

concluded that the release of IL-1β following injury or insult is part of a protective response 

however, a response that ultimately goes awry in disease or chronic damage. An example of 

the common factor in disease associated with neuronal damage is the release and effects of 

the glutamate neurotransmitter. Glutamate is an abundant excitatory neurotransmitter 

present in the mammalian CNS and glutamate induced excitotoxicity is a key factor involved 

in ischemic cascades (Liao et al., 2008) in stroke and excitotoxicity via glutmate also has been 

implicated in diseases such as amyotrophic lateral sclerosis (Andreadou et al., 2008) and 

Alzheimer's disease (Griffith et al., 2008). In addition, evidence has emerged linking IL-1β 

and glutamate excitotoxicity (Jander et al., 2000; Liu et al., 2008), where IL-1β contributed to 

glutamate-induced damage following SCI, suggesting that blocking IL-1β may counteract 

glutamate toxicity. 

 A large number of studies have been conducted looking at the role IL-1β plays in 

cerebral ischemia, where both IL-1β mRNA and protein expression are increased following 

an ischemic insult (Buttini et al., 1994; Minami et al., 1992; Yabuuchi et al., 1994b). This up-

regulation of IL-1β functions to induce neuronal cell death subsequent to cerebral ischemia 

http://en.wikipedia.org/wiki/Neurotransmitter
http://en.wikipedia.org/wiki/Ischemic_cascade
http://en.wikipedia.org/wiki/Stroke
http://en.wikipedia.org/wiki/Amyotrophic_lateral_sclerosis
http://en.wikipedia.org/wiki/Alzheimer%27s_disease
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independent of the IL-1RI (Touzani et al., 2002) suggesting the existence of an additional 

signaling receptor or receptors for IL-1 in the brain. Experimental traumatic brain injury 

(TBI) is associated with rapid and prolonged up-regulation of IL-1β (Kamm et al., 2006; Lu 

et al., 2005; Nieto-Sampedro and Berman, 1987; Zhu et al., 2004). Furthermore, 

intercerebroventricular (i.c.v.) administration of IL-1RA caused a decrease in neuronal injury 

and improved functional outcome (Jones et al., 2005; Toulmond and Rothwell, 1995). 

Several lines of evidence indicate that increased expression of IL-1β contributes to tissue 

damage following spinal cord injuries (SCI). IL-1β mRNA and protein levels are increased at 

the lesion site as early as 1 hr following SCI in rats (Wang et al., 1997) and in humans (Yang 

et al., 2004). Subsequently it was found that neuronal damage elicited by IL-1β to be IL-1RI 

(Nesic et al., 2001) and  p38 MAPK-dependent (Wang et al., 2005). 

 Due to the role of IL-1β in neuronal injuries, it has been recently implicated in 

having a substantial role in neurodegenerative disease such as multiple sclerosis (McFarland 

and Martin, 2007), Parkinson’s disease (PD) (Ferrari et al., 2006) and Alzheimer’s disease 

(AD) (Griffin et al., 2006; Shaftel et al., 2008). Its role in AD, however, is somewhat unclear 

as it has been reported to have a possible neuroprotective role rather than a 

neurodegenerative role as originally indicated (Tachida et al., 2008). Using a progressive 6-

OHDA rat model of PD and evaluation by immunohistochemistry, ELISA and cell counting 

it became clear that levels of IL-1β were significantly elevated and identified as a mediator of 

dopaminergic (DA) neuronal loss. Administration of IL-1RA, resulting in significant 

reductions in TNF-α and IFN-γ levels without any effect on IL-1β levels, however, resulted 

in attenuation of DA neuron loss caused by LPS-induced sensitization of dopaminergic 

degeneration (Koprich et al., 2008). In respect to IL-1β, therefore, it has been proposed that 

IL-1β may have both a neurodegenerative and neuroprotective roles (Corasaniti et al., 2001).  



21 
 

2.4.5 Role of IL-1β in Neuroinflammatory Pain 

  Peripheral and central nerve injury is associated with an inflammatory response at 

the site of damage. This response includes increased levels of TNF-α, IL-1 and IL-6, 

concomitant with the development of hyperalgesia (Watkins and Maier, 2002) and these 

cytokines have been implicated in pain facilitation (DeLeo and Yezierski, 2001). Nerve injury 

is associated with the activation of spinal microglia cells, and therefore as a major source of 

proinflammatory cytokines, plays a crucial role in the development of neuropathic pain 

(Clatworthy, 1998; DeLeo et al., 2004; Raghavendra et al., 2003). Among the 

proinflammatory cytokines, IL-1β is particularly known to modulate pain sensitivity (Ren 

and Dubner, 2008). 

 Peripheral or central administration of IL-1β usually produces hyperalgesia (Ferreira 

et al., 1988; Oka et al., 1994; Watkins et al., 1994). Spinal administration of IL-1β produces 

thermal and mechanical hyperalgesia (Falchi et al., 2001; Tadano et al., 1999). To consolidate 

the role of IL-1β in neuropathic pain, neutralizing antibodies to the IL-1RI, genetic 

impairment of IL-1RI signaling and an IL-1RI-knockout (KO) mouse model all either 

reduced or completely attenuated IL-1β induced neuropathic pain (Sommer et al., 1999; 

Wolf et al., 2006; Wolf et al., 2003). The relationship between GPCR mechanisms 

(phosphorylation) and IL-1β-induced pain have not been studied, but recently it was 

demonstrated that the reduction of GRK2 expression in the spinal cord was dependent on 

IL-1β signaling as shown using a IL-1RI-/- model (Kleibeuker et al., 2008). In contrast to 

these studies, spinal i.t. administration of IL-1β during injury reduced inflammatory pain, and 

IL-1β was shown to have significant antinociceptive properties when administered to rats 

with peripheral inflammation (Souter et al., 2000). This study suggested the development of 

IL-1β like compounds or agonist with the aim of being able to reduce pain with minimal side 
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effects (Souter et al., 2000). The antinociceptive effects of IL-1β have shown to be opioid-

mediated, as endogenous opioids are released from immune cells in response to IL-1β 

(Schafer et al., 1994).   

2.4.6 Role of IL-1β in opioid mediated analgesia  

Despite the wealth of knowledge about the mechanisms underlying the analgesic and 

hyperalgesic circuits, little is known about the interaction between them, particularly in 

relation to opioid analgesia. Interactions between analgesic and hyperalgesic circuits may 

contribute to the development of reduced opioid analgesia, which is the most prominent 

characteristic of repeated morphine administration and therefore constitutes a major clinical 

complication in chronic opioid treatment. The role and activation of glia and the production 

of proinflammatory cytokines, including IL-1β, have been implicated in the development of 

reduced morphine analgesia (Raghavendra et al., 2002; Song and Zhao, 2001). 

 It has been showne that IL-1β reduced opioid binding in specific regions of the 

guinea pig brain (Ahmed et al., 1985). Later, IL-1β was shown to increase the expression of 

MOR mRNA in primary astrocytes (Ruzicka and Akil, 1997; Ruzicka et al., 1996) and 

increase the expression of MOR mRNA in neural microvascular endothelial cells (Vidal et 

al., 1998). It was postulated  (Min et al., 1994) and later discovered that there was the 

expression of a cytokine response element on the OPRM1 gene promoter, e.g. NF-IL6 

binding site (Nuclear factor-IL6) (Im et al., 1999). In regards to opioid analgesia in vivo,  the 

interaction between IL-1β and morphine was studied in the diabetic mice model, where it 

was shown that diabetic mice are less sensitive to morphine-induced analgesia, and this was 

found to be attenuated following i.c.v. administration of IL-1β (Gul et al., 2000). The role of 

proinflammatory cytokines and fractalkine in analgesia and tolerance was studied in mice and 

it was concluded that IL-1β is an endogenous regulator of morphine analgesia and is 
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involved in increasing pain sensitivity that occurs following chronic opioid administration 

(Johnston et al., 2004). Later, the role of IL-1β and morphine tolerance was studied in detail 

using IL-1RI KO mice. It was concluded following this study that IL-1β antagonized 

morphine analgesia (Shavit et al., 2005). The same group also suggested that polymorphisms 

of IL-1RA may contribute to the variation in postoperative morphine consumption (Bessler 

et al., 2006). In 2006, using a rat peripheral inflammation model, administration of Freud’s 

complete adjuvant (FCA) (unilateral) induced the up-regulation of KOR mRNA in ipsilateral 

dorsal root ganglia (DRG) 12h after induction of local inflammation. More relevantly, FCA-

induced up-regulation of KOR mRNA expression was mimicked by administration of IL-1β 

and was completely abolished by IL-1RA (Puehler et al., 2006). Also in this study, it was 

concluded that IL-RA prevented KOR mRNA as well as KOR up-regulation in response to 

FCA, suggesting that IL-1β is a specific mediator in the up-regulation of KOR in DRG. 

Spinal proinflammatory cytokines are powerful pain-enhancing signals that contribute to 

pain following peripheral injury (neuropathic pain). Recently, the increase in release of 

proinflammatory cytokines in the spinal cord has also been correlated to acute and chronic 

exposure to morphine both in in vivo and in vitro lumbar dorsal cord preparations 

(Hutchinson et al., 2008). To further elaborate, these studies demonstrated a novel finding 

that ≤5 min after intrathecal opioid administration, endogenous IL-1 reduced morphine 

analgesia. Also, Hutchinson et al., (2008) showed that intrathecal morphine analgesia was 

reduced 8-fold by spinal IL-1. Additional inhibitor studies revealed dependence on p38 

MAPK activation and NO (Hutchinson et al., 2008). In support of  Hutchinson et al., 

(2008), morphine-tolerant rats showed heightened IL-1β mRNA (2 hr post-LPS treatment) 

expression in the brain following LPS-induction (Staikos et al., 2008), suggesting that the 
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inflammatory response to bacterial infection may be potentiated in the brain when exposed 

to morphine. 

The aim of this dissertation is to investigate the role of IL-1β and morphine on the 

mRNA regulation of MOR expression in SK-N-SH cells and to elucidate how and what 

signal transduction mechanisms regulate the expression of MOR by IL-1β and morphine. 

This study may provide an insight into the potential involvement of IL-1β in reduced 

morphine analgesia as measured following chronic morphine administration.  

 

2.5 Opioids and opioid receptors  

 The use of opium and its derived compounds date back to the Sumerians some 4,000 

B.C. There is general agreement that the Sumerians, who inhabited what is known today as 

Iraq, cultivated poppies and isolated opium from their seed capsules. It is believed that the 

first record of opium use was for religious rituals as an euphoriant. ‘Medical’ use became 

apparent when opium was being used to put people quickly and painlessly to death. The first 

known medical use of opium was recorded 1500 B.C. as a remedy to prevent excessive 

crying of children.   

 In 1806, a German pharmacist named Friedrich Serturner isolated the first active 

ingredient in opium and named it morphine after the Greek god of dreams, Morpheus. Pure 

morphine is a weak alkaloid base and was manufactured in large amounts following the 

invention of hypodermic syringe in the 1850s. Morphine began to be used for surgical 

procedures for postoperative and chronic pain. With the increased use of morphine and 

derivatives of opium, a considerable increase in opium abuse became obvious. In 1942, 

nalorphine, the first opioid antagonist was discovered, and was used initially to reverse the 

respiratory depression produced by morphine (Brownstein, 1993). 
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2.5.1 Opioid receptors  

 Following the opioid-mediated effects in mouse vas deferens, the opioid receptor in 

the mouse vas deferens was assigned the designation “delta opioid receptor” (DOR) (Lord et 

al., 1977; McKnight et al., 1984). The KOR and MOR assignments were based on 

differential analgesic properties in vivo (Martin et al., 1976). Dynorphin related peptides are 

derived from the prodynorphin precursor and they all have a high affinity for the KOR 

binding sites (Gillan et al., 1985; Goldstein et al., 1979). 

The dissimilarities among the opioid peptides for opioid receptor binding sites 

revealed the existence of multiple opioid receptors as proposed earlier (Martin et al., 1976). 

Soon opioid receptors where characterized using selective radioactive ligands (Chang et al., 

1979; Chang and Cuatrecasas, 1979); μ- (MOR) δ- (DOR) and κ- (KOR) classification of 

opioid receptors followed the discovery of opioid specific binding sites in neural tissue. In 

characterizing opioid receptors, it was discovered that opioid receptor binding was 

influenced by cations, i.e.  Na+ ions, (Pert and Snyder, 1973a; Pert and Snyder, 1973b; 

Werling et al., 1986) and divalent cations, Ca2+, Mg2+, and Mn2+ (Paterson et al., 1986).. 

As the need for cations for opioid receptor binding became important, it also 

became apparent that opioid receptor binding is also regulated by nucleotides (Blume et al., 

1979). Nucleotides, GTP, GDT and ITP all increase the dissociation of the agonist [3H]-

dihydromorphine as demonstrated in rat brain homogenates (Blume, 1978a; Blume, 1978b). 

Brain membrane based binding assays of opioid receptors characterized the mechanism of 

GTP binding to G-proteins (Childers and Snyder, 1980) eventually leading to a complete 

characterization of agonist stimulation of GTPase activity 
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2.6 Mu opioid receptor (MOR) type 

 The MOR type has an important role in mediating the analgesic effects of morphine 

and endogenous reward systems of the brain. The MOR1 type is thought to be involved in 

several opioid mediated effects, such as supraspinal analgesia, prolactin release and decrease 

in acetylcholine turnover (Pasternak and Wood, 1986). The MOR2 type is thought to be 

involved in respiratory depression, decreased dopamine turnover and the delayed 

gastrointestinal tract transit induced by opioids. The exact nature of the MOR types binding 

affinity to their respective ligands and how this may reflect MOR classification is still in 

dispute (Chen et al., 1993a; Raynor et al., 1994; Raynor et al., 1995; Thompson et al., 1993; 

Wang et al., 1994). 

2.6.1 CNS expression of MOR  

MOR is present both pre- and post-synaptically and is widely expressed in the spinal 

cord (Stevens et al., 1991), where the total opioid binding capacity of the spinal cord was 

90% MOR specific. MOR is also expressed in the brain (Delfs et al., 1994), where in situ 

hybridization of rat brain tissue revealed expression of MOR in the telencephalon, internal 

granular and glomerular layers of the olfactory bulb, the caudate putamen and nucleus 

accumbens (Delfs et al., 1994; Mansour et al., 1994; Minami et al., 1994). Anatomical and 

physiological studies have indicated that neurons of the medial thalamic nuclei express high 

levels of MOR mRNA and play a particular role in the transmission of nociceptive 

information (Albe-Fessard and Kruger, 1962; Kaelber et al., 1975). Furthermore, neurons in 

these nuclei are selectively depressed following morphine administration (Duggan and Hall, 

1977; Nakahama et al., 1981). In the pons and the medulla, MOR mRNA is intensely 

expressed in the locus coeruleus, which is largely composed of noradrenergic neurons, 

suggesting that a large portion of noradrenergic terminals as well as cell bodies have MOR 
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expression (Delfs et al., 1994). In support of MOR expression in the noradrenergic neurons, 

DAMGO, a MOR selective agonist, inhibited the release of noradrenaline from slices of the 

rat cortex, hippocampus and cerebellum. Opioid analgesics such as morphine have several 

side effects (Vella-Brincat and Macleod, 2007). In humans, death from morphine overdose is 

commonly caused by respiratory arrest (Sternlo et al., 1998). Respiratory depression by 

opioids is caused by their direct effect on the brainstem respiratory centers (medullary nuclei; 

solitaries, ambiguous and parabrachial), where an intense population of MOR (MOR2 

mRNA) are expressed (Pasternak et al., 1993 

2.6.1.1 MOR binding properties 

Cloned MOR expressed in transfected CHO cells has a strong affinity for morphine 

(Ki = 1.4), naloxone, (Ki = 3.9), [D-Ala2, D-Leu5] enkephalin (DADLE) (Ki = 6.4) and 

DAMGO (Ki = 0.87) (Kosterlitz, 1981). Several opioid antagonists bind to MOR with high 

affinity, including β-FNA (MOR-selective; beta-funaltrexamine), NTI (DOR-selective; 

naltrindole) and nor-BNI (KOR selective; nor-binaltorphimine).  

 

2.7  Second messenger systems coupled to MOR 

Mu opioid receptor (MOR) specific ligands bind to MOR expressed on cell 

membranes of neurons and non-neuronal cells which then initiate a physiological response. 

This interaction between opioids and MOR is characterized by the ability of opioids to bind 

their receptor (affinity) and the potential magnitude of the induced effect (efficacy). The role 

of G-proteins in opioid receptor-mediated signaling was evident early in opioid receptor 

history as discovery of opioid ligands binding to ORs was guanine nucleotide dependent 

(Blume, 1978a). Opioid receptors belong to the G-protein coupled, seven transmembrane 

region spanning super-family of receptors (GPCRs). Opioid receptors transduce their signals 
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through guanine nucleotide binding proteins (heterotrimeric G-proteins) composed of α, β 

and γ subunits (Childers, 1991). Activation of G-proteins involves association of the G-

protein with opioid receptor, substitution of GTP for GDP followed by the hydrolysis of 

GTP by GTPase (Nestler and Aghajanian, 1997) (Fig. 5). The MOR couples to inhibitory G-

proteins (Gi/o). G-protein activation following opioid receptor activation was studied using 

pertussis toxin (PTX), a protein derived from Bordetella pertussis, which interferes with the 

signal transduction by catalyzing the ADP-ribosylation of a cysteine side chain on the α-

subunit of the inhibitory Gαi-proteins indicating a Gαi/o- dependent MOR transduction. 

MOR activation leads to inhibition of adenylate cyclase (AC) (Collier and Roy, 1974a; Collier 

and Roy, 1974b), increased potassium conductance (North, 1986; North et al., 1987) and 

decreased calcium conductance (Hescheler et al., 1987). Presently there is no evidence of 

opioid receptors coupling to stimulatory G-protein (Gs). However, opioid receptors have 

been shown to stimulate AC in the rat olfactory tubercle through a cholera toxin-insensitive, 

G-protein, Gβγ-subunit mechanism (Onali and Olianas, 1991). Coupling through Gβγ-

subunits has been proposed as the mechanism for opioid receptor mediated changes in 

potassium and calcium conductance, MAPK pathway, mobilization of intracellular calcium 

and activation of protein kinase C (PKC) (Williams et al., 2001). One of the controversial 

issues in opioid signaling is the ability of opioids to stimulate AC (Law et al., 2000). 

Stimulation of specific isoforms of AC by Gβγ-subunits may provide opioids alternative 

routes to increase intracellular cAMP levels (Chan et al., 1995; Tsu et al., 1995). 
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Fig. 5  MOR GPCR transduction and regulation (Taylor and Fleming, 2001). 

 

The role of the Gα-subunits in opioid activity is important due to its intrinsic GTPase 

activity, making it a potential site of opioid receptor regulation. A family of 20 known 

protein isoforms called regulators of G-protein signaling (RGS proteins) were identified as 

having specific modulation of GTPase-activating proteins that function to accelerate the 

exchange of GTP for GDP on the α–subunits of Gi/o and Gq proteins (Dohlman and 

Thorner, 1997). The extract role of RGS proteins in opioid receptor regulation and signaling 

is currently undergoing intense research as reviewed by Xie et al., 2005 (Brown and Sihra, 

2008; Hooks et al., 2008; Xie and Palmer, 2005). 

An overview of the cellular effects of MORs include the regulation of second 

messengers, were the activation of MOR causes the inhibition of AC activity (Chen et al., 

1993a; Evans et al., 1992; Fukuda et al., 1993; Kieffer et al., 1992; Yasuda et al., 1993) and 

suppression of N-type (Tallent et al., 1994) and L-type (Piros et al., 1996) Ca2+ channels 

causing a transient decrease in the levels of intracellular Ca2+ (Johnson et al., 1994). 

Activation of MOR also increases phospholipase C (PLC) activity and the activation of 

inwardly rectifying K+ channels (Henry et al., 1995), and the mitogen-activated protein 
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kinases ERK-1 and ERK-2 (Fukuda et al., 1996) (Fig. 7). The hyperpolarization of the cell’s 

membrane potential by K+ currents and the limiting of Ca2+ entry by suppression of Ca2+ 

currents are both mechanisms for opioid induced blockade of neurotransmitter release and 

pain transmission. 

 

2.8 MOR receptor phosphorylation, desensitization, signaling and gene 

 promoter structure; MOR gene activation and transcription 

Pharmacological studies have concluded that MOR is the main site of action for 

morphine and other opioid-induced analgesia, tolerance and physical dependence (Law and 

Loh, 1999). Opioid receptors share high structural homology but also show distinct patterns 

of expression and functional profiles, their individual patterns of transcription are therefore 

likely to be determinants for different levels of opioid receptor expression in the PNS and 

CNS.  

The MOR (MOR) promoter is a TATA-less type promoter with several potential 

binding sites for transcription factors (Law et al., 2004). MOR has been measured to be up-

regulated following stimulation with endogenous mediators in neuronal cell lines. Examples 

of MOR up-regulating mediators include IL-1, IL-4, IL-6, TNF-α and IGF-1 (Bedini et al., 

2008; Borner et al., 2004; Kraus et al., 2001; Kraus et al., 2003; Ruzicka and Akil, 1997; 

Ruzicka et al., 1996) and IFN-γ  is a MOR down-regulator (Kraus et al., 2006).  

2.8.1 MOR phosphorylation  

 Opioid receptors are members of the GPCR super-family. Lefkowitz et al., (1998) 

concluded that agonist-receptor configuration resulted in rapid receptor phosphorylation by 

protein kinases including G-protein-coupled receptor kinases (GRKs) and therefore 

promoting the association of β-arrestin, cellular proteins involved in receptor internalization. 
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The role of β-arrestin in GPCR regulation is generally two-fold: receptor uncoupling from 

respective G-proteins, therefore implicating a role in receptor desensitization (reduced or 

complete loss of receptor signaling); β-arrestin also initiates a series of events that result in 

receptor internalization (clathrin-coated vesicles). With respect to GPCR desensitization, 

initial steps include the rapid phosphorylation of the receptor as first demonstrated in 

HEK293 cells expressing MORs (Arden et al., 1995). The key protein involved in opioid 

receptor phosphorylation was initially found to be the GRKs as found in DOR and MOR 

expressing cells (Pei et al., 1995; Zhang et al., 1996). Following detailed correlation between 

agonist-induced phosphorylation of opioid receptors, extensive work was conducted with 

different opioids and phosphorylation was correlated to ligand efficacy. Morphine-induced 

the phosphorylation of MOR expressed in CHO cells (Yu et al., 1997) but failed to 

phosphorylate MOR expressed in HEK293 cells (Zhang et al., 1997; Zhang et al., 1998). 

Zhang et al., (1997) also found that morphine only induced MOR phosphorylation in the 

presence of over-expressed GRK2 in HEK293 cells, suggesting that morphine-receptor 

complex is a poor substrate for the GRKs. However this discrepancy could be a result of 

differences in the level of protein kinases in the CHO and HEK293 cell lines. More recently, 

amino acids residues responsible for the agonist-dependent MOR phosphorylation was 

concluded as being Ser and Thr residues in the C-terminus (El Kouhen et al., 2001). 

Other kinases that might be involved in receptor phosphorylation include 

Ca2+/calmodulin-dependent protein kinases II, PKA, and the ERK1/2. The role of CaM 

kinase has been narrowed down to the basal phosphorylation of MOR as indicated by CaM 

kinase inhibitor studies (Wang et al., 1996). The role of PKA in MOR phosphorylation is 

somewhat indirect. Back-phosphorylation studies in neuroblastoma cells (Chakrabarti et al., 

1998) and animals treated with morphine (Bernstein and Welch, 1998) concluded a decrease 



32 
 

in PKA-induced phosphorylation of MOR. This reduction in PKA-mediated back-

phosphorylation does not clearly indicate a role for PKA in MOR phosphorylation following 

morphine treatment. Similar results were mirrored with chronic DAMGO treated 

neuroblastoma cells (Chakrabarti et al., 1998).  

A precise role of ERK1/2 of the MAPK family in MOR phosphorylation is more 

probable. Blockade of MEK using MAP kinase kinase (MEKK) inhibitor PD98059 resulted 

in inhibition of DAMGO’s ability (2 hr pretreatment) to down-regulate MOR protein 

expressed in CHO cells (Polakiewicz et al., 1998a). The correlation between receptor 

phosphorylation by MAPK was not made clear in this study; however more recent studies 

have attempted to elucidate the role MAPK pathways in MOR phosphorylation, tolerance, 

desensitization, and internalization by opioids. These studies have generally concluded that 

phosphorylation acts like a “switch” in opioid tolerance and pharmacological interventions at 

one of these protein kinases may provide valuable strategies to improving opioid analgesia 

by attenuating tolerance to these drugs (Belcheva et al., 2005; Cui et al., 2008; Ferrer-Alcon 

et al., 2004; Schmidt et al., 2000; Trapaidze et al., 2000; Wang and Wang, 2006). 

2.8.2 MOR internalization and down-regulation. 

 Following opioid agonist-induced activation of MORs, the cell terminates MOR 

signaling by the following two mechanisms: 1) via G-protein-coupled receptor kinases 

(GKRs), which phosphorylate Ser- and Thr-residues on the C-terminus of MORs (El 

Kouhen et al., 2001). Phosphorylation of Ser- and Thr-residues increases the binding of β-

arrestin to the C-terminal and results in MOR desensitization. 2) Receptor desensitization is 

usually followed by receptor internalization into the cell’s cytoplasm. Receptor 

internalization is a complex series of receptor trafficking events that eventually result in 

receptor re-sensitization on the cell’s membrane. Receptor internalization events have been 
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correlated to increase opioid-induced tolerance, which from a clinical prospective is the 

diminished capacity of opioid analgesics to promote their analgesic properties following 

long-term, repeated use.    

 Agonist-induced receptor internalization and down-regulation has been 

demonstrated in clonal or recombinant cell lines expressing opioid receptors and 

neuroblastoma cells endogenously expressing the MOR types (Blanchard et al., 1982; Chang 

et al., 1982; Law et al., 1984; Law et al., 1994). It was also concluded that opioid agonist 

could only induce receptor down-regulation and that partial agonist and antagonist could not 

(Keith et al., 1998; Keith et al., 1996). In fact, opioid antagonist role in MOR internalization 

was the opposite to that measured using opioid agonist, increasing the expression of MOR in 

vivo (Rajashekara et al., 2003).  

 Agonist induced MOR down-regulation was demonstrated with 7315C pituitary cells, 

human neuroblastoma SHSY5Y, SK-N-SH and NMB cells (Baumhaker et al., 1993; 

Puttfarcken and Cox, 1989; Shapira et al., 1997; Zadina et al., 1993). Similar experiments in 

cloned MORs expressed in neuroblastoma Neuro2A and C6 glioma cells or fibroblasts were 

conducted (Arden et al., 1995; Chakrabarti et al., 1995; Yabaluri and Medzihradsky, 1997). In 

these and similar experiments, morphine consistently caused MOR protein down-regulation 

without MOR protein internalization. Following these studies the question still exists, why 

does morphine and not other opioids cause the down-regulation of MOR protein and not 

MOR protein internalization. One explanation for morphine-induced MOR down-regulation 

and not internalization could be due to receptor trafficking events and variations in vitro cell-

culture models. 

 Trafficking of opioid receptors following  agonist treatment  became apparent when 

opioid receptors were found to co-localize with transferin after internalization (Keith et al., 
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1996). Opioid receptor (MOR, KOR and DOR) internalization was blocked by dominant 

negative mutants of beta-arrestin and dynamin, confirming the role of these proteins in 

opioid receptor internalization (Murray et al., 1998; Whistler and von Zastrow, 1998; Zhang 

et al., 1998). The activation of the endocytic pathway appears to be agonist and receptor 

dependent, where DAMGO and not morphine treatment induced the internalization of 

MOR (Arden et al., 1995; Zhang et al., 1998). A common link between the lack of morphine 

induction of MOR internalization are the role of GRKs. G-protein coupled receptor kinases 

(GRKs) when over-expressed prevent morphine’s ability to induce MOR internalization, 

therefore suggesting a unique mechanistic role of GRKs in activating the endocytic pathway.  

2.8.3 MOR signal transduction 

 GPCRs regulate cellular events such as growth and differentiation by stimulating 

MAPK cascades. Three main MAPK cascades have been defined in mammals and these 

include the extracellular-signal-regulated kinases (ERKs), Jun N-terminal kinases (JNKs) and 

the p38 MAPKs. Mitogenic signals transmitted following MOR activation has been well 

defined to be carried out by MEK and ERK pathways (Fig. 6). ERK1 and ERK2 stimulation 

by opioids was first recorded when MORs where expressed in recombinant CHO cells (Li 

and Chang, 1996). Li et al., (1996) showed that stimulation of ERK1/2 was ligand selective, 

agonist dose-dependent and PTX sensitive (Gi/o dependent).  
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Fig. 6 Signaling pathways linked to the mitogen-activated protein kinases (MAPK) and 

transcription factors. Opioid receptors could use Gβγ to regulate MAPK cascade. AC, 

adenylyl cyclase; PKA, cAMP-dependent protein kinase; CREB, cAMP response 

element-binding protein; ERK1/2, extracellular signal-regulated kinase 1/2; JNK, c-Jun 

N-terminal kinase; MEF2, myocyte enhancer factor 2; MEK or MKK, Mitogen-activated 

protein kinase kinase; MEKK, MAPK kinase kinase; MLK, mixed lineage kinase; p90 

RSK, p90 ribosomal S6 kinase; STAT-1, signal transducer and activator of transcription 

1; SRF; serum response factor; Elk-1, Eph-like kinase 1; ATF2, activating transcription 

factor 2; arrows, positive stimulation; blocked lines, inhibition; broken lines, interactions 

not well established. (Tso and Wong, 2003). 
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It has been proposed that opioid receptor desensitization following chronic opioid 

exposure is mediated by MAPK cascades. The role of MAPK activation, however, is not 

consistent between opioid receptor types. The DOR internalization following DOR agonist 

specific binding is dependent on activation of the MAPK cascades (Ignatova et al., 1999) but 

this was not the case for the KOR type internalization events following treatment with 

U50,488 (Li et al., 1999). The activation and expression patterns of ERK in rat brain before 

and after chronic morphine treatment showed increased ERK activity in hippocampus and 

increased ERK1/2 expression in the locus coeruleus and caudate/putamen after chronic 

morphine treatment. Apart from linking mitogenic events to opioid receptor regulation and 

expression, the stimulation of MAPK cascades has been associated to other facets of opioid 

receptor signaling. For example, the immunomodulatory and immunosuppressive effects of 

morphine on human lymphocytes is mediated by the activation of MAPK cascade (Chuang 

et al., 1997). In cell lines, tyrosine kinase activity has been stimulated following morphine 

treatment in SK-N-SH cells, where a 58 kDa protein was phosphorylated on tyrosine 

residues in a PTX-dependent manner (Nakano et al., 1994). The MOR and DOR proteins 

have different abilities to potentiate growth factor-induced cell proliferation in various cells 

types (Law et al., 1997). The differences between opioid receptors to potentiate growth 

factors may be related to the capacity of opioid receptors to regulate specific mitogenic 

signals. For example, very little is known about the role JNK and p38 MAPK play in opioid 

receptor signaling. This may prove to be important to our work, where the role of IL-1β in 

the regulation of MOR mRNA expression may be related to the capacity of IL-1RI -induced 

activation of mitogenic signals. 
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2.8.4 Regulation of MOR mRNA levels 

 Opioid receptors have a very high amino acid and structural homology; however 

they have distinct expression profiles. Thus, the pharmacological properties of opioid 

analgesics such as morphine depend on the regulation of opioid receptor expression in the 

CNS (Kim et al., 2004). 

Therefore, in addition to opioid receptor regulation by phosphorylation and 

uncoupling events of G-proteins, opioid receptors are regulated at the transcriptional and 

translational level. Reduced levels of opioid protein expression following chronic opioid 

treatment have been proposed as a mechanism for the explanation of opioid tolerance. The 

logical explanation for the observed reduction in MOR protein would be due to the 

inhibition of the MOR gene transcription and therefore reduced basal opioid receptor 

mRNA level. MOR mRNA expression has been shown to not be affect following antagonist 

treatment, for example, when rats were chronically treated with naltrexone, MOR mRNA 

levels remain unchanged when measured using ribonuclease protection assay (RPA) (Castelli 

et al., 1997; Unterwald et al., 1995). A plausible explanation would be that chronic opioid 

administration in animals is difficult to maintain, however with the availability of drug-

minipumps used to administer opioid continuously, this argument is experimentally 

inaccurate. The importance of understanding MOR mRNA to MOR protein translation 

remains to be studied; however, in order to further understand opioid gene expression, many 

experiments have used cell lines expressing opioid receptors to elucidate the affects of opioid 

treatment on opioid expression at the protein level only (Kim et al., 1995; Thorlin et al., 

1997). These studies have failed to answer why the discrepancy between mRNA and protein 

expression levels of opioid receptors following chronic opioid treatment existed. Until 
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recently, experimental evidence has attempted to fill this void in opioid receptor expression 

studies.  

2.8.5 MOR gene structure 

 Many years of research has allowed us to conclude that the regulation of opioid 

receptor mRNA is due to alterations in transcriptional activities of the receptor gene. This 

section will discuss the structure and the cis- and trans-elements that regulate the 

transcriptional activities. All three opioid receptors have multiple introns that span large 

distances in the chromosomal DNA and share a common genomic structure with the coding 

region being divided into three major exons. The human gene coding for MOR is present on 

the distal part of the long arm of chromosome 6. The MOR gene is more than 53k bp long, 

with exon splice junctions at the first intracellular loop (Arg95), the second extracellular loop 

(Glu213) and the cytoplasmic C-terminal region (Glu386/Leu387) a site at which most splice 

MOR variants occur at the cytoplasmic C-terminal regions (Kraus et al., 1995). 

With the use of Rapid amplification of 5' complementary DNA ends (5’RACE) and 

RNase protection assays, multiple transcriptional start sites of opioid receptor gene have 

been identified. All opioid receptors have distal (DP) and proximal promoters (PP) 

(Augustin et al., 1995; Ko et al., 1997; Min et al., 1994). In most cases, transcriptional 

regulation of MOR is owed to the PP (95%) (Ko et al., 1997; Liu et al., 1999). The PP has 

been identified as specifically directing MOR transcription during murine development (Ko 

et al., 2002). The role of the DP in opioid receptor expression is as the start site of MOR 

transcriptional under inhibitory control. Truncation of the inhibitory control sites (-775 to -

444 from the ATG start site) restores the distal promoter activity as shown by reporter gene 

assays. The location of DP sequence is around the center of a 34-bp negative cis-acting 

element and is both position- and promoter dependent (Choe et al., 1998; Liang et al., 1995). 
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2.8.6 MOR promoter and transcription factor binding sites 

 Opioid receptor genes contain no consensus TATA-box within the promoter 

regions (TATA-less promoters) allowing for the expression of opioid genes by multiple 

TATA-box related peptides or transcription factors. Therefore, opioid promoters are 

embedded within clusters of potential binding sites for different transcription factors, 

suggesting complex regulation of each gene promoter. 

 The transcription of the MOR gene starts at a cluster of four sites located between 

291 and 268 base pairs before the start of the amino acid coding region (Choe et al., 1998; 

Ko et al., 1998; Liang et al., 1995; Min et al., 1994). In the 5’ upstream region of the MOR 

gene, consensus binding sites have all been found for Sp1, AP2, AP1, 

glucocorticoid/mineralcorticoid response element, immune-cell-specific element PU-1, 

cytokine response elements NF-IL6 and NF-GMb, and the cAMP response elements.  

With the discovery of transcriptional and cytokine response elements (NF-IL6 

binding sites) found at nucleotide -1481 (Im et al., 1999) (Fig. 7), it was postulated that the 

response elements present in opioid receptor promoter regions may have a role in the 

cytokine effects on opioid receptor gene expression through cis-trans interaction. Previous 

studies have shown a cytokine-mediated increase in MOR mRNA expression in astrocytes 

and neuroblastoma cell lines (Borner et al., 2004; Kraus et al., 2001; Puehler et al., 2006; 

Ruzicka et al., 1996; Vidal et al., 1998). However, the direct link between cis-acting elements 

and the up-regulation of MOR mRNA following cytokine treatment using reporter gene 

assays was not successfully established. Therefore, due to the lack of evidence for the role of 

NF-IL6 binding sites in cytokine-induced MOR mRNA expression, it has been concluded 

that NF-IL6 binding sites are nonfunctional (Im et al., 1999).  

 



40 
 

 

Fig. 7 Potential transcription binding sites in the MOR promoter region: transcriptional 

start codon (ATG) marked at +1. The MOR promoter region contain cytokine response 

element (NF-IL6) as well as other potential transcription binding sites (AP-1, Oct1) (Im 

et al., 1999).  

 

Furthermore, other binding sites for transcription factors involved in cytokine 

stimulated MOR transcription have been recognized and experimentally verified to bind the 

predicted transcription factor: a STAT6 binding element at nucleotide -997 (Kraus et al., 

2001), two AP-1 binding sites at nucleotides -2388 and -144 (Borner et al., 2002), three NF-

κB binding sites at -2174, -577 and -207 (Kraus et al., 2003), a STAT1/3 element at -1583 

(Borner et al., 2004) (Fig. 8). 

2.8.7 MOR gene transcription is influenced by endogenous and exogenous 

 compounds  

 Opioids - Several substances have been shown to modulate the expression 

of MOR mRNA and protein levels. Opioid ligand induced changes in the expression of their 

own receptors has provided an intriguing perspective, suggesting a feed-back loop 

engagement between MOR and its promoter. For example, DAMGO binding to MOR has 

been shown to enhance Sp1/Sp3 binding to its MOR gene promoter as recorded using a 

MOR luciferase promoter construct transfected in SK-N-SH cells (Xu and Carr, 2001). 
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Fig. 8 Regulatory sequences of the MOR gene. The MOR gene transcription is 

controlled by two promoters, distal (DP) and proximal (PP) promoters. Transcription 

binding sites and factors represented by their individual colors. 5’-DPRS - 5’-distal 

promoter regulatory sequences. TIS - transcription initiation site. Activators: Oct-1, IL-4, 

Sox, Sp1, AP2, NF-κB, CREB. Repressors: PU.1 and NRSE (neuron restrictive silencer 

element). Figure constructed with data collected from (Choe et al., 1998; Hwang et al., 

2003; Im et al., 1999; Kim et al., 2004; Ko et al., 2003; Ko et al., 1998; Ko et al., 1997; 

Liang and Carr, 1996; Liang et al., 1995; Rivera-Gines et al., 2006). (Adapted from (Law 

et al., 2004). 

 

Also morphine and endomorphins (endogenous opioid peptide) have been found to 

modulate MOR gene promoter transcription in SH-SY5Y cells (sub-clone of SK-N-SH 

cells), where morphine down-regulated MOR gene transcription in both un-differentiated 

and differentiated cells and endomorphins-1 and -2 up-regulated MOR gene transcription in 

the same cell lines (Yu et al., 2003).  

Non-opioids - Studies have postulated the modulation of the MOR transcript by 

peptides and agents not associated with opioids. Substance P (SP) has been associated with 

endogenous opioids since the 1980’s, where the release of SP from the spinal dorsal horn 

has been found to be regulated by opioids (Aimone and Yaksh, 1989) and the discovery of 

the co-existence of opioid receptors and preprotachykinin A (PPTA), a SP precursor soon 

followed (Minami et al., 1995). Pain-induced release of SP, a neuropeptide present in primary 
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afferent neurons (PAF) for the transmission of nociceptive information (Otsuka et al., 1976), 

has been associated with the up-regulation of MOR expression and facilitation of an opiate-

mediated intrinsic anti-nociceptive mechanisms (McLeod et al., 2000).  

2.8.8  Up-regulation of MOR gene transcription by cytokines  

 It has been known for decades that the opioid system and immune system have a 

unique relationship, and this unique interaction was first discovered when mice where 

immunized with morphine and the level of morphine tolerance decreased (Meisheri and 

Isom, 1978). Addiction neurobiologists have studied the relationship between opioid 

addiction and its effect on the immune system. Therefore, the general consensus following 

25 years of research is that opioids impact the immune system with immunosuppressive 

properties (Bayer et al., 1994; Bayer et al., 1990; Brown and Van Epps, 1985; Bryant and 

Roudebush, 1990; Bussiere et al., 1992; Bussiere et al., 1993; Carr et al., 1995; Chao et al., 

1993; Clark et al., 2007; Coussons-Read et al., 1994; Davis et al., 2007; Eisenstein et al., 1993; 

Eisenstein et al., 1995; Gaveriaux-Ruff et al., 1998; Liu et al., 2006b; Nelson et al., 1997; 

Page, 2005; Portoles et al., 1995; Saurer et al., 2006; Shavit et al., 1986; Suzuki et al., 2003; 

Thomas et al., 1995; Tsai et al., 2000; Weber and Pert, 1989; Welters et al., 2000b; Welters et 

al., 2007; Zaki et al., 2006; Zou et al., 2007). As a potent immuno-modulator, the effects of 

morphine on the immune system have been summarized in Table 1 and is detailed in a 

review article by (Sacerdote, 2008). 

Several cytokines have been shown to up-regulate MOR gene transcription in 

neuronal cell lines, primary cell cultures and immune cells expressing MOR and therefore 

this direction of interaction between the immune system and opioid receptors implicates the 

involvement of cytokines in the efficacy of analgesia induced by opioids. Studies using pro-

inflammatory cytokines, IL-4 and IL-6 showed that MOR mRNA expression was 
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significantly up-regulated in SH-SY5Y cells through the activation of STAT6 (Kraus et al., 

2001) and STAT3 (Borner et al., 2004) respectively. 

 

Table 1 Summary of morphine induced immuno-modulatory effects. 

Immuno-modulatory effects of morphine exposure 

1. Lymphoid organ atrophy 

2. Reduced Natural Killer (NK) cell activity 

3. Reduced Macrophage (MΦ) activity 

4. Reduced MΦ secretion of IL-1, IL-6 and TNF-α 

5. Decreased CD4/CD8 double positive cells 

6. Increased IL-4 expression 

7. Decreased IFN-γ expression 

8. Reduced T-cell secretion of IL-2 

9. Phosphorylation of MAPK in lymphocytes 

 

Interestingly, IL-4 and TNF-α treated immune cell (Jurkat T cells, and Raji B cells) induced 

an otherwise dormant MOR gene expression (MOR mRNA in the immune cells was 15 to 

200 times less than those in primary cortical and SH SY5Y neuronal cells) (Borner et al., 

2007). In contrast, interferon-γ (IFN-γ) treatment in  immune and neuronal cells by the same 

group repressed MOR gene transcription, shutting down MOR expression, preventing IL-4 

up-regulated MOR in Jurkat T cells (Kraus et al., 2006). Other cytokines such as TNF-α 

(Kraus et al., 2003) and IL-1β  have been studied as being cytokines that up-regulate MOR in 

neurons and endothelial cell lines (Puehler et al., 2006; Ruzicka et al., 1996; Vidal et al., 

1998). 

The inter-relationship between the immune system and nervous system is 

complicated. And therefore, the relationship between opioid-induced analgesia, opioid 
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receptors and immune modulators is not very well understood, leaving a gap in our 

understanding of the complicated inter-relationship between the two biological systems. An 

improved, in depth understanding of the process involved in pain transmission, 

inflammation, immuno-modulation and analgesia will allow us to better tailor analgesia drugs 

by finding novel potential therapeutic targets. The answers to these questions are beyond the 

scope of this dissertation. However the aim is to provide the small missing piece to a puzzle, 

filling a gap in our knowledge about the relationship between neuroinflammatory mediators 

and opioid analgesia by studying the effects of IL-1β and morphine on the expression of 

MOR in neurons.   

 

2.9 The role of NF-κB in MOR expression 

 Nuclear factor-κB (NF-κB) is one of the most diverse and critical 

transcription factors. NF-κB is a key downstream molecule that may directly or indirectly 

transmit receptor-mediated upstream signals to the nucleus, resulting in the regulation of 

NF-κB-dependent genes. NF-κB is composed of homo- and heterodimers of five members 

of the Rel family, including NF-κB1 (p50), NF-κB2 (p52), RelA, RelB, and c-Rel. The 

p50/p65 complex is the most common functional heterodimer found in cells. The NF-κB 

signaling pathways is as follows: cytokines and other released immune mediators bind to 

their receptors to activate IKK; activated IKK complex which consists of IKKα and IKKβ 

and IKKγ [NEMO] subunits, then phosphorylate IκBα, which is bound to the NF-κB 

p50/p65 heterodimer in an inactive state, mostly in the cytoplasm; phosphorylated IκBα is 

released from the complex and undergoes proteasome-dependent degradation; freeing NF-

κB, which then translocates to the nucleus to induce the expression of target genes (Fig 9). 

For a complete review refer to (Hayden and Ghosh, 2004) 
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Fig. 9 Alternative and classical pathways of NF-κB signaling (Hayden and Ghosh, 2004) 

 

GPCR mediated immune responses are translated through NF-κB, where it is 

involved in mediating down-streaming signaling pathways (Ye, 2001). Many studies have 

linked NF-κB involvement in opioid-induced immunosuppressive actions (Carr et al., 1995; 

Murphy, 2003; Welters et al., 2000a), and less so to the expression of opioid receptors in 

neurons and immune cell types expressing opioid receptors (Kraus et al., 2003; Ledeboer et 

al., 2005). Moreover, inhibition of NF-κB by pyrrolidine dithiocarbamate (PDTC) attenuated 

the effect of opioid withdrawal (Capasso, 2001). Therefore, these studies indicate that NF-

κB may play a key role in opioid-mediated neuronal expression of opioid receptors. 
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 2.10 Overview of SK-N-SH human Neuroblastoma cells 

 The SK-N-SH Neuroblastoma cells represent immature peripheral neurons that 

frequently express several morphological phenotypes (Yu et al., 1988). Human 

neuroblastoma, one of the most common early childhood solid tumors, is thought to arise 

from neural crest cells during embryonic development. The SK-N-SH cell line was 

established in culture in December 1970 from a bone marrow biopsy of a four year-old girl 

(Biedler et al., 1973). This cell line is composed of two morphologically distinct cell types, 

neuroblastic “N” and epithelial-like “S” cells. “N” cells are characterized as small and round 

with loosely adherent cell bodies consisting of neurite-like processes that contain 

noradrenergic biosynthesis enzymes as well as an uptake mechanism for norepinerphrine. 

“N” cells also express opioid receptors (Sadee et al., 1987). “S” cells are larger and flattened 

cells, resembling epithelial and highly substrate-adherent (Ciccarone et al., 1989). The SK-N-

SH cells were further subcloned into the lines SH-SY5Y (neuroblast-like cells having 

catecholamine biosynthetic enzymes) and SH-EP (Ciccarone et al., 1989; Sadee et al., 1987). 

 The SK-N-SH cells are multi-potential with regards to neuronal enzyme expression. 

The cell line has enzymes required for the biosynthesis of several neurotransmitters such as 

choline acetyltransferase and tyrosine hydroxylase. In particular, SK-N-SH cells have a high 

activity of dopamine-β-hydroxylase and very low activity of glutamic acid decarboxylase, the 

enzyme responsible for the conversion of glutamate to GABA (Amano et al., 1972; West et 

al., 1977). 

 In a monolayer culture, SK-N-SH cells have a population-doubling time of 44 hr 

(Biedler et al., 1973). The total number of opioid-binding sites was estimated at 70,000 

sites/cell based on saturation binding studies (Biedler et al., 1973; Yu et al., 1986). SK-N-SH 

cells express abundant MOR proteins (~50,000 binding sites/cell) and fewer DORs 
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(~10,000 binding sites/cell). Binding and function of these receptors have been well 

characterized. The opioid receptor binding sites on SK-N-SH cells closely resemble MOR 

and DOR binding sites in human and rodent brain (Yu et al., 1986). The SK-N-SH cells can 

be differentiated to a neuronal phenotype (~70%) with all the morphological and 

biochemical characteristics of neurons (Pahlman et al., 1984). Immature neuroblast forms 

can be induced to differentiate into mature neurons, which are marked by extensive neurite 

outgrowth (Ross et al., 1983). 

 Using the differentiating agent retinoic acid (RA) on SK-N-SH cells, it has been 

found that the neuroblast-like cells transform into large, flattened cells resembling epithelial 

or fibroblast cells (Sidell et al., 1983). RA is known to be one of the most potent agents 

inducing neuronal differentiation in many Neuroblastoma cell lines by influencing growth 

and morphogenesis. 

 In SK-N-SH cells, RA has been found to increase the protein expression of opioid 

receptors (Zadina et al., 1993) and therefore, RA-differentiated SK-N-SH cells can serve as a 

model to study opioid-induced analgesia efficacy and tolerance in vitro (Yu and Sadee, 1988). 

 The effect of prolonged exposure to MORs to opioid agonist has been studied in 

SK-N-SH cells. Chronic activation of MORs by morphine lead to partial desensitization of 

the receptors and upon activation of the opioids agonist, an overshoot in the production of 

cAMP measured (Wang and Gintzler, 1994; Yu et al., 1988). In SK-N-SH cells, it was found 

that desensitization occurs predominantly in the first 6 hr following agonist treatment. There 

were fewer G-proteins being activated, whereas the number of MORs did not change 

significantly. The MOR proteins returned to near normal levels after desensitization, but at 

lower receptor numbers (Breivogel et al., 1997). 

 



48 
 

2.11 Why is it important to elucidate the role of IL-1β on MOR expression?  

 The importance of understanding the effects of IL-1β on MOR expression is 

multiple. For example, decreased MOR expression following IL-1β exposure may result in 

reduced opioid analgesia and a result in increased opioid receptor down-regulation. Since 

opioid receptor genes are important to the development of cells, decreased MOR expression 

may result in attenuated cellular development, resulting in the disturbance of various 

physiological, MOR-dependent processes. Conversely, we may find that IL-1β stimuli 

increase MOR expression in SK-N-SH cells. Consequently, IL-1β-induced increase in MOR 

expression could result in an increase of potent, harmful effects of opioid (i.e. respiratory 

failure); however such effects would require a prolonged exposure to IL-1β at high 

concentrations. At present there are important gaps in our knowledge of how IL-1β affects 

MOR expression in the CNS in vitro. Gaps in our knowledge include: a) does IL-1β affect 

MOR expression? b) Does the level of IL-1β exposure of SK-N-SH cells expressing MOR 

differ (i.e., acute vs. chronic)? c) Does IL-1β impact the degree and rate of opioid-induced 

MOR mRNA expression? d) Are the effects of IL-1β on MOR expression dependent on 

specific intracellular signaling kinases? (I.e. NF-κB MEK/ERK/p38MAPK). This 

dissertation will address these basic gaps in our knowledge of morphine-IL-1β interactions 

on the expression of MOR. 
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2.12  Hypothesis and specific aims 

 The hypothesis for the dissertation is two-fold: 

1 - IL-1β and morphine INCREASE/DECREASE the expression of MOR in SK-

N-SH cells respectively. 

The first hypothesis will be studied with the following specific aims: 

a) Determine a time and dose-dependent effect of morphine and IL-1β treatment 

on MOR expression in neurons 

b) Determine MOR and IL-1RI dependent mechanism  

 

2 - Manipulation of signaling pathways will alter the effects of IL-1β and 

 morphine on MOR expression in SK-N-SH cells.  

 The second hypothesis will be studied with the following specific aim: 

a) Elucidate the role of signaling kinases and NF-κB on the expression of MOR by 

using signal inhibitors – SN50 (NF-κB), PD98059 (MEK1/2) and SB203580 

(p38 MAPK). 
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CHAPTER III 

 
 

RESEARCH DESIGN AND METHODS 

 
3.1 SK-N-SH cell culture and materials 

 The human neuroblastoma SK-N-SH cells were obtained from ATCC (Cat # HTB-

11). SK-N-SH cells were cultured in RPMI-1640 growth media (GM) (ATCC, Manassas, 

VA) supplemented with 10% fetal bovine serum (FBS), 100 U/mL penicillin and 100 

mg/mL streptomycin (Invitrogen). SK-N-SH cells were grown as a monolayer at 37○C in a 

5% CO2 atmosphere incubator in 100mm2 round culture plates. The cells were seeded 

approximately 1x105 cells/mL as stock plates for 5-6 days, with growth media changed every 

two days. Following 5-6 days of growth, SK-N-SH cells were 70-80% confluent and were 

then passaged with 0.25% trypsin and seeded at 1x105 cells in 500 μL/well of RPMI-1640 

growth media (GM) in 24-well culture plates (Corning). All experiments were conducted 

between passages 6 and 10. 

 

3.2 Molecular cloning and bioinformatics of MOR in SK-N-SH cells 

3.2.1 Isolation of RNA 

Total RNA was isolated using the RNAqueous-4PCR column based kit (Ambion, 

Austin TX).When the SK-N-SH cells became 70-80% confluent, GM was removed and 

replaced with 1 mL guanidinium lysis solution and placed on ice for 2-3 minutes. Cells were 

then lysed vigorously by pipetting the cell lysate, disrupting the plasma membrane and 
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releasing their cytoplasmic and nuclear contents. The cell lysate was mixed gently 

with an equal volume 64% ethanol. 700 μL of the lysate/ethanol mixture was pippetted onto 

a silica-based filter mounted 1.5 ml RNase-free collection tube. The Silica-based filter 

selectively and quantitatively binds mRNA and larger ribosomal RNA (28s and 18s rRNA). 

The total volume of the lysate/ethanol mix was 2 mL, and the maximum volume of each 

silica-filter is 700 μL, the lysate/ethanol mix was added three times followed by a 30 second 

centrifuge of each lysate/ethanol mix at 12,000 xg on a table-top micro-centrifuge. After 

each centrifuge step, flow-through into the 1.5 mL tube was discarded and the filter cartridge 

was re-used for subsequent spins. The filter was then washed to remove residual DNA, 

protein and other contaminants; 700 μL of wash solution #1 was pippetted into the filter 

and centrifuged at 12,000 xg for 30 seconds. The flow-through was discarded and the same 

filter was washed with wash solution #2 (500 μL). This step was repeated again with wash 

solution #2 with the flow-through discarded after each wash step. The RNA was eluted in 

nuclease-free water containing trace amounts of ethylenediaminetetraacetic acid (EDTA) to 

chelate heavy metals.RNA was therefore eluted from the filter into a clean RNase-free 1.5 

mL tube and strip-eluted using the provided elution buffer (EB). The EB was heated at 80○C 

before being used to elute the RNA. The RNA elution step was performed in two-steps 

(stripping), first, 60 μL of the heated EB was applied to the middle of the filter and 

centrifuged at 12,000 xg for 30 seconds, secondly 20 μL of the EB was pippetted into the 

center of the filter cartridge and centrifuged again. Total volume of elute containing total 

RNA was approximately 80 μL. 1 μg of total RNA was subjected to RNase-I treatment as 

instructed by the manufacturer (Ambion). Total RNA was aliquoted into 1.5 mL tubes and 

stored at -80○C. Total RNA concentration was determined using the Nanodrop-1000 

spectrophotometer (Thermo Scientific) and A260/A280 ratio readings were recorded as 
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described in the user manual. RNA integrity was determined by running 0.5 - 1 μg of total 

RNA on a 1.5% agarose gel; total RNA samples were subjected to 50○C temperature for 30 

min mixed with a denaturing dye (Ambion) prior to running on 1.5% agarose gels. 18s and 

28s rRNA bands were visual determinants of the isolated RNA quality and integrity. 

3.2.2 cDNA synthesis 

 Approximately 1 μg of DNAase-I treated total RNA was used for cDNA synthesis 

using the QuantiTect reverse transcriptase cDNA synthesis kit (Qiagen, Valencia, CA). 

Another step to remove genomic DNA contamination from isolated RNA samples was 

carried out by adding 2μL of gDNA Wipeout Buffer 7x (Qiagen) to 1μg of RNA and 

heating the mix form 3 minutes at 42°C. A reverse transcription master mix was prepared on 

ice containing the template (RNA), Quantiscript reverse transcriptase (RT), which contain a 

50 kDa RNase inhibitor protein, Quantiscript RT buffer, 5x, which contain dNTPs, RT 

primer mix, which is a blend of oligo-dT and random primers. cDNA was then synthesized  

in a thermal cycler (M.J.) using the following cycling parameters: 45 min at 42°C followed by 

3 min at 95°C to inactivate the Quantiscript RT. All RT-reactions were stored at -20○C until 

RT-PCR was performed. 

3.2.3 RT-PCR of SK-N-SH cDNA with opioid receptor family degenerate primers 

 PCR was set-up by combining 100 ng of cDNA, 100 pmol each of the Ra and Rb 

opioid receptor family degenerate primers (Li et al., 1996), was mixed with the Advantage 2 

PCR Kit reagents to a final reaction volume of 50 μL (Clontech, Mountain View, CA), made 

up with PCR-grade ddH2O. The reaction was run in a M.J. thermocycler programmed to run 

the following PCR steps: 94○C for 3 min; and 94○C for 1 min, 55○C for 1 min, 72○C for 40 

sec, cycling for 30 cycles. 10 μL of the PCR product was run on 1.5% agarose gel containing 

1 μg/mL Ethidium Bromide (EB) to visualize the162bp fragment using a UV gel box. The 
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162bp PCR product, as per the designed primers, spans a boundary between the 1st 

intracellular loop (IL1) and the 2nd (TM2) and 3rd transmembrane (TM3) regions. The 

162bp PCR product reflected a highly conserved region of opioid receptors. The opioid 

family degenerate primer set were designed using human, rat and mouse cDNA cloned 

opioid receptor (MOR, DOR and KOR) coding sequences. The nucleotide sequences of the 

degenerate primers are as follows: 

Ra: 5' – GAA(AG)AC(GATC)GC(GATC)AC(GATC)AA(TC)AT(TCA)TA - 3'   

(Tm = 52○C) 

Rb: 5' – GT(AG)AACAT(AG)TT(AG)TA(AG)TC – 3'  

(Tm = 41○C) 

 The amplified PCR product was cloned into a pCR4-TOPO vector, and was 

submitted for BLASTn analysis against the NCBI non-redundant database and BLAST 2 

sequence analysis. BLAST 2 sequence analysis tool produces the alignment of two given 

sequences using BLAST engine for local alignment (Tatusova and Madden, 1999). 

3.2.4 Full-length cDNA PCR amplification of MOR in SK-N-SH cells 

 The following primers were designed using the Primer3 online tool to anneal across 

the 5′ and 3′ untranslated regions (UTRs) in order to PCR-amplify the entire coding region: 

Forward: 5' - TCTTCAGCCATTGGTCTTCC - 3' (Tm = 72○C) 

Reverse: 5' - GGAGCAGTTTCTGCTTCCAG - 3' (Tm = (72○C) 

 The PCR reaction was run in a M.J. thermocycler programmed to run the following 

PCR steps: 94○C for 60 sec; and 94○C for 30 sec, 68○C for 30 sec, 72○C for 90 sec, cycling 

for 35 cycles and final extension 72○C for 3 min. 10 μL of the PCR product was run on 

1.5% agarose gel containing 1 μg/mL EB to visualize an approximate ~1.5 kb PCR product. 

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=9254694&dopt=Citation
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3.2.5 Cloning and sequencing of RT-PCR products 

PCR products were cloned into the pCR4-TOPO vector using the TOPO TA 

cloning kit (Invitrogen).  Standard reagents from the kit were combined with 4 μL of the 

PCR product and the ligation reaction was incubated for 15 min at room temperature. 

TOP10 (E. Coli) chemically competent cells (Invitrogen) were transformed with 2 μL of the 

ligation reaction and incubated on ice for 30 min. The competent cells were heat shocked at 

42○C for 30 sec and incubated in 1 mL of S.O.C (0.5% Yeast extract, 2.0% tryptone, 10mM 

NaCl, 2.5mM KCl, 10mM MgCl2, 20mM MgSO4, 20mM glucose) medium for 1 hr at 37○C, 

placed horizontal in a shaking incubator set at 225 rpm. S.O.C is used as a cell growth 

medium to ensure maximum transformation efficiency. Transformed E. coli cells cultured in 

S.O.C medium were plated on Luria-Burtani (LB medium) agar plates by pipetting 75 μL 

and 100μL of now transformed and spread onto LB agar plates containing 100 μg/mL 

ampicillin and incubated overnight at 37○C. Approximately 16 hr later, individual colonies 

(minimum six) were picked and further cultured overnight in 2 mL of LB containing 100 

μg/mL of ampicillin (per liter of LB: 10g tryptone, 5g yeast extract). The next morning, 

high-copy plasmid DNA was purified from the E. coli cells cultred in LB medium.The 

QIAprep Spin Miniprep Kit and the protocol was followed as outlined in the kit (Qiagen) to 

purify approximately 10μg of plasmid DNA. Following the isolation of plasmid DNA, 5 μL 

of each clone was digested with 0.5U of EcoRI (New England Biolabs) for 1 hr at 37○C in a 

water-bath. The digest(s) were run on 1.5% agarose gel to verify the product size. Clones 

containing the gene insert of the correct size were submitted to the OSU Molecular Biology 

CORE Facility in Stillwater, OK for verification of the DNA sequence of cloned MOR. 
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3.2.6 Bioinformatics of cloned SK-N-SH MOR seqeunce 

3.2.6.1 Determination of MOR consensus sequence 

 The SeqMan II software (v. 5.03 DNASTAR, Madison, WI) was used to edit the 

MOR sequence and identify the MOR open reading frame. Full-length MOR sequences 

from three-independent PCR reactions were sequenced and aligned to compare the 

consensus sequence of MOR expressed in SK-N-SH cells. 

3.2.6.2 BLASTn of cloned MOR sequence 

Nucleotide and amino acid sequence homologous to human MOR were identified 

using (nucleotide) BLASTn program on the National Center for Biotechnology Information 

(NCBI) website (http://blast.ncbi.nlm.nih.gov/Blast.cgi). 

 

3.3 Drugs 

 The opioid agonist morphine sulphate (1-100 μM) (MS) and the opioid antagonist 

naltrexone (10-100 μM) were purchased from Sigma Aldrich, USA. Human recombinant 

Interleukin-1β (IL-1β; 10-100 ng/mL) was obtained from PeproTech, Rocky Hill, NJ and its 

receptor antagonist, (IL-1RA; 10-100 ng/mL) from R&D systems, Minneapolis, MN. 

Signaling protein kinase inhibitors - p38MAPK inhibitor, (SB203580; 1 μM) (4-(4-

Fluorophenyl)-2-(4-methylsulfinylphenyl)-5(4-pyridyl) 1H-imidazole) (Sigma); MEK1/2 

inhibitor, (PD98059; 50 μM) (2’-amino-3’-methoxyflavone) (Sigma); and NF-κB inhibitor, 

SN50; 10 and 50 μM) (Biomol).  

 

 

 

 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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3.4 Quantification of MOR gene expression using Quantitative real-time PCR  

 (qRT-PCR) 

3.4.1 RNA isolation 

 SK-N-SH cells were grown in 24-well cell culture plates seeded at 1x105 cells/ml for 

1-2 days. Total RNA was isolated using the RNAqueous-4PCR column based kit (Ambion, 

Austin TX). Following 70-80% confluence of the cells, GM was removed and replaced with 

0.5 mL lysis buffer and placed on ice for 2-3 minutes. RNA was isolated as detailed in 

section 3.2.1. 

3.4.2 cDNA Synthesis 

 Total RNA underwent reverse transcription (RT) using the QuantiTect RT kit, 

dedicated for synthesis of qRT-PCR quality cDNA (Qiagen) following the manufacture’s 

protocol as detailed in section 3.2.2.  

3.4.2.1 Reverse transcription (RT)-PCR: Semi-quantitative  

 PCR was carried out for MOR (800 and 106bp), IL-1RI (123bp) and GAPDH 

(163bp). The PCR cycling parameters were: 94○C for 30 sec; and 94○C for 30 sec, 62○C for 

30 sec, 72○C for 90 sec, cycling for 35 cycles and final extension 72○C for 2 min. These PCR 

experiments were carried out to identify and confirm the expression of MOR, IL-1RI and 

GAPDH by SK-N-SH cells. The primer sets used for both RT-PCR (MOR and IL-1RI) and 

qRT-PCR (MOR and GAPDH) experiments are in Table 2. 

3.4.3  Quantitative real-time PCR (qRT-PCR) 

All qRT-PCR primer sets (Table 2) were designed to span an intron/exon boundary to 

prevent amplification of genomic DNA. The efficiency of each primer set (MOR and 

GAPDH) was checked using gradient RT-PCR, the most efficient primer melting (annealing) 

temperature (Tm) was determine by performing six-independent RT-PCR with six different 
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annealing temperatures (○C). The RT-PCR products were visualized on a 1.5% EtBr 

(10mg/mL) agarose gel, the PCR products that cooresponded to the length of the gene 

amplified, which was determined using a 1kB DNA ladder. If a clear single band, without 

any secondary PCR products, of the correct base-pair (bp) size was visualized, the annealing 

temperature (Tm) that produced this PCR product was chosen. In order to determine the 

qRT-PCR efficiency (rate at which a PCR amplicon is generated, i.e. if a PCR amplicon 

doubles in quantity during the geometric phase of its PCR amplification then the PCR assay 

has 100% efficiency) for both MOR and GAPDH genes, a relative cDNA standard curve 

was carried out. 

Table 2. Genes of interest, primers and their sequences used for RT-PCR and qRT-PCR.  

Target Primer Sequence (5'→ 3') Amplicon Size GenBankTM 

Accession 

MOR Fwd: (100 – 123) 
TCAGCCAGGACTGGTTTCTGTAAG 
Rev: (926-905) CAGTACCAGGTTGGATGAGAGA  

 

800 NM_000914 

MOR Fwd: (590 - 609) 
CTTCAGCCATTGGTCTTCCT 
Rev: (689 - 668) 
CAGTACCAGGTTGGATGAGAGA 

106 NM_000914 

IL-1RI* Fwd: (1542-1562) 
CTGGTCAGGGGACTTTACACA 
Rev: (1664-1643) 
GCTGGTGACAGTAACTGGTGTT 
 

123 NM_000877 

GAPDH^  Fwd: (222 - 243) 
CAACTACATGGTTTACATGTTC 
Rev: (402- 385) 
GCCAGTGGACTCCACGAC 

 

163 NM_002056.3 

*-IL-1RI primer sequence obtained from: 

 http://pga.mgh.harvard.edu/primerbank/index.htmk: PrimerBank ID 4504659A3. 

^ - GAPDH primer sequences obtained from Kraus et al., 2003. MOR primer sets were 

designed using Integrated DNA Technologies (IDT) PrimerQuest tool. 

http://pga.mgh.harvard.edu/primerbank/index.htmk
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The relative cDNA standard curve was set-up using stock cDNA (standard) (1 μg) that was 

serial diluted into 1, 10, 100 and 1000 ng of final cDNA mass (mass represents the 

proportion of RT reaction and the mass units (ng) cancel-out in relative quantitation 

calculations). The standard curve was produced using the BioRad, icyler thermocycler. The 

slope of the standard curve was used to estimate qRT-PCR amplification efficiency, when 

the qRT-PCR standard curve reactions were completed, the qRT-PCR standard curve was 

graphically represented as a semi-log regression line plot of CT vs. log of input nucleic acid. 

A standard curve of -3.32 indicated a PCR with 100% efficiency. The qRT-PCR standard 

curve also allowed us to determine the concentration of cDNA template to use for each 

gene (MOR and GAPDH). Each qRT-PCR contained 10 ng/μL (50 ng total cDNA mass) 

of cDNA template in 15 µL total reaction volume which was run in duplicate in a 96 well q-

RT-PCR-plate. 

 Each qRT-PCR contained  2X Premix Ex Taq SYBR Green I Master Mix (Takara), 

(which contained Eq TaqTM Hot Start DNA polymerase, buffer, dNTP mix, Mg2+ and 

SYBR green I), primer sets (25 nM each) and PCR-grade water. The SYBR green I 

fluorescent dye was used for real-time detection of double-stranded DNA. The qRT-PCR 

amplification cycle for MOR was: 95○C for 10 s followed by 40 cycles of 95○C, 64○C for 20 

s and 72○C for 20 s. This was followed by 94○C for 60 s, 55○C for 60 s and for the melt 

curve analysis 55○C for 30 s for 80 cycles. The qRT-PCR amplification cycle for GAPDH 

was: 95○C for 10 s followed by 30 cycles of 95○C for, 60○C for 20 s and 72○C for 20 s. This 

was followed by 94○C for 60 s, 55○C for 60 s and for the melt curve analysis 55○C for 30 s 

for 80 cycles. The thresholds for both MOR (33.1 cycles) and GAPDH (26.5 cycles) 

remained constant between experiments. The GAPDH gene was chosen as our 
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endogenous reference gene and to normalize against the amplification of the MOR gene to 

calculate fold change. 

Following qRT-PCR, quantification of MOR expression was made by setting the 

threshold cycle (CT) in the geometric amplification phase of the plot. Relative quantification 

of MOR expression was calculated using the comparative CT method as described by Livak 

et al., (2001). The amount of MOR (fold change), normalized to GAPDH (endogenous 

reference gene) and relative to the calibrator (untreated) was calculated using the 2 -∆∆CT 

arithmetic formula. The raw CT output values from the calibrator (untreated) and treated 

groups were averaged and these averaged CT values were used to calculate the ∆CT values: 

(MOR (target) – GAPDH (reference)). Calculation of ΔΔCT values were carried out using the mean 

ΔCT values as an arbitrary constant to subtract from all other ΔCT mean values. The ΔΔCT’s 

were calculated using the ∆CT‘s values: ∆CT treated - ∆CT untreated. The formula, 2 -∆∆CT, 

yields relative fold change MOR gene expression.  

3.4.4  Statistical analysis of qRT-PCR data 

 The ΔCT values from each experiment set (minimum, n=3) were used to analyze 

significant differences between un-stimulated and stimulated groups. The ΔCT values were 

also used to perform statistical analysis to determine a concentration and/or time-dependent 

and treatment dependent effects with IL-1β and morphine. Using the Statistical Analysis 

Software (SAS; Package 9.1), ΔCT results were tested using 2X2 factorial Analysis of 

Variance (2-way ANOVA) tables generated through PROC-GLM (General linear model) 

allow the utilization of a complete randomized design. And p-values were analyzed through 

least square means (LSMEANS) difference of ΔCT values from each treatment group. This 

model was used to determine a significant difference between unstimulated - vs. stimulated-
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dependent effects, and statistical differences determined at p≤0.05.  Error bars show ± 

S.E.M were n = ≥ 3.  

3.4.5  Human MAPK qRT-PCR array 

 The human MAPK qRT-PCR gene array kit was used to elucidate the role of MAPK 

in the expression of MOR in response to morphine and IL-1β. A 96-well plate spotted with 

primers specific to 84 MAPK pathway genes was purchased from SABiosciences. In order to 

keep experimental conditions consistent, the protocol used to synthesized cDNA in section 

3.4.3 was followed. 50 ng (mass) of cDNA was pippetted into each well spotted with one 

human gene-specific MAPK primer set. The qRT-PCR reaction master mix used was the 

same as that used in section 3.4.3.  

 The 96-well PCR-array plate is set-up with 84-human MAPK pathway focused genes 

(wells A1 - G12), 5 housekeeping genes (HKG) (wells H1 - H5), genomic DNA control gene 

(well H6), RT control genes (wells H7 - H9) and positive PCR control genes (wells H10 - 

H12) as illustrated in Fig. 10. 

The qRT-PCR data was analyzed using the web portal 

(http://www.SABiosciences.com/pcrarraydataanalysis.php). Raw CT values were calculated 

into fold-change using the comparative ΔΔCT method and a scatter plot of the MAPK genes 

was generated. Other analysis options included multi-group plots and cluster-grams, howver, 

the PCR array analysis software required one control reaction and at least 3-independent 

treatment reactions in order to perform any statistical significance of thresholds, however 

only two-independent experiments and one-control experiment were performed and 

therefore no statistical analysis were conducted.  

 

http://www.sabiosciences.com/pcrarraydataanalysis.php
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Fig. 10 A 96-well qRT-PCR-array plate layout of 84-genes of the human MAPK 

pathway. (www.SABioscience.com) 

 

3.5  Cytotoxicity (MTT) assay  

To assess cell viability, the MTT assay was performed (Carmichael et al., 1987). Cells 

were incubated for 1 hr in GM containing 0.55 mg/mL 3-[4,5-Dimethylthiazol-2-yl]-2,5,-

diphenyltetrazolium bromide (MTT). Then cells were washed three times with 1x PBS, then 

dissolved using 1 mL DMSO and absorbance measured at 492 nm using a BIO-TEK HT 

spectrophotometer (OSU-CHS). MTT assays were conducted to determine whether the 

signaling inhibitors were cytotoxic to the SK-N-SH at the selected concentrations before 

being used to treat the SK-N-SH cells in the qRT-PCR experiments. 

3.5.1  Statistical analysis 

 Data is presented as mean ± S.E.M of duplicate measures from 3-independent 

experiments. One-way Analysis of Variance (ANOVA) followed by Newman-Kuel’s post-

hoc multiple comparison tests was used to test for significance between treatment groups.  

 

http://www.sabioscience.com/
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3.6  Immunocytochemistry (ICC) 

3.6.1  Coverslip preparation 

 12 mm round glass coverslips (VWR) were coated with poly-L-lysine for 1 hr at room 

temperature. Coverslips were rinsed with sterile H2O (3x-5 min each). Coverslips were dried 

and sterilized under UV light for at least 4 hr. 

3.6.2 Immunocytochemistry (ICC) 

 ICC was used to detect basal levels and changes in MOR protein expression 

following morphine and IL-1β treatment. This fluorescence detection protocol was kindly 

provided by Dr. K.E. Miller, Oklahoma State University-Center for Health Sciences with 

help from Ernest Mathew Hoffman. SK-N-SH cells were seeded at 1x104 cells/well on poly-

L-lysine treated 12 mm glass coverslips placed in 24-well culture plates. Following 1-2 days 

of culture to obtain 40-60% confluent cells, cells were washed 3x with 1x PBS (phosphate 

buffered saline), fixed with 4% paraformaldehyde (PF), washed 2x with 1x PBS, blocked 

using blocking buffer made up of normal goat serum (NGS; 10%), normal horse serum 

(NHS; 10%), fetal bovine serum (FBS; 10%), bovine serum album (BSA; 2%), PVP 

(polyvinyl pyrolidone), phosphate buffered saline Tween-20 (PBS-T; 66%) for 1 hr. The 

primary antibody (Rabbit anti-Goat; Abcam) was used to detect the peptide sequence 

specific to the 2nd extracellular loop of MOR; (CTLTFSHPTWYWENLLK). Cells were 

blocked with blocking buffer over night at 4○C. Primary anti-body was diluted 1:50 in 

blocking buffer, and was applied to the cells overnight at 4○C while being gently rocked. The 

cells were then washed with 1x PBS and incubated with Alexa-Fluor 488-secondary antibody 

(Goat anti-rabbit) (10 μg/mL) (Invitrogen) made in 1x PBS for 1hr at room temperature. 

After washing with 1x PBS, cells were counter stained with Hoechst DNA stain (1 μg/mL) 

(Sigma) in 1x PBS for 5 min at room temperature (RT) in the dark. Coverslips were washed 



63 
 

using 1x PBS and mounted up-side down onto microscope slides using Prolong (Invitrogen) 

(adhesive/anti-bleaching agent). Microscope slides were allowed to cure overnight at RT in 

the dark at room before analysis.  

3.6.3 Laser scanning confocal microscope 

 The SK-N-SH expression of MOR protein was detected using a Leica SP2, Laser 

scanning confocal microscope (Oklahoma State University, Microscopy Laboratory, 

Stillwater, OK). As a negative control, primary antibody was replaced with equal volume of 

1x PBS. The aim of this study was not to quantify the expression of MOR protein, and 

therefore no confocal microscope settings were recorded. However, an effort was made to 

ensure consistency between samples from each set of analyzed experiments. A single user 

was used for each experiment. The images collected include confocal and epifluorescence 

images. Epifluorescence images were collected using a fluorescence microscope housed at 

the Animal Sciences Dept. OSU-Stillwater, OK.  

 

3.7 SK-N-SH cell treatment schedule and methodology  

Morphine: To evaluate the change in MOR expression in SK-N-SH cells, dose-

response studies were conducted using the following final concentrations of morphine in 

SK-N-SH growth media (GM): 1, 10, and 100 μM. Exposure times were 0, 6, 12, 24 hr for 

each dose. A negative control, cells were treated with an equivalent volume of water in 

growth media (GM). After treatment, the cells were lysed in 500 µL of lysis/binding solution 

to start the total RNA isolation and cDNA synthesis (section 3.4.1) for each treatment 

group. For each time point, at least three independent experiments were completed. Cells 

were plated in duplicate wells for each concentration of morphine using a 24-well cell-culture 

plate. 
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IL-1β: In order to record IL-1β-induced change in MOR expression, experiments 

were set up similarly to that described for morphine treatment above. IL-1β was added to 

GM at: 1, 10 and 100 ng/mL and cells were exposed for: 0, 6, 12, 24hr (Kraus et al., 2006).  

The concentrations used for morphine and IL-1β were based on a survey of literature 

describing cytokine exposure on opioid receptor expression and results from preliminary 

data. 

Naltrexone:  In order to determine MOR-dependent regulation of MOR mRNA 

expression by morphine, naltrexone (MOR-antagonist) was used to antagonize morphine’s 

effect on MOR expression. SK-N-SH cells were pre-treated (1 hr) with naltrexone (10 and 

100 μM) prior to morphine (10 μM) treatment. 10 μM naltrexone treatments alone were also 

used. Following treatment for 6 and 24 hr, opioid exposure was stopped with the 

replacement of GM-containing opioids with 0.5 mL lysis buffer and cells were collected for 

RNA isolation. 

IL-1RA – In order to assess IL-1RI-dependent regulation of MOR expression by IL-

1β, the IL-1RI type specific antagonist, IL-1RA was used. SK-N-SH cells were pre-treated (1 

hr) with IL-1RA (10 and 100 ng/mL) prior to IL-1β treatment (10 ng/mL). Cells were 

exposed to the treatments for 6 and 24 hr followed by RNA collection. 

Morphine and IL-1β – To elucidate the interaction between morphine and IL-1β 

and their effects on MOR expression, the following two experiments were conducted: (1) – 

SK-N-SH cells were treated with morphine (10 μM) for 6 and 24 hr followed by IL-1β (10 

ng/mL) treatement for another 6 and 24 hr; (2) – SK-N-SH cells were treated with 

morphine (10 μM) and IL-1β (10 ng/mL) concurrently for 6 and 24 hr. 

Signaling Inhibitors: 
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The following signaling inhibitors were all checked for their cytotoxic effects on SK-

N-SH cells at three different concentrations using the MTT assay before being used for 

qRT-PCR experiments to measure changes in MOR expression. 

PD98059 – MEK1/2 inhibitor, was used to elucidate the role of MAPK family 

member, MEK1/2 on MOR expression. PD98059 has been shown to be a specific inhibitor 

of MEK1/2 (Alessi et al., 1995), and MEK1/2 has been implicated in having a key role in 

morphine tolerance and withdrawal in rats (Asensio et al., 2006). SK-N-SH cells were pre-

treated with PD98059 (50 μM) followed by treatment with either vehicle control (water), IL-

1β (10 ng/mL), morphine (10 μM) or IL-1β (10 ng/mL) + morphine (10 μM) concurrently 

for 6 hr. 

SB203580 – p38 MAPK inhibitor, was used to elucidate the role of MAPK family 

member, p38 MAPK on MOR expression. SB203580 is a α- and β-p38 MAPK specific 

inhibitor (Alessi et al., 1995). SB203580 is a pyridinylimidazole compound that was originally 

prepared as an inflammatory cytokine synthesis inhibitor. Subsequently, the compound was 

found to be a selective inhibitor for p38 MAPK. SB203580 inhibits the catalytic activity of 

p38 MAPK by competitively binding in ATP pockets (Lee et al., 1999). SK-N-SH cells were 

pre-treated with SB203580 (1 μM) followed by treatment with either vehicle control (water), 

IL-1β (10 ng/mL), morphine (10 μM) or IL-1β (10 ng/mL) + morphine (10 μM) 

concurrently for 6 hr. 

SN50 – NF-κB transcription factor inhibitor. SN50 peptide was used to elucidate the 

role of NF-κB in MOR expression. SN50 is a cell-permeable inhibitor peptide 

(C129H23N36O29S), which masks the nuclear localization sequence (NLS), preventing NF-κB-

p50 from translocating into the cell nucleus. The N-terminal of the peptide confers cell 

permeability and remaining sequence inhibits NF-κB translocation (Boothby, 2001). SK-N-
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SH cells were pre-treated with SN50 (10 and 50 μM) followed by treatment with either 

vehicle control (0.001% DMSO), IL-1β (10 ng/mL), morphine (10 μM) or IL-1β (10 

ng/mL) + morphine (10 μM) concurrently for 6 hr. 
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CHAPTER IV 
 
 

RESULTS 

Part I:  

Cloning and Expression of MOR in SK-N-SH cells 

4.1. SK-N-SH cells express an opioid receptor type 

 In the first set of experiments, a 162bp fragment corresponding to the opioid 

receptor gene was amplified. The degenerate primers used were designed to span highly 

conserved regions of the opioid receptor family (Li et al., 1996). SK-N-SH cells are widely 

used as a neuronal model for the study of MOR expression and function (Agarwal and 

Glasel, 1993; Bare et al., 1994; Baumhaker et al., 1993; Bennett and Ratka, 2003; Breivogel et 

al., 1997; Cheng et al., 1997; Raut et al., 2006; Raut et al., 2007; Rubovitch et al., 2003; Sadee 

et al., 1988; Yin et al., 1997). 

 As shown in Fig. 11, RT-PCR has been used to successfully amplify opioid receptor 

fragments in SK-N-SH cells. 
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Fig. 11 Two-degenerate PCR products amplified from SK-N-SH cDNA. These PCR 

product represent a highly conserved opioid receptor region which were generated using 

a set of opioid receptor family degenerate primers. Products were run on a 1.5%  agarose 

(1 μg/mL EtBr ) gel. Lane 1 – 1Kb DNA ladder (BioRad), Lanes 2-3 – independent 

PCR products, each yielding an 162 bp DNA fragment. 

 

Following PCR, the fragments were cloned into a pCR4-TOPO vector, and 

subsequent sequencing revealed a 162bp fragment as shown in Fig. 12. When submitted for 

BLASTn analysis against the NCBI non-redundant database, the cloned sequence had the 

highest identity (97%) to the human DOR type with an E value of 5e-72 (GenBankTM 

Accession: NM_000911.3) as shown in Fig. 12. This confirms the expression of an opioid 

receptor (OR) type by SK-N-SH cells (Yu et al., 1986).  

5'/GTGAACATGTTGTAGTAGTCGATGGAGAGCACAGCCTTGCAGAGCAGCTC

GCCGAAGGGCCACGTCTCCATCAGGTACTTGGCACTCTGGAAAGGCAGCGTG

CTGGTGGCCAGCGCATCGGCTAAGGCCAGGTTGAAGATGTAGATATTAGTC

GCCGTCTTA/3' 

Fig. 12 162bp PCR amplified and cloned in pCR4-TOPO vector and sequenced. 

500 bp 

200 bp 162 bp 
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Fig. 13 BLASTn alignment of 162bp PCR product cloned into pCR4-TOPO vector and 

sequenced; matched human DOR type with an E-value of 5e-72. 

 

However, because we are interested in the expression of MOR in SK-N-SH cells, the 

162bp fragment shown in Fig. 13 was also subjected to BLAST 2 sequence analysis. This 

tool produces the alignment of two given sequences using BLAST engine for local alignment 

(Tatusova and Madden, 1999). BLAST 2 sequence analysis results provide an E-value 

(expected-value) of 7e-14 and a 75% identity to full-length MOR coding sequence 

(GenBankTM Accession: NM_000914.2) (alignment/data not shown). Therefore SK-N-SH 

cells also express an OR other than DOR, which confirms the expression of two OR types 

by SK-N-SH cells (Yu et al., 1986). 

 

4.2 SK-N-SH cells express full-length MOR type 

Following verification of OR expression, primers were designed and to PCR amplify 

full-length MOR type from SK-N-SH cDNA. Fig. 14 depicts the PCR amplification of a 

ref|NM_000911.3|  Homo sapiens opioid receptor, delta 1 (OPRD1), mRNA 
Length=1774 
 
GENE ID: 4985 OPRD1 | opioid receptor, delta 1 [Homo sapiens] 
(Over 10 PubMed links) 
 
 
Score =  276 bits (149),  Expect = 5e-72 
Identities = 157/161 (97%), Gaps = 0/161 (0%) 
Strand=Plus/Minus 
 
Query  1    GTGAACATGTTGTAGTAGTCGATGGAGAGCACAGCCTTGCAGAGCAGCTCGCCGAAGGGC  60 
|||||||| ||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  643  GTGAACATATTGTAGTAGTCGATGGAGAGCACAGCCTTGCAGAGCAGCTCGCCGAAGGGC  584 
 
Query  61   CACGTCTCCATCAGGTACTTGGCACTCTGGAAAGGCAGCGTGCTGGTGGCCAGCGCATCG  120 
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  583  CACGTCTCCATCAGGTACTTGGCACTCTGGAAAGGCAGCGTGCTGGTGGCCAGCGCATCG  524 
 
Query  121  GCTAAGGCCAGGTTGAAGATGTAGATATTAGTCGCCGTCTT  161 
|||||||||||||||||||||||||| || || |||||||| 
Sbjct  523  GCTAAGGCCAGGTTGAAGATGTAGATGTTGGTGGCCGTCTT  483 

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=9254694&dopt=Citation
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=63477961&dopt=GenBank&RID=FWBTZFNM01R&log$=nuclalign&blast_rank=1
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=search&term=4985&RID=FWBTZFNM01R&log$=geneexplicitnucl&blast_rank=1
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>1.5 kb fragment representing the mRNA expression of full-length MOR by SK-N-SH as 

verified previously (Bare et al., 1994). 

 

 

 

Fig. 14 PCR reaction of SK-N-SH cDNA used to amplify the full-length MOR 

expresseds. Primers designed annealed to 5' and 3' UTR-coding border, yielding a >1.5 

kb product. Product was run on a 1.5% agarose gel. Lane 1 – 1Kb DNA ladder 

(BioRad), Lane 2 – PCR product yielding an >1.5 kb DNA fragment. 

 

After cloning, EcoRI digest was performed to verify the size of cloned insert into 

pCR4-TOPO cloning vector. As shown in Fig. 15, 8 colonies were picked and cultured 

overnight. The plasmid was purified and digested, yielding two products. The more 

important of the two products was the ~1.4 kb MOR as this reflects the correct insert size 

excised from the plasmid vector. It was not only important to amplify MOR mRNA  but to 

also verify the MOR sequence. 

>1.5 kb 1.5 kb 

1.0 kb 

     1                  2         
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Fig. 15 PCR cloning of full-length MOR PCR product (Fig. 14) obtained from SK-N-

SH cDNA. Plasmid DNA was isolated using the QIAprep Spin Miniprep Kit protocol 

described in the kit (Qiagen). Following isolation, 5μL of each clone was digested with 

0.5U of EcoRI (New England Biolabs) for 1 hr at 37○C. The digests were run on 1.5% 

agarose gel to verify the ~1.4 kb MOR product. Lane 1 – 1Kb DNA ladder (BioRad), 

Lanes 2-8 – PCR cloned MOR fragment digested from plasmid DNA. 

~1.4 kb 

1.5 kb 

1.0 kb 

     1       2           3          4            5           6          7            8          9 
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When submitted for BLASTn analysis against the NCBI non-redundant database, 

the cloned full-length MOR sequence had an E-value of 0.0 and a 100% identity for the 

human MOR type (GenBankTM Accession: NM_000914.2) as shown in Fig. 16. This 

confirmed the expression of the MOR type by SK-N-SH cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

> ref|NM_000914.2|  Homo sapiens opioid receptor, mu 1 (OPRM1), transcript variant  
MOR-1, mRNA 
Length=1891 
 
 GENE ID: 4988 OPRM1 | opioid receptor, mu 1 [Homo sapiens] 
(Over 100 PubMed links) 
 
 
 Score = 2045 bits (1107),  Expect = 0.0 
 Identities = 1107/1107 (100%), Gaps = 0/1107 (0%) 
 Strand=Plus/Plus 
 
Query  1     CCCCAGCACCCAGCCCCGGTTCCTGGGTCAACTTGTCCCACTTAGATGGCAACCTGTCCG  60 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  305   CCCCAGCACCCAGCCCCGGTTCCTGGGTCAACTTGTCCCACTTAGATGGCAACCTGTCCG  364 
 
Query  61    ACCCATGCGGTCCGAACCGCACCGACCTGGGCGGGAGAGACAGCCTGTGCCCTCCGACCG  120 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  365   ACCCATGCGGTCCGAACCGCACCGACCTGGGCGGGAGAGACAGCCTGTGCCCTCCGACCG  424 
 
Query  121   GCAGTCCCTCCATGATCACGGCCATCACGATCATGGCCCTCTACTCCATCGTGTGCGTGG  180 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  425   GCAGTCCCTCCATGATCACGGCCATCACGATCATGGCCCTCTACTCCATCGTGTGCGTGG  484 
 
Query  181   TGGGGCTCTTCGGAAACTTCCTGGTCATGTATGTGATTGTCAGATACACCAAGATGAAGA  240 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  485   TGGGGCTCTTCGGAAACTTCCTGGTCATGTATGTGATTGTCAGATACACCAAGATGAAGA  544 
 
Query  241   CTGCCACCAACATCTACATTTTCAACCTTGCTCTGGCAGATGCCTTAGCCACCAGTACCC  300 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  545   CTGCCACCAACATCTACATTTTCAACCTTGCTCTGGCAGATGCCTTAGCCACCAGTACCC  604 
 
Query  301   TGCCCTTCCAGAGTGTGAATTACCTAATGGGAACATGGCCATTTGGAACCATCCTTTGCA  360 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  605   TGCCCTTCCAGAGTGTGAATTACCTAATGGGAACATGGCCATTTGGAACCATCCTTTGCA  664 
 
Query  361   AGATAGTGATCTCCATAGATTACTATAACATGTTCACCAGCATATTCACCCTCTGCACCA  420 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  665   AGATAGTGATCTCCATAGATTACTATAACATGTTCACCAGCATATTCACCCTCTGCACCA  724 
 
Query  421   TGAGTGTTGATCGATACATTGCAGTCTGCCACCCTGTCAAGGCCTTAGATTTCCGTACTC  480 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  725   TGAGTGTTGATCGATACATTGCAGTCTGCCACCCTGTCAAGGCCTTAGATTTCCGTACTC  784 
 
Query  481   CCCGAAATGCCAAAATTATCAATGTCTGCAACTGGATCCTCTCTTCAGCCATTGGTCTTC  540 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  785   CCCGAAATGCCAAAATTATCAATGTCTGCAACTGGATCCTCTCTTCAGCCATTGGTCTTC  844 
 
Query  541   CTGTAATGTTCATGGCTACAACAAAATACAGGCAAGGTTCCATAGATTGTACACTAACAT  600 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  845   CTGTAATGTTCATGGCTACAACAAAATACAGGCAAGGTTCCATAGATTGTACACTAACAT  904 
 
Query  601   TCTCTCATCCAACCTGGTACTGGGAAAACCTGCTGAAGATCTGTGTTTTCATCTTCGCCT  660 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  905   TCTCTCATCCAACCTGGTACTGGGAAAACCTGCTGAAGATCTGTGTTTTCATCTTCGCCT  964 
 
Query  661   TCATTATGCCAGTGCTCATCATTACCGTGTGCTATGGACTGATGATCTTGCGCCTCAAGA  720 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  965   TCATTATGCCAGTGCTCATCATTACCGTGTGCTATGGACTGATGATCTTGCGCCTCAAGA  1024 
 
Query  721   GTGTCCGCATGCTCTCTGGCTCCAAAGAAAAGGACAGGAATCTTCGAAGGATCACCAGGA  780 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  1025  GTGTCCGCATGCTCTCTGGCTCCAAAGAAAAGGACAGGAATCTTCGAAGGATCACCAGGA  1084 
 
Query  781   TGGTGCTGGTGGTGGTGGCTGTGTTCATCGTCTGCTGGACTCCCATTCACATTTACGTCA  840 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=56549096&dopt=GenBank&RID=FUJ8KW34011&log$=nuclalign&blast_rank=1
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=search&term=4988&RID=FUJ8KW34011&log$=geneexplicitnucl&blast_rank=1
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Fig. 16 BLASTn alignment of sequenced full-length MOR in SK-N-SH cells. Homo 

sapiens opioid receptor, mu 1 (OPRM1) had an E-value of 0.0 and 100% nucleotide 

identity to MOR expressed in SK-N-SH cells. 

 

4.3 SK-N-SH cells express MOR, IL-1RI and GAPDH 

 In preparation for real-time qRT-PCR of MOR in SK-N-SH, optimum primer sets 

were designed to verify the expression of MOR, the IL-1β receptor, IL-1RI and the house-

keeping gene, GAPDH. (See Table 2, Page 58). 

  As shown in Fig. 17, SK-N-SH cells express MOR (800 and 106 bp), IL-1RI (123 

bp) and GAPDH (163 bp) genes. The RT-PCR cycling parameters included: 94○C for 

120 s, 94○C for 30 s, 58○C for 30 s, 72○C for 30 s, 35 cycles followed by a final extension 

of 72○C for 120 s. Expression of these genes verified the suitability of the in vitro SK-N-

SH cell line for qRT-PCR studies following treatment with IL-1β and morphine. 

 

 

Query  841   TCATTAAAGCCTTGGTTACAATCCCAGAAACTACGTTCCAGACTGTTTCTTGGCACTTCT  900 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  1145  TCATTAAAGCCTTGGTTACAATCCCAGAAACTACGTTCCAGACTGTTTCTTGGCACTTCT  1204 
 
Query  901   GCATTGCTCTAGGTTACACAAACAGCTGCCTCAACCCAGTCCTTTATGCATTTCTGGATG  960 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  1205  GCATTGCTCTAGGTTACACAAACAGCTGCCTCAACCCAGTCCTTTATGCATTTCTGGATG  1264 
 
Query  961   AAAACTTCAAACGATGCTTCAGAGAGTTCTGTATCCCAACCTCTTCCAACATTGAGCAAC  1020 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  1265  AAAACTTCAAACGATGCTTCAGAGAGTTCTGTATCCCAACCTCTTCCAACATTGAGCAAC  1324 
 
Query  1021  AAAACTCCACTCGAATTCGTCAGAACACTAGAGACCACCCCTCCACGGCCAATACAGTGG  1080 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  1325  AAAACTCCACTCGAATTCGTCAGAACACTAGAGACCACCCCTCCACGGCCAATACAGTGG  1384 
 
Query  1081  ATAGAACTAATCATCAGCTAGAAAATC  1107 
             ||||||||||||||||||||||||||| 
Sbjct  1385  ATAGAACTAATCATCAGCTAGAAAATC  1411 
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Fig. 17 PCR reaction products of SK-N-SH cDNA used to amplify MOR, IL-1RI and 

GAPDH expressed by SK-N-SH cells. Product were run on a 1.5% agarose gel. Lane 1 

– 1Kb DNA ladder, Lane 2 – MOR (800 bp), Lane 3 – MOR (106 bp), Lane 4 – IL-

1RI (123 bp) and Lane 5 – GAPDH (163 bp).  

 

4.4 Optimization of qRT-PCR for genes MOR and GAPDH 

 Once the expression of MOR and GAPDH was confirmed using RT-PCR (Fig. 17), 

to determine the optimal annealing temperature (Tm) for both genes,  gradient PCR was 

performed. For the MOR gene, six Tm’s, each 2○C apart were chosen based on the original 

Tm suggested by the primer synthesis company (IDT). The Tm’s studies were 56○C, 58○C, 

60○C, 62○C, 64○C and 66○C. The RT-PCR cycling parameters used were the same as those 

used in section 4.2, with Tm’s adjusted accordingly. Given that the Tm of 64○C produced the 

most robust MOR product, this Tm remained constant in all experiments (Fig. 18). 

 

 

     1                2              3              4                 5 

1.0 kb 

100 bp 
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Fig. 18 Gradient PCR reaction of SK-N-SH cDNA used to amplify MOR (106 bp). 

Products were run on a 1.5% agarose gel. Lane 1 – 1Kb DNA ladder, Lanes 2 – 

Negative (NTC: non-template control), Lanes 3 - 8: respective annealing tempertures: 

64, 56, 58, 60, 62 and 66 ○C.  

  

 In order to determine the optimum concentration of cDNA template to use for 

qRT-PCR amplification of MOR, a relative standard curve was performed. Stock cDNA 

(~1000 ng/μL) was serial diluted in RNase-free water to provide: 1000, 100, 10 and 1 ng/15 

μL (reaction volume) of cDNA. The qRT-PCR parameters did not differ from those already 

stated in section 3.5.5. Briefly: 95○C for 10 s followed by 40 cycles of 95○C for, 64○C for 20 s 

and 72○C for 20 s. This was followed by 94○C for 60 s, 55○C for 60 s and for the melt curve 

analysis 55○C for 30 s for 80 cycles.  

 The results from the log amplification (Fig. 19) and standard curve (Fig. 20) showed 

that the optimal cDNA template amount to use for efficient MOR expression was between 

10 and 100 ng. The standard curve (dynamic range) (Fig. 20) was used to accurately provide 

a range of cDNA amounts that would allow us to chose a cDNA amount (50 ng) that would 

be between a lower (10 ng) and a higher (100 ng) amount of cDNA. A final cDNA amount 

for MOR gene qRT-PCR was chosen as 50 ng. Therefore, stock cDNA was diluted into 

     1           2           3              4            5            6            7            8  

               Neg.           64           56         58          60         62          66  

100 bp 
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10ng/μL using RNase-free water and 5μL of this diluted cDNA was used in a 15 μL final 

volume qRT-PCR mix.  

 

Fig. 19 MOR qRT-PCR amplification plot illustrates the amplification of MOR with 

four different amounts of cDNA template: 1000, 100, 10 and 1 ng. Horizontal bar – 

Cycle threshold (CT) parameter set by thermocycler. 

  

In addition to the amplification plot, the standard curve study for MOR generated a 

semi-log regression line plot of CT values vs. log of output nucleic acid (amplification). 

Within this plot, PCR efficiency was determined by the slope. If the slope = -3.32, then the 

qRT-PCR reaction was 100% efficient. The slope for the MOR gene was -3.333, reflecting 

99.6% qRT-PCR efficiency (Fig. 20). 

 

1000 
100 10 1 ng 
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Fig. 20 MOR qRT-PCR standard curve representing 99.6% PCR efficiency. 

  

The optimal annealing temperature (Tm) for the GAPDH was determined similarly as 

described for MOR. For the GAPDH gene, six Tm’s, each 2○C apart were chosen based on 

the original Tm suggested by the primer synthesis company (Invitrogen). The Tm’s chosen 

were 56○C, 58○C, 60○C, 62○C, 64○C and 66○C. The RT-PCR cycling parameter used was the 

same as those used in section 4.2 with Tm’s adjusted accordingly. From the PCR gel depicted 

in Fig. 21, an annealing temperature of 60○C was chosen for the qRT-PCR of GAPDH and 

this remained constant in all experiments. 

 

 

Fig. 21 Gradient PCR reaction of SK-N-SH cDNA used to amplify GAPDH (163 bp). 

Products  were run on a 1.5% agarose gel. Lane 1 – 1Kb DNA ladder, Lanes 2 - 7: 

respective annealing temperatures: 56, 58, 60, 62, 64 and 66 ○C.  

1000 100 10 1 ng 

     1                  2               3              4               5                 6                 7             
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In order to determine the optimum concentration of cDNA template to use for 

qRT-PCR amplification of GAPDH, a relative standard curve was performed. Stock cDNA 

(~1000 ng/μL) was serial diluted in RNase-free water into the following amounts of cDNA: 

1000, 100, 10 and 1 ng. The qRT-PCR parameters did not differ from those already stated in 

section 3.5.5. Briefly: 95○C for 10 s followed by 30 cycles of 95○C for 5 s, 60○C for 20 s and 

72○C for 20 s. This was followed by 94○C for 60 s, 55○C for 60 s and for the melt curve 

analysis 55○C for 30 s for 80 cycles.  

 The results from both the log amplification plot (Fig. 22) and standard curve (Fig. 

23) showed that the optimal cDNA amount to use for GAPDH expression was between 10 

and 100 ng of cDNA. The concentration of cDNA template used for the GAPDH gene was 

10 ng/μL. 

 

 

Fig. 22 GAPDH qRT-PCR amplification plot illustrates the amplification of GAPDH 

with four different amounts of cDNA template: 1000, 100, 10 and 1 ng. Horizontal bar – 

Cycle threshold (CT) parameter set by thermocycler. 

  

1000 100 10 
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 In addition to the amplification plot, the standard curve study for GAPDH 

generated a semi-log regression line plot of CT values vs. log of output nucleic acid 

(amplification). Within this plot, PCR efficiency is determined by the slope. The slope for 

GAPDH was -3.396, reflecting 97% qRT-PCR efficiency (Fig. 23). 

 

 

Fig. 23 GAPDH qRT-PCR standard curve: representing 97% PCR efficiency 

 

4.5 Effect of cell-passage number on the expression of MOR in SK-N-SH cells 

 During the preliminary studies, it was determined that the expression of MOR by 

SK-N-SH cells varied considerably. Therefore a set of experiments were conducted to 

measure basal transcript mRNA levels of MOR between passages 4 and 13. A measure of 

MOR expression was taken from each passage independently (n=2 for each passage). As 

shown in Fig. 24, the expression of MOR changed between passages 4 and 13. The optimum 

basal expression of MOR in SK-N-SH was between passages 6 and 10. Therefore all qRT-

PCR and ICC experiments were conducted between passages 6 and 10 to keep the measure 

of expression of MOR mRNA and protein consistent among all studies.  
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Fig. 24 Effect of SK-N-SH cell passage on MOR mRNA expression. SK-N-SH cells 

were seeded at 2.0x106 cells/well in a 24-well plate and cultured until 70-80% confluent. 

The expression of MOR was normalized against passage 4(calibrator). Data represents 

duplicate measure from triplicate wells obtained from two independent experiments for 

each passage. Data shown are mean ±S.E.M of ∆CT values. 
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Part II:  

Effect of morphine and IL-1β on MOR expression in SK-N-SH cells  

 

4.6  Morphine-induced down-regulation of MOR expression  

SK-N-SH cells were treated with three different concentrations of morphine for 6, 

12 and 24 hr. As shown in Fig. 25, morphine time dependently down-regulated the 

expression of MOR as measured using qRT-PCR. Significant differences when compared to 

unstimulated (US) showed that morphine down-regulated the expression of MOR when 

treated with 10 (-1.06 fold) and 100μM (-1.79 fold) for 12 hr (p<0.05). Similarly, MOR 

expression was down-regulated when SK-N-SH cells were treated with 1 (-3.08 fold), 10 (-

2.19 fold) and 100μM (-1.52 fold) for 24 hr (p<0.05). 

Immunocytochemistry (ICC) experiments using confocal microscopy were used to 

visualize change in MOR protein expression. The down-regulation of MOR mRNA in 

response to 24 hr of 1, 10 and 100μM morphine exposure was also visualized for the 

expression of MOR protein (Fig. 26). MOR protein was down-regulated in response to 

morphine treatment as visualized following 24 hr treatment. In contrast, MOR mRNA levels 

were significantly down-regulated at 12 and 24 hr exposure times in response to all three 

concentrations of morphine. 
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Fig. 25 Morphine treatment down-regulated MOR mRNA expression in SK-N-SH cells. 

SK-N-SH cells were cultured in 24-well plates at 37○C for 3-4 days in GM and cultured 

with or without (un-stimulated; US) morphine sulphate (MS) (1, 10 and 100μM) for 6, 12 

and 24 hr. Fold change in MOR mRNA expression was calculated using the 2-∆∆CT 

arithmetic formula normalized to the endogenous reference gene GAPDH. Data 

represent mean ± S.E.M (error bars) of duplicate measures from triplicate wells from 

three-five independent experiments. Statistical analysis was carried out using a Two-way 

ANOVA, with pair wise (p-values) differences (PDIFF) determined from least square 

means (LS means). SAS was used to perform a PROC-GLM analysis as the preferred 

procedure for doing a Two-way ANOVA. # p≤0.05 vs. US.   
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Fig. 26 Morphine treatment decreased the expression of MOR protein expression in 

SK-N-SH cells. SK-N-SH cells were cultured on sterile glass coverslips in a 24-well 

culture plate at 37○C for 2 days in GM and cultured with or without (un-stimulated (US)) 

morphine sulphate (MS) (1, 10 and 10μM) for 24 hr. The cells were washed with 1x PBS, 

fixed with 4% paraformaldehyde, blocked with blocking buffer for 1 hr before being 

treated with MOR-primary antibody (Rabbit anti-Goat) (1:50) (Abcam) made in blocking 

buffer overnight at 4○C. Cell were washed with 1x PBS and incubated with Alexa-Fluor 

488-secondary antibody (Goat anti-rabbit) (Invitrogen) (10 μg/mL) made in 1x PBS for 

1hr at room temperature. After washing with 1x PBS, cells were counter stained with 

Hoechst (DNA stain) (1 μg/mL) (Sigma) in 1x PBS for 5 min. at room temperature. 

Coverslips were washed using 1x PBS and mounted up-side down onto microscope 

slides using Prolong (Invitrogen). Images analyzed using confocal microscopy. 50μm 
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4.7  Morphine down-regulates MOR in MOR-dependent manner 

To identify the role of MOR in morphine-induced down-regulation of MOR, the 

MOR-specific antagonist, naltrexone was used. Naltrexone treatment alone had no 

significant effect on the expression of MOR. Morphine treatment for 6 and 24 hr down-

regulated (-5.73 and -3.8 fold respectively) the expression of MOR mRNA. Co-exposure of 

SK-N-SH cells with naltrexone (10 and 100μM) and morphine (10μM) resulted in less down-

regulation of MOR mRNA expression. Co-exposure (morphine and naltrexone) for 6 and 24 

hr resulted in a 1.54 and 1.53 and 0.87 and 0.74 fold change in MOR expression respectively 

(Fig. 27), this was a significantly different (p≤0.05) from the effect measured on MOR 

expression following the 6 and 24 hr morphine exposure. Morphine-induced MOR down-

regulation was reduced by naltrexone; therefore these results indicate that morphine’s effect 

on MOR expression is MOR-dependent.  
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Fig. 27 Naltrexone co-treatment blocked morphine-induced down-regulation MOR 

mRNA expression in SK-N-SH cells. SK-N-SH cells were cultured in 24-well plates at 

37○C for 3-4 days in GM and cultured with or without (un-stimulated (US)) morphine 

(10μM), naltrexone (10μM), morphine (10μM) + naltrexone (10μM) and morphine 

(10μM) + naltrexone (100μM) for 6 and 24 hr. Fold change in MOR mRNA expression 

was calculated using the 2-∆∆CT arithmetic formula normalized to the endogenous 

reference gene GAPDH. Data represent mean ± S.E.M (error bars) of duplicate 

measures from triplicate wells from three independent experiments. Statistical analysis 

was carried out using a Two-way ANOVA, with pair wise (p-values) differences (PDIFF) 

determined from least square means (LS mean). SAS was used to perform a PROC-

GLM analysis as the preferred procedure for doing a Two-way ANOVA. # p≤0.05 vs. 

US; * p≤0.05 vs. morphine alone.   
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4.8  IL-1β-induced up-regulation of MOR expression  

As illustrated in Fig. 28, IL-1β significantly up-regulated MOR mRNA expression in 

a concentration-dependent manner when compared to un-stimulated. IL-1β (10 and 100 

ng/mL) up-regulated MOR mRNA expression following 6 (4.35 and 5.4 fold), 12 (3.84 and 

4.10 fold) and 24 hr (2.45 and 2.56 fold) exposure. IL-1β (10 and 100 ng/mL) exposure for 6 

hr resulted in the most significant up-regulation of MOR expression, suggesting a time-

dependent mechanism for IL-1β’s effect on MOR mRNA expression.  

  ICC experiments indicated that MOR protein expression was also up-

regulated by IL-1β treatment. As shown in Fig. 29, IL-1β (10 ng/mL) up-regulated MOR 

protein expression following 6 hr exposure.  However, IL-1β (10 ng/mL) exposure for 12 hr 

did not up-regulate MOR protein expression, indicating a time-dependent effect on MOR 

protein expression, because the largest change in MOR protein expression visualized was at 

only 6 hr.     
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Fig. 28 IL-1β treatment up-regulated MOR mRNA expression in SK-N-SH cells. SK-N-

SH cells were cultured in 24-well plates at 37○C for 3-4 days in GM and cultured with or 

without (un-stimulated (US)) human recombinant IL-1β cytokine (IL-1β) (10 and 

100ng/mL) SK-N-SH for 0.15, 6, 12 and 24 hr. Fold change in MOR mRNA expression 

was calculated using the 2-∆∆CT arithmetic formula normalized to the endogenous 

reference gene GAPDH. Data represent mean ± S.E.M (error bars) of duplicate 

measures from triplicate wells from three-four independent experiments. Statistical 

analysis was carried out using a two-way ANOVA, with pair wise (p-values) differences 

(PDIFF) determined from least square means (LS mean). SAS was used to perform a 

PROC-GLM analysis as the preferred procedure for doing a two-way ANOVA. # 

p≤0.05 vs. US.  
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Fig. 29 IL-1β treatment up-regulated MOR protein expression in SK-N-SH cells. SK-N-

SH cells were cultured on sterile glass coverslips in a 24-well plate at 37○C for two days 

in GM and cultured with or without (un-stimulated (US)) IL-1β (10 ng/mL) for 6 and 12 

hr. The cells were washed with 1x PBS, fixed with 4% paraformaldehyde, blocked with 

blocking buffer for 1 hr before being treated with 1x PBS (1○ Ab. control), Anti-MOR 

RabMAb. (1:50; Abcam), anti-β-tubulin III RabMAb. (1:100; Epitomics) made in 

blocking buffer overnight at 4○C. Cell were washed with 1x PBS and incubated with 

Alexa-Fluor 488-secondary antibody (Goat anti-rabbit; Invitrogen) (10 μg/mL) made in 

1x PBS for 1hr at room temperature. After washing with 1x PBS, cells were counter 

stained with Hoechst (DNA stain) (1 μg/mL) (Sigma) in 1x PBS for 5 min. at room 

temperature. Coverslips were washed using 1x PBS and mounted up-side down onto 

microscope slides using Prolong (Invitrogen). Images analyzed using confocal 

microscopy. 18μm          50μm 
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4.9  IL-1RI-dependent up-regulation of MOR expression by IL-1β  

IL-1β treatment for 6 (4.01 fold) and 24 hr (3.10 fold) up-regulated the expression of 

MOR. IL-1RA treatment alone did not alter the expression of MOR; however the co-

treatment with IL-1β (10 ng/mL) and IL-1RA (10 and 100 ng/mL) resulted in the significant 

blockade of MOR mRNA up-regulation by IL-1β. Co-treatment of SK-N-SH cells with IL-

1RA (10 and 100 ng/mL) and IL-1β (10 ng/mL) for 6 and 24 hr blocked IL-1β-induced up-

regulation of MOR expression. The 6 hr co-treatment resulted in a 2.6 (IL-1β (10 ng/mL) + 

IL-1RA (10 ng/mL)) and 1.83 (IL-1β (10 ng/mL) + IL-1RA (100 ng/mL)) fold change in 

MOR expression and the 24 hr co-treatment resulted in 1.6 (IL-1β (10 ng/mL) + IL-1RA 

(10 ng/mL)) and 1.15 (IL-1β (10 ng/mL) + IL-1RA (100 ng/mL)) fold change in MOR 

expression. The response elicited by IL-1RA on MOR mRNA expression ensured an IL-

1RI-dependent mechanism for the up-regulation of MOR expression by IL-1β (Fig. 30). 
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Fig. 30 IL-1RA treatment blocked IL-1β induced up-regulation of MOR mRNA 

expression in SK-N-SH cells. SK-N-SH cells were cultured in 24-well plates at 37○C for 

3-4 days in GM and cultured with or without (un-stimulated (US)) IL-1β (10 ng/mL), 

IL-1RA (10 ng/mL), IL-1β (10 ng/mL) + IL-1RA (10 ng/mL) and IL-1β (10 ng/mL) + 

IL-1RA (100 ng/mL) for 6 and 24 hr. Fold change in MOR mRNA expression was 

calculated using the 2-∆∆CT arithmetic formula normalized to the endogenous reference 

gene GAPDH. Data represent mean ± S.E.M (error bars) of duplicate measures from 

triplicate wells from three independent experiments. Statistical analysis was carried out 

using a two-way ANOVA, with pair wise (p-values) differences (PDIFF) determined 

from least square means (LS mean). SAS was used to perform a PROC-GLM analysis as 

the preferred procedure for doing a two-way ANOVA. # p≤0.05 vs. US; * p≤0.05 vs. 

IL-1β alone.  
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Using qRT-PCR to elucidate an IL-1RI-dependent mechanism for IL-1β-induced 

up-regulation of MOR expression (Fig.30), ICC experiments showed that IL-1β (10 ng/mL) 

treatment for 6 hr can also up-regulate MOR protein expression (Fig. 31.C). Co-treatment of 

SK-N-SH cells with IL-1β (10 ng/mL) and IL-1RA (10 ng/mL) for 6 (Fig 31.D) and 24 hr 

(Fig 31.E) induced a decrease in MOR protein expression. The greatest decrease in MOR 

protein expression was evident in the 24 hr IL-1β (10 ng/mL) and IL-1RA (10 ng/mL) co-

treatment experiment (Fig 31.E). The decrease in MOR protein expression in response to 

IL-1β (10 ng/mL) and IL-1RA (10 ng/mL) co-treatment indicates an IL-1RI-dependent 

regulation of MOR expression by IL-1β.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



98 
 

Fig. 31 IL-1RA treatment blocked IL-1β’s up-regulation of MOR protein expression in 

SK-N-SH cells.  SK-N-SH cells were cultured on sterile glass coverslips in a 24-well plate 

at 37○C for two days in GM and cultured with or without (un-stimulated (US)) IL-1β (10 

ng/mL) and IL-1β (10 ng/mL) and IL-1RA (10 ng/mL) for 6 and 24 hr. The cells were 

washed with 1x PBS, fixed with 4% paraformaldehyde, blocked with blocking buffer for 

1 hr before being treated with 1x PBS (1○ Ab. control), Anti-MOR RabMAb. (1:50; 

Abcam) made in blocking buffer overnight at 4○C. Cell were washed with 1x PBS and 

incubated with Alexa-Fluor 488-secondary antibody (Goat anti-rabbit; Invitrogen) (10 

μg/mL) made in 1x PBS for 1hr at room temperature. After washing with 1x PBS, cells 

were counter stained with Hoechst (DNA stain) (1 μg/mL; Sigma) in 1x PBS for 5 min. 

at room temperature. Coverslips were washed using 1x PBS and mounted up-side down 

onto microscope slides using Prolong (Invitrogen). A – 1○antibody control; B – un-

stimulated for 6 hr; C – IL-1β (10 ng/mL) for 6 hr; D – IL-1β (10 ng/mL) + IL-1RA 

(10 ng/mL) for 6 hr; E - IL-1β (10 ng/mL) + IL-1RA (10 ng/mL) for 24 hr. 50μm 
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4.10  IL-1β blocked morphine-induced down-regulation of MOR expression 

 As illustrated in Fig. 32, IL-1β (10 ng/mL) exposure for 6 and 24 hr induced the up-

regulation (3.1 and 1.4 fold) of MOR and morphine (10 μM) exposure for 6 and 24 hr 

induced the down-regulation (-2 and -1.6 fold) of MOR expression in SK-N-SH cells. 

Experiments were set-up to study any interactive relationship between IL-1β and morphine 

and the effect this may have on MOR expression. Therefore, when IL-1β (10 ng/mL) 

exposure followed morphine (10 μM) exposure for 6 and 24 hr each, morphine-induced 

down-regulation of MOR expression was blocked. In the experiments where IL-1β (10 

ng/mL) exposure for 6 and 24 hr followed morphine (10 μM) exposure, there was a 2.9 and 

2.5 fold up-regulation of MOR expression, there was a significant (p≤0.05) up-regulation of 

MOR expression when compared to morphine exposure alone.  

 Following the analysis of the first experiment illustrated in Fig. 32 and to further 

elucidate the role of the interactive relationship between IL-1β and morphine on MOR 

expression, co-treatment experiments were performed. SK-N-SH cells were co-treated with 

IL-1β (10 ng/mL) and morphine (10 μM) for 6 and 24 hr. Treatment of IL-1β (10 ng/mL) 

and morphine (10μM) together (competition) resulted in the blockade of morphine-induced 

down-regulation of MOR expression (Fig. 33). IL-1β and morphine co-treatment for 6 and 

24 hr resulted in a 3.14 and 1.52 fold up-regulation of MOR expression respectively. In 

comparison to morphine (10 μM) alone for 6 and 24 hr, which resulted in a -0.6 and -2.3 

fold down-regulation of MOR expression, co-treatment with IL-1β and morphine 

significantly up-regulated the expression of MOR (p≤0.05)?  

 The IL-1β-induced blockade of morphine-induced down-regulation of MOR 

expression as illustrated in Fig 33 was also repeated in ICC experiments. When compared to 

the morphine (10μM) (Fig. 34.D) and IL-1β (10 ng/mL) (Fig. 34.E) exposure alone for 6 hr, 
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MOR protein expression was up-regulated when co-treated with IL-1β and morphine (Fig. 

34.F). The expression of both MOR mRNA and protein levels in response to IL-1β and 

morphine co-treatment was up-regulation (Fig. 33 and 34.F). An epiflouresence microscope 

was used to capture images of MOR protein expression in these experiments. As illustrated 

in Fig. 34, MOR protein is represented as punctate-round structures dispersed irregularly 

across the cell. Therefore IL-1β and morphine co-treatment for 6 hr induced an increase in 

MOR protein expression when compared to morphine (Fig. 34.D) and IL-1β (Fig. 34.E) 

treatment alone. 
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Fig. 32 IL-1β treatment blocked morphine-induced down-regulation of MOR mRNA 

expression in SK-N-SH cells. SK-N-SH cells were cultured in 24-well plates at 37○C for 

3-4 days in GM and cultured with or without (un-stimulated (US)) IL-1β (10 ng/mL), 

morphine (10μM) and IL-1β (10 ng/mL) following treatment with morphine (10μM) for 

6 and 24 hr. Fold change in MOR mRNA expression was calculated using the 2-∆∆CT 

arithmetic formula normalized to the endogenous reference gene GAPDH. Data 

represent mean ± S.E.M (error bars) of duplicate measures from triplicate wells from 

three independent experiments. Statistical analysis was carried out using a two-way 

ANOVA, with pair wise (p-values) differences (PDIFF) determined from least square 

means (LS mean). SAS was used to perform a PROC-GLM analysis as the preferred 

procedure for doing a two-way ANOVA. # p≤0.05 vs. US; * p≤0.05 vs. morphine 

alone.  
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Fig. 33 IL-1β treatment blocked morphine-induced down-regulation of MOR mRNA 

expression in SK-N-SH cells. SK-N-SH cells were cultured in 24-well plates at 37○C for 

3-4 days in GM and cultured with or without (un-stimulated; US) IL-1β (10 ng/mL), 

morphine (10μM) and IL-1β (10 ng/mL) and morphine (10μM) co-treatment for 6 and 

24 hr. Fold change in MOR mRNA expression was calculated using the 2-∆∆CT arithmetic 

formula normalized to the endogenous reference gene GAPDH. Data represent mean ± 

S.E.M (error bars) of duplicate measures from triplicate wells from three independent 

experiments. Statistical analysis was carried out using a two-way ANOVA, with pair wise 

(p-values) differences (PDIFF) determined from least square means (LS mean). SAS was 

used to perform a PROC-GLM analysis as the preferred procedure for doing a two-way 

ANOVA. # p≤0.05 vs. US; * p≤0.05 vs. morphine alone.  
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Fig. 34 Co-treatment with IL-1β and morphine up-regulated MOR protein expression in 

SK-N-SH cells.  SK-N-SH cells were cultured on sterile glass coverslips in a 24-well plate 

at 37○C for two days in GM and cultured with or without (un-stimulated; US) morphine 

(10 μM), IL-1β (10 ng/mL) and morphine (10 μM) and IL-1β (10 ng/mL) together for 6 

hr. The cells were washed with 1x PBS, fixed with 4% paraformaldehyde, blocked with 

blocking buffer for 1 hr before being treated with 1x PBS (1○ Ab. control), Anti-MOR 

RabMAb. (1:50; Abcam), Anti-β-tubulin III RabMAb. (1:100; Epitomics) made in 

blocking buffer overnight at 4○C. Cell were washed with 1x PBS and incubated with 

Alexa-Fluor 488-secondary antibody (Goat anti-rabbit; Invitrogen) (10 μg/mL) made in 

1x PBS for 1hr at room temperature. After washing with 1x PBS, cells were counter 

stained with Hoechst (DNA stain) (1 μg/mL; Sigma) in 1x PBS for 5 min. at room 

temperature. Coverslips were washed using 1x PBS and mounted up-side down onto 

microscope slides using Prolong (Invitrogen). A – anti-β-tubulin III; B – 1○Ab. control; 

C – unstimulated; D – Morphine (10 μM); E - IL-1β (10 ng/mL); F - Morphine (10 μM) 

and IL-1β (10 ng/mL) co-treatment for 6 hr. 200μm              100μm 
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Part III: 

Signal transduction mechanism involved in the regulation of MOR expression in  

SK-N-SH cells treated with morphine and IL-1β 

4.11 Morphine (10 μM) induced up-regulation of MAPK genes 

  Using a 96-well plate spotted with 84-MAPK gene specific primers, it was elucidated 

that morphine up-regulated the expression of 18 MAPK genes. Fig. 35 illustrates that SK-N-

SH cells, when treated with 10 μM morphine for 6 hr, induced the up-regulation of MAPK 

genes ≥ 3-fold, for example.  Among the genes up-regulated were MAPK3 (ERK1; 3.0 fold); 

MAPK1 (ERK2; 2.4 fold); MAPK6 (ERK3; 3.4 fold); MAP2K3 (MEK3; 4.5 fold); MAPK11 

(p38 MAPK; 5.0 fold) and MAPK14 (p38 MAPK; 5.3 fold).  
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Fig. 35 Morphine treatment up-regulated the expression of human MAPK genes in SK-

N-SH cells.  Using a 96-well qRT-PCR plate, 84 wells, each representing a specific 

MAPK gene was treated with the qRT-PCR master mix containing 50 ng of total cDNA. 

Cells were treated with 10 μM morphine for 6 hr. Fold change in MOR mRNA 

expression was calculated using the 2-∆∆CT arithmetic formula normalized to the three 

endogenous reference genes RP13A (Ribosomal protein L13a), GAPDH 

(Glyceraldehyde-3-phosphate dehydrogenase) and ACTB (Actin Beta). In order to 

calculate fold changes from average ∆CT values, one un-treated (control) and two 

independent morphine-treated experiments were performed. Using the online data 

analysis web portal (http://www.SABiosciences.com/pcrarraydataanalysis.php), specific 

genes of interest were selected and plotted against un-treated (control) group vs. treated 

group (Log10 control group vs. Log10 morphine treated group). 
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4.12 IL-1β (10 ng/mL) induced up-regulation of MAPK genes 

 There is limited evidence for the role of MAPK pathways in regulation of 

MOR mRNA or protein following treatment with cytokines such as the pro-inflammatory 

cytokine, IL-1β. Using a 96-well plate spotted with 84-human p38 MAPK gene specific 

primers, we elucidated that IL-1β up-regulated and down-regulated the expression of MAPK 

genes. Fig. 36 illustrates that when SK-N-SH cells were treated with IL-1β (10 ng/mL) for 6 

hr, the following MAPK genes were up-regulated ≥ 3-fold: MEEK3 (9.0); MEKK4 (5.0); 

and conversely down-regulated the following MAPK genes ≤ 3-fold: MEK2 (-3.0); p38 

MAPK (-3.1).  
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Fig. 36 IL-1β treatment differentially regulated the expression of human MAPK genes 

in SK-N-SH cells.  Using a 96-well qRT-PCR plate, 84 wells, each representing a specific 

MAPK gene was treated with the qRT-PCR master mix containing 50 ng of total cDNA. 

Cells were treated with 10 μM morphine for 6 hr. Fold change in MOR mRNA 

expression was calculated using the 2-∆∆CT arithmetic formula normalized to the three 

endogenous reference genes RP13A (Ribosomal protein L13a), GAPDH 

(Glyceraldehyde-3-phosphate dehydrogenase) and ACTB (Actin Beta). In order to 

calculate fold changes from average ∆CT values, one un-treated (control) and two 

independent morphine-treated experiments were performed. Using the online data 

analysis web portal (http://www.SABiosciences.com/pcrarraydataanalysis.php), specific 

genes of interest were selected and plotted against un-treated (control) group vs. treated 

group. (Log10 control group vs. Log10 morphine treated group). 
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4.13 Cytotoxicity of signaling inhibitor – MTT assay 

 In order to determine if the signaling inhibitors, SN50, PD98059 and SB203580 were 

cytotoxic to SK-N-SH cells, MTT assays were performed. The cytotoxic effects of three 

different concentrations of each inhibitor were measured using MTT assays. MTT assays 

showed the all concentrations of the signaling inhibitors were non-cytotoxic (Fig. 37). 
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Fig. 37 Signal inhibitors SN50, PD98059 and SB203580 pre-treatment (1hr) followed by 

IL-1β (10 ng/mL) treatment for 6 hr in the same cell-culture well resulted in no 

cytotoxic effects. . SK-N-SH cells were cultured in 24-well plates at 37○C for 3-4 days in 

GM and cultured with or without (un-stimulated (US)), SN50 (1, 5 and 10 μM), 

PD98059 (10, 50 and 100 μM) and SB203580 (0.1, 0.5 and 1.0 μM) for 1 hr and then 

treated with IL-1β (10 ng/mL) for 6 hr. MTT assay were performed (Carmichael et al., 

1987) following incubation of cell in GM with 0.55 mg/mL 3-[4,5-Dimethylthiazol-2-yl]-

2,5,-diphenyltetrazolium bromide (MTT) for 1 hr. Cells were then washed three times 

with 1x PBS, and cell lysate was dissolved using 1 mL DMSO and absorbance measured 

at 492 nm using a BIO-TEK HT spectrophotometer. One-way analysis of Variance 

(ANOVA) followed by Newman-Kuel’s post-hoc multiple comparison tests were used 

to test for significance between treatments groups performed using GraphPad Prism 4. 

Error bars show ± S.E.M of triplicate wells from three independent experiments.  

 

 

 

 

 

 

 

 

 

 

 



116 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



117 
 

4.14 MEK1/2-dependent down-regulation of MOR expression by morphine 

In order to elucidate the role of MEK1/2 in the regulation of MOR expression in 

SK-N-SH cells, PD98059, a MEK1/2 specific inhibitor was used (Alessi et al., 1995). SK-N-

SH cells were pretreated with PD98059 (50 μM) or vehicle control (water) for 1 hr 

(PD98059 wash not washed out) before being treated with IL-1β (10 ng/mL), morphine (10 

μM) and IL-1β (10 ng/mL) and morphine (10 μM) co-treatment.  Fig. 38 illustrates a 

MEK1/2-dependent regulation of MOR expression following morphine treatment. 

Morphine (10 μM) treatment for 6 hr down-regulated MOR expression (-0.55-fold). 

However, in the presence of PD98059, the down-regulation of MOR expression caused by 

morphine was not evident and significant up-regulation of MOR expression (3.01-fold) was 

measured when the cells were treated with PD98059 and morphine. IL-1β (10 ng/mL) and 

morphine (10 μM) co-treatment for 6 hr up-regulated (3.14-fold) MOR expression, however 

in the presence of PD98059, the effect of IL-1β (10 ng/mL) and morphine (10 μM) co-

treatment on MOR expression was exacerbated, increasing the expression of MOR to 4.42 

fold (Fig. 38). 

In contrast to the role of MEK1/2 in the down-regulation of MOR expression by 

morphine, MEK1/2 inhibition had an insignificant effect on IL-1β-induced up-regulation of 

MOR expression. IL-1β (10 ng/mL) for 6 hr induced MOR up-regulation (3.36-fold) and in 

the presence of the PD98059, IL-1β-induced MOR regulation remained unchanged (2.79-

fold) (Fig. 38). The effect of PD98059 treatment for the duration of the experiment (7 hr) 

resulted in no significant change in MOR expression. 
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Fig. 38 PD98059 treatment significantly blocked morphine-induced down-regulation of 

MOR expression in SK-N-SH cells. SK-N-SH cells were cultured in 24-well plates at 37○C 

for 3-4 days in GM and cultured with or without (un-stimulated; US) PD98059 (50 μM) 

IL-1β (10 ng/mL), IL-1β (10 ng/mL) and PD98059 (50 μM), morphine (10 μM), 

morphine (10 μM) and PD98059 (50 μM),  IL-1β (10 ng/mL) and morphine (10 μM) co-

treatment and IL-1β (10 ng/mL) and morphine (10 μM) co-treatment with PD98059 (50 

μM). Fold change in MOR mRNA expression was calculated using the 2-∆∆CT arithmetic 

formula normalized to the endogenous reference gene GAPDH. Data represent mean ± 

S.E.M (error bars) of duplicate measures from triplicate wells from three independent 

experiments. Statistical analysis was carried out using a two-way ANOVA, with pair wise 

(p-values) differences (PDIFF) determined from least square means (LS mean). SAS was 

used to perform a PROC-GLM analysis as the preferred procedure for doing a two-way 

ANOVA. # p≤0.05 vs. US; * p≤0.05 vs. morphine alone.  
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4.15 p38 MAPK-dependent down-regulation of MOR expression by morphine 

  Treatment with SB203580 significantly blocked morphine and IL-1β + morphine 

co-treatment effects on MOR expression (Fig. 39). Morphine (10 μM) treatment for 6 hr 

down-regulated MOR expression (-0.6 fold), however in the presence of SB203580 (1 μM), 

morphine-induced down-regulation of MOR expression was blocked. SB203580 and 

morphine treatment resulted in a significant up-regulation of MOR expression (1.4-fold) 

when compared to morphine treatment alone. IL-1β (10 ng/mL) treatment for 6 hr 

significantly up-regulated MOR expression (3.1 fold), and in presence of SB203580 (1 μM), 

IL-1β-induced up-regulation of MOR expression was reduced to only 1.7 fold; however this 

change in MOR expression in response to SB203580 and IL-1β treatment was not 

statistically significant. In the case of IL-1β (10 ng/mL) and morphine (10 μM) co-treatment 

for 6 hr, MOR expression was significantly up-regulated (3.2 fold) when to compared to un-

stimulated. In the presence of SB203580 (1 μM), IL-1β (10 ng/mL) and morphine (10 μM) 

co-treatment induced up-regulation of MOR was significantly blocked, reducing the effect of 

IL-1β (10 ng/mL) and morphine (10 μM) co-treatment on MOR expression to only 0.6 fold 

(Fig. 39).  
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Fig. 39 SB203580 treatment significantly blocked the effect of Morphine and IL-1β and 

morphine co-treatment on MOR mRNA expression in SK-N-SH cells. SK-N-SH cells 

were cultured in 24-well plates at 37○C for 3-4 days in GM and cultured with or without 

(un-stimulated; US) SB203580 (1 μM), IL-1β (10 ng/mL), IL-1β (10 ng/mL) and 

SB203580 (1 μM), morphine (10 μM), morphine (10 μM) and SB203580 (1 μM),  IL-1β 

(10 ng/mL) and morphine (10 μM) co-treatment and IL-1β (10 ng/mL) and morphine (10 

μM) co-treatment with SB203580 (1 μM). Fold change in MOR mRNA expression was 

calculated using the 2-∆∆CT arithmetic formula normalized to the endogenous reference 

gene GAPDH. Data represent mean ± S.E.M (error bars) of duplicate measures from 

triplicate wells from three independent experiments. Statistical analysis was carried out 

using a two-way ANOVA, with pair wise (p-values) differences (PDIFF) determined from 

least square means (LS mean). SAS was used to perform a PROC-GLM analysis as the 

preferred procedure for doing a two-way ANOVA. # p≤0.05 vs. US; * p≤0.05 vs. 

morphine alone.  
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4.16 NF-κB-sensitive down-regulation and up-regulation of MOR expression by 

morphine and IL-1β respectively  

SK-N-SH cells treated with 10 μM SN50 alone and when treated with IL-1β, 

morphine and IL-1β and morphine co-treatment did not significantly change the regulation 

of MOR expression, indicating that the expression of MOR is insensitive to the activation of 

NF-κB-p50 (Fig. 40). However, in order to elucidate the role of NF-κB-p50 on MOR 

expression, SK-N-SH cells were treated with 50 μM of SN50 (Fig. 41). Compared to 

unstimulated, morphine (10 μM) treatment for 6 hr significantly down-regulated MOR 

expression (-2.03 fold). However, in the presence of SN50 (50 μM), morphine-induced 

down-regulation of MOR expression was significantly exacerbated to -5.06 fold (Fig. 41). IL-

1β (10 ng/mL) treatment for 6 hr significantly up-regulated MOR expression (3.22 fold), but 

in the presence of the SN50 (50 μM), the effect of IL-1β on MOR expression was 

significantly attenuated, decreasing the fold change in MOR to just -0.33 fold (Fig. 41). SN50 

(10 and 50 μM) treatment did not significantly alter IL-1β and morphine co-treated up-

regulation MOR expression in SK-N-SH cells (Fig. 40 - 41). 
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Fig. 40 SN50 (10 μM) treated SK-N-SH cells failed to block the effects of IL-1β, 

morphine and IL-1β and morphine co-treatment on MOR mRNA expression. SK-N-SH 

cells were cultured in 24-well plates at 37○C for 3-4 days in GM and cultured with or 

without (un-stimulated; US) SN50 (10 μM), IL-1β (10 ng/mL), IL-1β (10 ng/mL) and 

SN50 (10 μM), morphine (10 μM), morphine (10 μM) and SN50 (10 μM),  IL-1β (10 

ng/mL) and morphine (10 μM) co-treatment and IL-1β (10 ng/mL) and morphine (10 

μM) co-treatment with SN50 (10 μM). Fold change in MOR mRNA expression was 

calculated using the 2-∆∆CT arithmetic formula normalized to the endogenous reference 

gene GAPDH. Data represent mean ± S.E.M (error bars) of duplicate measures from 

triplicate wells from three independent experiments. Statistical analysis was carried out 

using a two-way ANOVA, with pair wise (p-values) differences (PDIFF) determined from 

least square means (LS mean). SAS was used to perform a PROC-GLM analysis as the 

preferred procedure for doing a two-way ANOVA. # p≤0.05 vs. US 
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Fig. 41 SN50 (50 μM) treated SK-N-SH cells significantly blocked the effects of IL-1β and 

morphine treatment on MOR mRNA expression. SK-N-SH cells were cultured in 24-well 

plates at 37○C for 3-4 days in GM and cultured with or without (un-stimulated; US) SN50 

(50 μM), IL-1β (10 ng/mL), IL-1β (10 ng/mL) and SN50 (50 μM), morphine (10 μM), 

morphine (10 μM) and SN50 (50 μM),  IL-1β (10 ng/mL) and morphine (10 μM) co-

treatment and IL-1β (10 ng/mL) and morphine (10 μM) co-treatment with SN50 (50 μM). 

Fold change in MOR mRNA expression was calculated using the 2-∆∆CT arithmetic formula 

normalized to the endogenous reference gene GAPDH. Data represent mean ± S.E.M 

(error bars) of duplicate measures from triplicate wells from three independent 

experiments. Statistical analysis was carried out using a two-way ANOVA, with pair wise 

(p-values) differences (PDIFF) determined from least square means (LS mean). SAS was 

used to perform a PROC-GLM analysis as the preferred procedure for doing a two-way 

ANOVA. # p<0.05 vs. US; * p≤0.05 vs. IL-1β alone; ** p≤0.05 vs. morphine alone. 
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CHAPTER V 
 
 

DISCUSSION 

 

Part I:  

5.1 Cloning and expression of MOR in SK-N-SH cells 

 Our data demonstrated that SK-N-SH cells express full-length human MOR. Using 

cDNA as the template to verify the expression of full-length MOR and PCR-cloning 

followed by sequencing resulted in a ~1.4 kb consensus sequence, which included 1,107 bp 

open reading frame (ORF) encoding a 388 amino acid protein as previously published (Bare 

et al., 1994). The verification of MOR expression by SK-N-SH cells was initially important 

to allow progress onto qRT-PCR measured changes in MOR transcript following treatment 

with morphine and IL-1β. 

 To measure the level of function of MOR in SK-N-SH cells was equally important as 

the expression of MOR, however, our study did not seek to measure the functionality of 

MOR in SK-N-SH cells because the functionality of MOR has been extensively studied in 

these and other neuroblastoma cell lines (Ammer and Schulz, 1996; Baker et al., 2000; 

Baumhaker et al., 1993; Breivogel et al., 1997; Cheng et al., 1997; Horner and Zadina, 2004; 

Raut et al., 2006; Raut et al., 2007; Rubovitch et al., 2003; Sarne et al., 1998; Yu et al., 1990; 

Zadina et al., 1993). Results from these studies are important to our study because they 

verified our use of SK-N-SH cells as an in vitro model to study MOR transcript expression. 

As an example, one such study recorded reduced MOR binding in undifferentiated SK-N-
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SH cells when treated with 100 nM etorphine (Baumhaker et al., 1993). Also, increased G-

protein activation in SK-N-SH cells was measured following treatment with DAMGO 

(Breivogel et al., 1997) and the classic inhibitory effect of MOR stimulation on PLC activity 

in SK-N-SH cells was prevented by pretreating the SK-N-SH cells with pertussis toxin 

(PTX) (Rubovitch et al., 2003). Therefore, due to the large number of studies that have 

researched MOR function in neuroblastoma cell lines in response to opioids, an attempt was 

not made to measure changes in MOR function in response to morphine or IL-1β. 

However, if needed, a complete study could be completed using ligand binding assay 

protocols established in the labs of Dr. C. W. Stevens.  

 

5.2  Expression and significance of IL-1RI in SK-N-SH cells 

 The expression of IL-1RI in the CNS is still regarded relatively novel, because the 

CNS was considered ‘immune privileged’ before the discovery of IL-1RI expression in the 

brains of mice (Takao et al., 1990) and humans (Hammond et al., 1999). In our study we 

discovered that SK-N-SH cells express the IL-1β receptor, IL-1RI. The discovery of IL-1RI 

expression is novel; to our knowledge there is no evidence of IL-1RI expression among 

human neuroblastoma cells types to date. The confirmation of IL-1RI expression was 

important to our hypothesis. We hypothesized that IL-1β would up-regulate the expression 

of MOR, therefore in order to measure changes in MOR expression in response to IL-1β 

treatment, it was important to know if SK-N-SH cells expressed an IL-1β receptor, proving 

a binding site for IL-1β existed in our model. However, if SK-N-SH cells did not express IL-

1RI at high levels, experiments could have been conducted to elucidate the IL-1RI-

independent mechanism of IL-1β-induced expression of MOR in SK-N-SH cells. 
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 The discovery of IL-1RI expression in SK-N-SH cells makes our study on 

understanding the effects of IL-1β on MOR expression more relevant to neuro-

inflammatory diseases where IL-1β has been implicated as a major factor in pain modulation. 

For example, IL-1β is involved in cellular apoptosis associated with neurodegenerative 

disease such as Alzheimer’s disease (Griffin et al., 2006; Shaftel et al., 2008; Tachida et al., 

2008), Parkinson’s disease (Ferrari et al., 2006; Kim and Joh, 2006; Koprich et al., 2008; 

McGeer et al., 2002), multiple sclerosis (Ferrari et al., 2004; Schrijver et al., 2003) and CNS 

damage, including that elicited by neuroAIDS (Ferrari et al., 2004; Kaul and Lipton, 2006; 

Liu et al., 2008; Minami et al., 1992; Nesic et al., 2001; Rothwell, 2003; Rothwell and 

Luheshi, 2000; Schrijver et al., 2003; Sommer et al., 1999; Wang et al., 1997). With the result 

of IL-1RI expression by SK-N-SH cells, one can assume that the IL-1β-IL-1RI interaction 

that occured in our model may also occur in neuroinflammatory diseases. Therefore if 

studied precisely, it could result in the discovery of a unique therapeutic target that would 

not only reduce neuroinflammation but also enhance the analgesic properties of opioids 

frequently administered to severe neuroinflammatory diseases patients, such as those 

suffering from multiple sclerosis.  
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Part II: 

5.3 Regulation of MOR expression in SK-N-SH cells treated with morphine 

 Using qRT-PCR, MOR mRNA expression was not significantly down-regulated 

following morphine treatment for 6 hrs; however MOR mRNA expression was significantly 

down-regulated following 12 and 24 hr treatment at all three morphine concentrations. 

These findings are consistent with Zadina et al., (1993) studies performed using SH-SY5Y 

cells (SK-N-SH cell sub-clone). It was concluded that chronic morphine exposure decreased 

receptor number but not the affinity of MOR in a time-dependent manner and naltrexone 

up-regulated MOR expression (Zadina et al., 1993). Morphine-induced down-regulation of 

MOR mRNA showed that the expression levels of MOR in SK-N-SH cells were sufficient 

to measure changes in mRNA transcript using qRT-PCR. The use of shorter morphine 

exposure times, 15 and 60 minutes (data not shown) resulted in no significant change in 

MOR expression compared to unstimulated cells and therefore were not studied further. 

The lack of response in MOR mRNA expression to morphine (15 and 60 minutes) 

treatment can be possibly explained by the following reasons: exposure times were probably 

insufficient to measure change in MOR mRNA levels using qRT-PCR. Also for morphine-

MOR binding events to be at equilibrium, 15 and 60 minutes morphine exposure may not 

have been long enough. Therefore 15 and 60 minutes morphine exposure in SK-N-SH cells 

may have not been enough to activate signaling cascades (extranuclear) that would regulate 

the rate and pattern of MOR gene expression as frequently measured to occur in hormonal 

receptor systems (Madak-Erdogan et al., 2008). 

 The significant down-regulation of MOR mRNA expression in response to 24 hr 

morphine exposure supported our hypothesis. However, the expression of MOR protein in 

response to morphine treatment was less predictable. For example, MOR protein down-
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regulation in response to morphine occurred in a non-concentration-dependent manner as 

seen using ICC. A possible explanation for the lack of correlation between MOR mRNA 

and protein expression could be explained by the lower expression levels of MOR protein at 

the cell membrane, which would affect opioid-receptor binding of morphine. Previous 

studies have employed the growth factor retinoic acid (RA) to induce MOR protein 

expression (Ammer and Schulz, 1994; Pahlman et al., 1984; Sidell et al., 1983). In preliminary 

studies (data not shown), RA (10μM) treatment for 5 days induced a 10-fold increase in 

MOR mRNA expression. Protein levels were not measured, however other studies using 

ligand binding assays have conclusively shown an increase in MOR density and opioid-

specific binding affinities in SK-N-SH cells (Baumhaker et al., 1993). The main aim of this 

project was to measure MOR mRNA levels and therefore RA stimulation was omitted from 

all qRT-PCR experiments.  

Fig. 27 shows that naltrexone antagonized morphine-induced down-regulation of 

MOR mRNA expression. The effects of naltrexone were neither time nor concentration 

dependent; however naltrexone antagonized morphine-MOR binding, confirming a MOR-

dependent down-regulation of MOR by morphine.  The lack of a time or concentration-

dependent effect of naltrexone on morphine-induced MOR down-regulation suggests a non-

graded MOR-response system. There was statistically no difference between the effects 

elicited on MOR gene expression when SK-N-SH cells were co-treated with naltrexone and 

morphine for 6 and 24 hrs. This suggests that morphine-induced MOR down-regulation is 

not an efficient system in SK-N-SH cells and can be easily blocked by naltrexone. In 

comparison to our results, the effects of chronic administration (7 days) of naltrexone on 

MOR expression levels in the rat brain significantly changed MOR binding (protein) without 

any change in mRNA levels (Castelli et al., 1997). This study by Castelli et al., (1997),  
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conducted in vivo, supports the results obtained from our naltrexone treated SK-N-SH cells, 

where naltrexone treatment alone for 6 and 24 hrs failed to significantly up-regulate MOR 

mRNA levels. However, to the contrary, morphine-induced down-regulation of MOR 

mRNA expression in a rat PNS model of chronic morphine treatment showed that 

naloxone-induced withdrawal (non-selective opioid antagonist) restored the MOR mRNA to 

control levels in the DRG (Meuser et al., 2003). With these studies and perhaps more, the 

effects of naltrexone on MOR mRNA expression are inconsistent between in vivo and in vitro 

models. This suggests a significant difference between the models when studying MOR gene 

expression. Therefore it would be ideal to conduct MOR gene expression studies in both in 

vivo and in vitro models with consistent experimental conditions.    

In conclusion, our results showed that naltrexone blocked morphine-induced down-

regulation of MOR mRNA expression, elucidating a MOR-dependent mechanism without 

up-regulation MOR mRNA expression. 

 

5.4 Regulation of MOR expression in SK-N-SH cells treated with  

IL-1β 

IL-1β (10 and 100 ng/mL) treatment  of SK-N-SH cells for 0.15, 6, 12 and 24 hrs 

resulted in the concentration dependent up-regulation of MOR expression. Our results were 

similar to those recorded using RNA dot blot experiments using rat brain primary astrocytes 

treated with IL-1β (Ruzicka et al., 1996), however this study showed a greater increase (70-

80%) in MOR expression, suggesting that rat brain primary astrocytes expressing MOR are 

more sensitive to IL-1β than our SK-N-SH neurons, which may not be an ideal model for 

measuring MOR gene expression in vitro. An improved in vitro model would be to utilize 

primary brain neurons and microglial cells, the co-culture of neuron and microglia cells 
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would be ideal from the because neurons would abundantly express MOR and microglia 

would be an abundant source of IL-1β if stimulated with LPS or morphine. The use of 

astrocytes by Ruzicka et al., (1996 and 1997) to measure the effects of IL-1β on MOR 

expression was interesting because it has been published that astrocytes express less MOR 

than DOR and KOR (Ruzicka et al., 1995). Also, it was demonstrated that IL-1β reduced 

MOR binding in neural microvascular endothelial cells (NMVEC) (Ahmed et al., 1985; 

Wiedermann, 1989), suggesting that the effects of IL-1β on MOR expression in neurons may 

be inconsistent because in our study IL-1β up-regulated the expression of MOR in SK-N-

SH neurons. As an example for the measure of inconsistency and perhaps the level of 

complexity involved in measuring MOR expression regulated by IL-1 in neurons, Vidal et al., 

(1998), found that when NMVEC were treated with IL-1α and IL-1β independently, low 

basal levels of MOR expression did not change. However, when NMVEC were co-treated 

with IL-1α and IL-1β, MOR expression levels were up-regulated, suggesting a possible 

synergistic effect of IL-1α and IL-1β on MOR expression. Vidal et al., (1998) study was one 

of three studies; the other studies were by Ahmed et al., (1985) and Ruzicka et al., (1996) that 

first provide evidence of a relationship between opioid and cytokine actions, highlighting a 

possible role of proinflammatory cytokines as factors that may modulate opioid-dependent 

pathways in neuroinflammatory diseases.  

Recent in vivo studies have concluded IL-1β as an anti-opioid analgesia pro-

inflammatory mediator (Hutchinson et al., 2008; Shavit et al., 2005). Shavit et al., (2005) 

demonstrated for the first time that morphine-induced analgesia was extended in mice 

strains genetically impaired in IL-1 signaling. From in vitro studies discussed earlier (above), 

we hypothesized that IL-1β would cause the up-regulation of MOR expression in SK-N-SH 

cells, but if our hypothesis was based on in vivo studies, we would have hypothesized that IL-
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1β would cause the down-regulation of MOR expression in SK-N-SH cells because the logic 

mechanism for IL-1β-induced anti-analgesic effects would be at the MOR level. However, 

because our research model was in vitro, it would be an unlikely correlation between in vivo 

and in vitro models when studying MOR mRNA expression in response to IL-1β exposure. 

 More recently, other pro-inflammatory cytokines, IL-4, TNF and IL-6 have been 

studied as having the ability to affect the expression of MOR expression in neurons and 

immune cells (Borner et al., 2004; Borner et al., 2007; Kraus et al., 2001; Kraus et al., 2003; 

Kraus et al., 2006; Ruzicka and Akil, 1997; Ruzicka et al., 1996). Studies completed by Volker 

Hollts group, which measured MOR expression in response to cytokines in neurons and 

immune cells greatly complements our work. For example, IL-6, time-dependently increased 

MOR gene expression and MOR-specific binding with the use of 3H-DAMGO in SH SY5Y 

cells. With the use of decoy oligonucleotides this group also found that IL-6-induced MOR 

up-regulation was dependent on transcription factor signal transducers and activators of 

transcription 1 (STAT 1 and STAT 3) (Borner et al., 2004). The role of IL-6 in nociception 

was supported in an earlier study where IL-6 had antinociceptive affects in animal model of 

peripheral inflammation (Czlonkowski et al., 1993). 

Studies on IL-1β effects on MOR protein expression are limited at best, therefore 

our study is perhaps the first to demonstrate that IL-1β regulates the expression of MOR 

protein. The greatest up-regulation in MOR mRNA (Fig. 27) and protein (Fig. 28) 

expression was measured following treatment with IL-1β (10 ng/mL) for 6 hrs. IL-1β (10 

ng/mL) exposure for 6 hrs consistently caused the up-regulation of both MOR mRNA and 

protein expression. From a mechanistic perspective, there is an improbable simultaneous 

event occurring where both mRNA and protein expression are up-regulated in response to 

IL-1β treatment for 6 hrs. In respect to the Central Dogma (Crick, 1970),  the expression of 
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MOR protein would be expected to up-regulated following MOR mRNA up-regulation.  

However there are many factors that may influence the rate of translation from mRNA to 

protein. For example, the factors that may influence the translation of proteins would 

include mRNA shuttling, mRNA stability, post-translational events, protein stability and 

cytoplasmic shuttling of MOR into the cell membrane. In our study, mRNA and protein 

levels were up-regulated following IL-1β (10 ng/mL) exposure for 6 hrs. One possible 

explanation for the up-regulation of both MOR mRNA and MOR protein expression 

following exposure to IL-1β would be the signaling cascades that are activated following 

activation of IL-1β specific receptor, IL-1RI.  For example, an obvious question would be to 

ask if IL-1β-induced signaling is more robust and faster than morphine-induced. The 

answer(s) to such a question would help explain why the effect of IL-1β on MOR protein 

up-regulation is more obvious than the MOR protein down-regulation induced by morphine.  

The importance of showing the effects of IL-1β on MOR expression is multi-fold. 

Firstly, it demonstrated that IL-1β affects the expression of MOR at both the mRNA and 

protein level, complementing studies performed on other pro-inflammatory cytokines, such 

as IL-4, IL-6 and TNF showed that IL-1β was not the only  pro-inflammatory cytokine that 

could induce MOR expression (Borner et al., 2004; Kraus et al., 2001; Kraus et al., 2003). 

Secondly, IL-1β-induction of MOR expression in SK-N-SH cells shows that our studies may 

also compliment earlier studies performed to measure the activity of a cytokine response 

element (NF-IL-6) on the opioid receptor promoter (Min et al., 1994), supporting the idea 

that pro-inflammatory cytokines such as IL-1β may regulate the expression of MOR in 

neurons by increasing the activity of NF-IL-6. In contrast to data from Volker Hollts group 

and our data, Im et al., (1999) showed that the cytokine response element, NF-IL-6 was 

nonfunctional in immune cells treated with IL-6, IL-1α and IL-1β, where no significant 
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increase in MOR expression was measured in U266 and RAW264.7 cells transfected with 

MOR. The lack of NF-IL-6 activity in immune cells may not translate into neurons. Im et al., 

(1999) does highlight the need to study other possible mechanisms that cytokines may 

modulate the expression of MOR. Herein, we aimed to discover a signal transduction 

pathway protein kinase that might be responsible for the modulation of MOR in response to 

IL-1β in SK-N-SH cells. 

In order to determine the role of IL-1RI, SK-N-SH cells were treated with IL-1RA 

and IL-1β together for 6 and 24 hrs. Results from these experiments showed that up-

regulation of MOR by IL-1β was IL-1RI-dependent. When co-treated with IL-1β, IL-1RA 

(10 and 100 ng/mL) attenuated the up-regulation of MOR expression induced by IL-1β at 

both concentrations of IL-1RA and exposure times (Fig. 29). IL-1RA (10 ng/mL) treatment 

alone showed no significant effect on MOR expression. In conclusion, results show that up-

regulation of MOR expression by IL-1β to be occurring in IL-1RI-dependent manner. These 

were important experiments because it demonstrated that the expression of IL-1RI, as 

verified using RT-PCR to be functional and responsive to IL-1β binding and that its effects 

on MOR expression are in part occurring thru IL-1RI. 

 

5.5 Regulation of MOR expression in SK-N-SH cells treated with  

morphine-IL-1β together 

In an attempt to elucidate any complimentary or synergistic effects of IL-1β and 

morphine treatment on MOR expression, IL-1β + morphine co-treatment experiments were 

conducted (Fig. 31 and Fig. 32). IL-1β + morphine co-treatment significantly (p≤0.05) 

attenuated morphine-induced down-regulation of MOR mRNA expression; therefore IL-1β 

blocked morphine-induced MOR down-regulation. 
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It can be interpreted from the IL-1β + morphine co-treatment experiments that IL-

1β-induced up-regulation of MOR expression is occurring more robustly. Also the effects of 

IL-1β on MOR expression are perhaps occurring faster than morphine’s effect on MOR 

mRNA down-regulation. Further studies may need to be completed to elucidate the 

pathways responsible for IL-1β induction of MOR expression. For example, the classical IL-

1β signaling pathway includes the JAK/STAT pathway (Hibi and Hirano, 1998; Park et al., 

2005; Yu et al., 2006). As a stress-induced pathway, the JAK/STAT pathway could translate 

the binding of IL-1β to the IL-1RI onto the MOR promoter quicker than that translated by 

morphine-MOR binding. Plausible explanations for the signaling delay following morphine-

MOR binding could be due to mechanisms followed by all GPCRs; multiple G-proteins are 

phosphorylated (activated) before down-stream protein kinases (e.g. MAPK) can be 

phosphorylated. Therefore, depending on the stimuli, a step-wise activation of signaling 

proteins by GPCRs could delay the down-stream effects as measured at the mRNA level. To 

the contrary, morphine-induced MAPK activation has been measured to occur from 

anything as little as one minute to over two hours following morphine treatment (Connor et 

al., 2004). Another, important caveat in response to these studies is that morphine can 

induce the internalization (5 minutes) and recycling (30 minutes) of MOR faster than its 

down-regulation (2 hrs), suggesting that the gene expression of MOR is a relatively slow 

process that occurs after desensitization, internalization and recycling. From our suggestive 

data, it would be beneficial to conduct further experiments that would measure the effect of 

IL-1β on MOR internalization and recycling and correlate these results to the effects of IL-

1β on MOR expression. To date the answer to this question has not been comprehensively 

studied. 
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Immunocytochemistry (ICC) experiments were conducted to visualize changes in 

MOR protein expression in response to morphine, IL-1β and IL-1β + morphine together 

(Fig. 33). The expression pattern of MOR proteins appears to be localized to the cell 

membrane as limited fluorescence was detected in the cytoplasm.  Increased fluorescence 

was evident in the cells co-treated with IL-1β + morphine, demonstrating up-regulation of 

MOR protein expression. Previous studies have not demonstrated the expression of MOR 

protein in SK-N-SH cells using ICC. To highlight an in vitro model technicality, ICC studies 

have been carried out to see changes in MOR protein expression using cell-lines transiently 

or stably expressing MOR (Madsen et al., 2000). It can be misleading to use in vitro models 

stably or transiently expressing MOR and using ICC studies to observe changes in MOR 

expression. For example CHO (Chinese hamster ovary) cells expressing MOR provide a 

disproportionate amount of fluorescence. However, cell-lines expressing MOR in this 

manner (i.e. CHO-MOR) make ideal models for the measure of MOR binding properties 

and could be used to measure IL-1β-induced changes in MOR binding, internalization and 

recycling (Brasel et al., 2008). Our ICC experiments are important to the field of opioid 

receptor pharmacology because the results in our study provide a relatively accurate in vitro 

model to visualize changes in an endogenously expressing MOR protein in SK-N-SH cells.  

The aim of our study was not to measure MOR internalization in SK-N-SH cells, but 

as part of our discussion, it is important to relate our ICC studies to MOR internalization in 

response to morphine and IL-1β treatment. Generally, neurons endogenously expressing 

MOR are localized to the plasma membrane (Keith et al., 1998). However, it is also true that 

MOR is expressed in cells cytoplasm. For example, surprisingly, >70% of immunogold-

labeled MOR was found in the cytoplasm of dendrites of C1 adrenergic neurons in the rat 

rostral ventrolateral medulla (RVM) (Drake et al., 2005). In regards to opioid-agonist 
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induced MOR internalization, DAMGO and etorphine caused significant internalization of 

MOR, but morphine did not (Keith et al., 1998). To compare this to our ICC studies, MOR 

staining was reduced in response to morphine (10 μM) for 6 hrs (Fig. 33). This difference in 

morphine effect on MOR protein expression on the plasma membrane could be due to 

differences in models, with the expression patterns of MOR being a major source of 

inconsistency. On a similar note, the efficiency of MOR staining in our ICC experiments 

could have been affected by the differential sub-cellular distribution of MOR in 

endogenously expressing MOR neurons; the expression and distribution of MOR in such 

neurons can be less predictable than cells transfected with MOR (i.e. CHO-MOR) (Wang et 

al., 2008c). 

   As a determinant of MOR internalization, the results obtained when measuring 

changes in MOR staining using ICC and results obtained when using binding assay 

techniques are very different. Many would argue that using the latter technique to measure 

MOR internalization would have been a more accurate determinant of morphine-induced 

MOR internalization. However, since our ICC experiments were conducted in triplicate with 

appropriate antibody controls, decreased staining of MOR visualized in our ICC experiments 

is most likely caused by morphine treatment. However, this conclusion would have been 

greatly supported if ICC experiments were completed with naltrexone + morphine 

treatments. The results from naltrexone + morphine studies would have helped confirm the 

changes in MOR staining to have been morphine-dependent as naltrexone co-treatment 

could have blocked the morphine-induced decrease in MOR staining as seen in our MOR 

mRNA expression studies.  
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Part III: 

Signal transduction mechanism involved in the regulation of MOR expression in SK-

N-SH cells treated with Morphine and IL-1β 

 

5.6 Differential regulation of human p38 MAPK genes by morphine and IL-1β 

 Due to current evidence supporting the role of MAPK signaling in the development 

of various forms of neural plasticity associated with chronic opioid use, our aim was to study 

the expression patterns of human p38 MAPK genes. Therefore, to study 84 human p38 

MAPK genes, a qRT-PCR array was set up to identify key p38 MAPK genes regulated by 

morphine and IL-1β. The experiments revealed an opposite effect on the regulation of the 

p38 MAPK gene in response to morphine and IL-1β treatment. Treatment of SK-N-SH 

cells with morphine up-regulated p38 MAPK gene greater than three-fold (Fig. 34) and IL-

1β treatment down-regulated the p38 MAPK gene by greater than three-fold (Fig. 35). In 

support of our qRT-PCR array studies, previous studies have attempted to elucidate the role 

of p38 MAPK in response to IL-1β activation. A number of studies have correlated the role 

of spinal microglia p38 MAPK to MOR desensitization, internalization and decreased 

morphine antinociception (Cui et al., 2006; Cui et al., 2008; Gilhotra et al., 2007; Law et al., 

2004; Liu et al., 2006a). For example, Cui et al., (2006) demonstrated that chronic morphine 

treatment induced the activation of spinal microglia and enhanced their p38 

phosphorylation; because when inhibited with a specific p38 inhibitor (SB203580), morphine 

tolerance was significantly attenuated.  More recently, Cui et al., (2008) demonstrated that 

inhibition of microglia activation with minocycline blocked morphine tolerance by inhibiting 

p38 MAPK activation. Also, by the same group, Lui et al., (2006a) showed the increased 

activation of p38 MAPK in spinal microglia was mediated by neuronal nitric oxide synthase 
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(nNOS), which when inhibited, attenuated both morphine tolerance and p38 activation 

together. The discussion of microglia activation and morphine tolerance is important due to 

the enhanced cellular relationship that occurs during morphine tolerance; however the 

expression of MOR in neurons and the role of p38 MAPK are more relevant to our studies.  

For example, Ma et al., (2001) demonstrated that chronic morphine exposure increased the 

phosphorylation of p38 in DRG neurons, suggesting that levels of phosphorylated p38 may 

contribute to the development tolerance to opioid-induced analgesia.  

 Many studies have provided evidence that supports changes or abnormalities in 

MAPK signaling involvement in morphine–induced MOR expression and function both in 

vivo and in vitro (Ferrer-Alcon et al., 2004; Hutchinson et al., 2008; Ignatova et al., 1999; 

Kramer and Simon, 2000; Law et al., 2000; Ma et al., 2001; Mouledous et al., 2004; Nakano 

et al., 1994; Ortiz et al., 1995; Polakiewicz et al., 1998a; Schmidt et al., 2000; Schulz et al., 

2004; Schulz and Hollt, 1998; Trapaidze et al., 2000; Wang and Wang, 2006). For example, 

Mouledous et al., (2004) found that mu agonist treatment induced ERK activation acutely or 

after withdrawal of chronic opioids in one glial cell line and not in three neuronal cell lines. 

Mouledous et al., (2007) extended this study in vivo and found that the ERK signaling 

cascade is not involved in the development or expression of opioid tolerance and 

dependence as discovered using an ERK kinase inhibitor, SL327. In contrast to Mouledous 

et al., (2004; 2007) studies, Schmidt et al., (2000) found that DAMGO treated HEK-MOR 

cells resulted in the rapid stimulation and transient (3-5 min) activation and nuclear 

translocation of MAPK. To elucidate the role of MAPK, HEK-MOR  cells were exposed to 

the MAPK inhibitor PD98059, which, not only prevented MAPK activation but also 

inhibited homologous desensitization of MOR. Therefore, in summary, the role of MAPK 

signaling in morphine analgesia has been determined as important; however limited evidence 
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supports the role of MAPK in regulation of MOR expression. 

 In regards to IL-1β signaling, it was found that the amount of IL-1β produced 

decreased in LPS-stimulated cells when treated with a p38 MAPK inhibitor (Lee et al., 1994). 

More importantly, the p38 MAPK pathway is known to have a key role in stabilizing 

inflammatory response proteins (post-transcriptional) and promotes their translation (Clark 

et al., 2003; Kracht and Saklatvala, 2002; Kumar et al., 2003). In regards to opioid receptor 

gene regulation, a cytokine response element has been discovered; however  it is 

unresponsive to IL-1β  (Im et al., 1999). The lack of promoter level regulation of MOR 

expression by IL-1β supports the need to explore other mechanistic pathways responsible 

for IL-1β regulation of MOR expression. Until recently, evidence correlating the role MAPK 

genes (i.e. p38 MAPK) in the regulation of opioid receptor by pro-inflammatory cytokines 

has been limited. However, two groups have concluded that decreased morphine 

antinociception can be blocked when p38 MAPK is inhibited (Cui et al., 2006; Cui et al., 

2008; Hutchinson et al., 2008). For example, Hutchinson et al., (2008) found that when 

lumbar dorsal spinal cord in vitro was treated with morphine, a significant increase in the 

release of proinflammatory cytokine and chemokine resulted.  And for the first time, it was 

shown that spinal proinflammatory cytokines rapidly (5 minutes) opposed systemic and 

intrathecal opioid analgesia, causing reduced pain suppression. Hutchinson et al., (2008) also 

documented that the opposition of analgesia mediated by proinflammatory cytokines cannot 

be accounted for by an alteration in spinal morphine concentrations and that the acute anti-

analgesic effects of proinflammatory cytokines occurred in a p38 mitogen-activated protein 

kinase and nitric oxide dependent manner. On the same note, but in an independent study, 

intrathecal (i.t.) IL-1β caused the time-dependent up-regulation of phosphorylated p38 

MAPK protein expression in rat spinal cords administered with IL-1β. This study also found 
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that IL-1β also increased iNOS expression (Sung et al., 2005). If put together, Sung et al., 

(2005) study suggests that p38 MAPK plays a pivotal role in i.t. IL-1β-induced spinal 

sensitization and nociceptive signal transduction and if IL-1β can induce p38 MAPK, can it 

play a role in decreased opioid analgesia as documented by Huchinson et al., (2008). 

Recent studies support the role of proinflammatory cytokines in the development of 

decreased morphine analgesia in vitro and in vivo in response to IL-1β (Hutchinson et al., 

2008). However, to the contrary, our study showed that IL-1β-induced the up-regulation of 

MOR expression. Increased MOR expression is not normally associated with decreased 

morphine analgesia and therefore the following question exists - is IL-1β-induced up-

regulation of MOR occurring through the similar MAPK pathways as those activated by 

morphine-induced down-regulation of MOR? In support for IL-1β induced signaling, IL-1β 

release in vitro (Wang et al., 2008b) and IL-1β-induced neural apoptosis is dependent on p38 

activation after spinal cord injury (Wang et al., 2005). However, no evidence exists for the 

role of IL-1β-induced MAPK signaling in the regulation of MOR expression. If IL-1β up-

regulation of MOR is MAPK dependent as proven the case for morphine regulation of 

MOR (see sections 5.7 and 5.8), what will happen to the regulation of MOR expression if 

their respective MAPKs are inhibited? Another important study would be to understand the 

mechanism involved in IL-1β-induced down-regulation of p38 MAPK expression (Fig. 35) 

and how down-regulated p38 MAPK may play a role in MOR expression. From our data, it 

can be suggested that IL-1β-induced MOR up-regulation is occurring more quickly and 

robustly than morphine-induced down-regulation of MOR expression (Fig. 32 and Fig. 33). 

A plausible explanation for the rate of MOR expression by IL-1β and morphine could be 

due to the activation of p38 MAPK. The threshold for p38 MAPK activation could be 

different for IL-1β and morphine, where elements that control activation threshold, 
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subcellular location, and p38 docking in ribosomal protein kinases may be differentially 

affected by IL-1β and morphine (Tomas-Zuber et al., 2001). Therefore, in summary, it seems 

that p38 MAPK is a convergence point for IL-1β and morphine-induced signaling pathways 

that regulate MOR expression in SK-N-SH cells. 

 

5.7 MEK1/2-dependent down-regulation of MOR expression by morphine 

In order to elucidate the role of MAPK signaling on the expression of MOR mRNA 

in response to morphine and IL-1β, the up-stream MAPK signaling protein kinase, MEK1/2 

was inhibited using MEK1/2-specific PD98059 (50μM) inhibitor (Fig. 38). MEK1/2 was 

found to be crucial to the regulation of MOR expression in response to morphine. 

As an example of increased MAPK signaling in response to morphine exposure, Ma 

et al., (2001) studied the intracellular signal transduction pathways involved in morphine-

induced increases in CGRP- and SP-IR in vivo and vitro (DRG neurons). From this study, it 

was found that chronic morphine increased the phosphorylation states of MAPK, ERK, 

JNK, p38 and CREB both in vivo and in vitro. Thereby, suggesting that increased MAPK 

activation plays a major role in morphine-induced increase in spinal CGRP and SP levels, 

contributing to the development of tolerance to opioid-induced analgesia (Ma et al., 2001). 

More recently, a study was conducted to elucidate the exclusive role of MEK1/2 following 

acute, chronic and morphine withdrawal in rat brains. Results from this study concluded that 

acute (2 hrs) morphine exposure increased MEK1/2 in both the cerebral cortex and corpus 

striatum by 50-70% and chronic (5 days) morphine exposure failed to significantly increase 

the phosphorylated state of MEK1/2. However, in morphine-tolerance rats, naloxone-

precipitated withdrawal (2-6 hrs) induced robust increases in MEK1/2 phosphorylation in 

both the cortex (27-49%) and striatum (83-123%); however, spontaneous opioid withdrawal 
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(24 hrs) in morphine-dependent rats did not alter MEK1/2 activity in the brain (Asensio et 

al., 2006). The role of MEK1/2 signaling in regulation of MOR expression in vitro has 

previously been shown to be key to the functional modulation of MOR (Polakiewicz et al., 

1998a). For example, in an attempt to study intracellular signaling mechanisms triggered by 

morphine in CHO-MOR cells, Polakiewicz et al., (1998), identified morphine-induced MOR 

internalization to be dependent on MEK1/2 phosphorylation. Overall, studies on the role of 

MEK1/2 in the regulation of opioid pharmacology in vitro are limited. However contrary to 

studies stated above, a key study concluded decreased activated (phosphorylated) MEK 

levels in the pre-frontal cortex samples of human opioid addicts (Ferrer-Alcon et al., 2004). 

Therefore, if put together with our results, it may be correct to suggest that MEK 

contributes to the actions of opioids, reducing their analgesic effects following chronic 

morphine exposure (Polakiewicz et al., 1998a). 

The role played by MEK1/2 in IL-1β-induced up-regulation of MOR was 

insignificant and could easily be further proven to be so following further experiments with 

inhibitors of protein kinases specific to the IL-1β-IL-1RI induced pathways, i.e. JAK/STAT. 

From our earlier study; IL-1β + morphine co-treatment attenuated morphine-induced down-

regulation of MOR expression. The MEK1/2 inhibitor, PD98059 did not significantly 

inhibit IL-1β + morphine co-treatment induced up-regulation of MOR expression. 

Therefore, as a result, it can also be concluded that IL-1β-induced up-regulation of MOR 

expression is occurring via MEK1/2-independent pathway. Because there are lonely three 

published studies that have measured changes in MOR expression in response to IL-1β in 

vitro (Ruzicka and Akil, 1997; Ruzicka et al., 1996; Vidal et al., 1998),  it is difficult to 

correlate our MAPK signaling results to these studies, but IL-1β-induced signaling has been 

associated with the increase of expression of other receptors (Brechter et al., 2008; Zhang et 
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al., 2007a; Zhang et al., 2007b). The role of MEK1/2 in IL-1β-induced expression of MOR, 

though performed in different models, seems to be occurring independent of MEK1/2.  

 

5.8 p38 MAPK-dependent down-regulation of MOR expression by morphine 

  In order to elucidate the role of p38 MAPK signaling on the expression of MOR in 

response to morphine and IL-1β, p38 MAPK was inhibited using SB203580. It was found 

that the role of p38 MAPK is crucial to the regulation of MOR mRNA expression in 

response to morphine and IL-1β treatment (Fig. 39). 

 Evidence in support of the role of p38 MAPK and its relationship with morphine 

and IL-1β was recently explored (Hutchinson et al., 2008), where the acute anti-analgesic 

effects of IL-1β and similar pro-inflammatory cytokines were measured and occurred in a 

p38 MAPK-dependent manner.  In comparison to our study, Cui et al., (2006) found that 

morphine activated spinal microglia cells had increased p38 immunoreactivity which was 

exclusively restricted in the activated spinal microglia and not in astrocytes or neurons, 

suggesting that the increased expression or activity of p38 in response to morphine exposure 

in neurons is not important. Moreover, in the same study, SB203580 pre-treatment,  

significantly attenuated tolerance to morphine analgesia assessed by tail flick test (Cui et al., 

2006). The role of microglia cells was recently further studied, which supported the role of 

p38 MAPK as a factor that is central to the (anti/pro)-analgesic properties of pro-

inflammatory cytokines (Hutchinson et al., 2008). This study extended previous work that 

concluded the ultra low dose of morphine induced glial activation, via a p38 dependent 

mechanism (Wu et al., 2006), and that activated p38 opposed morphine analgesia. Therefore, 

Hutchinson et al., (2008) co-administered SB20358 and morphine intrathecally, and given 

that p38 activation is well documented to lead to proinflammatory cytokine production and 
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release (Svensson et al., 2003; Svensson et al., 2005; Wu et al., 2006), this study would predict 

a likely involvement in p38 activation in opposing morphine analgesia. Co-administration of 

SB203580 and morphine in rats potentiated tailflick and hindpaw analgesia compared to 

morphine alone (Hutchinson et al., 2008).  

  Our study showed that IL-1β up-regulated the expression of MOR mRNA, however 

it would be difficult to correlate increased MOR expression with increased anti-analgesic 

effects of IL-1β as measured by Hutchinson et al., 2008. Decreased analgesic effects of 

morphine is usually associated with MOR desensitization or internalization, which can be  

measured following chronic opioid exposure (Bernstein and Welch, 1998). However, recent 

evidence suggests that opioid receptor internalization could in fact reduce opioid tolerance in 

vivo (Koch and Hollt, 2008). The change in MOR number in response to chronic opioid 

treatment has long been speculated to directly contribute to receptor desensitization and the 

development of opioid tolerance; but there is limited literature that supports this idea. First 

of all, receptor down-regulation after chronic opioid exposure has only been clearly shown in 

vitro (Baumhaker et al., 1993; Yabaluri and Medzihradsky, 1997; Zadina et al., 1993), whereas 

in vivo studies are highly variable (Zadina et al., 1995). In addition, multiple lines of evidence 

suggest that MOR down-regulation depends on the efficacy of the opioid agonist; but this 

appears to be non essential for the development of opioid tolerance (Nishino et al., 1990; 

Trafton and Basbaum, 2004; Yoburn et al., 1993). In summary, these studies do not support 

a direct correlation between receptor internalization/down-regulation and desensitization 

that is characteristic of tolerance. In fact, it has been demonstrated that receptor down-

regulation requires higher doses and longer exposure times than receptor desensitization 

(Puttfarcken and Cox, 1989; Puttfarcken et al., 1988). 
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 IL-1β-induced expression of MOR could play a more pro-analgesic role. Evidence 

suggest that cytokines such as TNF-α, IL-1β and IL-6 induce the release of endogenous 

opioids from immunocytes, which when bound to opioid receptors expressed in PNS and 

CNS, induce analgesia (Kapitzke et al., 2005). Moreover, cytokines such as TNF, IL-4, IL-6 

and IL-1β contribute to pro-inflammation-induced pain (Borner et al., 2004; Kraus et al., 

2001; Schafer et al., 1994; Zollner et al., 2008). Therefore the opposing effects of cytokines 

on pain transmission highlight the need for further studies on the specific factor(s) that 

contribute to achieving the balance between the pro-inflammatory and anti-nociceptive roles 

of IL-1β. Overall, these findings constitute a new concept of intrinsic pain control that 

involves mechanisms traditionally used by the immune system for mounting a host response 

to fight pathogens. 

 In regards to neuroinflammation, the expression of MOR by pro-inflammatory 

cytokines such as IL-1β may prove to be important in diseases conditions such as multiple 

sclerosis (MS) and Parkinson’s disease where the pain associated with these diseases is often 

treated with opioids. For example in MS, patients often experience increased pain that is 

relatively insensitive to opiate treatment, and until recently the mechanistic basis for this 

increased nociception was poorly understood. Using a Theiler's murine encephalomyelitis 

virus (TMEV) model of MS to examine possible changes in spinal cord opioid receptor 

mRNA over the course of disease progression, TMEV infection caused a significant 

decrease in MOR mRNA expression analyzed by qRT-PCR in both male and female mice at 

90, 150 and 180 days post-infection (Lynch et al., 2008). Lynch et al., (2008) study suggests 

that increased nociception experienced by MS patients may be due to the decreased 

expression of opioid receptors; however, what is the role for IL-1β in nociception 

experienced by MS patients. Several studies have implicated IL-1β as the key factor in the 
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development of MS (de Jong et al., 2002; Luomala et al., 2001; Schrijver et al., 1999; 

Schrijver et al., 2003) and a few key studies have suggested that IL-1 antagonizes morphine 

analgesia and contributes to morphine tolerance (Bessler et al., 2006; Shavit et al., 2005). 

Therefore overall, changes in MOR expression in neurons by cytokines may exacerbate the 

symptoms of neuroinflammatory diseases such as MS contributing to increased nociception 

by decreasing the anti-nociceptive properties of opioids. Also in AD where indirectly, 

increased levels of IL-1β in AD (Shaftel et al., 2008) may increase the expression of MOR in 

neurons, providing increased binding sites for endogenous opioids (e.g. enkephalin) which 

have been implicated in contributing to neuronal and behavioral impairments in a transgenic 

mouse model of AD (Meilandt et al., 2008). 

 

5.9 NF-κB-sensitive down-regulation and up-regulation of MOR expression by 

 morphine and IL-1β respectively  

 In order to elucidate the role of NF-κB, using a NF-κB inhibitor peptide, SN50, 

demonstrated that IL-1β-induced up-regulation and morphine-induced down-regulation of 

MOR expression in SK-N-SH cells was NF-κB-dependent (Fig. 41). In summary, the role of 

NF-κB in the regulation of MOR expression by IL-1β, morphine and IL-1β + morphine 

together was measured to be important at the higher of two concentrations of SN50 (50 μM) 

used (Fig. 41). 

Previous research has demonstrated that the activation of GPCRs in leukocytes and 

neurons can result in the activation or inhibition of NF-κB through various down-stream 

effector pathways, including the cAMP/PKA/CREB, P13K/Akt/IKK and 

PLC/PKC/IKK signaling pathways (Ye, 2001). The phosphorylation of NF-κB via effector 

pathways activated by MOR stimulation is still unclear. It has been shown that acute opioid 
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treatment activates P13K/Akt signaling (Polakiewicz et al., 1998b), which is known to 

activate NF-κB (Brunet et al., 2001). GPCRs expressed in endothelial and epithelial cells 

have been documented to regulate the transcription and contribute to the expression of 

cytokines, adhesion molecules, and growth factors that are essential for extravasation of 

leukocytes and tissue repair. NF-κB is one of the most important transcription factors 

responsible for the expression of proinflammatory genes. Recent studies highlighted in a 

review article (Fraser, 2008) show that GPCRs utilize several different pathways to activate 

NF-κB . These pathways differ from the ones induced by classic cytokines in that they are 

initiated by heterotrimeric G-proteins, but they converge at IκB (phosphorylation) and 

induce the nuclear translocation/modification of the NF-κB proteins. GPCR-induced NF-

κB activation provides an effective means for local expression of cytokines and growth 

factor genes due to the wide distribution of these receptors. From our results in neurons and 

other studies (Kraus et al., 2003) in immune effector cells, it can be suggested that due to 

similarities in signaling pathways between cytokine receptors and opioid receptors in both 

cell types, both pathways converge at NF-κB proteins to modulate the expression of MOR. 

For example, Kraus et al., (2003), demonstrated that when stimulated with TNF, B cells (Raji 

cells) expression of MOR increased to qRT-PCR detectable levels in a time-dependent 

manner. Also, using decoy oligonucleotides against AP-I and NF-κB, Kraus et al., (2003) 

concluded that TNF-induced expression of MOR in B cells is NF-κB-dependent. Also, in 

the same study and more relevant to our neuronal in vitro model, they demonstrated in SH 

SY5Y neurons (which constitutively express MOR), when treated with TNF, multiple NF-

κB binding elements are activated in the MOR gene promoter. Therefore the presence of 

multiple NF-κB binding elements on the MOR gene most probably indicates the importance 

of NF-κB in MOR expression. In support of Kraus et al., (2003) studies, the relationship 
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between NF-κB, opioids and opioid receptors was studied using DAMGO (MOR-specific 

agonist). When primary rat cortical cultures were treated with DAMGO, the DNA binding 

activity of NF-κB increased (Hou et al., 1996). A more recent study showed that morphine 

treatment caused increased NF-κB promoter activation in NT2-N neurons and that the 

substance P (SP) antagonist CP-96345 abolished this activation; substance P activates NF-κB 

and therefore morphine may activate NF-κB via SP up-regulation (Wang et al., 2004).  Also, 

in a recent attempt to detect MOR expression in a human breast cancer cell line (MCF-7), 

MOR expression was down-regulated by opioid agonists and up-regulated by opioid 

antagonists. The authors of this study proposed that the opioid-induced regulation of MOR 

mRNA expression to be mediated by the reduced binding of NF-κB binding elements to 

promoter regions on the MOR gene (Gach et al., 2008). Therefore, collectively, these studies 

heavily suggest that MOR expression is in part NF-κB-dependent. 

Until more recently, MOR mRNA expression had not been measured to be 

significantly repressed following treatment with a NF-κB inhibitor (Philippe et al., 2006). 

Using a NF-κB inhibitor peptide, SN50, we demonstrated that IL-1β-induced up-regulation 

of MOR expression in SK-N-SH cells was NF-κB-dependent (Fig. 41). However, from the 

two concentrations of SN50 (10 and 50 μM) used, the higher concentration (50 μM) showed 

significant changes in MOR expression (Fig. 41). Therefore, these data suggest that IL-1β 

activates NF-κB, contributing to the expression of MOR in our neural model, but the role of 

NF-κB is not central to MOR expression in SK-N-SH cells as demonstrated by the lack of 

sensitivity to NF-κB inhibition by SN50. In contrast, a previous study has demonstrated that 

NF-κB is key to the expression of MOR in non-neuronal cell lines (Kraus et al., 2003), 

implicating that NF-κB is central to IL-1β-induced expression of MOR in immune cells. The 

central role of NF-κB in MOR expression in immune cells makes more sense than in 
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neurons because many functions and the development of immune cells are mediated 

members of the NF-kappaB/Rel transcription factor family (Bendall et al., 1999).   

Although our study and other studies (Borner et al., 2004) suggest that the role of 

NF-κB in the regulation of MOR expression to be unsatisfactorily defined in neurons, our 

study found that when NF-κB is inhibited, morphine-induced down-regulation of MOR 

expression was exacerbated. In support of the insufficient role of NF-κB in MOR expression 

in neurons, the exacerbated down-regulation MOR expression by morphine in the presence 

of SN50 (NF-κB inhibitor) may be due to nonspecific inhibitory effects on the nuclear 

translocation of NF-κB-p50. Because the inhibitory effects of SN50 were only measured 

following the use of a higher concentration (50 μM) it is likely that in SK-N-SH neurons, the 

impact of NF-κB is less sensitive than MEK and p38 MAPK on MOR expression.  Also, at 

higher concentrations (≥50 μM), SN50 has been documented to also inhibit the NLS of 

STAT, AP-1 and NFAT transcription factors in immune cells in vitro (Torgerson et al., 1998). 

The role of NF-κB in the regulation of MOR expression may be dependent on the cell line 

or the in vivo model. To further elucidate the role of NF-κB in MOR expression, the use of 

small interfering RNAs (siRNA) would help narrow the precise role NF-κB heterodimers. 

Also, the use of siRNA treatment would eliminate unspecific inhibition of other kinases and 

transcription factors that may modulate the expression of MOR in response to morphine or 

IL-1β treatment. 

Studies have concluded that chronic opioid treatment activates AC, which then leads 

to the activation of CAMP/PKA/CREB signaling and inhibition of NF-κB in macrophages 

(Roy et al., 1998), neutrophils and monocytes (Welters et al., 2000b) and in T cells (Wang et 

al., 2003). Because these studies were performed in non-neural cells lines it would be difficult 

to relate these findings to neurons. However, in an attempt to correlate these findings to 
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neurons, chronic opioid-induced inhibition of NF-κB may help explain why when NF-κB 

was inhibited in our studies by SN50 (50 μM), morphine-induced MOR down-regulation 

was exacerbated, and this decrease in MOR expression may contribute to the development 

of reduced opioid analgesia frequently associated by chronic opioid exposure. Research has 

shown that chronic morphine exposure results in immunosuppression and data has 

correlated this suppression in the immune system to the inhibition of NF-κB (Bonnet et al., 

2008; Eisenstein et al., 1995; Roy et al., 1998; Welters et al., 2000b). In regards to IL-1β 

regulation,  inhibition of NF-κB (despite inhibition of the IL-1β gene transcription) results in 

enhanced processing of pro-IL-1β, (Ghosh and Karin, 2002). Increased storage of pro-IL-1β 

prepares microglia cells to release IL-1β in response to neuroinflammation. In respect to 

MOR expression, it could be suggested that increased levels of pro-IL-1β in response to NF-

κB inhibition provides an innate response mechanism, which results in the release of active 

IL-1β. Therefore increased levels of IL-1β in the neuroinflammatory environment may 

regulate the expression of MOR in neurons. In support of this theory, it is now established 

that immunocytes-derived endogenous opioids induce analgesia by activating peripheral 

opioid receptors at late stages of inflammation (Cabot et al., 2001; Kapitzke et al., 2005; Stein 

et al., 1990). In this scenario, IL-1β could contribute to maximizing the analgesic effect of 

endogenous opioids by increasing the expression of MOR in neuronal cells. However, the 

studies stated above and used to support our theory for the role of IL-1β in MOR 

expression are opposite to recent data which demonstrated that proinflammatory cytokines 

(TNF and IL-1β) opposed opioid analgesia in vivo (Hutchinson et al., 2008). Therefore from 

the inconsistency between the data collected on the effects of IL-1β on MOR expression in 

vivo and in vitro models, it proves that the role of IL-1β on opioid analgesia remains to be 
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elucidated and that a multi-cellular (e.g. neurons, immune and glial) approach both in vivo and 

in vitro would significantly improve our insight on the role of IL-1β in opioid analgesia. 

To put the role of NF-κB in perspective, studies in the last eight years on NF-κB 

activation in opioid functions and opioid receptor gene expression in both immune cells and 

neuronal cells have provided some insight into the connection between these two families of 

molecules (Chen et al., 2007; Kraus et al., 2003; Wang et al., 2004; Welters et al., 2000a; 

Welters et al., 2000b; Ye, 2001). However further mechanistic studies would benefit our 

understanding of how NF-κB activity is regulated via opioid receptor signaling and how NF-

κB signaling controls opioid gene expression (a feedback control mechanism) in both 

immune and neuronal cells. Understanding the molecular mechanism involved in NF-κB 

signaling in opioid function and opioid receptor gene expression would shed some light in to 

the development of new interventions for immune system-related diseases and opioid 

tolerance. 

Fig. 42 helps illustrate and depict an overview of the cellular mechanisms studied and 

involved in the regulation of MOR expression by morphine and IL-1β. Fig. 42 shows that 

chronic opioid administration may act through MOR expressed on microglia cells which 

then results in the production and secretion of cytokines. Once released, cytokines may then 

act on postsynaptic neurons to decrease or increase opioid analgesia by modulating the 

expression of MOR, which is mediated through the activation of protein kinases and 

transcription factors (i.e. NF-κB). 
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Fig. 42 Proposed mechanism involved in the regulation of MOR in neurons by morphine and IL-1β 

(Adapted from DeLeo et al., 2004). 
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CHAPTER VI 
 
 

CONCLUSION 

 This study has reviewed the role of IL-1β as a proinflammatory mediator known to 

be released from microglia cells in the CNS in response to injury and contributing to 

neuropathic pain. In response to neuropathic pain, anti-nociceptive properties of opioids fail 

to provide efficient and sufficient analgesia. With reduced opioid-analgesia, opioid tolerance 

and eventual dependence are highly correlated events. Our study aimed to elucidate the role 

of IL-1β on the expression of MOR in SK-N-SH cells in order to discover a unique 

immuno-pharmacological relationship. We found that not only did IL-1β induce the 

expression of MOR but did so in a NF-κB-dependent manner. Morphine induced MOR 

down-regulation was MAPK-dependent as evident from our MEK1/2 and p38 MAPK 

inhibitor studies. 

 Overall, the relationship between immune mediators such as IL-1β and the genes 

exclusively expressed in the PNS, CNS and immune system such as opioid receptors is 

complex. Our study discovered and supported novel findings, such as the expression of IL-

1RI in human neuroblastoma cells and the ability of IL-1β to out-compete the regulation of 

MOR expression by morphine. The results from the IL-1β + morphine competition studies 

opened new avenues for discovery, which would help answer why IL-1β had a more robust 

and faster effect on MOR expression than morphine. 

  In order to understand the role of IL-1β on the expression of MOR, further studies 

would need to be performed and would include multimodal approaches: 1 – use of 
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 primary CNS cell cultures, i.e. ventral tegmental area (VTA)  neurons; 2 – use of primary 

CNS/microglia cell cultures; 3 – use of an in vivo neuroinflammatory model; 4 – measure 

change in cytokine release in response morphine administration; 5 – conduct experiments to 

elucidate NF-κB-p50 DNA binding sites using siRNA against specific binding sites and 6 – 

determine the role of microRNAs on the expression of MOR in response to morphine and 

IL-1β in vivo. Studying the role of microRNAs on MOR expression would provide a detailed 

insight into MOR mRNA stability and how morphine treatment would affect mRNA 

stability.  

 Taken together, in vivo studies measuring neuroimmune and opioid analgesic 

interactions suggests that the neurons,  in concert with pro-inflammatory cytokines 

contribute to the hypersensitivity and decreased efficacy of opioid in chronic neuropathic 

pain states. Our study showed that IL-1β up-regulates the expression of MOR mRNA 

expression in neurons in vitro. Because in vitro and in vivo data on the relationship of 

proinflammatory cytokine and MOR expression and opioid analgesia have opposing results, 

an understanding of the relationship between the individual components interacting to 

modulate pain transmission and analgesia is far from complete in both the in vivo and in vitro 

models. A more comprehensive study would certainly highlight key components of the 

neuroimmune system that mediates opioid analgesia, shedding some light into the 

development of new interventions for neuropathic related pain states. 

  To review, the challenge from the perspective of pain is to exploit the knowledge 

developed from understanding the complex layers of the neuro-immmuno system that 

would aid the discovery of novel analgesic strategies. With the success of anti-cytokine based 

treatment (i.e. anti-TNFα- and IL-1-neutralizing antibodies) for the treatment of pain 

(Schafers et al., 2001; Sommer et al., 2001; Sommer et al., 1999), it might also be important, 
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but highly creative to seek the discovery of a compound that would be based on opioids but 

combine the anti-TNFα- and IL-1-neutralizing antibodies effect on pain. The use of such a 

hybrid compound to treat pain would have both anti-nociceptive effects without the side 

effects and tolerance associated with opioids, making this compound an ideal and eventually 

normal for treating neuropathic pain in the future. 
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Scope and Method of Study:  
The scope of this thesis was to study the effects of pro-inflammatory cytokine, IL-1β on the 
expression of MOR in SK-N-SH neurons in vitro. Used real-time PCR to measure changes 
in mRNA expression of MOR and immunocytochemistry (ICC) to see changes in MOR 
proteins levels as captured using Confocal microscopy. 
 
Findings and Conclusions:   
Our finding concluded an IL-1β-dependent up-regulation of MOR expression at both the 
mRNA and protein levels. Also, the effects of IL-1β on MOR expression were measured to 
be more robust than that induced by morphine, implicating a signaling pathway dependent 
process. Further studies using signaling inhibitors alluded to the role of MEK1/2 and p38 
MAPK in the regulation of MOR expression following morphine treatment and an NF-κB-
dependent mechanism for the regulation of MOR expression following IL-1β treatment. 

  Further studies to elucidate the precise role of IL-1β on the expression of MORs 
would be multiple-modal: 1 – primary CNS cell culture; 2 – primary CNS/microglia cell 
culture; 3 - neuroinflammatory, in vivo studies; 4 – measure cytokines released in response 
morphine administration, measure changes in mRNA and protein levels of MOR  in the 
CNS of in vivo models; 5 – elucidate the role of microRNAs on the expression of MOR 
mRNA. 
 Overall, the relationship between the immune mediators such as IL-1β and the genes 
exclusively expressed in the CNS such as opioid receptor is complex and multimodal. Our 
study discovered and supported novel findings, such as the expression of IL-1RI in human 
Neuroblastoma cells and IL-1β ability to out-compete the regulation of MOR expression by 
morphine. Results from these IL-1β-morphine competition studies have opened new 
avenues for discovery, which would help answer why IL-1β had a more robust and ‘faster’ 
affect on MOR expression. 
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	GPCR mediated immune responses are translated through NF-κB, where it is involved in mediating down-streaming signaling pathways (Ye, 2001). Many studies have linked NF-κB involvement in opioid-induced immunosuppressive actions (Carr et al., 1995; Mur...
	2.10 Overview of SK-N-SH human Neuroblastoma cells
	CHAPTER III
	RESEARCH DESIGN AND METHODS
	*-IL-1RI primer sequence obtained from:
	http://pga.mgh.harvard.edu/primerbank/index.htmk: PrimerBank ID 4504659A3.
	^ - GAPDH primer sequences obtained from Kraus et al., 2003. MOR primer sets were designed using Integrated DNA Technologies (IDT) PrimerQuest tool.
	Each qRT-PCR contained  2X Premix Ex Taq SYBR Green I Master Mix (Takara), (which contained Eq TaqTM Hot Start DNA polymerase, buffer, dNTP mix, Mg2+ and SYBR green I), primer sets (25 nM each) and PCR-grade water. The SYBR green I fluorescent dye wa...
	SN50 – NF-κB transcription factor inhibitor. SN50 peptide was used to elucidate the role of NF-κB in MOR expression. SN50 is a cell-permeable inhibitor peptide (C129H23N36O29S), which masks the nuclear localization sequence (NLS), preventing NF-κB-p50...
	CHAPTER IV
	RESULTS
	Part I:
	Cloning and Expression of MOR in SK-N-SH cells
	4.1. SK-N-SH cells express an opioid receptor type
	In the first set of experiments, a 162bp fragment corresponding to the opioid receptor gene was amplified. The degenerate primers used were designed to span highly conserved regions of the opioid receptor family (Li et al., 1996). SK-N-SH cells are w...
	As shown in Fig. 11, RT-PCR has been used to successfully amplify opioid receptor fragments in SK-N-SH cells.
	Following PCR, the fragments were cloned into a pCR4-TOPO vector, and subsequent sequencing revealed a 162bp fragment as shown in Fig. 12. When submitted for BLASTn analysis against the NCBI non-redundant database, the cloned sequence had the highest ...
	5'/GTGAACATGTTGTAGTAGTCGATGGAGAGCACAGCCTTGCAGAGCAGCTCGCCGAAGGGCCACGTCTCCATCAGGTACTTGGCACTCTGGAAAGGCAGCGTGCTGGTGGCCAGCGCATCGGCTAAGGCCAGGTTGAAGATGTAGATATTAGTCGCCGTCTTA/3'
	Fig. 12 162bp PCR amplified and cloned in pCR4-TOPO vector and sequenced.
	Fig. 13 BLASTn alignment of 162bp PCR product cloned into pCR4-TOPO vector and sequenced; matched human DOR type with an E-value of 5e-72.
	However, because we are interested in the expression of MOR in SK-N-SH cells, the 162bp fragment shown in Fig. 13 was also subjected to BLAST 2 sequence analysis. This tool produces the alignment of two given sequences using BLAST engine for local ali...
	4.2 SK-N-SH cells express full-length MOR type
	Following verification of OR expression, primers were designed and to PCR amplify full-length MOR type from SK-N-SH cDNA. Fig. 14 depicts the PCR amplification of a >1.5 kb fragment representing the mRNA expression of full-length MOR by SK-N-SH as ver...
	When submitted for BLASTn analysis against the NCBI non-redundant database, the cloned full-length MOR sequence had an E-value of 0.0 and a 100% identity for the human MOR type (GenBankTM Accession: NM_000914.2) as shown in Fig. 16. This confirmed the...
	4.3 SK-N-SH cells express MOR, IL-1RI and GAPDH
	In preparation for real-time qRT-PCR of MOR in SK-N-SH, optimum primer sets were designed to verify the expression of MOR, the IL-1β receptor, IL-1RI and the house-keeping gene, GAPDH. (See Table 2, Page 58).
	As shown in Fig. 17, SK-N-SH cells express MOR (800 and 106 bp), IL-1RI (123 bp) and GAPDH (163 bp) genes. The RT-PCR cycling parameters included: 94○C for 120 s, 94○C for 30 s, 58○C for 30 s, 72○C for 30 s, 35 cycles followed by a final extension o...
	4.4 Optimization of qRT-PCR for genes MOR and GAPDH
	Once the expression of MOR and GAPDH was confirmed using RT-PCR (Fig. 17), to determine the optimal annealing temperature (Tm) for both genes,  gradient PCR was performed. For the MOR gene, six Tm’s, each 2○C apart were chosen based on the original T...
	In order to determine the optimum concentration of cDNA template to use for qRT-PCR amplification of MOR, a relative standard curve was performed. Stock cDNA (~1000 ng/μL) was serial diluted in RNase-free water to provide: 1000, 100, 10 and 1 ng/15 μ...
	The results from the log amplification (Fig. 19) and standard curve (Fig. 20) showed that the optimal cDNA template amount to use for efficient MOR expression was between 10 and 100 ng. The standard curve (dynamic range) (Fig. 20) was used to accurat...
	Fig. 19 MOR qRT-PCR amplification plot illustrates the amplification of MOR with four different amounts of cDNA template: 1000, 100, 10 and 1 ng. Horizontal bar – Cycle threshold (CT) parameter set by thermocycler.
	In addition to the amplification plot, the standard curve study for MOR generated a semi-log regression line plot of CT values vs. log of output nucleic acid (amplification). Within this plot, PCR efficiency was determined by the slope. If the slope =...
	Fig. 20 MOR qRT-PCR standard curve representing 99.6% PCR efficiency.
	The optimal annealing temperature (Tm) for the GAPDH was determined similarly as described for MOR. For the GAPDH gene, six Tm’s, each 2○C apart were chosen based on the original Tm suggested by the primer synthesis company (Invitrogen). The Tm’s chos...
	In order to determine the optimum concentration of cDNA template to use for qRT-PCR amplification of GAPDH, a relative standard curve was performed. Stock cDNA (~1000 ng/μL) was serial diluted in RNase-free water into the following amounts of cDNA: 10...
	The results from both the log amplification plot (Fig. 22) and standard curve (Fig. 23) showed that the optimal cDNA amount to use for GAPDH expression was between 10 and 100 ng of cDNA. The concentration of cDNA template used for the GAPDH gene was ...
	Fig. 22 GAPDH qRT-PCR amplification plot illustrates the amplification of GAPDH with four different amounts of cDNA template: 1000, 100, 10 and 1 ng. Horizontal bar – Cycle threshold (CT) parameter set by thermocycler.
	In addition to the amplification plot, the standard curve study for GAPDH generated a semi-log regression line plot of CT values vs. log of output nucleic acid (amplification). Within this plot, PCR efficiency is determined by the slope. The slope fo...
	Fig. 23 GAPDH qRT-PCR standard curve: representing 97% PCR efficiency
	4.5 Effect of cell-passage number on the expression of MOR in SK-N-SH cells
	During the preliminary studies, it was determined that the expression of MOR by SK-N-SH cells varied considerably. Therefore a set of experiments were conducted to measure basal transcript mRNA levels of MOR between passages 4 and 13. A measure of MO...
	Part II:
	Effect of morphine and IL-1β on MOR expression in SK-N-SH cells
	4.6  Morphine-induced down-regulation of MOR expression
	SK-N-SH cells were treated with three different concentrations of morphine for 6, 12 and 24 hr. As shown in Fig. 25, morphine time dependently down-regulated the expression of MOR as measured using qRT-PCR. Significant differences when compared to uns...
	Immunocytochemistry (ICC) experiments using confocal microscopy were used to visualize change in MOR protein expression. The down-regulation of MOR mRNA in response to 24 hr of 1, 10 and 100μM morphine exposure was also visualized for the expression o...
	4.7  Morphine down-regulates MOR in MOR-dependent manner
	To identify the role of MOR in morphine-induced down-regulation of MOR, the MOR-specific antagonist, naltrexone was used. Naltrexone treatment alone had no significant effect on the expression of MOR. Morphine treatment for 6 and 24 hr down-regulated ...
	4.8  IL-1β-induced up-regulation of MOR expression
	4.9  IL-1RI-dependent up-regulation of MOR expression by IL-1β
	IL-1β treatment for 6 (4.01 fold) and 24 hr (3.10 fold) up-regulated the expression of MOR. IL-1RA treatment alone did not alter the expression of MOR; however the co-treatment with IL-1β (10 ng/mL) and IL-1RA (10 and 100 ng/mL) resulted in the signif...
	Using qRT-PCR to elucidate an IL-1RI-dependent mechanism for IL-1β-induced up-regulation of MOR expression (Fig.30), ICC experiments showed that IL-1β (10 ng/mL) treatment for 6 hr can also up-regulate MOR protein expression (Fig. 31.C). Co-treatment ...
	4.10  IL-1β blocked morphine-induced down-regulation of MOR expression
	As illustrated in Fig. 32, IL-1β (10 ng/mL) exposure for 6 and 24 hr induced the up-regulation (3.1 and 1.4 fold) of MOR and morphine (10 μM) exposure for 6 and 24 hr induced the down-regulation (-2 and -1.6 fold) of MOR expression in SK-N-SH cells. ...
	Following the analysis of the first experiment illustrated in Fig. 32 and to further elucidate the role of the interactive relationship between IL-1β and morphine on MOR expression, co-treatment experiments were performed. SK-N-SH cells were co-treat...
	The IL-1β-induced blockade of morphine-induced down-regulation of MOR expression as illustrated in Fig 33 was also repeated in ICC experiments. When compared to the morphine (10μM) (Fig. 34.D) and IL-1β (10 ng/mL) (Fig. 34.E) exposure alone for 6 hr,...
	Part III:
	Signal transduction mechanism involved in the regulation of MOR expression in
	SK-N-SH cells treated with morphine and IL-1β
	4.11 Morphine (10 μM) induced up-regulation of MAPK genes
	Using a 96-well plate spotted with 84-MAPK gene specific primers, it was elucidated that morphine up-regulated the expression of 18 MAPK genes. Fig. 35 illustrates that SK-N-SH cells, when treated with 10 μM morphine for 6 hr, induced the up-regulat...
	There is limited evidence for the role of MAPK pathways in regulation of MOR mRNA or protein following treatment with cytokines such as the pro-inflammatory cytokine, IL-1β. Using a 96-well plate spotted with 84-human p38 MAPK gene specific primers, ...
	4.13 Cytotoxicity of signaling inhibitor – MTT assay
	In order to determine if the signaling inhibitors, SN50, PD98059 and SB203580 were cytotoxic to SK-N-SH cells, MTT assays were performed. The cytotoxic effects of three different concentrations of each inhibitor were measured using MTT assays. MTT as...
	Fig. 37 Signal inhibitors SN50, PD98059 and SB203580 pre-treatment (1hr) followed by IL-1β (10 ng/mL) treatment for 6 hr in the same cell-culture well resulted in no cytotoxic effects. . SK-N-SH cells were cultured in 24-well plates at 37○C for 3-4 da...
	4.14 MEK1/2-dependent down-regulation of MOR expression by morphine
	In order to elucidate the role of MEK1/2 in the regulation of MOR expression in SK-N-SH cells, PD98059, a MEK1/2 specific inhibitor was used (Alessi et al., 1995). SK-N-SH cells were pretreated with PD98059 (50 μM) or vehicle control (water) for 1 hr ...
	In contrast to the role of MEK1/2 in the down-regulation of MOR expression by morphine, MEK1/2 inhibition had an insignificant effect on IL-1β-induced up-regulation of MOR expression. IL-1β (10 ng/mL) for 6 hr induced MOR up-regulation (3.36-fold) and...
	4.15 p38 MAPK-dependent down-regulation of MOR expression by morphine
	Treatment with SB203580 significantly blocked morphine and IL-1β + morphine co-treatment effects on MOR expression (Fig. 39). Morphine (10 μM) treatment for 6 hr down-regulated MOR expression (-0.6 fold), however in the presence of SB203580 (1 μM), ...
	4.16 NF-κB-sensitive down-regulation and up-regulation of MOR expression by morphine and IL-1β respectively
	SK-N-SH cells treated with 10 μM SN50 alone and when treated with IL-1β, morphine and IL-1β and morphine co-treatment did not significantly change the regulation of MOR expression, indicating that the expression of MOR is insensitive to the activation...
	CHAPTER V
	DISCUSSION
	Part I:
	5.1 Cloning and expression of MOR in SK-N-SH cells
	5.3 Regulation of MOR expression in SK-N-SH cells treated with morphine
	Using qRT-PCR, MOR mRNA expression was not significantly down-regulated following morphine treatment for 6 hrs; however MOR mRNA expression was significantly down-regulated following 12 and 24 hr treatment at all three morphine concentrations. These ...
	The significant down-regulation of MOR mRNA expression in response to 24 hr morphine exposure supported our hypothesis. However, the expression of MOR protein in response to morphine treatment was less predictable. For example, MOR protein down-regul...
	Fig. 27 shows that naltrexone antagonized morphine-induced down-regulation of MOR mRNA expression. The effects of naltrexone were neither time nor concentration dependent; however naltrexone antagonized morphine-MOR binding, confirming a MOR-dependent...
	In conclusion, our results showed that naltrexone blocked morphine-induced down-regulation of MOR mRNA expression, elucidating a MOR-dependent mechanism without up-regulation MOR mRNA expression.
	5.4 Regulation of MOR expression in SK-N-SH cells treated with
	IL-1β
	IL-1β (10 and 100 ng/mL) treatment  of SK-N-SH cells for 0.15, 6, 12 and 24 hrs resulted in the concentration dependent up-regulation of MOR expression. Our results were similar to those recorded using RNA dot blot experiments using rat brain primary ...
	More recently, other pro-inflammatory cytokines, IL-4, TNF and IL-6 have been studied as having the ability to affect the expression of MOR expression in neurons and immune cells (Borner et al., 2004; Borner et al., 2007; Kraus et al., 2001; Kraus et...
	Studies on IL-1β effects on MOR protein expression are limited at best, therefore our study is perhaps the first to demonstrate that IL-1β regulates the expression of MOR protein. The greatest up-regulation in MOR mRNA (Fig. 27) and protein (Fig. 28) ...
	The importance of showing the effects of IL-1β on MOR expression is multi-fold. Firstly, it demonstrated that IL-1β affects the expression of MOR at both the mRNA and protein level, complementing studies performed on other pro-inflammatory cytokines, ...
	In order to determine the role of IL-1RI, SK-N-SH cells were treated with IL-1RA and IL-1β together for 6 and 24 hrs. Results from these experiments showed that up-regulation of MOR by IL-1β was IL-1RI-dependent. When co-treated with IL-1β, IL-1RA (10...
	5.5 Regulation of MOR expression in SK-N-SH cells treated with
	morphine-IL-1β together
	In an attempt to elucidate any complimentary or synergistic effects of IL-1β and morphine treatment on MOR expression, IL-1β + morphine co-treatment experiments were conducted (Fig. 31 and Fig. 32). IL-1β + morphine co-treatment significantly (p≤0.05)...
	It can be interpreted from the IL-1β + morphine co-treatment experiments that IL-1β-induced up-regulation of MOR expression is occurring more robustly. Also the effects of IL-1β on MOR expression are perhaps occurring faster than morphine’s effect on ...
	Immunocytochemistry (ICC) experiments were conducted to visualize changes in MOR protein expression in response to morphine, IL-1β and IL-1β + morphine together (Fig. 33). The expression pattern of MOR proteins appears to be localized to the cell memb...
	The aim of our study was not to measure MOR internalization in SK-N-SH cells, but as part of our discussion, it is important to relate our ICC studies to MOR internalization in response to morphine and IL-1β treatment. Generally, neurons endogenously ...
	As a determinant of MOR internalization, the results obtained when measuring changes in MOR staining using ICC and results obtained when using binding assay techniques are very different. Many would argue that using the latter technique to measure MOR...
	Part III:
	Signal transduction mechanism involved in the regulation of MOR expression in SK-N-SH cells treated with Morphine and IL-1β
	Due to current evidence supporting the role of MAPK signaling in the development of various forms of neural plasticity associated with chronic opioid use, our aim was to study the expression patterns of human p38 MAPK genes. Therefore, to study 84 hu...
	Many studies have provided evidence that supports changes or abnormalities in MAPK signaling involvement in morphine–induced MOR expression and function both in vivo and in vitro (Ferrer-Alcon et al., 2004; Hutchinson et al., 2008; Ignatova et al., 1...
	In regards to IL-1β signaling, it was found that the amount of IL-1β produced decreased in LPS-stimulated cells when treated with a p38 MAPK inhibitor (Lee et al., 1994). More importantly, the p38 MAPK pathway is known to have a key role in stabilizi...
	Recent studies support the role of proinflammatory cytokines in the development of decreased morphine analgesia in vitro and in vivo in response to IL-1β (Hutchinson et al., 2008). However, to the contrary, our study showed that IL-1β-induced the up-r...
	5.7 MEK1/2-dependent down-regulation of MOR expression by morphine
	In order to elucidate the role of MAPK signaling on the expression of MOR mRNA in response to morphine and IL-1β, the up-stream MAPK signaling protein kinase, MEK1/2 was inhibited using MEK1/2-specific PD98059 (50μM) inhibitor (Fig. 38). MEK1/2 was fo...
	As an example of increased MAPK signaling in response to morphine exposure, Ma et al., (2001) studied the intracellular signal transduction pathways involved in morphine-induced increases in CGRP- and SP-IR in vivo and vitro (DRG neurons). From this s...
	The role played by MEK1/2 in IL-1β-induced up-regulation of MOR was insignificant and could easily be further proven to be so following further experiments with inhibitors of protein kinases specific to the IL-1β-IL-1RI induced pathways, i.e. JAK/STAT...
	5.8 p38 MAPK-dependent down-regulation of MOR expression by morphine
	In order to elucidate the role of p38 MAPK signaling on the expression of MOR in response to morphine and IL-1β, p38 MAPK was inhibited using SB203580. It was found that the role of p38 MAPK is crucial to the regulation of MOR mRNA expression in res...
	Evidence in support of the role of p38 MAPK and its relationship with morphine and IL-1β was recently explored (Hutchinson et al., 2008), where the acute anti-analgesic effects of IL-1β and similar pro-inflammatory cytokines were measured and occurre...
	Our study showed that IL-1β up-regulated the expression of MOR mRNA, however it would be difficult to correlate increased MOR expression with increased anti-analgesic effects of IL-1β as measured by Hutchinson et al., 2008. Decreased analgesic effects...
	IL-1β-induced expression of MOR could play a more pro-analgesic role. Evidence suggest that cytokines such as TNF-α, IL-1β and IL-6 induce the release of endogenous opioids from immunocytes, which when bound to opioid receptors expressed in PNS and C...
	In regards to neuroinflammation, the expression of MOR by pro-inflammatory cytokines such as IL-1β may prove to be important in diseases conditions such as multiple sclerosis (MS) and Parkinson’s disease where the pain associated with these diseases ...
	5.9 NF-κB-sensitive down-regulation and up-regulation of MOR expression by
	morphine and IL-1β respectively
	In order to elucidate the role of NF-κB, using a NF-κB inhibitor peptide, SN50, demonstrated that IL-1β-induced up-regulation and morphine-induced down-regulation of MOR expression in SK-N-SH cells was NF-κB-dependent (Fig. 41). In summary, the role ...
	Previous research has demonstrated that the activation of GPCRs in leukocytes and neurons can result in the activation or inhibition of NF-κB through various down-stream effector pathways, including the cAMP/PKA/CREB, P13K/Akt/IKK and PLC/PKC/IKK sign...
	Until more recently, MOR mRNA expression had not been measured to be significantly repressed following treatment with a NF-κB inhibitor (Philippe et al., 2006). Using a NF-κB inhibitor peptide, SN50, we demonstrated that IL-1β-induced up-regulation of...
	Although our study and other studies (Borner et al., 2004) suggest that the role of NF-κB in the regulation of MOR expression to be unsatisfactorily defined in neurons, our study found that when NF-κB is inhibited, morphine-induced down-regulation of ...
	Studies have concluded that chronic opioid treatment activates AC, which then leads to the activation of CAMP/PKA/CREB signaling and inhibition of NF-κB in macrophages (Roy et al., 1998), neutrophils and monocytes (Welters et al., 2000b) and in T cell...
	To put the role of NF-κB in perspective, studies in the last eight years on NF-κB activation in opioid functions and opioid receptor gene expression in both immune cells and neuronal cells have provided some insight into the connection between these t...
	Fig. 42 helps illustrate and depict an overview of the cellular mechanisms studied and involved in the regulation of MOR expression by morphine and IL-1β. Fig. 42 shows that chronic opioid administration may act through MOR expressed on microglia cell...
	Fig. 42 Proposed mechanism involved in the regulation of MOR in neurons by morphine and IL-1β (Adapted from DeLeo et al., 2004).
	CHAPTER VI
	CONCLUSION
	This study has reviewed the role of IL-1β as a proinflammatory mediator known to be released from microglia cells in the CNS in response to injury and contributing to neuropathic pain. In response to neuropathic pain, anti-nociceptive properties of o...
	Overall, the relationship between immune mediators such as IL-1β and the genes exclusively expressed in the PNS, CNS and immune system such as opioid receptors is complex. Our study discovered and supported novel findings, such as the expression of I...
	In order to understand the role of IL-1β on the expression of MOR, further studies would need to be performed and would include multimodal approaches: 1 – use of
	primary CNS cell cultures, i.e. ventral tegmental area (VTA)  neurons; 2 – use of primary CNS/microglia cell cultures; 3 – use of an in vivo neuroinflammatory model; 4 – measure change in cytokine release in response morphine administration; 5 – cond...
	Taken together, in vivo studies measuring neuroimmune and opioid analgesic interactions suggests that the neurons,  in concert with pro-inflammatory cytokines contribute to the hypersensitivity and decreased efficacy of opioid in chronic neuropathic ...
	To review, the challenge from the perspective of pain is to exploit the knowledge developed from understanding the complex layers of the neuro-immmuno system that would aid the discovery of novel analgesic strategies. With the success of anti-cytoki...
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