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CHAPTER I 

 

INTRODUCTION 

 

The project began with the aim of isolating extensin cDNA clones from cotton. Previous 

studies indicated that several extensin peptides in cotton line Acala 44, could be isolated 

by complete deglycosylation of cotton cell walls by hydrogen fluoride treatment followed 

by typsin treatment of these walls (Qi, Beherens, West and Mort 1995). Separation of the 

extensin peptides by reverse-phase HPLC indicated three kinds of repeat motifs (a) Ser-

Hyp-Hyp-Hyp-Hyp-Hyp-Hyp-Ser-Hyp-Hyp-Lys, (b) Ser-Hyp-Hyp-Hyp-Hyp-Val-Lys, 

(c) Ser-Hyp-Hyp-Ser-Ala-Hyp-Lys (Qi, Beherens, West and Mort 1995). The next 

logical step was to isolate the cDNA clones coding for the proteins containing these 

peptides. With this purpose in mind, a cDNA library was constructed using the ZAP-

cDNA® (Stratagene) construction kit, using RNA from Acala 44 suspension culture cells 

(Wenjun Huang, Oklahoma State University). This cDNA library was screened by doing 

plaque lifts and hybridization using degenerate probes coding for Ser-Pro-Pro-Pro-Pro 

repeats (characteristic of all extensins) and the genomic DNA clone encoding carrot 

extensin, pDC5A1 (Chen and Varner, 1985). Seven positive clones were isolated and 

sequenced (Chris Ackerson and Jun Fu, Oklahoma State University). Of the seven 

sequences found, two were typical extensins, extensin # 2, characterized by two kinds of 
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repetitive motifs,   (a) Ser-Pro-Pro-Pro-Pro-Pro-Pro-Ser-Pro-Pro-Lys-His-Pro-Tyr-Lys-

Tyr-Lys and  

(b) Ser-Pro-Pro-Pro-Pro-Pro-Pro-Val-Tyr-Lys-Tyr-Lys including the known 

intramolecular isodityrosine cell wall protein crosslinking motif, Tyr-Lys-Tyr-Lys and 

extensin # 3, characterized by the repetitive motif (a) Ser-Pro-Pro-Pro-Pro-Ser-Pro-Ser-

Pro-Pro-Pro-Pro-Tyr-Tyr-Tyr-Lys, including the isodityrosine cross-linking motif of Tyr-

Tyr-Tyr-Lys and (b) Ser-Pro-Pro-Pro-Pro-Val-His-Ser-Pro-Pro-Pro-Pro-Tyr-Tyr-Tyr-Lys 

including the isodityrosine crosslinking motif of, Tyr-Tyr-Tyr-Lys (Kieliszewski and 

Lamport, 1994) as shown in Figure 1a. Five of the seven sequences found, (sequences # 

4, # 7, # 8,  # 13 and # 65631) were not typical extensins because they lacked the cell 

wall cross-linking motif and though they did have serine and proline rich repeats, they 

did not have the serine proline repetitive motif as seen in the typical extensins # 2 and # 

3. These sequences were called extensin-like sequences and their amino acid sequence is 

shown (Figure 1b). Three of these sequences, # 4, # 13 and # 8 had 99% identity while 

comparing their nucleic acid sequence. The longest of these extensin-like sequences, (# 

65631) was a chimeric extensin consisting of an N-terminal leucine-rich repeat sequence 

and a C-terminal extensin-like sequence. This sequence was called leucine-rich repeat 

extensin (LRR-extensin). The extensins and LRR-extensin sequences were all incomplete 

at their 5’ ends, as judged by the absence of a signal peptide that is present in all 

extensins. A 5’ RACE experiment was done on the incomplete LRR-extensin (# 65631) 

to determine the 5’ end of the sequence. Since the LRR-extensins had not been studied 

extensively, we decided to study it along with the extensins # 2 and # 3.  

The project had two major goals:                                                                                                                   
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1). Characterization of the LRR-extensin (# 65631) by determining the complete cDNA 

sequence through a 5’RACE experiment, isolating the gene by screening a genomic 

library and doing southern blot analysis to learn the gene family size. 

2). Functional analysis of extensins and LRR-extensin by determining the expression 

pattern of the genes. The expression pattern of the genes in various organs of cotton was 

studied by doing northern blots. The expression patterns of the genes during stress by 

Xanthomonas infection and after wounding were analyzed to see if the extensins and 

LRR-extensins were defense-related. In addition, the LRR domain was expressed in a 

prokaryotic expression system and used as an antigen to raise polyclonal antibodies, 

which were used in western blots to estimate the molecular weight of the native LRR-

extensin.  
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Figure 1a: Extensin sequences, # 2 and # 3 isolated from the cDNA library of cotton 

suspension cultures. 

Extensin # 2 was characterized by the repetitive motifs, (a) Ser-Pro-Pro-Pro-Pro-Pro-Pro-

Ser-Pro-Pro-Lys-His-Pro-Tyr-Lys-Tyr-Lys and (b) Ser-Pro-Pro-Pro-Pro-Pro-Pro-Val-

Tyr-Lys-Tyr-Lys containing the isodityrosine cell wall cross-linking motif, Tyr-Lys-Tyr-

Lys. 

Extensin # 3 was characterized by the repeat motif, (a) Ser-Pro-Pro-Pro-Pro-Ser-Pro-Ser-

Pro-Pro-Pro-Pro-Tyr-Tyr-Tyr-Lys containing the isodityrosine cross-linking motif Tyr-

Tyr-Tyr-Lys and (b) Ser-Pro-Pro-Pro-Pro-Val-His-Ser-Pro-Pro-Pro-Pro-Tyr-Tyr-Tyr-Lys 

including the isodityrosine crosslinking motif of, Tyr-Tyr-Tyr-Lys. 
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Figure 1b: ClustalW alignments of five extensin-like sequences isolated from the cDNA 

library of cotton suspension cultures. 
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CHAPTER II 

 

LITERATURE REVIEW 

 

Plant Cell Wall Proteins 

 

Plant cell walls contain a complex mixture of proteins, carbohydrates, water, lignin, 

cutin, suberin, and certain inorganic compounds. The composition of the plant cell wall 

changes according to developmental events and abiotic and biotic stresses. 

There are four main classes of cell wall structural proteins. These are the hydroxyproline-

rich glycoproteins (HRGPs) or extensins, the arabinogalactan proteins (AGPs), the 

glycine-rich proteins (GRP) and the proline-rich proteins (PRPs) (Showalter, 1993). In 

addition to the above four classes, there are other proteins present in the cell wall which 

are mainly enzymes such as polygalacturonases, mannosidases, glucanases, peroxidases, 

phosphatases, invertases, pectin methylesterases, malate dehydrogenases, arabinosidases, 

galactosidases, glucuronosidases, xylosidases, ascorbic acid oxidase and proteases 

(Varner and Lin, 1989). These enzymes have a wide variety of functions that include 

synthesis of cell wall components, modification of the cell wall components, and 

degradation of the cell wall components. 
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EXTENSINS 

 

Extensins are hydroxyproline-rich glycoproteins that are present in the cell walls of 

higher plants. These proteins are rich mainly in serine and hydroxyproline and some 

combination of the amino acids lysine, valine, tyrosine and histidine. Extensin genes code 

for proteins that have a repeating motif of serine followed by at least four 

hydroxyprolines. The prolines are hydroxylated to hydroxyproline by the enzyme prolyl 

hydroxylase. The serines in the pentapeptide motif are frequently glycosylated with a 

single galactose unit, and most of the hydroxyprolines are glycosylated with one to four 

arabinosyl residues. These are basic proteins due to their high lysine and/or histidine 

content and have an isoelectric point of ~10. Extensins assume a polyproline II helical 

structure in solution (i.e. a left handed helix with three residues per turn) (Van Holst and 

Varner 1984). When viewed under an electron microscope, extensins appears rod-like, 

approximately 80µm in length (Stafstrom and Staehelin, 1986; Heckman, Terhune and 

Lamport, 1988).  

Extensins can form intramolecular diphenylether linkages called isodityrosine 

crosslinks between tyrosine residues in the motif Tyr-Tyr-Tyr-Lys and Tyr-Lys-Tyr-Lys 

(Epstein and Lamport 1984) and form, as yet ill identified intermolecular crosslinks. It 

has been shown that in cotton suspension culture cells, there exists a covalent linkage 

between the RG I fraction of the pectin and most of the extensin. This crosslink could be 

through a 3,6 linked galactan or a phenolic cross-link from a feruloylated sugar in the 

pectin to an amino acid in the extensin (Qi, Beherens, West and Mort 1995). Tissue print 

immunoblots of soya bean stems and root show that, extensins are present mainly in 
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cambium cells and in the cortex cells surrounding the vascular bundle. Extensins have 

been suggested to contribute to the tensile strength of these cells and help the cells to 

tolerate tensile stress (Ye and Varner, 1991). 

The abundance of extensins in the cell wall of higher plants along with their 

rodlike appearance suggests a structural role for extensions. Digestion of tomato 

suspension culture cell wall polysaccharides with anhydrous hydrogen fluoride leaves 

behind a framework of extensins, thus supporting a structural role for these proteins 

(Mort and Lamport, 1977). 

Extensins may contribute to plant defense by protecting the plant against 

pathogen attack and mechanical wounding (Showalter, 1993). Immunochemical studies 

have showed that extensins accumulate in bean cell walls close to where the microbial 

growth is restricted by the plant (Esquerre-Tugaye, Mazau, Pelissier, Roby, Rumeau and 

Toppan, 1995). There is evidence to suggest that extensins by virtue of the positively 

charged lysines bind to and immobilize the negatively charged surfaces of certain plant 

pathogens and restrict their entry into the plant cell (Mazau, Rumeau and Esquerre-

Tugaye, 1987; Mellon and Helgeson, 1982).  

Though extensins are said to be structural proteins that may have a role in plant 

defense, studies in tobacco plants expressing sense or antisense gene constructs can 

tolerate a large variation in their extensin concentration without visible phenotypic effects 

(Memelink, Swords, de Kam, Schilperoot, Hoge and Staehelin, 1993). Thus, designing an 

experiment to prove with certainty the role of extensin will be a challenge. 
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ARABINOGALACTAN PROTEINS 

 

Arabinogalactan proteins are proteoglycans that are composed of approximately 90% 

carbohydrate and 10% protein, with the most abundant sugars being arabinose and 

galactose, though rhamnose, glucuronic acid and other monosaccharides are present in 

minor amounts. The core protein is rich in hydroxyproline, threonine, alanine, serine and 

glycine (Clarke, Anderson and Stone, 1979). The sugar groups are O-linked to the amino 

acids hydroxyproline, threonine and serine in the core protein.  These proteins are found 

in almost all tissues of higher plants. Arabinogalactan proteins are usually soluble and are 

heterogenous due to the variation in the type of branching of the side chain sugars. A 

characteristic feature of arbinogalactan proteins is that, they can be precipitated by the β- 

glucosyl Yariv’s reagent (Classen, Witthohn and Blaschek, 2000). Therefore this reagent 

is used for isolating arabinogalactan proteins and in tissue localization studies.  

Many different functions have been attributed to arabinogalactan proteins. Due to 

their high sugar content resulting in their stickiness, they contribute to the adhesion of the 

pollen and stigma, they may provide a nutritive role in the style, providing carbohydrate 

precursors for the growing pollen tube (Lord and Sanders, 1992). A possible role in 

cellular differentiation has also been proposed for arabinogalactan proteins, as the 

addition of arabinogalactan proteins from a carrot embryonic cell line to a non-embryonic 

cell line can induce embryonic potential (Sommer-Knudson, Bacic and Clarke, 1998). 

Since arabinogalactan proteins are soluble and diffusible components of the extracellular 

matrix, they may act as intercellular signals between cells and cause modification of the 

wall composition and ultimately add a new development path. 
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GLYCINE-RICH PROTEINS 

 

Glycine-rich proteins are structural proteins that are rich in Glycine-X repeat units, where 

X is usually glycine, but can also be alanine or serine (Condit and Meagher, 1986). 

Ultrastructural studies in beans have shown that the glycine-rich proteins are localized in 

the modified primary walls of the protoxylem cells, where they may be helping to repair 

the walls of these dead cells that are subject to intense stretching (Ryser U and Keller B, 

1992).  

Glycine-rich proteins may also play an important role in the development of 

nodules, vascular tissue and flowers and during wound healing and freezing tolerance. 

(Castonguay, Nadeau and Laberge, 1993; Kuster,Schroeder,Fruhling and Rieping, 1995). 

 

 

PROLINE-RICH PROTEINS 

 

These proteins have a characteristic repeat motif of Pro-Hyp-Val-Tyr-Lys. These proteins 

are associated with protoxylem and xylem structures, where they are said to be involved 

in xylem differentiation or in lignification. The proline-rich proteins participate in 

different aspects of development, such as nodule and pod differentiation (Loopstra and 

Sederoff, 1995; Coupe, Taylor, Isaac and Roberts, 1993) and microspore, ovary and 

embryo development (Jose-Estanyol and Puigdomenech, 1998). 
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LEUCINE-RICH REPEATS 

 

A Leucine-rich repeat or LRR is a 20-29 amino acid repeat motif that appears to be 

involved in protein-protein interaction (Kobe and Deisenhofer, 1995). These repeats are 

present in organisms that range from bacteria to man. 

  The 24 amino acid consensus sequence of a LRR protein in plant (which is 

conserved across many taxa) is as follows,  

LxxLxxLxxLxLxxNxLxGxIPxx 

where L is leucine, N is aspargine, G is glycine, I is isoleucine, P is proline and x is any 

amino acid.  

The crystal structure of porcine ribonuclease inhibitor is shown in Figure 2. This 

LRR protein has 17 LRR repeats, each repeat is 29 amino acids long. Each individual 

repeat, corresponds to a structural unit comprising of a short β-strand and an α-helix 

approximately parallel to it. The whole structure, has its 17 repeat units arranged 

consecutively and in parallel to a common axis, such that the structure adopts a horseshoe 

shaped structure, with the ligand RNAse binding inside the concave surface of the 

structure (Kobe and Deisenhofer, 1993). 

All known LRR proteins have two things in common, repetitive sequences and 

involvement in protein-protein interaction. LRR proteins discovered to date in man are 

involved in cell adhesion, development, signal transduction, DNA repair, transcription, 

recombination and RNA processing (Buchanan and Gay, 1996). 

In plants, the LRR proteins that are characterized so far are mainly involved in 

plant defense and signal transduction. The four kinds of LRR proteins in plants include, 
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resistance gene products, receptor-like protein kinases, polygalacturonase inhibitors and 

LRR-extensins (Jones and Jones, 1997). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 24



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Structure of pig liver ribonuclease inhibitor protein. (a) Ribbon diagram of 

ribonuclease inhibitor protein generated by the program MOLSCRIPT. (b) Consensus 

sequence of two types of repeats (A and B) that alternate in the sequence. Taken from 

Kobe and Deisenhofer, (1993). 
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RESISTANCE GENES 

 

The resistance genes are responsible for the recognition of avirulence gene products of 

the plant pathogens and are responsible for inducing a hypersensitive response. The 

resistance genes, in addition to having an LRR domain, can also have other domains. All 

known resistance genes contain leucine-rich repeats except for the Pto gene product in 

tomato that requires an LRR protein Prf to function. The resistance genes (Figure 3) fall 

mainly into three classes. 

a).  Resistance genes encoding proteins containing extracytoplasmic LRRs with the 24 

amino acid consensus: LxxLxxLxxLxLxxNxLxGxIPxx. Examples are the tomato Cf-9 

gene for resistance to the fungus Cladosporium fulvum (Jones, Thomas, Hammond-

Kosack, Balint-Kurti and Jones, 1994) that contains an extracellular LRR domain and a 

transmembrane domain to anchor it to the membrane. The rice Xa-21 gene for resistance 

to the bacteria Xanthomonas oryzae has an extracellular LRR domain connected to a 

transmembrane domain and an intracellular kinase domain (Song, Wang, Chen, Kim, Pi, 

Holsten, Gardner, Wang, Zhai, Zhu, Fauquet and Ronald, 1995). 

b). Resistance genes encoding cytoplasmic LRRs with  24 amino acid consensus: 

LxxLxxLxxLxLxx(N/C/T)x(x)LxxIPxx. Examples are the tobacco N gene (Whitham, 

Dinesh-Kumar, Choi, Hehl, Corr and Baker, 1994) for resistance to TMV (tobacco 

mosaic virus). This protein contains a cytoplasmic LRR domain connected to a domain 

that shows homology to the Drosophila Toll protein and the mammalian interleukin-1 

receptor. Another example of a resistance gene encoding a cytoplasmic LRR is the RPS2 

gene in Arabidopsis for resistance to the bacterium P.s. pv. tomato (Bent, Kenkel, 
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Dahlbeck, Brown, Schmidt, Giraudat, Leung and Staskawicz, 1994). This protein 

contains the cytoplasmic LRR connected to a nucleotide binding site (NBS) and a 

leucine- zipper domain. 

c) Resistance genes that do not contain the LRR motifs in themselves but require an LRR 

protein to function. An example is the Pto gene in tomato for resistance to the bacterium 

P.s. pv. tomato that requires an LRR protein  Prf to function (Martin, Brommonschenkel, 

Chunwongse, Frary, Ganal, Spivy, Wu, Earle, and Tanksley, 1993). 

 

 

 

Figure 3: Representation of resistance genes in plants, Cf-9 and Pto in tomato, Xa21 in                         

rice, RPS2 and RPM1 in arabidopsis, N in tobacco and L6 in Linum usitatissimum. Taken 

from Jones and Jones JDG, (1997). 
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POLYGALACTURONASE INHIBITOR PROTEINS 

 

PGIP or polygalacturonase inhibitor proteins are soluble extracellular glycoproteins that 

are ionically bound to the extracellular matrix of the plant cells (Salvi, Giarrizzo, De 

Lorenzo and Cervone, 1990). These proteins are capable of inhibiting fungal 

endopolygalacturonases by binding to them and slowing down the degradation of pectin, 

allowing the production of oligogalacturonides 10-15 residues in length, able to induce 

plant defenses. All the PGIPs isolated to date are composed entirely of 10 LRRs 

matching the consensus: LxxLxxLxxLxLxxNxLxGxIPxx. 

Extraction and bioassay of PGIP activity from bean tissue revealed that the 

highest activity of PGIP is in the vegetative apex and in flowers, and the lowest activity is 

in roots, cotyledons, stems, leaves, seeds and embryos. The plant PGIPs do not inhibit 

bacterial or endogenous endopolygalacturonase enzymes (Salvi, Giarrizo, De Lorenzo, 

and Cervone, 1990). This leads us to suggest that, since, plants also produce 

endopolygalacturonases, there may be endogenous PGIPs produced by the plant that are 

produced against plant endopolygalacturonases, preventing the plant from getting 

degraded by its very own endopolygalacturonases. Such a protein may also be an LRR 

protein in the extracellular matrix of the plant cells like the plant PGIPs acting against 

fungal endopolygalacturonase, but will probably differ from the fungal acting PGIPs in 

the non-conserved residues in the LRR consensus sequence. 
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RECEPTOR-LIKE PROTEIN KINASES 

 Many signals are perceived by transmembrane receptors that activate their intracellular 

kinase domains by autophosphorylation on their serine or threonine residues. These 

kinases are called receptor-like protein kinases (RLKs).  

The RLKs in plants are divided into three classes based on the structure of the 

extracellular domain. The kinase domains of these three classes are approximately 40% 

alike at the amino acid level. The three classes are the S-domain class, the leucine-rich 

repeat (LRR) class and the epidermal growth factor (EGF)-like repeat class (Plant 

Receptor Kinase Resource, University of Wisconsin, Madison). 

(a). The S-domain class of RLKs (SRKs) are named such, because of their similarity to 

the S-locus glycoprotein of Brassica that functions in the self-incompatibility response of 

Brassica. These proteins have ten conserved cysteine residues in their extracellular 

domain. Plants that have mutations in the SRK gene are no longer able to distinguish 

between self and nonself pollen (Goring, Glavin, Schafer and Rothstein, 1993). 

Therefore, it seems that the SRKs are required to maintain a barrier to self-fertilization. 

(b). The leucine-rich repeat (LRR) class of RLKs, have the leucine rich repeat motif in 

the extracellular domain. A pollen receptor-like kinase (PRK1), present in Petunia 

inflata, belongs to this class. This protein contains five LRRs and is expressed mainly in 

mature pollen and growing pollen tubes. Expression of an antisense cDNA to the PRK1 

resulted in the abortion of half of the pollen. Microspore meiosis proceeded normally, but 

half of the microspores were arrested at the uninucleate stage. These results show that 
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PRK1 may be involved in postmeiotic gametophyte development (Skirpan, McCubbin, 

Ishimizu, Wang, Hu, Dowd, Ma and  Kao, 2001). 

A gene called ERECTA1 in Arabidopsis, is another member of the leucine-rich 

repeat class of kinase. The gene encodes 20 LRRs. Mutation in ERECTA1 caused 

compact inflorescense, shortened siliques and leaf petioles. Thus it seems that ERECTA1 

is involved in specification of organ shape. 

CLAVATA1 is another example of a leucine-rich repeat class of RLK present in 

Arabidopsis. This gene encodes 21 LRRs. Mutation in the CLAVATA1 causes altered 

floral organ number and fasciated stems. This results from the primary phenotype of very 

large shoot apical meristems (Clark, Running and Meyerowitz, 1995). A very large 

number of undifferentiated cells accumulate within the expanded meristem suggesting 

that the CLAVATA1 gene functions to promote cell differentiation or to restrict cell 

proliferation. 

(c). Epidermal growth factor (EGF) repeat RLKs, is a class repesented by five wall- 

associated kinases (WAKs) in Arabidopsis. These genes code for two epidermal growth 

factor-like repeats and also collagen, extensin and neurexin motifs. Genetic analysis 

shows that WAKs play a role in cell expansion and maintainence of cell viability during 

pathogenesis (Kohorn, 2001). 
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LRR- EXTENSINS 

The LRR-extensin gene, codes for chimeric proteins containing two domains, an N-

terminal LRR domain and a C-terminal extensin-like domain. To date (12-1-02), there are 

fourteen LRR-extensin genes in the GenBank database. Nine of these are present in 

Arabidopsis, one in rice, one in tomato and three in maize. Two sequences in Arabidopsis 

(Accession no. CAB79682 and CAA16878), code for the LRR domain only and do not 

have the extensin-like domain, but have been mistakenly reported as extensin-like 

proteins. 

Most of the sequences in the database have come from the genome sequencing 

programs. Thus far, only two of the sequences in Arabidopsis have ESTs (expressed 

sequence tags). Figure 4 shows the alignment of fourteen LRR-extensins in the database. 

Only the LRR regions were aligned, because the extensin-like regions were different for 

each of the sequences. 

To date, only three LRR-extensins, one in tomato (Tom-L4), one in maize (Pex1), 

and one in Arabidopsis (LRX1), have been studied. The tomato LRR-extensin was 

isolated from a tomato genomic library by screening with a carrot extensin sequence. 

Tom-L4 has ten LRR repeats and is expressed in the green vegetative tissues of plants 

and northern blot analysis of its leaves indicated that Tom-L4 accumulates in response to 

wounding (Zhou, Rumeau and Showalter, 1992).  

The maize LRR-extensin has been studied in more detail than Tom-L4. This gene 

was isolated from a pollen cDNA library by differential screening with cDNAs from 

endosperm. This gene is expressed only in mature pollen and not in other tissues. Unlike 

Tom-L4, Pex1 is not induced by wounding. Antibodies made to the LRR domain bind to  
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Figure 4: Alignments of 14 LRR-extensins in the Genbank database. 
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the intine layer in the pollen wall. The protein is tightly bound to the wall and cannot be 

liberated by detergents. The authors hypothesized, based on the location of the protein, 

that it is important in providing support to the mature pollen as it grows inside the style 

(Rubenstein, Broadwater, Lowrey and Bedinger, 1995). The LRR domain of Tom-L4 and 

Pex1 show a 56.6% amino acid identity, though their extensin-like domains are very 

different. 

The Arabidopsis LRR-extensin LRX1 was isolated from the genomic library 

using the tomato Tom-L4 sequence (Baumberger, Ringli and Keller, 2001). This gene is 
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expressed in the cell walls of root hair and not in any other plant organ. Though 

wounding and infection studies were not done, transposon-tagged LRX1 mutants were 

identified and these mutants exhibited irregular root hair development. The majority of 

the root hairs did not elongate fully. Root hair development was arrested soon after 

initiation resulting in short stumps. Root hairs which proceeded further frequently 

branched and showed swelling along the main stalk that resulted in root hairs of irregular 

diameter. LRX1’s LRR region, shows a 53% identity to maize Pex1 and a 73% identity 

to tomato Tom L4, but the extensin-like domains are very different. 

Thus the three LRR-extensins are expressed in different plant organs and their 

responses to wounding are different. This may suggest that they have different functions. 

However, the intriguing similarity of the LRR domains, suggest that they may be 

involved in recognizing similar ligands (Jones and Jones, 1997).  
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CHAPTER III 

 

MATERIALS AND METHODS 

  

Suspension culture cells used in the experiment 

 

Callus cultures from fully expanded Acala 44 cotton leaves were established in 1985 

(Janet Rogers, Oklahoma State University) using a modification of the method of Ruyack 

(Ruyack, Downing, Chang and Mitchell, 1979). The suspension culture cells were 

cultured by transferring one tube containing 3-4 g of the 3-4 week old callus (in the late 

log phase) from SH agar medium to 150 ml culture flasks containing 50 ml liquid SH 

medium (Schenk and Hildebrandt, 1972).  Growth curves of the Acala 44 suspension 

culture cells (Sharlene Ruth Matten, Phd thesis, Oklahoma State University) shows that 

cells are in the log phase between days 4-10 and reach their stationary growth phase on 

day 12. Cells on day 9 were the source of RNA for the 5' RACE experiment.  

 

Total RNA isolation from cotton suspension culture cells and plant tissue 

 

Total RNA was isolated by using the Chomczynski and Sacchi method (Chomczynski 

and Sacchi, 1987). For the experiment, glassware was baked at 200°C overnight and 

reagents were treated (with the exception of Tris containing buffers) with 0.1% DEPC 
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overnight and autoclaved the next day. Tris-containing solutions were made in DEPC 

treated water. The RNA isolation method involved grinding 1 g of the suspension culture 

cells or plant material in liquid nitrogen, and extracting the resulting powder in 12 ml of 

denaturing solution (26 mM sodium citrate pH 4, 0.5% N-lauryl sarcosine, 0.125 M β-

mercaptoethanol, 4 M guanidine thiocyanate). The RNA was precipitated from the 

denaturing solution by adding 1200 µl of 2 M sodium acetate pH 4, followed by the 

addition of 12 ml of phenol:chloroform:isoamyl alcohol (25:24:1) pH 4.7, chilling on ice 

for 15 min, and centrifuging at 10,000g for 20 min. The top aqueous phase was collected, 

an equal volume of isopropanol was added to it, and it was incubated at  -20°C for 30 

min. The mixture was centrifuged at 10,000g for 10 min and the pellet containing RNA 

was washed with ice cold 75% ethanol and then dissolved in DEPC treated water. 

 

 

Estimation of the concentration of RNA sample 

 

The RNA concentration was estimated with a spectrophotometer at 260 nm using the 

equation (Sambrook, Fritsch, and Maniatis, 1989): 

RNA concentration in µg/µl = Absorbance at 260nm x dilution factor x 40 µg/ml  
                                                                          1000 µl/ml 
 
Absorbance of RNA in water of 1.0 corresponds to 40 µg/ml of RNA.  
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Estimation of the purity of RNA sample 

 

The purity of the RNA sample was estimated by the absorbance ratio of the preparation 

of RNA: A260/A280. 

Very pure RNA will have a ratio of 2.0. In practice, a ratio of 1.7-2.0 is accepted 

as relatively free of protein contamination. Furthermore, to detect DNA contamination 

and to check the integrity of the RNA sample, a 1% agarose/MOPS/formaldehyde gel 

was run. No staining with ethidium bromide in the wells of the gel indicated that the 

RNA was free of DNA contamination. Two prominent bands representing the 28S and 

18S subunits of ribosomal RNA without a smear of smaller pieces indicate there was  

negligible degradation of the RNA. 

 

1% Agarose/MOPS/Formaldehyde gel (75ml) 

 

Agarose (0.75 g) was melted in 54ml of DEPC treated water and cooled to 65°C. Then, 

13.5 ml of formaldehyde and 7.5 ml of 20X MOPS buffer (400 mM 3-N-morpholino) 

propanesulphonic acid, 160 mM sodium acetate, 20 mM EDTA, pH 7.0) was added, and 

this mixture was poured into the gel casting tray. RNA was denatured in RNA loading 

buffer (deionized formamide 62.5% (v/v), formaldehyde 1.14 M, bromophenol blue 

200 µg/ml, xylene cyanole 200 µg/ml, MOPS-EDTA-sodium acetate at 1.25X working 

concentration, ethidium bromide 50 µg/ml) by heating at 65°C for 10 min followed by 

snap cooling. The denatured RNA was loaded on the gel and run in 1X MOPS buffer at 

5V/cm till the dye reached the end of the gel.  

 38



  

cDNA library construction and screening 

RNA from 13-day old Acala 44 cotton suspension culture cells was isolated by using 

RNAgents® Total RNA isolation system (Promega), and mRNA was isolated using 

Poly(A) Quik® mRNA Isolation Kit (Stratagene). The cDNA library was constructed 

using the ZAP-cDNA® synthesis kit (Stratagene). The carrot extensin clone pDC5A1 

(Chen and Varner, 1985) was random prime labeled using DIG-High Prime (Roche 

Molecular Biochemicals), and the degenerate probe was labeled with DIG 

Oligonucleotide Tailing Kit (Roche Molecular Biochemicals). The library was 

prehybridized using DIG Easy HYB (Roche Molecular Biochemicals), hybridized at 

42°C, washed twice at 2X SSC, 0.1% SDS for five min and twice at 0.5X SSC, 0.1% 

SDS at 60°C for 20 min. Positive clones were identified using the chemiluminescent 

substrate CDP-Star (Roche Molecular Biochemicals) according to the instructions of the 

Genius™ system user’s guide for membrane hybridization (Roche Molecular 

Biochemicals). 

 

5’ RACE Experiment 

 

5' RACE is a technique that allows the isolation and characterization of the 5' ends of 

cDNAs (Frohman, 1993). For this technique, a 5’ RACE kit was used (Gibco BRL). The 

first strand cDNA was synthesized using total RNA from Acala 44 suspension culture 

cells by using Superscript™ II reverse transcriptase, and was primed by a gene-specific 

antisense oligonucleotide primer (GSP-1). This was followed by digesting the RNA with 

RNAse A and the cDNA was purified with a Glassmax spin cartridge column. Following 
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purification, the cDNA was tailed at the 3’ end with dC, using the enzyme terminal 

deoxynucleotidyl transferase. Following this, the dC tailed cDNA was amplified by PCR 

using an abridged anchor primer that annealed to the dC tail and a second gene specific 

primer (GSP-2). The primary PCR product was then amplified using a mixture of two 

primers, a nested gene-specific primer (GSP-3), that annealed 3' to the GSP-2 and an 

anchor primer that anneals to the sequences in the abridged anchor primer. The procedure 

is summarized in Figure 5. 

The primers used for the experiment were:  

GSP 3: 5’-CGGCAAACAGTTCCTCCTATCGTC- 3’  

GSP 2: 5’-TGTTCAAGGCTAACCATTCCCCCA- 3’ 

GSP 1:  5’-CGGCAAAGTACCCATTAACTCAT- 3’ 
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Figure 5: Overview of the 5’ RACE Procedure (UAP = Universal Amplification Primer; 

AUAP = Abridged Universal Amplification Primer). Figure taken from the 5’ RACE 

manual (Gibco BRL). 
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TA Cloning 

 

TA cloning is a method for directly cloning PCR fragments into a plasmid vector. For the 

purpose of TA cloning, a TA cloning® kit was purchased (Invitrogen). The cloning is 

based on the action of Taq polymerase, which adds a single deoxyadenosine (A’) residue 

to the 3’ ends of PCR fragments.  This fragment was ligated to a plasmid vector (pCR™ 

II) containing a 3’ deoxythymidine residue (T’). This plasmid was transformed into the  

bacterial strain INVaF'. The process of ligation of the PCR fragment into the pCR™ II 

vector disrupts the gene for the β-galactosidase enzyme and causes the bacteria that are 

transformed by such a plasmid to be white when grown on LB-ampicillin plates 

containing X-gal. The white colonies of bacteria were picked up and plasmids were 

isolated from them by minipreps using the Qiaprep kit (Qiagen). The plasmids were 

digested with EcoRI (at sites flanking the TA cloning site) and run on 1% agarose gels to 

confirm the presence of the PCR fragment. The plasmids containing the PCR fragments 

were sent to the DNA recombinant facility for sequencing  (Oklahoma State University). 

 

Synthesis of probes for northern and southern analysis and genomic library screening 

 

The sequences used as probes included the 5’RACE fragment of the LRR-extensin (that 

contains only LRRs), cloned into the TA cloning kit vector pCR™ II (Invitrogen), the 

incomplete LRR-extensin cDNA (# 65631), the extensin cDNA # 2, extensin cDNA # 3 

(sequences obtained by cDNA library screening by using degenerate probes coding for 
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extensins and carrot extensin clone) and PCR amplified 3’ ends of extensin # 2 and 

extensin # 3, cloned into the TA cloning vector pCR™ II.  

The 5’ RACE fragment of LRR-extensin and the 3’ ends of extensin # 2 and # 3, were 

removed from the vector pCR™ II, by EcoR1 digestion. The incomplete LRR-extensin 

cDNA (# 65631), the incomplete extensin cDNA # 2 and extensin cDNA # 3 were 

removed from the vector pBluescript, by EcoRI and XhoI digestion. The digests were run 

on a 1% gel, and the inserts were cut out of the gel and purified using a Qiaquick gel 

extraction kit (Qiagen). The purified cDNAs were denatured in a boiling water bath for 

10 min and snap cooled. Probes were made by random prime labeling, using the DIG-

High Prime labeling kit (Roche Molecular Biochemicals) that labels the cDNA with 

digoxigenin. The DIG-High Prime solution is a single vial that contains random hexamer 

primer mixture/ Klenow enzyme/ dATP/ dCTP/ dGTP/ dTTP /DIG-11-dUTP. To 30 µl of 

cDNA (in 10 mM Tris pH 8) containing between 10-3000 ng of cDNA, 8 µl of DIG-High 

Prime solution was added, and the tube was incubated at 37°C overnight for the labeling 

to occur. The labeling reaction was stopped, by adding 4 µl of 0.2 M EDTA solution, pH 

8. The labeling efficiency was estimated by spotting 1 µl aliquots of the labeled mixture 

at different dilutions on a nylon membrane and comparing spot intensity between the 

newly labeled mixture and labeled DNA standards after incubating the nylon membrane 

in anti-digoxigenin antibody conjugated to alkaline phosphatase and colorimetric 

detection by NBT and BCIP. Before use, the probes were denatured in a boiling water 

bath for 10 min, snap cooled, and added to the hybridization solution, DIG Easy Hyb 

(Roche Molecular Biochemicals) at a concentration of 10 ng of probe/ ml of 

hybridization buffer. The resulting diluted probes were stored at -20°C and reused 6 
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times after denaturing the probes in DIG Easy Hyb for 10 min at 68°C before use. 

Extensin # 2 primers used in PCR to make the 3’ unstranslated sequence include, 

Forward sequence:  AGCCACGGCTTTGACCGTGC 

Reverse sequence:  AATCCTTACCTGTAATATAA 

Extensin # 3 primers used in PCR to make 3’ untranslated sequence include, 

Forward sequence: CTAGAAAGATCAACCACAA 

Reverse sequence: TTTCAGGTTCTAGTTTCTCA 

  

Northern Blot 

 

The RNA samples were subjected to electrophoresis in an agarose/MOPS/formaldehyde 

gel until the xylene cyanol dye reached the end of the gel (Sambrook, Fritsch and 

Maniatis, 1989). The gel was photographed and then equilibrated in 20X SSC (3 M NaCl, 

300 mM sodium citrate pH 7.0) twice, for 15 min each time. Meanwhile, 200 ml of 20X 

SSC was poured into a glass tray, and a Whatman 3MM filter paper was wetted with 20X 

SSC, and wrapped around a polyester support and placed in the tray. The gel after 

equilibration was placed upside down on this filter paper. Using gloves, a nylon 

membrane (Roche Molecular Biochemicals) was carefully placed on top of the gel. Two 

pre-wet Whatman filter papers cut to the size of the gel were carefully placed on the 

nylon membrane followed by two dry Whatman filter papers. A stack of paper towels 

were placed on top of the filter papers, and the entire assembly was covered with plastic 

wrap to prevent evaporation while capillary transfer took place overnight at room 

temperature. Diagram of transfer is shown in Figure 6. 
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Figure 6: Diagram of capillary transfer for Southern blot and Northern blot 

 

The next day, the nylon membrane was marked for orientation of the RNA samples and 

then UV crosslinked using the stratalinker (Stratagene) on both sides of the membrane. 

The membrane was incubated at 42°C for one hour in the hybridization buffer, DIG-easy 

hyb. After an hour, the membrane was allowed to incubate overnight at 42°C in the probe 

diluted in the hybridization buffer. The membrane was then washed twice, for 15 min in 

2X SSC, 0.1% SDS. This was followed in addition, by stringent washes at 68°C with 

0.1X SSC, 0.1% SDS, twice for 15 min. Alternatively, for less stringent washes, we used 

O.5X SSC, 0.1% SDS. The membranes were equilibrated in washing buffer (100 mM 

maleic acid, 150 mM NaCl, 0.3% Tween®20) for 1 min. The membranes were incubated 

in a blocking solution containing 1% blocking reagent (Roche Molecular Biochemicals) 

in 100 mM maleic acid and 150 mM NaCl for one hour followed by incubation in 

1:20,000 dilution of anti-digoxigenin-alkaline phosphatase conjugated antibody in 

blocking solution for half an hour. After the incubation period, the membranes were 
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washed in washing buffer twice, for 15 min each and equilibrated in detection buffer (100 

mM Tris-HCl, 100 mM NaCl pH 9.5) for 2 min. CDP-Star reagent (Roche Molecular 

Biochemicals) was applied to the membrane placed between two plastic sheets and a 

glass rod was rolled over the sheets to remove air bubbles. The membrane was incubated 

in CDP-Star reagent for 5 min and then sealed in a plastic bag. For chemiluminiscent 

detection of signal in the membrane, the membrane was put in an X-ray cassette and 

exposed to Lumi-Film (Roche Molecular Biochemicals). 

 

Cotton genomic DNA isolation 

 

 Acala 44 suspension culture cells were ground in liquid nitrogen and homogenized in 

extraction buffer (100 mM Tris-HCl pH 8, 50 mM EDTA, 500 mM NaCl, 700µL β-

mercaptoethanol for every 100 ml extraction buffer). We used 15 ml of buffer for 5-7 g 

cells. About 1 ml of 20% SDS was added, mixed thoroughly, and the solution was placed 

at 65°C for 10 min. After 10 min, 5 ml of 5 M potassium acetate was added, mixed and 

the solution was placed on ice for 20 min. The solution was centrifuged at 5000g at 4°C 

for 20 min. The supernatant was transferred to a new tube and 10 ml isopropanol was 

added and incubated at -20°C for 1 hour. The tube was centrifuged at 5000g for 10 

minutes at 4°C. The pellet was resuspended in sterile water, and 2-5 µl of RNase A (10 

mg/ml) was added and incubated at 37°C for 10 minutes. The DNA was finally 

precipitated by adding 1/3 volume of 3 M sodium acetate and 1 volume of isopropanol 

and centrifuging the tube at 3000g for 5 min at 4°C. The DNA pellet was washed with 

70% ethanol and finally suspended in 10 mM Tris pH 8.0. 
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Southern Blot 

 

DNA was subjected to electrophoresis in a 1% gel until the xylene cyanol dye reached 

the end of the gel. The gel was shaken in 250 mM HCl for 10 min to depurinate the 

DNA. The gel was then rinsed in water and incubated in denaturing solution (0.5 N 

NaOH, 1.5 M NaCl), twice for 15 min each time. This treatment denatured the DNA and 

made it single stranded. We rinsed the gel in water and then incubated the gel twice for 

15 min each time in neutralizing solution (0.5 M Tris-HCl, 3 M NaCl pH 7.5). The DNA 

was then blotted from the gel to the nylon membrane (Roche Molecular Biochemicals) by 

capillary transfer, as explained in the northern blot protocol. 

The membrane was UV crosslinked on both sides using the stratalinker 

(Stratagene) and incubated for two hours at 42°C in the hybridization buffer, DIG-easy 

hyb (Roche Molecular Biochemicals), and overnight at 42°C in hybridization solution 

containing probe. The membrane was washed twice for 15 min in 2X SSC, 0.1% SDS 

followed by stringent washes, twice for 15 min in 0.1X SSC, 0.1% SDS at 68°C. 

Alternatively, for less stringent washes, the membranes were washed twice for 15 min in 

0.5X SSC, 0.1% SDS. Then, the membrane was equilibrated for 1 min in washing buffer. 

This was followed by 1hour incubation in blocking buffer and half an hour incubation in 

1:20,000 dilution of anti-digoxigenin-alkaline phosphatase antibody in blocking buffer. 

The membrane was then washed in washing buffer twice for 15 min, incubated in 

detection buffer for 2 min and CDP-Star was applied to the membrane between two 

plastic sheets and incubated like this for 5 min and then exposed to Lumi-film for 

chemiluminescent detection. 
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Genomic Library Screening 

 

Cotton (Gossypium hirsutum L. cv. Acala SJ-2) genomic library in λ FIX II (Stratagene) 

was given to us by Dr. Thea Wilkins (University of California, Davis). In the primary 

screen, approximately 600,000 plaques were screened. This was done by plating 50,000 

plaques in a single 150mm NZY plate and using 12 plates for the screening procedure. 

The plates were cooled at 4°C for 30 min. Nylon membranes (Amersham) were placed on 

the plates and left for1 min to allow for the transfer of the plaques from the NZY plate to 

the membrane. The membranes were then allowed to soak in trays containing denaturing 

solution (0.5 N NaOH, 1.5 M NaCl) for 15 min, neutralizing solution (1 M Tris-HCl, 1.5 

M NaCl pH 7.5) for 15 min, and 2X SSC (0.3 mM NaCl, 30 mM sodium citrate, pH 7.0) 

for 10 min. 

The membrane was UV crosslinked using the stratalinker (Stratagene) and prehybridized 

at 42°C with Dig-easy hyb for an hour followed by overnight incubation at 42°C in 

hybridization solution containing the probe (the probe used was the 5’ RACE sequence 

diluted 10 ng/ml in DIG-easy hyb). The membrane was washed twice for 15 min in 2X 

SSC, 0.1% SDS and twice in 0.5X SSC, 0.1% SDS. The membranes was equilibrated in 

washing buffer for 1 min and incubated in blocking buffer for 1hour. This was followed 

by incubation for half an hour in 1:20,000 dilution of anti-digoxigenin-alkaline 

phosphatase conjugated antibody. The membranes was washed in washing buffer twice 

for 15 min, and incubated in detection buffer for 2 min. CDP-Star reagent was applied to 

the membrane between plastic sheets and the membrane was allowed to incubate for 5 
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min in this reagent. The membrane was sealed in plastic bags and exposed to Lumi-film 

for chemiluminescent detection.  

The positively hybridizing plaques were picked with a pasteur pipette, dispersed in 1 ml 

of SM buffer (0.01% gelatin, 50 mM Tris-HCl, pH 7.5, 100 mM NaCl, 8 mM MgSO4) 

and allowed to stand overnight. These plaques were diluted and plated on XL1-blue 

MRA bacteria and subjected to secondary and tertiary hybridization to pick up true 

positives. From these positive plaques, lambda DNA was isolated using the Wizard 

lambda DNA isolation kit (Promega).  

 

Stripping of membranes for reprobing 

 

For reprobing protocols, the nylon membrane was always kept wet. For southern blots, 

probes were removed from the membrane by incubating the membrane twice for 10 min 

each time, in alkaline stripping solution (0.2 N NaOH, 0.1% SDS). The membrane was 

rinsed thoroughly in 2X SSC and then put into hybridization solution, ready for probing 

with a different probe. If the second probe was not ready, the membrane was stored in 2X 

SSC till it was ready to be hybridized to a second probe. 

For northern blots, 100 mL of 0.1% SDS was heated till it was ready to boil and 

poured on the membrane and, the membrane was allowed to incubate in this solution 

without additional heating for 10 min on a rocking platform.  

The membrane was then washed in washing buffer for 10 min and either stored in 2X 

SSC or put into hybridization solution, ready to be analyzed with a different probe. 
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In-gel digest for MALDI-MS 

 

The procedure for the experiment was taken from ‘Current Protocols in Protein Science’, 

Unit 16.4 

Excision of the band from polyacrylamide gel- The LRR protein was run on an 8% 

polyacrylamide gel. The gel was stained with 0.3% coomassie blue in water and then 

rinsed twice in water for 10 min/wash. The 45 kD band was then excised from the gel.  

Washing of the gel pieces-The gel containing the band was washed with water twice, 15 

min/wash and once in water/acetonitrile solution, 1:1 for 15 min. The liquid was then 

removed and the gel was covered with acetonitrile. When the gels shrank and turned 

sticky white, the acetonitrile was removed, and the gel was hydrated with 100 mM 

NH4HCO3. After about 5 min, an equal volume of acetonitrile was added and the gel was 

incubated for 15 min in this solution. Then the liquid was removed and the gel was dried 

in a speed vac.  

Reduction and alkylation- The gel was rehydrated in 10 mM DTT, 100 mM NH4HCO3, 

incubated in this solution for 45 min at 56°C, and then allowed to cool to room 

temperature. The liquid was then replaced with the same volume of 55 mM 

iodoacetamide, 100 mM NH4HCO3 solution and allowed to incubate for 30 min in this 

solution in the dark. Then all the liquid was removed and acetonitrile was added to cover 

the gel and allowed to incubate in this solution for a few minutes. Then all the liquid was 

removed, 100 mM NH4HCO3 was added, and this solution was incubated for 5 min, 

followed by addition of an equal volume of acetonitrile. This solution was incubated for 

15 min at room temperature, following which all the liquid was removed. 
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In-gel digestion- The gel was completely dried in a speed vac and then rehydrated in 

digestion buffer (50 mM NH4HCO3, 5 mM CaCl2, 12.5 ng/µl trypsin) at 4°C. Then 

enough buffer was added to cover the gel, and the solution was put on ice for 45 min. The 

supernatant was removed and replaced with the same buffer (without trypsin) and the gel 

was incubated at 37°C overnight in this buffer. 

Extraction of peptides- NH4HCO3 (25 mM) was added to cover the gel piece and 

incubated in a bath sonicator for 15 min. The same volume of acetonitrile was added and 

incubated for 15 min in a bath sonicator. After 15 min, the supernatant was recovered and 

the extraction procedure was repeated twice more by adding 5% formic acid and 

incubating in a bath sonicator for 15 min. The supernatants containing the peptides were 

pooled, and 10 mM DTT was added to a final concentration of 1 mM DTT.  The 

supernatants were dried in a speed vac to near dryness and resuspended in 10-30 µl of 5% 

formic acid, 5% methanol.  

 Zip tip cleanup of the peptide sample for MALDI analysis- A C18 zip tip was 

equilibrated with 60% methanol, 5% formic acid and then with 5%methanol, 5% formic 

acid. The peptide sample was allowed to bind to the zip tip by repeatedly drawing and 

dispensing the sample through the zip tip slowly, about 10-15 times. The zip tip was 

washed in 5% formic acid, 5% methanol slowly about 3 times. Finally, the peptide 

sample was eluted from the zip tip with 5% formic acid, 60% methanol about 10-15 

times. This eluate was used for MALDI analysis. 
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Protein extract preparation and Bradford protein assay 

 

Bradford reagent preparation- This reagent was prepared by dissolving 100 mg of 

Coomassie Blue G-250 in 50 ml of 95% ethanol, adding 100 ml 85% phosphoric acid to 

the solution, and diluting the resulting solution to 1 liter with water. 

SDS-Tris buffer- This buffer was used to make protein extracts from different tissues of 

cotton. It was prepared by mixing 77.5 ml of 10% SDS, 12.5 ml of 1 M Tris pH, 7.0, and 

10 ml of β-mercaptoethanol.  

Protein extract preparation-Cotyledons, stems, root and suspension culture cells were 

ground in liquid nitrogen with SDS-Tris buffer and then heated at 95°C for 5 minutes to 

denature the samples. The extract was then centrifuged at 12,000g for 1 minute to get rid 

of insoluble matter. 

Bradford assay- The Bradford protein assay is a procedure for determining the protein 

concentrations in solutions, which depends upon the change in absorbance of Coomassie 

Blue G-250 upon binding of protein (Bradford, 1976). To prevent interference from the 

SDS in the protein extracts, we first precipitated the extracts by adding equal amounts of 

10% TCA and allowed the solution to stand on ice for 20 min, followed by centrifugation 

at 12,000g for 10 min. The pellet was washed with ice-cold acetone, air dried and finally 

dissolved in 0.1 M NaOH.  BSA dissolved in 0.1 M NaOH was used as a standard for 

making standard curves at a concentration range of 200-1500 µg/ml.  

About 5 ml of Bradford’s reagent was added to 100 µl of the BSA standards and the 

protein extracts, and mixed by vortexing. The absorbance was read at 595 nm after 5 min, 
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and protein concentration was estimated by comparison with a curve generated by 

plotting absorbance versus concentration of BSA standards. 

 

Semi-dry electroblotting 

 

The semi-dry electroblotting apparatus helps in the transfer of proteins present in the gel 

to the PVDF membrane. Three solutions were made, Anode buffer 1 (0.3 M Tris, 20% 

methanol), Anode buffer 2 (25 mM Tris, 20% methanol) and Cathode buffer (25 mM 

Tris, 40 mM aminohexanoic acid, and 20% methanol). 

Two pieces of Whatman filter paper were wetted in cathode buffer, one in anode 

buffer 1 and one in anode buffer 2. The PVDF membrane was first wetted in methanol 

and then wetted in water. The polyacrylamide gel apparatus was disassembled, leaving 

the gel on one plate. The wet PVDF membrane was laid on the gel and air bubbles were 

removed. A filter paper dipped in anode buffer 2 was laid on top of the membrane, and 

this filter paper was overlaid with a filter paper dipped in anode buffer 1. This assembly 

was transferred to the bottom carbon electrode of the transblot apparatus, but inverted, so 

that the gel was on top. Finally, two filter papers dipped in cathode buffer were laid on 

top of the gel. The transblot apparatus was then assembled and run at 2.5 mA/cm2 for 30 

min.  
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Western Blotting 

 

An 8% polyacrylamide gel was run with protein samples till the dye reached the end of 

the gel. The proteins were then transferred from the gel to the PVDF membrane (Biorad) 

using the transblot apparatus. After transfer, the membrane was washed in TBS (10 mM 

Tris, 150 mM NaCl pH 7.4) for 1 min at room temperature. The membrane was then put 

in a blocking solution (5% skim milk in TBS) for 1 hour followed by 1:200 dilution of 

the ascites fluid in blocking solution (1% skim milk in TBS) and left overnight at 4°C. 

(The ascites fluid was obtained from mice, after intraperitoneal injection with appropriate 

adjuvant and 100 µg of LRR domain of protein, as antigen). 

The next day, the membrane was washed in TBS for 5 min at room temperature, twice in 

TBS, 0.5% Tween 20 for 5 min, and TBS, 5% skim milk for 5 min. The membrane was 

then allowed to incubate in secondary antibody solution (1:2500 dilution of anti-mouse-

alkaline phosphatase antibody in TBS, 1% skim milk) for 2 hours at room temperature. 

The membrane was washed in TBS for 5 min, twice in TBS, 0.5% Tween 20 for 5 min, 

and twice in TBS for 5 min. The membrane was finally incubated in warm (37°C) 

alkaline phosphatase detection buffer (100 mM Tris-HCl, 100 mM NaCl, 100 mM 

MgCl2) containing 300 µl NBT and 150 µL BCIP. The membrane was washed in water 

to stop the color reaction and rinsed in methanol to remove background. 
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Cloning of the LRR domain in the expression vector pQE-30 and transformation into host 

bacteria M15. 

The LRR sequence was amplified from the genomic DNA by PCR. The 5' primer 

was designed to have an Sph I site, and the 3' primer was designed to have a Pst I site for 

in-frame cloning of the insert in the expression vector pQE-30 (Qiagen). The PCR 

product was digested with Sph I and Pst I, and was ligated to the vector, with a molar 

mass insert: vector ligation ratio of 3:1. The ligation was carried out at 4°C overnight and 

the ligation plasmid was transformed into the host bacterial strain M15 according to the 

QIAexpressionist manual (Qiagen) and plated on LB agar plates containing ampicillin 

(100µg/ml) and kanamycin (25 µg/ml).  

5’ Primer: GTGCATGCGATGAGCATTAT 
 

3’ Primer: GACTGCAGAGAAGGAACAAA 

 

Culture growth for preparative purification 

 

About 20 ml of Superbroth containing ampicillin (100 µg/ml) and kanamycin (25 µg/ml) 

was inoculated with a transformed bacterial strain M15, and grown overnight at 37°C 

shaking at 250 rpm. The next day, a 1 liter culture was inoculated with 1:50 dilution of 

the overnight grown bacteria and grown at 37°C at 250 rpm until the OD600 reached 0.6. 

At this point, IPTG was added to a final concentration of 1 mM, and the culture was 

incubated further with shaking for 4 hours. The culture was then centrifuged at 4000g for 

20 min and the bacterial cells were frozen at -20°C.  
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Preparation of cleared lysates under denaturing condition 

 

The frozen bacterial pellet was thawed for 15 min. The cells were resuspended in 40 ml 

of denaturing buffer (100 mM NaH2PO4, 10 mM Tris, 8 M Urea, 20 mM β-

Mercaptoethanol, 5 mM Imidiazole, pH 8.0), and stirred for 1 hour at room temperature. 

The lysate was centrifuged at 10,000g for 20 min at room temperature to pellet the cell 

debri. This supernatant containing the expressed protein was used for binding to the Ni-

NTA column (Qiagen).  

 

Binding of the lysate to the Ni-NTA column and elution 

            

About 500 µl of Ni-NTA slurry (Qiagen) was added to 10 ml of lysate and gently mixed 

by rocking for 1 hour at room temperature. The lysate-resin mix was loaded on an empty 

column and the flow-through was discarded. The column was washed twice, with 10 ml 

of wash solution (100 mM NaH2PO4, 10 mM Tris, 8 M Urea, 20 mM β-Mercaptoethanol, 

20mM Imidiazole, pH 8.0). Finally, the protein was eluted with the elution buffer (100 

mM NaH2PO4, 10 mM Tris, 8 M Urea, 20 mM β-Mercaptoethanol, 250 mM Imidiazole, 

pH 8.0).  
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Infection studies 

 

Xanthomonas campestris pv. esicatoria (Xcv 0887-14) was a gift from Dr. Margaret 

Essenberg (Oklahoma State University), and was grown in 10 ml of nutrient broth (Gibco 

BRL) at 30°C overnight. The, OD600 of the overnight grown culture was 0.14. The 

bacteria were diluted in nutrient both to an OD600 of 0.07 and allowed to grow at 30°C to 

an OD600 of 0.15. The number of cells/ml in the culture medium was estimated by using 

the equation: 

Number of cells/ml = OD600 (0.15) x Coleman Jr. factor for Xcv (3.4 x 109).  

  = 5.1 x108 cells/ml.  

The bacteria were finally diluted to 5x106cells/ml in saturated CaCO3 and infiltrated into 

11-day-old cotyledons of the Ac44 E cotton plants.  

11-day-old control cotyledons of the Acala 44E plants were also infiltrated with saturated 

CaCO3 containing no bacteria.  

The experimental plants were infiltrated with 5 ml of 5x106 cells/ml of Xcv, and the 

cotyledons were collected from the experimental and control plants 0, 12, 24 and 48 hr 

after infiltration by plunging the cotyledons in liquid nitrogen and storing the sample at -

70°C for RNA extraction. 
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Wounding studies 

 

For the wounding experiments, cotyledons from 11-day-old Acala 44E cotton plants were 

sliced into 3mm strips using scalpel blades. Each wounded cotyledon was sealed with 

parafilm in petri plates containing filter paper moistened with 20 mM Sodium Phosphate 

and left for 0, 12, 24 and 48 hours before flash freezing in liquid nitrogen for RNA 

extraction. The controls for the experiments were 11-day-old cotyledons attached to the 

plants, which were detached at 0, 12, 24 and 48 hours and immediately frozen in liquid 

nitrogen and stored at -70°C. 
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CHAPTER IV 
 

 

RESULTS AND DISCUSSION 

 

5’ RACE results 

 

The incomplete LRR-extensin (# 65631), that was isolated from the cDNA library, was a 

1.46 kb nucleic acid fragment that coded for an N-terminal end containing four complete 

LRR repeats along with one partial repeat, and a C-terminal end containing extensin-like 

serine/proline rich repeats. 5’ RACE for the incomplete LRR-extensin (# 65631) was 

done to determine the 5’ end of the incomplete cDNA. The result of the experiment, 

using primers to the LRR region, showed one prominant band of 1.1 kb (Figure 7). This 

band was gel extracted, ligated to the TA cloning kit vector, pCR™ II (Invitrogen), and 

transformed into bacteria INVaF', white colonies were picked from X-gal/Amp plates, 

and plasmid was isolated from them. The plasmid that showed a 1.1 kb band after 

restriction digestion with EcoR1, was submitted for sequencing. The sequencing results 

showed that 183 nucleotide bases in the 5’ RACE sequence were identical to the LRR-

extensin (# 65631 sequence). This was because the nested primer was designed to be 183 

residues away from the 5’ end of the incomplete cDNA. The experiment showed that the  
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1.1 kb 

 

 

 

Figure 7: 5’ RACE result for the LRR-extensin (# 65631) shows a prominent band of 1.1 
kb band on a 1% agarose gel. 
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original cDNA was missing 946 nucleotides. The 5’ RACE sequence was composed of 7 

complete LRR repeats and 1 partial repeat. By incorporation of the 5’ RACE sequence in 

the incomplete LRR-extensin (# 65631), which is by itself a 1.46 kb sequence, a 

sequence of 2.4 kb was obtained, with a total of 11 LRR repeats.  

 

Northern blot results 
 

 
Northern blot experiments were done to verify the length of the complete LRR-extensin 

sequence and also to determine whether, the sequence obtained by the 5’ RACE 

experiment was part of the same cDNA as the LRR-extensin. About 10 µg of total RNA 

was isolated from 9- day-old Acala 44 suspension culture cells (Chomczynski and 

Sacchi, 1987) and electrophoresed on a 1% agarose/MOPS/formaldehyde gel, and blotted 

onto a nylon membrane (Roche Molecular Biochemicals). The blot was UV crosslinked 

and hybridized with the 5’ RACE sequence probe and the incomplete LRR-extensin (# 

65631) probe. The results are shown in Figure 8. The results of the northern blot after 

probing with the two probes revealed that the two probes hybridized to a common 

transcript of 2.4 kb. This band would correspond to the complete LRR-extensin sequence. 

In addition, the incomplete LRR-extensin probe, (# 65631) further hybridized to 3 other 

bands, a 1.5 kb band that is common to both probes, but hybridized more strongly to the 

5’ RACE probe than to the incomplete LRR-extensin (# 65631) and may correspond to a 

transcript that is very similar to the LRR domain of LRR-extensin but not similar to the 

extensin-like domain. This band hybridized to the incomplete LRR-extensin (# 65631) 

sequence because the incomplete LRR-extensin has a small LRR domain (containing 4 

LRR repeats). The Arabidopsis database shows protein sequences that contain only the 
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domains similar to the LRR domain of the LRR-extensin, but completely lacking the 

extensin-like domain (Accession no. CAB79682 and CAA16878). These proteins have 

mistakingly been identified in the database as LRR-extensin proteins even though they 

have no extensin domains at all. Therefore, it is possible that in cotton also there would 

be such sequences that contain domains very similar to the LRR domains of the LRR-

extensin but completely lacking the extensin domain. Such a sequence would show a 

hybridization pattern similar to the 1.5 kb transcript seen in Figure 8. Two other bands, a 

3 kb transcript, seen only in the blot hybridized to the incomplete LRR-extensin (# 

65631), and a 4 kb transcript, seen in both the blots may correspond to LRR-extensins 

that have similar LRR domains or totally different LRR domains, but similar extensin 

domains. The northern blot studies reveal that the extensin domain is less conserved than 

the LRR domain and that is why one sees more bands hybridizing to the incomplete 

LRR-extensin (# 65631) than the 5’ RACE probe. Northern blots were also done for 

extensin sequences # 2 and  # 3. The results of the experiment are shown in Figure 9. 

Northern blots were initially probed with extensin # 2 and then stripped and probed with 

sequence # 3. The results of northern blots probed with extensins # 2 and extensins # 3 

show that the extensin # 3 hybridized to 2 transcripts of 1.5 kb and 2.3 kb, which could 

be two extensins that share a high degree of similarity, or two differently spliced 

transcripts from the same gene for extensin # 3. The extensin # 2 hybridized to a single 

transcript of 1.5 kb. Due to the similarity in the sizes of the transcript (1.5 kb), and to 

make certain that the extensin probes only hybridize to their sequence, and not to the 

other extensin, new probes were made for extensin # 2 and extensin # 3 by designing 

primers in the 3’ untranslated regions of the extensins and PCR amplifying these regions 
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of the cDNA and labeling by random prime labeling to generate probes. All the 

subsequent experiments done on the extensins # 2 and # 3 were done using these probes. 
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                                Blot A              Blot B 

 

Figure 8: Northern blot results. Blot A probed with incomplete LRR-extensin (# 65631), 

Blot B probed with 5’ RACE derived sequence. The source of RNA was Acala 44 

suspension culture cells. 
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                                   Blot A             Blot B 

 

 

Figure 9: Northern blot results for extensins # 2 and # 3.  Blot A probed with extensin  # 

3. Blot B probed with extensin # 2. The source of RNA was Acala 44 suspension culture 

cells. 
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Southern blot results 

 

Southern blots were done to get an idea of the gene family size of the LRR-extensin and 

extensins # 2 and # 3. Genomic DNA was isolated from suspension culture cells and the 

DNA was digested with EcoRI, (an enzyme that does not cut within the cDNA of LRR-

extensin, extensin # 2 and extensin # 3). For the estimation of the gene family size of 

LRR-extensin, genomic DNA was additionally digested with Pst I and Kpn I, and was 

probed with the incomplete LRR-extensin (# 65631) and the 5’ RACE derived sequence. 

The results in Figure 10 show that, after digestion with EcoRI under low stringency 

hybridization, (0.5X SSC, 0.1% SDS), the blot probed with the incomplete LRR-extensin 

(# 65631) showed at least 5 bands but under the same conditions, the blot probed with the 

5’ RACE probe showed at least 3 bands. The genomic DNA after digestion with EcoRI, 

PstI and KpnI, under high stringency washes (0.1X SSC, 0.1% SDS) of the blot, showed 

only 2 bands when either probe was used, as seen in Figures 11-a and 11-b. The result 

indicates that the LRR-extensin may belong to a multigene family but there are 3 closely 

related members. The 5 bands seen hybridizing to the incomplete LRR-extensin (# 

65631) probe may have different LRR domains or not have an LRR domain at all, which 

is why these bands are not seen in the blots hybridized with the 5’ RACE probe at low 

stringency washes. Their extensin domains may be fairly similar because they are seen in 

the blots after low stringency washes with the incomplete LRR-extensin (# 65631) probe. 

Extensin # 2 will not hybridize to the incomplete LRR-extensin (# 65631) or 5’ RACE 

probe because, it shows a low identity (at the nucleic acid level) to either of these probes 

(17 % identity to # 65631 and 14 % identity to 5’ RACE probe). Similarly, extensin # 3 
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will also not hybridize to incomplete extensin (# 65631) and 5’ RACE probe because of 

low identity of the sequence to both the probes (18 % identity to # 65631 and 14 % 

identity to 5’ RACE probe). 

Genomic southern blot results of the extensins reveal that, after genomic DNA digestion 

with EcoRI, extensin # 2 hybridizes at low stringency (0.5X SSC, 0.1% SDS) to at least 8 

bands, but at high stringency (0.1X SSC, 0.1% SDS), binds only to a single band (Figure 

12). Extensin # 3 binds to at least 7 bands after low stringency (0.5X SSC, 0.1% SDS) 

washes, but binds to only one one band after high stringency washes (0.1X SSC, 0.1% 

SDS) as seen in Figure 13. This means that the isolated extensin clones also belong to a 

multigene extensin family, but the genes in the family are not very closely related, 

because only a single member shows up after high stringency washes.  
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Figure 10: Southern blot of LRR-extensin after low stringen
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Figure 11-a: Southern blot of LRR-extensin after high stringency washes. Blot A was 

hybridized with incomplete LRR-extensin (# 65631). Blot B was hybridized with 5’ 

RACE derived sequence. Genomic DNA was digested with EcoRI, an enzyme that does 

not cut within the sequence. 
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Figure 11-b: Southern blot of LRR-extensin after high stringency washes. Blot A was 

hybridized with incomplete LRR-extensin (# 65631). Blot B was hybridized with 5’ 

RACE derived sequence. Genomic DNA was digested with KpnI and PstI, enzymes that 

do not cut within the sequence. 
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Figure 12: Southern blot of sequence # 2 after high and low stringency washes. Blot A 

washed under low stringency. Blot B washed under high stringency. Genomic DNA was 

digested with EcoRI, an enzyme that does not cut within the sequence. 
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Figure 13: Southern blot of sequence # 3 after low and high stringency washes. Blot A 

washed under low stringency. Blot B washed under high stringency. Genomic DNA was 

digested with EcoRI, an enzyme that does not cut within the sequence. 
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Genomic Library screening 

 

Cotton (Gossypium hirsutum L. cv. Acala SJ-2) genomic library in λ FIX II (Stratagene) 

was given to us by Dr. Thea Wilkins (University of California, Davis). The number of 

plaques that need to be screened to obtain the LRR-extensin, assuming one copy per 

haploid genome, was estimated by simple statistics based on the Poisson distribution 

(Clarke and Carbon, 1976), using the equation shown below. 

N = ln (1-P)/ ln [1-(I/G)] 

N = number of plaques screened  

I = insert size in base pairs 

G = size of the genome in base pairs 

P = probability of finding a particular sequence in the library 

 

For a 98% chance of finding the gene, assuming the average insert size is 12 kb, for a 

cotton haploid genome size (1X = 2,118 Mb, although cotton is allotetraploid), 652,000 

plaques needed to be screened. For our experiment, about 600,000 plaques were screened 

with the 5’ RACE sequence probe instead of the incomplete LRR-extensin (# 65631) 

probe because, many positives showed up after hybridization with the incomplete LRR-

extensin (# 65631). This result can be easily explained because, we screened the cotton 

genomic library under low stringency (0.5 X SSC, 0.1% SDS), and under these 

conditions genes that belong to the extensin-like multigene family are also detected (as 

seen in Figure 10, where low stringency conditions were applied and 5 bands were seen 

in the blot).  The 5’ RACE derived probe showed fewer positives and that is why we 

 73



  

chose this probe to screen the library. Five positive plaques were subjected to primary, 

secondary and tertiary hybridization and the most strongly hybridizing plaque (as seen by 

the intensity of the chemiluminescence signal) was picked up and lambda DNA was 

isolated. The lambda DNA was directly sent for sequencing with the primers used in the 

5’ RACE experiment and the primers used to sequence the incomplete LRR-extensin (# 

65631). The sequencing results revealed that the LRR-extensin is one large open reading 

frame with no introns because it aligned perfectly with its cDNA sequence. The gene 

sequence is shown in Figure 14. Figure 15 shows the protein sequence coded by the gene 

with the domains clearly demarkated. For prediction of splice sites, protein coding exon, 

translation start site and polyadenylation site, the gene prediction programs, Genscan 

(MIT, Massachusets, USA), BCM Gene Finder (Baylor College of Medicine, Houston, 

Texas), NetPlant gene (Center for Biological Sequence Analysis, Technical University of 

Denmark), NetStart (Center for Biological Sequence Analysis, Technical University of 

Denmark) and WebGene (Institute of Advanced Biomedical Technologies, Seagrate, 

Italy) were used.  
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Figure 14: Gene sequence of LRR-extensin 
 

 
caatttcggttcaattcatctcaaaataaaaagtgcctattaccaacataatatatgatac 
 
 
attcttataggatacctataattcttttaacgaatgtttgattttcccctttttttaata 
 
 
taacattaggggtaagggataggataacaccattcaaaccccatgctaaataaatgtata 
 
 
attaatcactactccatccaaatcaaggcaatgactgattttcatatgatcttaattgtg 
 
 
aattgaataaaaaagataaaagaattataatgttactttcaatgatatgaagtaattgtg 
 
 
ttgtccttccgaacctataataatattataagattgtaaaattaaaattatcccaaaatt 
 
 
gaagtaaaaggactggatatcaaattttaatataatataaggactacagataatattaga 
                      
                   Putative TATA box 
ccttaaatctaaataatatattttatatataacagctttacaaaaatccttatcttctct 
                  
                  Transcription start site              

 

cccatacacacatactgcatactcgaaaaaaccctaaaagctctctcttttgtctccttc 
 
 
tctctacattttcttcttcagatctccaaattgaaaccccaaattcgtgttttctgcaca 
 
 
aaccccattttcaaaaccccagcttttgttcaaaaaaagttcaaaaaaaggtggcatttt 
                    
                       Translation start site 
ttaatatcagatgtctcatgtgaaatgaagaagacgaacattatcgacctccattgttat 
                         M  K  K  T  N  I  I  D  L  H  C  Y  
ccttctttttgttaccttttgtttcttttagtttcagtttttgtatccttatgttcatgc 
 P  S  F  C  Y  L  L  F  L  L  V  S  V  F  V  S  L  C  S  C  
gatgagcattatgtttccagccatagcggacttaccgacaaggaagtatcgtacataaag 
 D  E  H  Y  V  S  S  H  S  G  L  T  D  K  E  V  S  Y  I  K  
caacgacagctgctttattacatagatgagttcggtgacagaggggagaacgtctccgtc 
 Q  R  Q  L  L  Y  Y  I  D  E  F  G  D  R  G  E  N  V  S  V  
gacccgtcactggtttttgaaaaccagaggttgagagacgcttatatagctttacaagct 
 D  P  S  L  V  F  E  N  Q  R  L  R  D  A  Y  I  A  L  Q  A  
tggaaaaaagcgattctttccgacccgtttaatctcaccgccgattgggttggatccggg 
 W  K  K  A  I  L  S  D  P  F  N  L  T  A  D  W  V  G  S  G  
gtgtgtgactatactggtgttttctgtgctcgagcgcttgataacaagagaatcagaacc 
 V  C  D  Y  T  G  V  F  C  A  R  A  L  D  N  K  R  I  R  T  
gtcgccggtattgatttaaaccatggagatattgccggatacttgccggaggagcttggg 
 V  A  G  I  D  L  N  H  G  D  I  A  G  Y  L  P  E  E  L  G  
ttactcaccgatctggcattgtttcatatcaactcgaaccggttttgtggtacggttccg 
 L  L  T  D  L  A  L  F  H  I  N  S  N  R  F  C  G  T  V  P  
cataagtttataaagttgaagctgatgttcgagttggatcttagcaacaatcggttcgcc 
 H  K  F  I  K  L  K  L  M  F  E  L  D  L  S  N  N  R  F  A  
ggtaagttccctgaagtgattcttaagcttcctttacttaaatttttggatttgaggttt 
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 G  K  F  P  E  V  I  L  K  L  P  L  L  K  F  L  D  L  R  F  
aatgaatttgaaggaactgtgcctaaagagctttttgataaagatttggatgctattttt 
 N  E  F  E  G  T  V  P  K  E  L  F  D  K  D  L  D  A  I  F  
attaatcataaccggtttagatttaatctaccggataattttggtaactcgccggcttct 
 I  N  H  N  R  F  R  F  N  L  P  D  N  F  G  N  S  P  A  S  
gttattgttttggctaataacaagtttcacggttgtgtgccggcgagtcttgggaacatg 
 V  I  V  L  A  N  N  K  F  H  G  C  V  P  A  S  L  G  N  M  
acgagtcttgaagagataattttaataaacaatgggtttcgatcttgtttgccggagcaa 
 T  S  L  E  E  I  I  L  I  N  N  G  F  R  S  C  L  P  E  Q  
attggggggttgagaaatacgactgtttttgatgttagctttaatgagttaatgggtact 
 I  G  G  L  R  N  T  T  V  F  D  V  S  F  N  E  L  M  G  T  
ttgccggagcaaattgggggaatggttagccttgaacagcttaatgtggcacataatatg 
 L  P  E  Q  I  G  G  M  V  S  L  E  Q  L  N  V  A  H  N  M  
ttgtctgggaagattccagcaagtatttgtcggttgccgaagttggagaatttcacgttt 
 L  S  G  K  I  P  A  S  I  C  R  L  P  K  L  E  N  F  T  F  
tcgtataatttcttcaccggagaaccgccggtttgtttggggttacgtgcttttgacgat 
 S  Y  N  F  F  T  G  E  P  P  V  C  L  G  L  R  A  F  D  D  
aggaggaactgtttgccggcgaggcctttacaacggagtgctgctcaatgtaggtctttc 
 R  R  N  C  L  P  A  R  P  L  Q  R  S  A  A  Q  C  R  S  F  
ttgtctagaccggtggattgtaattcatttagatgtgctccttttgttccttctttgctg 
 L  S  R  P  V  D  C  N  S  F  R  C  A  P  F  V  P  S  L  L  
tctcctcctccgccttctccgcctccggttgttgtgctgtcaccgccacccccatcgcct 
 S  P  P  P  P  S  P  P  P  V  V  V  L  S  P  P  P  P  S  P  
gtttttattccaccatcaccacccccgccgccaccaccgccagtatactctccccgtccc 
 V  F  I  P  P  S  P  P  P  P  P  P  P  P  V  Y  S  P  R  P  
ccttcaccatctccaccagtatattcacctccacctccaccgccacctgtgtactctcct 
 P  S  P  S  P  P  V  Y  S  P  P  P  P  P  P  P  V  Y  S  P  
cctctgcctccaccatctccaccgccacctgtttattcacccccaccacccccctcacct 
 P  L  P  P  P  S  P  P  P  P  V  Y  S  P  P  P  P  P  S  P  
ccaccaccttcaccacccccacaggtatattctccaccaccaccaccatccccacctcca 
 P  P  P  S  P  P  P  Q  V  Y  S  P  P  P  P  P  S  P  P  P  
ccatcacccccgccacctacttatccatcaccacctccaccatcttctccaccaccttca 
 P  S  P  P  P  P  T  Y  P  S  P  P  P  P  S  S  P  P  P  S  
ccagtatactgtgtgaggtctccacctccttcaccaccaaattcaccccctccaccacct 
 P  V  Y  C  V  R  S  P  P  P  S  P  P  N  S  P  P  P  P  P  
cgattgttttcctcacctccaccagttccttactactataactccccaccaccgccacac 
 R  L  F  S  S  P  P  P  V  P  Y  Y  Y  N  S  P  P  P  P  H  
cattcaccgccacctcctgtacattctccaccacccccaccacattcacctcctccacca 
 H  S  P  P  P  P  V  H  S  P  P  P  P  P  H  S  P  P  P  P  
atttatccatacttatctccaccaccgccaccacctcctgtttattccccacctcctcca 
 I  Y  P  Y  L  S  P  P  P  P  P  P  P  V  Y  S  P  P  P  P  
gttcactcaccaccaccaccgtcacctcctccatgtattgagccacctccaccaccacca 
 V  H  S  P  P  P  P  S  P  P  P  C  I  E  P  P  P  P  P  P  
ccatgtgtagagtacacgccatcaccctcacccccaattcattacaaaccacctccatca 
 P  C  V  E  Y  T  P  S  P  S  P  P  I  H  Y  K  P  P  P  S  
ccttcacccccacccccaccaatccattatcattcacctccaccaccatcacctccaccg 
 P  S  P  P  P  P  P  I  H  Y  H  S  P  P  P  P  S  P  P  P  
gctcccgtatacgaagggccacttccaccagtaatcggagtatcatacgcttcacctcca 
 A  P  V  Y  E  G  P  L  P  P  V  I  G  V  S  Y  A  S  P  P  
ccgccacctttctattgattctttcaagaatttccctctaaccttgattaaaaaaaaccc 
 P  P  P  F  Y Stop                      Polyadenylation site 
caaaaaagaggagaaattctctcccataaattatttgatatttggagttgtgaaaaataa
 
aagaagaaaagagtgtagggtgaaaggaaagttgttgcatagggggatgaattcccaaaaa 
 
aaaaaaaaaaa 
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Figure 15-a: Domains of the LRR-extensin 
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Figure 15-b: Domains of the LRR-extensin 

Signal peptide recognition sequence-32 amino acids: 

M K K T N I I D L H C Y P S F C Y L L F L L V S V F V S L C 
S C 
 
Linker domain-97 amino acids: 
 
D E H Y V S S H S G L T D K E V S Y I K Q R Q L L Y Y I D E 
F G D R G E N V S V D P S L V F E N Q R L R D A Y I A L Q A 
W K K A I L S D P F N L T A D W V G S G V C D Y T G V F C A 
R A L D N K R 
 
LRR domain-11 LRR repeats-256 amino acids: 
 
LL  xx  xx  LL  xx  xx  LL  xx  xx  LL  xx  LL  xx  xx  NN  xx  LL  xx  xx  GG  xx  II  PP  xx  xx          
RR  II  RR  TT          VV  AA  GG  II  DD  LL  NN  HH  GG  DD  II  AA      GG  YY  LL  PP  EE  EE    LLRRRR  11        
LL  GG  LL  LL  TT  DD  LL  AA  LL  FF  HH  II  NN  SS  NN  RR  FF  CC      GG  TT  VV  PP  HH  KK    LLRRRR  22      
FF  II  KK  LL  KK  LL  MM  FF  EE  LL  DD  LL  SS  NN  NN  RR  FF  AA      GG  KK  FF  PP  EE  VV    LLRRRR  33      
II  LL  KK  LL  PP  LL  LL  KK  FF  LL  DD  LL  RR  FF  NN  EE  FF  EE      GG  TT  VV  PP  KK  EE    LLRRRR  44      
LL  FF  DD  KK  DD      LL  DD  AA  II  FF  II  NN  HH  NN  RR  FF  RR  FF      NN  LL  PP  DD  NN    LLRRRR  55      
FF  GG  NN  SS  PP      AA  SS  VV  II  VV  LL  AA  NN  NN  KK  FF  HH      GG  CC  VV  PP  AA  SS    LLRRRR  66      
LL  GG  NN  MM      TT  SS  LL  EE  EE  II  II  LL  II  NN  NN  GG  FF  RR  SS  CC  LL  PP  EE  QQ    LLRRRR  77      
II  GG  GG  LL  RR  NN  TT  TT  VV  FF  DD  VV  SS  FF  NN  EE  LL  MM      GG  TT  LL  PP  EE  QQ    LLRRRR  88      
II  GG  GG  MM  VV  SS  LL  EE  QQ  LL  NN  VV  AA  HH  NN  MM  LL  SS      GG  KK  II  PP  AA  SS    LLRRRR  99      
II  CC  RR  LL  PP  KK  LL  EE  NN  FF  TT  FF  SS  YY  NN  FF  FF  TT      GG  EE  PP  PP  VV  CC    LLRRRR  1100                                              
                            LL  GG  LL  RR  AA  FF  DD  DD  RR  RR  NN  CC  LL  PP  AA      RR  PP  LL  QQ  RR    LLRRRR  1111      
  
Linker domain-28 amino acids: 
S A A Q C R S F L S R P V D C N S F R C A P F V P S L L 
 

Extensin-like domain-285 amino acids: 

S P P P P S P P P V V V L S P P P P S P V F I P P S P P P P 
P P P P V Y S P P P P S P S P P V Y S P P P P P P P V Y S P 
P L P P P S P P P P V Y S P P P P P S P P P P S P P P Q V Y 
S P P P P P S P P P P S P P P P T Y P S P P P P S S P P P S 
P V Y C V R S P P P S P P N S P P P P P R L F S S P P P V P 
Y Y Y N S P P P P H H S P P P P V H S P P P P P H S P P P P 
I Y P Y L S P P P P P P P V Y S P P P P V H S P P P P S P P 
P C I E P P P P P P P C V E Y T P S P S P P I H Y K P P P S 
P S P P P P P I H Y H S P P P P S P P P A P V Y E G P L P P 
V I G V S Y A S P P P P P F Y  
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Expression studies 

 

To study the expression of LRR-extensin in the different organs of cotton, RNA was 

extracted from stem, leaves, roots, cotyledons and callus of cotton (Acala 44E plants). 

Ten micrograms of total RNA was run in a 1% agarose/MOPS/formaldehyde gel, 

transferred to a nylon membrane, and hybridized with the incomplete LRR-extensin (# 

65631) probe. The results are shown in Figure 16. The blot shows that the LRR-extensin 

predicted to be a 2.4 kb transcript, is expressed in all organs, but predominantly in stem, 

cotyledons and callus. In all the organs blots, a band at 3 kb is also visible.  

In stem and cotyledons, the 3 kb transcript is expressed to an equal extent as the 2.4 kb 

LRR-extensin band. In callus and leaf, the 2.4 kb LRR-extensin band is expressed to a 

greater extent than the 3 kb band. The root shows low level of expression of the 2.4 kb 

LRR-extensin and the 3 kb band.  

Northern blots probed with the 3’ untranslated region of extensin # 2 show that this 

extensin is expressed in all tissues but predominantly in root, stem and callus. Leaf and 

cotyledons show low-level expression of the 1.5 kb extensin transcript. Figure 17 shows 

northern blot results when probed with extensin # 2 probe.  

Northern blots probed with the 3’ untranslated region of extensin # 3 show that this 

extensin is expressed predominantly in roots, stem and callus (Figure 18). Leaf and 

cotyledons show low level expression of the 1.5 kb transcript. 
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(a) 

                                   

 
3 kb 
2.4 kb 

 
                                       S        L        R          Co      Ca 
 

 

(b)                                        

                                      

                                       S       L        R       Co     Ca 

 

 

Figure 16: (a) Northern blot of RNA from different organs of cotton probed with 

incomplete LRR-extensin (# 65631). S, stem; L, leaf; R, root; Co, cotyledons; Ca, callus.  

(b) Ribososomal RNA from stem, leaf, root, cotyledon and callus as control for RNA 

loading. 
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(a) 

 

1.5 kb 

                                            S          L          R        Co        Ca 

(b)                                      

 

                                        

                                           S           L         R        Co       Ca 

 

 

Figure 17: (a) Northern blot of different organs of cotton probed with 3’ unstranslated 

sequence of extensin # 2. S, stem; L, leaf; R, root; Co, cotyledons; Ca, callus.  

(b) Ribosomal RNA from stem, leaf, root, cotyledon and callus as control for RNA 

loading. 
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(a) 

    

 
1.5 kb 

                                          S            L            R          Co        Ca 

 

(b) 

 

                                                S          L         R      Co      Ca 

 

 

                                                    

                                  

Figure 18: (a) Northern blot of different organs of cotton probed with 3’ untranslated 

sequence of extensin # 3. S, stem; L, leaf; R, root; Co, cotlyledon; Ca, callus.  

(b) Ribosomal RNA from apical meristem, stem, leaf and root as control for RNA 

loading. 
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Infection Studies 

 

To find out if the LRR-extensin and extensins # 2 and # 3 might be related defense 

proteins, infection studies were done on Acala 44E plants by infiltrating the plants with 

Xanthomonas campestris pv. vesicatoria (Xcv 0887-14), a bacterium that induces a 

hypersensitive reaction in cotton plants. The cotyledons of 11-day-old Acala 44E plants 

were infiltrated with sterile CaCO3 in control plants and 5x106 cfu/ml of Xanthomonas 

campestris pv. vesicatoria (Xcv 0887-14) in sterile CaCO3 in infected plants, and RNA 

was isolated from the cotyledons at 0, 12, 24 and 48 hours after infiltration and northern 

blot experiments were done. To reduce the variability between cotyledons and between 

experiments, only the smaller cotyledon (also called the smooth cotyledon) of each plant 

was used in the study. The experiment was done at noon and all the plants were allowed 

to absorb the water after infiltration, outside the growth chamber, and returned into the 

growth chamber at 7 pm. The experiment was done in duplicate, and cotyledons from two 

plants were pooled and used for each time point.  

Figure 19 shows the results of the blots probed with the incomplete LRR-extensin  

(# 65631) and 5’ RACE probe. In control plants and in infected plants, the 2.4 kb 

transcript that is predicted to code for the LRR-extensin, was the predominant band, with 

the expression level decreasing at 12 hours, and increasing again at 24 hours. At 48 hours 

after infiltration, the expression of this gene seems to be suppressed. A 3 kb transcript 

also shows the same expression pattern as the 2.4 kb LRR-extensin, as seen in the blots 

hybridized to the incomplete LRR-extensin cDNA # 65631. A 1.5 kb band and two other 

bands of lower molecular weight also seem to hybridize to the probe to a lesser extent. 
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This result for the duplicate set of cotyledons for the same time points is also shown 

(Figure 31 in Appendix A). 

This result suggests that, the LRR-extensin gene is probably not an extensin-like defense 

gene because most extensin genes are induced as a result of the hypersensitive response 

and show induction after infiltration with Xcv (Esquerre-Tugaye, Mazau, Pelissier, Roby, 

Rumeau and Toppan, 1995).  

Figure 20 shows northern blots of RNA isolated at 0, 12, 24 and 48 hours from control 

plants and, after infiltration with Xcv and probed with extensin # 2. The blot shows that 

there is very low level of expression of the 1.5 kb transcript in controls (except at 12 

hours, where it seems to be induced). The reason this gene seems to be induced at this 

time point may be because the cotyledon that was used in this time point might have been 

injured and, wounding also can induce extensin # 2 expression. The reason we believe 

that the 48 hr expression is a result of induction of extensin # 2 due to infiltration with 

Xcv, is because we repeated this experiment three different times and, each time, this 

gene was induced at 48 hr, but not at 12 hours. The second set of duplicates, for the 12-

hour time point for control plants do not show induction at 12 hours (Figure 32 in 

Appendix A). Therefore this induction can be explained because of injury to the 

cotyledon while infiltration with CaCO3. 

Figure 21 shows northern blots of RNA isolated at 0, 12, 24 and 48 hours from control 

plants and plants infiltrated with Xcv and probed with extensin # 3. The blot shows that 

there is a low level of constitutive expression of extensin # 3 in controls but it seems to be 

induced in the 12-hour time point. This is because, the cotyledon at this time point could 

be injured and wounding can induce extension # 3. The result is similar to the extensin # 
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2. The second set of duplicates, for the 12-hour time point for control plants do not show 

induction at 12 hours, consistant with our explanation for this result due to wounding 

(Figure 33 in Appendix A). However in the cotlyledons infiltrated with Xcv, the transcript 

is induced at 48 hours after infiltration with Xcv. 

The result for the two extensins is consistent with the proposed role of extensins in 

defense. Extensins, are thought to be induced as a result of hypersensitive response, and 

are thought to immobilize the negatively charged surfaces of certain plant pathogens and 

restrict their entry into the plant cell by binding to their surfaces by their positively 

charged lysine residues (Mazau, Rumeau and Esquerre-Tugaye, 1987; Mellon and 

Helgeson, 1982).  
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(a)                                                                           (b)      

 

3 kb 
2.4  kb 
 
 

 Hours                   0c    12c  24c 48c      0i   12i  24i   48i                                      0c   12c   24c 48c      0i   12i   24i   48i

 

                                         (c) 

                       

   Hours                                       0c     12c    24c  48c       0i      12i    24i    48i

                                 

 Figure 19: Northern blot of infection studies. RNA was isolated from 11-day-old 

cotyledons at 0, 12, 24 and 48 hours after infiltration with CaCO3 in controls (0c   12c   24c   

48c), and Xanthomonas campestris pv. vesicatoria in infected plants (0i   12i    24i   48i).  

(a) Blot probed with incomplete LRR-extensin (# 65631)  

(b) Blot probed with 5’ RACE probe. 

(c) Photograph of ribosomal RNAs from 0, 12, 24 and 48 hours after infiltration with 

CaCO3 in control plants, and Xanthomonas campestris pv. vesicatoria in infected 

plants, as control for RNA loading.  
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(a) 

                                            

                                          

 Hours                               0c   12c    24c    48c       0i      12i    24i     48i

 
        1.5 kb 
 

 
 
 
(b)                                         

                                           
                               

      Hours                            0c     12c   24c   48c     0i      12i    24i    48i

 

 

 

Figure 20: (a) Northern blot of infection studies. RNA was isolated from 11-day-old 

cotyledons at 0, 12, 24 and 48 hours after infiltration with CaCO3 in controls (0c   12c   24c   

48c), and Xanthomonas campestris pv. vesicatoria in infected plants (0i   12i    24i   48i) 

and probed with 3’ untranslated sequence of extensin # 2. (b) Photograph of ribosomal 

RNAs from 0, 12, 24 and 48 hours after infiltration of cotton cotyledons as control for 

RNA loading. 
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(a) 

                                              

 
    1.5 kb 

Hours                                      0c    12c    24c    48c      0i     12i    24i      48i

 

(b)                                        

                                              
                                                                                                                                      

   Hours                                  0c    12c   24c   48c        0i     12i      24i      48i

 

 

Figure 21: (a) Northern blot of infection studies. RNA was isolated from 11 day old 

cotyledons at 0, 12, 24 and 48 hours after infiltration by Xanthomonas campestris pv. 

vesicatoria and probed with 3’ untranslated sequence of extensin # 3. (b) Photograph of 

ribosomal RNAs from 0, 12, 24 and 48 hours after infiltration of cotton cotyledons as 

control for RNA loading 
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Wounding Studies 

 

To find out if the LRR-extensin and extensins # 2 and # 3 are defense genes that are 

induced by wounding, 11-day-old cotton cotyledons were cut into 3mm strips and 

incubated in a filter paper moistened with 20mM sodium phosphate buffer for 0, 12, 24 

and 48 hours. The controls for the experiments were 11-day-old cotyledons attached to 

the plants, which were detached at 0, 12, 24 and 48 hours. The cotyledons were then flash 

frozen in liquid nitrogen, and total RNA was isolated from them. Northern blot results of 

RNA probed with incomplete LRR-extensin (# 65631) shows that the 2.4 kb LRR-

extensin and a 3 kb band were constitutively expressed with slight variations in 

expression levels. A band at 4 kb is induced at 24 hours after wounding. There is also a 

1.5 kb band that shows induction at 24 hours after wounding. In the blots hybridized to 

the 5’RACE probe, the 2.4 kb LRR-extensin is constitutively expressed, the same 4 kb 

band and a 1.5 kb band shows signs of induction as in the blot hybridized with 

incomplete LRR-extensin (# 65631) probe. (Figure 22). The second set of duplicates for 

this experiment is shown in Figure 34 in Appendix A. 

These results, along with the results from the infection studies indicate that the 2.4 kb 

LRR-extensin is not a defense related gene because, most defense genes are induced as a 

result of wounding and infiltration with pathogen (Mazau, Rumeau and Esquerre-Tugaye, 

1987; Mellon and Helgeson, 1982). 

Extensin # 2, which is a 1.5 kb band, is induced at 12 hours after wounding, and 

expression level remains high at 24 hours and 48 hours. (Figure 23).  
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There are 2 cross hybridizing bands of 2 kb and 3 kb that are also induced along with the 

1.5 kb extensin band. The second set of duplicates for this experiment is shown in Figure 

35 in Appendix A. 

 Extensin # 3, which also shows a 1.5 kb band, is induced along with a band of 2.3 kb and 

3 kb at 12 hours after wounding and the expression level remains high at 24 hours and 48 

hours (Figure 24). Since the probes for the tissue expression, infection and wounding 

studies are 3’ untranslated sequence probes, the cross hybridizing transcripts may be 

differential splicing transcripts of the same gene. The second set of duplicates for this 

experiment is shown in Figure 36 in Appendix A. 

The expression patterns exhibited by the extensins # 2 and # 3 are typical of defense 

genes. These results, along with the results from infection studies indicate that extensins 

# 2 and # 3 are defense proteins, and their role in wounding is probably to reinforce and 

strengthen the cell wall after wounding (Mazau, Rumeau and Esquerre-Tugaye, 1987; 

Mellon and Helgeson, 1982). 
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(a)                                                                       (b) 

                              

 
                    4 kb 
                    3 kb 
                 2.4 kb 
                 1.5 kb 

Hours               0c     12c    24c  48c      0w    12w   24w  48w               0c     12c    24c  48c      0w    12w   24w  48w

 

(c) 

                                        

   Hours                               0c     12c    24c  48c      0w    12w   24w  48w                    

 

 

Figure 22: Northern blot of wounding studies. RNA was isolated from 11-day-old 

cotyledons at 0, 12, 24 and 48 hours without wounding (0c   12c   24c   48c), and after 

wounding (0w   12w    24w  48w).  

(a) Blot probed with incomplete LRR-extensin (# 65631)  

(b) Blot probed with 5’ RACE probe. 

(c) Photograph of ribosomal RNAs from 0, 12, 24 and 48 hours with and without 

wounding, as control for RNA loading.  
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(a)                

                               

 
 
 3 kb 
 
 2 kb 
 
 1.5 kb 

        Hours      0c     12c     24c   48c        0w    12w   24w    48w

 

 

(b)  

                                  

           Hours                   0c     12c    24c   48c      0w    12w   24w 48w

 

Figure 23: (a) Northern blot of wounding studies. RNA was isolated from 11-day-old 

cotyledons at 0, 12, 24 and 48 hours without wounding (0c   12c   24c   48c), and after 

wounding (0w   12w    24w  48w) and probed with 3’ untranslated region of extensin # 2. 

(b) Photograph of ribosomal RNAs from 0, 12, 24 and 48 hours with and without 

wounding, as control for RNA loading. 
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(a) 

                             

 
3 kb 
 
2.3 kb 
 
1.5 kb 

Hours                        0c     12c     24c   48c          0w      12w   24w    48w

 

  

 

(b) 

                               

Hours                            0c     12c   24c   48c       0w     12w    24w   48w

 

Figure 24: (a) Northern blot of wounding studies. RNA was isolated from 11-day-old 

cotyledons at 0, 12, 24 and 48 hours without wounding (0c   12c   24c   48c), and after 

wounding (0w   12w    24w  48w) and probed with the untranslated 3’ region of extensin # 

3. 

(b) Photograph of ribosomal RNAs from 0, 12, 24 and 48 hours with and without 

wounding, as control for RNA loading. 
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Expression Studies of the LRR region in E.coli 

 

To express the LRR domain in bacteria, primers were made in the linker domains 

preceding and succeeding the LRR-domain and the entire LRR domain was cloned in 

frame to the prokaryotic plasmid vector pQE-30, after amplification from genomic DNA 

by PCR. Figure 25 shows the result of PCR amplifying the 1.14 kb fragment coding for 

the LRR-domain. The PCR fragment was run on a 1% gel, gel extracted, digested with 

Sph I and Pst I (the 5’ and 3’ primers contained these sites) and ligated to the plasmid 

vector pQE-30. The ligated vector was finally transformed into host bacteria M15 and 

plated on LB/Amp/Kan plates. A single colony was picked and grown overnight at 37°C 

in Superbroth and then diluted 1:50 in 1 liter Superbroth and allowed to grow at 37°C till 

the OD600 reached 0.6. At this point, 1 ml of the culture was taken and bacteria were 

pelleted and resuspended in 5X SDS-PAGE sample buffer. This was the uninduced 

control (UC). To the rest of the culture, IPTG was added to a final concentration of 1mM 

and bacteria were allowed to grow for 4 hours. After 4 hours, a 1 ml culture was taken 

and bacteria were pelleted from the culture and resuspended in 5X SDS-PAGE sample 

buffer. This was the induced control (IC). These samples were later run on a 12% 

acrylamide gel to find out if the LRR domain protein (LD) was expressed. A prominent 

band at 45 kD (the expected size of the LRR domain if it was expressed) showed that the 

LRR domain was indeed expressed by the bacteria. The rest of the culture was 

centrifuged to pellet the bacteria, and the LRR protein was purified from the bacteria 

under denaturing conditions by binding to the Nickel-NTA column. Figure 26 shows a 

polyacrylamide gel with the uninduced control, induced control and the LRR domain 
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protein after purification under denaturing conditions on a Nickel-Nitrilotriacetic acid 

(Ni-NTA) column. The LRR domain protein after purification was run on a 12% gel and 

sent to the Hybridoma Center (Oklahoma State University) for gel extraction of the 45 

kD band and injection into mice for polyclonal antibody synthesis. To test if the LRR 

domain was translated correctly from the LRR coding sequence, the LRR domain protein 

was gel extracted, reduced, alkylated, and digested with trypsin and the fragments were 

analyzed by MALDI-MS. If the LRR domain was translated correctly, we would expect 

that MALDI-MS would identify fragments of the predicted molecular sizes. The 

predicted masses of the LRR domain peptides after digestion with trypsin was generated 

by the program PeptideMass (ExPASy, Swiss Institute of Bioinformatics). The MALDI-

MS data shown in Figure 27 identified many fragments with molecular weights expected 

from the LRR protein after alkylation and trypsin digestion. This proves that the LRR 

protein was translated correctly from the LRR coding sequence. To show that the 

polyclonal antibody recognized the LRR as antigen, a western blot experiment was done, 

by incubating the LRR antigen with the polyclonal antibody. Figure 28 shows the western 

blot results of the LRR antigen after incubation with the polyclonal antibody made from 

the Hybridoma Center, against the LRR antigen. This result indicated that the polyclonal 

antibody did recognize the LRR antigen. Since we were interested in finding out the size 

of the native LRR-extensin in the plant, total protein was extracted from stem, leaf, root 

and callus culture cells of cotton (Acala 44) and a western blot experiment was done 

using the LRR polyclonal antibody as the primary antibody. Figure 29 shows the western 

blot results of an 8% polyacrylamide gel run with total protein extracted from leaf, stem, 

root and callus culture cells and incubated with anti-LRR antibody. A protein band of ~ 
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300 kD was detected in the callus culture cells. A very high molecular weight band that 

barely entered into the stacking gel was detected in the stem, leaf and root extracts. By 

accident we discovered that if the protein extracts from the callus culture were left in the -

70ºC freezer for a week, the 300 kD band disappeared and a band was detected in the 

stacking gel. This result leads us to believe that the LRR-extensin in the stem, leaf and 

root extracts is a high molecular weight protein that barely enters into the stacking gel 

because, it is either heavily glycosylated, (more than in the callus cultures), or it is cross-

linked to other cell wall polysaccharides or to itself. The callus LRR-extensin is perhaps 

less heavily glycosylated because of its faster growth rate than the plant organs. Storing 

the callus protein extracts in the -70ºC freezer for a week somehow caused the LRR-

extensin to cross-link to other cell wall polysaccharides or to itself, and caused the LRR-

extensin in callus to become much bigger and not fully enter into the stacking gel, just as 

we see for the stem, leaf and root samples. 
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  1.14 kb 

 
   1.5 kb 
 
 
 
   1 kb 
 
 
 
 
 
    0.5 kb 

 

 

Figure 25: PCR results of amplifying a 1.14 kb fragment coding for the LRR domain 

from the genomic DNA.  

 

  

                                                                                          

 97



  

                                                                             

                             M               UC                   IC                  LD 

 

 

Figure 26:  A 12% polyacrylamide gel. M, broad range molecular weight marker; UC, 

uninduced control; IC, induced control; LD, LRR domain protein. Coomassie blue 

staining.                                                                       
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Figure 27-a: MALDI/MS analysis of the LRR peptide after trypsin digestion. 
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Figure 27-b: MALDI/MS analysis of the LRR peptide: Theoretical mass was predicted 
by PeptideMass program from ExPASy. Experimental mass was predicted by MALDI-
MS. 
Experimental  
mass 

Theoretical 
mass 

Peptide sequence 

 
1224.20 

 
1224.663 

 
NCLPARPLQR 

 
1229.18 

 
1229.63 

 
SCLPEQIGGLR 

 
1327.28 

 
1327.675 

 
DLDAIFINHNR 

 
1531.15 

 
1531.743 

 
QLLYYIDEFGDR 

 
1351.15 

 
1351.667 

 
LMFELDLSNNR 

 
1789.19 

 
1789.871 

 
GENVSVDPSLVFENQR 

 
1959.2 

 
1959.992 

 
ELFDKDLDAIFINHNR 

 
2230.24 

 
2231.145 

 
FNLPDNFGNSPASVIVLANN K 

 
2607.22 

 
2608.254 

 
LENFTFSYNFFTGEPPVCLG LR 

 
2850.27 

 
2850.516 

 
FCGTVPHKFIKLKLMFELDL SNNR 

 
2888.26 

 
2889.439 

 
FHGCVPASLGNMTSLEEIIL INNGFR 

 
2947.26 

 
2946.486 

 
LPKLENFTFSYNFFTGEPPV CLGLR 

 
2977.21 

 
2977.386 

 
AILSDPFNLTADWVGSGVCD YTGVFCAR 

 
3090.14 

 
3091.429 

 
AILSDPFNLTADWVGSGVCD YTGVFCAR 

 
3106.14 

 
3105.481 

 
KAILSDPFNLTADWVGSGVC DYTGVFCAR 

 
3114.17 

 
3115.502 

 
SAAQCRSFLSRPVDCNSFRC APFVPSAAK 

 
3301.2 

 
3302.596 

 
QLLYYIDEFGDRGENVSVDP SLVFENQR 

 
3744.54 

 
3743.908 

 
IPASICRLPKLENFTFSYNF FTGEPPVCLGLR 

 
3760.27 

 
3760.81 

 
KAILSDPFNLTADWVGSGVCDYTGVFCARALDNK 
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                                                    LRR prt       KM        
 
 
 
 
Figure 28: Western blot showing that the polyclonal antibody made in the Hybridoma 

center reacted with the LRR protein expressed in pQE-30. The lower molecular weight 

proteins in the LRR prt lane may be the degradation product of the larger molecular 

weight protein. 

LRR prt, LRR domain protein; KM, Kaleidoscope markers.  
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(a)                                      

                 

             

300 
kD 

                            L                   S                          R                           Ca 

 

Figure 29: (a) Western blot results of the total protein from L, leaf; S, stem; R, root and  

Ca, callus culture cells after incubation with anti-LRR antibody shows a 300 kD protein 

band in the callus culture cells.  
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DISCUSSION 
 
 
 

Cotton extensins 

 

Extensins are the most well studied cell wall proteins. In cotton, two extensin cDNAs 

were discovered, which we call extensin # 2 and extensin # 3. Extensin # 2, has a 1.5 kb 

mRNA sequence as seen in northern blots, but, the cDNA sequence we got is only 1 kb 

long and missing the 5’ ends. This incomplete cDNA has an open reading frame of 696 

nucleotides that codes for a protein containing 232 amino acids and is missing the 

initiating methionine. This sequence has two kinds of repeats, SPPPPPPSPPKHPYKYK 

and SPPPPPPVYKYK, where the motif YKYK signifies the intramolecular isodityrosine 

cross-link within extensins. This extensin fragment is missing a signal peptide sequence 

characteristic of all extensins. Extensin # 2 is expressed in all tissues but predominantly 

in root, stem and callus. Leaf and cotyledons show a low level of expression of the 1.5 kb 

extensin transcript. Extensin # 2 is induced in cotton cotyledons at 48 hours after 

infiltration with the bacteria Xanthomonas campestris pv. vesicatoria and is also induced 

in cotton cotyledons at 12 hours after wounding of the cotton cotyledons. This kind of 

expression as a result of wounding and infection suggests that extensin # 2 contributes to 

plant defense (Showalter, 1993). 
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Extensin # 3 is a 1.5 kb sequence as shown by northern blots, but the sequence we 

isolated is 700 bp long. It has an open reading frame of 606 nucleotides and codes for 202 

amino acids. It has one kind of repeat of the type SPPPPSPSPPPPYYYK, where the 

motif YYYK signifies the intramolecular isodityrosine cross-link within extensins. It is 

missing the signal peptide sequence that is characteristic of all extensins. This extensin is 

expressed predominantly in roots, stem and callus with leaf and cotyledons showing low-

level expression of the transcript. Extensin # 3 is also induced in cotton cotyledons 48 

hours after infiltration with the bacteria Xanthomonas campestris pv. vesicatoria, and like 

extensin  # 2, it is also induced at 12 hours after wounding the cotton cotyledons.  

Though extensins # 2 and # 3 have different repeat sequences and cross-linking motifs, 

northern blot results suggest that both have a transcript size of about 1.5 kb. They are 

expressed in similar organs and their response due to wounding and infection is the same. 

From this, we can conclude that they have similar roles, which are to protect the plant 

against pathogen attack and wounding by either binding to the surface of the bacteria and 

restricting their entry into the plant or by strengthening the cell wall during wounding 

(Mazau, Rumeau, Esquerre-Tugaye, 1987). 

 

Cotton LRR-extensin 

 

The LRR-extensin is a 2.46 kb transcript with an open reading frame of 2091 bp, 

encoding a protein of 697 amino acids. The protein primary structure consists of a 32 

amino acid signal sequence, a 97 amino acid domain with no homology to any known 

functional motif, an LRR domain of 256 amino acids, a 28 amino acid domain with no 
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homology to known motifs and an extensin domain of 285 amino acids. The LRR domain 

contains 11 repeats of 21-24 residues that match the plant extracytoplasmic LRR 

consensus sequence of LxxLxxLxxLxLxxNxLxGxIPxx (Jones and Jones, 1997).  When 

the LRR regions were aligned, cotton LRR-extensin shows 55% identity to Arabidopsis 

LRX1, 63% identity to tomato TomL4 and 52% identity to maize Pex 1. Comparison of 

the cotton LRR-extensin to ESTs from developing cotton fiber available from 

Brookhaven National Laboratory, Upton, NY revealed that, there is a 100% identity with 

an EST named BNLGHi5349 (GenBank Acc AI729848) from 6-day old immature cotton 

fiber (6-days post anthesis) and 97% identity with an EST named GA_Ea0024C08f 

(GenBank Acc BG 444367) from a 7-10 days post anthesis library from the Clemson 

University Genomics Institute, SC.  At this stage in the development of cotton fibers, the 

fiber is going through the elongation phase (Jasdanwala, Singh and Chinoy, 1977), which 

is responsible for the expansion of the fiber and synthesis of the primary cell wall. In our 

experiments, the cotton LRR-extensin is expressed predominantly in stem, cotyledons, 

callus and leaves and to a lesser extent in roots. The cotton LRR-extensin was not 

induced within 48 hr after wounding. In experiments after infiltration with the bacteria 

Xanthomonas campestris pv. vesicatoria, there was no induction of the LRR-extensin. 

However, the expression of this gene seems to follow a circadian rhythm and decrease at 

48 hours after infiltration with the bacteria. This indicates that, unlike the extensins, # 2 

and # 3, the LRR-extensin may not play a role in plant defense.  

Western blots with anti-LRR polyclonal antibodies recognized a protein of 300 kD, 

though the protein sequence predicts a mass of 76 kD. The difference in molecular mass 

may be due to extensive glycosylation of the serine-hydroxyproline repeat sequences. 
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To understand the role of the cotton LRR-extensin, it is important to to review the 

functions of other plant LRR-proteins and undestand their role in the plant kingdom. 

 

 

LRR-extensins form a sub-family of plant LRR-proteins 

Besides LRR-extensins, plants have three other kinds of LRR-proteins, the resistance 

gene products that bind to the avirulence gene products in plant pathogens and are 

responsible for initiation and transduction of defense gene activation signal (Gabriel and 

Rolfe, 1990; Keen, 1992), the polygalacturonase inhibitor proteins that are proposed to 

regulate the activity of endopolygalacturonases of fungi by binding to the enzyme leading 

to the production of oligogalacturonic acid of defined lengths that are then supposed to 

transmitting the information through the plasma membrane to induce defense gene 

activation and prevent fungal infection (De Lorenzo, Cervone, Bellincampi, Caprari, 

Clark, Desiderio, Devoto, Forrest, Leckie, Nuss and Salvi, 1994), receptor-like protein 

kinases like ERECTA1, which is involved in specification of organ shape and 

CLAVATA1, which is involved in cell differentiation and to restrict cell proliferation. 

Thus, all the LRR-proteins mentioned above are involved in either defense related signal 

transduction (resistance gene products and polygalacturonase inhibitor proteins) or signal 

transduction during developmental processes (CLAVATA1 and ERECTA1).  

LRR-extensins in the plants 

To date (12-1-02), there are fourteen LRR-extensin genes in the GenBank database. Nine 

of these are present in Arabidopsis, one in rice, one in tomato and three in maize. 
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Alignment of the 14 LRR-extensins to the cotton LRR-extensin is shown in Figure 30. 

The LRR-extensins studied to date are expressed in various plant organs.  Maize Pex 1, is 

specifically expressed in pollen (Rubinstein, Broadwater, Lowrey and Bedinger, 1995), 

the Arabidopsis LRX1 is expressed only in roots (Baumberger, Ringli and Keller, 2001), 

and the tomato TomL4 is expressed in green vegetative tissue (Zhou, Rumeau and 

Showalter, 1992). The wounding expression patterns of the LRR-extensin genes are also 

very different in maize and tomato, even though the two LRR-extensins show a 56.6% 

amino acid sequence identity in the LRR domains. In maize, the Pex1 gene is not induced 

in leaf 24 hours after wounding the leaf, whereas in tomato, the L4 gene is highly induced 

in stems 24 hr after wounding. Immunolocalization experiments have shown that at least 

two of the LRR-extensin proteins are localized to the cell wall (Rubinstein, Broadwater, 

Lowrey and Bedinger, 1995; Baumberger, Ringli and Keller, 2001) and cannot be 

extracted from the cell wall with high salt, chaoptropic agents, SDS, or reducing agents, 

which suggests that they are covalently cross linked to the cell wall. Western blot results 

with polyclonal antibodies raised against the LRR domain have shown cross-reaction 

with a protein of higher molecular weight than predicted for the LRR-extensin. The 

polyclonal antibody raised against the LRR domain of Pex1 reacts with a protein of 300 

kD although the predicted molecular mass for Pex1 is 118 kD (Rubinstein, Marquez, 

Suarez-Cervera and Bedinger, 1995). Similarly, in Arabidopsis, polyclonal antibody 

raised against the LRR domain cross reacts with a 160 kD protein though the predicted 

molecular mass of LRX1 protein is 85 kD (Baumberger, Ringli and Keller, 2001). To 

account for the difference in molecular weights, it is assumed that the protein is heavily 

glycosylated in the extensin domain due to the presence of the serine- 
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hydroxyproline repeats. Functional analysis of the LRR-extensin gene was done for 

LRX1, by identifying transposon tagged mutants of LRX1 in Arabidopsis. The mutants 

showed irregular root hair development suggesting a role for this gene in root hair 

morphogenesis. 

Since Arabidopsis is the model plant system, identification of transposon mutants of the 

other remaining eight Arabidopsis LRR-extensins will help us functionally characterize 

the LRR-extensins present in organs other than root. Furthermore, identifying the 

interacting partners by yeast two-hybrid analysis or immunoprecipitation with the anti-

LRR antibodies in Acala 44 suspension culture cells will further help us undestand the 

role of these LRR-extensins.     

  

Possible functions of the LRR-extensin 

 

Isolation of transposon-tagged LRX1 mutants in En-1 mutagenized Arabidopsis plants 

(Baumberger, Ringli and Keller, 2001) showed that these plants exhibited an irregular 

root hair development. Most of the root hairs did not elongate completely and were 

arrested soon after initiation, resulting in short stumps. The root hairs that did elongate 

frequently branched and showed swelling along the main axis, resulting in spherical 

structures several fold the normal diameter of a root hair. However, the number of root 

hairs and the initiation site were the same as in the normal root hair.  Using antibodies, 

the protein was localized in the cell wall of the root hair proper throughout all stages of 

root hair development. From these observations, LRX1 is proposed to be involved in root 

hair morphogenesis and elongation by controlling polarized growth or cell wall formation 
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and assembly. The LRX1 mutant phenotype might be explained by defective cell 

expansion, resulting from a spatially deregulated exocytosis or an altered deposition of 

new cell wall material. In this context, the LRX1 may be involved in stabilizing root hair 

polarization. Since this root hair polarization and growth orientation depends on the 

microtubule and Ca2+ gradient at the tip of the root hair, root hair defects in the LRX1 

mutants may point to microtubules and membrane Ca2+ channels as direct or indirect 

targets for LRX1 action. It has already been found that drugs that disrupt or stabilize 

microtubules in elongating root hairs can cause loss of growth directionality and induce 

branching (Bibikova, Blancaflor, Gilroy, 1999). Therefore, formation of root hairs that 

are unbranched, straight, and oriented correctly require an intact microtubule assembly. It 

is assumed that for proper cell wall synthesis, microtubules form guard-rail like barriers 

that constrain the movement of cellulose synthase enzyme and thereby direct the correct 

orientation of the cellulose microfibrils in the cell wall (Giddings, Staehelin, 1991). 

Identification of other root hair mutants, RHD3 (Galway, Lane, Schiefelbein, 1999), 

which is morphologically close to LRX1 mutants, is associated with irregular thickness 

of cell wall, and KOJAK, that codes for a cellulase synthase-like enzyme and shows root 

hair abortion (Favery, Ryan, Foreman, Linstead, Boudonck, Steer, Shaw and Dolan, 

2001), shows that defective cell wall synthesis or cell wall alteration can result in 

defective root hair synthesis.  

Since the cotton-LRR extensin and Arabidopsis LRX1 are quite similar in the LRR 

domain (55% identity and 69% similarity), and, one can assume that the cotton fiber EST 

named BNLGHi5349 (that is expressed 6 days post anthesis when the fiber is undergoing 

the elongation process, which is the stage responsible for the expansion of the fiber and 
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synthesis of the primary cell wall) is our cotton LRR-extensin, since it has 100% identity 

to our cotton LRR-extensin, one can propose the hypothesis that the cotton LRR-extensin 

is involved in coordinating growth or cell wall formation and assembly.  

Figure 31: Clustaw alignment of 14 LRR-extensins in the Genbank database with cotton 

LRR-extensin. 
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CHAPTER V 

 
 
 

SUMMARY AND CONCLUSION 

                                                                                                       

The project began with the aim of isolating extensin cDNA clones from cotton. For this 

purpose, a cDNA library was constructed (Wenjun Huang, Oklahoma State University), 

and probed with 2 kinds of probes, a carrot genomic extensin clone pDC5A1 (Chen and 

Varner, 1985) and a degenerate probe coding for Ser(Pro)4 repeats, which are 

characteristic of all typical extensins. Seven cDNAs were isolated. Two of the cDNAs 

encoded typical extensins and were called extensins # 2 and # 3.  

The extensin # 2 cDNA was a 1 kb long incomplete cDNA sequence, lacking the 

initiation methionine and signal peptide found in typical extensins. This incomplete 

cDNA has an open reading frame of 696 nucleotides and codes for a protein fragment 

containing 232 amino acids, containing two kinds of repeats, Ser-Pro-Pro-Pro-Pro-Pro-

Pro-Ser-Pro-Pro-Lys-His-Pro-Tyr-Lys-Tyr-Lys and Ser-Pro-Pro-Pro-Pro-Pro-Pro-Val-

Tyr-Lys-Tyr-Lys, which include the isodityrosine cross-linking motif of Tyr-Lys-Tyr-

Lys.  

The extensin # 3 cDNA was a 700 bp long incomplete cDNA sequence, lacking the 

initiation methionine and signal peptide found in typical extensins. This incomplete 

cDNA has an open reading frame of 606 nucleotides and codes for a protein fragment 
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containing 202 amino acids, containing a repeat motif of Ser-Pro-Pro-Pro-Pro-Ser-Pro-

Ser-Pro-Pro-Pro-Pro-Tyr-Tyr-Tyr-Lys which include the isodityrosine cross-linking 

motif of Tyr-Tyr-Tyr-Lys. Northern blot results indicate that the full length of the cDNAs 

of extensin # 2 and # 3 is around 1.5 kb. Southern blot results indicate  that extensin # 2 

and # 3 are both single copy genes, as seen by their hybridization pattern under stringent 

conditions. Under low stringency, however, both the extensins hybridize to multiple 

bands.  

Tissue expression analysis by Northern blot shows that extensin # 2 is expressed in all 

tissues but predominantly in root, stem and callus. Infection studies of cotton cotyledons 

after infiltration with the bacteria Xanthomonas campestris pv. vesicatoria shows that 

extensin # 2 is highly induced in cotton cotyledons at 48 hours after infiltration with the 

bacteria. Wounding studies on cotton cotyledons shows that, extensin # 2 is highly 

induced at 12 hours after wounding and remains high at 24 hours and 48 hours after 

wounding.  In addition to the 1.5 kb extensin band, there are 2 more bands of 2 kb and 3 

kb that hybridize to the extensin # 2 probe. Since only the 3’ untranslated region was 

used in the synthesis of the extensin # 2 probe, these additional bands may be 

differentially splicing transcripts of the extensin # 2 transcript. 

Extensin # 3 is expressed predominantly in roots, stem and callus. Leaf and cotyledons 

show low-level expression of this transcript. Infection studies of cotton cotyledons after 

infiltration with the bacteria Xanthomonas campestris pv. vesicatoria shows that extensin 

# 3 is highly induced at 48 hours after infiltration of the bacteria. Wounding studies on 

cotton cotyledon shows that extensin # 3 is highly induced at 12 hours after wounding, 

but the expression remains high at 24 and 48 hours after wounding. In addition to the 1.5 

 117



  

kb extensin # 3 band, there is a band at 2.3 kb and 3 kb, which could correspond to a 

differently spliced transcripts of extensin # 3 because the extensin # 3 probe was made 

from the 3’ untranslated region of this gene. 

The expression pattern shown by extensin # 2 and # 3 are typical of genes involved with 

defense related functions. It is hypothesized that, extensins protect the plant against 

pathogen attack and wounding by binding to the surface of the bacteria and restricting 

their entry into the plant and/or strengthening the cell wall during wounding (Mazau, 

Rumeau, Esquerre-Tugaye, 1987). 

Besides the two extensins mentioned above, five more sequences with homology to 

extensions were found after screening the cDNA library. These five sequences, 

(sequences # 4, # 7, # 8,  # 13 and # 65631) were not typical extensions, because they 

lacked the cell wall cross-linking motif and they did not have multiple tandem repeats  as 

seen in the typical extensins # 2 and # 3. These sequences were called extensin-like 

sequences (Figure 1b). Three of these sequences, # 4, # 13 and # 8, were identical (99% 

identity). The longest of these extensin-like sequences, (# 65631) was a chimera, 

consisting of an N-terminal leucine-rich repeat sequence and a C-terminal extensin-like 

sequence. This sequence was called leucine-rich repeat extensin (LRR-extensin).  

The LRR-extensin (# 65631) is a 1.46 kb incomplete cDNA sequence lacking the 

initiation methionine and signal peptide. The sequence has an N-terminal end containing 

four complete LRR repeats and one partial repeat, and a C-terminal end containing 

extensin-like serine/proline rich repeats. A 5’ RACE experiment was done on this 

sequence to obtain the 5’ end of the sequence. The 5’ RACE sequence was composed of 

seven complete LRR repeats and one partial repeat. Putting the 5’ RACE sequence and 
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the incomplete cDNA sequence (# 65631) together, we obtained a 2.46 kb complete 

cDNA sequence. Northern blot analysis with the 5’ RACE sequence and the incomplete 

cDNA sequence (# 65631) shows that both these sequences hybridized to a transcript of 

about 2.4 kb. In addition, the incomplete LRR-extensin (# 65631) hybridized to a 

transcript of 3 kb that did not hybridize to the 5’ RACE fragment, and both probes 

hybridized to a transcript of 1.5 kb. This can be explained by the reasoning that the 3 kb 

transcript may contain sequences similar to the extensin-like sequence in the incomplete 

LRR-extensin (# 65631), and the 1.5 kb sequence is similar to the LRR repeats that are 

present both in the incomplete LRR-extensin (# 65631) and the 5’ RACE sequence. 

Evidence that the complete sequence of the LRR-extensin that was deduced from the 

combination of the # 65631 clone and the 5’ RACE clone is correct was obtained by 

isolating the genomic clone for LRR-extensin and sequencing it. The genomic clone of 

LRR-extensin did not have any introns because the sequence of the gene aligned 

perfectly with the complete cDNA sequence of LRR-extensin. The complete sequence of 

the LRR-extensin is 2.46 kb, with an open reading frame of 2091 bp, encoding a protein 

of 697 amino acids. The protein primary structure consists of a 32 amino acid signal 

sequence, a 97 amino acid domain with no homology to any known functional motif, an 

LRR domain of 256 amino acids, a 28 amino acid domain with no homology to known 

motifs and an extensin-like domain of 285 amino acids. The LRR domain contains 11 

repeats of 21-24 residues that match the plant extracytoplasmic LRR consensus sequence 

of LxxLxxLxxLxLxxNxLxGxIPxx (Jones and Jones, 1997).  Southern blot analysis after 

digestion of genomic DNA with EcoR1, Pst 1 and Kpn 1, and hybridization under 

stringent conditions with either the incomplete LRR-extensin (# 65631) or 5’ RACE 
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sequence probe, showed at least two bands, whereas, hybridization under low stringency 

with the incomplete LRR-extensin (# 65631) showed at least five bands. This means that 

there are multiple sequences in cotton that show homology to the incomplete LRR-

extensin (# 65631). But since the five bands were not seen in the blots hybridized under 

low stringency with the 5’RACE sequence, they may have domains similar to the 

extensin-like domains of the incomplete LRR-extensin (# 65631) and have different LRR 

repeats or not have these LRR- repeats at all.  

Cotton LRR-extensin is expressed predominantly in stem, cotyledons, callus and leaves 

and to a lesser extent in roots. Infection studies of cotton cotyledons after infiltration with 

the bacteria Xanthomonas campestris pv. vesicatoria show cotton LRR-extensin is not 

induced as a result of infection. In fact, the gene seems to follow a circadian rhythm, with 

the expression level decreasing at 48 hours after inoculation with the bacteria. Wounding 

studies on cotton cotyledon showed that, the LRR-extensin is not induced after wounding 

even after 48 hours. This expression pattern is not like a gene involved in defense related 

function, because most genes that have a role in defense of the plant are induced as a 

result of wounding or infection. Therefore, we conclude that the cotton LRR-extensin 

may not have a defense related function.  

The LRR domain was expressed in a prokaryotic expression vector and polyclonal 

antibodies to this domain were made (Hybridoma Center, Oklahoma State University). In 

Western blot experiments, a protein band of ~ 300 kD was detected in the callus culture 

cells. A very high molecular weight band that barely enters into the stacking gel was 

detected in the stem, leaf and root extracts. If the protein extracts from the callus culture 

cells were left in the -70ºC freezer for a week, the 300 kD band disappeared and a band 
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was detected in the stacking gel, in western blots. This result leads us to suggest that, the 

LRR-extensin in the stem, leaf and root extracts are very high moleculae weight proteins 

and do not completely enter into the stacking gel, because, either they are heavily 

glycosylated (more than the callus cultures), or they are cross-linked to other cell wall 

polysaccharides or proteins. The callus LRR-extensin may be less heavily glycosylated 

because, callus grows faster than the plant organs and hence the glycoproteins in callus 

may not be as completely glycosylated as their counterparts in stem, leaf and root. 

Storing the callus protein extracts in the -70ºC freezer for a week apparently caused the 

LRR-extensin to cross-link to other cell wall polysaccharides or to proteins, and cause the 

LRR-extensin in callus to become much bigger and not fully enter into the stacking gel, 

as we saw for the stem, leaf and root samples. 

Comparison of the cotton LRR-extensin to ESTs from developing cotton fiber available 

from Brookhaven National Laboratory, Upton, NY, showed a 100% identity with an EST 

named BNLGHi5349 (GenBank Acc AI729848) from 6-day old immature cotton fiber 

(6-days post anthesis) and a 97% identity with an EST named GA_Ea0024C08f 

(GenBank Acc BG 444367) from 7-10 days post anthesis library from the Clemson 

University Genomics Institute, SC.  At this stage in the development of cotton fibers, the 

fiber is going through the elongation phase (Jasdanwala, Singh and Chinoy, 1977), which 

is responsible for the elongation of the fiber involving synthesis of the primary cell wall. 

The only functional analysis study involving LRR-extensin was done with Arabidopsis 

LRR-extensin (LRX1). Isolation of transposon-tagged LRX1 mutants in En-1 

mutagenized Arabidopsis plants (Baumberger, Ringli and Keller, 2001) showed that these 

plants exhibited an irregular root hair development. Most of the root hairs did not 
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elongate completely and were arrested soon after initiation, resulting in short stumps. 

From these observations, the authors hypothesized that LRX1 is involved in root hair 

morphogenesis and elongation by controlling polarized growth or cell wall formation and 

assembly. For proper root hair, cell wall synthesis and growth polarization, an intact 

microtubule assembly is very important. This is because the microtubules form guard-rail 

like barriers that constraint the movement of cellulose synthase enzyme and thereby 

allow the correct orientation of the cellulose microfibrils in the cell wall (Giddings, 

Staehelin, 1991). Identification of other root hair mutants like RHD3 (Galway, Lane, 

Schiefelbein, 1999), and KOJAK, that show a phenotype similar to LRX1, (Favery, 

Ryan, Foreman, Linstead, Boudonck, Steer, Shaw and Dolan, 2001), prove that defective 

cell wall synthesis or cell wall alteration can result in rupture of the root and defective 

root hair synthesis.  

The fact that the cotton-LRR extensin and Arabidopsis LRX1 are quite similar in the 

LRR domain (55% identity and 69% similarity), and assuming that the cotton fiber EST 

BNLGHi5349 (that is expressed 6-days post anthesis when the fiber is undergoing the 

elongation process, a stage which is responsible for the expansion of the fiber and 

synthesis of the primary cell wall) is our cotton LRR-extensin, neatly fits in into the 

hypothesis that cotton LRR-extensin may be involved in coordinating growth or cell wall 

formation and assembly. 
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APPENDIX A 

                                 

(a)                                                             (b)     

     

3 kb 
2.4 kb 
1.5 kb 

         0c    12c   24c   48c      0i   12i    24i   48i                    0c    12c    24c     48c        0i       12i    24i     48i

Hours       

 

(c) 

                                          

Hours                                       0c     12c   24c   48c       0i    12i    24i    48i

 

Figure 31: Northern blot of infection studies. RNA was isolated from 11-day-old 

cotyledons at 0, 12, 24 and 48 hours after infiltration with CaCO3 in controls (0c   12c   24c   

48c), and Xanthomonas campestris pv. vesicatoria in infected plants (0i   12i    24i   48i).  

(a) Blot probed with incomplete LRR-extensin (# 65631)  

(b) Blot probed with 5’ RACE probe of LRR-extensin. 

(c) Photograph of ribosomal RNAs from 0, 12, 24 and 48 hours after infiltration with 

CaCO3 in control plants, and Xanthomonas campestris pv. vesicatoria in infected 

plants, as control for RNA loading.  

 

  

 123



  

(a)                      

                                       

1.5 kb 

                           Hours      0c       12c      24c      48c        0i      12i     24i    48i

 

 

 

(b) 

                                          

                             Hours       0c     12c    24c     48c          0i      12i    24i     48i

 

 

 

Figure 32: (a) Northern blot of infection studies. RNA was isolated from 11-day-old 

cotyledons at 0, 12, 24 and 48 hours after infiltration with CaCO3 in controls (0c   12c   24c   

48c), and Xanthomonas campestris pv. vesicatoria in infected plants (0i   12i    24i   48i) 

and probed with the 3’ untranslated end of extensin # 2. (b) Photograph of ribosomal 

RNAs from 0, 12, 24 and 48 hours after infiltration of cotton cotyledons as control for 

RNA loading. 
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(a)                      

                            

1.5 kb 

                 Hours      0c      12c   24c     48c      0i    12i    24i   48i

 

  

(b)                           

                            

                 Hours      0c      12c   24c    48c      0i    12i    24i   48i

 

Figure 33: (a) Northern blot of infection studies. RNA was isolated from 11 day old 

cotyledons at 0, 12, 24 and 48 hours after infiltration by Xanthomonas campestris pv. 

vesicatoria and probed with the 3’ untranslated end of extensin # 3. (b) Photograph of 

ribosomal RNAs from 0, 12, 24 and 48 hours after infiltration of cotton cotyledons as 

control for RNA loading. 
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4 kb 
2.4 kb 
 
1.5 kb 

  Hours   0c     12c    24c    48c      0w    12w   24w  48w             0c     12c    24c    48c      0w   12w   24w  48w

 

 

                                        

Hours   0c     12c    24c    48c      0w    12w   24w  48w             0c     12c    24c    48c      0w   12w   24w  48w

 

Figure 34: Northern blot of wounding studies. RNA was isolated from 11-day-old  
 
cotyledons at 0, 12, 24 and 48 hours without wounding (0c   12c   24c   48c), and after  
 
wounding (0w   12w    24w  48w).  
 

(a) Blot probed with incomplete LRR-extensin (# 65631). 
 
(b) Blot probed with 5’ RACE probe of LRR-extensin. 

 
(c) Photograph of ribosomal RNAs from 0, 12, 24 and 48 hours with and without  

 
wounding.                                 
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(a)  

                       

                                                                                

3 kb 
2 kb 
1.5 kb 

        Hours                0c     12c   24c    48c      0w    12w   24w  48w

 

 

 

(b) 

                                                                             

        Hours                     0c    12c  24c  48c     0w   12w  24w  48w

        

 

Figure 35: (a) Northern blot of wounding studies. RNA was isolated from 11-day-old 

cotyledons at 0, 12, 24 and 48 hours without wounding (0c   12c   24c   48c), and after 

wounding (0w   12w    24w  48w) and probed with 3’ untranslated end of extensin # 2. 

(b) Photograph of ribosomal RNAs from 0, 12, 24 and 48 hours with and without 

wounding, as control for RNA loading. 
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(a)                      

                   

3 kb 
2.3 kb 
 
 
1.5 kb 

                                     

                         Hours                0c      12c      24c      48c                0w    12w    24w    48w

            

             

 

 

(b) 

                                           

 

 

                        Hours                         0c   12c   24c    48c    0w    12w   24w 48w

 

Figure 36: (a) Northern blot of wounding studies. RNA was isolated from 11-day-old 

cotyledons at 0, 12, 24 and 48 hours without wounding (0c   12c   24c   48c), and after 

wounding (0w   12w    24w  48w) and probed with  the 3’ untranslated end of extensin # 3. 

(c) Photograph of ribosomal RNAs from 0, 12, 24 and 48 hours with and without 

wounding, as control for RNA loading. 
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Figure 37: Extensin # 2 gene sequence 
 
tctccacccccaccacctccagtttacaagtataagtctccaccacctccacctccgtca 
 S  P  P  P  P  P  P  V  Y  K  Y  K  S  P  P  P  P  P  P  S  
ccacccaagcacccttacaagtacaagtccccaccacctccaccaccatcaccaccaaag 
 P  P  K  H  P  Y  K  Y  K  S  P  P  P  P  P  P  S  P  P  K  
catccttacaaatacaagtccccaccacctccaccaccatcaccaccaaagcatccttac 
 H  P  Y  K  Y  K  S  P  P  P  P  P  P  S  P  P  K  H  P  Y  
aaatacaagtctccaccaccaccaccatcaccacctaagcatccctacaagtacaagtcc 
 K  Y  K  S  P  P  P  P  P  S  P  P  K  H  P  Y  K  Y  K  S  
ccaccaccaccaccaccatccccaccaaagcatccctacaagtacaagtcccccccacca 
 P  P  P  P  P  P  S  P  P  K  H  P  Y  K  Y  K  S  P  P  P  
ccaccaccgtcaccaccgaagcacccttacaagtacaagtccccacccccaccgtcacca 
 P  P  P  S  P  P  K  H  P  Y  K  Y  K  S  P  P  P  P  S  P  
cccaagcacccctacaagtacaagtcacctccaccaccaccaccatcaccccccaagcat 
 P  K  H  P  Y  K  Y  K  S  P  P  P  P  P  P  S  P  P  K  H  
ccttacaagtacaagtccccacccccaccgtcaccacccaagcacccctacaagtacaag 
 P  Y  K  Y  K  S  P  P  P  P  S  P  P  K  H  P  Y  K  Y  K  
tcacccccaccacccccaccatcaccccccaagcacccttacaagtacaagtctccacca 
 S  P  P  P  P  P  P  S  P  P  K  H  P  Y  K  Y  K  S  P  P  
cctcatcatccagtttacaaatacaagtctcctccaccaccaccaccccattatgtctac 
 P  H  H  P  V  Y  K  Y  K  S  P  P  P  P  P  P  H  Y  V  Y  
gcttcaccccctcctcctcaccactactaagccacggctttgaccgtgctccaatccaag 
 A  S  P  P  P  P  H  H  Y Stop 
tcgtttgcaggaaaagataatgctgtgatgcaaataaagctacaaaaagatagtttgaaa 
  
aggatatatctagagagataaagcaaaagattgggagcctagactagtctccgcgtttga 
  
actgaagaacaataatgatgtagacaaattgcatttcaatgctgtattattcagtggttt 
  
cgctcgtatttatttatttccaattctgcttaataataaaaatgattagtatatataatc 
  
ctgtatgtgttttccaaccattttgcatgagtttattccactaataaaatataatgtcca 
      Polyadenylation site 
ttcctaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 
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Figure 38: Extensin # 3 gene sequence 
 
tctccatcaccaccaccaccatattactacaaatctccncctcccccatcgccatctcct 
 S  P  S  P  P  P  P  Y  Y  Y  K  S  X  P  P  P  S  P  S  P  
cctcctccctactactacaaatctccaccacctccatctccatcaccaccaccaccatac 
 P  P  P  Y  Y  Y  K  S  P  P  P  P  S  P  S  P  P  P  P  Y  
tactacaaatctccacctcccccatcaccatctccacctcctccctactactacaaatct 
 Y  Y  K  S  P  P  P  P  S  P  S  P  P  P  P  Y  Y  Y  K  S  
ccaccaccaccagtccactctccaccaccaccctactattacaagtccccacctccccca 
 P  P  P  P  V  H  S  P  P  P  P  Y  Y  Y  K  S  P  P  P  P  
tctccatcaccaccaccaccatactactacaaatctcctcctcccccatcgccatctcct 
 S  P  S  P  P  P  P  Y  Y  Y  K  S  P  P  P  P  S  P  S  P  
cctcctccttactactacaaatctccaccacctccatctccatcaccaccaccaccatac 
 P  P  P  Y  Y  Y  K  S  P  P  P  P  S  P  S  P  P  P  P  Y  
tactacaaatctccacctcccccatcaccatctccacctcctccctactactacaaatct 
 Y  Y  K  S  P  P  P  P  S  P  S  P  P  P  P  Y  Y  Y  K  S  
ccaccaccaccagtccactctccaccaccaccctactattacaagtccccacctcctcca 
 P  P  P  P  V  H  S  P  P  P  P  Y  Y  Y  K  S  P  P  P  P  
tccccttcaccccctcccccatactactatcactcacctcccccaccagtgaaatcacct 
 S  P  S  P  P  P  P  Y  Y  Y  H  S  P  P  P  P  V  K  S  P  
ccacctccagcctatatttacgcttctcctccaccacctactcactattgagtctagaaa 
 P  P  P  A  Y  I  Y  A  S  P  P  P  P  T  H  Y Stop  
gatcaaccacaaaatcgcaacgttcatgtaagtaaaattttagtcaaacctatagttaac 
  
taataataatctaacaattaatttaatattctaaattttttgtttaaattaaaatttcag 
          Polyadenylation site 
gttctagtttctcaaaaaaaaaaaaaaaaaa
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Scope and Method of Study:  This research involved the characterization and functional 
analysis of two extensins (extensins # 2 and # 3), and an LRR-extensin (# 65631). 5’ 
RACE experiment was done to determine the 5’ ends of the LRR-extensin, and the 
genomic clone was isolated after screening the genomic library of cotton with extensin 
specific probes. Tissue expression analysis was done by northern blots to find out the 
expression pattern of the extensins and LRR-extensin in the different tissues of cotton. 
Infection and wounding studies were done on cotton cotyledons to see if the extensins 
and LRR-extensins were defense-related genes. The LRR domain of the LRR extensin 
was expressed in a prokaryotic expression vector, and polyclonal antibodies were 
synthesized to the LRR domain. Western blot analysis was done using these antibodies to 
detect the molecular weight of the LRR-extensin in plant tissues.  
 
Findings and Conclusions:  The LRR-extensin is a 2.46 kb transcript as demonstrated by 
RACE, Northern blot and genomic library screening. It is expressed predominantly in 
stem, cotyledons, callus, and leaves. Infection studies show that the expression of this 
gene is not induced at 48 hours after infiltration with Xanthomonas campestris pv. 
vesicatoria. Cotton LRR-extensin is not induced in cotyledons 48 hours after wounding. 
Western blot results with anti-LRR polyclonal antibodies, recognized a protein of 300 kD 
in callus cultures. Clones for Extensin # 2 and # 3 are 1 kb and 700 bp long, respectively, 
and both are missing their 5’ ends. They are mainly expressed in root, stem and callus. 
Infection studies show that both the extensins are induced at 48 hours after infection, and 
wounding studies show that both the genes are expressed at 12 hours after wounding the 
cotyledons. From these results, one can conclude that the extensins are defense related 
genes and the LRR-extensin is not involved in plant defense. 
 
 
 
 
 
 
 


