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 This dissertation was written in the form of four separate manuscripts that serve 

as chapters II, III, IV and V.  Chapter II evaluated the utilization of dried distiller’s grains 

with solubles during preconditioning and the subsequent impacts on wheat pasture 

performance, feedlot performance and carcass characteristics.  This chapter was prepared 

to follow the guidelines suggested for contributors to the Professional Animal Scientist.  

Chapter III is comprised of data collected from an in situ study which measured the 

ruminal degradation characteristics of byproduct feedstuffs.  This chapter has been 

submitted to the Journal of Animal Science.  The data in Chapter IV is from a beef cow 

winter supplementation study that evaluated the efficacy of extruded-expelled cottonseed 

meal as supplement for beef cows consuming low-quality forage.  This chapter has been 

submitted to the Journal of Animal Science.  Chapter V consists of data collected to 

understand how dried distiller’s grains with solubles can be used in beef cow/calf 

production systems that rely on low-quality forage.  This chapter was prepared to follow 

the guidelines suggested for contributors to the Journal of Animal Science
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INTRODUCTION 
 

Dietary fat utilization by the ruminant is a unique process that is comprised of 

several diverse, complex steps.  Inclusion of dietary fat provides a dense, economically 

efficient energy source.  However, due to the intricate nature of the rumen microbial 

population, fat supplementation has diverse effects on animal performance.  The goals 

and impacts of fat supplementation differ across various production segments of the cattle 

industry.  

The effects of including of supplemental fat to beef cattle consuming high forage 

diets has been revisited recently due to the surplus of byproduct feedstuffs from the 

biofuel industry.  Compared to feedstuffs such as cottonseed meal or soybean meal, 

which have been traditionally utilized in winter supplementation programs for beef cows, 

the fat content of biofuel-byproduct feedstuffs is 5-7% greater than traditional feedstuffs 

(NRC, 1996).  To target the evaluation of biofuel feedstuffs as supplements for beef cattle 

consuming high forage diets, the focus of this review will be on the impacts that 

supplemental fat has on range cattle production 

Lipid Metabolism in the Rumen 

Fat intake by cattle grazing rangeland is of two major forms:  glycolipids and 

phospholipids.  Glycolipids are the predominant form as they comprise 40-50% of total 

plant lipid (Byers and Schelling, 1988).  Moreover, fat constituents of plants are made 

primarily of unsaturated fatty acids of which linoleic and linolenic are the most abundant 

(Harfoot, 1978).  When the ruminant animal consumes dietary lipid, the metabolic 

processes by ruminal microorganisms that follow are complex and multifaceted. 
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Once lipids enter the rumen, lipases from ruminal lipolytic bacteria hydrolyze 

lipid into free fatty acids and glycerol (Jenkins, 1993).  Ruminal protozoa do not have a 

large role in ruminal lipolysis (Girard and Hawke, 1978).  Unsaturated fatty acids rapidly 

undergo biohydrogenation by the rumen microbes to saturated fatty acids (Palmquist and 

Jenkins 1980).  Cleaved glycerol is converted to propionic acid for energy (Chalupa et 

al., 1986).  Further, the amount of bacteria present for lipolysis and biohydrogenation is 

largely impacted by diet; research has shown that high grain diets decrease the 

concentrations of these organisms (Latham et al., 1972).   

 Unsaturated fatty acids are detrimental to the growth of many species of ruminal 

microbes (Henderson, 1973), and accordingly, the process of biohydrogenation is pivotal 

for the existence of many species of ruminal microbes.  The biohydrogenation process 

cannot be initiated without the presence of a free carboxyl group which is provided by the 

initial hydrolysis step (Kepler et al., 1970).  Stearic acid is the most predominant end 

product of biohydrogenation (Bickerstaffe et al., 1972) and various rumen microbes, 

including protozoa, are capable of hydrogenating oleic, linoleic and linolenic acid to 

stearic acid (Byers and Schelling, 1988).  The biohydrogenation process is also beneficial 

by assisting in the reduction of methane production by providing a mechanism for the 

rumen to clear H ions through the saturation process (Byers and Schelling, 1988).  In 

addition, the biohydrogenation process may provide means for energy conservation as the 

majority of bacterial lipid is saturated, and with biohydrogenation, bacteria can readily 

integrate saturated end products without additional energy expenditure (Harfoot, 1978). 

The extent of ruminal biohydrogenation is largely impacted by the environmental 

conditions of the rumen.  Kellens et al. (1986) indicated that the complete formation of 
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stearic acid is enhanced by feed particles and cell-free ruminal fluid.  Whereas the 

biohydrogenation process can be inhibited by high concentrations of linoleic acid 

(Harfoot et al., 1973).  Additional research has supported this notion.  In vitro data 

showed a greater concentration of stearic acid in control (bromegrass hay only) samples 

after 48-h of incubation compared to bromegrass hay treated with soybean oil.  Greater 

concentrations of linoleic acid in the bromegrass hay treated with soybean oil were 

observed after 48-h, which supports the aforementioned concepts (Whitney et al., 2000).  

Furthermore, the population of ruminal microflora can affect the degree of 

biohydrogenation as reductions in rate and extent of hydrogenation have been reported 

when protozoal numbers are low (Byers and Schelling, 1988). 

 Finally, when dietary lipid levels are low, ruminal bacteria are capable of de novo 

fatty acid synthesis of long-chain fatty acids (Palmquist and Jenkins, 1980).  Ruminal 

bacteria do not store triglycerides, and the most predominant forms of lipid in rumen 

bacteria are either free fatty acids or phospholipids which serve as major cell membrane 

constituents (Viviani, 1970).  Microbes synthesize primarily stearic and palmitic acid 

(Jenkins, 1993).  Rate of fatty acid synthesis is greater when dietary lipid concentration is 

lower (Byers and Schelling, 1988) as dietary fatty acids are easily integrated into 

bacterial cellular lipid following biohydrogenation (Palmquist and Jenkins, 1980).     

Fat and Fiber Digestion 

Addition of fat to high-forage diets is a presumably favorable means of increasing 

dietary energy intake.  However, due to the sophistication of the rumen microbe 

population, there are some characteristics of lipids that make supplementation detrimental 

to fiber digestion.  Evidence of inhibitory impacts that fat has on cellulose digestion was 
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presented by Brooks et al. (1954) who found that in vitro cellulose digestion was reduced 

40 to 94 percent when 10 to 170 mg of corn oil was added to 1 g of DM that was 

comprised of 50% cellulose.  Additionally, when sheep were fed either 32 or 64 g of corn 

oil, in vivo cellulose digestion was 20% and 12.3%, respectively, which was significantly 

lower than for the 41.9% cellulose digestion for the control diet (Brooks et al., 1954). 

Several studies have shown that there are various factors that impact the 

ruminant’s ability to maintain fiber digestion with supplemental dietary fat.  Some of the 

inhibitory effects of lipid on fiber digestion may be due to fat coating of fiber particles 

which results in the inability of bacteria to adhere to them (Brooks et al., 1954).  

Similarly, Harfoot (1978) indicated that long chain fatty acids have negative impacts on 

the rumen fermentation process as they quickly bind to feedstuffs, which ultimately 

decreases the ability of bacteria to bind to the particle.  Brokaw et al. (2001) indicated 

that the concentration of ruminal NH3 was greater for heifers supplemented with soybean 

oil compared to corn supplemented heifers.  These workers attributed higher NH3 levels 

of soybean supplemented heifers to the inhibition of bacterial attachment by 

supplemental fat and subsequent inability for bacteria to bind to the feed particle in order 

to release nutrients from associated feedstuffs. 

Moreover, evidence has suggested that unsaturated fatty acids have toxic effects 

on fibrolytic bacteria as Palmquist and Jenkins (1980) found that the accumulation of 

unsaturated fatty acids inhibits growth of these bacterial species.  In vitro research 

supported these findings as in vitro DM disappearance of bromegrass hay was reduced 

with the addition of 6% degummed soybean oil compared with no additional soybean oil 

(Whitney et al., 2000).  Other reasons for a reduction in fiber digestion were examined by 
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Devendra and Lewis (1974) who showed that fiber digestion may be inhibited by the 

ability of ruminal surface-active agents to rapidly emulsify fat.  Additionally, these 

researchers indicated that fat supplementation caused a reduction in cation availability 

due to the formation of insoluble complexes with long chain fatty acids which also has 

inhibitory effects on microbial growth (Devendra and Lewis 1974).  

By understanding these inhibitory factors, animal scientists have investigated 

ways to intervene in the process of ruminal lipid metabolism. When alfalfa ash was fed 

with 32 g of corn oil, cellulose digestion was similar to control, but when alfalfa ash was 

added to 64 g of corn oil, cellulose digestion was decreased.  Researchers speculated that 

the buffering capacity of alfalfa ash assisted in cellulose digestion, or that alfalfa ash is 

capable of assisting in fat emulsification which in turn prevents fat from coating the fiber 

so that microbes are able to attach (Brooks et al., 1954).  The, magnitude of cellulose 

digestion is also impacted by fat source.  In the aforementioned study by Brooks et al. 

(1954), they observed that feeding 32 or 64 g of lard did not suppress cellulose digestion 

to the same magnitude as feeding supplemental corn oil.   

The addition of divalent cations to high fat diets reduces the extent of depression 

in cellulose digestibility as calcium salts of long chain fatty acids form from hydrolyzed 

fat making them insoluble and virtually non-toxic to cellulose degrading bacteria (Garton 

et al., 1958).  Grainger et al. (1961) supported this data by illustrating that feeding 

wethers 7% corn oil depressed cellulose digestibility, but when 4.4 g of calcium was 

added to the 7% corn oil diet, cellulose digestion was significantly increased. 

Additionally, these researchers observed that 6.2 g of iron in addition to 7% corn oil 

helped increase cellulose digestion, but was not as effective as supplemental calcium.  
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 Various factors impact the extent to which the addition of divalent cations 

increases fiber digestion.  Jenkins and Palmquist (1982) evaluated the effects of calcium 

source on in vitro formation of insoluble soaps and showed that the addition of calcium 

chloride to a 10% tallow substrate was more effective at forming insoluble soaps and 

increasing digestibility than adding dicalcium phosphate to a 10% tallow substrate.  The 

formation of insoluble soaps requires time, and the efficacy of increasing fiber digestion 

by adding calcium to high fat diets may be largely impacted by particulate passage rate 

(Jenkins and Palmquist, 1982).  Also, degree of saturation and chain length can impact 

the formation of insoluble soaps.  Jenkins and Palmquist (1982) speculate that saturated 

fatty acids are less toxic to rumen microbes because of their ability to readily form 

insoluble soaps. 

Efficacy of Fat Supplementation to Range Cattle 

 Providing supplemental energy to cowherds is often necessary during winter 

months or when forage quality is low to ensure proper energy balance through early 

lactation.  Fat is a relatively inexpensive, dense source of supplemental energy.  

However, amount and type of supplemental fat can have tremendous impacts on forage 

intake and digestion.  Moore et al. (1986) indicated that for cattle consuming high 

roughage diets, supplemental fat was efficacious at 4% of diet DM, but when fat was 

added at 6.3% of diet DM, regardless of source, it was detrimental to intake and fiber 

digestibility.   

Furthermore, when evaluating fat supplementation at different levels, Whitney et 

al. (2000) reported that the inclusion of 3% soybean oil increased feed efficiency in 

heifers consuming bromegrass hay compared to controls, but feed efficiency was lowered 
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when 6% supplemental soybean oil was added.  This research suggests that the higher 

level of soybean oil decreased diet digestibility.  However, in diets today, fat is 

traditionally supplemented at no more than 5% of diet DM (Palmquist and Jenkins, 

1980). 

Research has shown little difference in the effects of fat supplementation in 

situations where cattle consume different types or maturities of forages.  Krysl et al. 

(1991) reported that ruminal infusion of 150 mL of soybean oil to heifers consuming 

chopped fescue/orchardgrass hay ad libitum decreased  ruminal and total tract organic 

matter digestibility but did not alter fiber digestion.  Total tract and ruminal digestibility 

was lower for heifers ruminally infused with soybean oil but duodenal infusion had no 

effect on total tract fiber digestibility. 

Similarly, no differences in forage intake or ruminal NDF disappearance were 

noted in heifers fed high-quality forage and provided a supplement comprised of cracked 

corn, corn gluten meal and soybean oil at 0.30% BW compared with heifers receiving no 

supplement (Brokaw et al., 2001).  Kouakou et al. (1994) compared feeding supplemental 

corn or soybean oil to cannulated cattle consuming either long-stemmed alfalfa hay or 

orchardgrass hay and reported that supplemental soybean oil at 0.125% BW had no effect 

on feed intake, but when combined with ground corn (0.5% BW) feed intake was lowered 

suggesting that soybean oil is capable of changing rumen metabolic properties.  

Additionally, there were no adverse effects on NDF digestion with corn or soybean oil 

supplementation alone, but when fed together, total tract NDF digestion was decreased 

(Kouakou et al., 1994). 
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A final consideration of providing supplemental fat in range cow diets is the 

effect that it has on metabolizable protein level, which dramatically impact cow 

performance and nutrient utilization.  Brokaw et al. (2001) indicated that fat 

supplementation caused a reduction in nitrogen flow to the duodenum and a subsequent 

decrease in metabolizable protein.  A similar reduction in duodenal nitrogen flow was 

reported by Bock et al. (1991) when supplemental tallow or soybean oil soapstock was 

fed to cattle consuming a high-grain diet.  

Influence of Fat on Reproductive Performance 

 The underlying dogma suggests that additional energy from fat increases 

reproductive performance; however there is evidence that fat source has a negative 

impact on reproduction in beef cows.  In a meta-analysis, Hess et al. (2002) indicated that 

overall pregnancy rate was increased 9.8% for fat supplemented heifers compared to 

heifers receiving no supplemental fat.  Growth and development of ovarian follicles was 

increased for beef cows fed supplemental soybean oil (Thomas et al., 1997).  Yet, 

providing supplemental fat beyond meeting the protein and energy requirements for beef 

cows of moderate BCS had no bearing on reproductive performance (Alexander et al., 

2002).  

Supplementation with fat sources containing high levels of 18:2n-6 in the early 

postpartum period may have negative effects on reproductive rates.  Postpartum 

supplementation of high-linoleate safflower seeds (255 g/d of 18:2n-6) increased the 

concentration of 18:2n-6 in the oviduct (Scholljegerdes et al., 2007), which potentially 

could negatively impact conception rate (Hess et al., 2008).  Providing supplemental fat 

to beef cows prior to breeding is not a recommended management practice to improve 
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reproductive performance, however moderate levels of fat may be beneficial in 

developing replacement heifers (Hess et al., 2008).  

Summary and Conclusions 

Feeding supplemental fat increases dietary energy density which is important in 

many cattle production situations.  However, performance responses from the addition of 

dietary fat may be limited due to the sensitivity of the rumen microbial population.  

Added fat can have detrimental impacts on forage intake and fiber digestion.  Rumen 

lipid metabolism is a multi-step process.  The initial hydrolysis step cleaves fat into free 

fatty acids and glycerol.  The free fatty acids then rapidly undergo biohydrogenation to 

form saturated fats as unsaturated fats have toxic effects on some ruminal microbes.  

Ruminal bacterial are capable of de novo fatty acid synthesis when dietary fat levels are 

low.  Fat can alter the extent of fiber digestion several ways:  by coating the forage 

particles and inhibiting bacterial attachment, through the formation of insoluble 

complexes, by altering particle surface properties and by decreasing cation availability.  

Cellulose digestion can be improved by the addition of divalent cations, yet digestibility 

responses are dependent upon the nature of the cation.  Degree of depression of fiber 

degradation is dependent on type and amount of fat. Adding supplemental fat at 5% of 

the diet has proven to be efficacious in increasing dietary energy.  Fat supplementation 

can lower metabolizable protein levels.  It is important to understand the mechanisms of 

lipid metabolism to ensure that lipids are effectively and efficiently administered to 

ruminant animals.  

The multifaceted process of lipid metabolism is impacted by various external and 

internal factors.  Though extensive research has been conducted with fat 
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supplementation, the impacts that it has in ruminant diets will continue to be scrutinized 

with the increasing abundance of ethanol co-products.  These feedstuffs are high in fat 

and protein and the effects and interactions of these products in ruminant diets warrants 

further investigation.  Finally, nutritional practices that include supplemental fat can alter 

animal performance and should be carefully evaluated in order to avoid the negative 

effects that can arise from adding fat to ruminant diets.  
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ABSTRACT 

To evaluate the effects of feeding increasing levels of dried distillers grains with 

solubles (DDGS) during preconditioning, weaned steer (n = 64) and heifer (n = 64) 

calves were stratified by BW and allotted to receiving pens for a randomized complete 

block design.  Dietary treatments included 0.30, 0.75, 1.20 or 1.65% mean pen BW 

DDGS. Throughout 56 d, prairie hay (4.8% CP, 68.8% NDF) was fed ad libitum, refusals 

were measured weekly.  After 56-d, steers calves grazed wheat pasture before entering 

the feedlot; heifers were placed in the feedlot.  As DDGS level increased, ADG increased 

quadratically (P < 0.01), hay intake decreased linearly (P < 0.01) and G:F improved 

quadratically (P < 0.01).  Wheat pasture ADG was greatest for steers fed the lowest 

DDGS level (P < 0.01) and decreased linearly across treatments (P < 0.01).  For steers, 

HCW and marbling score increased numerically (linear, P = 0.13; linear, P = 0.12, 

respectively) with increasing DDGS during preconditioning.  Other measured carcass 

characteristics were not influenced by DDGS level for steers or heifers (P > 0.20).  

Though outside of our feeding range, the response function suggested preconditioning 

ADG would be maximized with 2.0% BW DDGS for steers, 1.44% BW DDGS 

maximized ADG for heifers.  Visual symptoms of polioencephalomalacia were not 

observed; high levels of DDGS during preconditioning did not influence subsequent 

growth performance or carcass characteristics.  Calves readily consumed DDGS and 

DDGS can be included in preconditioning diets at a level which maximizes, but does not 

exceed recommended dietary S concentrations.   

Key words:  Calves, Distillers Grains, Receiving Diets, Stocker and Feedlot Performance 
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INTRODUCTION 

It is a common management practice for calves from spring-calving cowherds to 

be grown on wheat pasture before feedlot entry in the Southern Great Plains.  In many 

instances, calves are weaned 1-2 mo before wheat pasture turnout, resulting in a 30-60 d 

preconditioning growing period.  With the recent expansion of the ethanol industry, the 

supply of corn dried distillers grains with solubles (DDGS) has been abundant.  Dried 

distillers grains with solubles is a high-protein, low-starch, high-energy feedstuff and can 

be used in diverse cattle production programs.  In this region, low-quality forage is 

abundant; including DDGS to low-quality forage based diets may maximize ADG and 

decrease cost of gain during this brief preconditioning period. 

Previous studies with DDGS in backgrounding programs that utilized a variety of 

grazed forages showed increased ADG and decreased forage intake.  Supplementation of 

DDGS, up to 0.95% BW, to calves grazing low or high-quality forage indicated ADG 

increased linearly and forage intake decreased linearly with increasing DDGS level 

(Morris et al., 2005).  Similar responses were observed in ADG and forage intake in 

yearling steers grazing native summer range and supplemented with increasing levels, up 

to 1.03% BW DDGS; subsequent feedlot performance or carcass traits were not 

influenced by DDGS supplementation (Morris et al., 2006).  Gustad et al. (2006) reported 

ADG increased quadratically for weaned calves grazing corn residue at DDGS 

supplementation levels up to 1.27% BW. 

The concentration of S in DDGS is moderate to high; excessive dietary S can 

cause S-induced polioencephalomalacia (Niles et al., 2002).  A high level of S intake 
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during the finishing phase can reduce growth and efficiency (Loneragan et al., 2001).  

There is little data available (Morris et al., 2006) evaluating potential  lingering 

symptoms of polioencephalomalacia during the finishing phase, after cattle have been 

exposed to relatively high dietary S by feeding DDGS during preconditioning.  

Objectives of this study were to evaluate feeding increasing levels of DDGS in a 

preconditioning program for weaned calves fed low-quality prairie hay to determine 

effects on growth performance and hay intake during preconditioning, and subsequent 

growth performance and carcass characteristics during stocker and finishing phases.  

MATERIALS AND METHODS 

Animals 

Steers.  All procedures for this experiment were conducted with an approved 

Oklahoma State University Animal Care and Use protocol.  Spring-born English x 

Continental beef steer calves (n = 64; initial BW = 197 ± 25 kg) were weaned at the 

Oklahoma State Range Cow Research Center, North Range Unit on September 26, 2006 

and transported to the Willard Sparks Beef Research Center, Stillwater, OK.  At weaning, 

calves were weighed and vaccinated with Ultra Choice 7 (Pfizer Animal Health, New 

York, NY) and Bovi-Shield Gold 5 (Pfizer Animal Health). 

Upon arrival at the Sparks facility, calves were subject to a 6 d adaptation period.  

During this period, calves were sorted into two 24 x 30 m pens and were fed 0.68 kg 

DDGS or approximately 0.30% BW daily and provided prairie hay ad libitum 

(composition provided in Table 1).  Following the adaptation period, calves were 

weighed after 16-hr removal from water and feed and this BW was utilized as the trial 

allocation weight.  Calves were re-vaccinated with Bovi-Shield Gold 5 (Pfizer Animal 
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Health) and were de-wormed with Ivomec injectable (Merial, Deluth, GA) on d 14.  After 

the 56 d preconditioning period, cattle were fed a receiving diet (15% CP; 81%TDN; DM 

basis) at 2.0% BW for 7 d to equalize rumen fill.  Following this 7 d period, cattle were 

weighed and this BW was used to calculate final preconditioning BW and performance. 

Heifers.  All procedures for this experiment were conducted with an approved 

Oklahoma State University Animal Care and Use protocol.  Data for this study were 

collected over a 2 yr period.  In yr 1, spring-born English x Continental beef heifer calves 

(n =  32; initial BW = 185 ± 20 kg) were weaned at the Oklahoma State Range Cow 

Research Center, North Range Unit on September 26, 2006 and transported to the 

Willard Sparks Beef Research Center (Stillwater, OK).  In yr 2, fall-born English x 

Continental beef heifer calves (n = 32; initial BW = 175 ± 24 kg) were weaned at the 

Oklahoma State Range Cow Research Center, North Range Unit on April 1, 2008 and 

were transported to the Willard Sparks Beef Research Center.  At weaning each year, 

calves were weighed and vaccinated with Ultra Choice 7 (Pfizer Animal Health, New 

York, NY) and Bovi-Shield Gold 5 (Pfizer Animal Health).   

Upon arrival at the Sparks facility each year, calves were subject to a 6 d 

adaptation period.  During this period, calves were sorted into two 24 x 30 m pens and 

were fed 0.68 kg DDGS or approximately 0.30% BW daily and provided prairie hay ad 

libitum (composition provided in Table 1).  Following the adaptation period, calves were 

weighed after 16-hr removal from water and feed and this BW was utilized as the trial 

allocation weight.  Calves were re-vaccinated with Bovi-Shield Gold 5 (Pfizer Animal 

Health) and were de-wormed with Ivomec injectable (Merial, Deluth, GA) on d 14.  After 

the 56 d preconditioning period, cattle were fed a common receiving diet (15% CP; 
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81%TDN; DM basis) at 2.0% BW for 7 d to equalize rumen fill.  Following this 7 d 

period, cattle were weighed and this BW was used to calculate final preconditioning BW 

and performance. 

Treatments and Diet Delivery  

Following the adaptation period, calves were blocked by BW and randomly 

allotted to receiving pens (4 animals/pen, 4 pens/treatment).  Treatments included the 

following feeding levels of DDGS:  1) 0.30% BW; 2) 0.75% BW; 3) 1.20% BW; 4) 

1.65% BW.  The upper treatment level was selected to maximize DDGS intake while not 

exceeding the maximum tolerable dietary S concentration (0.40% of diet DM) 

recommended by NRC (1996).   The remaining three DDGS levels were assigned as 

equally spaced increments from the upper level of DDGS.  Cattle were weighed every 14 

d throughout the 56-d period, and amount of DDGS fed was subsequently adjusted 

according to mean pen BW.  A monensin containing vitamin and trace mineral 

supplement (20% Ca; 3.50% P; 20.5% NaCl; 1.0% Mg; 1,000 ppm Cu; 26 ppm Se; 2,400 

ppm Zn; 136,000 IU/kg Vitamin A; 13,600 IU/kg Vitamin D; 45 IU/kg Vitamin E; DM 

basis; Vigortone Ag Products, Hiawatha, IA) was mixed with DDGS and provided 100 

mg/animal/d of monensin.  The vitamin and mineral supplement was fed at a rate to meet 

the NRC (1996) requirements for growing cattle.  Calves had ad libitum access to prairie 

hay and water throughout the trial.  Average nutrient composition of prairie hay and 

DDGS for year 1 and year 2 are provided Table 1.  Step-up of DDGS feeding consisted 

of increments of 0.91 kg/d until the appropriate feeding level was achieved.  Pens 

provided 4.6 m of bunk space that was divided in half with concrete bunk dividers.  Hay 

was provided in one-half of the bunk and DDGS was delivered in the remaining portion.  
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Hay Intake, DDGS Intake and Nutrient Analysis 

Distillers grains offered and any refusals were weighed daily to determine DDGS 

intake.  Hay intake was measured directly; unconsumed hay was collected, cleaned out of 

pens and weighed 1x per wk to estimate hay intake.  Sub-samples of dietary treatments, 

hay and orts were dried at 50°C for 48 hr for determination of DM.  Prior to laboratory 

analysis, hay was ground in a Wiley Mill (Model-4 Thomas Scientific, Sweedesboro, NJ) 

to pass a 2-mm screen.  Hay and DDGS were composited by pen and composite sub-

samples were analyzed for ash, crude fat, crude protein, acid detergent fiber and neutral 

detergent fiber.  Neutral detergent fiber and ADF content were determined using an 

ANKOM Fiber Analyzer (ANKOM Technology, Macedon, NY).  Crude protein was 

determined using a Leco NS-2000 Nitrogen Analyzer (Leco Corporation, St. Joseph, MI), 

and crude fat was determined by ether extraction (AOAC, 1996).  

Cattle Management Following Preconditioning 

 Steers.  Steers were placed on wheat pasture at the Oklahoma State University 

Wheat Pasture Research Unit near Marshall, OK on December 4, 2006.  Prior to wheat 

pasture turn-out, steers were implanted with Component E-S (VetLife, Des Moines, IA).  

Steers grazed wheat pasture until April 11, 2007 and were then placed on feed at the 

Willard Sparks Beef Research Center, Stillwater, OK until July 18, 2007.  All wheat 

pasture BW measurements were obtained following overnight removal of steers from 

feed and water.  Upon arrival at the Sparks facility steers were implanted with Revalor-S 

(Intervet/Schering-Plough, Millsboro, DE).  At the completion of the feeding period, 

cattle were weighed and a 4% pencil shrink was applied to determine final BW.  Steers 
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were transported 333 km to Tyson Fresh Meats, Emporia, KS for harvest.  Carcass data 

were collected following a 24-h chill and included 12th-rib fat thickness, 12th-rib 

longissimus muscle area, KPH, marbling score and quality grade. Data were collected by 

Kansas State University Meat Science personnel.  

Heifers.  In yr 1, heifers were placed directly on feed at Wheeler Brothers 

Feedyard in Watonga, OK on December 4, 2006 and were on feed through June 6, 2007.  

Heifer calves were implanted with Revalor-IH (Intervet/Schering-Plough) upon arrival at 

the feedyard and were re-implanted 75 d later with Revalor-H (Intervet/Shering-Plough).  

At the completion of the feeding period, cattle were weighed and a 4% pencil shrink was 

applied to determine final BW.  Heifers were transported 499 km to Tyson Fresh Meats, 

Emporia, KS for harvest.  Carcass data were collected following a 24-h chill and included 

12th-rib fat thickness, 12th-rib longissimus muscle area, KPH, marbling score and quality 

grade. Data were collected by Kansas State University Meat Science personnel.  

 The data included in this study for heifers in yr 2 is only from the preconditioning 

phase.  Due to uncontrollable circumstances, we were not able to obtain adequate data on 

finishing performance or carcass characteristics of heifer calves in yr 2.  

Statistical Analysis 

 Steers.  All data for this study were analyzed using the MIXED procedure of SAS 

(SAS Inst. Inc., Cary, NC) for a randomized complete block design.  For preconditioning 

phase data, treatment and block were included in the model as fixed effects and pen 

served as the experimental unit.  Treatment means were separated using linear and 

quadratic orthogonal polynomial contrasts across feeding levels of DDGS.  To analyze 

data for growth performance following the preconditioning phase and carcass data, 
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individual animal was the experimental unit and treatment means were separated using 

linear and quadratic orthogonal polynomial contrasts with respect to increasing feeding 

levels of DDGS during the preconditioning phase.  For all analysis, differences in 

treatment means were assessed at α = 0.05. 

Heifers.  Data for this study were analyzed using the MIXED procedure of SAS 

(SAS Inst. Inc.) for a randomized complete block design.  For preconditioning phase 

data, treatment and block were included in the model as fixed effects and pen served as 

the experimental unit.  Year was included in the model as a random effect.  For carcass 

data analysis, individual animal was the experimental unit and treatment means were 

separated using linear and quadratic orthogonal polynomial contrasts with respect to 

increasing feeding levels of DDGS during the preconditioning phase.  For all analysis, 

differences in treatment means were assessed at α = 0.05. 

 

RESULTS AND DISCUSSION 

Preconditioning Phase 

Preconditioning performance for steers is reported in Table 2 and pooled data for 

heifer performance in yr 1 and yr 2 are provided in Table 3.  As level of DDGS increased, 

ADG improved quadratically (P < 0.01).  Second derivative calculations of the response 

function indicated that, although outside of our feeding range for steers, ADG was 

maximized at 2.0% BW of DDGS and 1.44% of BW for heifers.  Similar to our response, 

ADG was improved quadratically with respect to increasing feeding levels of DDGS for 

steer calves grazing corn residue (Gustad et al., 2006).  In contrast with our findings, the 

upper feeding level of DDGS in the report by Gustad et al. (2006) was 1.27% BW and 
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authors indicated that 1.1% of BW of DDGS maximized ADG.  In other studies designed 

similar to ours in which calves consuming high-forage diets were fed increasing levels of 

DDGS, linear responses in ADG were observed when the maximum feeding level of 

DDGS was approximately 0.95% or 0.61% (Morris et al., 2005; MacDonald et al., 2007).  

Compared to our results, the lack of a quadratic effect in each of these two experiments 

can be contributed to a higher maximum feeding level of DDGS in our study.  

A quadratic response in gain efficiency was observed (P < 0.01) for both steers 

and heifers, and gain efficiency was maximized at 1.50% BW of DDGS for steers and 

1.36% of BW of DDGS for heifers.  Furthermore, when expressed as a percentage of 

mean trial BW, prairie hay intake decreased linearly (P < 0.01).  Using regression 

calculations, for every 1.0 kg of DDGS that was consumed, prairie hay intake decreased 

0.34 kg for steers (R2 = 0.90) and 0.29 kg for heifers (R2 = 0.96) (Figures 1 and 2).  Total 

DMI increased linearly (P < 0.01) as level of DDGS increased.  Similar to our findings, 

when forage intake was measured directly, Morris et al. (2005) reported that intake of 

low-quality forage was reduced by 0.32 kg for every kg of DDGS fed, and there was a 

greater magnitude in reduction of forage intake (0.53 kg per kg of DDGS) for calves 

consuming high-quality forage.  Loy et al. (2007) indicated that supplementation of 

DDGS at 0.4% BW to medium-quality forage (8.2% CP, 56% in vitro OM 

disappearance) reduced hay DMI 0.22% of BW compared to no supplementation.   

Likewise, when forage intake was calculated based on NE equations (NRC, 1996), 

feeding DDGS at incremental levels up to approximately 0.60% BW, MacDonald et al. 

(2007) speculated that intake of smooth bromegrass pasture would be decreased by 0.50 

kg for every kg of DDGS consumed.     
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Compared to feedstuffs that are traditionally provided as supplements to forage 

diets, the fat content of DDGS is high.  Previous research has pointed out the negative 

effects of high fat levels on forage intake and digestibility (Moore et al., 1986; Whitney 

et al., 2000; Hess et al., 2001).  Further, in a recent review, Hess et al. (2008) indicated 

that in order to optimize forage utilization, supplemental fat intake should not exceed 4.5-

5.0% of DM.  In our study, when expressed as a percentage of average DMI, fat intake 

was 2.08%, 4.09%, 5.30%, and 6.21% across increasing levels of DDGS, respectively.  

Based on these percentages, which represent the average among steers and heifers, the 

additional fat from DDGS could contribute to the reduction in forage intake that we 

observed. 

Beyond dietary fat levels, forage intake is influenced by energy intake in relation 

to intake of CP as microbial growth may be limited by N when the concentration of 

fermentable OM is increased (Horn and McCollum, 1987).  In an effort to more clearly 

define the effects of supplementation on forage intake, Moore et al. (1999) concluded that 

forage intake was reduced when supplemental TDN intake was > .7% of BW.  In our 

study, when expressed as a percentage of mean feeding BW and mean DDGS intake, the 

intake of TDN, averaged among steers and heifers corresponded to 0.23, 0.54, 0.83, and 

1.11% of BW with respect to increasing level of DDGS.  A large contribution of energy 

in DDGS is from the rapidly fermented, non-structural carbohydrate fraction.  It is 

apparent that both fat intake and energy intake were limiting forage intake in a linear 

fashion with respect to increasing levels of DDGS.  Together, the reduction in forage 

intake and increase in cattle performance as a result of feeding increasing levels of DDGS 
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may be an important management practice in a variety of scenarios, when producers wish 

to increase stocking density, when hay price is high, or when forage availability is low.    

Additionally, in comparison to feedstuffs that are traditionally supplemented to 

cattle consuming low-quality forage such as cottonseed meal, the percentage of 

degradable intake protein is substantially lower in DDGS (Winterholler et al., 2008).  In 

low-quality forage diets, degradable intake protein is a key component in growth of the 

rumen microbial population as it relates to increasing digestibility and utilization of the 

forage (McCollum and Galyean, 1985; Köster et al., 1996; Bandyk et al., 2001).  

Intuitively, it could be speculated that due to the added energy and low concentration of 

degradable intake protein in DDGS that metabolizable protein could be limited and 

detrimental to growth performance and forage utilization.  Yet, the addition of urea to 

DDGS to meet requirements for degradable intake protein for heifers consuming medium 

quality forage (7.4% CP, 58.1% TDN) did not influence ADG or gain efficiency 

compared to heifers receiving DDGS only (Stalker et al., 2007).  These researchers 

speculated that ruminal N recycling in heifers consuming DDGS without supplemental 

degradable intake protein was sufficient to meet microbial demands (Stalker et al., 2007).   

Different from this, N recycling was not observed with DDGS supplementation to 

wether lambs consuming chopped bromegrass hay (8.44% CP) as measured by urea N 

flux Archibeque et al. (2008), which could be attributed to the stage of production as 

these lambs were mature and required no additional nutrients above maintenance.  

However, in the same study, DDGS supplementation to chopped bromegrass hay 

increased the release of α-amino N by the portal drained viscera; together with other 

nutrient flux data, evidence was provided that α-amino N utilization was increased by 
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DDGS compared to corn (Archibeque et al., 2008).  Based on our findings as well as data 

from others, it is evident that DDGS supplementation to low-quality forage is effective, 

but more research is needed to more clearly understand how the ruminant utilizes this 

feedstuff when consumed in high-forage diets.    

Calculations with the NRC (1996) model using the mean feeding BW for both 

steers and heifers in the present study, feeding DDGS at 1.65% of BW met requirements 

for degradable intake protein whereas other levels feeding levels of DDGS were 

deficient.  The ADG for steers consuming 1.65% BW of DDGS was 1.27 kg and was 

0.87 for heifers.  To evaluate metabolizable protein concentrations of the diets, for steers 

to gain 1.3 kg/d, and for heifers to gain 1.0 kg/d, both steers and heifers consuming 

0.30% BW DDGS were deficient in metabolizable protein but other feeding levels were 

adequate.  It is interesting that ADG was optimized at 1.44% BW of DDGS for heifers 

and according to the NRC (1996) model, were deficient in degradable intake protein, 

suggesting N recycling was adequate to meet microbial requirements, but we did not 

observe a similar response in steers.  

Exposure to high levels of S can induce polioencephalomalacia (Jeffrey et al., 

1994).  In finishing diets, ADG, G:F and some carcass characteristics are negatively 

impacted by high S intake (Zinn et al., 1997; Loneragan et al., 2001).  In our study, by 

experimental design, S intake did not to exceed 0.40% of diet DM (NRC, 1996).  For 

steers fed DDGS at 1.65% BW, the maximum S intake, calculated from intake of DDGS 

at the end of the preconditioning period was equal to 0.38% of diet DM.  We observed no 

symptoms of S induced polioencephalomalacia at this level.  However, nutrient 
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composition of DDGS is highly variable and should be closely monitored to avoid 

potential detrimental effects. 

Wheat Pasture Phase 

Data for wheat pasture performance is provided in Table 4.  For steers that grazed 

wheat pasture following the preconditioning period, ADG decreased linearly as level of 

DDGS during preconditioning increased (P < 0.01).  Average daily gain of steers grazing 

wheat pasture was reduced by 0.16 kg for each 1 kg/d increase in preconditioning gain.  

Steers fed 0.30% BW of DDGS during preconditioning exhibited the greatest level of 

compensatory growth while grazing wheat pasture; however, BW at the end of the 128 d 

wheat pasture grazing period was 34 kg greater for steers fed 1.65% of BW during 

preconditioning (Figure 2).  Similarly, White et al. (1987) indicated that nutrient 

restricted calves had greater ADG during a subsequent grazing phase than calves without 

nutrient restrictions. 

Though we were not able to measure gain efficiency during the wheat pasture 

phase, it has been well documented that following a period of nutrient restriction that rate 

of gain and gain efficiency are increased by re-feeding (Fox et al., 1972; Phillips et al., 

1991).  Sainz et al. (1995) indicated that compensatory growth rate is related to several 

mechanisms, but reported that increased DMI was the most significant variable.  The 

dramatic increase in growth rate of calves fed the lower levels of DDGS during 

preconditioning while on wheat pasture might be attributed to greater DMI and 

subsequent increase in protein and energy intake while grazing wheat pasture.  
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Feedlot Performance and Carcass Characteristics 

Data for feedlot performance and carcass characteristics for steers and heifers are 

provided in Tables 5 and 6, respectively.  For steers, initial and final BW linearly 

increased with respect to  feeding level of DDGS during preconditioning (P < 0.05) but 

did not influence ADG (P = 0.21).  Although final BW of heifers was not impacted by 

level of DDGS during preconditioning (P = 0.53), ADG during the finishing phase 

decreased linearly with respect to increasing levels of DDGS during preconditioning (P = 

0.05). The increase in feedlot ADG in heifers can be attributed to compensatory growth 

(White et al., 1987; Sainz et al., 1995; Choat et al., 2003).  Further, it is interesting that 

despite dramatic increases in BW on wheat pasture by steers fed 0.30% BW DDGS 

during preconditioning, there was a linear increase in final BW with respect to increasing 

levels of DDGS during preconditioning.  This indicates that the substantial compensatory 

growth that was exhibited by the steers fed 0.30% BW of DDGS during preconditioning 

was not great enough to overcome nutrient restriction during the preconditioning growing 

phase.   

Although we were unable to calculate a measurement of gain efficiency during 

the finishing phase, in some production systems, cattle producers take advantage of 

nutrient restriction early in the growing phase to obtain more efficient feedlot gain 

(Drouillard and Kuhl, 1999).  Though steers fed 1.65% BW during preconditioning were 

heavier after the finishing period, steers fed 0.30% BW may have been more efficient in 

converting feed to gain.  Despite the potential for more efficient feedlot gains by steers 

fed DDGS at levels lower than 1.65% BW, in our study, there was greater profit potential 

for those steers kept on the high plane of nutrition throughout the growing phase as these 
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steers were the heaviest at the end of the finishing period, and HCW and marbling score 

were numerically greater (linear, P = 0.13 and P = 0.12, respectively) in relation to 

feeding levels of DDGS. 

For steers, other carcass variables were not influenced by feeding level of DDDS 

during preconditioning (P > 0.20).  All measured variables for carcass characteristics 

were similar in heifers (P > 0.20).  Previous research with feeding increasing levels of 

DDGS, up to 1.03% of BW as a supplement to yearling cattle grazing native range, 

indicated that level of DDGS supplementation did not influence feedlot performance or 

carcass characteristics (Morris et al., 2006).  However, we are unaware of other studies 

that have measured the effects of including DDGS during preconditioning (up to 1.65% 

BW) on feedlot performance and carcass characteristics.  In a recent meta-analysis, 

Klopfenstein et al. (2008) indicated that some feedlot performance measures and carcass 

characteristics were decreased by the inclusion of 40% of diet DM of DDGS in finishing 

diets.  We report no potential carryover effect of high levels of DDGS during 

preconditioning on these variables. 

As mentioned earlier, high S concentrations during the finishing phase was 

detrimental to ADG and G:F (Zinn et al., 1997 and Loneragan et al., 2001).  Even though 

we did not exceed the NRC (1996) recommendations for dietary S concentration during 

preconditioning, we are aware of no research which has evaluated potential lingering 

effects of exposure to high S levels during the preconditioning phase on subsequent 

feedlot performance.  For steers, measuring the direct effects of S level during 

preconditioning on feedlot performance was confounded by the wheat pasture grazing 

period.  However, for heifers fed 1.65% of BW during preconditioning, it was apparent 
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that an average S consumption of 0.28% of daily DMI did not influence feedlot 

performance or carcass characteristics.  

IMPLICATIONS 

Corn dried distillers grains may be incorporated into the rations of weaned calves 

up to 1.65% of BW with no negative effects on subsequent growth performance or 

carcass characteristics.  Although we indicated that 2.0% of BW maximized ADG for 

steers, we do not recommend feeding this level due to the potential negative effects of 

feeding beyond the recommendation for dietary S concentration.  To avoid excess S, the 

nutrient composition of DDGS should be closely monitored, and the S concentration of 

water and the total diet should be accounted for.  Additionally, producers can utilize 

DDGS to manage forage intake in times when forage availability is low or cost is high, 

but the economic feasibility of feeding DDGS should be assessed with respect to 

transportation costs as well as fluctuations in feed prices.    
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Table 1.  Average nutrient composition of dried distiller's grains with solubles 
and prairie hay 

  Year 1  Year 2 
Item (DM basis)  DDGS1 Prairie Hay  DDGS1 Prairie Hay 
Crude protein, %  33.2       5.9  30.6  5.4 
ADF, %  17.6     43.9  16.2        46.3 
NDF, %  44.8     67.4  35.8        74.8 
Crude fat, %  10.6       1.7       13.2          1.9 
TDN, %  82.7     55.0  81.0        52.0 
Ca, %       0.03        0.63      0.05          0.52 
P, %       0.78        0.07      0.86          0.05 
S, %       0.52        0.08      0.59          0.08 
1Dried distillers grains with solubles 
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Table 3.  Effect of level of DDGS during preconditioning on performance and hay intake of beef heifers 
  Percentage of BW of DDGS1   P-value 
Item  0.30 0.75 1.20 1.65 SEM Linear Quadratic 
Initial wt., kg  174 175  175 174   9.66 0.98  0.51 
Final wt., kg  194 217  231 229  10.67 <0.01       <0.01 
Total gain, kg    20  42    56   55   2.47 <0.01 <0.01 
56 d ADG, kg      0.32         0.67      0.88     0.87   0.04 <0.01 <0.01 
Avg. daily hay intake, kg      4.03         3.81      3.55     3.21   0.20 <0.01  0.47 
Hay intake as percent BW2  2.12         1.91      1.72     1.57   0.07 <0.01 0.63 
Avg. daily DDGS, kg  0.44         1.12      1.76     2.36   0.35 <0.01 0.82 
Total DMI, kg  4.47           4.93      5.32     5.56   0.45 <0.01 0.60 
Gain:feed   0.08         0.15      0.19     0.18   0.01 <0.01 <0.01 
1Dried distillers grains with  solubles 
2Hay intake expressed as percentage of average trial weight  

 
Table 2.  Effect of level of DDGS during preconditioning on performance and hay intake of beef steers 

  Percentage of BW of DDGS1                     P-value 
Item 0.30 0.75 1.20 1.65 SEM Linear Quadratic 
Initial wt, kg 198 197 198 196 19.94  0.32   0.91 
Final wt., kg 229 249 260 267 20.5 <0.01   0.02 
Total gain, kg   30   52   62   71 1.33 <0.01 <0.01 
56 d ADG, kg     0.54     0.93     1.10     1.27 0.02 <0.01 <0.01 
Avg. daily hay intake, kg      4.24     4.19     3.56     3.37 0.17 <0.01   0.69 
Hay intake as percent BW2     1.97     1.87     1.54     1.44 0.07 <0.01   0.99 
Avg. daily DDGS, kg     0.67     1.63     2.61     3.49   0.001 <0.01 <0.01 
Total DMI, kg     4.90     5.82     6.17     6.86 0.17 <0.01  0.54 
Gain:feed     0.11     0.16      0.18     0.19 0.02 <0.01 <0.01 
1Dried distillers grains with solubles 
2Hay intake expressed as percentage of average trial weight 
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Table 4.  Effect of level of dried distillers grains with solubles during the preconditioning phase 
on performance of steers on wheat pasture 

 Percentage of BW of DDGS1  P-value 
Item 0.30 0.75 1.20 1.65 SEM Linear Quadratic 
Initial BW, kg 221  247 259 266 7.29 <0.01 0.18 
Final BW, kg 397  419 418 431 8.91   0.01 0.63 
Total gain, kg 176  172 159 165 5.17 <0.01 0.12 
128 d ADG, kg           1.38      1.34            1.24          1.29 0.03 <0.01 0.12 
1Dried distillers grains with solubles 

Table 5.  Effect of dried distillers grains with solubles during the preconditioning phase on steer 
feedlot performance and carcass characteristics 

  Percentage of BW of DDGS1   P -value 
Item   0.30 0.75   1.20       1.65 SEM Linear Quadratic 
n =     16        16     16         15 -- -- -- 
Initial wt., kg 

  406      429   429       445 8.78 <0.01 0.69 
Final wt., kg   565      585   580       598 9.91  0.04 0.91 
Total gain, kg   159      156   151       153 4.05  0.22 0.55 
97 d ADG, kg       1.64          1.61       1.55          1.58 0.04  0.21 0.55 
Hot carcass 
weight, kg 

  361      377   367       380 
 

6.86  0.13 0.77 
Dressing percent     63.86        64.47   63.35         63.55   0.53  0.39 0.60 
Marbling score1 

   533      525   535       580 21.4  0.12 0.22 
12th rib-fat, cm 

       1.02          1.12     1.24           1.04 0.08  0.57 0.11 
Ribeye area, cm2 

    85.94        89.99    87.03         90.97 2.39  0.27 0.96 
KPH, %     2.25          2.38     2.34           2.30  0.07  0.72 0.26 
USDA yield grade   2.7          2.8       2.9         2.7  0.16  0.91 0.32 
1Dried distillers grains with solubles 
2Small (low choice) = 500  
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Table 6.  Effect of dried distillers grains during preconditioning on heifer feedlot performance and 
carcass characteristics (yr 1) 

  Percentage of BW of DDGS1   P-value 
Item 0.30 0.75 1.20 1.65 SEM Linear Quadratic 
n  =     6     8     8     7 --       -- -- 
Initial wt., kg 201 231 244 243     8.72   <0.01 0.10 
Final wt., kg 496 492 500 507 14.5 0.53 0.69 
Total gain, kg 295 261 256 264    10.5 0.05 0.05 
ADG, kg            1.57      1.38      1.36      1.40      0.05 0.05 0.05 
Hot carcass weight, kg  323 319 320 326      9.99 0.78 0.57 
Dressing percent   65.16   64.83   63.95    64.32      0.59 0.22 0.55 
Marbling score2 653  593 685  633  41.1 0.87 0.92 
12th rib-fat, cm     1.50      1.52      1.45      1.45      0.13 0.69 0.99 
Ribeye area, cm2   81.09    78.64    77.74    80.39      3.94 0.87 0.53 
KPH, %     2.17      2.31      2.31      2.29      0.17 0.66 0.62 
USDA yield grade     3.1      3.2      3.2      3.1      0.24 0.94 0.74 
1Dried distillers grains with solubles 
2Small (low choice) = 500 
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Figure 1.  The partitioning of DM intake during preconditioning for steers, measured 

directly.  Prairie hay intake decreased linearly as level of dried distillers grains with 

solubles increased (P < 0.01); the substitution of DDGS for prairie hay was 0.34 kg.    
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Figure 2.  The partitioning of DM intake during preconditioning for heifers, measured 

directly.  Prairie hay intake decreased linearly as level of dried distillers grains with 

solubles increased (P < 0.01); the substitution of DDGS for prairie hay was 0.29 kg.    
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Figure 3.  The effect of feeding level of dried distillers grains with solubles on the 

partitioning of preconditioning and wheat pasture gain.  Gray bars represent total gain of 

steers during the wheat pasture period and black bars represent total gain of steers during 

the preconditioning period.  Total gain for preconditioning increased linearly with respect 

to increasing level of dried distillers grains with solubles (P < 0.05).  Total wheat pasture 

gain linearly decreased as feeding level of distillers during preconditioning increased (P < 

0.05). 

 
 
 
 
 
 
 
 
 
 
 
 
 

30

52

62
71

0

50

100

150

200

250

0.3 0.75 1.2 1.65

T
ot

al
 g

ai
n,

 k
g

% of BW of dried distillers grains with solubles

Wheat Pasture Gain

Preconditioning Gain



 40

 
LITERATURE CITED 

 
Technology, A. N. K. O. M.  2009a.  Method for Determining Neutral Detergent Fiber  

(aNDF).  http://www.ankom.com/09_procedures/procedures2.shtml Accessed 
May 19, 2000.   
 

Technology, A. N. K. O. M.  2009b.  Method for Determining Acid Detergent Fiber. 
http://www.ankom.com/09_procedures/procedures1.shtml Accessed May 19, 
2000.     
 

AOAC.  1996.  Official Methods of Analysis 14th ed. Assoc. Offic. Anal. Chem.   
Arlington, VA. 
 

Archibeque, S. L., H. C. Freetly, and C. L. Ferrell.  2008.  Feeding distillers grains  
supplements to improve amino acid nutriture of lambs consuming moderate-
quality forages.  J. Anim.  Sci.  86:691-701. 

 
Bandyk, C. A., R. C. Cochran, T. A. Wickersham, E. C. Titgemeyer, C. G. Farmer, and J.  

J. Higgins.  2001.  Effect of ruminal vs postruminal administration of degradable 
protein on utilization of low-quality forage by beef steers.  J. Anim. Sci.  79:225-
231. 

 
Choat, W. T., C.R. Krehbiel, G. C. Duff, R.E. Kirksey, L. M. Lauriault, J. D. Rivera,   

B. M. Capitan, D. A. Walker, G. B. Donart, and C. L. Goad.  2003.  Influence of 
grazing dormant native range or winter wheat pasture on subsequent finishing 
cattle performance, carcass characteristics, and ruminal metabolism.  J. Anim. Sci.  
81:3191-3201. 
 

Drouillard, J. S., and G. L. Kuhl.  1999.  Effects of previous grazing nutrition and  
management on feedlot performance of cattle. J. Anim. Sci.  77(Suppl. 2):136-
146. 

 
Fox, D. G., R. R. Johnson, R. L. Preston, T. R. Dockerty, and E. W. Klosterman.  1972.   

Protein and energy utilization during compensatory growth in beef cattle.  J. 
Anim. Sci.  34:310-318. 
 

Gustad, K. H., T. J. Klopfenstein, G. E. Erickson, K. J. VanderPol, J. C. MacDonald, and  
M. A. Greenquist.  2006.  Dried distillers grains supplementation of calves 
grazing corn residue.  Nebraska Beef Rep.  MP-36:37. 

 
Hess, B. W., G. E. Moss, and D. C. Rule.  2008.  A decade of developments in the area of  

fat supplementation research with beef cattle and sheep.  J. Anim. Sci.  86(E. 
Suppl.):E188-E204. 

 
Hess, B. W., M. B. Whitney, and D. C. Rule.  2001.  Site and extent of digestion by beef  



 41

Heifers fed medium-quality hay and supplemental corn or soybean oil.  Proc. 
West. Sect. Am. Soc. Anim. Sci.  52:320-324. 

 
Horn, G. W., and F. T. McCollum.  1987.  Energy supplementation of grazing ruminants.   

Pages 125-136 in Proc. Graz. Livest. Nutr. Conf., Jackson Hole, WY.  
 
Jeffrey, M., J. P. Duff, R. J. Higgins, V. R. Simpson, R. Jackman, T. O. Jones, S. C.  

Mechie, and C. T. Livesey.  1994.  Polioencephalomalacia associated with the 
ingestion of ammonium sulfate by sheep and cattle.  Vet. Rec. 134:343-348. 

 
 
Klopfenstein, T. J., G. E. Erickson, and V. R. Bremer.  2008.  BOARD-INVITED  

REVIEW:  Use of distillers by-products in the beef cattle feeding industry.  J. 
Anim. Sci.  86:1223-1231.    

 
Köster, H. H., R. C. Cochran, E. C. Titgemeyer, E. S. Vanzant, I. Abdelgadir, and G. St- 

Jean.  1996.  Effect of increasing degradable intake protein on intake and 
digestion of low-quality, tallgrass-prairie forage by beef cows.  J. Anim. Sci.  
74:2473-2481. 

 
Loneragan, G. H., J. J. Wagner, D. H. Gould, F. B. Garry and M. A. Thoren.  2001.   

Effects of water sulfate concentration on performance, water intake and carcass 
characteristics of feedlot steers.  J. Anim. Sci.  79:2941-2948. 

 
Loy, T. W., J. C. MacDonald, T. J. Klopfenstein, and G. E. Erickson.  2007.  Effect of  

distillers grains or corn supplementation frequency on forage intake and 
digestibility.  85:2625-2630. 

 
MacDonald, J. C., T. J. Klopfenstein, G. E. Erickson, and W. A. Griffin.  2007.  Effects  

of dried distillers grains and equivalent undegradable intake protein or either 
extract on performance and forage intake of heifers grazing smooth bromegrass 
pastures.  J. Anim.  Sci.  85:2614-2624. 

 
McCollum, F. T., and M. L. Galyean.  1985.  Influence of cottonseed meal  

supplementation on voluntary intake, rumen fermentation and rate of passage of 
prairie hay in beef steers.  J. Anim. Sci.  60:570-577. 

 
Moore, J.E., M. H. Brant, W. E. Kunkle, and D. I. Hopkins.  1999.  Effects of  

supplementation on voluntary forage intake, diet digestibility, and animal 
performance.  J. Anim. Sci.  77(Suppl.2):122-135. 

 
Moore, J. A., R. S. Swingle, and W. H. Hale.  1986.  Effects of whole cottonseed,  

cottonseed oil or animal fat on digestibility of wheat straw diets by steers.  J. 
Anim. Sci.  63:1267-1273. 

 
Morris, S. E., J. C. MacDonald, D. C. Adams, T. J. Klopfenstein, R. L. Davis, and J. R.  



 42

Teichert.  2006.  Effects of supplementing dried distillers grains to steers grazing 
summer sandhill range.  Nebraska Beef Rep.  MP-30:32. 

 
Morris, S. E., T. J. Klopfenstein, D. C. Adams, G. E. Erickson, and K. J. VanderPol.   

2005.  The effects of dried distillers grains on heifers consuming low or high 
quality forage.  Nebraska Beef Rep.  MP-18:20. 

 
Niles, G. A., S. Morgan, W. C. Edwards, D. L. Lalman.  2002.  Effects of dietary sulfur  

concentrations on the incidence and pathology of polioencephalomalacia in 
weaned beef calves.  Vet. Human Toxicol.  44:70-72. 

 
NRC.  1996.  Nutrient Requirements of Beef Cattle.  7th rev. ed. Natl. Acad. Press,  

Washington, DC. 
 
Phillips, W. A., J. W. Holloway, and S. W. Coleman.  1991.  Effect of pre- and post  

weaning management system on the performance of Brahman crossbred feeder 
calves.  J. Anim. Sci.  69:3102-3111. 

 
Sainz, R. D., F. De la Torre, and J. W. Oltjen.  1995.  Compensatory growth and carcass  

quality growth-restricted and refed beef steers.  J. Anim. Sci.  73:2971-2979. 
   
Stalker, L. A., D. C. Adams, and T. J. Klopfenstein.  2007.  Urea inclusion in distillers  

dried grains supplements.  Prof. Anim. Sci.  23:390-394. 
 

White, T. W., F. G. Hembry, P. E. Humes, and A. M. Saxton.  1987.  Influence of  
wintering weight change on subsequent pasture and feedlot performance by 
steers.  J. Anim. Sci.  64:32-35. 

 
Whitney, M. B., B. W. Hess, L. A. Burgwald-Balstad, J. L. Sayer, C. M. Tsopito, C. T.  

Talbott, and D. M. Hallford.  2000.  Effects of supplemental soybean oil level on 
in vitro digestion and performance of prepubertal beef heifers.  J. Anim. Sci.  
78:504-514. 

 
Winterholler, S. J., T. K. Dye, C. P. McMurphy, C. J. Richards, and D. L. Lalman.  2008.  

In situ degradation characteristics of extruded-expelled cottonseed meal-based 
supplements.  J. Anim. Sci.  86(Supp. 2):533(Abstr.). 

 
Zinn, R. A., E. Alvarez, M. Mendez, M. Montaño, E. Ramierz, and Y. Shen.  1997.   

Influence of dietary sulfur level on growth performance and digestive function in 
feedlot cattle.  J. Anim. Sci.  75:1723:1728. 

 
 
 
 
 
 



 43

 
 
 
 
 
 
 

 
 

CHAPTER III 
 
 

IN SITU RUMINAL DEGRADATION CHARACTERISTICS OF BYPRODUCT 

FEEDSTUFFS FOR BEEF CATTLE CONSUMING LOW-QUALITY FORAGE  
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ABSTRACT:  Eight ruminally cannulated steers (BW = 753 ± 48 kg) were used to 

evaluate in situ N, NDF and DM degradation characteristics of byproduct feeds and their 

application for beef cows consuming low-quality forage. Experimental feedstuffs 

included (DM basis) 1) extruded-expelled cottonseed meal (ECSM; 33% CP and 55% 

NDF), 2) extruded-expelled cottonseed meal with linters (ECSML; 25% CP and 41% 

NDF), 3) dried distiller’s grains with solubles (DGS; 33% CP and 36% NDF), 4) solvent- 

extracted cottonseed meal (CSM; 43% CP and 29% NDF), and 5) a blend of 76% wheat 

middlings with 18% CSM (WMCSM; 23% CP and 40% NDF).  Steers were fed chopped 

prairie hay (4.8% CP, 69% NDF; DM basis) ad libitum and received 0.38 kg/100kg BW 

WMCSM daily.  In situ degradation kinetics of N, NDF and DM components included 

the following fractions:  A (immediately soluble), B (potentially degradable), and C 

(undegradable).  Calculated rumen degradable protein (RDP) for ECSM was the highest 

among all feedstuffs (83.8%; P < 0.01), which was comprised of a large A fraction of N 

(41%).  Similar RDP values were observed for DGS and ECSML (50.7%, and 50.9%, 

respectively, P = 0.93).  The B fraction N for ECSML was large (88.9%); however, most 

of this was unavailable for ruminal degradation.  The amount of RDP in CSM and 

WMCSM was similar (78.2% and 73.5%, respectively; P = 0.12) though the A fraction 

of N was greater for WMCSM compared to CSM (P < 0.01).   Degradability of NDF was 

greatest (P < 0.01) for DGS (67.4%) and was similar (P = 0.48) for WMCSM and CSM 

(54.5% and 57.0%, respectively).  The lowest degradability of NDF was calculated for 

ECSM (29.3%; P < 0.01), attributed to a high lignin value (13.3%, DM).  Degradability 

of DM was greatest (P < 0.01) for CSM and WMCSM (63.7 and 59.4%, respectively) 

and lowest (P < 0.01) for ECSM (36.5%) and ECSML (40.6%).  Ruminal N degradation 
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characteristics of ECSM were similar to more traditional supplements containing CSM 

and WMCSM.  The RDP for ECSML and DGS N was low compared to other feedstuffs, 

indicating these feeds may need to be blended with other ingredients containing greater 

concentrations of degradable N, particularly in situations where forage RDP is low.   

 
Key Words:  in situ disappearance kinetics, distiller’s grains, extruded cottonseed meal 
 

INTRODUCTION 
 

Recent expansion of the biofuels industry has increased the quantity and 

accessibility of byproduct feedstuffs. Presently, large quantities of dried distiller’s grains 

with solubles (DGS; 33% CP and 10% fat), a byproduct of corn-based ethanol production 

are available for beef cattle producers for use in a wide variety of production scenarios.  

In addition, the production of cottonseed oil for use as a biofuel feedstock has increased.  

Some modern processing plants have adapted mechanical extracting techniques to 

remove oil from whole cottonseed.  Byproducts from this processing technique include: 

delinted, extruded-expelled cottonseed (ECSM; 33% CP and 6.7% fat; DM basis) or 

extruded-expelled cottonseed meal with linters (ECSML; 25% CP and 10.1% fat). 

It is widely accepted that supplementing relatively small quantities of rumen 

degradable protein (RDP) is an effective method to increase forage intake and utilization 

and to maintain BW and condition when forage quality is low (McCollum and Galyean, 

1985; DelCurto et al., 1990a; DelCurto et al., 1990b; Marston et al., 1995; Banta et al., 

2006; Steele et al., 2007).  Cottonseed meal and wheat middlings (WM)  are commonly 

supplemented individually or in combination as the primary ingredients in commercial 

feed formulas throughout the Southern Great Plains. Limited evidence suggests that 

ECSM and ECSML could be similarly used to supply RDP to forage fed cattle (Meyer et 
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al., 2001).  Conversely, protein from DGS is moderately degradable in the rumen (Waller 

et al., 1980; Ham et al., 1994; MacDonald et al., 2007).   

Knowledge of the relative degradation characteristics of these feeds is critical for 

the purpose of developing efficacious supplements for cattle fed low-quality forage.  

Therefore, the objectives of this study were to characterize the N, NDF and DM in situ 

degradation kinetics of commonly used protein sources alongside byproduct feedstuffs 

derived from the biofuels industry.  

MATERIALS AND METHODS 

Production of Byproduct Feedstuffs 

 The ECSM used in this study was produced at Hollybrook Cottonseed Processing 

in Lake Providence, LA.  Whole, raw cottonseed was first mechanically delinted and then 

passed through the extruder (Insta-Pro, Des Moines, IA) for approximately 30 s, reaching 

a temperature of 121○C.  After exiting the extruder, cottonseed meal was pressed (Insta-

Pro) for approximately 30 s and meal temperature upon exiting the press was 

approximately 104○C.  Finally, the meal was ground in a hammer mill to decrease 

particle size and improve uniformity.  Cooling of the meal was achieved by blowing air 

across the conveyer at room temperature as the meal was transported to storage. 

 The ECSML used in this study was produced at Motley Mill in Roaring Springs, 

TX.  Whole, raw cottonseed was first extruded (Insta-Pro), reaching a temperature of 

121○C and temperature upon exiting the press was approximately 104○C.  Cooling of 

ECSML was by air flow and transport to storage room. 
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 The corn dried distiller’s grains with solubles were produced at East Kansas Agri- 

Energy in Garnett, KS with 100% of solubles added back to the dried distiller’s grain.  A 

detailed description of DGS production is provided by Davis (2001).      

In situ Experimental Procedures 

Animals.   This experiment was conducted at the Nutrition and Physiology Barn 

located on campus at Oklahoma State University in accordance with an approved 

Oklahoma State University Animal Care and Use Committee protocol.  Eight ruminally 

cannulated crossbred steers (BW = 753 ± 48 kg) were used to evaluate in situ degradation 

properties of supplemental feedstuffs.  Steers consumed chopped prairie hay (5 cm; 4.8% 

CP, 69% NDF; DM basis) ad libitum and were individually supplemented once daily 

with 0.38 kg/100 kg BW of a 76% WM and 18% solvent-extracted cottonseed meal-

based supplement (WMCSM ) to meet the energy requirements for maintenance and 

degradable intake protein (NRC, 1996).  Composition of the experimental dietary 

components is provided in Table 2.  Steers had continuous access to fresh water.  Steers 

were fed once daily at 0800, and were adapted to this diet for 10 d prior to the initiation 

of the in situ experiment.   

Feedstuffs.  The in situ procedures used in this experiment were adapted from 

Vanzant et al. (1998). Dacron bags (Ankom Technology, Macedon, NY; 10 x 20 cm, 53 ± 15 

µm pore size) were labeled with a waterproof permanent marker and bag weight was 

recorded.  All samples were ground in a Wiley Mill (Model-4, Thomas Scientific, 

Sweedesboro, NJ) to pass a 2-mm screen before being weighed into dacron bags (Ankom 

Technology).  Five grams (as-fed) of WMCSM, solvent-extracted cottonseed meal (CSM), 

DGS, ECSM and ECSML were weighed in duplicate into dacron bags and were heat sealed.  
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Prior to ruminal insertion, bags were soaked in tepid water (39oC) for 20 min to remove 

water soluble fractions and reduce wetting lag time.  Following the wetting procedure, all 

bags (except 0 h) were inserted into the ventral rumen under the ruminal mat in a mesh 

laundry bag in reverse order.  Across the 96 hr incubation period, bags were inserted at 1900 

on d 1; 1900 on d 2; 1900 on d 3; 0700 and 1900 on d 4; and 0300, 0700, 1100, 1300, 1500, 

1700 on d 5.  These times of insertion correspond to incubation times of 96, 72, 46, 36, 24, 

16, 12, 8, 6, 4, and 2 h, respectively.  After removal from the rumen, bags were rinsed with 

39oC water to remove particles adhering to the outside of the bags and the 0-hr sample bags 

were rinsed immediately after soaking in tepid water.  All bags were then washed in a 

washing machine on the delicate setting for a 1-min rinse and a 2-min spin cycle and this 

sequence was repeated 10 times with maximum load of 100 bags.  Following rinsing, bags 

were oven dried at 50oC for 72 h.  Dried sample bags were allowed to equilibrate with 

atmospheric conditions for 60 min at room temperature prior to further analysis.  Duplicate 

feed residue samples from each incubation time were composited within individual steer and 

sub-samples from each composite were analyzed for DM after drying samples at 100oC for 

24 h.   

Feed samples and feed residue samples were analyzed for N content using a Leco FP-

2000 N Analyzer (Leco Corporation, St. Joseph, MI) and NDF content using an ANKOM 

Fiber Analyzer (ANKOM Technology).  Feed sample ADF content was determined using an 

ANKOM Fiber Analyzer (ANKOM Technology) and feed sample lignin concentration was 

determined by digesting ADF residue in 72% sulfuric acid for 3 h (AOAC, 1996). Ether 

extraction (AOAC, 1996) was used to determine crude fat concentration of feed samples. 

Nonfiber carbohydrate (NFC) concentration was determined by summing DM concentrations 
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of CP-free NDF, CP, EE and ash, and then subtracting from 100 (NRC, 2001). Correction for 

microbial contamination of feed residue samples was performed using the procedures 

described by Mass et al. (1999).  Briefly, Mass et al. (1999) indicated that rinsing with NDF 

solution removed potential N associated with the microbial population.  To make this 

correction, samples were rinsed following the previously described NDF procedure prior to 

analysis for N using the Leco FP-2000 N Analyzer (Leco Corporation). Nutrient composition 

of in situ feedstuffs is provided in Table 1.   

Degradation Kinetics.  Total N, NDF, and DM residuals were divided into three 

fractions according to ruminal degradation susceptibility.  The A fraction was equal to the 

immediately soluble portion, the portion that was washed out at 0 h; the B fraction was 

comprised of residuals that were degraded at a measurable rate; and the C fraction was the 

fraction that was still remaining after the 96 h incubation period and was considered to be 

undegradable.  The B fraction was calculated as B = (100% - A - C).  Data were fitted to the 

model described by Mathers and Miller (1981) where extent of rumen degradation was 

calculated by the following equation:   

 

Extent = {B[Kd / Kd + Kp]} + A 

 

where Kp is the fractional passage rate (calculated experimentally), and Kd is the slope of the 

regression of the natural logarithm of the percentage of the chemical component remaining in 

the rumen versus incubation time.   

Passage Rate.  Passage rate (Kp) was determined by procedures described by 

Coblentz et al. (2002).  Ruminal contents from four of the eight steers that were used in the in 
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situ study were manually evacuated 2 d following the in situ experiment.  Ruminal 

evacuations were performed before feeding (0 h) and 4 h post-feeding.  At each evacuation 

time, total ruminal contents were weighed, mixed, sub-sampled in triplicate, and then 

returned to the rumen.  Ruminal sub-samples were dried at 55oC for 96 h.  Hay and ort 

samples were collected throughout the study and were dried at 55oC for 48 h in forced air 

oven.  All dried samples were ground through a Wiley Mill (Thomas Scientific) to pass 

through a 1-mm screen.  Concentration of acid detergent insoluble ash (ADIA) in prairie hay, 

supplement, orts, and ruminal contents were determined by ashing ADF residues in a muffle 

furnace at 500oC for 8 h (Van Soest et al., 1991).  Fractional passage rate of ADIA (Kp) was 

determined by dividing the mean ADIA intake (grams per hour) by the mean (from the 0- 

and 4-h ruminal evacuations) ruminal mass of ADIA (Waldo et al., 1972).  The hourly intake 

of ADIA for each steer was calculated by dividing total daily intake of ADIA by 24 h.  Our 

calculations yielded a mean passage rate of 0.025 ± 0.0055 h-1 from four steers.       

Statistical Analyses  

Means for feedstuff in situ degradation characteristics were analyzed using GLM 

procedures of SAS (SAS Inst. Inc., Cary, NC) for a randomized complete block design with 

steers representing the blocking term and feedstuff as the independent treatment variable. 

When the P-value for the F-statistic was ≤ 0.05, least squares means were separated using the 

LSD procedure of SAS (α = 0.05). 

RESULTS AND DISCUSSION 

Nitrogen Disappearance  

Data for N disappearance are presented in Table 3.  Estimated ruminal N 

degradability of CSM was similar to WMCSM; however, the concentration of N was 
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partitioned differently among measured fractions.  Although residual N in the C fraction 

was similar among WMCSM and CSM (P = 0.82), the A fraction of CSM was lower than 

that of WMCSM (P < 0.01). However, the B fraction of CSM had the most rapid rate of 

degradation among all feeds tested (P < 0.01).  Even though we did not evaluate WM 

alone, these data suggest that WM may have a greater concentration of A fraction N and 

slightly slower rate of B fraction N degradation relative to CSM.  This was demonstrated 

by Swanek et al. (2001) who evaluated WM and CSM separately and reported a greater 

amount of A fraction N for WM versus CSM and indicated that rate of B fraction 

degradation was slower for WM compared to CSM.   

When steers were fed a high concentrate diet and particulate passage rate was 

estimated at 0.05 h-1, Swanek et al. (2001) reported a lower RDP value for CSM (66.6%) 

than was observed in the present study (78.2%).  Similarly, NRC (1996) reports RDP of 

CSM to be 57% and NRC (2001) reports RDP of CSM to be 52.1% when forage 

accounts for 50% of DMI.  Rate of passage was slower in the present study where steers 

were fed low-quality prairie hay and this likely increased the extent of ruminal N 

degradation of CSM compared to other published values.   

It is recognized that the rate of passage of the concentrate portion of our diet 

(approximately 20% of DMI) may have differed substantially from the fractional passage 

rate measured for the total diet. Therefore, we used the equation provided by NRC (2001) 

to estimate the passage rate of the concentrate portion alone: 

 

Kp = 2.904 + 1.375X1 – 0.020X2 
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where Kp is the fractional rate of passage of concentrate particles from the rumen, X1 is 

DMI expressed as % of BW, and X2 is concentrate expressed as percent of diet DM. The 

predicted fractional passage rate was 0.05 h-1, resulting in a calculated RDP estimate of 

64.9% for CSM. Therefore, this 2.5 percentage unit adjustment in passage rate resulted in 

a 13.3 percentage unit change in calculated RDP.  Forage quality in our experiment was 

likely lower than that used in experiments used to develop the NRC (2001) equations, 

and therefore, actual concentrate fractional passage rate in our study may have been 

intermediate to the experimentally measured value (0.025 h-1) and that calculated by the 

previously described equation, 0.05 h-1.  Nevertheless, it appears that NRC (1996, 2001) 

tabular values underestimate the rumen degradability of CSM protein when used as a 

supplement to low-quality forage diets.     

 Extruded, expelled cottonseed meal N was highly degradable predominantly due 

to the high percentage of A fraction N and moderate rate of B fraction N degradation.  

Meyer et al. (2001) evaluated the in situ degradation characteristics of extruded 

cottonseed meal (26% CP, 55% NDF and 9% ether extract; DM basis) fed to Holstein 

steers in a total mixed ration and reported an RDP of 79% when passage rate was 

estimated at 0.05 h-1.  Similarly, when a fractional passage rate of 0.05 h-1 was applied to 

our data, RDP of ECSM was estimated at 76.1%.  These N degradation properties 

indicate ECSM can be substituted for CSM and (or) WM to meet the requirements for 

degradable intake protein of beef cows when forage N is limited.  When beef cows 

consuming low-quality hay were supplemented with equal amounts of CP from ECSM, 

WMCSM, or CSM, change in cow BW and BCS was similar among the three 

experimental supplements (Winterholler et al., 2008).  These results indicate that RDP of 



 53

ECSM was similar to that of the traditional feedstuffs (WMCSM and CSM) and fulfilled 

the RDP requirements of the cow, or that the extent of N recycling was great enough to 

overcome a deficiency in RDP (Krehbiel and Ferrell, 1999). 

 The N degradation kinetics of DGS most closely followed ECSML as RDP was 

relatively low for DGS and ECSML although N components were different.  Compared 

to other feedstuffs evaluated, N in the A fraction of ECSML was moderate to low but was 

greater (P < 0.01) for DGS.  Additionally, B fraction N was greater for ECSML (P < 

0.01) than DGS, but rate of B fraction N degradation was similar (P = 0.38) and was the 

slowest (P < 0.01) among all feedstuffs.  Also, DGS had the greatest percentage of N 

remaining in the C fraction (P < 0.01).  The observed RDP for DGS (50.7%) was in 

agreement with Firkins et al. (1984), Ham et al. (1980), and MacDonald et al. (2007) who 

reported RDP values of 54%, 47%, and 49%, respectively for DGS.  Applying a  

fractional passage rate of 0.05 h-1 to our data resulted in a calculated RDP for DGS of 

40.9%.   Aside from the potential effects of processing to change the physical properties 

of DGS, the low RDP of DGS is highly attributable to resistance of the major corn 

protein source, zein, to rumen degradation (Little et al., 1968).  To our knowledge, there 

is no literature available to compare our  in situ values to for ECSML. However, 

chemical analysis of a similar product obtained from The Center for Feed Industry 

Research and Education; Lubbock, TX indicated a rumen undegradable protein value of 

55% or 45% RDP (DM basis), which is similar to our RDP calculation.  

Disappearance of NDF and Calculations for TDN   

Data for NDF disappearance are presented in Table 4.  The NDF degradation 

properties of WMCSM were similar to CSM as over half of the total NDF disappearance 
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was represented by the A fraction and NDF degradability among these two feeds was 

similar (P = 0.48) and was intermediate relative to the other feedstuffs evaluated.  The 

concentration of NDF in the B fraction was similar for WMCSM and CSM although B 

fraction rate of degradation was faster for CSM (P < 0.01).       

Degradability of NDF was the highest (P < 0.01) for DGS, due partially to the 

most rapidly degraded B fraction (P < 0.01).  The A fraction of DGS was similar (P = 

0.11) to CSM, and was also similar (P = 0.14) to ECSML.  For B fraction NDF, DGS 

was similar to WMCSM (P = 0.12).  Like our findings, Varga and Hoover (1983) 

reported extent of NDF degradation of DGS was 76.6%.    

Degradation properties of NDF for ECSML most closely followed WMCSM 

although NDF degradability was greater (P < 0.01) for WMCSM compared to ECSML.  

This can be partially explained by NDF remaining in the C fraction as it tended (P = 0.06; 

SEM = 0.02) to be greater for ECSML (32.2%) compared to WMCSM (26%).  These 

values indicate that the degradation properties of the fiber portion of the linters associated 

with ECSML are highly degradable and similar to rapidly degraded fiber portions of 

WM.  Also, it is apparent that, when compared to the fiber portion of the seed coat, the 

linters are more highly degradable, as evidence by a greater degradability of NDF for 

ECSML compared to ECSM.   

 Among the feeds tested, the largest C fraction of NDF was present in ECSM (P < 

0.01), which resulted in the lowest degradability of NDF (P < 0.01).  This low value is 

likely a reflection of the high lignin concentration of the sample (13.3%, DM). 

 As reported in Table 1, TDN values of each of these feeds were calculated using 

our values for NDF degradation, chemical compositional data, and the summative 
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equations of the NRC (2001).  The published value for CSM from NRC (1996) is 75% 

and similar to our calculated value, whereas NRC (2001) reports a TDN value of 66.4%.  

The TDN of DGS was also similar to the NRC (1996) value of 88%, but greater than the 

NRC (2001) value of 79.5%. Variability in TDN within these common feedstuffs could 

be due to a number of factors, including but not limited to, variation in chemical 

composition among feed samples, variation in the basal diet for which a feed is being 

evaluated (Swanek et al., 2001), methods used to estimate TDN (Weiss, 1998), variation 

among laboratories and for byproduct feedstuffs, variability among and within processing 

plants (Spiehs et al., 2002). 

 We are not aware of other published values for ECSM and ECSML TDN. An 

important implication from these calculations was that TDN of ECSM was low due to a 

high concentration of indigestible fiber and low concentration of NFC. When cattle are 

fed forage low in CP and TDN, ECSM should be an effective supplemental protein 

source although its direct contribution to the energy status of the animal will be minimal. 

Disappearance of DM 

Data for DM disappearance are presented in Table 5.  Degradability of DM was 

similar (P = 0.11) for WMCSM and CSM and greater (P < 0.01) than the other feeds 

tested. A greater percentage of DM was found in the A fraction of WMCSM than CSM 

(P < 0.01). Perhaps this is a reflection of the relatively high concentration of NFC in 

WMCSM, which is assigned a true digestibility value of 98% in the summative equation 

of the NRC, 2001.  However, the greater concentration of A fraction DM in WMCSM 

was offset by lower concentration of B fraction DM (P < 0.01) which was degraded at a 

slower rate compared to CSM (P < 0.01).  The unavailable C fraction was similar (P = 
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0.27) among WMCSM, CSM and DGS.   In situ ruminal DM degradability of DGS was 

lower than WMCSM and CSM (P < 0.01) but greater than ECSM and ECSML (P < 

0.01).  Partitioning of DM in the B fraction of DGS was the greatest among feedstuffs (P 

< 0.01).  Rate of degradation of the B fraction of DGS was slower than CSM, but more 

rapid than the other feeds tested (P < 0.01). Perhaps DGS NFC is moderate to low in 

ruminal degradability considering the moderate DM degradability and relatively high 

NDF degradability reported here. 

 Degradability of DM was the lowest (P < 0.01) and similar for ECSM and 

ECSML although the DM degradation characteristics of these feeds were different.  

Extruded, expelled cottonseed meal had the lowest (P < 0.01) concentration of A fraction 

DM of all feeds tested. It is interesting to note that most of the A fraction DM would have 

been represented by rapidly degradable CP in ECSM and rapidly degradable NDF in 

ECSML.  There was more DM in the B fraction of ECSM versus ECSML (P < 0.01).  

Rate of degradation of the B fraction was similar among the two feeds (P = 0.14).  Also, 

C fraction DM was similar (P = 0.96) for ECSM and ECSML, which was greater (P < 

0.01) than any of the other experimental feedstuffs. Although in situ DM disappearance 

was similar for ECSM and ECSML, TDN was greater for ECSML.  This difference is 

largely attributed to the more highly degradable fiber portion of ECSML.  

 In summary, N degradation characteristics of ECSM indicate it has value as a 

complement for low-quality forage as it is a rich source of RDP, but is moderate to low in 

energy contribution.  Low-quality forage supplementation with ECSML and DGS may 

result in deficiencies in degradable intake protein as RDP was lower for these feeds 

compared to traditionally used protein supplements.  Depending on the potential amount 
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of N recycling by the ruminant, these feeds may need to be blended with other products 

high in RDP to meet the RDP requirements of cattle consuming low-quality forage.   
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Table 1.  Nutrient composition of in situ feedstuffs  
  Feedstuff1  
Item WMCSM CSM ECSM ECSML DGS 
DM, % 92.1 89.5 93.6 93.8 89.3 
 -----------------------------% of DM ------------------------------ 
CP, % 23.3 43.1 32.9 24.5 33.2 
NDICP2  2.6   5.9   4.0   4.9 12.8 
ADF, % 16.2 19.6 41.8 39.3 23.3 
NDF, % 39.9 43.9 55.0 59.4 36.5 
Lignin, %   4.1       4.3 13.3   8.0   7.3 
NFC,3 % 28.2 13.9  4.1   5.4 28.7 
Crude fat, %  3.9       2.5  6.7     10.1 10.3 
TDN,4 %     65.0    73.9    54.4 62.3 87.1 
1WMCSM = wheat middling and solvent-extracted cottonseed meal, CSM = solvent-
extracted cottonseed meal, DGS = dried distillers grains with solubles, ECSM = 
extruded, expelled cottonseed meal based supplement that has been delinted, ECSML 
= extruded, expelled cottonseed meal based supplement with linters. 
2Neutral detergent insoluble crude protein. 
3NFC = Non-fiber carbohydrate [100-((NDF-NDICP) +CP +EE+ash)]. 
4Calculated using measured chemical composition of feedstuff and the summative 
equations from NRC (2001).  Adjustments were included for in situ NDF 
digestibility and partial fatty acid digestibility coefficient determined in previous 
experiment.  
 
 
 
 
 
 
 
 
 
Table 2.  Chemical composition of dietary ingredients fed to steers 
during the in situ experiment 

  Feed1 

Item, DM basis  Prairie Hay Supplement2 

CP, %    4.8 24.5 
ADF, %  43.7 12.9 
NDF, %  68.8 30.6 
Crude fat, %   2.2   4.5 
TDN, %              56.0                 72.0 
1Prairie hay was provided for ad libitum intake. 
2Supplement comprised of wheat middlings and cottonseed meal; steers 
fed 2.7 kg/d. 
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Table 3.  In situ ruminal N degradation characteristics of byproduct feedstuffs fed to beef cattle 
consuming low-quality forage  
  Supplement1  
Item WMCSM CSM DGS ECSM ECSML SEM 
A fraction,2 %  19.6b   5.5d 15.0c 41.0a   6.2d  0.02 
B fraction,2 % 79.4b 94.0a 71.0c 56.6d 88.9a  0.02 
C fraction,2 %    1.0b,c    0.50b   14.0a    2.4b,c        4.9c  0.02 
Rate of B degradation, % h-1        4.02a     6.35b    2.27c      3.67a        2.54c    0.22 
RDP, %3     73.5a   78.2a,c   50.7b    83.8c      50.9b  0.02 
a,b,c,d Means within a row with different superscripts differ (P ≤ 0.05). 
1WMCSM = wheat middling and solvent-extracted cottonseed meal, CSM = solvent-extracted 
cottonseed meal, DGS = dried distillers grains with solubles, ECSM = extruded, expelled 
cottonseed meal based supplement that has been delinted, ECSML = extruded, expelled 
cottonseed meal based supplement with linters. 
2A = Immediately soluble fraction, B = degradable fraction at a measurable rate,  
 C = undegraded fraction; expressed as percentage of total N. 
3Rumen degradable protein, calculated as {B[Kd/ Kd + Kp]} + A (Mathers and Miller, 1981). 
Ruminal particulate passage rate, Kp, was 2.5%/hr, determined experimentally.   
 

Table 4.   In situ ruminal NDF degradation characteristics of byproduct feedstuffs fed to beef 
cattle consuming low-quality forage 
  Supplement1 

Item WMCSM CSM DGS   ECSM ECSML SEM 
A fraction,2 %  30.0b  41.6a   35.7a,b 17.6c  27.6 b  0.01 
B fraction,2 %  44.0b,c  30.8c   54.4a,b 41.0c 40.7c  0.02 
C fraction,2 % 26.0b  28.0b 10.3c 41.8a      32.2b  0.02 
Rate of B degradation, % h-1        0.72a     1.0b     2.39c       0.90a,b        0.94a,b   0.08 
NDF degradability,3 %     54.5b   57.0b   67.4a     29.3d      43.1c  0.02 
a,b,c,d,e Means within a row with different superscripts differ (P ≤ 0.05). 
1WMCSM = wheat middling and solvent-extracted cottonseed meal, CSM = solvent-extracted 
cottonseed meal, DGS = dried distillers grains with solubles, ECSM = extruded, expelled 
cottonseed meal based supplement that has been delinted, ECSML = extruded, expelled 
cottonseed meal based supplement with linters. 
2A = Immediately soluble fraction, B = degradable fraction at a measurable rate,  
 C = undegraded fraction; expressed as percentage of total NDF. 
3Degradability calculated as {B[Kd/ Kd + Kp]} + A (Mathers and Miller, 1981). Ruminal 
particulate passage rate, Kp, was 2.5%/hr, determined experimentally.   
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Table 5.   In situ ruminal DM degradation characteristics of byproduct feedstuffs fed to beef cattle 
consuming low-quality forage 
  Supplement1  
Item WMCSM CSM DGS ECSM ECSML SEM 
A fraction,2 %  30.7a  24.1b 17.0c 13.3e      18.9d     0.0002 
B fraction,2 % 57.3c  66.5b 72.0a 64.3b  58.5c 0.02 
C fraction,2 % 12.0b    9.4b 11.0b 22.4a      22.6a 0.02 
Rate of B degradation, % h-1       1.27b      2.79a     2.06c      1.33b         1.11b      0.10 
Rumen degradable DM,3 %     59.4a    63.7a   53.3b    36.5c      40.6c 0.02 
a,b,c,d,e Means within a row with different superscripts differ (P ≤ 0.05). 
1WMCSM = wheat middling and solvent-extracted cottonseed meal, CSM = solvent-extracted 
cottonseed meal, DGS = dried distillers grains with solubles, ECSM = extruded, expelled cottonseed 
meal based supplement that has been delinted, ECSML = extruded, expelled cottonseed meal based 
supplement with linters. 
2A = Immediately soluble fraction, B = degradable fraction at a measurable rate,  
 C = undegraded fraction; expressed as percentage of total DM. 
3Degradability calculated as {B[Kd/ Kd + Kp]} + A (Mathers and Miller, 1981). Ruminal particulate 
passage rate, Kp, was 2.5%/hr, determined experimentally.   
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ABSTRACT:  Three experiments were conducted to evaluate the efficacy of 

supplemental energy and extruded-expelled cottonseed meal (ECSM; 30.6% CP; 44% 

NDF, 10.2% fat; DM basis) as a protein supplement (SUP) to spring-calving beef cows (n 

= 96; 535 kg initial BW; 5.4 initial BCS) consuming low-quality forage during late 

gestation and early lactation.  Supplementation of ECSM was compared to two traditional 

cottonseed meal-based SUP.  For all experiments, SUP provided equal CP. On a DM 

basis, SUP included: 1) a blend of 76% wheat middlings and 18% solvent-extracted 

cottonseed meal (WMCSM); 2) solvent-extracted cottonseed meal (CSM); and 3) 

delinted, extruded-expelled cottonseed meal (ECSM). In Exp. 1, cows were individually 

fed SUP 3 d/wk until calving and 4 d/wk during lactation; total SUP period was 95-d.  

Tall-grass prairie hay (4.4% CP; 74% NDF; DM basis) was provided ad libitum during 

the SUP period.  Change in cow BW during gestation (P = 0.23), over the SUP period (P 

= 0.27), and over the 301-d experiment (P = 0.56) were similar. Change in BCS was 

similar during gestation (P = 0.78), over the SUP period (P = 0.95) and over the 301-d 

experiment (P = 0.37).  Calf birth weight (P = 0.21) and BW at weaning (P = 0.76) were 

not different.  Percentage of cows exhibiting luteal activity at the beginning of breeding 

season (P = 0.59), AI conception rate (P = 0.71), and pregnancy rate at weaning (P = 

0.88) were not different.  In Exp. 2, 18 cows in early lactation from Exp. 1 were used to 

determine the effect of SUP on hay intake and digestion. Hay intake tended (P = 0.10) to 

be greater for CSM than ECSM.  Intake of OM and DM was greater for WMCSM (P ≤ 

0.02) compared to CSM and ECSM; likewise, digested DMI and OM intake was greater 

(P ≤ 0.02) for WMCSM.  Apparent total tract digestibility of crude fat was greater for 
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ECSM than CSM (P = 0.03).  In Exp. 3, cows (n = 20/trt) of similar d postpartum were 

machine-milked to determine SUP effect on milk production and composition. Butterfat, 

protein, lactose, milk urea N were not different (P > 0.10).  Similarly, 24-h milk 

production was not different (P = 0.25).  Neither greater energy intake of cows 

consuming WMCSM nor greater fat intake of cows consuming ECSM influenced cow 

performance measures or calf weaning weight.  Cow response to SUP with ECSM 

compared to traditional cottonseed meal-based SUP indicates that ECSM is a viable 

source of supplemental protein for beef cows consuming low-quality forage.    

 

  Key words:  beef cows, extruded expelled cottonseed meal, supplementation, energy 
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INTRODUCTION 

It has been well documented that in the Southern Great Plains, supplementation of 

protein to spring-calving cowherds consuming low-quality forage is necessary during the 

winter feeding period to maintain cow BW and BCS (DelCurto et al., 1990b; Vanzant et 

al., 1991; Steele et al., 2007).  Much of this response to CP supplementation is attributed 

to supplying rumen degradable protein (RDP) when cattle consume forage with RDP < 

10% of total digestible organic matter intake (Heldt et al., 1999; Mathis et al., 2000). 

Providing additional supplemental energy, beyond that associated with the supplemental 

RDP, is costly and may result in only marginal improvements in cow BCS change, calf 

weaning weight and pregnancy rate (Lusby et al., 1991; Marston et al., 1995b).  

Solvent extracted cottonseed meal has been a standard source of RDP for cattle 

consuming low-quality forage for many years. In response to increasing demand for 

cottonseed oil as feedstock for biofuel production, some cottonseed oil manufacturing 

plants have implemented mechanical techniques to extract oil from whole cottonseed.  

One byproduct of this processing method is extruded-expelled cottonseed meal that has 

been delinted (ECSM). Extruded-expelled cottonseed meal contains a relatively high 

concentration of CP (30.6%; DM basis) and therefore could be used as a supplemental 

protein source for beef cattle consuming forage with inadequate CP. However, processing 

techniques that involve elevated feed temperature may alter rumen degradability of feed 

components. For example, heat treatment of whole cottonseed reduces rumen 

degradability of protein and increases protein flow to the small intestine (Plegge et al., 

1982; Pena et al., 1986). Cottonseed meal reaches temperatures of around 120○C during 
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the extrusion process; therefore extrusion may compromise cottonseed meal’s 

effectiveness as a source of RDP. However, in the context of a lactating dairy ration, 

previous work with ECSM suggested that ruminal degradation and DMI are not affected 

by the extrusion process (Meyer et al., 2001).  

Another potential concern with using ECSM as a supplemental protein source is 

the relatively high fat concentration (10.2%; DM basis).  Previous work at our 

experiment station has shown that interval feeding of high-fat protein supplements (5.7% 

or 3.8% diet DM dietary fat) to cows consuming low-quality forage resulted in a 

reduction in cow performance during the supplementation period (Banta et al., 2006; 

Steele et al., 2007).  Whereas others have reported no depression in cow performance due 

to supplemental fat under similar conditions (Alexander et al., 2002; Bottger et al., 2002; 

Martin et al., 2005).  We are aware of no previous literature that has evaluated the use of 

ECSM as a protein and energy source for beef cows consuming low-quality forage.    

The objectives of these experiments were to determine the effects of feeding 

supplemental energy and replacing CSM with ECSM on beef cow performance, intake, 

digestion and milk yield and composition.  

MATERIALS AND METHODS 

Production of Delinted, Extruded-Expelled Cottonseed Meal 

 The delinted, extruded-expelled cottonseed meal used in this study was produced 

at Hollybrook Cottonseed Processing in Lake Providence, LA.  Whole, raw cottonseed 

(3.4% N, 16.1% fat, 3.8% ash) was mechanically delinted before being passed through an 

extruder reaching a mean maximum temperature of 121○C for a 30 s period. After exiting 

the extruder, cottonseed meal was conveyed to presses where mean maximum 
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temperature was maintained at 104○C for an additional 30 s. Finally, the meal was ground 

in a hammer mill to decrease particle size and improve uniformity. The meal was cooled 

with forced air flow as it was conveyed to a storage room prior to shipping to the feed 

mill at Oklahoma State University. Concentration of free gossypol was 1.26% in whole 

cottonseed and 0.2% in ECSM.  

Experiment 1 

Animals.  This experiment was conducted at the Range Cow Research Center, 

North Range Unit located approximately 16 km west of Stillwater, OK, in accordance 

with an approved Oklahoma State University Animal Care and Use Committee protocol.  

Spring-calving Angus and Angus x Hereford crossbred beef cows (n = 96; 535 ± 68 kg 

initial BW; 5.4 ± 0.68 units of initial BCS) were assigned to 1 of 3 dietary supplements in 

a completely randomized design.  Cows were ranked by BW and BCS and randomly 

allocated so that BW and BCS were similar across all treatments.  

Supplements (DM basis) included:  1) 2.45 kg/d during gestation and 3.92 kg/d 

during lactation of a blend of 76% wheat middlings and 18% solvent-extracted 

cottonseed meal-based supplement (WMCSM ); 2) 1.21 kg/d during gestation and 2.03 

kg/d during lactation of solvent-extracted cottonseed meal-based supplement (CSM); 3) 

1.67 kg/d during gestation and 2.75 kg/d during lactation of a delinted, extruded-expelled 

cottonseed meal based supplement (ECSM).  All supplements were fed as 0.64-cm diam. 

pellets and were formulated to provide similar amounts of CP (Table 1).  Supplements 

were balanced for P, Ca and Vitamin A to meet NRC (1996) requirements.  Experimental 

supplementation began on January 2, 2007 and terminated on April 6, 2007 which 



 71

encompassed both late gestation and early lactation (average calving d = March 22, 

2007); the total supplementation period was 95-d.   

A negative control was not included in this experiment as it has been well 

documented that when forage quality was similar to that in the present study, cows that 

did not receive supplemental protein during the winter months lost significant BW and 

BCS compared to those cows receiving supplementation (Schauer et al., 2005; Steele et 

al., 2007; Clanton and Zimmerman, 1970).   

A barn containing 32 individual feeding stalls was used to insure that each cow 

received the assigned supplement and that cows did not consume more supplement than 

their assigned amount.  Each feeding d, cows were gathered from a pasture adjacent to 

the feeding barn. Once cows entered the barn, they were allowed to enter a feeding stall 

and cows were subsequently restrained in the stalls for approximately 30 min while 

supplements were being fed and consumed by the cows. All supplements were 

thoroughly consumed throughout the duration of the supplementation period. During late 

gestation, cows were fed on Monday, Wednesday and Friday mornings.  The amount of 

supplement fed on each of these 3 d was determined by calculating the amount of 

supplement needed per wk (daily supplement amount x 7 d) and dividing that amount by 

3 (i.e., cows receiving WMCSM were fed 5.72 kg/feeding; DM basis).  Once cows 

calved, the supplement frequency was increased to 4 times per week to meet nutrient 

demands for lactation.  During this time, supplements were individually fed on Monday, 

Wednesday, Friday and Saturday mornings, which resulted in approximately a 65% 

increase in the amount fed daily.  The amount of supplement fed on each of these 4 d was 
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determined by calculating the amount of supplement needed per wk (daily supplement 

amount x 7 d) and dividing that amount by 4. 

Individual cow BW and BCS were determined at the start of the supplementation 

period (1/2/07), after the first 30-d of supplementation (2/2/07), before any cows had 

calved (2/20/07), within 1 wk of calving, at trial termination (4/07/07), prior to breeding 

(5/17/07) and at weaning (10/30/07).  All BW were recorded after 16-h withdrawal from 

feed and water.  Body condition scores (scale 1 through 9; Wagner et al., 1988) were 

determined by the same two independent evaluators throughout the experiment. 

During gestation, cows were managed as a contemporary group in a single pasture 

(46 hectares) with free choice access to tall-grass prairie hay (4.5% CP, 57% TDN, 74% 

NDF, 2.2% crude fat; DM basis) and a mineral supplement (28.6% NaCl; 12.8% Ca; 

8.5% P; 1.2% Mg; 1044 ppm Cu; 12 ppm Se; 3117 ppm Zn; DM basis).  At calving, 

cow/calf pairs were moved to an adjacent pasture (31 hectares) where they were managed 

as a contemporary group.  Cow/calf pairs had ad libitum access to the same prairie hay 

and mineral supplement as described previously and were provided adequate amounts of 

experimental supplements to meet the protein and energy requirements for lactation until 

green forage became available (April 7, 2007).  Pastures used during the SUP phase had 

been previously grazed during spring and summer, and consequently in combination with 

the heavy stocking rate during SUP, grazed forage contributed minimally to DM intake. 

Diets were formulated to meet, but not to exceed rumen degradable intake protein and CP 

requirements (NRC, 1996).     

The percentage of cows cycling at the start of the breeding season was determined 

by quantifying progesterone concentration (Vizcarra et al., 1997) in plasma samples 
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obtained via tail venipuncture 14 and 7 d prior to breeding and again on the first d of the 

breeding season.  Immediately following blood collection, tubes were placed on ice until 

analyzed for plasma progesterone concentrations.  Cows with one or more plasma 

samples containing ≥ 0.5 ng/mL progesterone were considered to have ovarian luteal 

activity.  Cows were bred via synchronization with a timed artificial insemination 

protocol on May 26, and cows were exposed to bulls from June 6 through July 20 

resulting in a 55-d breeding season.  For estrus synchronization, an EAZI-BREED CIDR 

device containing 1.38 g of progesterone (Pfizer, Inc., New York, NY) was inserted into 

the vagina on d 0 of the breeding season and cows were given an i.m. injection of 2-mL 

GnRH (Cystorelin, Merial LTD, Duluth, GA).  On d 7, EAZI-BREED CIDR devices 

were removed after 7 d.  All cows received an i.m. injection of 5-mL Prostaglandin F2α 

(Lutalyse, Pfizer, Inc., New York, NY) and cows were artificially inseminated 

approximately 48-h later.  At time of artificial insemination, cows were administered an 

additional i.m. injection of 2-mL GnRH (Cystorelin, Merial LTD, Duluth, GA).  First 

service conception rate was determined by transrectal ultrasonography 30-d following AI 

and pregnancy rate was determined by rectal palpation at weaning on October 30, 2007. 

Birth weight of each calf was determined within 24-h of birth and all male calves 

were castrated at this time.  After withdrawal from feed and water for 16-h, calf weaning 

BW was obtained on October 30, 2007 and reported as a 205-d weight, adjusted for sex 

according to the guidelines of the Beef Improvement Federation (2002). 

Statistical Analysis.  For all statistical analysis, cow was considered to be the 

experimental unit because supplements were fed individually to each cow.  Continuous 

data were analyzed using the MIXED procedure of SAS (SAS Inst. Inc., Cary, NC) and 
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the Satterwaite approximation for degrees of freedom.  The model for cow performance 

included supplement as a fixed effect and cow age and d on supplementation prior to 

calving as covariates.  When the P-value for the F-statistic was ≤ 0.05, least squares 

means were separated and reported using the LSD procedure of SAS (α = 0.05).  Data for 

reproductive performance were analyzed using the Glimmix procedure of SAS, assuming 

a binomial distribution and supplement served as a fixed effect.  Least squares means are 

reported in all tables, except for the percentage of cows exhibiting luteal activity, 

pregnancy rate, and first service conception rate which are raw means.  

For various reasons (calf death, n = 3; failure to calve, n = 3), data from 6 cows 

was removed from the experiment.  No relationship was apparent between any of these 

factors and the composition of the experimental supplements.   

Experiment 2 

 Animals.  This experiment was conducted at the Range Cow Research Center, 

North Range Unit located approximately 16 km west of Stillwater, Oklahoma in 

accordance with an approved Oklahoma State University Animal Care and Use 

Committee protocol. During early lactation, 18 spring-calving beef cows were used to 

determine the effects of supplement composition on hay intake and apparent total tract 

digestibility.  Based on calving date and treatment, cows were assigned to one of two 

collection periods in a randomized complete block design. Three cows and their calves 

from each treatment combination were represented during each period. Cows were given 

ad libitum access to the same prairie hay that was fed in Exp. 1 and were also kept on the 

same feeding regimen as Exp. 1 (Monday, Wednesday, Friday, and Saturday mornings) 

prior to and during Exp. 2. Cows were maintained in individual outdoor 3.7-x 9.1-m 
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pens, so that they would be exposed to the same environmental conditions as their herd 

mates in Exp. 1. 

Each 12-d period consisted of 3 d of adaptation to the pens and hay feeders, and 9 

d of data collection. The adaptation period was abbreviated because the cows had been 

previously exposed to the hay and supplement treatments throughout gestation and early 

lactation. Hay intake was measured from d 4 through d 10 and fecal grab samples were 

collected twice daily at 0800 and 1600 from d 6 through d 12 to estimate fecal output 

from acid detergent insoluble ash concentration. Sub-samples of supplements, hay, and 

orts were dried at 100ºC to determine DM. Supplement, hay, ort, and fecal samples were 

dried at 50ºC and ground in a Wiley mill (Model-4, Thomas Scientific, Sweedesboro, NJ) 

to pass a 2-mm screen before analysis. After grinding, supplement and hay samples were 

composited within period; ort and fecal samples were composited by cow. All composite 

samples were analyzed for NDF, ADF, CP, and acid detergent insoluble ash. Neutral 

detergent fiber and ADF content were determined using an ANKOM Fiber Analyzer 

(ANKOM Technology, Macedon, NY).  Crude protein was determined using a Leco NS-

2000 Nitrogen Analyzer (Leco Corporation, St. Joseph, MI).  Acid detergent insoluble 

ash was determined as the residue following complete combustion of the ADF residue 

(Van Soest et al., 1991).  Apparent total tract DM, OM, CP and crude fat digestibility as 

well as NDF and ADF digestibility were calculated for each cow.  Additionally, digested 

DMI (DMI kg/100kg of BW x DM digestibility) and digested OM intake were calculated 

for each cow. 

Statistical Analysis.  Intake and digestibility measurements were analyzed as a 

randomized complete block design using the MIXED procedure of SAS (SAS Inst. Inc., 
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Cary, NC) and the Satterwaite approximation for degrees of freedom.  The model 

included supplement as a fixed effect and collection period as a random variable.  When 

the P-value for the F-statistic was ≤ 0.05, least squares means were separated and 

reported using the LSD procedure of SAS (α = 0.05).  One cow was removed from the 

first period of the digestion experiment due to illness unrelated to supplemental 

treatment.  

Experiment 3 

Animals.  The objective of this experiment was to determine if winter 

supplemental protein source affected milk yield or milk composition. A completely 

randomized design was used with supplemental protein source as the main effect. The 

milking procedure took place over a 3-d period and included 20 cows from each 

treatment described in Exp. 1.  The experimental methods followed for determining early 

lactation milk production and composition were adapted from Marston et al. (1992).  

Prior to milking each d, pairs were gathered at approximately 1600.  The calves were 

then separated from their dams until 2200 when pairs were reunited and calves were 

allowed to nurse their dams ad libitum, but for < 45 min.  Following nursing, cows and 

calves were separated again until milking was completed.  Milking was initiated at 0700 

the following morning and was completed by 1300.  Cows were provided prairie hay and 

water free choice during this period.   

Before milking, a 1.0-mL injection of oxytocin (20 USP units/mL, i.m.; Phoenix 

Pharmaceutical Inc., St. Joseph, MO) was administered to each cow to facilitate milk let-

down.  Cows were then individually milked using a portable milking machine and when 

milk flow ceased from all quarters, the milking apparatus was removed and each teat was 
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hand-stripped to ensure complete emptying of each quarter.  Milk from milking machine 

was combined with milk from hand-stripping and weighed immediately following 

collection.  After thorough mixing, a 50 mL sub-sample was obtained and preserved with 

2-bromo-2-nitropropane-1,3-diol and shipped to the Heart of America DHIA (Manhattan, 

KS) for analysis of milk urea N, protein, butterfat, lactose, and solids not fat. 

Twenty-four hour milk production estimates were obtained by the following equation: 

 

P = (MW/MIN)*1440 

 

 where P = 24 h milk production, MW = weight of milk obtained from milking procedure 

described above, MIN = minutes from calf-separation to termination of milking 

procedure and 1440 = minutes in 24 h period. 

Statistical Analysis.  Cow was considered to be the experimental unit for milk 

production and milk composition analysis.  The model statement for milk production 

included supplement as a fixed effect and minutes from calf-separation to milking as a 

covariate.  The model for milk composition included supplement as a fixed effect and d 

postpartum as a covariate.  For analyses, when the P-value for the F-statistic was ≤ 0.05, 

least squares means were separated and reported using the LSD procedure of SAS (α = 

0.05). 

RESULTS AND DISCUSSION 

Experiment 1 

Cow BW and BCS.  Data for cow BW, BW change, BCS and BCS change are 

presented in Table 2.  Supplement source did not influence BW, BW change, BCS, or 
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BCS change at any of the intervals measured. Averaged across treatments, cows lost BCS 

during late gestation (0.42 units BCS) and during early lactation (0.33 units BCS). 

However, in previous work at our experiment station, Steele et al. (2007) reported 

dramatic BCS loss (1.66 units of BCS) when cows did not receive a protein supplement 

during late gestation. Therefore, even though all treatment groups lost BW and BCS 

during the experimental supplementation period, we submit that ECSM was as effective 

in minimizing BW and BCS loss as WMCSM and CSM.  As determined by a separate in 

situ analysis (Winterholler et al., 2008), the ECSM used in this study was high in RDP 

(84% of CP) and similar to RDP of solvent extracted CSM (78% of CP).  Together, these 

studies indicate that ECSM has similar value as CSM when evaluated on an equal CP 

basis and used as a supplemental protein source for beef cows consuming low-quality 

forage.  

It is widely accepted that protein is the first limiting nutrient for beef cows 

consuming low-quality forage (Kartchner, 1980; DelCurto et al., 1990a; Freeman et al., 

1992; Marston et al., 1995b).  However, as shown in the current and in previous 

experiments under similar conditions where cows consume low-quality hay (Banta et al., 

2006) or low-quality stockpiled forage (Lusby et al., 1991; Marston et al., 1995b; Steele 

et al., 2007), and protein requirements are met with a concentrated CP supplement (38 to 

54% CP, DM basis), beef cows continue to experience BCS loss during the winter 

feeding period.  Therefore, producers commonly choose a supplementation program 

similar to WMCSM, presuming that the additional energy from WMCSM versus CSM is 

needed during the winter feeding months to minimize BW and BCS loss.  However, the 

additional energy provided by WMCSM (0.75 kg/d more TDN compared to CSM) did 
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not result in reduced BW or BCS loss during the 60-d prepartum supplementation period 

in this experiment. In contrast, Marston et al. (1995b) reported increased BW and BCS 

gain during gestation when beef cows received 0.9 kg additional TDN/d in a high-energy 

supplement compared to a low-energy supplement containing equal CP. Perhaps the 

longer prepartum supplementation period of Marston et al. (1995b; approximately 120 d), 

along with slightly greater difference in energy intake increased the probability of 

detecting a significant difference due to prepartum energy supplementation.  

It has been documented that protein supplements high in fat can be detrimental to 

cow performance (Banta et al., 2006; Steele et al., 2007; Banta et al., 2008).  However, 

we did not observe any detrimental effects from interval feeding moderate levels of fat 

through ECSM.  Moreover, in a comprehensive review of available literature on fat 

supplementation, Hess et al. (2008) indicated that in order to avoid a reduction in forage 

intake and forage digestibility, fat intake should not exceed 4% of daily DMI.  In the 

present experiment, the daily feeding rate of fat in the ECSM treatment was 0.17 kg 

during gestation and 0.28 kg during lactation, resulting in a diet containing less than 4% 

fat (DM basis) during each period.  We conclude that when fed at a level to meet protein 

requirements of beef cows during late gestation and early lactation, the additional fat 

from ECSM was not supplied in a large enough quantity to negatively impact cow 

performance.  However, because ECSM is a byproduct feedstuff, nutrient composition 

can vary tremendously and should be monitored closely to avoid these potential 

detrimental effects.   

Calf Performance.  Calf birth weight was not influenced by dam’s winter 

supplement (Table 3). Likewise, there was no impact of dam’s winter supplement on 
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205-d adjusted weaning weight of calves (Table 3). These results agree with others 

showing no positive or negative impacts on weaning weights when beef cows are 

provided supplemental energy in the form of fermentable carbohydrate (Lusby et al., 

1991; Marston et al., 1995b) or in the form of fat (Alexander et al., 2002; Banta et al., 

2006; Steel et al., 2007). 

Reproductive Performance.  Data for reproductive performance is presented in 

Table 4.  Supplement type did not influence the percentage of cows exhibiting ovarian 

luteal activity (P = 0.59), AI conception rate (P = 0.82), or overall pregnancy rate (P = 

0.88). However, for non-continuous data, more experimental units would be needed to 

insure that a type II error was not present.  Marston et al. (1995b) found that providing 

supplemental energy in addition to meeting protein requirements prepartum increased 

pregnancy rate, although supplemental energy fed only during the postpartum period had 

no effect on pregnancy rate in spring calving cows.  

There is evidence that supplementation with fat sources containing high levels of 

18:2n-6 in the early postpartum period may have negative effects on reproductive rates.  

Postpartum supplementation of high-linoleate safflower seeds (255 g/d of 18:2n-6) 

increased the concentration of 18:2n-6 in the oviduct (Scholljegerdes et al., 2007), which 

potentially could negatively impact conception rate (Hess et al., 2008).   On average, 

approximately half of the fat in the residual cottonseed oil is comprised of 18:2n-6 and 

18:2n-3 (Sullivan et al., 2004).  In the current study, cows supplemented with ECSM 

consumed 280 g/d crude fat, and accordingly, the contribution of 18:2n-6 and 18:2n-3 to 

total fatty acid intake from the supplement was approximately 140 g/d from supplement 
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alone. We can only conclude that this lower level of fat supplementation (relative to 

Scholljegerdes et al., 2007) did not negatively affect conception rate.  

Experiment 2 

 Data for measurements of intake and digestibility are presented in Table 5.   Hay 

intake did not differ between WMCSM and CSM. This is somewhat surprising because 

WMCSM-fed cows were provided nearly 2 kg more supplement on a daily basis than 

CSM-fed cows. Other researchers have indicated that intake of low-quality forage was 

decreased by energy supplementation when comparing isonitrogenous supplements with 

varying energy levels (Ovenell et al., 1991; Marston et al., 1995a).  For example, Ovenell 

et al. (1991) evaluated supplementation of low-quality prairie hay fed to beef cows with 

1.36 kg soybean meal or 3.41 kg wheat middlings. The higher feeding rate of wheat 

middlings resulted in 1.1 kg per day decreased hay intake. Similarly, when comparing the 

effects of supplementation with either 1.36 kg soybean meal or 3.24 kg wheat middlings 

to beef cows consuming prairie hay, Marston et al. (1995a) reported that hay intake was 

reduced 0.90 kg per day during gestation and 0.70 kg per day during lactation.    

Hay intake tended (P = 0.10) to be reduced for ECSM-fed cows compared to 

CSM-fed cows. Similar daily quantities of CP, RDP and TDN were supplied by CSM and 

ECSM supplements (Table 1). Therefore, the primary difference in these two 

supplements was a greater contribution to TDN from fat in ECSM versus a greater 

contribution to TDN from non fiber carbohydrate and digestible NDF in CSM 

(Winterholler et al., 2008). In high roughage diets, fat supplementation reduced DMI and 

fiber digestibility when dietary fat concentration was greater than 5% (DM basis: 

Coppock and Wilks, 1991; Jenkins, 1993).  Moore et al. (1986) indicated that 4% 
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supplemental fat to steers consuming wheat straw had no negative effects on intake or 

fiber digestibility, but when fat was added at greater than 6% of DMI, regardless of fat 

source, intake and fiber digestibility were negatively impacted.  In our experiment, 

feeding d dietary lipid was 2.4% of DMI for CSM and 4.7% of DMI for ECSM; average 

daily fat intake was 2.3% of DMI for CSM and 3.9% of DMI for ECSM. Therefore, both 

the feeding d and the average daily dietary fat concentration remained below 5% in the 

ECSM supplemented cows. Perhaps more research is necessary to determine if an 

interval feeding strategy for fat-containing protein supplements exacerbates the negative 

impact that excessive supplemental fat can have on low-quality forage intake.   

Apparent digestible DMI and apparent digestible OM intake were not different 

between CSM and ECSM (P > 0.10) but were greater (P ≤ 0.02) for WMCSM compared 

to CSM and ECSM. Interestingly, WMCSM supplement supplied 1.12 kg/d more TDN 

than CSM supplement and apparent digestible OM intake was increased by 1.2 kg/d in 

WMCSM supplemented cows compared to CSM supplemented cows. Similar 

calculations for the aforementioned study of Marston et al. (1995a) showed a much lower 

ratio of DDMI to added TDN (0.34) for gestating cows, reflecting a negative impact of 

additional supplemental energy on forage DMI.  

Apparent total tract digestibility of crude fat was greatest for cows fed ECSM (P 

≤ 0.05) compared to cows fed CSM but was similar for CSM and WMCSM (P > 0.10). 

Fat intake from ECSM was 78% greater than from CSM, and was 39% greater for ECSM 

compared to WMCSM. Others have shown that supplemental fat increases the apparent 

digestibility coefficient of ether extract (Palmquist and Conrad 1978; Moore et al., 1986; 
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Aldrich et al., 1997). The partial digestion coefficient of supplemental fat was estimated 

from Experiment 2 data according to the equation suggested by Grummer (1988): 

[(extruded, expelled cottonseed meal fat intake – solvent extracted 

cottonseed meal fat intake) – (extruded, expelled cottonseed meal fat 

output – solvent extracted cottonseed meal fat output)]/(extruded, expelled 

cottonseed meal fat intake – solvent extracted cottonseed meal fat intake). 

The resulting partial digestibility of supplemental fat from ECSM was 95.2%. 

Banta et al. (2008) reported a much lower value (66.5%) when cows received 0.29 kg/d 

supplemental fat from whole soybeans. However, NRC (2001) reports true digestibility 

of vegetable oils to be 86%. Evidently, supplemental fat from ECSM was highly 

digestible under the conditions of this experiment.  

 Apparent total tract digestibility of CP, NDF, DM, and OM, were not influenced 

by supplemental treatment (P > 0.10). Therefore, neither supplemental energy from 

WMCSM nor added fat from ECSM interfered with apparent total tract digestibility of 

these dietary components.  

Experiment  3 

 Calculations of 24-h milk production during early lactation were similar among 

supplement type and averaged 6.33 kg/d (P = 0.25; Table 6).  In the study of Marston et 

al. (1995b), beef cows grazing low-quality forage were fed 1.22 kg/d of a 40% CP 

supplement or 2.44 kg/d of a 20% CP supplement during early lactation. Additional 

energy from the 20% CP supplement resulted in increased milk yield.  In the present 

study, during early lactation, intake of TDN was 39% and 44% greater for WMCSM 

compared to CSM and ECSM, respectively.  However, we were not able to detect an 
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increase in milk production with added energy from WMCSM. Lalman et al. (2000) 

reported a linear relationship between milk yield and increasing levels of energy for 

heifers fed similar amounts of CP at 60 and 90 d postpartum, but at 30 d postpartum, 

supplemental energy did not influence milk yield.  The average d postpartum of the cows 

in our study was 21.  

Composition of milk constituents, butterfat, protein, lactose, solids not fat, and 

milk urea N, were not different among supplements (Table 6; P > 0.10). These data are 

consistent with studies evaluating the effects of fat supplementation on milk production 

and composition for beef cows consuming primarily low-quality forage (Banta et al., 

2008; Alexander et al., 2002). 

 Based on the findings of this study, the additional energy supplied by WMCSM 

was not great enough to improve beef cow performance or calf weaning weight. 

Furthermore, ECSM can be effectively utilized as a supplemental protein source for 

range beef cows consuming low-quality forage. Producers should expect similar 

production responses when traditional cottonseed meal-based protein and energy sources 

are replaced with ECSM.  
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Table 1.  Supplement composition and amount of nutrients supplied daily during gestation 
   Supplement 

Item (DM basis)  WMCSM CSM ECSM 
  --------------% of DM---------------- 
Cottonseed meal  18.25 92.34 -- 
Extruded, expelled cottonseed meal -- --  93.13 
Wheat middlings  76.89 -- -- 
Calcium carbonate        1.98  3.25        1.45 
Dicalcium phosphate  --  1.47        2.58 
Molasses   2.78  2.84        2.74 
Vitamin A-30,000 IU1   0.10  0.10   0.10 
CP, %      21.2   43.0     31.1 
TDN, %      70.2   80.2     55.0 
Crude fat, %     4.48     3.31     10.2 
-------------------------------------Nutrient supplied, gestation----------------------------------------- 
DM, kg/d  2.45 1.21     1.67 
CP supplied, kg/d       0.52     0.52     0.52 
Degradable intake protein, kg/d2  0.38 0.41     0.44 
TDN, kg/d3  1.72 0.97     0.92 
Crude fat, kg/d  0.11 0.04     0.17 
-------------------------------------Nutrient supplied, lactation------------------------------------------ 
DM, kg/d  3.92 2.03     2.75 
CP supplied, kg/d  0.86 0.86     0.86 
Degradable intake protein, kg/d2  0.63 0.67     0.72 
TDN, kg/d3  2.74 1.62     1.51 
Crude fat, kg/d  0.17 0.07     0.28 
1Provided 12,258 IU of vitamin A per kg of diet DM. 
2Degradable intake protein determined by separate in situ experiment (Winterholler et al., 
2008).  
3Calculated using actual supplement chemical composition and the summative equations 
from NRC (2001).  Adjustments were included for in situ true NDF digestibility and the 
partial fatty acid digestibility coefficient from experiment 3.   
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Table 2.  Effect of winter supplement on cow BW and BCS (Exp. 1) 
 Supplement1   
Item WMCSM CSM ECSM SEM P-Value 
n =    34    31   31   
Supplementation period, d   95   95   95   
Initial BW (1/2/07), kg       531       536        538       8.00 0.83 
BW change before calving, kg2         11           2            4       3.64 0.23 
BW change after calving, kg3        -29        -31         -31       4.17 0.90 
BW change 95-d, kg4        -64        -71         -72 4.06 0.27 
BW at end of supplementation, kg  470       465 466 7.41 0.89 
BW change 301-d, kg5  -24  -31 -25 4.90 0.56 
BW at weaning (10/30/07), kg 507 505 513 7.58 0.77 
      
      
Initial BCS (1/2/07)           5.46           5.30           5.45 0.13 0.57 
BCS change before calving2          -0.46          -0.37          -0.42 0.09 0.78 
BCS change after calving3          -0.27          -0.37          -0.37 0.07 0.49 
BCS change 95-d4          -0.85          -0.82          -0.87 0.09 0.95 
BCS at end of supplementation           4.62           4.48           4.56 0.09 0.50 
BCS change 301-d5         -1.16          -1.00          -1.04 0.12 0.37 
BCS at weaning (10/30/07)          4.30           4.30           4.41 0.07 0.43 
1Supplements (DM basis) included:  1) 2.45 kg/d during gestation and 3.92 kg/d during lactation of a 
cottonseed meal and wheat middling based supplement (WMCSM); 2) 1.21 kg/d during gestation and 
2.03 kg/d during lactation of a 40% CP cottonseed meal based supplement (CSM); 3) 1.67 kg/d during 
gestation and 2.75 kg/d during lactation of an extruded, expelled cottonseed meal based supplement 
that has been delinted (ECSM). 
2Precalving measurements obtained one week prior to calving. 
3Change post-calving to end of supplementation period. 
4Change over supplementation period (1/2/07 to 4/7/07) 
5Change from beginning of supplementation to weaning (1/2/07 to 10/30/07) 
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Table 3.  Effect of winter supplement on calf performance (Exp. 1) 
 Supplement1    
Item WMCSM CSM ECSM SEM P-Value 
n =   34    31      31   
Birth weight, kg        34    36      34 0.92 0.21 
Calf weaning weight, kg2      211     215    212 3.95 0.76 
1Supplements (DM basis) included:  1) 2.45 kg/d during gestation and 3.92 kg/d during lactation 
of a cottonseed meal and wheat middling based supplement (WMCSM); 2) 1.21 kg/d during 
gestation and 2.03 kg/d during lactation of a 40% CP cottonseed meal based supplement (CSM); 
3) 1.67 kg/d during gestation and 2.75 kg/d during lactation of an extruded, expelled cottonseed 
meal based supplement that has been delinted (ECSM). 
2Weaning weight reported as 205-d weight adjusted for calf sex. 
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Table 4.  Effect of winter supplement on cow reproductive performance (Exp. 1) 
 Supplement1   
Item WMCSM CSM ECSM SEM P-Value 
n =    34    31    31   
Supplementation period, d    95    95    95   
Pre-breeding wt (5/17/07), kg  483  476  478 8.65 0.83 
Pre-breeding BCS (5/17/07)       5.0  4.8  5.0 0.10 0.15 
Luteal activity, %2      82    74    71 0.08 0.59 
AI conception rate, %3 30.4 30.4 38.1 0.10 0.82 
Pregnancy rate at weaning, %     82    84    87 0.08 0.88 
1Supplements (DM basis) included:  1) 2.45 kg/d during gestation and 3.92 kg/d during lactation of 
a cottonseed meal and wheat middling based supplement (WMCSM); 2) 1.21 kg/d during gestation 
and 2.03 kg/d during lactation of a 40% CP cottonseed meal based supplement (CSM); 3) 1.67 
kg/d during gestation and 2.75 kg/d during lactation of an extruded, expelled cottonseed meal 
based supplement that has been delinted (ECSM). 
2Percentage of cows exhibiting ovarian luteal activity at the beginning of the breeding season. 
3N for AI conception rate = 23, 23, and 21 for WMCSM, CSM and ECSM treatments, 
respectively. 
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Table 5.  Effect of early-lactation supplement on hay intake and apparent total tract digestibility of 
dietary components (DM basis; Exp. 2) 
 Supplement1   
Item WMCSM    CSM    ECSM  SEM P-value 
n =        5      6 6  -- 
Hay intake, kg●100 kg of BW-1

●d-1        2.13      2.27        2.03 0.14 0.10 
DMI, kg●100 kg of BW-1

●d-1        2.79a      2.55b        2.45b 0.16 0.02 
OM intake, kg●100 kg of BW-1

●d-1        2.60a      2.36b        2.28b 0.14 0.02 
Fecal output, kg●100 kg of BW-1

●d-1        1.25      1.24        1.19 0.06 0.70 
Digestible DMI, kg●100 kg of BW-1

●d-1        1.79a      1.54b        1.53b 0.06  0.02 
Digestible OM intake, kg●100 kg of BW-1

●d-1        1.76a      1.52b        1.50b 0.07 0.01 
      
DM digestibility, %      62.0   58.3      59.6 3.40 0.42 
OM digestibility, %      66.7     63.1      63.9 3.50 0.36 
NDF digestibility, %      64.5    59.3      62.2 3.55 0.43 
ADF digestibility, %      52.2    55.4      55.2 3.70 0.47 
CP digestibility, %      57.2    55.9      59.8 2.29 0.51 
Crude fat digestibility, %      79.8a,b    76.0a      84.8b 4.29 0.03 
1Supplements (DM basis) included (during lactation):  1) 3.92 kg/d of a cottonseed meal and wheat 
middling based supplement (WMCSM); 2) 2.03 kg/d of a 40% CP cottonseed meal based supplement 
(CSM); 3) 2.75 kg/d of an extruded, expelled cottonseed meal based supplement that has been delinted 
(ECSM). 
a,b Means within a row with different superscripts differ (P ≤ 0.05). 
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Table 6.  Effect of supplement on beef cow milk production and milk composition (Exp. 3) 
 Supplement1   
Item WMCSM CSM   ECSM SEM P-Value 
n = 20 20 20   
Butterfat, %  2.41 2.26 2.55 0.31 0.81 
Protein, %       3.09    2.90 2.97 0.08 0.18 
Lactose, % 4.98 5.07 5.02 0.06 0.61 
Solids not fat, % 9.02 8.93 8.95 0.07 0.64 
Milk urea N, mg/dl 4.36 4.35 4.46 0.53 0.48 
Milk production, kg2 6.65 5.59 6.75 0.51 0.25 
1Supplements (DM basis) included (during lactation):  1) 3.92 kg/d of a cottonseed meal and wheat 
middling based supplement (WMCSM); 2) 2.03 kg/d of a 40% CP cottonseed meal based supplement 
(CSM); 3) 2.75 kg/d of an extruded, expelled cottonseed meal based supplement that has been 
delinted (ECSM). 
2Calculated 24-hr milk production from machine milking procedure. 
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CHAPTER V 
 
 

SUPPLEMENTATION OF DRIED DISTILLER’S GRAINS WITH SOLUBLES TO 
BEEF COWS CONSUMING LOW-QUALITY FORAGE DURING LATE 

GESTATION AND EARLY LACTATION 
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ABSTRACT:  Three experiments were conducted to evaluate supplementation of dried 

distiller’s grains with solubles (DGS) to spring-calving beef cows (n = 120; 541 kg of 

initial BW; 5.1 initial BCS) consuming low-quality forage during late gestation and early 

lactation.  Supplemental treatments included (DM basis):  1) 0.77 kg/d DGS (DGSL); 2) 

1.54 kg/d DGS (DGSI); 3) 2.31 kg/d DGS (DGSH); 4) 1.54 kg/d of a blend of 49% wheat 

middlings and 51% cottonseed meal (POS); and 5) 0.23 kg/d of a cottonseed-hull based 

pellet (NEG).  Feeding rate and CP intake were similar for DGSI and POS.  In Exp. 1, 

cows were individually fed 3 d/wk until calving and 4 d/wk during lactation; total SUP 

period was 119 d.  Tall-grass prairie hay (5.6% CP, 50% TDN, 73% NDF; DM basis) 

was fed ad libitum throughout the supplementation period.   Change in cow BW and BCS 

during gestation was similar for DGSI and POS (-4.8 kg, P = 0.66 and -0.12, P = 0.28, 

respectively), and linearly increased with increasing DGS level (P < 0.01).  Likewise, 

throughout the supplementation period, BW and BCS change were similar for DGSI and 

POS (-71 kg, P = 0.51 and -0.60, P = 0.08) and increased linearly with respect to 

increasing level of DGS (P < 0.01).  The percentage of cows exhibiting luteal activity at 

beginning of breeding season (56%; P = 0.31), AI conception rate (40% P = 0.62), or 

pregnancy rate at weaning (88%; P = 0.74) were not influenced by supplementation.  In 

Exp. 2, 30 cows from a separate herd were used to evaluate the effect of DGS on hay 

intake and digestion.  Supplementation improved all digestibility measures compared to 

NEG.  Hay intake was not influenced by level of DGS (P > 0.10); digestibility of NDF, 

ADF, CP, and fat linearly increased with increasing level of DGS.   In Exp. 3, milk 

production and composition was determined for cows (n = 16/trt) of similar d post-

partum from Exp. 1.  Daily milk production was not influenced by supplementation (6.34 
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kg/d; P = 0.25).  Butterfat (2.1%) and lactose (5.0%) were not different (P > 0.10).  Milk 

protein was linearly increased as DGS increased (P < 0.05) and was greater for DGSI 

compared to POS.  Similar cow performance was achieved when cows were fed DGS the 

same rate and level of CP as a traditional cottonseed meal-based supplement.  Increasing 

amounts of DGS did not negatively influence forage intake or diet digestibility.   

 

  Key words:  beef cow, distiller’s grains, supplementation 
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INTRODUCTION 

 Supplementation of degradable intake protein (DIP) to beef cows is necessary 

during the winter months in the Southern Great Plains, when forage quality is low, to 

maintain cow BW and BCS (DelCurto et al., 1990; Lusby et al., 1991; Marston et al., 

1995).  Protein supplementation programs in this region rely on the use of traditional 

feeds such as cottonseed meal or soybean meal.  However, the corn-based ethanol 

industry has recently expanded, creating an abundance of dried distiller’s grains with 

solubles (DGS).  With a few exceptions, the nutrient profile of DGS (33% CP, 10% fat, 

87% TDN, 0.87% P; DM basis) indicates that it has potential value as a supplement for 

beef cattle consuming low-quality forage. 

The contribution of DIP from DGS (approximately 50%) is lower than supplied 

from traditional feeds (Waller et al., 1980; MacDonald et al., 2007; Winterholler et al., 

2008).  The first-limiting nutrient for beef cattle consuming low-quality forage diets is 

DIP (Köster et al 1996; Mathis et al., 1999; Bandyk et al., 2001); compared to traditional 

feeds, feeding a similar level of DGS may result in a deficiency of DIP.  Additionally, the 

fat content of DGS is 10-14%, this is higher than traditionally supplemented feeds (1-3% 

fat, NRC, 1996).  For cattle consuming forage-based diets, high fat concentrations reduce 

DMI and fiber digestion (Moore et al., 1986; Jenkins, 1993; Hess et al., 2008).  Of final 

concern, the majority of cow/calf operations in the Southern Great Plains have adopted 

interval-feeding strategies to deliver supplements to reduce labor and fuel cost.  We are 

unaware of studies that have evaluated DGS in an interval feeding scenario.  

Previous research using DGS as a supplement in beef cow production systems is 

limited; yet available literature indicates a favorable response to DGS as a replacement 
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for traditional supplemental feedstuffs such as cottonseed meal, wheat middlings and 

soybean meal.  At isonitrogenous and isocaloric intake compared to sunflower meal, 

DGS was an effective supplement for beef cows grazing corn stalks (Doering Resch, 

2005).  We are aware of no research evaluating supplementation with DGS for beef cows 

consuming low-quality forage.  This study was conducted to determine the efficiency of 

replacing common supplemental ingredients in an interval feeding system with DGS as a 

protein and energy source.  A second objective was to determine the effects of different 

DGS feeding amounts.  

MATERIALS AND METHODS 

Experiment 1 

 Animals.  This experiment was conducted at the Range Cow Research Center, 

North Range Unit located approximately 16 km west of Stillwater, OK, in accordance 

with an approved Oklahoma State University Animal Care and Use Committee protocol.  

Spring-calving Angus and Angus x Hereford crossbred beef cows (n = 120; 541 ± 78 kg 

of initial BW; 5.1 ± 0.73 initial BCS) were assigned randomly to 1 of 5 dietary 

supplements for a completely randomized design.  Cows were ranked by BW and BCS 

and randomly allocated so that BW and BCS were similar across all treatments.  

Experimental supplementation began on December 6, 2007 and terminated on April 3, 

2008 which encompassed both late gestation and early lactation (average calving d = 

March 21); the total supplementation period was 119 d.  Because this study encompassed 

early lactation, once each cow had calved, feeding levels were increased following 

parturition to meet nutrient demands for lactation.    
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 Supplements (DM basis) included:  1) 0.77 kg/d during gestation and 1.35 kg/d 

during lactation DGS (DGSL); 2) 1.54 kg/d during gestation and 2.68 kg/d during 

lactation DGS (DGSI); 3) 2.31 kg/d during gestation and 4.02 kg/d during lactation DGS 

(DGSH); 4) 1.54 kg/d during gestation  and2.68 kg/d during lactation of a blend of 49% 

wheat middlings and 51% cottonseed meal (POS) and 5) 0.23 kg/d during gestation of a 

cottonseed-hull based pellet and 4.02 kg/d during lactation DGS (NEG).  All 

supplements were fed loose, and were formulated so that DGSI and POS provided equal 

CP and DMI (Table 1).   

A barn containing 32 individual feeding stalls was used to insure that each cow 

received the assigned supplement and that cows did not consume more supplement than 

their designated amount.  During late gestation, cows were fed on Monday, Wednesday 

and Friday mornings.  The amount of supplement fed on each of these 3 d was 

determined by calculating the amount of supplement needed per wk (daily supplement 

amount x 7 d) and dividing that amount by 3 (i.e., cows receiving POS were fed 3.59 

kg/feeding; DM basis).  Once each cow had calved, her supplement frequency was 

increased to 4 times per week to meet nutrient demands of lactation and during this time, 

supplements were individually fed on Monday, Wednesday, Friday and Saturday 

mornings, which resulted in approximately a 57% increase in the amount fed weekly.  

The amount of supplement fed on each of these 4 d was determined by calculating the 

amount of supplement needed per wk (daily supplement amount x 7 d) and dividing that 

amount by 4.  To avoid the detrimental effects of no supplementation on reproduction, 

once NEG cows had calved, they were fed the same diet as DGSH to meet nutrient 

demands for lactation and help cows achieve adequate BCS at the beginning of the 
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breeding season.  Therefore, all data presented for NEG during lactation and performance 

measurements obtained beyond lactation represent the effects of nutrient restriction 

during gestation followed by a brief re-feeding interval from parturition until April 3.   

Individual cow BW and BCS were determined at the start of the experimental 

supplementation period (12/6/2007), after the first 30-d of supplementation (1/10/2008), 

before any cows had calved (2/28/2008), late-calving cows only (3/30/2007), following 

parturition, at trial termination (4/03/2008), prior to breeding (5/19/2008) and at weaning 

(10/15/2008). All BW were recorded after 16-h withdrawal from feed and water.  Body 

condition scores (scale 1 through 9; Wagner et al., 1988) were determined by the same 

two independent evaluators throughout the experiment. 

 During gestation, cows were managed as a contemporary group in a single pasture 

(46 hectares) with free choice access to tall-grass prairie hay (5.6% CP; 50% TDN; 73% 

NDF; 1.9% crude fat; DM basis) and a high Ca mineral supplement (25.15% NaCl; 

19.62% Ca; 5.65% P; 1.08% Mg; 1037 ppm Cu; 12 ppm Se; 3076 ppm Zn; DM basis).  

At calving, cow/calf pairs were moved to an adjacent pasture (31 hectares) where they 

were managed as a contemporary group.  Cow/calf pairs had ad libitum access to the 

same prairie hay and mineral supplement as described previously and were provided 

adequate amounts of experimental supplements to meet the protein and energy 

requirements for lactation until green forage became available (April 3, 2008).  Pastures 

used during the supplemental phase had been previously grazed during spring and 

summer, and consequently in combination with the heavy stocking rate during the 

supplemental feeding period, grazed forage contributed minimally to DM intake. 
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 The assessment of N status was estimated during gestation and lactation by 

measuring serum urea N during each phase.  Immediately following blood collection, 

samples were placed on ice and then allowed to clot for 24 hr at 4o C.  After 

centrifugation (1,500 x g for 20 min), sera were harvested and stored at -20° C for 

subsequent analysis of serum urea N.  Serum urea N concentration was measured using a 

commercially available kit (Teco Diagnostics, Anaheim, CA) and a microplate reader at 

620 nM (96 well plate).   

The percentage of cows cycling at the beginning of the breeding season was 

determined by quantifying progesterone concentration (Vizcarra et al., 1997) in plasma 

samples obtained via tail venipuncture 14 and 7 d prior to breeding and again on the first 

d of the breeding season.  Immediately following blood collection, tubes were placed on 

ice until plasma was harvested for analysis of progesterone concentrations.  Cows with 

one or more plasma samples containing ≥ 0.5 ng/mL progesterone were considered to 

have ovarian luteal activity.  Cows were artificially inseminated from May 19 through 

June 14, 2008, followed by natural mating from June 23 through July 21, which resulted 

in a 63-d breeding season.  Cows were observed each morning and evening for 1 h to 

detect standing estrus; all cows exhibiting standing estrus were artificially inseminated 

approximately 12 h following observation of estrus.  First service conception rate was 

determined by transrectal ultrasonography approximately 35 d after AI; overall 

pregnancy rate was determined by rectal palpation at weaning on October 15, 2008. 

 Birth weight of each calf was determined within 24 h of birth and all male calves 

were castrated at this time.  Calf BW was also obtained on May 5, 2008, June 5, 2008 and 
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at weaning on October 15, 2008.  Weaning weights are reported as a 205-d weight, 

adjusted for sex according to the guidelines of the Beef Improvement Federation (2002). 

 Statistical Analysis.  For all statistical analysis, cow was considered the 

experimental unit because supplements were fed individually to each cow.  Continuous 

data were analyzed as a completely randomized design using the MIXED procedure of 

SAS (SAS Inst. Inc., Cary, NC) and the Satterwaite approximation for degrees of 

freedom.  The model for cow performance included supplemental treatment as a fixed 

effect and cow age and d on supplementation prior to calving as covariates.  Preplanned 

contrasts included no supplementation vs. supplementation and DGSI vs. POS.  Linear 

and quadratic orthogonal polynomial contrasts were evaluated for feeding levels of DGS.  

For lactation, the contrast for no supplementation vs. supplementation was not included 

in the analysis as the NEG treatment was removed during lactation.   For all analysis, 

differences in treatment means were assessed at α = 0.05.   

Data for blood urea N were analyzed as a completely randomized design using the 

MIXED procedure of SAS.  Preplanned contrasts included no supplementation vs. 

supplementation and DGSI vs. POS.  Linear and quadratic orthogonal polynomial 

contrasts were evaluated for feeding levels of DGS.  For lactation, the contrast for no 

supplementation vs. supplementation was not included in the analysis as the NEG 

treatment was removed during lactation.   For all analysis, differences in treatment means 

were assessed at α = 0.05. 

Data for reproductive performance were analyzed using the Glimmix procedure of 

SAS, assuming a binomial distribution and supplement served as a fixed effect.  Least 
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squares means are reported in all tables except for the percentages of cows exhibiting 

luteal activity, pregnancy rate, and first service conception rate which are raw means.   

Experiment 2 

 Animals.  This experiment was conducted at the Range Cow Research Center, 

North Range Unit located approximately 16 km west of Stillwater, Oklahoma in 

accordance with an approved Oklahoma State University Animal Care and Use 

Committee protocol.  Thirty cows in mid-gestation from a separate cow herd were used 

to determine the effects of DGS supplementation on hay intake and apparent total tract 

digestibility.  Cows were randomly assigned to one of two collection periods in a 

randomized complete block design.  Three cows from each treatment combination were 

represented during each period.  Cows were given ad libitum access to the same prairie 

hay that was fed in Exp. 1 and were also kept on the same feeding regimen as gestating 

cows in Exp. 1 (Monday, Wednesday, and Friday mornings) during Exp. 2.  Cows were 

maintained in individual outdoor 3.7 x 9.1-m pens so that they would be exposed to the 

same environmental conditions as cows in Exp. 1.   

 Each 16-d period consisted of 7 d of adaptation to the diet, pens and hay feeders 

and 9 d of data collection.  Hay intake was measured from d 8 through d 14 and fecal 

grab samples were collected twice daily at 0800 and 1600, from d 10 through d 16 to 

estimate fecal output from acid detergent insoluble ash concentration.  Sub-samples of 

supplements, hay, and orts were dried at 100oC to determine DM.  Supplement, hay, ort, 

and fecal samples were dried at 50oC and ground in a Wiley mill (Model-4, Thomas 

Scientific, Sweedesboro, NJ) to pass a 2-mm screen before analysis.  After grinding, 

supplement and hay samples were composited within period; ort and fecal samples were 
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composited by cow.  All composite samples were analyzed for NDF, ADF, CP, crude fat, 

GE and acid detergent insoluble ash concentration.  Neutral detergent fiber and ADF 

content were determined using an ANKOM Fiber Analyzer (ANKOM Technology, 2009 

a, b).  Crude protein was determined using a Leco NS-2000 Nitrogen Analyzer (Leco 

Corporation, St. Joseph, MI) as described by Bilous (1999), crude fat was determined by 

ether extraction (AOAC, 1996), and acid detergent insoluble was determined as the 

residue following complete combustion of the ADF residue (Van Soest et al., 1991).  The 

GE of the supplements, hay, orts and feces were determined using an isoperibol bomb 

calorimeter (model number 1281, Parr Instrument Co., Moline, IL).  The P of the 

supplements, hay, orts and feces were determined by Dairy One Forage Testing 

Laboratory, Ithaca, NY.  Apparent total tract DM, OM, CP, GE, and crude fat 

digestibility as well as NDF and ADF digestibility were calculated for each cow.  

Additionally, digested DMI (DMI kg/100kg of BW x DM digestibility), digested OM 

intake and DE intake were calculated for each cow. 

 Statistical Analysis.  Intake and digestibility measurements were analyzed as a 

randomized complete block design using the MIXED procedure of SAS (SAS Inst. Inc.) 

and Satterwaite approximation for degrees of freedom.  The model included supplement 

as a fixed effect and collection period as a random variable.  Preplanned contrasts 

included no supplementation vs. supplementation and DGSI vs. POS.  Linear and 

quadratic orthogonal polynomial contrasts were evaluated for feeding levels of DGS.  For 

all analysis, differences in treatment means were assessed at α = 0.05. 
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Experiment 3 

 Animals.  This experiment was designed to evaluate the effects of supplemental 

nutrient source on milk yield and composition.  Milk production was determined using 

the weigh-suckle-weigh method.  Sixteen cows of similar d post-partum from each 

treatment described in Exp. 1 were used in the analysis.  The evening prior to the 

experiment, all calves were isolated from their dams at 1800 and the following morning 

at 0545, calves were reunited with cows and allowed to nurse until the udder was 

completely empty.  Following nursing, calves were again separated from dams and at 

1145, calves were weighed and reunited with dams to nurse.  Following nursing, calves 

were weighed again and the difference in BW corresponded to a 6-h estimate of milk 

production for the cow.  After being weighed, calves were again separated from dams and 

the same procedure was repeated at 1745 to obtain another 6-h estimate of milk 

production.  The two estimates of 6-hr milk production were used to extrapolate a 24-h 

milk production estimate.  Additionally, milk production of the entire cowherd was 

evaluated by calf BW obtained on May 5, 2008, June 5, 2008 and at weaning on October 

15, 2008.   

 The same cows used in the weigh-suckle-weigh procedure were used to determine 

the effects of DGS supplementation on milk composition by machine milking.  The 

experimental procedures for evaluating milk composition were adapted from Marston et 

al. (1992) and took place over a 5-d period.  Prior to milking each d, pairs were gathered 

at approximately 1600.  The calves were then separated from their dams until 2200 when 

pairs were reunited with calves and were allowed to nurse their dams ad libitum, but for < 

45 min.  Following nursing, cows and calves were separated again until milking was 
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completed.  Milking was initiated at 0700 the following morning and was completed by 

1300.  Cows were provided prairie hay and water free choice during this period.  

 Before milking, 1.0 mL of oxytocin (20 USP units/mL, i.m.; Phoenix 

Pharmaceutical Inc., St. Joseph, MO) was administered to each cow to facilitate milk let-

down.  Cows were then individually milked using a portable milking machine and when 

milk flow ceased from all quarters, the milking apparatus was removed and each teat was 

hand-stripped to ensure complete emptying of each quarter.  Milk collected from the 

milking machine was combined with milk from hand-stripping.  After thorough mixing, a 

50 mL sub-sample was obtained and preserved with 2-bromo-2-nitropropane-1,3-diol and 

shipped to the Heart of America DHIA (Manhattan, KS) for analysis of milk urea N, 

protein, butterfat, lactose and solids not fat.   

 Statistical Analysis.  Cow was considered to be the experimental unit for milk 

production and composition analysis.  The model statement for milk production included 

supplement as a fixed effect and cow age as a covariate.  The model for milk composition 

included supplement as a fixed effect and d post-partum as a covariate. Preplanned 

contrasts included no supplementation vs. supplementation and DGSI vs. POS.  Linear 

and quadratic orthogonal polynomial contrasts were evaluated for feeding levels of DGS.  

For lactation, the contrast for no supplementation vs. supplementation was not included 

in the analysis as the NEG treatment was removed during lactation.   For all analysis, 

differences in treatment means were assessed at α = 0.05. 
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RESULTS AND DISCUSSION 

Experiment 1 

 Cow BW and BCS.  Data for cow BW, BW change, BCS and BCS change are 

presented in Table 2.  Feeding increasing amounts of protein and energy from DGS 

resulted in a linear reduction (P < 0.01) in BCS loss over the 119-d supplementation 

period with respect to feeding level of DGS, and cows fed DGSH maintained the greatest 

BCS during this period (P < 0.05).  Change in BCS during gestation and over the 119-d 

supplementation period was the same for DGSI and POS (P = 0.22). There was a greater 

reduction in BCS for DGSI and POS compared to DGSH, however this decrease (-0.60 

units of BCS) left cows in an acceptable BCS (4.54) at the end of the supplementation 

period.   

Using the NRC (1996) model, supplemental DIP differed among DGSI and POS 

as intake of DIP was greater for POS (Table 1).  In the NRC (1996) model, we used 

actual hay intake data obtained from Exp. 2, and TDN content of each diet to predict 

microbial efficiency.  During gestation, the DIP balance for DGSI was 9 g/d whereas 

POS was 107 g/d, illustrating that DGSI was marginal in meeting DIP requirements.  

Despite this, we observed similar performance responses for DGSI and POS suggesting 

that DGSI cows were able to recycle an adequate amount of N back to the rumen to 

overcome a potential deficiency (Wickersham et al., 2008 a, b).  Beyond this, cows 

receiving DGSI were fed an additional 0.31 kg/d TDN compared to POS.  Thus, we 

conclude that the ability of the cow to recycle N in a marginally deficient state as well as 

the additional energy from DGS was enough to achieve similar performance for cows 

consuming equal amounts of DGS and POS.   
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Previous work at our research station showed that supplementation with high fat 

protein feeds reduced cow performance (Banta et al., 2006; Steele et al., 2007; Banta et 

al., 2008).  In a scenario very similar to the present study, when cows were interval fed 

whole sunflower seeds that supplied 8.0% of dietary lipid (0.94 kg/d; DM basis) on 

supplementation d, cow BW and BCS were reduced during the supplementation period 

(Banta et al., 2006).   Likewise, cow BW was lower for cows interval fed drought 

stressed soybeans during gestation; however, BCS was not different compared to a 

positive control (Steele et al., 2007).  In the study of Steele et al. (2007), 0.35 kg/d (DM 

basis) supplemental fat was supplied on the d of supplementation.   

In the present study, we did not observe a deleterious effect of supplying 

supplemental fat from the interval feeding of DGS.  In a recent review, Hess et al. (2008) 

indicated to avoid the potential negative impacts of fat supplementation; it is 

recommended that added fat be included at no more than 3% of diet DM for cattle.  For 

our experiment, prairie hay intake for cows during gestation averaged 2.57% of BW for 

cows fed DGS.  Based on this level of hay intake, during gestation, daily fat intake was 

3.3% of diet DM with 1.7% added fat from DGS for DGSH cows, and on the d that cows 

were supplemented, fat intake accounted for 4.7% of diet DM with 3.4% added fat from 

DGS.  For lactation, assuming hay intake was 3.0% of BW, daily fat intake was 4.0% of 

DM with 2.5% added fat from DGS and was 5.3% of diet DM on the d that cows were 

supplemented, with 4.3% added fat from DGS for DGSH cows.     

As expected, for NEG cows during gestation, BW and BCS loss was substantially 

greater than supplemented cows.  It has been previously documented that cows not 

receiving a protein supplement during the winter months in similar conditions suffer a 
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dramatic loss in BCS (1.66 units of BCS; Steel et al., 2007).  In the present study, NEG 

cows lost 0.82 units of BCS during gestation.  Once NEG cows had calved, they were fed 

DGSH to help achieve an adequate BCS prior to breeding.  The average calving d for 

NEG was February 29, 2008 and 5 NEG cows calved after the termination of 

supplementation on April 3, 2008.  The average d on supplementation during lactation for 

NEG was 34.  During this time, BCS loss was similar among treatments (0.34 units of 

BCS).  Although by feeding DGSH, NEG cows received 1.2x maintenance requirements 

for lactation, this level and duration of feeding was not great enough to overcome nutrient 

restriction during gestation as BCS for NEG cows was lower than other supplemental 

treatments after the 119-d supplementation period.    

The NRC (1996) recommends that S intake not exceed 0.40% of diet DM as a 

means to avoid a potential reduction in performance or S induced polioencephalomalacia.  

If prairie hay intake was 3.0% of BW for DGSH cows during lactation, S intake was 

approximately 0.25% of diet DM on the d that cows were supplemented.  Additional S 

from DGS was not supplied in a large enough quantity to be detrimental.  However, S 

concentration of DGS can vary substantially (Spiehs et al., 2002), and additional S 

sources, such as water, should be monitored and accounted for when feeding DGS.   

Calf performance.  Calf birth weight was influenced by pre-partum 

supplementation and was linearly increased with respect to increasing levels of DGS 

(Table 3).  The influence of pre-partum supplementation on calf BW has been well 

researched and results are mixed.  Some report that calf BW is related to pre-partum 

plane of nutrition, (Wiltbank et al., 1962; Houghton et al., 1990; Spitzer et al.,1995), 

whereas others report no difference (Hough et al., 1990; Wiley et al., 1991; Lake et al., 
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2005).  Interestingly, in the present study, calf birth weight was similar for POS and NEG 

(P = 0.74), and was lower compared to DGSI (P < 0.05).  Perhaps the added energy from 

DGS was partitioned to support fetal growth.   

Calf BW increased linearly (P = 0.06) with increasing level of DGS at 

approximately 60 d of age and at approximately 90 d of age (P = 0.07).  Similarly, 

Lalman et al. (2000) indicated that 90 d calf ADG was linearly related to supply of post-

partum supplemental energy. Also, Perry et al. (1991) indicated that calf BW at 70 d was 

related to intake of energy post-partum.  However, by weaning, 205-d adjusted BW was 

similar among treatments. 

 Reproductive Performance.  Data for cow performance at the initiation of the 

breeding season is provided in Table 2 and reproductive data is provided in Table 4. At 

the beginning of the breeding season, BCS was higher for DGSH compared to other 

experimental supplements (P < 0.05), but had no bearing on reproductive performance.  

Supplementation of DGS had no influence on the percentage of cows exhibiting ovarian 

luteal activity (P = 0.31), AI conception rate (P = 0.62), or overall pregnancy rate (P = 

0.74), but for non-continuous data, additional experimental units would be necessary to 

ensure that a type II error was not present.   

 Previous research with the influence of supplementation with DGS on 

reproductive performance is favorable.  Engle et al. (2008) indicated that 

supplementation with approximately 40% DGS to ground hay from d 190 of gestation 

through calving did not influence the percentage of cows in estrus at the beginning of the 

breeding season but did increase final pregnancy rate compared to a positive control.  

Likewise, Martin et al. (2007) indicated that supplementation of 0.60% BW of DGS to 
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prairie hay for developing beef heifers increased AI conception rate as well as pregnancy 

rate by AI.  The authors of these studies speculated that the increased reproductive 

performance by DGS may be linked to the supply of MP, fat, or the interaction of the 

two; however, data evaluating the effects of these two variables on reproduction are 

mixed. 

 Body condition score at the beginning of the breeding season was lowest for NEG 

(P < 0.01); however, we did not observe a negative effect of pre-partum nutrient 

restriction on reproductive performance.  As mentioned earlier, these cows were not 

supplemented during gestation but were switched to receive DGSH during lactation.  It is 

apparent that the NEG cows were able to achieve a positive energy balance from the 

additional MP and energy from DGS as ovarian luteal activity was similar for these cows 

compared to other supplemental treatments.   Houghton et al. (1990) indicated that return 

to estrus was similar for cows fed a low energy diet during gestation followed by a high 

energy diet during lactation as compared to supplying moderate to high energy during 

both periods.   

 Of additional concern with respect to the influence of DGS on reproductive 

performance is the potential negative effects caused by feeding excess CP.  In dairy 

rations, feeding high levels of both DIP and undegradable intake protein caused a 

reduction in uterine pH which could have consequently had detrimental impacts on 

embryo survival (Elrod and Butler, 1993; Elrod et al., 1993).  Despite these previous 

findings, in the present study, reproductive performance was similar among cows fed 

increasing levels of DGS compared to a positive control.  

 



 115

Blood Urea Nitrogen 

Data for blood urea N (BUN) during gestation and lactation are presented in 

Table 5.  To gain a better understanding of how the beef cow uses N from DGS, BUN 

was measured both during gestation and during lactation.  The concentration of BUN was 

higher during lactation compared to gestation (P < 0.01) for all supplemental treatments; 

we attribute this to increased levels of CP as BUN concentration is related to N intake 

(Jordan et al., 1983; Rusche et al., 1993; Sletmoen-Olson et al., 2000).   

Urea is an indication of N status as urea level is related to concentrations of 

ruminal ammonia (Hennessy and Nolan, 1988), and is an indicator of N economy as urea 

is a byproduct of unused ruminal ammonia.  Ruminal N is vital for synthesis of microbial 

cell protein and the use of N for microbial protein synthesis is dependent upon energy 

intake.  If excess N is supplied in relation to energy, ammonia will be lost from the rumen 

and converted into urea in the liver.  Urea has the potential to be recycled back to the 

rumen through saliva or diffusion across the rumen, or will be excreted.  Higher 

concentrations of BUN and milk urea N are typically related to inefficient use of N 

(Hammond, 1997).  During both gestation and lactation, BUN concentration was greater 

for POS vs. DGSI (P < 0.01).   

Sletmoen-Olson (2000) evaluated the influence of N intake on BUN 

concentrations during gestation and lactation and with respect to increasing time within 

each period.  Findings from their study support our findings of which concentrations of 

BUN were greater for beef cows during lactation compared to gestation, and this increase 

was partially related to level of N intake.  Interestingly, Sletmoen-Olson (2000) indicated 

that as time in lactation advanced, up to 3 mo, BUN concentrations were decreased 
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suggesting that as milk production increased, N recycling to the rumen increased to meet 

increased nutritional needs during lactation.  At the time of BUN sampling in our study, 

cows were in early lactation (1 mo or less). 

Moore et al. (1999) investigated the relationship between supplemental energy 

and protein and indicated that the optimum ratio of energy to protein (DOM:CP) was 7:1 

for cattle on forage-based diets.  Based on the data from Exp. 3, during gestation, the 

DOM:CP ratio was approximately 8 for POS and 9 for DGSI .  Blood urea N 

concentrations for DGSH and POS were similar (P = 0.66 and P = 0.90 for gestation and 

lactation, respectively) despite a higher CP intake with DGSH.  Perhaps additional energy 

from DGSH facilitated a greater production of microbial cell protein as evidenced by 

similar BUN for DGSH and POS (P > 0.10) .  Data on the effects of ruminal protein 

degradability on BUN concentrations is mixed.  In an N deficient state, Hennessey and 

Williamson (1990) indicated that BUN was lower for steers and heifers supplemented 

with ruminally protected casein compared to urea, and the lower BUN for casein 

translated to an increased ADG.  Additionally, Ruche et al. (1993) reported that BUN 

was increased by a more highly degradable N source.  However, when adequate N was 

supplied, Roseler et al. (1992) demonstrated that BUN was increased to the same 

magnitude when either DIP or undegradable intake protein was supplied in excess.  Many 

biological factors can influence BUN measurements, however, based on both our cow 

performance data as well as BUN concentrations, we have evidence that N use from DGS 

was more efficient compared to a blended cottonseed meal/wheat middlings supplement.     
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Experiment 2 

 Data for measurements of hay intake and digestibility are presented in Table 6.  

Supplementation increased hay intake (P < 0.01), but was not different among level of 

DGS or POS and averaged 2.5% of BW.  Previous research with supplementation of 

DGS in growing cattle has resulted in a linear decrease in forage intake with respect to 

increasing feeding levels of DGS (Loy et al., 2007; Morris et al., 2007; Winterholler et 

al., 2007).  Intake of chopped grass hay (8.2% CP; 56% in vitro OM disappearance) was 

reduced by 0.50 kg for each kg of DGS consumed at feeding levels of up to 0.60% BW 

(Loy et al., 2007).  Similarly, Morris et al. (2007) reported that DGS reduced the intake 

of both low and high-quality bromegrass hay by growing heifer calves supplemented with 

up to 0.95% of BW with DGS replacing 0.32 kg of low-quality hay and 0.53 kg of high-

quality hay. Winterholler et al. (2007) fed increasing levels of DGS, up to 1.65% of BW 

DGS to weaned calves, and reported that intake of low-quality prairie hay was reduced 

by 0.34 kg for each kg of supplemental DGS.   

According to the aforementioned study of Morris et al. (2007), forage quality 

influenced the magnitude of the substitution ratio (DGS:forage), with a greater ratio for 

high-quality forage compared to low.  In the study of Winterholler et al. (2007), forage 

supplied was of similar composition to that used in this study, but the feeding range of 

DGS was much higher than in this experiment.  As a percentage of BW, DGS intake for 

DGSH corresponded to approximately 0.50% BW.  Perhaps we did not observe a 

reduction in intake of prairie hay by DGS because our feeding range was lower than 

aforementioned studies with low-quality prairie hay.  In addition, animal age and stage of 
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production could have influenced substitution rate as we are aware of no data that reports 

of the influence of forage intake by DGS supplementation in mature, gestating beef cows.   

 Apparent digestible DMI and apparent OM intake were increased by 

supplementation (P < 0.01). Apparent digestible DMI was similar for DGSL and DGSI 

(P > 0.10) and was similar for POS and DGSH (P > 0.10).  Digestible OM intake was 

highest for POS, DGSI and DGSH; DGSL was similar to NEG (P > 0.10).  This is 

interesting because cow performance was greater for DGSH compared to POS although 

digestible OM intake was similar among the two.  To help explain this, difference in DE 

intake was not statistically significant, but was numerically greater (1.12 Mcal DE/100 kg 

BW) for DGSH vs. POS.  We suspect this difference would be significant with a more 

sensitive model and attribute the increase in cow performance of DGSH to greater intake 

of DE.     

Apparent digestibility of crude fat increased with increasing level of DGS and 

was higher for both DGSI and DGSH compared to POS (P < 0.05).  Fat intake was 83% 

greater from DGSH compared to POS and was 63% greater for DGSI than POS. This 

agrees with other work indicating that apparent digestibility of crude fat is increased with 

intake of supplemental ether extract (Palmquist and Conrad, 1978; Moore et al., 1986; 

Winterholler et al., 2008).  Also, the partial digestion coefficient of supplemental fat was 

estimated from Exp. 2 data according to the equation suggested by Grummer (1988): 

[(dried distiller’s grains with solubles fat intake – solvent extracted cottonseed 

meal/wheat middlings blend fat intake) – (dried distiller’s grains with solubles fat 

output – solvent extracted cottonseed meal/wheat middlings blend fat output)]/ 
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(dried distiller’s grains with solubles fat intake – solvent extracted cottonseed 

meal/wheat middlings blend fat intake). 

 The resulting partial digestibility of supplemental fat from DGSI was 96.7% and 

for DGSH was 95.7%.  We realize that the calculation for DGSH may have been 

influenced by a greater CP intake of DGSH relative to POS which could potentially 

influence this comparison.  A similar calculation yielded a value of 92.5% when cows 

were provided 0.11 kg/d supplemental fat from extruded, expelled cottonseed meal 

(Winterholler et al., 2008).  The values we obtained in this experiment indicate that 

supplemental fat from DGS was highly digestible.   

 Digestibility of ADF and NDF were increased with increasing supplementation 

level (P < 0.05), and can be attributed to the greater intake of highly degradable ADF and 

NDF supplied by increasing level of DGS supplement.  Others have reported that 

apparent total tract digestibility of ADF and NDF was increased by increasing levels of 

highly-fermentable dietary fiber (Tjardes et al., 2002a; Tjardes et al., 2002b).  Moreover, 

methionine is a key amino acid for microbial growth and the optimum fermentation of 

substrates and requires S for synthesis (Huber, 1988).  The addition of various 

concentrations of supplemental S has either enhanced fiber digestibility (Evans and 

Davis, 1966; Barton et al., 1971), or has not influenced digestibility of fiber (Momont et 

al., 1993).  In the aforementioned studies, S source, diet and experimental procedures 

were variable.  Aside from additional ADF from additional supplemental DGS, the higher 

S intake of DGSH may also have had a positive impact on increasing digestibility of 

ADF.  We realize that NDF digestibility was not influenced by DGS, but submit that 
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additional research evaluating the influence of additional S from DGS on fiber 

digestibility is warranted.  

The digestibility of CP was increased as level of supplemental protein was 

increased (P < 0.01).  This finding agrees with others (Guthrie and Wagner, 1988 and 

Köster et al., 1996).  Both DM digestibility and DE were increased (P < 0.01) by 

supplementation but were similar (P > 0.10) among supplement type.   

Diet intake and digestibility measurements were not different for DGSI and POS.  

Likewise, cow performance from Exp. 1 was similar among these two supplement types.  

The composition of these supplements resulted in differences in DIP balance according to 

the NRC Level 1 model (1996).  The POS cows received 110 g DIP above requirements 

whereas DIP requirements for DGSI were met.  Balance of MP was slightly higher for 

DGSI (370 g/d) compared to POS (330 g/d).  The intermediate feeding level of DGS 

supplied 0.28 kg/d more TDN compared to POS, but was not large enough to influence 

DE intake.  It is apparent that DGSI cows were able to recycle adequate quantities of N to 

meet microbial requirements as evidence by performance responses from both Exp. 1 and 

the digestibility measurements calculated in this experiment.   

Data for fecal excretion of P are also provided in Table 6 and P excretion was 

highest for DGSH and POS.  Concentration of P in DGS was 0.87% and was 1.05% for 

POS resulting in a P intake from supplements of 17.14 and 21.43 g/d P from POS and 

DGSH, respectively.  Excretion of P was similar among NEG, POS and DGSH POS (P = 

0.41).  The placebo supplement that NEG cows received contained 5.37% P from 

dicalcium P, resulting in an intake of 13.18 g/d of P from the supplement.  Ruminal 

solubility of P is dependent on P source, and P will pass to the abomasum for absorption 
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if not dissolved in the rumen (Witt and Owens, 1983).  Though we cannot make a definite 

conclusion with respect to the availability of P in DGS because the difference in P 

excretion for DGSH and POS was not significant, it seems as though the processing 

procedures of DGS could potentially influence the availability of P to the ruminant. With 

increasing cost of P supplementation, this is an area which merits further investigation. 

Experiment 3 

Data for milk production are presented in Table 8.  Calculations for 24-h milk 

production were not different (P = 0.68) among experimental treatments; however, for 

increasing levels of DGS, we detected a numerical increase (P = 0.13) in milk production 

with respect to increasing feeding levels of DGS.  Others have reported a relationship 

between energy intake and increased milk production (Wilson et al., 1969; Marston et al., 

1995; Lalman et al., 2000).  Lalman et al. (2000), milk production increased linearly with 

increasing energy at 60 d post-partum, but not at 30 d.  In our study, the average d post-

partum was 29, and may have influenced our ability to detect a statistically significant 

change in milk production as peak milk production is typically achieved within the range 

of 50-70 d post-partum (Clutter and Nielsen, 1987; Marston et al., 1992).  However, the 

trend that we observed for increased milk production by increasing level of DGS was 

supported by calf performance at 60 and 90 d (Table 3).   

Results for milk composition are provided in Table 7.  Milk fat and lactose were 

not influenced by supplementation (2.11%, P = 0.21; 4.97%, P = 0.10, respectively), but 

both were linearly related to increasing level of DGS (P < 0.05).  In our study, milk 

protein was greater for DGSH, DGSI and POS compared to other supplements (P < 

0.01), and was linearly influenced by level of DGS (P < 0.05).  
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Milk fat linearly decreased as feeding level of DGS increased and milk protein 

increased.  Across a broad range of energy intake levels, Lalman et al. (2000) reported a 

quadratic response with respect to increasing level of energy on milk fat as well as a 

linear increase in milk protein with increasing level of dietary energy.  This response was 

similar to ours and supports the theory outlined by Sutton and Morant (1989) that energy 

intake increases glucogenic precursors due to propionic acid production and 

consequently, nutrient metabolism shifts from synthesis of milk fat to protein.  

Milk energy availability (Mcal/d) is a function of milk fat and milk production 

(NRC, 1996).  In our study, daily milk energy was not influenced by supplement type (P 

= 0.97) and averaged 4.70 Mcal/d, but was linearly related to feeding level of DGS when 

expressed as Mcal/kg of milk.  Sixty d and 90 d calf performance tended (P = 0.06 and P 

= 0.07, respectively) to increase linearly with increasing level of DGS; the calculations 

for milk production together with calf performance support the trend that we observed for 

increased milk production by feeding higher levels of DGS.   

Milk urea N is related to BUN (Roseler et al., 1993; Baker et al., 1995).  During 

lactation BUN concentrations for POS were higher than DGSI at all sampling points 

(Table 5).  Likewise, concentration of milk urea N was higher for DGSI compared to 

POS while milk protein was greater for DGSI compared to POS (Table 7).  Taken 

together, these data provide further evidence that the beef cow is able to make more 

efficient use of N from DGS compared to POS. 

In summary, feeding the same amount of DGS as a traditional cottonseed meal-

based supplement yielded similar responses for the variables evaluated in this study and 

we provide evidence that beef cows make more efficient use of N from DGS than from a 
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traditional protein source.  Compared to traditional feedstuffs, there are many 

compositional components that differ.  More research is needed to better understand the 

interactions among compositional differences and the effects of long-term DGS use in 

range cow settings.  We conclude that DGS is a viable supplement option for beef cows 

consuming low-quality forage and provide a base for future research in understanding 

how to most effectively use DGS in beef cow/calf production systems.   
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Table 1.  Supplement composition and amount of nutrients supplied daily during gestation and 
lactation  

 Supplement 
Item (DM basis) DGSL DGSI DGSH POS NEG 
 --------------------------------% of DM------------------------------- 
Dried distiller’s grains with solubles 100 100 100 -- -- 
Cottonseed meal -- -- -- 51.0 -- 
Wheat middlings -- -- -- 49.0 13.0 
Cottonseed hulls -- -- -- -- 40.0 
Molasses -- -- -- --   3.2 
Calcium carbonate -- -- -- -- 18.0 
Dicalcium phosphate -- -- -- -- 25.8 
      
---------------------------------------------------Nutrients supplied, gestation------------------------------------- 
DM, kg/d 0.77 1.54 2.31 1.54 0.23 
CP supplied, kg,d 0.24 0.47 0.70 0.47 0.02 
Degradable intake protein kg/d1 0.39 0.77 1.16 1.08 -- 
TDN, kg/d2 0.68 1.35 2.03 1.04 -- 
Crude fat, kg/d 0.09 0.19 0.28 0.07 0.0006 
Phosphorus, g/d 6.70 13.40 20.09 16.17 13.18 
Sulfur, g/d 4.35 8.70 13.05 4.77 -- 
---------------------------------------------------Nutrients supplied, lactation2------------------------------------ 
DM, kg/d 1.35 2.68 4.02 2.68 4.02 
CP supplied, kg,d 0.42 0.83 1.24 0.83 1.24 
Degradable intake protein kg/d1 0.68 1.34 2.01 1.88 2.01 
TDN, kg/d2 1.17 2.33 3.50 1.82 3.50 
Crude fat, kg/d 0.16 0.31 0.46 0.12 0.46 
Phosphorus, g/d   11.75     23.32     34.97   28.14     34.97 
Sulfur, g/d 7.62     15.00     22.51 8.31     22.51 
1Values for degradable intake protein were obtained using measurements from separate in situ 
experiment (Winterholler et al., 2008). 
2During lactation, cows receiving NEG supplement were given DGSH upon calving to meet the 
nutritional demands for lactation and to achieve proper BCS by the beginning of the breeding season.  
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Table 2.  Effect of supplementation with dried distiller’s grains with solubles on cow BW and BCS (Exp. 1) 
 Supplement1  

Contrasts2 

Item NEG POS DGSL DGSI DGSH SEM 1 2 Linear Quadratic 
n =        24         24   24        24  24 -- -- -- -- -- 
Supplementation period, d     119       119 119      119        119 -- -- -- -- -- 
Initial Wt 12/06/07, kg     546       545 545      547        561 12.83 0.88 0.91 0.39 0.70 
BW change before calving, kg      -43.7         -6.4     -21.9        -3.7       9.4   3.76 <0.01 0.61 <0.01 0.59 
BW change after calving, kg3      -49.0       -62.8    -69.5      -72.0          55.7   5.13 -- 0.26 0.05 0.14 
BW change 119-d, kg4      -99.3       -68.3   -89.6      -76.5     -53.5   4.76 -- 0.22 <0.01 0.52 
BW at end of supplementation, kg     459      487      466     494        518 10.35 -- 0.60 <0.01 0.41 
Pre-breeding wt (5/19/2008), kg       462b    442b 492a 463b 445b 9.18 -- 0.86 <0.01 0.64 
BW change 313-d, kg5     27.0       27.9  21.7      -37.1          22.7   5.69 -- 0.22 0.90 0.03 
BW at weaning 10/15/2008, kg   520     522      520     510        535   9.08 -- 0.35 0.24 0.13 
           
Initial BCS 12/06/07       5.02        4.98       5.01       5.02  5.18   0.12   0.76 0.80   0.30 0.60 
BCS change before calving      -0.82       -0.20      -0.48      -0.06  0.02   0.08 <0.01 0.25 <0.01 0.13 
BCS change after calving3      -0.43   -0.35      -0.48      -0.39       -0.03   0.11 -- 0.85 <0.01 0.40 
BCS change 119-d, kg4      -1.14        -0.49      -0.95      -0.70  -0.21   0.09 -- 0.10 <0.01 0.17 
BCS at end of supplementation       3.87         4.50       4.26       4.58   5.10   0.13 -- 0.68 <0.01 0.28 
Pre-breeding BCS (5/19/2008)   4.91         4.65    5.31     4.84          4.29   0.13 -- 0.68 <0.01 0.68 
BCS change 313-d5      -0.31        -0.30      -0.11      -0.33  -0.22   0.11 -- 0.83    0.52 0.26 
BCS at weaning 10/15/2008       4.71         4.67       4.90       4.69 4.96   0.14 -- 0.96    0.74 0.15 
1Supplements (DM basis) included:  1) 0.77 kg/d during gestation and 1.35 kg/d during gestation of dried distiller’s grains with solubles (DGSL); 
1.54 kg/d during gestation and 2.68 kg/d during lactation of dried distiller’s grains with solubles (DGSI); 2.31 kg/d during gestation and 4.02 kg/d 
during lactation of dried distiller’s grains with solubles (DGSH); 1.54 kg/d during gestation 2.68 kg/d during lactation of a blend of 49% wheat 
middlings and 51% cottonseed meal (POS) and 0.23 kg/d during gestation of a cottonseed-hull based pellet and 4.02 kg/d during lactation of dried 
distiller’s grains with solubles (NEG).   
2Contrast P-value for treatment effect; 1 = no supplementation vs. supplementation; 2 = DGSI vs. POS.  Linear and quadratic contrasts performed 
with respect to increasing level of dried distiller’s grains with solubles.  
3Change post-calving to end of supplementation period.   
4Change over supplementation period (12/06/07 to 4/03/08) 
5Change from beginning of supplementation to weaning (12/06/07 to 10/15/08) 
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Table 3.  Effect of supplementation with dried distiller’s grains with solubles on calf performance (Exp. 1) 
 Supplement1    Contrasts2 

Item   NEG POS DGSL DGSI DGSH SEM 1 2 Linear Quadratic 
 n =     23     24    24      23    24 -- -- -- -- -- 
Birth weight, kg     34.9     35.3    36.1     37.8 39.5 0.89 <0.01 0.05 <0.01 0.99 
BW 5/5/08, kg     80.2     84.3    72.8     78.8 84.1 4.13 0.28 0.34 0.06 0.95 
BW 6/5/08, kg   114.7   122.6  110.5   114.9  122.9 4.78 0.27 0.24 0.07 0.75 
Calf weaning weight, kg3   224.2   235.1  221.8   232.4  239.4 7.67 0.41 0.79 0.10 0.84 
1Supplements (DM basis) included:  1) 0.77 kg/d during gestation and 1.35 kg/d during gestation of dried distiller’s grains 
with solubles (DGSL); 1.54 kg/d during gestation and 2.68 kg/d during lactation of dried distiller’s grains with solubles 
(DGSI); 2.31 kg/d during gestation and 4.02 kg/d during lactation of dried distiller’s grains with solubles (DGSH); 1.54 kg/d 
during gestation 2.68 kg/d during lactation of a blend of 49% wheat middlings and 51% cottonseed meal (POS) and 0.23 kg/d 
during gestation of a cottonseed-hull based pellet and 4.02 kg/d during lactation of dried distiller’s grains with solubles 
(NEG).   
2Contrast P-value for treatment effect; 1 = no supplementation vs. supplementation; 2 = DGSI vs. POS.  Linear and quadratic 
contrasts performed with respect to increasing level of dried distiller’s grains with solubles.  
3Weaning weight reported as 205-d weight adjusted for calf sex 
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Table 4.  Effect of supplementation with dried distiller’s grains with solubles on cow reproductive performance 
(Exp. 1) 
                     Supplement1   
Item NEG POS DGSL DGSI DGSH SEM P-Value 
n =  24  24      24   24       24 -- -- 
Supplementation period, d 119      119    119       119     119 -- -- 
Luteal activity, %2      50.2      63.0   36.4     68.2       62.3 0.11   0.31 
AI conception rate, %      40.0      36.0   29.2     43.5 52.2 0.09   0.62 
Overall pregnancy rate, %     84.8    100.0      76.3        87.8 89.7 0.08   0.74 
1Supplements (DM basis) included:  1) 0.77 kg/d during gestation and 1.35 kg/d during gestation of dried distiller’s 
grains with solubles (DGSL); 1.54 kg/d during gestation and 2.68 kg/d during lactation of dried distiller’s grains 
with solubles (DGSI); 2.31 kg/d during gestation and 4.02 kg/d during lactation of dried distiller’s grains with 
solubles (DGSH); 1.54 kg/d during gestation 2.68 kg/d during lactation of a blend of 49% wheat middlings and 
51% cottonseed meal (POS) and 0.23 kg/d during gestation of a cottonseed-hull based pellet and 4.02 kg/d during 
lactation of dried distiller’s grains with solubles (NEG).   
2Percentage of cows exhibiting ovarian luteal activity at the beginning of the breeding season. 
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Table 5.  Effect of supplementation with dried distiller’s grains on blood urea N concentration of beef cows during gestation and lactation 
(Exp. 1). 
 Supplement1  Contrasts2 

Item3 NEG POS DGSL DGSI DGSH SEM 1 2 Linear Quadratic 
Gestation           
n =    24     24      24       24      24 -- -- -- -- -- 
Urea N, mg/dL,      3.76      6.66     4.36      5.07   6.90 0.39 <0.01 <0.01 <0.01 0.23 
Lactation            
n =   19    23       19       17       18 -- -- -- -- -- 
Urea N, mg/dL 14.29   17.79       11.46       14.06 17.64 0.96 -- <0.01 <0.01 0.67 
1Supplements (DM basis) included:  1) 0.77 kg/d during gestation and 1.35 kg/d during gestation of dried distiller’s grains with solubles 
(DGSL); 1.54 kg/d during gestation and 2.68 kg/d during lactation of dried distiller’s grains with solubles (DGSI); 2.31 kg/d during 
gestation and 4.02 kg/d during lactation of dried distiller’s grains with solubles (DGSH); 1.54 kg/d during gestation 2.68 kg/d during 
lactation of a blend of 49% wheat middlings and 51% cottonseed meal (POS) and 0.23 kg/d during gestation of a cottonseed-hull based 
pellet and 4.02 kg/d during lactation of dried distiller’s grains with solubles (NEG).   
2Contrast P-value for treatment effect; 1 = no supplementation vs. supplementation; 2 = DGSI vs. POS.  Linear and quadratic contrasts 
performed with respect to increasing level of dried distiller’s grains with solubles.  
3Gestation vs. lactation (P < 0.01) 
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Table 6.  Effects of supplementation with dried distiller’s grains with solubles on prairie hay intake and apparent digestibility of dietary 
components  
 Supplment1  Contrasts2 
Item NEG POS DGSL DGSI DGSH SEM 1 2 Linear Quadratic 
n =     6     6     6     6     6 
 

    6     6     6     6     6     6     6     6     6     6     6     6 -- -- -- -- -- 
Hay intake,  kg●100 kg of BW-1●d-1     2.01     2.64     2.38     2.43     2.60 0.11   0.03   0.20  0.16 0.68 
DMI,  kg●100 kg of BW-1●d-1     2.06     2.99     2.55     2.79     3.14 0.11 <0.01   0.22 <0.01 0.70 
OM intake,  kg●100 kg of BW-1●d-1     2.09     2.92     2.44     2.79     3.03 0.18   0.04 0.43 <0.01 0.72 
Fecal output,  kg●100 kg of BW-1●d-1     1.20     1.39     1.16     1.25     1.29 0.11   0.28 0.18  0.24 0.82 
Digestible DMI,  kg●100 kg of BW-1●d-1     0.92     1.64     1.44     1.59     1.89 0.09 <0.01 0.25 <0.01 0.75 
Digestible OM intake, kg●100 kg of BW-

1● -1
    0.93     1.55     1.36     1.57     1.83 0.07 <0.01 0.91 <0.01 0.79 

DE intake, Mcal●100 kg of BW-1●d-1   12.11   15.14   14.33   14.94   16.26 1.05  0.02 0.83  0.04 0.66 
P excretion, g/d 163.2 192.5 127.1 152.3 176.2 16.9 <0.01 0.02 <0.01 0.96 
Digestibility, %            
DM 40.1 50.9 52.3 53.6 56.2 3.2 <0.01 0.38 0.20 0.81 
OM 45.5 53.8 57.1 57.5 61.1 2.6 <0.01 0.14 0.11 
 

45.5 53.8 57.1 57.5 61.1 2.6 <0.01 0.14 0.11 0.46 
NDF 43.5 51.3 56.1 55.1 58.4 3.2   0.01 0.21 0.43 0.41 
ADF 41.7 48.5 52.3 51.8 58.7 3.3   0.03 0.28 0.04 0.17 
CP 15.1 46.2 35.7 55.5 51.9 4.3 <0.01 0.14 0.01 0.04 
Crude fat 39.4 59.3 69.3 71.2 76.6 2.5 <0.01 <0.01 0.03 0.54 
DE 41.2 54.6 58.4 58.1 59.7 1.9 <0.01 0.20 0.62 0.67 
1Supplements (DM basis) included:  1) 0.77 kg/d dried distiller’s grains with solubles (DGSL); 1.54 kg/d dried distiller’s grains with solubles 
(DGSI); 2.31 kg/d dried distiller’s grains with solubles (DGSH); 1.54 kg/d of a blend of 49% wheat middlings and 51% cottonseed meal (POS) 
and 0.23 kg/d during gestation of a cottonseed-hull based pellet (NEG).                                                                                                                                                      
2Contrast P-value for treatment effect; 1 = no supplementation vs. supplementation; 2 = DGSI vs. POS.  Linear and quadratic contrasts performed 
with respect to increasing level of dried distiller’s grains with solubles.  
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Table 7.  Effect of supplementation with dried distiller’s grains with solubles on milk production and composition of beef cows (Exp. 3) 
 Supplement1   Contrasts2 

Item   NEG POS DGSL    DGSI DGSH SEM 1 2 Linear Quadratic 
n =     16 16   16       16        16          
Milk yield, kg/d       8.34        8.45     7.43    8.46       8.74     0.61 -- 0.99  0.14 0.63 
Fat, g/d   189.7  164.3 190.0     183.8 150.9 24.4 -- 0.57  0.26 0.66 
Protein, g/d   258.6  243.4 218.3     266.9 277.1 18.2 -- 0.36  0.03 0.39 
Lactose, g/d   412.9  431.1 363.6     418.5 437.0 31.1 -- 0.77  0.11 0.64 
Milk composition           
Butterfat, %       2.14        2.06 2.45       2.18         1.71       0.22 -- 0.71  0.02 0.71 
Protein, %       3.13        2.90    2.92          3.16          3.15       0.05 --    <0.01    <0.01 0.04 
Lactose, %       4.95        5.08    4.88       4.95          5.00       0.05 -- 0.08   0.10 0.86 
Solids not fat, %       8.97        8.92 8.71      9.02          9.08       0.06 -- 0.23 <0.01 0.09 
Milk urea N, mg/dL       5.78        6.35 2.57      3.98          4.61       0.54 --    <0.01 <0.01 0.55 
Milk energy3           
Mcal/d      4.85        4.65    4.52         4.84            4.62       0.41 -- 0.75    0.87 0.60 
Mcal/kg      0.57        0.58    0.60          0.57            0.53      0.02 -- 0.71     0.02 0.69 
1Supplements (DM basis) included:  1) 0.77 kg/d during gestation and 1.35 kg/d during gestation of dried distiller’s grains with solubles (DGSL); 
1.54 kg/d during gestation and 2.68 kg/d during lactation of dried distiller’s grains with solubles (DGSI); 2.31 kg/d during gestation and 4.02 
kg/d during lactation of dried distiller’s grains with solubles (DGSH); 1.54 kg/d during gestation 2.68 kg/d during lactation of a blend of 49% 
wheat middlings and 51% cottonseed meal (POS) and 0.23 kg/d during gestation of a cottonseed-hull based pellet and 4.02 kg/d during lactation 
of dried distiller’s grains with solubles (NEG).   
2 Contrast P-value for treatment effect; 1 = no supplementation vs. supplementation; 2 = DGSI vs POS.  Linear and quadratic contrasts performed 
with respect to increasing level of dried distiller’s grains with solubles. 
3Milk energy (Mcal/kg) = 0.097 x (milk fat percentage) + 0.361 (NRC, 1996) 
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