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CHAPTER I 
 
 

LITERATURE REVIEW 



INTRODUCTION 

The bread-making quality of wheat has been largely attributed to storage proteins. 

Storage proteins are known to be processed in secretory membranes connected to storage 

vacuoles. Storage proteins are usually vacuolar; but several cereals, including wheat, 

utilize the endoplasmic reticulum (ER) to accumulate their storage protein into large 

aggregates termed protein bodies (PB). Numerous previous studies speculated that changes 

in the secretory membrane protein profiles are related to changes in the quality of the 

storage protein processed inside. The secretory membrane system allows cells to regulate 

delivery of newly synthesized proteins, carbohydrates, and lipids to the vacuolar storage 

system or to the cell surface, which is necessary for growth and homeostasis. The secretory 

pathway is made up of distinct organelles including the ER, Golgi complex, plasma 

membrane, and tubulovesicular transport intermediates that mediate intracellular 

membrane transport among them (1). 

All seed-storage proteins are secreted into the ER, where the transit peptide is 

removed and other posttranslational processing, such as chaperone-assisted folding, may 

take place. Some wheat-storage proteins then appear to follow the secretory pathway from 

ER to Golgi and then to storage vacuoles. However, other proteins accumulate in the ER 

and then are incorporated into vacuole-like compartments that transform into PB. There are 

no recognizable PB in the endosperm of the mature wheat grain, and this feature seems 

exclusive to wheat during the growth stages. Instead, during the mature stage, protein in 

the vacuole-like compartments is compressed between the starch granules (1). 
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RATIONAL FOR SELECTING ORGANELLE PROTEOMICS AS MARKERS 

FOR STORAGE PROTEIN QUALITY   

In the past years, the breeding efforts for improving wheat quality were 

concentrated mainly at the gene level. However, information from the research at the gene 

level does not necessarily match that at the protein level, quantitatively or qualitatively. 

Biological and biochemical phenomena, including protein structural stability and half-life; 

modifications of proteins at the post-transcriptional, co-translational and degradative 

levels; and the involvement of environmental factors, affect the gene products. This has led 

to a conclusion that there is no strict linear relationship between genes and the protein 

complements of a cell.  Consequently, knowledge of genotype alone does not illustrate the 

changes in grain quality due to numerous complex-factor fluctuations. This information 

can be provided at the biochemical level by detailed analysis of protein composition, since 

this particular protein composition is the result of gene expression under specific 

conditions (2).  

 

ENDOSPERM ANATOMY AND STAGES OF DEVELOPMENT  

  The wheat grain is composed of different tissues. Briefly, the mature grain is 

made of a caryopsis, with an outer testa closely appended to the seed. The seed includes 

the outer maternal pericarp layer, the embryo, and the endosperm. The endosperm is 

made of two main parts: an outer aleurone layer and inner endosperm cells in the form of 

columns of starch. Milling removes the embryo, aleurone, and pericarp plus testa, leaving 

the starchy endosperm as the principal contributor to white flour (3).  
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 Stages of endosperm development begin with the fertilization of a diploid cell 

followed by repeated division of the triploid nuclei, and finally a gradual formation of 

cell walls. This is the stage of cellular division (4). 

 The next stage is a period of cellular expansion during which water content 

increases and starch and protein reserves accumulate. The maximum amounts of starch 

and protein that accumulate in each grain depend on the number of endosperm cells, 

determined early in grain fill; and on the final size of the cells, which is influenced by 

water uptake, cell-wall extensibility, and the rate and duration of grain fill, all of which 

are affected by growth conditions. Cellular expansion and water accumulation stop at 

early mature stages. However, dry-matter accumulation continues where starch and 

protein replace cell water, and the kernel begins to desiccate until late-mature stages (3).  

 In the latest stages of development, the formation of a waxy layer at the chalaza 

(zone of entry into the grain) interferes with the input of sugars and amino acids into the 

grain (5). This is the stage where the seeds reach physiological maturity in which the 

protein and starch deposits cease, and the grain reaches maximum dry weight.  At 

approximately this time the endosperm tissue undergoes a form of apoptosis, or 

programmed cell death (6). Aleurone is the only cell part that remains viable, whereas the 

kernels desiccate rapidly, keeping only 10–15% of their water content, at which time they 

are ready for harvest (7). 
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 STORAGE PROTEIN BIOSYNTHESIS WITHIN THE SECRETORY 

PATHWAY  

a. Description of Storage Proteins 

 The protein gluten constitutes a class of interrelated storage proteins called the 

prolamins. Their structure allows for tight packing and high stability. Prolamins are 

present only in cereal seeds and are characterized by their solubility in alcohol and their 

insolubility in water. The only function of the prolamins in plants is to store nitrogen, 

carbon and sulfur for mobilization during germination. However, in wheat dough the 

prolamins form a three-dimensional network, called gluten, responsible for the visco-

elastic properties that allow wheat flour to be processed into yeasted bread and a range of 

other by-products. Wheat gluten comprises over 50 individual proteins, all of which 

contain domains based on repeated sequences. However, one group, called the high 

molecular weight (HMW) glutenin subunits, appears to be the main determinant of gluten 

elasticity (8).  

 The prolamins are highly polymorphic mixtures of components with molecular 

weight values of 30 to 90 kDa. These prolamins are classified based on their amino acid 

sequences into three groups:  the S-rich, S-poor, and the most interesting, HMW glutenin 

subunits. The S-rich prolamins are the major prolamins group, accounting for 80 to 90% 

of the total prolamins fractions. They include polymeric units containing interchain 

disulfide bonds and monomeric units containing intrachain disulfide bond components, 

all consisting of the α-gliadins, γ-gliadins, and low-molecular-weight (LMW) glutenin 

subunits. Their amino acid sequences consist of two separate domains: an N-terminal 

domain composed of repeated sequences, and a nonrepetitive C-terminal domain. The S-
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poor prolamins include the ώ-gliadins. They cannot form oligomers or polymers because 

they generally lack cysteine residues (9).  

 The HMW glutenin determines the elasticity of wheat dough, which in turn 

determines the bread-making quality. HMW prolamins have extensively repeated 

sequences flanked by nonrepetitive N- and C-terminal domains. In many units the 

repeated sequences are based on the motifs Gly-Tyr-Tyr-Pro-Thr-Ser-Pro or Leu-Gln-

Gln, Pro-Gly-Gln-Gly-Gln-Gln, and in some subunits only, Gly-Gln-Gln (9).  

 Globulins constitute only a fractional amount of the storage proteins in wheat.  

Based on their sedimentation coefficients, they can be divided into two groups: the 7S 

globulins and the 11S globulins. The 7S globulins are trimeric proteins with a molecular 

weight of 150 to 190 kDa, lacking the cysteine residues necessary to form disulfide 

bonds. The 11S proteins consist of six subunit pairs that interact noncovalently. Each of 

these subunit pairs consists in turn of an acidic subunit of 40 kDa and a basic subunit of 

20 kDa linked by a single disulfide bond. Each subunit pair is synthesized as a precursor 

protein that is proteolytically cleaved after disulfide-bond formation (9).  

 

b. Structure of Constitutive Proteins in the Secretory Pathway 

 The membrane system is a major part of the constitutive protein of the secretory 

pathway. The membrane system is composed of interfacial regions about 15 Å thick each 

and the hydrocarbon core, which has a thickness of about 30 Å. Various parts of the 

peripheral proteins interact with both of these regions. Only two structural motifs have 

been observed for membrane proteins: membrane-spanning α-helix bundles and β-

 6 



barrels, with the former being predominant. A frequently observed submotif is interfacial 

helices connected to adjacent transmembrane helices (10).  

 Generally, the interior amino acids are mostly nonpolar and packed as tightly as 

those of soluble proteins. Salt-bridges play an important key role in some transport 

proteins. The interiors of membrane proteins are comprised of internally H-bonded α-

helices and β-sheets. Major portions of their masses are buried within the hydrocarbon 

core of the membrane and arranged so that their outer surfaces face these cores. Although 

the average hydrophobicity of the interiors of membrane proteins is the same as for 

soluble proteins, the amino acids of these outer surfaces are more hydrophobic (10). 

 

 i. Assembly of Constitutive Protein within the Membrane System  

 Constitutive membrane proteins are assembled via a complex 

translocation/insertion mechanism. In brief, the ribosome secretes nascent chains into 

membrane-resident translocons, where they are assembled and released into the 

membrane (10).  

 The structure of the ER translocon is reported to be a doughnut-like structure with 

a central pore spanning the entire ER membrane. During its active state the ER translocon 

is aligned with the large ribosomal subunit to facilitate the pathway of nascent 

polypeptide chains toward the site of ER translocation (11). After completion of the 

process, the ribosome-translocon complex dissociates, leaving the protein stably folded in 

the membrane (10).  
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 Nonconstitutive membrane proteins bypass this elaborate machinery by 

spontaneously entering the membrane from the aqueous phase. They do this by existing 

as soluble forms in the aqueous phase and then binding to membranes (11). 

 

 ii. Role of Fluid Lipid Bilayers in the Structural Protein Assembly 

 The major role of the hydrophobicity in membrane protein is to favor the 

establishment of secondary structural elements across the lipid bilayer. The structure of 

the fluid bilayer consists of spatial distributions of the structural groups of lipids 

(carbonyls, phosphates, etc) and water, projected onto an axis normal to the bilayer plane.  

In addition, the interfaces are chemically heterogeneous, in such a way that they are rich 

in noncovalent interactions with peptides. Because the interfaces are the sites of first 

contact, they are especially important in the folding and insertion of membrane proteins 

(11). 

 

c. ER Structure and Organization  

 The ER is the starting point of the outbranched secretory pathway. It is the largest 

intracellular compartment, associated with an extensive network of interconnecting 

membrane tubules extending through the cell. The ER consists of a network of 

continuous tubules and flattened sacs extended in the cytoplasm and connected to the 

nuclear envelope, but remain distant from the plasma membranes. The ER membranes 

are physiologically active and contain differentiated domains specialized for distinct 

functions. These functions include protein folding, assembly and degradation, lipid 

metabolism, and membrane transport (12).  
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 Secretory cargo is synthesized and assembled in the ER and then, depending on 

the growth stage, may either reside locally or, alternatively, may leave the ER via distinct 

exit sites that bud and translocate as tubulovesicular structures (pre-Golgi) toward the 

microtubules. At this point, the destination is to merge with Golgi membranes for further 

processing and maturation. Upon arrival at the trans-Golgi network (TGN), which is the 

distal Golgi part, proteins are sorted and packaged into post-Golgi carriers that move 

through the cytoplasm in microtubules to reside in storage vacuoles or to fuse with the 

cell surface. This unidirectional membrane flow is balanced by retrieval pathways that 

recycle membranes and selected proteins back to their original compartments (12). 

 

d. Lumenal Continuity of the ER  

 ER membranes are reported as being differentiated into rough and smooth 

regions, depending on whether ribosomes are associated with their cytoplasmic surfaces. 

Whereas the rough ER is the site of cotranslational membrane insertion of proteins, the 

smooth ER is thought to be the site of lipid biosynthesis, detoxification, and calcium 

regulation. However, fluorescence-tagging techniques have revealed that the membranes 

and lumenal spaces of the ER are continuous throughout the cell and that both ER 

membranes form an interconnected system (13, 14).  

 

e. Post-translational Modification and Retention of Storage Protein in the ER  

 i. Post Translational Assembly 

  After their secretion, proteins assume their folded conformations within the ER 

lumen. More than one type of ER lumenal protein may assist in these processes, which 

are necessary for protein maturation and oligomerization. Molecular chaperones of the 
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HSP70/BiP family are reported to have a dual role in the ER lumen. They may facilitate 

folding by binding transiently to the nascent polypeptides, preventing early inappropriate 

folding. They may also prevent the formation of incorrect inter- or intramolecular 

interactions.  A second group of proteins, the peptidyl-prolyl cis-trans isomerases (PPI) 

or cyclophilins, of which one subclass (the S-cyclophilins) is resident in the ER lumen, 

may also assist in the folding (9).  

 The 7S and 11S globulin subunits are assembled and folded in the ER. The 

assembly of the 11S globulins is a highly regulated event. The monomeric proteins are 

initially assembled in the ER lumen into trimers, but are then transported from the ER to 

the storage vacuoles, where they are assembled into their final hexameric form. This 

assembly process requires specific proteolytic cleavage of the subunits present in the 

trimers (8). Globulin (triticin) inclusions are present within a prolamin matrix in wheat.  

In contrast, different types of prolamins are spatially separated in the protein bodies of 

cereal endosperms (9). 

 

 ii. Disulfide Bond Formation during Folding in ER  

 The ER is the site of disulfide bond formation. The assembly of some prolamins 

into disulfide-stabilized polymers takes place in the ER (9). The levels of protein 

disulfide isomerase (PDI) transcripts increase earlier than those of gluten proteins (15).  

 PDI is associated with the ER in developing wheat endosperms (15). It is a 

multifunctional glycoprotein involved in the formation and isomerization of disulfide 

bonds in nascent secretory proteins. PDI also assists in a variety of protein-maturation 

processes within the ER. In addition to its primary role in disulfide bond formation, PDI 
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is also the P-subunit of prolyl-4-hydroxylase that adds hydroxyl groups to some secretory 

proteins.  Plants contain a variety of vacuolar proteins containing disulfide bonds whose 

folding is assisted by PDI. These include storage proteins, hydrolases, proteases, and α-

amylase inhibitors, as well as enzymes involved in plant defense.  The S-rich gliadin 

contain six to eight Cys residues that are located in the C-terminal region and are linked 

by three to four intramolecular disulfide bonds assisted by PDI (16). 

 

iii. Retention  

Retention of Storage Protein  

 It was reported that, following entrance into the ER, storage proteins initiate a 

slow process of aggregation, and the aggregation state will dictate the pathway taken 

afterward. At earlier stages of grain-filling (14-20 DAA), more protein may escape 

aggregation within the ER, transport to the Golgi, sequester into PB, and later be 

transported to small or large vacuoles (17). However, during maturation of the endosperm 

cells, protein aggregation intensifies. This will eventually lead to the formation of 

aggregates in the form of small vacuoles within the ER lumen. These small vacuoles may 

further fuse to form, finally, a central vacuole in which the PB are sequestered. These PB 

apparently continue to enlarge by fusions with each other inside the vacuoles (18). 

 The continuous fusion leads to PB growing in size, mostly by continuous 

deposition of storage proteins, forming large PB surrounded by the ER. This process of 

PB fusion and enlargement causes rupture and discontinuity of the ER membrane around 

the PB. The mechanism by which the ER-surrounded PB in the cytoplasm enter distant 

storage vacuoles is not understood. PB are much larger than the Golgi complex, 
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consequently this organelle is less likely to be involved in their transport. In addition, it is 

not clear whether all of these PB subsequently enter vacuoles, as it is difficult to detect 

vacuoles at this stage (19). 

 One theory suggested that the prolamin-repetitive domains could be responsible 

for storage-protein retention within the ER by interacting with ER components, while 

another theory suggested that interactions between individual prolamin molecules result 

in the formation of insoluble aggregates that are retained within the ER lumen. The latter 

theory is supported by the observation that rice prolamin mRNAs are segregated to a 

distinct region of the rough ER, which allows aggregation of the prolamins to occur in 

localized parts of the ER, preventing widespread effects on ER integrity (9). 

 

 Retention of Membranes Proteins  

   Soluble Proteins  

 Soluble resident proteins in the ER are distinguished from cargo protein by a 

retention signal, which is a tetrapeptide containing H/KDEL at the C-terminal end. The 

resident proteins holding this tetrapeptide are collectively referred to as reticuloplasmin. 

In addition to its role as an ER retention signal, HDEL could be involved in targeting 

chaperone misfolded protein complexes that escape the ER towards the lytic vacuoles.  

 In yeast, two HDEL-specific receptors have been identified: ERD1 and ERD2. 

The latter is a 26 kDa protein responsible for the backward transport of escaping proteins 

from the early Golgi compartment to the ER. The recycling receptors are located in the 

post-ER compartment and throughout the Golgi. This escape is short-distanced in plants, 
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shown by a lack of Golgi-modified recycled proteins. Calreticulin is the best example of 

an ER-resident protein lacking the N-glycosylation type of Golgi modification (11).  

 

 Insoluble Proteins  

 Specific signals are necessary to retain resident integral membrane proteins within 

the ER or the Golgi membranes. A cytosolic di-lysin motif has been identified at the C-

terminal end of many type-I integral membrane proteins that reside in the ER of yeast. 

This sequence is sufficient for integral membrane-protein retention in the ER. As for 

soluble ER protein containing H/KDEL, the C-terminal di-lysin motif mediates the 

recycling of type I membrane proteins from the Golgi back to the ER.  For the type II 

membrane protein, a double arginine motif at the N-terminus is presumed to be a retrieval 

signal in the ER.  Calnexin is an abundant membrane protein that works as a chaperone 

transiently binding to nascent glycoproteins. However, calnexin doesn’t have a di-lysin 

motif in its C-terminal like regular type I membrane proteins; rather, it contains a di-

argenine motif like the type II membranes (20).  

 The ER plays an important dual role in the transportation of a part of correctly 

folded proteins into the secretory pathway and in retention because incorrectly folded 

proteins and a part of assembled proteins are respectively degraded or retained in this 

compartment. It is most likely that stress resulting from heat or drought will affect the 

folding chaperone, which eventually results in loss of exported protein quality. When 

interactions between misfolded protein and chaperone become irreversible, the mobility 

of proteins in the ER becomes restricted, leading to proteins retention or degradation 

(21).  
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f. The ER-Golgi Transport of Storage Protein 

 There are two routes of PB formation operating in developing wheat endosperm. 

In one of them the PB form from vacuoles and in the other the PB form from the ER (1).  

 Regarding globulins, the 11S globulin is transported from the ER lumen via the 

Golgi apparatus to the vacuole. The fragmentation of the vacuoles then forms PB. The 7S 

albumins and the 11S globulins of legumes and other dicots are transported via the Golgi 

apparatus to the vacuole, which fragments to form PB (9).  

 In contrast, the prolamins appear to be mostly retained within the lumen of the 

ER, which form PB. Consequently, the endosperm cells contain two populations of PB, 

some of vacuolar origin and others of ER origin (9). Glutenins are retained in ER-derived 

PB, whereas gliadins are present in both types of PB.  

 Regarding the Golgi-mediated transport route, following proper folding and 

oligomer assembly, newly synthesized proteins destined for secretion are selectively 

separated from ER-resident proteins. This occurs at ER exit sites, which are entities 

scattered over the ER surface. These exits are highly organized membrane domains 

containing multiple budding vesicles that subsequently fuse to form pre-Golgi transport 

intermediates (19). 

 Exit-site domains have an increased level of organization of proteins and lipids 

compared with surrounding ER membranes. The export sites contain the coating-protein 

complex (COPII), which is specialized in export from ER toward Golgi. It is composed 

of an ER luminal protein Sar1 and two cytosolic heterodimer proteins, including the 

nucleotide exchange factor sec12. COPII assembly onto membranes at ER exit sites is 

initiated with Sec12-mediated nucleotide exchange of GTP (in place of GDP) onto Sar1, 
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with cargo molecule receptors triggering this exchange. Sec23/24 and Sec13/31 

heterodimers are sequentially assembled onto the cytoplasmic side of the ER membrane 

to form a COPII-coated bud. This bud is generally thought to then transform into a 

vesicle (22).  

 ER exit sites are stable and dynamic structures that can rapidly reorganize in 

response to trafficking interference. However, ER exit sites are not consumed by the 

formation and translocation of pre-Golgi transport intermediates. Rather they are de novo 

synthesized in the ER due to reverse shipment toward the ER (23).  

 

g. Transient Status of the Pre-Golgi Intermediates 

 When COPII-coated proteins are concentrated at ER exit sites, those sites are 

involved in one of two phenomena. They may first engage in repeated vesicle budding 

and delivery to pre-Golgi intermediates. Alternatively, they could directly transform into 

tubular membrane clusters.  The observation that pre-Golgi structures move away from 

ER exit sites leads to the suggestion that these intermediates are constantly de-novo 

generated at these sites rather than existing there as stable intermediary compartments. 

Furthermore, Pre-Golgi structures seem to fuse with the Golgi complex following 

transport. All of those facts lead to the suggestion that pre-Golgi intermediates have only 

a transient existence initiated in ER exit sites, and that they may be involved in sorting 

and recycling selected components back to the ER (24).  

 COPI is a heptameric cytosolic protein complex that assembles onto Golgi 

membranes to form a coat that facilitates budding and fission of transport intermediates. 

A suggested role for COPI is as a mediator for the budding of retrograde vesicles, which 

would recycle proteins either backward to the ER or from late to early Golgi 
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compartments.  In fact, it was reported that the ER-exit-site membrane becomes first 

differentiated by COPII, and then, by COPI association, coming from Golgi, which 

further helps maturation of COPII-derived ER exit sites (25). This was demonstrated by 

the fact that, in the absence of COPI activity, the action of Sar1/COPII is insufficient to 

sort protein into pre-Golgi intermediates. This would suggest that COPI binding is 

required for maintaining secretory molecules in pre-Golgi as well as in Golgi elements 

(26).  

 

h. Golgi Complex Structure 

 The Golgi complex occupies a central position in the secretory pathway. The term 

Golgi complex refers to the apparatus comprising the Golgi stacks, the TGN and the 

Golgi matrix, all dispersed within the cytoplasm. Each stack consists of a set of five to 

eight flattened cisternae. The TGN shows a tubulovesicular structure and is always 

closely associated with the trans-side of the stack. The Golgi matrix is a fine-filamentous 

structure with a speculated role of protecting stacks from shearing and preventing the loss 

of transport vesicles from the stacks (27).  

 Within the cytoplasm, the Golgi is the site where proteins and lipids are modified 

and sorted. Furthermore, and the Golgi acts as a filter to segregate proteins and lipids to 

be retained in the ER/Golgi system from those to be delivered to the plasma membrane. It 

is also a factory for the production of complex carbohydrates (12).   

 Targeting and localizing of integral membrane proteins to the Golgi is due either 

to cytoplasmic tail-based targeting determinants and/or transmembrane domain (TMD). 

Furin, a residing membrane protein found in the TGN is targeted by a tyrosine-containing 
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sequence in its cytoplasmic tail.   Its retention in the TGN involves two independent 

targeting signals. The first is an acidic peptide TMD for localization in the Golgi and the 

second is a tetrapeptide for the retrieval signal of escaped protein. Golgi glycosyl 

transferase and N-acetylglucosaminyl transferase also posses TMDs in their cytoplasmic 

tails, which are necessary for their retention (20). 

 Transport intermediates carrying cargo derived from the ER deliver their contents 

to the cis face of the Golgi complex. The cargo molecules then move through stacks of 

flattened cisternae to the TGN where they are packed into membrane-bound carriers 

destined for the plasma membrane or for vacuolar storage (28). The two faces of the 

Golgi complex are functionally different. The cis face of the Golgi is the site where pre-

Golgi intermediates merge together and the trans face would represent older cisternae in 

the process of segregating and packaging proteins and lipids into post-Golgi transport 

intermediates (29). 

 Clathrin-coated vesicles (CCV) are molecules mediating intracellular membrane 

trafficking such as receptor-mediated endocytosis.  In addition to clathrin, the CCV are 

composed of many other components, including oligomeric adaptor complexes known as 

clathrin assembly proteins (AP) complexes. The adaptor complexes interact with the 

cytoplasmic tails of membrane proteins, leading to their selection (12).  

 Two types of adaptor complexes are known: AP-1 associated with the Golgi 

complex and AP-2 associated with the plasma membrane. Both AP-1 and AP-2 are 

heterotetramers consisting of two large chains, the adaptins, (γ and β in AP-1; α and β in 

AP-2), a medium chain and a small chain. The adaptor proteins AP-1 regulate trafficking 

of membranes between TGN and endosome/lysosomes through membrane association, 
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recognition of sorting signals, and recruitment of clathrin and accessory  proteins (20, 

30).   

 

i. ER-Golgi Protein Cycling  

 Golgi proteins undergo bidirectional cycling to and from the ER. The forward 

flow of secretory cargo toward the Golgi is balanced by backward flow of selected 

components to the ER. Golgi cisternae are formed by continuous maturation; that is, by 

differentiation of pre-Golgi intermediates coupled with the recycling of selected 

components back to the ER (29). Golgi tubules used in retrograde flow (backward flow 

from the Golgi to the ER) extend out from the Golgi complex. They are remarkably long 

and do not detach from the Golgi complex. One or more of the tubules fuses with the ER 

into which the Golgi is then absorbed (26). 

 The main purpose of the recycling pathway of protein delivery in Golgi is to 

ensure that resident Golgi enzymes are retained within the system. This was 

demonstrated by a study in which microtubule disruption prevented peripheral pre-Golgi 

intermediates from tracking into the Golgi region, and this in turn prevented Golgi 

proteins from reversibly cycling to and from the ER (31).  This result supports the idea 

that Golgi protein-cycling pathways involve the ER as an intermediate.  

 Upon reaching the TGN of the Golgi complex, proteins and lipids are packaged 

into transport intermediates that move through the cytoplasm to fuse with the cell surface 

or with other storage compartments. Export of anterograde (forward flow from the ER to 

the Golgi) cargo out of the TGN involves sorting into distinct pathways. One of these 

pathways involves post-Golgi carriers (PGCs), which are large tubular structures, in 
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addition to small vesicles. They fuse with the plasma membrane without intersecting 

other membrane pathways in the cell (32). 

 Not all proteins reaching the Golgi continue within the secretory pathway.  In fact 

some proteins are being retained within the early Golgi cisternae.  One of the 

mechanisms for achieving retention within the Golgi is oligomerization throughout. In 

this mechanism, Golgi enzymes form oligomers of protein within the compartment, 

making them too large to enter the anterograde trafficking between different Golgi 

cisternae and onward to the plasma membranes (12). 

 

MORPHOLOGICAL CHANGES IN THE MEMBRANE SYSTEM DURING 

DIFFERENT STAGES OF GRAIN DEVELOPMENT  

 ER structure is present at all stages after fertilization. During the first 1-2 DAA, 

swollen cisternae of RER are visible. Cisternae also exist at the surface of the dividing 

nuclei or chromosome mass but they are excluded from the cytoplasmic area that lies 

between the chromosomes (33).  

 From 4 to 22 DAA the volume occupied by the RER in the developing endosperm 

cell increases more than six fold. The large increase in the surface area of RER between 

12 and 16 DAA is particularly of great interest. During this time the rate of synthesis and 

the deposition of storage protein accelerate rapidly. On the other hand, the volume of the 

smooth ER has a much lower total value than that of the RER throughout the 

development (33).  

 PB are typically spherical but their shapes are distorted at maturation due to 

kernel desiccation and compression by starch granule.  Storage proteins start being 

 19 



developed around 10 DAA in the form of membrane-bound spherical bodies closely 

associated with RER. Vacuoles are filled at 12-20 DAA and, once they get turgid further 

deposition, occur within the RER lumen in a process of retention. (33) 

 

EVIDENCE OF DIVERSE EXPRESSION OF CONSTITUTIVE PROTEINS AT 

DIFFERENT STAGES OF GRAIN DEVELOPMENT  

 Comparisons were made between immature (17 DAA) and mature (45 DAA) 

endosperms of triticum aestivum to determine changes in protein composition during 

development. An approximate total of 1298 proteins were expressed at 17 DAA.  For 

endosperm samples at 45 DAA, there were a total of approximately 1125 proteins 

expressed at this stage of maturity.  This led to the suggestion that the number and 

diversity of proteins in the endosperm change throughout the course of seed maturation, 

and they are greater at the immature stage (17 DAA) than at maturity (45 DAA).  Many 

of those proteins were either up-regulated or only present at 17 DAA. Some other 

proteins were down-regulated at 17 DAA or only present at the mature stages. For 

example, at 17 DAA, when wheat was actively synthesizing proteins, abundant PDI 

(protein disulfide isomerase) isoforms were present in the endosperm. With the decrease 

in protein synthesis at 45 DAA, some of the PDI isoforms were no longer expressed in 

the endosperm (2). 

 One study showed that both PDI and BiP, which are parts of the machinery that 

assist in the folding, assembly, and sorting of secretory proteins via the ER, were more 

abundant in developing endosperm and root tips than in leaves. However, the relative 

proportions of PDI and BiP varied in different tissues, with PDI being the most abundant 
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in developing endosperms and BiP being the most abundant in root tips. The expression 

of both of these proteins in developing endosperms was up-regulated several days prior to 

the detection of storage proteins. The levels of PDI and BiP declined after 17 DAA (15).  

  Another class of proteins involved in protein synthesis that is differentially 

expressed between the two stages of development, 17 and 45 DAA, is the 60S acidic 

ribosomal proteins. This cluster of proteins is also substantially reduced in the endosperm 

at 45 DPA in the same manner as PDI (2). 

 Three wheat cDNA homologues of the ER-resident membrane protein Sec61α 

(AtSec61α),  the major subunit of Golgi COPI coatomer COPα (AtCOPα), and the plant-

specific receptor BP-80 that is localized on Golgi and on prevacuole membranes (AtBP-

80) were previously isolated.  Those three wheat cDNAs encode proteins functioning in 

different compartments of the endomembrane system. mRNA levels of all three were the 

highest at the early stages of kernel maturation (8 DAA), and then reduced with the 

increasing age of the kernels. This is in agreement with the observation that the levels of 

different endomembrane-associated proteins (BiP, PDI, Sar1, Sec12, calreticulin, and 

calnexin) are high in young kernels and decreased as the kernel matures (8).  

 These observations suggest that during the stage of embryo and endosperm 

differentiation and development, young kernels at the stage of synthesis and accumulation 

of reserve components possess a highly functional endomembrane system while the 

maturing kernels have a less active one. Despite the general reduction of the Sec61α, 

COPα and BP-80 mRNAs levels with kernel maturation, the level of Sec61α mRNA, 

compared to the other two, is higher in kernels during the stage of storage-protein 

synthesis relative to young kernels at early stages of maturity(8). 
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STORAGE-PROTEIN FINAL DISTRIBUTION AND CHARACTERISTICS  

 Little is known about how storage proteins are organized within PB into their 

final structure, although this organization may be important in ensuring efficient use of 

storage space and facilitating mobilization of storage proteins during germination. The 

separation of different proteins in cereal PB could result from the properties of the 

proteins themselves, which are embedded in their primary structure, or from different 

patterns of deposition during PB synthesis.  

 Mature wheat grains finally contain 8–15% protein, including the gluten storage 

proteins that are enriched in proline and glutamine. In late stages of development, the 

abundant gluten proteins constitute up to 80% of total flour protein, and hold properties 

of elasticity and extensibility that are essential for the functionality of wheat flours (34).  

 The roles of the individual gluten components in dough functionality are complex. 

Although high-molecular-weight glutenin subunit proteins (HMW) constitute no more 

than 10% of total flour protein, they may be the most important determinants of bread- 

making quality because of their importance in forming the glutenin polymer (35). 

Generally, albumins and globulins are not thought to play a critical role in flour quality, 

although the ratio of albumin to globulin was reported to correlate with bread-making 

quality (36) 
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CHAPTER II 

 

A METHOD OF ENRICHMENT OF THE ENDOPLASMIC 

 RETICULUM AND GOLGI COMPLEX PROTEINS 

FROM WHEAT SEEDS (TRITICUM AESTIVUM) 

AT DIFFERENT STAGES OF GROWTH 



INTRODUCTION 

In bread making, bread-wheat (Triticum aestivum) protein quality and content are 

recognized as major factors in distinguishing the functional properties of different wheat 

cultivars (1). During wheat-seed development, there is a shift from a state of cell division 

to a state of grain filling. Some of the most important factors in determining the final 

protein content of seeds are timing, duration and rate of grain filling; all of these would 

affect the end-product performance of wheat. It is widely known that those factors are 

affected by the growth conditions (2).   

Wheat end-product diversity continues to increase on a daily basis in household 

use and in industrial applications. The latter demands a greater attention to wheat quality 

and its performance during highly mechanized processing. There is a need to understand 

the relationship of genetics to processing quality in wheat. Understanding this 

relationship under optimum conditions will assist in obtaining the baseline of the factors 

contributing to wheat quality. As the first product of gene activity, proteomics are critical 

to understanding the gene-function relationship and the effects of storage protein quality 

on processing quality (3). 

Identification of individual proteins as markers of phenotypes has a great impact 

on improving wheat production, from breeding to quality testing in bread production. The 

subcellular system involved in protein synthesis is suspected to be a determinant of the 

processing and nutritional value of wheat endosperm. In this context, the importance of 

the endoplasmic reticulum (ER) and the Golgi complex (GC) as major determinants of 

the metabolic fate in seed plants is speculated, due to their involvement in protein 

processing and posttranslational modification. Because wheat endosperm displays a shift 
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from the state of cellular division to a state of grain filling, the function of the ER and GC 

is speculated to show functional diversity during different stages of wheat development. 

However, studies of the diversity of protein composition in these organelles during 

different stages of wheat growth are still missing. An important feature would be a 

descriptive study of the constitutive proteins of these organelles at different stages of 

development. This descriptive study could be used to build a comparative database of the 

organelles’ protein expression at different stages of growth.  

Subcellular protein fractions of the secretory pathways, particularly the ER and 

GC, are known for their active protein trafficking from the cytosol and for their 

involvement in many regulatory pathways as signaling, targeting and processing. The ER 

is known for its protein folding, assembly, degradation and transport. Secretory cargo is 

cotranslationally synthesized and assembled in the ER and then, depending on the wheat 

growth stage, secreted proteins may either reside locally or leave the ER via distinct exit 

sites that bud and translocate as tubulovesicular structures (pre-Golgi) toward the 

microtubules. At this point, the destination is to merge with Golgi membranes for further 

processing and maturation. Upon arrival at the trans-Golgi network (TGN) which is the 

distal Golgi part, proteins are sorted and packaged into post-Golgi carriers that move 

through the cytoplasm in microtubules to reside in storage vacuoles or to fuse with the 

cell surface (4). 

Those regulatory pathways would eventually determine the storage protein 

composition and content in seeds. Constitutive proteins from the ER and GC are 

suspected to show a diverse expression at different stages of growth. Seven days after 

anthesis (DAA) represents the early stage of wheat endosperm development. This is the 
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stage where the plant starts actively synthesizing storage proteins.  The complexity of the 

membrane protein development is expected to increase as the storage protein synthesis 

begins, which is approximately around 14 DAA, and then to start declining around 34 

DAA, representing the end of storage protein synthesis. Some reports suggested that a 

wider profile of constitutive proteins exists at immature stages where protein 

manufacturing is at its maximum, compared to mature stages (5). However, little 

information is available on how those proteins are developed. Through monitoring the 

constitutive protein expressions in the ER and GC, it may be possible to identify the 

presence or absence of individual proteins undergoing expression at each developmental 

stage. 

 The objective of this project was to optimize a fractionation method to allow 

identification the proteomic profile of the two organelles, the ER and the GC from wheat 

endosperm. Our hypothesis is that the constitutive proteins of these organelles in wheat 

seeds show a qualitative diversity in expression at early, middle and late stages of growth 

under optimum growth conditions. The information reported from the expression of the 

individual proteins will be collected in a descriptive study. The study can be used in 

future work to generate a comparative database of the organelles’ protein expression and 

at different developmental stages in an attempt to identify their individual roles as 

phenotypes markers.  

The optimized methodology used in fractionating and identifying the constitutive 

proteins includes discontinuous sucrose gradient fractionation to separate the membranes 

of the ER and GC on a crude basis, followed by a partitioning with an aqueous two-phase 

system to increase the separation obtained from fractionation. The two-phase partitioning 
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procedure reduced contamination by separating organelles from plastids in suspension 

according to their partition coefficient. 1-D Sodium Dodecyl Sulfate-Polyacrylamide Gel 

Electrophoresis (SDS-PAGE) revealed the pattern of fractionation and enrichment of 

different fractions. 2-D electrophoresis resolved complex bands according to their 

Isoelectric Focusing point (IEF) in the first dimension and to their apparent molecular 

size in the second dimension. Finally Matrix Assisted Laser Desorption Ionization-Time 

of Flight (MALDT-TOF) was used to determine the identity of the selected proteins by 

peptide mass fingerprinting and MS-FIT search. Eventually, the completion of such a 

comparative database would allow speculation on the identified proteins’ possible effect 

on seed growth and grain filling.  
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MATERIALS AND METHODS 

Procedure for Wheat Seed Growth  

Wheat plants were grown at the Oklahoma State University greenhouse facilities. 

The seeds for Triticum aestivum (Butte 86) were sterilized for 30 seconds in 1% silver 

nitrate (AgNO3) in a sonicator and washed three times for 5 min in MilliQ ultrapure 

water with continuous stirring. Seedlings were planted at a depth of 1 cm in 1-gallon pots 

containing Metro-Mix 666 soil brand. A Miracle Grow® brand fertilizer was added once 

per week as instructed by the manufacturer (1 full cup for 3 gallons of water). Plants were 

grown at a rate of 4 seeds per pot in batches of 480 pots. Each spike was tagged with the 

date of anthesis.  

 

Growth Curve: Weight of Seeds Vs. Time  

The growth curve representing fresh and dry weight of wheat seeds as a function 

of time (DAA) is presented in Figure 1.  The points on the curve are averages of three 

independent observations consisting of three spikes containing a range of 23 to 32 seeds.  

Pots were randomly selected and spikes harvested at 7, 14, 34 and 60 (DAA). The 

specific number of seeds per spike was recorded. Fresh weight of seeds was recorded 

then the seeds were freeze dried and their dry weight recorded.  

 

Fractionation of the ER and GC 

The method of fractionation of the ER and GC wheat endosperm is a modification 

of the method of Morre et al for green leaves (6, 7). All procedures were conducted at 

4°C. A sample of approximately 200 g of dry wheat was collected and dehulled using a 
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Seeburo barely pearler (Seedburo Equipment Co, Chicago, IL). The pearler was equipped 

with a 30 grit carborundum stone and a No. 7 mesh screen. Pearling was conducted until 

the brownish mature seeds turned shiny white to ensure a complete removal of the 

pericarp outer layer. This will remove about 1/3 of the seeds’ weight. The pearling step is 

necessary to remove any coating pericarp not pertaining to the endosperm, which 

eventually helps reduce contamination. Pearled seeds were next ground using a Lafret 

grinder (Brabender Instrument Inc, Hackensack, NJ) at the scale setting number 1. This 

setting gives a particle size of 1-2 mm in diameter.  

The extraction buffer consisted of 50 mM HEPES (C8H18N2O4S), 10 mM KCl, 1 

mM EDTA (C10H16N2O8), 10 mM ascorbate (C6H8O6), 5 mM DTT (dithiothreitol: 

C4H10O2S2) and 0.4 M sucrose at a pH of 7.4. Bovine serum albumin was omitted from 

the original method (6, 7) due to its masking effect on the proteomics profile, and 

replaced with 15 mM CsCl to preserve the osmotic effect of the solution. The buffer was 

pre-cooled at 4°C for 2-3 hours with continuous stirring, and 5 min before use, mixed 

with Complete Protease Inhibitor Cocktail tablets (Roche) at a ratio of 1 tablet for every 

50 ml of buffer solution.  

For mature wheat, the buffer was added to the wheat at a 1:3 ratio (w/v), and 

ground in a chilled mortar and pestle. The grinding procedure was conducted for 15-20 

min in an ice bath and the homogenate filtered through four layers of cheesecloth. The 

filtrate was centrifuged for 10 min at 1000 x g at 4°C in an SS-34 fixed angle Sorval rotor 

(Sorvall Kendro, Asheville, NC). The supernatant was immediately used in the following 

steps or frozen in liquid nitrogen using cryogenic vials and stored at -80°C for later use.  
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250 g of seeds coming from earlier stages of development were squeezed to 

collect a pasty white-yellowish endosperm, stored in cryogenic vials, immersed 

immediately in liquid nitrogen and frozen at -80°C for later use.  At the time of use, the 

buffer was added to the endosperm samples at a ratio of 1:2 (w/v). 

Using 35 ml tubes, a 15 ml aliquot of supernatant, instead of 10 ml as reported in 

the method of Morre et al. (6), was layered onto discontinuous sucrose gradients 

consisting of 6 ml 37% and 10 ml 21.5% (w/v) sucrose instead of 4 and 6 ml 

respectively. The concentration of the sucrose solutions was adjusted using a 

refractometer Leica AutoAbbe (Leica Inc., Buffalo, NY). The layered preparations were 

centrifuged using a Beckman swing SW-28 rotor at 4°C (Beckman-Coulter, Fullerton, 

CA) for 30 min at 22,000 rpm (65,000 x g). The interphase at the homogenate/21.5% 

layers contained the ER in a crude form whereas the interphase at the 21.5 - 37% 

contained the GC in a crude form.  

Crude ER and GC fractions were collected in separate tubes using a Pasteur long- 

neck transfer glass pipette. In order to remove the sucrose, the fractions were diluted with 

the same extraction buffer solution without sucrose and layered on top of a 1.6 M sucrose 

cushion.  The layers were centrifuged for 20 min at 20,000 rpm (53,000 x g) using a 

swing rotor Beckman SW-28 at 4°C and the ER and GC extracts were collected at the 

interphases. The addition of the 1.6 M sucrose layer at the bottom of the centrifuge tube 

led to the collection of fractions at the cushion interphase. This step is a modification of 

the original method intended to keep the fractions out of pelleting and aggregation. This 

in turn provides a better solubilization needed in the two-phase partitioning rather than 

pelleting, as suggested by Morre et al (6).  
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Two-phase Partitioning  

The two-phase partitioning separates substances according to their partition 

coefficient, which in turn depends on several factors, including surface charge of the 

partitioned membranes, density, pH range, buffer and polymer concentrations. All of 

these factors vary among separated material.  To remove contaminating plastids the 

pellets were resuspended in phosphate buffer at a concentration of 100-150 mg/ml. The 

phosphate buffer consisted of 2 ml of 0.25 M sucrose containing 5mM potassium 

phosphate (HK2O4P), pH 6.8.  

In the method of Morre et al (7) designed for partitioning of spinach-leaf 

organelles, the resuspended crude organelle fractions were applied to a 5.9% (w/w) two-

phase partitioning system consisting of Dextran (DEX) T-500 with polyethylene glycol 

4000 (PEG). By the addition of water the total system was brought up to a 16 g total. 

However, by applying this method in wheat endosperm fractions, a substantial 

precipitation of a green-yellowish precipitate was obtained.  

A series of polymer dilutions were assayed to eliminate this precipitation, ranging 

from 5.0 to 6.5% of polymers with an increment of 0.1% at a time. The optimum polymer 

concentration that decreased precipitation to a minimum was at 5.6%.  The total weight 

of the mixture was kept at 16 g for every 100-150 mg of protein applied.  

Tubes were inverted 40 times and centrifuged at low speed in an SS-34 fixed- 

angle Sorval rotor (7 min at 1000 x g) at 4°C to obtain two layers. The upper layer, along 

with the interphase, both containing plastids, were removed using a Pasteur long-neck 

transfer glass pipette, leaving the lower layer in the separation tube. The obtained lower 

layer was diluted about 10 times with the extraction buffer without sucrose and 
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centrifuged at 20,000 rpm (53,000 x g) for 20 min at 4ºC to yield a pellet containing 

enriched fractions of organelles (ER and GC).  

 
Separation of Smooth and Rough ER  

Separation of smooth and rough ER was adopted from the method of Bergstrand 

et al (8). Briefly, 3 ml of 1.3 M sucrose and 1.5 ml of 0.6 M sucrose were respectively 

layered in a centrifuge tube. The ER pellet was resuspended in 0.25 M sucrose solution, 

to which CsCl was added to obtain a final concentration of 15 mM. The solution was 

layered on top of the sucrose layers to the maximum capacity of the tube and 

centrifuged at 25,000 rpm (82,700 x g) for 132 min at 4 ºC using an SW 28 rotor. The 

smooth ER fraction was collected from the 0.6-1.3 M interphase and the rough ER from 

the pellet.  

 
Ribosome Stripping from Rough ER  

 
Puromycin was used for stripping ribosomes from the enriched rough ER 

fractions of wheat endosperms. A modified method of Kreibich et al (9) was developed. 

The rough ER fractions were resuspended in 2 ml of low salt buffer consisting of 50 

mM KCl, 50 mM Tris-HCl pH 7.5, and 5 mM MgCl2. The final ion concentration was 

adjusted with a compensating buffer to high-salt buffer A consisting of 500 mM KCl, 

50 mM Tris-HCl pH 7.5, and 2.5 mM MgCl2. Puromycin at a concentration of 1x10-3 

M was added. The suspension was incubated for 20 min at 20°C and for 10 min at 

37°C.   
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The suspensions were diluted 4 times with high-salt buffer B, consisting of 500 

mM KCl, 50 mM Tris-HCl pH 7.5, and 5 mM MgCl2. The fractions stripped of 

ribosomes were recovered by sedimentation for 30 min at 40,000 rpm at 4 ºC using a 

rotor Beckman 45Ti using a sucrose cushion consisting of 4 ml of 20% sucrose and 

high-salt buffer B. 

 

Quantitative Protein Determination by BCA 

Protein content of all fractions was determined using a bicinchoninic acid (BCA) 

kit from Sigma-Aldrich (St. Louis, MO). The BCA complex was prepared by mixing 50 

parts of bicinchoninic acid to 1 part of copper II sulfate pentahydrate. All protein 

fractions were added to the complex at 1% (v/v) and heated at 60 °C for 15 min. To 

prepare a standard calibration curve, a series of bovine-serum albumin (BSA) dilutions at 

1, 0.8, 0.6, 0.4 and 0.2 mg/ml were prepared and added to the complex at a ratio of 1%. 

The absorbance was recorded at 562 nm.   

 

SDS-PAGE  

The patterns of fractionation and enrichment were monitored by 1-D SDS-PAGE.  

The fractions designated crude extract represent the fraction obtained after the low-speed 

centrifugation at 1000 x g. The fractions-designated crude organelles (both ER and GC) 

represent the fractions obtained after the separation with the discontinuous sucrose 

gradient. The fractions-designated enriched organelles represent the fractions obtained 

after ribosome removal of the rough ER and after the two-phase partitioning for the GC. 

Gels were made of 12% acrylamide and 1% bis-acrylamide (cross linker). Gels were run 
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at 20 mA for 10 hours and developed using 0.5% (w/v) Comassie blue, 50% (v/v) 

methanol and 10% acetic acid. Gels were later destained overnight using 25% methanol 

and 10% acetic acid. A 100 µl of each fraction was loaded in every well.   

Immunodetection of the ER and GC Enzyme Markers  

To test for the enrichment of the ER and GC during the fractionation steps, 

Western blot analysis was performed using PVDF transfer membrane and alkaline 

phosphatase for the rapid immunodetection (chromogenic) of enzyme markers. Protein 

transfer was conducted for 1 hour at 100 V. Alkaline phosphatase was the label for the 

second antibody, developed using BCIP/NBT as substrates, to yield an intense purple-

black color on the target bands. 

The enzyme markers used in blotting were calreticulin (CRT) for the ER and 

formiminotransferase cyclodeaminase (FTCD) for the GC. CRT is a 46 kDa protein 

serving as a molecular chaperone in the ER of eukaryotic cells. It is involved in Ca2+ 

storage and intracellular Ca2+ signaling in the ER (10).  FTCD is a 58 kDa enzyme 

associated with the cytoplasmic surface of the GC. It is a bifunctional enzyme that 

catalyzes two consecutive steps in the modification of tetrahydrofolate to 5,10-methenyl 

tetrahydrofolate (11). Anticalreticulin rabbit antiserra (Novus Biological, Littleton, CO) 

was used as primary antibody and goat polyclonal anti-rabbit (Abcam, Cambridge, UK) 

as a secondary antibody for the ER enzyme marker.  For the GC marker, mouse 

monoclonal to FTCD (Abcam, Cambridge, UK) was the primary antibody and rabbit 

polyclonal to mouse (Abcam, Cambridge, UK) was the secondary antibody marker for 

the GC.  
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2-D Electrophoresis 

Proteins were resolved by 2-D electrophoresis according to the method of Skylas 

et al (12). 30 µg of  pellets of enriched organelles were resuspended in 300 µl of 

solubilization buffer consisting of  7 M urea, 2 M thiourea, 2 mM tributyl phosphine 

(TBP), 4% 3-[(3-cholamidopropyl) dimethylammonio]-1-propane sulphonate (CHAPS), 

2 % carrier ampholytes (3-10 Biolytes, Amersham Pharmacia Biotech, Sweden), 40 mM 

Tris, bromophenol blue dye and MilliQ water to make up the volume. 

Samples were vortexed for 30 sec then centrifuged for 1 min at 13,200 rpm at 

room temperature, and the supernatant was collected.  An aliquot of 250 µl of supernatant 

was applied to the strip holder and covered with analytical Immobilised pH Gradient 

strips (IPG, 13 cm) pH 3.0–10.0 (Amersham Pharmacia Biotech, Sweden) and covered 

with DryStrip Cover Fluid (Biotech AB, Uppsala Sweden). Strips were rehydrated 

overnight and IEF was performed using an IPGphore system (Pharmacia Biotech, 

Sweden) in a step-wise protocol with 500 V in step 1 (1 hr), 1000 V in step 2 (1 hr) and 

8000 V in step 3 (2 hr). IPG strips were equilibrated in buffer consisting of 6 M urea, 2% 

SDS, 50 mM Tris/HCl pH 8.8, 30% glycerol, and 0.002% bromophenol blue and water to 

make up the volume.  

To 10 ml of this buffer, 100 mg DTT were added as a reducing agent. The buffer 

was applied to the strips and washed for 15 min. A second equilibration was applied with 

the addition of 250 mg iodoacetamide (IAA, ICH2CONH2) as an alkylating agent and the 

strips were washed for 15 min and then mounted on SDS-PAGE gels 12% acrylamide, 

using a strip-fixing solution consisting of 0.5% agarose in SDS-electrophoresis running 

buffer and 0.0002% (w/v) bromophenol bleu. Gels were run as described earlier in the 1-
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D SDS-PAGE.  A Bio-Rad silver staining kit (Bio-Rad Laboratories Inc., USA) was used 

for gel silver staining. 

 

Peptide Mass Fingerprinting Using MALDI-TOF 

The procedure for in-gel digestion of protein spots excised from silver-stained 

gels was performed using a modification of the method described by Shevchenko et al 

(13) and used by the Recombinant DNA/Protein Resource Facility. Preliminary testing 

confirmed no significant difference in spectrum intensity between silver-stained and 

destained gels. Therefore, gels were used without destaining. Negative control slices from 

empty regions of the gel were selected. Briefly, gel plugs were excised from gel using 

disposable cocktail straws pre-soaked with ethanol 70% for 1 min and air dried. Gel 

plugs were soaked twice, 1 hr each with 50% acetonitrile (ACN) mixed with 0.1% 

trifluoroacetic acid (TFA). Plugs were later soaked overnight with high-purity water (EM 

Science, Darmstadt, Germany).  The next day, the plugs were dehydrated completely 

with 100% ACN and reduced using 0.15% DTT in 0.2% ammonium bicarbonate 

((NH4)2CO3, Sigma, St. Louis, Missouri) at 56 ºC for 1 hr. The plugs were next alkylated 

using 0.2% IAA in 0.2% ammonium bicarbonate at room temperature for 1 hr. Later, the 

plugs were rinsed with 0.2% ammonium bicarbonate and dehydrated with 100% ACN. A 

20 µl sequencing grade-modified trypsin solution (Promega, Madison, WI), was used at a 

concentration of 8.3 µg/ml at 37 ºC for 4 hr. Peptides were extracted three times by 

incubating with 20µl of 0.1% TFA for 2 hr each.    

Protein identification was carried on at the Recombinant DNA/Protein Resource 

Facility, Department of Biochemistry and Molecular Biology at Oklahoma State 
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University. Peptide mass fingerprints were analyzed using the autosequencing program of 

MALDI-TOF (Voyager DE-PRO mass spectrometer, Framingham, MA). The spectrum 

acquisition limits were set at maximum number of 50, and the detected mass range at 

700-3000 kDa. The operating mode was set at the reflector and the laser intensity 2,200. 

Spectrum acceptance criteria were set at signal intensity 5,000 minimum and 50,000 

maximum. The criteria evaluation mass range was 1,100-2,400 and the spectrum 

accumulation was 5.   
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RESULTS 

Weight Change of Wheat Seeds versus Time  
 
The change of fresh and dry weight of endosperm wheat during the grain filling 

stages (growth curve) is presented in Figure 1. Observations were recorded at 4 time-

points: 7, 14, 34, and 60 DAA. Each point represents an average seed weight of three full 

wheat heads made on three different observations. Dry weight was obtained from freeze-

dried seeds. The growth curve suggests a fast weight accumulation rate up to 14 DAA 

followed by a plateau (fresh weight) or a slower rate of weight of accumulation (dry 

weight).  These observations are in agreement with previous studies (5, 14). During the 

grain-filling stage proteins and carbohydrates are synthesized, resulting in the endosperm 

development.  During the early grain filling stages the endosperm is in a milky stage with 

high moisture content.  As the grain filling advances (14 to 34 DAA), the moisture 

content decreases and the total solids (protein, carbohydrate, lipids and other minor 

components) increase. Figure 1 suggests that water accumulation is about 2 times the 

accumulation of solids during the period between 7 and 14 DAA. The period between 34 

and 60 DAA is considered a maturation period when desiccation of the seeds take place.  

As the moisture content is reduced, the cell and organelle membranes collapse.  

 

 
Protein Recovery   

The enrichment of organelles from wheat endosperm is represented in Table 1. 

Enrichment rates are presented as concentration, percentage of recovery changes and fold 

reduction of protein content through enrichment stages. At 7 DAA, about 80% and 88 % 

of the crude extract protein content were eliminated by the sucrose gradient fractionation 
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to obtain crude ER and GC. This elimination consists mainly of storage, nuclear, and 

mitochondrial proteins (7). The two-phase partitioning, the second step of the enrichment, 

removed a large fraction of plastid fragments from both crude ER and GC yielding about 

2% of enriched ER and 1% of enriched GC fraction from the original crude extract.   

In mature wheat, the protein recovered from the crude extract by the sucrose 

gradient fractionation of the ER and GC was 19.1% and 12% respectively. The two-phase 

partitioning and further treatment recovered 1.85% of En ER and 1% of En GC by the 

removal of a major portion of plastids contamination.  

Both enriched fractions of 14 and 34 DAA appeared to have the highest 

percentage of protein recovery after fractionation to obtain enriched ER and GC fractions 

(4.7 and 4.2% for ER and 1.7 and 1.6% for GC respectively). The percentage of protein 

recovered at the enriched 7 DAA is higher than the 60 DAA. However, the 34 DAA 

showed a lower percentage of recovered protein than the 14 DAA due to a higher of loss 

of protein during fractionation and enrichment. 

 The fractionation of the crude extract to En ER and En GC at 7 DAA resulted in 

a reduction of protein concentration of about 530 times and 100 times respectively. In the 

14 DAA En ER and En GC fractions, about 20 and 60 times of the crude extract were 

reduced. About 25 and 65 times of the crude extract were reduced in obtaining the En ER 

and En GC at 34 DAA, and about 95 and 160 times in obtaining the enriched 60 DAA 

fractions.  The 34 DAA is slightly the highest protein concentration obtained in the ER 

fractions (4.2 mg/ml).  The 34 DAA fraction is higher in concentration than the 14 DAA 

(1.6 and 1.4 mg/ml), despite that it was lower than the 14 DAA in recovery rate.  
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Protein Patterns from the Enrichment Steps 

 The protein pattern from the enrichment of the ER and GC of wheat endosperm 

extract during the grain-filling stages is reported in Figure 2 (1-D SDS-PAGE).  Aliquots 

of 100 µl from different extracts of endosperm sample were loaded on each well.   

The crude extract (Cr EX) represents the fraction obtained by a low-speed 

centrifugation at 1000 x g which removed debris and unbroken cells. This fraction still 

includes nuclear, mitochondrial and tonoplasts extracts. Crude fractions for both the ER 

(Cr ER ) and Golgi (Cr GC), obtained by sucrose gradient separation at 22,000 rpm 

(65,000 x g), show a pattern of band elimination and enrichment. The enriched fractions 

of organelles, obtained by a two-phase aqueous partition and further treatments, also 

show a removal pattern of plastids proteins and other contaminants as well as some 

appearance of new bands. The enriched fractions represent the final steps in the 

fractionation procedures where a large portion of plastids were eliminated.  

Comparison of ER and GC Similarity 

The following observations were concluded from the SDS-PAGE results and 

protein determination (BCA method). The enrichment trend shows qualitative changes in 

the protein profile among various bands. 

The 7 DAA enriched ER and GC fractions show similarity of protein below 60 

kDa. Proteins around 90 kDa were eliminated from both fractions compared to the crude 

fractions. At 14 DAA the similarity of protein pattern is also appearing below 60 kDa in 

the enriched fractions. By comparison to the crude fractions of the ER and GC, protein 

below 30 kDa appeared to be absent at the concentration level assayed in the gel. At 34 

DAA, the pattern of proteins also shows some similarity below 37 kDa of the enriched 
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fractions except for one band at 20 kDa in the En GC, probably due to a trend of protein 

differentiation. The difference between the ER and GC appears to be in the higher 

molecular weight proteins (above 70 kDa). The elimination of bands between 100-150 

kDa from crude ER and GC at 34 DAA is unique to this stage of growth. A 

differentiation in the functions of the ER and GC and a homogenization-induced 

fragmentation are possible reasons in the difference in protein pattern between the GC 

and ER at both levels. The mature (60 DAA) ER and GC fractions at the enriched level 

show differences in the upper molecular weight range (90-110 kDa) despite the fact that 

that the endosperm physiology has stopped at this stage of maturity. This showing 

differentiation is less than the one seen at 34 DAA. The protein profile at this stage is 

significantly different from the immature stages with a group of dense low molecular 

weight peptide bands appearing  appeared below 12 kDa. This is probably due to 

fragmentation of many peptides resulting from the desiccation of endosperm at this stage 

of growth.  

In summary, both fractions of the ER and GC show some similarity of the 

enriched samples in the polypeptide molecular weight range of 30-60 kDa present in all 

stages.  The highest differentiation in protein patterns among all enriched fractions of the 

ER and GC was observed at 34 DAA, possibly due to the effect of homogenization-

induced fragmentation or to the functional diversity occurring at the full maturity of the 

organelles.  

Comparison of the Sucrose Gradient Fractionation Steps 

Fractions showed a decrease in protein concentration proportional to the 

fractionation step (Table 1). At 7 DAA the sucrose gradient fractionation from the crude 
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extract (Cr EX) to yield crude ER and GC (Cr ER and GC) resulted in 5.2 and 8.3 times 

reduction in protein content (Table 1). Overall, the protein patterns of the Cr ER and Cr 

GC fractions appeared to be similar, except for a band around 90 kDa in the Cr GC that is 

not present in the Cr ER (Fig. 2). The GC appears to have a low concentration or no band 

lower than 30 kDa. A difference in protein concentration between Cr EX and Crude 

organelle fractions cannot be observed in the SDS-PAGE. At 14 DAA reduction of 

protein pattern is appearing in the SDS-PAGE for both the crude organelle fractions 

compared to the crude extract fraction. The sucrose gradient reduced the protein 

concentration of the Cr ER and Cr GC by 4.4 and 6.7 times respectively, compared to the 

crude extract (Table 1). Fig. 2 suggests the appearance of a band at 70 kDa and the 

elimination of bands between 60 and 37 kDa and below 20 kDa. However, similar to the 

7 DAA, the reduction on protein concentration between the crude extract and the crude 

organelle fraction cannot be concluded from the SDS-PAGE. At 34 DAA, the reduction 

of protein concentration after sucrose gradient fractionation was 3.5 and 5.3 times for the 

Cr ER and Cr GC respectively (Table 1). Some bands eliminated from the GC are in 

range of 15 to 20 kDa. At 60 DAA, the protein concentration reduction following the 

sucrose gradient was 4.8 and 6.4 times for crude fractions of the ER and GC (Table 1). 

The fractionation to yield Cr ER from Cr EX led to less enrichment of bands (limited to 

bands between 60 and 70 kDa) compared to the 34 DAA, possibly due to the process of 

fragmentation. Samples for SDS-PAGE were loaded on equal volume of extract per well, 

coming from a starting sample of about 200 g, and not equal protein per well. The 

lightness of bands in the enriched fractions possibly represents lower protein 

concentration or a limited solubility of proteins.    
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Except for the En 60 DAA, the reduction in the protein pattern and concentration 

of the enriched fractions compared to the Cr EX is appearing on the SDS-PAGE. All 

immature fractions show a nearly complete absence of the low molecular weight protein 

bands. A 20 kDa band in the En GC fraction at 34 DAA is an exception. Though a 

difference in protein concentration between both enriched fractions of 7 DAA was not 

observed in the SDS-PAGE, both fractions show reductions in the protein patterns 

compared to the Cr EX. The protein concentration of both enriched fraction is probably 

too low to show a difference. At both 14 and 34 DAA, the En ER fraction was 3 times the 

concentration of the En GC fraction. Also these results cannot be observed in the SDS-

PAGE. For the 60 DAA, the En ER has more protein than the GC, which agrees with the 

concentrations reported by the BCA for these fractions. In conclusion, organelle fractions 

show a decrease in protein content proportional to the stage of fractionation.  These 

results are concluded from the protein concentration assay and from the SDS-PAGE. The 

ractionation step from crude extract to crude organelles (ER or GC) is observed in SDS-

PAGE in the form of band elimination rather than reduction in protein concentration. The 

fractionation step yielding enriched fractions is seen by elimination of bands as well as by 

reduction of protein concentration. 

Comparison of the Same Organelle across Time 

Samples collected at 7 DAA and 14 DAA seem to have similar patterns of protein 

at the Cr EX fraction, with the 14 DAA fraction having more bands between 75 and 100 

kDa. At 34 DAA, the crude extract fraction has the largest protein pattern where the first 

major band is around 130 kDa. The Cr EX of 60 DAA has the smallest protein pattern 

among all Cr EXes. The first major band is around 65 kDa and a number of bands of low 
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molecular weight (10-15 kDa) are present, possibly due to peptide fragmentation. It is 

postulated that at the mature stage, fragmentation due to collapsing membranes and other 

cell structures may induce peptide hydrolysis. The higher total protein of the crude 

extract (113 mg/ml, Table 1) may be in the form of mostly small peptides, compared to 

the extracts at earlier developmental stages. All the extracts at 60 DAA showed higher 

number and intensity of bands at and below 15 kDa.  

At 7 DAA the Cr ER suggests fewer bands than the 14 DAA fraction. The 14 

DAA fraction in turn suggests fewer bands than the 34 DAA. The fractions of 14 and 34 

DAA show more similarity compared to the other fractions, except that the 34 has more 

bands at 120 and 130 kDa. The 60 DAA fraction has less intense bands than both the14 

and 34 DAA but still has more intense bands than the 7 DAA.  The Cr GC protein pattern 

is the largest pattern in the 34 DAA fraction followed by 14 DAA and the 60 DAA.  

The 34 DAA En ER fraction is more concentrated than all of the fractions. The 60 

DAA fraction comes next in protein concentration followed by the 14 and the 7 DAA 

fraction. The band concentration of the En GC fraction is lower in the 7 DAA fraction 

than in the 14 DAA. Similar to the En ER fraction pattern, the fraction of the 34 DAA En 

GC is more concentrated than that of the 14 DAA. 

It is concluded that except for the crude extract, all other fractions show an 

increasing trend of protein concentration relative to the mature stage, with the 34 DAA 

fraction being the highest concentration.    
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Western Blot for Enzyme Markers of Organelles 

The immunodetection of the enriched fractions of organelles through Western blot 

using a primary antibody against CRT in the ER revealed a band blotting around 46 kDa, 

corresponding to the molecular size of CRT (Fig. 3). However, the primary antibody 

cross-reacted with a low-molecular-weight peptide in all the ER fractions.  This antibody 

was not reported to be tested in plant tissues (http://www.novus-

biologicals.com/data_sheet.php/4/S/calreticulin/0). In the GC fraction this antibody tested 

faintly positive, indicating a minor contamination of the GC fraction with ER. On the 

other hand, testing the GC fraction with a primary antibody against the FTCD revealed a 

band at 58 kDa corresponding to the molecular size of FTCD.  Testing the same antibody 

against the ER fraction didn’t reveal any blotting reaction.  

 

Descriptive Analysis of Enriched Organelles Proteins Visualized by the 2-D 

Elecrophoresis and MALDI-TOF  

The following results represent a descriptive study of the 2-D electrophoresis gel 

spots matched by MALDI-TOF analysis and database search. Results also are described 

in Figures 4-1 to 4-8 and sequence-matching results are summarized in Table 2.  

At 7 DAA, the gel resolving the ER proteins revealed 16 spots, 7 of which yielded 

good MS spectra and were compared with database matches.  Nine out of 16 spots 

visualized in the 2-D gel yielded no spectra. The gels were overstained to visualize as 

much protein as possible. However, the protein concentration in the faint spots was not 

enough to produce sufficient peptide concentration after trypsin hydrolysis. Spot 3 is 

protein disulfide isomerase (PDI). PDI is a multifunctional glycoprotein involved in the 
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formation and isomerization of disulfide bonds (-S-S-) in nascent secretory proteins as 

well as in assisting in a variety of protein maturation processes within the ER. It catalyzes 

the rearrangement of bonds in proteins (15). Spot 9 contains the putative NOD26-like 

membrane integral protein. Its function is a transmembrane transporter (16). Spot 11 is a 

putative salt-tolerance protein 5 named SOS3 protein. It binds to and activates the self-

inhibited SOS2 protein kinase, which mediates the expression and activities of various 

transporters important for ion homeostasis under salt stress (17). 

Spot 13 is cyclin A2, essential for the control of the cell cycle at the G1/S and the 

G2/M (mitosis) transitions, which is highly active at this stage of wheat growth (18). Spot 

9 didn’t match any protein in the present database. 

Nineteen spots were visualized at 14 DAA in the ER fraction, among them the 

sequences of 10 spots were identified by database match search (Fig. 4-2).  Spot 2 is 

defensin, specifically induced during cold acclimation in wheat. It inhibits protein 

translation in cell-free systems (19).  Spot 3 is identified as putative eukaryotic translation 

initiation factor 2A. It functions in the rapid shutoff of host cell protein synthesis that 

occurs upon infection with selected viruses (20). Spot 9 is the starch synthase, in which 

subcellular components are in the chloroplast. Its function is starch biosynthesis (21).  

Spot 10 is phosphate/phosphoenolpyruvate, a translocator-like protein with a role in 

carbohydrate synthesis (22). Spot 18 is putative calcium/calmodulin-dependent protein 

kinase (CaMK), an ATP/calcium binder involved in amino acid phosphorylation (23). 

Three other spots didn’t match any protein in the present database, although they were 

identified by the MS-FIT search. One spot was not identified by the MS-FIT search 

although an acceptable spectrum was seen for this spot.  
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At 34 DAA, the ER fraction of 2-D gel revealed 19 spots, 6 of which were 

identifiable by MALDI-TOF analysis and database search (Fig. 4-3). Spot 7 is a 

eukaryotic initiation factor (iso) 4F subunit, which is a nuclear ATP-dependent RNA-

unwinding protein (24). Spot 10 is peptidyl-prolyl isomerase (PPI), which is an ER 

resident induced by heat shock. It is a PPIase that accelerates the folding of proteins 

during protein synthesis. This PPIase binds calmodulin (25). Three protein spots yielded 

no close match at the present time in the database. 

At 60 DAA, the ER fraction resolution revealed 39 protein spots, 14 of them were 

identifiable (Fig. 4-4). Spot 2 is cytochrome P450 isoform, an ER resident protein 

involved in sterol biosynthesis (26). Spot 13 is a putative chlorophyll a/b-binding protein 

(CAB). Its role is in photosensory transduction within the photosynthetic organs (27). 

Spot 19 is an integral membrane protein from the acquaporin family. It functions as a 

transporter protein across membranes (28). Spot 21 is a putative GTP-binding protein 

RAB7D. It functions as a small GTPase mediated signal transduction integral protein 

(29). Spot 27 is putative protein tyrosine-serine-threonine kinase. The family of tyrosine-

serine-threonine kinase is a group of nuclear proteins involved in DNA repair. Spot 30 is 

a putative nucleotide-binding site plus leucine rich repeats (NBS-LRR), a disease-

resistance protein that plays a role in the cellular apoptosis expected at this stage of 

growth (30). Spot 31 is a putative DNA-directed RNA polymerase II 13.6K chain. Its 

subcellular localization is nuclear and it catalyzes the transcription of DNA into RNA 

using the four ribonucleoside triphosphates as substrates (31). Spot 34 is a putative 

multidrug-resistance associated protein, which is an integral-membrane protein whose 

role is in  transmembrane movement of substances. Its subcellular localization is reported 
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to be in both the ER and GC membranes (32). Five other spots didn’t hit any identifiable 

match.   

  Regarding the GC fractions, 2-D resolution of the 7 DAA fraction revealed 9 

spots, 3 of them were identifiable (Fig 4-5). Spot 5 is a putative serine/threonine protein 

kinase, required for many functions; importantly, amino acid phosphorylation and 

membrane integrity (33). The putative wound-inducive protein identified on spot 6 is of 

unknown function (34). One spot hit no match. 

At 14 DAA, 16 out of 40 appearing GC spots on the 2-D gels were identifiable. 

Three spots hit no match (Fig. 4-6). Spot 2 is imidazole glycerol phosphate dehydratase 

involved in amino acid biosynthesis (35). Spot 8 is alternative oxidase protein, which is a 

mitochondrial membrane protein involved in cellular respiratory exchange (36). Spot 10 

is sucrose synthase type 2, involved in sucrose biosynthesis (37). Spot 22 is laccase, a 

secreted protein involved in lignin degradation and detoxification of lignin-derived 

products (38). Spot 23 is a putative nucleosome/chromatin assembly factor A, a nuclear 

protein involved in nucleosome assembly (39). Spot 24 is the starch-associated protein 

R1 known as starch dikinase, a chloroplast protein that functions as a general regulator of 

starch degradation (40). Spot 30 is Cw-21 peptide, non-specific lipid transfer protein, a 

membrane protein involved in the transfer of phospholipids as well as of galactolipids 

across membranes (41). Spot 32 is a previously described protein disulfide isomerase 2 

precursor (15). Spot 35 is a multidrug-resistance associated protein  MRP2, which is an 

integral membrane protein involved in transmembrane movement of substances (42). 

Spot 37 is the putative 2-oxoglutarate-dependent dioxygenase involved in DIMBOA-

biosynthesis. DIBOA [2-hydroxy-2H-1,4-benzoxazin-3(4H)-one] and its methoxy 
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derivative DIMBOA are natural pesticides, serving as important factors of host-plant 

resistance against microbial diseases and insects (43). Spot 38 is a chlorophyll a/b-

binding protein WCAB precursor, which is a membrane protein involved in 

photosynthesis light harvesting (44).    

At the GC fraction of 34 DAA, 19 out of 63 appearing spots were identifiable 

(Fig. 4-7). Spot 19 is amine oxidase-related protein, a glycoprotein involved in the 

oxidative deamination of primary amines in plants (45). Spot 20 is a putative WRKY- 

type DNA-binding protein involved in the induction of many disease-resistance genes 

(46). Spot 23 is a membrane protein rich in hydrophobic residues, involved in potassium 

transport, which is the putative AKT1-like potassium channel (47). Spot 24 is the 

nucellin-like aspartic protease involved in proteolysis (48).  Two spots, 25 and 26, are 

putative ubiquitin-conjugating enzymes involved in the ubiquitin cycle (49) and a 

proteasome inhibitor-like protein (50). Both are cytosolic proteins involved in protein 

degradation, which predicts that the process of malformed protein degradation is active at 

this stage of maturity. Spot 55 is the putative protein kinase, which is an amino acid 

phosphorylation enzyme (51). Spot 56 is a putative seed inhibition protein also known as 

putative raffinose synthase (52).   

At the 60 DAA, from the 29 spots analyzed, 10 proteins were identified. Spot 1 is 

fatty acyl CoA reductase involved in lipid metabolism (53). Spot 2 is the photosystem I 

(PS I) reaction center subunit IV, a membrane protein that stabilizes the interaction 

between psaC and the PS I core, assists the docking of the ferredoxin to PS I and interacts 

with ferredoxin-NADP oxidoreductase. This protein is located in the chloroplast 

thylakoid membrane (54). Spot 4 is protein disulfide isomerase previously described in 
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the ER 7 DAA fraction as a multifunctional glycoprotein involved in the formation and 

isomerization of disulfide bonds (15). Spot 18 is ATP synthase beta subunit involved in 

hydrogen-exporting ATPase activity and phosphorylative mechanism (55). Spot 19 is a 

salt-inducible protein kinase functioning as protein serine/threonine kinase enzyme (56). 

Spot 20 is chloroplast nucleoid DNA-binding protein-like involved in proteolysis (57). 

Spot 28 is a putative transcription initiation factor, a nuclear protein component of the 

transcription factor IID (TFIID) complex, essential for mediating regulation of RNA 

polymerase transcription (58). Spot 29 is an AP2 domain transcription factor, like a 

nuclear protein involved in transcription (59).  
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DISCUSSION 

The methodology of this study is aimed at identifying the constitutive proteins of 

the ER and GC, the major organelles of the secretory pathway at different stages of wheat 

growth. To perform this task, wheat endosperms were fractionated using discontinuous 

sucrose gradients and the resulting collected fractions were subjected to two-phase 

partitioning to remove contaminating plastids. This is the step to prepare enriched GC 

fractions, while for the ER , further steps were undertaken.  

The total volume of the smooth ER is less than that of the rough ER throughout 

the stages of seed development of wheat. In addition, after vacuoles are filled with 

storage proteins, further deposition occurs within the lumen of the rough ER in a 

process of retention (60). Thus, the rough ER was selected in this study. The ER 

fractions were subjected to a second sucrose gradient centrifugation to separate the 

smooth from the rough ER fractions. The rough ER fraction was treated with puromycin 

to strip the membrane-bound ribosomes. The pattern of protein was analyzed by 1-D 

SDS-PAGE through different stages of fractionation. The fraction separation was 

analyzed by Western blot using enzyme markers specific for each organelle. The 

proteins from each fraction at all studied stages of growth were resolved by 2-D 

electrophoresis. Resulting protein spots were fingerprinted by MALDI-TOF and 

identified through database search. To the best of our knowledge, this is the first attempt 

to fractionate the organelle proteins of wheat endosperm using a sucrose gradient.  
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Evaluation of the Weight Change Curve of Wheat Seeds during the Four Stages of Growth 

The pattern of weight change on a dry basis (Fig. 1) is in agreement with the 

pattern of protein concentration of the total crude extract (Cr Ex) of the three growth 

stages (7, 14 and 34 DAA) shown in Table 1, although the dry weight of wheat seeds 

represents all solids, including protein accumulation and other reserve materials such as 

starch. For 60 DAA, the BCA assay showed an increase in the protein content while the 

weight chart showed a slight decrease in fresh weight. The change in fresh weight is 

apparently due to a decrease in moisture content, observed at this stage of wheat growth. 

Data from both sources (BCA and SDS-PAGE) revealed a significant increase in protein 

content between 7 and 14 DAA. A higher protein content was observed, between 14 and 

34 DAA compared to other development stages. After 34 DAA the grain filling appears 

to plateau in the weight determination chart.  Those results were predicted by other 

studies (5, 14) and are also in agreement with the data obtained from the SDS-PAGE 

figure (Fig. 2).  

 

Evaluation of Protein Recovery Rates during Fractionation  

The enriched the ER fraction shows the higher protein recovery at 14 and 34 

DAA, 4.7 and 4.2% respectively while the enriched GC fraction appears to have similar 

protein recovery (1.7 and 1.6%). This suggests that at this stage, the ER appears more 

active in synthesizing proteins and the GC keeps up about the same protein trafficking.  

The highest total protein content was found at 34 DAA in the enriched ER and 

GC (4.2 and 1.6 mg/ml respectively, Table 1). Thus, a relatively lower protein recovery 

but higher protein content in the ER at 34 DAA suggests lower efficiency of protein 

fractionation. This may be due to deficiency in the following steps: 1) higher 
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contaminants in the crude extract compared to other stages of development, i.e. more 

protein per sample weight; and 2) removal of ribosomes from the rough ER further 

compromised the recovery process. With higher protein synthesis, higher ribosomes 

numbers are bound to the ER membranes and may contribute to lower efficiency upon 

fractionation and 3) higher fragmentation of the ER in the homogenization of these 

samples. 

Effect of Contaminants on the Recovery Rate   

The effectiveness of the fractionation of the ER and GC from wheat endosperm 

was influenced by cellular components that affect the density of the initial crude extract. 

Among these components are the soluble-starch protein particles (small starch granules 

and damaged starch) and a number of cytosolic proteins. The density of a medium 

depends on the solvent and amount of solids suspended or dissolved (61). Variations of 

the latter might have affected the fractionation efficiency.   

The total amount of recovered protein at the final enriched stages ranges between 

0.5 to 4.5% of the initial crude extract protein concentration. The high yield in organelle 

extraction is inversely proportional to the rate of organelle enrichment. A basic condition 

of a high ER and GC organelle recovery is an effective homogenization of the initial 

extracting material. Homogenization generally results in breakage of the plasma 

membrane, vacuoles, and mitochondrial membranes, eventually releasing the outer 

mitochondrial membranes, and lisosomes to the extraction medium. All of these 

structures contribute to impurities when fractionating ER and GC organelles. The risk of 

ER and GC contamination is high due to a density overlapping between these organelles 

and other vesicles (61).  
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During the homogenization procedure, a significant quantity of cytoplasmic 

proteins attach to the membrane surfaces contributing to about 30% of the total 

microsomal protein.  Protein enrichment is usually achieved by differential solubilization 

or sedimentation (61, 62). In this study the amount of crude protein removed by two-

phase partitioning was more than 80% of the original crude extract protein in all fractions 

of the four stages of growth. The protein determination assay (Table 1) shows that the 

removal of contaminants from the 7 DAA fraction by the two-phase partitioning and 

other measures (explained by the fractionation procedures from crude to enriched 

organelles) was about 99% of the ER and about 92% of GC. The organelle protein pool at 

this stage is still small compared to later stages of development. The 14 DAA lost about 

85% of the ER-protein fraction and 88.5% of GC fraction. Concerning the 34 DAA, the 

two-phase partitioning removed about 86% from the ER fraction and about 91.6% from 

the GC fraction. The 34 DAA enriched fractions shows a lower recovery rate but higher 

protein content than the 14 DAA. Finally, the 60 DAA lost about 94.8% from the ER 

fraction and about 96% from the GC. Provided that the fractionation procedure is 

efficient, the lower recovery rate of protein can suggest that more contaminants in the 

enriched fractions have been removed. The lower recovery rate and the higher content of 

organelle protein at 34 DAA suggest that a larger pool of organelle protein exists in spite 

of higher removal of contaminants. 

Effect of Homogenization-Induced Fragmentation on the Recovery Rate 

Figure 5 shows the results of the fractionation methods used to separate both 

organelles, ER and GC, from wheat at different stages of growth. The cellular organelles 

vary greatly in size and shape. The ER and the GC belong to a class of organelle 
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structures consisting of flattened cisternae, which are prone to fragmentation during harsh 

homogenization procedures into small vesicular structures lacking a standard shape or 

size. This occurs in such a way that the cisternal content mixes with the cytosol, adding a 

further complication in the process of their separation from the rest of the cytosolic 

organelles (7). This may in part explain the lack of similarity in the SDS-PAGE between 

the ER and GC at the enriched level of 34 DAA, where the organelles have the largest 

pool of proteins and are more prone to fragmentation during homogenization. The 60 

DAA enriched fraction, though fragmented, is still showing some resemblance to the 

crude extract. This result can suggest that both homogenization and desiccation may be 

different in their effects on organelle fragmentations.  

Unlike many other cellular organelles, less than half of the lamellar and cisternal 

structures of the rough and smooth ER can be separated in an intact form that may 

relatively compromise, but not completely prevent, the reproducibility of band 

appearance during SDS-PAGE separation (7). In this study the SDS-PAGE band 

reproducibility was about 70%.   

Besides, the homogenate usually contains unbroken or partially broken cells and 

may also contain aggregate material that takes place during nuclear lysis (61). Those 

aggregate materials may end up binding to the organelles and consequently co-banding 

with them during separation.  

Effect of Organelle Properties on Protein Recovery Rate 

One factor that affects the recovery rate of protein during fractionation is 

organelle density. Since both the ER and GC organelles are surrounded by 

semipermeable membranes, their density is not uniform and depends on the molecular 
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interaction between the organelles and the extraction medium surrounding them.  The 

surrounding semipermeable membrane structures enclosing the ER and GC are dynamic 

in that they allow water and a small number of other molecules to pass freely across, 

while the flow of other materials is partially (unidirectional) or fully restricted.  

Constitutive proteins of membrane are one example of materials within the interior of the 

organelles that cannot diffuse outward (61).  

Due to the dynamic property of semipermeability, the protein contents of intact 

membranes do not mix with other cytosolic proteins and this is the key element in 

confirming the authenticity of the isolated intact organelle membranes (61). 

Consequently, the cumulative mass of these organelles will be the mass of the membrane 

itself plus other membrane-bound structures: ribosomes, the non-diffusable solute trapped 

inside the organelle, and the mass of water and other diffusible solutes. This process will 

definitely affect the organelles’ density and the fractionation process (63).  

During high-speed centrifugation, the density of the particle equilibrates with the 

density of the sucrose gradient, and the particles will band at the buoyant density point.  

An organelle particle that is suspended in a liquid having its own density has no weight 

and will neither float nor sink (61). Because the GC is higher in density than the ER, both 

organelles will band during sucrose fractionation at different buoyant-density points. The 

ER will band at a higher interphase in the centrifuge tubes than the GC.  

The sucrose steps gradient of this study was formulated for banding organelles at 

different interphases, taking advantage of the unique property of differential density of 

organelles. The two interphases represent a borderline between a sucrose solution that is 

less dense than the organelles and another one that is denser. This may explain in part the 
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initial observation in Figure 5, in which the two organelle fractions banded at two 

different levels, with the GC fraction being the denser fraction. This fractionation 

successfully separated the mitochondrial extract at the bottom of the tube from the GC 

fraction, which banded at a lower level than the ER fraction. In addition, the top layer of 

the fractions contained a fat layer and other low-density particles. 

The addition of KCl/CsCl to the extraction buffer will exert a moderate osmotic 

effect, partially drawing water out of the cell medium, which consequently leads to a 

relative increase in concentration of the natural solutes within the organelles (61).  This 

would in turn increase the density of the material within both the ER and GC, 

simultaneously decreasing its size. In conclusion, the addition of KCl/CsCl is a 

contributing factor in adjusting the density of organelles during fractionation to approach 

the theoretical values and consequently facilitate their extraction by sucrose gradient 

procedures. 

Effect of the ER -Bound Ribosomes on the Recovery Rate 

Rough ER contains cellular components affecting its density. The RNA of the 

membrane-bound ribosomes can constitute up to 60% of the total cellular RNA. More 

than 50% of the total RNA is sedimented with the nuclear and mitochondrial pellet, along 

with the ER (61), which reflects a significant loss in the ER and further compromises the 

recovery rate of proteins at the enriched level of the ER.  

 

Optimization of the Two Phase Partitioning  

The two-phase partitioning system separates membranes based on their surface charge, 

while sucrose-gradient separation is based on intrinsic density. In this study the two-
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phase polymers were prepared as a stock of 20% DEX and 40% PEG.  One important 

problem in preparing a good stock solution of these polymers was determining the 

moisture content of each polymer. A moisture content of 7.5% in DEX and 10% in PEG 

kept at 4 ºC has been reported (64), but moisture content could vary according to 

manufacturing and storage conditions. In this study the polymer concentration of the 

stock solution was adjusted using a refractometer.  

To obtain membranes with a minimum of plastid contamination, it is necessary to 

optimize the phase composition of the two-phase partitioning. Morre at al (6) reported 

that at the polymer concentration of 5.9% (w/w) for both polymers (DEX and PEG), the 

plastids partitioned into the upper phase while the membranes of the ER and the GC 

partitioned into the lower phase. At a higher polymer concentration than 5.9% the risk of 

plastid contamination increases significantly, while at lower concentration the risk of 

reducing the yield of the desired membranes is likely due to their partitioning into the 

upper phase (7). In the current study, the partitioning of Cr ER and Cr GC from wheat 

endosperm showed a different phenomenon from the one described by Morre at al (6) for 

spinach-leaf fractionation.  

The application of the two-phase polymers at a concentration of 5.9% yielded a 

green-yellowish precipitate similar in color to the upper-phase partition. The nature of the 

precipitate at this concentration was not investigated. The problem was solved by testing 

a series of DEX and PEG concentration. Sixteen concentrations were tested, ranging from 

5.0 to 6.5% polymer with increments of 0.1% per tube.  At a concentration of 5.0% 

almost no partitioning was found. Partitioning started at a concentration of 5.2% but 

showed very little particle dispersion. Partitioning increased at higher concentrations of 
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polymers. At concentrations above 5.6% the green-yellowish precipitate was formed.  It 

was concluded that the best concentration of polymers leading to the least precipitation 

possible is at 5.6% DEX and PEG.   

The surface tension of the interphase during the two-phase partitioning is very 

small and, consequently, no destruction of organelles occurs by surface denaturation at 

the interphase. The distribution between the two phases of a partitioning system is 

influenced by many factors, including: 

1. Polymer concentration: The higher the polymer concentration (i.e. DEX and PEG), the 

higher the particle deposition is in the lower phase. 

2. Buffer composition: When buffer is present in the two phases, an electric potential is 

formed between the two phases.  Different ions in the polymer mixture will have 

different affinity for the two phases and particles will be preferentially distributed in the 

system according to their charge properties.  The electric potential can be adjusted by 

changing the buffer composition and concentration to control the partition (63).  

 

Evaluation of the Sucrose Fractionation Method  

There is no previous report about the use of this fractionation procedure for wheat-

endosperm organelles, which makes this study the first to report such results. The basis of the 

enrichment of the ER and GC was a sucrose fractionation, two-phase partitioning (DEX and 

PEG) and 2-D electrophoresis separation of the complex mixture of proteins based on isoelectric 

point (charge) and molecular size. The purpose of selecting the sucrose-gradient methodology 

for the organelle separation was its relative ease of preparation, application and removal. Sucrose 
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is a true solute, so membranes can be harvested from sucrose solutions by simple dilution of the 

medium with two or three volumes of buffer (7, 61).  

Several conclusions could be drawn from the SDS-PAGE pattern of the 

fractionation steps. As expected, maturation stages of wheat endosperm bring more 

protein synthesis and vacuolar filling. Consequently, more contaminant proteins are 

expected to be found during the fractionation of the ER and GC proportional to the stage 

of growth and maturation. The SDS-PAGE shows that 7 DAA has the less protein and the 

34 DAA has the most because at this stage protein synthesis and grain filling is at 

maximum. The original crude extract at 7 DAA shows a basic similarity to that of the 14 

DAA, possibly because both represent the developmental stages of early grain filling. It 

is expected that more protein synthesis takes place at 14 DAA. However, the SDS-PAGE 

analysis only revealed the appearance of 2 new bands at 75 and 100 kDa. The crude 

extract at 60 DAA is an exception to the expected trend of more protein bands due to the 

process of grain desiccation, which fragments the organelle proteins, leading to the loss 

of the turgent state during development.  

Mature endosperm has organelles more likely collapsed during the desiccation 

period at maturity and this may explain the organelles’ lower protein content at this stage. 

Farrant et al. (65) reported that in desiccation-sensitive plant cells, plasma membranes 

were discontinuous and the organelles had lost integrity. Another study reported that 

organelles with a single membrane (ER and GC) were first destroyed during programmed 

cell death of wheat seedlings, and then the organelles with two membranes (mitochondria 

and chloroplasts) were degraded. During the process of organelle destruction, the matrix 

was first destroyed, the organelles swelled, and then the integrity of the membranes was 
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damaged. It is assumed that auotophagy takes place during degradation of cellular 

organelles (66). 

 Similar to Cr EX, the Cr ER and Cr GC show their protein patterns proportional 

to the stage of development (Fig. 2). Less protein banding during the sucrose gradient 

fractionation is shown at the 7 DAA than at 14 or 34 DAA. Since maturation of 

endosperm is bringing more vacuolar and organelle filling, the sucrose fractionation is 

showing more protein banding in crude organelle fraction proportional to the maturation 

stage. The crude organelle fractions at 34 DAA (both and Cr GC) appear to have some 

protein pattern difference compared to other fractions. This is the stage where the 

organelles have an apparent differentiation compared to other stages of growth. These 

crude fractions appear the highest in concentration and the more diverse in protein pattern 

among all fractions.  

 During endosperm maturation, protein deposition intensifies in storage vacuoles, 

which lead to vacuolar full development. Around 34 DAA, saturated vacuoles lead to the 

deposition of small vacuoles within the lumen of the ER, which may further fuse, finally 

forming a central vacuole, in which protein bodies are sequestered. These protein bodies 

apparently continue to enlarge by fusions, with each forming large bodies surrounded by 

the ER (67). The mechanism by which the ER-surrounded protein bodies enter storage 

vacuoles is not well understood, since protein bodies are much larger than the GC, which 

makes the GC less likely to be involved in their transport (68). Consequently, it is 

possible that either the same proteins are present in a larger amount or different proteins 

are present at this stage, or both; and more contaminant proteins will co-band with the 
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organelles during fractionation, explaining in part the diversity of the crude organelle 

fractions at 34 DAA.  

 A possible explanation of the lower protein concentration and pattern at 7 DAA 

crude organelles is that the organelle system is still in its initial stages of development 

and relatively less protein is being synthesized by its machinery, so less protein co-bands 

with the organelle fractions.   

 The same sucrose gradient step used in spinach-leaf fractionation (6) was reported 

to precipitate the mitochondrial proteins in the pellet. Some of the low molecular weight 

proteins (below 30 kDa) removed from the crude extract by sucrose fractionation could 

have included mitochondrial proteins. The mitochondrial proteins include an 8 kDa ATP 

synthase protein (69), a 28-kDa mitochondrial S7 ribosomal-homologue protein (70), a 

12 kDa mitochondrial S12 protein (71), a 14.5 kDa mitochondrial ribosomal protein S13 

(72), a 32 kDa ADP/ATP carrier protein (73), a 34-36 kDa isomers outer mitochondrial 

membrane protein, porin (74). The protein elimination between the 37 and 60 kDa could 

also suggest the removal of some mitochondrial proteins such as the 42.5 kDa subunit of 

the NADH: ubiquinone oxidoreductase (complex I) (75). The remaining low molecular 

weight in the crude fractions could possibly be vacuolar or ribosomal proteins.  

The role of the two-phase partitioning is to eliminate contaminant proteins that 

co-banded with the organelle fraction in the sucrose-gradient phase. The two-phase 

partitioning was as effective in removing substantial amounts of proteins in all immature 

stages. An additional step was undertaken in the ER fractions, which is the removal of the 

ribosomal proteins associated with the rough ER fractions. The elimination of 

contaminants is showing a differentiation in the protein pattern of enriched organelles in 
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the 34 DAA, possibly due to increasing function proportional to the maturation stage. 

The enriched 34 DAA fractions appear to be the densest fractions among all in terms of 

band distribution.  Interestingly, the 60 DAA fractions appear to be different in both the 

ER and GC fractions from immature fractions, especially at the low-molecular-weight 

portion, due to the fragmentation of many peptides resulting from the effect of endosperm 

desiccation at this stage of growth. The effect of desiccation may be visually predicted 

from the accumulation of the low-molecular-weight peptides shown at the bottom of the 

SDS-PAGE gel (Fig. 2).  

The elimination of the remaining low-molecular-weight proteins from the crude 

fractions of both organelles is possibly due to the removal of vacuolar and ribosomal 

proteins. A SWISS/PROT database search demonstrates that many vacuolar proteins are 

in the low-molecular-weight range. Based on their molecular weight, some probable 

candidates are a 21 kDa putative plastid ribosomal protein CL9 (76), a 21 kDa plastid 

NAD(P)H-quinone oxidoreductase chain I (77),  a 23 kDa plastid 2-cys peroxiredoxin 

BAS1 (78), a 26 kDa small heat shock protein (79), a 27 kDa plastid envelope membrane 

protein (80), a plastid 28 kDa chlorophyll a-b binding protein (81), a and 34 kDa 

chloroplast oxygen-evolving enhancer protein 1 (82).  

Similarly, most ribosomal proteins like the group of 50S (L2, L14, L16, 20, L22, 

L23,L 32, L33, , L36), the group of 60S (L35), and 30S ( S2, S3, S7, S8, S11, S12, S14, 

S15, S16, S18, S19) have molecular weights ranging between 8 and 34  kDa (83). Since 

the two-phase partitioning of the ER fractions showed the removal of low-molecular 

proteins of this range, these ribosomal proteins could be candidates for elimination.  
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Lippintcott-Schwarz at al (84) reported that the whole secretory pathway is 

structurally similar in term of membrane composition.  The similarity is suggested to be 

the effect of vesicular proteins shuttling between the two compartments. Nascent proteins 

synthesized in the ER are transported to the GC by special coat proteins that bud from the 

ER exit sites and fuse with the pre-Golgi compartment. In reverse, enzymes and other 

ER-resident proteins that escape from the ER lumen are detected by specialized domain 

within the GC and are shipped back to the ER. Our results suggest that both enriched 

fractions ER and GC have a degree of protein pattern similarity within the particular 

stage, especially between 30 to 60 kDa. Some protein bands (about 30 and 35 kDa) are 

even identical among enriched fractions across all stages of development. A potential 

candidate is an ER-Golgi intermediate compartment with a MW of 32 kDa protein. Other 

common proteins for both compartments are a group of ER-to-Golgi transport-related 

proteins with a range of molecular weight, 34-37 kDa (85).  

At the 7 DAA the differences were observed in the high-molecular-weight protein 

fraction (between 65 and 70 kDa forthe ER and one band at 70 kDa for GC). The 

probable ER proteins of this MW range could be protein disulfide-isomerase EUG1 

precursor, which is about 65 kDa, and endoplasmic reticulum lumenal Ca (2+)-binding 

protein grp78, which is about 72 kDa (86). One GC protein candidate could be a 70 kDa 

Golgi-localized, gamma ear-containing, ARF-binding protein 1 (87).  

At 14 DAA, the difference in protein expression between enriched ER and GC is 

in three bands at 50, 65, and 70 kDa in the ER and two bands of 100 and 90 kDa in the 

GC. At this stage the differentiation in function may not have started yet, as shown in the 

34 DAA. The bands at 65 and 70 kDa may be identical to the ones appearing in the 7 
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DAA. The closest known ER protein to the 50 kDa band is a 47 kDa Omega-3 fatty acid 

desaturase (88).  Probable proteins for GC are Golgi adaptor HA1/AP1 adaptin gamma 

subunit clathrin assembly protein complex 1 gamma large chain gamma-ADA of 92 kDa 

(89) and Calcium-transporting ATPase (90) of about 100 kDa.  

At the 34 DAA stage, the protein profile becomes different, probably due to the 

shift in the utilization of different components of the secretory pathway. In addition, at 

the time of full development of the functional proteins (34 DAA), the effect of organelle 

fragmentation due to homogenization and protease activity may be responsible for 

displaying dissimilarity in both organelles at the enriched level. The effect of 

homogenization-induced fragmentation on the protein appearance in the SDS-PAGE is 

different from the effect of protease fragmentation in that the homogenization was 

reported to break the organelles’ integrity, but may not induce organelles lysis (61); while 

the lytic activity of protease includes a fragmentation of protein into constitutive 

peptides. The difference in protein pattern between the ER and GC refers to an additional 

expression of proteins between 90 and 120 kDa of the ER fractions. Among possible 

protein candidates are a 120 kDa eukaryotic translation initiation factor 2-alpha kinase 

precursor (91), a 111 kDa calcium-transporting ATPasethe ER type (92), a 90 kDa 

putative cell-division-control protein 48 homolog D (93).  Other bands seem common to 

the 14 DAA ER proteins. The GC fraction has a 20 kDa-expressed band not appearing in 

the ER. This band is not also appearing in the GC of 14 DAA. Many GC 20 kDa 

candidates are possible, including an 18kDa clathrin coat assembly protein AP19 (94). 
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Though some protein-pattern similarity appears at 60 DAA, a conclusive protein 

pattern of organelle similarity cannot be predicted from the 60 DAA due to fragmentation 

of the organelles.  

 Though differences in protein patterns in the fractionation step of the crude 

extract to yield crude organelles were observed in the form of band elimination and 

enrichment, differences in protein concentration were not observed in the SDS-PAGE. 

The fractionation step fror the crude extract to the enriched organelles showed a process 

of band elimination as well as reduction of protein concentration. In the protein content 

assay (Table 1) all fractionation steps showed a reduction in protein concentration 

proportional to the stage of fractionation. Consequently, direct comparison of protein 

concentrations (BCA method) and protein-profile patterns (SDS-PAGE) couldn’t be done 

from this study. Among the challenges to overcome in future research is the limited 

solubility of the proteins and the hydrolysis to smaller peptides. Both factors could have 

affected the results. For example, small molecular weight peptides would have been 

determined as proteins in the BCA method, while insoluble proteins and small-molecular- 

weight peptides (< 10 kDa) may not be completely resolved in the SDS-PAGE gel. 

Morre at al reported a successful sucrose fractionation for the separation of the 

ER and GC in green leaves (6, 7). However, no previous studies reported fractionation 

results of wheat endosperm. The fractionation of the ER and GC from green leaves was 

assessed by electron microscopy imaging using a similar fractionation and showed that 

the preparations were relatively enriched. The authors reported that the ER fraction 

consisted of 80% ER plus a minor fraction of other particles, while the GC fraction 

consisted of 65% stacks of cisterae with some contaminants due to co-banding of the ER 
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particles. Other contaminants include plasma membrane vesicles (15-20%), thylakoids 

(10-15%) and some unidentified vesicles (10-15%) (7). 

In this study, the success of ER and CG enrichment was tested by Western blot 

analysis (Fig. 3), which has not been reported before. The ER fraction, CRT enzyme 

marker, showed an average of three times the band size compared to the GC fraction, 

confirming some co-banding of ER particle with the GC. When testing for the GC 

enzyme marker (FTCD), no ER protein fragments were found. Thus, the enriched ER 

fraction appears to be free of GC but cellular components could still potentially be 

present. 

  

Results of Proteins Resolving by 2-D Electrophoresis and MALDI-TOF  

The descriptive study of the constitutive proteins of the ER and GC organelles at 

different development stages of wheat endosperm is a preliminary attempt to build a 

comparative database for protein expression found during grain filling. A comparative 

study of the differential expression of proteins between these developmental stages was 

not the aim of this work and will be the focus of future research. To the best of our 

knowledge no descriptive or comparative database exists for the ER and GC of wheat. 

The only study we came across was one comparison of the whole-wheat endosperm 

protein expression at 17 and 45 DAA (12).  

As expected, 2-D (Fig. 4) separation revealed an increasing number of resolved 

bands as the DAA (developmental time) increased. A similar trend was observed in 1-D 

SDS-PAGE and BCA assay of protein content. For each stage of growth all the 

detectable protein spots revealed with silver staining were analyzed. A total of 85 spots 

(36%) were identifiable out of 234 spots detected in 8 silver-stained gels (Table 3). Spots 
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identified from the ER fractions across development stages were 37 (40%) out of 93 gel 

spots. Spots identified from the GC fraction were 48 (34%) out of 141.  

The constitutive proteins of the secretory pathway are not exclusively made of 

membrane proteins, but the membrane is the major fraction in these organelles. The 

pattern of protein resolution in all samples still poses the challenge of membrane protein 

solubility and stability of this solubility during the extraction and analysis. Similar 

challenges in membrane solubility were previously reported (95). Apart from disulfide 

bridges, other major types of forces holding proteins together are non-covalent 

interactions: ionic bonds, hydrogen bonds and hydrophobic interactions (96). 

Consequently, a successful solubilization medium should be able to break all these bonds 

and interactions.  

The remarkable observation in the 2-D gels was the presence of large protein 

spots, presumably due to limited protein solubility. Except for 2 fractions (GC fractions 

at 14 and 34 DAA), all gels showed intensive band-distribution patterns around the edges 

of the pH range. Those observations revealed some challenges in the Isoelecrtical 

Focusing separation. The presumed low solubility of membrane proteins led to two major 

kinds of spots appearing on the gels: large unresolved lumps and small-sized, faint spots. 

The small-sized spots were mostly below the detection level of MALDI-TOF. These 

results were due to the low concentration of protein in the faint bands. The in-gel 

digestion procedure used was highly effective in demonstrative assays.   

The two exceptions for this pattern are gels for 14 and 34 DAA GC fractions (Fig. 

4-7 and 4-8), which showed a lower number of large lumps and small spots relative to 

other gels. However, the rate of identifiable spots in the 14 DAA fraction was 40%, 
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which is moderately higher than the cumulative rate of identified spots (36%). The rate of 

the identifiable spots in the 34 DAA fraction was not higher than the average rate of 

spots. The majority of spot distribution in those two fractions remains at the edges of the 

pH range. These observations suggest that the relatively better-resolved spots in these 

two fractions didn’t improve the level of identification, presumably due to a still-existing 

low solubility of membrane proteins. 

The pattern of spot distribution in the ER fractions showed a relative resemblance 

between the 14 and the 34 DAA fractions, while the fractions of the GC didn’t show any 

resemblance in protein distribution among the development stages.  The 2-D 

electrophoresis of the 7 DAA ER proteins showed a trend of similar molecular-weight 

protein distribution to the 1-D electrophoresis in the upper range of molecular weight 

(100-65 kDa). The low-molecular weight spots (below 30 kDa), although appearing in 

the 1-D electrophoresis, are not well observed in 2-D of the ER at 7 DAA (one spot), 

while they are more apparent in the GC. This is possibly due to a lower solubility of the 

ER proteins compared to the GC proteins. The 7 DAA GC protein distribution in 2-D 

shows a limited trend of resemblance to 1-D protein distribution, especially at the lower 

molecular-weight range of 40-20 kDa. The 1-D spot of the same fraction are clustered in 

the middle range of molecular weight (75-50 kDa). Although the lower molecular-weight 

spots shown in the 2-D of GC due to the more sensitive silver nitrate staining are not 

showing in the 1-D, they may still be present but not visualized.  

At 14 DAA both the ER and GC fractions show a trend of protein distribution 

similar to the distribution trend observed in 1-D electrophoresis for the same fraction. 

However, more proteins are seen in the GC fraction compared to the ER, although this 
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protein distribution is similar in the 1-D. Similar observations were drawn from the 34 

DAA ER and GC fractions where more protein distribution is seen in GC fraction 

compared to the ER, while the 1-D is showing the opposite pattern. This may be due to 

the more hydrophobic nature of the ER compared to GC, a phenomena that is common to 

all immature stages of wheat-endosperm development.  

Concerning the 60 DAA fractions, both fractions show a comparable trend of 

protein distribution between the 1-D and the 2-D electrophoresis. In addition, both 

fractions appear to be similar in the 2-D electrophoresis separation. This is the stage of 

endosperm desiccation where organelles lose their integrity and structure. Possibly the 

protein pattern seen at this stage no longer reflects the organelles’ original resident 

proteins.    

The cumulative results of the 2-D analysis suggest more protein distribution in the 

GC fractions of immature stages compared to the ER, possibly due to a higher 

hydrophobicity of the ER leading to a lower solubility in the 2-D gels. The higher content 

of ER proteins compared in the 1-D electrophoresis is probably due to different 

solubilizing procedures used in the two kinds of electrophoresis.  

Speculated Factors Compromising the 2D Results 

The major challenges that compromise a successful 2-D resolution of membrane 

proteins take place at two stages. The first takes place during the initial solubilization 

process of the samples, where important interactions occur among a variety of 

membranous proteins with different pH, or between those proteins and other interfering 

agents, such as salt residues from the extraction buffer. The second stage is during the 
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entry of the sample into the gel matrix of the focusing strip and the stabilization of 

protein inside the strip after their entry. At this stage there is a stacking effect due to the 

protein transition from the liquid phase to the gel phase. This stacking increases the 

friction coefficient, possibly resulting in an increased precipitation of proteins instead of 

their entry into the gel matrix, due to the clogging of the gel pores and poor penetration of 

the bulk of the proteins (96).  

Membranous protein is the major fraction of proteins in the fractionated 

organelles (ER and GC). It is speculated that the ER is more hydrophobic than the GC. 

For membranes, the gross structure of proteins is driven by hydrophobic interactions. The 

strength of these hydrophobic interactions may be the clue to the challenges encountered 

in 2-D electrophoresis with the Immobilized pH Gradient (IPG) that was used in our 

procedure. In this procedure, the proteins were solubilized in a buffer containing a strong 

chaotropic agent, a suitable detergent and an ampholyte buffer. The role of chaotropes 

(usually urea and thiourea) is intended to disrupt the hydrogen bonds, but this would lead 

to the exposure of the hydrophobic portions of proteins by unfolding their hydrophobic 

core, resulting in an increased potential for hydrophobic interactions. This may have a 

compromising effect on the solubility of our fractions, especially on the ER due to its 

strong hydrophobic nature. The role of detergents, in return, is to provide a stable 

dispersion of the exposed hydrophobic cores of membranes.  This takes place by coating 

the proteins to make them more hydrophilic in order to prevent their precipitation. Also, 

the role of the detergent may be compromised in the case of membrane proteins because 

the hydrophobic area is too large, which decreases the critical micelle concentration and 

thus the concentration of the detergent available (96).   
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Even in the case of successful protein solubility, membrane proteins may re-

precipitate once they reach their isoelectric point due to their loss of net charge, which 

cancels the electrostatic repulsions and promotes aggregation and precipitation (96). 

Sample residues were found in the strip holder at the end of the focusing procedure, with 

the holder for the ER samples containing more residues. This observation raises two 

possibilities, low solubility or a reprecipitation event. Even if proteins do not precipitate 

following the loss of their net charge, they lose their ability to migrate within the second 

dimensional gel (96). The latter possibility was ruled out because a silver staining of the 

gel strips didn’t reveal any protein residue in the strips, which suggest that either the 

proteins didn’t enter the gel strip or they reprecipitated after entering.      

Another speculated challenge that may have compromised our 2-D results is the 

salt residues (96) that may be coming from buffers used at different steps of the 

fractionation.  Our extraction buffer contained many salts, including potassium, sodium 

and chloride. Salts originally do not interfere through their binding to proteins; rather 

they interfere through the electrophoresis process.  Salts are reported to migrate through 

the pH gradients and accumulate at both ends of the electrophoresis poles. This 

accumulation builds very high conductivity zones, the size of which will depend on the 

salt concentration. Due to the high conductivity, the voltage drops and so does the 

electrical field of these zones. Consequently, proteins cannot focus in these zones (96). 

Nearly all of our 2-D gels of the ER fractions showed lump accumulations near the edges 

of the pH range. This phenomenon was less in the GC fraction.  
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In conclusion, the challenge we faced during the 2-D separation may have risen 

from a combination of factors, including the organelle protein hydrophobicity and salt 

traces from extraction buffers.    

 

Description of Important Organelles Makers at Different Stages of  

Endosperm Development  

The results of the 2-D electrophoresis revealed the presence of proteins that are 

markers of the separated organelles. The PDI enzyme is particularly important. Other 

proteins found are either nuclear or cytosolic resident proteins. Since the ER and GC are 

the major organelles for protein synthesis, these proteins may be residing within the 

specific organelles at the time of fractionation. Some of the identified proteins represent 

the hallmark of developmental stages in wheat. The following discussion will focus on 

the anticipated role of these proteins during a particular stage.  

PDI is a member of the thioredoxin superfamily, and is highly abundant in the 

ER-luminal protein fraction, constituting approx. 0.8% of total cellular protein. The 

protein, about 510 amino acids in length, carries a typical C-terminal KDEL ER-retrieval 

sequence for the retrograde activity of protein export for the ER. PDI is a catalyst of the 

rate-limiting reactions of disulphide-bond formation. It also catalyzes isomerization and 

reduction within the ER, and it displays chaperone activity. Catalysis of disulphide-bond 

formation can occur cotranslationally (15, 97). A chaperone is a protein that can assist 

unfolded or incorrectly folded proteins to attain the native state by providing a micro-
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environment in which losses due to competing aggregation reactions are reduced, and 

which mediates the reversibility of pathways leading to incorrectly folded structures. In 

its role as a chaperone, PDI interacts with malfolded proteins or endogenous, nascent 

proteins.  Its function is to help folding and protect nascent protein during their 

translation events. In addition to their location in the ER lumen, proteins from the PDI 

family may also be found in different compartments as the chloroplast-specific PDI in 

plants that regulates the light-induced translation of chloroplast mRNAs through redox 

activity (97). In this study, the PDI was identified in more than one stage of development. 

Interestingly, it was also identified in the GC fraction at 14 DAA, which predicts a role of 

this enzyme in the post-translational activity of GC.  

Other important enzymes in wheat endosperm development are the starch 

synthase enzymes, the function of which is to add glucosyl units at the nonreducing end 

of linear chains through new (1 4) linkages (21). Though the isoform III was identified 

in this study, five subfamilies of starch synthases have been identified in higher plants, 

including granule-bound starch synthase (GBSS), starch synthase I (SSI), starch synthase 

II (SSII), starch synthase III (SSIII), and starch synthase IV (SSIV) (98). The role of 

startch synthase III appears to be primarily in amylopectin biosynthesis (21), which 

suggests its presence at 14 DAA. Though the starch synthase III is localized in the stroma 

of plastids, plant organelles vary greatly in the classes they possess and in the relative 

contribution of the classes to soluble starch-synthase activity (98).  Though it is not clear 

whether individual isoforms of starch synthase make qualitatively different contributions 

to amylopectin synthesis, the mutation of SSIII resulted in the loss of almost 80% of the 

soluble activity of the potato tuber, causing deep fissuring of the starch granules. These 
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results raise the possibility that there are qualitative as well as quantitative differences 

between plant organelles in the contributions of individual isoforms of starch synthase to 

the synthesis of amylopectin (98).  

Another remarkable identified protein in this study is nucellin-like aspartic 

protease. It is involved in the nucellar cell degeneration in flowering plants. It has the 

essential features of aspartic proteases of the pepsin family. It has two catalytic sites, one 

in each of the N- and C- terminal regions. Nucellin has two possible roles in the nucellar 

cell death. It functions as an apoptotic protease and as a major hydrolytic protease that 

converts the cell-death proteins into the nutrients for endosperm development. This 

enzyme was identified at the 34 DAA GC fraction. Along with identification of the 

putative ubquitin-conjugating enzyme, it is suggested that at this stage the programmed 

cell death and endosperm desiccation are about to become active (99).
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CONCLUSION 

 

The developed fractionation and enrichment methods yielded enriched extract of 

the ER and GC from wheat endosperm at four stages of growth, 7, 14, 34 and 60 DAA. 

Western-blot immunodetection using CRT and FTCD as markers for the ER and GC 

respectively confirmed that the sucrose gradient fractionation combined with the two-

phase partitioning separated the two organelles (ER and GC). The weight-change pattern 

across stages of development showed an increase in seed weight across time, with the 7 

DAA and the 34 DAA being the lowest and the highest in seed weight. These results are 

in agreement with previous studies. The protein content of crude extract of all fractions 

was in agreement with the weight-change pattern of seeds.  The results suggest that these 

four stages represent different functionalities of the organelles. 

The band distribution on the SDS-PAGE showed a pattern of enrichment 

proportional to the stages of fractionation, with the enriched fractions containing the 

lowest pattern. The exception to this result was the 60 DAA fraction due to the process of 

organelle fragmentation at maturation. A change in the protein pattern can be observed in 

the SDS-PAGE for the fractionation step yielding crude and enriched organelles. 

However, a change in protein concentration can only be observed in the fractionation step 

yielding enriched fractions. 
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In SDS-PAGE the crude extract of 7 and 14 DAA show some protein-pattern 

similarity, possibly due to the fact that both are early stages of maturity. The crude 

extract of the 34 DAA seems the most concentrated due to organelle and vacuolar 

maturation.  

Some degree of similarity was observed in the same organelle across stages 

between 30 and 60 kDa, suggesting an existence of proteins with comparable molecular 

weight within the corresponding enriched fractions. SDS-PAGE also showed that some 

protein masses are common to all enriched fractions, presumably proteins of transport 

vesicles common to both the ER and GC.  

While the 14 DAA showed some remarkable development in band density 

compared to 7 DAA, the highest enriched fraction in band distribution was the 34 DAA, 

which suggests the highest activity of protein trafficking at this stage of grain filling.  

Previous studies reported that the ER and GC are structurally similar due to the 

presence of proteins shuttling between them. Enriched fractions of the ER and GC show a 

larger trend of similarity among each other at 7 and 14 compared to the 34 DAA. 

Different protein profiles among the ER and GC at 34 DAA suggests a homogenization-

induced fragmentation as well as a possible sign of shift in the utilization of various 

organelle proteins during grain filling. The different protein pattern at 60 DAA may 

reflect a process of desiccation-induced fragmentation of the organelles.  

The 2-D electrophoresis revealed a relative pattern of homology between ER 

fractions confirming the results of the SDS-PAGE, while this homology couldn’t be 

confirmed in the GC fraction. A group of 234 protein spots were visualized on the 2-D 

gels from all stages of development, with 85 (36%) of them identifiable by MALDI-TOF 
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and database search. The identifiable spots contain a number of organelle-membrane 

proteins from the ER and GC, suggesting a success of the process of fractionation. The 

presence of other proteins is possibly due to their residence in these organelles at the time 

of fractionation. The identifiable spots represent the first step of a descriptive study of 

wheat organelle proteins at different stages of growth. The optimization of a descriptive 

study could be used as the foundation for a comparative database for differential 

expression of organelle proteins at different stages of growth, from which a number of 

complex systems could be described and their functions studied. Of specific interest are 

those proteins with landmark activity at specific stages of development, such as the 

disulfide isomerase (PDI), important in protein folding at early and middle stages; starch 

synthase, important at middle stages where storage material starts accumulating; and 

proteases, important at late stages of development where programmed cell death becomes 

active. Although the fractionation was successful, 2-D resolution of enriched ER and GC 

needs to be improved; specifically in improving the solubility of membrane proteins of 

the obtained fraction of the organelles.  
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RECOMMENDATIONS FOR FUTURE WORK 

A. Improving the sucrose gradient fractionation techniques: 

Several hypotheses could be tested to improve the yield in the sucrose-gradient 

fraction. The first hypothesis is that changing the sucrose-gradient concentration can help 

minimize the co-banding of the ER and other contaminants in the GC fractions. Although 

successful, the currently used sucrose concentrations (21.5 and 37%) yielded a fraction of 

contamination in the separated GC fraction as demonstrated by the immunoblotting. A 

series of different sucrose concentrations can be assayed, ranging from 21.5 to 35%, 

while keeping the lower-layer concentration unchanged, which would help determine the 

optimal sucrose concentration for crude ER banding. The second hypothesis to test is that 

the removal of the soluble starch fraction from the extract would improve the yield of 

fractionation by adjusting the medium density. The low-speed centrifugation can remove 

insoluble starch while the soluble fraction can be differentially precipitated with ethanol. 

Although membrane proteins are not known to be alcohol soluble, it is recommended to 

test through SDS-PAGE for any alcohol-soluble protein that may co-precipitate with 

starch. The third hypothesis to test in improving the sucrose-gradient fractionation is that 

increasing the solubility of proteins will help the band distribution in the SDS-PAGE, 

especially the membrane-rich enriched fractions. This can be achieved by the 

introduction of a detergent (0.1-1% Triton X-114, 2-4 M urea and thiourea) to improve 

the solubility of proteins before loading into the 1-D SDS-PAGE, especially for the 

enriched fractions with membrane-protein content. The fourth hypothesis is that the 

utilization of RNAase can help improve the yield of rough ER. Since RNA is bound to 

ribosome, its precipitation during centrifugation will carry the precipitation of a fraction 
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of the rough ER, thus decreasing its recovery. RNAse can eliminate the RNA fraction 

from the extract prior to the high-speed centrifugation and consequently, preserve the 

rough ER fraction. 

  B. Testing for additional enzymes markers: 

The hypothesis is that testing for other contaminants in the separated fractions can 

confirm the success of fractions. The Western-blot immunodetection can be broadened to 

include analyzing the presence of enzyme markers for plastids after the two-phase 

partitioning. The presence of markers for ribosomes can also be tested to confirm their 

removal from the rough ER fraction. The enrichment of fractions can also be analyzed by 

the use of electron microscopy.  

C. Improving the 2-D resolution: 

The hypothesis is that improving the membrane solubility and sample purity from trace 

minerals will help resolve complex bands in 2-D electrophoresis. The improvement of the 

2-D resolution can include the trial of newer commercially available kits for the sample 

solubilization. Other steps can include increasing the focusing time from 4 h in two hours 

intervals up to 18 h. Also commercially available kits can be tried to help purify the 

sample from trace minerals that can affect the focusing resolution. 
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Fig 4-1: 2-D separation of enriched ER fraction at 7 DAA: No of 

identified samples: 7/16. Numbers followed by asterisks represents 

proteins identified by MALDI-TOF. 
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Fig 4-2: 2-D separation of enriched ER fraction at 14 DAA. No of 

identified samples: 6/19.  Numbers followed by asterisks represents 

proteins identified by MALDI-TOF. 
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Fig 4-3: 2-D separation of enriched ER fraction at 34 DAA: No of 

identified samples: 6/19. Numbers followed by asterisks represents 

proteins identified by MALDI-TOF. 
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Fig 4-4: 2-D separation of enriched ER fraction at 60 DAA. No of 

identified spots: 14/39. Numbers followed by asterisks represents proteins 

identified by MALDI-TOF. 
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Fig 4-5: 2-D separation of enriched GC fraction at 7 DAA: No of 

identified samples:3/9 Numbers followed by asterisks represents proteins 

identified by MALDI-TOF. 
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Fig 4-6: 2-D separation of enriched GC fraction at 14 DAA. No of 

identified samples: 16/40. Numbers followed by asterisks represents 

proteins identified by MALDI-TOF. 
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Fig 4-7: 2-D separation of enriched GC fraction at 34 DAA. No of 

identified samples: 19/63. Numbers followed by asterisks represents 

proteins identified by MALDI-TOF. 
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Fig 4-8: 2-D separation of enriched GC fraction at 60 DAA: No of identified 

spots: 10/29. Numbers followed by asterisks represents proteins identified by 

MALDI-TOF.    
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