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CHAPTER I 
 

 

INTRODUCTION 

 In recent years, there has been a greater push for sustainable, alternative energy 

sources in regards to rising prices of fossil fuels and changing environmental conditions.  

Bio-fuels, solar, wind, and geothermal energies are some of the alternative forms of 

energies that are under consideration.  Of these, biofuels is most promising form of 

alternative energy, with emphasis on production of ethanol from fermentable sugars.  To 

date there are several plants being used for ethanol production, or are being evaluated for 

production of cellulosic ethanol (Table 1). 

Table 1: Plant species and the type of biofuel produced from their sugars. 

Plant Species 

In use or 
under 
evaluation 

Annual or 
Perennial 

Type of biofuel 
produced from 
sugars 

Sugarcane In Use Perennial Ethanol 
Corn In Use Annual Ethanol 

Switchgrass 
Under 
evaluation Perennial Cellulosic Ethanol 

Miscanthus 
Under 
evaluation Perennial Cellulosic Ethanol 

Sorghum 
Under 
evaluation Annual Cellulosic Ethanol 

Populus 
Under 
evaluation Perennial tree Cellulosic Ethanol 

Eucalyptus 
Under 
evaluation Perennial tree Cellulosic Ethanol 
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In order to have a stable and continuous flow of biofuels, the future production of 

these fuels will require a constant supply of biomass, grown specifically for biofuel 

production.  The production of biofuels from different biofuel plant species will require the 

ability to grow plants in regions that allow for the optimal survival and biomass production 

from the plant.  Nevertheless, no single plant has both the optimal biomass production 

capabilities as well as optimal survival abilities everywhere, so more than one plant species 

will be needed.  Therefore, increasing the understanding of the basic molecular biology of 

each plant species is necessary in order to optimize cellulosic biofuel production. 

 Both annual and perennial plant species are currently being evaluated for both 

cellulosic ethanol and ethanol production.  The annual plants include wheat, alfalfa, sorghum, 

and waste products of corn and rice (stovers).  The perennial plants include poplar and 

eucalyptus trees, and grasses such as switchgrass, Miscanthus, and Brachypodium 

discantyon.  The major benefits for using perennial plants rather than annuals are: after the 

initial input of time and energy for the planting, perennials can re-grow after harvesting every 

year; within the US, switchgrass has been selected as dedicated perennial biomass producing 

plant species for biofuel production while the other plant species such Miscanthus, 

Brachypodium, Populus, etc. are under consideration. 

Switchgrass 

 Switchgrass is a perennial, rhizomatous (with nodes) grass that is native to the 

prairies of North America (Figure 1).  Over the past several years, switchgrass has emerged 

as one of the major biofuel plant sources in the United States, besides its utility as a forage 

crop (Schmer, et al. 2008; Keshwani and Chang, 2009).  It is considered an ideal candidate 

for biofuel production for several reasons: It can (1) grow very tall (3-10 feet tall depending 
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on the ecotype/cultivar), (2) thrive well in marginal and waste lands, requiring very little 

fertilizer application, (3) also thrive in drought conditions, and (4) serve as a carbon sink, due 

to its large root system (Clark, 2002). 

 

Figure 1.  Distribution map of switchgrass in the United States and Canada.  The lighter 

green region showcases the region of the United States that focuses on switchgrass for 

biofuel production.  Modified from both http://plants.usda.gov/java/profile?symbol=PAVI2 

and http://genomicscience.energy.gov/centers/map.jpg 

 
 Switchgrass is represented by two major ecotypes: upland (which are octoploid and 

found in the colder, northern climates), and lowland (which are tetraploid and found in the 

milder, dryer southern climates) (Bouton, 2007).  With a wide geographic span, it is expected 
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that these different ecotypes have adapted to varied soil conditions found throughout the 

country.  The lowland ecotypes seem to thrive more in soils that have a relatively high level 

of water moisture, whereas the upland ecotypes can thrive in soils that have water moisture 

levels that range from balanced to low (Figure 2) (Barney, et al. 2009). 

 

Figure 2.  Basic classification of moisture levels found in soil (high, balanced, and low) and 

distribution of switchgrass cultivars relative to the soil moisture content. 

 
 Switchgrass is being grown currently as a forage material and for erosion control. 

Switchgrass plantations serve as shelter for numerous birds and small mammals, an 

ecological benefit of switchgrass under natural settings.  Despite its increasing importance as 

an energy crop, little is known about the basic biology of the traits that control the utility of 

switchgrass as a biofuel crop.  Identification of the gene regulatory processes and networks 

controlling plant biomass yield, nutrient uptake and assimilation and stress responses is an 

essential step forward to understand the gene regulatory processes in this important biofuel 

plant species. The findings could also lead to the rational design of strategies aimed at 

improving not only switchgrass biomass production but also other related biofuel plant 

species such as Brachypodium, Miscanthus, and others. 

 



5 

 

 One of the primary objectives for scientists working on bioenergy production is to 

improve biomass accumulation of a biofuel plant species.  Recent studies demonstrated that 

the transition from vegetative phase to reproductive phase can be blocked by manipulating 

the expression of microRNA156 in Arabidopsis which resulted in moderate delay in 

flowering, a severe decrease of apical dominance, and a prolonged vegetative phase 

(Schwab, et al. 2005).  The combination of these traits led to a ten-fold increase in total leaf 

number in transgenic plants when compared to wild-type plants (Schwab, et al. 2005). 

Similar results were obtained in transgenic rice overexpressing miR156 (Liu et al., 2006). 

These results suggest that the identification of microRNAs (miRNAs) involved in the 

regulation of important plant characteristics such as phase change are attractive targets for 

improving biomass production.  

 Because miRNAs are involved in a myriad of biological functions, their identification 

in diverse plant species has been one of the most active research areas in recent years. To 

obtain better insight into the biological function of miRNAs in general, and individual 

miRNAs in particular, it is essential to identify all miRNAs that are expressed in a plant 

species.  This endeavor is as important as mining genes that code for proteins. Such efforts 

have largely been focused on several model and crop plant species such as Arabidopsis, rice, 

Populus, Medicago truncatula, soybean, tomato, wheat and some other plant species. Thus 

far, miRNAs have not been identified in switchgrass.  This thesis addresses the identification 

of conserved and novel miRNAs, determining their expression profile, and identification of 

their mRNA targets in switchgrass.  The knowledge is likely to enhance the breadth of 

switchgrass molecular genetics and form a valuable resource for the large community of 

researchers working on switchgrass and other biofuel plant species. 
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CHAPTER II 
 

 

LITERATURE REVIEW 

 The proper growth and development of a plant, its metabolism and stress 

responses, as well as numerous other functions, depends on the correct regulation of gene 

expression.  Regulation of gene expression at the transcriptional level is dependent on the 

action of specific transcription factors that bind to conserved, cis-acting promoter 

elements, and is the most widely studied gene regulatory mechanism.  Post-

transcriptional gene regulation (mRNA decay and prevention of protein synthesis) was 

thought to be one of the critical mechanisms of gene regulation for normal growth and 

development and resistance to the adverse environmental conditions. However, the 

components that mediate this process are relatively unknown and only recently small 

RNAs (microRNAs and other endogenous siRNAs), which act as guide molecules in this 

process has been uncovered (Jones-Rhoades, et al. 2006; Mallory and Vaucheret, 2006; 

Sunkar, et al. 2007).  This small RNA mediated regulation relies on specific RNA-RNA 

interactions that result in either target mRNA decay or suppression of the target mRNA 

protein production.  In plants, these endogenous small RNAs can be divided into two 

main groups: microRNAs (miRNAs) and small-interfering RNAs (siRNAs), based on 

their biogenesis and function. 
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2.1: Small-interfering RNAs (siRNAs) 

 In recent years, large scale sequencing of small RNA libraries has revealed an 

unexpected diversity of endogenous siRNAs in plants (Llave et al., 2002; Sunkar and 

Zhu, 2004; Borsani et al., 2005; Sunkar et al., 2005a; Rajagopalan et al., 2006; Fahlgren 

et al., 2007; Shukla et al., 2008; Subramanian et al., 2008).  Interestingly, only a small 

fraction (1-2%) of the total small RNAs represented miRNAs, while the major fraction 

represented different classes of endogenous siRNAs such as tasiRNAs (trans-acting 

siRNAs), natsiRNAs (natural cis-acting siRNAs), heterochromatic siRNAs, and 

unidentified classes of small RNAs (Table 2). 

 

Table 2. Classification of endogenous siRNAs in plants.   

siRNA class 
Location of 
origin Biogenesis 

Effector 
complex Function 

Trans-acting 
(TAS) siRNA TAS loci 

miR173 or 
miR390; 
DCL4 

AGO1 or 
AGO7 mRNA cleavage 

Natural cis-acting 
siRNA 

Convergent gene 
pairs DCL1 AGO?? mRNA cleavage 

Heterochromatic 
associated siRNA 

Heterochromatic 
loci DCL3 AGO4/AGO6 

DNA methylation 
& chromatin 
remodeling 

 

siRNA biogenesis 

 Endogenous siRNAs are derived from the processing of long dsRNA into 21-24nt 

small RNAs (Waterhouse, et al. 2001; Plasterk, 2002; Axtell, ext al. 2006).  dsRNAs are 

generated as a result of RNA-dependent RNA polymerase (RDR) activity on aberrant 

transcripts or read-troughs of the inverted repeats or antisense transcripts derived from 

the same loci.  The resulting dsRNA is processed by the DCL (Dicer-like) family of 
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enzymes (DCL2, 3, and 4) to produce two classes of siRNAs: the 21-nt class and the 24- 

nt class. 

siRNA function 

 The 21-nt siRNAs direct post-transcriptional silencing via mRNA degradation.  

This class can be referred to as either cis-acting siRNAs, if targeting the same loci in 

which they arose from, or as trans-acting siRNAs, because they regulate endogenous 

target mRNAs in trans (Peragine et al., 2004; Vazquez et al., 2004b; Allen et al., 2005). 

natsiRNAs are another sub-class of 21-nt endogenous siRNAs, which derive from a pair 

of sense and antisense transcripts in the cell (Borsani, et al. 2005). The second class, 24 

nt siRNAs, is also referred to as heterochromatin-associated siRNAs (Hamilton and 

Baulcombe, 1999; Zilberman et al., 2004).  In Arabidopsis, these siRNAs are required for 

retroelement silencing through DNA and histone (H3K9) methylation (Chan et al., 2004; 

Zilberman et al., 2004; Tran et al., 2005).  While the functions of the repetitive element-

associated 24 nt siRNA in heterochromatin formation (Chan et al., 2004; Zilberman et 

al., 2004; Tran et al., 2005) and the 21 nt trans-acting siRNAs (Peragine et al., 2004; 

Vazquez et al., 2004b; Allen et al., 2005; Williams et al., 2005) in gene regulation 

involved in development (Lelandais-Briere, et al. 2010; Nag and Jack, 2010; Cho, et al. 

2008; Boualem, et al. 2008; Liu, et al. 2007; Willmann and Pethig, 2007; Wu and 

Poethig, 2006)  and the 21 nt natsiRNAs (Borsani et al., 2005; Jin et al., 2005; Katiyar-

Agarwal et al., 2006)  in stress responses are relatively well understood, the function of 

the natural cis-acting siRNAs are not well understood. 
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2.2: MicroRNAs 

 The term “microRNA” describes an abundant class of ~21-nt long non-coding 

RNA molecules, which can regulate the expression of protein coding genes at the post-

transcriptional level in eukaryotes.    Since the discovery of lin-4 in C. elegns in 1993 

(Lee et al., 1993), the existence of these small non-coding RNA molecules have been 

discovered throughout the animal kingdom (Ambros, 2003; Rajewsky, 2006; Thatcher et 

al., 2008); fungi (Nakayashiki et al., 2006; Nakayashiki and Nguyen, 2008); the amoeba, 

Dictyostelium discoideum (Hinas et al., 2007); the single cell green alga, 

Chlamydomonas reinhardtii, (Zhao et al., 2007) and the plant kingdom (Barakat et al., 

2007; Itaya et al., 2008; Subramanian et al., 2008; Carra et al., 2009; Jagadeeswaran et 

al., 2009b). 

 

MicroRNA biogenesis 

 MicroRNAs are transcribed by RNA polymerase II, and the primary miRNA (pri-

miRNA) transcript is subsequently capped, spliced, and poly-adenylated (Kurihara and 

Watanabe, 2004; Lee et al., 2004; Borsani et al., 2005; Xie et al., 2005; Kurihara et al., 

2006; Lu et al., 2006).  The primary miRNA transcript has the ability to adopt a hairpin 

like secondary structure, which can be processed into miRNA:miRNA* (miRNA and 

miRNA-star) duplex by the action of Dicer-like 1 (DCL1), a double-stranded RNA-

binding endonuclease.  Two other nuclear-localized proteins  hyponastic leaf 1 (HYL1, 

another dsRNA binding protein), and serrate (SE, a zinc finger protein), assist the DCL-1 

in processing the primary miRNA into the miRNA:miRNA* duplex (Liu et al., 2005; 

Yang et al., 2006; Dong et al., 2008; Laubinger et al., 2008). Additionally, HYL1 and 
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RNA cap-binding protein also implicated in releasing the miRNA:miRNA* duplex from 

the hairpin-like structure (Yu et al., 2008). Another nuclear-localized protein that is also 

essential for miRNA accumulation is the Arabidopsis Hua Enhancer 1 (HEN1) protein, a 

methyltransferase. HEN1 methylates the 3’ end of each strand of the duplex (Li et al., 

2005; Yang et al., 2006).  The methylation of the miRNA:miRNA* duplex prevents the 

3’ end uridylation (addition of an oligoU tail to the 3’ ends of both the strands of the 

duplex).  Uridylation of miRNAs might interfere with the function of the miRNA (ability 

to enter the RISC complex) and most importantly uridylation can serve as a signal for 

rapid degradation of the miRNA duplex (Li et al., 2005; Ibrahim et al., 2010).  The 

nuclear localization of DCL1, HYL1, SE, and HEN1 suggests that miRNA biogenesis in 

plants takes place within the nucleus (Figure 3). The processed mature miRNA:miRNA* 

duplex will be subsequently exported to the cytosol via HASTY5, a plant ortholog of 

exportin5 (Bollman et al., 2003; Park et al., 2005).   
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Figure 3.  The biogenesis and function of miRNAs in plants.  (Modified from Jones-

Rhoades, et al.  Annual Review of Plant Biology.  57:19-53, 2006). 

Conserved and non-conserved miRNAs in plants 

 On the basis of miRNA conservation, plant miRNAs are classified into conserved 

and non-conserved miRNAs. To date, twenty-one miRNA families (miR156, miR159, 

miR160, miR162, miR164, miR165/166, miR167, miR168, miR169, miR170/171, 

miR172, miR319, miR390, miR393, miR394, miR395, miR396, miR397, miR398, 

miR399 and miR408) are conserved between monocot and dicot plants (Jones-Rhoades et 

al., 2006).  Eight of these miRNA (miR156, miR160, miR166, miR168, miR169, 

miR170, miR172, and miR390) families are conserved even in primitive land plants such 

as Physcomitrella and Selaginella,  (Axtell and Bartel, 2005; Axtell et al., 2007).  

Recently developed high-throughput next generation sequencing technologies such as 
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MPSS (massively parallel signature sequencing), 454 (pyrosequencing), and SBS 

(sequencing-by-synthesis), have enabled the identification of near-completed sets of 

miRNAs in several plant species (Sunkar and Zhu, 2004; Arazi et al., 2005; Sunkar et al., 

2005b; Sunkar et al., 2005a; Talmor-Neiman et al., 2006a; Talmor-Neiman et al., 2006b; 

Fahlgren et al., 2007; Addo-Quaye et al., 2008; Lu et al., 2008; Sunkar et al., 2008; Zhu 

et al., 2008).  These deep sequencing studies have revealed that the miRNA component 

of plants is comprised of lineage-specific and species-specific miRNA families, in 

addition to the ~21 well conserved families.  Within the lineage-specific miRNAs some 

are broadly conserved whereas some others are conserved in closely related plant species. 

For instance, most examined dicotyledonous plants to date are found to encode for 

miR403, while its’ counterpart could not be identified in monocots (Sunkar and Zhu, 

2004; Sunkar and Jagadeeswaran, 2008).  Similarly, miR396d, miR437, and mIR444, 

appear to exist in all most all monocots examined to date (Sunkar et al., 2005b; Lu et al., 

2008; Sunkar and Jagadeeswaran, 2008), but not in dicots.  A few other well-established 

examples are miR2119, miR2119 and miR2199 that were found to be conserved in 

closely related legumes but not in Arabidopsis, rice, Populus, Sorghum, and other plant 

species whose genomes are known (Jagadeeswaran et al., 2009). Deep sequencing efforts 

also revealed the existence of several species-specific miRNAs in Arabidopsis, rice, 

Populus, Physcomitrella, Medicago truncatula (Sunkar et al., 2005b; Pilcher et al., 2007; 

Sunkar et al., 2008; Carra et al., 2009; Jagadeeswaran et al., 2009b).  The existence of 

both lineage-specific and species-specific miRNAs implies a complex post-

transcriptional regulatory network operating in plants, and that these species-specific 

miRNAs could have specific roles in unique pathways not shared among all plants. 
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microRNA function 

 Once the miRNA:miRNA* complex has entered the cytoplasm, the duplex 

disassociates and the guide strand is incorporated into the RISC (RNA interference 

silencing complex), containing an Argonaute (AGO) protein, while the miRNA* is either 

degraded or accumulates at very low levels.  This preferred RISC assembly with one 

strand of the miRNA duplex is referred to as the asymmetric assembly of RISCs 

(Schwarz et al., 2003; Khvorova et al., 2003).  Interestingly, both in animals and plants 

some miRNA* species accumulate to detectable levels (Jagadeeswaran et al., 2009). A 

few such miRNA* have been reported to regulate the gene expression of their target 

mRNAs in animals (Okamura et al., 2008). However, whether the miRNA* is functional 

or not remains unknown in plants. In plants, guided by the miRNA, AGO1 catalyzes the 

cleavage between the 10th and 11th nt in the complementary region of the target mRNA.  

However, the mode of miRNA-guided target regulation differs in animals, in which the 

seed region (the seven nucleotides from 2 to 8 from the 5’ end), determines the target 

specificity, and has multiple target sites in its 3’-UTRs.  This combination (a small seed 

region and multiple target sites in the 3’-UTR) leads more to translational repression 

rather than cleavage of animal mRNA targets (Ambros, 2004; Millar and Waterhouse, 

2005; Brodersen and Voinnet, 2009; Chekulaeva and Filipowicz, 2009). 

 Our current knowledge about the regulatory roles of miRNAs and their targets 

points to fundamental functions in various aspects of plant development including auxin 

signaling, meristem boundary formation and organ separation, leaf development and 

polarity, lateral root formation, transitions from both juvenile-to-adult vegetative phase 
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and vegetative-to-flowering phase, floral organ identity, and reproduction (reviewed in 

Jones-Rhoades et al., 2006; Mallory and Vaucheret, 2006). 

 

2.3 trans-acting siRNAs (tasiRNA) biogenesis and function 

 In Arabidopsis, the action of certain miRNAs such as miR173, miR390, and 

miR828 is essential for the generation of trans-acting siRNAs (tasiRNAs).  Initially, the 

miRNA173/390/828 containing AGO complex cleaves the non-coding transcript, which 

then serves as the template for the dsRNA biogenesis through the action of RdRP 

(Vaucheret, 2005). 

 

Figure 4.  Biogenesis and function of trans-acting siRNAs.  Modified from Xie, et al. 
Proc. Natl. Acad. Sciences USA, 102(36): 12984-12989, 2005 
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 miR390 has been shown to interact with Argonaute7 to produce the TAS3 

siRNAs from the TAS3 locus in Arabidopsis (Montgomery et al., 2008a).  These 

tasiRNAs in turn target and regulate the expression of auxin response factors ARF3 and 

ARF4 genes in plants. ARF3 and ARF4 regulation by Tas3siRNAs is important for 

lateral organ development in Arabidopsis (Fahlgren et al., 2006).  There are three other 

TAS loci in Arabidopsis.  TAS1 and TAS2 are targeted by miR173 acting with AGO1 

(Montgomery et al., 2008b), while TAS4 is targeted by miR828 (Allen et al., 2005).  The 

targets of TAS1 and TAS2 include several pentatricopeptide repeat proteins (PPRs) 

(Montgomery et al., 2008b), while TAS4 targets MYB75 (Hsieh et al., 2009). 

 

2.4 Role of miRNAs in plant stress responses 

 miRNAs have been shown to play important roles in response to both nutrient 

deprivation and other environmental stresses in addition to their roles in plant growth and 

development  (Jones-Rhoades and Bartel, 2004; Sunkar and Zhu, 2004; Fujii et al., 2005; 

Sunkar et al., 2006; Sunkar, 2010).  For example, miR395 could not be detected in plants 

grown on medium containing optimal levels of sulfate, but is induced when sulfate levels 

are depleted in the medium.  miR395 is targeting three ATP sulfurylases (APS1, APS3 

and APS4), enzymes that catalyze the first step of inorganic sulfate assimilation, and 

APS1 encoding a sulfate transporter. APS1 mRNA is negatively correlated with the 

miR395 levels under low-sulfate stress (Jones-Rhoades and Bartel, 2004).  Similarly, 

miR399 could not be detected in plants grown on medium containing optimal levels of 

phosphate, but is induced when sulfate levels are depleted in the medium (Fujii, et al. 

2005).  By contrast to the induction of specific miRNAs under stress conditions, the 
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opposite effect (down-regulation of miRNA) has been also reported.  For instance, 

miR398, which targets two superoxide dismutase (CSD1 and CSD2) transcripts, has its 

own transcription down-regulated to facilitate the increased expression of superoxide 

dismutase transcripts (Sunkar, et al. 2006). Besides, the observation that several miRNAs 

critical for growth and development are altered during stress implies that cessation of 

plant development during stress is attained, at least in part, by up-regulating miRNAs that 

suppress growth and development by down-regulating the target genes, which are 

positive regulators of growth and development or down-regulating miRNAs to up-

regulate target genes that act as negative regulators of plant growth and development or a 

combination of both (Sunkar, 2010). Overall, it has been well established that miRNAs 

are an integral part of stress response regulatory networks in plants.  
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CHAPTER III 
 

MATERIALS AND METHODS 

 In general, miRNAs can be identified using two different approaches, either using 

computational approach or direct cloning of small RNAs.  Application of computational 

approach can only predict conserved miRNAs but not species-specific miRNAs. Here, 

we used both approaches for identification of miRNAs in switchgrass. 

 

3.1: Material  

 Switchgrass, cultivar Alamo was used in this study and the seeds were a kind gift 

from Dr. Yanqi Wu, Department of Plant and Soil Science, Oklahoma State University. 

 

3.2: Growth Conditions 

 Seedlings were grown in growth chambers with a 16-/8-h day/night cycle (with a 

light intensity of 1,050-1,250 lux) at 21°C for 8-12 weeks, and adult plants were grown in 

a greenhouse, maintained by Dr. Yanqi Wu’s lab. 

 

3.3: Tissue Selection 

 Eight different tissue samples were selected for analyzing the temporal expression 

of miRNAs in switchgrass.  These include ‘lower leaves’ from seedlings and adult  
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adult plants (three to four lowest leaves), ‘upper leaves’ from seedlings and adult plants 

(three to four uppermost leaves), ‘stems’ from the seedlings and adult plants. 

Additionally, ‘inflorescence’ from the adult plants and ‘roots’ from the seedlings were 

utilized.  After harvesting, the tissues were snap-frozen in liquid nitrogen and stored at -

80°C until RNA extractions were performed.  

 

3.4: Nutrient Stress treatments 

 Seeds were germinated on wet vermiculite, and were grown in growth chambers 

with a 16-/8-h day/night cycle (with light intensities of 1,050-1,250 lux) at 21°C for 3 

weeks and then the seedlings were transferred to 96-well PCR plates with holes (bottoms 

were cut) in their wells.  The seedlings were grown in the presence of control media (MS 

with all supplements) for 4 weeks, and then transferred to modified MS media containing 

different levels of sulfate or phosphate (0.02, 0.2, or 2.0mM) for 5 days.  The media was 

replaced daily.  After treatment, seedlings were collected and frozen in liquid nitrogen, 

and stored at -80°C until RNA was extracted. 

 

3.5: Total RNA isolation 

Total RNA was isolated from selected tissues using the Trizol method 

(Invitrogen, USA).  In short, the tissue was ground in liquid nitrogen to a fine powder and 

transferred to a 50ml conical tube containing Trizol.  The tube was weighed and 

additional Trizol was added to ensure that every 100 mg of ground tissue was 

resusupended in 1 ml of Trizol.  The sample was incubated at room temperature for 5 

minutes, and then centrifuged at 13,0000g for 5 minutes.  The soluble fraction was then 
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transferred to another 50ml conical tube, and 200µl chloroform was added for every one 

ml Trizol.  The sample was vigorously mixed for 2 minutes at and then centrifuged at 

13,000g for 10 minutes.  The top aqueous layer was removed to a fresh tube; 500µl 

isopropanol/ml Trizol was added.  The sample was mixed and placed at -20°C overnight 

to allow for RNA precipitation.  The sample was then centrifuged at 13,000g for 20 

minutes to pellet the RNA.  Once the liquid was carefully removed without disturbing the 

pellet, the pellet was washed with 500µl of 80% ethanol by centrifuging at 13,000g for 5 

min and then the ethanol was removed and the pellet was air-dried briefly.  The pellet 

was then resusupended in 500µl of DEPC treated water.  Total RNA concentration was 

determined by using a nanodrop ND-1000 spectrophotometer, and the RNA integrity was 

determined by resolving on a 2% agarose gel. 

 

3.6: Low-Molecular Weight (LMW) RNA isolation  

 A low-molecular weight RNA fraction was isolated from the total RNA by 

precipitating high molecular weight RNAs (mRNAs and rRNAs) with 10% polyethylene 

glycol (mol. wt 8000) and 0.5 M NaCl (4°C for 30 min) and centrifugation (13,000g for 

30 min) (Hamilton et al., 2002).  The supernatant was collected and the low molecular 

weight RNAs including miRNAs were precipitated using 3 volumes of cold ethanol and 

incubating at –20°C for overnight. (Hamilton et al. 2002).  The next day the samples 

were centrifuged again at 13,000g for 30 minutes at 4°C.  The supernatant was carefully 

removed and the pellet was washed with 0.5ml of 80% ethanol by centrifuging at 13,000g 

for 5 minutes at 4°C.  Then the ethanol was carefully removed and the pellet was briefly 
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air-dried and resusupended in 100µl of DEPC-treated water.  Aliquots of 2µl were used 

to determine the RNA concentration using a nanodrop ND-1000 spectrophotometer. 

 

3.7: Small RNA Library Construction  

 Three-month old seedlings, emerging tillers and inflorescence from the adult 

plants were collected, snap frozen in liquid nitrogen and stored at -80°C and used for 

total RNA isolation.  Total RNA was extracted using the Trizol reagent (Invitrogen, 

USA) following the manufacturer’s instructions.  Total RNA was then size-fractionated 

on a denaturing 15% polyacrylamide/8M urea gel at 220V/cm for 1-2 hours, along with 

32P labeled 21 and 24-nt RNA oligos.  These labeled RNA oligos served as markers for 

isolating the small RNAs of 21 to 24-nt in size.  The gel piece around the 21-24nt was 

excised and the small RNAs were eluted by gentle shaking of the small gel pieces in 3 

volumes of 0.3M NaCl at 4°C overnight.  The small RNAs were then precipitated with 

the addition of 100% ethanol and incubated at -80°C overnight.  The samples were then 

spun at 13,000g for 30 minutes at 4°C, and then the pellet was resusupended in 6µl of 

DEPC-treated water.  An RNA adaptor was then ligated to the 5’ ends of the isolated 

small RNAs using T4 RNA ligase.  The ligation reaction was carried out at 37°C for 1 to 

2 hrs.  The 5’-adaptor ligated small RNAs were again size fractionated using a denaturing 

15% polyacrylamide gel, and the samples were again isolated, precipitated, and 

resusupended in 6µl DEPC-treated water.  A 3’RNA adaptor was then ligated to the 3’ 

ends of the small RNAs using T4 RNA ligase at 37°C for 1 to 2 hrs.  A reverse 

transcription reaction was performed using the RT primer (454 library, 

AAGGATGCGGTTAAA, CAAGCAGAAGACGGCATACGA, Solexa), A subsequent 
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PCR reaction was then performed using a forward primer (454 library, 

TACTAATACGACTCACTAAA; 

AATGATACGGCGACCACCGACAGGTTCAGAGTTCTACAGTCCGA, Solexa 

library) and a reverse primer (454 library, AAGGATGCGGTTAAA; 

CAAGCAGAAGACGGCATACG, Solexa library).  The final PCR product was then run 

on a 3% low-melting agarose gel along with a 25bp DNA ladder, which served as a 

marker.  The PCR products corresponding to the expected final size (93-96bp) were 

isolated and purified.  A small aliquot (1-2µl) of the PCR products was used for cloning 

into pGEM-easy T vector (Promega, WI USA) in order to check the quality of the library.  

After satisfactory determination of the quality of the library, the PCR products were 

sequenced using pyrosequencing or sequencing-by-synthesis technologies.  Figure 5 

shows a schematic diagram for the construction of the libraries. 

 

Adapters and primers used for 454 small RNA library: 

5': 5'-tactaatacgactcactAAA-3'; uppercase, RNA; lowercase, DNA 

 3': 5'-pUUUaaccgcatccttctcx-3'; uppercase, RNA; lowercase, DNA; p, phosphate; x, 

inverted deoxythymidine.  RNA/DNA chimeric oligonucleotide adapters 

Forward PCR primer: TACTAATACGACTCACTAAA 

Reverse PCR primer: AAGGATGCGGTTAAA 

Adapters and primers used for Solexa small RNA library 

5’ RNA adaptor: 5’-GUUCAGAGUUCUACAGUCCGACGAUC 

3’ RNA adaptor: 5’-P-UCGUAUGCCGUCUUCUGCUUGUidT 

PCR primer 1: 

AATGATACGGCGACCACCGACAGGTTCAGAGTTCTACAGTCCGA 

PCR primer 2: CAAGCAGAAGACGGCATACG 

(Oligonucleotides sequences  2006, Illumina, Inc.) 
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Figure 5. Schematic presentation of construction of a small RNA library.  

 

3.8: Computational approach for predicting miRNA in switchgrass 

A computational approach has been successful in identification of conserved miRNAs in 

diverse plants and animals (Sunkar and Jagadeeswaran 2008; Zhang, et al. 2006; Wang 

and El Naqa, 2008; Rajewsky, 2006). The basis for computational identification of 

miRNAs, is the conservation of mature miRNA sequence coupled with the predictable 

secondary structure for miRNA precursors (Ambros, et al. 2003). For identification of a 

“complete set” of conserved miRNAs, the availability of a complete genome sequence is 

a prerequisite. If the complete genome is unavailable, the available large genomic 

fragmented data in the form of GSS (genomic survey sequences), WGS (whole-genome 

shotgun reads), HTGS (high throughput genomic sequences) and NR (non-redundant 

nucleotide sequences) have been used for identification of conserved miRNAs in several 

plant species. Analysis of ESTs also aided in identification of several conserved miRNAs 

from diverse plant species (Sunkar and Jagadeeswaran, 2008; Zhang, et al. 2006). 

Currently no GSS, WGS, HTGS sequences are available for switchgrass, thus, we have to 

rely on ~436,535 switchgrass ESTs that were deposited at NCBI’s database for the 

identification of conserved miRNAs. Thus, the number of ESTs available in the database 
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is a major limitation for identification of complete set of conserved miRNAs in 

switchgrass. 

 

Selection of mature miRNA 

The mature miRNA sequences from Arabidopsis and rice were downloaded from the 

miRNA database (http://www.mirbase.org) for the identification of conserved miRNAs.  

For identification of monocot specific miRNAs, miRNA sequences from rice were used. 

 

Parameters for BLASTn searches and secondary structure predictions 

Conserved miRNAs are highly identical in sequence. Of the 21 nucleotides, either all 21 

nucleotides are conserved or the sequence will differ by only one or two nucleotides 

between diverse plant species to identify miRNA homologs of conserved miRNAs in 

switchgrass. The mature miRNA sequences were used as a query in blast searches against 

NCBI’s EST database. We used NCBI BLASTN to find orthologous/paralogous miRNA 

sequences matching at least 18 nucleotides and leaving 3 nucleotides for possible 

sequence variations in different plant species. Hits among the ESTs with sense 

orientation (plus/plus orientation) with 0-3 mismatches were candidates for conserved 

miRNAs. If multiple hits were found, such ESTs were aligned and unique sequence was 

extracted and used for predicting secondary structure to the miRNA precursor. The 

flanking region of 300 bp upstream and downstream to the mature miRNA sequence was 

used for fold-back structure predictions using mFOLD (http://mfold.bioinfo.rpi.edu/cgi-

bin/rna-form1.cgi) program. The obtained secondary structures were analyzed and 

compared to secondary structures deposited in the miRNA database 

(http://www.mirbase.org) in order to verify that the miRNA was located on the same arm 
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as it’s counterpart in different plant species (Figure 6).  

 
 
Figure 6. Basic outline of the computational strategy.  

 

3.9: Sequence analysis of small RNA libraries 

 All sequences with perfect matches to both adaptor sequences were removed and 

the small RNAs between the adaptors were extracted. Small RNA sequences shorter than 

17-nt and longer than 28-nt were discarded assuming that these fragments are not the 

Dicer products and might represent the degradation products from the larger RNAs. The 

presence of small, cloned RNAs as products of discrete miRNAs and siRNAs, as opposed 

to random RNA breakdown products can be determined bioinformatically. The 

switchgrass small RNAs as breakdown products from non-coding RNAs have been 

determined by using blast searches against databases such as the genomic tRNA database 

(http://gtrnadb.ucsc.edu/blast.html), and the European ribosomal RNA database 

(http://bioinformatics.psb.ugent.be/webtools/rRNA/), as the rRNAs and tRNAs are highly 

conserved among plant species. Conserved miRNAs were removed by blast searches 
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against the miRBase (http://www.mirbase.org/). In order to remove sequences for coding 

mRNAs, BLAST searches were performed against the plant EST database and any small 

RNAs with perfect matches in the plus/plus orientation were removed.  All others were 

considered putative small RNAs (miRNA and siRNA).  The remaining small RNA 

population has been carefully analyzed for the presence of novel miRNAs by searches 

against the  switchgrass EST database, and ones that showed perfect matches were 

candidate small RNAs.  Such ESTs were extracted and used for predicting fold-back 

structure using mFOLD (http://mfold.bioinfo.rpi.edu/cgi-bin/rna-form1.cgi).   

 

Secondary structure predictions 

 The novel mature miRNAs were then used as queries when searching the NCBI 

switchgrass EST database.  The NCBI blastN program was used to find EST matches for 

~90% of the new sequence (18 out of 20 for a 20nt novel miRNA). Hits among the ESTs 

with sense orientation (plus/plus orientation) with less than 3 mismatches were 

considered candidate precursors for the novel miRNAs.  If multiple hits were found 

among the ESTs for a miRNA, those were extracted, aligned and a unique sequence was 

used for predicting the secondary structure to the miRNA precursor.  The flanking region 

of 300bp upstream and downstream to the mature miRNA sequence was used for fold-

back structure predictions using the mFOLD (http://mfold.bioinfo.rpi.edu/cgi-bin/rna-

form1.cgi) program.  The structures were then analyzed to make sure that the mature 

miRNA sequence was found on an arm of the hairpin structure. 
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3.10: Small RNA blot analysis 

 Twenty micrograms of LMW RNA were resolved on a denaturing 15% 

polyacrylamide/8M urea gel.  The RNA was then electrophoretically transferred to a 

Hybond-N+ (Amersham) membrane, using a wet-blot transfer unit.  The membrane was 

then UV cross-linked and baked at 80°C for 1 hour.  DNA oligonucleotides, 

complementary to the miRNA sequences were end-labeled with γ-32P-ATP using T4 

polynucleotide kinase (Invitrogen), and used as probe.  Blots were pre-hybridized for at 

least one hour and hybridized overnight using PerfectHYB+ buffer (Sigma) at 38°C.  

Blots were washed three times with 2xSSC/0.1%SDS, at 50°C.  The blots were briefly air 

dried and exposed to a phosphoscreen.  Images were acquired by scanning the 

phosphoscreen with a Typhoon scanner.   

 

3.11: Target Predictions 

The identified mature miRNA sequences were used for predicting RNA targets in 

switchgrass.  The miRNA sequences were used as queries and searched against the ESTs 

from NCBI’s switchgrass database for the complementary sequences.  The following 

criteria were used for the target predictions: a total of four or fewer mismatches were 

allowed in the complementary region, however no mismatches were allowed in positions 

10 and 11, which is the predicted cleavage site.  Additionally, two continuous 

mismatches were not allowed.  The annotation for the target EST has been determined by 

searching for homologous sequences in rice 

(http://rice.plantbiology.msu.edu/blast.shtml). 
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3.12: Validation of predicted miRNA targets using modified 5’-RACE assay  

Modified 5’-RACE assay was performed using the GeneRacer Kit (Invitrogen, USA).  

Briefly a 5’-RNA adaptor was ligated to the RNA and subsequently a reverse 

transcription reaction was performed.  The resulting cDNA was then used as a template 

for PCR amplification using primers (GeneRacer 5’ primer and gene specific 3’ primers).  

To ensure amplification of the desired product, a second, nested PCR was then carried 

out using nested primers (GeneRacer 5’ nested primers and a gene-specific 3’ nested 

primer).  The amplified products were then gel purified, cloned into pGEM-T easy 

(Promega WI USA) and sequenced. 
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CHAPTER IV 
 

RESULTS 

 

4.1: Identification of conserved miRNAs using a computational approach 

 Conserved miRNAs can be predicted using a computational approach (Sunkar and 

Jagadeeswaran, 2008; Zhang et al., 2006), provided sufficient number of genomic or EST 

sequences are available for a plant species in question.  For switchgrass, currently 

~442,269 EST sequences are available at the NCBI database, while there are no genomic 

sequences available in the GSS (genomic survey sequence), HTGS (high-throughput 

genomic sequence), or the WGS (whole-genome shotgun reads) databases. A total of 

sixteen conserved miRNA families (miR156, miR159, miR160, miR164, miR166, 

miR167, miR169, miR171, miR319, miR394, miR397, miR399, miR408, miR437, 

miR444, and miR528) were identified in switchgrass using the computational approach 

(Table 3). Of these, thirteen families are conserved between monocots and dicots 

(miR156, miR159, miR160, miR164, miR166, miR167, miR169, miR171, miR319, 

miR394, miR397, miR399, and miR408), whereas miR437, miR444, and miR528 are 

conserved only in monocots. The predicted fold-back structures for these miRNA 

families share similar features with their counterparts found in Arabidopsis and rice 

(Figure 7). 
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Because the number of ESTs available for switchgrass is limited, the computational 

analysis could not identify all conserved miRNA families in switchgrass. Furthermore, 

this approach is unlikely to identify novel species-specific miRNAs. In order to identify 

near complete set of conserved miRNAs as well as novel miRNAs in switchgrass, 

experimental approach was undertaken.  

 

Table 3.  Identified conserved miRNA homologs in switchgrass using a computational 

approach. 

MicroRNA 
family 

MicroRNA sequence 

156 UGACAGAAGAGAGCGAGCAC 
159 UUUGGAUUGAAGGGAGCUCUG 
160 UGCCUGGCUCCCUGUAUGCCG 
164 UGGAGAAGCAGGGCACGUGCA 
166 UCGGACCAGGCUUCAUUCCCC 
167 UGAAGCUGCCAGCAUGAUCUA 
169 CAGCCAAGGAUGACUUGCCGA 
171 UGAUUGAGCCGUGCCAAUAUC 
319 UUGGACUGAAGGGUGCUCCC 
394 UUGGCAUUCUGUCCACCUCC 
397 UUAUUGAGUGCAGCGUUGAUG 
399 UGCCAAAGGAGAUUUGCCCAG 
408 CUGCACUGCCUCUUCCCUGG 
437 UUCAGUUUGAAGAGAUUGAAA 
444 UGCAGUUGCUGCCUCAAGCU 
528 UGGAAGGGGCAUGCAGAGGAG 
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Figure 7. Predicted hairpin-like structures for the identified conserved miRNAs in switchgrass 

using the miRNA precursor sequences.  The mature miRNA sequence is colored in red in each 

hairpin-like structure. 

 
miR156 
 
                            CU               .-AU                         -        -                         A      CG       U                          AC  
  GGAGAGGCU       UGGGAG       UGACAGAA GAG AGUGAGCAC CGG   UGA GAACAGCAUA      \ 
  CUUUUCUGA        ACCCUC        ACUGUCUU CUC UCAUUCGUG GCC   ACU CUUGUUGUAU     A 
                             \ --                     \ --                       U     C                         C        --        -                           GU  
 
miR159 
 

                                                  A        U             U   AG         CUUUC      U-         U-           A            G         U             GUUC          UAU-                     .-A               GGAGGGUUUA          GG  
                    GCGGAGCUCCU UCA UCCAA  GA    GGUC             GC     GGG   UGGU CAGCU  CUCG UCAUG           CCAC         CCUAUCUC    UCUCCU                           UCUC      \ 
                   CGUCUCGAGGG AGU AGGUU  CU    CCGG             CG     CCC    GCCA  GUCGA GAGC AGUAC          GGUG         GGAUAGAG   AGAGGG                          AGAG      A 
                                                 A       U            U     CG          U--------     UU       UU          C             G         C             GUUC          UUUC                     \ -                --------------------           AG 

 
miR160 
 
CUACCUC                   .-ACCA    UUU        C   C           --           AUAGC    G                  C                 C                           A        -       GC         C       U  
                   GGCAAGA            GG       GGU GA GAUC   GGCU             UC UGUGUGC UGGCUCC  UGUAUGCCAC  CAU GUA    CCAA CCG   \ 
                   UCGUUCU            CC        CCA CU CUAG    CCGG             AG ACGUACG ACCGAGG ACGUGCGGUG GUG CGU    GGUU GGC   G 
-------------                      \ ----         CU-          -    A          UG         ACA---       -                  A                 A                            G       U       A-          A       G 
 

miR164 
 
                          CAAAC    C   C                       C    G                        -                            -      -       ---            C  
     GGGGCGAG            CC UG UGGAGAAG AG GCACGUGCU UGGUCGAUCG GC CG        GCAG  C 
     CCCCGCUC             GG AC  ACCUCUUC UC CGUGCACGA  GCUAGCUGGU CG GU       CGUC  C 
                           UUA--         U   U                     C    G                       C                            A    U   GUA          G 
 

miR166 
 
-       U                     A                .-A|                        UCGCU              U                UU                        A                        CUGU                           -                  U       CG  
 GGA GGGGGAAG AGAGAU    UGAAGCUAU             UCUGAG GGAAUG    GUCUGGUUC  AGGUCUUGC         GAUUUGAGGA  UGGAGA   CU        \ 
 CCU  UCUCCUUC  UUUCUA    ACUUCGAUA             AGACUC  CCUUAC    CGGACCAGG  UCUAGGGCG         CUAAGCUCCU   ACCUUU   GA       U 

       U       C                     A                 \ -^                        U----                      C               UU                        C                          U---                               U                U       UG 

 

miR167 
 
                 UUAUG-      U   A     U       CU          .-C                 --------             C                A                 --                                    UCUGA                   CC             ---            G  
GGUAUU               CAA AU UC AGC   GGAA   UGCCCAA          GGGAA GAGUGA GCUGCC    AGCAUGAUCUAGC             GUGAUCA   GAGAG     GAAC G 
CCAUGG               GUU UA AG UCG   CCUU   ACGGGUU          CCCUU  UUCACU CGACGG    UCGUACUGGAUCG             UACUGGU   CUCUC      CUUG A 
                CGCUCA     U      -     -        U-            \ -                 GCUG             C                C                CG                                   UUCCG                   A-            GAG         A 

 

miR169 
 
A               CUGC                 U         -                               A    U                   UAC         CUC                             AUGUU  
    AAGAG           CCAUCC   GGU  AGCCAAGGAUG  CU GCCUGUG         UCG        GCUUGUUUGU                \ 
    UUCUU           GGUAGG  CCG   UCGGUUCCUAU  GA CGGAUAC         AGU        CGGACGGACG               G 
A                ----                      C        A                               -       -                    UCU        CAA                            GGGUU 

miR171 
 
G-                U          G       U                  UCU                  C              -  -            C            GG          AU  
    AUGAAA AGUA  CUA GAUGUUG      CGGCUCA  UCAGA G  ACCA GGGGU    UGUG     \ 
    UACUUU UCAU  GAU CUAUAAC       GCCGAGU AGUCU C  UGGU CUCUA    GCGC      G 
CA               C          -        U                   CGU                  U             U G          -             GA          CC 
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miR319 
 
A-------------------            U                                CU  UG                    C                        CA-----                G      AC                   U        C                       ------         AUG  
                              GAGC CUCUUCAGUCCA      C     AAAUGGC GUAGGGUUU          UUAGCU  CCG    UCAUCCA   UCA  CUACCAAGA       UCC           G 
                              CUCG GGGAAGUCAGGU     G     UUUGUCG CAUCUCGAA           AAUCGA  GGC    GGUAGGU  AGU GAUGGUUCU       AGG           A 
GUGCUCGUUCC         U                                  UG UG                   -                         UUAA                 G       GC                   U        C                        GUA       CGC 

 

miR394 
 
---           C       AAAA    AAC     C                     UGG             U           .-AACACAGAACC          C  
       GAG GUG          GA       CA   GAGUGCCA       AUUUG  GUGC                                UUGU  A 
       CUC  CAC          CU       GU  CUUACGGU       UAGAC   CACG                               AACG   C 
UUC       -        ------     -----       --                        UUA             --           \ -------------------               A 
 

miR397 
 
                                 AUC                                            A                     C       -          AG  
           GCGAAGGC       AUUGAGUGCAGCGUUG UGAGCCGC GGC GGCG     \ 
          CGUUUCCG        UAACUCACGUCGCGGC ACUCGGCG CCG CCGC      G 
                                 CAA                                            C                      -      G          CU  
 

miR399 
 
           A            ---                -------                   ---                          .-AGCA              UA                   UA                                       GA-        .-AC|  A                        AGGU  
GGCU  GUAG      GCAUGU                 CAGC      AUGUGCUG            UGAAU     CAGGGUA     UCUCCUUUGGCACG       GGC       GC ACCAUCCGU           A 
CCGA   CAUC      UGUAUA                 GUCG      UACACGAC             ACUUA     GUCCCGU     AGAGGAAACCGUGC      CCG       CG UGGUAGGUA          U 
          C           UCA               AUGACAU        ACU                     \ ----                   GC                    UA                                      GUG      \ --^      G                        AUUG 

 

miR408 
 
                         ------                 U                 U-------                   A                 U                   A       U          U             CAU            .-AAAAAA            CG                      A     GCG  
GAGAGGGGG               UGG   CUGGAU                    GGAG  CAGGGA  GAGGCAG  GCA   GGGA  GGGGC       CAACA                  AAAC     UUUCUUCC  CU            A 
CUCUCCCUC                ACC   GGCCUA                     CCUC   GUCCCU  CUCCGUC   CGU   CCCU  CCUCG       GUUGU                  UUUG     GGAGAGGG  GA            A 
                        CCUACU        C                UACUACCC           G                U                   A         C           C             UU-               \ ------                   AG                     A      AGA 

 

miR437 
 
                                     A               U             -                                          A      A                CA-         GUA                      .-ACCAAUAUUUA|             UCCAA  
AAAUUAUAGUUUA UUUAGC UUUGU CUAAGUCAAGCUUCU UAA UUUGAC       AUU        UAGGAAAA                                 CAACA              U 
UUUAAUAUCAAGU AAAUCG AAACA GA UUCAGUUUGAAGA AUU AAA UUG       UAA       AUCUUUUU                                  GUUGU             U 
                                    G                -              G                                         G       G               AUA       AAA                        \ ----------------------^            UUUGA 

miR444 
 
UUC               AUU         U--                      UGG    G  
       CAAGCU       GGCG        AUUGCAUG        UG  C 
       GUUCGA       CCGU        UGACGUGU        AC  A 
UC-              ACU         UGU                       UGA     C 

 
miR528 
 
        GG       A    UU            .-CU                          C                                    U       G                           A-|               GG  
AGA    GCU GU    UCUGG     GUAGCAGCAG AGUGGAAGGGGCA  GCA AGGA--GCAGG       GGUUU     U 
UCU    CGA CA    AGACC      CAUUGUCGUC UUACCUUUUCCGU  CGU  UCCU   CGUCC       CCGAA     U 
         A-       -      --                 \ --                           C                                   C        G           \_              AG^             GG 
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4.2: Identification of conserved miRNAs in switchgrass using an experimental 
approach. 
 
 Deep sequencing of small RNA libraries has been extremely successful in 

identification of not only conserved miRNAs but also novel miRNAs in several plant 

species including Arabidopsis, rice, Populus, and Physcomitrella (Sunkar and Zhu, 2004; 

Arazi et al., 2005; Sunkar et al., 2005b; Sunkar et al., 2005a; Talmor-Neiman et al., 

2006a; Talmor-Neiman et al., 2006b; Fahlgren et al., 2007; Addo-Quaye et al., 2008; Lu 

et al., 2008; Sunkar et al., 2008; Zhu et al., 2008). In order to identify as many novel 

miRNAs as possible in switchgrass, three small RNA libraries were constructed from 

three diverse tissues, i.e., 3-week-old seedlings, inflorescence and emerging tillers and 

subjected to deep sequencing. Inflorescence and emerging tillers were chosen for 

constructing small RNA libraries for the following reasons. Previous reports suggested 

that small RNA population in plants is highly diverse in inflorescences (Lu et al., 2005). 

Previous work has shown that the greater number of tillers will contribute to high 

biomass production (Das et al., 2004) although the molecular basis of tillering is not well 

understood. In order to determine if miRNAs are playing a role in tillering, a small RNA 

profile was created from the emerging tillers. 

Analysis of small RNA library generated from switchgrass seedlings  

A small RNA library generated from switchgrass seedlings was subjected to 

pyrosequencing, which yielded 21,999 small RNA sequences ranging from 18 to 27 nt in 

size (Table 4). Figure 8 shows the distribution of sequences ranging in size from 18 to 26 

nucleotides.  After the removal of redundant sequences, 15,637 unique sequences were 

established.  Of these, approximately 1,100 small RNAs appeared to be degraded 

products from protein-coding mRNAs, and another 2,084 sequences were mapped to 
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other noncoding RNA sequences, which were eliminated from further analysis. For the 

remaining unique small RNAs, homology searches against the miRBase resulted in 

identification of 34 conserved miRNAs belonging to 16 miRNA families (miR156, 

miR159, miR164, miR166, miR167, miR168, miR169, miR171, miR172, miR319, 

miR399, miR408, miR442, miR444, and miR528 in switchgrass (Table 5). Of the 21,999 

raw sequences, only 269 small RNA sequences were identified as homologs of conserved 

miRNA families in switchgrass (Table 4). Thus, only a small fraction of the total small 

RNAs were miRNAs, and the remaining sequences are considered endogenous siRNAs, 

whose identity remains largely unknown. 

 
Table 4. Summary of reads obtained from the seedlings small RNA library. 
 

Total number of sequences 21,999 
Unique sequences 15,637 
Noncoding RNA/degraded mRNA 3,236 
Conserved miRNA 272 
New miRNA 4 
Number of reads that could not be 
mapped to ESTs 

~10,000 
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Figure 8. Size distribution and abundance of small RNAs in seedlings small RNA library. 
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Table 5. Identified conserved miRNAs and their frequency in seedlings small RNA 
library 
 
miRNA 
family  

miRNA Sequence (5’-3’) Frequency  

miR156a,b UGACAGAAGAGAGUGAGCAC 7 
miR156e UGACAGAAGAGAGCGAGCAC 23 
miR156f AGACAGAAGAGAGUGAGCAC 18 
miR156k UGACAGAAGAGAGAGAGCAC 2 
miR159b UUUGGAUUGAAGGGAGCUCUG 11 

miR164a UGGAGAAGCAGGGCACGUGCA 2 

miR164c UGGAGAAGCAGGGUACGUGCA 1 

miR166 UCGGACCAGGCUUCAUUCCCC 10 

miR167b UGAAGCUGCCAGCAUGAUCUA 2 

miR168 UCGCUUGGUGCAGAUCGGGAC 14 
miR169a CAGCCAAGGAUGACUUGCCGA 7 

miR169c CAGCCAAGGAUGACUUGCCGG 3 

miR169d CAGCCAAGGAUGACUUGCCUA 1 

miR169b UAGCCAAGGAUGACUUGCCGG 2 

miR169k UAGCCAAGGAUGACUUGCCUU 1 

miR171g UGAUUGAGCCGUGCCAAUAUC 8 

miR172a AGAAUCUUGAUGAUGCUGCAU 90 

miR172c ACUUGAUGAUGCUGCAGU 17 
miR172b GGAAUCUUGAUGAUGCUGCAU 24 
miR172d AGAAUCCUGAUGAUGCUGCAG 1 
miR319 UUGGACUGAAGGGUGCUCCC 5 

miR393 CUCCAAAGGGAUCGCAUUGAU 13 
miR408 CUGCACUGCCUCUUCCCUGG 1 
miR444 UGCAGUUGCUGCCUCAAGCU 1 
miR528 UGGAAGGGGCAUGCAGAGGAG 5 
Tas3-siRNA UUGGGAGGAUUGAUAGGCGCUA 3 

 

Within this library, the frequency of different miRNA family members was highly 

varied, as some miRNAs (miR172a) appeared as many as 90 times, whereas some others 

were found only once in the library.  Of the 272 miRNA homologs found in the library, 

miR172 family was the most abundantly represented family with 132 reads.  Within the 

miR172 family, miR172a alone appeared 90 times, and thus was the most abundantly 
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expressed member of the miR172 family. miR156 was the second most abundantly 

recovered miRNA family with a total number of 53 reads in the library.  The frequencies 

of the remaining conserved miRNA were relatively low, i.e. miR168 family was 

represented by 14 reads, miR393 family by 13 reads, and miR159 family by 11 reads in 

the library.  Two miRNA families (miR408, and miR444) appeared only once in the 

library (Table 5). 

 In plants, trans-acting siRNAs (TAS3-siRNAs) are highly conserved and their 

biogenesis is dependent on miR390, which is a conserved miRNA (Allen, et al. 2005).  

While, miR390 was not found in the analyzed small RNA library, a family member of the 

TAS3 siRNA family (TAS3b) was identified (Table 5), suggesting that TAS3 siRNAs are 

also conserved, and expressed in switchgrass. 

While the first small RNA library provided a glimpse of conserved miRNA 

families expressed in switchgrass, it did not reveal all conserved miRNA families. For 

instance, miR160, miR162, miR390, miR394, miR395, miR396, miR397, miR398 and 

miR399, which are conserved were not found in this library. This could be due to the 

low-sequencing depth (about 22,000 reads) and suggested that sequencing to a greater 

depth than this is necessary to identify all conserved miRNAs. These results also pointed 

out that identification of novel miRNAs in switchgrass require sequencing small RNA 

libraries to even greater depth because novel miRNAs are expressed at extremely low 

abundance. . In order to identify additional conserved miRNA homologs as well as novel 

miRNAs in switchgrass, two other small RNA libraries were generated from 

inflorescence and emerging tillers and sequenced using sequencing-by-synthesis 

technology, which yielded several million (10-11 million) reads from each library.  
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Analysis of small RNA library generated from inflorescence and emerging tillers

 The overall summary of the small RNAs obtained from sequencing small RNA 

populations from the inflorescence and emerging tillers is shown in Table 6. 

 

Table 6. Summary of sequence analysis of small RNA libraries from inflorescence and 
emerging tillers. 
 Inflorescence Emerging tillers 

Small RNA category 
Total 
reads 

unique 
reads 

Total 
reads 

unique 
reads 

tRNA, rRNA, snRNA etc. 2153056 199430 1518579 112572 
Repeats 1172189 187883 1886253 184354 
conserved miRNAs 720393 236 189054 230 
pre-miRNAs 1149079 24501 403542 16670 
EST 1606132 157529 1599648 132424 
Could not be mapped to ESTs 8784958 4830653 7904002 3502843 
Total 11746013 5175081 10658965 3757827 

 

Deep sequencing of small RNA reads of 18 to 27-nt in size from the inflorescence 

and emerging tillers yielded 11,746,013 and 10,658,965 raw reads, respectively (Table 6 

and Figure 9). Size-based analysis of small RNA reads revealed two peaks; one at the 21 

nt and the other at 24 nt size (Figure 9). This observation is consistent with the small 

RNA populations in plants (Lu et al., 2005; 2006; Sunkar et al., 2005b; Fahlgren et al., 

2007; Jagadeeswaran et al., 2009). In general, the majority of small RNAs corresponding 

to 21-nt size are likely miRNAs, whereas the 24-nt small RNAs correspond to 

heterochromatic siRNAs in plants (Lu et al., 2006; Sunkar and Zhu, 2007). The emerging 

tillers library was represented by slightly greater number of 24 nt small RNAs than the 

inflorescence library, while the opposite was true for 21-nt small RNAs in inflorescence 

library, i.e., more 21-nt small RNAs in inflorescence library compared to the emerging 

tillers library (Figure 9).  After the removal of redundant sequences, 5,175,081 and 
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3,757,827 unique reads were obtained for inflorescence and emerging tillers, respectively 

(Table 6).  The degraded products from the rRNAs, tRNAs as well as from the protein-

coding mRNAs were removed from the analysis. For the remaining unique small RNAs, 

homology searches against the miRBase resulted in identification of all known miRNAs 

(some are highly conserved and some are known to be conserved in closely related plant 

species) belonging to 36 miRNA families in switchgrass (Table 7). A large proportion of 

the small RNA reads from both the libraries could not be mapped to any of the small 

RNA categories (Table 6). Most of these might represent endogenous siRNAs and 

degradation products from mRNAs in switchgrass although it is possible that some of 

these could be genuine miRNAs. However, in the absence of miRNA* sequence and the 

non-availability of the switchgrass genome for mapping and predicting fold-back 

structure for the miRNA precursor it is not possible to annotate them as novel miRNAs in 

switchgrass. 
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Figure 9: Size distribution and abundance of small RNAs in inflorescence and emerging 
tillers small RNA libraries. 
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The frequency of known miRNA families identified in switchgrass inflorescence 

and emerging tillers is shown in Table 8. In plants, most conserved miRNAs exists as 

multiple members transcribed from different loci, which are termed as miRNA families. 

The sequence analyses resulted in identification of 260 distinct miRNAs belonging to 36 

miRNA families (miR156, miR159, miR160, miR162, miR164, miR165/166, miR167, 

miR168, miR169, mIR170/171, miR172, miR319, miR390, miR393, miR394, miR395; 

miR396; miR397; miR398, miR399,  miR408, miR444, miR528, miR529, miR535, 

miR827, miR845, miR894, miR1318, miR1432, miR2118, miR2275, miR2910, 

miR2914, miR2915 and miR2916) in switchgrass. miR395 had almost an equal 

representation in each library (89 times in the inflorescence and 74 times in the emerging 

tiller), while miR399 had a higher representation in the inflorescences (84 times) in 

comparison to the emerging tillers (2 times), suggesting differential expression of 

miR399 in different tissues of switchgrass.   

 miR444 was present 429 times in the inflorescence library and 36 times in the 

emerging tillers library; while miR528 was present 96 times in the inflorescence library 

and 384 times in the emerging tillers library (Table 7).  Of the monocot specific miRNA 

families, miR528 had the highest abundance in the emerging tillers. Other semi-

conserved miRNA families identified in the deep-sequenced libraries included miR827, 

and miR2118.  These families are expressed in some monocot species and some dicot 

species (Lu, et al. 2008; Fahlgren, et al. 2007; Jagadeeswaran, et al. 2009a; Arenas-

Huertero, et al. 2009; Johnson, et al. 2009), but not in all monocots and dicots. 

The overall abundance of miRNA family varied between the two libraries.  

miR165/166 family had the highest number of normalized reads (TPM, transcripts per 
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million), which is followed by miR168, miR156  and miR894 in the inflorescence small 

RNA library (Table 7). The same was also true for the small RNA populations in 

emerging tillers with the exception that the 4th most abundantly expressed miRNA 

family is miR528 (Table 7).  

On the basis of number of miRNA family members recovered, miR170/171 

family is the largest family as is represented by 18 members in switchgrass (Table 7). 

This is followed by miR165/166 (17 members), miR169 (16 members), miR159 and 

miR399 (13 members), miR172 (12 members), miR167 (11 members), miR156 (10 

members), miR396 (8 members), each of the miR164 and miR395 (7 members), whereas 

several miRNA families such as miR394, miR398, miR827, miR845, miR894, miR1318, 

miR2275, miR2910, miR2914, miR2915 and miR2916 are represented by one member 

only in switchgrass (Table 7).  

Within a miRNA family, the expression abundance of different loci appears to 

differ, which could confer a tissue- or cell-specific expression of different members. 

Therefore, it is important to assess which locus is highly expressed. The expression from 

different loci can be assessed from the frequency of their appearance in the library 

provided at least these members vary in one nucleotide. Interestingly, a greater disparity 

exists among different members of the same miRNA families, i.e., few variants/loci are 

most abundantly expressed than the others. Most distinct one is miR168, which appears 

to have 3 loci but only one of them is abundantly expressed (10023 TPM and 3716 TPM 

in inflorescence and tillers libraries, respectively) where as the other two loci are 

represented by 1-3 TPM in both the libraries. Similarly, some of the loci belonging to 
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miR169 are expressed as abundantly as about 60,000 TPM where as some others are 

expressed at very low levels (44 TPM).  

Table 7. Frequency of conserved miRNA families and TAS3-siRNA found in the 

inflorescence and emerging tillers small RNA libraries. (TPM; Transcripts per million). 

miRNA miRNA sequence 

Number of 
raw reads in 
the 
inflorescence 
library 

Normalized 
reads in the 
inflorescence 
library 
(TPM) 

Number of 
raw reads in 
the emerging 
tillers library 

Normalized 
reads in the 
emerging 
tillers library 
(TPM) 

miR156 CUGACAGAAGAUAGAGAGCAC 2 0 3 0 

miR156 UUGACAGAAGAAAGAGAGCAC 1 0 0 0 

miR156 UGACAGAAGAGAGCGAGCAC 14795 1258 4878 457 

miR156 UGACAGAGGAGAGUGAGCAC 11 1 9 1 

miR156 UGACAGAAGAGAGAGAGCAU 75 6 237 22 

miR156 UGUCAGAAGAGAGUGAGCAC 18 2 19 2 

miR156 UGACAGAAGAGAGUGAGCAC 20097 1708 16915 1585 

miR156 UGACAGAAGAGAGUGAGCACA 19887 1691 16718 1567 

miR156 UUGACAGAAGAUAGAGAGCAC 2 0 3 0 

miR156 CGACAGAAGAGAGUGAGCAC 19933 1694 16722 1567 

miR156 UGACAGAAGAAAGAGAGCAC 1 0 0 0 

miR156 UGACAGAAGAUAGAGAGCAC 2 0 3 0 

miR156 UGACAGAAGAGAGGGAGCAC 17 1 8 1 

miR156 UGACAGAAGAGAGAGAGCACA 74 6 238 22 

miR156 CGACAGAAGAGAGUGAGCAUA 960 82 505 47 

miR158 UCCCAAAUGUAGACAAAGCA 1 0 3 0 

miR158 CCCCAAAUGUAGACAAAGCA 0 0 3 0 

miR159 UUUGGACUGAAGGGAGCUCUA 14 1 2 0 

miR159 UUGGAUUGAAGAGAGCUCCC 1 0 1 0 

miR159 UUUGGAUUGAAAGGAGCUCUU 21 2 8 1 

miR159 UUUGGAUUGAAGGGAGCUCUU 9951 846 4248 398 

miR159 UUUGGAUUGAAGGGAGCUCUG 10553 897 4815 451 

miR159 UUUGGAUUGAAGGGAGCUCUA 9954 846 4256 399 

miR159 CUUGGAGUGAAGGGAGCUCUC 1 0 0 0 

miR159 UUUGGAUUGAAGGGAGCUCCU 9911 843 4203 394 

miR159 UUGGAUUGAAGGGAGCUCCA 3666 312 2028 190 

miR159 AUUGGAUUGAAGGGAGCUCCU 143 12 52 5 

miR159 AUUGGAUUGAAGGGAGCUCCG 143 12 52 5 

miR159 AUUGGAUUGAAGGGAGCUCCA 143 12 52 5 

miR159 CUUGGAUUGAAGGGAGCUCUA 2802 238 1582 148 

miR159 CUUGGAUUGAAGGGAGCUCCU 118 10 37 3 

miR159 CUUGGAUUGAAGGGAGCUCCC 119 10 37 3 

miR160 UGCCUGGCUCCCUGAAUGCCA 1 0 0 0 

miR160 UGCCUGGCUCCCUGUAUGCCG 1955 166 227 21 
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miR160 UGCCUGGCUCCCUGUAUGCCA 2041 174 240 22 

miR160 UGCCUGGCUCCUUGUAUGCCA 2 0 0 0 

miR160 CGCCUGGCUCCCUGCAUGCCG 3 0 0 0 

miR160 CGCCUGGCUCCCUGCAUGCCA 3 0 0 0 

miR160 CGCCUGGCUCCCUGUAUGCCA 1921 163 226 21 

miR160 CGCCUGGCUCCUUGUAUGCCA 2 0 0 0 

miR160 UGCCUGGCUCCCUGGAUGCCA 0 0 4 0 

miR160 UGCCUGGCUCCCUGUAUGCC 2042 174 239 22 

miR160 UGCCUGGCUCCCUGCAUGCCA 3 0 0 0 

miR162 UCGAUAAACCUCUGCAUCCA 272 23 76 7 

miR162 UCGAUAAACCUCUGCAUCCAG 271 23 74 7 

miR164 UGGAGAAGCAGGGCACAUGCU 14 1 7 1 

miR164 UGGAGAAGCAGGGCACGUGCU 8195 697 5297 496 

miR164 UGGAGAAGCAGGGCACGUGCG 8175 695 5290 496 

miR164 UGGAGAAGCAGGGCACGUGCA 8248 701 5351 502 

miR164 UGGAGAAGCAGGGCACGUGAG 7938 675 5195 487 

miR164 UGGAGAAGCAGGGUACGUGCA 172 15 40 4 

miR164 UGGAGAAGCAGGACACGUGAG 1205 102 101 9 

miR165 UCGGACCAGGCUUCAUCCCCC 1433 122 220 21 

miR166 UCGGACCAGGCUUCAUUCCCCU 704855 59918 156963 14711 

miR166 UCGGACCAGGCUUCAUUCCCCC 704444 59883 156936 14709 

miR166 UCGGACCAGGCUUCAUUCCUU 708773 60251 163110 15287 

miR166 UCGGACCAGGCUUCAUUCCUG 708669 60242 163095 15286 

miR166 UCGGACCAGGCUUCAUUCCUC 709831 60341 163227 15298 

miR166 UCGGACCAGGCUUCAUUCCUA 708680 60243 163097 15286 

miR166 CCGGACCAGGCUUCAUCCCAG 4 0 1 0 

miR166 UCGGGCCAGGCUUCAUCCCCC 1 0 0 0 

miR166 UCGGACCAGGCUUCAUUCCCU 757637 64405 166234 15580 

miR166 UCGGACCAGGCUUCAUUCCCC 772253 65648 168507 15793 

miR166 UCGGACCAGGCUCCAUUCCUU 652 55 108 10 

miR166 UCGGACCAGGCUUCAUUCCU 753874 64085 165191 15482 

miR166 UCGGACCAGGCUUCAUUCCC 778616 66189 169537 15890 

miR166 UCCGGACCAGGCUUCAUUCCC 692378 58858 154541 14484 

miR166 UCGGACCAGGCUUCAAUCCCU 15572 1324 2523 236 

miR166 UCGAACCAGGCUUCAUUCCCC 691 59 123 12 

miR166 UCGGAUCAGGCUUCAUUCCUC 1244 106 206 19 

miR166 UCGGACCAGGCAUCAUUCCUU 523 44 32 3 

miR167 AUCAUGCAUGACAGCCUCAUUU 5 0 5 0 

miR167 UGAAGCUGCCAGCAUGAUCUU 9985 849 7581 711 

miR167 UGAAGCUGCCAGCAUGAUCUG 10233 870 7899 740 

miR167 UGAAGCUGCCAGCAUGAUCUC 9971 848 7580 710 

miR167 UGAAGCUGCCAGCAUGAUCUA 9990 849 7603 713 

miR167 UCAAGCUGCCAGCAUGAUCUA 1094 93 592 55 

miR167 UGAAGCUGCCAGCAUGAUCUGG 9995 850 7584 711 

miR167 UGAAGCUGCCAGCAUGAUCUAA 9864 839 7447 698 

miR167 UAAGCUGCCAGCAUGAUCUUG 169 14 39 4 

miR167 GGAAGCUGCCAGCAUGAUCCU 63 5 57 5 
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miR167 UGAAGCUGCCAACAUGAUCUG 13 1 6 1 

miR168 UCGCUUGGGCAGAUCGGGAC 22 2 4 0 

miR168 UCGCUUGGUGCAGAUCGGGAC 117910 10023 39653 3716 

miR168 UCGCUUGGUGCAGGUCGGGAA 40 3 18 2 

miR169 CAGCCAAGGAUGACUUGCCGG 460 39 548 51 

miR169 CAGCCAAGGAUGACUUGCCGA 454 39 544 51 

miR169 UAGCCAAGGAUGACUUGCCUGC 170 14 197 18 

miR169 UAGCCAAGGAUGACUUGCCUG 185 16 233 22 

miR169 UAGCCAAGGAUGACUUGCCUA 189 16 236 22 

miR169 UAGCCAAGGAUGACUUGCCGG 611 52 726 68 

miR169 UAGCCAAGGAUGACUUGCCCA 177 15 227 21 

miR169 UGAGCCAAGGAUGACUUGCCG 444 38 531 50 

miR169 UCAGCCAAGGAUGACUUGCCG 455 39 542 51 

miR169 UAGCCAAGAAUGACUUGCCUA 49 4 56 5 

miR169 UGAGCCAAGGAUGGCUUGCCG 3 0 0 0 

miR169 UGAGCCAAAGAUGACUUGCCG 1 0 1 0 

miR169 AAGCCAAGGAUGACUUGCCUG 176 15 197 18 

miR169 AAGCCAAGGAUGACUUGCCUA 177 15 196 18 

miR169 AAGCCAAGGAUGACUUGCCGG 448 38 535 50 

miR169 AAGCCAAGGAUGACUUGCCGA 446 38 532 50 

miR169 UAGCCAAGGAUGACUUGCUCG 1 0 10 1 

miR169 GAGCCAAGGAUGACUUGCCGU 444 38 531 50 

miR169 GAGCCAAGGAUGACUUGCCGG 447 38 535 50 

miR169 GAGCCAAGGAUGACUUGCCGC 444 38 531 50 

miR169 GGAGCCAAGGAUGACUUGCCG 444 38 531 50 

miR169 GAGCCAAGAAUGACUUGCCGG 1 0 1 0 

miR169 UAGCCAAGGACGACUUGCCUG 1 0 0 0 

miR169 UAGCCAAGGACGACUUGCCUA 1 0 1 0 

miR169 UAGCCAAGGAUGAAUUGCCGG 3 0 1 0 

miR169 GAGCCAAAGAUGACUUGCCGG 1 0 1 0 

miR169 AAGCCAAGGAUGAAUUGCCGG 3 0 1 0 

miR170 UGAUUGAGCCGUGUCAAUAUC 4 0 6 1 

miR171 UGAGCCGUGCCAAUAUCACAU 4 0 3 0 

miR171 UUGAGCCGUGCCAAUAUCAUG 7 1 6 1 

miR171 UUGAGCCGUGCCAAUAUCAUC 7 1 7 1 

miR171 UUGAGCCGUGCCAAUAUCACU 9 1 5 0 

miR171 UUGAGCCGUGCCAAUAUCACG 10 1 7 1 

miR171 UUGAGCCGUGCCAAUAUCACA 8 1 5 0 

miR171 UGACUGAGCCGUGCCAAUAUC 3 0 0 0 

miR171 UGAUUGAGCCGCGCCAAUAUCU 11 1 2 0 

miR171 UGAUUGAGCCGCGCCAAUAUC 11 1 2 0 

miR171 UGAUUGAGCCGUGCCAAUAUU 1456 124 1838 172 

miR171 UGAUUGAGCCGUGCCAAUAUC 1475 125 1868 175 

miR171 GGAUUGAGCCGCGUCAAUAUC 6 1 2 0 

miR171 UGAUUGAGCCGCGCCAAUAU 11 1 2 0 

miR171 AGAUUGAGCCGCGCCAAUAUC 10 1 1 0 

miR171 UUGAGCCGUGCCAAUAUCAC 1378 117 1726 162 
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miR171 UGAUUGAGUCGUGCCAAUAUC 3 0 5 0 

miR171 GGAUUGAGCCGCGCCAAUAUC 10 1 1 0 

miR171 UGAUUGAGCCGCGUCAAUAUC 6 1 0 0 

miR171 UAAUUGAGCCGUGCCAAUAUC 1379 117 1734 163 

miR171 UGAGCCGCGCCAAUAUCACAU 0 0 1 0 

miR171 UUGAGCCGAACCAAUAUCACC 4 0 1 0 

miR171 UUGAGCCGCGCCAAUAUCAC 11 1 3 0 

miR171 AUGAGCCGAACCAAUAUCACU 4 0 1 0 

miR171 UUGAGCCGCGCCAAUAUCACU 0 0 1 0 

miR171 UUGAGCCGCGCCAAUAUCACA 0 0 1 0 

miR171 GUGAGCCGAACCAAUAUCACU 4 0 1 0 

miR171 UGAGCCGUGCCAAUAUCACGA 6 1 5 0 

miR172 AGAAUCUUGAUGAUGCUGCAU 9042 769 1943 182 

miR172 AGAAUCUUGAUGAUGCUGCAG 8951 761 1919 180 

miR172 GGAAUCUUGAUGAUGCUGCA 9003 765 1913 179 

miR172 UGAAUCUUGAUGAUGCUACAU 18 2 2 0 

miR172 UGAAUCUUGAUGAUGCUACAC 18 2 2 0 

miR172 GGAAUCUUGAUGAUGCUGCAGCAG 41 3 5 0 

miR172 GGAAUCUUGAUGAUGCUGCAU 9035 768 1921 180 

miR172 GGAAUCUUGAUGAUGCUGCAG 8949 761 1908 179 

miR172 AGAAUCCUGAUGAUGCUGCAG 17 1 5 0 

miR172 AGAAUCCUGAUGAUGCUGCAA 17 1 5 0 

miR172 UGAAUCUUGAUGAUGCUGCAC 8922 758 1909 179 

miR172 AGAAUCUUGAUGAUGCUGCA 9044 769 1939 182 

miR319 CUUGGACUGAAGGGAGCUCCC 1 0 0 0 

miR319 UUUGGACUGAAGGGAGCUCCU 15 1 2 0 

miR319 CUUGGACUGAAGGGAGCUCC 5 0 2 0 

miR319 UUGGACUGAAGGGUGCUCCC 1800 153 169 16 

miR319 AUUGGACUGAAGGGAGCUCCC 1 0 0 0 

miR319 UUGGACUGAAGGGAGCUCC 14 1 2 0 

miR319 UUGGACUGAAGGGAGCUCCUU 1 0 0 0 

miR319 UUGGACUGAAGGGAGCUCCCU 1 0 0 0 

miR319 UUGGACUGAAAGGAGCUCCU 0 0 1 0 

miR319 UUGGACUGAAGGGAGCUCCU 5 0 2 0 

miR319 UUGGACUGAAGGGAGCUCCC 5 0 2 0 

miR390 AAGCUCAGGAGGGAUAGCGCC 81 7 16 1 

miR390 GAGCUCAGGAGGGAUAGCGCC 78 7 14 1 

miR390 AAGCUCAGGAGGGAUAGCACC 0 0 2 0 

miR393 UCCAAAGGGAUCGCAUUGAUC 161 14 152 14 

miR393 UCCAAAGGGAUCGCAUUGAUCU 129 11 128 12 

miR393 UCCAAAGGGAUCGCAUUGAUCC 130 11 129 12 

miR394 UUGGCAUUCUGUCCACCUCC 528 45 45 4 

miR395 CUGAAGUGUUUGGGGGAACUCC 263 22 184 17 

miR395 CUGAAGUGUUUGGGGGAACUC 264 22 187 18 

miR395 UUGAAGUGUUUGGGGGAACUC 264 22 187 18 

miR395 CUGAAGUGUUUGGGGGGACUC 1 0 0 0 

miR395 GUGAAGUGCUUGGGGGAACUC 14 1 29 3 
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miR395 AUGAAGUGUUUGGGGGAACUU 262 22 184 17 

miR395 AUGAAGUGUUUGGGGGAACUC 264 22 187 18 

miR395 GUGAAGUGUUUGGGGGAACUC 264 22 188 18 

miR396 UUCCACAGGCUUUCUUGAACUG 1788 152 305 29 

miR396 CUCCACAGGCUUUCUUGAACUG 1784 152 307 29 

miR396 UUCCACAGCUUUCUUGAACUU 3279 279 425 40 

miR396 UUCCACAGCUUUCUUGAACUG 3307 281 434 41 

miR396 UUCCACAGCUUUCUUGAACUA 3271 278 423 40 

miR396 UCCACAGGCUUUCUUGAACUG 1827 155 318 30 

miR396 UUCCACGGCUUUCUUGAACC 0 0 1 0 

miR396 UCUCCACAGGCUUUCUUGAACU 1712 146 301 28 

miR396 UUCCACGGCUUUCUUGAACUU 0 0 1 0 

miR396 UUCCACGGCUUUCUUGAACUG 0 0 1 0 

miR396 UUCCACAGCUUUCUUGAACU 3369 286 443 42 

miR397 CCAUUGAGUGCAGCGUUGAUG 25 2 34 3 

miR397 UUAUUGAGUGCAGCGUUGAUG 25 2 34 3 

miR397 UCAUUGAGUGCAGCGUUGAUG 25 2 34 3 

miR397 UCAUUGAGUGCAGCGUUGAUGU 1 0 3 0 

miR397 AUUGAGUGCAGCGUUGAUGA 323 27 451 42 

miR398 UGUGUUCUCAGGUCGCCCCUG 11 1 14 1 

miR398 UGUGUUCUCAGGUCACCCCUU 1 0 0 0 

miR398 UGUGUUCUCAGGUCACCCCUG 1 0 0 0 

miR399 UGCCAAAGGAGAGUUGCCCUG 109 9 7 1 

miR399 UGCCAAAGGAGAGUUGCCCUA 109 9 6 1 

miR399 UGCCAAAGGAGAGCUGCCCUG 42 4 1 0 

miR399 UGCCAAAGGAGAGCUGCCCUA 39 3 1 0 

miR399 UGCCAAAGGAAAUUUGCCCCG 1 0 0 0 

miR399 CGCCAAAGGAGAGUUGCCCUG 62 5 1 0 

miR399 CGCCAAAGGAGAGUUGCCCUC 62 5 1 0 

miR399 UGCCAAAGGAGAUUUGCUCGU 1 0 0 0 

miR399 UGCCAAAGGAGAUUUGCCCUG 82 7 1 0 

miR399 UGCCAAAGGAGAUUUGCUCAC 1 0 0 0 

miR399 UGCCAAAGGAGAUUUGCCCGG 82 7 2 0 

miR399 UGCCAAAGGAGAUUUGCCCCU 82 7 1 0 

miR399 UGCCAAAGGAGAUUUGCCCCG 82 7 1 0 

miR399 UGCCAAAGGAGAAUUGCCC 83 7 3 0 

miR399 UGCCAAAGGAGAUUUGCCCAG 84 7 1 0 

miR399 UGCCAAAGAAGAUUUGCCCUG 1 0 0 0 

miR399 UGCCAAAGAAGAUUUGCCCCG 1 0 0 0 

miR399 UGCCAAAGGAGAAUUGCCCUG 77 7 2 0 

miR399 UGCCAAAGGAGAUUUGCCUCG 1 0 0 0 

miR408 AUGCACUGCCUCUUCCCUGGC 170 14 114 11 

miR408 CUGCACUGACUCUUCCCUGGC 1 0 0 0 

miR408 UGCACUGCCUCUUCCCUGGCU 173 15 122 11 

miR408 AUGCACUGCCUCUUCCCUGG 164 14 114 11 

miR408 CUGCACUGCCUCUUCCCUGGC 177 15 119 11 

miR408 UGCACUGCCUCUUCCCUGGCUG 171 15 112 10 
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miR444 UGCAGUUGCUGCCUCAAGCUU 368 31 76 7 

miR444 UGUUGUCUCAAGCUUGCUGCC 2 0 1 0 

miR444 UGCAGUUGUUGCCUCAAGCUU 1086 92 70 7 

miR444 UUGUGGCUUUCUUGCAAGUUG 101 9 9 1 

miR444 UGCAGUUGUUGUCUCAAGCUU 3495 297 227 21 

miR528 UGGAAGGGGCAUGCAGAGGAG 1126 96 4095 384 

miR529 AGAAGAGAGAGAGCACAGCCC 2 0 0 0 

miR529 CUGUACCCUCUCUCUUCUUC 5 0 19 2 

miR529 AGAAGAGAGAGAGUACAGCUU 629 53 285 27 

miR529 AGAAGAGAGAGAGUACAGCCC 546 46 295 28 

miR535 UGACAACGAGAGAGAGCACGC 1490 127 372 35 

miR535 UGACAACGAGAGAGAGCACGCU 1480 126 364 34 

miR535 UGACAACGAGAGAGAGCACGCG 1480 126 363 34 

miR827 UUAGAUGACCAUCAACAAACU 6 1 2 0 

miR827 UUAGAUGACCAUCAGCAAACA 9797 833 2062 193 

miR829 AGCUCUGAUACCAAAUGAUGGAAU 2 0 0 0 

miR845 UAGCUCUGAUACCAAUUGAUA 2 0 0 0 

miR845 UGGCUCUGAUACCAAUUGAUG 2 0 0 0 

miR845 AGGCUCUGAUACCAAUUGAUG 7 1 0 0 

miR845 CGGCUCUGAUACCAAUUGAUG 3 0 1 0 

miR858 UUUCGUUGUCUGUUCGACCUU 1 0 0 0 

miR894 CGUUUCACGUCGGGUUCACC 18368 1561 5267 494 

miR1050 UGACCACCUUGAUUCCGGCCU 1 0 0 0 

miR1171 UGGAGUGGAGUGGAGUGGAGUGG 2 0 0 0 

miR1318 UCAGGAGAGAUGACACCGAC 23 2 23 2 

miR1432 CUCAGGAGAGAUGACACCGAC 22 2 22 2 

miR1432 AUCAGGAGAGAUGACACCGAC 13 1 15 1 

miR2086 GACAUGAAUGCAGAACUGGAA 0 0 1 0 

miR2112 CUUUAUAUCCGCAUUUGCGCA 1 0 0 0 

miR2118 UUCCUGAUGCCUCCCAUGCCUA 11 1 7 1 

miR2118 UUCCCGAUGCCUCCCAUUCCUA 32 3 18 2 

miR2118 UUCCUGAUGCCUCCUAUUCCUA 2 0 0 0 

miR2118 UUCCUGAUGCCUCUCAUUCCUA 2 0 1 0 

miR2275 UUCAGUUUCCUCUAAUAUCUCA 1 0 6 1 

miR2910 UAGUUGGUGGAGCGAUUUGUC 2007 171 3468 325 

miR2914 CAUGGUGGUGACGGGUGACGGAG 472 40 564 53 

miR2915 CCCGUCUAGCUCAGUUGGUA 22 2 22 2 

miR2916 UGGGGACUCGAAGACGAUCAUAU 7 1 12 1 
TAS3a 
(siRNA) UCUUGACCUUGUAAGACCCAA 173 15 26 2 

 
 
4.3.  Identification of novel miRNAs in switchgrass  

 Identifying novel miRNAs that are conserved in closely related species or are 

species-specific is a difficult task given the fact that only a minor proportion of plant 
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small RNA population is miRNAs, whereas the vast majority of them are endogenous 

siRNAs. Because of this challenge, the plant small RNA community has provided few 

guidelines for annotation purposes (Meyers et al., 2008). As per their norms, a small 

RNA can be annotated as “novel miRNA” provided that miRNA* sequence 

corresponding to the novel small RNA appears in the small RNA library (Meyers et al., 

2008).  MicroRNA* sequences are relatively less abundant than are their miRNA 

counterparts. Our sequence analysis revealed 13 small RNAs as novel miRNAs based on 

sequencing of miRNA* reads in the small RNA libraries (Table 8). In the absence of 

miRNA* sequence, conservation of the miRNA sequence in related plant species coupled 

with the predictable fold-back structure for the precursor sequences could partially satisfy 

the classification of an siRNA as “novel miRNA” (Jagadeeswaran et al., 2009). We 

analyzed if any of the newly identified unique small RNAs are conserved in closely 

related monocots using BLAST searches against the NCBI EST database. Surprisingly, 6 

of the novel small RNAs (7724135, 6651927, 5564248, 8018588, 4001019 and 185087) 

are conserved at least in one other monocot (maize, sorghum, sugarcane, rice, Cenchrus 

ciliaris), (Figure 10). Fold-back structures for the novel miRNA precursors from maize, 

sorghum, sugarcane, rice, Cenchrus ciliaris could be predicted using their precursor 

sequences (Figure 10). Interestingly, miRNA* reads were also recovered for four 

(7724135, 5564248, 4001019 and 185087) of the six conserved miRNAs. On the basis of 

appearance of miRNA* read (13 small RNAs of which four are also conserved) in the 

library and their conservation (a total of 6 are conserved but 4 of them are included in the 

other group because of the miRNA* reads were recovered) in related monocots, 15 small 

RNAs were annotated as “novel miRNAs” in switchgrass. Taken together, six novel 
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miRNAs can be annotated as monocot-specific miRNAs and homologs for the remaining 

9 novel miRNAs could not be found in other monocots, thus could be annotated as 

switchgrass-specific miRNAs for now. Interestingly, the frequency of a few novel 

miRNAs (s3496977, 7724135 and 850747) is substantially higher and even greater than 

the frequency of several highly conserved miRNAs such as miR396, miR393, miR398 

etc. 

 

Table 8: Identification of novel miRNAs in switchgrass based on the appearance of 
miRNA* sequences or conservation in related monocots. (Bold letters indicate the 
conserved miRNAs in other related monocots). 
 

 
 
Figure 10.  Predicted fold-back structures for the novel miRNAs that are conserved in 
other monocots 
 
miRNA s5564248 in switchgrass 
UUAA---------------                          U      GA                A    G                                       UCC                                -----------------              U  
                                UGCAAGGGG GGU    CAAGCU  GA  GCAGCAGCUGCAUA         UGCAAGAAAAU                       UGGUU U 
                                GCGUUUCCC  CCG    GUUCGA  CU  UGUUGUUGACGUGU         ACGUUCUUUUA                       ACCAG C 
AACUAUCAAAA                         U        UC               A     G                                        UGA                               GUAUCCAU              A  
 

miRNA miRNA sequence Frequency 
in 
inflorescence 
small RNA 
library 

Frequency 
in 
emerging 
tillers 
small 
RNA 
library 

miRNA* sequence Frequency 
in 
inflorescence 
small RNA 
library 

Frequency 
in 
emerging 
tillers 
small 
RNA 
library 

8008250 UUCAGGACCGGCUUCACACGUGAA 212 36 CACGUGUGAAGCCGGUCCUGAAGC 82 32 

6815382 UAAUGACGGUAAUUAAUUGAUGAU 319 87 UCACGCGGUCAAAGGCCUCAUUAG 41 22 

3496977 AUUUCACGGAGUUGUGGUGGCAUG 30600 13515 AUGCCACUCAAUUUCACGAAGUU 1 1 

1781441 AGAUUCGUCUCGCGAAGUAGCGCA 92 47 GUAAUUUUUCACGACGAAUCUAAU 1 2 

6650602 GUUGGUUUUGAAUGGCGGACGGUC 27 11 ACAGUCCGCCCGGGGCUCUAACGG 2 1 

2472577 AGUUGUUAUCCUAUGGUUGUUCUG 29 4 GUGGAGCCGUGAUGGAUGAAGAGC 5 3 

3495498 AUUUCAAGAAGUUGGAGUGGCAUG 34 25 UUCAUGCCACCACAACUCCGUGAA 3 5 

7724135 UGGGCUGUAAAUCGCGAGACGA 3086 3496 UUUCGCGAUUUACAACCCAUC 9 3 

850747 AAUUUCACGGAGUUGUGGUGGCA 5427 1673 AUGCCACUACAAUUUCUUGAAGUU 1 1 

6651927 GUUGUAGAGAUGGCUGCUUGAACA 5 24    

1509072 AGAACACGAUGAACACAGCAGGUU 19 76 GUCCACUGUGUGUUGUAUUGCUUG 27 6 

5564248 CGUAGAGGCAGCAGCUGCAUA 32 63 UGCAGUUGUUGUGUCAAGCUU 1 0 

8018588 UUCCAAAUUGUAGGUCGUUUU 36 7    

4001019 CCGUUCGCGACGUUCCUGGAG 52 36 UCGACGAGCGCAGCGUCCGGU 39 9 

185087 AAAUAUAUGACGUUUAGGACA 128 450 UCCUAAGCGACAUAUAUUUAA 1 2 
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Zea mays EST FL355383 
     C                             A                                               C                                A-                 UU     U  
GG GGCGGCAAGCU GAGGCAGCAACUGCAUA CUUGCAAGAAAA   AUCGGU     UG  U 
CC CCGUCGUUCGA CUCUGUUGUUGACGUGU GAACGUUCUUUU    UAGCCA     GC  G 
    U                             A                                               U                                AG                 U-     A 

 

Sorghum bicolor  CN128779  
-------------------------                   C      GA               A                                               U                                      ---------------              U  
                                 GCAAGGGG GGU    CAAGCU GAGGCAGCAACUGCAUA   CUUGCAAGAAAAU                     UGGUU  U 
                                  CGUUUCCC CCG    GUUCGA CUCUGUUGUUGACGUGU   GAACGUUCUUUUA                     ACCAA  U 
AAGUAUCAAAAC                     U       UC               A                                               U                                     CUAGCCAU             G  

 
Saccharum hybrid CA107795 
                    U        GA                 A                                           U                                            GUUU       AAC  
GCAAGGGG GGU    CAAGCU GAGGCAGCAACUGCAUA  CUUGCAAGAAAAUUG           UCG         C 
CGUUUCCC  CCG     GUUCGA CUCUGUUGUUGACGUGU GAACGUUCUUUUAAU          AGC          A 
                    U        UC                 A                                             U                                           ----             CAU  

 
miRNA s8018588 in switchgrass 
A----                       A                                                                                     C                CC        A    U    C           CAC                          U  
        UACUCCCU   CGUUCCAAAUUGUAGGUCGUUUUGGUAAAU  UAGAUA    UAG UU  UG UAUG         CUAGAUAUA    \ 
        AUGAGGGA GUAAGGUUUAACAUUCAGUAAAACCGUUUA   AUCUAU    AUU AA  AC  AUAC         GAUCUGUAU   A 
GUG                      -                                                                                      A                AU       A     C     A          AUA                           U  
 
Cenchrus ciliaris EST EB664262 
.-CUC|                            A                              C               UG                            U              AUAUUAU           C   UC          C       A  
           CCUCCGUUCC     AAUUGUAGGU  GUUUUG     UUUUCUAGGU   CAUAG                    UAUG  A     UAGA AUA  \ 
          GGAGGCAAGG   UUAAUAUCCA   CAAAAC     AAAAGAUCCA   GUAUU                   AUAC   U     AUCU UAU  A 
\ ------^                           A                             A                CG                             C              GCAAACC           A  GA           A       C 
 
miRNA s4001019 in switchgrass 
CAACC       ACU                       ----------         UU       GA              C-                ACUC       C  
             CCA         GCCGCGUC              CCG       CGC     CGUUC        UGGAGC          CCG G 
             GGU        CGGCGCAG              GGC     GCG    GCGAG      GCUUCG          GGU U 
CGA---         CGU                      UACUU        CU       AC              CA                GCCC       G  

 
Zea mays FK969948 
                A             .-C              ---------        UU       GA              C-                   A       -          C  
AGCCCC  ACUGC    GCGUC              CCG     CGC      CGUUC      UGGAGC   CU  CCCG  G 
UCGGGG UGGCG    CGCAG             GGC    GCG     GCGAG    GCUUCG   GG GGGU U 
                C              \ -              UACUU       CU        AC              CA                -        C          G  

 
 
miRNA s185087 in switchgrass 
.-CAUGUUCUUUCUC                                                                                                                AU        C  
                                       GUACUCCCUCCAUUCUCAAAUAUAUGACGUUUAGGACA A     GAA  U 
                                      CAUGAGGGAGGUAAGAGUUUAUAUACUGCAAAUCCUGUU     UUU  A 
\ ----------------------------                                                                                                            GU       A  

 
Cenchrus ciliaris EST EB665026 
AUUGUAUA              GA          C                             A                      A                     ACA         AAAU                  U   
                       AAAUA     UACU  CCUCCGUUCUU   AAUAUAUG CGUUUAGG       AGU           UAGUUCA A 
                       UUUGU     AUGA GGAGGCAGGAA UUAUAUAC GCAAAUUC       UCG            AUCAAGU U 
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GAG----------               AG          U                              C                     A                     GA-          ----                         U 

 
Saccharum hybrid EST DN236712 
           CA                                                            A            A                         GAAA  
CCUC      UUUUUAAAUAUAUGACGUUUA    GACAA CUAUUUAGU            \ 
GGAG     AAAAGUUUAUAUACUGCGAAU CUGUU GAUAAAUCA            A 
           AC                                                              C             C                         AAUA  

 
miRNA s7724135 in switchgrass 
                            A                                            U                     C                                                   GC       U                          .-U       ACA  
UUGAAGUACUAAAU  AAGUCUAUUUACAAAACUUUUU GCAUGGGUGGG UGUAAAUCGCGAGACGAAUCUAAUGA     CUA  UUAAUCUAUGAUU    GCA         \ 
AACUUUAUGAUUUA  UUUAGAUAAAUGUUUUGAAAAA UGUGUCUACCC  ACAUUUAGCGCUUUGCUUAGAUUACU     GAU  AAUUAGGUACUAA    CGU        G 
 ---                       C                                              -                  -  A                                                    AC       U                          \ -        AGU  

 
Oryza sativa EST CK085274 
AUAAAAU               C       G    C GU        A   U           C                          -                            CAUG             .-CAUAAG       U  
               AAAAAAC AAUU  CA A    UCGC UG AAAUCG GAGACGAAUCUUU GAGCCUAAUUAGUC          AUUAGC               UGC  A 
               UUUUUUG UUAA  GU U    AGUG AC UUUGGC CUCUGCUUAGAAA CUCGGAUUAAUUAG          UAAUCG               AUG  C 
AC-----------             A        A    A UG        G   C           A                         A                           ACA                \ -------------       A  

 
miRNA s6651927 in switchgrass 

.-GCCUCC                           .-UCGA       G             A              GG       C    -              GGAUG       A           U      -|             UCA  
                   UCAGGAUGG             CUG  GUUGU  GAGAU     CUG UU GAACA             CUC   ACAU  GA AUGUG         \ 
                   GGUCUUACC              GAC CAGCG  CUUUG      GAC AA CUUGU             GAG  UGUA  CU  UACAU         A 
\ -------------                          \ ---------       G            A              AA       U    U             AACAA        G          C     G^           GCG  
 
Saccharum hybrid CA240395  
                                A            GG      UUU-                GGAUG      A          U     -                 CA  
GAAUGGGUUGU GAGAU    CUG           GAACA             CUC ACAU  GA  AUGUGC    \ 
CUUACCCAGCG  CUUUG    GAC           CUUGU             GAG UGUG CU  UACAUG     A 
                               A             AA      UAAU              AACAA       G          C    G                CG 
 
 
4.4: Temporal expression analysis of conserved miRNAs  
 
 Once a miRNA has been identified, the next step is to determine its temporal 

and/or spatial expression, which may provide insight into its physiological functions.  

Many miRNAs and siRNAs are expressed only in certain tissues and cell types, or only 

during certain developmental stages (Reinhart, et al. 2002; Park, et al. 2002; Sunkar and 

Zhu, 2004; Sunkar, et al. 2005, 2006).  To gain an insight into where these miRNAs are 

functioning, the expression patterns of 15 conserved miRNAs and 3 other miRNAs 

(miR528, miR529 and miR5353) that are found only in rice so far, have been analyzed in 

different tissues and developmental stages. On the basis of signal intensity the abundance 

of nine miRNAs (miR156, miR160, miR172, miR171, miR167, miR166, miR164, 
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miR159 and miR319) was relatively higher than that of the other seven miRNAs tested. 

Several miRNA families, such as miR166, miR159, miR171, miR167, miR160, miR164 

and miR398, showed only minor differences in expression levels between tissues (Figure 

11).  By contrast, some miRNAs showed tissue-specific expression patterns. For instance, 

the level of miR156 was abundant in both the upper and lower sets of leaves from 

seedlings but was almost undetectable in similar sets of leaves from adult plant (Figure 

11).  In contrast, the level of miR172 was abundant in the lower and upper sets of leaves 

from the adult plant but was almost absent in upper leaves from the seedlings while it was 

of extremely low abundance in lower leaves of seedlings (Figure 11). 

 

Figure 11: Spatial and temporal expression patterns for eighteen different conserved 
miRNA families in switchgrass. Modified from previously published paper: Matts, et al. 
(2010) Journal of Plant Physiology 
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 miR160 has signals at two different sizes (21 and 22/23-nt) and both are 

ubiquitously expressed, though not at the same levels in several of the tissues.  The signal 

intensity of the 21-nt form was slightly higher in roots in comparison to the 22/23-nt 

form, while the signal intensity of 22/23-nt form was slightly higher in the upper leaves 

of the adult plant. A somewhat equal expression level was observed for the rest of the 

tissues. .  Two different sizes for some miRNAs have been noticed earlier in Medicago 

truncatula, where the 21-nt size has a higher intensity relative to the 22/23-nt size form 

(Jagadeeswaran, et al. 2009). Two different sizes of the same miRNA family might be 

derived from the same precursor or from two different precursors in which one is 

processed as expected (21-nt) and the other precursor is processed to release slightly 

longer form. 

 The level of miR393 was abundant only in inflorescences, although it could be 

detected in stems of adult plants and the upper leaves of both seedlings and adult plants 

but was almost undetectable in roots, stems and upper leaves of adult plants (Figure 11). 

MicroRNA, miR319 was abundantly expressed in inflorescence and stems of both 

seedlings and adult plants and in the upper leaves of seedlings (Figure 11). The 

expression of miR408, miR528 and miR529 was approximately similar as all these three 

miRNAs were detected in inflorescence, stem and lower leaves of adult plants (Figure 

11). The expression of miR396 was detected only in upper leaves and stems of seedlings 

and in inflorescence, but was almost absent in other tissues. Although miR171 expression 

could be detected in all tissues analyzed, it was abundant in upper leaves of both 

seedlings and adult plants and in stems of seedlings, as well as in inflorescence (Figure 

11).  
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 miR444 is a monocot specific miRNA that targets four MADS-box 

transcription factors in rice (Sunkar, et al. 2005).  Interestingly, the expression of miR444 

was distinct between leaves of seedlings and adult plants (Figure 11). It was abundant in 

leaves from seedlings but was low in similar sets of leaves from adult plants. Stems from 

adult plants showed much higher levels of miR444 than did stems of seedlings. The 

expression of miR444 seemed to be low in roots and extremely low in inflorescence. 

miR444 expression in rice was different in comparison to switchgrass. In rice, miR444 

had similar expression in the different tissues (Sunkar, et al. 2005). These results 

suggested a dynamic regulation of several miRNAs in different tissues of switchgrass 

seedlings and adult plants. 

4.5: Analysis of miR395 and miR399 response to nutrient-deprived conditions in 

switchgrass 

 Nutrient levels in the soil can vary, and these variations can cause nutrient stress 

on the plants, depending on how high or low the levels are relative to the normal levels.  

Plants respond to nutrient deprivation by increasing root growth to access a larger soil 

volume.  Nutrient deprivation can also lead to the slowing of both the growth and 

development of the plants, and in extreme cases it can even lead to the plant death.  It is 

known that low-levels of phosphate, sulfate, and copper can induce the expression of 

specific miRNAs in plants.  For instance, miR399 is induced under phosphate-deprived 

conditions whereas miR395 is induced under sulfate-deprived conditions (Pant, et al. 

2008; Doerner, 2008; Kawashima, et al. 2008; Jones-Rhoades, et al. 2004).  Similarly, 

miR397, miR398, and miR408 have also been shown to be induced under copper-

deprived conditions in Arabidopsis and Medicago truncatula (Abdel-Ghany and Pilon, 

2008; Jagadeeswaran, et al. 2009).  These miRNAs are widely conserved across different 
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plant species and anticipated to show similar responses in switchgrass seedlings exposed 

to sulfate- or phosphate-deprived conditions. However, analysis of miR395 expression in 

switchgrass indicated its’ basal expression is relatively high in seedlings grown on 

optimal sulfate levels and the miR395 level was only slightly upregulated in sulfate-

deprived plants (Figure 12). Similarly, miR399 expression was detected in plants grown 

with optimal levels of nutrients and only slightly changed under phosphate-deprived 

conditions (Figure 12).   

 

 

Figure 12. Expression analysis of miR395 (A) and miR399 (C) under sulfate- or 

phosphate-deprived conditions, respectively.  Quantification of altered miR395 (B) and 

miR399 (D) under stress. 
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4.6: Temporal expression analysis of novel miRNAs in switchgrass 

 Five of the novel miRNAs (3496977, 8008250, 7724135, 5564248 and 185087) 

were analyzed for their temporal expression pattern in switchgrass, using the small RNA 

blot analysis.  Two of the novel miRNAs that were analyzed for temporal expression are 

switchgrass-specific (s3496977 and s8008250), whereas three others are monocot-

specific miRNAs (s7724135, s185087, and s5564248).  Many of these novel miRNAs 

had unique and distinct expression patterns.  S7724135 showed much stronger expression 

relative to the other four novel miRNAs tested. It showed abundant expression in roots, 

adult stems, upper leaves of both adult plants and seedlings. S3496977 showed low level 

of expression in all adult tissues analyzed but none in the tissues from seedlings. 8008250 

could be detected in upper leaves of adult plants and inflorescence but not in other 

tissues. Very faint signals were detected for 815087 and 5564248. Thus, like conserved 

miRNAs, some of the novel miRNAs showed ubiquitous expression whereas some others 

showed distinct tissue specific expression (Figure 13). 
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Figure 13: Small RNA blot analysis of novel miRNAs in different switchgrass tissues. 

 
4.7: Target predictions for conserved miRNAs 

 Most plant miRNA sequences display near perfect complementarity with their 

target mRNAs, and this property has been used to predict potential targets for miRNAs 

using a computational approach (Rhoades, et al. 2002; Sunkar and Zhu, 2004; Jones-

Rhoades and Bartel, 2004; Bonnet, et al. 2004).  To predict potential targets for 

conserved miRNAs identified in switchgrass, the EST database (NCBI) was searched for 

switchgrass mRNAs that possess miRNA complementary sites. The alignments of 

miRNA and their target mRNAs are shown in appendix 6. The 37 predicted targets 

include homologs of known targets for conserved miRNAs and novel targets. Twelve of 

the conserved miRNA families are predicted to target transcription factors in Arabidopsis 

(Jones-Rhoades et al., 2006). Similarly in switchgrass, several transcription factor 

families, including squamosa promoter binding (SBP) transcription factors, MYB 
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transcription factors, TCP factors, NAC domain-containing transcription factor, auxin 

response factors (ARFs), Scarecrow-like transcription factors, Apetala-2 (AP2)-like 

transcription factor, MADS box proteins, and CCAAT-binding factors, were predicted as 

targets for miR156, miR159, miR319, miR164, miR160/167, miR171, miR172, miR444, 

and miR169 families, respectively.  Other predicted targets include proteins such as 

transport inhibitor response 1 (an F-box protein) for miR393, laccase for miR397, F-box 

protein for miR394, DCL-1 for miR162, sulfate transporter for miR395, Argonaute 1-like 

for miR168, plantacyanin for miR408, ubiquitin-conjugating enzyme for miR399, and 

transcripts that code for unknown proteins (Table 9). 

 

Table 9. Identified potential targets for conserved miRNA families in switchgrass. 
 

miRNA family EST accession number of the predicted target 
gene 

Target gene family 

156/157 FE626923; DN143702 SPB-like protein 
159 FE65043; GD051711 MYB transcription factor & hypothetical 

protein 
160 FL913173; FL738979; FE606478 Auxin response factor; hypothetical 

protein; & START domain containing 
protein 

162 FL812781 DCL1 
164 FE698722; FL846228 NAC transcription factors 

165/166 FE606478; GD002178; FL954559 HD-zip like; HEAT repeat containing 
protein; & unknown protein 

167 DN141844; GD032712; GD007307 Auxin response factor & unknown 
protein 

168 FL904157; FL818096 Argonaute 1 like protein 
169 FL965734 CBF (CCAAT-binding factor)-HAP2 like 

170/171 FL923024; FL910918 Scarecrow transcription factors 
172 FL945982; FL940492; FE642476 AP2 domain containing protein 
319 FE603736; FL985594 TCP transcription factor & unknown 

protein 
390 FL692881 Leucine-rich repeat domain containing 

protein kinase 
393 DN143813 F-box protein (TIR1 homolog) 
394 FL978450 F-box containing protein 
395 FL710917; FL910325 Sulfate transporter & sulfate synthase 
397 FL753322 Laccase 
399 FL811879; FL997840 Ubiquitin conjugating enzyme protein & 

transposon 
408 FL942386 Plantacyanin 
444 FL979804 MADS-box containing transcription 

factor 
528 G052089 Unknown protein 
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4.8: Validation of selected conserved miRNA targets  
 
 To validate the predicted targets, we used 5’-RACE to map the miRNA-guided 

cleavage site on target mRNAs. Four predicted targets have been validated as genuine 

targets for miRNAs in switchgrass, using the modified 5’-RACE assay.  The validated 

targets included an NAC transcription factor for miR164, PHB/REV transcription factor 

for miR166, an SPL transcription factor for miR156, and an AP2-like transcription factor 

for miR172.  All of the sequences showed cleavage between the 10th and 11th nucleotides 

as expected (Figure 14). 

 

Figure 14: 5’-RACE validation for four conserved miRNA targets in switchgrass.  
Modified from previously published paper: Matts, et al. (2010) Journal of Plant 
Physiology 
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4.9: Novel miRNA target predictions 

 Targets for the novel miRNAs were predicted using the same criteria as those for 

the conserved miRNAs.  We were able to predict 28 targets for 12 novel miRNAs in 

switchgrass (Table 10).  While several of these predicted targets are proteins with 

unknown function or hypothetical proteins, the rest of the target genes encode products 

that are extremely diverse ranging from glycosyl transferase, sulfotransferase domain 

containing protein, amino acid permease/amino acid transporter, protease inhibitor, 

pantothenate kinase, peptide transporter and leucine rich repeat protein. The alignments 

of all the targets and the novel miRNAs are shown in appendix three. 

 

Table 10: Predicted targets for novel and candidate miRNAs in switchgrass. 

Novel miRNA family Target EST accession 
Number 

Target gene family  

s8008250 FL788822 
FL695873 
GD04317 

Hypothetical protein 
UDP-glycoronsyl/UDP-glycosyl transferase 
MTA/SAH nucelosidase 

s6815382 GD016940 Sulfotransferase domain containing protein 
s3496977 & s850747 FL993113 

FL987523, FL764417, & 
FL846993 
FL967210 
FL821059 
FL754750 

Amino acid permease/amino acid transporter 
Hypothetical proteins 
 
Expressed protein 
Protease inhibitor, seed storage, LTP protein 
Splicing factor U2AF protein 

s1781441 FL854510 Hypothetical protein 
s2472577 GD036874 

FL787755 
Pantothenate kinase 
Expressed protein 

s3495498 FL891811, FL821060, 
FL952548, & FL787755 

Hypothetical proteins 

s7724135 FL868007 
FL801207 
GD035751 

Peptide transporter PTR2 
Leucine rich repeat protein 
Unknown protein 

s1509072 GD019762 & FL963020 Hypothetical proteins 
s5564248 FE657239 Glyscosyl transferase family 1 like protein 
s8018588 FL711513 WD40 repeat containing protein 
s185087 GD022328 

FL978160 
FL871007 

Expressed protein 
Acyl-CoA dehydrogenase, mitochondrial precursor 
TUDOR protein with multiple SNc domains 
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CHAPTER V 
 

DISUCSSION  

 Better understanding of the molecular biology of switchgrass will enable us to 

manipulate the traits for increased biomass production for cellulosic biofuel production. 

5.1: Identification of conserved miRNAs in switchgrass  

 There are a large number of conserved miRNA families across a diverse spectrum 

of plant species (Axtell and Bartel, 2005; Zhang, et al. 2006; Willmann and Poething, 

2007) ranging from monocots to dicots, to ferns and mosses.  The conservation of these 

miRNA families in such diverse plant species indicates conserved functions critical for 

various developmental pathways and processes such as phase transitions (seedling to 

adult, and adult to reproductive stages), leaf morphogenesis, meristem boundary 

formation, leaf development and polarity, lateral root formation and development, flower 

organ identity and development, reproduction (Jones-Rhoades et al., 2006; Mallory and 

Vaucheret, 2006) as well as plant tolerance to biotic and abiotic stresses (Shukla et al., 

2008; Sunkar, 2010). Three independent small RNA libraries were constructed from three 

different tissue sources (seedlings, inflorescence and emerging tillers) and subjected to 

deep sequencing. The analysis of three small RNA libraries revealed the identification of 

36 conserved miRNA families, 1 tasiRNA family and 15 novel miRNA families in 

switchgrass. Besides, the miRNA profiling provided a snapshot of the differences in the 

miRNA populations between different tissue sources. 
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 Identification of a complete set of conserved miRNA homologs in switchgrass 

suggests the possibility that the functions described to various miRNAs in other plant 

species will be applicable for switchgrass also, although there might be slight variations 

specifically in regulating a number of targets, differential expression and regulation of 

miRNAs etc.  

 Within monocots, small RNA populations have been extensively investigated in 

rice using deep sequencing technology (Sunkar et al., 2008; Lu et al., 2008; Heisel, et al. 

2008; Zhu, et al. 2008; Xue, et al. 2009; Fuijoka, et al. 2008; Johnson, et al. 2009).  Rice 

is the most important crop in the world as measured by the portion of calories provided to the 

human diet, and has served as a model system for monocots, especially for cereals. With the 

need for biofuel production from plants that are not part of the human diet, there has been 

a necessity to explore other grass species such as switchgrass, Sorghum, Brachypodium 

discantyon and Miscanthus. In fact, Brachypodium discantyon and Sorghum genomes 

have recently been sequenced (The International Brachypodium Initiative, 2010; 

Patterson, et al. 2009).  Recently attempts were made to analyze the small RNA 

population of Brachypodium (Zhang, et al. 2009; Unver and Budak, 2009; Wei, et al. 

2009) and the small RNAs in sorghum have been only computationally predicted so far. 

Thus, within the biofuel plant species, small RNA-guided gene regulations have not been 

studied extensively. Our sequencing a total of 20 million small RNA reads is one of the 

most intensive studies in analyzing small RNA populations in a biofuel plant species. 

Within the deep-sequenced small RNA libraries (inflorescence and emerging 

tillers), miR165/miR166 family had the highest number of reads. The high representation 

of the miR165/166 family in the inflorescence of switchgrass differed when compared to 
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Brachypodium. In the libraries for Brachypodium constructed by Wei et al., (2009), 

revealed the highest reads for miR397. The miR165/166 family targets HD-ZIP 

transcription factors that are essential for specification of adaxial/abaxial (dorso-ventral) 

polarity. This polarity is established through the polarized expression of HD-ZIPIII 

transcription factors that specify adaxial/upper cell fate (Emery et al. 2003; Juarez et al. 

2004; Nogueira et al., 2007). In Arabidopsis and maize, the adaxial-specific expression of 

HD-ZIPIII family members is delineated by the expression pattern of miR166 (Juarez et 

al. 2004; Kidner and Martienssen 2004; Nogueira et al., 2007).  HD-ZIP factors are also 

implicated in regulating floral development (Jung and Park, 2007). Given the fact that 

HD-ZIPIII family members play diverse roles in leaf and flower development, it is not 

surprising that their abundance is the highest in inflorescence library. However, the 

highest abundance in emerging tillers is interesting and this suggests the possibility that 

miR165/166 -HD-ZIP circuitry is likely to play important roles in tillering.  

 Within the switchgrass small RNA libraries two family members (TAS3a and 

TAS3b) of a tasiRNA family were identified.  This tasiRNA-production is dependent on 

the action of miR390 (Allen, et al. 2005).  Consistent with this, the abundance of both 

miR390 and TAS3a in each library showed positive correlations although inflorescences 

had a higher abundance of both in comparison to the emerging tillers. The tasiRNAs have 

been shown to play role in leaf development in Arabidopsis (Adenot et al., 2006), but 

their greater abundance in inflorescence and accumulation in emerging tillers to 

detectable levels suggests additional roles for the tasiRNAs in plants. 

 Deep sequencing also recovered two other conserved miRNA families, miR395 

and miR399, in switchgrass.  This was unique in that these libraries were made from 
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plants that were grown on optimal nutrient conditions, and it has been shown that 

miR395 and miR399 are generally detected in plants subjected to nutrient deprived 

conditions, specifically under sulfate- and phosphate-depleted conditions (Jones-Rhoades 

and Bartel, 2004; Fujii, et al. 2005; Sunkar et al., 2007; Sunkar, 2010).  

  Other conserved miRNA families that were identified in the libraries included 

monocot-specific families such as miR444, miR528, miR529, miR535, miR1318, and 

miR1432 that have been identified mostly in rice so far.  miR444 and miR528 have also 

been found in Brachypodium libraries (Wei, et al. 2009).  Of the monocot specific 

miRNA families, miR528 had the highest abundance in the emerging tillers in 

comparison to the other families suggesting the possibility that miR528 family could play 

an important role in tiller emergence. The targets for miR528 could not be predicted in 

switchgrass, which could be due to the lack of genome or sufficient number of ESTs, but 

identification of mRNA targets for miR528 could help us understand how miR528 or 

their targets are playing a role in tiller emergence. Once the miR528 targets are 

confirmed, strategies to manipulate miR528 or its target gene(s) can be designed for 

increasing the number of tillers in switchgrass. 

5.2: Identification of novel miRNA families in switchgrass 

 Deep sequencing of small RNA populations led to the identification of 15 novel 

miRNA families in switchgrass based on cloning the miRNA* sequence and 

conservation. Interestingly, six of these novel miRNAs are conserved in related 

monocots, thus can be annotated as monocot-specific miRNAs (Table 8).  While several 

Brachypodium-specific miRNAs have been identified (Wei, et al. 2009), but their 

homologs could not be found in switchgrass small RNA libraries. Similarly, the 
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homologs for novel miRNAs identified in switchgrass could not be found in 

Brachypodium, suggesting there are also major differences exists between these two 

biofuel plant species with respect to the expression of novel miRNAs.  

5.3:  Temporal expression analyses of conserved miRNAs in switchgrass 

 Analysis of miRNA expression in Arabidopsis, rice and M. truncatula revealed 

many miRNAs expressed in only certain tissues and cell types, only during certain 

developmental stages, or with altered expression in response to stress  (Jagadeeswaran et 

al., 2009b; Lu et al., 2005; Sunkar and Zhu, 2004; Sunkar et al., 2005; 2006). 

Furthermore, previous reports showed the conserved miRNAs with divergent expression 

patterns in different plant species (Jagadeeswaran et al., 2009b; Lu et al., 2005; 

Subramanian et al., 2008).  

Eighteen conserved miRNA families were examined for their expression patterns 

in different tissues of switchgrass (Figure 11).  Most of the miRNA families were 

ubiquitously expressed in the different tissues of switchgrass, whereas some miRNAs 

showed very distinct tissue-specific expression patterns.  Several of the miRNA families, 

such as miR159, miR160, miR164, miR166, miR167, miR171, and miR398 showed 

minor differences in their expression levels between the different tissues.   

For instance, miR156 is abundantly expressed in the lower and upper leaves of the 

seedlings, but was almost undetectable in similar sets of leaves in the adult plant.  In 

contrast, miR172 was abundantly expressed in the lower and upper leaves of the adult 

plant, but was almost undetectable in the upper leaves of the seedlings, and had 

diminished levels in the lower leaves of the seedlings.  This opposite pattern of 

expression for miR156 and miR172 is consistent with their reported roles in Arabidopsis 
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(Wang, et al. 2009).  Transcripts encoding Squamosa promoter binding factor like 

proteins (SPLs) and AP2-like factors are targeted by miR156 and miR172 respectively, 

and these genes have been shown to play an important role in phase changes in 

Arabidopsis.  Arabidopsis miR156 plays an indispensable role in controlling the phase 

transitions form juvenile phase-to-adult phase by targeting SPL transcription factors 

(Wang, et al. 2009; Wu, et al. 2009; Yamaguchi, et al. 2009).  In contrast, miR172 

appears to play a role in the control of vegetative-phase to reproductive-phase transitions 

in Arabidopsis.  Surprisingly, in switchgrass, miR172 was almost undetectable in the 

flower tissue, whereas miR172 was abundantly expressed in the flowers of Arabidopsis 

(Chen, 2004).   

miR160 and miR167 could be detected in all tissues examined with the exception 

of root tissue in which the expression level is below the detection limit. Both miR160 and 

miR167 are known to target auxin response factor (ARF) transcription factor family 

members.  These transcription factors are known to play key roles in seed germination 

(Liu, et al. 2007), leaf development (Mallory, et al. 2005), and floral development (Wu, 

et al. 2006). 

miR319 is abundantly expressed in the flowers, and in the upper leaves and stems 

of both the seedlings and mature plants.  It is known that miR319 plays an important role 

in leaf morphogenesis by targeting TCP factors in Arabidopsis (Palatnik, et al. 2003) and 

tomato (Ori, et al. 2007).  However, its detection in the flowers and stems strongly 

suggest additional roles for miR319 in switchgrass. One of the roles could be flower 

development, as it has been recently shown that miR319 targets TCP factors that are 

critical for proper floral development (anthers and stamens) in Arabidopsis (Nag, et al. 
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2009).  miR159 was abundantly expressed in inflorescence, roots, and stems of both the 

seedlings and adults.  This is consistent with a recent study that reported abundant 

expression of miR159 in several tissues of Medicago truncatula (Jagadeeswaran, et al. 

2009). 

miR171 expression could be detected in all the tissues analyzed, although most 

abundant expression was evident in the upper leaves of both the seedlings and mature 

plants, the stems of the seedlings, as well as in the flowers.  This differs from rice in 

which miR171 showed abundant expression in all the tissues analyzed (Sunkar, et al. 

2005).  The expression levels of miR171 in switchgrass is rather high when compared to 

Medicago, in which miR170/miR171 showed only low level expression in all the tissues 

analyzed (Jagadeeswaran, et al. 2009).   

Interestingly, miR444 showed distinct expression patterns in the leaves of both 

the seedlings and adult plants.  It had low expression in the roots, while expression was 

even lower in the inflorescence in switchgrass. This expression pattern differs with rice in 

which miR444 showed similar expression levels in different tissues (Sunkar, et al. 2005). 

These results suggest a very dynamic regulation of miR444 expression in different tissues 

in switchgrass. miR444 is a monocot specific miRNA that targets four MADS-box 

transcription factors in rice (Sunkar, et al. 2005; Li et al., 2010).  Also it was shown that 

miR444 family regulates at multiple sites on these MADS box genes in rice (Li et al., 

2010). MADS-box genes are known to play a critical role in determining the organ 

specificity during flower development in Arabidopsis whereas in rice these genes 

suggested to play important roles in meristem identity, formation of the dehiscence zone, 

fruit ripening, embryo development as well as development of vegetative organs 
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(Kaufmann et al., 2009; Arora et al., 2007; Li et al., 2010). Taken together, on the one 

hand there are similarities in expression patterns of similar miRNAs in different tissues of 

switchgrass and rice but there are also differences for some of the miRNAs. Target gene 

expression analysis could provide better insights in such cases.   

5.4: The response of miR395 and miR399 to different concentrations of sulfate and 
phosphate 

 It has been shown that miR395 and miR399 are up regulated in response to low 

sulfate and low phosphate conditions, respectively in other plant species (Jones-Rhoades 

and Bartel, 2004; Fujii, et al. 2005; and Jagadeeswaran, et al. 2009).  However, miR395 

and miR399 in switchgrass are constitutively expressed at relatively higher levels (also 

reflected by their frequency in inflorescence and emerging tillers libraries) and the up-

regulation was not significant in seedlings grown on low-sulfate when compared to 

control plants (figure 12), and low-phosphate when compared to control plants (figure 

12).  Thus, the regulation of miR395 and miR399 in switchgrass is different in 

comparison to Arabidopsis thaliana, Medicago truncatula, and rice. One plausible 

explanation for non-regulation of these miRNAs in switchgrass is that these plants have 

been grown on wastelands and marginal soils and perhaps over the time these plants have 

developed an adaptive mechanism by constitutively turning on such key regulators that 

can confer tolerance to the plant species. 

5.5:  Temporal expression analyses of novel miRNAs  
 Five novel miRNAs that were analyzed showed unique and distinct expression 

patterns. It was known that occasionally, sequence-based expression profiling and small 

RNA blot analysis does not correlate (Reddy et al., 2009). Some of the switchgrass novel 

miRNA analyses revealed no correlations between these two assays. For example, 



68 

 

miRNA s3496977 had the highest number of reads in the inflorescence library (2,600 

normalized reads), whereas s7724135 had 265 reads in the inflorescence library, 

representing a ten-fold difference between these two miRNAs. However, small RNA blot 

analyses revealed an opposite trend, i.e., s7724135, which only had 265 reads in the 

inflorescence library is more abundant in the inflorescence whereas s3496977 had a fairly 

low expression in the inflorescence.  The biased cloning could be attributed to the 

differences in the 5’- and 3’-end nucleotides, which are involved in ligating with the 5’ 

and 3’ adapters, respectively, or formation of secondary structures or adoption of a 

structure that prevents the exposure of 5’ or 3’ ends of the miRNA (Reddy et al., 2009). 

Another possible reason for the difference could be the rate in which the mature miRNA 

is incorporated into the RISC and once the miRNA is incorporated into the RISC 

complex, it is shielded by the surrounding proteins, and is lost during the RNA 

extraction. 

5.6: Identification of targets for conserved microRNAs in switchgrass. 

 Targets have been predicted for majority of the conserved miRNAs in switchgrass 

(Table 9 and Appendix 2).  The predicted targets include homologs of known targets for 

conserved miRNAs, as well as novel targets.  Twelve of the conserved miRNA families 

have been predicted to target transcription factor families in Arabidopsis (Jones-Rhoades, 

et al. 2006).  Consistent with this, in switchgrass the transcription factor families such as 

squamosa promoter binding (SBP) transcription factors, MYB transcription factors, TCP 

transcription factors, NAC-domain containing transcription factors, auxin response 

factors (ARFs), CCAAT-binding factors, scarecrow-like transcription factors, Apetala2-

like transcription factors, MADS-box proteins have been predicted as targets for miR156, 
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miR159, miR319, miR164, miR160/167, miR169, miR171, miR172 and miR444 families 

respectively. miR395 has been predicted to target a sulfate transporter (FL710917), 

which is a conserved target.  

 Other predicted targets include proteins such as TIR1 (transport inhibitor response 

1, an F-box protein) transcript for miR393, Dicer-like 1 for miR162, Argonaute 1-like for 

miR168, laccase for miR397, plastocyanin for miR408, and transcripts that code for 

unknown proteins. In addition to the conserved targets for conserved miRNAs, recent 

studies indicated that some conserved miRNAs may have non-conserved targets in 

different plant species (German, et al. 2008; Li et al., 2010). Consistent with this 

suggestion, based on sequence complementarity we have identified several novel targets 

for conserved miRNAs in switchgrass. A few such examples are trihelix-domain 

containing transcription factor (FL9210909) for miR159, and a HEAT-repeat containing 

protein (GD002178) for miR166. mR395 also showed extensive complementarity with a 

bifunctional 3’-phosphoadenosine 5-phosphosulfate synthetase (FL910325), suggesting 

that it might be a potential non-conserved target in switchgrass.  The bifunctional sulfate 

synthetase seems to be a conserved target in grasses, as it was also predicted as a target of 

miR395 in Brachypodium (Wei, et al. 2009).   

 The potential target for miR159 (FL9210909), a trihelix-domain containing 

transcription factor, is a plant specific class of transcription factors that are known to 

interact with the promoter regions of light responsive genes in the nucleus (Smalle, et al. 

1998). Targets could not be predicted for some of the conserved miRNAs and this is not 

surprising given the fact that the target predictions in switchgrass only dependent on the 

available ESTs in the database.  
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5.7:  Validation of predicted conserved miRNA targets using modified 5’-RACE assay 
 
 Four predicted targets were validated as genuine miRNA targets in switchgrass, 

using modified 5’RACE assays. It is known that the RISC complex cleaves the targeted 

mRNA between the 10th and 11th nucleotides of the recognition sequence.  The validated 

targets include NAC transcription factor for miR164, PHB/REV transcription factor (a 

homolog for an HD-Zip transcription factor) for miR166, SPL transcription factor for 

miR156 and AP2-like transcription factor for miR172. Majority of the sequences showed 

cleavage between the 10th and 11th nucleotides.  It has also been recently shown that plant 

microRNAs can also act in translational repression in addition to mRNA cleavage 

(Voinnet and Brodersen, 2010) suggesting that analyzing the regulation at the protein 

level also becomes important in plants. 

 

5.8:  Identification of targets for novel miRNAs in switchgrass 

 Predicting targets for many species-specific miRNAs in both Arabidopsis and rice 

has been not very successful (Fahlgren, et al. 2007; Lu, et al. 2008; Sunkar, et al. 2008). 

We were able to predict 28 targets for 12 novel miRNAs and targets could not be 

predicted for 3 novel miRNAs in switchgrass (Table 10).  Unlike the conserved miRNA 

targets most of which are transcription factors, novel miRNAs are targeting a wide 

spectrum of genes involved diverse physiological processes. For instance, sugar transfer 

proteins are targets of miRNAs, s8008250 and s5564248.  An UDP-glycoronsyl/UDP-

glycosyl transferase protein is a target of s8008259; while an glyscosyl transferase family 

1 like protein is a target of s5564248.  These types of proteins catalyze the transfer of 

sugars to numerous different substrates (Ross, et al. 2001; Bowles, et al. 2006).  The 
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determination of the substrate for both of these targets, will determine what pathway or 

other proteins they interact with. 

 Another potential target is an aldehyde oxidase family member (miRNA family 

s7470078).  This broad class of enzymes is highly conserved from microorganisms to 

plants and animals and is shown to function in the oxidation of various aldehydes 

(Sekimoto, et al. 1997). Within plants, aldehyde oxidases play a role in the biosynthesis 

of the plant hormones abscisic acid and indole-3-acetic acid (Schwartz, et al. 2003; 

Normanly, 2010).  It has been shown that these hormones regulate miRNA expression in 

plants (Yang, et al. 2006; Zhao, et al. 2009). 

 Another potential target is pantothenate kinase for family s2472577.  This enzyme 

is essential for the coenzyme A biosynthesis pathway, where it catalyzes the first step of 

the reaction (Kupke, et al. 2003; Tilton, et al. 2006).  Coenzyme A, is an essential for 

synthesis and oxidation of fatty acids, and the oxidation of pyruvate in the citric acid 

cycle, therefore its proper regulation is essential. The remaining potential miRNA targets 

include splicing factors, transport proteins, sulfate transfer proteins, co-chaperone 

proteins, and nuceloidases.  The broad range of targets for the novel miRNAs in 

switchgrass suggest that that miRNAs could also play important roles in most cellular 

biological processes in switchgrass. 

 

 The future of switchgrass for use as a biofuel stock species will rely upon 

unlocking the molecular circuitry controlling biomass production (prolonged vegetative 

phase, increased foliar number and size, plant height, tiller numbers, etc.) and tolerance to 

the abiotic (drought, heat, cold, and nutrient stress) and biotic stresses.  Despite the 
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increasing importance of switchgrass as an energy crop, little is known about the basic 

biology of the traits that make switchgrass a useful biofuel plant species. Recent studied 

in diverse plant species indicate that most of the traits that make switchgrass as a biofuel 

are at least partly under the control of miRNA-guided gene regulation (Jones-Rhoades et 

al., 2006; Mallory and Vaucheret, 2006; Sunkar et al., 2007; Sunkar, 2010). A better 

understanding of such processes in switchgrass will aid in manipulating the biomass 

production or stress tolerance in this important biofuel plant species.  

 Present study provided some hints as to what miRNAs might be logical to use for 

improving biomass production. Certainly, miR156 is the prime candidate for 

overexpression studies aiming at improving biomass production. Relatively higher 

abundance of miR528 is worth considering for future manipulation of increasing the tiller 

numbers in switchgrass, although identifying its target genes is top priority. Based on the 

target gene function, research strategies can be devised as to whether overexpression of 

miR528 or overexpression of miR528-resistant target gene needs to be undertaken. In 

summary, this work provided a glimpse of miRNAs and their targets in switchgrass. 

Identification of conserved as well as novel miRNA families and RNA targets for most of 

miRNAs in switchgrass can serve as a foundation for future further characterization of 

miRNA regulatory networks as well as functional genomics approaches in switchgrass. 
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CHAPTER VI 
 

CONCLUSIONS 

Identification of conserved and novel miRNAs  

Using computational approach, homologs and fold back structures were predicted for 

thirteen of the highly conserved miRNA families and three of the monocot-specific 

miRNA families in switchgrass. With the use of deep sequencing, thirty five miRNA 

families, some of which are highly conserved miR156, miR159, miR160, miR162, 

miR164, miR165/166, miR167, miR169, miR170/171, miR172, miR319, miR390, 

miR393, miR394, miR395, miR396, miR397, miR398, miR399, and miR408, and some 

others that are conserved in specific lineages or closely related plant species (miR437, 

miR444, miR528, miR529, miR535, miR827, miR845, miR894, miR1318, miR1432, 

miR2118, miR2275, miR2910, miR2915 and miR2916) have been identified in 

switchgrass. Most of these conserved miRNAs are also highly expressed as determined 

by their frequency in the small RNA libraries as well as expression-based analyses (small 

RNA blot assay). Recent studies clearly established that plant small RNA population 

consist not only conserved miRNAs but also lineage-specific or species-specific 

miRNAs. Deep sequencing of small RNA libraries revealed the existence of fifteen novel 

miRNA families of which six are conserved at least in one another monocot species 

(monocot-specific miRNAs) and nine are annotated as switchgrass-specific because their 

homologues could not be found in other species as of now. 
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Thus, it is conclusively shown that the switchgrass, a model cellulosic biofuel plant 

species, has a dynamic population of conserved and novel miRNAs.  

   

Temporal expression analyses of conserved and novel miRNAs  

 The temporal expression patterns were determined for 18 of the conserved 

miRNAs in eight different tissues of switchgrass. The expression patterns of several 

conserved miRNA families differ greatly within the tissues in switchgrass and also in 

comparison to the other plants. The expression analyses of five novel miRNAs, three of 

which are conserved at least in one another monocot and two other miRNAs that are 

switchgrass-specific have been analyzed in eight different tissues.  Their expression 

pattern also differed greatly between different tissues. Both miR395 and miR399, in 

general, are induced in response to sulfate- and phosphate-deprivation in Arabidopsis, 

rice and Medicago truncatula. However, these two miRNAs are constitutively expressed 

at higher levels in switchgrass. Non-regulation of miR395 and miR399 could have been 

the result of adaptation of switchgrass to marginal and infertile soils.  

Predicted targets for conserved and novel miRNAs and their validation  

The targets for a majority of the conserved miRNA families have been identified. These 

include squamosa promoter binding (SBP) transcription factors, MYB transcription 

factors, TCP factors, NAC domain-containing transcription factor, auxin response factors 

(ARFs), Scarecrow-like transcription factors, Apetala-2 (AP2)-like transcription factor, 

MADS box proteins, and CCAAT-binding factors, were predicted as targets for miR156, 

miR159, miR319, miR164, miR160/167, miR171, miR172, miR444, and miR169 

families, respectively.  Other predicted targets include proteins such as transport inhibitor 
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response 1 (an F-box protein) for miR393, laccase for miR397, F-box protein for 

miR394, DCL-1 for miR162, sulfate transporter for miR395, Argonaute 1-like for 

miR168, plantacyanin for miR408, ubiquitin-conjugating enzyme for miR399, and 

transcripts that code for unknown proteins. A few of the non-conserved targets for 

conserved miRNAs trihelix-domain containing transcription factor (FL9210909) for 

miR159, and a HEAT-repeat containing protein (GD002178) for miR166 and a 

bifuncational sulfate synthetase for miR395. Four of the predicted targets for conserved 

miRNAs in switchgrass have been validated using modified 5’-RACE assay. The 

validated targets are NAC transcription factor for miR164, PHB/REV transcription factor 

(a homolog for an HD-Zip transcription factor) for miR166, SPL transcription factor for 

miR156 and AP2-like transcription factor for miR172. Additionally, predicted 28 

mRNAs as targets for 12 novel miRNAs in switchgrass. 
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APPPENDICES 
 

 

Appendix 1: Predicted fold-back structures for the novel miRNA precursors 

miRNA s5564248 
UUAA---------------                         U        GA                A     G                                       UCC                                 ----------------              U  
                               UGCAAGGGG  GGU     CAAGCU  GA   GCAGCAGCUGCAUA         UGCAAGAAAAU                      UGGUU  U 
                               GCGUUUCCC   CCG     GUUCGA  CU  UGUUGUUGACGUGU        ACGUUCUUUUA                       ACCAG  C 
AACUAUCAAAA                         U        UC                A     G                                       UGA                                GUAUCCAU              A  
 
miRNA s8018588 
A----                      A                                                                                     C                CC        A     U     C          CAC                         U  
        UACUCCCU   CGUUCCAAAUUGUAGGUCGUUUUGGUAAAU  UAGAUA    UAG  UU  UG  UAUG       CUAGAUAUA    \ 
        AUGAGGGA  GUAAGGUUUAACAUUCAGUAAAACCGUUUA  AUCUAU    AUU  AA  AC  AUAC       GAUCUGUAU   A 
GUG                       -                                                                                     A                AU        A    C     A           AUA                        U  
 
miRNA s8096486 
GGCAA-     A                       C                           A                                                                 A      C                ACCAU  
                CC  UUAGGUGC  CCUCCAAUCC   CUUUAGUUCAAAAUUUUGUAUUA  UU  UCCAAA             A 
                GG  AAUCCACG  GGAGGUUGGG  GAAAUCAAGUUUUAAAACAUGAU   AA  AGGUUU             U 
GCACUA     -                       U                           A                                                                 C      A                AACUC 
 
miRNA s4001019 
CAACC        ACU                     ----------        UU      GA               C-             ACUC      C  
              CCA       GCCGCGUC             CCG    CGC    CGUUC    UGGAGC        CCG  G 
             GGU       CGGCGCAG             GGC   GCG   GCGAG     GCUUCG        GGU  U 
CGA---         CGU                     UACUU      CU      AC            CA                GCCC      G  
 
miRNA s185087_h0 
                       A           ---                C---            U              .-AU          C             C     C                               A                                  G  AAA-                        U  
UGACUGCA  CAAG       ACACU          CAG   AUGUU       UACU  CCUCC  UU  UUAAAUAUAUG   CGUUUAGGACAA   C           UUAGUUCA  U 
GCUGACGU  GUUU       UGUGA          GUC  UACAA       AUGA  GGAGG  AA  AAUUUAUAUAC  GCGAAUCCUGUU  G           AAUCAAGU  U 
                      A           CUA             CUUA        -               \ --             U             C    A                                A                                  -   GAUA                      U  
 
 miRNA s185087_h4 
.-CAUGUUCUUUCUC                                                                                                               AU       C  
                                       GUACUCCCUCCAUUCUCAAAUAUAUGACGUUUAGGACAA        GAA  U 
                                       CAUGAGGGAGGUAAGAGUUUAUAUACUGCAAAUCCUGUU     UUU  A 
\ --------------------------                                                                                                                  GU       A  
 
miRNA s8382548  
                     .-AA              G                      C                               AA---                 UC  
GCUUUGC        GAAUU  UUCAGAAU   UCGAUAGAAGG             GUGCA      \ 
UGAAACG        UUUGA  AGGUCUUA   GGUUAUCUUUU              UACGU     U 
                     \ ----              -                        C                               ACAUA             UG  
 
miRNA s7470078  
A--------------------           AAC        G-                G        G             A      G          ACAGAG    CU          AG  
                                CUC         AUC     GUUGA AUG  UUUGG  CAU   UCCA               GC    CCGG       \ 
                                GAG        UGG     UAGCU UGC  AAAUC  GUG   GGGU               CG    GGCC      G 
AUGUAGAUGGA        AAA        AA             G      G                -         -            GAUG--      U-           GC 
 
 miRNA s7437949  
AUCCCCCC    A             CGA    C                               U      CCC      C                   A                      -                    G    UG  AC  
                     GC  GGGGA      GG  UCCGCUGCAGU  ACG       CC  GCAGUUG  GUCACUGC  GUGUGGG  CC    C      \ 
                     CG  CCCCU        CC  AGGCGACGUCA  UGC      GG  CGUCAAC  CAGUGACG  UGCACCC  GG    G     G 
A--------------    C             UGG    U                              U      AGA      A                   C                      G                  G    GU  AC  
 
miRNA s7724135 
                                         A                                                             U                              C                                                                       GC      U                                     .-U       ACA  
UUGAAGUACUAAAU  AAGUCUAUUUACAAAACUUUUU GCAUGGGUGGG UGUAAAUCGCGAGACGAAUCUAAUGA    CUA  UUAAUCUAUGAUU     GCA         \ 
AACUUUAUGAUUUA  UUUAGAUAAAUGUUUUGAAAAA UGUGUCUACCC  ACAUUUAGCGCUUUGCUUAGAUUACU    GAU  AAUUAGGUACUAA    CGU        G 
                                         C                                                               -                             A                                                                         AC      U                                     \ -        AGU  
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miRNA s850747  
GUCAUC--                   UUUAU           -              UCAU                 CCA                                        U                         AUU                   G       UC                      U  
                      UGCGUG             CAUG  UAGGG          UUUGAU        UGCCACUACAAUUUC UGAAGUUGG       UCAUGUU  AAA     CAUGUCAU   \ 
                      ACGCAU              GUAC  AUCCC         AAGCUA        ACGGUGGUGUUGAGG ACUUUAACC         AGUGUAA  UUU    GUACGGUG  G 
CACUAGCU                -----------          U              UUUU              AGC                                         C                         CAC                    G        UA                     A  
 
miRNA s6651927 
.-GCCUCC                  .-UCGA      G          A          GG      C    --          GGAUG      A        U     -|         UCA  
                  UCAGGAUGG          CUG  GUUGU  GAGAU    CUG  UU  GAACA          CUC  ACAU  GA  AUGUG      \ 
                  GGUCUUACC          GAC  CAGCG  CUUUG    GAC  AA  CUUGU          GAG  UGUA  CU  UACAU      A 
\ -----------                   \ -------       G          A          AA      U    U          AACAA      G        C    G^        GCG  
 
miRNA s1509072 
UU                     .-AUUAG                      --------        --                --      C            GA              CA    UU         A    ----------                    G  
      AGCUAGG                 UUCAAUCU          AGA  UGCAAG  AA ACGAU    ACACAG    GG      UAG  GU            GGUUCGA  C 
      UCGAUUC                 GAGUUGGA          UCU  GCGUUC UU UGUUG   UGUGUC    CU      AUC  CA             CCAGGCU  C 
----                     \ ----------                        GAAU       C                G   A              ---               AC     GC        C     UAAUG                  G  
 
miRNA s6650602 
-----------                   A     C           C--                      G            A                    ---                      CU                  --        CU       A    CAUA  
                 GCGGAC  GU  CGCC        CAGGGGC  CGGAC  GUCCGCC       CGGGGCU      AACGGU  AGA     CUG  CA           \ 
                 CGCCUG  CA  GCGG        GUCUCUG  GCCUG  CAGGCGG       GUUUUGG     UUGCCG  UCU      GAC  GU          A 
 AAAAG                 A    A            AGU                   --             G                   UAA                  ----                  A        U--        --    UACU  
 
 
miRNA s2472577 
GUAGAUCA|    UCC          CC            UUU    G      UGG                   AU                AG             CUCCU            U   
                       UG       GCAC   AAGCU         C    AG       AGCCGUG    GGAUGA     AGCUA             GCAUG   C 
                       AC       UGUG   UUCGA        G    UC       UUGGUAU     CCUAUU      UUGAU            CGUAU   G 
UC------------^    UGU           U-             UGU   --     UUG                    ---                  G-              --------                U  
 
miRNA s3495498 
AA          .-AACUAA              AAAAUUC         U                      CA           CCG                                                       C                -                CU  
     UCUU                   UAGGG                    GAU  CAUGCCAC     CAACU      UGAAAUUGGGUUUCAUGUU  AAAAUC  AUGCCA      \ 
     AGAG                   AUCCC                    CUA  GUACGGUG     GUUGA      ACUUUAACUUAAAGUACAA  UUUUAG  UACGGU      C 
---            \ -------------              AGUCAAC        U                      AG            AGA                                                     -                  G                AA  
 
miRNA s3377122 
ACU         --        CC----                      U                 GCCCAA             --           C               C--        CU       CUACCGACCCA      A            AA  
         GAA  ACG           CUGUGGAC  GUCCGC                GUGGC  GGAC  GUCCGC    GUA    AUU                             CCA   AGAC     C 
         CUU  UGC           GACGCCUG  CAGGCG                CACCG  CCUG  CAGGCG    CAU     UAA                              GGU  UCUG      A 
AU-          A       ACUU                      C                  GUUCC-            G          U                 UC      CU         UCUUUAACAA-         C           CA  
 
miRNA s343898 
GA     AAC-              U      A                     AGG               ----|    U  
     GG         GGGCG  CG  CGGCGUCU         GCCUC      GC  G 
     CC          UCUGC  GC  GCUGCGGA        UGGAG      CG  C 
UG    GGGA             --    G                      CAG              AG^    G  
 
miRNA s8061400 
CUGA-----------------           UUUUU           C----        --                      U                      A        A--        U        U    CGCUC  
                                  AGGC              ACGA        GUC  CAGGUUCG  CGAACCUG  GGC      CAU  AAU  GC             \ 
                                  UCCG              UGCU        CGG  GUCCAAGU  GCUUGGAC  CUG      GUA  UUA  CG             A 
CGACCAAAUAUA         -----------            AUA        A                     U                        -         CA        C        C     AAACU 
 
miRNA s3019914 
AUA                                 --    --      UG     --        UG      ------       A        G             A-         --            ACU                UG     UGG  
         UUCGUUUGGCU  GU  GGC    AU  GGC    GUG      UUG  UUU  UUAUG    GAA  CAGU       GCUGAC       CC         U 
         AAGCAAACCGA  CA  UCG     UG  UCG    CGU      GAC  AGA  AGUAU    UUU  GUCG        UGAUUG      GG         A 
AC--                                A    G        GU    G      GU      CAU         A      G               GA      A           ------                  GU     UCG  
 
miRNA s6532536  
CG    UU                     UCUCUC                  U         A        CU        --            A      ----           CAC  
    AU    CCCCUGCG                  GUGUGC  GAG  CCUG    GCG  GGCU  CGC      CGGG         U 
    UA    GGGGAUGC                 CGCACG  CUC  GGGC    CGU  UCGG  GCG      GUCC          A 
G-     GG                        ------------               --         --         ----        A           --      UU            AAG  
 
miRNA s1781441 
                       CG               U                             CU-                        AUGG           A             UCAC                                     UU      AAC                  -                     CUACAGUAA      U  
GUACUAAA     AAGUU  AUUUGCAAAAC        CUUCACGG            GUGU  AUUUU          GACGAAUCUAAUG   GGU        UAAUUG  AUGAUUGG                    UGC A 
CAUGAUUU     UUCAG  UAAAUGUUUUG        GAGGUGUU           CGCG  UGAAG           CUGCUUAGAUUAC   CCG        AUUGGC   UACUAACC                     AUG C 
                       AU             U                               AUU                      GGGA         A               CGCU                                     U-       GAA                G                       UCCAACCA-       A  
 
miRNA s5714794 
CGGGG     G       GU               A     A          --          GC    UG    G        CUAC    C                 U    A  
               AC  UG    CUGUAG  GU  GGUG  UGUC    UC    GA  GCC          GU  UCUACC  GG  C 
               UG  AU    GGCGUC  CA  CUAU  AUAG    AG    CU  UGG        CA  GGGUGG  CC  G 
AGAUG     G    UG                  --    G           G         A-     GU    G       A-----      C                --    U  
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miRNA s1951091 
      CU      U          --            --       U-     CU              U-     GAGA          A      .-UGUA      C--|      AG    GAG  
GGG    GGC  GGAGC  UGAAGC  UGG    GG    GGAGUGG    GU        GAAAA  UAC          GCG    UGG    GG       \ 
UCC    UCG  CCUUG  ACUUCG  GCC    UC    UCUUGCC    CA        UUUUU  AUG          CGC    GCC    CC       A 
      U-       U          U            U     UC     UU              UC    AAG-           G      \ --------      AA^     GA    AGU  
 
miRNA s1901506 
G------------------------------------------------                                        U       --           CA--               GU           C  
                                                                         GGCUCCGGCUCU  CCA  AAAA       GCUCCG    UCUGG  U 
                                                                         CCGAGGUUGAGG  GGU  UUUU       CGAGGU    AGACU  U 
ACAAAACGGUUUAUAAAAGAUUUUG                                 U         C           CGG                 ----          U  
 
miRNA s8008250 
-                                                                                                                                                                                  GG              ACA  
  CAUGGCUUCACCUUGCCUGUGUAAGUCGCUGAUGGCUUCAGGACCGGCUUCACACGUGAAGCC    UCCCAAA      \ 
 GUACCGAAGUGGAACGGACACAUUCAGCGACUACCGAAGUCCUGGCCGAAGUGUGCACUUCGG    AGGGUUU      A 
A                                                                                                                                                                                  GG              GCA 
 
miRNA: s6815382 
U-            C         U                                                 C        AA     A            A-             UGCUAC|   U          CUAC  
     GUAA   UUG  UGAGAUGAAUCUAAUGA   GGU    UU  AUUG     UGAUU                AG GAUG            A 
     CAUU   AGC  GCUCUACUUAGAUUACU  CCG    AA  UGGC     ACUAA                  UC CUAC            A 
CA           U         --                                              --        GA    C          GC               UU--------^    --         CAAU  
 
miRNA s6703270 
                                           CA             G                                                                          UG       A                    -     A        A        G               --        U  
AUAAAACUUUUUGUA   GAUGG  UUGUAAAUCGCGAGACGAAUCUAAUGA     CUA  UUAAUCC  AU  AUU  GCA AUGGU     UAC G 
UGUUUUGAAAAACGU    CUACC  GACAUUUAGCGCUCUGCUUAGAUUACU    GAU  AAUUAGG UA  UAA  CGU UGUCA     AUG U 
                                          AA             A                                                                            UG       G                   G    C        A        -             AC        A  
 
miRNA s3496977 
A----                 UC          G       C                                                AC                       A                                   UC       A         U  
        GAAGGG    AGUU  GAU  CAUGCCACUACAAUUUC     GAAGUUGG  UUUCAUGUUGAAA    CAU CCAU   \ 
        CUUCCC     UUAA  CUA  GUACGGUGGUGUUGAGG     CUUUAACC  AAAGUGCAACUUU    GUA GGUG  G 
AAC               UU           G        A                                               CA                      C                                     UA      C          A  
 
miRNA s3496977 
U---                                UC         G        C                     UC                   U                        AUC                                                            U  
       UUUAUAAGGGG    AGUU  GAU  CAUGCCAC    CAAUUUC  UGAAAUUGG       UUAUGUUGAAAAUCAUGCCAU   \ 
       GAAUAUUUCCC     UUAA  CUA  GUACGGUG    GUUGAGG  ACUUUAACC       AGUACAACUUUUAGUACGGUG  G 
ACC                              UU          G      A                        GU                 C                        CAC                                                            A 
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Appendix 2:  Alignments between conserved miRNAs and their predicted targets 

EXTA9310.b1 (SPL8)   606  ATGCTCTCTCTCTTCTGTCA  625 

      |||||||||||||||||||| 
 MIR156   21   TACGAGAGAGAGAAGACAGT  1 
 
CBYY6990.b1 (SPL like)  536 GTGCTCTCTCTCTTCTGTCA 555 

      :||||||||||||||||||| 
 MIR156   21   TACGAGAGAGAGAAGACAGT  1 
 
FL921090 (AT-GTL1)   439  GGCAGCTCCGGGGGCATGCAA   458 

                    0||||||||0||||||||||| 
MiR159    21   ACGTCGAGGACCCCGTACGTT    1  
 
CBYZ12350.g1(MYB31)   371 AGCAGCTCCTTTCAATCCAAA  391 

      |:0|||||||||||||||||| 
MiR159e     21  TTCTCGAGGAAAGTTAGGTTT  1 
 
GD051711 (Hypothetical protein):  

  224 CAGAGCTCCCTTCAATCCAAA 244 
                   ||||||||||||||||||||| 
MIR159:       21 GTCTCGAGGGAAGTTAGGTTT 1 
 
GD037618 (Unknown protein):  

      137 CAGAGCTCCCTTCAATCCAAA 157 
                    ||||||||||||||||||||| 
MIR159:        21 GTCTCGAGGGAAGTTAGGTTT  1 
 
FL997283 (Expressed protein):  

     190 CAGAGCTCCCTTCAATCCAAA 210 
          ||||||||||||||||||||| 
MIR159:       21 GTCTCGAGGGAAGTTAGGTTT 1 
 
FL913173 (ARF18)         510 AGGCATACAGGGAGCCAGGCA 530 

          0|||||||||||||||||||| 
MIR160                   21  ACCGTATGTCCCTCGGTCCGT  1 
 
FL738979 (hypothetical protein)     

          348 TGGCATACAGGGAGCCAGGCA 328 
             ||||||||||||||||||||| 
MIR160      21  ACCGTATGTCCCTCGGTCCGT 1 
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FE606478 (START domain containing protein)  

       606 CTGGGATGAAGCCTGGTCCGG 626 
                  ||||||||||||||||||||| 
MIR160c:         21 GACCCTACTTCGGACCAGGCC  1 
 
CCGG13080.b1 (DCL1)   249 CTGGATGCAGAGGTTTTATCG 269 

      ||||||||||||||||00:0: 
MIR162     21 GACCTACGTCTCCAAATAGCT 1 
 
4855_1_CBYX_CBYY_CBYZ_EXTA (NAC TRANSCRIPTION FACTOR 9)  

     754  AGCAAGTGCCCTGCTTCTCCA 774 
      0|||0|||||||||||||||| 
MIR164     21  AGCTGCACGGGACGAAGAGGT 1 
 
FL8462281 (NAM)   59 AGCTCGTGCCCTGCTTCTCCA 79 

     0||0||||||||||||||||| 
MiR164   21 ACGTGCACGGGACGAAGAGGT 1 
 
9905_0_CBYX6738.b1_CBYX_CBYY_CBYZ_EXTA (REV)  

     606 CTGGGATGAAGCCTGGTCCGG 626 
      ||||||||||||||||||||| 
MiR166c     21 GACCCTACTTCGGACCAGGCC 1 
 
GD002178 (HEAT repeat family protein):  

  567 AGGGGAATGAAGCCTGGTCCGA 588 
            |||||||||||||||||||||| 
MIR166:       22 TCCCCTTACTTCGGACCAGGCT 1 
 
FL954559 (Unknown protein):  

   694 AGGGGAATGAAGCCTGGTCCGA 715 
            |||||||||||||||||||||| 
MIR166:        22 TCCCCTTACTTCGGACCAGGCT 1 
 
GD032712 (Unknown protein):  

    404 CCAGATCATGCTGGCAGCTTCA 425 
              |||||||||||||||||||||| 
MIR167:         22 GGTCTAGTACGACCGTCGAAGT 1 
 
GD007307 (Hypothetical protein):  

       739 CCAGATCATGCTGGCAGCTTCA 759  
           |||||||||||||||||||||| 
MIR167:       22 GGTCTAGTACGACCGTCGAAGT 1 
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FL904157(Argo1):      224  TTCCCGAGCTGCACCAAGCCC  244 

             ||||||0|||||||||||||0 
MIR168            21  AAGGGCACGACGTGGTTCGGT  1 
 
FL818096 (PINHEAD)   164 TTCCCGAGCTGCACCAAGCCC 184 

      ||||||0|||||||||||||0 
MIR168     21 AAGGGCACGACGTGGTTCGGT 1 
 
FL965734 (HAP2C)    449 GCGGCAATTCATCCTTGGCTT 469 

      0||||||0||||||||||||0 
MiR169    21 AGCCGTTCAGTAGGAACCGAC 1 
 
FL910918 (putative scarecrow transcription factor):   

   547 AGATATTGGCGCGGCTCAATCA 567 
             |||||||||||||||||||||| 
MIR171:        22 TCTATAACCGCGCCGAGTTAGT 1 
 
6988_1_CBYX_CBYY_CBYZ_EXTA (Scarecrow like transcri ption factor 
9) 

     66 AGATATTGGCGCGGCTCAATTA 87 
      ||||||||||||||||||||:| 
MiR171g    22 TCTATAACCGCGCCGAGTTAGT 1 
 
CBYZ4142.b1 (TOE2) 

     380 CTGCAGCATCATCAGGATTCT 400 
      ||||||||||||||:|||||| 
MiR172    21 GACGTCGTACTAGTTCTAAGA 1 
 
FL945982 (AP2 domain containing protein):  

        503 CTGCAGCATGATGAGGATTCT 523  
              ||||||||||||||:|||||| 
MIR172:         21 GACGTCGTACTAGTTCTAAGA 1 
 
FL945982 (AP2 domain containing protein):  

        89 CTGCAGCATGATGAGGATTCT 109 
            ||||||||||||||:|||||| 
MIR172:        21 GACGTCGTACTAGTTCTAAGA 1 
 
1618_1_CBYX_CBYY_CBYZ_EXTA (TCP24) 

     246 AGGGGGACCCTTCAGTCCAA 266 
      0||:|0|||||||||||||| 
MiR319    20 CCCTCGTGGGAAGTCAGGTT 1 
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FL985594 (Expressed protein):  

        536 GGGAGCACCCTTCAGTCCAA 555 
         |||||||||||||||||||| 
MIR319:         20 CCCTCGTGGGAAGTCAGGTT 1 
 
FL692881 (Leucine rich repeat protein):  

       298 GGCGCTATGCCTCCTGAGCTT 318 
         ||||||||0|||||||||||| 
MIR390       21 CCGCGATAAGGAGGACTCGAA 1 
 
0_0_EXTA9190.b1_CBYX_CBYY_CBYZ_EXTA (AFB2)  

     231 AGACAATGCGATCCCTTTGGA 251 
      0:0|||||||||||||||||| 
MiR393    21 CTAGTTACGCTAGGGAAACCT 1 
 
FL978450 (F-BOX containing protein):  

        272 GGAGGTGGACAGAATGCCAA 291  
             ||||||||||||||||||00 
MIR394:         20 CCTCCACCTGTCTTACGGAA 1 
 
FL910325 (bifunctional 3’-phosphoadenosine 5-phosph osulfate 
synthase):   

    421 GAGTTCCTCCAA GCACTTCAT 441 
              ||||||||||||:|||||||| 
MIR395:         21 CTCAAGGAGGTTTGTGAAGTA 1 
 
FL710917 (Sulfate transporter) 

     39  GAGTTCCCCCAAACACTTCAC  59 
             ||||||||||||0|||||||| 
MIR395        21  CTCAAGGGGGTTCGTGAAGTG   1  
 
FL753322 (Laccase precursor protein): 

    436 CATCAACGCTGCACTCAATGA 456 
         ||||||||||||||||||||| 
MIR397:         21 GTAGTTGCGACGTGAGTTACT 1 
 
FL997840 (Transposon protein):  

        595 CAGGGCAATTCTCCTTTGGCA 615 
         ||||||||||||||||||||| 
MIR399:       21 GTCCCGTTAAGAGGAAACCGT 1 
 
FL811879 (Ubiquitin conjugating enzyme protein)  

       518 CAGGGCAAATCTCCTTTGGC T 538 
         |0||||||||||||||||||0 
MIR399:         21 GACCCGTTTAGAGGAAACCGT 1  
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FL942386 (Plastocyanin like domain containing prote in):  

     388 GCCAGGGTAGAGGCAGTGCAG 408 
         |||||||0||||||||||||| 
MIR408:           21 CGGTCCCTTCTCCGTCACGTC 1 
 
FL897156 (BBTI12)   3 AAGTCAAACTTCTCTAAGTCC 23 

      |||||||||||||||||0|00 
MiR437    21 TTCAGTTTGAAGAGATTGAAA 1 
 
FL979804 (MADS box family protein):  

        466 AAGCTTGAGGCAGCAACTGCA 486 
         ||||||||||||||||||||| 
MIR444:        21 TTCGAACTCCGTCGTTGACGT 1 
 
GD052089 (Expressed protein):  

        482 CTCCTCTGCATGCCCCTTCCA 512 
          ||||||||||||||||||||| 
MIR528:          21 GAGGAGACGTACGGGGAAGGT 1 
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Appendix 3: Alignments between novel microRNAs and their 
predicted targets 

FL788822 (Hypothetical protein) 
110 UUCACGUGUGAAGCUGGUCCUGAA  133 FL788822   
 ||||||||||||||:||||||||| 
3' AAGUGCACACUUCGGCCAGGACUU 5' s8008250 
 
FL695873 (UDP-glycoronsyl/UDP-glycosyl transferase protein) 
135 UUCACGUGUGAAGCCGGUUCUGAA 158 FL695873  
 ||||||||||||||||||:||||| 
3' AAGUGCACACUUCGGCCAGGACUU 5' s8008250 
 
GD043417 (MTA/SAH nucleosidase) 
362 UUCAUGUGUGAAGCCGGUUCUGAA 285 GD043417  
 ||||:|||||||||||||:||||| 
3' AAGUGCACACUUCGGCCAGGACUU 5' s8008250 
 
GD016940 (Sulfotransferase domain containing protei n) 
402 AUCAUCAAUUAAUUACCGUCAUUA 425 GD016940  
 |||||||||||||||||||||||| 
3' UAGUAGUUAAUUAAUGGCAGUAAU 5' s6815382 
 
FL961655 (Expressed protein) 
43 UCGUCUCGCGAUUUACAACCCAUC 66 FL961655  
 |||||||||||||||||||||||| 
3' AGCAGAGCGCUAAAUGUUGGGUAG 5' s6703720 
 
FL960500 (Nucleolar RNA binding protein Nop10p like ) 
36 UCGUCUCGCGAUUUACAACCCAUC 59 FL960500   
 |||||||||||||||||||||||| 
3' AGCAGAGCGCUAAAUGUUGGGUAG 5' s6703720 
 
FL938010 (putative dehydrogenase protein) 
390 UCGUCUCGCGAUUUACAACCCAUC 413 FL938010  
 |||||||||||||||||||||||| 
3' AGCAGAGCGCUAAAUGUUGGGUAG 5' s6703720 
 
FL993113 (amino acid permease/amino acid transporte r) 
121 CAUGCCACCACAACUCCGUGAAAU 144 FL993113  
 |||||||||||||||||||||||| 
3' GUACGGUGGUGUUGAGGCACUUUA 5' s3496977 
 
FL987523 (Hypothetical protein) 
114 CAUGCCACCACAACUCCGUGAAAU 137 FL987523 
 |||||||||||||||||||||||| 
3' GUACGGUGGUGUUGAGGCACUUUA 5' s3496977 
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FL967210 (Expressed protein) 
217 CAUGCCACCACAACUCCGUGAAAU 240 FL967210  
 |||||||||||||||||||||||| 
3' GUACGGUGGUGUUGAGGCACUUUA 5' s3496977 
 
FL846993 (Hypothetical protein) 
116 CAUGCCACCACAACUCCGUGAAAU 139 FL846993  
 |||||||||||||||||||||||| 
3' GUACGGUGGUGUUGAGGCACUUUA 5' s3496977 
 
FL821059 (Protease inhibitor, seed storage, LTP pro tein) 
711 CAUGCCACCACAACUCCGUGAAAU 734 FL821059  
 |||||||||||||||||||||||| 
3' GUACGGUGGUGUUGAGGCACUUUA 5' s3496977 
 
FL754750 (Splicing factor U2AF protein) 
257 CAUGCCACCACAACUCCGUGAAAU 280 FL754750 
 |||||||||||||||||||||||| 
3' GUACGGUGGUGUUGAGGCACUUUA 5' s3496977 
 
FL870890 (Hypothetical protein) 
590 CUCACACCACUCCAGCCACCAGCU 613 FL870890  
 |||||||||||||||||||||||| 
3' GAGUGUGGUGAGGUCGGUGGUCGA 5' s1951091 
 
FL847596 (Hypothetical protein) 
467 CUCACACCACUCCAGCCACCAGCU 490 FL847596 
 |||||||||||||||||||||||| 
3' GAGUGUGGUGAGGUCGGUGGUCGA 5' s1951091 
 
GD025927 (Activator of 90kDa heat shock protein ATP ase) 
23 UCCAACUCCACCAGAAAAGCCGCU 46 GD025927 
 |||||||||||||||||||||||| 
3' AGGUUGAGGUGGUCUUUUCGGCGA 4' s1901506 
 
GD038932 (Hypothetical protein) 
77 CAGCCAGCAGUACUGUUCUCUCAU 100 GD038932 
 |||||||||||||||||||||||| 
3' GUCGGUCGUCAUGACAAGAGAGUA 5' s3019914 
 
FL897758 (Hypothetical protein) 
522 CAGCCAGCAGUACUGUUCUCUCAU 545 FL897758 
 |||||||||||||||||||||||| 
3' GUCGGUCGUCAUGACAAGAGAGUA 5' s3019914 
 
FL774345 (Unknown protein) 
234 CAGCCAGCAGUACUGUUCUCUCAU 257 FL774345 
 |||||||||||||||||||||||| 
3' GUCGGUCGUCAUGACAAGAGAGUA 5' s3019914 
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FL768681 (Hypothetical protein) 
54 CAGCCAGCAGUACUGUUCUCUCAU 77 FL768681 
 |||||||||||||||||||||||| 
3' GUCGGUCGUCAUGACAAGAGAGUA 5' s3019914 
 
FL892897 (Hypothetical protein) 
587 AGCCCGCAGCAGGUCUCAGCACAC 610 FL892897 
 |||||||||||||||||||||||| 
3' UCGGGCGUCGUCCAGAGUCGUGUG 5' s6532536 
 
FL854510 (Hypothetical protein) 
413 UGCGCUACUUCACGAGACGAAUCU 436 FL854510  
 |||||||||||0|||||||||||| 
3' ACGCGAUGAAGCGCUCUGCUUAGA 5' s1781441 
 
GD036874 (Pantothenate kinase) 
70 CAGAACAACCAUAGGAUAACAACU 93 GD036874 
 |||||||||||||||||||||||| 
3' GUCUUGUUGGUAUCCUAUUGUUGA 5' s2472577 
 
FL787755 (Expressed protein) 
566 CAGAACAACCAUAGGAUAACAACU 589 FL787755  
 |||||||||||||||||||||||| 
3' GUCUUGUUGGUAUCCUAUUGUUGA 5' s2472577 
 
FL891811 (Hypothetical protein) 
23 CAUGCCACUCCAACUUCUUGAAAU 46 FL891811 
 |||||||||||||||||||||||| 
3' GUACGGUGAGGUUGAAGAACUUUA 5' s3495498 
 
FL821060 (Hypothetical protein) 
82 CAUGCCACUCCAACUUCUUGAAAU 104 FL821060  
 |||||||||||||||||||||||| 
3' GUACGGUGAGGUUGAAGAACUUUA 5' s3495498 
 
FL952548 (Hypothetical protein) 
279 CAUGCCACUCCAAAUUCUUGAAAU 302 FL952548 
 |||||||||||||0|||||||||| 
3' GUACGGUGAGGUUGAAGAACUUUA 5' s3495498 
 
FL892558 (Hypothetical protein) 
257 CAUGCCACUCCAAAUUCUUGAAAU 280 FL892558 
 |||||||||||||0|||||||||| 
3' GUACGGUGAGGUUGAAGAACUUUA 5' s3495498 
 
FL858647 (Hypothetical protein) 
337 CCCUAGACGCCGUCGACGCCCGUU 360 FL858647 
 |||||||||||||||||||||||| 
3' GGGAUCUGCGGCAGCUGCGGGCAA 5' s343898 
 
 
 



94 

 

FL856169 (Hypothetical protein) 
247 CCCUAGACGCCGUCGACGCCCGUU 270 FL856169 
 |||||||||||||||||||||||| 
3' GGGAUCUGCGGCAGCUGCGGGCAA 5' s343898 
 
FL804352 (Hypothetical protein) 
349 CCCUAGACGCCGUCGACGCCCGUU 372 FL804352 
 |||||||||||||||||||||||| 
3' GGGAUCUGCGGCAGCUGCGGGCAA 5' s343898 
 
FL962901 (Aldehyde oxidase) 
494 GGACAUGUCCAAACCAUCUCA 514 FL962901 
 ||||||||||||||||||||| 
3' CCUGUACAGGUUUGGUAGAGU 5' S7470078 
 
FL868527 (Hypothetical protein) 
583 ACGUCUCCUGCAGUUGGGUCA 603 FL868527 
 ||||||||||||||||||||| 
3' UGCAGAGGACGUCAACCCAGU 5' s7347949 
 
FL868007 (peptide transporter PTR2) 
9 UCGUCUCGCGAUUUACAGCCCA 30 FL868007 
 |||||||||||||||||||||| 
3' AGCAGAGCGCUAAAUGUCGGGU 5' s7724125 
 
FL801297 (Leucine rich repeat protein) 
24 UCGUCUCGCGAUUUACAGCCCA 44 FL801207 
 |||||||||||||||||||||| 
3' AGCAGAGCGCUAAAUGUCGGGU 5' s7724125 
 
GD035751 (Unknown protein) 
74 UCGUCUCGCGAUUUACAACCCA 95 GD035751 
 |||||||||||||||||0|||| 
3' AGCAGAGCGCUAAAUGUCGGGU 5' s7724125 
 
GD019762 (Hypothetical protein) 
184 AACCUGCUGUGUUCAUCGUCUUCU 204 GD019762 
 |||||||||||||||||||||||| 
3' UUGGACGACACAAGUAGCACAAGA 5' s1509072 
 
FL963020 (Hypothetical protein) 
314 AACCUGCUGUGUUCAUCGUCUUCU 337 FL963020 
 |||||||||||||||||||||||| 
3' UUGGACGACACAAGUAGCACAAGA 5' s1509072 
 
FE657239 (Glyscosyl transferase family 1 like prote in) 
167 UAUGCAGCUGCUGCCUCUAGC 187 FE657239 
 ||||||||||||||||||||| 
3' AUACGUCGACGACGGAGAUCG 5' s5564248 
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FL711513 (WD40 repeat protein) 
37 AAAAGCACCUACAAUUUGGAA 57 FL711513 
 ||||||||||||||||||||| 
3' UUUUCGUGGAUGUUAAACCUU 5' s8018588 
 
FL787859 (Exportin 1) 
719 CUCCAACCCUCUUUAGUUCAA 739 FL787859 
 ||||||||||||||||||||| 
3' GAGGUUGGGAGAAAUCAAGUU 5' s8096486 
 
GD022328 (Expressed protein) 
378 UGUCCUAAACGUCAUAUAUUU 398 GD022328  
 ||||||||||||||||||||| 
3' ACAGGAUUUGCAGUAUAUAAA 5' s185087 
 
FL978160 (Acyl-CoA dehydrogenase, mitochondrial pre cursor) 
602 UGUCCUAAACGUCAUAUAUUU 621 FL978160 
 ||||||||||||||||||||| 
3' ACAGGAUUUGCAGUAUAUAAA 5' s185087 
 
FL871007 (TUDOR protein with multiple SNc domains) 
475 UGUCCUAAACUUCAUAUAUUU 495 FL871007 
 ||||||||||0|||||||||| 
3' ACAGGAUUUGCAGUAUAUAAA 5' s185087 
 

 



VITA 
 

Jessica Allyn-Brooker Matts 
 

Candidate for the Degree of 
 

Doctor of Philosophy 
 
Thesis:    IDENTIFICATION OF MICORNAS AND THEIR TARGETS IN 

SWITCHGRASS, A MODEL CELLULOSIC BIOFUEL PLANT SPECIES 
 
 
Major Field:  Biochemistry and Molecular Biology 
 
Biographical: 
 

Education: 
 
Completed the requirements for the Doctor of Philosophy in Biochemistry and 
Molecular Biology at Oklahoma State University, Stillwater, Oklahoma in 
December, 2010. 
 
Completed the requirements for the Bachelor of Science in Biochemistry and 
Molecular Biology at Oklahoma State University in 2005.  
 
Completed the requirements for the Bachelor of Science in Biology at 
Oklahoma State University in 2005.  
 
Experience:   
 
Graduate Research Assistant, Department of Biochemistry and Molecular 

Biology.  2005-2010.  Oklahoma State University 
Graduate Teaching Assistant, Department of Biochemistry and Molecular 

Biology.  2006-2007.  Oklahoma State University 
Undergraduate Research Assistant, Department of Biochemistry and Molecular 

Biology.  1998-2005.  Oklahoma State University 
 
Professional Memberships:   
 
2010-present:  Student Member of RNA society 
2010-present:  Student Member of American Society for Biochemistry and 

molecular biology 
2005-2010: Biochemistry and Molecular Biology Graduate Student Association 

(member, secretary, vice president) 
2003-present: Phi Lambda Upsilon, Graduate Chemistry Honor Society 
(member)



 
ADVISER’S APPROVAL:   Dr. Ramanjulu Sunkar 
 
 
 

 

Name: Jessica Allyn-Brooker Matts                                Date of Degree:  December, 2010 
 
Institution: Oklahoma State University            Location: Stillwater, Oklahoma 
 
Title of Study: IDENTIFICATION OF MICRORNAS AND THEIR TARGETS IN 

SWITCHGRASS, A MODEL CELLULOSIC BIOFUEL PLANT 
SPECIES 

 
Pages in Study: 95          Candidate for the Degree of Doctor of Philosophy 

Major Field: Biochemistry and Molecular Biology 
 
Scope and Method of Study:  
 Over the past several years, several plant species such as switchgrass, Miscanthus, 

Sorghum, and Brachypodium have been recognized as potential model plant 
species for cellulosic bioenergy production.  Of these, switchgrass has attracted 
more attention in the United States, because it can be grown on marginal and 
wastelands, and it can also tolerate drought and heat stress.  Very little is known 
about the basic biology of the traits that control these important characteristics, 
including biomass accumulation in switchgrass.  Recently discovered miRNAs 
play an important role in post-transcriptional gene regulation and this regulation is 
critical for normal plant growth and development, and tolerance to environmental 
stress conditions including nutrient deprived conditions.  To gain an insight into 
the complex post-transcriptional regulatory network operating in this plant 
species, we sought to identify the miRNAs and the genes that these miRNAs are 
regulating in switchgrass. 

Findings and Conclusions:   
 By deep sequencing small RNA libraries from switchgrass, 31 conserved miRNA 

families, one tasiRNA family, and 15 novel miRNA families have been identified.  
Interestingly six of the novel miRNAs appears to be conserved in related monocot 
species.  Small RNA blot analysis indicated that some of the conserved and novel 
miRNAs are expressed in a tissue-specific manner, although most are 
ubiquitously expressed.  Surprisingly, unlike in Arabidopsis and other plants, 
miR395 and miR399 expression levels were not regulated in response to sulfate or 
phosphate-deprived conditions.  Thirty-seven genes are predicted as targets for 
miRNAs, and several mRNAs (Squamosa promoter binding-like factor, apetala2 
like, NAC domain containing transcription factor, and HD-ZIP homologs) were 
validated using 5’-RACE assays.  Additionally, 45 genes are predicted as targets 
for novel miRNAs in switchgrass.  Identification of large set of miRNAs and their 
targets laid the foundation for functional genomic approaches in switchgrass. 

 


