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CHAPTER 1 

 

INTRODUCTION 

 

Post-transcriptional regulation of gene expression in plants 

 Control of plant gene expression is exerted at transcriptional and post-

transcriptional levels.  Although much has been learned in terms of transcriptional 

regulation, the study of post-transcriptional gene regulation is still limited to relatively 

few laboratories.  However, a complex picture is emerging, showing post-transcriptional 

control of gene expression at multiple levels including mRNA stability and translation.  

Regulation at the level of mRNA stability and translation has been observed for a number 

of plant genes [reviewed in (Abler and Green, 1996; Bailey-Serres, 1999).  Considerable 

progress has been made towards the identification of cis-elements and trans-acting 

factors involved in mRNA stability and translational regulation [reviewed in (Abler and 

Green, 1996; Gallie, 1996; Gutiérrez et al., 1999), which are discussed in the later 

sections of this chapter. 

 Both external and internal stimuli can regulate post-transcriptional processes.  

Various external stimuli have been documented to regulate gene expression post-

transcriptionally.  Heat shock affects the stability and translational status of many plant 

mRNAs.  For example, heat shock destabilizes the -amylase mRNA and mRNAs 

coding for secretory proteins in barley aleurone layers 
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(Belanger et al., 1986; Chu et al., 1997).  It is hypothesized that following a heat shock, 

the signal recognition particles (SRPs) bound to nascent secretory proteins are not 

released from the endoplasmic reticulum leading to a premature termination of translation 

and thus resulting in degradation of respective mRNAs (Chu et al., 1997).  In wheat, heat 

shock also brings about translational changes by phosphorylating initiation factors eIF-

4A and eIF-4B (Gallie et al., 1997).  Another external stimulus, sugar, also regulates gene 

expression of rubisco small subunit (RbcS) mRNA in suspension culture cells of tomato 

(Sinha et al., 2002).  -Amylase mRNA in cultured rice cells is more stabilized in the 

absence of sucrose (Sheu et al., 1994).  Hypoxia, anoxia and fungal elicitors alter stability 

and translation of specific plant mRNAs [reviewed in (Bailey-Serres, 1999) and 

(Gutiérrez et al., 1999)].  Arabidopsis pyrroline-5-carboxylate reductase (At-P5R) mRNA 

translation is inhibited by both salt and heat stress (Hua et al., 2001). 

 Internal stimuli, such as hormones, regulate gene expression at both 

transcriptional and post-transcriptional levels.  In ripening tomato fruit, most genes are 

regulated by ethylene at the transcriptional level.  However ethylene-responsive 

proteinase inhibitor (eri, previously known as E17) mRNA in tomato is controlled at the 

level of mRNA stability through stabilization of the mRNA in the presence of ethylene 

(Lincoln and Fischer, 1988).  Cytokinins have also been shown to stabilize chlorophyll 

A/B binding protein of light-harvesting complex II (LHCP) mRNA (Flores and Tobin, 

1988) and soybean -expansin, Cim 1 mRNA (Downes and Crowell, 1998).  In the 

germinating rice seed aleurone layer, gibberellin regulates rice -amylase mRNA 

(Ramy3D) expression at the post-transcriptional level (Nanjo et al., 2004). 
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Light influences multiple levels of nuclear gene expression 

 Of the external stimuli that influence plant gene regulation, light is one of the 

most extensively studied and has been demonstrated to influence expression of many  

nuclear [reviewed in (Petracek and Thompson, 2000)] and chloroplast-encoded genes 

[reviewed in (Bruick and Mayfield, 1999)] through a combined input of both 

transcriptional and post-transcriptional processes.  A clear example of regulation at 

several levels is found for the chlorophyll A/B binding protein (Cab) gene family (also 

can be referred to as either Light harvesting complex A [lhca] or light harvesting complex 

b [lhcb] depending on the primary association of the gene family member with a 

particular light harvesting complex).  Transcription of nuclear-encoded Cab genes in pea 

is mediated through phytochrome and other light receptors [reviewed in (Kuno and 

Furuya, 2000)].  Further, some members of the Lhcb family are also positively photo-

regulated at the translational level (Flachmann and Kuhlbrandt, 1995; Petracek et al., 

1997).  Other examples of translationally regulated nuclear encoded mRNAs include the 

spinach photosystem I subunits D, F and L (PsaD, PsaF and PsaL respectively) 

(Sherameti et al., 2002).  In soybean and petunia, light controls both transcription and 

mRNA stability of members of the Rubisco small subunit gene family (rbcS) (Thompson 

and Meagher, 1990).  Light effects on gene expression have also been well characterized 

for the ferredoxin encoding Fed-1 from pea (Elliott et al., 1989b; Dickey et al., 1992; 

Gallo-Meagher et al., 1992), FedA from Arabidopsis (Bovy et al., 1995) and 

plastocyanin-encoding PetE  (Helliwell et al., 1997) mRNAs.   
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Light-regulated Fed-1 mRNA stability and translation 

 Efforts to identify light-regulated genes expressed in pea led to the isolation of 

Ferredoxin-1 mRNA (Fed-1) (Dobres et al., 1987).  In etiolated pea seedlings exposed to 

light, Fed-1 mRNA accumulated rapidly in higher amounts than many other light-

regulated mRNAs and hence was chosen for further characterization (Kaufman et al., 

1985).  The intronless, single copy, nuclear-encoded Fed-1 mRNA is translated in the 

cytoplasm, the protein is transported into the chloroplast, where it functions to transfer 

electrons from photosystem I to NADP
+ 

(Elliott et al., 1989b). 

 Depending on the developmental stages of pea, light regulates Fed-1 gene 

expression positively at either transcriptional or post-transcriptional levels.  

Phytochrome-mediated transcriptional regulation occurs when the transgenic etiolated 

tobacco seedlings are exposed to light.  In contrast, post-transcriptional regulation 

becomes more significant in mature green plants (Gallo-Meagher et al., 1992).  The 

promoter is minimally light responsive at this stage and the regulation is conferred by 

elements located within the transcribed region of the gene (Gallo-Meagher et al., 1992).  

When fused to the constitutive cauliflower mosaic virus 35S promoter, the transcribed 

region of Fed-1 gene was light responsive in transgenic tobacco plants (Elliott et al., 

1989a).   

 Analysis of cis-elements conferring light responsiveness led to the elucidation of 

an internal light responsive element (iLRE) constituting 95 nucleotides of the 5' 

untranslated region (UTR) plus the first 143 nt of the Fed-1 coding region (Dickey et al., 

1992).  Mutations in the Fed-1 mRNA coding sequence inhibit the light response, 

suggesting that light regulation requires an open reading frame and thus translation of the 
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mRNA (Dickey et al., 1994).  Polyribosome analyses in transgenic tobacco plants 

revealed that Fed-1 mRNA is highly associated with the polyribosomes in light, but not 

in the dark (Petracek et al., 1997) and in vivo labeling data confirm that Fed-1 translation 

is enhanced in the light (Hansen et al., 2001).  In addition, treating transgenic tobacco 

seedlings with photosynthetic electron transport inhibitor, 3-(3,4 -dichlorophenyl)-1,1-

dimethylurea (DCMU) in light or with reduced levels of photosynthetically active 

radiation resulted in the dissociation of Fed-1 mRNA from polyribosomes, suggesting 

translation of Fed-1 is controlled by photosynthesis (Petracek et al., 1997).  Recently, it 

has been shown that liverwort NADPH: protochlorophyllide oxidoreductase (por) 

(Eguchi et al., 2002) and pea PetE mRNAs are also destabilized when the photosynthetic 

electron transport is inhibited (Sullivan and Gray, 2002).   

 Replacing Fed-1 5' UTR with the TMV -5' UTR (“translational enhancer”) 

results in the loss of light regulation at the level of translation and mRNA abundance.  

These observations reveal that Fed-1 5' UTR does not simply promote efficient 

translation, but is necessary for differential translation and stability of the mRNA in the 

light and dark (Dickey et al., 1998).  When progressive 3' deletions of the Fed-1 iLRE are 

fused to the CAT coding region, a minimal sequence of Fed-1 5' UTR plus 13 codons of 

the coding region is sufficient for light-regulated mRNA accumulation (Dickey et al., 

1998).  In addition, mutation of the (CAUU)4 repeat element (present near the 5' UTR 

terminus, nucleotides 16-31) to a 37% GC sequence (16.1 CAUU) results in disruption of 

light-regulated mRNA abundance, but not alteration of Fed-1 mRNA polyribosome 

association (Dickey et al., 1998).  These observations demonstrated that the (CAUU)4 

element is important for differential Fed-1 mRNA stability and not translation.  These 
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data also suggest that at least two separate cis-elements are present in the Fed-1 iLRE: 

one required for rapid polyribosome dissociation, another for decay of Fed-1 mRNA in 

the dark (Dickey et al., 1998).  Direct measurements of Fed-1 mRNA half-life shows 

approximately 2-fold longer half-life in the light than in the dark or in the presence of 

DCMU, confirming that light regulation of Fed-1 mRNA abundance occurs at the level 

of mRNA stability (Petracek et al., 1998).  

 

Light influences multiple levels of chloroplast-encoded gene expression 

 Models have been put forth suggesting light primarily influences chloroplast-

encoded genes at the post-transcriptional level [reviewed in (Bruick and Mayfield, 

1999)].  The chloroplast gene psbA, encoding PSII D1 protein is one of the well-

characterized light-responsive genes.  Light affects translation of psbA mRNA through its 

5' UTR (Danon and Mayfield, 1991).  Many nuclear-encoded, trans-acting factors have 

been identified that associate with the 5' UTR of psbA, psbD (encoding D2 protein) and 

psbC (encoding CP47) mRNAs in a light dependent manner (Danon and Mayfield, 1991; 

Nickelsen et al., 1994; Zerges and Rochaix, 1998).  These proteins have been shown to 

influence the translation and stability of the mRNAs to which they bind.  Interestingly, 

light-regulated binding of a complex of proteins [RB38 (RNA binding 38 kDa protein), 

RB47, RB55 and RB60] to the psbA mRNA is modulated via two regulatory switches, 

redox potential and ADP levels of the chloroplasts (Danon and Mayfield, 1991; Danon 

and Mayfield, 1994a, 1994b).  Cyanobacterial chloroplast mRNA that encodes a PS II D1 

protein homolog (psbA2) is controlled post-transcriptionally by light through a light-

responsive element present in the 5' UTR (Agrawal et al., 2001). 
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Determinants of mRNA stability 

 Post-transcriptional regulation at the level of mRNA stability involves both cis-

acting elements present within the mRNAs and their cognate trans-acting factors. 

Various mRNA features conferring differential mRNA stability have been elucidated.  

(i) AU-Rich Elements (AREs):  AREs (adenylate- and uridylate-rich elements) are well-

characterized mRNA stability determinants that are present in the 3' untranslated regions 

of various mammalian mRNAs from early response genes and also in cytokine mRNAs 

[reviewed in (Chen and Shyu, 1995)].  AREs contain multiple copies of the 

pentanucleotide sequence, AUUUA, that vary in length from ~50 to 150 nucleotides.  

These AU-rich sequences direct rapid decay of the mRNAs that contain them in the 3' 

UTR [reviewed in (Chen and Shyu, 1995)].  In addition to mRNA degradation, ARE 

sequences in the 3' UTR regulate translation of many mRNAs [reviewed in (Espel, 

2005)].  Many ARE binding proteins (AUBPs) including AUF1, HuR and Tristetraprolin 

have been identified to interact with the ARE sequences and affect the stability and 

translation of the mRNA [reviewed in (Bevilacqua et al., 2003)]. 

 AREs can be grouped into three classes [reviewed in (Xu et al., 1997)].  Class I 

AREs, present in c-fos, interleukin 4 (IL-4) and IL-6 contain 1-3 copies of AUUUA 

sequence motif scattered in a U-rich region.  Class II AREs are overlapping copies of 

nonamer UUAUUUA(U/A)U/A present in U-rich regions.  Human granulocyte-

macrophage colony-stimulating factor (GM-CSF), tumor necrosis factor alpha (TNF- ) 

and IL-3 mRNAs have class II AREs in the 3' UTR.  Class III AREs do not have the 

pentanucleotide sequence and are referred to as the Non-AUUUA.  c-jun mRNA contains 

class III ARE.  
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 Many plant mRNAs also contain AU motifs. Takahashi et al. (1989) have shown 

the presence of three AUUUA pentanucleotide sequences in the 3' UTR of a tobacco 

auxin regulated mRNA (designated as par).  Spinach chloroplast mRNA that encodes 

cytochrome b6/f complex subunit IV (petD) contains an 8-nt ARE sequence in the 3' UTR 

that acts as an mRNA stability determinant (Chen et al., 1995).  It has also been shown 

that reporter mRNAs containing 11 overlapping repeats of the AUUUA motif in the 3' 

UTR are degraded more rapidly in tobacco cells than those mRNAs lacking the motif 

(Ohme-Takagi et al., 1993).  As a result, these mRNAs accumulate to a lower level in 

transgenic plants.  Thus ARE-mediated destabilization might be similar in animals and 

plants. 

(ii) Iron-Responsive Element (IRE):  Ferritin and transferrin receptor proteins are 

required for iron metabolism in cells.  Transferrin receptor protein is required for 

importing iron into cells and ferretin for iron storage in cells.  mRNAs encoding these 

proteins are regulated post-transcriptionally by iron that involves an iron-responsive 

element (IRE) and iron-regulatory proteins (IRP) [reviewed in (Theil, 2000)].  The IRE 

contains a 28- to 30-bp hairpin structure with a conserved CAGUGX sequence forming 

the hexaloop of the hairpin, and with a stem containing a mismatched C residue 

[reviewed in (Theil, 2000)].  The transferrin receptor mRNA (TfR) contains five IREs in 

its 3' UTR and the ferritin mRNA (fer) contains a single IRE in its 5' UTR.  IRE regulates 

the half-life of the TfR and translation of the fer mRNA.  When intracellular iron is 

scarce, IRP (iron regulatory protein) binds to the multiple IREs in the 3' UTR of TfR and 

to the single IRE in the 5' UTR of fer mRNA, thereby increasing TfR stability and 

repressing fer translation initiation.  Conversely, high intracellular iron concentrations 
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results in a loss of IRP binding to IREs, thereby destabilizing the TfR mRNA and 

enhancing the translation of fer mRNA [reviewed in (Theil, 2000)].  Thus iron 

homeostasis is achieved by controlling the gene expression at post-transcriptional level. 

(iii) Downstream Element:  Downstream element (DST) is ~40 bp long and contains 

three highly conserved subdomains separated by two variable sequences [reviewed in 

(Gutiérrez et al., 1999)].  This element was first identified in the 3' UTR of very unstable 

soybean SAUR (small auxin-up RNA) mRNAs that rapidly accumulate in response to 

auxin treatment (McClure and Guilfoyle, 1987; McClure et al., 1989).  In tobacco cells, a 

synthetic DST dimer sequence was sufficient to destabilize the reporter mRNAs when 

present in the 3' UTR (Newman et al., 1993).  Through mutational analysis, Sullivan and 

Green (1996) found that ATAGAT and GTA conserved regions of the DST element are 

important for its functioning as an instability element.  Interestingly, a DST element is 

also present in the 3' UTR of Arabidopsis thaliana SAUR-AC1 mRNA, where it is 

suggested to act as an mRNA instability determinant (Gil and Green, 1996).  In 

fibroblasts, soybean DST element increased the decay of rabbit -globin reporter mRNA 

by rapid deadenylation (Feldbrugge et al., 2002).  Interestingly, however, a mutant of 

soybean DST element that stabilized the mRNA in tobacco cells, remained effective in 

destabilizing the mRNA in the mouse fibroblasts, suggesting that although a plant DST 

element can function in mammalian cells, the mRNA sequences required for 

destabilization differ between the systems (Feldbrugge et al., 2002).  

(iv) Double-stranded RNAs:  An important aspect of gene expression control in plants is 

post-transcriptional gene silencing (PTGS)-related mRNA specific degradation, which is 

triggered by double-stranded RNA (dsRNA).  PTGS, also called as co-suppression, is 
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similar to the RNA interference (RNAi) in animals and quelling in fungi [reviewed in 

(Chicas and Macino, 2001)].  Virus (DNA or RNA), sense transgene, antisense transgene 

or simultaneously expressed sense/antisense transgenes can mediate PTGS in plants 

[reviewed in (Fagard and Vaucheret, 2000)].  In plants, three pathways of RNA silencing 

have been elucidated [reviewed in (Baulcombe, 2004).  In all the three pathways, the 

RdRP (RNA dependent RNA polymerase) uses aberrant RNAs (abRNAs) as a template 

to synthesize dsRNA.  These dsRNAs are degraded into short interfering RNAs (siRNAs) 

and microRNAs (miRNAs) by an enzyme DICER (consisting RNase III domain).  The 

siRNAs and miRNAs further direct the mRNA-degradation ribonuclease complex 

(similar to RNA induced silencing complex, RISC in RNAi) to homologous mRNAs, 

thereby allowing homologous mRNA degradation [reviewed in (Baulcombe, 2004)].  In 

plants, PTGS has been reported as a defense mechanism against viral infections, although 

some viruses circumvent PTGS by encoding proteins that suppress PTGS [reviewed in 

(Vaucheret et al., 2001)].  

(v) Stem-loop structures:  Stem-loop structures in the 3' UTRs can also act as stability 

determinants (Klaff et al., 1996).  Mammalian insulin-like growth factor II (IGF-II) 

mRNA has a stem-loop structure in its 3' UTR and this structure is the site for 

endonucleolytic cleavage of IGF-II mRNA (Nielsen and Christiansen, 1992).  The 3' 

UTR of rice -amylase mRNA ( Amy3) contains sugar-responsive domains that are 

putatively folded into extensive stem-loop structures (Chan and Yu, 1998).  Analyses of 

the 3' UTR revealed the presence of I, II and III subdomains that contain AU-rich 

sequences in the loop regions of each domain.  The domains I or III, by themselves were 

sufficient to confer the sugar-dependent differential stability of Amy3 mRNA (Chan and 
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Yu, 1998).  Stem-loop structures in the 3' UTR are also important stability determinants 

for chloroplast mRNAs (Drager et al., 1996).  A stem-loop in the 3' UTR of petD mRNA 

is bound and stabilized by a protein complex termed as chloroplast stem-loop binding 

proteins (CSPs) (Chen et al., 1995; Yang and Stern, 1997).  However, tobacco psbA 

mRNA has a stem-loop in the 5' UTR that is important for its stability and translation 

(Zou et al., 2003).  

(vi) Riboswitches:  Recently, it has been shown that bacterial mRNAs contain a complex 

folded structure (known as Riboswitches) that bind metabolites and regulate their own 

expression [reviewed in (Lai, 2003; Mandal and Breaker, 2004)].  These riboswitches are 

present in the untranslated regions of bacterial mRNAs and contain two domains; an 

aptamer binding domain and an expression domain, which is proposed to transfer the 

metabolite binding signal into genetic control [reviewed in (Winkler and Breaker, 2003)].  

Binding of the metabolite to the aptamer domain results in a conformational change of 

the expression domain, which in turn leads to transcriptional termination or translational 

inhibition [reviewed in (Winkler and Breaker, 2003)].  Metabolites that bind to 

riboswitches often are either direct or indirect products of a regulated operon: coenzyme 

B12, thiamine pyrophosphate (TPP), flavin mononucleotide, lysine, guanine, adenine, S-

adenosylmethionine and glucosamine-6-phosphate [reviewed in (Mandal and Breaker, 

2004)].  Sudarsan et al. (2003) have discovered metabolite binding domains in fungi and 

plants.  Putative thiamine biosynthetic mRNAs (involved in the synthesis of TPP) of A. 

thaliana, rice and bluegrass contain a TPP -binding domain in their 3’ UTRs (Sudarsan et 

al., 2003).  Using structure-probing and in-line probing of in vitro synthesized TPP-

binding RNA domain, the authors have shown that this domain has secondary structure 
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and TPP binding affinity similar to the known bacterial TPP riboswitch.  In addition the 

TPP-binding domain of bluegrass is present upstream of the poly(A) tail in the 3’ UTR, 

and it is speculated that the TPP metabolite binding to the domain might regulate mRNA 

stability (Sudarsan et al., 2003). 

 

The mRNA decay mechanisms in eukaryotes: 

 The decay rates vary significantly from mRNA to mRNA within a cell, ranging 

from 1 min for the yeast pyrimidine pathway regulatory protein 1 (PPR1) mRNA 

[reviewed in (Caponigro and Parker, 1996)] to 60 hrs for human globin mRNAs 

(Kiledjian et al., 1999).  Recent studies in yeast and mammals have localized the 

occurrence of mRNA decay to cytoplasmic foci (P bodies in yeast) (Sheth and Parker, 

2003; Cougot et al., 2004).  Most studies on eukaryotic mRNA degradation have been 

carried out using yeast and mammals.  However, several research groups are focusing on 

the study of plant mRNA decay pathways (Higgs and Colbert, 1994; Kastenmayer and 

Green, 2000; Baginsky and Gruissem, 2002).   

 In eukaryotes, mRNAs can be degraded by two general pathways: 

Deadenylation-dependent decay pathways:  The deadenylation-dependent 5' to 3' decay 

pathway is the primary pathway by which many yeast mRNAs are degraded (Caponigro 

and Parker, 1996).  This pathway is initiated by deadenylation of the mRNA, wherein the 

poly(A) tail is first shortened to a length of ~5 to 15 residues by deadenylases [reviewed 

in (Wilusz and Wilusz, 2004)].  Three mRNA deadenylases have been well characterized 

in eukaryotes including, CcR4p and Pop2p nuclease complex with many other accessory 

proteins, poly(A) nuclease (PAN) complex and poly(A) ribonuclease (PARN) [reviewed 
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in (Parker and Song, 2004)].  Following the shortening of poly(A) tail, the mRNA is 

decapped by the Dcp1p and Dcp2p enzyme complex [reviewed in (Coller and Parker, 

2004)], thereby making the mRNA susceptible to 5' to 3' degradation by the Xrn1p 

enzyme [reviewed in (Parker and Song, 2004; Wilusz and Wilusz, 2004)]. 

 The second common pathway in yeast is the deadenylation-dependent 3' to 5' 

decay.  It has been reported that this secondary pathway involves degradation of many 

different yeast mRNAs by the “exosome”, a multienzyme ribonuclease complex 

(Mitchell et al., 1997; Anderson and Parker, 1998; van Hoof and Parker, 1999; van Hoof 

et al., 2002).  The yeast exosome contains at least ten 3’ to 5’ exoribonucleases and 

interacts with another protein complex (related to RNA helicase family) to recognize and 

degrade its substrate mRNA (Guhaniyogi and Brewer, 2001).  In yeast, the exosome also 

functions in non-stop mRNA decay, characteristic of mRNAs lacking a translation 

termination codon.  In this decay pathway, rather than deadenylation by polyA nuclease, 

the exosome degrades the poly(A) tail along with the rest of the mRNA (Chen et al., 

2001; Wilusz et al., 2001).   

 Many mammalian mRNAs are degraded by exosome-mediated deadenylation-

dependent 3' to 5' pathway.  However some mammalian mRNAs are also suggested to be 

decayed by a deadenylation-dependent 5’ to 3’ pathway [reviewed in (Guhaniyogi and 

Brewer, 2001)].  AU-rich elements (AREs), present in some mRNA 3' UTRs initiate 

rapid decay of the mRNAs through AU binding protein recruitment of the exosome 

complex and PARN to the 3’ end and the decapping enzyme to the 5’ end of the mRNA 

(Chen et al., 2001).  A similar model has been put forth by Mukherjee et al. (2002) to 

explain the sequential recruitment of the degradative machinery in mammals. 
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 The exosome structure and function are also being analyzed in plants using 

Arabidopsis thaliana.  AtRrp41p, plant homolog of yeast Rrp41p has been shown to 

interact in vitro with two yeast exosomal proteins (Chekanova et al., 2002).  Another A. 

thaliana exosome subunit AtRrp4p is a 3' to 5' exoribonuclease, like its yeast counterpart 

and contains two RNA binding domains (Chekanova et al., 2002).  This suggests that the 

exosome structure and function might be conserved among the eukaryotes. 

Deadenylation-independent decay pathways:  mRNA degradation may also occur via 

endonucleolytic cleavage and deadenylation-independent decapping pathway [reviewed 

in (Caponigro and Parker, 1996)]. 

 Yeast L2A mRNA (encoding ribosomal L2 protein) [reviewed in (Caponigro and 

Parker, 1996)], soybean SRS4 mRNA (encoding an RbcS gene family member) (Tanzer 

and Meagher, 1995) and spinach psbA mRNA [reviewed in (Monde et al., 2000) begin 

decay via endonucleolytic cleavage in the coding region of the mRNA .  This initial step 

is succeeded by either 5' to 3' or 3' to 5' decay of the cleaved mRNA.  Similarly, some 

mammalian mRNAs such as, IGF-II and TfR are degraded by endonucleolytic cleavage 

[reviewed in (Guhaniyogi and Brewer, 2001)].  Advances in PTGS studies have further 

increased our understanding of plant mRNA decay pathways.  RNase III ribonucleases 

(Dicer like dsRNases) have been shown to cleave petunia chalcone synthase A (chsA) 

mRNA at a specific site [reviewed in (Gutiérrez et al., 1999)].  Intra- or inter-molecular 

base pairing within the RNA molecule triggers this cleavage.   

 The deadenylation-independent decapping and 5' to 3' decay pathway is 

characteristic of mRNAs containing premature translation termination codons (PTCs).  

This decay mechanism is also referred to as Nonsense Mediated Decay (NMD) and 
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occurs in fungi, plants, nematodes and vertebrates.  Current models suggest ribosome 

associated, RNA surveillance proteins monitor mRNAs with either PTCs, mutations or 

defects (that occurred during pre-mRNA processing) and subject the aberrant mRNAs to 

rapid degradation by NMD [reviewed in (Culbertson, 1999; Baker and Parker, 2004)].  In 

S. cerevisiae Upf1p, Upf2p and Upf3p proteins catalyze the initial steps of the NMD 

pathway.  These proteins recruit aberrant mRNAs into the NMD pathway wherein 

mRNAs are decapped by Dcp1p and degraded 5' to 3' by the Xrn1p exonuclease 

[reviewed in (Culbertson, 1999)].  However, these aberrant mRNAs are also degraded 

through the 3’ to 5’ exonucleolytic decay when the 5’ to 3’ decay is blocked (Mitchell 

and Tollervey, 2003).  In addition to these two pathways, aberrant mRNAs in Drosophila 

are subjected to NMD through the endonucleolytic decay pathway (Gatfield and 

Izaurralde, 2004).  Mammalian mRNAs with premature termination codons are also 

targeted to NMD and various models have been proposed to illustrate the decay 

mechanism [reviewed in (Hentze and Kulozik, 1999; Byers, 2002)].  NMD requires 

downstream elements in yeasts and introns in vertebrates as primary markers [reviewed 

in (Culbertson, 1999)].  Nonsense mutations have also been shown to reduce the 

abundance of bean PHA (encoding phytohemagglutinin) (van Hoof and Green, 1996) and 

pea Fed-1 (Petracek et al., 2000) mRNAs, suggesting the occurrence of NMD in plants.  

Deadenylation-independent 5' to 3' degradation is also characteristic of petD mRNA 

(encoding subunit IV of cytb6/f complex) in Chlamydomonas chloroplasts (Drager et al., 

1999). 

 As mentioned earlier, light coordinates the expression of many photosynthetic 

mRNAs in plants.  Our laboratory is interested in the light regulation of gene expression 
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at the level of translation and mRNA stability.  We are using pea Fed-1 mRNA as a 

model to study the post-transcriptional regulation by light.  In this work, I have 

characterized the cis-elements involved in light-regulated Fed-1 mRNA stability.  I have 

also identified the putative trans-acting protein factors that might play a role in Fed-1 

mRNA regulation.  In addition I have identified other plant mRNAs that are regulated 

post-transcriptionally like Fed-1 in response to the photosynthetic changes.   
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CHAPTER 2 
 
 
 
THE FED-1 (CAUU)4 ELEMENT IS A 5’ UTR DARK-RESPONSIVE mRNA 

INSTABILITY ELEMENT THAT FUNCTIONS INDEPENDENTLY OF DARK-

INDUCED POLYRIBOSOME DISSOCIATION 

 
 This chapter is a published article (Bhat et al., 2004).  Writing of the original 

manuscript and major part of the work described in this chapter were done by me.  The 

polyribosome analysis in Figure 6 was done by Dr. Marie Petracek.  Dr. Li Tang did the 

half-life measurements of PTop10:F-16.1 construct.  RNA isolation of F5’-NLTP cod, 

USr(CAUU)4:NLTP and USr:NLTP constructs were done by Angela Krueger.  F-

(CAUU)4DSmut construct and RNA isolations were done by Dr. Sharon Ford.  In vitro 

structure analysis was done by Chris Smith.  Statistical analysis presented in this work 

was done by Dr. Larry Claypool. 
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INTRODUCTION 

 mRNA stability is controlled by cis-acting sequences and trans-acting factors.  A 

number of cis-acting sequences that destabilize mRNAs in plants have been characterized 

including the AU-rich element (ARE) which destabilizes mammalian and plant mRNAs 

in a translation-dependent manner (Ohme-Takagi et al., 1993; Chen et al., 2001; Sarkar et 

al., 2003) and the downstream element (Carter et al.), which is present in the 3' UTR of 

unstable plant mRNAs including the SAUR mRNAs in soybean (Gil and Green, 1996; 

Perez-Amador et al., 2001).  RNA secondary structure also may regulate mRNA stability 

for RNAs such as rice -amylase ( Amy3).  Three potential stem-loop forming 

subdomains within the Amy3 3' UTR confer sugar-dependent differential stability to the 

mRNA (Chan and Yu, 1998).  Finally, the Nonsense Mediated Decay (NMD) system 

which targets mRNAs that contain a premature termination codon for rapid degradation 

via a translation-dependent mechanism is also active in plants (van Hoof and Green, 

1996; Petracek et al., 2000). 

 Light regulation of plant mRNA stability has been described for a number of 

nuclear and chloroplast mRNAs [reviewed in (Petracek and Thompson, 2000)].  Specific 

cis-sequence elements have been implicated in regulation of stability for a number of 

chloroplast mRNAs, including psbA (Eibl et al., 1999; Zou et al., 2003), petD (Higgs et 

al., 1999; Baginsky and Gruissem, 2002), and atpA (Drapier et al., 2002).  Similarly, cis-

sequences controlling light-responsive nuclear-encoded mRNA stability have been shown 

to be located within the 5' UTR and/or adjacent coding sequences.  For example, blue 

light perceived by the phototropin receptor, destabilizes the Lhcb1*4 mRNA through 

sequences within the 5' UTR (Anderson et al., 1999; Folta and Kaufman, 2003).  
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Photosynthetic signals control the stability of the pea Ferredoxin-1 (Fed-1) and 

plastocyanin (PetE) mRNAs.  In transgenic tobacco, constitutively transcribed Fed-1 and 

PetE mRNAs accumulate more during active photosynthesis than when photosynthetic 

electron transport is inhibited (Petracek et al., 1997; Sullivan and Gray, 2002).  Direct 

measurement of the stability of Fed-1 mRNA using the repressible promoter, PTop10 

showed that Fed-1 mRNA is destabilized when photosynthesis is inhibited (Gatz, 1995; 

Petracek et al., 1998).  For both PetE and Fed-1, elements controlling light-regulated 

mRNA accumulation require the 5' UTR and some of the adjacent coding sequences of 

the mRNAs when fused to bacterial reporters (Helliwell et al., 1997; Dickey et al., 1998).  

Site-directed mutagenesis of the Fed-1 5' UTR revealed the importance of a (CAUU)4 

repeat element (present near the 5' UTR terminus, nt 16-31) for light-regulated mRNA 

accumulation (Dickey et al., 1998). 

 Fed-1 mRNA is polyribosome associated in the light but dissociates from 

polyribosomes in the dark during the same time-frame in which the mRNA is 

destabilized (Petracek et al., 1998; Hansen et al., 2001).  Mutation of the (CAUU)4  

sequence to a 37% GC sequence (16.1 mutation) disrupts light-regulated mRNA 

accumulation but not dark-induced Fed-1 mRNA polyribosome dissociation suggesting 

that apparent changes in translation of Fed-1 mRNA is not due to the destabilization of 

polyribosome associated mRNA (Dickey et al., 1998).  However, these data do not 

address if polyribosome dissociation is required for Fed-1 mRNA instability in the dark. 

 Here we show through direct half-life measurement that a (CAUU)4 repeat 

mutation stabilizes Fed-1 mRNA in the dark.  Furthermore, a 26 nt region of the Fed-1 5' 

UTR that includes the (CAUU)4 repeat is sufficient to confer an ~ 2.5 fold change in light 
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induced accumulation to a non-light regulated plant mRNA.  Finally, we find that Fed-1 

mRNA shows reduced mRNA accumulation in the dark even for mutants that are 

retained on polyribosomes in the dark.  Together, these data suggest that a small 5' 

localized (CAUU)4  element is the target for specific mRNA degradation that is active in 

the dark.  

 

MATERIALS AND METHODS 

 

Plasmid constructs  

 The plasmids illustrated in Figure 1 were all derived from a plasmid carrying the 

pea ferredoxin-1 (Fed-1) cDNA (Elliott et al., 1989) and transcribed from P35S in pBI121 

(Jefferson, 1987; Jefferson et al., 1987).  Mutant constructs, F-(CAUU)1 ,F-(CAUU)2 , F-

(CAUU)3 , F-(CAUU)6 , F- CAUU , F-(CAUU)45'DS , F-34ntdeln  and  F-(CAUU)4 DSmut 

were generated by two sequential Polymerase Chain Reactions (PCR), as described 

previously (Dickey et al., 1994).  Mutant clones, F-(CAUU)4USmut, F-US/DSmut, F-

(CAUA)4 , F-(AAUU)4  and F-51ntdeln were generated by single PCR reactions using 

mutated sense primers with BamH1 site at the 5' end and M13 –20 primer.  The PCR-

amplified regions of the plasmids were sequenced by the Oklahoma State University 

DNA/Protein Core facility.  All the mutant Fed-1 genes were inserted in pBI121 by 

flanking XbaI or BamHI and SstI restriction enzyme sites, replacing the GUS gene.  

PTop10:F-16.1 and PTop10:F-16.2 were made similar to PTop10:Fed-1 construct as described 

previously (Petracek et al., 1998). 
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Figure 1:  Light:dark mRNA accumulation of transgenes in tobacco 
 
L:D mRNA accumulation ratios of transgenes and the standard error of the mean were 
derived from Northern analysis of total RNA isolated from at least 4 independent 
transgenic tobacco lines treated with 3 day dark + 6 hr light or + 6 hr dark on at least 2 
separate days.  We used a one-tailed t test to determine if the L:D ratio was significantly 
increased compared to a control mRNA containing same coding sequence but no 
(CAUU)4:  F- CAUU for P35S and Fed-1cod transgenes or P35S: NLTP for P35S and 
NLTPcod transgenes (*, P< 0.05 and **, P<0.01).  Similarly we asked if the L:D was 
significantly decreased compared to a control mRNA containing the entire Fed-1 5’ UTR 
(P35S:Fed-1 and F5’:NLTP for Fed-1 coding and NLTP coding transgenes) (#, P<0.05, ##, 
P<0.01).  The WT sequence of the 5' UTR of the Fed-1 transgene mRNA is presented at 
the top of the figure.  Identity with that sequence in the chimeric or mutant mRNAs is 
indicated by a solid horizontal line except that WT nt that flank mutation sites are shown 
in non-bold, non-underlined font to provide sequence junctions.  NLTP sequences are 
similarly indicated by double horizontal lines.  CAUU sequences are indicated by a gray 
box.  Mutated sequences are indicated by bold font and underlining.  Deletion or the 
absence of sequences is indicated by a gap.  P35S and the nopaline synthase terminator 
were used for all chimeric transgenes shown except where indicated (PTop10).  A bold 
dashed line represents the PTop10 polylinker sequence (5’atatcgaattcctgcagcccgggggatccac 
tagttctagaggatccc3’) that is at the 5’ end of PTop10 driven mRNAs.  Transcriptional start 
sites mapped by 5' RACE are indicated by triangular arrowheads ( ).  The 
transcriptional start site of Native Fed-1 containing no polylinker sequence was 
confirmed by 5' RACE, and is marked with an arrowhead ( ). 
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Full length NLTP cDNA (Genbank accession Y14560) was obtained from pea (Pisum 

sativum) leaf total RNA by 3' RACE (Gibco-BRL) and cloned into pPCR-Script Amp 

SK+.  The resulting pSK-NLTP was used as a template for PCR to generate F 5’-

NLTPcod, US(CAUU)4:NLTP, US16.1:NLTP, USr(CAUU)4:NLTP and USr:NLTP  

plasmid constructs.  All PCR amplifications mentioned above were carried out using 5 

min at 95ºC, followed by 30 cycles of:  95ºC for 1 min, 50ºC for 1 min and 72ºC for 1 

min 30 sec. 

 

Plant transformation and growth 

 All the constructs in pBI121 were first transferred into Agrobacterium 

tumefaciens LBA 4404 by electroporation and then transformed into Nicotiana tabacum 

(SR-1, Petite Havana) as described previously (Dickey et al., 1998).  Transgenic plants 

were grown in growth chambers (Percival Scientific, Inc.) at 22ºC, with a 12 h light/12 h 

dark cycle and under a light intensity of 250-300 µmol m –2 sec –1.  For mRNA abundance 

experiments, clonally -paired plants were transferred to the dark for 3 days and then 

either brought back to the light or left in the dark for an additional 6 h.  The youngest, 

fully expanded leaf was harvested into liquid N2 as described previously (Dickey et al., 

1998).  For polyribosome analyses, transgenic tobacco plants were grown in soil for at 

least 1-2 weeks on a 12 h L:D cycle.  ~8 h into the light cycle plants were transferred to 

the dark for 15 min or left in the light for an equivalent length of time, then harvested into 

liquid N2. 
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RNA and polyribosome analysis 

 Total RNA was extracted as described by (Tang et al., 2003) and Northern blot 

analyses were done as described by (Petracek et al., 1997).  Blots were exposed to Kodak 

X-OMAT Blue XB-1 films with intensifying screens for 1-24 hr at -80°C.  

Phosphorimager (BioRad, Hercules, CA) analyses were used to detect the amount of 

mRNA in Northern blot hybridization.  Polyribosome analyses, Northern blot analyses 

and mRNA quantification was done as described previously (Petracek et al., 1997). 

 

5' and 3' RACE 

 MicroPoly(A)PureTM Kit (Ambion) was used to isolate mRNA from ~100-200 µg 

total RNA extracted from the appropriate transgenic tobacco lines.  5' RACE was 

performed with FirstChoiceTM RLM-RACE Kit (Ambion) according to manufacturer’s 

protocol.  About 100 ng of wild type and mutated Fed-1 Poly(A) RNA was used to 

produce single-stranded cDNA with a gene specific antisense primer 5'-

TGTGGTGGTGACTGACATTG-3'.  The target cDNA was amplified by PCR with 5' 

RACE adapter inner primer and gene-specific antisense primer 5'-GCATTGGCTGAG 

TCTGAGG-3' using either Taq DNA polymerase (Invitrogen) or Expand High Fidelity 

system (Roche Applied Science, Manheim Germany).  PCR amplification was carried out 

using 3 min at 94ºC, 35 cycles of denaturation at 94ºC for 30 sec, hybridization at 55ºC 

for 30 sec and extension at 72ºC for 30 sec.  The PCR products were purified using 

QIAquick PCR Purification Kit (Qiagen, Inc.) and sequenced by the Oklahoma State 

University DNA/Protein Core facility.   

 



 31

Half-life measurements 

 T2 seeds from transgenic lines PTop10:Fed-1, PTop10:F-16.1 and PTop10:F-16.2 were 

sterilized and grown on nylon membranes in magenta boxes as described previously 

(Petracek et al., 1998).  Plants were grown at 22ºC in a growth chamber for 3-4 weeks.  

Seedlings at the four-leaf stage were treated in the boxes with 10 mg/L tetracycline in 

Hoagland’s solution.  The lids of the boxes were propped open for one hour to allow the 

uptake of tetracycline by transpiration.  After one hour, the time zero samples were taken 

and the remaining boxes were closed and left in light (L) or wrapped in aluminum foil 

(D).  At each time point duplicate or triplicate samples were harvested into liquid 

nitrogen followed by storage at -80ºC. 

 

In vitro structure analysis 

 Template DNA for in vitro transcription was generated from the constructs F-

5’:Pcod, F-(AAUU)4.  and F-(CAUA)4.  F-5’:Pcod was generated by PCR-based overlap 

extension method with Fed-1 and pea plastocyanin coding sequence (pUC LD4) as 

templates.  The 5’ primer is homologous to the upstream polylinker sequence and 

contains the T7 promoter (5’-CGCGCGTAATACGACTCACTATAGGGACGG 

GGGACTCTAGAGGATCCC-3’).  With the 3’ primer (5’-CATTACTATTATGG 

TTTC-3’), a 138 bp PCR product was generated.  RNAs were prepared by in vitro 

transcription using the T7-MEGAshortscript kit (Ambion) following the manufacturer’s 

protocol.  The transcripts were purified by 6% denaturing PAGE and eluted in Tris-

EDTA (pH 8.0) at 65ºC for 2 h and then ethanol precipitated at –80ºC overnight.  5’ 32P 

end-labeled transcripts were made using the KinaseMax kit (Ambion) following the 
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manufacturer’s protocol.  Labeled transcripts were re-purified as above.  Before RNase 

digestion, RNAs were denatured at 95ºC for 5 min and then cooled to room temperature 

for 30 min.  RNase A and V1 digestions were conducted as per the manufacturer’s 

(Ambion) protocol with the following concentrations:  RNase A (0.001 and 0.01 µg/ml) 

and RNase V1 (0.0001 and 0.001 U/µl).  Digested products were separated by a 6% 

sequencing gel, dried, and visualized by autoradiography. 

 

RESULTS  

 

The (CAUU)4 repeat is necessary for destabilizing the Fed-1 mRNA in the dark 

 Previously, using the PTop 10 system (Gatz, 1995), we showed an ~ 2-fold 

difference in wild-type Fed-1 mRNA half-life in light-treated versus dark-treated tobacco 

(t1/2 = 2.4 hr and t1/2 = 1.2 hr, respectively) (Petracek et al., 1998).  Furthermore, site-

specific mutations of the (CAUU)4 repeat located near the 5' end of the Fed-1 5' UTR (see 

Figure 1) abolished light-regulated Fed-1 mRNA accumulation (Dickey et al., 1998), 

suggesting a role for (CAUU)4  in light-regulated mRNA stability.  When RNA from 

several of the mutant Fed-1 expressing transgenic plant lines were combined, the 

apparent average abundance of the mutated Fed-1 mRNA appeared to be increased 

following three days in the dark compared to wild-type Fed-1 mRNA (Dickey et al., 

1998), suggesting that the (CAUU)4 repeat may be necessary for destabilization of the 

Fed-1 mRNA in response to dark.  To verify the role of (CAUU)4 in Fed-1 mRNA dark 

destabilization, we used the PTop10 system to directly determine if mutation of the 

(CAUU)4 repeat increased the half-life of the Fed-1 mRNA in the dark (Weinmann et al., 



 33

1994; Petracek et al., 1998).  We fused the PTop10 to two different mutations in the Fed-1 

transgene.  The transcriptional start site of the previously described (CAUU)4 substitution 

mutation F-16.1 (Dickey et al., 1998) occurs within the polylinker sequence of the Top10 

promoter (Figure 1) and the  (CATT)4 substituted with polyT in the transgene produces 

an mRNA with a deletion of the (CAUU)4 along with the upstream sequences (F-16.2, 

Figure 1).  Light-regulated mRNA accumulation was abolished for both mutations [steady 

state L:D mRNA accumulation ratios of 1.2 ± 0.1 and 1.0 ± 0.3, respectively (Figure 1)].  

Tetracycline was applied to the roots of intact transgenic tobacco seedlings containing the 

PTop10 driven wild-type or mutated Fed-1 mRNAs.  Following uptake of tetracycline, 

plants retained in the light or placed in the dark at time 0 were harvested at times shown 

in Figure 2.  Fed-1 mRNA half-lives were calculated as described previously (Petracek et 

al., 1998).  The half-life measurement of wild-type (WT) PTop10:Fed-1 mRNA served as a 

control for each of four biological repetitions (Figure 2A), and repeated previous results 

showing that Fed-1 mRNA is destabilized in the dark (light t1/2 = 2.1 h and dark t1/2 = 1.2 

h) (Petracek et al., 1998).  Compared to WT Fed-1 mRNA, mutation of the (CAUU)4 

element increased the mRNA half-life in the dark (PTop10:F-16.1 t1/2  = 2.1 hr and PTop10:F-

16.2 t1/2 =2.7 h).  In contrast, the half-lives of mutant mRNAs were similar in the light 

(PTop10:F-16.1 t1/2  = 2.1 and PTop10:F-16.2 t1/2  = 2.3 hr) relative to WT mRNA half-life 

(Figure 2B and 2C).  These data indicate that the (CAUU)4 repeat is necessary for 

destabilization of Fed-1 mRNA in the dark. 
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Figure 2:  Effect of two different substitutions of (CAUU)4 sequence on Fed-1 mRNA 
half-life in transgenic tobacco plants. 
 
Half lives of (A) wild-type Fed-1 mRNA (B) F-16.1 mRNA, and  (C) F-16.2 mRNA T2 
transgenic seedlings from PTop10:Fed-1, PTop10:F-16.1 and PTop10:F-16.2 (10-15 seedlings 
per sample) were grown on nylon membranes, and treated with 10mg/L tetracycline for 1 
hr and then, at T0, left in the light (L) or covered with foil for darkness (D) for 1 h, 2 h, 3 
h, or 4 h prior to RNA isolation.  10 µg total RNA was separated by gel electrophoresis, 
transferred to nylon membrane, hybridized with an antisense 32P-labeled Fed-1 RNA and 
exposed to X-Ray film.  Hybridizing mRNA was quantified by Phosphoimager analysis.  
The RNA remaining at each time point was determined relative to the amount at the zero 
time point and plotted on a semi-log graph.  Best-fit lines are shown with standard error 
for each transgene.  Each time point is derived from at least three separate experiments.  
The horizontal line indicates 50% remaining mRNA.  L, light and D, dark. 
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Sequences adjacent to (CAUU)4 are not a part of the Fed-1 mRNA instability 

element 

 Previously, most of the Fed-1 5' UTR was mutated in 10 nt increments and 

showed wild type L:D mRNA accumulation (Dickey et al., 1998).  However, it is 

possible that larger regions, perhaps forming a stem-loop structure or containing 

redundant sequences contribute to light regulated mRNA accumulation.  MFOLD 

predicts the possible formation of a 34 nt stem-loop structure downstream of the 

(CAUU)4 repeat, ( G, -10.0) (Zuker et al., 1999).  We deleted the 34 nt predicted stem 

loop from the full-length Fed-1 transcribed sequence and found that light-regulated 

mRNA accumulation of F-34ntdeln does not significantly differ from the wild-type.  

(L:D ratio of 3.7 + 0.4, Figure 1).  Furthermore, mutation of the 18 nucleotides 

immediately downstream of the (CAUU)4  (F-(CAUU)4DSmut) or deletion of the 

downstream sequence and the stem-loop (F-51ntdeln) are also light responsive (L:D ratio 

of 5.3 ± 0.9 and 3.5 ± 0.4 respectively, Figure 1).  These data suggest that neither the 

predicted 34 nt stem-loop structure nor the adjacent stem-loop sequence immediately 

downstream of the (CAUU)4 element contribute to light-regulated accumulation of Fed-1 

mRNA.   

 Mapping of the 5’ end of the transgene mRNAs has shown that most contain 22 nt 

derived from the binary vector polylinker (Figure 1).  Removal of the polylinker 

sequence (Native Fed-1, transcription start site indicated by arrow in Figure 1) showed 

that the sequence does not contribute to light regulated mRNA accumulation (L:D ratio 

of 4.0 + 0.5).  Furthermore, transgene mRNAs containing either mutation of the 10 nt 

CU-rich region upstream of the (CAUU)4 element [F-US(CAUU)4mut] or a combination 
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of mutations in the CU-rich upstream and downstream regions of the (CAUU)4 element  

(F-US/DSmut) display normal L:D regulation of mRNA accumulation (L:D ratio of 4.4 ± 

0.4 and 4.3 ± 0.6, respectively, Figure 1) suggesting these sequences do not contribute to 

light regulated mRNA accumulation. 

 

26 nt at the 5' end of the Fed-1 5' UTR including the (CAUU)4 repeat is sufficient to 

confer at least 2.5 fold change in light-regulated mRNA accumulation 

 The (CAUU)4 repeat is clearly necessary for dark-induced mRNA instability of 

Fed-1 mRNA.  To fully delimit the instability element, we asked what sequences are 

sufficient to confer light-regulated mRNA accumulation to a plant-derived mRNA that 

does not show light-regulated mRNA accumulation.  We tested a portion of the pea non-

specific lipid transfer protein (NLTP) cDNA under the control of the CaMV 35S (P35S) 

promoter for light regulated mRNA accumulation in transgenic tobacco.  The resulting 

mRNA showed a L:D ratio of 1.2 ± 0.2, fitting our criteria of an mRNA that does not 

show light regulated mRNA accumulation (Figure 1).  Replacement of the NLTP 5’ UTR 

with the Fed-1 5’ UTR showed that Fed-1 5' UTR is sufficient to confer a 3-fold change 

in light-regulated mRNA accumulation (L:D ratio of 3.0 ± 0.6, Figure 3).  We asked if 26 

nt of the Fed-1 5’ UTR that includes the (CAUU)4 and the 10 upstream (US) nt was 

sufficient for dark-induced mRNA instability.  To test this, we fused these 26 nt or 26 nt 

with the 16.1 mutation to the 5' terminus of NLTP [underlined and bold for 

US(CAUU)4:NLTP and US16.1:NLTP respectively in Figure 1].  Using our standard 

light-dark mRNA accumulation assay (Dickey et al., 1998), we determined that, similar 

to the  NLTP mRNA with no Fed-1 sequences, the US16.1:NLTP mRNA showed a L:D 
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Figure 3: (CAUU)4 element is sufficient to confer L:D regulated mRNA 
accumulation on  light insensitive NLTP.   
 
Portions of the Fed-1 mRNA were fused to the NLTP mRNA as shown in Figure 1.  The 
light response is shown as a ratio of mRNA levels in the light to mRNA levels in the dark 
(L:D).  There is zero light induction when L:D = 1 (Indicated by the vertical line drawn at 
1.) Standard error of the mean is indicated by the error bars.  8-16 independent 
transformants were analyzed for each construct. 
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ratio of 1.4 ± 0.1 (Figure 1 and 3).  In contrast, US(CAUU)4:NLTP mRNA significantly 

increased the L:D ratio to 3.0 ± 0.7 (Figure 1 and 3, P < 0.05 when compared to NLTP 

mRNA).  These data confirm that the terminal 26 nt of the Fed-1 5' UTR including the 

(CAUU)4 repeat and 10 nt upstream are sufficient to confer significant light regulation to 

a non-light-regulated mRNA.  We asked if US sequences significantly contributed to the 

observed L:D regulation of the 26 nt element and found that randomization of the US 

sequences [USr(CAUU)4:NLTP] did not significantly reduce the L:D ratio in the presence 

of the (CAUU)4 sequence (L:D ratio of 2.3 ± 0.3, Figure 1 and 3), suggesting that the 

sequences upstream of the (CAUU)4 contribute little to light regulated mRNA 

accumulation.  However, removal of the (CAUU)4 sequence (USr:NLTP) significantly 

reduced (and inverted) L:D response to 0.6 ± 0.1 (Figure 1 and 3, P< 0.05).  Together 

these data strongly suggest that a 26 nt element is sufficient for a significant change in 

L:D mRNA accumulation on a heterologous mRNA. 

 

The primary sequence of (CAUU)4 is essential for its function 

 We asked what particular feature(s) of the (CAUU)4 element confers dark 

instability to Fed-1 mRNA.  One hypothesis is that the secondary structure of the CAUU 

rich region as predicted by MFOLD at 38°C (Zuker et al., 1999), may be either unbase-

paired ( G = -10.0) or contain a base-pairing between the last CAUU and the AUG ( G 

= -9.6)  (M.P unpublished).  This relatively unstructured region may make the mRNA 

vulnerable to decay.  To test this idea, we constructed mutations of the (CAUU)4 repeat 

that changed only a single nucleotide of each repeat and analyzed the L:D mRNA 

accumulation of each transgene.  L:D mRNA accumulation of F-(AAUU)4, which 
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predicted to form a hairpin structure of the AAUU region ( G = -11.3) was significantly 

reduced from wild-type Fed- 1 mRNA but also significantly greater than F- CAUU 

(P<0.05 and P<0.01 respectively, Figure 4A).  In contrast, L:D mRNA accumulation of 

F-(CAUA)4, which was predicted to adopt either an unbase-paired ( G = -10.0) or base-

paired structure ( G = -9.2) similar to the native (CAUU)4 element, was significantly less 

than wild-type Fed-1 and not significantly greater than F- CAUU (P<0.01 and P>0.05 

respectively, Figure 4A).  These results suggest that primary sequence or perhaps the 

repetitive nature of the sequence, rather than base-pairing of the CAUU with other 

regions, may be the important determinant of the (CAUU)4 element in inducing mRNA 

degradation in the dark.   

 To test the possibility that the geometry of the (CAUU)4 region itself may be 

important for instability (Soukup and Breaker, 1999), we determined the in vitro structure 

of the wild-type Fed-1 5’ UTR compared to the F-(AAUU)4, and F-(CAUA)4 mutants.  In 

vitro transcribed, 32P labeled mRNA was treated with RNase A and RNase V1 and 

resolved by denaturing polyacrylamide gel electrophoresis.  As shown in Figure 5, both 

the wild-type (CAUU)4 region and the mutated F-(AAUU)4 form a repeating structure 

which is cleaved by RNase A following the last U of each repeat although RNase A has 

the potential to cleave at both ssC and ssU.  The position of these cleavages was 

confirmed by cleavage with RNase T2, which cleaves at the first ssA of each repeat, and 

alkaline hydrolysis which produces a ladder, (C. S., data not shown).  The vulnerability 

of the F-(AAUU)4 RNA to single-stranded nucleases and the similarity of these cleavages 

to those seen for the wild Fed-1 mRNA suggests that the region does not form the hairpin  
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Figure 4: Mutation of the (CAUU)4 repeat. 
 
(A) The light response is shown as a ratio of mRNA levels in the light to mRNA levels in 
the dark (L:D).  There is zero light induction when L:D = 1 (Indicated by the vertical line 
drawn at 1.) Standard error of the mean is indicated by the error bars.  4-23 independent 
transformants were analyzed for each construct.  (B) Polyribosome analysis of transgene 
mutants in the (CAUU)4 repeat.  mRNA fractions from sucrose gradients were resolved 
by gel electrophoresis, blotted and hybridized with 32P-labeled Fed-1 antisense RNA.  
Each analyses presented is representative of at least two separate experiments.  Fractions 
indicated as 1 through 12, represent the top to the bottom of the gradient and fractions 6 
to 12 are polyribosomal fractions.  (C) L:D mRNA accumulation of mutant Fed-1 
mRNA.  For each different transgene, 5µg of total mRNA from each of nine clonally 
paired transgenic tobacco lines that had been treated with 3 d dark + 6 h light or 3d dark 
+ 6 h dark was pooled.  5 µg of the light (L) and dark (D) treated pooled RNAs were 
resolved on the same gel, blotted, and the transgene mRNA was detected following 
hybridization with 32P-labeled Fed-1 antisense RNA and exposure to X-ray film. 
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Figure 5: A (CAUA)4 mutation of the (CAUU)4 region has altered sensitivity to 
RNase V1 and RNase A in vitro.   
 
In vitro transcribed wild-type (CAUU) 4, (AAUU) 4 mutant, and (CAUA)4 mutant Fed-1 
5’ UTRs was labeled with 32P, subjected to RNase V1 or RNase A cleavage as indicated, 
and resolved by denaturing PAGE, and exposed to X-RAY film for 1-4 days.  
Nucleotides within the wild-type or mutant (CAUU)4 region are as indicated.  Arrows 
show the region of RNase V1 sensitivity in each wild-type repeat that is absent in the 
mutant mRNA. 



 42

structure predicted by MFOLD.  RNase V1, which cleaves primarily at helical and often 

double-stranded structures (Lowman and Draper, 1986), appeared to cleave both the 

wild-type and the mutated F-(AAUU)4 sequences with regularity in the AU junction of 

each repeat.  Because the region is sensitive to single-stranded nucleases RNase A and 

RNase T2, we conclude that RNase V1 cleavages of wild-type and F-(AAUU)4 are more 

likely due to a helical rather than base-paired structure.  In contrast, the F-(CAUA)4 

mutant repeat did not appear to be sensitive to RNase V1 and the first C and the third U in 

each repeat was accessible to RNase A cleavage in the mutant.  Thus the data indicate 

that the F-(CAUA)4 mutation changes the geometry of the repeat in vitro.  These changes 

in vitro structure correlate with the relative sensitivity of the CAUU mutations to 

light:dark mRNA accumulation in vivo.  Therefore, it is possible that these structural 

changes take place in vivo, either altering the sensitivity to endonuclease attack, or 

changing an inherent ability for self-cleavage (Soukup and Breaker, 1999). 

 

The (CAUU)4 repeat does not function in a downstream location within the Fed-1 5' 

UTR 

 Although the (CAUU)4 element is clearly necessary for Fed-1 mRNA 

destabilization in the dark, it remains unclear how this element functions in the Fed-1 

mRNA decay.  We hypothesized that the position of the (CAUU)4 repeat near the 5' end 

of the mRNA targets the Fed-1 mRNA for decapping, thus promoting mRNA decay 

(Higgs and Colbert, 1994).  If so, its position at the 5' end should be critical for its 

function.  To test this idea, we inserted the (CAUU)4 repeat 38 nt downstream of its 

original position in the 5' UTR with simultaneous deletion of the (CAUU)4 repeat from its 
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normal location (F-(CAUU)45'DS, Figure 1) and compared the L:D mRNA accumulation 

to L:D accumulation of a Fed-1 transgene containing a deleted (CAUU)4 sequence (F-

CAUU, Figure 1).  In both cases, the mutated transgene mRNA showed a significantly 

reduced differential mRNA accumulation in response to light (Figure 4A) suggesting that 

the position of the (CAUU)4 repeat within the Fed-1 5' UTR is important for its function.  

Furthermore, both mutated mRNAs showed wild type dissociation from polyribosomes in 

the dark (Figure 4B) supporting the idea that the (CAUU)4 repeat is not required for 

polyribsome dissociation of full-length Fed-1 mRNA in the dark. 

 

Three CAUU repeats are required for full light regulation of mRNA abundance 

 From a comparison of 14 5’ UTR sequences of mRNAs that accumulate in the 

light but not in the presence of DCMU (Tang et al., 2003), we noted that in a total of 749 

nt, 5 of the 5’ UTRs contained a total of 7 dispersed (CAUU)s, a frequency greater than 

expected for a random nt distribution (M.P unpublished).  Thus, we hypothesized that just 

one CAUU repeat or two repeats could be sufficient for at least partial destabilization of 

Fed-1 mRNA in the dark.  We re-introduced 1, 2 or 3 CAUU repeats into the F-16.2 to 

form F-(CAUU)1, F-(CAUU)2 and F-(CAUU)3 respectively (Figure 1).  In transgenic 

tobacco, the presence of either 1, 2, or 3 CAUU units in the 5' UTR of Fed-1 resulted in 

L:D mRNA accumulation ratios of 2.3 + 0.3, 2.7 + 0.2, and 5.0 + 0.9, respectively 

(Figure 4A).  These results suggest that one or two (CAUU)s can confer partial light-

regulated mRNA accumulation and that an increased number of CAUU repeats correlates 

with an increased difference in light-responsive mRNA accumulation.   
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 For AU-rich mRNA instability elements (see Introduction) it has been 

demonstrated that increasing the number of AUUUA motifs in a reporter mRNA 

increases the instability of the mRNA (DeMaria and Brewer, 1996).  Therefore, we asked 

if adding additional CAUU units would further increase the L:D mRNA accumulation 

ratio.  A Fed-1 mRNA with six CAUU repeats [F-(CAUU)6, Figure 1) showed a slight, 

but significant increase in the L:D mRNA accumulation compared to WT P35S:Fed-1 

mRNA (P<0.05, Figure 4A) and F-(CAUU)3 mRNA whereas eleven CAUU repeats 

decreased the differential mRNA accumulation (F-(CAUU)11, Figure 4A).  Thus the 

maximal L:D mRNA accumulation conferred by the CAUU element appears to be 

approximately 5-fold.   

 We hypothesized that the increased differential accumulation of Fed-1 mRNA 

with increased numbers of (CAUU)s [up to six (CAUU)] resulted from decreased mRNA 

stability in the dark.  This predicts that overall abundance between the transgenic lines in 

the dark should decline, but should remain relatively the same in the light.  Since the 

abundance of a transgene in individual transgenic lines can vary greatly, depending upon 

the individual genomic insertion, individual transgenic lines cannot be used to compare 

light and dark mRNA abundances for different transgenes.  However, a good estimate of 

relative mRNA abundance (and mRNA stability if transgenes are driven by the same 

promoter) can be achieved by combining total RNA from several lines containing the 

same transgene to get an average abundance (e.g. compare the results in (Dickey et al., 

1998) and direct half-life measurements in Figure 2).  Thus, we pooled 5 µg of total RNA 

from clonal pairs of nine independent T-DNA insertion lines treated with the light or dark 

(Dickey et al., 1998).  5 µg of each pooled total RNA was resolved on gels, blotted to 
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nylon membrane, hybridized with 32P-labeled antisense Fed-1 mRNA and quantitated the 

resulting bands using Phosphorimager analysis.  Comparison of the relative light and 

dark abundances of the F-(CAUU)1, F-(CAUU)2, F-(CAUU)3, and F-(CAUU)6 mRNAs 

shown in Figure 4C suggests that, as predicted, increasing the numbers of CAUU units 

most dramatically decreased levels of Fed-1 mRNA in the dark.   

 

Light/dark regulation of Fed-1 mRNA abundance is retained in the absence of dark 

induced polyribosome dissociation 

 Mutation of the (CAUU)4 repeat abolishes light-regulated mRNA stability of Fed-

1 mRNA but not light-regulated polyribosome association ((Dickey et al., 1998), Figure 1 

and Figure 4).  Thus, we hypothesized previously that Fed-1 mRNA stability in the light 

is a direct consequence of polyribosome protection of the mRNA in the light and that, in 

the dark, polyribosome dissociation left the Fed-1 mRNA vulnerable to nuclease 

digestion mediated through the (CAUU)4 repeat (Dickey et al., 1998).  This hypothesis 

predicted that a mutation that abolishes polyribosome dissociation in the dark should also 

abolish the dark-induced Fed-1 mRNA instability.  We assayed a number of Fed-1 5' 

UTR mutations for loss of light-regulated polyribosome loading, including several 

mutations that do not alter light-regulated mRNA accumulation (Bhat, S. and Petracek, 

M.E. manuscript in prep).  In Figure 6, we show that L:D accumulation of Fed-1 mRNA 

containing either an insertion of 5 nt between the CaMV P35S polylinker derived sequence 

and the Fed-1 5’ UTR sequence (F-USins, Figure 1) or the 51 nt deletion did not 

significantly differ from wild-type Fed-1 mRNA (L:D ratio of 4.5 + 0.9 and 3.5 + 0.4 

respectively, Figure 1).  However, in contrast to WT P35S:Fed-1 mRNA, F-USins and F- 
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Figure 6: Light regulated mRNA accumulation of Fed-1 mutant with dark-
insensitive polyribosome association. 
 
Polyribosome 254-nm UV tracings were recorded for light and 15 min dark-treated plant 
samples resolved on 15% to 60% sucrose gradients and presented left to right from the 
top to the bottom of the gradient.  The 80S monosome peak is as indicated.  RNA 
fractions from gradients were resolved by gel electrophoresis, blotted and hybridized with 
32P-labeled Fed-1 antisense RNA.  Each analyses presented is representative of at least 
three separate experiments.  Northern-blot analyses of mRNA abundance for 3 day dark + 
6 h light (L) versus 3 day dark-treated + 6 h dark (D) mRNA is presented to the right of 
the polyribosome data for a representative clonal pair containing WT P35S:Fed-1, F-USins 
or F-51ntdeln transgene in tobacco.  5 µg total RNA from the indicated transgenic line 
was separated by gel electrophoresis, transferred to nylon membrane, probed with an 
antisense 32P-labeled Fed-1 RNA probe, and exposed to X-RAY film.   
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51ntdeln mRNA showed little dissociation from polyribosomes following 15 min dark.  

We also tested if mRNAs containing the F-USins are retained on polyribosomes 

following an extended dark treatment and found the mRNA on polyribosomes following 

40 h dark (M.P. data not shown).  These data suggest that Fed-1 mRNA can be 

destabilized in the dark even if most of the mRNA remains in polyribosomal fractions 

supporting the notion that the element(s) controlling light-responsive translation and 

mRNA stability are separate.  These data, combined with those in Figure 2, suggest that a 

dark-active factor destabilizes Fed-1 mRNA through the (CAUU)4 repeat.    

 

DISCUSSION 

 Here we present evidence for an mRNA instability element that is completely 

contained within the Fed-1 5' UTR and is centered around a (CAUU)4 repeat.  The 

(CAUU)4 element is necessary and sufficient for significant induction of dark-induced 

mRNA degradation and is active in the dark whether or not the mRNA is retained 

primarily on polyribosomes.  These data strongly suggest that light regulation of Fed-1 

mRNA decay and translation are two separate dark-induced events that require separate 

trans-acting factors.  Previously, data obtained from site-directed mutants of Fed-1 

mRNA was consistent with the idea that Fed-1 mRNA decay requires active translation.  

Introduction of a missense codon in place of the Fed-1 AUG or nonsense (NS) codons in 

the Fed-1 mRNA abolishes light-regulated mRNA accumulation suggesting that light 

regulated accumulation of Fed-1 mRNA requires translation (Dickey et al., 1994).  

However, introduction of NS codons leads to nonsense-mediated decay (NMD) of Fed-1 

mRNA (Petracek et al., 2000).  This decay pathway is reported to be active during the 
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pioneer round of translation and thus may be epistatic to the Fed-1 mRNA decay pathway 

(reviewed in (Maquat, 2004)).  Similarly, introduction of a missense codon in place of the 

AUG is likely to lead to translation initiation at an out-of-frame downstream AUG and 

end in premature termination, thus triggering NMD.  We present evidence here showing 

that mutant Fed-1 mRNA retained on polyribosomes in the dark appears to be subject to 

dark-responsive mRNA decay mechanisms.  When combined with our observation that 

disruption of dark-responsive mRNA decay does not block decreased polyribosome 

association in the dark (Dickey et al., 1998), the data strongly suggest that regulation of  

Fed-1 mRNA stability and translation act through independent processes. 

 Analysis of mRNA abundance, polyribosome association and transcription 

initiation showed that a number of photosynthetically regulated mRNAs may be 

regulated through the combined contribution of transcriptional, post-transcriptional, and 

translational mechanisms (Tang et al., 2003).  A single CAUU within the Fed-1 5' UTR 

confers slight light-responsive mRNA stability and increasing the number to two is 

significantly greater than the control.  Similarly, a strict CAUU may not be required since 

mutations of a single nucleotide within each repeat can significantly reduce the response 

below the WT control, but is also significantly greater than an mRNA with no CAUU 

sequences (Figure 4).  This intermediate effect may indicate a mechanism for varying 

sensitivities of endogenous mRNAs to dark-induced degradation.  We found significant 

enrichment of G-poor sequences in the 5’ UTRs of genes preferentially expressed during 

active photosynthesis (M.P., unpublished).  It is possible that, if located near the 5' 

terminus, CAUU (or similar) motifs may contribute to overall light-regulated mRNA 

accumulation by a destabilization of these mRNA in the dark.  If, as with the single 
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CAUU mutant of Fed-1 mRNA, the contribution is < two-fold, the presence of a much 

larger transcriptional contribution may obscure the smaller post-transcriptional 

regulation. 

 The mechanism by which (CAUU)4 repeat triggers Fed-1 mRNA decay is 

unclear.  Plant mRNA decay pathways that are initiated by endonucleolytic cleavage, 

decapping or deadenylation have all been identified (Gutiérrez et al., 1999).  The 

(CAUU)4 repeat may be bound by factors that direct light-regulated decapping, 

endonucleolytic cleavage, or exonucleolytic degradation.  It is also possible that the 

(CAUU)4 repeat itself may be inherently unstable due to the alignment of the nucleotides 

and self-hydrolysis (Soukup and Breaker, 1999).  The possibility that RNA cleavage 

results from “in line cleavage” then raises the question of why the mRNA is less stable in 

the dark than in the light.  In this case, it is possible that a light-regulated interacting 

factor may interact to enhance or disrupt the inherent geometry of the (CAUU)4 region 

that promotes self-hydrolysis without directly catalyzing cleavage of the mRNA.  The 

(CAUU)4 element’s location near the 5' end of the 5' UTR is important, as it is non-

functional when moved further downstream within the 5' UTR.  It is possible that the 

"downstream" (CAUU)4 repeat is not functional due to loss of important sequence 

context.  However, we think this is unlikely, since the (CAUU)4 repeat confers light-

regulated mRNA abundance on heterologous mRNAs (NLTP, Figure 1, 3 and CAT, S.B.  

unpublished).  Also, mutation of all other sequences within the Fed-1 5' UTR including 

those immediately adjacent to the (CAUU)4 repeat have little to no effect on light 

regulation of mRNA abundance.  Thus, we prefer the idea that the location-effect on 

(CAUU)4 function in mRNA degradation reflects its interaction with factors localized to 
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the 5' end of the mRNA.  Competing complexes formed by (CAUU)4 interacting factor(s) 

and cap-binding proteins, and decapping enzymes may initiate regulated degradation of 

the Fed-1 mRNA. 

 Because the Fed-1 5' UTR alone is sufficient to confer light-regulated mRNA 

stability to heterologous mRNAs (NLTP, Figure 1, 3 and CP12 and PetE, S.B., 

unpublished), it seems reasonable to assume that any secondary structures affecting RNA 

stability are between regions within the 5' UTR.  Thus, we favor the possibility that by 

sequence-specific binding, a factor such as a protein or metabolite interacts with the 

(CAUU)4 element, possibly in combination with proteins at the 5' end of the mRNA to 

control light-responsive mRNA stability.  HSP101 binds Fed-1 5' UTR in vitro and may 

be necessary for enhancing Fed-1 mRNA translation (Ling et al., 2000), although 

whether or not HSP101 interacts with the (CAUU)4 repeat or affects mRNA stability is 

yet unclear.  It is interesting to note that mammalian HSP70 and HSP110 also have been 

shown to bind AU-rich RNAs in vitro (Henics et al., 1999).  We are currently attempting 

to identify a protein(s) that binds to the CAUU repeat and participates in dark-induced 

Fed-1 mRNA degradation. 

 Why does a 26 nt region of the Fed-1 5’ UTR show a significant sufficiency to 

confer light regulated mRNA accumulation when previous work suggested that the Fed-1 

5' UTR was not sufficient to confer light-responsive mRNA accumulation when fused to 

bacterial reporter mRNAs (Dickey et al., 1992; Dickey et al., 1998; Hansen et al., 2001)? 

Although we observed no L:D change for in vivo protein production or mRNA 

abundance of the Fed-1 5’:CAT mRNA (Hansen et al., 2001), Fed-1 5':CAT mRNA 

dissociates from polyribosomes in the dark  (M. P., data not shown).  Thus, it is possible 
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that the Fed-1 5' UTR decreased mRNA stability in the dark and increased ribosome 

recruitment of the CAT mRNA in light.  The light-increased translation of bacterially-

derived CAT coding sequences (with non-optimum codon usage (Lemm and Ross, 2002)) 

could accelerate decay of the mRNA in the light, and the Fed-1 26 nt 5’ UTR element 

could accelerate decay of the mRNA in the dark.  Such opposing mechanisms may lead 

to no apparent light-induced change in mRNA or protein abundance.  Indeed, fusion of 

the Fed-1 26 nt does not confer regulated polyribosome association to CAT mRNA, but 

does increase the ratio of L:D mRNA accumulation from 1.8 fold to 3.2 fold (Dickey et 

al., 1998 and S.B., unpublished).  These results are consistent with the results obtained 

for the Fed-1 5’ UTR + 21 Fed-1 codons fused to CAT and support the idea that rare 

codons, particularly in the first part of the coding region may accelerate mRNA decay 

during translation (Dickey et al., 1998).  It has been noted that changing the codons of 

foreign transgene mRNAs to contain fewer A's or U's in the third position enhances the 

abundance of the transgene mRNA and protein (Koziel et al., 1996).  It has further been 

shown that elimination of these rare codons also eliminates instability elements, and is 

likely the principle reason for increased mRNA abundance (van Hoof and Green, 1997).  

Our data support this idea and suggest that these instability elements are more active 

during translation. 

 Although the Fed-1 5’ UTR confers significant light regulated mRNA 

accumulation (3-fold) on to the NLTP coding sequence and 3’ UTR, these data appear to 

be slightly lower than the 4-fold change observed for the full-length Fed-1 mRNA 

(Elliott et al., 1989).  Thus it is possible that other sequences within the Fed-1 mRNA 

contribute to small extent to the light response.  In the case of the 26 nt (CAUU)4 element, 
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spacing from the AUG, removal of redundant helper Fed-1 sequences, or the presence of 

inhibitory NLTP 5’ UTR sequences may reduce the effectiveness of the element.  
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CHAPTER 3 
 
 
 
LIGHT CONTROL OF NUCLEAR GENE mRNA ABUNDANCE IN TOBACCO 

 

 This chapter is a part of the published article (Tang et al., 2003).  Dr. Marie 

Petracek wrote the major part of this manuscript.  I performed the nuclear run-on 

experiments and wrote the experimental methods.  Dr. Marie Petracek made the PCR-

select cDNA subtraction library and Dr. Li Tang and Dr. Marie Petracek performed 

polyribosome analyses which appear in the appendix.  The introduction, materials and 

methods and a section of the results are taken directly from the paper. 
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INTRODUCTION 

 Plant fitness is enhanced by the ability to rapidly change light harvesting 

capabilities in response to fluctuating light conditions (Kulheim et al., 2002).  The genes 

for mRNAs encoding chloroplast proteins are divided between the nuclear and the 

chloroplast genomes and are coordinately regulated in response to light, maximizing 

energy storage while minimizing photo-oxidative damage [reviewed in (Goldschmidt-

Clermont, 1998; Barkan and Goldschmidt-Clermont, 2000; Brown et al., 2001; Rochaix, 

2001)].  Photosynthetic control of the abundance of chloroplast-encoded mRNAs occurs 

at the levels of transcription, mRNA processing and mRNA stability (Kubicki et al., 

1994; Nickelsen et al., 1994; Alexciev and Tullberg, 1997; Deshpande et al., 1997; 

Yamamoto et al., 1997; Pfannschmidt et al., 1999; Tullberg et al., 2000).  In addition, in 

depth study of many Chlamydomonas reinhardtii chloroplast-encoded mRNAs has 

revealed the importance of photosynthetic regulation of translation, often via binding of 

the encoded protein to the 5’ or 3’ UTR of the corresponding chloroplast mRNA 

[reviewed in (Bruick and Mayfield, 1999)].  Light-regulated binding of proteins to 

mRNAs may be regulated, at least in part, by changes in redox state generated by 

photosynthesis (Kim and Mayfield, 1997; Yohn et al., 1998; Fong et al., 2000; Shen et 

al., 2001).  Photosynthetic inhibitors have been used widely to distinguish redox 

regulators of chloroplastic gene expression, implicating the ferredoxin/thioredoxin, 

glutathione, and PRK/CP12/GAPDH complexes in the signal transduction chain within 

chloroplasts (Wedel et al., 1997; Vener et al., 1998; Irihimovitch and Shapira, 2000; 

Trebitsh and Danon, 2001). 
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 Regulation of gene expression between the chloroplast and nucleus includes 

cross-signaling between the organelles.  In addition to the complex effects of 

photoreceptor signals on nuclear mRNA transcription [reviewed in (Quail, 2002)], signals 

from the developing plastid are essential for mature chloroplast formation (Oelmuller, 

1989) and for accumulation of nuclear-encoded chloroplast proteins [e.g.(Zubko and 

Day, 2002)].  A series of Arabidopsis thaliana mutants have been isolated that uncouple 

nuclear and plastid gene expression, supporting the idea that signals between the plastid 

and chloroplast are essential for establishing and maintaining the appropriate balance of 

chloroplast- and nuclear-encoded proteins (Susek et al., 1993; Mochizuki et al., 1996; 

Vinti et al., 2000; Mochizuki et al., 2001).  The plastid signals include, but may not be 

limited to, redox signaling and signaling through chlorophyll biosynthetic intermediates 

or carotenoids [(Surpin et al., 2002) and reviewed in (Rodermel, 2001)], and they may 

regulate gene expression at the transcriptional, post-transcriptional, and translational 

levels [reviewed in (Petracek and Thompson, 2000)]. 

 To maintain appropriate stoichiometry between photosystems in response to light 

quality, promoters for a number of nuclear-encoded genes encoding chloroplast-localized 

proteins have differential responsiveness to oxidative and reductive signals 

(Pfannschmidt et al., 2001).  For example, in Dunaliella tertiolecta, LHCII mRNA levels 

are sensitive to the redox state of the plastoquinone pool.  Oxidation of plastoquinone 

using the photosynthetic electron transport inhibitor, 3-(3,4-dichlorophenyl)-1,1-

dimethylurea (DCMU), or low light levels, increases LHCII mRNA levels while 

reduction of plastoquinone using 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone 

(DBMIB) or high light levels decreases LHCII mRNA levels (Escoubas et al., 1995).  
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Furthermore, in Arabidopsis, blockage of plastoquinone pool reduction with DCMU 

dominantly suppressed sucrose-induced transcriptional activation from the chlorophyll 

a/b-binding protein 2 and plastocyanin promoters.  These results suggest a redox-

regulated coordination of signals that measures sugar stores and ongoing photosynthesis 

(Oswald et al., 2001). 

 As with chloroplast-encoded mRNAs, photosynthetic signals have been shown to 

regulate mRNA stability of a few nuclear-encoded mRNAs.  Constitutively transcribed 

Pisum sativum Fed-1 mRNA in transgenic Nicotiana tabacum (tobacco) accumulates in 

the light.  However, in the dark or in the presence of DCMU in the light, Fed-1 mRNA is 

destabilized (Petracek et al., 1998).  Mutation of a (CAUU)4 repeat element in the Fed-1 

5’ UTR abolishes light-regulated Fed-1 mRNA accumulation, suggesting a role of this 

repeat in mRNA stability (Dickey et al., 1998).  Nuclear run-on and transgene analysis in 

tobacco of the pea plastocyanin (PetE) gene suggest light regulates PetE abundance at the 

level of mRNA stability (Helliwell et al., 1997).  Like Fed-1 mRNA, PetE and 

protochlorophyllide oxidoreductase mRNAs are destabilized in the presence of DCMU 

(Eguchi et al., 2002; Sullivan and Gray, 2002).  Interestingly, the DCMU-induced 

destabilization of PetE mRNA is counterbalanced by a DCMU-induced increase in the 

rate of PetE transcription (Sullivan and Gray, 2002).  Opposing effects of light regulation 

of transcription and mRNA stability have also been observed for pea and Arabidopsis 

LHCB1 mRNAs.  Transcription of these mRNAs increases following a pulse of blue light 

but the mRNA abundance is unchanged, suggesting a blue-light induced destabilization 

of Lhcb1*4 mRNA (Warpeha et al., 1989; Marrs and Kaufman, 1991; Anderson et al., 
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1999).  This destabilization is likely induced through the Lhcb1*4 5’ UTR (Anderson et 

al., 1999).  

 In a few cases, photosynthetic signals have been shown to have profound effects 

on the translational regulation of nuclear-encoded genes.  Darkness or treatment with 

DCMU induces a rapid (within 20 min) and reversible dissociation of Fed-1 mRNA from 

polyribosomes, with a concomitant decline in the in vivo translation rates of Fed-1 

mRNA (Petracek et al., 1998; Hansen et al., 2001).  This regulation is conferred by 

sequences within the 5' UTR and the first one-third of the Fed-1 coding sequence 

(Petracek et al., 1997).  Similarly, in spinach polyribosome association of photosynthetic 

PsaD, PsaF, and PsaL mRNAs all decline in response to DCMU or dark treatment 

(Sherameti et al., 2002), suggesting regulation of translation by light.  Mutational analysis 

of the PsaD mRNA showed a critical role of the 5’ UTR in this response (Sherameti et 

al., 2002).  Dark treatment of maize or amaranth results in the translational inhibition of 

Cat2 and RbcS, respectively (Berry et al., 1986; Skadsen and Scandalios, 1987; Berry et 

al., 1988).  However, unlike Fed-1, PsaD, PsaF, and PsaL mRNAs, neither Cat2 nor 

RbcS mRNAs dissociate from polyribosomes, suggesting an inhibition of translational 

elongation rather than initiation.  Dark-induced expression of the ATB2 transcription 

factor mRNA is inhibited, probably at the level of translation, in the presence of 25 mM 

sucrose (Rook et al., 1998).  Finally, light-regulated translation has been implicated in the 

coordination of gene expression between mesophyll and bundle sheath cells in C4 plants 

(Giglioli-Guivarc'h et al., 1996; McCormac et al., 1997). 

 Little is known about the mechanisms by which light regulates cytoplasmic 

mRNA translation.  However, recent results suggest the striking possibility that 
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translation of the rye Cat1 mRNA may occur via direct modification of the mRNA.  Rye 

Cat1 mRNA isolated from light-exposed leaves was translated more efficiently in vitro 

than Cat1 mRNA isolated from dark-exposed leaves (Schmidt et al., 2002).  The presence 

of the methylation inhibitors cycloleucine and phosphinothricin prevented the enhanced 

translation of Cat1 mRNA isolated from light-exposed leaves, suggesting that 

methylation of the Cat1 mRNA may be involved.  

 In this study we used PCR suppressive-subtractive hybridization to identify Fed-1 

like regulated endogenous tobacco genes.  This screen identified 14 nuclear-encoded 

tobacco mRNAs whose light-induced increase in abundance is suppressed in the presence 

of DCMU.  Strikingly, many of these mRNAs identified encode proteins involved in 

photosynthesis, suggesting that photosynthesis may regulate the mRNA levels of many 

genes involved in photosynthesis.  In addition, we asked if the abundance of these 

mRNAs was regulated transcriptionally or post-transcriptionally.  Of the five mRNAs 

with sufficient abundance to detect using nuclear run-on assays, we observed both 

transcriptional and post-transcriptional control of mRNA abundance.  For example, 

Photosystem A subunit L (PSAL) and, to a lesser extent, -tubulin (TUBA3) and pSKA10 

(an unknown gene) may be post-transcriptionally regulated by light.  In contrast, Rubisco 

small subunit (RBCS) mRNA abundance appears to be transcriptionally up-regulated, but 

post-transcriptionally down-regulated, in the light. 
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MATERIALS AND METHODS 

 

Plant growth 

 Tobacco seedlings were germinated in sterile magenta boxes with membrane rafts 

(Sigma V8380 and Sigma M1917, St. Louis, MO) in sterile MS media (Life 

Technologies, Grand Island, NY) for the PCR-select library, or on 0.5 X MS/ 1.5 % 

agarose petri plates for subsequent DCMU or light/dark mRNA abundance analysis, as 

described (Petracek et al., 1997; Petracek et al., 1998).  Seedlings were grown for three 

weeks in a growth chamber at 22°C using a 12 h light/12 h dark cycle with 12 fluorescent 

and six incandescent lamps to give a light fluence of approximately 240 mol m
-2 

sec
-1

 

between 380 and 780 nm.  For dark treatments, plants grown in Magenta boxes or petri 

plates were wrapped in foil for the indicated length of time before harvest or after being 

unwrapped and re-exposed to the light.  

 

DCMU treatment 

 Plants were treated with DCMU as described (Petracek et al., 1997).  Briefly, a 

100 mM DCMU stock solution in 100% ethanol was diluted to 1 mM in sterile H2O and 

3 mL was pipetted onto the roots of tobacco seedlings on membrane rafts or on 1.5% agar 

plates.  Control plants were treated with 3 mL of a 1% ethanol solution.  Uptake was 

allowed with the covers propped open for 1 h before they were wrapped in foil for a 40 h 

dark treatment.  Plants were then brought to the light for 6 h before harvesting the leaves 

into liquid nitrogen and storage at -80°C. 
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RNA isolation and cDNA subtraction library generation 

 Total RNA was prepared as described (Thompson et al., 1983) with the following 

modifications.  Briefly, plant samples were homogenized with a polytron in 

phenol:chloroform:isoamyl alcohol (25:24:1) (US Biochemical, Cleveland, OH) and 

RNA extraction buffer [1% sodium dodecyl sulfate (Sigma), 1% (w/v) tri-

isopropylnaphthalene-sulfonic acid (Kodak) (This chemical is no longer commercially 

available; we now omit this without problem), 4% (w/v) p-aminosalicyclic acid (Sigma), 

10 mM Tris pH 7.5, 1 mM EDTA, and 2% (v/v)  ß-mercaptoethanol, 1 mM aurin 

tricarboxylic acid (ATA, Sigma)].  ATA was omitted from samples used for cDNA 

preparation.  Samples were centrifuged at 11,000 x g for 30 min at 4°C, the supernatant 

was removed, and the pellet resuspended in 100 M ATA in water or, in samples used to 

produce cDNA, in water alone.  The resuspended RNA was then precipitated with 

ammonium acetate and ethanol at -80°C overnight and collected at 11,000 x g for 30 min 

at 4°C.  The resulting pellet was resuspended in 100 M ATA water or water alone.  All 

water used was treated with DEPC. 

 For cDNA library preparation, mRNA was isolated from 400 g total tobacco leaf 

RNA using the MicroPoly(A)Pure kit (Ambion, Austin, TX) following the 

manufacturer's instructions.  Approximately 2 g of the resulting PolyA mRNA was then 

used to create a PCR-select cDNA library (Clontech, Palo Alto, CA) following the 

manufacturer's instructions, using light-treated samples as the tester cDNA and 

DCMU/light-treated samples as the driver cDNA.  The resulting PCR samples were 

cloned into pGEM-T (Promega Biotech, Madison, WI) or PCR-Script Amp (Stratagene, 

La Jolla, CA).  The resulting cDNAs were screened with the reverse-subtracted cDNAs 
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using the PCR-Select Differential Screening Kit (Clontech) to identify cDNAs likely to 

represent mRNAs differentially expressed in light versus DCMU/light-treated plants.  

Positive candidate cDNAs were then used as probes in northern blot hybridization 

analysis (Dickey et al., 1992), and cDNAs were sequenced by the North Carolina State 

University sequencing facility and the Oklahoma State University Recombinant 

DNA/Protein Resource Facility.   

 

Nuclei isolation and RNA run-on assays 

 Nuclei isolation was as described (Folta and Kaufman, 2000) except nylon 

meshes of sizes 500, 300, 100, 50 and 20 µm were used for filtering the homogenate.  

Run-on transcription assays used 60 µg of the isolated nuclei incubated in 50 µl of buffer 

containing 50 mM Tris pH 7.9, 10 mM MgCl2, 10% (v/v) glycerol, 500 µM each ATP, 

CTP, GTP, 75 mM NH4Cl, 0.8 mM DTT, 125 µCi of [  
32

P] UTP (800 Ci/mmol) and 

37.5 units of RNasin (Promega).  Transcription reactions were incubated for 15 min at 

27°C and the reaction stopped with 3 µl of a solution containing 3.3 µg/µl E. coli tRNA 

and 17 mM UTP.  After 2 min, 1 µl RNase-free DNase Q (Promega) was added and the 

mixture was incubated an additional 5 min.  100 µl of 7.5 M urea, 5% SDS, 20 mM 

EDTA, 100 mM LiCl2 and 10 mM ATA was added and the mixture extracted with an 

equal volume (150 µL) of phenol:chloroform:isoamyl alcohol (25:24:1).  The 
32

P-labeled 

RNA was centrifuged through a Sephadex G-50 column equilibrated with 10 mM Tris 

pH 8.0, 1 mM EDTA and 100 µM ATA and added to 900 µl of 1.1x hybridization buffer 

[1x= 50% formamide, 50 mM NaPO4 pH 7.0, 5x SSC, 0.2%SDS, 5x Denhardt’s solution 
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(100x Denhardt’s is 2% each of BSA, Ficoll and polyvinyl pyrrolidone), 100 µg/mL E. 

coli tRNA, 100 µg/mL of poly A]. 

 Two µg of each denatured cDNA-containing plasmid was dot blotted onto Gene 

Screen nylon membranes using a Hybri-Dot Manifold (Life Technologies).  The 

membranes were prehybridized overnight at 42°C in 1 mL 1.1x hybridization buffer and 

then probed with 
32

P-labeled run-on RNA for 72 h at 42°C.  Membranes were washed 

twice in 2x SSC, 0.1% SDS at 42°C for 15 min each, followed by three washes in 0.5x 

SSC, 0.1% SDS at 68°C for 30 min each.  Blots were exposed to Kodak XB-1 film with 

intensifying screens for 24 to 48 hrs at -70°C and to phosphorimager screens for 

quantitation. 

 

RESULTS  

 Previously, we showed that the abundance of Fed-1 mRNA in transgenic tobacco 

is regulated by photosynthesis.  Upon shift from dark to light, Fed-1 mRNA abundance 

increases 3- to 4-fold, and this increase is blocked by the addition of DCMU (Petracek et 

al., 1997).  To identify similarly regulated endogenous tobacco mRNAs, we constructed a 

suppressive-subtractive cDNA library.  For isolation of tester and driver cDNAs, we 

treated tobacco plants with 1% ethanol or with DCMU in 1% ethanol respectively, 

wrapped the plant containers in foil for a 40 h dark treatment, then re-exposed the plants 

to light for 6 h.  PCR was used to amplify mRNAs enriched in the light versus DCMU-

light, yielding plasmids containing 146 partial cDNAs.  These 146 cDNAs were 

transferred to a nylon membrane and hybridized with 32P-labeled light-enriched (forward-

subtracted) or DCMU-enriched (reverse-subtracted) PCR-amplified cDNA.  This screen 
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identified 26 cDNAs that showed greater hybridization to the forward-subtracted than the 

reverse-subtracted probe, suggesting that these mRNAs display increased accumulation 

in light versus light plus DCMU.  Sequence analysis of these 26 cDNAs identified 22 

different cDNAs.  Thiazole biosynthetic enzyme (THI1) was isolated three times and 

TUBA3 and light harvesting complex (LHC-I) were each isolated twice.  The remaining 

19 mRNAs were identified as unique cDNAs, suggesting that this screen was not 

saturated. 

 Light-regulation of mRNA abundance can occur either via regulation of promoter 

activity (transcriptional regulation) and/or regulation of mRNA stability (post-

transcriptional regulation).  We used nuclear run-on assays to determine if light altered 

the rates of transcription of the genes we identified in our screen.  Five-week-old 

35S:Fed-1 transgenic tobacco plants were transferred to the dark for 40 h and then either 

brought to the light or left in the dark for an additional 6 h.  Nuclei were isolated and run-

on nuclear RNAs were labeled with 32P and hybridized to each of the differentially 

expressed cDNAs.  Run-on analysis of many of these RNAs was not possible as the 

signals were not sufficiently above background levels of hybridization to vector only 

(pKS-, Figure 1) and salmon sperm DNA (S.B., data not shown).  However, five 

endogenous tobacco mRNAs and the Fed-1 RNA expressed from the transgene were 

clearly detectable above background (Figure 1).  These assays indicate that Fed-1 

transcription rates are the same in the light and the dark (Figure 1), while Fed-1 mRNA 

shows a four-fold increase in the light compared to the dark (Figure 1), consistent with 

our observation that dark results in a decreased half-life of Fed-1 mRNA 
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Figure 1: Nuclear run-on analysis and mRNA abundance of differentially selected 
cDNAs.   
 
Nuclei were isolated from a pair of soil-grown plants treated with 46 or 40 h of darkness 
followed by 6 h light. 32P-UTP nuclear run-on RNAs were then hybridized to dot blots of 
plasmids carrying the indicated differentially selected cDNAs.  Each hybridization was 
repeated at least three independent times and the data presented are the results from one 
representative blot (A and B).  Tobacco seedlings grown on plates containing 1.5% (w/v) 
agar were placed in the dark for 40 h, and then re-exposed to the light for an additional 6 
h (C) or kept in the dark for an additional 6 h (D).  Five micrograms of total RNA were 
isolated from a pooled sample containing at least 10 plants, resolved by gel 
electrophoresis, blotted and probed with 32P-labeled antisense probes to the indicated 
mRNAs.  A summary of the analysis for all differentially selected mRNAs, repeated with 
at least three separate hybridization experiments, is presented in Table 1. 
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TUBA3 

THI1 

pSKA10 

RBCS 

Fed-1 

 6 h Light 

 6 h Dark 

+        - 

+       + 

-        + 

+        - 

+       + 

-        + 

A B C D 

40 h Dark 
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Putative gene name 

40D 6L: 

40D 6L 

+DCMU 

40D 6L: 

40D 6D 

Run-on 

40D 6L: 

40D 6D 

Chloroplast  

Signal Peptide 

LHC-I 

  Light harvesting complex I 

6.8 ± 1.2 6.2 ± 1.3  Yes 

THII 

  Thiazole biosynthetic enzyme 

6.1 ± 0.7 6.2 ± 0.4 4.3 ± 0.8 Yes 

TUBA3 

  Alpha tubulin 

3.5 ± 0.4 4.7 ± 0.9 2.2 ± 0.4 No 

pSKA10 

  unknown 

3.1 ± 1.4 2.8 ± 0.3 1.6 ± 0.4 ND 

RPL29 

  Ribosomal protein L29 

3.0 ± 0.4 8.0 ± 2.0  Yes 

PER 

  Peroxidase 

2.6 ± 0.8 3.6 ± 0.2  No 

CP12 

  Chloroplast Protein 12 

2.4 ± 0.9 6.9 ± 1.0 *  Yes 

PSII-X 

  Photosystem II subunit X 

2.1 ± 0.3 6.2 ± 0.7 *  Yes 

RBCS 

  Small subunit Rubisco  

1.8 ± 0.5 2.0 ± 0.0 12.3 ± 1.7 * Yes 

PSAL 

  Photosystem A subunit L 

1.7 ± 0.4 2.9 ± 0.8 1.1 ± 0.1 Yes 

PSAK 

  Photosystem A subunit K 

1.7 ± 0.2 3.0 ± 0.5  Yes 

PSAF 

  Photosystem A subunit F 

1.7 ± 0.3 2.1 ± 0.3  Yes 

OEC 33 kDa 

  Oxygen evolving complex  

   33kDa subunit 

1.4 ± 0.1 1.2 ±.0.1  Yes 

CAT-1 

  Catalase I 

1.4 ± 0.2 1.3 ± 0.1  No 

Annexin 1.2 ± 0.1 2.5 ± 0.2 *  No 

CAB16 

  Light harvesting complex B 

1.1 ± 0.1 5.9 ± 0.2 **  Yes 

CAB4 

  Light harvesting complex B 

0.9 ± 0.3 3.8 ± 1.0  Yes 

CAB10-like 

  Light harvesting complex B 

0.8 ± 0.1 1.8 ± 0.8  Yes 

CAB36-like 

  Light harvesting complex B 

0.7 ± 0.0 3.8 ± 1.0  Yes 

Table I.  The effects of light, dark, and inhibition of photosynthesis by DCMU on 
tobacco mRNA accumulation.   
 Tobacco plants were put in the dark for 40 h, then re-exposed to light for 6 h in 
the absence (40D 6L) or presence (40D 6L+DCMU) of DCMU or left in the dark for 
an additional 6 h (40D 6D).  Ratios for mRNA abundance for 40D 6L: 
40D 6L+DCMU and 40D 6L: 40D 6D are followed by standard errors and were 
calculated by combining phosphorimager results from at least three separate experiments.  
The statistical significance of the differences in the ratios of 40D 6L: 40D 6L+DCMU 
and 40D 6L: 40D 6D and for the differences in the ratios of 40D 6L: 40D 6D and 
run-on 40D 6L: 40D 6D were determined by using the two-tailed two independent 
samplesT-test (*p<0.05, **p<0.01).  Chloroplast signal peptides were predicted using 
TargetP (http://www.cbs.dtu.dk/services/TargetP/).
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(Petracek et al., 1998).  Of the five experimental mRNAs with hybridization levels above 

background, TUBA3, PSAL (and perhaps pSKA10) showed a slightly greater difference in 

steady-state mRNA accumulation than in transcriptional run-on assays following a 40 h 

dark + 6 h light treatment compared to a 46 h dark treatment (Table I and Figure 1).  

Thus, the differential accumulation of these mRNAs is, at least in part, post-

transcriptionally regulated. 

 As expected, we also identified genes that appear to be mainly regulated at the 

level of transcription by light.  THI1 mRNA showed similar differences in run-on assays 

compared to steady state mRNA accumulation between the light and dark, suggesting 

transcriptional control of THI1.  In strong contrast to the other mRNAs, RBCS mRNA 

showed a dramatic 13-fold higher rate of transcription in the light compared to in the 

dark, but only a two-fold difference in steady-state mRNA accumulation (P < 0.05, Table 

I and Figure 1).  These results suggest transcription of RBCS mRNA is higher in the light, 

but that the mRNA is destabilized in the light or stabilized in the dark, resulting in 

counterbalancing effects on RBCS mRNA accumulation. 

 

DISCUSSION  

 Here we have identified tobacco cytoplasmic mRNAs that are, like Fed-1, 

affected by changes in photosynthetic electron transport.  Using nuclear run-on assays we 

observed both transcriptional and post-transcriptional regulation of the differentially 

selected cDNAs.  We were able to detect only five of the most abundant mRNAs in our 

nuclear run-on assay, of which one (PSAL) mRNA appears to be regulated at the post-

transcriptional level.  The regulatory element(s) of PSAL mRNA may be present 
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anywhere within the transcribed sequence.  Like pea plastocyanin (PetE) mRNA, light-

regulation might be mediated by elements present both in the 5’ UTR and within coding 

sequence (Helliwell et al., 1997). In contrast, like Fed-1, the regulatory element(s) of 

PSAL might solely be confined to the 5’ UTR.  Sequence comparison between the 5’ 

UTRs of Fed-1 and PSAL shows that, PSAL 5’ UTR does not contain any CAUU 

sequences (M.P. unpublished data).  However, since we cannot recognize the regulatory 

elements by simple sequence comparisons, further experimental analysis of the PSAL 

mRNA, by fusing portions of PSAL sequences to reporter genes and by measuring the 

mRNA decay in vivo, such as we have done for the Fed-1 mRNA   (Bhat et al., 2004) 

could be important in understanding its regulation.   

 Although two of the cDNAs (TUBA3 and pSKA10), show only a two fold 

difference in run-on assays, the difference between the run-on results and steady state 

mRNA accumulation was not statistically significant, suggesting primarily transcriptional 

regulation of these two mRNAs.  In addition, THI1 was also not regulated at the level of 

mRNA stability, suggesting that the light regulation is mediated by the promoter 

sequence.  Many nuclear-encoded photosynthetic genes (e.g. Lhcb) studied in detail, are 

regulated at the level of transcription which is mediated by light-responsive promoters 

[(Folta and Kaufman, 1999) and reviewed in (Thompson and White, 1991)].   

 From our nuclear run-on assays, we observed dramatically increased transcription 

of RBCS in the light.  However, the slight difference in steady state mRNA accumulation 

of RBCS between the light and dark suggests the mRNA is either destabilized in the light 

or stabilized in the dark.  Such opposing effects have been previously observed with pea 

PetE mRNA in transgenic tobacco plants.  Sullivan and Gray (2002) showed that DCMU 
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treatment increased the transcription rate of PetE from its native promoter in nuclear run-

on assays, but decreased the PetE mRNA stability.  Light regulation at both 

transcriptional and post-transcriptional levels has been previously described for RBCS 

mRNA in soybean seedlings and petunia (Shirley and Meagher, 1990; Thompson and 

Meagher, 1990).  In similarity to RBCS instability in light, Anderson et al. (1999) show 

that pea Lhcb1*4 mRNA is destabilized in the presence of blue light.  In addition they 

have identified the blue light-induced instability element to be present in the 5’ UTR of 

Lhcb1*4 mRNA.  It is possible that both, Lhcb1*4 and RBCS might contain similar 

instability sequence elements.  However, the presence of multiple opposing regulatory 

mechanisms hinders the recognition of common regulatory elements.  In such cases 

further analyses, through mutational studies become important for identifying sequences 

that may be responsible for light-regulated mRNA stability.   
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CHAPTER 4 
 
 
 
IDENTIFICATION AND CHARACTERIZATION OF PUTATIVE FED-1 mRNA 

BINDING PROTEINS 

 
 The work described in this chapter is ongoing.  Additional experiments will be 

done prior to preparation of a manuscript.  Dr. Sharon Ford helped with plasmid 

constructs F-(-55C) and p3’Fed-1 for yeast three-hybrid assays.  Affinity purification 

studies were done by Angela Krueger. 
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INTRODUCTION 

 Regulation of plant gene expression by various signals occurs at transcriptional 

and post-transcriptional levels.  RNA-binding proteins interacting with various mRNA 

features can play an essential role in post-transcriptional regulation.  These proteins 

contain different types of RNA-binding domains, such as the RNA-recognition motif 

(RRM, also referred to as RBD or RNP motif), K-homology (KH) motif (similar to 

human hnRNP K protein domain), Arg-Gly-Gly (RGG) boxes, zinc fingers, 

oligonucleotide/oligosaccharide binding domain (OB-fold domain), tryptophan RNA 

binding attenuation protein (TRAP) like domain and Pumilio-homology domain (PUM-

HD) and the double-stranded RNA-binding domains (dsRBDS)  [reviewed in (Siomi and 

Dreyfuss, 1997; Messias and Sattler, 2004)].  The tertiary structures and the functions of 

these RNA-binding motifs have been reviewed in detail (Messias and Sattler, 2004; Stefl 

et al., 2005).   

 AREs (adenylate- and uridylate-rich elements) are well-characterized mRNA 

stability determinants that are present in the 3' untranslated regions of various 

mammalian mRNAs.  Several proteins that bind mammalian ARE-containing mRNAs 

have been studied in depth and  have been identified to play either direct or indirect roles 

in mRNA decay [reviewed in (Bevilacqua et al., 2003)].  It is hypothesized that ARE-

binding proteins (AUBPs) such as AUF-1, TPP and KSRP proteins might recruit the 

exosome complex to ARE-containing mRNAs and destabilize them (Bevilacqua et al., 

2003).  However, AUF-1, like AUBPs HuR, HuD and HuC, can also act as a stabilizing 

factor and protects the mRNA from degradation (Bevilacqua et al., 2003).  It has been 

observed that AUF1 stabilizes Interleukin-3 (IL-3) mRNA in one cell line and 
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destabilizes it in another (Loflin et al., 1999; Ming et al., 2001).  Ming et al. (2001) have 

also shown that class II ARE-containing mRNAs with overlapping copies of nonamer 

UUAUUUA(U/A)U/A in U-rich regions are also stabilized by AUF1 proteins.  

 Although RNA-binding proteins have been well characterized in yeast and 

mammals, knowledge of these proteins in plant post-transcriptional gene regulation is 

still rudimentary.  A recent computational survey of the Arabidopsis genome has revealed 

nearly 200 RNA-binding proteins with RRM domains and 26 with KH domains 

(Lorkovic and Barta, 2002).  However, this survey does not include the proteins with 

RGG, zinc finger and other known RNA-binding motifs.  

 Pea Fed-1 is regulated by light through the process of photosynthesis at the level 

of both translation and stability in transgenic tobacco (Petracek et al., 1997; Petracek et 

al., 1998).  Like Fed-1, several other endogenous tobacco mRNAs are light-regulated at 

the level of translation initiation and mRNA stability (Tang et al., 2003).  Previous work 

revealed the importance of a (CAUU)4 repeat (present near the 5’ UTR terminus, 

nucleotides 16-31) in light-regulated Fed-1 mRNA abundance (Dickey et al., 1998).  

Recent analyses of Fed-1 mRNA cis-instability element(s) from our laboratory, revealed 

that the Fed-1 5’ UTR and particularly the (CAUU)4 element is necessary and sufficient 

for dark-induced mRNA degradation [Chapter II or (Bhat et al., 2004)].  In addition, our 

work also suggested that Fed-1 mRNA can be destabilized in the dark even if most of the 

mRNA remains in polyribosomal fractions, supporting the notion that cis- and trans-

acting factors controlling light-responsive translation and mRNA stability are 

independent [Chapter II (Bhat et al., 2004)]. 
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 To understand the mechanism of Fed-1 light-regulation, it is important to identify 

factors that might interact with the (CAUU)4 instability element.  Identification of 

proteins involved in Fed-1 mRNA translation has been attempted first by Ling et al. 

(2000).  They have shown that plant heat shock protein HSP101, a member of the ClpB 

family, binds to Fed-1 5’ UTR in vitro and may be necessary for enhancing Fed-1 

translation in a heterologous yeast system.  

 In this study, we have utilized in vivo and in vitro methods to identify putative 

protein factors that bind to Fed-1 mRNA 5’ UTR.  Using a yeast three-hybrid assay, we 

identified tobacco ribosomal protein S2 (RP S2, formerly called p40) as a protein that 

strongly interacts with the Fed-1 5’ UTR.  In addition, we describe the isolation of other 

proteins that might interact with Fed-1 5’ UTR using affinity purification of Arabidopsis 

proteins. Three affinity-purified proteins were identified using MALDI-TOF mass 

spectrometry, including a ~26 kDa probable RNA binding protein (pRNAbp).  UV- 

crosslinking and in vitro binding of the over-expressed proteins to various RNAs suggests 

different specificities of binding for RP S2 and pRNAbp proteins to sense and anti-sense 

Fed-1 mRNA. 

 

MATERIALS AND METHODS 

 

Plant materials and growth conditions 

 Nicotiana tabacum (SR-1, Petite Havana) and Arabidopsis thaliana ecotype 

Columbia plants were grown in growth chambers (Percival Scientific, Inc.) at 22ºC, with 

a 12 h light/12 h dark cycle and under a light intensity of 250-300 µmol m –2 sec –1. For 



 81

cDNA library generation, tobacco plants were transferred to the dark for 1 hour or left in 

the light for equivalent length of time, then harvested into liquid N2.  For affinity 

purification, Arabidopsis plants were harvested into liquid N2 after ~8 hours into the light 

cycle and stored at -80°C. 

 

Plasmid constructs 

Plasmid constructs for three-hybrid assay: Plasmid construct F-(-55C), with mutated Fed-

1 5’ UTR wherein -55 T is mutated to a C, was generated by a single PCR reaction using 

plasmid template containing pea Ferredoxin-1 (Fed-1) cDNA (Elliott et al., 1989), a 

sense primer (5’CGGGGATCCCTCCTTATTTCATTCATTCATTCATTCTCTATCT 

TCTTATCATCAACAC3’) with BamHI site at the 5’ end and a M13 -20 primer.  The 

PCR-amplified product was ligated into pBluescript vector (Stratagene, La Jolla, CA) and 

sequenced at Oklahoma State University Recombinant DNA/Protein Resource facility.  

The mutant Fed-1 flanked with BamHI and Sst I sites was inserted in pBI121 (Jefferson, 

1987) through replacement of the GUS gene to form plasmid 35S::F-(-55C).  The 

35S::F-(-55C) plasmid was used as a template in PCR to amplify Fed-1 5’ UTR bait for 

the three-hybrid assay.  Primers used for the PCR amplification were: Bait 5’primer 

containing Avr II restriction enzyme site, 5’-ACACCTAGGGGCCGCCCGGCGCTA 

TACGGGGGACT CTAGAGGATCCCTC-3’ and Bait 3’primer with Sma I site, 5’-

ACACCCGGGGGCCGGGCGGCCTAACATT ACTATTATGGTTTCAAAG-3’.  

p3’Fed-1 was obtained by ligating Avr II/Sma I digested PCR product into Avr II/Sma I 

digested pRH3’ plasmid (Invitrogen, Carlsbad, CA) using Rapid DNA ligation kit (Roche, 

Indianapolis, IN).  Similarly p3’ CAUUFed-1 and p3’USmutFed-1 bait plasmids were 
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obtained with the respective mutated Bait 5’primers and with template plasmids F-

CAUU and F-(CAUU)4USmut respectively [template plasmids were constructed as 

described in Chapter II (Bhat et al., 2004)].  

Plasmid constructs for in vitro transcription and affinity purification: For in vitro 

transcription, the Fed-1 5’UTR region was used fused to a T7 promoter (underlined in the 

primer sequence) by PCR with the sense primer (5’ TAATACGACTCACTATAGGGC 

GAATTGGAGCTCGGGGACTCTCTAGAGGATCCCCTCCTTATTTCATTCATTCA

TT 3’) and gene-specific anti-sense primer (5’ GCATTGGCTGAGTCTGAGG 3’).  The 

resulting PCR fragment was cloned into pPCR-Script Amp SK(+) plasmid (Stratagene, 

La Jolla, CA) to generate pSKT7-F-(CAUU)6.  The F-(CAUU)6Poly(A) plasmid for 

affinity purification was synthesized by PCR amplification from a pSKT7-F-(CAUU)6 

template.  Reverse primer (5’GGAAACAGCTATGACCATG3’) and 5’-TTTTTTTTTT 

TTTTTTTGGTGTGGTTGCCATTACTATTATGGTTT-3’ primer were used for the 

PCR.  Above mentioned PCR amplifications were carried out as described in Chapter II 

(Bhat et al., 2004).   

Plasmids constructs for glutathione S-transferase (GST) fusion proteins:  Coding regions 

of tobacco RP S2 and Arabidopsis pRNAbp were fused in frame with GST in the vector 

pEGKT (Mitchell et al., 1993).  The coding region of tobacco RP S2 was PCR amplified 

with the primers: Forward 5’-TCTGGTGGTGGTGGTGGTCTGGTTCGGGGT 

GGATCCGGATCCATGGCGGCTACACATGAAG-3’; and reverse 5’-TGAAT 

TAAGCTTGAGCTCGAGTCGACCCATGGAGTCTAGATACTAAGAGCCAGAAAA

GAA-3’.  The coding region of Arabidopsis pRNAbp was amplified with the primers: 

Forward 5’-TCTGGTGGTGGTGGTGGTCTGGTTCGGGGTGGATCCGGAT 
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CCATGGCTGCTTCAGCTTCGT-3’; and reverse 5’-TGAATTAAGCTTGAG 

TCGACCCATGGAGTCTAGATATCAATATTGGCGCCTTGGAGGC-3’.  The PCR 

products were transformed along with BamHI and Xba I cut pEGKT into the yeast strain, 

YML145 (  ura3 lys2 leu2 his3 trp1  pep4 ::HIS3MX6).  Through homologous in vivo 

recombination (Guthrie and Fink, 1991; Gietz et al., 1992), plasmids containing plant 

cDNAs were circularized and maintained as separate plasmids in the yeast strain, 

YML145 (provided by Dr. Mark Longtine). 

 

RNA isolation and cDNA library generation 

 Total RNA for cDNA library generation was prepared as described by Tang et al. 

(2003).  Total RNAs from light- and dark-treated tobacco leaves were combined and 200 

µg of total RNA was used to isolate mRNA by MicroPoly(A)PureTM Kit (Ambion, 

Austin, TX).  Approximately 200 ng of the resulting Poly(A) mRNA was used to 

generate a cDNA library as described by the commercial protocol (BD Biosciences 

Clontech, Palo Alto, CA).  Poly(A) mRNA in a total volume of 4 µL was incubated at 

72°C for 2 min with the primer 5’-CAGAATTCCAGCACACTGGCGGCCGTTTT 

TTTTTTTTTTTTTTTTTTTTTTTTTTVN-3’ . MMLV Reverse Transcriptase (Ambion) 

was added to the mRNA/primer mixture along with the First Strand 10x Buffer and 10 

mM dNTPs.  The resulting mixture was incubated at 42°C for 10 min, followed by the 

addition of primer 5’-GCTCAATTGCGGCCGGCCGCTATATACATAGAAGCTAAG 

CTTGGG-3’.  The reverse transcriptase reaction was carried out for 1 h at 42°C and 

terminated at 72°C for 10 min.  1 U of RNase H was added, followed by incubation at 

37°C for 20 min to degrade the residual mRNA.  1-2 µL of first-strand cDNA was used 



 84

for LD-PCR with the Advantage cDNA PCR Kit (BD Biosciences).  Primers used for the 

PCR were: Hyb5’PCRII, 5’- GACGAGTACGGTGGGATCGATTGGATCCCCGGGT 

ACCGAGCTCAATTGCGGCCGGCCGCTAGAT-3’ and Hyb3’PCRII, 5’-CATGATG 

CGGCCCTCTAGATCCATGCCTCGAGCGGCCGCCAGTGTGATGGATATCTGCA

GAATTCCAGCACACTGGCGGC-3’.  PCR amplification was done as per the 

manufacturer’s instruction.  The resulting cDNA product was purified with PCR 

purification kit (Qiagen, Valencia, CA) and used for subsequent library transformation 

into the yeast strain, L40-ura3. 

 

cDNA library transformation into yeast for three-hybrid selection and screening 

 The yeast three-hybrid assay was done using the RNA-Protein Hybrid Hunter Kit 

(Invitrogen) and as described by SenGupta et al. (1996), with the following 

modifications.  The Zeocin resistance gene in the three-hybrid plasmid pHybLex/Zeo-

MS2 was replaced by the LEU2 marker.  The LEU2 marker was PCR amplified from 

YIplac128 (Gietz and Sugino, 1988) using primers ML 737, 5'-TATCGGCATAGT 

ATAATACGACAAGGTGAGGAACTAAACCGCAACCATTATTTTTTTCC-3' and 

ML 738, 5'-ATCTCCGAGGCCTGGGACCCGTGGGCCGCCGTCGGACGTGCTA 

CCCTATGAACATATTC-3'.  The resulting PCR product was co-transformed with 

pHybLex/Zeo-MS2 for homologous recombination in the yeast L40-ura3 host strain 

(Invitrogen), followed by the transformation of bait plasmid p3’Fed-1 {containing the 

hybrid MS2 RNA binding site fused to the Fed-1 5’ UTR with a C mutation at position -

55 [F-(-55C)]}.  RNA hybrid control pRH3’/IRE, supplied by the manufacturer, was also 

independently introduced into L40-uraHybLex/Leu for control assays.  Competent yeast 
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L40-uraHybLex/Leup3’Fed-1 strains were prepared by standard yeast protocols and 

stored at -80°C (Guthrie and Fink, 1991).  Competent L40-uraHybLex/Leup3’Fed-1 cells 

were used to co-transform Hind III cut prey plasmid pYesTrp3 and the tobacco cDNA 

library.  The library transformants were selected on synthetic YC medium (Leu-, Ura-, 

Trp-, His-). pYESTrp2/IRP (Invitrogen) control plasmid was transformed into L40-

uraHybLex/LeupRH3’/IRE yeast strain separately.  Primary screening for three-hybrid 

interactions was carried out through the His selectable marker.  10 mM 3-amino-1,2,4-

triazole (3-AT) was added to the media to suppress background colonies resulting from 

leaky selection through the His marker.  A -Galactosidase overlay assay was done as 

described by the manufacturer’s protocol for secondary screening.  All yeast 

transformations and genetic manipulations mentioned above were performed as described 

earlier (Guthrie and Fink, 1991; Gietz et al., 1992). 

 

Protein extract preparation, in vitro transcription and affinity purification 

 Arabidopsis leaves were homogenized according to Langland et al. (1995) with 

50 mM Tris-Cl, pH7.5, 5 mM EDTA, 5 mM KCl, 5 mM DTT, 2 mM PMSF and 1x 

Protease inhibitor (Sigma, St.Louis, MO).  S-100 fraction was dialyzed at 4°C in 20 mM 

Tris-Cl, pH 7.5, 10% (v/v) glycerol, 100 mM KCl, 5 mM MnSO4, 5 mM DTT and 2 mM 

PMSF. 

 Unlabeled F-(CAUU)6Poly(A) was transcribed in vitro using the RiboMAXTM kit 

(Promega, Madison, WI) as per the commercial protocol.  Cla I cut F-(CAUU)6Poly(A) 

plasmid template was used for in vitro transcription using T7 polymerase.  The in vitro 

unlabeled transcript was purified with a Sephadex G-50 (Sigma) column and quantitated 
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by spectrophotometry.   

 The unlabeled transcript was covalently linked to CNBR-activated Sepharose 4B 

beads (Amersham, Piscataway, NJ) as described by the manufacturer.  Affinity 

purification was done as described by Newman et al. (2000) with the following 

modifications.  Three mL of covalently linked Sepharose was packed in columns.  

Arabidopsis protein extract (S-100 fraction) was diluted in an equal volume of buffer 

containing 40 mM HEPES, pH 7.0, 400 mM KCl, 6 mM MgCl2, 1.5 mM DTT, 0.2 

mg/mL tRNA, 10% (v/v) glycerol.  The resulting mixture was added to the columns.  

Columns were washed with 10 mL DLG 200 (20 mM HEPES, pH 7.0, 200 mM KCl, 3 

mM MgCl2, 0.5 mM DTT, and 10% glycerol) and DLG 500 (same composition as DLG 

200 buffer, but with 500 mM KCl).  Fed-1 RNA-binding proteins were eluted with 3.0 M 

and 1.0 M LiCl, 1 M urea and further dialyzed overnight at 4°C in dialysis buffer (20 mM 

Tris, pH 7.5, 10% glycerol 100 mM KCl, 5 mM MnSO4, 5 mM DTT, 2 mM PMSF).  

Proteins were precipitated with 55% trichloroacetic acid and 2.2 % phosphotungstic acid 

as described by Yeang et al. (1995).  Purified proteins were separated by SDS-PAGE and 

stained using Coomassie blue stain. 

 

Over-expression and purification of GST fusion proteins 

 Cultures of YML145 strain with GST fusion plasmids were grown to mid-log 

phase in SDC(glucose)-Ura.  Cells of 0.1 OD600/mL were harvested and added to 

SDC(raffinose)-Ura and grown to an OD600 of 0.9 to 1.5.  Galactose was added to a final 

concentration of 2% and the cultures were allowed to grow for 7 h.  Cells were harvested, 

washed with water and used for protein purification.   
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 Cells (80 mg wet weight) were resuspended in 500 µL of lysis buffer (25 mM 

HEPES, pH 7.4, 150 mM NaCl, 0.1% Triton X-100, 5 mM MgCl2, 10% glycerol, 1X 

Protease Inhibitor (Sigma), 1X Phosphatases (Sigma).  250 µL of glass beads was added, 

and the cells were lysed by vortexing for 2.5 minutes.  The mixture was incubated at 4°C 

for 2 minutes and again vortexed for 2.5 minutes.  The lysate was centrifuged for 5 

minutes at 15,000 X g.  The soluble fraction was removed, and the proteins were 

quantitated by Bio-Rad protein assay (Bio-Rad, Hercules, CA).  2.5 mg of the soluble 

protein fraction was gently mixed with washed immobilized glutathione beads (Pierce, 

Rockford, IL) for 1 hour.  The beads were collected by centrifugation and washed three 

times with IP 150 (20 mM PIPES, 150 mM NaCl and 0.5% Tween 20) buffer.  The GST 

fusion proteins were eluted from beads by incubating with 10 mM reduced glutathione in 

IP 150 buffer for 2 days at 4°C. 

  

UV-crosslinking 

 In vitro analysis of protein binding by UV-crosslinking was done according to 

Alexander et al. (1998) with the following modifications.  Radiolabeled RNA transcripts 

for UV-crosslinking were synthesized from pSKT7-F-(CAUU)6 DNA (Cla I cut for sense 

and Sst I cut for antisense) template with RiboMAXTM kit (Promega) as per the 

commercial protocol.  1 to 5 µL of over-expressed purified protein was incubated with 

1x106 cpm of radiolabeled RNA in binding buffer (5 mM Tris-Cl, pH 7.5, 20 mM KCl, 

10 mM MgCl2, 5 mM EDTA, 0.1 mM DTT, 1X Protease Inhibitor and 0.02 mM PMSF) 

for 20 minutes at 25°C.  The opened microfuge tubes containing the RNA/protein 

mixture were covalently cross-linked with UV light for 10 minutes in a Stratalinker 
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(Stratagene, Heidelberg, Germany).  Following RNase A and RNase T1 treatment, 

proteins bound to radiolabeled RNA were resolved by 10% SDS-PAGE and electro-

blotted onto a PVDF membranes (Amersham).  The blotted membranes were exposed to 

Kodak X-OMAT Blue XB-1 films at -80 °C for 12 to 72 hr.   

 

RESULTS 

 

Identification of tobacco proteins that bind Fed-1 5’ UTR by yeast three-hybrid 

assay 

 To identify proteins that may interact with the Fed-1 mRNA 5’ UTR, we utilized 

a yeast three-hybrid assay by using the commercially available RNA-Protein Hybrid 

Hunter Kit (Fig. 1).  However, the system was designed for direct cloning and testing of a 

small number of specific mRNA binding proteins rather than for extensive library 

screening.  Therefore, we modified the system to establish an inexpensive and efficient 

three-hybrid screen for Fed-1 mRNA specific binding proteins produced from PCR-

generated tobacco cDNA libraries.  Advantageous modifications included the 

replacement of the zeocin selectable marker with a Leu selectable marker as well as co-

transformation of the restriction enzyme digested prey plasmid with PCR amplified 

cDNAs generated with primers that allowed homologous recombination of the cDNA 

into the appropriate site of the prey plasmid.  The plasmids for LexA-MS2 coat protein 

fusion (pHybLex/Leu-MS2) and hybrid Fed-1 5’ UTR bait RNA (p3’Fed-1) were 



 89

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Yeast Three-hybrid system constructs 

The yeast three-hybrid system (SenGupta et al., 1996) involves interaction between three 
components, LexA-MS2 coat protein fusion (pHybLex/Leu-MS2), MS2-Fed-15’ UTR 
bait RNA (p3’Fed-1) and the VP16-cDNA fusion protein (pYESTrp3 + cDNA library), 
resulting in the activation of two reporter genes (HIS3 and LacZ).  The HIS3 and LacZ 
reporter genes are integrated in the L40 S.cerevisiae strain under the control of LexA 
operator and the protein and RNA hybrids are encoded by separate plasmids. Adapted 
from Invitrogen RNA-Protein Hybrid HunterTM Kit instruction manual.      
 

LexA op 

LexA 
DBD 

MS2 
Coat  

protein 

MS2RNA/ Fed-1 5’ UTR 

RNA 
Binding  
protein 

VP16 
AD 

Transcription Activation 

HIS3, LacZ 



 90

introduced into L 40 yeast strain in two successive steps as described in the methods.  

Since the Fed-1 hybrid RNA used in this system contained a poly U stretch (at nucleotide  

position -58 to -53), where yeast RNA polymerase III could terminate transcription, we 

mutated the sequence to UUCUU.  The F-(-55C) construct containing this mutation 

showed wild-type light-regulated mRNA stability and polyribosome association when 

assayed into stably transformed tobacco (SB and MP, data not shown). 

 cDNA libraries prepared from mRNA isolated from light- and dark-grown 

tobacco leaves were used to screen for candidate Fed-1 binding proteins.  A total of 8  

104 recombinant cDNAs were screened, of which 780 produced yeast transformants that 

grew in the primary selection on histidine deficient media in the presence of 10 mM 3-

AT.  From these we identified 12 positive clones that activated the expression of a 

secondary -galactosidase reporter gene in a secondary screen (Fig. 2A).  The cDNA 

inserts of the positive clones were sequenced and subsequent analysis showed that these 

encode ribosomal protein S2 (4 of the 12 clones, isolated from multiple cDNA libraries), 

2-isopropylmalate synthase, glycine-rich protein, mucin-related protein, and a protein of 

unknown function.  Three of the cDNA clones had no homologous sequences in the 

Entrez nucleotides database (clones #65, 421 and 734).  However these cDNA inserts 

were much shorter in length, ranging from 200-250 bp, than the other positive cDNAs.  

Since first-strand synthesis of the cDNAs was primed from the polyA tail, these cDNAs 

are likely to be primarily the 3’ UTR from the associated RNA.  Opening reading frame 

analysis (MacVector) showed short stretches of amino acids (~30-50 aa) that when fused 

with the VP16 activating domain (AD) may fortuitously bind the bait mRNA. 
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 The ribosomal protein S2 (RP S2) showed strong interaction with the Fed-1 5’ 

UTR, similar to the positive control, IRE-IRP (iron-responsive element RNA interaction 

with the iron-responsive protein), in both growth rate on –His media and in the -

galactosidase screen (Fig. 2A).  In addition, the RP S2 did not produce the lacZ+ 

phenotype when transformed into yeast without the Fed-1 RNA-expressing plasmid and 

also the IRE RNA-expressing plasmid (Fig. 2C and 2D), suggesting that it is a genuine 

positive which specifically interacts with the Fed-1 5’ UTR RNA.  We have previously 

shown that a 26 nt element of the Fed-1 5’ UTR consisting of the (CAUU)4 repeat and 10 

nt adjacent upstream sequence is both necessary and sufficient for dark-induced light-

regulated mRNA decay.  RP S2 cDNA was isolated from the L40 yeast strain, amplified 

in Escherichia coli and re-introduced along with the activation domain (AD) plasmid into 

a yeast strain carrying CAUU mutant (in which the (CAUU)4 is deleted) and USmut 

Fed-1 5’ UTR (in which the (CAUU)4 upstream 10 nt are mutated) bait RNA.  As shown 

in Figure 2D, RP S2 interacts with both of the mutant Fed-1 5’ UTRs, suggesting that the 

(CAUU)4 sequence or the upstream sequence may not be the binding site for this protein. 

 

Isolation of Fed-1 5’ UTR binding proteins by affinity purification 

 In addition to the three-hybrid assay, Angela Krueger utilized affinity purification 

and mass spectrometry to identify Fed-1 mRNA binding proteins present in Arabidopsis.  

S-100 fractions from light-grown Arabidopsis plants were passed over a column 

containing Fed-1 5’ UTR linked to CNBr-activated Sepharose beads via a 3’ terminal 

poly(A) tail. The proteins that bound to Fed-1 5’ UTR RNA were eluted by high salt 

washes from the column, separated by SDS-PAGE and revealed by Coomassie staining 
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Figure 2.  Identification of tobacco proteins that interact with Fed-1 5’ UTR 

(A) Yeast three-hybrid screen (duplicates of X-gal overlay assay are shown)  (B) 
Interaction of three-hybrid positives without Fed-1 RNA (shown in duplicates)  (C) 
Interaction of three-hybrid positives with IRE RNA (shown in duplicates)  (D) Interaction 
of RP S2 with WT, CAUU and US mut Fed-1 5’ UTR  (E)  pRNAbp interaction with 
WT and CAUU and US mut Fed-1 mRNA 5’ UTR in yeast three-hybrid assay.   
Tobacco cDNA library, RP S2 and pRNAbp cDNA were co-transformed with a plasmid 
encoding the transcriptional activation domain in a yeast strain (L40) expressing the MS2 
RNA binding:LEXA DNA binding domain,  MS2:Fed-1 fusion mRNA or MS2: CAUU 
Fed-1 fusion mRNA, two reporter genes, HIS3 and LacZ.  Transformants were selected 
on plates lacking histidine to select for HIS3 expression.  Primary transformants were 
picked, patched onto plates and overlaid with X-Gal.  Figure (A) represents yeast 
colonies that are positive for -galactosidase activity at varying intensities. Iron-
responsive element RNA (IRE) and the iron-responsive element protein (IRP) interaction 
(+ve control) is shown along with the interaction of IRE with only the pYESTrp3 plasmid 
(-ve control). 
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(Fig. 3).  1.0 M salt elution yielded three major bands at 50, 27 and 26 kDa.  3.0 M salt 

elution yielded major bands at 41, 26 and 15 kDa.  All of these major bands were  

subjected to trypsin digestion and identified by MALDI-TOF mass spectrometry.  Three 

bands (Fig. 3, bands1.a, 1.b and 3.e) showed significant sequence similarity to a probable 

RNA binding protein (pRNAbp) (At2g37220) of Arabidopsis.  Bands at 41 and 15 kDa 

showed sequence similarity to an annexin-like protein (At5g10220) and a probable 

ribosomal protein L9 (At4g10450) respectively (Fig.3, bands 3.b and 3.h respectively).  

The 50 kDa band present in the 1.0 M salt eluate and not in the higher 3.0 M salt eluate 

was due to Rubisco contamination. 

 

pRNAbp interacts with Fed-1 5’ UTR in yeast three-hybrid assay 

 The open reading frame of the isolated full-length pRNAbp, along with the AD-

plasmid was introduced into three different three-hybrid yeast strains, harboring Fed-1, 

the mutants CAUU and USmut Fed-1 hybrid bait RNA.  The resulting transformants 

were selected on histidine deficient media for HIS3 expression and the resulting primary 

transformants assayed for -galactosidase expression.  pRNAbp interacted with wild-type 

Fed-1 5’ UTR resulting in formation of blue colonies in the presence of X-gal (Fig. 2E), 

suggesting in vivo interaction of pRNAbp with Fed-1 5’ UTR.  As shown in Fig 2E, 

pRNAbp also interacted with USmut Fed-1 mutant.  However, pRNAbp did not bind the 

CAUU mutant Fed-1 in the three-hybrid assay, suggesting that the (CAUU)4 sequence is 

required for the binding.  
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Figure 3.  Affinity purification of Fed-1 5’ UTR binding proteins from Arabidopsis 

S-100 fractions from light-grown Arabidopsis plants were applied to equilibrated affinity 
columns containing Fed-1 5’ UTR covalently linked to Sepharose beads.  The columns 
were thoroughly washed and Fed-1 binding proteins were eluted with 1.0 M and 3.0 M 
salt, separated by 10% SDS-PAGE and revealed by Coomassie staining.  Shown here is a 
Coomassie-stained gel of the eluted proteins along with the flow-through.  Arrows 
indicate major bands that were excised and identified by MALDI-TOF mass 
spectrometry. (Experiment performed by Angela Krueger) 
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RP S2 and pRNAbp interact with Fed-1 5’ UTR in vitro 

 We have begun testing the in vitro binding activities of the putative Fed-1 RNA 

binding proteins identified in our screen.  Below, I present the most advanced studies  

detailing the interactions of RP S2 and pRNAbp with the Fed-1 5’ UTR.  To test if RP S2  

and pRNAbp interact with the Fed-1 mRNA 5’ UTR in vitro, full-length cDNAs for both 

were isolated by RT-PCR, the proteins were over-expressed and purified from yeast as a 

GST fusion.  The 32P-labeled Fed-1 5’ UTR transcribed in both sense and anti-sense 

orientations was UV-crosslinked with GST-fusion RP S2, pRNAbp and yeast septin 

(control) proteins.  As shown in Figure 4, RP S2 and pRNAbp bound to both sense and 

anti-sense Fed-1 with different affinities (Fig. 4A lanes 2 and 6 and Fig. 4B lanes 2 and 6 

respectively).  However, the control protein (yeast septin) did not show binding affinity 

to both sense and anti-sense Fed-1 5’ UTR (data not shown).  To test the specificity of 

binding, competition experiments were carried out with 1, 5 and 20x unlabeled sense 

competitor Fed-1 mRNA with radiolabeled sense and 5 and 20x unlabeled anti-sense 

competitor Fed-1 mRNA with radiolabeled anti-sense Fed-1 mRNA.  As shown by the 

UV-crosslinking assays with RP S2 (Fig. 4A), the presence of 5x unlabeled sense Fed-1 

resulted in a 15-fold reduction of the binding complex (Fig. 4A, lane 4) as indicated by 

the phosphoimager analysis.  However, 5x unlabeled anti-sense Fed-1 resulted only in a 

2-fold reduction of the binding complex (Fig. 4A, lane 7).  Competition assays with 

unlabeled sense Fed-1 for pRNAbp (Fig. 4B) gave results similar to that of RP S2-Fed-1 

competition with sense competitor RNA.  Presence of 5x unlabeled sense Fed-1 resulted 

in a 6-fold reduction of the binding complex (Fig. 4B, lane 4).  However, 5x anti-sense



 97

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 

Competitor - - - - - - 

Protein - + + + + + + + - + + + + + + + 

S S AS AS 

60 kDa 

120 kDa 

50 kDa 

85 kDa 

40 kDa 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.  In vitro binding of RP S2 and pRNAbp to Fed-1 mRNA 5’ UTR 
 
A. RP S2 and B. pRNAbp GST-fusion proteins were UV-crosslinked to 32P-labeled Fed-1 
mRNA 5’ UTR transcribed in the sense (S) or anti-sense (AS) orientation.  Following 
UV-crosslinking, unlinked mRNA was digested with RNases, labeled proteins were 
resolved on 10% SDS-PAGE gels, blotted onto PVDF membranes and visualized by 
autoradiography.  Lanes 3-5 and 7-8 in both figures (A) and (B) show competition 
binding experiments with unlabeled sense and anti-sense competitor Fed-1 mRNA 5’ 
UTR. Lanes 3-5 in both (A) and (B) are with 1, 5 and 20x sense competitor RNA. Lanes 
7-8 in both (A) and (B) are with 5 and 20x anti-sense competitor RNA.  
 

A. B. 

RP S2 pRNAbp 
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competitor resulted only in a 1-fold reduction of the binding complex (Fig. 4B, lane 7).  

These results suggest specific binding of RP S2 and pRNAbp to sense Fed-1 5’ UTR.   

 

DISCUSSION 

 In transgenic tobacco, pea Fed-1 is regulated by photosynthetic electron transport 

at the level of both translation and mRNA stability (Petracek et al., 1997).  Furthermore, 

we identified sequences within the Fed-1 5’ UTR that are necessary and sufficient for 

light-regulated mRNA stability [Chapter II (Bhat et al., 2004)]. We hypothesized that 

along with regulatory cis-elements present within the Fed-1 mRNA 5’ UTR, certain 

protein factors might also be involved in Fed-1 mRNA post-transcriptional regulation.  In 

this chapter, we utilized yeast three-hybrid and affinity purification methods to identify 

proteins that interact with Fed-1 5’ UTR.  With the yeast three-hybrid assay we identified 

several proteins from tobacco that appear to interact with the Fed-1 mRNA 5’ UTR.  One 

of the strongly interacting proteins showed sequence similarity to ribosome-associated 

protein, RP S2.  It has been previously shown that this protein is an accessory component 

of the ribosomes and is preferentially associated with the ribosomes during plant tissue 

growth and development (Garcia-Hernandez et al., 1996).   

 We also identified a glycine-rich protein (GRP) that interacted with Fed-1 5’ UTR 

in the three-hybrid assay.  This protein contains glycine-rich amino-acid sequence, with 

seven GGGY repeats and three RGG repeats.  Both of these repeats have been 

documented to be RNA-binding sequences (Sachetto-Martins et al., 2000; Landsberger et 

al., 2002).  In addition the expression of GRP genes have shown to be regulated by 

various biotic and abiotic factors.  Molina et al. (1997) have shown that the barley 
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glycine rich protein-3 (grp-3) expression is also light/dark modulated.  We have isolated 

full-length cDNA for the tobacco GRP protein, over-expressed the protein as a GST-

fusion in yeast and are currently performing in vitro binding assays with Fed-1 5’ UTR.  

Three of the cDNA clones identified to interact with Fed-1 5’ UTR in the three-hybrid 

assay, of which one (Fig. 2A, #65) showed a strong interaction, were short inserts and 

had no similarity to any of the known sequences in the database.  This suggests that these 

cDNA inserts might be parts of novel genes encoding RNA-binding proteins or that 

fortuitous short AA sequences bound the RNA somewhat.  The proteins that showed 

strong interaction with the Fed-1 RNA, do not show interaction without the Fed-1 RNA 

and IRE RNA in this assay (Fig. 2B and 2C respectively).  The rest of the proteins 

identified in yeast-three hybrid system, excluding RP S2 await further analysis. 

 Affinity purification of Fed-1 5’ UTR binding proteins from Arabidopsis resulted 

in the identification of three candidate proteins, including a previously uncharacterized 

probable RNA-binding protein that contains two RNA recognition motifs.  This protein 

also showed interaction with Fed-1 5’ UTR in yeast-three hybrid system, suggesting that 

it specifically binds to Fed-1 mRNA.  A probable ribosomal protein L9 was also 

identified by affinity purification.  It has been previously suggested that ribosomal 

proteins, in addition to their function as general translation factors, can also regulate 

expression of specific genes (Garcia-Hernandez et al., 1994; Garcia-Hernandez et al., 

1996; Ma and Dooner, 2004) 

 In our assays we have used effective specific competitors to confirm the binding 

affinity.  Although there is an increased binding complex with the anti-sense Fed-1 for 

both proteins, it remains possible that there is a higher specific activity of the 
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radiolabeled anti-sense Fed-1 than the sense.  Competition with specific competitors 

suggests that the binding of both proteins is specific to sense Fed-1 mRNA.  However, to 

further characterize the protein binding, it is important to use mutant Fed-1 mRNAs, a  

control RNA sequence and also non-specific competitors such as unlabeled E. coli or 

yeast mRNA.  Since Fed-1 mRNA is differentially regulated by light, we hypothesize 

that the protein factor might preferentially bind Fed-1 mRNA under different conditions 

(light or dark).  In such a case, expression of the mRNA encoding the binding protein 

might also be regulated by light.  Northern blot analyses did not show differential 

accumulation of both tobacco RP S2 and Arabidopsis pRNAbp mRNA in the light and the 

dark (data not shown), suggesting that the genes for these RNA binding proteins are not 

light responsive.  However, it is possible that these proteins might be a part of a complex 

or may recruit additional sequence specific protein(s) to Fed-1 mRNA and these 

protein(s) may be responsible for light-regulated Fed-1 mRNA translation and stability. 

 The data discussed in this chapter are the results of preliminary experiments.  

Further analyses, specifically to assay for the interactions of three-hybrid positives with 

mutant Fed-1 RNAs, UV-crosslinking assays with mutant Fed-1 mRNAs, control RNA 

and competition assays with non-specific RNA will be done prior to preparation of a 

manuscript for publication.  
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CHAPTER 5 

 

SUMMARY 

 

 Both nuclear- and chloroplast-encoded photosynthetic genes are modulated by 

light.  This modulation occurs at multiple levels, transcriptional or post-transcriptional 

including mRNA stability, translation and post-translational modifications.  Many 

chloroplast-encoded genes are regulated by light primarily post-transcriptionally 

[reviewed in (Bruick and Mayfield, 1999; Rochaix, 2001)].  However, post-

transcriptional control at the level of mRNA stability and translation initiation also plays 

an important role for regulating some of the nuclear genes that encode chloroplast 

proteins [reviewed in (Bailey-Serres, 1999; Petracek and Thompson, 2000)].  Nuclear-

encoded pea Ferredoxin-1 (Fed-1) mRNA has been our model to study the post-

transcriptional light regulation mechanism.  The work presented here starts with the 

characterization of cis-element(s) required for light-regulated Fed-1mRNA instability.  

Other plant mRNAs that could be regulated in response to photosynthetic changes are 

identified.  Putative protein factors that interact with Fed-1 mRNA are also identified.  

 

Characterization of Fed-1 mRNA instability element 

 Previously it has been shown that site-specific mutations of the (CAUU)4 repeat 

abolished light-regulated Fed-1 mRNA abundance (Dickey et al., 1998).  Here we 
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present evidence that the (CAUU)4 repeat is necessary for the differential stability of Fed-

1 mRNA in light and in the dark.  Three CAUU repeats are sufficient for full light 

regulation of Fed-1 mRNA accumulation and an increase in the number of CAUU units 

significantly increases the light:dark mRNA accumulation ratio compared to wild-type 

Fed-1 mRNA.  Mutation of all other sequences within the Fed-1 5’ UTR including that 

are adjacent to the (CAUU)4 repeat do not alter Fed-1 light-regulated mRNA 

accumulation significantly, suggesting these sequences are not a part of the Fed-1 mRNA 

instability element.  Furthermore, 26 nucleotides of the Fed-1 5’ UTR consisting of the 

(CAUU)4 repeat and 10 adjacent upstream nucleotides are sufficient to confer three-fold 

light regulation of mRNA accumulation to a non-light-responsive plant mRNA. 

 A (CAUA)4 mutation of the (CAUU)4 repeat that significantly changes the light-

regulated Fed-1 mRNA instability also alters the in vitro structure of this region.  This 

observation implies that the structural changes in this region of Fed-1 might be important 

for the interaction with a trans-acting factor.  In addition, the position of (CAUU)4 repeat 

near the 5’ end of the Fed-1 5’ UTR is important for its function, suggesting that the 

interaction with the trans-factors is localized to the 5’ end of Fed-1 mRNA.  Most of the 

eukaryotic mRNA instability elements described until recently are present in the 3’ 

UTRs.  Also the major pathway for mRNA degradation in yeast and mammals is initiated 

by the 3’ deadenylation of the mRNA followed by decapping and nucleolytic 

degradation.  However, there is evidence for plant mRNA decay initiated by decapping 

and endonucleolytic cleavage (Higgs and Colbert, 1994).  Since the dark specific 

(CAUU)4 instability element of Fed-1 mRNA is present in the 5’ UTR, it seems likely 

that the Fed-1 mRNA decay involving the (CAUU)4 element, is initiated by a pathway 
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other than deadenylation such as decapping and 5’ to 3’ nucleolytic degradation or 

endonucleolytic cleavage in this region.  

 

Fed-1 mRNA 5’ UTR cis-elements for light regulation of mRNA stability and translation 

are separable.   

 Dependence of mRNA stability on translation has been shown for many 

prokaryotic and eukaryotic mRNAs [reviewed in (Ross, 1995; Abler and Green, 1996; 

Jacobson and Peltz, 1996)].  For Fed-1 mRNA, it has been previously shown that the 

mRNA decay requires an active translation (Dickey et al., 1994; Petracek et al., 2000).  

Mutation of the (CAUU)4 repeat alone significantly disrupts light regulation of Fed-1 

mRNA stability and does not affect the dark-induced polyribosome dissociation (Dickey 

et al., 1998; Bhat et al., 2004).  Conversely, mutation of the sequences upstream and 

downstream of the (CAUU)4 repeat disrupts the dark-induced polyribosome dissociation 

but not the differential regulation of Fed-1 mRNA abundance.  First, these data imply 

that the Fed-1 mRNA instability and translational control cis-elements are separate and 

the sequences upstream and downstream of the (CAUU)4 repeat play a role in Fed-1 

translational regulation.  Second, these mutant Fed-1 mRNAs may be degraded by a 

dark-responsive trans-acting factor(s) that interacts with the (CAUU)4 element, even 

though these mRNAs are actively translated in the dark.   

  

Fed-1 mRNA 5’ UTR binding proteins 

 Little is known about the trans-acting factors involved in post-transcriptional 

regulation of plant mRNAs.  Much of the work done over the past decade have identified 
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nucleus-encoded proteins interacting with chloroplast-encoded photosynthetic mRNAs 

(Danon and Mayfield, 1991; Nickelsen et al., 1994; Alexander et al., 1998; Vaistij et al., 

2000).  However, the protein factor(s) involved in light-regulation of many nuclear-

encoded mRNAs is still unknown and our study is likely to provide some clues about the 

regulation and possible signaling pathways. 

Yeast three-hybrid and affinity purification assays were utilized to identify and 

isolate proteins that interact with Fed-1 mRNA 5’ UTR.  Nine tobacco proteins with the 

three-hybrid system and three Arabidopsis proteins with affinity purification assays were 

identified to interact with Fed-1 5’ UTR.  Two of these proteins, tobacco ribosomal 

protein S2 (RP S2) and Arabidopsis probable RNA binding protein (pRNAbp), were 

further characterized for their specificity to bind Fed-1 5’ UTR in vitro.  Both RP S2 and 

pRNAbp bind sense and antisense Fed-1 mRNA with different affinities.  Tobacco 

glycine-rich protein (GRP) identified to interact with Fed-1 5’ UTR with the three-hybrid 

system contains RNA-binding domains and is yet to be further characterized. The 

identification of ribosomal proteins binding to Fed-1 5’ UTR provides insights for the 

role of these proteins in post-transcriptional regulation of gene expression. 

 

Conclusion   

 To adapt to a changing environment, plants have to carefully regulate the 

expression of several genes.  This regulation occurs at multiple levels in response to 

various stimuli including light, temperature, sugar and water.  We have identified many 

tobacco endogenous mRNAs that are regulated by photosynthesis through transcriptional, 

post-transcriptional and/or translational mechanisms (Tang et al., 2003).  In addition, the 
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data presented in this thesis focuses on light regulation of Fed-1 mRNA.  We have 

thoroughly analyzed the cis-elements responsible for dark induced Fed-1 mRNA 

instability.  The (CAUU)4 element is clearly necessary for Fed-1 mRNA destabilization 

in the dark (Bhat et al., 2004).  However, the decay mechanism of Fed-1 mRNA and how 

this (CAUU)4 element functions in the Fed-1 mRNA decay still remains unclear.  In an 

effort to understand the light regulated Fed-1 mRNA decay, we have identified a few 

proteins that may interact with Fed-1 5’ UTR.  However we do not know if these proteins 

are involved in light-regulated Fed-1 mRNA stability and/or translation in vivo.  

Silencing and overexpression studies of the genes for these proteins in plants will be 

important for a complete understanding of the Fed-1 light-regulation mechanism. 

 Our work is likely to enhance the knowledge of plant post-transcriptional gene 

regulation.  This study adds a novel dark-induced instability element to the known array 

of mRNA stability determinants.  Although the presence of the (CAUU)4 repeat is unique 

to Fed-1, my work showing that mutations of the repeat, or shorter versions of the repeat 

retain some degree of dark-induced mRNA instability opens the possibility that similar 

sequences may be present in other mRNAs, where they may function as light responsive 

destabilizing elements.  
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