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CHAPTER I

INTRODUCTION

Today’s poultry industry continually strives to enhance both efficiency of applied 

production and yield of edible parts per unit feed input. Improvements in efficiency have 

largely come from genetic progress, though nutrition has also contributed. Nonetheless, 

impetus for nutritional evolution has frequently been the fact that nutritionists are 

formulating rations for birds that differ from the past. Such appears to be the case today 

as, though ration ME values appear static, the value of ME to poultry has increased 

significantly. An examination of Agristats data indicates that the ME content of rations 

has been lowered over time, a fact that well correlates with improved efficiency. 

However, the consequence of this is that the industry is continuously chasing the 

evolving genetics. A case study in our laboratory (Table 1) indicates that 1999 Cobb 

broilers had a ME savings of 880 Kcal over NRC (1994) data at equalized body weight. 
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Table 1.  A comparison of the 1994 NRC and 1999 Cobb broiler partitioning of consumed energy (E) into maintenance and gain.  

Cobb-94 Cobb-99 Saving

Live Weight (g) 2588 2588 --

Bird Age (Days) 49 45 4 days

ME Cons (Kcal/b) 15994 15114 880 Kcal

Maint. E (Kcal/b) 5672 5244 428 Kcal

E. Gain (Kcal/b) 10321 9870 451 Kcal

Carc. E/E. gain 0.414 0.444 296 Kcal
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Calculation indicates that the bulk of energy savings (49%) is in the form of 

maintenance (428 Kcal), with 296 Kcal saved for gain and about 156 kcal remaining 

unaccounted. The latter, we believe, represents reduced activity by the bird.

Nutrition comes to play a key role controlling carcass composition. Today’s bird 

has changed dramatically over the years, but new problems are also faced. Not only are 

the nutrient requirements changing annually, but also the adaptation period for stress has 

not been overcome. It is well known that poultry, like many other animals, are 

insufficient in converting feed to protein. To achieve maximum broiler performance, the 

dietary CP content must provide sufficient levels of EAA and NEAA to allow maximum 

protein synthesis and meet the demands of metabolic processes. Reduction in nitrogen 

excretion and improvement in the efficiency of nitrogen deposition can be obtained by 

matching amino acid composition of the diet with the amino acid requirement of the 

broiler for maintenance and meat production. The availability of commercial synthetic 

amino acids allows this to be done with low protein diets by avoiding an excess of each 

amino acid above the requirement. Keshaverz (1991) postulated that low protein diets 

increase the tolerance of birds to elevated temperatures because the heat production 

associated with the utilization of protein is greater when compared to carbohydrates and 

fats. However, there is conflicting evidence as to whether low protein diets supplemented 

with amino acids can support maximum growth rate. Twining et al. (1974) reported that 
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broiler chicks receiving a low protein starter diet exhibited inferior body weights and feed 

conversions at 4 weeks of age when compared with the control diet. 

In practical corn-soybean meal based broiler diets, methionine is considered first 

limiting followed by lysine, arginine, valine, and threonine (Han et al., 1992). However, 

lysine is the amino acid to which all others are proportionally related (i.e. ideal protein 

concept; Baker and Han, 1994; Baker, 1997).  Additionally, lysine is generally expressed 

in ratio to energy, as dietary caloric density largely regulates voluntary feed intake 

(Leeson et al., 1996; McKinney and Teeter, 2004).  Lysine is largely viewed as a pivotal 

nutrient because lysine has no major precursor role, and there has been extensive work to 

quantify digestible lysine need in broilers reared under a wide range of dietary and 

environmental circumstances (Han and Baker, 1993; Emmert and Baker, 1997).  

Intrinsic factors determine a broiler’s overall capacity to synthesize and 

accumulate muscle (Lawrence and Fowler, 1997).  However, whether or not the inherent 

upper limit is realized largely depends on the dietary supply of essential amino acids, as 

well as energy, as protein accretion is energetically costly (4 to 7 moles of ATP per 

peptide bond formed; Bequette, 2003).  As maximum meat yield at optimal efficiency is a 

principle goal, nutritionist’s routinely tweak nutrient to calorie ratios in an attempt to 

provide an ideally balanced ration. 

The energy expenditure or heat production of an animal is essentially a function 

of two processes. Firstly, the biochemical transformation of a nutrient to an end product 

is often associated with a loss of energy for the animal. For example, Baldwin (1995) 
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calculated that only 0.84 of glucose energy can be conserved as tripalmitin and ATP; 

reminder is lost as heat. Second, energy expenditure is due to biophysical processes 

requiring ATP (Miligan and Summers, 1986). Both, the conversion of nutrients to ATP 

and the actual ATP utilization contribute to the heat production. Different authors have 

quantified the energy efficiencies of the main biochemical processes. (Birkett and de 

Lange, 2001). 

The work of Schulz (1978) is very advanced and includes the fate of each nutrient into 

ATP equivalents. It includes the catabolic and anabolic processes for carbohydrates, 

amino acids and lipids. The basic premise of Schulz’s work is that excess amino acids are 

converted to either glucose or ATP, which can then be used for other purposes. 

The yield of ATP from an oxidizable substrate is highly dependent on the 

cytoplasmic equivalents. The ATP yields of proteins fats and carbohydrates are 

calculated the same way as the heats of combustion of proteins and fats with substitution 

of appropriate farmula of - ∆Hc values with the potential net cytoplasmic ATP yield for

the individual amino acids, fatty acids and glycerol.  

Studies were conducted to evaluate bird need for  indispensable amino acids, 

lysine and the theoretical yields of ATP’s by amino acids consumed in excess of 

accretion.
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CHAPTER II

REVIEW OF LITERATURE

Introduction

Bird Age

The growth rate of broiler increases from day 0 to 10, reaching a maximum of 

about 20% per day (Nitsan et al., 1991). The weekly proportionate increase in body 

weight declines as the chicken ages (Marks and Pesti, 1984). Therefore, it would be 

expected that the relative amount of energy required for growth per unit metabolic 

size also declines. As the relative amount of energy required for growth declines, any 

excess energy consumed will result in increased rate of daily fat accretion. At early 

ages, birds must rapidly adapt to digestion of an exogenous diet in which nutrients are 

absorbed from the intestine. During this early growth stage, energy is supplied 

predominantly by carbohydrates in order to achieve their genetic potential. Some of 

the factors that may influence early growth rate include amount of yolk sack residue, 

quality and intake of feed and water, pancreatic and intestinal enzyme levels, 

gastrointestinal tract surface area, nutrient transporters, and overall nutrient 

digestibility. Also, the change in energy metabolism from lipids to carbohydrates 

must be considered.

BIOENERGETICS AND THERMODYNAMICS
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The bioenergetics field deals with metabolic energy transformations in living 

things according to the physical laws governing energy transformation. The first law of 

thermodynamics (Klotz, 1986 in Harper’s Biochemistry) states that the total energy of the 

system, including its surroundings, remains constant (energy cannot be created or 

destroyed). However, within that total system energy may be transformed into another

form of energy. For example, chemical energy may be transformed into heat, electrical 

energy, radiant energy, or mechanical energy in living systems. The second law of 

thermodynamics states that the total entropy (disorder) of a system must increase if a 

process is to occur spontaneously. Entropy becomes maximum in a system as it 

approaches true equilibrium. These laws dictate that the heat produced from various 

metabolic processes is the same as it would be if feed were allowed to combust to the 

same end-products. The first law of thermodynamics asserts that the total amount of 

energy in an isolated system remains constant. When the energy content of a system 

changes, the sum of all forms of energy given off by the system must be equal to the 

magnitude of the change. The first law is only concerned with initial and final energetic 

states of the system. The principle of conservation of matter also is taken into account in 

the first law because matter and energy are inseparable according to the theory of 

relativity. Matter and energy are different expressions of the same thing. In animal 

systems, the energy equivalent of work, plus the ME of the animal, plus the heat 

increment of feed equals the energy generated from the oxidation of nutrients of the feed. 

Hess’s law of Constant Heat Summation ( 1850, Atkins and Beran in General 

Chemistry) states that all forms of energy are quantitatively convertible to heat. This law 

states that in going from a particular set of reactions to a particular set of products, the 
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change in enthalpy is the same whether the reaction takes place in one step or in a series 

of steps. Oxidation of substrates within an animal body is quite different from oxidation 

in a bomb calorimeter, however from a thermodynamic point of view these facts are 

incidental. According to Hess’s law the physical and physiological heat values of all 

nutrients, with the exception of protein, are the same.

The end products of protein oxidation within the body and the bomb calorimeter 

are different because waste products of protein metabolism within the body are capable 

of further oxidation to produce carbon dioxide and water. In poultry, the end product is 

mainly uric acid, which accounts for 80% of metabolized nitrogen and secondly ammonia 

which accounts for 10% total nitrogen (Sturkie, 1986) and in mammals the major 

nitrogenous end product in urea.

FEED ENERGY METABOLISM

BASAL METABOLIC RATE: The basal metabolic rate of standard metabolic rate is 

defined as the heat production occurring by an animal at rest, awake, fasted and housed 

within its thermo neutral zone. Under these conditions the rate of energy metabolism is a 

function of surface area since heat loss is closely tied to this factor (Brody, 1964). 

Surface per unit body weight declines with increasing body weight. However surface area 

is a difficult parameter to estimate and numerous attempts have been made to relate it to 

body weight. However, surface area is a difficult parameter to estimate and numerous 

attempts have been made to relate it to body weight (Brody, 1964). Typical body weight 

will be raised to a power, most commonly 0.75, which is now regarded as the universal 

metabolic weight. Brody (1964) suggested weight 0.75 be used as a reference base for 
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basal-energy metabolism in mature animals of different species including a weight range 

from mice to elephants. 

Brody reported that for mature birds of different species the exponent varies from 

0.62 to 0.70. Metabolic weight for poultry is commonly reported as W 0.66, since this 

value gives a better estimate when comparing poultry within species. If the correct power 

is chosen and body temperature and animal composition are constant, then heat 

production per unit metabolic weight is relatively constant. Under basal conditions, heat 

energy is produced from various energy sources to offset heat loss and maintain constant 

body temperature.

The basal state is seldom achieved with assurance in animals because of the 

varying time period required to achieve the post absorptive state and the physical, mental 

and emotional distress created by the experimental conditions. Misson (1974) found that 

laying hens required a 3 day exposure to the experimental situation before basal values 

could be achieved and that the time required to reach the post-absorptive state was 

influenced by body weight requiring 24 hours for birds below 2.5 Kg and 48 hours for 

those above.

THERMOBALANCE: Birds and mammals are homeotherms and consequently maintain 

a relatively constant core body temperature. However, diurnal body temperature cycles 

have been detected and are influenced by several factors like age, sex, work and digestion 

(Dawson, 1975; Dukes, 1977). The animal’s total heat is determined by metabolism, the 

reaction by which chemical energy is transformed into heat, and the environmental 

temperature which the animal is subjected to. For the animal to maintain constant heat in 
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the body the rate of heat dissipation should balance heat gain. Heat is added to the body 

by metabolism. In poultry the problem is related to nonevaporative heat dissipation at 

high ambient temperatures. Sturkie (1986) proposed the following equation

Energy balance requires that HP = NHD + EHD

HP = metabolic heat production

NHD = nonevaporative heat dissipation

EHD = evaporative heat dissipation

HEAT PRODUCTION: Birds, like mammals, are homoeothermic. They produce heat to 

maintain a relatively constant body temperature. Although birds and mammals are 

homoeothermic, birds have a number of thermoregulation characteristics different from 

mammals. The most obvious is feathers. Feathers are great insulation which is good for 

cold weather but bad for hot weather. Feathers tend to hold heat in and not let it escape 

easily from the chicken's body. Another difference is that birds have no sweat glands. 

Most mammals perspire when they are hot, and evaporation of this perspiration from 

their skin is extremely effective in reducing body temperature. Nevertheless, birds have a 

couple of special features that do help them during hot weather. Their relatively high 

body temperature makes it easier for them to lose heat to the air around them. Also the 

bird's respiratory system is very effective at cooling. The air sacs of the bird allow 

inhaled air (which is usually cooler than body temperature) to reach deep into the 

abdominal cavity and of course when the bird exhales, heat is removed from its body. 

The bird also has a panting mechanism (gular flutter) that it uses during hot weather to 

evaporate water from its throat and reduce its body temperature. Thus panting in birds is 

analogous to perspiring in mammals and is extremely effective at cooling the bird. 
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ENERGY METABOLISM SCHEMES: The total energy contained in feed is termed as 

gross energy (GE). However, only a portion of gross energy actually appears in animal 

products such as meat, eggs or milk. Blaxter (1989) estimated the efficiency of ME. ME  

is the energy available to the bird that is not subsequently lost in feces and urine. Gaseous 

energy losses from the digestive tract have been considered too small to affect the 

estimate of ME significantly. NE (net energy) is the ME of the food corrected for the 

energy losses that result from the assimilation of the dietary nutrients. This energy loss is 

frequently termed the heat increment of digestion. The remaining NE is available for 

maintenance and production. Growth and egg production are the only products of NE that 

do not result entirely in heat emission. 

Titus (1961) developed an alternative way to determine ME of individual feed   

ingredients based upon digestibility coefficients, and subsequently incorporated factors 

such as moisture, protein, ether extract, nitrogen free extract, and crude fiber contents 

into the formula. Later, Hill et al. (1960), and Matterson et al. (1965) suggested that 

determined values are more accurate than calculated values due to numerous 

environmental, genetic and management factors that can affect results of such studies. 

Hill and Anderson described detailed methodologies and procedure for the determination 

of ME as follows:  

ME = GE – EE – 8.22 x N

ME = metabolizable energy per gram of dry diet consumed

EE = excreta energy per gram of dry diet consumed 

N = grams of nitrogen retained 
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The value of 8.22 Kcal/g is the residual energy values in the excreta as uric acid 

originating from the catabolism of nitrogen compounds retained as protein tissue. 

However, these equations do not subdivide endogenous energy losses from urinary and 

excreta origin.  

Net energy is the ME – energy lost as heat increment. NE may be further divided 

into NE for maintenance (NEm) and production or gain (NEg). It has been estimated that 

NE is 84 % of ME in chick from 0 – 21 days of age (Sturkie, 1986). 

The proportion of NE can change considerably due to factors of animal and/ or 

feedstuff origin, but it has been estimated to be around 84% of ME in the chick from

0 – 21 days of age (Sturkie, 1986). Unfortunately in practice the concept of NE is not 

estimated and it is used infrequently. Ecologists even consider the proportion of energy 

related from the feed that is used for maintenance and growth as a part of ME.

In order to estimate NE for growth we must quantify the amount of energy that is 

completely retained. Originally there were a couple of methodologies used to determine 

NE. The first one was developed by Lawes and Gilbert (1861) in which they attempted to 

measure the difference between energy input and energy output. The second 

methodology is a comparative slaughter technique that correlates energy input to changes 

in body composition. However, this second methodology is laborious as well as time 

consuming and has the potential for errors due to difficulty in obtaining a representative 

sample of birds. There have been other attempts trying to establish a system to estimate 

NE but controversy has occurred when values are contradicting. 
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Net energy deals directly with the profitable portion of the feed, therefore a NE 

quantification system may have value to understand substrate efficiency and it correlation 

with body composition. As described previously, NE is the difference ME and energy 

loss as heat increment. The amount of heat produced subtracted from ME value of a feed 

results in the NE value. For this purpose calorimetry can play a key role in quantifying 

this variable, and that is why a direct or an indirect technique can be applied. Direct 

calorimetry deals the amount of heat lost due to thermoregulation mechanisms such as 

radiation, convection, conduction and evaporation (Deighton, 1939, Benzinger and 

Kitzinger, 1949). Indirect calorimetry methods originally estimated the amount of heat 

lost by incorporating respiratory gases such as oxygen, carbon dioxide and methane in the 

case of ruminants, into an equation. Brouwer (1965) proposed the following equation:

HP = 16.18 (Kj/L) x O2   + 5.02 (Kj/L) x CO2

HP = heat production (Kj/L/hour)

O2 = oxygen consumption (L/hour)

CO2 = carbon dioxide production (L/hour)

PROTEIN METABOLISM

An increased consumer demand for leaner products for today’s consumption pattern is 

evident and is presumably due to high lipid foods negative effects on human health 

(NACNE, 1983; CMAFP, 1984). In order to produce leaner poultry products it is helpful 

to understand the metabolism of proteins and its relation with lipid, carbohydrate and 

energy metabolism. 

PROTEIN CHARACTERISTICS: Proteins are constituents of all cells and are essential 
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to sustain life under any condition. These compounds are formed by chains of amino 

acids linked together by peptide bonds attached to the carboxyl side of one and the amino 

group of the next amino acid. It is the order of these amino acids that determines the 

chemical, biological and physical characteristics of a specific protein. Proteins’ molecular 

weight ranges from 5000 to 1 million depending on the structure of the protein. Proteins 

can serve as regulators of metabolism (enzymes and hormones), structural components of 

membranes, muscles and connective tissues, transport molecules, osmoregulators, and 

body defenders via immunoglobulins (Dukes, 1993).

Proteins consumed in the feed are hydrolyzed in the intestinal lumen and in the 

mucosal cells of the gastrointestinal tract by proteases and peptidases, resulting in free 

amino acids that are mostly transported to hepatocytes via the portal blood. The liver then 

controls the distribution of amino acids across the body and receives a constant supply of 

amino acids as a result of the catabolism of tissue proteins. 

In most animal species the total amino acid concentration ranges between 35 and 

65 mg/dl of blood plasma (Dukes, 1993). The prevalent amino aids are glutamine, alanine 

and glycine. Free amino acids are submitted to catabolism in almost all tissues but 

especially in the intestinal mucosa, liver, brain, kidney and liver. The catabolic procecss 

involves the removal of the amino group and the resulting %-keto acid is then used for 

oxidation to CO2 and with a portion of its energy conserved as adenosine triphosphate 

(ATP), glucose and lipids. 

Nitrogenous waste products also originate from catabolism of proteins. In some 

terrestrial species that waste product is ammonia, which is then converted and released as 
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urea. In poultry and most reptiles, the waste products are metabolized principally into 

uric acid for excretion. Other species such as aquatic animals excrete excess nitrogen as 

ammonium ions (Dukes, 1993). Excretion by uric acid method works costlier for the 

animal than by uric acid.

To synthesize proteins, all the amino acids that make up the various proteins must 

be present in adequate amounts. Some types of amino acids cannot be synthesized by the 

body and must be supplied by proteins or amino acids present in the feed, and they are 

called essential or indispensable amino acids. Others can be synthesized if nitrogen is 

available in the body. In poultry, the carbon skeletons of amino acids come from 

intermediates of carbohydrate metabolism For example, amino acids such as serine and 

glycine come for 3-phosphoglyceric acid, alanine and pyruvic acid. Aspartic and 

glutamic acid proceed from oxalacetate and %-ketoglutarate in the citric acid cycle (Scott 

et al., 1982). A metabolic process known as transmutation plays a major role in the 

efficiency of dietary nitrogen use, and it is thought that this process with the excess of 

one amino acid utilizes it to synthesize another in short supply. In this way amino groups 

will be used to synthesize nonessential amino acids and the nitrogen source will avoid 

excretion and the energy expenditure associated with it (Scott et al., 1982). 

PROTEIN SYNTHESIS, TURNOVER AND DEGRADATION: Intracellular proteins 

are being constantly synthesized and degraded throughout the life of a cell. The rate at 

which this process occurs is termed turnover and has been studied for several types of 

proteins in a variety of tissues (Stevens, 1996). By 1980, most protein synthesis and 

degradation studies have taken place on skeletal muscle tissue, showing the accumulation 
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of body protein happening at a rate of 0.6% of the body weight per day in the commercial 

broiler, and about 0.3% of the body weight per day in the laying hen (Fischer, 1980).  

Today this rate is higher and quicker. The rate of protein synthesis is always higher than 

the rate of protein accumulation because of turnover. Protein turnover may be about 5 

times higher than the dietary nitrogen intake considering that approximately 80% of the 

amino acids that come from turnover are used again (Swick, 1982). 
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Figure 1. Overview of Protein and Amino Acid Metabolism
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The rates of protein turnover measured in the different tissues of Japanese quail 

are higher in the liver followed by the heart and the brain and lowest in pectoral muscle 

(Park et al., 1991). The free amino acid pool in tissues is about 0.5% of the total protein 

tissue (Stevens, 1996). Protein degradation is often more important in regulating protein 

turnover that protein synthesis. The mechanism of protein synthesis and catabolism is 

well understood, but the mechanism of protein turnover is less well defined. The 

biochemical details of protein synthesis, including the role of messenger ribonucleic acid 

(mRNA), ribosomes and transcription factors, have long been known and are similar for 

birds and other vertebrates (Torchinsky, 1937). The major steps involved in protein 

synthesis and the factors required are illustrated in Figure 4. 

Proteins can be divided into short and long-lived (Hershko and Ciechanover, 

1982). Long-lived proteins are taken up into lysosomes and degraded by a group of 

proteolytic enzymes called cathepsins. Short-lived proteins are generally degraded by an 

energy dependent pathway, i.e. ATP is required for proteolysis. Substantial effort has 

been made to unravel the mechanism by which short-lived proteins are selected for 

degradation via ATP-dependent mechanisms. This process often involves modification 

by the protein ubiquitin. In the skeletal muscle of the broiler there are a number of 

different pathways of proteolysis, which include lysosomal and non-lysosomal routes, 

some of which require ATP and ubiquitin (Fagan et al., 1992). Ubiquitin is a widely 

occuring protein in eukaryotes, and it becomes covalently attached to amino groups on 

proteins, which are then selected for degradation. 

NITROGEN EXCRETION: Poultry secrete waste or excess nitrogen mostly as uric acid 
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rather than urea. Uric acid is a purine, synthesized by a series of reactions that are also 

used for synthesis of other purines such as adenine and guanine, and components of DNA 

(Scott et al., 1982). This incorporation of ammonia into uric acid requires both energy 

and building blocks. The synthesis or uric acid is costly in ATO and organic carbon. 

Immediate precursors of uric acid biosynthesis are glycine, glutamine, aspartate, 

bicarbonate and formyltetrahydrofolate. The three amino acids may arise directly from 

proteolysis or of dietary origin. Glutamine may arise from glutamate via glutamine 

synthetase. Glutamate itself and aspartate may arise from transamination of other amino 

acids, in this way the nitrogen from other several amino acids can be transferred to 

aspartate, glutamate or glutamine (Bertland and Kaplan, 1970). The rate-limiting step in 

uric acid formation is the enzyme amidophosphoribosyltransferase (Wiggins et al., 1982). 

PROTEIN INGESTION, DIGESTION AND ABSORPTION: Proteins are consumed as a 

component of the dietary ration and are attacked in the proventriculous and gizzard by 

hydrochloric acid and hydrolytic enzymes. The combined action hydrochloric acid and 

hydrolytic enzymes denature the proteins’ structure into single strands so that peptide 

linkages are exposed. Some native proteins create resistance to this catalytic process 

because they contain bonds that the birds’ proteinases do not have access to, but the acid 

state of the proventriculus and gizzard aid to break down the protein so that most of the 
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Figure 2. Nitrogen and Amino Acid pool

pepsin-sensitive peptide bonds are exposed. Pepsin is responsible for initiating the 

proteolytic process, and results in an increased accessibility of peptide bonds to 

hydrolysis by proteolytic enzymes of the small intestine. In the small intestine, trypsin, 

chymotrypsin and elastase further hydrolyze the peptides even more, exposing numerous 

terminal peptide bonds that are attacked by a new set of enzymes: aminopeptidases, 

caroxypeptidases and other specific peptidases present in the lumen or mucosa of the 

small intestine. Each enzyme plays a sequential role in degradation, therefore if one is 

inhibited or not present in sufficient concentration a decrease in digestion may occur. 

Food in the gastrointestinal tract stimulates vagal nerve, which in turn initiates 
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secretion of gastric juice into the proventriculus by the gastric mucosa. This juice is rich 

in mucin, hydrochloric acid and proteinases. Pepsinogen is then secreted by the peptic 

cells of the proventriculus, and autocatalytically activated by hydrochloric acid presence. 

A highly acid condition predominates in the proventriculus (pH 1.5-2); followed by a 

buffer effect of feed that increases pH to 3.5-5. Pepsin is known to hydrolyze several 

different peptide linkages having a more pronounced effect between leucine and valine, 

tyrosine and leucine, phenylalanine and tyrosine bonds. 

The endopeptidases secreted in the proventriculus and by the pancreas are capable 

of degrading proteins to small peptides containing from 2 to 6 amino acids 

(oligopeptides) and some free amino acids. Some hydrolysis of these small peptides takes 

place by the action of peptidases that are present in desquamated mucosal cells but most 

of oligopeptide breakdown does not occur within the intestinal lumen. Most amino acids 

and small peptides are absorbed into enterocytes via active carrier-mediated processes, 

but passive absorption also occurs. Those small peptides that are absorbed into the 

mucosal cell are hydrolyzed into free amino acids by intracellular peptidases located in 

the cytoplasm of the intestinal mucosa. These amino acids go the liver via portal blood 

stream as free amino acids. 

AMINO ACID TOXICITY AND DEFICIENCY: There is evidence to indicate that 

amino acids themselves may precipitate negative effects in diverse classes of farm 

livestock. These effects may emerge due to the intake of indispensable and dispensable 

amino acids absorbed in quantities and patterns which are disproportionate to the required 

for optimum tissue utilization. These manifestations of adverse effects can be due to what 
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has been referred to as “imbalance”. 

The term amino acid imbalance has been defined as a change in the pattern of 

amino acids in the diet that precipitate food intake and growth depressions that may be 

completely alleviated by supplementation of the first limiting amino acid (Harper et al., 

1970). The primary manifestation of adverse effect is a reduction in food intake, which 

also reduces intake of limiting amino acids that lead to a reduced growth rate. This 

particular problem can be overcome by simply adding a higher amount of the most 

limiting amino acid. When diets contain marginal levels of threonine, excess of serine 

result in a growth depression that can be overcome by higher levels of dietary threonine. 

Excess serine increases the activity of threonine dehydrogenase and threonine aldolase 

(Scott et al., 1982). Threonine imbalance is also produced when chicks fed low threonine 

diets are then fed additional tryptophan or branched chain amino acids (D’ Amello, 

1994). 

Antagonisms are characterized by a growth depression caused by a single amino 

acid, and may be caused by structurally related amino acids. The most common 

antagonism seen in poultry is that of excess lysine impairing the utilization of arginine 

increasing the requirement markedly. The ratio of dietary lysine to arginine cannot be 

much greater than 1.2:1 before growth retardation occurs with small additional amounts 

of lysine. It was also seen that excess arginine depressed growth of chicks fed a lysine 

deficient diet, which was reversed by the addition of supplementary lysine (D’Mello and 

Lewis, 1970). Due to their uricotelism, poultry are unable to synthesize arginine and are 

particularly sensitive to this interaction. The most significant contributory factor to the 
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antagonism is the enhanced activity of kidney arginase in chicks fed excess lysine, 

resulting in increased catabolism of arginine (Austic, 1986). If arginase activity is 

suppressed by the use of a specific inhibitor, then the susceptibility of chicks to the 

lysine-arginine antagonism is attenuated. In this case the depression of food intake 

presumably arising from lysine-induced disruption of brain uptake and metabolism of 

other amino acids and their biogenic amines. 

Another type of antagonism can be seen in the case of branch chain amino acids. 

Excesses of leucine may be severely growth depressing unless additional isoleucine and 

valine are added to the diet, inducing a rapid fall in plasma valine concentration. 

Similarly, an excess of isoleucine and valine can cause growth depression that may be 

alleviated by leucine supplementation (D’Mello and Lewis, 1970). An excess in branch 

chain amino acids may, additionally, induce a depletion of brain pools of other amino 

acids, particularly those which are the precursors of the neurotransmitters. Dietary 

excesses of three branch chain amino acids reduced brain concentrations of 

noradrenaline, dopamine and 5-hydroxytryptamine in the chick. However, this effect may 

be overcome with supplementation of the neurotransmitters’ precursors, phenylanine and 

tryptophan (D’Mello., 1994). Unique toxic effects may be precipitated on feeding excess 

quantities of individual amino acids by virtue of their particular structural or metabolic 

features. In some cases an acute growth depression caused by excesses of some 

individual amino acids has had significant lesions in tissues and organs (Benevenga and 

Steele, 1984). It has also been observed that methionine is probably the most toxic amino 

acid in livestock (Baker, 1989). Methionine toxicity is usually characterized by growth 

depression, but this pattern has also been observed when excess threonine is fed to 
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chicks. Other amino acids that may have toxic effects are tyrosine, phenylalanine, 

tryptophan and histidine, but only when they are present at levels of 2 to 4 % of the diet. 

Glycine can be toxic to chicks if the diet is deficient in niacin or folic acid (Scott et al., 

1982). 

PROTEIN FEEDING: Before the 1940's, most poultry acquired a good proportion of 

their needs, particularly protein needs, from foraging at free range. Generally their diets 

were supplemented by both mash and whole grain feeding. Broilers are now fed on a 3 to 

5 diet system: starter, grower and finisher, containing typically 23-24%, 20-22% and 18-

20% crude protein respectively. This commercial feed program shows the decline in 

percentage protein in the diet with age of the birds. The ideal percentage protein as well 

as most other nutrients declines progressively with age, where-as the diets obviously have 

to decline in steps. This leads to inefficiency in the use of protein, as alternate periods of 

under and over-feeding of protein are inevitable (Filmer, 1993). 

During the periods of under-feeding, birds are clearly short of the ideal levels of 

protein, and so their performance falls short of their genetic potential. During periods of 

overfeeding, the unwanted protein has to be deaminated and excreted as uric acid through 

the kidneys. This involves unnecessary energy expenditure and the ingestion of extra 

water resulting in litter with high nitrogen, sulfur and water content. This may also result 

in high ammonia levels, sticky and wet litter, hock burns and breast blisters. This 

ammonia and other noxious and smelling nitrogenous pollutants in litter are now seen as 

environmentally unacceptable and is a source of criticism of current farming practice 

from the public (Filmer, 1991). Baker (1993) reported the ideal protein concept for 
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poultry as well as swine, indicating that the use of the ideal protein concept in feed 

formulation would minimize nitrogen excretion in waste products. 

The availability and use of synthetic amino acids has allowed nutritionists to 

lower the dietary crude protein content, thus reducing nitrogen excess and environmental 

impact. This trend will continue as more economically useful amino acids are made 

available for animal feeding. 

The major environmental concerns as they relate to groundwater protection are 

nitrogen and phosphorus, while other environmental concerns include odors and 

pathogens (Rinehart, 1996). Cromwell (1994) noted that livestock and poultry excrete 

approximately 158 million tons of dry matter manure in the United States which 

translates to 800,000 tons of nitrogen. Consequently, law regulations makers have started 

to regulate phosphorus (Maryland), while nitrogen excretion and ammonia pollution are 

issue of concern in The Netherlands (Cromwell, 1994). Such environmental concerns 

make it necessary to reduce the dietary supply of protein. 

PROTEIN QUALITY: Quality of proteins present in the feed is due to a combination of 

factors including quantity, digestibility, and amino acid balance. This last factor 

represents the most important variable because a feedstuff rarely contains all the amino 

acids required by chicks. The most deficient amino acid will become the first limitating 

amino acid, being lysine in most cases. It usually does not make a difference if other 

amino acids are in moderate excess in the exceptions of antagonisms or toxicity. 

Excessive amino acids are generally used for energy, but at a high energetic cost. 
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Currently, corn and soybean-meal are the two most common feed ingredients used 

to manufacture commercial broiler rations. In the case of corn, lysine is the first limiting 

amino acid, even though efforts have been made to genetically engineer corn varieties 

with higher lysine content. Soybeans’ limiting amino acid is methionine and is rich in 

lysine therefore these two ingredients complement each It is because of this that it must 

be clear that a diet deficient in protein is due to amino acid limitations and not because 

there is a lack of nitrogenous compounds (Klasing, 1998). 

DIET COMPOSITION

CALORIE/PROTEIN RATIO: The decline in feed intake, growth rate and survivability 

of broilers exposed to high ambient temperature-relative humidity distress (HD) has long 

been documented (Squibb et al., 1959).  Amino acid requirements may be identified as 

those for maintenance, carcass growth and feather growth, on the basis of their respective 

amino acid profiles. This compartmentalization provided the basis for formulation of a 

model that was tested in both chickens and turkeys. The model calculates the 

requirements of each amino acid to satisfy a definite target function in terms of growth 

but makes no allowance for any possible interaction among dietary amino acids or for 

amino acid balance. Interactions have been demonstrated in chickens between lysine and 

arginine. The important of such interaction appears minor in normal diets in which 

requirements are satisfied for all essential amino acids and large excesses of amino acids 

are avoided, but they may become significant under conditions of protein underfeeding or 

overfeeding. 
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When growth or feed efficiency are plotted as functions of the limiting dietary 

amino acid level, the values of the response variables increase until a plateau is 

reached. The level of dietary amino acid that marks the beginning of the plateau 

depends on the elevation of the plateau of the variable (growth or feed efficiency). 

Improvement in the amino acid balance would be expected to modulate the 

requirement level by changing the dependence of growth or feed efficiency on the 

dietary amino acid concentration.
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TABLE 1 Nutrient Requirements of Broilers as Percentages or Units per Kilogram of Diet (90 percent dry matter)

Nutrient
Unit

0 to 3 
Weeks

3 to 6 
Weeks

6 to 8 Weeks

Arginine % 1.25 1.10 1.00
Glycine + Serine % 1.25 1.14 0.97
Histidine % 0.35 0.32 0.27
Isoleucine % 0.80 0.73 0.62
Leucine % 1.20 1.09 0.93
Lysine % 1.10 1.00 0.85
Methionine % 0.50 038 0.32
TSAA % 0.90 072 0.60
Phenylalanine % 0.72 0.65 0.56
Proline % 0.60 0.55 0.46
Threonine % 0.80 0.74 0.68
Tryptophan % 0.20 0.18 0.16
Valine % 0.90 0.82 0.70

The 0 – 3, 3 – 6 and 6 – 8 week interval for nutrients requirements are based on chronology for which research data were available; however, these nutrients requirements are 
often implemented at earlier age intervals or on a weight of feed consumed basis
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Many factors may influence the requirement, the foremost being the genotype and age of 

the bird. Other factors include the level of other nutrients (which may affect growth 

rates), disease states and environmental conditions such as temperature, humidity, water 

quality and air quality. 

Although the absolute values for amino acid requirements vary greatly, the 

relative levels required are much more stable. This observation has led to the concept of 

an ideal amino acid balance or ideal protein. The ideal protein ratio for broiler chickens is 

shown in Table1.  By convention the values are expressed relative to lysine. Values for 

the ideal protein ratio are still being evaluated. Recently, for example, Baker and Han 

(1994) 
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Figure 3. Summary of Metabolism. Fate of Carbohydrates, Fats and Proteins

suggested that in starter chicks the threonine levels should be increased to 85% of the 

value for lysine.

LIMITING AMINO ACIDS: Assuming all other nutrient requirements are met, 

production of meat or eggs will be determined by the level of the amino acid that is most 

limiting. If that amino acid is supplemented in the diet to requirement, production will 

increase to a level which is determined by the next limiting amino acid. Dietary 

supplementation with the second amino acid will result in further increases in production 

to a level determined by the third limiting amino acid. 
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Limiting amino acids in diets can also be established by reducing incrementally 

the protein levels in a balanced diet until performance is depressed. Supplementation with 

the first limiting amino acid will return performance to former levels and further 

decreases in protein levels can be made until the level of the second limiting amino acid 

drops below requirement. 

In poultry diets consisting of corn and soybean meal as the major ingredients the 

order of limiting amino acids is usually methionine, lysine, threonine, arginine, and 

valine (Baker et al., 1993). Amino acid requirements have been established for poultry 

and this data is available from the NRC 1994.  The challenge would be to formulate diets 

which provide as closely as possible the amino acid requirements of the bird and at the 

same time are economic. This can present some difficulties because the amino acid 

profiles of raw feed materials do not match the requirements of the birds. Amino acid 

imbalances may occur when using too much protein. Antagonism can exist when the 

excess of an amino acid is associated with a deficiency of another whose requirements 

will therefore be increased. For example, if the lysine to arginine ratio exceeds 1.2, 

reduced growth rates of young birds may occur. Also, excess leucine, which may occur 

when using high levels of gluten meal or blood meal causes, reduced growth. Feed intake 

is depressed through a metabolic effect. Catabolism of valine and isoleucine is also 

stimulated.

COMPOSITION OF GAIN: Increased carcass fat that has accompanied rapid growth of 

the modern broiler chickens continues to be a health concern of consumers. In addition, 

abdominal and visceral fat are waste products to the poultry processor and add to waste 
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management problems. Various nutritional and management techniques have been 

employed in attempts to control fat accumulation by reducing growth rate of poultry 

during the early growth period.  

Pollution with nitrogen originating from animal wastes has become a concern in 

developed as well as developing nations (Deschepper and De Groote, 1994). Hence, 

reduction in the nitrogen excretion and the efficiency of nitrogen accumulation in the 

tissue can be met with matching amino acid composition of the diet with the amino acid 

requirement of the broiler. Availability of various amino acids in the market has made it 

possible to supplement synthetic amino acids to the diets there by meeting the protein 

requirement of the broiler. Consequently, birds fed low protein diets have shown to 

dissipate less heat (Cobb Vantress, 2003). Moreover, reduced nitrogen excretion lowers 

ammonia build up in the poultry house.  Another consequence of waste nitrogen is that its 

conversion into uric acid lowers the energetic efficiency of protein use as an energy 

source. This has created fundamental misinterpretation of protein effects when fed to 

poultry. For example, feeding elevated protein to broilers improves “leanness” but not by 

elevating lean mass, but by increasing heat production and reducing lipid content.  Hence 

dietary proteins are fed to broiler in an effort to satisfy indispensable amino acids and 

dispensable amino acids consumption needs. 

A review of the literature shows that there is a broad debate on the topic of 

synthetic amino acids being supplied to low protein diets and its subsequent impact on 

the performance of broilers. Twining et al. (1974) has shown that birds fed low protein 

diets never gained the bodyweights and feed conversions equal to the control diet. 

However, when they consumed the finisher diets according to the NRC requirements, 
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birds gained weight through compensatory growth this led to the final performance 

almost equal to that of the controls. However, even though compensatory growth occurs, 

it should be noted that, the composition of the chicken would change only in terms of fat 

accumulation (Moran, 1979, Lipstein et al, 1975). These authors concluded that broilers 

overeat and this results in fat accumulation in the carcass. Uzu (1982), Jensen (1991), 

Moran et al (1992) and Holsheimer and Janssen (1991) all claim that maximum 

performance cannot be reached by fortifying low protein diets with synthetic amino 

acids. On the other hand, Schutte (1987) and Parr and summers (1991) have shown that 

optimal performance can be reached by supplementing diets with synthetic amino acids.  

There is also substantial work showing the influence of dietary protein and energy levels 

on the composition of the carcass (Bartov et al., 1974; Lipsteion and Bornstein, 1975; 

Summers et al., 1988). Although the effect of dietary protein on carcass composition is 

basically an amino acid effect, as demonstrated by several workers (Carew and Hill, 

1971; Bornstein and Lipstein, 1975a, b; Lipstein and Bornstein, 1975; Lipstein et al., 

1975) there are considerably limited amount of work done to learn the influence of amino 

acid supplementation on increased protein deposition in the carcass. 
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 Pollution with nitrogen originating from animal wastes has become a concern in 

developed as well as developing nations (Deschepper and De Groote, 1994). Hence, 

reduction in the nitrogen excretion and the efficiency of nitrogen can be met by matching

the amino acid composition of the diet with strict amino acid requirement of the broiler. 

Availability of various amino acids in the market make it possible to supplement 

synthetic amino acids to the diets thereby meeting the amino acid  requirement of the 

broiler at reduced dietary protein. 

Advantages potentially exist for birds fed low protein diets. Birds fed low protein 

diets have been shown to dissipate less heat (Cobb Vantress, 2003). Energy retention is 

the difference between consumption and excretion plus heat dissipation.  Ration 

metabolisable energy (ME) value is predictable while fed heat production (HP) can be 

more variable.  Heat production is influenced by feeding level, dietary heat increment, 

environment, and body size (Stanier et al, 1984; Blaxter, 1989).  

The relation of heat production with body weight is curvilinear adding yet another 

variability source. Consequently, accounting for such variability may help to make 

management programs more repeatable. Heat production, measured by indirect 

calorimetry, may be utilized to estimate the energy expended for basal metabolic rate 

(BMR), maintenance, activity, tissue gain, environmental perturbations, and reproductive 

activities (Waring and Brown, 1965; Bornstein et al, 1979; Pinchasov and Galili, 1990; 

Spratt et al, 1990a&b).  Better understanding of such relationships may enable producers 

to feed not only to BWT but also specific BC, thereby assisting in fine-tuning ration 

formulation. 
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Basal Metabolic Rate (BMR) relates to mature animals (Brody, 1964) though such 

relationship likely exist for growing animals as well, the application of such principle in 

young growing broilers, this is necessary to assure interface of protein calorie need.  

Skinner et al., (1996) observed that fasting young birds created a body temperature 

homeostasis after 15h of feed removal in contrast to the 36h needed for adults. Research 

is needed in young birds to create the counterpart of BMR, such might be termed MBR 

(Metabolic Basal Rate). 

Moreover, reduced nitrogen excretion lowers ammonia build up in the poultry 

house.  Another consequence of waste nitrogen is that its conversion into uric acid lowers 

the energetic efficiency of protein use as an energy source. This has created fundamental 

misinterpretation of protein effects when fed to poultry. For example, feeding elevated 

protein to broilers improves “leanness” but not by elevating lean mass, but by increasing 

heat production and reducing lipid content.  Hence dietary proteins are fed to broiler in an 

effort to satisfy indispensable amino acids and dispensable amino acids consumption 

needs. Consequently, accounting for such variability may help to make management 

programs more repeatable. Better understanding of such relationships may enable 

producers to feed not only to BWT, but also specific BC, thereby assisting in fine-tuning 

ration formulation for optimal performance.

A review of the literature shows that there is a broad debate on the topic of 

synthetic amino acids being supplied to low protein diets and its subsequent impact on 

the performance of broilers. Twining et al. (1974) has shown that birds fed low protein 

diets never exhibit the bodyweight and feed conversion equal to the control diet. 

However, when they consumed the finisher diets according to the NRC requirements, 
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birds gained weight through compensatory growth and this led to final performance being 

almost equal to that of the controls. However, even though compensatory growth occurs, 

it should be noted that, the composition of the chicken would change only in terms of fat 

accumulation (Moran, 1979, Lipstein et al, 1975). These authors concluded that broilers 

overeat and this results in fat accumulation in the carcass. Uzu (1982), Jensen (1991), 

Moran et al (1992) and Holsheimer and Janssen (1991) all claim that maximum 

performance cannot be reached by fortifying low protein diets with synthetic amino 

acids. On the other hand, Schutte (1987) and Parr and Summers (1991) have shown that 

optimal performance can be reached by supplementing diets with synthetic amino acids.  

There is also substantial work showing the influence of dietary protein and energy levels 

on the composition of the carcass (Moran et al., 1968; Bartov et al., 1974; Lipsteion and 

Bornstein, 1975; Summers et al., 1988). Although the effect of dietary protein on carcass 

composition is basically an amino acid effect, as demonstrated by several workers 

(Carew and Hill, 1971; Bornstein and Lipstein, 1975a,b; Lipstein and Bornstein, 1975; 

Lipstein et al., 1975) there are limited amounts of work done to learn the influence of 

amino acid supplementation on protein deposition in diets varying in crude protein 

content. Therefore, the purpose of the present experiment was to study the effects of 

feeding low protein diets supplemented with synthetic amino acids on performance and 

carcass composition (tissue accretion, energetic efficiency, metabolic rate) 

MATERIALS AND METHODS

Floor Pen Study
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This study was conducted to evaluate the effects of various levels of protein on 

performance and carcass parameters. Seven hundred and twenty day-old Cobb x Cobb 

birds were received from a commercial hatchery and were randomly distributed into 72 

pens (10 birds / pen). Chicks were pooled randomly and were placed on concrete floor 

covered with wood shavings as litter. Birds were reared under optimum growth 

conditions recommended by breeders. Starter feed was provided in open tray feeders for 

fist seven days and then after, hanging feeder were used simultaneously for feeding. 

Corn-soy based starter mash diet (Table 1) was offered ad libitum . Automatic nipple 

drinkers were placed prior to arrival of chicks and water was available ad libitum.  Birds 

were wing banded immediately after its arrival from the hatchery.  Feed consumption and 

daily mortality was recorded on prescribed data capture farm. Treatment format 

contained starter, grower, and finisher components and during these three stages, 

treatments were examined in a factorial arrangement with two sexes and two enzyme 

levels (Table 1). This provided a total of 8 dietary treatment profiles. Birds were regularly 

taken out during the days, 9, 18, 27, 36, 47 and 55 days from the floor pens for Basal 

Metabolic Rate.

 During the floor pen part of the trial, starter (0-18 days), grower (18-47), and 

finisher (47-55) feed consumption, individual body weights at 0, 10, 18, 27, 36, 47, and 

55 day of ages, and mortalities were recorded. Individual body weights of birds were 

recorded whenever birds were removed from pens for chamber studies for feed 

conversion correction.  Because this part of the study also served as a pool for metabolic 

phase of the study and six  birds from each pen were processed for GIT size and weight at 

the end of each growth phase, birds got fewer as the study progressed. At the end of the 
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study, there were two birds remaining. After fasting the birds for 24 hours for the heat 

production data, birds were then scanned 

Metabolic Study

The metabolic chamber periods were conducted on days 10, 18, 27, 36, 47, and 

55. During these 6 periods, treatments were examined in a factorial arrangement with two 

sexes and four protein levels for all the three phases (starter grower and finisher).  72 

birds (9 birds per treatment) were selected and randomly assigned to the metabolic 

chambers. There were nine replicates for each treatment. Birds were kept in the chambers 

and were fasted 24 hours for heat production data. The chambers were checked twice 

daily for mortality, general conditions, temperature, lighting, water and feed conditions 

and any unanticipated events were documented. After completion of the chamber trials, 

all birds were sacrificed for scanning and body composition evaluation. Both metabolic 

chambers and general operational procedures have been described elsewhere (Wierusz 

and Teeter, 1993; Belay and Teeter, 1993).

Data Analysis

The data were analyzed using ordinary least squares (SAS, 1991). The model 

included treatments sexes and ages as the main effects. Interaction between main effects 

was included in the model. Mean separation was accomplished using Least Significant 

Difference (Steel and Torrie, 1960). Regression technique was used to estimate feed 

consumption for body weight homeostasis. Carbon dioxide production and O2

consumption were regressed for each bird as the differential concentration between 

incoming and outgoing gas concentration multiplied by the air flow rate. Subsequently, 
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heat production was estimated from liters of O2 consumed and CO2 produced (Brouwer, 

1965). 

Results and Discussion

The study was successfully completed with results displayed in Table 2 , 3, and 4. 

During the starter phase, there were no significant differences between the treatments for 

the body weights (Table 2). Body weights of the birds ranged from 360 g for the NRC –

4.5 % deficient diet to 404 g for the NRC treatment birds. On an average the females 

weighed more than the males during the starter period (400 g vs 385 g). During the 

grower period, the NRC – 4.5% birds were significantly lower than the other treatment 

birds. These results continued to the finisher phase suggesting that low protein diets 

fortified with EAA can only offset the substitution of CP to some extent. 

In order to achieve optimal performance of broiler chickens, the necessity of 

providing EAA from intact protein rather than from a large quantity of synthetic amino 

acids was observed in the present investigations and confirms observations from the 

literature (Pinchasov et al., 1990, Edmonds et a., 1985). The reason for the failure of low-

CP diets fortified with EAA to support maximum performance is not clear. 

Birds were removed from the cages at regular intervals and were randomly 

assigned to the metabolic chambers for heat production data and scan analysis data. Birds 

were removed from the metabolic chambers at the end of 24 hours and were euthanized 

for body protein and body fat data (Table 3). Regression equations were developed to

yield equations predicting the protein and fat (grams) for the birds in the cages. Bird 

protein and fat in grams were regressed over the body weight to the third power to come 

up equations. 
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Birds fed NRC – 4.5% deposited the least amount of protein for all the phases

(Table 3). There were no differences between the other treatments. During the grower 

phase, the protein deposition ranged from 206.3 g for the NRC treatment to 180.9 g for 

the NRC – 4.5% treatment. Similar trend was followed for the finisher phase. Birds fed 

the control diet were able to deposit 536.8 g of protein vs 486.6 g for the reduced 

dispensable N treatment. Similar trend was followed for the fat deposition. Birds fed the 

control diet were able to deposit more fat when compared to the deficiency treatment. 

Results of present experiment together with previous research with low protein 

diets indicate that reducing dietary CP with broilers by decreasing the levels of both 

NEAA and EAA in excess of the requirement adversely affects production at all levels. 

The same results occur when the decrease in CP disregards EAA requirements (Salmon 

et al., 1983, Summers and Leeson, 1984; Marus et al., 1988; Summers et al., 1988; Roth 

et al., 1989). Further additions of EAA and potassium to low-CP feeds thought to be 

marginal to need have failed to correct these problems (Fancher and Jensen, 1989a; 

Pinchasov et al., 1990; Holsheimer and Jensen, 1991). The implications of these findings 

are that the spectrum of NEAA must be fully represented as such if EAA values 

corresponding the minimum requirements are to optimize performance.
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TABLE 1. Composition of experimental broiler feeds formulated to satisfy essential amino acid needs at and 4.5% below the
National Research Council (NRC, 1994) recommended crude protein levels, percentage “as is” basis

Starter Grower Finisher
Ingredients 1 2 3 4 5 6 7 8 9 10 11 12

Corn 58.48 65.06 67.71 72.54 60.67 60.71 70.17 76.43 51.41 55.89 61.1 61.1
Soybean meal 29.42 19.43 18.4 16.19 28.12 27.95 19.28 12.6 21.02 16.8 11.92 11.92
Fat, Soybean 3.59 2 2.03 1.68 4.75 4.77 3.32 2.25 4.31 3.68 2.87 2.87

Corn glutenen meal 2.31 4.25 1.44 - - - - - - - - -
Propak 2 5 6.1 - - - - - - - - -

Wheat midds - - - - - 1.6 1.5 1.62 20 20 20 20
Fish Meal - - - - 1.03 1 1 1.5 - - - -

Dicalcium phosphate 1.46 1.85 1.87 1.89 1.43 1.43 1.5 1.55 1.01 1.04 1.08 1.08
Calcium carbonate 1.24 1.07 0.96 0.77 1.55 1.56 1.58 1.53 1.42 1.43 1.44 1.44

Choline chloride 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.07 - - - -
Salt 0.49 0.49 0.49 0.49 0.44 0.44 0.44 0.43 0.44 0.36 0.36 0.36

Vitamin premix1 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26
Mineral premix2 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

selenium3 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
Lysine - 0.29 0.32 0.33 0.01 - 0.29 0.49 - 0.14 0.32 0.32

DL Methionine 0.03 0.06 0.12 0.17 0.08 0.07 0.16 0.22 0.05 0.1 0.12 0.12
Threonine - 0.05 0.11 0.19 0.04 0.11 0.2 - - 0.05 0.13

Tryptophan - - 0.02 0.05 0.01 0.04 0.06 - - 0.01 0.04
Arginine 0.08 0.28 - 0.16 0.37 - - - 0.17
Valine 0.02 0.13 - 0.05 0.15 - - - 0.1

Calculated analysis

ME, kcal/kg 3150 3150 3150 3150 3200 3200 3200 3200 3200 3200 3200 3200
Crude protein, % 22.64 21.16 19.68 18.21 20 18.5 17 15.5 18 16.5 15 15

ME/CP ratio
Methionine 0.45 0.45 0.47 0.52 0.43 0.43 0.47 0.5 0.35 0.38 0.38 0.38

Lysine 1.18 1.17 1.18 1.17 1.08 1.07 1.05 1.04 0.86 0.85 0.85 0.85
Sulphur amino acids 1.01 0.99 0.88 0.86 0.83 0.82 0.81 0.8 0.73 0.73 0.70 0.70

Calcium 1 1 1 1 1 1 1 1 0.8 0.8 0.8 0.8
Available phosphorus 0.45 0.44 0.44 0.44 0.38 0.38 .038 0.38 0.3 0.3 0.3 0.3

1Supplied per kilogram of diet: vitamin A, 10,141 IU (retinyl acetate); cholecalciferol, 3,086 IU; vitamin E, 23.92 IU (dl-α-tocopheryl acetate); menadione, 2.87 mg; thiamine, 2.20 mg; 
riboflavin, 7.72 mg; niacin, 60.30 mg; d-pantothenic acid, 12.46 mg; pyridoxine, 3.75 mg; vitamin B12, 0.017 mg; folic acid, 1.066 mg; d-biotin, 0.127 mg. 
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Table 2. Body weight, Feed Conversion Ratio as influenced by protein levels for Starter,
 Grower and Finisher periods

Dietary treatment Starter Grower Finisher
Sex Trt BW FCR BW FCR BW FCR

Interactive effect means
M NRC 404.3 1.42a 1602.4 1.45 3417.8 1.74
M NRC – 1.5 386.4 1.49a 1452.5 1.47 3341.8 1.74
M NRC – 3.0 388.3 1.45a 1534.8 1.46 3184.2 1.70
M NRC – 4.5 360.3 1.60b 1421.1 1.53 3091.3 1.67

F NRC 400.0 1.47a 1454.2 1.50 2941.0 1.81
F NRC – 1.5 399.3 1.47a 1477.3 1.46 2992.0 1.88
F NRC – 3.0 413.4 1.44a 1468.7 1.51 2846.4 1.89
F NRC – 4.5 387.3 1.45a 1316.2 1.60 2648.3 1.94
Main effect means

M 384.8 1.49 1502.7a 1.47a 3258.9a 1.71a

F 400.0 1.45 1429.1b 1.52b 2857.0b 1.87b

NRC 402.1 1.45 a 1528.3a 1.47a 3179.4a 1.78
NRC – 1.5 393.0 1.48 a 1465.0a 1.46a 3166.9a 1.81
NRC – 3.0 400.9 1.44 a 1501.7a 1.47a 3015.3ab 1.76
NRC – 4.5 373.8 1.52 b 1368.7b 1.57b 2869.9b 1.80

Source of Variation Starter Grower Finisher
BW FCR BW FCR BW FCR

Sex 0.1392 0.1242 0.0181 0.0141 < 0.0001 0.0019
Trt 0.2159 0.0385 0.0023 0.0002 0.0104 0.8559

Sex x Trt 0.6914 0.0221 0.2099 0.2661 0.8793 0.5117

a- eMeans within a column with different superscripts differ (P < 0.05).
2Feed conversion ratio (FCR) = feed consumption / body weight gain.
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 Table 3. Protein (grams) and Fat (grams) deposition for the Starter Grower and Finisher 
    Phases for the Experimental period

Dietary treatment Starter Grower Finisher
Sex Trt Protein Fat Protein Fat Protein Fat

Interactive effect means
M NRC 67.2 37.8 218.7 218.7 567.3 512.5
M NRC – 1.5 63.3 35.4 188.6 188.6 561.8 509.0
M NRC – 3.0 62.9 34.5 208.7 208.7 532.3 484.0
M NRC – 4.5 57.6 31.2 189.1 189.0 509.7 460.1

F NRC 65.9 36.9 194.0 193.4 506.2 454.7
F NRC – 1.5 64.3 35.7 194.7 194.6 514.1 467.0
F NRC – 3.0 67.1 37.3 197.2 197.1 494.8 449.4
F NRC – 4.5 62.8 34.0 172.6 172.6 463.4 424.1
Main effect means

M 62.8 34.7 201.3a 201.2a 542.8a 491.8a

F 65.0 36.0 189.6b 189.7b 494.7b 491.2b

NRC 66.6 37.3a 206.3a 206.3a 536.8a 483.6a

NRC – 1.5 63.9 36.0a 191.6a 191.6ab 538.0a 488.0a

NRC – 3.0 65.0 36.0a 202.9a 203.0a 513.6a 467.0a

NRC – 4.5 60.1 32.7b 180.9b 181.0a 486.6b 442.1b

Source of Variation Starter Grower Finisher
BW FCR BW FCR BW FCR

Sex 0.1606 0.2334 0.0398 0.0398 < 0.0001 < 0.0001
Trt 0.0554 0.0168 0.0069 0.0069 0.0002 0.0032

Sex x Trt 0.4553 0.4617 0.2374 0.2374 0.8104 0.7891

     a- eMeans within a column with different superscripts differ (P < 0.05).
    1Initial body composition determined by whole bird chemical analysis; final body compositions were based on dual energy x-ray 
     absorptiometry measurements adjusted as described by Mckinney et al. (2005).
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Table 4. Fat to protein ratio (%) and Energy retained (Kcal/g) for the Starter Grower and Finisher 
    Phases for the Experimental period

Dietary treatment Starter Grower Finisher
Sex Trt FatProRat Energy FatProRat Energy FatProRat Energy

Interactive effect means
M NRC 0.56 1.85a 0.52b 2.23 a 0.28b 2.32c

M NRC – 1.5 0.56 1.80e 0.74a 1.81e 0.90a 1.54d

M NRC – 3.0 0.56 1.82bc 0.76a 2.22ab 0.90a 2.36 bc

M NRC – 4.5 0.56 1.82bc 0.75a 2.18c 0.90a 2.33 bc

F NRC 0.56 1.82b 0.76a 2.20 ab 0.89a 2.41a

F NRC – 1.5 0.56 1.79d 0.75a 2.19bc 0.90a 2.41ab

F NRC – 3.0 0.57 1.82bc 0.75a 2.20b 0.90a 2.45a

F NRC – 4.5 0.56 1.81c 0.75a 2.15c 0.9a 2.49a

Main effect means
M 0.56 1.80 0.69 2.11 0.75 2.14
F 0.56 1.81 0.75 2.18 0.90 2.44

NRC 0.56 1.84 1.00 2.22 0.90 2.37
NRC – 1.5 0.56 1.75 1.00 2.00 0.90 1.97
NRC – 3.0 0.55 1.82 1.00 2.21 0.90 2.41
NRC – 4.5 0.54 1.82 1.00 2.17 0.90 2.41

Source of Variation Starter Grower Finisher
FatProRat Energy FatProRat Energy FatProRat Energy

Sex 0.7646 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
Trt 0.3822 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

Sex x Trt 0.7304 < 0.0039 < 0.0001 < 0.0001 < 0.0001 < 0.0001

a- eMeans within a column with different superscripts differ (P < 0.05).
    1Initial body composition determined by whole bird chemical analysis; final body compositions were based on dual energy x-ray 
    absorptiometry measurements adjusted as described by Mckinney et al. (2005).

  FatProRat = Fat to Protein Ratio
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ABSTRACT

     Two experiments were conducted to validate and or refine methodologies for 

quantifying body composition in poultry.  In the first experiment, constants classically 
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used to derive body composition in C and N balance studies were evaluated for 

application in poultry. In Experiment 2, the efficacy of using dual energy x-ray 

absorptiometry (DEXA) to rapidly assess body composition in poultry was examined.  In 

Experiment 1, broilers ranging in body weight from 1,660 to 2,240 g were sacrificed, and 

used for either measuring whole bird composition or determining the composition of the 

protein and lipid fractions.  In Experiment 2, broilers ranging in body weight from 280 to 

3,075 g were sacrificed, and DEXA measurements of lean, fat, and bone mineral content 

were obtained.  The birds were then chemically assayed to determine protein, lipid, and 

ash for comparison.  Results from Experiment 1 demonstrate that though poultry protein 

and lipid tissue do not greatly differ in composition compared to other species, the 

differences may significantly impact the assessment of body composition, and should 

therefore be considered as a source of error in C and N balance studies using poultry.  

Results from Experiment 2 demonstrate that DEXA measurements failed to accurately 

quantify the body composition of poultry when direct comparisons are made.  Instead, 

DEXA measurements must be applied to regression equations that inter-relate DEXA 

measurements with compositions obtained by chemical analysis.  

(Key words: carbon nitrogen balance, dual energy x-ray absorptometry, body 

composition, poultry)
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INTRODUCTION

     The principle goal of poultry producers is to consistently meet consumer demand for 

product taste and nutritional acceptability in a profitable manner.  Accomplishing this 

requires that the end product be defined and that the criteria for success be centered on 

obtaining that defined product, and not entirely on live performance characteristics.  As 

demonstrated by McKinney and Teeter (2004), body weight and FCR improvements 

obtained by increasing dietary caloric density did not in all cases equate into increased 

lean mass but rather greater amounts of carcass fat.  Assuming fat to be at some level a 

waste product undesirable to the consumer, production decisions based solely on body 

weight and FCR are potentially misguided. Therefore, nutritional, environmental, and 

managerial decision consequences on body composition must be quantified.  

Though numerous methods exist for estimating the body composition of animals used 

in nutritional studies (Hendrick, 1983; Topel and Kauffman, 1988), comparative 

slaughter has historically been the method applied in experiments with poultry.  This 

methodology, however, is time consuming, difficult to apply to an entire growth curve, 

requires bird destruction, and the assumption that the composition of birds initially 

examined is the same as those incorporated into an experiment (Blaxter, 1967).

However, according to work presented by Wolynetz and Sibbald (1987), the initial 

slaughter group may not be necessary for comparison purposes, which would result in a 

considerable reduction in the required resources.  

     Measures of C, N, and energy content of the feed and excreta, and CO2 production 

have also been used for assessing body composition in poultry (Farrel, 1974).   

Advantages of using C and N balance (CNB) as compared to comparative slaughter are 
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measurements of the same animal can be repeated over time, as animal sacrifice is not 

required, and that the importance of initial body composition uniformity is negated 

(Blaxter, 1967).  As outlined by Farrel (1974), there are assumptions associated with 

CNB: 1) that energy is retained only in the form of fat and protein tissue; 2) the 

composition of fat and protein are constant; and 3) poultry protein and lipid tissue are not 

significantly different in composition compared to other species.  

    Regarding the latter assumption, one would not expect sizable tissue compositional 

differences to exist between species. However, as CNB is already susceptible to 

analytical errors (Blaxter, 1967), examination of this assumption is warranted.  

Additionally, estimates for fat and protein tissue constituents are dated (Armsby, 1903; 

Blaxter and Rook, 1953; and Brouwer, 1965).  

          Advancements in dual energy x-ray absorptiometry (DEXA) have resulted in the 

availability of fan beam technology, which enables faster scan acquisition (Koo et al., 

2004). This has sparked interest in the use of DEXA technology as a non-invasive 

method for assessing body composition in experiments with animals reared for

consumption.  A large body of data exists validating DEXA for accurately measuring soft 

tissues (lean and fat tissues) and bone mineral content in swine (Lukashi et al., 1999; 

Chauhan et al., 2003; and Koo et al., 2004) as piglets are used extensively as models for 

human infant studies (Fiorotto et al., 1986).  However, little evidence is available 

verifying DEXA use for poultry.   

An experiment conducted by Mitchell et al. (1997) is the only known evaluation of 

DEXA for quantifying lean and lipid tissues in poultry.  They found the technology to fall 

short of accurately assessing bird lean and lipid content, but did suggest that the 
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technique may be applicable with software and or hardware modifications.  However, this 

conclusion was based on results of simple linear regression analysis.  Perhaps more 

sophisticated statistical models are needed.  

     Therefore, two experiments were conducted with the first directed at validating and/or 

refining estimations of protein and fat constituents with specificity to poultry.  In the 

second experiment, DEXA was evaluated for accuracy and precision in quantifying soft 

tissue (lean and fat tissue) and bone mineral content (BMC) in poultry.  

MATERIALS AND METHODS

Experiment 1 – Validation and or refinement of constants for poultry tissue constituents 

     Twenty-four broilers ranging in body weight from 1,660 to 2,240 g were obtained 

commercially, fasted (24 h), and euthanized by carbon dioxide asphyxiation. After 

autoclaving (20 h; 11 psi; 116 °C), the birds were equilibrated to ambient temperature.

Each bird was then homogenized (including feathers) with a commercial grade blender 

and samples of each homogenate were obtained and frozen (20°C) until analysis.   

Twelve of the samples were randomly selected and partitioned by ether extraction into 

protein and lipid factions for analysis of DM, N, ash, (AOAC, 1990) and C (Harjo, 1994).  

The remaining homogenates of the whole bird were analyzed for DM, ash, ether extract C 

and N (AOAC, 1990).  These samples were used to evaluate whether whole bird ether 

extract could be accurately estimated using the compositions of the protein and lipid 

fractions determined from the first 12 samples analyzed.  Equations used were as follows:

(Eq. 1) TP = N x (1 / % N in P)

(Eq. 2) PC = TP x % C in P 
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(Eq. 3) LC = TC – PC

(Eq. 4) EE = LC / % C in L

where: TP = total protein (g), P = pure protein (g), PC = carbon as protein (g), TC = total 

carbon (g), L = pure lipid (g), LC = carbon as lipid (g), and EE = estimated whole bird 

ether extract (%).     

Experiment 2 – Evaluation of DEXA for measuring body composition in poultry
All scans were obtained using a fan beam dual energy x-ray absorptiometer operated 

in the infant whole body mode.  Rat-scan software was used for scan analysis.  A total of 

35 broilers ranging in body weight from 280 to 3,075 g were obtained commercially, and 

fasted and euthanized as described in Experiment 1.  Previous work in this laboratory 

(unpublished) and that of Lukaski et al. (1999) demonstrated that animal positioning on 

the scanning surface does not impact scan results.  However, for consistency all birds 

were scanned individually (5 times) in a prostrate position with the long axis of the bird 

perpendicular to the length of the table.  After scanning the birds were immediately 

autoclaved and sampled for chemical analysis as previously described. 

Data Analysis

In both experiments, bird served as the experimental unit.  Regression analysis was 

used initially to compare DEXA measurements of body composition with those obtained 

by proximate analysis.  Subsequently the effectiveness of these developed regression 

models in relating DEXA results with measures obtained through proximate analysis 

were evaluated using General Linear Models of SAS (2000).   
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RESULTS AND DISCUSSION

Experiment 1 – Validation and or refinement of constants for poultry tissue constituents

The C and N content of protein and lipid determined herein (Tables 1) were in close 

agreement with those values traditionally accepted (Armsby, 1903, Blaxter and Rook, 

1953 and Brouwer, 1965) and utilized in assessing body composition through CNB 

techniques.  For example, nitrogen as a percent of protein averaged 15.9 ± 0.06%, 

essentially matching that which is generally applied (16.0%) across numerous protein 

sources. Carbon as a proportion of protein and lipid was determined as 52.96 ± 0.14 and 

74.0 ± 1.4%, respectively.  The latter of which exhibited the most variability across 

samples measured and averaged slightly lower than the other constants evaluated (Table 

2).  Nonetheless, values determined herein for the C and N contents of protein and lipid 

resulted in the best overall estimation of whole bird ether extract when applied to 

equations 1 through 4 (Table 2).  In comparison, estimates obtained with protein and lipid 

C and protein N estimates of Armsby (1903) and Blaxter and Rook (1953) resulted in 

roughly an 8% overestimation of whole bird ether extract (Table 2; Figure 1).  Using 

constants proposed by Brower (1965), whole bird ether extract estimates were still 

inflated, but only slightly (approximately 2%).  As it was successfully demonstrated that 

whole bird ether extract could be accurately computed from the composition of protein 

and lipid determined from independent samples, this approach was accepted as a means 

for estimating whole bird ether extract.  Therefore, procedures were modified for 

Experiment 2 in that ether extract was estimated by determined C and N constants rather 

than AOAC (1990) methods.  However, for simplification, ether extract estimated in this 

manner may be referred to as fat determined by proximate analysis.  
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Experiment 2 – Evaluation of DEXA for measuring body composition in poultry
     An example of a DEXA scan and the information that appears in the scan report is 

shown in Figure 2.  Note that lean tissue is not further subdivided in the report into its 

protein and water constituents.  Thus, in order to directly compare DEXA measurements 

from the report with values obtained from proximate analysis, actual bird water content 

must be determined.  To estimate this, the difference between the body weight of the bird 

and the sum of its protein, lipid, and ash (dry matter basis) were determined.  Bird protein 

and fat were then regressed on the estimated bird water content.  As indicated by the lack 

of a significance coefficient (Table 3), zero bird water content was associated with the 

lipid parameter.  This was expected as the water in adipose tissue is predominantly 

associated with its vasculature and connective tissues (Pitts et al., 1971; Digirolamo and 

Owens, 1976).  As a result, direct comparisons could be made between DEXA measures 

of lean, and the protein determined by chemical analysis plus the estimated bird water 

content (Figure 3).  However, this was done only to illustrate direct relationships.  Bird 

water content and protein were not coupled when developing regression models.  

     On the basis of simple linear regression, DEXA failed to accurately measure lipid and 

ash as determined by proximate analysis (Table 4), which agrees with conclusions 

reached by Mitchell et al. (1997).  Error associated with BMC as it relates to ash are most 

likely a consequence of the hollow bone structure of poultry, as programming software 

was developed for mammals (Kelly, 2004).  Additionally, BMC was not determined per 

se, rather the ash content of the whole body was measured.  This potentially explains the 

consistent under-estimation of DEXA measure of ash.         
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      In an attempt to correct for these errors, forward stepwise regression procedures 

(Neter, 1990) were used to develop more complex predictive models (Table 4), 

incorporating more parameters and their cross-products.  Indeed, with these equations, 

the accuracy in which DEXA measurements could be inter-related with chemically 

determined values increased markedly.  This was demonstrated through comparisons 

between DEXA measurements adjusted using these regression equations (αDEXA) and 

those obtained through chemical analysis (Table 5).  No significant (P > 0.05) differences 

were detected between predicted (αDEXA) and determined values for any of the 

variables monitored.  Additionally, the sum of αDEXA estimates of protein, lipid, water, 

and ash closely matched the body weights of the birds when they were initially scanned.    

     An inherent limitation of the proposed predictive models is the fact that the body 

weights of birds used in the experiment did to completely encompass the entire growth 

curve, depending on the end product desired (i.e., Cornish hen verses birds reared for 

breast meat).  As such, using these equations to estimate the body composition of birds 

weighing more than 3,000 grams requires extrapolating beyond the models inference 

base, which with polynomial equations particularly, leads to erroneous estimations of the 

dependent variable.  

     This limitation of the models was clearly observed in an effort to quantify broiler body 

compositions using DEXA in a study designed to compare broiler rearing conditions 

typically found in different parts of the world.  As part of this study, broilers were 

selected to represent body weights of approximately 500, 1,500, 2,500, and 3,500 grams.  

Application of the predictive equations to DEXA measurements appeared to work well 

(based on body weight accountability: the sum of the predicted body components vs. 
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gravimetric weight) in every case except for birds outside the inference base of the 

models.  For birds weighing more the 3,000 grams, the predicted protein and lipid (as a % 

of body weight) was greatly underestimated.  Concomitantly, predicted water content was 

largely exaggerated.  As drastic changes of this manner were viewed as physiologically 

infeasible, the only logical explanation was that the models were failing in this zone of 

body weights.  

     In pending data to expand the inference base of the models, equations were modified 

by first fitting, for each body composition measure, trend lines to data that fell within the 

scope of the original equations (Figure 5).  In assuming that these trend lines represent 

mid-points or bird population means, αDEXA estimates for protein, lipid, water, and ash 

were assigned to each trend line.  Subsequently, DEXA measures were regressed on these 

mid-points to modify the equations so as to encompass the entire growth curve (Table 6).  

Note, however, that variability among birds is attenuated with these modified equations 

and thus would only be of use when describing a population as was the case here (Figure 

6).

In conclusion, research reported herein has demonstrated that though

poultry protein and lipid tissue may not appear to differ significantly in composition 

compared to other species, these differences significantly impact the assessment of body 

composition and should therefore be considered as a source of error in C and N balance 

studies with poultry.  Furthermore, DEXA technology can be used to rapidly assess body 

composition in poultry, however, not directly.  For this technology to be of value, 

regression equations inter-relating DEXA measurements of BMC, and lean and lipid 

tissue, with PA determined protein, ether extract, ash, and water content are required.  
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Table 1. Carbon and nitrogen concentrations in the whole carcass and protein and lipid factions of broilers
Sample number

Faction1, % 1 2 3 4 5 6 7 8 9 10 11 12 Mean SEM
Total

Carbon 61.0 58.8 61.1 60.6 61.2 58.5 58.5 59.2 60.1 59.3 57.0 57.5 59.4 0.41
Nitrogen 10.9 12.4 11.0 10.8 9.6 10.2 10.3 10.0 9.6 9.9 10.0 11.3 10.5 0.24

Protein 
Carbon 52.9 53.4 52.9 52.5 53.6 52.6 52.2 53.6 52.5 53.5 52.7 53.3 52.9 0.14
Nitrogen 15.5 15.9 15.9 15.7 16.0 15.7 15.6 16.3 16.0 15.9 15.9 15.8 15.9 0.06

Ether Extract2

Carbon 80.0 79.9 79.5 78.9 74.3 70.6 71.6 69.9 72.9 71.0 65.3 68.9 74.0 1.4
1Dried, ash-free basis.
2Nitrogen averaged 0.2 percent.
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Table 2. Ether extract predicted from protein and lipid tissue carbon and nitrogen concentrations 
%

Reference Tissue Carbon Nitrogen
Predicted 

ether extract1
Predicted ether 
extract error2

Armbsy, 1903 Protein 52.5 16.7
Lipid 76.5 – 24.7 8.62a

Blaxter and Rook, 1953 Protein 51.2 16.0
Lipid 74.8 – 24.5 7.94a

Brouwer, 1965 Protein 52.0 16.0
Lipid 76.7 – 23.3 2.19b

Present experiment Protein 52.9 15.9
Lipid 74.0 – 22.8   0.01b

a,bMeans within a column with different superscripts differ (P < 0.05).
1Calculated as: total carbon – (protein x protein carbon) / lipid carbon).
1Ether extract (EE) determined by proximate analysis (AOAC, 1990) was 22.8 percent.
2Calculated as: ((EE determined by proximate analysis – EE predicted) / EE determined by proximate analysis) x 100.
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Table 3. Regression equation of water content (W) on protein (P) 
and lipid (L) in whole bird carcasses (W = a + b P + c L)
Parameter Coefficient Standard error Probability

a 78.23313 18.45308 0.0002
b 3.41462 0.20961 < 0.0001
c -0.00639 0.21166 0.9761
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Table 4. Regression equation coefficients relating dual energy x-ray absorptiometry (DEXA) measurements with proximate analysis values 
DEXA variables

Dependent variable Intercept Lean Lipid Lean2 Lipid2 Lean x Lipid Lean2 x Lipid2 R2, %
Protein1, g -8.90481+ 0.21571** 96.91

-11.13536** 0.18779** 0.15961** 99.42
-15.14152** 0.19686** 0.15655** -2.99e-6 99.43
-15.15759** 0.2024** 0.11615** -4.0e-6* 4.494e-5* 99.44
-15.14395** 0.20176** 0.12014** 3.5e-6 4.909e-5+ 4.07e-6 99.44
-10.9351**4 0.2019** -7.42e-3 7.0e-6* 1.5831e-4** 9.223e-5** -4.4712e-11** 99.49

Lipid2, g Intercept Lipid Lean Lipid2 Lean2 Lean x Lipid Lean2 x Lipid2

102.47233** 0.60302** 58.54
-44.29583** 0.21388** 0.17341** 96.27
-39.60899** 0.07553 0.18212** 1.5789e-4 96.42
-12.03683 0.14717** 0.11281** 1.0157e-4+ 2.184e-5** 96.75
-11.97534 0.16515** 0.10993** 1.2025e-4+ 2.409e-5** 1.835e-5 96.76

-4.945664 -0.04790 0.11017** 3.0268e-4** 1.825e-5** 1.4249e-4* -7.4679e-11** 96.88
Ash3, g Intercept BMC Lean Lipid Lean x BMC Lipid x BMC Lean x Lipid

7.2132** 1.29866** 82.64
-0.46329 0.42645** 0.02246* 99.02
-0.24389 0.30121** 0.02344** 7.24-3* 99.05
-1.59568** 0.383** 0.02479** 7.61e-3** -5.672e-5** 99.10
-2.17225** 0.43985** 0.02713** 8.57e-3 -1.2359e-4** 3.0354e-4** 99.15
-1.64751**4 0.16682+ 0.02813** 0.01159 -5.8e-6 5.1384e-4** 1.634e-5** 99.20

Water3, g Intercept Lean Lipid Lean2 Lipid2 Lean x Lipid Lean2 x Lipid2

41.99924** 0.73998** 97.06
34.0781** 0.64084** 0.5668** 99.76
18.63859* 0.6758** 0.55503** -1.153e-5** 99.76
18.65469* 0.67025** 0.5955** -1.052e-5* -4.501e-5 99.76
18.66013* 0.66999** 0.5971** -1.032e-5+ -4.3366e-5 -1.62e-6 99.76

8.330594 0.66965** 0.91016** -1.76e-6 -3.1142e-4** -2.3796e-4** 1.09734e-11** 99.79
1Calculated as: nitrogen × 6.29.
2Calculated as: ((EE determined by proximate analysis – EE predicted) / EE determined by proximate analysis) x 100.
3Determined using AOAC (1990) procedures.
2Equation used to adjust DEXA measurements to proximate analysis data.
+Significant (P < 0.1).
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Table 5. Comparison of adjusted dual energy x-ray absorptiometry (αDEXA) and proximate analysis measurements of total 
broiler protein, fat, ash, water, and body weight1,2,3

Total body constituents, g
Protein Fat Ash Water Body Weight

Weight class PA4 αDEXA PA5 αDEXA PA6 αDEXA PA6 αDEXA Scale αDEXA
A 56 59 30 33 9 9 245 241 341 343
B 191 195 134 135 29 30 769 767 1,231 1,227
C 414 411 334 337 60 59 1,468 1,476 2,289 2,283
D 517 515 453 458 74 74 1,841 1,840 2,902 2,886

Probability
Source of variation Protein Fat Ash Water Body Weight
Weight class < 0.001 < 0.001  < 0.001 < 0.001 < 0.001
Method NS NS NS NS NS

   Weight class x method NS NS NS NS NS
Pooled SEM7 0.14 0.17 0.14 0.13 0.14

1 Adjusted using regression equations relating DEXA measurements with proximate analysis results.
2Log transformations of the data were performed for statistical analysis.
3Reported values are the anti-log of the resultant least square means.
4Calculated as: nitrogen × 6.29 based on Experiment 1 results.
5Calculated as: ((EE determined by proximate analysis – EE predicted) / EE determined by proximate analysis) x 100.
6Determined using AOAC (1990) procedures.
7Based on analysis of log transformed data.
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Table 6. Proposed equation coefficients relating dual energy x-ray absorptiometry (DEXA) measurements with proximate 
analysis values for broilers weighing more than 3000 grams 

DEXA variables
Dependent 
variable1

Intercept BMC Lipid Lean Lipid2 Lean2 Lean x 
Lipid

Fat x 
BMC

Lean x 
BMC

Lean2 x 
Lipid2

Protein -
6.13349*

– 0.1119* 0.18308* 3.567e-

5*
3.7e-6* 4.728e-5* – – -1.252e-11*

Lipid -5.6813* – 0.03129* 0.10041* 6.536e-

5*
2.336e-

5*
9.6e-5* – – -1.2042e-11*

Water 5.79504* – 0.76994* 0.68501* -3.797e-

5*
-1.373e-

5*
-1.5077e-

4*
– – 2.43437e-

11*

Ash -1.6675* 0.01579 0.02434* 0.02658* – – 1.44e-6 -2.54e-6 -3.95e-6* –
1Determined by trend-line analysis of adjusted dual energy x-ray absorptiometry measurements (αDEXA). 
*Significant (P < 0.05).
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ABSTRACT

Three experiments of similar design were conducted to first, evaluate dietary lysine in 

ratio with effective caloric value (ECV) altered either through the addition of soybean oil 

or by feed form, and second, to develop mathematical models that describe lysine 

requirement based on body composition. Studies utilized male and female broilers over 

age intervals ranging from 1 to 10 (Experiment 1), 19 to 29 (Experiment 2), and 45 to 55 

(Experiment 3) days.  Treatments evaluated were structured as 4 suboptimal dietary 

lysine levels by 2 (Experiment 1) or 3 (Experiments 2 and 3) ECV treatments.  ECV 

treatments examined were: 1) unprocessed mash (M), 2) M plus 187 kcal MEn/kg of 

soybean oil (M187), and 3) M steam pelleted (P). No significant sex × treatment 

interactions were detected therefore sex effects were combined.  In all experiments, 

increasing dietary lysine level resulted in greater feed intake, weight gain, protein and 

lipid tissue gain, and feed efficiency.  No significant dietary ECV effects were detected in 

Experiments 1 and 2.  However, overall in Experiment 2 results suggest that calories 

provided in the diet can be replaced on a one-to-one basis by calories spared through 

reduced activity.  In Experiment 3, P fed birds had higher feed intake, weight gain, 

protein and lipid gain, and feed efficiency compared to M187.  Responses to P and M187 

were equal when lysine intake was used as a covariate in the model.  Regression models 

were successful in inter-relating body composition with lysine need. Models indicated 

that current recommendations for dietary lysine fail to sufficiently meet lysine 
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requirement for the fist 10 d of age.  Afterwards, recommended dietary lysine levels 

exceed requirements particularly towards the end of the growth curve.  

(Key words: broilers, pelleting, lysine, effective caloric value)

INTRODUCTION

     Intrinsic factors determine a broiler’s overall capacity to synthesize and accumulate 

muscle (Lawrence and Fowler, 1997).  However, whether or not the inherent upper limit 

is realized largely depends on the dietary supply of essential amino acids, as well as 

energy, as protein accretion is energetically costly (4 to 7 moles of ATP per peptide bond 

formed; Bequette, 2003).  As maximum meat yield at optimal efficiency is a principle 

goal, nutritionist’s routinely tweak nutrient to calorie ratios in an attempt to provide an 

ideally balanced ration. 

      In practical corn-soybean meal based broiler diets, methionine is considered first 

limiting followed by lysine, arginine, valine, and threonine (Han et al., 1992). However, 

lysine is the amino acid to which all others are proportionally related (i.e. ideal protein 

concept; Baker and Han, 1994; Baker, 1997).  Additionally, lysine is generally expressed 

in ratio to energy, as dietary caloric density largely regulates voluntary feed intake 

(Leeson et al., 1996; McKinney and Teeter, 2004).  Lysine is largely viewed as a pivotal 

nutrient because lysine has no major precursor role, and there has been extensive work to 

quantify digestible lysine need in broilers reared under a wide range of dietary and 

environmental circumstances (Han and Baker, 1993; Emmert and Baker, 1997).  

In addition to pelleting, numerous other nonnutritive factors encountered in broiler 

production such as stocking density (Cravener et al., 1992; Puron et al., 1997), lighting 
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program (Buyse et al., 1996; Ingram et al., 2000), ventilation (Lott et al., 1998), and feed 

processing techniques (i.e., pelleting; Acar et al., 1991; Schiedeler, 1995; Moritz et al., 

2001) are well documented to impact body weight (BW) and feed conversion ratio 

(FCR).  If the paradigm is accepted that these responses are consequences of managerial-

husbandry decisions that either “take away” or “add to” energy provided by the diet, then 

nonnutritive entities of broiler production need to be considered as variables directly 

influencing the ration formula.

     Therefore, the following experiments were conducted to evaluate the efficacy of 

expressing lysine in ratio with calories added to the diet in two ways. 1) by increasing 

ME through substrate addition, or  2) through reduced activity energy expenditure by 

differing broiler management circumstances.  Secondly, data will be utilized to develop a 

model that enables lysine requirement to be inter-related with body composition.

MATERIALS AND METHODS

General Information 

      In a related experiment that was directed at evaluating the ECV of pelleting under 

conditions mimicking those found commercially, male and female broilers (Cobb 500) 

were obtained from a commercial hatchery following sexing and vaccination for Marek’s 

disease.  The chicks were wing-banded and allotted by sex to floor pens (3.5 × 2.0 m) 

with used litter top-dressed with fresh wood shavings. The lighting program followed 

was 23L:1D and the stocking density was 45 birds per pen.  Birds were reared with ad 

libitum access to feed and water on starter (0-18 d), grower (18-35 d), and finisher (35-60 

d) diets (Table 1) formulated to meet or exceed nutrient recommendations of the Cobb 
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Broiler Nutrition Guide (2003). Treatments during the starter phase were: 1) unprocessed 

mash (M) and 2) M steam pelleted and crumbled (C).  Treatments for the grower and 

finisher phases were: 1) M; 2) M plus soybean oil (187 kcals MEn / kg diet; M187); and 

3) M steam pelleted and sifted (P).  Pens assigned to C in the starter phase were randomly 

re-assigned to either M187 or P in the grower and finisher phases.  At the outset of this 

experiment, 25 wing-bands from each pen were randomly selected.  Spray paint was 

applied to the wing bows of the birds with pre-selected wing-bands so that those birds 

could be easily identified for use in the experiments reported herein. 

     The aim of the experiments described herein was also to evaluate dietary ECV, 

namely the efficacy of expressing dietary nutrients in ratio to ECV.  Experiments were of 

similar design and utilized male and female broilers (obtained from the aforementioned 

bird population) over age intervals ranging from 1 to 10 (Experiment 1; EXP1), 19 to 29 

(Experiment 2; EXP2), and 45 to 55 (Experiment 3; EXP3) days.  During the test periods, 

the birds were housed individually in floor pens (46 x 60 x 60 cm) equipped with a 

stainless steel feeder, a nipple drinker, and fresh wood-shavings.  Feed and water were 

provided for ad libitum consumption and the same lighting program stated previously 

was followed.  The general treatment structure for the three experiments was four dietary 

lysine levels and 2 (M and M187; Experiment1) or 3 (M, M187, and P; Experiments 2 

and 3) ECV treatments in a factorial arrangement.  Note, dietary ECV treatments 

formerly assigned were maintained in these experiments.  Body weight gain (BWG), feed 

intake (FI), and whole-body protein (PD) and lipid (LD) deposition were quantified in 

each assay.  Further, digestible lysine (LI) and metabolizable energy (MEI) intake, feed 

conversion ratio (FCR), apparent efficiency of energy retention (retained energy/energy 
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intake; kRE), and the efficiency of lysine for whole-body protein deposition (protein 

gain/lysine intake; kLysPD) were calculated.

     To obtain whole-body PD and LD, initial and final body composition was determined 

using dual-energy x-ray absorptiometry (DXA) as described by McKinney et al. (2005).  

In brief, birds were fasted (8 h), anesthetized (Skinner-Noble et al., 2005), and scanned 4 

consecutive times in the prone position. Equations developed by McKinney et al. (2005) 

were used to adjust DXA measurements to match what would otherwise have been 

obtained by proximate analysis (AOAC, 1990).  As a check of DXA results, the 

summation of the adjusted bird protein, water, lipid, and ash were compared with the 

gravimetric weight.  Body weight calculated from adjust DXA measurements not within 

± 5% of the respective gravimetric weight were excluded and the accepted scans for each 

bird were combined for analysis. 

Diets

     The preparation of the experimental diets involved several steps. First, for each 

experiment, a basal diet (Table 2) was formulated to 105% of recommended nutrient 

concentrations (Cobb Broiler Nutrition Guide, 2003), with the exception of lysine.  

Second, four premixes with graded levels of lysine were formulated to be iso-caloric, iso-

nitrogenous and equal in Na+ and Cl- ions, utilizing L-lysine-HCL, NaCL, NaHCO3, 

glutamic acid, corn starch, and Solka-Floc®.  Four additional premixes were formulated 

in the same manner with the exception that the energy level was increased by adding 

soybean oil at the expense of Solka-Floc®.  The experimental diets were then prepared 

by mixing proportions of the basal diet (95%) and the premixes (5%).  In Experiments 2 

and 3, half of the diets of the base energy level were steam conditioned and pelleted.      
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Experimental design

     All dietary lysine levels examined were deficient relative to that recommended (Cobb 

Broiler Nutrition Guide, 2003).  Not focusing replication around the zone where 

responses to lysine plateau allowed a wider range of lysine levels to be evaluated.  In 

addition, this approach ensured response linearity, which enables the lysine requirement 

to be projected based on slope analysis.  Experiment 1 had a 2 × 4 factorial arrangement 

of dietary treatments.  Diets of four lysine levels (3.9, 5.2, 6.5, and 7.8 g/kg) were fed as: 

1) M (3,053 kcal MEn / kg diet) and 2) M187 (3240 kcal MEn / kg diet).  Experiments 2 

and 3 had a 3 × 4 factorial arrangement of dietary treatments.  Dietary lysine levels in 

Experiments 2 and 3 were: 3.5, 4.8, 6.1, and 7.4, and 3.0, 4.3, 5.6, and 6.9 g/kg, 

respectively.  In Experiment 2, each of the lysine levels were fed as: 1) M (3,131 kcal 

MEn / kg diet); 2) M187 (3,318 kcal MEn / kg diet); and 3) P (3,131 kcal MEn / kg diet).  

In Experiment 3, each of the lysine levels were fed as: 1) M (3,174 kcal MEn / kg diet); 2) 

M187 (3,361 kcal MEn / kg diet); and 3) P (3,174 kcal MEn / kg diet). 

Data Analysis

Bird served as the experimental unit and the experiments were analyzed as a completely 

randomized design.  Data were analyzed using General Linear Models of SAS (2000), 

with probability values of P < 0.05 considered significant.  When a significant F-statistic 

was detected, least square means were used for treatment comparisons. Orthogonal 
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polynomial contrasts were used to test for linear and curvilinear responses with respect to 

lysine level.

      Modeling procedures were based on forward stepwise regression (Neter et al., 1990).  

Factors were added to the regression model until three conditions were met: 1) adding 

factors to the model did not result in a substantial (R2 improvement < 2 %) increase in the 

model R2; 2) all factors in the model were significant at P < 0.10; and 3) the resulting 

model matched known properties of the independent variables.  

RESULTS AND DISCUSSION

 No significant sex × lysine treatment interactions were detected in any of the 

experiments. This was expected as prior research with both swine (Susenbeth, 1995) and 

poultry (Han and Baker, 1993) have shown no sex differences when diets of sub-optimal 

lysine content were fed.  Limited data is available as to differences between male and 

female responses to pelleting.  However, it has been suggested (Nir and Hillel, 1995) that 

females are slightly less responsive to pellets. However, similar observations were 

obtained from two independent studies, one utilizing males (McKinney and Teeter, 

2004), the other females (Skinner-Noble et al., 2005), as to the activity calories spared 

due to pelleting.  In the present study no sex × ECV treatment interactions were detected 

indicating that males and females response similarly to pelleting.  As no significant sex × 

dietary treatment interactions were detected sex effects were combined (Table 3, 4, and 

5).  

     No significant ECV × lysine level interactions were detected for FI, LI, or MEI.  

Overall, there was a tendency for feed consumption to increase in a linear manner (P < 
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0.09) as dietary lysine level was increased.  Observations that a bird’s appetite increases 

to a point as dietary lysine is increased are well documented throughout the literature 

(Tesseraud et al. 1992; Edwards et al., 1999; Fatufe et al., 2004). Lysine fed in excess of 

need has the opposite effect.  Dietary ECV did not influence feed consumption in EXP1 

or EX2.  However in EXP3, birds provided pellets consumed more (P < 0.05) feed, 

lysine, and energy compared to those fed M187, which appeared to have a depressed 

appetite.  It is generally accepted that voluntary intake is largely controlled by energy 

consumption (Leeson et al. 1996; McKinney and Teeter, 2004).  However, birds fed P 

consumed more energy overall compared to the M187 fed group.  This would suggest 

that calories spared by reduced activity are not perceived in a manner that would regulate 

consumption.  

No ECV × dietary lysine level interactions were detected for BWG, PD, or LD in EXP 

2 and EXP 3.  A significant interaction was observed in EXP1.  Birds fed the lowest 

lysine level and M had significantly higher (P < 0.05) BWG, PD, and LD compared to 

birds fed the same lysine level and M187.  Then as the dietary lysine levels increased, 

M187 fed birds surpassed those receiving M.  It should be noted that birds on the low 

lysine M187 treatment did not consume feed well.  Either birds on this treatment did not 

adapt to the experimental cages or as Jensen (1965) reported, the supplemental dietary 

energy resulted in an energy-lysine imbalance.  Unfortunately, birds of this age are 

unable to consume whole pellets so Jensen’s (1965) hypothesis that pelleting exacerbates 

a deficiency could not be evaluated. 

     In EXP2 and EXP3, BWG, PD and LD increased (EXP2; linearly P < 0.05) as more 

dietary lysine was provided.  Based on the work of Urdaneta-Rincon and Leeson (2004) 
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this is a result of increased tissue synthesis rather than a reduction in tissue degradation. 

Similarly, Tesseraud et al. (1992) demonstrated that both fractional synthesis and 

degradation of protein increases with lysine consumption, only fractional synthesis 

occurs at a higher level. In EXP3, P resulted in significantly more PD and LD compared 

to M187 and M birds.  This may be partially attributed to the greater lysine consumption 

of birds fed P.  However, when lysine consumption was included in the model as a 

covariate, a significant F-statistic for ECV was obtained.  Means separation revealed the 

P still yielded higher PD. Additionally, though not statistically different, it should be 

noted that in EXP2, treatment P and M187 were virtually the same with respect to BWG, 

PD, and LD, and had similar lysine intakes.

    In general FCR and kRE were improved and kLysPD reduced as dietary lysine was 

increased.  Regarding the latter, several reports have suggested that the efficiency of 

lysine utilization declines with increased LI (Batterham et al., 1990; Gahl et al., 1991;

Fatufe et al., 2004).  In contrast, Möhn et al. (2000) reported that lysine utilization did not 

decline with increasing LI.  It ultimately may depend on the manner in which lysine 

efficiency is quantified (Lys/Lys verses Lys/Prot).  There is still discussion as to the 

composition of protein under conditions of sub-optimal lysine. For example, Skan and 

Noy (2004, 2005) contend that the lysine content of chicken tissue remains constant when 

dietary lysine is deficient.  Conversely, Edwards et al. (1999) and Fatufe et al. (2004) 

contend that during lysine deficiency the lysine content of the tissue proportionally 

decreases.  Nonetheless, lysine content of tissues was not evaluated in this study and 

kLysPD is expressed as lysine consumed per unit protein gain.  This is an apparent 
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estimation and subject to error if the lysine content of the animal actually changes (i.e., 

increase collagen vs. breast tissue).

     Indeed, the results of this experiment were somewhat variable. This may have resulted 

from 1) birds individually housed; 2) lack of appropriate replication; 3) birds in EXP2 not 

having an adaptation period to pellets; or 4) an inadequate experimental period.  

However, overall the data suggests that calories provided in the diet can be replaced by 

calories spared through reduced activity.  Additionally, there was a general lack of 

interaction between energy (provided in either form) and lysine.  Moreover, results give 

support to the importance of considering broiler management in establishing nutrient to 

energy ratios.   

    An objective of this study was to develop a mathematical model that inter-relates 

broiler lysine requirement with the body composition for the entire growth curve.  As P 

was not included as a treatment in EXP1, data for the entire growth curve was 

unavailable. Therefore, P was excluded from the data set for modeling purposes.  

Numerous variables expressed both as measured and per unit metabolic body size 

(BW0.67) evaluated in the development of this model.  The parameters which yielded the 

best model for predicting daily total (TL, g) and digestible lysine (DL, g) consumption 

were 1) dietary :MEn:Lysine ratio (EL; g/kcal); 2) mean PD (g) and 3) daily PD (g).  The 

resulting equations were: 

(Eq. 1) TL = 0.46335 – (0.00007321 × EL) + (0.00121× mean PD) + (0.04227× daily

PD); (R2 = 91.6%)

(Eq. 2) DL = 0.41308  –  (0.00005846 × EL)  + (0.00110 × mean PD) +  (0.03878× daily 

PD);(R2 = 91.0%)
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To evaluate the estimated daily total and digestible lysine requirement, as it compares to 

current recommendations (Cobb Vantress, 2003), data provided from the field (Wiernusz, 

2005) were applied to the equations.

     Results from these equations are illustrated in Figure 1.  Based on these estimations, 

current recommendations do not sufficiently supply the broiler with the required amount 

of lysine for the first 10 days of age.  After that, lysine is fed in excess particularly 

towards the end of the growth curve.  Indeed, nutritionist’s build buffers into the ration 

formula to protect against, for example, feed mixing mistakes, but is possible with these 

equations to quantify that allowance.

    Potentially, information obtained from these equations could be used to modify the 

existing ideal protein model.  Furthermore, it may be possible to integrate these equations 

into a more mechanistic approach whereby producers could specify, for example, desired 

bird composition, total days available for production,  and rearing conditions, and these 

models would provide dietary provisions necessary to achieve that target. 
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Table1.  Composition of diets used to rear broilers to the ages evaluated in Experiments 1, 2, and 3
Age interval, d and Treatments1,2

0 to 18 18 to 35 35 to 60
Ingredient, % M and P M and P M187 M and P M187
Corn 58.12 64.89 60.73 68.72 64.31
Soybean meal (48% CP) 32.66 24.59 25.61 22.76 23.63
Soybean oil 2.90 2.93 6.4 3.32 6.89
Poultry by-product meal 1.50 3.00 3.00 0.50 0.50
Monocalcium phosphate 1.36 1.05 0.94 1.20 1.21
Limestone 1.32 1.04 0.94 1.08 1.07
NaCl 0.34 0.29 0.32 0.34 0.35
NaHCO3 0.25 0.32 0.27 0.30 0.28
Vitamin premix3 0.28 0.24 0.24 0.25 0.25
Trace mineral premix4 0.09 0.09 0.09 0.09 0.09
Selenium premix 0.04 0.04 0.04 0.04 0.04
CuSO4 0.002 0.002 0.002 0.002 0.002
Choline chloride 0.001 – – – –
DL-Methionine 0.22 0.22 0.19 0.12 0.12
Lysine 0.076 0.157 0.10 0.10 0.08
Arginine 0.03 0.05 0.03 0.05 0.03
Threonine 0.03 0.05 0.02 0.05 0.04
AmeriBond 2x 0.75 1.00 1.00 1.00 1.00
Coccidiostat 0.05 0.05 0.05 0.08 0.08
Ethoxyquin 0.012 0.012 0.012 0.012 0.012
Calculated Analysis
MEn (kcal / kg) 3,053 3,131 3,318 3,174 3,361

CP, % 22.1 19.8 19.8 17.5 17.5
Arg 1.49 1.30 1.30 1.16 1.16
Lys 1.26 1.14 1.14 0.96 0.96
Met 0.55 0.52 0.52 0.42 0.42
TSAA 0.94 0.88 0.88 0.76 0.76
Ca 0.90 0.80 0.80 0.72 0.72
P, available 0.44 0.40 0.40 0.37 0.37

1Treatments: M = mash; M187 = M plus soybean oil (187 kcal MEn/kg); P = M steam pelleted and sifted.
2From 0 to 18 days, P was crumbled.
3Supplied per kilogram of diet: vitamin A, 10,141 IU (retinyl acetate); cholecalciferol, 3,086 IU; vitamin E, 23.92 IU (dl-α-tocopheryl acetate); menadione, 2.87 mg; thiamine, 2.20 mg; 
riboflavin, 7.72 mg; niacin, 60.30 mg; d-pantothenic acid, 12.46 mg; pyridoxine, 3.75 mg; vitamin B12, 0.017 mg; folic acid, 1.066 mg; d-biotin, 0.127 mg.
4Supplied per kilogram of diet: Ca,160 mg; Zn, 100 mg; Mn, 120 mg; Fe,75 mg; Cu, 10 mg; I, 2.5 mg.  

Table 2. Basal diets used in Experiments 1, 2, and 3 
Experiment

Ingredient 1 2 3
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Corn 62.0 70.2 76.2
Corn gluten meal 15.0 13.9 11.4
Wheat bran 5.6 2.1 –
Soybean oil 3.2 3.0 3.0
Poultry by-product meal 1.58 1.28 1.22
Soybean meal 1.58 1.26 0.53
Mono-calcium phosphate 1.56 1.46 1.34
Limestone 1.54 1.39 1.22
Corn Starch 1.26 – –
Potassium sulfate 1.26 0.87 0.95
Arginine 0.99 0.81 0.71
Pellet binder 0.79 1.05 1.05
NaHCO3 0.72 0.62 0.54
Vitamin premix1 0.68 0.27 0.28
Isoleucine 0.33 0.23 0.18
Serine 0.33 – –
Threonine 0.29 0.23 0.23
Glycine 0.29 0.13 0.29
Valine 0.28 0.18 0.18
Histidine 0.22 0.15 0.07
Methionine 0.21 0.18 0.09
Tryptophan 0.13 0.11 0.09
Trace mineral premix2 0.095 0.095 0.100
Coccidiostat 0.053 0.079 0.079
Selenium premix 0.011 0.021 0.028
Ethoxyquin 0.013 0.013 0.013
CuSO4 0.002 0.002 0.002
Choline chloride – 0.116 0.026
NaCl – 0.105 0.175
Calculated Analysis

MEn (kcal / kg) 3,214 3,296 3,341
CP, % 22.01 19.93 17.68
Arg3 1.44 1.25 1.11
Lys3 0.39 0.35 0.30
Met3 0.55 0.50 0.41
TSAA3 0.84 0.78 0.69
Ca 0.95 0.84 0.76
P, available 0.46 0.42 0.39

1Supplied per kilogram of diet: vitamin A, 10,141 IU (retinyl acetate); cholecalciferol, 3,086 IU; vitamin E, 23.92 IU (dl-α-tocopheryl acetate); menadione, 2.87 mg; thiamine, 2.20 mg; 
riboflavin, 7.72 mg; niacin, 60.30 mg; d-pantothenic acid, 12.46 mg; pyridoxine, 3.75 mg; vitamin B12, 0.017 mg; folic acid, 1.066 mg; d-biotin, 0.127 mg.
2Supplied per kilogram of diet: Ca,160 mg; Zn, 100 mg; Mn, 120 mg; Fe,75 mg; Cu, 10 mg; I, 2.5 mg.  3True digestible basis according to the listing of Ajinomoto Heartland, Incorporated 
(2001).

Table 3. Broiler growth performance and whole body protein and lipid deposition and retention efficiencies as influenced by 
dietary treatment, 
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Experiment 1
Dietary treatment1 Intake Deposition3 Efficiency

ECV Lys2, % Diet Lys2 MEn BWG Protein Lipid FCR4 kLysPD
5 kER6

Interactive effect means (g) (kcal) (g) (g/g) (%)
M 0.39 146 0.57 446 50c 4.7c 0.1d 3.00 9.7 7.1
M 0.52 144 0.75 439 57c 6.0c 0.7cd 2.60 12.7 14.9
M 0.65 162 1.05 494 83b 9.7bc 2.7bc 1.88 9.7 15.8
M 0.78 187 1.46 571 88b 10.3b 3.3b 2.17 7.4 15.9
M187 0.39 86 0.33 278 36d 1.5d -1.8e 2.42 4.4 -4.4
M187 0.52 155 0.81 503 61c 5.8c 0.7cd 2.58 8.2 8.5
M187 0.65 211 1.45 685 95b 12.4b 4.4b 2.32 8.2 13.6
M187 0.78 270 2.11 875 127a 18.4a 7.9a 2.15 9.0 20.4
Main effect means
M 160 0.95 487 70 7.7 1.7 2.41 9.9 13.4
M187 181 1.17 585 80 9.5 2.8 2.37 7.4 9.5

0.39 116c 0.45d 362b 43d 3.1c -0.8d 2.71 7.1 1.4b

0.52 150bc 0.78c 471b 59c 5.9b 0.7c 2.59 10.4 11.7a

0.65 186abc 1.24b 589ab 89c 11.0a 3.6b 2.10 8.9 14.7a

0.78 229a 1.78a 723a 108a 14.3a 5.6a 2.16 8.2 18.2a

Source of variation Probability
ECV 0.9702 0.4464 0.6470 0.3624 0.5660 0.5766 0.6577 0.2092 0.1273
Lys 0.0074 < 0.0001 0.0054 < 0.0001 < 0.0001 < 0.0001 0.6762 0.7577 0.0127

Linear 0.0809 0.0009 0.0701 < 0.0001 < 0.0001 < 0.0001 0.4186 0.6832 0.0512
Quadratic 0.9534 0.6284 0.9599 0.2036 0.3029 0.3040 0.7327 0.4593 0.4328

ECV × Lys 0.1373 0.0708 0.1057 0.0027 0.0018 0.002 0.8854 0.7913 0.4929
Pooled SEM 10.87 0.55 33.60 2.12 0.43 0.25 0.21 1.28 1.82

a- eMeans within a column with different superscripts differ (P < 0.05).
1M = unprocessed mash; M187 = M plus soybean oil (187 kcal MEn/kg diet). 
2Expressed as true digestible lysine based on the listing of Ajinomoto Heartland, Incorporated (2001).
3Initial body composition determined by whole bird chemical analysis; final body compositions were based on dual energy x-ray absorptiometry measurements 

adjusted as described by Mckinney et al. (2005).
4Feed conversion ratio (FCR) = feed consumption / body weight gain.
5Efficiency of dietary lysine for protein deposition (kLysPD) = protein deposition/lysine consumption.
6Efficiency of energy retention (kER) = ((protein deposition × 5.65 + lipid deposition × 9.31)/Energy (MEn basis) consumption) × 100.

Table 4. Broiler growth performance and whole body protein and lipid deposition and retention efficiencies as influenced by 
dietary treatment, Experiment 2

Dietary treatment1 Intake Deposition3 Retention



102

ECV Lys2, % Diet Lys2 MEn BWG Protein Lipid FCR4 kLysPD
5 kER6

Interactive effect means (g) (kcal) (g) (g/g) (%)
M 0.35 490 1.71 1,533 135 22 16 3.64 12.9 17.7
M 0.48 668 3.21 2,091 244 41 31 2.84 12.7 24.7
M 0.61 718 4.38 2,248 318 56 43 2.30 12.8 31.8
M 0.74 819 6.06 2,565 376 65 51 2.21 10.6 32.4
M187 0.35 648 2.27 2,149 209 34 26 3.23 14.4 19.3
M187 0.48 574 2.75 1,904 229 38 29 2.53 14.6 26.8
M187 0.61 735 4.48 2,439 342 59 47 2.17 13.0 31.1
M187 0.74 815 6.03 2,704 396 70 57 2.07 11.5 34.1
P 0.35 700 2.45 2,191 273 46 36 2.83 18.7 27.2
P 0.48 594 2.85 1,860 226 38 30 2.65 13.4 26.2
P 0.61 712 4.34 2,228 285 49 38 2.53 11.4 28.2
P 0.74 863 6.13 2,703 398 68 54 2.20 10.9 32.0
Main effect means
M 674 3.84 2,109 268 46 35 2.75 12.2 26.7
M187 693 3.88 2,299 294 50 40 2.50 13.4 27.8
P 717 3.94 2,246 295 50 39 2.55 13.6 28.4

0.35 612c 2.14d 1,958c 205c 34c 26c 3.23a 15.3a 21.4c

0.48 612c 2.94c 1,952c 233c 39c 30c 2.67b 13.6ab 25.9b

0.61 721b 4.40b 2,305b 315b 55b 42b 2.33c 12.4bc 30.4a

0.74 832a 6.07a 2,657a 390a 68a 54a 2.16c 11.0c 32.8a

Source of variation Probability
ECV 0.8513 0.9775 0.7756 0.8037 0.8685 0.767 0.3575 0.5164 0.8149
Lys 0.0006 < 0.0001 0.0006 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.0005 < 0.0001

Linear 0.0856 < 0.0001 0.0875 0.0017 0.001 0.0029 < 0.0001 0.0182 0.0002
Quadratic 0.2670 0.2748 0.2577 0.2988 0.2787 0.3096 0.4576 0.7612 0.9861

ECV × Lys 0.655 0.9431 0.6659 0.4284 0.4726 0.4835 0.3927 0.1839 0.2115
Pooled SEM 19.29 0.12 61.72 10.24 1.87 1.64 0.06 0.37 0.69

a- dMeans within a column with different superscripts differ (P < 0.05).
1M = unprocessed mash; M187 = M plus soybean oil (187 kcal MEn/kg diet); P = M steam pelleted and sifted. 
2Expressed as true digestible lysine based on the listing of Ajinomoto Heartland, Incorporated (2001).
3Based on dual energy x-ray absorptiometry measurements adjusted as described by Mckinney et al. (2005).
4Feed conversion ratio (FCR) = feed consumption / body weight gain.
5Efficiency of dietary lysine for protein deposition (kLysPD) = protein deposition/lysine consumption.
6Efficiency of energy retention (kER) = ((protein deposition × 5.65 + lipid deposition × 9.31)/Energy (MEn basis) consumption) × 100.

Table 5. Broiler growth performance and whole body protein and lipid deposition and retention efficiencies as influenced by 
dietary treatment, Experiment 3

Dietary treatment1 Intake Deposition3 Retention
ECV Lys2, % Diet Lys2 MEn BWG Protein Lipid FCR4 kLysPD

5 kER6

Interactive effect means (g) (kcal) (g) (g/g) (%)
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M 0.30 1,412 4.24 4,482 245 40.5 50.5 5.86 9.6bc 15.6
M 0.43 1,515 6.51 4,809 306 55.5 75.7 5.21 8.8bc 21.8
M 0.56 1,520 8.51 4,824 351 60.3 80.0 4.54 7.1bc 22.5
M 0.69 1,663 11.48 5,279 395 59.5 81.0 4.51 5.1c 20.2 
M187 0.30 1,233 3.70 4,144 222 39.6 52.0 5.55 10.7bc 17.1
M187 0.43 1,137 4.89 3,820 321 49.2 69.0 4.13 10.3bc 24.5
M187 0.56 1,445 8.09 4,857 353 58.6 76.3 4.69 7.0bc 20.6
M187 0.69 1,505 10.39 5,059 524 79.0 111.0 2.96 7.8bc 29.7
P 0.30 1,079 3.24 3,426 322 69.1 91.4 3.34 22.9a 39.1
P 0.43 1,557 6.69 4,940 423 74.4 102.7 3.75 11.0b 27.6
P 0.56 2,230 12.49 7,078 570 102.9 142.7 4.09 8.2bc 26.7
P 0.69 2,086 14.40 6,622 680 104.6 161.9 3.38 7.1bc 30.8
Main effect means
M 1,528b 7.68ab 4,849ab 324b 54.0b 71.8b 5.03a 7.6b 20.0b

M187 1,330b 6.77b 4,470b 355ab 56.6b 77.1b 4.34ab 8.9b 23.0b

P 1,738a 9.20a 5,517a 499a 87.8a 124.7a 3.64b 12.3a 31.0a

0.30 1,241c 3.72d 4,017c 263b 49.7b 64.7b 4.92 14.4a 23.9
0.43 1,403bc 6.03c 4,523bc 350b 59.7ab 82.5ab 4.37 10.0b 24.6
0.56 1,732ab 9.70b 5,587ab 425ab 73.9ab 99.6ab 4.44 7.4bc 23.3
0.69 1,752a 12.09a 5,653a 533a 81.0a 118.0a 3.62 6.7c 26.9

Source of variation Probability
ECV 0.0072 0.0043 0.0295 0.0226 0.0046 0.0029 0.0358 0.0036 0.0076
Lys 0.0027 < 0.0001 0.0027 0.0071 0.0691 0.0320 0.2847 < 0.0001 0.8227

Linear 0.0111 < 0.0001 0.0112 0.0868 0.0992 0.1228 0.4948 0.0002 0.8793
Quadratic 0.5779 0.4541 0.5636 0.9370 0.8593 0.9862 0.5843 0.5276 0.7763

ECV × Lys 0.1938 0.3146 0.2039 0.9201 0.9398 0.9004 0.5828 0.0094 0.2783
Pooled SEM 52.07 0.31 166.73 26.34 4.10 6.36 0.20 0.48 1.28

a- dMeans within a column with different superscripts differ (P < 0.05).
1M = unprocessed mash; M187 = M plus soybean oil (187 kcal MEn/kg diet); P = M steam pelleted and sifted. 
2Expressed as true digestible lysine based on the listing of Ajinomoto Heartland, Incorporated (2001).
3Based on dual energy x-ray absorptiometry measurements adjusted as described by Mckinney et al. (2005).
4Feed conversion ratio (FCR) = feed consumption / body weight gain.
5Efficiency of dietary lysine for protein deposition (kLysPD) = protein deposition/lysine consumption.
6Efficiency of energy retention (kER) = ((protein deposition × 5.65 + lipid deposition × 9.31)/Energy (MEn basis) consumption) × 100.
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Abstract: Data originating from a commercial broiler growth curve and were coupled 

with published chick metabolic data in order that the effects of varying dietary protein on 

chick energy metabolism might be model through 2.5 Kg live weight.  The metabolic 

data included various estimations of fractional protein synthesis (FSR) and fractional 

degradation rates (FDR). Both FSR and FDR declined curvilinearly with increasing bird 

age.  Fractional protein synthesis declined from 35 % for the young chick to just 15 % for 

the 2.5 Kg - 42 day old broiler.  The FDR declined from 28 % for the young chick to 10 

% for the 2.5 KG bird.  Coupling these values with the bird protein accretion model 

developed in this laboratory yielded overall estimates of synthesis and degradation as 

grams per day. For the 2.5 Kg bird total synthesis averaged 645.6, degradation averaged 

190.1 yielding an accretion 455 grams. Previous work (chapter 3 of this thesis) 

established that dietary protein reduction of 3% was without consequence (P>0.10) for 

feed intake, live weight gain, and protein and lipid accretion.  Application of these diets 

to lower dietary protein by 0, 1.5 and 3.0% subsequently lowered crude protein 

consumption from 758.6 g to 691.6 and 643.9, respectively.  Simultaneously; overall AA 

catabolism declined from 272.5 to 205.5 and 157.7 grams thereby reducing the 

catabolizable amino acid energy from 1384.2 to 1070.5 and 862.8 Kcal.  Catabolizable 

energy per gram of amino acid catabolized, however; increased from 5.08, for the 0% 

crude protein reduction, to 5.21 and 5.47 Kcal per gram for the two protein reductions, 

while ATP synthesis per gram catabolizable AA rose from 0.212 moles/g AA for the 0% 

protein reduction to 0.221 and 0.232 for the 1.5 and 3.0% reduction.  As a result heat 

production (assuming glucose is substituted weight per weight for catabolizable AA) 
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declined linearly from 640 Kcal (NRC treatment) to 513 Kcal for the 3% crude protein 

reduction.  In conclusion bird energy need for FSR is ~ 26.3% of MEn consumption. 

While varying dietary CP has the potential to alter HP by 127 Kcal, this only amounts to 

0.90% of consumption.  More fruitful advances in overall metabolic efficiency for broiler 

energy need are found in other avenues of energy expenditure such as activity, 

thermoregulation and hygiene management.

INTRODUCTION

Maximization of broiler production efficiency is one of the primary objectives of 

any of the poultry industry. Feed costs approximately 60 – 70 % of the poultry production 

industry making efficiency of substrate utilization critical. Substrates are oxidized for 

maintenance and accretion. Maintenance may be defined as energy for all non accretion 

functions such as thermoregulation, general homeostasis and activity to support various 

needs such as feed and water acquisition. If less substrate catabolism occurs than 

anabolism then growth is achieved. 

Consumed substrates can be categorized as indispensable (cannot be synthesized 

by the bird) versus dispensable substrates that can be synthesized on an as-needed basis. 

Indispensable amino acids are thereby defined as those that cannot be synthesized by the 

animal, are needed metabolically and therefore must be supplied in the diet. These 

amounts are not the same for all production phases (Morris et al., 1999). 

Amino acid requirements are typically set by feeding graded levels of amino acids 

to the bird and monitor the result. Several factors change simultaneously like feed intake 

(Denbow, 1989; Kuenzel, 1994), tissue accretion and accretion composition (Kang et al., 

1985; Klasing et al., 1987). Changing a single AA has been used to determine AA 
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requirements. For example, requirements are typically estimated by increasing dietary 

concentrations of an AA, coupled with the monitoring of the growth plateau. These 

effects may however be influenced by the total dietary protein (Morris et al., 1999; Sklan 

and Noy, 2003) suggesting complex relationships between AA’s.

Growth consists only in part, of protein synthesis, whereas efficiency of 

utilization is dependent not only upon the protein synthesis but also the amount of AA 

being catabolized. Previous studies have estimated protein synthesis and catabolism using 

flooding doses of a labeled AA (Kang et al., 1985; Klasing et al., 1987). As such the 

fractional synthesis rate (FSR) and fractional degradation rate (FDR) may be determined. 

The effect of varying dietary AA combinations on FI, growth and accretion may be 

estimated from carcass accretion.  The impact of dietary AA combinations on the 

quantity of AA available for catabolism may be calculated as the difference between 

intake and carcass deposition. However, this approach would not account for overall 

protein turnover which would elevate synthesis making the isotope approach necessary. 

Bioenergetics: Broiler maintenance energy averages 32% of the MEn consumption 

through 3Kg body weight (Beker, personal communication). Protein turnover is 

considered to be an important component of maintenance but the amount is not readily 

determined. Indeed protein turnover of birds fed at maintenance would likely be 

exacerbated due to reduced feed intake. Therefore, such estimates must come from 

isotope studies with FSR and FDR estimates attained with full-fed birds.  Such data, 

when applied to the birds growth and composition curve, enables placing quantitative 

value on energy need associated with protein metabolism. For such measures bird mass 

must be viewed in moles instead of crude protein or mass in Kg as ATP requirements are 
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determined by molar and not weight relationships.

A mole of glucose would yield 36 ATP’s, consequently, this represents 39 % of 

efficiency (Harpar,1939).  Other energy is lost as heat. Metabolic efficiency for glucose is 

based upon a mole of ATP containing 7.3 KCals, thereby the 36 ATP’s would account 

for only 270 Kcals of the 686 KCals present in Glucose. Energy expenditure is due to 

biochemical and biophysical processes requiring ATP (Summers and Leeson, 1985). 

Schulz (1978) has modeled catabolism to represent the yields of ATP for each AA, 

concluding that excess AA is converted into ATP or glucose depending upon animal 

need. 

Any evaluation of energy metabolism must be based upon the nutrient 

composition and subsequent metabolic path.  The identification of nutrients and cofactors 

involved in intermediary metabolism are described in Table 1 for Gross Energy, Carbon, 

Hydrogen, Oxygen, Nitrogen, Sulfur contents of the AA found in animal tissue. 

Calculation of ATP yield has been done through Stoicheometry equations for the fate of 

these amino acids according to the equations taken from Schulz (1978; Table 2).

Amino Acid Catabolism: Muscle protein turnover could be considered as an important 

component of protein metabolism during growth (Garlick et al., 1976). The rate of 

growth of muscle tissue accretion is a function of the relative rates of protein synthesis

degradation and accretion. The chick is a good model because it grows at a rapid rate 

(MacDonald and Swick., 1981). A contrasting of diet and chick amino acid contents 

found in Table 3, 4 and 5 for standard feeding periods. Note, diet composition changes 

with time to reflect chick AA needs and economic limitations. Understanding of the 

Fractional Synthesis and Fractional Degradation Rates, when coupled with growth 
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composition, provide an insight into the phenomena of growth and maturation. In many 

studies (Maruyama et al., 1978) it was reported that protein turnover was correlated with 

slightly higher rates of protein synthesis. MacDonald and Swick, (1981) showed a 

Table 1: Composition of indispensable and dispensable amino acids1

Mwt1 C H O N S Delta Gc
Indispensable AA
Histidine 155 6 6 2 3 846.5
Isoleucine 131 6 13 2 1 855.8
Leucine 131 6 13 2 1 856
Lysine 146 6 14 2 2 771.6
Methionine 149 5 11 2 1 1 664.8
Phenylalanine 165 5 12 2 2 1110.6
Threonine 119 4 9 3 1 490.7
Tryptophan 204 11 12 2 2 1345.2
Tyrosine 181 9 11 3 1 1061.7
Valine 117 5 11 2 1 698.3

Dispensable AA
Alanine 89 3 7 2 1 387.1
Arginine 174 6 14 2 4 893.5
Aspartic Acid 116 4 6 3 1 382.6
Glutamic Acid 130 5 8 3 1 536.4
Glycine 75 2 5 2 1 230.5
Cysteine 121 6 11 3 2 2 394.6
Proline 115 5 9 2 1 513.5
Serine 105 3 7 3 1 347.7
1Mwt = Molecular weight
2C= Carbon, H = Hydrogen, N=Nitrogen, S=Sulfur, O=Oxygen
3∆Gc estimates the energy release by complete combustion extracted from 
Data collected from Schulz (1978) and Handbook of Biochemistry selected data for Molecular Biology

reduction in fractional synthesis rate of chick breast muscle from 1 to 2 week of age. 

However, this area warrants further research. Maruyama et al (1978) estimated the whole 

protein turnover rate in chickens to be 64g/Kg body weight per day. The purpose of this 

writing is to model energy metabolism using commercial growth date and published 

metabolism information. 

Material and Methods: Data presented in chapter 3 of this dissertation and tables here in 

were applied to a commercial growth curve for the cobb bird (Table 7) and feed 
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consumption tables such that the amino acid consumption for birds fed NRC, NRC-1.5 

and NRC – 3% dietary crude protein with indispensable amino acid fortified to maintain 

amino acid need might be computed. Crude protein effect on amino acid combustion to 

gross energy (∆Gc) and ATP yield were obtained from values presented in Table 2. 

Estimates for FSR, FDR and protein turnover (TO) are presented in Table 8. Total protein 

synthesis and degradation was computed as the product of the fractional values with bird 

protein whole body content. Moles of chick AA contained in the chick whole body 

protein were determined as the summation of (whole body protein x chick AA 

composition) / AA molecular weights for 20 amino acids. Energy as ATP need for 

protein accretion was estimated as moles AA accrued x 8 ATP per mole. Total ATP per 

mole chick protein accrued was estimate as described in table 9.

Statistical Analysis: Values presented represent discrete estimation and generally 

accepted composition data. As a result the combustion of terms has no error estimation 

other than that associated with FSR, FDR, bird protein content and portioning of whole 

body protein into AA. Though these each have error it is not possible to estimate error 

associated with the model presented. Summation of protein synthesis was accomplished 

by regressing daily values on bird age to generate a 3rd power polynomial and integrate 

there of to probably a total value for the 41 day old bird with a mean live weight of 2.554 

Kg.
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Table 2: Amino Acid catabolism to CO2 water and uric acid with accompanying moles of 
ATP produced1

Moles 
O2 used

Moles CO2

Produced
Moles H2O 
Produced

Moles Uric 
Acid 

Produced

Moles ATP 
Produced

Moles H2O 
Produced

Indispensable AA
Histidine 5 4.5 1.5 1.5 22.5 1.5
Isoleucine 7.5 5.5 5.5 0.5 40.5 5.5
Leucine 7.5 5.5 5.5 0.5 39.5 5.5
Lysine 7 5 5 0.5 36 5
Methionine 7 4.5 1 (SO4)

2- 0.5 21.5 1 (SO4)
2-

Phenylalanine 10 8.5 4.5 0.5 37.5 4.5
Threonine 4 3.5 3.5 0.5 20.5 3.5
Tryptophan 11.5 10 4 1 42 4
Tyrosine 9.5 8.5 4.5 0.5 41.5 4.5
Valine 6 4.5 4.5 0.5 31.5 4.5

Dispensable AA
Alanine 3 2.5 2.5 0.5 15.5 2.5
Arginine 5.5 4 3 2 28 3
Aspartic Acid 3 3.5 2.5 0.5 15.5 2.5
Glutamine 4.5 4 3 1 22 3
Glycine 1.5 1.5 1.5 0.5 6.5 1.5
Cysteine 4 2.5 1 (SO4)

2- 0.5 12.5 1 (SO4)
2- 

Proline 5.5 4.5 3.5 0.5 29.5 3.5
Serine 2.5 2.5 2.5 0.5 12.5 2.5
Glutamic Acid 4.5 5.5 3.5 0.5 24.5 3.5
1 Data extracted from Schulz(1978) 
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Table 3. Amino Acid Content of Chick1

Amino Acid
Chick Amino Acid

Indispensable AA
Histidine 2.91
Isoleucine 4.07
Leucine 7.59
Lysine 7.5
Methionine 1.76
Phenylalanine 4.05
Threonine 4.5
Tryptophan 0.77
Tyrosine 3.03
Valine 5.33

Dispensable AA
Alanine 6.81
Arginine 7.02
Aspartic Acid 9.3
Glutamic Acid 14.7
Glycine 8.5
Cysteine 1.73
Proline 6.78
Serine 4.53
1 =Data extracted from Harold et al., 1953, Sklan and Noy., 2005 data also modified using regression equations and personal 
communication

Figure 1. Plot of FSR and FDR values collected from literature1

1 = Klang et al., 1985, Klaising 1987
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Table4. Commercial weight guide for males, females and As-Hatched chick live weight, 
daily gain and as hatched feed conversion rates
Age Male 

weight 
(g)

Daily 
live 
weight 
gain

Female 
weight 
(g)

Daily 
live 
weight 
gain

As-
Hatched 
weight 
(g)

Daily 
live 
weight 
gain

Daily 
feed per
Bird(as-
hat)

Cum
Cons
Per
Bird(as-
hat)

F.C.R
As-
hatched

0 42 0 42 0 42 0
1 49 7 48 6 48 6
2 61 12 58 10 59 11
3 76 15 73 15 75 15
4 97 21 91 18 94 19
5 121 24 113 22 117 23
6 149 28 139 26 144 27
7 182 33 169 30 175 31 150.0 150 0.857
8 218 36 202 33 210 35 34.1 184 0.877
9 258 40 238 36 248 38 39.7 224 0.903
10 301 43 278 40 289 41 45.5 269 0.931
11 348 47 321 43 334 45 51.5 321 0.960
12 398 50 366 45 382 48 57.6 378 0.991
13 451 53 414 48 433 51 63.7 442 1.022
14 508 57 465 51 486 54 69.9 512 1.052
15 567 59 519 54 543 56 75.9 588 1.083
16 629 62 575 56 602 59 81.9 670 1.113
17 694 65 633 58 663 62 87.7 757 1.142
18 761 67 693 60 727 64 93.7 851 1.170
19 831 70 756 63 793 66 99.6 951 1.198
20 904 73 820 64 862 68 105.3 1056 1.226
21 978 74 885 65 932 70 110.8 1167 1.252
22 1055 77 953 68 1004 72 116.6 1283 1.279
23 1134 79 1021 68 1077 74 122.5 1406 1.305
24 1214 80 1092 71 1153 75 128.5 1534 1.331
25 1296 82 1163 71 1230 77 134.4 1669 1.357
26 1380 84 1235 72 1308 78 140.0 1809 1.383
27 1466 86 1308 73 1387 79 145.6 1954 1.409
28 1553 87 1382 74 1467 80 150.8 2105 1.435
29 1641 88 1457 75 1549 81 155.8 2261 1.460
30 1730 89 1532 75 1631 82 160.7 2422 1.485
31 1820 90 1607 75 1714 83 165.2 2587 1.510
32 1911 91 1682 75 1797 83 169.1 2756 1.534
33 2003 92 1758 76 1881 84 172.5 2929 1.557
34 2096 93 1834 76 1965 84 175.8 3104 1.580
35 2189 93 1909 75 2049 84 179.0 3283 1.602
36 2283 94 1984 75 2134 84 181.7 3465 1.624
37 2377 94 2059 75 2218 84 184.3 3649 1.645
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38 2471 94 2133 74 2302 84 186.8 3836 1.666
39 2566 95 2206 73 2386 84 189.1 4025 1.687
40 2660 94 2278 72 2469 83 191.1 4216 1.708
41 2754 94 2350 72 2552 83 193.0 4409 1.728

1) Personal communication with Cobb Vantress (2003)
2) FCR (feed conversion ratio) estimated as Feed consumption/live weight

Results and Discussion: Data were successfully compiled from multiple studies so that 

the influence of dietary crude protein level on bird energy need might be examined.  As 

the FSR and FCR values were collected from 2 laboratories (klang et al., 1985, klaising, 

1987), it was necessary to model the values so that the growth entire curve might be 

represented. Figure 1 displays the composite FSR and the FDR. Note the FSR values are 

modeled at a higher confidence level than FDR as the R2 for FSR = 0.9944 for FSR and 

While the R2 = 0.9600. Consequently FDR for purposes of this writing was estimated as 

FSR – daily protein accretion. The FSR rate exceeded FDR in every case. Using Figure 1

equation and the methodology described yielded the following balance sheet 

Table 5. Protein Synthesis, Protein Degradation in grams
Proein Synthesis (grams) 646.6
Protein Degradation  (grams) 190.1
Protein Synthesis (Molar) 5.42
Protein Synthesis (ATP need) 43.4
CHO to supply ATP 217
Protein Synthesis expressed in FSR and degradation expressed in FDR
PredDailyProSyn2 = BirdProt * PredFSR2 /100;
PredDailyProdeg2 = PredDailyProSyn2 - Dailyprot;



116

Table 6. FSR1 and FDR2 values collected from the literature
Tissue Source Age FSR FDR TO
Pectoralis Muscle 35 11.34 6.03 1.88
Sorotoris Muscle 35 10.54 5.7 1.85
Gastrocnemois Muscle 35 10.8 5.08 2.13
Breast Muscle 17 538 394 1.37
Breast Muscle 42 546 434 1.26
Breast Muscle 49 704 512 1.38
Liver 14 100 63.3 1.58
Liver 21 114.4 73.5 1.56
Liver 28 108.1 70.6 1.53
Whole Body 7 34 22.0 1.55
Whole Body 14 31.5 23.0 1.37
Whole Body 21 29.7 22.9 1.30
Whole Body 28 25.8 20.9 1.23
FSR = Fractional Synthesis rate
FDR = Fractional Degradation rate

In summary, modeling data estimates that 3526 Kcal are utilized for protein metabolism 

including synthesis, degradation and obligatory catabolism of consumed excess amino 

aicds. Dietary crude protein modification is possible to 3 % reduction. Reducing dietary 

protein to 3 % lowers HP from 640 to 513 Kcals.



117

Figure 2.  Overall Protein synthesis (grams) accretion (grams) and degradation (grams) 
for broilers fed diets containing NRC specifications. 

1 Protein Synthesis        = DailyProt * 1.46;
2 Protein Degradation      = EstProtSyn2g - Dailyprot;
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As the bird consumes 13,386 Kcal to MEn to reach the desire weight. The values above 

correspond to a change in energy expenditure of just 127 Kcal of MEn.  Such changes are 

nominal and other avenues directed at bird energy expenditure will be needed to enhance 

production efficiency.  Efforts directed towards energy expenditure for activity and/or 

immunological response offer better opportunity for enhancing energetic efficiency of 

broiler production.  Alternatively, perhaps improving genetics will alter the sum need 

energy expended for FSR and FDR. 
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TABLE 7. Composition of experimental broiler feeds formulated to satisfy essential amino acid needs at and 4.5% below the 
National Research Council (NRC, 1994) recommended crude protein levels, percentage “as is” basis

Starter Grower Finisher
Ingredients 1 2 3 4 5 6 7 8 9 10 11 12

Corn
53.74 56.27 58.99 72.5

4
59.57 62.08 65.03 76.43 73.28 74.68 78.12 78.12

Soybean meal
29.47 25.68 21.41 16.1

9
22.51 18.76 14.02 12.6 16.77 18.43 16.55 16.55

Fat, Soybean 5 5 5 1.68 5 5 5 2.25 1.65 2.16 1.92 1.92
Corn glutenen meal 5 5 5 - 5 5 5 - 5 1.45 - -

Dicalcium phosphate 2.08 2.12 2.16 1.89 1.43 1.35 1.39 1.55 1.07 1.07 1.09 1.09
Calcium carbonate 1.07 0.98 0.89 0.77 1.55 1.56 1.58 1.53 1.44 1.42 1.44 1.44
Choline chloride 0.13 0.01 0.01 0.01 0.01 0.01 0.05 0.07 - - - -

Salt 0.38 0.49 0.49 0.49 0.44 0.44 0.44 0.43 0.29 0.29 0.36 0.36
Vitamin premix1 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26
Mineral premix2 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

selenium3 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
Lysine 0.11 0.24 0.38 0.33 0.11 - 0.38 0.49 0.12 0.10 0.18 0.18

DL Methionine 0.02 0.06 0.12 0.17 - 0.07 0.16 0.22 0.01 0.04 0.04

Calculated analysis

ME, kcal/kg 3150 3150 3150 3150 3200 3200 3200 3200 3200 3200 3200 3200

Crude protein, %
22.64 21.16 19.68 18.2

1
19.68 18.21 16.73 15.5 18 16.5 15 15

ME/CP ratio
Methionine 0.45 0.45 0.47 0.52 0.43 0.43 0.47 0.5 0.35 0.38 0.38 0.38

Lysine 1.18 1.17 1.18 1.17 0.89 0.89 0.89 0.89 0.76 0.76 0.76 0.76
Sulphur amino acids 0.88 0.88 0.88 0.86 0.83 0.82 0.81 0.8 0.73 0.73 0.73 0.73

Calcium 1 1 1 1 1 1 1 1 0.8 0.8 0.8 0.8
Available phosphorus 0.45 0.44 0.44 0.44 0.38 0.38 .038 0.38 0.3 0.3 0.3 0.3

1Supplied per kilogram of diet: vitamin A, 10,141 IU (retinyl acetate); cholecalciferol, 3,086 IU; vitamin E, 23.92 IU (dl-α-tocopheryl acetate); menadione, 2.87 mg; thiamine, 2.20 mg; 
riboflavin, 7.72 mg; niacin, 60.30 mg; d-pantothenic acid, 12.46 mg; pyridoxine, 3.75 mg; vitamin B12, 0.017 mg; folic acid, 1.066 mg; d-biotin, 0.127 mg.
2Supplied per kilogram of diet: Ca,160 mg; Zn, 100 mg; Mn, 120 mg; Fe,75 mg; Cu, 10 mg; I, 2.5 mg.  
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Table8. Energy balance associated with the production of a 2.5 Kg broiler including 
energy for Protein synthesis, amino acid energy in Protein and the obligatory heat 
production for amino acid reduction replaced by glucose

Protein Synthesis (2.5 Kg 
bird) in Kcals

HP for Protein level relative 
to 3 % reduction

Total Protein HP estimate 
(Kcals)

829 + 2570 NRC = 127 3526
829 + 2570 NRC  - 1.5 = 52.7 3451.7
829 + 2570 NRC – 3.0 = 0 3399

HP = Heat Production
HP = (totcataakcals - (TotalATPY * 7.3) - totcataaNkcalloss) + (( (choincrease / 180 ) * 
688) - (36*7.3*choincrease / 180));
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