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CHAPTER I 
 

 

DBC2 Literature Review 

The ability of cancer cells to proliferate and metastasize are commonly attributed to 

deletions and mutations of genes that regulate cellular growth cycles and programmed cell death 

(PCD a.k.a., apoptosis), or activation or suppression of their expression.  These genes commonly 

fall into two classes: proto-oncogenes that stimulate cell proliferation and tumor-suppressor genes 

that suppress cell growth. 

Deleted in Breast Cancer 2 (DBC2/RhoBTB2) is a tumor suppressor gene that has roles 

in suppressing cell proliferation and stimulating PCD. DBC2 was first identified through a 

Representational Difference Analysis (RDA) of human breast tumor biopsies (Hamaguchi et al.  

2002).  DBC2 was found to be deleted in 3.5% of the tumors assayed but now the expression of 

DBC2 has been shown to be lost in 60% of samples and has been linked to poor breast cancer 

prognosis (Hamaguchi et al., 2002; Mao et al., 2010). DBC2 was also identified in a loss of 

heterozygosity (LOH) screen from bladder cancer samples and is currently known to affect 

additional tumor and cells line such as lung, ovary, cervical, prostate, colon, rectum, kidney, 

stomach larynx and head and neck (Wilkins et al., 2004; Siripurapu et al., 2004; Berthold et al., 

2008; Mao et al., 2010.)    The deletion was mapped to chromosome 8p21.2 with six genes 

including DBC2 extending from the mapping reference site (Hamaguchi et al.  2002; Ramos et al, 
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Figure 1:   DBC2 domain structure. Major domains are labeled with the Pro rich region 

containing the PEST motif  in yellow, His rich region  in orange, NLS  in red, and the Ser 

rich element  in dark blue with  the putative RING domain  transparent brown.   Black 

spikes are the mutations from breast, lung cancer, bladder cancer maroon arrows, and 

gastric  cancer  blue  arrow.  Read  from  left  to  right,  V245A,  R275W,  Y284D,  D299N, 

E349D, D368A, G561S and F647T.   The asterisk  is  the breakpoint  location  indicted by 

Hamaguchi et al (2002). Domain figure adapted from Aspenstrom et al. (2007).      
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2002).  The deletion focal point was noted to be within intron 7 of DBC2 extending into the 

3’ untranslated region (UTR) of a neighboring gene (Hamaguchi et al.  2002). The sequence loss at 

this location would be in excess of ~55% of the total gene coding region.   

The DBC2 domain structure was first thought to encode a Ras domain followed by tandem 

BTB (broad complex/bric-a-brac/poxvirus/zinc finger) domains (Hamaguchi et al.  2002). Upon 

further analysis the putative guanine nucleotide binding domain of DBC2 was found to be member of 

the atypical RhoGTPase class of G-protein domains. DBC2 is arranged from the amino-terminal (N-

terminal) end as a Rho domain followed by a PEST motif inside of a proline rich region, a tandem 

pair of broad-complex tramtrack, bric a brac/poxvirus zinc finger (BTB/POZ; referred to as BTB), a 

C-terminal domain containing a putative ring finger domain with a bipartite nuclear localization 

signal (NLS), ending with a serine rich region (Figure 1).  The first BTB domain has a bipartite 

arrangement with an approximate 106 amino acid (AA) spacer containing a poly-histidine rich region, 

a motif that is considered to be a signal for nuclear speckle localization (Salichs et al. 2009).   

The gene that encodes DBC2 shows evolutionarily specificity to mammals but include 

orthologs in Gallus gallus, Danio rerio, Dictyostelium discoideum, Drosophila melogaster and 

Anopheles gambiae (Hamaguchi et al, 2002; Ramos, S., et al., 2002; Siripurapu, V., et al., 2005; 

Vlahou, G. and F. Rivero, 2005).  In contrast, no apparent DBC2 othrologs have been found in plants, 

fungi, bacteria and archea and are also absence from the model organisms Caenorhabditis elegans, 

Xenopus laevis, and Saccharomyces cerevisiae (Hamaguchi et al, 2002; Ramos, S., et al., 2002; 

Siripurapu, V., et al., 2005; Vlahou, G. and F. Rivero, 2005). 

DBC2 has been shown to have numerous point mutations:  Y284D, R275W, D299N, E349D, 

D368A, and F647T as well as several silent mutations and intron related point mutations (Knowles et 

al. 2005, Hamaguchi et al. 2002, Wilkins et al. 2004).  In addition, two tumor specific mutations in 

the 5’ UTR of DBC2 have been identified.  One mutation possibly adds an additional transcription 

factor binding site, while the other eliminates two transcription factor binding sites including E2F1 

(Ohadi et al. 2007).  E2F1, which is known to regulate the expression of genes involved in cell cycle 
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progression and PCD, which has been shown to play a direct role in regulating DBC2 expression 

during the cell cycle (Freeman et al.  2007). Another study has indicated that the CpG islands within 

the promoter region of DBC2 are subject to aberrant methylation resulting in a significant decrease in 

DBC2 expression in cancerous tumors (Shi et al. 2008).  Many of these mutations listed above do not 

show a definite phenotype and/or have not been tested for effects on currently known DBC2 protein-

protein interactions.  

However, the D299N and Y284D mutations in DBC2 have been shown to have a reduced 

ability to inhibit proliferation compared to wild type in a DBC2 null back ground (Hamaguchi et al. 

2002, Wilkins et al. 2004).  The D299N was identified in the initial screen of somatic missense 

mutations in breast tumor specimens (Hamaguchi et al., 2002).  DBC2/D299N lacked anti-

proliferation activity in T-47D (Human ductal breast epithelial tumor cell line) compared to wt 

DBC2, and this mutation was rescued by the reintroduction of the wild type protein (Hamaguchi et 

al., 2002).. 

An additional investigation of other DBC2 mutants was conducted by Wilkins and co-

workers (2004), who examined the capacity of the Y284D, D299N and D368A to interact with Cullin 

3 (Cul3), the core component of Cullin-RING-Ligase (CRL) complexes, which functions as an 

ubiquitin E3 ligase. The binding of D299N and D368A to Cul3 was comparable to wt DBC2, whereas 

the Y284D failed to bind Cul3 (Wilkins et al., 2004).  The binding interface of DBC2 for Cul3 was 

localized to the first BTB domain of the structure (Wilkins et al., 2004).  Interestingly, the first BTB 

domain contains most of the currently identified DBC2 mutations (Knowles et al. 2005, Hamaguchi 

et al. 2002, Wilkins et al. 2004).  This study further identified the functional interaction between 

DBC2 and Cul3 in regards to Cul3 activation.  Cul3 is a protein that is regulated by neddylation.  

Neddylation is the covalent modification of an ubiquitin like modifier, nedd8, which causes a 

conformational change in the C-terminus of Cul3 that facilitates the transfer of ubiquitin onto the 

substrate (Choo et al, 2011).  Neddylation of Cul3 stimulates the binding of the COP9 signalosome 

(CSN) to Cul3, which then catalyzes Cul3’s deneddylation.  CSN mediated deneddylation  is essential 
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for Cul3 E3 ligase activity in vivo (Choo, et al 2001).  DBC2 was shown to interact with both non-

neddylated and neddylated Cul3, but not with any of the other cullin family members (Cul1,2,4a,5) 

(Wilkins et al. 2004).  This study also demonstrated that DBC2 turnover resulted from Cul3 mediated 

ubiquitination of DBC2 and its degradation via the 26S proteasome, as DBC2 levels were increase 

over time upon treatment of cells with the proteaosome inhibitor MG132 (Wilkins et al.  2004). 

Cul3 CRLs function in conjunction with a family of BTB-domain containing substrate 

receptors (Pintard et al., 2004).  Wilkins and co-workers proposed a model in which DBC2 functions 

as an addition substrate receptor for Cul3 regulating substrate degradation via the Ubiquitin/26S 

proteasome pathway.  Other BTB-containing substrate receptors have been shown to undergo auto-

ubiquitination in a manner similar to that observed for DBC2 (Choo et al., 2011). The mutations in 

DBC2 that inhibit its Cul3 binding would result in the stabilization of both DBC2 and its substrate 

target proteins (Wilkins et al. 2004).  It has recently been proposed that homo/heterodimerization 

between the Rho domain and BTB domain of the RhoBTB family members (see below) prevent 

DBC2 from forming a functional complex with Cul3, therefore stabilizing DBC2 and/or the other 

family members and preventing their degradation by CRL (Berthold et al. 2008).   The Cul3 mutant 

study along with proteasome inhibition via MG132 is indicative of CRL being the complex that 

targets DBC2 for degradation.  However, DBC2’s role in targeting associated proteins for degradation 

similar to Actinfilin (a BTB-Kelch protein family member) targeting subunits of the GluR6 kainate 

receptor for degradation through Cul3 is premature (Salinas et al., 2006).  Although both mutations 

have an effect that results in the loss of DBC2 anti-proliferation properties, D299N does not result in 

a loss of Cul3 binding as does the Y284D, indicating that DBC2 affects additional cellular pathways 

related to growth and differentiation (Wilkins et al. 2004).  

Functional roles for DBC2 were investigated through microarray analysis using endogenous 

DBC2 expressed in HeLa cells. This study linked DBC2 to processes influencing apoptosis 

(Siripurapu et al., 2005).  A recent study has linked the interaction of overexpressed DBC2 with Cul3 

to increased apoptosis, possibly through DBC2 playing a role in Anoikis, as it reduces the ability of 
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cells to form anchorage independent colonies (Mao et al. 2011). The microarray analysis also linked 

DBC2 to pathways involved in cytoskeleton dynamics (McKinnon et al., 2008).  DBC2’s 

involvement in aspects of cytoskeleton dynamics is supported by its involvement in the regulation of 

the chemokine CXCL14 expression (McKinnon et al., 2008).   CXCL14 is known to control cell 

migration and its expression is lost in a number of epithelial cancers (McKinnon et al. 2008).  

Another investigation linked DBC2 indirectly to cytoskeletal dynamics through the ability of 

ectopically expressed DBC2 to significantly increase levels of breast cancer metastatic suppressor 

(BRMS1), in conjunction with down-regulation of ezrin and Akt2 phosphorylation. Both BRSM1, 

and the Akt2/ezrin sytems affect the migration and invasion of cancer cells (Ling et al. 2010; Freeman 

et al. 2010). The additional pathways linked to DBC2 expression were membrane trafficking that was 

illustrated through DBC2-dependent microtubule-mediated transport of VSVG from the ER to the 

Golgi as well as the fluorescence localization of DBC2 to the microtubule network (Chang et al., 

2006). Cell cycle progression which been illustrated by DBC2 modulated down regulation of cyclin 

D1 (Yoshihara et al 2007) and the E2F1 modulation of DBC2 expression described earlier with 

limited DBC2 localization seen in the nucleus (Siripurpa et al., 2005; Freedman et al., 2008; 

Yoshihara et al., 2007; Chang et al., 2006). 

  The DBC2 domain structure has undergone a limited amount of analysis in initial 

investigations (Figure 1, 4a & 8). The DBC2 Rho domain was determined to be deficient in binding 

GTP due to the inability of wt DBC2 and a truncated DBC2 (1-160AA) to bind GTP (Chang et al. 

2004).  However, the possibility that DBC2’s GTP binding activity may be regulated through protein-

protein interaction or post-translation modifications, as occurs in other G-protein, must be considered.  

In the classical small G protein system these assistance factors are(i.e guanine nucleotide exchange 

factor (GEF), GTPase activating protein (GAP), guanine nucleotide dissociation inhibitor (GDI) 

along with the newly coined GDI displacement factor (GDF) (DerMardirossian et al., 2005), but for 

DBC2 one must consider that it might also be an otherwise unknown functional partner. For example, 

GTP binding to DBC2 may require GEF catalyzed dissociation of tightly bound GDP for GTP 
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binding (figure 4) (Aspenstrom et al., 2004; 2007).  The analysis was conducted via a Northwestern 

blot experiment with [-32P] GTP and recombinant DBC2 or truncated DBC2 (1-160AA) protein 

purified from Escherichia coli (Chang et al., 2006). It is plausible that wt DBC2 at 83 kDa had lost 

the ability to refold in an environment lacking molecular chaperones (e.g., DBC2 might require 

chaperones to prevent it from pursuing unproductive folding pathways, thus facilitating the folding 

process.)  The question of proper folding is even more relevant to the truncated DBC2 (1-160AA), as 

sequence alignments demonstrated that truncating DBC2 GTP-binding domain back to a Ras rather 

than as a Rho domain, deleted a section of its GTP binding pocket and additional structure that 

undoubtedly stabilizes the domain fold. 

A more comprehensive analysis of the amino acids must begin to determine the interactions 

of functional domains as single and/or complex entities.  This will begin to elucidate the processes, 

which are hindered in the absence of DBC2.  

Small G-proteins have highly conserved loop motifs required to bind and hydrolyze GTP (Paduch et 

al., 2001; Boureux et al., 2007).  The loop motifs and overall structure currently accepted are derived 

from the ancestral small G-protein, Ras (Paduch et al., 2001; Boureux et al., 2007; Salas-Vidal et al., 

2005).  However, the Rho GTPase falls under the Ras superfamily that is sub-divided into 6 families:  

Ras, Rho, Rab, Ran, Arf and Micro.  The Rho family is further subdivided into 8 subfamilies; 

Rho/Rif, Rac, RhoD, Cdc42, Rnd, RhoU/V, RhoH and RhoBTB (including DBC2) (Paduch et al., 

2001; Boureux et al., 2007; Salas-Vidal et al., 2005).   The Rho GTPase family has been shown to 

function in everything from cytoskeleton dynamics to programmed cell death (Knowles et al., 2005; 

Paduch et al., 2001; Salas-Vidal et al., 2005; Aspenstrom et al., 2004).  Nonetheless, this well 

conserved family includes the atypical Rho GTPase subfamilies Rnd, RhoU/V, RhoH and RhoBTB 

(Aspenstrom, P., A., 2007).  The sequence of the four subfamilies varies from that of the typical 

RhoGTPase (e.g., Ras) in conserved loop regions, catalytic residues (e.g. Ras conserved Gly 12 and 

Glu 61), absence of the characteristic isoprenyaltion CaaX motif, extended domain structure and/or 

regulation that is outside the control of the classical G-cycle (Figure 3).  Each of the subfamilies 
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meets one or more of the listed criteria (Boureux et al., 2007; Salas-Vidal et al., 2005; Aspenstrom et 

al., 2007).  Upon inspection of the DBC2 Rho domain, it was apparent that it had a domain structure 

containing amino acids that extended beyond the Ras domain structure. 

The atypical small GTPase RhoH has been shown to be constitutively active, even with 

residue specific substitutions that render Ras defective in binding of GTP (Aspenstrom P., A., 2007).  

RhoH functions to inhibit pathways activated by typical Rho GTPases and has been shown to 

positively regulate the signal dependent activation of the protein kinase, Zap70.  Thus, RhoH has 

been shown to maintain regulatory processes in both kinase and Rho dependent signaling 

(Aspenstrom P., A., 2007).    Another atypical small GTPase, RhoU (Wrch-1) has been shown to have 

a rapid GDP  GTP exchange, which produces a constitutively active form with no deleterious 

substitutions within the nucleotide bind region (Aspenstrom et al., 2004; Aspenstrom et al., 2007).  

The atypical subfamilies RhoH, RhoU/V, and Rnd have the ability to regulate the effectors (e.g. Pak1 

& WASP) of G protein modifiers and the cycling proteins (e.g. RhoGDI) required for typical and 

atypical Rho GTPase activity (Aspenstrom et al., 2007; Masuda-Robens et al., 2003).  The influence 

of guanine nucleotide binding on function of the RhoBTB subfamily is still to be investigated.  The 

appropriate sequence motifs to be classified as a Rho GTPase are not present within the provisional 

Rho domain of RhoBTB3, thus it is excluded from many analyses of this atypical subfamily; even 

though it is the only  
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Figure 2:  Ligand site of DBC2 Rho domain in complex with GTS (sticks), Asn 23 mesh.  

Residues colored by element CHNOSP, Mg ion green sphere, water red sphere and the yellow 

dashed lines indicate polar contacts.  GTγS docking completed by Sybyl version 7.0, 

Tripos and rendered in PyMOL, Delano Scientific.  Sybyl docking was completed by 

Donna J. Lubbers, University of Kanas. 
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Figure 3:  Classical regulatory small G protein cycle (G‐cycle). Cyclic 

protein include the GEF, GAP, GDI, GDP, GTP and Pi, colored  orange, 

blue, gray, tan, yellow and mauve, respectively.   
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member to retain the isoprenylation motif at its C-terminus (Boureux et al., 2007; Salas-Vidal et al., 

2005; Aspenstrom et al., 2007).  The RhoBTB1 and RhoBTB2 (DBC2) sequences lack the conserved 

Q (Ras position Q61) that is necessary for catalysis of GTP hydrolysis in classical Rho GTPases 

(Chang et al., 2004; Paduch et al., 2001; Boureux et al., 2007; Salas-Vidal et al., 2005).   DBC2 also 

contains substitutions for classical consensus residues at GN in the P-loop, A  F in switch I, a 

(T/N)  C of loop G4 and A  V of loop G5 (Table 1) (Paduch et al., 2001; Boureux et al., 2007).  

The alterative residues located in the classically conserved binding/catalysis regions of the DBC2 Rho 

domain is suggestive of a function similar to the other atypical Rho GTPases, which remain in a 

constitutively GTP bound state (Berthold et al., 2008; Aspenstrom et al., 2007)..  Shown in more 

comprehensive sequence alignment is the reoccurrence of the consensus (T/N)  C substitutions that 

occurs in loop G4, which many Rho and Rnd proteins also contain (Boureux et al., 2007; Salas-Vidal 

et al., 2005; Aspenstrom et al., 2007).  The alteration of the classical consensus sequences of this 

atypical family could yield the regulatory functions necessary for their tissue specificity (Knowles et 

al., 2005; Ramos et al., 2002; Cho et al., 2007; Aspenstrom et al., 2007; Bement et al., 2006; 

DerMardirossian et al., 2005; Chen et al., 2006; St-Pierre et al., 2004).  The exclusive nature of this 

family is debatable with the identification of RhoBTB family members in many immortalized cell 

lines currently in laboratory use. 

The substitutions deviating from consensus for the DBC2 Rho domain were reported by 

Chang, F.K et al. (2006), to interrupt the ability of DBC2 to bind GTP. However, the Ras domain 

(e.g., only the first 160 AA) was used to evaluate the GTP binding capacity of the DBC2 (Chang, 

F.K., et al., 2006).   For the Rho structure this would result in a loss of loop G5, which has been 

determined to decrease affinity and hinder base discrimination (Paduch, M.F., et al., 2001).    The 

substitution of G  N in the P-loop (Ras positionGly12) puts the Asn in a curious position directly 

over the predicted binding pocket of the GTP -phosphate (Figure 2).  This could result in a novel 

form of self-regulation that engages other domains/motifs within the DBC2 architecture resulting in a 
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constitutively active and/or rapid cycling form, that were mentioned previously (Paduch, M.F., et al., 

2001).  There is a precedent for Asn to have the capacity to be involved in GTP hydrolysis without 

the presence of the catalytic Q61 (Ras reference).  For example, Rap1Gap utilizes an Asn rather than 

an Arg finger to catalyze the GTP hydrolysis.   Rap1 harbors a substitution of the catalytic conserved 

Q which is replaced by a Thr (Table 1) (Daumke et al., 2004; Rehmann et al., 2004). While the 

mechanism of GTP hydrolysis was not fully elucidated, site-directed mutagenesis of the Asn 

indicated that it was essential for Rapl GTP hydrolysis, with its motif being referred to as the Asn 

thumb (Daumke et al., 2004; Rehmann et al., 2004).  This proposes that hydrolysis of GTP can occur 

without the presence of the conserved Q61 that is retained by most classical small G proteins 

(Daumke et al., 2004; Rehmann et al., 2004).  Another example is the Ran GTPase shown to use a 

Tyr to activate the Glu for catalysis without donated residues from the RanGap (Seewald et al., 2002). 

The RanGAP instead acts in reorienting the native Ran residues into the correct orientation for 

efficient hydrolysis (Rehmann et al., 2004, Seewald et al., 2002).  Another alternative to classic GAP 

hydrolysis is the TBC domain that facilitates the hydrolysis of GTP bound Rab, through a dual finger 

mechanism donating both the Arg and Glu necessary for catalysis (Pan et al., 2006).  The classical 

Arg finger, as well as the other alternatives have a possibility to facilitate hydrolysis of GTP bound 

DBC2.  However, DBC2’s native residues are conceivably able to neutralize the charge of the bound 

GTP molecule (Paduch et al., 2001; Daumke et al., 2004; Rehmann et al., 2004; Seewald et al., 2002; 

Pan et al., 2006).    

The mechanisms for nucleotide binding must be re-investigated to elucidate how the DBC2 

Rho domain is regulated.  This includes any accessory proteins, post-translational modifications 

and/or, cofactors influencing the regulatory control for GTP binding.  

The tandem BTB domains that follow the Rho domain are the next functional domains 

(Figure 1).  The mutations known to affect DBC2 function have been predominately localized to the 

first BTB domain (figure 1).  Three of these mutations have been examined with moderate overall 

analysis as previously described (Hamaguchi et al., 2002; Freeman et al., 2008; Wilkins et al., 2004).  
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Figure 4:  DBC2 Rho domain homology model amino acids 1‐206.  Gray indicates missing residues due to 

dissection at amino acid 160 (Right) Cartoon display DBC2 Rho domain.  (Middle)  Transparent surface DBC2 

Rho domain (Left) Transparent surface DBC2 Rho domain dissected at amino acid 160.  Rendered by PyMOL, 

Delano Scientific 

The general structure and functional properties attributed to the BTB protein families have been 

elucidated. BTB-domain containing proteins participate in many cellular and physiological functions, 

including: transcriptional regulation and chromatin remodeling; response to DNA damage; regulation 

of the cell cycle; cytoskeleton dynamics; embryonic development; cell differentiation; regulation of 

ion channels; protein degradation; and  tumorigenesis (Hori et al., 1999; Kelly et al., 2006; McEvoy 

et al., 2007; Perez-Torrado et al., 2006; Pintard et al., 2004; Stead et al., 2007; Stogios et al., 2005; 

Vadlamudi et al., 2003; Welcker et al., 2003; Wimuttisuk et al., 2007).   The BTB/POZ domain 

families contain the BTB structural core fold, which is the major protein recognition motif, with a 

1/2/1/2/3/3/4/5 ( =  sheet), (  =  helix) topology, while the amino acid  
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Table 1: Alignment of small G‐protein conserved loops, G1‐G5 are involved in binding GTP.  Complete 

conserved residues in yellow, G1‐G5 loop consensus sequences in parenthesis.  Sequence accession are 

listed, source SWISSPROT.  The previous study of DBC2 GTP binding capabilities (Chang, F.K, et al., 

2006), is missing the C‐terminal 45 amino acids including the G5 loop of the DBC2 Rho domain 

DBC2 (RhoBTB2) 
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Figure 5:  BTB family domain organization. The black helices (A1/A2/A3/A4/A5) and blue 

sheets (B1/B2/B3) form the BTB core. The extensions (β1/α1, α7/α8) and internal (α4/β5) 

structural elements specific to subfamilies are in gray.  The loop between A3 and A4 is 

gray due to its variable length with a tendency to contain subfamily specific elements. 

Adapted from Stogios et al, 2005  
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Figure 6:  BTB family quaternary structures formed by the various tertiary 

domain arrangements.   
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sequences of BTB domains showing very limited similarity (figure 5 & 6) (Kelly et al., 2006; Perez-

Torrado et al., 2006; Pintard et al., 2004; Stead et al., 2007; Stogios et al., 2005).  The sequence 

conservation is concentrated to residues in the hydrophobic core of the fold, predominately located in 

the 1, 3 and 4 of the core structure (figure 5 & 6) (Stogios et al., 2005).  The core is either N-

terminal, C-terminal or internally extended as the structures of the BTB subfamilies diverge (Figure 5 

& 6) (Stogios et al., 2005).   T1 (core) is composed of only the BTB core, while PLZF/BCL6 (Nt-

long) have a N-terminal 1/1 and 5 specific elements, with Skp1 (Ct-long) adding an 4 and C-

terminal 7/8;  ElonginC (short) lacks the A5 of the BTB core structure (figure 5 & 6) (Stogios et 

al., 2005).  An additional BTB fold has been illustrated in the Miz-1 (Nt-short) structure containing a 

N-terminal 1 in addition to the core fold without the β1 indicated for Nt-long form (Figure 5 & 6) 

(Stead et al., 2007). 

Taking these features into consideration the BTB structural elements residing distal and 

proximal to the essential core are variable outside of the current structural families.  However, the 

organization of the BTB domain confers its functional topology with most functioning as dimers, 

with many forming higher order structures such as tetramers and oligomers (figure 6) (Kelly et al., 

2006; Perez-Torrado et al., 2006; Pintard et al., 2004; Stead et al., 2007; Stogios et al., 2005). The 

oligomerization state of proteins depends on the structural elements within each individual BTB 

domain (Figure 6) Kelly et al., 2006; Perez-Torrado et al., 2006; Stead et al., 2007; Stogios et al., 

2005; van den Heuvel et al., 2004). The additional domains associated with a BTB domain results in 

their segregation into families.  The MATH (Meprin and TRAF Homolog)-BTB, BTBk (BACK-

Kelch), Rho-BTB, T1, Skp1, ElonginC and BTB-ZF (zinc finger) are the current conserved BTB 

protein families (Kelly et al., 2006; Perez-Torrado et al., 2006; Pintard et al., 2004; Stead et al., 2007; 

Stogios et al., 2005). The MATH-BTB is the most common BTB domain containing family (Kelly et 

al., 2006; Perez-Torrado et al., 2006; Pintard et al., 2004; Stead et al., 2007; Stogios et al., 2005).   

BTB domains are generally positioned at the N-terminus of the domain arrangement (Kelly et al., 
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2006; Perez-Torrado et al., 2006; Pintard et al., 2004; Stead et al., 2007; Stogios et al., 2005).  The 

BTB proteins have a plant-specific family, BTB-NHP3, which is thought to be an adaptor for a light 

activated signaling pathway (Stogios et al., 2005). Conversely, no BTB containing proteins have been 

identified in bacteria or Archaea (Stogios et al., 2005).  The arrangement of the BTB domains of 

DBC2 is an atypical arrangement with the BTB domains flanked at the N-terminus and C-terminus by 

an atypical Rho GTPase and a putative RING domain (figure 1).  The domain arrangement of DBC2 

comprised of two BTB domains postulates a potential lack of hetero or homo-quaternary forms for 

functionality.  Due to this, DBC2 has a deficiency in exclusive classification and adherence to 

consensus parameters.  This exemplifies the perception that DBC2 is an atypical protein, which 

potentially deviates from the functional activities known to the domains represented in the DBC2 

architecture.         

BTB protein families are quite diverse in structure and function, however; many share a 

common theme, substrate degradation via the ubiquitin/26s proteasome (figure 7). The pathway for 

protein ubiquitinylation/degradation involves three enzymes the E1 (Ubiquitin-activating enzyme), 

the E2 (Ub-conjugating enzyme) and the E3 (Ubiquitin -ligating enzyme a.k.a Ub-ligase) (Knowles et 

al., 2004; Siripurapu et al., 2005; Hori et al., 1999; McEvoy et al., 2007; Pintard et al., 2004; 

Vadlamudi et al., 2003; Welcker et al., 2003; Wimuttisuk et al., 2007).  The E1 activates the ubiquitin 

molecules with ATP followed by the covalently binding of ubiquitin to the E1 upon formation of a 

thiol-ester bound. The E1-bound ubiquitin is then transferred to the E2 through the formation of a 

thioester bond.  The E2 subsequently: 1) transfers the ubiquitin to a E3(HECT) target complex for 

subsequent HECT catalyzed transfer of ubiquitin to the substrate;  or 2) associates with an E3 (RING) 

complex, which ubiquitinates substrates by direct transfer of the ubiquitin from the E2 to the E3 

complex bound substrate (Pintard et al., 2004).  The C-terminal glycine of ubiquitin is used to form 

an isopeptide bond with the epsilon  
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amino group of Lys residues. The ubiquitin can then be extended and have been shown to be arranged 

into chains by attaching to lysine 6, 11, 27, 29, 33, 48 or 63 of other ubiquitin molecules before or 

after initial target protein attachment (Pintard et al., 2004). 

In this scheme, BTB proteins are shown to be an integral component of the Cul3 RING-H2-

type E3 ligase complex; CRL (Hamaguchi et al., 2002; Hori et al., 1999; McEvoy et al., 2007; Pintard 

et al., 2004; Vadlamudi et al., 2003; Welcker et al., 2003; Wimuttisuk et al., 2007; Singer et al., 

1999).  There are a number of the additional physiological responses associated to the BTB proteins, 

but protein degradation has been shown to be a common link to most of the BTB families. The 

Skp1/Cul1/Rbx/F-Box, SCF1, is potentially the most notable substrate degradation complex 

involving a BTB protein to date. But has been expanded to incorporate 

ElonginC/Cul2/ElonginD/SOCS, and Cul3/BTB/Rbx, CRL (Hori et al., 1999; McEvoy et al., 2007; 

Pintard et al., 2004; Vadlamudi et al., 2003; Welcker et al., 2003; Wimuttisuk et al., 2007; Singer et 

al., 1999).. Ligase complexes all function in the ubiquitinylation of proteins signaled for degradation  
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Figure 7:  Ubiquitin/26S Proteasome scheme.  Adapted from Boston Biochem  

(www.bostonbiochem.com)  
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(Hamaguchi et al., 2002; Hori et al., 1999; McEvoy et al., 2007; Pintard et al., 2004; Vadlamudi et al., 

2003; Welcker et al., 2003; Wimuttisuk et al., 2007; Singer et al., 1999).  The DBC2 interaction 

gaining the most momentum is the DBC2 Cul3 complex, previously mentioned (Wilkins et al., 2006).  

The evidence that Cul3 binds DBC2 is adequate (Arnold et al., 2006; Kopp et al., 2006; Blom et al., 

2004; Kopp et al., 2006; Schwede et al., 2004; Bennett-Lovsey et al., 2008), but the conclusion that 

the second BTB domain’s lack of interaction with Cul3 is debatable (figure 8b).   The deletions made 

by Wilkins et al (2004), are consistent for the Rho and bipartite BTB domain. However, upon further 

analysis, the second BTB domain extends further upstream then the dissection point that was used 

(figure 8a) (Arnold et al., 2006; Kopp et al., 2006; Blom et al., 2004; Kopp et al., 2006; Schwede et 

al., 2004; Bennett-Lovsey et al., 2008).  As predictions for BTB domains were made using only the 

BTB core and not the N-terminal and C-terminal extensions specific to families (Stogios et al., 2005; 

Finn et al., 2006).  The interaction of the second BTB domain with Cul3 or additional cullins raises to 

possibility that DBC2 can form multiple degradation complexes as suggested by Perez-Torrado et al. 

2006.  Therefore, the overall regulation of signaling motifs, modifications and the tentative RING 

domain must be examined,  to gain insight into how specific domains function to: 1) regulate 

intramolecule interactions within DBC2 and interactions of DBC2 with other protein:  2)modulate 

DBC2’s localization, as its contains a nuclear localization sequence and likely undergoes 

nuclear/cytoplasmic shuttling;  and/or 3) determine the physiological significance DBC2 in normal 

cellular dynamics, as well as tumor progression or impedance.      
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Figure 8:  A.) Top DBC2 domain arrangement from Wilkins et al, 2006. Bottom current depicted DBC2 domain 

arrangement, dissection points indicated by vertical line with amino acid number. B.) PHYRE predicted 

homology model of the DBC2 BTB2 domain.  (Right) Cartoon display with the yellow indicating missing 

residues (amino acids 466‐486) (figure 8a) (middle) Transparent surface display (left) Transparent surface 

without missing residues.  The putative C‐terminal extension omitted for clarity.  Rendered by PyMOL, 

Delano Scientific 

  

A. 

B. 
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A comprehensive analysis of DBC2 must consider the known DBC2 mutants that create 

impairments or enhancements, and is assessed here in order of increasing AA residues, as in Figure 1 

(Knowles et al. 2005, Hamaguchi et al. 2002, Wilkins et al. 2004); Chang et al., 2006).  The V245A 

mutation lies inside the Pro-rich region, but is a residue of the predicted PEST motif.   The online 

program PEST finder (Rechsteiner et al., 1996; Rogers et al., 1986) predicts that the V245A mutation 

(Stogios et al., 2005; Finn et al., 2006) increase the probability that the region functions as PEST 

motif, thus raising the possibility that the mutation shortens the half-life of the protein and decreases 

its availability.  The next mutation is the R275W, which has the potential of disrupting the conserved 

core fold R275 is predicted to be a solvent exposed residue of the 2 strand (unpublished data).   

Next, the Y284D mutation results in hindered binding of Cul3 leading to an extended DBC2 

lifetime (Wilkins et al., 2006).    However, the Y284D mutant would be incapable of targeting 

substrates to Cul3 for ubiquitination, and thus not be able to carry out its normal cellular function.  

The effect of the D299N mutation on DBC2 function was the first to be investigated in T47-

D cells by Hamaguchi et al (2002).  The mutation impeded and/or abolished the anti-proliferation 

effects of DBC2 compared to wild-type DBC2.  Upon further analysis, the mutation results in the loss 

of a clathrin box motif that is present on cargo adaptor proteins (Puntervoll et al., 2003; MotifScan).  

This alteration has the potential alter a regulatory motif that may function in vesicular trafficking 

reported by Chang et al (2006).  

The next mutant, D368A is predicted to result in the loss of a PDZ binding motif and a CKII 

(casein kinase 2) phosphorylation motif (Puntervoll et al., 2003; MotifScan).  The three mutants 

D299N, D368A and E349D (which shows no apparent motif alterations) are all located in the 

bipartite linker region that has a substantial probability to participate in the regulation of the first BTB 

domain and/or the overall DBC2 structure. The analysis of this region predicts a number of possible 

regulatory motifs, all having the capability to contribute to DBC2 regulation (Blom et al., 2004; 

Rechsteiner et al., 1996; Rogers et al., 1986; Puntervoll et al., 2003; MotifScan). 
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The G561S mutant is predicted to gain four motifs: a CK I (casein kinase 1), GSK3 

(Glycogen synthase kinase 3), SRC kinase and p38MAPK (p38 Mitogen-activated protein kinase 

phosphorylation site (Blom et al., 2004; Puntervoll et al., 2003; MotifScan)  This mutation is located 

in the turn leading from the 3 to the  core helix.  This substitution could affect the stability of the 

helix with the possibility of further disruption, if the residue is targeted for phosphorylation.   

The final known mutation is, F647T that is predicted to cause multiple possible alterations in 

function.  This mutation is positioned within the putative RING domain (unpublished data).  The 

putative RING domain is based on NBCI PSI-BLAST analysis related to NOT4, which consequently 

has been shown to have E3 ligase activity (Albert et al., 2002; Hanzawa et al., 2001).  This 

substitution located two residues C-terminal of the final Cys has the potential to disrupt the putative 

C2H2C2 motif.  The motif of this putative RING domain differs from NOT4, C4C4, and shows a 

relative similarity to the Hrt1, C3H2C2, which also has E3 ligase activity (Hanzawa et al., 2011; 

Mulder et al., 2007; Seol et al., 1999).  The predicted motifs created by this mutation have the 

potential to be destabilizing.  The mutation also creates a  p38MAPK, cdk5, (cyclin-dependent kinase 

5), CKII, PKC, (protein kinase C), and a ProD-kin1, (proline-directed kinase 1), phosphorylation 

motifs, and it also creates predicted FHA (Forkhead associating) and WW binding motifs that could 

generate multiple new regulatory signals (Blom et al., 2004; Puntervoll et al., 2003; MotifScan).   

  In conclusion, DBC2 is a newly identified tumor suppressor which has not be subjected to 

extensive analysis.  Its functional nature is still quite a mystery whereas the deciphering of the 

addition or loss of multiple motifs associate with inborn mutation along with protein-protein 

interactions, regulatory effects and localization of responses would be valuable in understanding the 

cellular pathways manipulated in response to DBC2. The identification of protein-protein interactions 

will aid in identifying initial functional and physiological responses to be investigated as they relate to 

DBC2.  Studies have been conducted identifying some physiological response to the presence or 

absence of DBC2, but have overlooked the functional regulation of DBC2 itself and the additional 

complexes that form to orchestrate these responses.  The curious domain structure of DBC2 requires 
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that a wide variety of regulatory mechanisms to be explored.    While, DBC2 has been identified as a 

tumor suppressor protein only a marginal amount of investigations have looked into the mechanism 

of action related to this function. The focus of the next chapter is on the characterization of DBC’s 

GTP, binding activity, and its interactions with other proteins.  
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CHAPTER II 
 

 

Functional Modulation of DBC2 by the Molecular Chaperone Hsp90 

Introduction 

It is estimated that approximately 290,000 new breast cancer cases will be diagnosed in 

the United States alone for 2011 (Breast cancer facts & figures 2011-2012).  They will be joining 

the estimated 2.6 million U. S. women who are already living with a history of breast cancer. 

Inherited mutations account for approximately 5-10% of breast cancer cases, with mutations in 

the BRAC1 and BRAC2 genes only accounting for less than a quarter of the familial cases 

(Breast cancer facts & figures 2011-2012).  An additional contributing gene, Deleted-in-Breast 

Cancer 2 (DBC2, a.k.a RhoBTB2) was identified in a  region of human chromosome 8p21, which 

was found to be homologously deleted in 3.5% of breast tumors (Hamaguchi et al., 2002; Mao et 

al., 2011).  In addition, expression of DBC2 was found to be silenced in 42% of breast cancer 

cells or tissues (Hamaguchi et al., 2002). Subsequent studies found that DBC2 expression was 

suppressed in approximately 60% of breast cancers (Mao et al., 2010), 50% of lung cancers 

(Wilkins et al., 2004), and 75% of bladder cancers (Shi et al., 2008).  Loss of DBC2 expression in 

bladder cancer was found to be associated with hypermethylation of  the gene’s promoter (Shi et 

al., 2008). Furthermore, missense mutations in the DBC2 gene were also identified (Hamaguchi 

et al., 2002, others).  Ectopic expression of wild-type DBC2, but not its mutants, in T-47D    
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breast cancer cells lacking DBC2 expression caused growth inhibition (Hamaguchi et al., 2002). 

While DBC2 is now firmly established to be an important tumor suppressor gene, little is 

known yet about its physiological function.  DBC2 is an atypical protein containing an amino-

terminal Rho domain followed by a proline-rich region, two tandem BTB domains and a 

conserved C-terminal domain with unknown function.  The BTB domain is so named as it was 

originally found in Drosophila transcription factors Bric à Brac, Tramtrack, and Broad Complex 

(Dhordain et al., 1995).  Besides transcription, BTB-containing proteins are involved in a wide 

range of biological processes, including the cell cycle and apoptosis (Berthold et al., 2008).   

 Microarray analysis indicated that DBC2 modulates the expression of gene networks that 

regulate cell growth via cell cycle control and apoptosis, and that are related to cytoskeletal and 

membrane trafficking (Siripurapu et al, 2005).  DBC2’s ability to suppress cell growth has been 

biochemically linked to its ability to down-regulate cyclin D1 expression (Yoshihara et al., 2007).  

In addition, the DBC2 gene has been shown to be a direct target of the E2F1 transcription factor, 

whose primary function is to modulate the expression of genes involved in cell cycle progression 

and apoptosis (Freeman et al., 2007). DBC2 expression has also been demonstrated to be required 

for the expression of the chemokine, CXCL14 (McKinnon et al., 2008).  While CXCL14 is 

expressed in most normal cells, its expression is very low or absent in many cancerous cells and 

tumors (Shellenberger et al., 2004), particularly those of epithelial cell origin. 

DBC2 ‘s association with the cytoskeleton and membrane trafficking is supported by the 

observation that DBC2 functions to facilitate microtubule-mediated transport of vesicular 

stomatitis virus glycoprotein (VSVG) from the endoplasmic reticulum (ER) to the Golgi 

apparatus (Chang et al., 2006).  Furthermore, inhibition of the migration and invasion abilities of  

MDA-MB-231 and MDA-MB-435 metastatic breast cancer cell lines upon ectopic 

overexpression of DBC2 was associated with increased expression of breast cancer metastasis 
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suppressor BRMS1 and decreased phosphorylation of ezrin, a key signaling molecule that 

regulates cell migration and invasion (Chang et al., 2006; Ling et al., 2010).  

The BTB-domain has structural homology with Skp1, a component of Cullin1 ubiquitin 

ligase complex and directs the docking of a subset of BTB-proteins to Cullin3 (Cul3).  The Cul3-

bound BTB-domain containing protein functions as a substrate specific adapter for Cul3 ubiquitin 

ligase complexes (Willems et al. 2004).  DBC2 has been demonstrated to interact directly with 

Cul3, and its levels appear to be auto-regulated through its interaction with the Cullin3 (Cul3) 

ubiquitin ligase complex (Freeman et. al., 2007; Wilkins et al., 2004.).  Tumor cell resistance to 

the overexpression of DBC2 is mediated via DBC2’s rapid destruction by the 26S proteasome 

(Collado et al. 2007). 

All the functions listed above have been proposed to occur without the binding of the 

Rho domain to GTP (Chang et al., 2006).  In this study, we show that DBC2 is a substrate (client) 

protein of the Hsp90 chaperone machine.  In addition, DBC2 was found to have retained the 

capacity to bind GTP like the atypical Rho GTPases Rnd and RhoH.  Furthermore, DBC2’s GTP 

binding ability was modulated by the Hsp90 chaperone machine with the inhibition of Hsp90 

ATPase cycle resulting in decreased or increased GTP binding, which correlated with inhibition 

of Hsp90’s entry or exit from its ATPase cycle, respectively.  Hsp90 is also demonstrated to 

modulate the association of DBC2 with components of Cul3 ubiquitin ligase complexes. 
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Experimental Procedures  

Deletion Constructs:   

 

 All deletion mutants were constructed with the pcDNA3.1 vector.  All N-terminal deletion 

constructs containing truncations of the DBC2 ORF corresponding to specific structural regions, 

contain a pfu PCR derived Flag epitope tag at the 5’ end of the amplified insert. C-terminal 

deletions of specific structural regions were constructed using site-directed mutagenesis 

(Stratagene) to insert stop codons at desired locations using the full-length pcDNA3.1 Flag-DBC2 

as a template.    

In vitro coupled transcription/translation (TnT):   

 

Flag-tagged DBC2 and each deletion construct was synthesized by couple transcription/ 

translation (TnT) in nuclease-treated rabbit reticulocyte lysate (RRL) (Craig et al., 1992) 

containing [35S]-methionine for 30 min at 30°C in the presence or absence of 10 μg/mL 

geldanamycin, DMSO, 20 mM sodium molybdate (MoO4), or deionized water.  Where noted, 

Flag-DBC2 or deletion constructs were synthesized by TnT (T7 PCR TnT® Quick Master mix, 

Promega) supplemented with either [35S]-methionine or non-radioactive methionine for 90 min at 

30°C in the presence or absence of 10 μg/mL GA, DMSO, 20 mM sodium molybdate (MoO4), or 

deionized water For the TnT of Flag-DBC2 and its R99G, and V191I mutants, each construct was 

synthesized by PCR using the pfu polymerase (Aligent) with PCR primers containing a T7 

promoter and poly-A extensions at the 5’ and 3’ end, respetively according to manufactures 

protocol. The amplified DNA was then added to the TnT (Promega) supplemented with [35S]-

methionine for 90 min at 30°C in the presence or absence of 10 μg/mL GA, DMSO, 20 mM 

sodium molybdate (MoO4), or deionized water. In all cases, naïve RRL containing no template 

DNA was used as the control for the nonspecific binding. 
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Immunoprecipitation/GMP/GTP/Neutravidin/UBE pull-down assay:   

 

All samples were placed on ice, and then clarified by centrifugation for 7 min at (16,000 x g) 

prior to the immuno-adsorptions or pull downs. Samples were added to 12.5 μl IgG resin 

containing pre-conjugated anti-Flag-tag IgG (Sigma), 25 μl of GMP- or GTP-agarose, or 20 μl of 

Neutravidin- or UBE-linked agarose. Samples were incubated with resin for 1 hr at 4°C with 

mixing. Samples were then washed four times with either low salt buffer containing, 10 mM 

Pipes (pH 7.4), 100 mM NaCl, and 0.5% Tween 20 (P100T) or once with P100T, twice with high 

salt buffer containing 500 mM NaCl (P500T), followed by a wash with P100T.  Samples were 

boiled in SDS sample buffer, and analyzed by SDS-PAGE on an 8% gel, followed by 

electrotransfer to PVDF membrane (BioRad), followed by autoradiography or Western blotting 

for co-adsorbed proteins.  Samples quantified by scintillation counting were added to scintillation 

cocktail immediately following the final wash step and counted.  Samples for mass spectrometry 

were eluded from the Flag immunoresin by 100 mM ABC, 8 M urea and 4 mM EDTA.  Elution 

was carried out at 4°C for 30 min, and then supernatant was removed and stored at -80°C until 

LC-MS/MS analysis with an Obitrap XL mass spectrometer.  

Mammalian Whole Cell lysate preparation:  

  

MCF-7 and/or HeLa cells were grown to confluence in either 75 cm2 or 150 cm2 flasks in DMEM 

medium at 37 °C in 5% CO2.  Cells were detached using 0.25% trypsin for 10 min at 37°C.  Cells 

were then pelleted and washed once in fresh DMEM medium.  Following two additional washes 

in ice cold mammalian wash buffer, containing 35 mM Hepes pH 7.5, 140 mM NaCl and 11 mM 

glucose, the cells were mixed 1:2 in mammalian cell lysis buffer, containing 20 mM Hepes pH 

7.7, 140 mM KOAc, 1.0 mM Mg(OAc)2. The suspension was then placed into a Parr nitrogen 

disruption chamber (Parr Instrument Company.)  The Parr chamber was equilibrated with 
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nitrogen to 1200-1500 psi for 30 min at 4⁰C with stirring of the cell suspension during the 

equilibration.  After equilibration, the pressure was released and the lysate collected.  After 

collection, the lysate was centrifuged at (16,000 x g) for 12.5 min at 4°C.  Following 

centrifugation aliquots of lysate made, snap frozen in liquid N2 and stored at 80°C until use. 

Immunoprecipitation of DBC2 complexes reconstituted with HeLa or MCF-7 whole cell 
lysate for analysis by LC-MS/MS. 

 

At the completion of Flag-tagged DBC2 synthesis by TnT, samples (200 µl) were mixed with 50 

µl of either HeLa or MCF-7 whole cell lysate (WCL) prepared as described above, followed by 

incubation for 20 min at 30 oC..  The samples were then placed on ice, and clarified by 

centrifugation for 12.5 min at (16,000 x g) prior to the immuno-adsorptions. Samples were added 

to 30 μl anti-flag agarose (Sigma), incubated with resin for 1 hr at 4°C with rocking, and then 

washed five times with buffer containing, 10 mM Pipes (pH 7.4), 150 mM NaCl, (P150).  

Proteins were eluted from the anti-Flag agarose with 100 mM ABC, 8 M urea and 4 mM EDTA.  

Elution was carried out at 4°C for 30 min.  The supernatant was removed and stored at -80°C 

until LC-MS/MS analysis with an Obitrap XL mass spectrometer or the eluted samples were 

boiled in SDS sample buffer, and analyzed by 8% SDS-PAGE followed by electrotransfer to 

PVDF membrane (BioRad) for Western blotting for co-adsorbed proteins.  

The LC-MS/MS analysis of DBC2 associated proteins:  

The LC-MS/MS data was compiled by Scaffold for protein identification and then exported to 

Microsoft Excel for statistical analysis.  Duplicate biological samples were analyzed by LC-

MS/MS on an ORBITRAP XL mass spectrometer with three technical replicates using 

quantitative spectral counting.  Centroided ion masses were extracted using the extract_msn.exe 

utility from Bioworks 3.3.1 and were used for database searching with Mascot v2.2.04 (Matrix 

Science) and X! Tandem v2007.01.01.1 (www.thegpm.org).  Searches were conducted in the 
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current IPI or SWISS Prot human database using the following search parameters: parent ion 

mass tolerance 10 ppm; fragment ion tolerance 0.8 Da; and one missed tryptic cleavage. Gln-

>pyro-Glu of the N-terminus, oxidation of methionine, formyl of the N-terminus, acetyl of the N-

terminus and carbamidomethyl of cysteine were specified in Mascot and X! Tandem as variable 

modifications. Peptide and protein identifications were validated using Scaffold v2.2.00 

(Proteome Software) and the PeptideProphet algorithm. Probability thresholds were greater than 

99.0% probability for protein identifications, based upon at least 2 unique peptides identified with 

90.0% certainty.  Proteins that contained similar peptides and could not be differentiated based on 

MS/MS analysis alone were grouped to satisfy the principles of parsimony. Each ID contains at 

least four spectral counts on average per technical replicate, and was present in both of the 

biological samples with significant differences between the control and drug treated cells of 

p<0.5 (T-test). 

Antibodies used for Western blotting: 

Cul3- ab75851; DBC2 –N15 and C20 Delta Labs; G3BP1- sc-81940; DCP2 – ab28658; TIA-1 – 

sc-1751; CSN4- NBP1-56646; Hsp90, Hsp70, Hop, cdc37 – lab prepared;  
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Results 

 

See supplemental attached file:  DBC2 Results  
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Discussion: 

The Hsp90 chaperone machine has a plethora of client protein covering most aspects of 

cellular pathways and functions (current list; www.picard.ch/download/Hsp90interactors.pdf).  

Steroid hormone receptors (SHR) are a subset of the Hsp90 client proteins that have been 

extensively studied.  The SHR chaperone cycle which modulates the receptor’s hormone binding 

function, begins with the binding of Hsp70 and Hsp40.  Then, this complex binds Hop which 

facilitates the bridging of the SHR to Hsp90.  At this point in the cycle the SHR is unable to bind 

hormone.  It becomes competent to bind hormone after the binding of ATP, release of the Hsp70 

and Hop, and the recruitment of p23 and the immunophilin FKBP52.  Once in this complex the 

SHR is now ready to bind hormone and begin cellular signaling (Picard 2006).  This cycle is 

similar to the process that DBC2 goes through as it binds to the chaperones Hsp70, Hsp90 and the 

co-chaperone Hop (Figure 1, 2b, 5e).  Additional components of that are involved in the transition 

from early chaperone complexes to intermediate and late Hsp90 machine complexes are shown in 

Table 4, which includes Hsp40 (early) and p23 (late) chaperones complexes associated with 

DBC2 during its interaction cycle (Figure 8). 

This study further examined the binding of the chaperone machine in relationship to the 

domain structure of DBC2.  A multi-domain protein, such as DBC2, may contain multiple motifs 

that require Hsp90-assisted folding.  Cdc37, whose interaction with DBC2 initially identified it as 

a putative Hsp90 client, was also demonstrated to interact with additional motifs within the DBC2 

structure.  While Cdc37 interacted somewhat weakly with full length DBC2, it was observed to 

interact with DBC2 deletion mutants extending beyond the Rho domain until the bipartite linker 

region of the first BTB domain was deleted.  This area of the protein is rich in predicted 

phosphorylation motifs, among others post-translational modifications, with a strong possibility 

of Cdc37 participating in modulation of these modifications. 

The interactions of DBC2 with components of the Hsp90 chaperone machinery indicate 

that the Hsp90/Hsc70/HOP chaperone module strongly localized to the Rho domain of DBC2. 
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However, components of Hsp90 chaperone modules containing Cdc37 appear to interact with 

signaling motifs present distal to DBC2 Rho domain. 

The Hsp90’s modulation of DBC2’s GTP binding suggests that it is not regulated by 

mechanisms that modulate the classical G-protein GTPase cycle. The classical cycle includes 

guanine nucleotide exchange factors (GEF), facilitating the exchange of GDP for GTP.  GTPase- 

activating proteins (GAPs) that stimulate the catalysis of GTP to GDP.  GDP disassociation 

inhibitors (GDIs) that impede the replacement of GDP by GTP, and the newly coined GDI 

displacement factor (GDF) that stimulates the release of the GDI from the G-protein 

(DerMardirossian and Bokoch 2005). 

Atypical small GTPases have been demonstrated to function outside the framework of 

this classical GTPase cycle (Aspenstrom et al., 2007).  The families with characteristics that 

qualify them as atypical are Rnd, RhoBTB, Wrch-1/Chp, and RhoH (Aspenstrom, Ruusala et al. 

2007).  They all have in common altered GTP binding/hydrolysis capabilities.  For example, 

Wrch-1 (RhoU) has such a rapid nucleotide exchange rate in the absence of  any substitutions 

within the nucleotide binding consensus sequence, that it is considered to be constitutively bound 

to GTP (Aspenstrom, Ruusala et al. 2007).  Rnd, RhoH and RhoBTB proteins have substitutions 

in their conserved consensus GTP binding site.  However, the RhoH and Rnd proteins have been 

shown to remain in the GTP bound state, and to lack GTP hydrolysis activity (Aspenstrom, 

Ruusala et al. 2007).    Regulation of the Rnd G-protein is modulated through its degradation 

which terminates its functional activity (Chardin et al. 2006).  This is a mechanism proposed for 

the regulation of DBC2 function, with the Cul3 ubiquitin ligase system catalyzing the auto-

ubiquitination of DBC2 in the absence of bound substrates. The increase and decrease of GTP 

binding in response to inhibition of the Hsp90 ATPase cycle by molybdate and gelanamycin, 

respectively,(Figure 4c, d) suggests a functional modulation of GTP binding similar to that by 

which Hsp90 prepares the hormone binding domain of the SHR to accept hormone (Echeverria 

and Picard 2010) (Figure 8). 
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Exemplifying the GTP binding of DBC2 is the desthiobiotin activated GTP  cross-linking 

of biotin to DBC2.  The proposed crosslink is to Lys27 of the P-loop, which is also present in the 

other Rho mutants tested.  Each mutant retained the specificity for GTP binding, as well as 

having their GTP-binding activity modulated by the Hsp90 chaperone machine (figure 5b,d,e).    

The reduced GTP-binding of DBC2 in the presence of geldanamycin is reminiscent of the Hsp90-

bound glucocorticoid receptor (GR) in the presence of geldanamycin (Echeverria and Picard 

2010) in which the steroid hormone binding pocket remains inaccessible until Hsp90 progresses 

to its “late” complex conformation. 

The previously reported Cul3:DBC2 interaction was confirmed in this study with an 

expansion of the DBC2/CRL complex to include its interaction with the regulatory COP9 

signalosome.  The COP9 signalosome binding to Cul3 is required for the activation and 

regulation of its E3 ligase activity, and may function to stabilize DBC2 in the absence of Cul3 

target proteins, via COP9 deneddylation of Cul3 or direct COP9 mediated deubiquitination of 

DBC2 (Bosu et al., 2008). Regardless, COP9 signalosome preforms an obligatory  function 

closely associated with the ubiquitin proteasome pathway, which may be linked to the 

ubiquitinated protein mediator complex formed between COP9, VCP and USP15,  and thus it 

may play a potential role in the sorting of Cul3:DBC2 target proteins (Cayli et al., 2009). 

The identification of DBC2-associated E2 ligases (UBE2O, 22% coverage, 23 unique 

peptides, p=4.4E-16; and UBE2H, 36% coverage, 9 unique peptides, p=4.3E-7) and a HECT E3 

ligase (C12orf51, 17% coverage, 68 unique peptides, p=2.0E-35) by LC-MS/MS analysis of 

DBC2 pull downs, further supports a role for DBC2 as a substrate adapter for ubiquitin ligase 

complexes. In addition, the Cul4-associated substrate adapter DDB1, and the SKP1/Cul1- 

associated protein CACBP, which also presumably functions as a substrate adapter, were 

identified in pull downs of DBC2 from MCF7 lysates.  These findings suggest that there may be 

regulatory crosstalk between Cul3 E3 ligase complexes and the Cul4 and Cul1 E3 ligase 

complexes, in addition to the  hypothetical E3 ligase (C12orf51)(Angers et al., 2006, Wilkins et 
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al., 2006, Matsuawa et al., 2002).  This crosstalk may potentially involve E3 ligase modulated 

turnover of substrate adapters associated with other E3 ligase systems.  

The tolerance to the anti-proliferation effects of DBC2 by resistant HeLa cells can be 

attributed to sequestration of DBC2 into SGs, a structure that controls both stalled translational 

pre-initiation complexes that accumulate due to eIF2alpha phosphorylation that occurs in 

response to stress (Kedersha et al. 2005).  The lack of an association of DBC2 with the hallmark 

PB protein DCP2 indicates that DBC2 is solely present in SGs.  Since SGs, like aggresomes, 

contain aggregates of unfolded and ubiquitinated proteins that are to be target for degradation by 

the proteasome pathway, the previously reported rapid degradation of DBC2 may stem from 

DBC2’s involvement with SGs as a means of efficient sequestration and subsequent degradation 

(Brooks et al., 2010; Collado et al., 2007).   

The diversity of DBC2 interacting proteins identified in the sensitive MCF-7 cell line 

play roles in modulating many different areas of cellular function, the Cul3 E3 ligase and the 

proteasome pathway being previously discussed.  DBC2 is known to play a role in the regulation 

of cellular proliferation.  The identification of DBC2 interactions with other cell components will 

help to connect DBC2 to pathways that modulate cell proliferation, along with the currently 

recognized effects of DBC2 on CXCL14 and BRSM1 expression, in conjunction with Akt and 

ezrin phosphorylation (Ling et al., 2010; McKinnon et al., 2008).   

The association of DBC2 with additional cellular components involved in cytoskeletal 

dynamics and vesicular transport along microtubules and with motor proteins is consistent with 

its reported involvement in the transport of VSVGs from the ER to the Golgi (Chang et al., 2006.  

The identifications include association of DBC2 with the adaptor proteins AP-2A1, 2B1 and 3B1, 

connecting DBC2 to cargo protein selection during the formation of vesicles, which may explain 

DBC2’s link to components of the ER based chaperone machinery. 

The identification of the presence of ezrin in the DBC2 pull downs supports the 

interaction of DBC2 deduced by Ling (et al., 2010). DBC2’s interaction with the additional ERM 
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family member, moesin, further supports a role for the interaction of DBC2 with actin filament 

components at the plasma membrane (Aspernstrom et al., 2004).  DBC2/RhoBTB2 expression 

has been reported to have no effect on the organization of actin filaments. Instead 

DBC2/RhoBTB2 was found associated with vesicular structures suggesting a possible function in 

vesicular docking and fusion.  Such a role for DBC2 may explain the observation that DBC2’s is 

highly expressed during neurogenesis, suggesting that DBC2 may play a role in modulating 

synaptic vesicle formation and release, or vesicle trafficking that is required for synaptic pruning 

and/or growth (St. Pierre et al., 2004; Knowles et al., 2002).    

The possible involvement of DBC2 with chromatin remodeling is likely linked to its 

localization to paraspeckles through it His repeat motif (Salichs et al., 2009).  Paraspeckles are 

known to reside inside the nucleolus in the interchromatin space, and they have been suggested to 

play a role in transcriptional control: a function that is also connected to the COP9 signalosome 

(Fox et al. 2010; Chamovitz et al., 2009).  The proteins residing inside of paraspeckles have been 

shown to interact with RNA Pol II, and as such may be associated with active genes (Fox et al., 

2002).  Whether DBC2’s role is the regulation of transcription factors through Cul3 or a novel 

function controlling actively transcribing genes, but is noteworthy that several of the identified 

DBC2-associated nuclear proteins have known links to chromatin remodeling. 

The following model is proposed for Hsp90 in the modulation of DBC2 that is consistent 

with the effects of geldanamycin and molybdate on the interaction of Hsp90 chaperone machine 

components with DBC2, their effect on the binding of GTP to DBC2, aand DBC2’s interaction 

with Cul3 and the COP9 signalosome.  The Hsp90 chaperone machine is proposed to function as 

a molecular wedge that separates the DBC2 Rho domain from an intramolecular interaction with 

the BTB domain region, an interaction that suppresses its GTP binding activity.  Release of 

DBC2 from its auto-repressed conformation would free the BTB domains for binding to Cul3 and 

open the Rho domain to GTP binding (Figure 8).  This model is consistent with findings that the 

Rho domain of DBC2/RhoBTB2 interacts with its BTB region, which maintains it in an inactive 
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state, preventing its ubiquitination and degradation by the proteosome (Berthold et al., 2009).  

However, the modulation of the GTP binding and domain separation are not the only aspects of 

the coupling of the Hsp90 cycle to DBC2 function.  The Hsp90 chaperone machine also acts as a 

scaffold for the assembly of DBC2 complexes.  Geldanmycin-bound Hsp90 associates with 

DBC2 in its auto-inhibited conformation, which is lacking in GTP and Cul3 binding. Progression 

of the Hsp90 to the intermediate stage of its cycle releases DBC2 from its repressed conformation 

stimulating the binding of GTP and DBC2’s interaction with Cul3. The subsequent release of the 

Cul3-DBC2 complex from the Hsp90 chaperone machine allows components of the COP9 

signalosome to assemble into the Cul3/DBC2 E3 ligase complex.  It is not known whether 

neddylation of Cul3 occurs prior to its release from Hsp90, but the association of the core 

signalosome component CSN4 subunit with molybdate stabilized Hsp90/DBC2 complexes 

suggest it may occur while Cul3 is bound at the late stage in the Hsp90 cycle.  Thus, DBC2 must 

transit the entire Hsp90 ATP-driven reaction cycle for it to reach its full signaling potential.  

Whether Hsp90 facilitates DBC2’s assembly into additional non-Cul3 containing complexes, 

which function in other noted pathways, or whether these components are target of Cul3/DBC2 

E3 ligase complexes needs further investigation.       
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Figure 8.  A representative model for the integration of the Hsp90 ATPase cycle with the 
modulation of DBC2 GTP binding/activation.  The DBC2 domains are: 1) Rho domain, 2) 
BTB1 domain, 3) BTB2 domain, and 4) putative RING domain.  The (x) is in reference to the 
Rho domain that is not competent to bind GTP.  “Cul3” and “CSN4” are used as example 
proteins whereas they can represent any know associating proteins.  “Early”,   “intermediate”, and 
“late” refer to the Hsp90 ATPase cycle formed complexes. 
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CHAPTER III 
 

 

Wheat Germ Lysate a Cdc37 Null System 

Introduction 

  The Hsp90 chaperone machine interacts with many co-chaperone partners that are 

required for its interaction with client proteins and chaperoning function, providing it with the 

ability to serve a diverse set of clientele.  Cdc37 was first identified in 1980 as a protein involved 

in control of the cell cycle and was subsequently found to be what is coined the “kinase specific” 

co-chaperone of the Hsp90 chaperone machine (Reed et al. 1980; Schulz et al. 2001).  Cdc37 was 

designated  the kinase specific co-chaperone due to its interaction with Hsp90 protein complexes 

containing protein kinases clients, but its absence from Hsp90/ steroid hormone receptor 

complexes(Schulz et al. 2001).  A list of Cdc37 interacting proteins can be found at 

(www.picard.ch/download/cdc37interactors.pdf).  However, subsequently a specific interaction 

between Hsp90 and the androgen receptor was demonstrated, suggesting that Cdc37-associated 

clientele may extend beyond its interaction with protein kinases (Roe et al., 2001).   

Phosphorylation of serine 13 (Ser13) has been demonstrated to be necessary for the 

formation of Hsp90/Cdc37/kinase complexes (Shao et al., 2003).  Subsequently it has been 

proposed that Cdc37 undergoes a cyclic regulatory phosphorylation and dephosphorylation of 

Ser13 which is involved in the initial assembly and disassembly of the Hsp90:kinase:Cdc37 

complexes, respectively (Vaughan et al., 2008).  Cdc37 is composed of three functional domains,  

the N-terminal kinase binding domain, the middle Hsp90-interacting domain and a C-

terminal domain of unknown function (Shao et al. 2003).   
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Amino acids present in the first eight residues of Cdc37 are highly conserved and have 

been demonstrated to be critical for the interaction of Cdc37 with protein kinases (Shao et al. 

2003).  Additional residues, although not clustered in the primary sequence, are also highly 

conserved raising the question as to their contribution to Cdc37’s molecular function. Recently it 

has been proposed that Cdc37’s function is modulated by other post-translational modifications. 

However, Cdc37 has been shown to dimerize, such that the formation of a mutant/wild-type 

heterocomplex would have the possibility of masking the effects site-specific mutations designed 

to test the importance of these conserves amino acid residues in modulating Cdc37 function. 

Thus, the identification of a Cdc37 null system to assess the functional consequences of 

mutations to Cdc37 would be a substantial leap towards deciphering structure/ functional 

relationships that regulate Cdc37.  We have identified the Wheat germ lysate (WGL) system to be 

Cdc37 null, and demonstrate that it represents a useful model system to explore Cdc37 function 

and its mechanism of action.       
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Experimental Procedures 

Wheat germ In vitro coupled transcription/translation (TnT): 

Each protein construct was synthesized by coupled transcription/ translation (TnT) in WGL (SP6 

Quick TnT® Quick Master mix, Promega) supplemented with either [35S]-methionine for 2 H at 

25°C in the presence or absence of 10 μg/mL GA, DMSO, 20 mM sodium molybdate (MoO4), 

deionized water, recombinant p23, recombinant, or casein kinase II (CKII, Cell signaling).  Naïve 

WGL containing no template DNA was used as the control for nonspecific binding. 

Nickel (Ni) NTA pull-down assays:   

All samples were placed on ice, and then clarified by centrifugation for 12.5 min at (16,000 x g) 

prior to the pull-down. Samples were added to 15 μl Ni NTA resin, incubated with resin for 1 H 

at 4°C with mixing, and then washed four times with either low salt buffer containing, 10 mM 

Pipes (pH 7.4), 300 mM NaCl, 0.5% Tween 20, and 15mM Imidazole (P300T + 15mM 

imidazole).  Samples were then boiled in SDS sample buffer, and analyzed by SDS-PAGE on a 

10% gel, followed by electrotransfer to PVDF membrane (BioRad.) and analysis by 

autoradiography and Western blotting for co-adsorbed proteins.  The plant Hsp90 and p60 (Hop) 

antibodies were provided by Priti Krishna as was the CTR1 construct (AC101-CTR1).   

Tyrosine kinase assay: 

His-tagged Lck was generated by TnT in WGL in the presence or absence of Cdc37 

supplementation with or without the addition of geldanamycin, followed by pull-down with Ni 

NTA resin as described above. The activity of affinity isolated Lck kinase was determined 

incubation of resins with 0.5 µg/ml acid-denatured enolase and 1.0 mM ATP (normalized) in 

buffer containing 10 mM Pipes, pH 7.4, 150 mM NaCl and 20 mM MgCl2 at 22°C for 5 min.  

Boiling SDS sample buffer was added to the reaction. Then samples were separated by SDS-

PAGE and electrotransfered to PVDF followed by Western blotting for Tyr phosphorylation 

(anti-phosphotyrosine antibody, P-Tyo-100, Cell Signaling, #9411) to visualize enolase 



44 
 

phosphorylation.  Co-adsorption of Hsp90 and HOP were analyzed by Western blotting and 

Cdc37 binding was determined by autoradiography. 
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Results  

Conserved Cdc37 residues 

The first 60 amino acids of Cdc37 are the most conserved across multiple species, 

suggesting that the residues play crucial roles in Cdc37’s structure and function (Figure 1).  These 

residues reside inside the kinase binding domain with the function of residues 2-8 of Cdc37 

having been tested by scanning alanine mutagenesis for their ability to bind Hsp90 and facilitate 

the maturation of protein kinases (Shao et al, 2003).  In addition, Ser13 has been demonstrated to 

be necessary for the formation of a ternary complex between Hsp90, Cdc37 and protein kinase.  

The mutagenesis of other conserved Cdc37 residues would further elucidate molecular 

mechanisms involved in kinase binding and maturation by the Hsp90/Cdc37 chaperone 

machinery.  As noted in the introduction, the propensity of Cdc37 to forms dimers makes 

interpretation of experiments in Cdc37-expressing cell system equivocal.  Thus, the identification 

of a system that is Cdc37 null would facilitate structure/ function relationships that govern 

Hsp90/Cdc37 modulated folding and activation of associated protein kinases.  

Cdc37 the missing component 

Analysis of the genomes of diverse species for genes encoding Hsp90 co-chaperones 

found no evidence for a gene encoding Cdc37 in plants (Johnson and Brown, 2009).  Therefore, 

we examined the well-characterized WGL system for its ability to reconstitute the binding of 

Hsp90 to newly synthesized protein kinase.  The A. thaliana protein kinase CTR1 was 

synthesized by coupled transcription/ translation in WGL.  Western blotting of pull downs of the 

newly synthesized His-tagged CTR1 indicated that no Hsp90 was bound to the protein kinase 

(Fig. 2, lane #). The WGL was then reconstituted with components that we have previously 

demonstrated to be required for complex formation or that are present in complexes formed 

between Hsp90 and protein kinase synthesized in rabbit reticulocyte lysate (RRL) (Cdc37, CKII, 



46 
 

and p23), to determine the component was the necessary to restore the presence of Hsp90 in 

complex with the kinase CTR1. The results presented in Figure 2 demonstrate that without the 

addition of Cdc37 the ternary Hsp90:CTR1:hCdc37 does not form.  In the absence of Cdc37, the 

amount of Hsp90 that was present in CTR1 pull down was equivalent to that present in the non-

specific binding control. Addition of CKII and/or p23 was not sufficient to restore the ternary 

complex.  Furthermore, addition of either p23 or CKII did not enhance the formation of this 

complex, consistent with homologues of these proteins being expressed in plants (Johnson & 

brown 2009) (Laxminarayana B, Krishna VM, Janaki N, Ramaiah KV, 2002). Similar to the RRL 

system, the addition of molybdate was not necessary to stabilize the formation of the Hsp90/ 

hCdc37CTR1 complex.  Thus, the only factor that affects the complex formation in WGL is 

Cdc37, as it was necessary and sufficient to restore the Hsp90/Cdc37/kinase ternary complex 

(Figure 2).   

The effect of geldanamycin on the reconstitution of the Hsp90/Cdc37/kinase complex.   

To determine whether the Hsp90/ Cdc37/ kinase ternary complex that was reconstituted in WGL 

had properties similar to those of the mammalian RRL system, we examine the effect of the 

Hsp90 inhibitor on the formation of the ternary complex.  In the RRL system geldanamycin 

prevents the formation of a stable complex between nascent kinases, Hsp90 and Cdc37 (ref). 

(figure 3).  The ternary complex reconstituted by the addition of hCdc37 responded to 

geldanamycin-inhibition in a manner similar to the complex formed in RRL.  The presence of 

geledanamycin disrupted the interaction of hCdc37 with Hsp90/CTFR1, preventing the formation 

of the complex (Figure 3, lanes 7-9). 

The influence of p23 on the autophosphorylation of the Hsp90 dependent kinase Lck in WGL 

To determine whether the addition of p23 would enhance the binding of Hsp90/Cdc37 to 

the human Hsp90-dependent kinase Lck in WGL and affect its auto-phosphorylation, Lck was 
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synthesized in the presence or absence of p23 in the presence of Cdc37.  No significant 

enhancement of Hsp90/Cdc37 binding or auto-phosphorylation of Lck was observed upon 

addition of human p23 to WGL (Figure 4).  Thus, wheat germ ortholog of p23 is functional and 

present in adequate supply, further supporting the conclusion that the only limiting factor in 

reconstitution of Hsp90/kinase complexes in WGL is Cdc37 (Figure 4).  

Hsp90-dependent activation of Lck in WGL 

To test the utility of the WGL system for studying the Cdc37-dependent stabilization of 

the interaction of Hsp90 with protein kinase, the Hsp90-dependent client kinase Lck was generate 

in the presence or absence of hCDC37 by TnT in WGL with and without the addition of 

geldanamycin.  The properties of Lck generated in WGL was similar to the properties Lck 

exhibits when synthesized in RRL (ref).  The supplementation with Cdc37 was necessary for the 

for the reconstitution of stable Hsp90 binding to Lck (Fig.5).  However, in the absence of 

hCdc37, Lck kinase was active in phosphorylating the model substrate acid-denatured enolase in 

vitro, and geldanamycin had minimal inhibitory effect on Lck’s kinase activity (Fig. 5). 

Supplementation of WGL with Cdc37, stabilized the binding of Hsp90 to Lck, and stimulated 

Lck’s kinase activity as measured by phosphorylation of enalose. The addition of geldanamycin 

blocked Hsp90/Cdc37/Lck complex formation and the ability of hCdc37 supplementation to 

stimulate Lck’s kinase (Fig. 5). Western blot analysis of the Lck pull downs indicated that the 

Hsp90 co-chaperone Hop was specifically bound the Lck and that interaction was not disrupted 

by addition of geladanmycin or supplementation with hCdc37 (Fig. 5).  In non-plant systems, the 

stable interaction of HOP with protein kinases has not been observed.  
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Figure 1. Sequence alignment of the first 60 amino acids of Cdc37 from various 
organisms.  H.s (Homo sapiens- sp_Q16543), M.m (Mus Musculus- Q61081), B.t (Bos 
Taurus- sp_Q5EAC6), R.t (Rattus norvegicus- sp_Q63692), S.s (Sus scrofa- 
tr_Q684M6), G.g (Gallus gallus- sp_O57476), C.e (Caenorhabditis elegans- sp_O02108), 
C.b (Caenorhabditis briggsae- tr_A8X3Q4), B.m (Bombyx mori- tr_Q5CCL4), X.t 
(Xenopus tropicalis- tr_Q28CE8), D.r (Danio rerio- tr_Q7ZV56), T.f (Tetraodon 
fluviatilis- sp_Q9DGQ7),S.sa (Salmo salar- tr_B5X4J1), L.s (Lepeophtheirus salmonis- 
tr_C1BSQ2), S.j (Schistosoma japonicum- tr_C7TQQ3), D.m (Drosophila melanogaster- 
tr_Q86NM8), A.f (Aspergillus fumigates- tr_Q4WPP7), S.p (Schizosaccharomyces 
pombe- sp_O94740), S.c (Saccharomyces cerevisiae- sp_P06101), C.g (Candida 
glabrata- tr_Q6FVL7), C.d (Candida dubliniensis- tr_B9WIX2), C.a (Candida albicans- 
sp_Q8X1E6). The large box encases residues 2-8 of the Homo sapiens Cdc37 protein 
along with the aligned residues of the various species, these residues were analyzed by 
alaine scanning mutatgenesis.  The small box indicates the invariant serine residue, which 
is critical to the function of Cdc37 in the Hsp90 chaperone machinery, also were 
analyzed with an alanine (A) and glutamic acid (E) substitution via site-directed 
mutagenesis.  Representative labeling, (*)- denotes an invariant residue, (:)- denotes a 
conserved substitution, (.)- denotes a similar substitution, (sp)- Swiss-Prot and (tr)- 
TrEMBL. 
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Figure 2.   Co‐chaperone‐dependent  reconstitution  of Hsp90  protein  kinase binding  in WGL.  

[35S]Labeled His‐tagged CTR1 and hCdc37 were synthesized  in WGL  in the presence or absence 

of Cdc37, p23, CKII and MoO4 and pull‐down using Nickel NTA resin followed by washing 4 times 

using P300T with 15 mM Imidazole.  CTR1 and Cdc37 (bottom panel) were analyzed through an 

autoradiogram with Western  blotting  for  plant  Hsp90  (top  panel).  Lane  1  contains  only  35S 

labeled CTR, 1, 2, 3, 4, 6, 7  contain cdc37, lanes 2, 3, 5, 6 all contain p23 with or without cdc37, 

lanes 2, 3, 4, 5 contain CKII, lane 2 contains MoO4 and NS lane 8 contains all additives except for 

the 35S labeled His‐tagged CTR1.   
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Figure 3.   Ternary complex response to GA  inhibition.    .   35S‐met  labeled His‐tagged CTR1 and 

hCdc37 were  synthesized  in WGL  in  the presence or absence of DMSO or GA and pull‐down 

using Nickel NTA  resin was  followed  by washing  4  times  using  P300T with  15mM  Imidazole.  

CTR1 and cdc37 (bottom panel) were analyzed through an autoradiogram with western blotting 

for plant Hsp90 (top panel).  Lanes (1‐3) represent the NS Translation and binding control, lanes 

(4‐6) are only CTR1 without the addition of translated hCdc37 and lanes (7‐9) contain CTR1 with 

the addition of translated hCdc37.  Lanes (2, 5, 8) all contain the Hsp90 inhibitor GA (+) while all 

additional lanes either have DMSO (‐) or No addition (NA).   
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Figure 4.  35S-met labeled His-tagged hLck and no tag hCdc37 were synthesized in WGL in the 
presence or absence recombinant  p23 followed by a pull-down using Nickel NTA resin and 
washed 4 times using P300T with 15mM Imidazole.  hLck and cdc37 (middle panel) were 
analyzed through  autoradiogram with western blotting plant Hsp90 (top panel).  Lane 1 is the NS 
control, lane 2 is supplement with recombinant p23 and lane 3 is without.     
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Figure 5.  The response to GA inhibition along with activation with hLck in WGL. .  35S-met 
labeled His-tagged hLck and hCdc37 were synthesized in WGL in the presence or absence of 
DMSO or GA and pull-down using Nickel resin was followed by washing 4 times using P300T 
with 15mM Imidazole.  hLck and cdc37 (middle panel) were analyzed through  autoradiogram 
with western blotting plant Hsp90 and p60 (Hop) (top panel). Testing the activity of the hLck 
synthesized in WGL in the presence and/or absence of GA and cdc37 and western blotted Tyr 
phosphorylation of enolase (Y100) (bottom panel). Lanes (1, 5) represent the NS translation and 
binding control, lanes (2-4) are only hLck without the addition of translated hCdc37 and lanes (6-
8) contain hLck with the addition of translated hCdc37.  Lanes (4, 8) all contain the Hsp90 
inhibitor GA (+) while lane (3, 7) either have DMSO (-) or lanes (2, 6) No addition (Ø).   
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Discussion 

The kinase binding domain of cdc37, containing the most highly conserved sequence, has 

the ability to supplement and maintain yeast viability when Hsp90 function is deficient or in the 

absence of Sti1 (the yeast Hop homolog) (Lee et al., 2002).  The functionality is attributed to the 

inherent chaperone function associated with Cdc37 even in the absence of its association with 

Hsp90 (Lee et al., 2002).  Cdc37’s Hsp90 binding domain interacts with Hsp90’s N-terminal 

domain and blocks its ability to bind and hydrolyze ATP during the client loading phase of the 

Hsp90 ATPase cycle (Roe et al, 2004).  Structure/function relationships that govern Cdc37’s 

binding to Hsp90 and kinase and its ability to support kinase maturation are of great interest 

because of the oncogenic nature of many of its substrates, along with the oncogenic properties of 

the over-expression of Cdc37 itself (Pearl et al., 2005).  The presence of Cdc37 is essential for 

viability in yeast, Drosophila and Caenorhabditis elegans (MacLean et al., 2003), making the 

identification of a Cdc37 null system, such as wheat germ lysate (WGL), a significant technical 

stride.  Structure/ function relationships governing Cdc37’s activities can now be studied without 

interference of a background expression of wild-type Cdc37, circumventing the problem that 

might arise due to Cdc37 dimerization and the formation of wild-type/ mutant Cdc37 

heterocomplexes that may potentially mask the effect of the mutation  (Roiniotis et al., 2005).  

Cdc37 was identified as the co-chaperone that was necessary and sufficient to 

reconstitute the Hsp90: kinase complexes in WGL, consistent with the observation that Cdc37 is 

essential in promoting the formation of Hsp90/kinase complexes in other eukaryotic cell systems 

(Smith et al., 2008).   The reconstituted WGL/Cdc37 was found to have properties similar to 

those of RRL, with the Hsp90 inhibitor geldanamycin disrupting the binding of Hsp90 and Cdc37 

to the Arabidopsis Ser/Thr kinase CTR1 and to the human Lck tyrosine kinase. 
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  Of interest, however, is the observation that the Lck kinase expressed in WGL has 

significant kinase activity in the absence of supplementation of the lysate with Cdc37. While 

Cdc37 supplementation stabilized the binding of Hsp90 and Cc37 to Lck and stimulated Lck’s 

tyrosine kinase activity, Lck’s maturation was not entirely contingent on the presence of Cdc37. 

The stimulation of Lck’s kinase activity was due to the presence of Cdc37, as this stimulation was 

lost upon addition geldanmycin. Curiously, a stable association of HOP with Lck was observed 

both in the presence and absence of geldanamycin, and the interaction was not inhibited in the 

presence of Cdc37. These observations suggest that HOP may function in kinase maturation in 

the plant system in lieu of Cdc37. While an interaction of HOP with protein kinases have not 

been observed in mammalian cell systems, Sti1 (yeast HOP) has been demonstrated to play a role 

in stabilizing Hsp90/kinase complexes in yeast (Lee et al 2004).  Thus, in addition to its utility in 

studying structure function relationships that regulate Cdc37, the WGL system may also facilitate 

studies examining the role of Sti1/HOP in kinase maturation which may occur in other eukaryotic 

cell systems, particularly the Plasmodium and Trypanasomal pathogens which have a gene 

coding for a HOP homologue, but no gene coding for Cdc37. 
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CHAPTER IV 
 

 

The Direct Binding of Novel Small Molecule inhibitors of Hsp90 

Introduction 

Surface Plasmon Resonance, (SPR,) is an optical technology able to detect direct 

interactions of biomolecules as the mass changes on the sensor surface.  SPR has gained 

popularity in the biomedical industry mainly due to the development and optimization of both the 

instruments and methods, in the field over the past two decades (Thillaivinayagalingam et al. 

2010.)  The tremendous strides into the identification and characterization of direct interactions of 

biomolecules with ligands, whether the ligand is a protein or a small molecule has made this 

technology more attractive to the academic sector as well as industry.  The SPR technology along 

with a nano-scale flow system reaches further towards replacing the high reagent consuming 

coupled enzymatic reactions previously used to determine the kinetics of a reaction.  This label-

free real time method allows for the binding and dissociation kinetics to be calculated with more 

certainty, and thus binding affinities have more accuracy then those previously gathered.  All 

information reviewed in Shiau et al., 2008; Rich et al., 2008; Thillaivinayagalingam et al., 2010; 

Merwe; Bokatzian-johnson, 2008.       

SPR detection is based on ability to generate surface plasmons at the interface of materials that 

differ in refractive index.  The generation of surface plasmons begins with a beam of plane 

polarized light directed at back of the sensor surface which results in an evanescent wave 
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exciting the electrons in the gold coated sensor surface that is in direct contact with the 

assay medium on the other side of the glass surface.  This in turn causes a change in the strength 

of the reflected light. When the refractive index at the surface of the sensor is changed, the angle 

of reflected light is altered which is known as a resonance signal. This resonance signal is directly 

proportional to the change in mass at the sensor surface caused by the binding of the analyte to 

the immobilized ligand and is recorded as response units (RU) which corresponds to the shift of 

the measured angle (Figure 1.) 

 

 

Figure 1:  Theoretical sensorgram depicting a SPR data collection run.  Inserts show the 
composition and arrangement of ligand and analyte at each phase of the sensorgram.  Black flags 
represent immobilized ligand and grey triangles represent the injected analyte.     
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SPR in terms of a bimolecular application begins with surface chemistry that is applied to 

the gold coating on the sensor surface.  This begins with the application of a layer of molecules to 

ensure proper spacing between the biomolecules and the gold surface, but also carries a 

carboxylic acid group for subsequent reactions.  There are many different variations for the next 

layer, but for this example we with explore a covalent immobilization (amine coupling) and the 

capture approach (NeutrAvidin:biotin.)  The first is considered to be the most popular, and 

involves immobilization of a protein through free primary amines. First the carboxylic acid 

groups on the surface of the sensor are activated to which the protein of interest is then covalently 

linked. After the quenching of any free reactive group generated that remain on the sensor’s 

surface, the sensor is ready for data acquisition.  The second method begins with covalent amine 

coupling of Neutravidin to the sensor surface as mentioned above, but the protein (ligand) of 

interest is not directly immobilized to the sensor surface.  The protein is first derivatized, in this 

case with the addition of a biotin for capture by the surface immobilized Neutravidin.   

The next steps are both consistent for each of the methods of protein capture.  The 

analyte at multiple concentrations is injected over the protein (ligand) bound sensor surface with 

the RUs recorded in real time being the result of ligand-analyte interaction.  This measurement 

allows for the accurate kinetic information to be derived in real time for the reasons mentioned 

above.   

There are many advantages to this method:  it is label free; it continuously monitors 

kinetic events (the binding and dissociation of the analyte from the ligand); and it allows for the 

analysis of a large number of samples.  As for all methods there are some disadvantages as well 

that could pose a problem: sufficient amounts ligand must be immobilized to reproducibly detect 

a signal; the ligand/ chip linkage in the analyte buffer must be robust; and the stability of the 

immobilized protein used for the assay. There are methods to ensure and/or test for each of these 

disadvantages during the assay development for each particular experimental setting.  All of these 
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factors must to be taken into consideration before it can be ascertained whether SPR can be used 

to address a given experimental question.  With all the powerful features that SPR has it is surely 

to become a common technology utilized in the years to come.  All information reviewed in 

Shiau et al., 2008; Rich et al., 2008; Thillaivinayagalingam et al., 2010; Merwe; Bokatzian-

johnson, 2008.       
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Experimental Procedures 

Surface Plasmon Resonance (SPR): 

SPR experiments were performed on the ICX, Nomadics SensiQ instrument using 

Hamilton syringes for injection of assayed materials.  All measurements were done in triplicate 

and SPR binding curves were analyzed using QDAT software (ICX Nomadics) to calculate the 

ka, kd,and KD data.     

Protein binding buffer consisted of 10 mM Hepes buffer (pH 7.4) containing 150 mM 

NaCl. Sample and assay running buffer contained 10 mM PIPES (pH 7.4), 300 mM NaCl, and 

2% DMSO or 5% DMSO.  The N-terminal Hsp90 construct (Hsp90NT) corresponded to amino 

acids 1-241 with a C-terminal-GELRSGC tail due to a pET151 TOPO 3’ vector extension. The 

C-terminal Hsp90 construct (Hsp90CT) corresponded to amino acids 531-732     

Protein preparation: 

Insect Sf9 cells overexpressing human Hsp90β were cultured and harvested by the 

Baculovirus/Monoclonal Antibody Core Facility at Baylor College of Medicine and purified 

according to Grenert et al. (1997) and Owen et al. (2002.)  However, the initial DEAE-cellulose 

chromatography step was omitted.  

Bacterial expressed His-tagged full length Hsp90� (Hsp90FL), Hsp90NT and Hsp90CT 

were grown in DE3 star E.coli and purified using a NiNTA affinity column, followed by cleavage 

of the N-terminal His-tag by TEV protease (Invitrogen) after purification. Following epitope tag 

cleavage the proteins were further purified by size-exclusion on a Superdex 200 column. 

Bacterial or Sf9 expressed purified recombinant proteins were passed through a desalting 

column (BioEdge) into a buffer containing10 mM HEPES (pH 7.4) and 150 mM NaCl to prepare 

the proteins for immobilization to a COOH sensor surface.  For immobilization on Neutavidin 
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sensor chips, proteins were biotinylated by reaction with EZ-Link® Maleimide-PEG2-Biotin 

(Thermo Scientific) according to manufacturer’s protocol, followed by passage through a 

desalting column (BioEdge) into buffer containing 10 mM HEPES (pH 7.4), and 150 mM NaCl 

to prepare them for binding to Neutavidin.   

Protein immobilization: 

Sensor normalizations were carried out using protocols developed by Dr. Shawn Daley and Ms. 

Kristen Szabla (OSU Biochemistry and Molecular Biology department) in conjunction with ICX, 

Nomadics.   This method was developed through personal communication and interaction with 

Dr. Shawn Daley.     

Proteins were immobilized on COOH sensor chip surfaces as follows:  The surface of a 

SSO1 COOH sensor chip was normalized and activated by treatment with Nˊ-3- 

dimethylaminopropyl-Nˊ-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide for 

preferential cross-linking of full-length Hsp90s N-terminus to the surface. For immobilization of 

Hsp90, 250 μL of Hsp90 (6.2 mg/mL) in 10 mM Hepes buffer (pH 7.4) containing 150 mM NaCl 

was discrete-injected over the sensor’s experimental surface at a flow rate of 5-10 μL/min, 

resulting in 2000 response units of protein captured. Then, 1 M ethanolamine (pH 8) was used to 

quench the remaining activated groups, and the surface subsequently washed with assay running 

buffer. 

The surface of a SSO3 BioCap SPR sensor chip was mounted in a SensiQ SPR 

instrument (ICX Nomadics), and either the biotinylated Hsp90NT (7.0 mg/mL) or Hsp90CT (6.8 

mg/mL) was discrete-injected over the experimental channel at a flow rate of 5-10 μL/min, 

resulting in the capture of Hsp90NT and Hsp90CT at 1250-1400 response units of protein on the 

sensor experimental surface, respectively. The sensors were subsequently washed with assay 

buffer prior to experimental analysis. 
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The various compounds were diluted in assay running buffer containing 10 mM PIPES (pH 7.4), 

300 mM NaCl, and 2% DMSO and injected over the surface of each protein bound sensor at a 

flow rate of 15 μL/min at 25°C at the indicated concentrations.  The dilutions of all compounds 

were specifically matched to the assay running buffer to minimize index shifts induced by the 

DMSO.  Curves were double referenced to subtract contributions of the buffer containing 2% 

DMSO to the response units. 

Competitor solutions 

Geldanamycin competition studies were conducted using a constant 20 μM concentration of 

geldanamycin in the sample and running buffer.  The concentrations of Gambogic acid were 

varied as indicated by dilution into assay running buffer containing constant 20 µM GA.   
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Results and Discussion 

KU174 

Interaction of KU174 with Hsp90β was analyzed by surface plasmon resonance (SPR) 

spectroscopy. KU174 is a proprietary compound designed by the laboratory of Dr. Brian Blagg 

from the University of Kansas. Various concentrations of KU174 were injected over Hsp90FL 

bound to the sensor surface (Fig. 2).  The response units generated during the injections 

illustrated that KU174 directly interacted with Hsp90 (Fig.2A).  The kinetics of KU174 binding 

to and dissociating from Hsp90 were reliably fitted to a pseudo-first order model for a 1:1 

interaction with the ka and kd calculated to be 1.04x103 (M-1.sec-1) and 0.098 (sec-1), respectively. 

The Kd estimated from the fitting of the binding curve (Fig. 1B: 78 µM  7 s.e.) was in close 

agreement with the Kd estimated from the ratio of the dissociation and association constants (94 

µM  4 s.e.).  In comparison, the ka and kd for the binding of novobiocin to Hsp90β were 211 (M-

1.sec-1) and 0.23 (sec-1) (calculated Kd of 1.1 mM  0.4 s.e), with a Kd calculated from the binding 

curve of 0.86 mM  0.02 s.e.).  Thus, the SPR analysis of the interaction of KU174 with Hsp90β 

indicated the compound bound directly to the purified recombinant protein with a reasonably high 

affinity in vitro (Eskew et al., 2011). 
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Figure 2. Anaylsis of the binding of KU174 to Hsp90β by SPR.  KU174 was injected over 
Hsp90β immobilized to the surface of a SPR sensor chip at concentrations of 0.25, 0.5, 1.0, 10, 
50, 100, and 200 µM as described under “Materials and Methods”. (A.) Sensorgrams of KU174 
binding to Hsp90β.  (B.) Concentration dependent binding curve for the interaction of KU174 
with Hsp90�. 
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Gambogic Acid:    

Gambogic acid (GBA-appendix A) was identified through a high throughput screen of a 

natural product library for inhibitors of Hsp90-dependent refolding of thermally denatured firefly 

luciferase.  In vitro studies indicated that GBA functions similarly to known Hsp90 inhibitors (e.g 

GA-appendix A, Davenport et al, 2011), inhibiting the Hsp90-dependent maturation of the heme-

regulated eIF2 alpha kinase (HRI) and blocking the interaction of HRI with Hsp90 and its co-

chaperone Cdc37. SPR was carried out to determine if GBA interacted directly with Hsp90 and 

whether GBA binding was localized to Hsp90’s N- or C-terminal domain.  

Hsp90FL showed a strong response to the presence of GBA (Figure 3) indicating that 

GBA interacted directly with Hsp90. To determine which domain the GBA binding site, 

Hsp90NT and Hsp90CT were analyzed for their ability to interact with GBA. Hsp90NT was 

found to bind to GBA with an affinity similar to Hsp90FL, with no measurable response being 

detect with GBA was inject over the immobilized HSP90CT sensor surface.      

To determine whether GBA bound to the same site in Hsp90NT as GA, GBA was 

injected over the sensor surface in the presence of a constant 20 µM concentration of GA in both 

the assay and sample buffer.  GA did not have any significant effect on the binding of GBA to 

Hsp90NT, with the calculated GBA binding affinity being comparable to that of GBA binding in 

the absence of a nucleotide binding cleft competitor (Table 1).  Thus, GBA appears to bind to a 

novel Hsp90 N-terminal domain binding site, as GA, a known nucleotide binding cleft inhibitor, 

had no effect on GBA binding and/or affinity (Davenport et al., 2011).   
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Figure 3.  SPR analysis of the interaction of gambogic acid (1) with (A) full length Hsp90 and 
(B) the N-terminal domain of Hsp90.  A. Injection of 1.0, 10, 25 and 50 �M 1 over a SPR chip 
containing bound full length Hsp90.  B. Injection of 0.5, 5, 15 and 25 �M 1 over a SPR chip 
containing bound Hsp90NT. Black line: sensorgram of binding and dissociation; gray line: curve 
fit. 
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Table 1. Constants for the Binding of Gambogic Acid (1) to Hsp90 

protein  ka (M
-1 S-1) kd (S

-1) 
KD 

(μM)   

full length Hsp90  1.16(8)e3 0.0113(4) 9.8(2)   

Hsp90NT 1.47(6)e3 0.01122(7) 7.6(3)   

Hsp90NT (+20µM 
GA) 1.62(8)e3 0.0114(7) 7.0(4)   

Hsp90CT                            no binding    
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APPENDIX A 
 
 

Chemical Structures  

 

The chemical structure of Gambogic Acid (GBA) found at 

http://en.wikipedia.org/wiki/Gambogic_acid.   

 

 

 

 

The chemical structure of Geldanamycin (GA) found at 

http://en.wikipedia.org/wiki/Geldanamycin. 
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APPENDIX  B 

 

Abbreviations 

 

Abbreviations Terms 

35S radioactive sulfur 35 

A Adenine 

AA  Amino Acid 

ABC Ammonium bicarbonate 

Akt2 V-akt murine thymoma viral oncogene homolog 2 

alanine  Ala, A 

AP-2  Transcription factor AP-2 

AP-3 Transcription factor AP-3 

arginine  Arg, R 

asparagine  Asn, N 

aspartic acid  Asp, D 

ATPase  Enzyme that cleaves ATP 

BCL6 B-cell lymphoma 6 protein 

BLAST Basic Local Alignment SearchTool 

BRAC2 breast cancer type 2 susceptibility protein 

BRCA1 breast cancer type 1 susceptibility protein 

BRMS1 Breast cancer metastasis suppressor 1 

BTB/POZ broad-complex tramtrack, bric a brac, poxvirus zinc finger 

BTBk BTB (POZ) domain contain Kelch repeat 

BTB-ZF BTB (POZ) -Zinc finger 

C Cytosine 

C12orf51 Chromosome 12 open reading frame 51 

Cdc32 Cell division control protein 42 homolog 
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cdc37  Cell division cycle 37 homolog 

cdk5 Cyclin-dependent kinase 5 

CKI Casein kinase 1 

CKII Casein kinase 2 

CRL Cullin-RING E3 ligase  

C-terminal carboxylic acid terminal  

Cul  cullin 

CXCL14 Chemokine (C-X-C motif) ligand 14 

cysteine  Cys, C 

DBC2 Deleted in Breast Cancer 2  

DCP2 mRNA-decapping enzyme 2 

DMEM Dulbecco/Vogt modified Eagle's minimal essential medium 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

E.coli Escherichia coli 

E1 ubiquitin-activating enzyme 

E2  ubiquitin-conjugating enzyme  

E3 ubiquitin-protein ligase 

EDTA Ethylenediaminetetraacetic acid 

EF2 E2F transcription factor family 

ER endoplasmic reticulum 

FHA Forkhead-associated domain 

G Guanine 

G cycle  GTPase cycel 

G proteins  GTPase proteins 

G3BP1 Ras GTPase-activating protein-binding protein 1 

GA geldanamycin 

GAP GTPase activating proteins 
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GDF GDI disassoication factor 

GDI Guanine disassoication inhibitor 

GDP guanosine diphosphate  

GDP Guanosine diphosphate 

GEF Guanine nucleotide exchange factor 

glutamic acid  Glu, E 

glutamine  Gln, Q 

glycine  Gly, G 

GMP guanosine monophosphate  

GMP Guanosine monophosphate 

GSK3 Glycogen synthase kinase 3 

GTP guanosine triphosphate 

GTP Guanosine-5'-triphosphate 

GTPase guanosine triphosphatase  

GTPase Enzyme that cleaves GTP 

HECT Homologous to the E6-AP Carboxyl Terminus domain 

HeLa "Henrietta Lacks" cervical caner- epithelial 

histidine  His, H 

Hop  Stress-induced-phosphoprotein 1 

Hsc70 Heat shock 70 kDa protein 8 

Hsp70 70 kilodalton heat shock proteins 

Hsp90  Heat Shock protein 90kDa 

IgG  Immunoglobulin G 

isoleucine  Ile, I 

K562 Lymphoblastoid 

kDa kiloDalton 

KOAc Potassium acetate  

LC-MS Liquid chromatography–mass spectrometry 
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LC-MS-MS Liquid chromatography–mass spectrometry-mass spectrometry 

Lck Lymphocyte-specific protein tyrosine kinase 

leucine  Leu, L 

LOH Loss of heterozygosity  

lysine  Lys, K 

MALDI-TOF  Matrix-assisted laser desorption/ionization-time of flight 

MATH Meprin and TRAF homology domain 

MCF-7 "Michigan Cancer Foundation-7" Invasive breast ductal carcinoma 

methionine  Met, M 

Mg(Oac)2 magnesium acetate 

MG132 Z-Leu-Leu-Leu-al 

Miz-1 Zinc finger and BTB domain containing 17 

MoO4 molybdate 

MS mass spectrometry 

N2 Nitrogen 

NaCl sodium chloride  

NCBI National Center for Biotechnology Information 

Nedd8 Neural precursor cell expressed, developmentally down-regulated 8 

NLS  Nuclear localization signal 

NOT4 CCR4-NOT transcription complex subunit 4 

N-terminal amino terminal  

p23 Prostaglandin E synthase 3 

p38MAPK P38 mitogen-activated protein kinase 

Pak1 P21 protein (Cdc42/Rac)-activated kinase 1 

PCD Programmed Cell Death 

PCR Polymerase chain reaction 

pfu DNA polymerase from the archaeon Pyrococcus furiosus 

phenylalanine  Phe, F 
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PHYRE Protein Homology/AnalogY Recognition Engine 

PKC Protein Kinase C 

PLZF Promyelocytic leukemia zinc-finger 

Poly-A Polyadenylation 

ProD-kinase  Proline directed kinase 1 

proline  Pro, P 

psi pounds per square inch 

PSI-BLAST Position-Specific Iterative BLAST 

PVDF Polyvinylidene fluoride 

PyMOL Molecular modeling software 

Rap1 Ras-related protein 1 

Rap1Gap Rap1 GTPase-activating protein 1 

Ras Rat sarcoma 

Rbx1 RING-Box protein 1 

RDA Representational Difference Analysis 

Rho Ras homology  

RhoH Ras homolog gene family, member H 

RhoU Ras homolog gene family, member U 

RING Really interesting new gene 

Rnd1 Rho family GTPase 1 

Rnd3 Rho family GTPase 1 

rpm rotations per minute  

RRL Rabbit reticulocyte lysate 

SDS-PAGE  sodium dodecyl sulfate polyacrylamide gelelectrophoresis 

serine  Ser, S 

Skp1 S-phase kinase-associated protein 1 

SOCS suppressor of cytokine signaling 

SRC sarcoma, Proto-oncogene tyrosine-protein kinase 
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T Thymine 

T-47D Breast ductal carcinoma 

T7  T7 RNA polymerase from the T7 bacteriophage  

TBC tre-2/USP6, BUB2, cdc16 domain  

threonine  Thr, T 

TIA-1 Nucleolysin TIA-1 isoform p40 

TnT Coupled trasncription translation 

tryptophan  Trp, W 

tyrosine  Tyr, Y 

UBE Ubiquitin binding entity  

UPS Ubiquitin/26S proteasome pathway  

UTR untranslated region  

valine  Val, V 

VSVG Vesicular stomatitis virus glycoprotein 

WASP Wiskott–Aldrich Syndrome Protein 

WCL whole cell lysate 

 

 

 

 

 

 

 

 



83 
 

APPENDIX C 
 

PCR primers  
 

Primer Name  Primer Sequence 

CACC Flag Link 5' - CACCATGGACTACAAGGACGACGATGACAAGAACACCGGCGCGGCG - 3' 

CACC Link DBC2 5' - CACCGGCGCGGCATGGATTCTGACATGGATTATGAAAGG - 3' 

DBC2 NΔ207 CACC 5' - CACCGGCGCGGCGATGCTCATCTCCCGCCGCCACCT - 3' 

DBC2 NΔ258CACC 5' - CACCGGCGCGGCGATGCACCTCCTGGAGGACCCGCTC - 3' 

DBC2 NΔ297CACC 5' - CACCGGCGCGGCGATGCTCATGGACCTGAGTGAGGGGGA - 3' 

DBC2 NΔ319CACC 5' - CACCGGCGCGGCGATGCACCAGGGCCACTCTGATCAA - 3' 

DBC2 NΔ335CACC 5' - CACCGGCGCGGCGATGGGGCGAGACTTCCTGCTCCGA - 3' 

DBC2 NΔ421CACC 5' - CACCGGCGCGGCGATGCAGCCGGGGCCCTTCCGGGCT - 3' 

DBC2 NΔ470CACC 5' - CACCGGCGCGGCGATGGAGGCCTTCATGAACCAGGAGATC - 3' 

DBC2 NΔ501CACC 5' - CACCGGCGCGGCGATGGTGACCTTCATCCTGGATGAT - 3' 

DBC2 NΔ593CACC 5' - CACCGGCGCGGCGATGACAGTGACCGGGCTGATGGAAGC - 3' 

DBC2 NΔ675CACC 5' - CACCGGCGCGGCGATGGATCATTACCAGCGGGCAC - 3' 

DBC2 Nt Back 5' - TCAGACCACAGCCGAGGAGGAAGATGGGGATGA - 3' 

DBC2_QC C559Y for 5' - GCCGTGCTGGAATACCTCTACACCGGCATGTTCACCTCC - 3' 

DBC2_QC C559Y back 5' - GGAGGTGAACATGCCGGTGTAGAGGTATTCCAGCACGGC - 3' 

DBC2_QC G99R for 5' - GCTTTGCTTATGGGAGATCTGATGTGGTGG - 3' 

DBC2_QC G99R back 5' - CCACCACATCAGATCTCCCATAAGCAAAGC - 3' 

D2 CΔ210 UAG top 5' - CGAGCTGCACTCATCTCCTAGCGCCACCTGCAGTTCTGG - 3' 

D2 CΔ210 UAG bottom 5' - CCAGAACTGCAGGTGGCGCTAGGAGATGAGTGCAGVTCG - 3' 

pcDNA3.1 HisΔ top 5' - GGTCTCGATTCTACGTGAACCGGTCATCATCACCAT - 3' 

pcDNA3.1 HisΔ bottom 5' - ATGGAGATGATGACCGGTTCACGTAGAATCGAGACC - 3' 

top DBC2 QC266(2) stop 5' - CTGGAGGACCCGCTCTGCTAGGACGTCATCCTGGTGCTG - 3' 
bottom DBC2 QC266(2) 
stop 5' - CAGCACCAGGATGACGTCCTAGCAGCGCGGGTCCTCCTG - 3' 
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I191V top 5' - CCCTACTATGAGACCAGCGTGAGGGCCCAGTTCGGCATCAAGGACGTC - 3' 

I191V bottom 5' - GACGTCCTTGATGCCGAACTGGGCCCTCACGCTGGTCTCATAGTAGGG - 3' 

Rho_V191I Top 2 5' - CCCTACTATGAGACCAGCGTGATAGCCCAGTTCGGCATCAAGGAC - 3' 

Rho_V191I bottom 2 5' - GTCCTTGATGCCGAACTGGGCTATCACGCTGGTCTCATAGTAGGG - 3' 

Rho_V191I Top.3 5' - CATCCCCTACTATGAGACCAGCGTG ATCGCCCAGTTCGGCATCAAGGACGTC - 3' 

Rho_V191I bottom.3 5' - GACGTCCTTGATGCCGAACTGGGCGATCACGCTGGTCTCATAGTAGGGGATG - 3' 

I191M top 5' - CCCTACTATGAGACCAGCGTGATGGCCCAGTTCGGCATCAAGGACGTC - 3' 

I191M bottom 5' - GACGTCCTTGATGCCGAACTGGGCCATCACGCTGGTCTCATAGTAGGG - 3' 

I191K top 5' - CCCTACTATGAGACCAGCGTGAAGGCCCAGTTCGGCATCAAGGACGTC - 3' 

I191K bottom 5' - GACGTCCTTGATGCCGAACTGGGCCTTCACGCTGGTCTCATAGTAGGG - 3' 

Q141K  top 5' - GACCCTGTCATCTTGGTGGGCTGAAGTTGGACCTGCGCTACGCTGACCTGGAGGCTGTC - 3' 

Q141K bottom 5' - GACAGCCTCCAGGTCAGCGTAGCGCAGGTCCAACTTGCAGCCCACCAAGATGACAGGGTC - 3' 

Q141R top 5' - GCACCTGTCATCTTGGTGGGCTGCCGGTTGGACCTGCGCTACGCTGACCTGGAGGCTGTC - 3' 

Q141R bottom 5' - GACAGCCTCCAGGTCAGCGTAGCGCAGGTCCAACCTGCAGCCCACCAAGATGACAGGGTC - 3' 

S189K top 5' - GGGCATCCCCTACTATGAGACCAAGGTGGTGGCCCAGTTCGGCATCAAGGACGTC - 3' 

S189K bottom 5' - GACGTCCTTGATGCCGAACTGGGCCACCACctTGGTCTCATAGTAGGGGATGCCC - 3' 

S189R top 5' - GGGCATCCCCTACTATGAGACCAGGGTGGTGGCCCAGTTCGGCATCAAGGACGTC - 3' 

S189R bottom 5' -GACGTCCTTGATGCCGAACTGGGCCACCACCCTGGTCTCATAGTAGGGGATGCCC  - 3' 

f-DBC2 T7 PCR forward 5' - GAGAGAGATAATACGACTCACTATAGGAGACGCCACCATGGACTACAAGGACGACGATGACAAG - 3' 

f-DBC2 T7 PCR reverse 5' - TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTCAGACCACAGCCGAGGAGGAAGATGGGGATG - 3' 

DBC2 Rho forward 5' - CACCATGGATTCTGACATGGATTATGAA - 3' 

DBC2 Rho reverse 5' - GGAGATGAGTGCAGCTCGG - 3' 

D2 S251A top 5' - CCCTCCTCGCTGGCGGAGGGAGGGTC - 3' 

D2 S251A bottom 5' - GACCCTCCCTCCGCCAGCGAGGAGGG - 3' 

D2 S250A top 5' - CGACCCTCCCGCCAGCAGCGAGGAG - 3' 

D2 S250A bottom 5' - CTCCTCGCTGCTGGCGGGAGGGTCG - 3' 

D2 K673R top 5' - CCTGTGTGGTACCTGAGGGAGGAAGATCATTACCAG - 3' 

D2 K673R bottom 5' - CTGGTAATGATCTTCTCTCCTCAGGTACCACACAGG - 3' 
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D2 K673R top2 5' - GGCCACCTGTGTGGTACCTGAGGGAGGAAGATCATTACCAGCGGGC - 3' 
D2 K673R bottom2 5' - GCCCGCTGGTAATGATCTTCCTCCCTCAGGTACCACACAGGGGTCC - 3' 

D2 K673R top3 5' - CGGTGGCCACCTGTGTGGTACCTGCGCGAGGAAGATCATTACCAGCGGGCACGG - 3' 

D2 K673R bottom3 5' - CCGTGCCCGCTGGTAATGATCTTCCTCGCGCAGGTACCACACAGGGGTCCACCG - 3' 

D2 CΔ470 top 5' - GTGGCCAACATTCTCAACAATTAGGCCTTCATGAACCAG - 3' 

D2 CΔ470 bottom 5' - CTCCTGGTTCATGAAGGCCTAATTGTTGAGATTGTTGGC - 3' 

D2 CΔ470 top 2 5' - GATGGTGGCCAACATTCTCAACAATTAGGCCTTCATGAACCAGGAG  - 3' 

D2 CΔ470 bottom 2 5' - CTCCTGGTTCATGAAGGCCTAATTGTTGAGAATGTTGGCCACCATC - 3' 

D2 CΔ600 top 5' - GTGACCGGGCTGATGTGAGCGACCCAGATGATGGTG - 3' 

D2 CΔ600 bottom 5' - CACCATCATCTGGGTCGCTCACATCAGCCCGGTCAC - 3' 

D2 CΔ600 top 2 5' - CACAGTGACCGGGCTGATGTGAGCGACCCAGATGATGGTGGAC - 3' 

D2 CΔ600 bottom 2 5' - GTCCACCATCATCTGGGTCGCTCACATCAGCCCGGTCACTGTG - 3' 

D2 CΔ210 top 5' - GCTGCACTCATCTCCTGACGCCACCTGCAG - 3' 

D2 CΔ210 bottom 5' - CTGCAGGTGGCGTCAGGAGATGAGTGCAGC - 3' 

HindIII-Flag_link 5' - CTAGTTAAGCTTGGATGGACTACAAGGACGACGATGACAGG - 3' 

XbaI-D2-I191V-back  5' - CCCTCTAGACTCGTCAGACCACAGCCGAGGAGGAAGATG - 3' 

For.DBC2 QΔ266.STOP 5' - CTGGAGGACCCGCTCTGCTAGGACGTCATCCTGGTGCTG - 3' 

Rev.DBC2 QΔ266.STOP 5' - GACCTCCTGGGCGAGACGATCCTGCAGTACGACCACGAC - 3' 

DBC2 NΔ210.cacc 5' - CACCGGCGCGGCGATGATCCCGCCGCCACCTGCAGTTCT - 3' 
DBC2 CΔ 469 top 5' - GGCCAACATTCTCAACTAATGAGGCCTTCATGAACCAGG - 3' 

DBC2 Cdelta 469 bottom 5' - CCGGTTGTAAGAGTTGATTACTCCGGAAGTACTTGGTCC - 3' 

DBC2 NΔ210.cacc 5' - CACCGGCGCGGCGATGATCCCGCCGCCACCTGCAGTTCT - 3' 

DBC2 NΔ500.cacc 5' - CACCGGCGCGGCGATGTCAGATGTGACCTTCATCCTGGATG - 3' 

D2 CΔ 210 uaa Top 5' - CGAGCTGCACTCATCTCCTAGCGCCACCTGCAGTTCTGG - 3' 

D2 CΔ 210 uaa Bottom 5' - CCAGAACTGCAGGTGGCGCTAGGAGATGAGTGCAGCTCG - 3' 

D2 L300V top 5' - GACCTGTTCCTCATGGACGTGAGTGAGGGGGAG - 3' 

D2 L300V bottom 5' - CTCCCCCTCACTCACGTCCATGAGGACCAGGTC - 3' 

DBC2 Ring forward 5' - CACCATGGTGGACATCGATGGGGACGTC - 3' 
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DBC2 Ring reverse  5' - CCGTGCCCGCTGGTAATGATCTTC - 3' 

DBC2 CACC topo 151 5' - CACCATGGATTCTGACATGGATTATGAAAGG - 3' 

DBC2 back topo 151 5' - TCAGACCACAGCCGAGGAGGAAGATG - 3' 
pSP64T f-DBC2 HindIII 

for  5' - GACAAGCTTATGGACTACAAGGACGACGATGACAAGAACACC - 3'
pSP64T f-DBC2 BamHI 

back 5' - GCGGGATCCTCAGACCACAGCCGAGGAGGAAGATG - 3' 

DBC2 TA TOPO for 5' - ATGGATTCTGACATGGATTATGAAAGG - 3' 
DBC2 no stop back 

topo/TA 5' - CCAGACCACAGCCGAGGAGGAAGATG - 3' 
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