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ABSTRACT

Halorhodospira halophila is an extremophilic photoautotrophic proteobacterium found in
highly saline desert lakes. It is one of the most halophilic organisms known and provides
a system to investigate adaptive mechanisms for survival of abiotic stress. This report
describes genome-based experimental studies of halophilic adaptations in H. halophila.
Two distinct strategies are known to be used by halophilic organisms to cope with high
salt conditions, namely: ‘High-salt-in-> where organisms accumulate KCl (up to 5 M) in
their cytoplasm, which requires them to have an acidic proteome, and ‘Low-salt, organic-
solute-in’: where compatible solutes are accumulated in the cytoplasm. The salt in
cytoplasm strategy is mainly used by extreme halophiles, which gives them ability to
grow in high salt environments (up to saturation levels) while the organic osmolyte
strategy is often used by moderate halophiles, which gives them adaptability to grow over
wide range of salt concentrations. In the work described here, it was found that H
halophila has an acidic proteome as examined by bioinformatics analysis and isoelectric
focusing gel electrophoresis. In line with this, based on Inductively Coupled Plasma
(ICP) and X-ray micro probe analysis revealed that H. halophila accumulates up to 3 M
KCl in its cytoplasm. However it can grow over a broad range of NaCl concentrations
(3.5-35% NaCl). When grown in 5% NaCl, it had KCl concentration similar to E. coli
despite its acidic proteome. Determination of cellular glycine betaine content showed that
H. halophila switches to accumulation of compatible solutes when grown in media

containing high NaCl but a reduced KCI concentration. These data indicate that H.



halophila uses both halophilic strategies and can switch between them depending on the
environmental conditions. This capability is likely to be important in enabling H.
halophila to grow in high salt environments but also over wide range of salt
concentrations. The potassium concentration at which H. halphila switches its halophilic
strategy (1 mM KCl) is similar to that of its natural habitat (Wadi Natrun Lakes, Egypt),
and therefore this osmoprotectant switch is likely to be ecologically relevant.
Unexpectedly, the closely related organism Halorhodospira halochloris does not
accumulate KC1 but only glycine betaine. In line with this, isoelectric focusing gel
electrophoresis revealed it does not have acidic proteome. This suggests recent rapid

evolution in halophilic strategy in the genus Halorhodospira.



CHAPTER ONE

REVIEW OF LITERATURE

1.1 Historv of halophilic microorganism

One of the first accounts of halophilic microorganisms is found as far back as 2700 BC
(8). It reports the red brines known to be caused by microbial communities adapted to
hyper-saline environment. Such records have also been made during the ancient times in
Egypt. Pierce in 1914 first isolated bacteria which could grow in saturated salt conditions
(69). From the late 1920’s to the early 1940 halophilic bacteria were isolated from a
variety of materials such as fish, hides and anchovies (6). Amongst other researches, two
research papers inspired future work in variety of salt-saturated environments. Both these
PhD theses were carried out under the guidance of Albert Jan Kluyver. The first thesis
was “Over roode en andere bacterieen van gezouten visch” (On red and other bacterial
life in salted brines) by Helena Petter (68) and the second thesis was “Investigations
concerning bacterial life in strong brines” by Trijntje Hof (30). Until the late 1930’s the
Dead Sea was considered to be a sterile environment. Inspired by the Petter and Hof
theses, Benjamin Elazari’s report of the isolation of microorganisms from this habitat
ended the reputation of lifelessness of the Dead Sea (54). Benjamin Volcani isolated
extreme halophiles like Halobacterium marismortui (now Haloarcula marismortui),
Halobacterium trapanicum and Micrococcus morrhhuae, moderate halophiles like
Chromohalobacterium marismortui, Pseudomonas halestorgus and Flavobacterium
halmephium (82, 83). However this initial surge was not followed by other authors and

Volcani himself changed his research efforts for almost 20 years. Since the 1980°s

W



Aharon Oren and coworkers have been carrying out extensive research on the ecology,
physiology and biochemistry of halophilic microorganisms and the microbiology of
hypersaline environment (58, 61, 64). Antonio Ventosa and his group also have been

carrying out extensive research on microbial life in the Dead Sea.

Recent advances in genome sequencing have been a big impetus for halophilic research.
The first halophilic genome sequenced was of the archaeon Halobacterium NRC-1(78).
Since then genome sequences of a number of halophilic archaea are available. However

not many halophilic and halotolerant bacteria have been sequenced.

1.2 Ecology of halophilic organism:

Lourens Baas Becking, the Dutch botanist and microbiologist in his book Geobiologie of
inleiding tot de milieukunde has famously hypothesized- “Everything is everywhere: but,
the environment selects” (7). To explore this hypothesis in context of halophiles, a

variety of different environments have been studied.

The oceans are the largest bodies of saline water with average salinities which are
measured as Practical salinity scale (PSS) ranging from 32-35 (32,000-35,000 ppm) (45).
Hypersaline environments, with saliniﬁes far above the normal seawater salinities,
generally originate as a result of evaporation of seawater. Such environments are called
thalassohaline environments and they have the ionic composition of seawater, and have
nearly neutral or slightly alkaline pH. Solar salterns are examples of thalassohaline
environment. Crystallization and precipitation of salts in the solar salterns occur in the
following order: Calcite (CaCOs3), Gypsum (CaS04.2H,0), Halite (NaCl), Sylvite (KCI)

and Carnallite (KCI, MaCl,.6H,0) resulting in a brine more acidic than seawater. Deep



sea brines found on bottom of Red Sea, the Mediterranean Sea and Gulf of Mexico are
examples of such brines. Athalassohaline environments are influenced by seawater but
are reflection of the geology, geography and topography of the areas in which they
develop. The brines are influenced by the solution of evaporate deposits from previous
evaporative events (26). The Dead Sea in the Middle East and the Great Salt Lake in the
Western United States, are the largest and most studied hypersaline lakes. Several
evaporation ponds are found in the coastal areas where seawater enters through seepage
or narrow inlets from the sea. Examples of such lakes or pools are found near the Red Sea
coast, Baja California coast, Black Sea and Sharks Bay in Western Australia. Naturally
occurring alkaline hypersaline soda brines are found in Egypt (Wadi Natrun Lakes),

Kenya (Lake Magadi) and Western United States (Great Basin Lakes) (79).

Amongst terrestrial environment, soil is the most heterogéneous and exhibits wide range
of salinities. Examples of hypersaline environments are salty soils in Death Valley
(California, United States), the Great Salt Plains (Oklahoma, United States), Ribandar
(Goa, India) and Kirkuk Plains (Northern Iraq). As freezing can also have same effect as

evaporation, hypersaline ponds have been found in Antarctica (Deep Lake, Organic Lake

and Lake Suribati).

Some of the rarest places where halophiles have been found are domestic dishwashers,

polar ice and spider webs in desert caves (29).



1.3 Physiology of Halophiles:

Halophilic microorganism can be defined as organism that can grow at salt
concentrations equal to or higher than 100 g per liter (1.7 M NaCl). They are found in all
the three domains of life: Archaea, Bacteria and Eukaryota [Figure 1.1 (a) and (b)]. They
also vary considerably in their physiological properties. Halophiles include aerobic,
anaerobic, chemoheterotrophs, photoheterotrophs, photoautotrophs and
photoheterotrophic species. Thus different metabolic types exists which function in high
salt conditions. Different classification schemes have been devised to describe
microorganisms according to their behavior toward salt. The most widely used is that of
Dr Donn Kushner, who defined moderate halophiles as organisms growing optimally
between 0.5 and 2.5 M salt. Organisms able to grow in the absence of salt as well as in
the presence of relatively high salt concentrations are classified as halotolerant (or
extremely halotolerant if growth extends above 2.5 M). Microorganisms that can grow

above 2.5M salt concentration but not in the absence of salt are classified as extreme

halophiles.
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1.3.1 Halophilic Archaea

The majority of prokaryotic organisms in hypersaline environments belong to members
of the Haloarchaea, which form a distinct evolutionary branch of the domain Archaea.
They belong to the family Halobacteriaceae. Two additional families in domain archaea
contain halophilic organisms: Methanospirillaceae and Methanosarcinaceae. The family
Halobacteriaceae includes 30 genera. Some of their physiological characteristics and
evolutionary position has garnered a great deal of interest in sequencing genomes of these
Haloarchaea. Most Haloarchaea grow best at salinities 3.4-5M NaCl and require 1-1.5M
NaCl (26). They form varied shapes- rods, cocci, disc-shaped, triangular and even square-
shaped (57). The intracellular K* concentration of these organisms has been found to be
extremely high, up to 5 M (59, 62, 66). The gradient of K" is maintained by combination
of an electrogenic Na+/H+ antiporter and two putative K" uniporters (40, 50, S1).

Proteins of Haloarchaea require the presence of high salts for their activity (11, 18, 19,



21). One of the most well studied proteins of Haloarchaea is a retinal protein,
bacteriorhodopsin, which is acts as a proton pump and captures light and uses it to pump
protons across the membrane out of the cell. Other retinal proteins of Haloarchaea are
halorhodopsin, which is an inward directed chloride pump driven by light and sensory
rhodopsins which mediate phototaxis. Aerobic Haloarchaea living in environments of
low molecular oxygen availability produce buoyant gas vesicles that are hollow
proteinaceous structures surrounding a gas-filled space which help the cells to float to
more oxygenated surface layers. They live in diverse environmental conditions such as
fresh water sediments to brine ponds. Other unique features of Haloarchaea are their

replication, transcription and translation machinery and their cell wall composition.

Due to their unique features and propensity to live in extreme environments, halophilic

archaea have often been used to as test organisms for studies in astrobiology.

1.3.2 Halotolerant and Halophilic Bacteria

In the domain of Bacteria, halophiles are found in the following phyla: Cyanobacteria,
Proteobacteria, Firmicutes, Actinobacteria, Spirochaetes and Bacteroidetes. Like the
Halobacteriaceae family in Archaea, the anaerobic fermentative bacteria of orders
Halanaerobiales (phyla- Firmicutes) consists of halophiles only. The microbial mats of
hypersaline lakes are dominated by the planktonic mass of Cyanobacteria. Extensively
studied halophilic ~Cyanobacterial ~genera are: Aphanothece, Spirulina and
Dactylococcopsis (37, 85). Amongst the Proteobacteria, the sulfur reducers, the purple
sulfur bacteria and Halomonads have been well studied (13, 32, 84). Halophilic purple

sulfur bacteria that deposit sulfur granules inside the cells are mainly moderate halophiles



belonging to the family Chromatiaceae. The alkaline soda lakes of Egypt and Central
Africa are dominated by halophilic anoxygenic photosynthetic sulfur bacteria of the
Halorhodospira-Ectothiorhodospira group (33). Discovery of halophilic adaptation
strategy of extreme halophile Salinibacter ruber, which belongs to phylum Bacteriodetes
has garnered great deal of interest in halophilic adaptations in the bacterial domain

bacteria who were thought to accumulate compatible solutes as their osmoprotectants

(62).

Within the scope of this study, this report will be focusing on the extreme halophile
Halorhodospira halophila of the family Ectothiorhodospiraceae and  genus

Halorhodospira.

1.4 Halophilic Adaptations

In order to survive hypersaline conditions, microorganisms show adaptations at structural,

cellular and molecular level.

Structural adaptation: Archaeal cell membranes contain phosopholipids which are
composed of branched isoprene units linked to glycerol by an ether group where as
bacterial and eukaryal membranes have fatty acids linked to glycerol by an ester bond.

These archaeal membranes are less permeable to ions and more resistant to high salts (73).

Cellular adaptation: In order to avoid excessive water loss, halophiles have developed

two distinct strategies to increase the osmotic activity of their cytoplasm (60).

(i) The cytoplasmic accumulation of molar concentrations of KCl, which is

called as ‘high salt-in’ strategy



(i)  The cytoplasmic accumulation of organic compounds, referred to as
compatible solutes. These compatible solutes can either be taken up from the
environment by specific transport systems, or can be biosynthesized by the

halophilic organism. This strategy is called ‘low-salt, organic-solute-in’.

Molecular adaptations: The presence of high intracellular salt requires adaptations of the
whole enzymatic machinery of the cell. The Cytoplasmic accumulation of molar

concentrations of KClI results in a sharp decrease in the distribution of protein isoelectric

points (52).

1.4.1 ‘High- Salt-in’ strategy:

‘High-salt-in’ strategy is adaptation in which halophiles accumulate inorganic ions intra-
cellularly to balance the high salt concentration of the medium. Extreme halophiles
(Halobacteriaceae family in archaea and Halanaerbiales in bacteria) use this strategy to
maintain the osmotic balance (15),(22), (57), (60). A concerted action of the membrane
bound proton-pump bacteriorhodopsin and proteins ATP synthase and Na'/H" antiporter
results in electrical potential (Ay) that drives the uptake of potassium ions. Potassium is
taken up via a K+ uniport mechanism. To enable such a transport the electrical potential
(Aw) has to be greater than the diffusion potential of K" (Ay K). The counterion chloride
is taken up either by primary or secondary transporters. In the dark, a light-independent
CI/Na" symporter is employed, but only little is known so far about this transport

mechanism and the transporter is unknown.

Salinibacter ruber has also been reported to accumulate potassium ions to maintain the

osmotic balance (62). No biochemical analyses for the protein responsible for the uptake

10



of K" and CI' are available for this organism. However genome analysis shows that
potassium could be taken up via a TrkHA transport mechanism (52). The genome of S.
ruber encodes two copies of a putative t#kH gene that one thought to be result of lateral
gene transfer events. TrkH is the membrane spanning translocating subunit and TrkA is
the cytoplasmic membrane surface protein that binds NADH/NAD" and which is
essential for the transport activity. Similar to the halobacteria, chloride can also be taken
up by the chloride pump halorhodopsin. Four putative genes encoding a rhodopsin are
identified in the genome of S. ruber. Two of these are sensory rhodopsins based on
sequence similarity; one is a proton pump and one a chloride pump. Additionally, two
copies of Na-K-CI co-transporter — genes are identified that are common in eukaryotes
but one rarely found in prokaryotes. Such a transporter can contribute to the accumulation
of K" and CI' in S. ruber. It was confirmed through X-ray microanalysis using an electron
microscope that the ratio of K'/protein was as high as that found in the extreme
halophilic Halobacteriaceae family in archae (5 mol/L). The chloride concentration was

also found to be same as that of cations in the cell (20).

1.4.2 ‘Low-salt, organic solute-in’ strategy:

The ‘high-salt-in® strategy requires pronounced adaptation of the whole enzymatic
machinery on high salt concentrations. Such a radical adaptation would be
counterproductive for a moderate halophile thriving in habitats where salinities
temporarily can reach molar concentrations but also can fall to freshwater concentrations
after rainfalls. Hence a more widely used approach in maintaining the osmotic balance
and establish proper turgor pressure in high salt conditions is accumulation of organic

solutes. These are often called ‘compatible solutes” or organic osmolytes, as they do not

11



have any inhibitory action on metabolic processes. They also protect the proteins from
denaturation in low water activity. They have high adaptability as they can tolerate a
sudden or dramatic increase or decrease of salinity depending on the environmental
condition. This can be done either by taking up compatible solutes from the external
milieu or can be synthesized (74). Many compatible solutes have been used by
halophiles, they are generally polar, highly soluble and are mostly uncharged [compatible
solutes of archaea can carry a negative charge at physiological pH (48)]. Compatible

solutes used by halophiles include (72):

Sugars like sucrose and treshalose- often used to stabilize membranes
e Glycerol

o Glycosylglycerol

s Betaines

e Amino acids- proline, glutamate, glutamine( glutamine residues)

Ectoines

Organic osmolytes can occur at high concentrations in the cell. They have been
identified and quantitated using analytical techniques like column chromatography, high

resolution NMR spectroscopy and HPLC (72).

Compatible solutes can be synthesized de novo. This is energetically more expensive

than the accumulation of potassium or chloride ions (60). Presence of glycine betaine in

12



Halorhodospira halochloris is the first reported presence of compatible solutes in domain

bacteria (23).

1.5 Genomes of Halophiles

Halobacterium NRC-1 was the first halophile genome to be sequenced (78). Since then a
number a haloarchaeal genomes have been sequenced (16). The sizes of these genomes
range between 2.6 and 5.4 Mb. Some of the common characteristics of halophilic
archaeal genomes are- presence of large megaplasmids and minchromosomes. However

the most dramatic feature is the extremely acidic nature of the encoded proteins.

13



Organism Salt range for growth Genome GC Total
(e size content proteins
(mol %)
Haloarcula marismortui 10-30 4.3 62 4242
Halobacterium sp NRC-1 15-35 2.59 68 2873
Halobacterium sp R-1 15-35 2.7 63 2892
Natronomonas pharanois 12-30 2.59 63.4 2661
Halorubrum lacusprofundi 9-30 2.8 62.2 2993
Haloquadratum walsbyi 15-30 32 47.9 2610
Halorhabdus utahesis 9-30 A 3078
3.1 64
Halomicrobium mukohataeti 15-26.5 33 63 3421
Halogeometricum borinquense 8-30 3.9 59 3993
Haloterrigena turkmenica 10-27.5 5.4 5351
65.83
Archaea Haloferax volcanii 6-26 4 66.64 4209
Chromohalobacter salexigens 9-250 3.6 63.91 3319
Salinibacter ruber M13 15-35 3.5 66.2 2833
Halorhodospira halophila 5-35 2.7 68 2407
Bacteria Halothermothrix orenii 4-20 2.5 39.6 2451

Table 1.1: Features of genome sequences of halophilic archaea and bacteria

The acidic nature of the proteins is directly related to protein functioning in a hypersaline
cytoplasm. The calculated isoelectric points (pls) of the predicted proteins show an
average pl of approximately 5 (52). In contrast, the average pl of non-halophile
proteomes is close to neutral. The high G+C composition of the halophilic genomes is

likely an adaptation to survive intense solar radiation, as it minimizes the thymine dimers.

Amongst the halophilic bacteria, the genomes of two extreme halophiles-
(Halorhodospira halophila and Salinibacter ruber (52) and two moderate halophiles-
(Halothermothrix orenii (49) and Chromohalobacter salexigens (63)) have been
completely sequenced. S. ruber is know to have the ‘high-salt-in’ strategy for

haloadaptation and thus possesses acidic proteome, with average pl of the proteome as
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5.2 (62). Halothermothrix orenii is a thermophile which can grow in 20% NaCl
[optimum growth at 68C and 10% NaCl] (14). It does not have acidic pl and has low
G+C content. Even though the non-acidic pl and low G+C content is unexpected, but can
be explained due to the fact that H. orenii requires protein that are active both high
temperatures and high salinities unlike proteins of mesophilic halophiles, which require
proteins stable only at high salinities (49). Chromohalobacter salexigens is a moderate
halophile which employs the ‘low-salt, organic solute-in’ strategy and accumulates

ectoine (77).

1.5.1 Genome of Halorhodospira halophila

Halorhodospira halophila is an anoxygenic photosynthetic halophile that was isolated
from salt-encrusted mud along the shores of the Summer Lake in Oregon and later also
identified in the hypersaline Wadi Natrun Lake in Egypt (31, 33). Halorhodospira
halophila is only the second extremely halophilic bacteria whose genome has been
sequenced. It is a phototrophic obligately anaerobic purple sulfur bacteria. The only other

purple sulfur bacterium whose genome has been sequenced is Allochromatium vinosium.

The genome of H. halophila is 2.7 Mb long and consists of one circular chromosome
with 67% G+C content. The main chromosome contains 2493 genes, 2407 of which are
protein coding genes. Out of 2407 genes, 1905 have been assigned a putative function

and others are annotated as hypothetical proteins.
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1.6 Genus Halorhodospira

The genus Halorhodospira belongs to the gamma-subdivision of Proteobacteria (31). The
génus Halorhodospira was formed by separating species Halorhodospira halophila,
Halorhodospira  halochloris and  Halorhodospira  abdelmalekii from  genus

Ectothiorhodospira based on their 16S rRNA sequences (36).

Species in the genus Halorhodospira are moderate and extreme halophiles. They are
vibroid or spiral, motile by bipolar flagella and internal photosynthetic membranes as
lamellar stacks. Growth is dependent on highly saline and slightly alkaline conditions. In
agar media, red- or green-colored colonies are formed. Photosynthetic pigments of the
red-colored species are bacteriochlorophyll-a and carotenoids of the normal
spirilloxanthin series, with spirilloxanthin as the predominant component. The green-
colored species, contain bacteriochlorophyll-b; the red species has bacteriochlorophyll-a
(75). The carotenoid content of H. halochloris and H. abdelmalekii is low (80). The
carotenoid composition of both of these species is quite similar. Mainly methoxyrhodopin

glucoside (major), rhodopin glucoside, and rhodopin have been found in H. halochloris
3.

1.7 Wadi Natrun Lakes

Several alkaline soda water lakes are located in the interiors or rain-shadow zones of the

tropical or subtropical locations. Alkaline soda water lakes are formed due to the

following conditions:

(i) Formation of alkaline drainage water
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(ii) Outflow of surface water is restricted from a drainage basin
(iii)  Evaporative concentration due climatic conditions

Examples of such alkaline soda water lakes are: Lake Magadi in Kenya, Wadi Natrun

Lakes in Egypt, Soda Lakes in China, Mono and Big Soda Lakes in United States (27).

This report will be focusing on the Wadi Natrun lakes in Egypt.
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Figure 1.2: Wadi Natrun Lakes- (a) Location (1), (b) Red coloration due to photosynthetic bacteria

producing bacteriochlorophyll-a.
Image obtained from: http://www.im.microbies.org/articles0203/2003/june/14%20BR%20Kunzel-Oren.jpg

The Wadi Natrun is situated about 100 km northeast of the capital city of Cairo, Egypt
and extends in northeast by southeast direction. It forms a valley about 10-20 km wide in
the Nile delta (Figure 1.2, panel a) (1). The valley contains a number of shallow lakes are
fed by underground seepages from the Nile river and have become hypersaline by
evaporative concentration. These lakes are eutrophic ecosystems. The geochemical
composition of six lakes has been reported (29). The total salinity ranges from 91.9 to
393.9 g/L with average of 274.3 g/L. The organic and inorganic nutrients made up of
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phosphates (116-6830 puM), nitrates (53-237 puM), ammonia (2-461 pM) and dissolved
organic carbon (136-1552 mg/L). The microbial communities are made up by halophilic
and alkaliphilic microorganisms (34). Due to the presence of photosynthetic puple
bacteria, cyanobacteria and green algae, the water is often green, red or purple colored.
The water column is generally dominated by extreme halophilic archaea of family
Halobacteriaceae, like Halobacterium  salinarium, Halobacterium  halobium,
Halobacterium cutirubrum and Natronomonas pharonis. The photosynthetic bacteria,
Halorhodospira halophila, Halorhodospira halochloris, Halorhodospira abdelmalekii
and Ectothiorhodospira halalkaliphila reside in the mats near the sediments along with
cyanobacteria, Spirulina plantesis and Oscillatoria limnetica. Other microorganisms
found in the Wadi Natrun lakes are- green alga Dunaliella salina, methanogenic archaea

Methanosalsus zhilinae and aerobic heterotrophic bacteria Bacillus haloalkaliphilus (30).
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1.8 Specific aims:

In this study the halophilic adaptation of extreme halophilic bacteria Halorhodospira
halophila will be analysed. Extreme halophilicity in Bacteria is less common and less
well studied, but has been described for the chemotroph S. ruber, but halophilic
adaptations of photosynthetic extremely halophilic bacteria have not been examined. H.
halophila exhibits unique extremophilic charactesistics as it grows in saturated salt
solutions, can grow upto 47°C and is photoautotrophic. The genome sequence of H.
halophila can provide clues about each of these characteristics. The approach to this

study was to develope genome based hypotheses of the halophilic adaptations of H.

halophila and experimentally verifiy these.
This study will address the following questions:
1) Does H. halophila use “High-salt-in’ strategy of halophilic adaptation?

2) Does H. halophila uses ‘Low-salt, organic-solute-in’ strategy of halophilic

adaptation?

3) Is the osmoprotection strategy regulated by growth conditions?
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CHAPTER TWO

BIOINFORMATIC ANALYSIS OF H4LORHODOSPIRA HALOPHILA GENOME
FOR HALOPHILIC ADAPTATIONS

2.0 Abstract

Extreme halophiles are able to thrive in media containing more than 15% NaCl and grow
well at saturated NaCl concentrations. Identification and analysis of distinct genomic
characteristics of halophiles can provide insight into the factors responsible for their
adaptation to high-salt environments, and molecular signature indicating the type of
halophilic adaptation used by the organisms. This chapter presents a comparative analysis
of the genome and proteome composition of H. halophila with respect to other halophilic
and non-halophilic microorganisms, with the aim of identifying such macromolecular

signatures of haloadaptation in H. halophila that are experimentally testable.
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2.1 Introduction

Proteins of extreme halophiles have been extensively studied as their peculiar
environmeﬁtal conditions require them to have distinguishing features from those of
proteins from microorganisms living in ‘normal’ conditions. Proteins from extremely
halophilic archaea are distinguished from their non-halophilic homologous proteins by
their instability in low solvent salt concentration and by maintaining soluble and active
conformations in high concentration of salt (11, 18, 19). Halophilic proteins bind
significant amounts of salt and water, in solvent conditions similar to their physiological
environment. This characteristic seems to be in contrast to that of non-halophilic proteins,
which bind similar amounts of water but do not bind salt. Halophilic proteins maintain
functionally active conformations in the presence of high concentrations of antichaotropic
salts, whereas in the presence of chaotropic salts, their conformations become inactive
(44). Statistical analysis of many halophilic proteins shows the acidic nature of the
halophilic proteins (21, 86, 87). The relationship between acidic residues and salt binding
has been suggested by a stabilization model proposed for the tetrameric malate
dehydrogenase (MalDH) from Haloarcula marismortui. The amino acid residues located
at the protein surface have been proposed to bind in a network of hydrated salt ions that
cooperatively contribute to the stabilization (86, 87). The recent progress in genome
sequencing has allowed comparison of primary structures of amino acids on a genome
wide scale. A typical example of such a comparison would be the characterizing the
proteins of thermophilic bacteria. Proteins from thermophiles are found to have a biased

amino acid composition, with an abundance of charged residues and few polar residues
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(21, 86, 87). The genome sequence allows a global analysis of the predicted isoelectric

points (pI) of the proteome.

2.1.1 Acidic proteome

Organisms known to accumulate KCI have acidic proteins and the calculated Isoelectric
point of the proteins is also in acidic range (15, 42, 52, 62). Organisms accumulating
organic osmolytes have biosynthesis genes and transport systems for those osmolytes (5).

It was checked if the H. halophila genome has acidic character.

2.1.2 Biosvnthesis and Uptake of compatible solutes

Halophiles employ a variety of osmoprotectants (22). For three such osmoprotectants:
Glycine betaine, Ectoine and Trehalose extensive information has been obtained,
regarding the proteins involved in the biosynthesis and transport (4, 10, 12). This
information allowed the bioinformatic analysis and identification of such systems in
halophile genomes and is reported below. The remainder of this section provides
summary of the current knowledge on the proteins involved on the biosynthesis and
uptake of compatible solutes. In section 2.3 this published information is used to

investigate the genome of H. halophila for the presence of similar proteins.

2.1.2a Glycine betaine

Biosynthesis:

Glycine betaine (N, N, N-trimethylglycine) is an osmoprotectant found in many bacteria. It
is accumulated at high cytoplasmic concentrations in response to osmotic stress, to act as

an osmoprotectant (35). In addition to its osmoprotectant activity, glycine betaine is also
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a gives protection against mutagenic compounds and radiation-induced damage (38).
Glycine betaine can either be taken up directly from the environment, or synthesized

(54). Two pathways for the biosynthesis of glycine betaine are known:
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Figure 2.1: Pathways for biosynthesis of glycine betaine.

A common biosynthesis pathway for glycine betaine is from choline, (synthesized via a
series of methylation steps from homocysteine) utilizing a two-step pathway with betaine
aldehyde as intermediate. This pathway is conserved in bacteria and plants, but has

enzymes involved. Gram-negative bacteria, Gram-positive bacteria and higher plants all

23



use a betaine aldehyde dehydrogenase to catalyze the conversion of betaine aldehyde to
glycine betaine. Gram-negative bacteria such as E. coli, Pseudomonas aeruginosa, and
Synorhizobium meliloti utilize a choline dehydrogenase, Gram-positive bacteria, such as
Bacillus subtilis, use an alcohol dehydrogenase (10). There is also another pathway for
the synthesis of glycine betaine, which is found in several halotolerant bacteria (see
below). The pathway was found in Halorhodospira halochloris (previously known as
Ectothiorhodospira halochloris) and several other organisms (54), which synthesize
glycine betaine from glycine through a series of methylation reactions. However, since
methylation reactions are among the most energy-consuming processes in nature (the
regeneration of one active methyl group of S-adenosylmethionine costs the cell 12 ATP
equivalents), this pathway is less common. This might be part of their adaptation to
extreme conditions. Several organisms have been shown to synthesize glycine betaine
from glycine through a series of methylation reactions. These include halophilic and
halotolerant Actinopolyspora halophila, Halorhodospira halochloris, Aphanothece
halophytica, and Methanohalophilus portuclensis (54, 55).The enzymes performing the
methylation reactions have been characterized in Actinopolyspora halophila and
Halorhodospira halochloris, and were found to be two methyltransferases, glycine-
sarcosine methyltransferase (GSMT) and sarcosine-dimethylglycine methyltransferase
(SDMT), with partially overlapping substrate specificity (Johnson, 1986 #103;Johnson,

1986 #141). The pathway is conserved with differences among the different organisms in

the substrate specificity of the enzymes.

In H halochloris and A. halophila both SDMT and GSMT have SDMT activity

(accepting sarcosine as a substrate), so that they overlap in that respect. However, only
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GSMT can accept glycine as a substrate, and only SDMT can accept dimethylglycine as a
substrate. In 4. halophytica, on the other hand, the first methyltransferase possesses both
GSMT have SDMT activities, but the second one only catalyzes the methylation of

dimethylglycine.

It has been shown that Actinopolyspora halophila (Actinobacteria) possesses both
pathways for glycine betaine synthesis — the above de novo pathway and a pathway of

choline oxidation (55).

Transport of glycine betaine:

In Bacillus subtilis the uptake of glycine betaine is mediated by three osmoregulated
uptake systems belonging either to the ABC type (OpuA and OpuC) or to the class of
secondary carriers (OpuD) (41). C. glutamicum is equipped with four secondary
transporters for compatible solutes, namely BetP, PutP, ProP, and EctP. Two of these
transport systems, BetP and ProP, are osmoregulated at the level of expression as well as
on the level of activity, whereas EctP is constitutively expressed, but osmoregulated at
the level of activity. PutP is an anabolic proline carrier and not involved in the process of
salt adaptation. EctP with its broad substrate spectrum seems to be the emergency system
for C. glutamicum. Tts constitutive expression may protect the cells from unexpected

changes of the external osmolarity (67).
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2.1.2b Ectoine
Biosynthesis:

Ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidine carboxylic acid) is an osmoprotectant,
and only a single pathway for its biosynthesis is known (12). The first two steps are
shared with the biosynthesis of amino acids in the aspartate family. The ectoine synthesis
genes of the moderately halophilic bacterium Halomonas elongata (Chromohalobacter
salexigens) have been extensively studied (Figure 2.2). Aspartic-B-semialdehyde is
converted to 2,4-diaminobutyrate by the enzyme, 2,4-diaminobutyrate aminotransferase.
2,4-diaminobutyrate is converted to y-N-acetyl-a, y -diaminobutyric acid by the enzyme
diaminobutyrate acetyltransferase. The last step in ectoine biosynthesis is circularization

of y-N-acetyl-o, y -diaminobutyric acid to ectoine by enzyme ectoine synthase.
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Figure 2.2: Pathway for biosynthesis of ectoine
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Transport of Ectoine:

Two ectoine uptake systems found in extremophiles are TeaABC in Halomonas elongata
(25) and Ota system in Methanogenic archaea, Methanosarcina mazei (76). TeaABC
belongs to the family of TRAP transporters and as such it consists of two transmembrane
proteins (TeaB, TeaC) and a periplasmic substrate-binding protein (TeaA). EctP with its
broad substrate spectrum is the emergency system for C. glutamicum which is capable of
ectoine uptake. Whereas the TeaABC is the only osmoregulated transporter for ectoines
found in H. elongata, EctP’s constitutive expression may protect the cells from

unexpected changes of the external osmolarity.

2.1.2¢ Trehalose

Biosynthesis of Trehalose:

In prokaryotic organisms trehalose can be used as external carbon source, a compatible
solute (in cyanobacteria and photosynthetic bacteria), a stress protector, and a structural
component (part of the cord factor in mycobacteria) (3). In yeast and filamentous fungi,
the main roles of trehalose are as a carbohydrate storage and as a stress protector. The
enzymes for trehalose metabolism are present in higher animals, but their precise role is
not well understood. Six different pathways for trehalose biosynthesis are known (4)
(Figure 2.3). The enzymes for the biosynthesis of trehalose in E. coli, trehalose-6-
phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP), have been
studied, and are encoded by the genes o#s4 and ozsB. These genes are similar to the yeast
genes TPS1 and TPS2 (39). In S. cerevisiae the two enzymes are combined into a single

complex, called the trehalose synthase complex, which also includes the regulatory
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subunits TSL1 and TPS3 (9). It should be noted that some authors use TPS3 as a

redundant name for TSL 1, while others use TPS3 for a different regulatory subunit.
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Figure 2.3: Pathways for biosynthesis of trehalose

Trehalose-6-phosphate synthases have been purified from Mycobacterium smegmatis and
Mycobacterium tuberculosis that are capable of utilizing all five nucleoside diphosphate
glucose derivatives (ADP-D-glucose, CDP-D-glucose,GDP-D-glucose, TDP-D-glucose

and UDP-D-glucose) as glucosy! donors for generating trehalose-6-phosphate (17 and 65).

In Summary: The proteins for the biosynthesis of these compatible solutes (glycine
betaine, ectoine and trehalose) and transport systems of glycine betaine and ectoine have
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been reported. In addition, halophiles using KCI as osmoprotectant have been reported to
exihibit an extremely acidic proteome. Below the presence of these properties in the H.

halophila genome are investigated.

2.2 Methods

Genomes Compared: Proteins from the H. halophila genome were compared with those

of the following organisms, which were selected as representative of the following
lineages- From extreme halophilic archaea: Haloarcula marismortui, Halobacterium sp
NRC-1, Halobacterium spR-1, Natronomonas pharanois, Halorubrum lacusprofundi,
Haloquadratum  walsbyi, Halorhabdus utahesis, Halomicrobium mukohataeti,
Halogeometricum borinquense, Haloterrigena turkmenica, Haloferax volcanii. From
extreme halophilic bacteria: Salinibacter ruber M13. From moderately halophilic
bacteria: Chromohalobacter salexigens and Halothermothrix orenii. From non-halophilic
archaea: Archaeglobus fulgidus. From non-halophilic bacteria: Escherichia coli,

Nitrosococcus oceanii and Alkalilimnicola ehrlichei MLHE-1.

Protein dataset: FASTA sequences of proteins of selected organisms obtained through

NCBI website.

Isoelectric points: Isoelectric points of the proteins were calculated by putting the FASTA

sequences of the protein in the Expasy server: http:/ca.expasy.org/tools/pi_tool.html.

Percentage distribution of amino acid residues in the organisms were obtained by

submitting FASTA sequences to- http:/proteome.gs.washington.edu/cgi-bin/aa_calc.pl.
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Transmembrane helices and Signal Peptide: The predictions of the trans-membrane

regions and the signal peptides were performed by the programs TMHMM and SignalP,

respectively.
2.3 Results:

2.3.1 pl distribution in H. halophila:

One of the most interesting results of sequencing of haloarchaea and S. ruber was
identification of the extremely acidic nature of their encoded proteins, which was relates
to the protein function in the hypersaline cytoplasm (‘High-salt-in’ strategy). Calculated
isoelectric points (pls) for the predicted proteins showed an average pl of approximately
5. In contrast, the average pls of moderate halophiles like C. salexigens and non-
halophiles like, N. oceanii that employ ‘Low-salt, organic solute-in’ strategy along are

close to neutral (Table 2.1).



Organism pl of the proteome
Haloarcula marismortui 4.6
Halobacterium sp NRC-1 4.6
Halobacterium sp R-1 4.7
Natronomonas pharanois 54
Halorubrum lacusprofundi 5.6
Haloquadratum walsbyi 5.1
Halorhabdus utahesis 5.8
Halomicrobium mukohataeti 5.7
Halogeometricum borinquense 5.7
Haloterrigena turkmenica 54
Haloferax volcanii 5.6
Salinibacter ruber M13 5.2
Halorhodospira halophila 5.5
Chromohalobacter salexigens 7.2
Halothermothrix orenii 7.8
Escherichia coli 7.4
Nitrosococcus oceanii 7.6
Alkalilimnicola ehrlichei MLHE-1 7.9

Table 2.1: pI’s of halophilic archaea and bacteria

All the predicted proteins encoded H. Halophila were examined for their predicted pl
ﬁsing the Expasy server. An acidic proteome was predicted for the H. halophile genome
with the average pl of the proteome as 5.5. This value is slightly less acidic as compared
to haloarchaeal pls like Halobacterium sp NRC-1 and H. marismortui. The predicted
proteins of H. halophila were also compared with a non-halophilic, phylogenetic

neighbor, N. Oceanii (Table 2.2)



No. of proteins

Halorhodospira Halbacterium sp Nitrosococcus
pl halophila NRC-1 oceanii

2.01-3.0 1 2 0
3.01-4.0 93 439 33
4.01-5.0 821 1172 422
5.01-6.0 520 134 491
6.01-7.0 326 71 513
7.01-8.0 117 50 294
8.01-9.0 149 41 311
9.01-10.0 167 79 496
10.01-11.0 119 45 315
11.01-12.0 98 41 83
12.01-13 0 9 16
13.01-14 0 0 0

Total 2407 2074 2974

Table 2.2: Acidic and alkaline proteins in H. halophila, Halobacterium and N. oceanii

For the moderate halophile C. salexigens it has been reported that its secreted proteins are

acidic, whereas its cytoplasmic and membrane proteins are nearly neutral (63). The pl

value and amino acid composition of cytoplasmic, secreted and membrane proteins of

extremely halophilic, moderate and non-halophilic archaea and bacteria, along with H.

halophila were calculated (Table 2.3 and 2.4). Cytoplasmic and secreted proteins in .

halophila are more acidic then cytoplasmic and secreted proteins of its non-halophilic

and phylogenetic neighbor N. oceanii. Predicted proteins in these fractions of H.

halophila have more glutamic acid and aspartic acid residues as compared to proteins of

N. oceanii.




Table 2.3: Average pl of different fractions of proteins in various halophilic and non-halophilic

Proteins

Organisms Cytoplasmic | Secreted | Membrane
Haloarcula marismortui 4.1 3.92 6.89
Halobacterium sp NRC-1 4.29 3.98 7.22
Halorubrum locusprofundii 4.23 4.06 6.56
Natronomonas pharonis 4.38 4.27 6.45
Archaeglobus fulgidus 5.68 6.52 7.25
Salinibacter ruber 4.36 4.31 7.92
Halorhodospira halophila 5.12 4.57 8.56
Alkalimnicola ehrlichei MLHE-1 4.98 6.96 7.62
Nitrosococcus oceqnii 5.78 7.22 8.21
Escherichia coli 5.66 6.96 8.83
Cytophaga hutchinsonii 5.45 7.24 7.92

archaea and bacteria

Cytoplasmic Secreted Membrane

Organisms Acidic | Basic | Ser+Thr Hydrophobic Acidic' | Basic | Ser+Thr Hydrophobic Acidic | Basic | Ser+Thr Hydrophobic
H. marismortui 15.2 11.5 9.2 305 17.2 8.7 11.2 37.1 12.3 10.5 11.6 35.8
H sp NRC-1 16.8 11.2 10.3 31.2 13.2 72 11.8 36.1 11.5 11.6 9.8 36.4
H. locusprofundii 14.9 12.3 10.5 323 14.1 7.6 10.5 35.8 10.8 12.5 9.2 36.2
N._pharonis 15.8 12.1 10.1 31.8 13.7 6.9 11.5 36.7 12.5 10.8 10.3 36.1
A, fulgidus 14.3 10.2 9.2 38.1 112 10.3 9.6 35.8 12.4 12.1 11.2 34.9
S._ruber 13.6 10.9 9.8 32.1 16.2 8.7 9.8 37.2 10.6 10.6 10.3 35.8
H._halophile 14.2 11.8 9.6 375 13.6 7.6 10.3 36.2 11.8 10.3 10.5 35.2
A._ehrlichei 13.2 15.2 9.4 37.2 13.4 17.2 10.2 34.9 10.3 9.9 9.8 35.1
N. oceanii 14.1 11.5 10.4 36.4 12.8 11.2 10.5 354 11.5 10.4 11.2 34.6
E. coli 13,2 127 10.6 38.1 15.2 13.2 11.3 34.9 13.5 10.2 10.5 35.5
C. huichinsonii 12.9 10.3 9.8 37.6 14.3 11.8 10.8 35.2 12.8 12.3 10.7 38.3

Table 2.4: Amino acid composition of different fractions of the genomes of halophilic and non-

halophilic archaea and bacteria

Extremely halophilic archaea of Halobacteriaceae family and S. ruber (bacteria)
accumulate upto 5M KCl in their cytoplasm. As the genome sequences of these

extremely halophilic archaea and S. ruber are available a bioinofrmatic analysis of the
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predicted proteins can be carried out. The proteomic distribution of the predicted proteins
in these organisms in strongly shifted to acidic values (Table 2.1). This is caused by a
large excess of glutamic acid and aspartic acid residues, which allow the proteins to
function in the hypersaline cytoplasm. The isoelectric point of the predicted proteins in
H. halophila was calculated and compared with known extreme halophiles which
accumulate KCI, and non-halophilic archaea & bacteria including N. oceanii a non-
halophilic phylogenetic neighbor of H. halophila. The average pl value of H. halophila
proteome is 5.5. A. halophila has an intermediate acidic character in comparison with the
average pl value of 4.6 of the predicted proteins of Halobacterium spp NRC-1 and
average pl value of 7.6 of the predicted proteins of N. oceanii. Out of 2407 predicted
proteins of H. halophila, 1435 proteins are acidic in nature and 972 proteins are alkaline
while in Halobacterium spp NRC-1 out of 2074 predicted proteins, 1747 are acidic in
nature ans 327 are alkaline. This trend of higher acidic predicted proteins is not followed
in N. oceanii in which has 946 acidic predicted proteins and 2094 alkaline proteins in the

total of 2974 predicted proteins.
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Figure 2.4: pl distribution of genome of H. halophila, H. salinarium and N. oceanii



H. halophila has a higher percentage of acidic residues compared to its non-halophilic
neighbor, N. oceanii and its pl distribution is also similar to Halobacterium sp. NRC-1
(Figure 2.5). Comparison of pl and amino acid composition of the cytoplasmic, secreted

& membrane proteins showed that H. halophila has a acidic proteome.
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Figure 2.5: Acidic and Basic amino acids in H. halophila, H. salinarium and N. oceanii



2.3.2 Biosvnthesis of compatible solutes:

The H. halophila genome was examined for presence of biosynthesis genes for glycine
betaine, ectoine and trehalose using reference sequences from bacteria known to have
uptake and biosynthesis genes for these compatible solutes. For glycine betaine, the best
hits obtained were from GbsA and GbsB genes from B. subtilis, which uses pathway 11
and GSMT and SDMT genes from H. halochloris and A. halophytica (pathways II and 111
described in section 2.1.2a). BetA and BetB genes from E. coli did not yield any
significant hits in the H. halophila genome. For ectoine the best hits obtained in H.
halophila were that from EctA and EctB gene (described in section 2.1.2b) from C.
salexigens, which is a moderate halophile. TPS1 and TPS2 from E. coli gave significant
hits, but TreY/Z, TP, TreT and TreH genes for biosynthesis of trehalose in S. cereviciae
and M. tuberculosis (described in section 2.1.2c) did not give a significant hit in H.

halophila (Table 2.5).
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Scores of hits obtained in
H. halophila when
compared to reference
sequences
%
Compatible solutes Genes involved Reference sequences used % Similarity Identity Presence in H halophila
Pathway I in gram negative bacteria -
BetA 17 12 -
BetB E. coli 19 17 -
Pathway II in gram positive bacteria
GbsA 48 30 +
GbsB B. subtilis 38 20 +
Pathway IIT using glycine as a substrate
GSMT 94 90 +
SDMT H. halochloris 72 82 +
GSMT 80 65 +
Glycine betaine SDMT A. halophvtica 71 52 +
EctA 48 36 +
EctB 70 58 +
Ectoine EctC C. salexigens 67 43 +
TPS1 64 45 +
TPS2 E. coli 38 24 +
TreY/Z 19 12 -
TP 28 23 -
‘ TreT 30 27 -
Trehalose TreH M. tuberculosis 26 22 -

Table 2.5: Compatible solutes biosynthesis genes in H. halophile. Hits identified as significant are
indicated with + sign

2.3.2a Glvycine betaine biosynthesis:

Three genes for the biosynthesis of glycine betaine in H. halophila were identified. These
were the hits obtained using the GbsAB genes from B. subtilis and GSMT and SDMT of
H. halochloris and A. halophytica. The alignment of GbsAB from B. subtilis shows high
percentage of identity and similarity (Figure 2.6 and Table 2.5) also alignment of the
GSMT and SDMT from H. halophila with those from H. halochloris and A. halophytica
(Fig. 2.6 and 2.5) revealed a high level of sequence similarity and the absence of gaps.
Hence, these alignments were convincing. The H. halophila GSMT and SDMT have a

high identity and similarity with H. halochloris (82% and 90% respectively)
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Figure 2.6: Multiple sequence alignment of B. subtilis and H. halophila glycine betaine biosynthesis genes-(A) GsbA and (B)

GsbB
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Figure 2.7: Multiple sequence alignment for the glcyine betaine biosynthesis genes in H. halophila, H. halochloris and A.
halophila. (A) GSMT of H. halophila, H. halochloris and A. halophila. and (B) SDMT of H halophila, H. halochloris and A.

halophila.

The genes encoding GSMT and SDMT from H. halophila are located immediately
adjacent to each other in a likely operon (Fig 2.8). The two adenosyl methionine-related
genes immediately upstream of the GSMT may be involved in biosynthesis of glycine
betaine by providing two methyl groups required for methylation of sarcosine and

dimethylglycine. The methyl group (CH;) attached to the methionine sulfur atom in S-



adenosyl methionine (SAM) donated to Sarcosine and then dimethylglycine via
transmethylation reactions. This multiple sequence alignment for the three
methyltransferases from H. halophila, A. halophytica and H. halochloris are homologous.
Hence we conclude that H. halophila synthesizes glycine betaine using same pathway as

used by 4. halophytica and H. halochloris.
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Figure 2.8: Probable glycine betaine synthesis operon in H. halophila. The proposed two-gene operon for glycine betaine
synthesis is indicated in orange. The number of residues encoded by each gene is indicated, together with the number of
intergenic nucleotides.

2.3.2b Ectoine:

Ectoine biosynthesis:

All the three genes used by C. salexigens for biosynthesis of ectoine were found in H.
halophila. EctB (2,4-diaminobutyrate aminotransferase) of H. halophila has 58%
identity and 70% similarity C. salexigens. EctA (diaminobutyrate acetyltransferase) of H.
halophila has 48% identity and 36% similarity C. salexigens. EctC (ectoine synthase ) of
H. halophila has 67% identity and 43% similarity C. salexigens. The multiple sequence
alignment of the three enzymes shows a high degree of sequence similarity and absence

of sequence gap (Figure 2.10).
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Figure 2.9: Sequence alignment of the final three ectoine biosynthesis genes of H. elongata and H. halophila.
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Based on the multiple sequence alignment and high blast scores it can be concluded that
H. halophila synthesizes ectoine using same biosynthetic pathway as C. salexigens. The

following (Figure 2.11) is the proposed operon structure of ectoine synthesis in H.

halophila.
EctB EctA EctC
[ sl >—| 3 >_-ff e 68< T Lo
~N N
Aspartokinase Aspartate semi aldehyde L-2.4 diaminobutyrate |.-2,4 diaminobutyrate Ectoine synthase
dehydrogenase acetyitransferase transaminase

18] 55 >

Putative ABC transporter
Figure 2.10: Proposed operon structure of ectoine synthesis in H halophila.

2.3.2¢ Trehalose:

Biosynthesis:

In H halophila two genes similar to the otsAB genes responsible for trehalose
biosynthesis in E. coli are present. The trehalose-6-phosphate synthase of E. coli and H.
halophila have 64% similarity and 45% identity. The trehalose-6-phosphate phosphatases
of E. coli and H. halophila have 38% similarity and 24% identity. The genes give a good

sequence alignment (Figure 2.17)
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TPP_hhal GIHLGAMAGTVDLALRGYTGMEPQDGVLWLDPMLPDGLHEVmHKIHYRGHWIHLVINHTR
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LRI 4 . . L o

Figure 2.11: Multiple sequence alignment of trehalose-6-phosphate synthase (TPS) and trehalose-phosphatase (TPP) of E. coli
and H. halophila

The reported 3D structure of the E. coli TPS enzyme has allowed the identification of the
amino acid residues involved in the binding of substrates and in catalysis (28). The
residues involved in the binding of glucose 6-phosphate are Arg9, Trp40, Tyr76, Trp85
and Arg300, while Gly22, Asp130, His154, Arg262, Asp361 and Glu369 are involved in
the binding of UDP-glucose (24). The presence of these active sites in H halophila TPS

was detected.

T 7)) [ AT QUL TTRLATEYG PR SUARARALNLAR LS TL0GAS - < e emmeeemeeee
TRET T P VRTLOATLVHRLASGYGBYLDV T TARAMVLARL VS TADGAS < e emvmremcenn
1) 17 E—— SRTLORILYTELCSGVGERLSRCHTRATL AR LASTIREH < - - mme e eemee
EATESDEES AT A wemeeeme e 62522 6DRGRRLIARLEARAGSFARPLYRATHIARLOTLYQGHS o e m e emememeemee
IR VEDLOQHLIHGLECGYGRNLPAADVRSANFIRATLARGYS « remeremeremmeeeee
(111 ] VEALRLOLTRYBGCGHG 0 LODAOTLAVIAARLISLATE e v e mmmreemcena
CRTPEDD-- -~~~ QRULTFSRAYGYGDLVPRALSRL DAL THALG LGRS« - e memememmeeen GISRETFORLLLFAERDLY
THIPED - ememeemmeeemeeene LELLORILYLSHAYGYGEPNSREVYRLL ALK LSS LORGHS e - mmmememmenee
117 T TAQLARILELSHCCGUGE PR P TARLATALKLLSLGREAS - mmemememmmee
(I 1 RO LT LORR YL SHARGTGD LNED S VYRLNLLLRTNSLSREFS--mmmmmemmeeeces

VUELPIALTREHGEG LG0T FOEOETRATLATRESSLAOGT S c - emmm e me
I} RO VEDLOONLIUGLECGYGRRLDAADYRSANF IRANLARGYS - ememvmemeee

Figure 2.12 Conserved active site residues in H. halophila trehalose-6-phosphate synthase

These two genes are located in a likely operon (Figure 2.18). The two enzymatic steps

catalyzed by trehalose-6-phosphate synthase (TPS) and trehalose-phosphatase (TPP).
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TPS catalyzes the transfer of glucose from UDP-glucose to glucose 6-phosphate forming
trehalose 6-phosphate and UDP, while TPP dephosphorylates to trehalose 6-phosphate

trehalose and inorganic phosphate.

PV s M [T PP > 67! B >

Glucokinase Trehaiose-6-phosphate Trehalose-6-phosphate synthase

ene

Glycoside hydrolase

Figure 2.13: Probable operon structure for trehalose biosynthesis in H. halophila.
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2.3.3 Transport of compatible solutes:

The H. halophila genome was examined for presence of biosynthesis genes for glycine
betaine, ectoine and trehalose using reference sequences from bacteria knows to enable
uptake of these compounds. For glycine betaine uptake systems BetP, OpuA and PutP
(described in section 2.1.2a) yielded significant hits in H. halophila genome. For ectoine,
uptake systems EctP and TeaABC (described in section 2.1.2b) gave significant hits in

the H. halophila genome (Table 2.6).

Compatible Transporter Presence in Scores of hits obtained in H.
solute used Halorhodospira halophila when compared to
. reference sequences
halophila
% Similarity % Identity
Glycine betaine BetP + 41 32
OpuA + 52 34
PutP + 62 41
Ectoine EctP + 65 39
TeaABC + 38 24
Amino acids ProP - 16 12
Trehalose - - 14 11

Table 2.6: Compatible solutes Uptake systems genes in H. halophile. Hits identified as significant are
indicated with + sign

2.3.3a Transport of glvcine betaine:

The genome of H. halophila was analyzed for presence of compatible solute transporters

by using the amino sequences of known compatible solute transport system.

ref|YP 001002953.1| choline/carnitine/betaine transporter [Ha... 295
4e~81 E
ref|YP 001003417.1| choline/carnitine/betaine transporter [Ha... 290
%9e-80 E
ref|YP 001001833.1| <choline/carnitine/betaine transporter [Ha... 283
2e~-177 E
ref |[YP 001003%29.1| <choline/carnitine/betaine transporter [Ha... 275

5e-75 E
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ref|YP 001001674.

9e-75

ref|YP 001001931.

2e-43 E

ref|YP 001002748.

1.8

ref|YP 001003903.

2.4

ref|YP 001001945,

G|

3.1

ref|YP 001003401.

7.0

ref|YpP 001002181.

7.0

ref|YP 001002865.

G|

9.1

ref|YP 001002190.

9.1

H hal4
H_hal5b
H hall
H_hal2
H_hal3
BetP_C_glutamicum

H hald
H_hal$
H hall
H hal2
H_hal3
BetP_C_glutamicum

H_hald
H_hal5
H hall
H_hal2
H hal3
BetP_ C_glutamicum

H hal4
H halb
H hall
H hal2
H_hal3
BetP_ C_glutamicum

H hal4d
H_hal5
H hall
H_hal2
H hal3
BetP_C_glutamicum

H_hald
H hal5
H hall

1| choline/carnitine/betaine transporter [Ha...
1] BCCT transporter [Halorhodospira halophil...
1| membrane-flanked domain [Halorhodospira h...
1} cytochrome ¢ biogenesis protein, transmem...
1] anion transporter [Halorhodospira halophi...
1] lipoprotein signal peptidase [Halorhodosp...
1| hypothetical protein Hhal 0593 [Halcrhodo...
1] cell divisionFtsK/SpoIIIE [Halorhodospira...
1| ATP-dependent protease ATP-binding subuni...
(A)
—————————————————————————————————————————————— MIDRKRAFRTTILA
——————————————————————————————————————————————— MTGRRPHGGGVYA
——————————————————————————————————————————————— MRAQKGPLKGLNI
————————————————————————————————————————————— MENVATRGFFRGMSP

——————————— MTDPNNTDPKEVKKEIEELEQAYETDHEIGDQNISTEIKPIGLALDLHN
MTTSDPNPKPIVEDAQPEQITATEELAGLLENPTNLEGKLADAEEEIILEGEDTQASLNW

PVFFPAIAVALLLIIGAISSPDLAGAFFEDLLAFITETFGWEYMLAVAAFLVFLVAVAFT
RVFLPAAALVVALVVSAAVWTEAVGDWIAELQTFIAVELGWVYTGVVAFLLGFVLVVLLR
PLTGTATLIVLAFLIFGAWDPEYAETVFEGISGWVIETFKWYYIGVVAFFLLFALFLMFS
RVTAISTFLVAAFALAGAIWPKHLEAVVTGWRESLTPFLOWYYVLVVAAFLLLVIWLGTG
PVFIVSSALILVFLIGTLIFTAPAQEALEGVRGWATSSFDWFFLTAGNIFVLFCLLLIVL
SVIVPALVIVLATVVWGIGFKDSFTNFASSALSAVVDNLGWAFILFGTVEVEFIVVIAAS

* o HH

~RWGHIKLGPERGEPQYSFPAWFAMLFSAGYGIVLLFFGVAEPVLHY ~--~ADPPRGEPE
PDFRRLRLGPPDSYPEYSYLSWFAMLFSAGMGIGLLFYSVAEPLMHY~~~~-AEPPRAEPG
—-RFGDLKLGDDDRPPEFSYFAWFSMLFGAGMGIGLLFWSIAEPVWHFQ--~GNPFIDEGE
—RFKNVRLGQDHEVPEFRTFSWLTMLFAAGMGVGLIFWAVAEPISHFD~-~-SNPFTVSGD
~PLGSIRIGGQDAKPDFSRLSWFTMLFAAGMGIGLMFWAVAEPVGYYTEWFGSPFNIEGG
~KFGTIRLGRIDEAPEFRTVSWISMMFAAGMGIGLMFYGTTEPLTFYR-—~~=~ NGVPGH

P ke ek e akak Kk ke k. <k .

TIEAARQAMQIAFFHWGFHIWAIYGLVGLVLAYFSFREGLPLSIRSALYPLIGDR-IYGP
TPDAALEALQVTFFHWGLHPWAIYITVALSLAFFSYRHGLPLSLRSALYPLLGRR-IHGV
TAAAADSAMRLTYFHWGMHPWAIYATVALSLAFFCYRKKLPLAIRSALYPLIGNR-IYGP
TTEAADTALRLAYFHWGLNGWAVFSLVALILAYFSFRRGLPLTMRSAFYPLIGKH-THGP
TDEAAKAAMGATMYHWGLHPWAIYGVMALALAFFTYNKGLPLTVRSVFYPLLGER-VWGP
DEHNVGVAMSTTMFHWTLHPWAIYAIVGLAIAYSTFRVGRKQLLSSAFVPLIGEKGAEGW

* . . kK LR sk ek . K 2 kka k. *

IGHTVDVFAILGTLFGIATTLGLSVAQINAGLNYLWPSIPTSTTVQVIVIAVITALATIS
IGDAVDTAAVVGTVLGVATSLGLGVMQVNSGLARVG~LLEESLTHQIGLITAIMGAATLS
IGHAADVLAVEGTIFGVATSLGFGAIQINTGLNELT-GLELSVTNQLLIVAVVTLIAVGS
WGDAVDILAVLATVFGIATTLGLGIQQLNTGIGELT~GITAGTTGQIATIAITVMGIATIS
LGHIIDTVAVLATIFGLATSLGFGAQQAASGLSYVFEAVPDTLGTQVAIITIGVTVAALVS
LGKLIDILAITATVFGTACSLGLGALQIGAGLSAANIIEDPSDWTIVGIVSVLTLAFIFS
T - A S T HE : *
VVAGLDKGIKRLSILNMILAAALMLEFVFLVGPSILIVETFLONTGSYVSGIVERTENLEA
VVSGLNNGIRLLSRANLFLGAALMLFVLIAGPTRLVLAGFFESVGHYVDGLVELTFRTDA
VISGVGRGVKVLSQLNLILSAVILLFFLSFGPTLYLLSSEVQGIGDYLONVVYLSFWTDA
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H hal2
H _hal3
BetP_C_glutamicum

H hal4
H_halb
H hall
H_hal2
H_hal3
BetP_C_glutamicum

H hal4
H hal5s
H_hall
H_hal2
H_hal3
BetP_C_glutamicum

H_hal4
H_hal$
H_hall
H_hal2
H_hal3
BetP_C_glutamicum

H hald4
H_hal5s
H_hall
H_hal2
H_hal3
BetP_C_glutamicum

H_hald
H_hal5s
H_hall
H_hal2
H hal3
BetP_C_glutamicum

H hald
H_hals
H_hall
H hal2
H hal3
BetP_C_glutamicum

H_hal4d
H hal5
H_hall
H_hal2
H_hal3
BetP_C_glutamicum

Figure 2.14: Sequence similarity between glycine betaine uptake system in C. glutamicum and H. Halophila (A) Blast hits from
BetP of C. glutamicum in H. halophila genome (B) Multiple sequence alignment of BetP of C glutamicum and highest hits in H.

The top blast hits for sequence similarity with the known BetP system of C. glutamicum

was analyzed through a multiple sequence alignment (Figure 2.9, panel B). The high bit

VLYGVQSGVRLISEANFWMSAAVLLFFLLWGPTQYLLALIVQSTGDYLONLFTLSFHTHA

VLRGIDGGIKLLSNLNISLAGLLMLFVIIAGGAIAFVTQLWHTTSAYAGDFFALSNPVGR

AISGVGKGIQYLSNANMVLAALLAIFVFVVGPTVSILNLLPGSIGNYLSNFFOMAGRTAM
. . . - * .

* - koo ok .. .k . *

Y-—--ERREWIGNWTLFIFGWTIAWAPFVGMFIAKISRGRTIRQFVVGVMLVPTLETFLWE
F~~-RSPDWQADWTILEYWGWWISWCPFVGMFIARVSRGRTVGEFILGVLLVPTLFTFVWL
SGAREAGDWQLSWTAFYWGWWIAWAPFVGMFIARI SRGRTIREFLGGVLLVPTLLALGWL
N---ALGDWQAEWTLFYWGWWLAWAPFVGIFIARISRGRKLREFVMGVLLVPTGITIVWI

E--—--DETFLOGWTAFYWAWWISWSPFVGMFIARVSRGRTVREFMTAVLIVPTVVTIFWM
SADGTAGEWLGSWTIFYWAWWISWSPFVGMFLARISRGRSIREFILGVLLVPAGVSTVWE
Kk ok u ok sk kkkakaksakkkk o aks  kaakke . k.

SIFGGTGLNLIMNEGYEQLIGLVQEDEAVALFQLYDILP~~-WSALASFVTVILIMTFEV
TAFGAG-~ALHLEEAGAGISAVVQESVPQALYAMLEALP--~LAAITVPLATAVVVGYFV
TVEGGTGLYQELFGAGG~-LVEAVSEDETIALYYTIEAVAPGVIATIFAATATVLIATYFI
GLFGGNAIHIELFGPGG-VVDATREEVSTAVFRTIELMDVGIWATAASILVTVLIATYLT
SAFGGVGLQQAIEGIGA-LADGIGADESMALFHMLEQLP---WTLLTASVAVFLVLVEFV
SIFGGTAIVFEQNGESIWGDGAAEEQ———-LFGLLHALP———GGQIMGIIAMILLGTFFI

* %

TSSDSGSLVIDQLASGGASVIPVWQRVFWAVLEGAVAAVLLIAGG---LAALQTMAVTSA
TSADSGALVMNVLASGGNPNPPLLOKIFWSSMTGAVAAVLLIAGG~---LQALQTVTIAAA
TSSDSATLVVTMLLSVGNTEPPTYQRAFWGVAEGCVAAVLLVAGG~--LVALQAAAIVAA
TSANAGILVTQTLLSNGSTEISRLHTVIWGTVITLVTIVLLTAGG---LTTLQGAVIAAA
TSSDSGSLVIDSITAGGKTDAPDAQRVYWVVMEGLIAGVLLFIGGDAALSALQAGAVSAG
TSADSASTVMGTMSQHGQLEANKWVTAAWGVATAAIGLTLLLSGGDNALSNLQNVTIVAA
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AFIRGPVVQALEHVQKALDQRGWPAKVVLDEDHGRVYLAVHRDGLMDFLYDVRLTERPRP
————— ~-LERLLRYLDER

AFAYPSIDPSGGPAEVYYRPEVYLRRGGQSYSVYEYNEQEI IDDVLDHFES YLQFLDSAP
RGGAPQGDSNS GPGRRSKRT, = = = = m e e ol
RMOLSWQPGQGPPARPHT, — == = = = e o o
QVESDWHTSETHTDTATDRTED ~ = m o e
LT RLTQQR ~ = — = e e e
RVHNEHRKRELAAKRRRERKASGAGKRR = —— —— = —— = o et

ATLPWATEAHDEMIDAPVGGKGRGRG

(B)

halophila

48



scores and the sequence alignment indicate the presence of BetP uptake system in H.

halophila.

2.3.3b Transport of Ectoine:

The H. halophila genome was analyzed for the presence of both the EctP and TeaABC

system for uptake of ectoine from H. elongata.

YP 001003929 .1 E:Eg;iejla SL'il]fansporter [Halorhodospira 331 331
YP 001002953 .1 i;;g;gila SLtix]fansporter [Halorhodospira 318 318
YP 001001674 .1 i;ig;iila SLEJi"ansporter [Halorhodospira 301 301
YP 0010034171 Egigégila SLf]ransporter Halorhodospira 265 265
YP 001001833.1 Ectoine transporter [Halorhodospira 264 264

halophila SL1]

BetP transporter [Halorhodospira halophila 187 187

YP 0010015831.1 ST1]

YP 001003363.1 O-succinylhomoserine sulfhydrylase 30.8 30.8
[Halorhodospira halophila SL1]

YP 001001730.1 phosphomethylpyrimidine kinase 27.327.3
[Halorhodospira halophila SL1]

YP 001002831.1 peptidyl-arginine deiminase 25.8 25.8
[Halorhodospira halophila SL1]
YP 001002268.1 valyl-tRNA synthetase [Halorhodospira 25 405 4

halophila SL1] —_—

Figure 2.15: Blast hits in H. halophila for EctP from H. elongata
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The top blast hits from H. halophila (Figure 2.16) were used to make a multiple sequence

alignment (Figure 2.13)

H_hald = e MIDRKRAFRTTILA
H hal5 e e e e e e MTGRRPHGGGVYA
H_hall e e e e MRAQKGPLKGLNI
H hal2 = s e MFNVATRGEFRGMSP
H hal3  meemeeeeeee MTDPNNTDPKEVKKEIEELEQAYETDHEIGDONISTEIKPIGLALDLHN

EctP from H. elongata MITSDPNPKPIVEDAQPEQITATEELAGLLENPTNLEGKLADAEEEIILEGEDTQASLNW

H_hald PVFFPAIAVALLLIIGAISSPDLAGAFFEDLLAFITETFGWFYMLAVAAFLVFLVAVAFT
H_hal$ RVFLPARALVVALVVSAAVWIEAVGDWIAELQTFIAVELGWVYTGVVAFLLGFVLVVLLR
H_hall PLTGTATLIVLAFLIFGAWDPEYAETVFEGISGWVIETFRKWYYIGVVAFFLLFALFLMES
H_halz RVTAISTFLVAAFALAGAIWPKHLEAVVTGWRESLTPFLOWYYVLVVAAFLLLVIWLGTG
H_hal3 PVFIVSSALILVFLIGTLIFTAPAQEALEGVRGWATSSFDWEFFLTAGNIFVLFCLLLIVL

EctP from H. elongata SVIVPALVIVLATVVWGIGFKDSEFTNFASSALSAVVDNLGWAFILFGTVEVEFIVVIAAS

* : .

H hald ~RWGHIKLGPEHGEPQYSFPAWFAMLEFSAGYGIVLLFFGVAEPVLHY-~---ADPPRGEPE
H_hal5s PDFRRLRLGPPDSYPEYSYLSWFAMLFSAGMGIGLLFYSVAEPLMHY-~~~AEPPRAEPG
H_hall -~RFGDLKLGDDDRPPEFSYFAWFSMLFGAGMGIGLLFWSIAEPVWHFQ——-GNPFIDEGE
H_hal2 ~RFKNVRLGQDHEVPEFRTFSWLTMLFAAGMGVGLIFWAVAEPISHFD-~-SNPEFTVSGD
H_hal3 -PLGSIRIGGQDAKPDFSRLSWETMLFAAGMGIGLMFWAVAEPVGYYTEWEFGSPENIEGG
EctP from H. elongata -KFGTIRLGRIDEAPEFRTVSWISMMFAAGMGIGLMFYGTTEPLTFYR-==—~—— NGVPGH
XL *os sk kk ok ke ko :

H_hal4 TIEAARQAMQIAFFHWGFHIWAIYGLVGLVLAYFSFRHGLPLSIRSALYPLIGDR~IYGP
H_hal5 TPDAALEALQVTFFEWGLHPWAIYITVALSLAFFSYRHGLPLSLRSALYPLLGRR-IHGV
H_hall TAAAADSAMRLTYFHWGMHPWAIYAIVALSLAFFCYRKKLPLAIRSALYPLIGNR~IYGP
H_hal2 TTEAADTALRLAYFHWGLNGWAVFSLVALILAYFSFRRGLPLTMRSAFYPLIGKH-IHGP
H_hal3 TDEAAKARMGATMYHWGLHPWATIYGVMALALAFFTYNKGLPLTVRSVFYPLLGER-VWGP
EctP from H. elongata DEHNVGVAMSTTMFHWTLHPWAIYAIVGLAIAYSTEFRVGRKQLLSSAFVPLIGEKGAEGW
R T S T - S HE I A *

H hald IGHTVDVFAILGTLFGIATTLGLSVAQINAGLNYLWPSIPTSTTVQVIVIAVITALATIS
H_hal5 IGDAVDTAAVVGTVLGVATSLGLGVMQVNSGLARVG-LLEESLTHQIGLITATMGAATLS
H _hall IGHAADVLAVEGTIFGVATSLGFGAIQINTGLNELT-GLELSVTNQLLIVAVVTLIAVGS
H_hal2 WGDAVDILAVLATVFGIATTLGLGIQQLNTGIGELT-GITAGTTGQIATIAITVMGIATIS
H_hal3 LGHIIDTVAVLATIFGLATSLGFGAQQAASGLSYVFEAVPDTLGTQVAITIIGVTVAALVS
EctP from H. elongata LGKLIDILAITATVFGTACSLGLGALQIGAGLSAANIIEDPSDWIIVGIVSVLTLAFIFS
FooooF kg Rk ok ok ok pkg HE : *

H_hal4 VVAGLDKGIKRLSILNMILAAAILMLEFVFLVGPSILIVETFLONTGSYVSGIVERTFNLEA
H_halb VVSGLNNGIRLLSRANLFLGAALMLFVLIAGPTRLVLAGFFESVGHYVDGLVELTFRTDA
H hall VISGVGRGVKVLSQLNLILSAVILLFFLSFGPTLYLLSSEFVQGIGDYLONVVYLSFWTDA
H_halZ VLYGVQSGVRLISEANFWMSAAVLLFFLLWGPTQYLLALIVQSTGDYLONLFTLSFHTHA
H_hal3 VLRGIDGGIKLLSNLNISLAGLLMLEFVITAGGAIAFVTQLWHTTSAYAGDFFALSNPVGR
EctP from H. elongata AISGVGKGIQYLSNANMVLAALLAIFVEVVGPTVSILNLLPGSIGNYLSNFFCMAGRTAM

. * . Ko . .k Ea » . -k . * . . * .

H_hal4 Y-—--ERREWIGNWTILFIFGWTIAWAPFVGMFIAKISRGRTIRQEVVGVMLVPTLETFLWE
H hal5 F-—-RSPDWQADWTILFYWGWWISWCPEFVGMFIARVSRGRTVGEFILGVLLVPTLETFVWL
H hall SGAREAGDWQLSWTAFYWGWWIAWAPEFVGMFIARISRGRTIREFLGGVLLVPTLLALGWL
H_hal2 N-——-ALGDWOAEWTLFYWGWWLAWAPFVGIFIARISRGRKLREFVMGVLLVPTGITIVWI
H _hal3 E-~—-DETFLQGWTAFYWAWWISWSPEFVGMFIARVSRGRTVREFMTAVLIVPTVVTIFWM
EctP from H. elongata SADGTAGEWLGSWTIFYWAWWISWSPFVGMFLARISRGRSIREFILGVLLVPAGVSTVWE
- E :.* ::*‘****:*:*::****.: :*; .*::**: L *:

H hald SIFGGTGLNLIMNEGYEQLIGLVQEDEAVALFQLYDILP~~-WSALASFVIVILIMTFEV
H hal5 TAFGAG--ALHLEEAGAGISAVVQESVPQALYAMLEALP---LAAITVPLATAVVVGYEV
H_hall TVEGGTGLYQELFGAGG-LVEAVSEDETIALYYTIEAVAPGVIATIFAATATVLIATYET
H_hal2 GLFGGNAIHIELFGPGG-VVDATREEVSTAVFRTIELMDVGIWATAASILVTVLIATYLT
H hal3 SAFGGVGLQOATEGIGA-LADGIGADESMALFHMLEQLP-~~-WTLLTASVAVFLVLVEEV
EctP from H. elongata SIFGGTAIVFEQNGESIWGDGAAEEQ----LFGLLHALP---GGQIMGIIAMILLGTFFI

* Kk .
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H haléd TSSDSGSLVIDQLASGGASVTPVWQRVFWAVLEGAVAAVLLIAGG~-~-LAALQTMAVTSA

H_halb TSADSGALVMNVLASGGNPNPPLLOKIFWSSMTGAVAAVLLIAGG-—-LOALQTVTIAAA

H hall TSSDSATLVVTMLLSVGNTEPPTYQRAFWGVAEGCVAAVLLVAGG~~~LVALQAAATIVAA

H_hal2 TSANAGILVTQTLLSNGSTEISRLHTVIWGTVITLVTIVLLTAGG-——LTTLOGAVIAAA

H_hal3 TSSDSGSLVIDSITAGGKTDAPDAQRVYWVVMEGLIAGVLLFIGGDAALSALQAGAVSAG

EctP from H. elongata TSADSASTVMGTMSQHGQLEANKWVTAAWGVATAAIGLTLLLSGGDNALSNLQNVTIVA
**:::_ * * * : .** * Kk * * ¥ L .

H hald LPFAVIMLIAAGGLWRALIIESHHDTSLONHVQRRQRYGTLLWKKRLYELFDFPTRDDVM

H_hal5 LPLSLILVLMAWGLWTAFRADAQQ-SDLASPIPEPK

H_hall LPFSLLMLLMCYALIRGLQEE-~——~=~— KR—=w—mmm——

H hal2 VPFSFITIIGMVVGLLKALEQEAFAPRPGERSGAPME

H_hal3 LPFTVVLLLVCLSLLIGLRHER~ == === == e o e e e
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Figure 2.16: Multiple sequence alignment of top blast hits of EctP from H elongata in H. halophile genome

When the three genes of TeaABC belonging to the TRAP transpoter system (section
2.1.2b) were analyzed in H halophila individually, the three genes did give any

significant hits. However if the sequences are joined together high blast hits are obtained

(Figure 2.14)

ref|YP 001002040.1| TRAP dicarboxylate transporter, DctM subu... 435
5e-123 E

ref|YP 001002038.1] TRAP dicarboxylate transporter- DctP subu... 195
9e-51

ref|YP 001002039.1] Tripartite ATP-independent periplasmic tr... 125
8e-30 E

ref|YP 001002037.1| TRAP dicarboxylate transporter- DctP subu... 109
5e-25



ref|YP 001001955.1] TRAP transporter, 4TM/12TM fusion protein... 45.8

8e-06 E

ref|YP 001002051.1| Na+/Pi-cotransporter [Halorhodospira halo... 29.6
0.62

ref|YP 001001696.1| hypothetical protein Hhal 0100 [Halorhodo... 25.6
0.62 [E

ref|YP 001002050.1] ATPase, P-type (transporting), HAD superf... 29.3
0.81 [5

ref|YP 001003840.1| NAD(P) transhydrogenase, beta subunit [Ha... 28.9
1.1

ref|YP 001002712.1| protein of unknown function UPF0118 [Halo... 27.3
3.1

refiYP 001002272.1| hypothetical protein Hhal 0688 [Halorhodo... 27.3
3.1

ref|YP 001003572.1| hypothetical protein Hhal 2006 [Halorhodo... 26.6
5.3

ref|YP 001003269.1] Redoxin domain protein [Halorhodospira ha... 26.6
S G

ref|YP 001002053.1| DNA polymerase III, alpha subunit [Halorh... 26.2
s.o [

ref|YP 001003487.1| ABC transporter related [Halorhodospira h... 26.2
6.0 [d

ref|YP 001001847.1| Cd4-dicarboxylate transporter/malic acid t... 25.8

9.0
Figure 2.17: Blast hits in the H. halophila genome for TeaABC from H elongata

Also a convincing multiple sequence alignment was not obtained if the top hits were
analyzed individually. However if the first two top hits were joined and then checked the
alignment, the alignment was much better (Figure 2.15). Other hits were also checked but

had poor sequence alignments.

TeaABC_halomonas MTDEEEAEKHYHSGLPGILGTIDTLISKLEAI ILALGVLLMATNTVANVIGRFALGESLE
TRAP_HHAl e
TeaABC_halomonas FTGEVNRILIIMITFAGIGYAARHGRHIRMSATYDALPVGGRRALMIVISLFTSLVMFEL
TRAP hhal = o
TeaABC_halomonas MYYSVHYVLDLYDKGRILPALGFPIFIIVVWVPLGFLITGIQYLFTATKNLTSRDVYLST
TRAP_hhal = e
TeaABC_halomonas SVVDGYKDTETEVMTTIMVATMIGLLLLGFPMMI PLATAS T IGFEMMFGGLGOMETLIOQ
TRAP hhal = =reeeeceee——— MTTLVITVMLILLLLGFPLMVPLLAGALLILIVELPFIG~ADALVRQ

- ***‘-:::.*: *******:*:** [ PEPEY . :* ::*::*
TeaABC_halomonas LMAGIRPASLIAVPMFILAADIMTRGQSANRLINMVMAFTGHIKGGLAVSTAASCTLEGA
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Figure 2.13: Multiple sequence alignment of first two top hit of H. halophila (joined together) and H. elongata

The joined top hits of . halophila were checked for transmembrane helices individually
and together. And only when they are together they have transmembrane helices which

form substrate binding part of the protein (Figure 2.16).
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Figure 2.19: TMHMM of the two H. halophila hits joined together

2.4 Discussion

H. halophila is the first genome of an anoxygenic, photoautotrophic, extremely halophilic
bacteria and its analysis can provide insights into the halophilic adaptations. H. halophila
has been isolated from hypersaline lakes and therefore exposed to high salinity. Two
halophilic adaptations strategies are observed in halophilic organisms. The ‘high-salt-in’
strategy (discussed in section 1.4.1) which involves a shift in amino acid composition,
with an increased number of negatively charged residues coupled to the uptake of K™ and
CI'. The ‘low-salt, organic solute-in’ (discussed in section 1.4.2) strategy involves the
production or uptake of large amounts of specific organic osmolytes (compatible solutes)

which can be accumulated to high concentrations without disturbing cellular functions.

The amino acid composition of the predicted proteins in H.halophila resembles the

profile of extremely halophilic archaea (and S. ruber) and is quite distinct from that of the
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non-halophilic profiles (Figure 2.4) suggesting that its proteins have been adapted to high
salt and to the ‘high-salt-in’ strategy. H. halophila also contains high percentage of acidic
amino acids necessary for a ‘high-salt-in’ survival strategy. This finding was unexpected
as immediate phylogenetic relative H. halochloris employs ‘low-salt, organic solute-in’
strategy of osmoprotection by accumulating glycine betaine. Hence H. halophila genome
was examined for presence of biosynthesis and transport of compatible solutes like
glycine betaine, ectoine and trehalose. GSMT and SDMT proteins from H. halochloris
and 4. halophytica which involved in biosynthesis of glycine betaine produced
significant hits in H. halophila genome (H_hal1677 and H_hal1678) thus suggesting that
H. halophila can biosynthesize glycine betaine. Gene encoding for glycine betaine
transport across the membane were also found (H_hal 1384), suggesting that H.halophila
is able to synthesize glycine betaine and can acquire it from the environment. Similarly
EctA, EctB and EctC proteins from C. salexigens which are involved in biosynthesis of
ectoine produced significant hits in H. halophila (H_hal1732, H_hall733 and
H _hal1734). Genes involved in ectoine transport were also identified (H_hal0449).

Trehalose biosynthesis proteins TPS1 and TPS2 from E. coli also gave a significant hit in

H. halophila (H_hal1120).

Presence of biosynthesis genes for glycine betaine, ectoine and trehalose and uptake
genes for glycine betaine and ectoine indicates H. halophila is also capable of employing

‘low salt, oraganic solute-in’ strategy of osmoprotection.
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2.5 Genome based prediction of the osmoprotectant stratecv of H. halophila

The pl analysis of the proteome and the higher percentage of acidic residues in A
halophila resemble the same pattern as found in Halobacterium sp NRC-1 and S. ruber,
which both accumulate molar concentrations of KCl ions in the cytoplasm as their
osmoprotective strategy. This pl distribution appears to be unique to the halophiles that

use KCI as their main osmoprotectant. This suggests that H. halophila also accumulates

KCL

The genome analysis indicates that H. halophila is capable of biosynthesis of glycine
betaine, ectoine and trehalose and has transport systems for glycine betaine and ectoine.
Hence it appears to be capable of accumulation of compatible solutes. Therefore H.
halophila appears to be .capable of using both KCl and compatible solutes as

osmoprotectant.

In the subsequent chapters of the thesis, the predicted accumulation of KCI and glycine

betaine is experimentally examined.
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CHAPTER THREE

INTRACELLULAR SALT CONCENTRATIONS

3.0 Abstract

Extreme halophiles that employ ‘High-salt-in’ strategy of osmoprotection thrive in
hypersaline environments by accumulating molar amounts of potassium chloride in their
cytoplasm. They have evolved halophilic enzymes that function in the presence of high
salt concentrations. They exhibit a proteome-wide adaptation in which all proteins have
an acidic isoelectic point due to excess of Glu and Asp residues. In this chapter it is
experimentally verified that (i) H. halophila has a acidic proteome by isoelectric gel
focusing and (ii) it accumulates molar concentration of KCl when grown in high salt
media. However, upon growth at 5% NaCl its cytoplasmic KCI content matches that of E.
coli. These results demonstrate the use of KCl as an osmoprotectant in H. halophila, and
reveal an acidic proteome that can function in the absence of high salt. In contrast the
highly related organism H. halochloris does not exhibit an acidic proteome, matching its
inability accumulate KC1. This indicates recent rapid evolutionary changes in halophilic

strategy in these organisms
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3.1 Introduction

Most extreme halophiles are members of the Haloarchaea, and particularly
Halobacterium sp NRC-1 has been studied extensively (42, 46, 53). Extreme
halophilicity in Bacteria is less common and less well studied, but has been described for
the chemotroph Salinibacter ruber and the photosynthetic purple bacterium H. halophila
(2, 31, 52, 62), A key factor in the halophilic adaptations of H. salinarum and S. ruber is
that they accumulate up to 5 M KCI in their cytoplasm (15, 62). In both of these
organisms the proteomic distribution of isoelectic points (pl) is strongly shifted to acidic
values. This is caused by a large excess of acidic amino acid residues, which is thought to
allow protein function in the saline cytoplasmic environment (44). Therefore, this
halophilic strategy involves significant genome-wide modifications. The taxonomic
distribution of the use of KCl as a major osmoprotectant is quite limited: it has only been
reported in the Haloarchaea, in S. ruber and to a somewhat lesser extent in the

Haloanaerobiales (42, 52, 57)

Another factor in the adaptations of extreme halophiles is that proteins from these
organisms usually require the presence of at least 1 M salt to be stable and active (11, 44).
The exact molecular origin of the halophilic character of the proteins from extreme
halophiles is not fully understood. The negative charges on the surface of the proteins in
these organisms interact favorably with the abundant cytoplasmic K" ions (21). Protein
halophilicity makes it necessary for the organism to maintain a high cytoplasmic salt
concentration, and is likely to be a factor in the minimum requirement of ~15% NaCl for

growth of H. salinarum and S. ruber.
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Here the possible occurrence of the ‘high-salt-in’ strategy of halophilicity in the two
closely related organisms H. halophila and H. halochloris is examined. The growth of
these obligately anaerobic and phototrophic organisms over wide range of medium NaCl
concentration was determined. An analysis of the genome of H. halophila, revealed that it
has a highly acidic proteome (Chapter Two- Bioinformatic analysis). These predictions
are experimentally verified by isoelectric focusing gel electrophoresis of total protein
extracts. The pl profile of H. halophile genome suggested it employed the ‘high-salt-in’
strategy for osmoprotection, hence the cytoplasmic KCI content of H. halophila was
examined. Cells grown at 5% and 35% NaCl were used in electron microscopy
microprobe analysis, together with H salinarium, H. halochloris and E. coli cells for
comparison. To quantify the results; the cytoplasmic KCI concentrations were measured
using plasma emission spectrometry. The dependence of the cellular KCI content of H.

halophila on the NaCl concentration of the growth medium was also examined.

3.2 Methods

Cell growth: H. halophila and H. halochloris were grown in DSMZ 253 medium without
yeast extract containing different salt concentrations (5%-35% NaCl). E. coli B culture
was grown in 5 g/l nutrient broth. Halobacterium spp NRC-1 was grown in DSMZ 671

medium. The cultures were grown until late exponential phase and harvested at ODggp 1-

1.2.

Determination of = cellular potassium and chloride content: For plasma emission

spectrometry 20 ml of cell culture was centrifuged (3,750 rpm, 25 minutes). Cell pellets

were suspended in isotonic NaCl or Ammonium sulfate solutions, again pelleted, and

59



dried for 48 hours at 60°C. The dried pellets were divided in two halves. First half was
used to measure potassium and sodium content using inductively coupled plasma
emission spectrométry (Spectro Arcos). The second half was used for the colorimetric
estimation of chloride using the Lachat 8000 Quick Chem flow injection analyzer.

Cytoplasmic concentrations of the ions were calculated by using E. coli as a standard.

Electron microprobe analysis: H. halophila, H. halochloris, and E. coli cultures (20 ml)

were pelleted (centrifugation at 3,750 rpm for 25 minutes), washed in isotonic NaCl or
ammonium sulfate solutions, again pelleted, and spread on a carbon planchet. The
planchet was immediately plunged into isopentane chilled in liquid nitrogen at -150°C.
The preparation was then transferred to a vacuum pump and the sublimed water vapor
was removed. The freeze-dried cells were then exposed to anhydrous paraformaldehyde
vapor for 1 h to minimize the electron beam and carbon coating degradation.The samples
were examined in a FEI Quanta 600™ field emission gun environmental scanning
electron microscope (SEM) using an Evex energy dispersive X-ray spectroscopy. The
SEM was operated at an accelerating voltage of 20 kV and the gun current was 50-55 pA.
The analysis was confined to a field of overlaying organisms at magnification of 5000X
and covering an estimated area of 1-2 um?. Counts were accumulated over 180 s and 5
observations were made for each sample for 3 independent samples. This analysis was

carried out OSU Microscopy laboratory facilty at Venture 1.

Isoelectric focusing gel electrophoresis: Cells were washed with lysis buffer, placed on

ice, and sonicated (three times for 10 seconds). The cell extracts were then centrifuged
(15 min at 15,000 rpm). The supernatant was dialysed for 24 hours against lysis buffer
using Slide-a-Lyzers, with three changes of buffer. The volume of the sample was
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adjusted with the lysis buffer to equal amounts of cell material based on their original
ODseo. The sample is extracted in Urea buffer, which contains 9M Urea, 4% Triton, 2%
Mercaptoethanol at pH 9 and centrifuged. The supernatant is used for both SDS PAGE,

isoelectric focusing.

H. halophila and H. halochloris cells are grown to exponential phase. Cells of OD value
1 at 660nm are centrifuged for 15 min at 30,000 rpm. The pellets were re-suspended in
200 pl of 20mM Tris-buffer (pH-6.8). Cells were then micro-dialyzed. The samples were
removed from the cassette and measured. 1 ml Sample buffer is added to 0.5 ml of
sample. Electrophoresis was carried using MINI Protean apparatus at 500V with
BIORAD precast IEF gels. Two IEF markers — BIORAD IEF standard mix (Broad range:

pl 4.45-9.6) and Serva Liquid mix (pl 3-10) was used (Detail protocol in Chapter 6,

Section 6.2.1).

3.3 Results

Growth characteristics of H._ halophila and H. halochloris grown at different NaCl

concentrations

H. halophila and H. halochloris exhibit a broad range of salt concentrations at which they
can grow. For H. halophila the optimum salt range is between 15 (g/l) NaCl to 35 (g/1)
medium NaCl. The doubling time is approximately 18 hours for medium NaCl
concentrations of 15-35 (g/l). For H. halochloris the optimum medium NaCl
concentration is 15-25 (g/). Its doubling time is approximately 17 hours at the optimum
medium NaCl concentration. However the doubling time increases below 15 (g/l)

medium NaCl and above 25 (g/l) medium NaCl (Figure 3.1).
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Figure 3.1: Final OD and doubling time of H halophila (panel a) and H halochloris (panel b). Effect of salt concentration on
bacterial growth: The dependence of the doubling time (left) and final OD (right) of H. halophila (panel a) and H. halochloris (panel
b) on the salinity of the growth medium are shown.The experiment was performed in triplos for three independent experiments

for a total of 9 measurements per data point.

Isoelectric gels of total protein extracts:

To verify the acidic nature of the H. halophila proteome, total protein extract from the
cells grown in medium with high NaCl (35 g/l) concentration were prepared and
isoelectric focusing gel electrophoresis was carried out. For comparison H. halochloris,
which is a phylogenetically closely related organism which is known to accumulate
glycine betaine as its osmoprotectant (23) and Halobacterium sp NRC-1 which
accumulates KCI as its osmoprotectant and has a acidic proteome were used (15). The
acidic proteins of Halobacterium sp NRC-1 culster between pl 4.5 and 5.1 (Figure 3.2,

lane 3) H. halophila proteome does exhibit acidic character as majority of its proteins
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have pl between 4.5 to 6.0 (Figure 3.2, lane 4) similar to that of Halobacterium sp NRC-1

whereas H. halochloris has a neutral preoteome (Figure 3.2, lane 2)

10.7
9.5

7.8
7.4

6.0

5.1

45
4.2

Halorhodospira Halobacterium Halorhodospira
halcchloris  salinarium halophila

Figure 3.2: Isoelectric focusing ge!l electrophoresis of total cell extracts from H. halophila (lane 4), H. salinarium (lane 3) and H.
halochloris (lane 2). Lane 1 and 5 are pl standards. pl of Halorhodospira halophila compared to extreme halophiles known to utilize
K" and oraganic osmolyte as an osmoprotectant.

Comparison of pl of H. halophila at different NaCl concentrations:

The effect of medium NaCl concentration on the pl distribution in the H halophila
proteome was determined at 5%, 15% and 35% NaCl. E.coli was used for comparison. At
all the three salt concentrations, low (5% NaCl, lane 3, figure 3.3), moderate (15% NaCl,
lane 4, Figure 3.3) and high (35% NaCl, lane 5, Figure 3.3), H. halophila has an acidic

proteome.



Figure 3.3: Effect of medium NaCl concentration on proteome acidity of H. halophila as detected by isoelectric focusing gel
electrophoresis. pI distribution of H. halophila grown at different medium NaCl concentrations. 5% NaCl (lane 3), 15% NaCl

(lane 4) and 35% NaCl (lane 5) NaCl. Lane 2 is E.coli total proteins Lane 1 and 6 are pl standards.

Cytoplasmic K* and CI content of H. halophila using electron microprobe analvsis:

As the pl distribution of the predicted proteins and the IEF gels confirmed the acidic
nature of the H. halophila proteome, the intracellular concentration potassium and
chloride concentration was measured using electron microprobe analysis. Halobacterium
sp NRC-1, which is known to employ the ‘High-salt-in’ strategy of osmoprotection and
accumulate upto 5 M KCI (15), H. halochloris, a closely related organisms known to
employ ‘Low-salt, osmolyte-in’ strategy of osmoprotection (23) and E. coli cells were
used for comparison. Prominent K and CI peaks were observed in the H. halophila
samples (panel 3a, figure 3.4). The K™ and CI" peaks were very small in the E. coli and H.

halochloris cell material (panel 1a and 2a, Fig. 3.4), indicating KCI accumulation in A.

halophila.
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Figure 3.4: (A) Electron microprobe analysis of H. halochloris (panel 1), E. coli (panel 2), H. halophila (panel 3) and

Halobacterium sp NRC-1 (papel 4). In each panel, (a) intensities of the intracellular ions and (b) is the cells. (B). Normalized
intensities

Plasma emission spectrometry measurements:

To quantify the intracellular potassium and chloride concentrations, MS-ICP (Inductively
coupled plasma mass spectroscopy) measurements of H. halophila, H. halochloris and
Halobacterium sp NCR-1 grown from low medium salt (5 g/I) to high salt (35 g/l)
concentrations were carried. For comparison E. coli cells were used. The MS-ICP data
indicated that the cytoplasmic K* content of H. halophila is 2.1 + 0.6 M and
Halobacterium sp NRC-1 is 4.3 = 0.2M when grown at high salt concentration (Fig. 3.5).
For comparison and as an internal standard, a typical cytoplasmic K™ concentration in E.

coli was taken as 211 mM (88). Similarly, the cytoplasmic Cl" of H. halophila cells at
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high medium NaCl was also found to be high. At 35% NaCl, the cytoplasmic CI
concentration was 3.3 £ 0.4 M (Figure 3.5). In contrast H. halochloris does exhibit high

cytoplasmic K™ and CI” concentration at any medium salt concentrations.
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Figure 3.5: Cytoplasmic K (panel a) and CI (panel b) of H. halophila. H. halochloris, H. salinarium and E. coli. Dependence on
medium salinity of cytoplasmic K™ and CI” content of H. halophila (circles), H. halochloris (squares), and Halobacterium salinarum
(triangles) as determined by plasma emission spectrometry and calorimetrically, respectively. The experiment was performed in
triplos for three independent experiments for a total of 9 measurements per data point.

Dependence of growth of H. halophila on the medium KCl concentration:

The mechanism of haloadaptation cannot be understood without taking into account the
environment and its physical chemistry. The dependence of the growth of H. halophila
on the KCI concentration of the growth medium was examined. High final OD readings
indicating good growth were observed when the cells were supplied with higher KCI

concentrations (0.1 g/l to 10 g/l KCI). However more than 10 g/l KCI concentration was
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found to be toxic for H. halophila cells when grown in 5% NaCl (Fig 3.6).
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Figure 3.6: Potassium dependance of H. halophila at 5% and 35% NaCl. The experiment was performed in triplos for three
independent experiments for a total of 9 measurements per data point.

3.4 Discussion

Understanding of halophilic adaptations requires a strategy of complementary
experiments combining bioinformatics analysis and physiological experiments. In an
attempt.to understand halophilic adaptations in Halorhodospira, a study to understand the
response to different osmotic conditions in Halorhodospira was carried out. H. halophila
and H. halochloris exhibit optimal growth over a wide range of medium NaCl

concentration (Figure 3.7), and are capable of growth down to 3.5% NaCl (the salinity of

sea water).
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Figure 3.7: Range (white boxes) and optimum (black boxes) NaCl growth medium concentrations for growth of halophilic
microorganisms belonging to different taxonomic groups: Archae: Halobacteria (Haloarcula marismortui and Halobacterium
salinarum) and Bacteria: Bacteroidetes (Salinibacter ruber), Actinobacteria (Actinopolyspora halophila), Firmicutes
(Halanaerobium lacusrosei) and Proteobacteria (Halorhodospira halophila)
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Cytoplasmic KCI content of H. halophila and H. halochloris:

Nitrosocoecus oceanii
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Figure 3.8: Comparison of predicted pI and IEF gel: Effect of medium NaCl concentration on proteome acidity of H. halophila as

detected by isoelectric focusing gel electrophoresis.

The acidicity of the H. halophila proteome Was examined by isoelectric gel focusing and
was comparable to the average pl profile abtained through bioinformatics analysis
(Figure 3.8).The cytoplasmic K* and CI content of H. halophila were measured. Cells
grown at 35% NaCl were investigated using electron microscopy microprobe analysis,
together with H. halochloris, H. salinarium and E. coli cells for comparison. A prominent
K" and CI peaks were observed in the H. halophila and H salinarium samples, while
these peaks were very small in the H halochloris and E. coli cell material, indicating a
high degree of KCl accumulation in H. halophila. To quantify this observation, MS-ICP
measurements were made. These experiments confirmed that the cytoplasmic KCl
content of H. halophila is high. Comparison with E. coli cell material indicates a

cytoplasmic K concentration of 2.1 + 0.2 M and Cl- concentration of 3.3 + 0.4 M in H.
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halophila under the growth conditions used. For comparison, a typical cytoplasmic K"
concentration in E. coli was taken as 211 mM (20). These results show that KCl is a
major osmoprotectant in H. halophila, and extends the use of KCl as a major
osmoprotectant from the select group of the Haloarchaea, Haloanaerobiales (Firmicutes)
(14) and Bacteriodetes (S. ruber) (62) to the y-Proteobacteria. The highest reported K*
concentration in these organisms is ~5.0 M for H. salinarium (14) and S. ruber (62). In
contrast with the situation in H. halophila, H. halochloris was found to not accumulate
KCI beyond levels present in E. coli. This is matched by the broad distribution of pl
values of its proteome as revealed by isoelectric focusing gel electrophoresis (Figure 3.3).
Interestingly, H. halochloris uses the organic osmolyte glycine betaine as a main
osmoprotectant (21). The striking difference in the cytoplasmic KCI content of H.
halophila and H. halochloris indicates a quite recent divergence is osmoprotectant
strategy. A similar recent change in osmoprotectant strategy is suggested by the absence
of an acidified proteome in H. orenii, while closely related members of the

Halanaerobiales have an acidic proteome and utilize KCl as an osmoprotectant (49).

The dependence of the cellular KCI content of H. halophila on the NaCl concentration of
the growth medium was examined. This revealed that the cytoplasmic KCI concentration
of H. halophila is strongly regulated by the salinity of the growth medium: a ~10-fold
reduction in cellular KCl content was observed upon a reduction in medium NaCl
concentration from 35 to 5% (Figure 3.6). Thus, at 5% NaCl the cytoplasmic KCI
concentration of H. halophila is very similar to that in E. coli. This observation was

confirmed by electron microscope microprobe analysis (Figure 3.4). These results show
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that while H. halophila possesses a strongly acidic proteome, it is capable of reducing its

cellular KCl concentration to low values.

The process of adaptation to changing osmotic condition depends on the acquisition of
osmotic balance, which is the main limiting factor for adaptation to hyper or hypo saline
conditions. While haloarchaea, Haloanaerobiales and S. ruber withstand high salinities,
low salt conditions are lethal for these organisms. Either in long term adaptation to low
salinities or an immediate response to a sudden salt dilution on down shift which causes
protein destabilization and cell lysis. This is not the case in A. halophila which can grow

in significantly low salt concentrations as shown with its range and optimum (Figure 3.7).

The non-requirement for high NaCl concentrations for maintaining the optimally folded
structure of H. halophila protiens suggests the possibility that these proteins behave
differently than halophilic proteins which require high salt. However these proteins
cannot be considered simply as a set of well folded polypeptide chains interacting with
each other in high salt environment (47). The complexity of these proteins does not allow
any single explanation for the salt discrepancy observed. Electrostatic shielding of
charged groups takes place at salt concentrations below 0.5M ((44). This shielding
decreases the stability of charge interactions. It also affects the hydrogen bonding.
However in halophiles which accumulate potassium and have higher acidic amino acids
in their proteins the effect of these salts is structural stabilization. At higher
concentrations of salt, new hydrophobic interactions are formed and the proteins assume
a tight folded conformation as compared to its stability in water. However the proteins of
H. halophila which show acidic proteome even at low salt concentrations are capable of
carrying out same function as that of halophilic proteins.
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3.5 Conclusion

The current understanding of the ‘high-salt-in’ strategy halophilic adaptations is that the
use of KCI as the main osmoprotectant is an energetically attractive strategy, since it does
not involve the biosynthesis of molar amounts of organic osmoprotectants (56). This
strategy requires the organism to modify all of its proteins to be compatible with the
presence of high salt concentrations. It is believed that this results in the halophilic nature
of the proteins from extreme halophiles, and therefore necessitates the permanent

presence of high cytoplasmic salt concentrations.

The data reported here for H. halophila do not fit this paradigm, since its acidic proteome
can apparently function in the absence of increased cytoplasmic KCI concentrations upon
growth in 5% NaCl. H. halophila grows in a hypersaline lake, the water of which
eVaporates during summer thus having fluctuating salinity. Having a proteome adaptable
to these fluctuating conditions can explain the unusually broad range of NaCl
concentrations at which H. halophila is able to grow. In addition, it indicates that while
proteome acidity is needed to allow protein function in the presence of high cytoplasmic
salt concentrations, it does not necessitate enzyme halophilicity. Thus, it is not clear what

causes the acidic proteins from H. salinarum to be halophilic, while the acidic proteins

from H. halophila are not.



CHAPTER FOUR

INTRACELLULAR COMPATIBLE SOLUTE CONCENTRATION

4.0 Abstract

Extreme halophiles that employ the ‘Low-salt, organic solute-in’ strategy of
osmoprotection thrive in saline environments by accumulating organic osmolytes in their
cytoplasm. These organic osmolytes do not disturb vital cellular functions or correct
folding of proteins. Hence they do not exhibit a proteome-wide adaptations in which all
proteins have an acidic amino acid residue bias, as seen in ‘High-salt-in’ strategy of
osmoprotection. In this chapter it is experimentally verified that H. halophila
aacumulates glycine betaine when grown in high NaCl concentrations in absence of KCL
The glycine betaine accumulation pattern of H. halophila and H. halochloris were also
compared. It is shown that H. halophila prefers KCI over glycine betaine, which is not
the case for H. halochloris which prefers glycine betaine as its primary osmolyte. We

also explain the possible ecological relevance of the observed osmoprotectant switch in H.

halophila.
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4.1 Introduction

In the ‘Low-salt, organic solute-in’ strategy of halophilic adaptation, microorganisms
accumulate large quantities of a particular group of organic osmolytes in hyperosmotic
conditions (Chapter 1, Section 1.4.2). This accumulation takes place either by de novo
synthesis or direct uptake of the compatible solutes from the environment. In some cases
it has been shown that halophiles expel these compounds when exposed to hypoosmotic
circumstances (81). Organic osmolytes are also called compatible solutes as they do not
disturb the vital cellular functions and correct folding of the proteins. As microorganisms
lack the ability to actively transport water in and out of the cell, the osmotic conditions
determine the water content of the cell. Compatible solutes help prevent cytoplasmic
dehydration and maintain turgor pressure under conditions of low water activity by
counteracting the efflux of water from the cell. They are also known to have a stabilizing

influence on native structures of proteins and cell components under both in vivo and in

vitro conditions.

Compounds that serve as compatible solutes are highly soluble and do not carry a net
charge at physiological pH, except in case of some archaea (43). Examples of widely
used compatible solutes are the amino acid proline, the quaternary ammonium compound
glycine betaine, sugars like trehalose and the tetrahydropyrimidine ectoine (66).
Accumulation of glycine betaine is widespread amongst these halotolerant organisms: H.
halochloris, A. halophytica and M. portuclensis (35). The extreme halophile AH.

halochloris is also known to synthesize glycine betaine (22).



A typical response of halotolerant bacteria to a sudden increase in the external osmolality
is the rapid uptake of mmol quantities of KCl to counteract the immediate outflow of
water from the cell. However, this high intracellular concentration of high salt has toxic
effects on physiological functions. Hence these ions are replaced by synthesizing large
amounts of compatible solutes via the de novo synthesis pathways or uptake from the

environment by the transport systems (70, 71).

The glycine betaine accumulation in H. halochloris under osmotic stress and
identification of biosynthesis genes and uptake system in H. halophila (Chapter 2)

prompted the question whether H. halophila accumulates glycine betaine.

A physiological analysis of glycine betaine accumulation in H halophila and H.
halochloris under various NaCl and KCIl concentrations was conducted. It was also
examined if this accumulation of glycine betaine may have any ecological relevance for

survival of H. halophila.

4.2 Methods

Glycine betaine uptake: One set of H. halophila cells were grown in DSMZ medium high

salt concentration (35% NaCl) and 3 KCI concentrations- 1 g/l (normal) and 0.4 and 0.02
g/l (reduced), until late exponential phase. The ODgsonm Was measured during growth
using Shimazu spectrophotometer and a specially made round tube adapter. A second set
of H. halophila cells were grown under same conditions but in the presence glycine
betaine concentrations from 0 mM to 20 mM. The ODgsonm was measured during the

growth of both set of cells.

76



Intracellular concentration of glvcine betaine:

Cell growth: H. halochloris was grown in 0.035g, 0.2g ,1g, 2g, 4g and 10g KCl and at
different NaCl concentrations 5%, 7.5%, 10%, 12.5% 15%, 17.5%, 20%, 22.5%, 25%,
27.5%, 30%, 32.5% and 35% NaCl. H. halophila was grown in 0.035 g, 0.2 g, 1g, 2g, 4¢g
and 10g KCI and at different NaCl conc 5%, 7.5%, 10%, 12.5%, 15%, 17.5%, 20%,

22.5%, 25%, 27.5%, 30%, 32.5% and 35% NaCl.

Glycine betaine measurements: 100 ml cultures of H. halochloris and H. halophila cells

(high, medium and low salt) were harvested in the late exponential phase. Cells were
washed using isotonic NaCl solutions. Cells are freeze-thawed at -4°C for 30 minutes.
Cells were diluted with distilled water [0.1mg/ml]. Cells were incubated with lysozyme.
10% (w/v) of 0.2N perchloric acid was added and pH adjusted to 7.The resulting cell free
extract was passed‘ through the weakly cationic resin Amberlite CG-50 for
chromatographic extraction of glycine betaine. The column was eluted with phosphate-
citrate buffer pH 5.3. 0.5 ml of fractions were made up to 2 ml using 2 N HCL. 1 ml of
reagent (10g iodine + 12.4g KI) to convert glycine betaine to its periodide derivative
which has absorption maxima at 365 nm. The solution was shaken and placed on ice for
20 min. 10 ml of 1, 2 dichloroethane was added and thoroughly mixed. The absorbance
of the organic layer (lower layer) is measured at 365 nm using Shimadzu
spectrophotometer with round tube adapter and compared to with standard curve of pure

glycine betaine between 10 mM to 2000 mM (Detail protocol in Chapter 6, Section 6.2.4).
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Examination of mixed strategy for osmoprotection:

Cell growth: H halophila cells were grown in DSMZ medium with different salt
concentrations (5% and 35% NaCl) and KCl1 concentration (0.05 to 10 g/L) till late

exponential phase [ODggonm], and harvested.

Determination of cellular K™ and CI” content: For plasma emission spectrometry 20 ml of

cell culture was centrifuged (3,750 rpm, 25 minutes). Cell pellets were suspended in
isotonic NaCl and Ammonium sulfate solutions, again pelleted, and dried for 48 hours at
60°C. The dried pellets were divided in two halves. First half was used to measure
potassium and sodium content using inductively coupled plasma emission spectrometry
(Spectro Arcos). The second half was used for the colorimetric estimation of chloride
using the Lachat 8000 Quick Chem flow injection analyzer. Molar concentrations of the

ions are calculated using E. coli as a standard.

4.3 Results

Glvceine betaine uptake:

In Chapter 3 it was experimentally verified that H. halophila accumulates KCI as it
osmoprotectant. H. halophila also contains genes for the biosynthesis and uptake of
glycine betaine (Chapter 2). Here we examined possible increase in cell growth when
glycine betaine is added externally to H. halophila cells in grown medium standard
(1g/L), and reduced (0.4 and 0.02 g/L) medium KCI concentrations. No difference was
observed in the growth of H. halophila cells grown in standard KCl medium

concentration at any glycine betaine concentration. However slight increase in
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absorbance is observed in H. halophila cells grown in reduced (0.02 g/l) KCI at 20 mM

glycine betaine (Figure 4.1).

1.00

0.40

0.00 5.00 10.00 15.00 20.00

Glycine-betaine{mivi)

Figure 4.1: Uptake of glycine betaine by H. halophila .Blue line indicates H. halophila cells grown in 1g/L. KCl, pink line
indicates H. halophila cells grown in 0.4 g/ KCI and yellow line indicates H. halophila cells grown in 0.02 g/L. KCl. The
experiment was performed in triplos for two independent experiments for a total of 6 measurements per data point.

Intracellular glvcine betaine concentrations:

As H. halochloris, a close relative of H. halophila employs glycine betaine as its
osmoprotectant (23) and since H. halophila genome encodes genes for its biosynthesis

and uptake H. halophila (Chapter 2) suggests accumulation of glycine betaine in H.

halophila.

When intracellular concentrations of glycine betaine in both H. halophila and H.

halochloris were examined under different NaCl and KCI medium concentrations, it was
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observed that H. halophila indeed accumulates glycine betaine. However this occurred
only when the cells were grown in media containing reduced KClI concentrations (0.2 to
0.035 g/l). When grown in standard (1 g/1) to high (2-10 g/l) KCl, H. halophila does not
accumulate glycine betaine (Panel B, Figure 4.2). H. halochloris accumulates glycine

betaine irrespective for medium KCI concentrations (Panel A, Figure 4.2).
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Figure 4.2: Cytoplasmic glycine betaine concentration of H. halochioris (panel A) and H. halophile (panel B).
The experiment was performed in triplos for three independent experiments for a total of 9 measurements per data point.

4.4 Discussion

Bioinformatic analysis (Chapter 2) indicates presence of genes for biosynthesis as well as
uptake of glycine betaine in the H. halophila genome. H. halochloris, an extremely
halophilic bacterium of closely related taxa accumulates glycine betaine pointed that A.
halophila also might accumulate glycine betaine. H. halophila requires KCI as the main
osmoprotectant when grown at 35% NaCl (Figure 3.6). H. halophila cells grown at 35%
NaCl and KCl limiting conditions, the cells have lesser absorbance and take more time to

attain high absorbance values. This indicates that there is slow recovery when cells are
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grown in high salt and KCI limiting conditions (Figure 4.1). However addition of glycine
betaine, in the high salt and KCI limiting growth medium stimulates H. halophila cell
growth (Figure 4.1). This supports the hypothesis that . halophila indeed has a

functional glycine betaine uptake system.

The cytoplasmic concntration of glycine betaine in H. halophila and H. halochloris
grown under various conditions was quantified. These bacteria show different pattern of
accumulation of glycine betaine (Figure 4.2). In H. halophila glycine betaine is not
accumulated at KCI concentartions equal or above 1 g/ while H. halochloris
accumulates glycine betaine at all KCI concentrations under salt stress. Apparently H.
halophila prefers potassium as its osmoprotectant when provided with KCl equal to or

above 1 g/L (Figure 4.3).
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Figure 4.3; Cytoplasmic potassium of H. halophila (Solid symbols) and H. halochloris (Open symbels) at various KCl

concentrations. The experiment was performed in triplos for three independent experiments for a total of 9 measurements per
data point.
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At low medium KCI concentrations H. halophila no longer is able to use K as its main
osmoprotectant, and synthesizes glycine betaine. This switch in strategy occurs at 1g/1 of

potassium availiablity.

The possible ecologically relevance of this swtich was considered. A geochemical
analysis of 6 Wadi Natrun lakes in which H. halophila is found, has been carried out (33).
Potassium concentrations of the six Wadi Nantrun lakes were averaged and a gaussian
curve calculated (Figure 4.4). As Figure 4.4 indicates, H. halophila switches strategy of
halophilic adaptations around the concentrations at which potassium is available to it in
nature. When potassium avaliablity is reduced, H. halophila either takes up glycine
betaine from the external medium or biosynthesizes it. In the natural conditions, H.
halophila would encounter fluctuating salinities (evaporation of water during summer
and dilution of salts during rain). Having this switch mechanism gives H. halophila
flexiblity to grow in broad range of NaCl concentrations which is not the case with other
extreme halophilic organisms which only rely on accumulation of high salts in its

cytoplasm as the osmoprotectant.
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Figure 4.4: Intracellular potassium and glycine betaine concentration of H. halophila cells at various NaCl and KClI
concentrations with a Gaussian distribution of K* concentrations observed for 6 Wadi Nantrun lakes. The experiment was

performed in triplos for three independent experiments for a total of 9 measurements per data point.

4.4 Conclusion

The current understanding of the ‘low-salt, organic solute-in’ strategy halophilic

adaptations is sole use of compatible solutes as the main osmoprotectant. This strategy

does not require the organism to modify all of its proteins to be compatible with the

presence of high salt concentrations.

H. halophila has an acidic proteome but when grown in low NaCl concentrations its

cytoplasmic KCIl concentrations are approximately same as E. coli. Additionally H.

halophila also accumulates glycine betaine. The switch of osmoprotectants exhibited by

H. halophila enables it to grow over broad range of NaCl concentrations. We propose
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that this switch is ecologically relevant, as the average concentration of the Wadi Natrun
lakes is same as the concentration at which H. halophila switches to ‘Low-salt, osmolyte-

in’ strategy of osmoprotection.
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CHAPTER FIVE
CONCLUSION

H. halophila breaks away from the current understanding of both, the ‘High-salt-in> and
‘Low-salt, organic solute-in’ type of halophilic adaptations. It has an acidic proteome, but
can function in absence of increased cytoplasmic KCI concentrations when cells are
grown at low NaCl concentrations. The acidicity of the H. halophila proteome was
demonstrated through calculated average pl of its predicted proteins and IEF of total
cellular proteins. High cytoplasmic KCIl concentrations were observed by electron
microprobe analysis and quantified using plasma emission spectrometry. Despite the
acidic property of the H. halophila proteome, its proteins apparently are not halophilic in
nature like proteins of other extreme halophiles which employ ‘High-salt-in’ strategy
since they donot require permanent presence of high cytoplasmic salts for their
functionality. H. halochloris, a close taxomoic relative H. halophila does not accumulate
KCI This is matched by the broad distribution of pl values of its proteome as revealed by
isoelectric focusing gel electrophoresis. Interestingly, H. halochloris uses the organic

osmolyte glycine betaine as its main osmoprotectant

H. halophila can also accumulate glycine betaine and uptake from the medium through
its uptake systems. This was demonstrated by checking the stimulation of cell growth by
addition of glycine betaine to H. halophila cells grown under potassium limiting

conditions and salt stress.

H. halophila does not confer with either of the two halophilic strategies. It uses an

unusual mixed KCl/compatible solute strategy for osmoregulation, with an

85



osmoprotectant switch near 1 g/l KCI in growth medium. The average K* concentration
of the Wadi Natrun lakes from which H. halophila was isolated is same as the
concentration at which it switches to ‘Low-salt, osmolyte-in’ strategy of osmoprotection.
Hence this switch in osmoprotection strategy might be ecologically relevant for survival

of H. halopila.
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CHAPTER SIX

APPENDIX

This section contains the following:

e Experiments which were carried out but were not included in the main
dissertation.

e Detailed protocols are also presented.
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6.1 Supplementarv experiments

6.1.1 Effect of reduced KCI concentration on H. halopila srowth

At reduced KCI concentrations H. halophila cells are forced to use glycine betaine as an
osmoprotectant (Chapter 4). This requires a large amount of reducing equivalents from
thiosulfate to fix CO; into glycine betaine. Thus, the reduction of growth (indicated by
decrease in optical density) in media containing low KCl concentrations would be
expected to be rescued by increased thiosulfate concentrations. This expectation was
tested by growing H. halophila cells in low and high NaCl along with reduced and
standard KCl concentration in media containing increasing amounts of sodium thiosulfate

and recording the final ODg¢o and doubling time.

Methods

H. halophila cells were grown in DSMZ (without the yeast extracts) medium with
different salt concentrations (5%-35% NaCl) and different KCI concentrations (0.1 and
1% till late exponential phase [ODgsonm] in increasing concentrations (0.5 to 6 g/l) of
Na,S and harvested. Final ODgsonm Was measured in Shimadzu spectrophotometer using

the round tube adapter. Doubling time was calculated based on the ODsgonm.

Results

Reduced KCI slows down growth at all thiosulfate concentrations. Reduced KCI
diminishes final OD at all thiosulfate concentrations. At 1 g/l KCI growth is essentially

independent of thiosulfate concentrations 21g/l. However, at 0.2 or 0.05 g/l KCl both
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doubling time and final OD are stimulated by increased thiosulfate at both low and high

salts (Figure 6.1).
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Figure 6.1: Final OD and doubling time of H. halophila at different NaCl, KCl1 and Thiosulfate concentrations. The
experiment was performed in triplos for two independent experiments for a total of 6 measurements per data point.

Discussion and Conclusion

No conclusion could be made about role of increased concentration of thiosulfate in
rescue of H. halophila cells grown at low KCI concentration. Final OD is increased and

doubling time is reduced with increasing concentration of thiosulfate in both low and

high salt medium.
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6.1.2 Proteomic analvsis of H. halophila

Studies on extremely halophilic organisms have been increased in the last decade
since the genome sequencing of Halobacleria sp NRC-1 (49, 53). Understanding the
haloadaptation mechanisms of halophilic bacteria may provide novel approaches to
science and biotechnology. Unfortunately, very few genome sequences are available
for these microorganisms (Chapter 1, section 1.5) and hence it is not easy to
understand halophilic adaptation mechanisms of extremely halophilic bacteria since
only limited genetic information is provided. Proteomics is an important method of
gaining data about protein expression levels of these microorganisms. Proteome
studies of H. halophila may give insight in some of the essential physiological

processes in its haloadpation mechanisms.

Methods

H. halophila cells were grown in DSMZ (without the yeast extracts) medium with
different salt concentrations (5%-35% NaCl) and different KCIl concentrations (0.1
and 1%) till late exponential phase [ODgsonm] and harvested. The cells are washed
with lysis buffer and sonicated on ice, three times for 10 seconds. Cells are
centrifuged for 15 min at 15,000 rpm in a Microcentrifuge. The supernatant is
dialyzed using Slide-a-Lyzer and lysis buffer for 24 hours. The lysis buffer is changed
thrice. The volume of the sample is measured and adjusted with the lysis buffer. The
sample is TCA precipitated using ice cold acetic acid and trichloroacetic acid. The
pellet obtained is washed in Urea buffer. The supernatant is used for both SDS PAGE

analysis and Mass spectrometry (Detailed protocol in Section 6.2.2 and 6.2.4).
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Results

Good separation of proteins of H. halophila cells grown at different NaCl and KCIl
concentrations was obtained on SDS gels (Figure 6.2). However only 73 of the 2407

predicted proteins were identified in 6 data sets in 2 independent experiments.

MEyosin 200,00 Ayesin 200,000

B-galactosidase 116,250

~-galactosidase 116,250
Fhospharylasa 87,400 7.
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hosphorylase 97 400

- =1 i BE T
Serum alburmin 66 200 Serum albumin 68,200

. Crvalbumin 45,000
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Lysozyme 14 400
Aprotinin 8,500

Trypsin inhibitor 21,500

Lysozyme1d 400
Aprotinin 8 500

.

Figure 6.2: SDS-PAGE gel of TCA precipitate of H. halophila proteins grown at different NaCl and KCI concentrations. Lane
1 and 6-Molecular weight standard. Lane 2- Proteins of H. halophila grown at 5% NaCl and 1% KCI medium concentration.
Lane 3- Proteins of H. halophila grown at 35% NaCl and 1% KCI concentration. Lane 4- Proteins of H. halophila grown at
5% NaCl and 1% KCI concentration. Lane 5- Proteins of H. halophila grown at 35% NaCl and 0.1% KCl concentration.

Discussion and Conclusion

No insight in the physiological processes of H. halophila osmoadaptation was
obtained because small numbers of expressed proteins were identified in Mass

spectrometry analysis.
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6.2 Protocols

6.2.1 Protocol for IEF of Halorhodospira halophila proteins

Sample: H. halophila, Halobacterium sp NRC-1, H. halochloris cells and E. coli cells

Sample preparation:

1. H halophila, Halobacterium sp-NRC-1, H. halochloris and E. coli cells are

grown to exponential phase.

2. 10 ml of cells of OD value 1 at 660nm are centrifuged for 15 min at 30,000 rpm.

3. The pellet is re-suspended in 200 pl of 20mM Tris-buffer (pH-6.8).

4. Cells are micro-dialyzed.

Dialysis: Cassette used- Slide-a-Lyzer

Dialysis buffer- PBS buffer with pH 7.2

Procedure:

> Dialysis cassette is hydrated by soaking it in buffer for 30 sec

> Add 200 pl sample in the cassette using a syringe

> Sample is dialyzed in 50 ml PBS for 24 hours

» Buffer solution is changed 3 times.

» Sample is removed from the cassette and measured

5. 1 ml Sample buffer* is added to 0.5 ml of sample.
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*Sample buffer preparation: 9M Urea
4% Triton
2% Mercaptoethanol
Adjust the pH to 9
Make the volume to 10ml
Electrophoresis using MINI Protean apparatus:
> Fill the lower tank with 0.1% phosphoric acid.

> Place the pre-cast IEF gel in the apparatus

Y

Fill the upper tank with 20mM NaOH [Note dislodge any air bubbles if

formed]

Load 20 p prepared sample along with IEF marker

Y

> Runat500V
6. Remove the gel from the apparatus carefully.
7. Wash the gel once with de-ionised water.
8. Stain the gel with Commasie brilliant blue R-250.

9. Destain the gel overnight.



6.2.2 Protocol for sample preparation for SDS PAGE

Sample preparation:

1.

(U8}

10.

11.

18 ml of Halorhodospira halophila cells are harvested when they reach OD

0.8The cells are centrifuged at 3750 rpm for 20 min at 4°C.

The supernatant is discarded and the pellet is re-suspended in 80-100 pl of 10mM

Tris-buffer.
The sample is sonicated, making sure there is no bubbling.

The sonicated sample is dialyzed using a miro-dialysis chamber for 24 hours.10

mM Tris buffer is used at 4°C, the buffer is changed after 10-12hours.
The volume of the sample increases (around 120-140 pl).
After sonication the sample is equally divided into 2 fractions.

First fraction (60 pl) is mixed with twice the volume of SDS reducing buffer (This

will give the total protein profile of the cells).

The second fraction is micro-centrifuged at 10,000 rpm for 10 min.
The pellet and the supernatant are separated.

The pellet is re-suspended in 60 pl Tris buffer.

The supernatant measured and if necessary volume made up to 60 pl with Tris

buffer.
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12. 120 pl of SDS reducing buffer is added to both the supernatant and the pellet

(This will give the profile of cytoplasmic and membrane proteins in the cells).
13. Heat the samples at 95°C for 4 minutes.

14. 20 pl of each sample (total, cytoplasmic and membrane proteins) is loaded on the

gel.

Materials used:

SDS reducing buffer*:

Deionized water 3.55ml

0.5 M Tris HCI, pH 6.8 1.25 ml

Glycerol 2.5mi

10% SDS 2ml

0.5% Bromo phenol

blue 0.2ml

Total volume 9.5ml

*50 pl of Mercaptoethanol is added to 950 pl of reducing buffer just before use
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Electrode buffer: 1X

Tris base 3.03g
Glycine 144 ¢
SDS 19

Gel formulations used: 4% stacking and 6%
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6.2.3 Protocol for protein profiling of H. halophila cells grown at different NaCl and

KCI concentrations

Materials and Methods:

Samples:
1. H. halophila cells grown in 5% NaCl and 1% KCl
2. H. halophila cells grown in 5% NaCl and 0.2% KCl
3. H. halophila cells grown in 35% NaCl and 1% KCl

4. H. halophila cells grown in 35% NaCl and 0.2% KCI

Sample preparation:

All the 4 samples are grown in DMSZ medium with respective NaCl and KCl

concentrations to exponential phase.

e Cells of OD value 1 at 660nm are centrifuged for 15 min at 30,000 rpm. The

same volumes of cells of OD660 value 1 are used for all 4 samples.
o Cell pellets are suspended in 1 ml Lysis buffer
o Lysis buffer recipe: 40mM Tris pH-7.4
0.5% TritonX-100

0.3% SDS

97



Resuspended cells are sonicated on ice 3X10 seconds. The power of the
sonification is adjusted to be as high as possible but just below the

foaming limit.

Samples are centrifuged at 30,000 rpm for 15 minutes in Microcentrifuge to

remove debris.
Supernatants are micro-dialyzed.
Dialysis: Cassette used- Slide-a-Lyzer

Dialysis buffer- Lysis buffer pH 7.4

Procedure:

>

>

\74

\7

\7

Dialysis cassette is hydrated by soaking it in buffer for 30 sec
Add 200 pl sample in the cassette using a syringe

Sample is dialyzed in 50 ml Lysis buffer for 24 hours

Buffer solution is changed 3 times.

Sample is removed from the cassette and measured and adjusted to 5 ml using

Lysis buffer.

TCA precipitation:

e The suspended cell extract, ice-cold acetic acid and trichloroacetic acid

are mixed in following proportion: 1:8:1

e The mixture is precipitated at -200C for 1 hour.
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e The mixture is centrifuged at 11,500 rpm for 15 min at 4°C in

microcentrifuge.

e Pellet is washed with ice-cold acetone by centrifugation at 11,500 rpm for

15 min at 4°C.

e The pellet is resuspended in 50p] Urea buffer and incubated at RT for 30

min with intermitant vortexing.
Urea buffer: 100 mM Tris-HCI pH 8.5
8 M Urea

¢ The resuspended samples are centrifuged at 14,000 rpm and supernatant

is used for further analysis by SDS-PAGE and mass spectrometry.

¢ The resuspended samples are divided into 2 fractions. First fraction is used for

SDS-PAGE other fraction is stored for mass spectrometry.
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6.2.4 Protocol for intracellular glvecine betaine measumement

Cultures used:

Sample: H. halochloris grown in 0.035g, 0.2g .1g, 2g, 4g and 10g KCl and at different
NaCl concentrations 5%, 7.5%, 10%, 12.5% 15%, 17.5%, 20%, 22.5%, 25%, 27.5%,
30%, 32.5% and 35% NaCl. H. halophila was grown in 0.035 g, 0.2 g, 1g, 2g, 4g and 10g
KCl and at different NaCl conc 5%, 7.5%, 10%, 12.5%, 15%, 17.5%, 20%, 22.5%, 25%,

27.5%, 30%, 32.5% and 35% NaCl.

Method:

100 ml H halochloris and H haophilal cells (high and low salt) are harvested in

the late exponential phase [OD660 nm: ~ 0.86 & 0.78 and 042 & 1.2

respectively]
e Cells afe washed using isotonic NaCl solutions
e Cells are freeze-thawed
o Cells are diluted with distilled water [0.1mg/ml]
¢ (Cells are incubated with lysozyme
s 10%(w/v) of 0.2N perchloric acid is added
o pH is adjusted to 7
» The protein free extract is passed through weakly cationic resin Amberlite CG-50
e Column is eluted with phosphate-citrate buffer pH 5.3
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e 0.5 ml of fractions are made up to 2 ml using 2 N HCI

o 1 mlofreagent [ 10g iodine + 12.4g KI ] is added

¢ Solution is shaken and placed on a ice bath for 20 min

e 10 ml 1,2 dichloroethane is added and thoroughly mixed

e Absorbance of the organic layer (lower layer) is measured at 365nm

Standard Curve:

Make standard solutions of glycine betaine (Mol. wt 117.14) from 10 mM

[1.17 mg/10ml H,0] to 2M [23.4 mg/10m] H,O]

e Aliqgouts of 0.5 ml of standard solutions and make up the volume to 2 ml with

2N HCI
e | mlofreagent [ 10giodine + 12.4g KI ] is added
e Solution is shaken and placed on a ice bath for 20 min
e 10 ml 1,2 dichloroethane is added and thoroughly mixed

e Absorbance of the organic layer (lower layer) is measured at 365nm
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6.2.5 Raw data:

Cytoplasmic potassium concentrations (M) in H halophila at various NaCl and KCl

concentrations:
First 3 data sets were obtained from isotonic NaCl wash and the rest of the data sets were

isotonic ammonium sulfate washes.

5% NaCl

KCl 1 2 3 4 5 6 7 8 9 Average | SD
0.035013}014]015{011}012 (017} 0.1 | 0.09 | 0.08 0.12 0.03
0.1 | 012|012 016011009 ] 0.13]0.09|0.07 | 0.08 0.11 0.03
02 10211019 02 | 013 |021|015]0.19]) 0.2 | 017 0.18 0.03
1 0.34 1037 1062 | 067 {032 ] 031} 069|048 | 047 0.47 0.15
067 | 049 1 0.46 { 0.66 | 0.39 | 0.41 | 0.57 | 0.59 | 0.57 0.53 0.10
4 0.58 1 0.54 1 049 042 | 038|065 | 0711074 ] 057 0.56 0.12
10 0.78 ] 0.81 1052 | 0.54 | 0.67 | 0.71 | 0.68 | 0.69 | 0.68 0.68 0.10

10% NaCl

KCl 1 2 3 4 5 6 7 8 9 Average | SD
0.035 1008 { 0.0 01 |0.11}012 (013} 014 ] 0.15 ] 0.17 0.12 0.03
0.1 02 | 0181016 1013|021 ]015{0.14 019 0.1 0.16 0.04
0.2 021019 | 02 |018 |021f015|019] 02 | 017 | o0.19 0.02
1 0.87 108510921074 1087|091]098]079]0.88 0.87 0.07
147 {129 1133 1128|143 (127 {129 | 1.29 | 1.26 1.32 0.08
143 {126 1127 | 1.28 | 1.29 | 1.29 | 1.43 ] 1.43 { 1.54 1.36 0.10
10 163 | 1.26 | 1.27 | 1.28 1 1.39 | 1.59 | 1.43 | 1.43 | 1.54 1.42 0.14

15% NaCl

KCl 1 2 3 4 5 6 7 8 9 Average | SD
0.035(1013]014§015{011 012|017} 0.1 | 0.09 [ 0.08 0.12 0.03
0.1 02 1015|016 }013|013{015)]0.1470.13] 01 0.14 0.03
02 |021]7019( 02 |0187021]019{019] 0.2 |0.19 0.20 0.01
1 1571126127128 139155143 ]|139¢} 15 1.40 0.12
1621176 | 177 | 1.28 1169 | 16 | 1.73 1169 | 15 1.63 0.16
4 164} 176 177 1 158 } 169 | 1.8 [ 173|169 1.9 1.73 0.09
10 194 1183)183{198 19 | 1.8 | 183199} 1.84 1.89 0.08




20% NaCl

KCl 1 2 3 4 5 6 7 8 9 Average | SD

0.035 {017 | 024 | 0.15 | 0.11 | 0.12 | 0.13 | 0.1 | 0.09 | 0.08 0.12 0.03

01 0.12 1012 {009 0.11 j 0.16 | 0.13 |1 0.09 | 0.07 | 0.08 0.11 0.03

0.2 021|019} 02 018 |021}015) 019 | 02 | 0.17 0.19 0.02

1 162 {176 | 1.57 |} 1.38 { 1.39 | 16 | 1331149} 1.5 1.52 0.14

2 164 11761177 | 158 {169 1.8 1731169 1.8 1.72 0.07

4 1841183 }1183)191 192} 18 118311921184 1.86 0.05

10 195 {1931199)198 | 23 199 | 2.1 }1.99 ] 193 2.02 0.12
25% NaCl

KCl 1 2 3 4 5 6 7 8 9 Average | SD

0.035 7013013015012 (012|017 | 0.1 | 0.09 | 0.08 0.12 0.03

0.1 024 1015016 | 013 {013 {015} 0.14 | 0.13 ] 0.19 0.16 0.04

0.2 0171019 | 02 } 018|021 )015]019} 0.2 | 0.17 0.18 0.02

1 1841176 (177 (188|169 1.8 | 1.73 169§ 1.9 1.78 0.08

2 1841183 11831911921} 22 §193|192] 184 1.91 0.12

4 23 1199199198 | 2.4 2 2.4 1199 | 1.99 2.12 0.19

10 2.5 2.4 2.6 2.3 2.4 2 2.4 2.4 2.2 2.36 0.17
30% NaCl

KCl 1 2 3 4 5 6 7 8 9 Average | SD

0.035}008|009] 01 |011 012013014015 0.17 0.12 0.03

0.1 0.12 | 009 | 0.09 } 0.11 | 0.16 | 0.13 | 0.09 | 0.09 | 0.08 0.11 0.03

0.2 0197015 02 018 {021 0.15|0.18 | 0.2 | 017 0.19 0.02

1 1.74 11731183 (187 |18 | 1.8 {183 192 1.84 1.82 0.06

2 2021198 199|209 23 | 199|219 203} 1.99 2.06 0.11

4 24 119911991198 | 2.4 1.9 2.4 1159 ] 199 2.12 0.22

10 27 | 27 | 26 | 28 | 25 | 26 ) 24 (24| 29 2.62 0.17
35% NaCl

kal | 1 2 3 | als 6 | 7 |8 9 | Average | SD

0.035 { 0.09 | 0.09 | 0.09 | 0.11 | 0.12 | 0.13 | 0.14 | Q.15 | 0.17 0.12 0.03

01 |012)009j009(011]016 ] 013 {0.09]0.09 | 0.08 0.11 0.03

0.2 0.2 0.2 02 1019 {024 ]019]0.19 ] 0.23 | 0.17 0.20 0.02

1 202 12091991209 23 ]208}219| 21 ]204 2.10 0.09

2.7 2.8 2.9 2.8 2.5 2.6 2.9 2.4 2.9 2.72 0.19

4 3091289297 |28 29 | 26 | 29 [249] 299 2.85 0.19

10 3.24 | 299 1 2.97 | 2.84 | 3.25 | 3.6 | 3.45]3.49 | 3.23 3.23 0.26




Cytoplasmic chloride concentrations (M) in H.halophila at various NaCl and KCI

concentrations:
First 3 data sets were obtained from isotonic NaCl wash and the rest of the data sets were

isotonic ammonium sulfate washes.

H.halophila

NaCl 1 2 3 4 5 6 7 8 9 Average | SD
5 0.43 1057 | 059|043 |038}059]|048]|058]| 06 0.52 0.09
10 } 063|068 {059 7067 |058)064][049] 06 0.6 0.61 0.06
15 0971 11 0990941098 | 112}1.22] 122|139 1.10 0.15
20 164 11711172 {158 ]169|175]173 169 1.8 1.70 0.06
25 25 | 199 22 {198 | 2.7 2.2 2.3 11971199 2.20 0.26
30 2981 29 |291) 28 }3211352¢ 3.2 3.2 3.2 3.10 0.22
35 354 | 35 1287|284 ]325) 35 |3.45]|3.49]3.23 3.30 0.27

H.halochloris

NacCl 1 2 3 4 5 6 7 8 9 Average | SD
5 034 03 7037]033(032]03170321} 04 |032 0.33 0.03
10 10341037042 (043]032]031f039] 041037 0.37 0.04
15 058 ] 057|049 | 042]045{065]071|074]057 0.58 0.11
20 1067|049 (046 | 066 | 0.39 ] 041 | 0.57 } 0.59 | 0.52 0.53 0.10
25 10341037 }062]067032]031]0.69]0.48]| 047 0.47 0.15
30 |039)037)062|067)032]0.31]069 ] 0.48] 0.47 0.48 0.15
35 {0.44 ]| 057 (062 |062]032)]031]0.49] 048] 0.47 0.48 0.11

H.salinarum

NaCl 1 2 3 4 5 6 7 8 9 Average | SD
15 117 | 126 {1 1.27 } 1.22 | 1,13 | 1.15 | 1.13 | 1.39 | 1.12 1.20 0.09
20 162 | 1.7 | 157 | 1381139 1.6 | 133 ]149]| 1.5 1.51 0.12
25 249 {236 2.2 2.3 2.4 2 2.4 2.4 2.2 2.31 0.15
30 3.2 12991297 | 2844325355 345]3.43]3.13 3.20 0.24
35 4.78 | 423 1 412 | 4.37 | 445 | 453 | 439 } 438 | 4.39 4.40 0.18
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Cytoplasmic glycine betaine concentrations (M) in H.halophila at various NaCl and KCl
concentrations:

5% NaCl

KCl 1 2 3 a 5 6 7 8 9 Average SD

0.035 [ 0.78 | 0.81 | 0.52 | 0.54 | 0.67 | 0.71 | 0.68 | 0.69 | 0.68 0.68 0.10
0.1 0.69 1068 1079|067 | 078 | 0.64]0.69 | 0.68 | 0.6 0.70 0.05
0.2 072 10741 0.82 | 0.67 | 0.78 | 0.67 | 0.71 | 0.68 | 0.69 0.72 0.05

i 0081009} 01 011012013 014|015 0.17 0.12 0.03
2 012] 01 |009)0110.16 {013} 0.08(0.09}0.08 0.11 0.03
4 01 {012}009{ 01 }016|0.13]|0.09 ] 0.07 | 0.08 0.10 0.03
10 0.2 | 0151016 0131013 ]0.15}0.14 | 0.13 | 0.19 0.15 0.03

10% NaCl

KCl 1 2 3 4 5 6 7 8 9 Average SD
00351097 ]112)099}094 098 1.1 1122|122} 139 1.10 0.15
0.1 117 126 | 1.27 | 1.22 1 1.13 } 1.15 | 1.13 § 1.39 | 1.12 1.20 0.09
02 |077|083)072]074]085]|071]078]0.79]|086 0.78 0.05
1 0.1 0.1 | 00910097011} 0.12 | 0.09 | 0.07 | 0.08 0.0 0.02
0.07 | 0.07 | 0.07 } 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 0.07 0.00
4 0.08 1 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 0.08 0.00
10 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 0.06 0.00

15% NaCl

KCl 1 2 3 4 5 6 7 8 9 Average SD
00351 16 | 1721153138139 16 133|148 | 15 1.50 0.12
0.1 1571126 (127|128 1391551431135 15 1.40 0.12
0.2 0750851073 }1073]085{0.71]0.78 ]| 0.79 | 0.86 0.78 0.06
1 0.08 } 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 0.08 0.00
2 0.07 | 0.07 | 0.07 { 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 0.07 0.00
4 0.07 §{ 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 0.07 0.00
10 0.07 | 0.07 } 0.07 { 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 0.07 0.00
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20% NaCl

KCl 1 2 3 4 5 6 7 8 9 Average SD
0.035 194185189 {198]19 | 1.8 | 183} 199 { 1.84 1.90 0.07
0.1 164 (176|177 {178 11791 1.8 | 1731169 | 1.9 1.76 0.07
0.2 0.87 108510721074 )|087 (1081098 {0.79]0.88 0.83 0.08
0.07 | 0.07 } 0.07 | 0.07 | 0.07 | 0.07 | 0.07 { 0.07 | 0.07 0.07 0.00
0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 0.07 0.00
4 0.07 1 0.07 | 0.07 | 0.07 | 0.07 { 0.07 | 0.07 | 0.07 | 0.07 0.07 0.00
10 0.07 | 0.07 | 0.07 { 0.07 } 0.07 | 0.07 | 0.07 | 0.07 | 0.07 0.07 0.00
25% NaCl
KCl 1 2 3 4 5 6 7 8 9 Average SD
0.035 | 2.3 22 | 256} 23 2.4 2 236 | 24 2.2 2.30 0.16
0.1 1961202204208 (209]209] 21 }219| 23 2.10 0.09
0.2 | 087]095)092 094 ]087|0911098]0.89|0.88 0.91 0.04
1 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 0.08 0.00
2 0.09 | 0.09})0.090.09}009|009]0.09]0.09 | 0.09 0.09 0.00
4 0.1 0.1 | 009 ;009|011 012 0.09 | 0.07 | 0.08 0.09 0.02
10 0.09 { 0.09 { 0.09 | 0.09 | 0.09 { 0.09 | 0.09 { 0.09 ]| 0.09 0.09 0.00
30% NaCl
KCl 1 2 3 4 5 6 7 8 9 Average SD
0.035 [ 3.29 ] 291 {297 {284 | 3.25| 315 | 3.15 | 3.23 | 3.13 3.10 0.16
0.1 23 | 265 26 | 271 2.7 2.6 2.4 26 |281 2.60 0.16
0.2 131 1122122112} 1.1 1099|098 {0.97 | 094 1.09 0.13
1 0.08 | 0.08 ) 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 0.08 0.00
0.08 { 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 ]| 0.08 0.08 0.00
4 0.08 | 0.08 } 0.08 { 0.08 | 0.08 | 0.08 { 0.08 | 0.08 | 0.08 0.08 0.00
10 0.08 | 0.08 | 0.08 | 0.08 { 0.08 { 0.08 | 0.08 | 0.08 | 0.08 0.08 0.00
35% Nadl
KCl 1 2 3 4 5 6 7 8 9 Average SD
0.035 | 2.84 | 287 1 3.23 | 3.25| 3.45| 349} 3.5 3.5 | 354 3.30 0.27
0.1 2.5 2.7 26 | 277 1297 | 26 2.4 2.9 2.9 2.70 0.20
0.2 117} 1.2 {121 (1221113115113 129|112 1.18 0.06
1 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 0.06 0.00
2 0.07 | 0.07 ] 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 0.07 0.00
4 0.07 | 0.07 } 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 0.07 0.00
10 0.08 | 0.08 | 0.08 { 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 0.08 0.00
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