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The nonspecific innate immune system fights off infections quickly and further 

controls the development of the highly specialized adaptive immune system for sustained 

protection. Weapons of the innate immune system mainly include pattern recognition 

receptors, leukocytes, complement system, cytokines/chemokines, and antimicrobial 

peptides/proteins including HDPs. Host defense peptides (HDPs) are comprised of a large 

diverse group of small cationic antimicrobial peptides of less than 100 amino acid 

residues adopting an amphipathic conformation. They are widespread in nature and have 

been found in virtually all forms of life.  

 
Based on the structure, HDPs are broadly classified into four major classes: 

including (1) α-helical peptides, (2) β-sheet peptides, (3) peptides with flexible extended 

structures rich in certain amino acids, and (4) peptides with a loop structure. Most HDPs 

are produced by mucosal epithelial and myeloid cells, and processed post-translationally 

to give rise to mature, biologically active peptides. Mature HDPs are capable of killing a 

broad spectrum of pathogens directly by physical disruption of their membranes or by 

interacting with intracellular anionic molecules like DNA, RNA, and proteins.  

Apart from antimicrobial action, HDPs also modulate innate and adaptive 

immunity. Many HDPs have strong capacities to chemoattract different types of immune 

cells, stimulate production of chemokines and cytokines, and promote differentiation and 

maturation of antigen-presenting cells like dendritic cells. HDPs also bind to bacterial 

products thereby neutralizing their ability to stimulate the production of pro-

inflammatory cytokines. Additionally, HDPs limit inflammation by inducing the 

synthesis of anti-inflammatory cytokines such as IL-10 and promoting apoptosis of 
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activated immune cells. With such an array of desirable properties, HDPs have potential 

in the control of infection and inflammation. Because of the cost associated with use of 

synthetic peptides, strategies to stimulate the production of endogenous HDPs may be an 

attractive approach to boost host immunity and enhance disease resistance without 

relying on traditional antibiotics.  

In this dissertation, we have summarized the latest progresses on HDPs regarding 

their classification, structure, and expression as well as their antimicrobial, anti-

inflammatory, and immunomodulatory properties (Chapter II).  In addition, we have 

presented a novel finding on the modulation of chicken HDPs by butyrate, a major short 

chain fatty acid produced by bacterial fermentation of undigested fiber in the intestinal 

tract (Chapter III).  We revealed that butyrate is a potent inducer of many, but not all, 

chicken HDPs both in vitro and in vivo. Remarkably, oral supplementation of butyrate to 

chickens significantly reduced colonization of Salmonella enteritidis in the cecum 

following an experimental infection. We further screened a series of short-, medium-, and 

long-chain fatty acids for their ability to induce chicken HDP gene expression (Chapter 

IV). We found that the aliphatic carbon chain length is largely in an inverse correlation 

with the HDP-inducing activity of fatty acids. Among all fatty acids, short-chain fatty 

acids are the most potent inducers, while medium-chain fatty acids have a moderate 

effect, and long-chain fatty acids are largely ineffective. Importantly, a combination of 

three short-chain fatty acids namely acetate, propionate and butyrate synergistically 

induced HDPs synthesis, resulting in a more pronounced reduction of the S. enteritidis 

load in the chicken cecum. 
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We have further investigated the molecular mechanisms involved in the butyrate-

mediated induction of the avian β-defensin 9 (AvBD9) gene in the chicken (Chapter V). 

We discovered that histone deacetylation is highly beneficial for HDP gene expression, 

as histone deacetylase inhibitors increased AvBD9 synthesis while histone 

acetyltransferase inhibitors reduced butyrate-mediated AvBD9 induction. Notably, JNK 

and p38, but not ERK1/2, MAP kinase pathways are also involved in butyrate-triggered 

AvBD9 expression. Furthermore, activation of cAMP signaling results in an enhanced 

AvBD9 gene expression. Strikingly, a combination of histone deacetylase inhibitor 

(butyrate) and cAMP signaling agonists synergistically augmented AvBD9 induction. 

The results suggested that chicken HDPs synthesis is regulated by a complex mechanism 

involving histone deacetylation and cAMP and MAP kinase signaling pathways.   

Given an urgent need for antibiotic-alternative approaches in disease control and 

prevention, discovery of the molecular mechanisms of HDP gene regulation and an array 

of HDP-inducing agents provide an important first step toward development of novel 

antimicrobial strategies for improvement of animal and human health. 
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CHAPTER II 

 

REVIEW OF LITERATURE 
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1. INTRODUCTION 

 

Host defense peptides (HDPs) are critical effectors of the innate immune system that 

protects the host from harmful pathogens. Being short cationic amphipathic antimicrobial 

peptides, HDPs have been discovered in nearly all forms of life from prokaryotes to 

eukaryotes and from invertebrate to mammalian species. HDPs are widely expressed in 

leukocytes as well as mucosal epithelial cells lining the respiratory, gastrointestinal and 

urogenital systems of the host. They are synthesized as prepropeptides and processed by 

different serine proteases to release mature peptides possessing biological functions. 

They directly kill a myriad of microbes ranging from Gram-positive and Gram-negative 

bacteria to fungi, protozoa, parasites, and enveloped virus. In addition to their direct 

antimicrobial activity, they act as antiinflammatory, wound healing and 

immunomodulatory agents. Because of these unique features, they are being actively 

explored as novel antimicrobials for disease control and prevention. This review 

summarizes structural features, expression patterns, and biological properties of HDPs as 

well as the mechanism of action and gene regulation. Their potential applications in 

animal agriculture and public health were also discussed.   

 
 

2. CLASSIFICATION AND EXPRESSION PATTERN OF HDPs 

 

Innate immunity is an important first line of host defense [1-4]. Invertebrates have 

only innate immune mechanisms, while vertebrates possess both innate and adaptive 
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immunity [1]. Effector components of the innate immune system include natural physical 

barriers like skin and mucosal surfaces, natural microflora, complement system, pattern 

recognition receptors, cytokines, leukocytes, and antimicrobial peptides/proteins [2, 5-8]. 

Antimicrobial peptides/proteins are comprised of peptidoglycan-recognition proteins, 

iron metabolism proteins (lipocalin and lactoferrin), and more importantly, host defense 

peptides (HDPs).  

HDPs are present in virtually all forms of life [1, 9-14]. To date, more than 1,200 

such HDPs have been discovered, and approximately 1,000 are present in eukaryotic 

organisms [15-18]. These peptides generally contain less than 100 amino acid residues 

with an overall net positive charge [19]. Based on their structures, HDPs are broadly 

classified into four major classes including peptides with α-helices, peptides with β-

sheets, peptides adopting flexible structures enriched for certain amino acids like 

arginine, histidine, proline, and tryptophan, and peptides with a loop structure due to the 

presence of a disulfide bond [4, 9, 20-23].  

Cathelicidins and defensins represent two major families of HDPs found in 

vertebrates [24-30]. Cathelicidins were first isolated from bovine neutrophil lysates as 

cyclic dodecapeptides [31]. Since then, cathelicidins have been found in many 

mammalian species as well as in fish, snakes, and birds [32-39]. The name cathelicidin 

was coined from the presence of a highly conserved cathelin domain in the N-terminal 

prosequence of cathelicidins. However, the C-terminal domains of cathelicidins are 

highly variable among species and possess different biological functions (Fig. 1) [5, 34, 

39]. A large group of cathelicidin genes are encoded in the porcine, ovine, and bovine 
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genomes; however, only a single cathelicidin gene exists in dogs, primates, and humans 

[3, 30]. Four cathelicidin genes were found recently in chickens [32, 40].  

Defensins, present in plants, invertebrates, and vertebrates, are rich in cysteines, 

and comprised of 3-4 disulfide bonds forming 3-4 anti-parallel β-sheet structures [41-45]. 

Each vertebrate defensin consists of a signal peptide, proregion and cationic mature 

peptide with six conserved cysteine residues forming three intramolecular disulfide 

bridges creating a “defensin-like” fold with an amphipathic feature [46, 47] (Fig.2). 

Based on the spacing pattern and pairing of cysteine residues, defensins are classified into 

three major subfamilies namely α-, β-, and θ- defensins [45, 47]. The disulfide bridges 

are formed between C1-C6, C2-C4, and C3-C5 for α-defensins, whereas C1-C5, C2-C4, 

and C3-C6 are pairing for β-defensins, and C1-C6, C2-C5 and C3-C4 pairing for θ-

defensins. α- and β-defensins consist of flat triple-stranded β-sheets, while  θ-defensins 

are composed of circular double-stranded β-sheets (Fig. 2) [3, 26, 42, 48-50].  

Cathelicidins and defensins are expressed strategically in leukocytes, skin 

keratinocytes, and mucosal epithelial cells of respiratory, gastrointestinal, and urogenital 

tracts [10, 51]. For example, human cathelicidin LL-37 is mainly found in both 

leukocytes and epithelial cells. While α-defensins and θ-defensins are commonly 

expressed in neutrophils and Paneth cells of the small intestine, the primary source of β-

defensins are mucosal epithelia and skin [24, 52]. HDPs are synthesized as 

prepropeptides, processed posttranslationally by different proteolytic enzymes and stored 

either as propeptides (cathelicidins) or mature peptides (defensins) [53, 54]. Cathelicidins 

are further processed by serine proteases like proteinase 3 in neutrophils and kallikrein 5 

and 7 in the skin in humans [55, 56] and elastase in cattle and pigs [57-59]. α-defensins 
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from intestinal Paneth cells including HD5 and HD6 are processed by metalloproteinase 

7 [2]. 

 

3. ANTIMICROBIAL PROPERITIES OF HDPs 

 

         HDPs are broad-spectrum natural antibiotics that kill or suppress the growth of a 

wide-range of microbes from Gram-positive and Gram-negative bacteria to virus, fungi, 

and parasites [60, 61]. They kill microbes by formation of pores and physical disruption 

of membranes or by inhibition of cellular transcription, translation and/or 

posttranslational machineries [14]. Cationic HDPs initially accumulate onto and 

electrostatically interact with anionic membrane components such as lipopolysaccharide 

of Gram-negative bacteria and lipoteichoic acid of Gram-positive bacteria cell. 

Penetration into negatively charged phospholipids of microbial membranes then takes 

place, resulting in membrane perturbation and leakage of intracellular contents and 

ultimately cell death [13, 62-65]. Because, it is very difficult for microbes to change the 

overall negative charge of their membrane phospholipids, development of resistance 

against HDPs is extremely difficult [65]. Targeted disruption of microbial but not host 

membranes is believed to be due to the difference between prokaryotic and eukaryotic 

cell membranes. While the former is heavily negatively charged with high membrane 

potential (-140 mV), the latter is largely uncharged with a high cholesterol content and 

low membrane potential of approximately -15 mV [22, 66].  
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 The mechanism of pore formation on microbial membranes varies among 

individual HDPs. Depending upon the net charge and spatial structure, HDPs permeate 

membranes via “barrel-stave”, “toroidal-pore”, “molecular electroporation”, “sinking raft 

”, or “carpet-wormhole” mechanism [42, 67-69]. In addition to direct disruption of 

membranes, several HDPs, particularly α- and θ-defensins, suppress viral proliferation by 

acting as collectins. For example, retrocyclins (primate θ-defensins) bind to glycoproteins 

gp41 and gp120 of HIV as well as host CD4 (Cluster of differentiation 4) and prevent 

viral entry by blocking the conformational change of gp41, which is required for 

attachment and fusion of viruses with host cells [70]. Similarly, human neutrophil 

peptides 1, 2, and 3 bind to envelop glycoprotein B (gB) of herpes simplex virus to 

minimize viral entry into the host cells [71].  

 

4. ANTI-INFLAMMATORY EFFECTS OF HDPs 

 

Besides antimicrobial and antiviral properties, HDPs suppress inflammation and 

protect the host from excessive production of proinflammatory mediators triggered by 

microbial products. HDPs are capable of neutralizing bacterial endotoxins, inhibiting 

proinflammatory cytokine production, and inducing antiinflammatory cytokines and 

preventing classical and lectin complement cascades [52, 72]. For example, human 

cathelicidin LL-37 binds and neutralizes LPS and LTA, thereby abolishing the production 

of proinflammatory cytokines such as TNF-α, IL-1β, and IL-6. It also stimulates 

antiinflammatory cytokine, IL-10 expression [73]. In a murine infection model, LL-37 
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protects mice from septic shock induced by Pseudomonas aeruginosa [74]. It also 

promotes secondary necrosis of apoptotic neutrophils without causing loss of membrane 

integrity and provoking proinflammatory response of macrophages [75]. Likewise, a 

chicken fowlicidin-1 analog prevents LPS-induced production of nitric oxide and TNF-α 

[76]. Porcine cathelicidin PR-39 inhibits the production of reactive oxygen species while 

bovine myeloid antimicrobial peptide-28 induces apoptosis of activated lymphocytes 

[10]. 

Similar to cathelicidins, defensins also inhibit production of proinflammatory 

cytokines by binding to microbial membranes, surface adhesins, and bacterial toxins and 

neutralizing the ability of their attachment to host cells [77]. For example, human 

neutrophil peptide (HNP) 1 attenuates LPS-mediated production of proinflammatory 

cytokines including IL-1β from monocytes [78]. Human neutrophil peptides 2-3 reduce 

production of several proinflammatory cytokines including IL-1 β, IL-6, IL-8 and TNF- α 

from LPS-stimulated human monocyte-derived macrophages [79].  Human β defensins-3 

also abrogates the induction of IL-6, and TNF-α from human myeloid dendritic cells 

stimulated with Porphyromonas gingivalis [80]. Moreover, there is evidence that 

expression of human α-and β-defensins is reduced in inflammatory diseases like Crohn’s 

disease, emphasizing the role of defensins in regulation of inflammation [56, 81].  
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5. IMMUNOMODULATION OF HOST IMMUNITY BY HDPs 

 

HDPs have capacity to directly kill pathogens, but their antimicrobial activity is 

often diminished by the monovalent and divalent cations, serum, and polyanionic 

molecules like glycosaminoglycans present in the biological fluids [82]. In fact, HDPs 

may not always have a direct antimicrobial action under physiological conditions. 

However, they still protect the host from infections [10, 14, 83]. For example, 

cathelicidin LL-37 protects mice from Gram-positive bacteria when administered 

exogenously but cannot inhibit bacterial growth in tissue culture medium containing 

physiologically similar salt concentrations [82], implying its role in immunomodulation.  

HDPs promote diverse immunomodulatory functions by acting as 

chemoattractants, by stimulating the production of chemokines and cytokines, and by 

regulating complement activation and promoting wound healing (Fig. 3 )[30, 49, 84]. For 

example, Human β defensin (HBD) 1 and HBD3 chemoattract immature dendritic cells 

and memory T-cells while human α-defensins are chemotactic to naïve T cells [53]. 

Similarly, HNP1-3 and HBD3-4 stimulate migration of neutrophils and monocytes, 

whereas LL-7 and HNP1-3 are chemotactic to mast cells and induce degranulation to 

release histamine and prostaglandin 2 respectively [53].  HDPs induce production of 

various pro-inflammatory cytokines such as IL-1β, TNF-α and IL-6 as well as 

chemokines such as IL-8 and monocyte chemotactic protein-1 from mononuclear 

phagocytes and epithelial cells [53, 85]. 
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In addition to modulation of host immunity, HDPs appear to be promising wound 

healing agents. HDPs promote re-epithelialization, angiogenesis and vascularization by 

inducing proliferation of epithelial cells and vascular endothelial cells and 

chemoattracting fibroblasts and macrophages [3]. HDPs enhance synthesis of growth 

factors and cytokines in keratinocytes and epithelial cells that are essential for wound 

repair [14]. For example, human LL-37 and HBDs enhances IL-18 secretion from 

keratinocytes [86] that is involved in angiogenesis process [87]. Porcine PR-39 is 

involved in wound healing by increasing the expression of extracellular matrix 

proteoglycans syndecan-1 and 4, which are important for activation of many growth 

factors [88]. HBD-2 and 3 are also shown active involvement in re-epithelialization of 

damaged skin [89]. Given such an array of immunomodulatory properties of HDPs, it is 

highly desirable to harness these properties for antimicrobial therapies to boost host 

immunity without directly acting on microbes, thereby minimizing the risk of developing 

resistance [90].  

 

6. TRANSCRIPTIONAL MODULATION OF HDP EXPRESSION 

 

 Many HDPs expression is inducible in response to infection. Human cathelicidin 

LL-37 expression is induced in response to gram negative bacteria such as Salmonella 

enterica serovar Dublin, and enteroinvasive Escherichia coli in human colonic 

epithelium [91], Helicobacter pylori in human gastric epithelial cells [92] and 

Pseudomonas aeruginosa in corneal epithelium [93] and Gram-positive bacteria 
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including S. aureus in keratinocytes [94], Mycobacterium species in human alveolar 

macrophages, monocytes, neutrophils and epithelial cells [95, 96], bacterial products 

(LPS and LTA) in sinus epithelial cells [97], flagellin in corneal epithelial cells [93]. On 

the other hand, Shigella dysenteriae, Vibrio cholera [98] and Nisseria gonorrhoeae [99] 

downregulate LL-37 expression in intestinal epithelial cells. 

In addition, stressors like injury [100], endoplasmic reticulum stress [101], and 

inflammatory disorders [102] also enhance LL-37 expression in keratinocytes. Moreover, 

various proinflammatory cytokines (IL-1α, IL-6, and IL-17) [103-105] and growth 

factors [insulin like growth factor-1, transforming growth factor (TGF)-α and TGF-β1] 

[106] promote LL-37 expression in skin epithelial cells while proinflammatory cytokines 

display no effect on colonic epithelium [91]. IL-10 and IL-13 also mitigate LL-37 

expression in the skin [5], and IL-18 stimulates LL-37 expression in colonic epithelial 

cells [107] .   

Apart from infection and stress, human LL-37 expression is also induced by 

several dietary factors including short-chain fatty acids, flavones, zinc, and vitamin D3. 

For example, short-chain fatty acids including butyrate and propionate induce LL-37 

expression in intestinal and hepatic cells as well as lung epithelial cells by acting as 

histone deacetylase (HDAC) inhibitors [108-110]. Other HDAC inhibitors including 

phenylbutyrate and trichostatin (TSA) are also able to augment LL-37 expression in 

epithelial and monocytic cells [108, 110, 111]. Furthermore, oral supplementation of 

rabbits with butyrate or phenylbutyrate has shown reduced dysentery symptoms in 

Shigellosis infections through upregulation of rabbit cathelicidins in colon and lung 

epithelia [112, 113]. In animal agriculture, particularly in poultry, organic acids including 
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butyrate and propionate have been used for decades and shown an overall improved 

resistance to S. enteritidis [114] and Clostridium perfringens [115]. Many antibacterial 

mechanisms of organic acids have been proposed, including a reduction of intestinal pH, 

direct antibacterial activities, and suppression of bacterial attachment to host intestinal 

cells [114, 116-118]. It is also possible that organic acids, particularly short-chain fatty 

acids, enhance disease resistance by inducing HDP gene expression.  

Besides fatty acids, vitamin D3 stimulates LL-37 synthesis in lung epithelial cells, 

keratinocytes, and monocytes, but not in colon epithelial cells [119-122]. LL-37 

expression is also augmented by various cAMP analogs and agonists in mucosal 

epithelial cells [123]. In addition, zinc has the capacity to enhance LL-37 expression in 

human Caco-2 intestinal epithelial cells [124]. In humans, probiotic E. coli enhances 

human beta defensin synthesis [125]. Likewise, several probiotics and prebiotics have 

been used to control infections and inflammatory disorders like inflammatory bowel 

disease and irritable bowel syndrome [126]. It is likely that probiotics and prebiotics 

stimulate bacterial fermentation of short-chain fatty acids, which in turn promote HDP 

synthesis, host immunity, and disease resistance.  

 

7. MOLECULAR MECHANISMS OF HDP MODULATION 

 

The regulatory mechanisms involved in cathelicidin gene expression are very complex. 

Histone acetylation and the signaling pathways mediated by mitogen-activated protein 

(MAP) kinases, cAMP, vitamin D receptor (VDR), and NF-κB are all capable of 
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transactivating HDP gene expression. In some cases, the pathways cross-talk with each 

other, leading to a synergistic induction of HDP synthesis. Short-chain fatty acids and 

HDAC inhibitors induce human LL-37 gene expression primarily through histone 

hyperaceylation of the gene promoter and also global core histone acetylation [108, 109, 

121]. Three classic MAP kinase (p38, JNK, and ERK1/2) pathways, but not NF-κB, are 

involved in most epithelial cells in HDAC inhibitor-mediated induction of LL-37 

expression [109]. Vitamin D3 enhances LL-37 expression in keratinocytes through 

activation of VDR, which in turn binds to vitamin D response element (VDRE) on the 

promoter [60, 119, 127, 128].  Additionally, vitamin D3 induces LL-37 expression 

through activation of PPARγ, resulting in activation of p38 MAP kinase pathway and 

binding of transcription factor AP-1 to the gene promoter [129]. cAMP signaling agonists 

were recently found to turn on LL-37 gene expression by activation of the protein kinase 

A (PKA) pathway, which ultimately leads to phosphorylation of cAMP response element 

binding protein (CREB) and AP-1 and gene transactivation [123].  

In psoriatic skin, overexpressed LL-37 binds to self-DNA to turn on TLR9-

dependent signaling pathway, leading to excessive inflammation and psoriasis [5, 103, 

105]. TLR2 agonists also increase the expression of the genes for CYP27B1 and VDR. 

CYP27B1 further convert inactive vitamin D3 to 1, 25-vitamin D3, which leads to LL-37 

upregulation via VDR activation [127, 128]. Bacteria, bacterial products, and 

proinflammatory cytokines activate HDP gene expression primarily through Toll-like 

receptor-mediated NF-κB activation, although MAP kinase pathways are also activated in 

most cases [105,130-132,133,134,135].  Zinc regulates LL-37 expression in epithelial 

cells through p38 and ERK1/2 MAP kinase pathways [124]. 
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A synergist effect on HDP gene induction has been demonstrated with HDAC 

inhibitors, VDR and cAMP signaling. For example, butyrate and vitamin D3 synergize 

with each other in inducing LL-37 expression in keratinocytes through activation of 

SRC3, which has inherent histone acetyltransferase activity [121]. Butyrate also 

synergizes with forskolin, a cAMP agonist, in inducing LL-37 expression through 

prolonged activation of CREB [123].   

In summary, HDPs possess a myriad of beneficial functions with potent 

antimicrobial, anti-inflammatory, and immunomodulatory activities.  A growing body of 

evidence suggests that dietary factors including vitamin D3, short-chain fatty acids, zinc, 

and certain amino acids are capable of inducing HDP synthesis in humans. Convenient 

dietary modulation of the endogenous HDP synthesis may have potential to be explored 

as a novel antibiotic-free strategy to disease prevention and control for both animal and 

human health. We have explored the potential and found that short-chain fatty acids and 

their structural and functional analogs are strong inducers of HDP production, with the 

capacity to enhance innate immunity and disease resistance in chickens. 
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FIGURE AND FIGURE LEGENDS 

 

 

Fig. 1. Structure and functional domains of defensins and cathelicidins. SP: Signal 

peptide, AMP: mature antimicrobial peptide. Figure was adopted from reference [5]. 
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Fig. 2. Linkage of disulfide bonds and spatial structures of mammalian defensins. 

Figure was adapted from reference [26].  
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Fig. 3. Biological functions of host defense peptides (HDPs). HDPs simultaneously 

possess direct antimicrobial, immunomodulatory, anti-inflammatory, and wound healing 

activities. Figure was adopted from reference [14]. 
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ABSTRACT 

 

Host defense peptides (HDPs) constitute a large group of natural broad-spectrum 

antimicrobials and an important first line of immunity in virtually all forms of life. 

Specific augmentation of synthesis of endogenous HDPs may represent a promising 

antibiotic-alternative approach to disease control. In this study, we tested the hypothesis 

that exogenous administration of butyrate, a major type of short-chain fatty acids derived 

from bacterial fermentation of undigested dietary fiber, is capable of inducing HDPs and 

enhancing disease resistance in chickens. We have found that butyrate is a potent inducer 

of several, but not all, chicken HDPs in HD11 macrophages as well as in primary 

monocytes, bone marrow cells, and jejunal and cecal explants. In addition, butyrate 

treatment enhanced the antibacterial activity of chicken monocytes against Salmonella 

enteritidis, with a minimum impact on inflammatory cytokine production, phagocytosis, 

and oxidative burst capacities of the cells. Furthermore, feed supplementation with 0.1% 

butyrate led to a significant increase in HDP gene expression in the intestinal tract of 

chickens. More importantly, such a feeding strategy resulted in a nearly 10-fold reduction 

in the bacterial titer in the cecum following experimental infections with S. enteritidis. 

Collectively, the results indicated that butyrate-induced synthesis of endogenous HDPs is 

a phylogenetically conserved mechanism of innate host defense shared by mammals and 

aves and that dietary supplementation of butyrate has potential for further development as 

a convenient antibiotic-alternative strategy to enhance host innate immunity and disease 

resistance.  
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1. INTRODUCTION  

 

Host defense peptides (HDPs), also known as antimicrobial peptides, are present 

in virtually all species of life and constitute a critical component of the innate immunity 

[2-6]. Defensins and cathelicidins represent two major families of HDPs in vertebrates 

[7-12]. While defensins are categorized by the presence of six conserved cysteine 

residues in the C-terminal mature sequence [7-9, 12], all cathelicidins consist of a 

conserved cathelin domain in the pro-sequence with a highly diversified C-terminal 

mature sequence [10, 11]. The chicken genome was recently found to encode a total of 14 

β-defensins known as AvBD1-14 [13-15] and four cathelicidins, namely fowlicidins 1-3 

[13, 16, 17] and cathelicidin-B1 [18]. All AvBDs are densely clustered on chicken 

chromosome 3q [14, 15], whereas cathelicidin genes are located on chromosome 2p [17, 

18]. Both chicken AvBDs and cathelicidins are expressed in a wide range of tissues, with 

cathelicidins expressed most abundantly in the bone marrow or bursa of Fabricius [16-18] 

and β-defensins in the liver and throughout the digestive, respiratory, and reproductive 

tracts [13, 15]. HDPs possess broad-spectrum antimicrobial activities against bacteria, 

protozoa, enveloped virus, and fungi mainly through direct binding and lysis of microbial 

membranes [6, 19]. 

Because of such physical interactions, it is extremely difficult for pathogens to 

develop resistance to HDPs. Many chicken HDPs such as AvBD9 (formally known as 

gallinacin-6) and cathelicidin B1 have been found to possess potent antibacterial 
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activities against a broad range of bacteria including Salmonella [17, 20-26]. Besides 

direct microbicidal activities, HDPs have a strong capacity to modulate the innate 

immune response by inducing chemotaxis and activation of various types of leukocytes 

[3, 5]. Because of these pleiotropic effects, HDPs have been actively explored as a new 

class of therapeutic agents against antibiotic-resistant microbes and other inflammatory 

diseases [3, 6].   

Butyrate, a major species of short-chain fatty acids produced by bacterial 

fermentation of undigested carbohydrates in the intestine [27, 28], was recently found to 

be capable of inducing HDP expression in humans and rabbits [29-31]. To test whether 

butyrate can augment HDP gene expression in a non-mammalian species, we studied the 

effect of butyrate on HDP gene expression and the antibacterial activity of monocytes in 

the chicken. Furthermore, we examined the effect of supplementing butyrate in the feed 

on the titer of Salmonella enteritidis in the cecum following experimental infections. We 

concluded that butyrate-mediated induction of HDP synthesis is phylogenetically 

conserved in both mammals and aves. Additionally, butyrate may be further exploited as 

a cost-effective feed or food additive in enhancing host immunity and disease resistance.  

 

2. MATERIALS AND METHODS 

 

2.1. Isolation, culture, and stimulation of chicken cells and intestinal tissue explants 

Chicken HD11 macrophage cells [32] were cultured in complete RPMI 1640 containing 

10% fetal bovine serum (FBS), 100 U/ml penicillin, and 100 µg/ml streptomycin, and 
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seeded at 2 × 106 cells/well in 6-well cell culture plates overnight, prior to stimulation 

with different concentrations of sodium butyrate (Sigma) in duplicate and incubated at 

37oC and 5% CO2 for indicated times. Chicken peripheral blood mononuclear cells 

(PBMCs) were isolated from EDTA-anticoagulated venous blood of adult layers through 

gradient centrifugation using Histopaque 1077 (Sigma). Monocytes were obtained by 

seeding PBMCs at 3 × 107 cells/well in 6-well plates overnight and washing off non-

adherent cells twice with calcium- and magnesium-free Hank’s balanced salt solution 

(HBSS). Monocytes were replenished with fresh complete RPMI 1640 prior to 

stimulation with sodium butyrate. Bone marrow cells were collected from femur bones of 

1- to 2-week-old broiler chickens, lysed of erythrocytes, and cultured at 1 × 107 cells in 

60-mm tissue culture dishes in RPMI 1640 containing 20 mM HEPES, 10% FBS, 100 

U/ml penicillin, and 100 µg/ml streptomycin, followed by butyrate stimulation.  

Jejunal and cecal explants were obtained by washing thoroughly a segment of the 

jejunum and cecum of 1- to 2- week-old broiler chickens with cold HBSS containing 50 

µg/ml of gentamicin, followed by slicing in a series of 0.5-cm long segments and placing 

individually in 6-well tissue culture plates in RPMI 1640 containing 20 mM HEPES, 

10% FBS, 100 U/ml penicillin, 100 µg/ml streptomycin, and 50 µg/ml gentamicin. 

Jejunal and cecal explants were cultured at 37oC and 5% CO2 in the presence of different 

concentrations of sodium butyrate in duplicate for 24 h.  

2.2. Real-time RT-PCR analysis of chicken HDP gene expression  

Following treatment with sodium butyrate, chicken cells and tissue explants were lysed in 

Tri Reagent (Sigma) for extraction of total RNA. The first-strand cDNA was synthesized 
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from 300 ng of total RNA using QuantiTect Reverse Transcription Kit (Qiagen) in a total 

volume of 4 µl. Real-time PCR was then performed using QuantiTect SYBR Green PCR 

kit (Qiagen) and MyiQ Real-Time PCR Detection System (Bio-Rad) in 10 µl reactions 

containing 1/40 or 1/20 of the first-strand cDNA and gene-specific primers for 14 AvBDs 

(Table 1), 4 chicken cathelicidins, multiple cytokines and GAPDH (Table 2) as described 

[17, 26, 33]. PCR cycling conditions were 95oC for 10 min, followed by 45 cycles of 

94oC for 15 sec, 55oC for 20 sec, and 72oC for 30 sec. The specificity of PCR reaction 

was confirmed by the melt curve analysis. The gene expression levels were quantified 

using the comparative ∆∆Ct method with the glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) gene as a reference for normalization. 

2.3. Cell cytotoxicity of butyrate in HD11 cells 

The cytotoxicity assay was performed as described previously [26, 33, 34]. Briefly, 

HD11 cells (1 × 105) were seeded overnight in 96-well tissue culture plates. Butyrate was 

added in duplicate from 0 to 16 mM for 18 h, following by addition of 10% of 

alamarBlue (Invitrgoen) for another 6 h. The fluorescence was read at 545 nm excitation 

and 590 nm emission. Cell death (%) was calculated as [1 – (Fbutyrate –  Fbackground)/(Fcontrol 

– Fbackground)]  × 100, where Fbutyrate is the fluorescence of cells exposed to different 

concentrations of butyrate, Fcontrol is the fluorescence of cells only, and Fbackground is the 

background fluorescence of 10% alamarBlue in cell culture medium without cells.  

2.4. Antibacterial activity of monocytes treated with butyrate 

Following overnight adherence of PBMCs to cell culture dishes, chicken monocytes were 

replenished with fresh antibiotic-free RPMI 1640 and incubated with 0, 0.5, 1, 2, and 4 
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mM of sodium butyrate for 24 h. Cells were then scraped, stored at -80oC overnight, 

lysed with 1% Triton X-100, and centrifuged at 12,000 × g for 10 min at 4oC. Serial 2-

fold dilutions were then prepared from the cell supernatants and incubated with 2 × 104 

CFU of Salmonella enteritidis (ATCC 13076) in 20% Trypticase Soy Broth containing 1 

mM NaH2PO4 and 25 mM NaHCO3 for 9 h in a 96-well plate at 37oC as described [35]. 

Bacterial turbidity was measured at OD590 nm using an ELISA plate reader. Different 

concentrations of sodium butyrate were also directly added to S. enteritidis in the same 

growth medium to measure turbidity after 9 h incubation.   

2.5. Phagocytosis assay of HD11 cells 

Phagocytosis of S. enteritidis phage type 13a by HD11 cells was measured as described 

with slight modifications [36]. After seeding 6 × 106 cells in complete RPMI 1640 

overnight in 60- mm tissue culture plates, HD11 cells were stimulated with and without 

0.5, 1 or 2 mM sodium butyrate for 24 h. Cells (2.5 × 106) were then incubated with 2.5 × 

107 CFU of S. enteritidis phage type 13a in 1 ml RPMI 1640 containing 5% chicken 

serum for 30 min at 37oC. To kill extracellular bacteria, cells were washed twice with ice-

cold HBSS, re-suspended with 1ml RPMI 1640 containing 100 µg/ml gentamicin for 1 h 

at 37oC. Cells were then lysed by incubating with 1% Triton X-100 for 15 min, serially 

diluted, and spread on Brilliant Green agar plates (Becton Dickinson) containing 20 

µg/ml of nalidixic acid and incubated overnight at 37oC for enumeration.   

2.6. Oxidative burst assay of HD11 cells 

The assay of oxidative burst activity was performed as previously described  with slight 

modifications [37]. Briefly, HD11 cells were seeded at 1 × 105 cells in a 96-well plate in 
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complete RPMI 1640 and cultured overnight. After addition of 0, 0.5, 1, and 2 mM of 

sodium butyrate for 24 h, cells were washed with HBSS to remove antibiotics, 

replenished with fresh RPMI 1640 free of Phenol Red and antibiotics, and rested for 30 

min. Phorbol 12-myristate 13-acetate (PMA, Sigma) and 2’,7’-

dichlorodihydrofluorescein diacetate (DCFDA, Sigma) were added to cells to final 

concentrations of 0.5 µg/ml and 10 µM, respectively.  The fluorescence was monitored at 

485 nm excitation and 528 nm emission using FLx800 Multi-Detection Microplate 

Reader (Bio-Tek Instruments) 1 h after incubation at 37oC. The results were normalized 

against protein concentrations, which were measured using the Bradford assay (Bio-Rad) 

as per manufacturer’s instructions. 

2.7. Flow cytometric analysis of MHC class I and II surface markers 

Following stimulation with 4 mM butyrate, 1 µg/ml LPS from E. coli O111:B4 (Sigma) 

or left untreated for 24 h, HD11 cells were scraped, washed, and adjusted to 1 × 106/ml 

with the FACS buffer (0.1% BSA +  0.02% sodium azide in phosphate buffered saline). 

Cells were preincubated in the FACS buffer containing 1% chicken serum and 1% of rat 

FCγ III/II receptor blocker (clone 2.4G2, eBioscience) for 15 min, followed by 

incubation with fluorescein isothiocyanate (FITC)-conjugated mouse anti-chicken MHC 

class I (clone F21-2, SouthernBiotech) and R-phycoerythrin (R-PE)-conjugated mouse 

anti-chicken MHC class II (clone 2G11, SouthernBiotech) monoclonal antibodies for 

another 30 min. Flow cytometry was performed on a FACSCalibur Flow Cytometer 

(Becton-Dickinson) and analyzed with BD CellQuest Pro-software. 

2.8. Butyrate feeding and S. enteritidis infection of chickens 
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Two chicken trials were conducted to test the in vivo effect of butyrate on HDP gene 

expression and disease resistance. In trial 1, a total of 20, five-day-old male Cornish Rock 

broiler chickens (Ideal Poultry, Cameron, TX) were equally divided and fed with a 

standard antibiotic-free ration mixed with or without 0.2% sodium butyrate for 48 h prior 

to intraesophageal infections with 0.5 ml of Lysogeny broth ( LB) containing 1 × 106 

CFU of S. enteritidis phage type 13a [38]. After continuous feeding with butyrate-

supplemented feed for another 4 days, the birds were euthanized and cecal contents were 

aseptically collected from each animal, serially diluted in PBS, and plated on Brilliant 

Green agar plates (Becton Dickinson) containing 20 µg/ml of nalidixic acid for bacterial 

enumeration. Trial 2 was conducted similarly with a total of 30, five-day-old male 

broilers fed with or without 0.1% or 0.2% sodium butyrate supplementation in the feed 

for two days, with 10 chickens per treatment. An intraesophageal infection with 1 × 106 

CFU of S. enteritidis phage type 13a was conducted 2 days later and butyrate 

supplementation was continued for another 4 days. Cecal contents were then collected 

from each chicken for bacterial counting. All animal procedures were approved by the 

Institutional Care and Use Committee of Oklahoma State University.  Unpaired Student’s 

t-test was performed among groups, and p < 0.05 was considered statistically significant. 

 

3. RESULTS 

 

3.1. Butyrate induces HDP gene expression in chicken HD11 macrophage cells, 

primary monocytes, bone marrow cells, and jejunal and cecal explants 
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To elucidate the effect of butyrate on HDP gene expression in the chicken, we 

first stimulated HD11 macrophage cells and primary chicken monocytes with different 

concentrations of sodium butyrate for various times, followed by real-time RT-PCR 

analysis of the expressions of the genes for all 14 AvBDs  and 4 cathelicidins.  Butyrate 

enhanced HDP gene expression significantly in all chicken cell types tested (Fig. 1). The 

avian β-defensin 9 (AvBD9) gene was dramatically induced in HD11 cells in a time-

dependent manner peaking at 24-48 h following stimulation with 4 mM butyrate (Fig. 

1A). A dose-dependent induction was also evident in HD11 cells, with 4 mM butyrate 

giving nearly 5400-fold induction of AvBD9 after treatment for 24 h (Fig. 1B). Similarly, 

the AvBD9 gene expression was dose-dependently augmented in primary monocytes, 

resulting in a 200- and 650-fold increase following 24 h stimulation with 4 and 8 mM 

butyrate, respectively (Fig. 1C). A 700-fold augmentation of the AvBD9 gene was also 

observed in chicken bone marrow cells treated with 4 mM butyrate for 24 h (Fig. 1D). It 

is noteworthy that the kinetics of butyrate-mediated HDP gene expression is similar in 

humans, where a peak response occurred in intestinal cell lines 1-2 days following 

treatment with 4 mM butyrate [30, 31]. However, it is not clear why the sensitivity of the 

two chicken cell types to butyrate differs. Butyrate at 4 mM gave an optimal induction of 

the AvBD9 gene in HD11 and bone marrow cells, whereas a peak response occurred at 8 

mM in primary monocytes, although no appreciable impact on the viability of the cells 

was observed in any cell type in response to up to 8 mM butyrate (data not shown).  

Besides AvBD9, several other chicken HDP genes including cathelicidin B1, 

AvBD3, AvBD4, AvBD8, AvBD10, and AvBD14, also showed largely dose-dependent 

inductions in response to butyrate treatment in HD11 cells, albeit at a lesser magnitude 
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than AvBD9 (Fig. 2). A similar trend also occurred in chicken primary monocytes, where 

butyrate triggered dose- dependent up-regulation of cathelicidin B1, AvBD3, AvBD5, and 

AvBD14 (Fig. 2). Notably, a subset of HDP genes including AvBD1, AvBD6, and 

fowlicidins 1-3 were essentially not modulated by butyrate in either cell type (Fig. 2). 

Furthermore, AvBD2 and AvBD7 were even slightly down-regulated in primary 

monocytes and HD11 cells, respectively (Fig. 2), suggesting differential regulation of 

HDPs by butyrate.  To further examine whether butyrate is capable of augmenting HDP 

gene expression in intestinal cells, chicken jejunal and cecal explants were prepared and 

stimulated with butyrate for 24 h. Three representative HDPs, namely AvBD9, AvBD14, 

and cathelicidin B1, were induced significantly in a dose-dependent manner in both the 

jejunum (Fig. 3A) and cecum (Fig. 3B), although the magnitude of induction was 

generally less pronounced in the cecum than in the jejunum.   

To confirm the HDP-inducing activity of butyrate in vivo, we fed 2-day-old 

broiler chickens with and without 0.1% and 0.2% butyrate in standard ration for 2 days 

and harvested the crop, cecal tonsil, and cecum for real-time RT-PCR analysis of the 

AvBD9 gene expression. As shown in Fig. 4, significantly induced AvBD9 expression 

was observed in the crop, with 0.1% and 0.2% butyrate leading to 22- and 7.5-fold 

increase, respectively. A similar, but less dramatic trend also occurred in the cecal tonsil 

and cecum (Fig. 4). It is not known why a reduced response was seen with 0.2% butyrate 

supplementation compared to 0.1% butyrate. Perhaps higher concentrations of butyrate 

are more potent in inducing growth arrest and apoptosis [27, 28]. The finding that 

AvBD9 induction is more pronounced in the crop than in the lower digestive tract is 

perhaps related to tissue specificity. However, it is more likely because local 
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concentrations of supplemented butyrate are much higher in the crop than in other parts 

of the intestinal tract, similar to earlier findings that the majority of butyrate is absorbed 

in the crop before reaching the lower digestive tract [39, 40]. Collectively, these results 

strongly suggest that butyrate is a potent inducer of the chicken HDP expression in 

multiple cell types both in vivo and in vitro, although cell- and tissue-specific induction 

patterns are also evident.  

3.2. Butyrate triggers no or minimum inflammatory response 

Butyrate generally exerts anti-inflammatory effects and has been used to treat 

inflammatory bowel diseases [27, 28]. To confirm butyrate-mediated specific 

augmentation of HDP gene expression without triggering a proinflammatory response, 

we treated HD11 cells with and without butyrate for 3 and 24 h and analyzed the 

expressions of three representative cytokines, namely IL-1β, IL-8, and IL-12p40. 

Butyrate had essentially no effect on either IL-1β (Fig. 5A) or IL-12p40 expression (Fig. 

5B) at both time points. No influence on IL-8 expression was observed after 3 h 

stimulation with a moderate induction only after 24 h (Fig. 5C). In contrast, IL-1β, IL-8, 

and IL-12p40 were induced markedly in response to 1 µg/ml LPS (Fig. 5). These results 

demonstrated that butyrate selectively induces HDPs with a minimum impact on 

proinflammatory cytokine expression, consistent with earlier transcriptional profiling 

results that butyrate is generally anti-inflammatory, suppressing expression of certain 

cytokines with no effect on the majority of them [41, 42].  

3.3. Butyrate augments the antibacterial activity of chicken monocytes through 

induction of HDPs 
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To investigate the functional consequence of butyrate-induced HDP expression, 

we stimulated chicken primary monocytes with and without different concentrations of 

butyrate for 24 h, lysed cells, incubated cell lysates with S. enteritidis, and measured 

bacterial turbidity after 9 h. As shown in Fig. 6, a dose-dependent, statistically significant 

suppression of bacterial growth in butyrate-treated monocyte lysates was observed, with 

4 mM butyrate giving greater than 3-fold reduction in turbidity. It is worth noting that 

incubation of bacteria with butyrate alone had no impact on bacterial growth at up to 4 

mM (Fig. 6), implying that butyrate is incapable of killing bacteria directly at the HDP-

inducing concentrations. Furthermore, given that butyrate in the cell culture medium was 

completely washed off prior to cell lysis and the antibacterial assay, an enhancement in 

the antibacterial activity of the cell lysates is unlikely due to the direct bacterial killing 

activity of butyrate.  

To further rule out the possibility that butyrate-induced augmentation of the 

antibacterial activity was not attributed to a change in phagocytosis of chicken 

macrophages by butyrate, we first incubated HD11 cells with different concentrations of 

butyrate for 24 h and then measured the phagocytic capacity of the cells to S. enteritidis. 

In comparison with non-treated cells, essentially no difference in phagocytosis was 

observed with any concentration of butyrate (Fig. 7A). We further examined the 

influence of butyrate on the oxidative burst activity of chicken macrophages. As seen in 

Fig. 7B, PMA triggered a significant oxidative burst in HD11 cells; however, butyrate 

had a minimum impact on the cells treated with and without PMA.   

To test whether butyrate is capable of activating chicken macrophages, we 

quantified a surface marker of cell activation, i.e., MHC class II, on HD11 cells by flow 
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cytometry following stimulation with 4 mM butyrate for 24 h, using MHC class I as a 

house-keeping control. As expected, LPS stimulation induced surface expression of MHC 

class II in nearly 50% cells; however, essentially no change in MHC class II expression 

was observed in butyrate-treated HD11 cells (Fig. 8). These results collectively indicated 

that butyrate is incapable of modulating phagocytosis, oxidative burst or activation status 

of macrophage cells. Augmentation of the antibacterial activity in response to butyrate 

treatment, therefore, is likely due to specific induction of endogenous synthesis of HDPs.  

3.4. Oral supplementation of butyrate reduces S. enteritidis colonization in the 

cecum of infected chickens 

Because enhanced HDP gene expression and antibacterial activities were 

observed in cells in response to butyrate treatment, we evaluated whether 

supplementation of feed with butyrate can reduce the survival of pathogenic bacteria in 

the intestinal tract of 5-day-old broilers in two separate trials. Chickens were fed with and 

without 0.1% and/or 2% butyrate for 2 days prior to intraesophageal inoculation of S. 

enteritidis phage type 13a for another 4 days. The cecal contents, where S. enteritidis 

most heavily colonizes, were aseptically harvested and subjected to serial plating on 

Brilliant Green agar plates containing 20 µg/ml of nalidixic acid for specific enumeration 

of S. enteritidis 13a. In trial 1, oral supplementation of 0.2 % butyrate resulted in 1-log 

reduction in the median counts of inoculated bacteria in the cecal content, relative to the 

control group (Fig. 9A). In trial 2, 0.1% butyrate significantly reduced bacterial load (P = 

0.03) in the cecal content of the chickens, whereas 0.2% butyrate led to a less reduction 

of bacterial counts (Fig. 9B). This is perhaps not surprising, given the earlier findings 
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that, as compared to 0.1% butyrate, 0.2% butyrate supplementation caused less induction 

of the HDP genes in the intestinal tract (Fig. 4).  

 

4. DISCUSSION 

 

As a major species of short-chain fatty acids produced from fermentation of 

undigested dietary fiber by intestinal microflora, butyrate exerts a plethora of effects on 

intestinal health and disease [27, 28, 40].  In addition to being a primary energy source 

for colonocytes in mammals, butyrate has been found to play an important role in the 

digestive tract by stimulating mucin synthesis and intestinal motility, cell proliferation 

and differentiation, while suppressing inflammatory diseases [27, 28, 40]. In the present 

study, we have revealed a novel role for butyrate in host defense and extended earlier 

findings that butyrate-induced synthesis of HDPs not only occurs in humans and rabbits 

[29-31], but is also conserved in chickens. We have presented both in vitro and in vivo 

evidence showing that butyrate strongly induces the expressions of multiple HDPs in 

different cell and tissue types including HD11 macrophages, primary monocytes, bone 

marrow cells, jejunum and cecal explants as well as in crop, cecum, and cecal tonsils of 

chickens. The results clearly suggest that transcriptional regulatory mechanisms of many 

HDPs are phylogenetically conserved across mammals and aves.  

It is important to note that only a subset of chicken HDPs are regulated by 

butyrate (Fig. 2), implying that HDPs are differentially regulated even within the same 

family. Consistently, only LL-37 and human β-defensin-2 were reported to be regulated 
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by butyrate in humans [30, 31, 43]. For those chicken HDP genes that are modulated by 

butyrate, we observed a clear cell-specific regulation pattern as evidenced by marked 

differences in the magnitude of induction among different cell types. For example, 

treatment with 4 mM butyrate for 24 h induced the AvBD9 gene approximately 3,000- to 

5,000-fold in HD11 macrophage cells, but only 200-fold in primary monocytes, 700-fold 

in bone marrow cells, 140-fold in jejunal explants, and 5-fold in cecal explants (Figs. 1 

and 3). Several other HDPs, e.g., AvBD14 and cathelicidins B1 were also regulated 

differently among individual cell types (Fig. 3 and data not shown).  

Although we could not detect the synthesis of chicken HDPs at the protein level 

in response to butyrate treatment due to a lack of specific antibodies, we observed an 

increased HDP gene synthesis leading to an enhanced antibacterial activity in monocytes 

in vitro and augmented intestinal bacterial clearance in vivo following butyrate treatment. 

A nearly 10-fold reduction in the bacterial titer was achieved in the cecal contents of the 

chickens fed 0.1% or 0.2% butyrate (Fig. 9). Given the rapid rate of absorption and 

metabolism, the majority of supplemented butyrate is known to be taken up by the upper 

digestive tract, with very small quantities reaching the lower intestinal tract or general 

circulation [39, 40]. A more pronounced reduction in the cecal bacterial titer may be 

achieved if supplemented butyrate can be protected when passing through the upper 

digestive tract or if more butyrate can be produced in the cecum by manipulating the 

conditions of local bacterial fermentation [39, 40].  

It is noteworthy that 0.1% butyrate gave a better bacterial reduction than 0.2% 

butyrate in our feeding trial (Fig. 9B), in agreement with the finding that 0.1% butyrate 

supplementation led to a higher level of the AvBD9 gene transcription in the crop, cecum, 
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and cecal tonsil of chickens than 0.2% butyrate (Fig. 4). Consistently, 8 mM butyrate 

failed to stimulate the synthesis of a higher amount of the AvBD9 transcripts in HD11 

cells than 4 mM butyrate (Fig. 1B). In fact, higher concentrations of butyrate often lead to 

cytotoxicity, growth arrest, and apoptosis [27, 28, 40]. The optimal dose of butyrate for in 

vivo applications, therefore, needs to be investigated carefully for each animal species.  

It was reported earlier that oral supplementation of 0.63 g/kg or 0.92 g/kg of 

butyrate reduces colonization and shedding of S. enteritidis in the cecum of chickens [44, 

45]. However, the mechanism by which butyrate suppresses bacterial growth remain 

elusive, although it was proposed to be a result of the direct antibacterial activity of 

butyrate [46, 47] or a decrease in the invasiveness of Salmonella through intestinal 

epithelial cells following exposure to butyrate [36, 47]. However, because especially high 

concentrations of butyrate (25, 50, and 100 mM) were needed to kill bacteria or 

negatively impact on bacterial invasiveness [36, 46, 47], it is uncertain whether these 

proposed mechanisms may occur in vivo, given that most butyrate is absorbed in the 

upper digestive tract if supplemented orally [39, 40] and that cecal concentrations of 

butyrate are only < 6 mM in 18-day-old  healthy broiler chickens  and < 1 mM in 4-day-

old chickens [47]. More importantly, an increased invasion to intestinal epithelial cells 

was observed in the same study when S. enteritidis was pre-incubated with a mixture of 

short-chain fatty acids mimicking the in vivo cecal concentrations [47]. Here, we 

uncovered a novel mechanism that we believe accounts primarily for butyrate-mediated 

suppression of intestinal bacterial colonization. We found that at physiological 

concentrations butyrate fails to inhibit bacteria directly, but increase the antibacterial 

activity of host innate immune cells by inducing the synthesis of an array of HDPs with a 
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minimum impact on the phagocytic and oxidative killing capacity as well as activation 

status of host cells. Therefore, it is the production of HDPs that is mainly responsible for 

a reduction of bacterial colonization in the intestinal tract of chickens following oral 

supplementation of butyrate. 

Our in vitro and in vivo studies have firmly established that butyrate has a strong 

capacity to induce HDP synthesis and that supplementation of butyrate can augment 

disease resistance and reduce bacterial colonization in chickens. Therefore, the strategies 

for efficient delivery of butyrate to the lower intestinal tract will have important 

implications in animal health and food safety. Indeed, the microencapsulated form of 

butyrate proves to be more efficient in suppressing bacterial growth in the ceca of 

chickens than the free unprotected form [44, 45]. Alternatively, identification and 

application of less labile forms of butyrate analogs in the feed may also prove to be more 

desirable. In fact, several butyrate analogs have been shown to be capable of inducing 

HDP gene expression in humans [48] and such analogs await further testing for their 

antibacterial efficacy in other animal species such as chickens. Besides direct 

administration of butyrate and its analogs, the dietary approaches that promote the 

proliferation of butyrate-producing bacteria and stimulate the fermentation of butyrate 

through the use of prebiotics may also have good prospect to augment HDP synthesis and 

host defense.  

In summary, we have revealed that butyrate-induced synthesis of endogenous 

HDPs is a phylogenetically conserved mechanism of innate host defense shared by both 

mammals and chickens. Moreover, we propose that butyrate-induced HDP synthesis 

represents a newly discovered mechanism that mainly accounts for the suppression of 
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bacterial colonization and shedding in farm animals by butyrate. Coupled with anti-

inflammatory effects and other beneficial properties, butyrate, butyrate analogs, and 

perhaps other short-chain fatty acids may have potential for further development as 

antibiotic-alternative food or feed additives to boost innate immunity and disease 

resistance of humans and animals without provoking a harmful proinflammatory 

response. 
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Table 1. Primer sequences of chicken Avian β-defensins (AvBDs) for real time PCRa 

 

 
            Forward primer Reverse primer 

Product size (bp) 

cDNA Gene 

AvBD1 ATGCGGATCGTGTACCTGCTC CTGCTTGGGATGTCTGGCTCT 219 1197 

AvBD2 CTCTCTCCTCTTCCTGGCAC GAGGGGTCTTCTTGCTGCTG 265 1122 

AvBD3 ATGCGGATCGTGTACCTGCTC CAGAATTCAGGGCATCAACCTC 196 2379 

AvBD4 CATCTCAGTGTCGTTTCTCTGC ACAATGGTTCCCCAAATCCAAC 321 899 

AvBD5 CTGCCAGCAAGAAAGGAACCTG TGAACGTGAAGGGACATCAGAG 300 1100 

AvBD6 AGGATTTCACATCCCAGCCGTG CAGGAGAAGCCAGTGAGTCATC 249 1203 

AvBD7 CTGCTGTCTGTCCTCTTTGTGG CATTTGGTAGATGCAGGAAGGA 230 665 

AvBD8 TTCTCCTCACTGTGCTCCAA AAGGCTCTGGTATGGAGGTG 124 383 

AvBD9 GCAAAGGCTATTCCACAGCAG AGCATTTCAGCTTCCCACCAC 211 1802 

AvBD10 TGGGGCACGCAGTCCACAAC ATCAGCTCCTCAAGGCAGTG 298 2285 

AvBD11 ACTGCATCCGTTCCAAAGTCTG TCGGGCAGCTTCTCTACAAC 301 1299 

AvBD12 CCCAGCAGGACCAAAGCAATG GTGAATCCACAGCCAATGAGAG 335 731 

AvBD13 CATCGTTGTCATTCTCCTCCTC ACTTGCAGCGTGTGGGAGTTG 175 4514 

AvBD14 CTCCTGTTTCTTGTTCTCCTG CACTTTGCCAGTCCATTGTAG 149 501 

a Primers for AvBD4-13 are adopted from reference 15. 

  

Gene 
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Table 2. Primer sequences of GAPDH, chicken cathelicdin/fowlicidin family and 

cytokines for real time PCRa            

                Forward primer Reverse primer 

Product size (bp) 

cDNA Gene 

Cath-B1 CCGTGTCCATAGAGCAGCAG AGTGCTGGTGACGTTCAGATG 170 251 

Fowlicidin-1 GCTGTGGACTCCTACAACCAAC GGAGTCCACGCAGGTGACATC 261 882 

Fowlicidin-2 CAAGGAGAATGGGGTCATCAG CGTGGCCCCATTTATTCATTCA 221 584 

Fowlicidin-3 GCTGTGGACTCCTACAACCAAC TGGCTTTGTAGAGGTTGATGC 352 1095 

IL-1β GACATCTTCGACATCAACCAG CCGCTCATCACACACGACAT 215 384 

IL-8 GCTGATCGTAAAGGCACTTATG GTGAAAGGTGGAAGATGGAATG 159 727 

IL-12p40 GACCCACCTCAATGTCAGTATG GCCCAGTCTTTGGAATCTGAAT 184 1456 

GAPDH GCACGCCATCACTATCTTCC CATCCACCGTCTTCTGTGTG 356 876 

a Primers for GAPDH are adopted from reference 15. 

  

Gene 
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Fig. 1. Butyrate-induced expression of the AvBD9 gene in different chicken cell 

types. HD11 macrophage cells were incubated in duplicate with 4 mM sodium butyrate 

for indicated time points (A) or indicated concentrations of butyrate for 24 h (B). 

Chicken primary monocytes (C) or bone marrow cells (D) were exposed to different 

concentrations of butyrate in duplicate for 24 h prior to isolation of total RNA. The 

AvBD9 gene expression was analyzed by real-time RT-PCR, and the relative fold 

increase over the control group was calculated using the comparative ∆∆Ct method and 

the GAPDH gene for normalization. The bars represent means ± standard error of the 

data from 2-3 independent experiments. *P < 0.05, ** P < 0.001, and *** P < 0.0001 

by unpaired Student’s t-test as compared to the untreated control. 
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Fig. 2. Induction of HDP gene expression in chicken HD11 macrophages and primary 

monocytes. Chicken HD11 macrophage cells and primary monocytes were incubated in 

duplicate with and without different concentrations of butyrate for 24 h, followed by RNA 

isolation and real-time RT-PCR analysis of all 14 chicken β-defensins (AvBDs) and 4 

cathelicidins (fowlicidins 1-3 and cathelicidin B1). The color elements represent average log2 

ratios of fold change from 2-3 independent experiments. Red indicates up-regulation, whereas 

black means no induction and green down-regulation. Gray areas are an indication of no data 

due to extremely low expression levels of certain HDPs in primary monocytes. Three groups 

of chicken HDPs, namely generally induced (I), non-regulatable (II), and generally down-

regulated (III), can be classified according to their mode of modulation by butyrate. AvBD11, 

AvBD12, and AvBD13 could not be reliably detected in either cell type, and therefore, were 

not shown. The heat map was generated by using MultiExperiment Viewer [1]. 
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Fig. 3. Up-regulation of three representative HDPs in chicken jejunal (A) and cecal 

explants (B) by butyrate. Chicken jejunum and cecal explants were obtained by 

culturing slices of 0.5 cm long segments, followed by incubation with indicated 

concentrations of butyrate in duplicate for 24 h. Real time RT-PCR was performed and 

the relative fold increase over the control group was calculated using the comparative 

∆∆Ct method and the GAPDH gene for normalization. The bars represent means ± 

standard error of the data from two independent experiments. *P < 0.05, ** P < 0.001, 

and *** P < 0.0001 by unpaired Student’s t-test as compared to the untreated control. 
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Fig. 4.  In vivo induction of the AvBD9 gene expression in the intestinal tract of 

chickens by butyrate.  Two-day-old male Cornish Rock broilers were fed with standard 

ration with or without supplementation of 0.1% and 0.2% butyrate for 2 days. The crop, 

cecal tonsil, and cecum were collected from each chicken and the AvBD9 gene 

expression was evaluated by real-time PCR. Each bar represents means ± standard error 

of the data from 6 different chickens. * P < 0.05 by unpaired Student’s t-test. 
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Fig. 5. Minimum triggering of proinflammatory cytokine synthesis in HD11 cells by 

butyrate. Chicken HD11 macrophage cells were incubated with indicated concentrations 

of butyrate or 1 µg/ml LPS in duplicate for 3 and 24 h, followed by real-time PCR 

analysis of the gene expressions of  IL-1β (A), IL-12p40 (B), and IL-8 (C). The bars 

represent means ± standard error of the data from two independent experiments. 

Essentially no induction of IL-1 and IL-12p40 was observed at both 3 and 24 h after 

butyrate stimulation, with moderate induction of IL-8 occurring only following butyrate 

treatment for 24 h. 
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Fig. 6. Augmentation of the antibacterial activity of monocytes following stimulation 

with butyrate.  Chicken monocytes were treated with or without different concentrations 

of butyrate for 24 h. Cell lysates were then prepared and incubated with S. enteritidis 

(ATCC 13076) for 9 h at 37oC. Bacterial turbidity at OD590nm was measured as an 

indication of the bacterial density. S. enteritidis was also directly incubated with different 

concentrations of butyrate in cell culture medium alone without monocytes as controls 

(white bars). The bars represent means ± standard error of the data from two independent 

experiments. ** P < 0.001, and *** P < 0.0001 by unpaired Student’s t-test as compared 

to the untreated control. 
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Fig. 7. No impact of butyrate on phagocytic (A) or oxidative burst activities (B) of 

HD11 cells. For both assays, chicken HD11 macrophage cells were incubated with 

different concentrations of butyrate in duplicate for 24 h, followed by exposure to S. 

enteritidis phage type 13a for 30 min at 37oC in the presence of 5% chicken serum for 

phagocytosis assay. Extracellular bacteria were then killed by gentamicin, and 

internalized bacteria were enumerated from lyzed HD11 cells by serial plating on 

Brilliant Green agar plates containing 20 µg/ml nalidixic acid overnight at 37oC.  In the 

oxidative burst assay, the fluorescence was monitored following 1 h incubation with 

DCFA in the presence or absence of phorbol 12-myristate 13-acetate (PMA). The results 

were normalized against protein concentrations of each sample. The bars represent means 

± standard error of the data from two independent experiments.  
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Fig. 8. No influence on the activation status of HD11 cells by butyrate. HD11 cells 

were incubated with 4 mM butyrate, 1 µg/ml LPS or left untreated for 24 h, followed by 

flow cytometric analysis of surface expression of MHC class I and II using fluorescein 

isothiocyanate (FITC)-conjugated anti-chicken MHC class I and R-phycoerythrin (R-

PE)-conjugated anti-chicken MHC class II monoclonal antibodies.  The data shown are 

representative of two independent experiments. 
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Fig. 9. Reduction of the S. enteritidis titer in the cecal contents of chickens following 

oral supplementation of butyrate. In trial 1 (A), 5-day old male broilers were equally 

divided into two groups of 10 and fed with a standard antibiotic-free diet mixed with and 

without 0.2% sodium butyrate for 2 days. Birds were then inoculated with 1 × 106 CFU 

of S. enteritidis phage type 13a and continued with butyrate feeding for another 4 days. 

The S. enteritidis titer in the cecal content was quantitated from each animal by serial 

plating on Brilliant Green agar plates containing 20 µg/ml nalidixic acid. Trial 2 (B) was 

similarly conducted with an additional group of 10 broilers fed with 0.1% butyrate. Each 

dot represents the bacterial titer from a bird and the solid line represents the median value 

of each treatment.  Brackets indicate the statistical significance of differences (*P = 0.03, 

unpaired Student’s t-test). 
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ABSTRACT 

 

Widespread use of antibiotics as growth promoters in food animal production has 

been criticized to be a major driving force for emergence of antimicrobial resistant 

pathogens, which has become a serious public health concern worldwide. Development 

of antibiotic-alternative approaches to disease control and prevention is imperatively 

needed. Previously, we showed that butyrate, a major species of short-chain fatty acids 

(SCFAs) fermented from undigested fiber by intestinal microflora, is a potent inducer of 

endogenous antimicrobial host defense peptide (HDP) genes in the chicken. In the 

present study, we further revealed that, in chicken HD11 macrophage cells and primary 

monocytes, expression of HDPs is largely in an inverse correlation with the aliphatic 

carbon chain length of free fatty acids, with SCFAs being the most potent, medium-chain 

fatty acids moderate and long-chain fatty acids essentially ineffective. Additionally, three 

SCFAs, namely acetate, propionate, and butyrate, exerted a strong synergy in augmenting 

HDP synthesis in chicken cells. Consistently, supplementation of chickens with a 

combination of the three SCFAs in water resulted in a further reduction of S. enteritidis in 

the cecum as compared to feeding of individual SCFAs. More importantly, free fatty 

acids enhanced HDP gene expression without triggering proinflammatory interleukin-1β 

production. Taken together, oral supplementation of SCFAs is capable of boosting host 

immunity and disease resistance, with potential in disease control and prevention in 

animal agriculture without relying on antibiotics. 
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1. INTRODUCTION 

 

Use of antibiotics as growth promoters is suspected to be a major source for the 

development of antibiotic-resistant pathogens, which have become a major public health 

concern worldwide. Enhancing host immunity and disease resistance by specifically 

boosting the synthesis of endogenous host defense peptides (HDPs) may represent a 

promising antibiotic-alternative strategy. HDPs have been found in nearly all forms of 

life and play an important role in the first line of defense [1-3]. HDPs kill a broad range 

of microbes including bacteria, fungi, parasites, and enveloped viruses mainly through 

physical interaction and disruption of the membranes [1-3]. It is, therefore, extremely 

difficult for pathogens to develop resistance [1-3]. In addition to their direct antimicrobial 

activities, HDPs play a profound role in potentiating the immune response to infections 

by recruiting and activating immune cells, binding and neutralizing bacterial endotoxins, 

and promoting wound healing [1-4]. Because of these pleiotropic effects, it is beneficial 

to specifically enhance the synthesis of endogenous HDPs for disease control and 

prevention.                                                                                       

As an important source of energy, fatty acids are represented by a large group of 

carboxylic acids with an aliphatic hydrocarbon chain that are either saturated or 

unsaturated. Based on the number of carbon atoms in the aliphatic chain, fatty acids are 

broadly classified into three groups, namely SCFAs (≤ C5), medium-chain fatty acids 

(MCFAs) (C6 to C11), and long-chain fatty acids (LCFAs) (≥ C12) [5]. Butyrate, acetate 

and propionate are the major species of SCFAs produced by bacterial fermentation of 
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resistant starch, cellulose, and sugar in the intestine [6-8]. The concentrations of acetate, 

propionate, butyrate vary in molar ratios from 48:29:23 to 70:15:15 in human feces [7] 

and 33:12:6 in chicken cecal contents [9]. Besides being a major source of energy and 

constituents of cellular membranes, fatty acids also play an important role in maintaining 

homeostasis of intestinal physiology by regulating fluid absorption, gut motility, gut 

microbiota, and mucosal inflammation as well as proliferation, differentiation, and 

apoptosis of intestinal epithelial cells [10-15].  

Earlier studies reported that SCFAs including butyrate and propionate are capable 

of inducing the synthesis of LL-37, a HDP in humans [12], which is largely due to their 

histone deacetylase inhibitory activity [14].  Inhibition of histone deacetylase is known to 

promote hyper-acetylation of the lysine residues in nucleosome core histones leading to a 

less compact chromatin and transcriptional activation of a subset of genes [16, 17]. 

Indeed, several other histone deacetylase inhibitors were also found to be capable of 

inducing HDP gene expression in humans, albeit with a varying potency [14, 18].  

We recently reported that butyrate enhances HDP expression in several different 

cell types including macrophages, monocytes, and intestinal epithelial cells [19]. In the 

present study, we further compared the relative potency in HDP induction by free fatty 

acids of various aliphatic chain lengths (C1 to C18). There was an inverse correlation 

between the expression of HDPs and the length of aliphatic chain of fatty acids, with 

SCFAs being the strongest inducers. Saturation or unsaturation of the aliphatic tails of 

fatty acids appeared to play a minimum role of HDP induction. We further revealed a 

strong synergy among three SCFAs including acetate, propionate, and butyrate in 

enhancing AvBD9 expression and reducing bacterial colonization in the chicken, 
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suggesting the potential for dietary supplementation of SCFAs in disease control and 

prevention. 

 

2. MATERIALS AND METHODS 

 

2.1. Chemicals 

Formate, acetate, propionate, butyrate, hexanoate, n-octanoate, decanoate, linoleic acid 

(ω-6), α-linolenic acid (ω-3), conjugated linoleic acid (CLA), and trichostatin A (TSA) 

were purchased from Sigma-Aldrich (St. Louis, MO), whereas heptanoate, nonanoate, 

dodecanoate, tetradecanoate, octadecanoate were from TCI America (Portland, OR). All 

free fatty acids were purchased in the sodium salt form, except for linoleic acid, linolenic 

acid, and CLA, which were in the free acid form. SCFAs (formate, acetate, propionate, 

and butyrate), MCFAs (hexanoate, heptanoate, n-octanoate, nonanoate, and decanoate) 

were dissolved in RPMI 1640 cell culture medium, while LCFAs (dodecanoate, 

tetradecanoate, and octadecanoate) were dissolved in methanol and free linoleic acid, 

linolenic acid and CLA were dissolved in ethanol. Bacterial lipopolysaccharide (LPS) 

from E. coli O111:B4 was purchased from Sigma-Aldrich and dissolved in RPMI 160 

medium.  

2.2. Isolation, culture, and stimulation of chicken cells  

Chicken HD11 macrophage cells (kindly provided by Dr. Hyun S. Lillehoj from USDA, 

ARS) were cultured in 6-well plates in RPMI 1640 containing 10% FBS and 1% 
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streptomycin/ penicillin at 2 x 106 cells/well. After overnight growth, HD11 cells were 

incubated with various fatty acids. Chicken peripheral blood mononuclear cells (PBMCs) 

were isolated from EDTA-anticoagulated venous blood by gradient centrifugation using 

Histopaque 1077 (Sigma). Cells in the interphase were then collected, washed in Hank’s 

balanced salt solution (HBSS), and then resuspended in RPMI 1640 containing 10% FBS, 

1% streptomycin/pencillin, and 20 mM HEPES in 60-mm tissue culture dishes at 6 x 107 

cells/dish. After overnight incubation at 37oC and 5% CO2, non-adherent cells were 

washed off with HBSS, and adherent monocytes were used subsequently for stimulation 

with fatty acids. Each treatment was performed in duplicate or triplicate and repeated at 

least 2-3 times. For all experiments, equal amounts of solvents were added to cells as 

negative controls. All chemicals were tested for their toxicity to chicken cells, and the 

subtoxic concentration ranges that gave the maximal induction of HDP expression were 

presented. 

2.3. Analysis of chicken gene expression by real time RT-PCR 

Following stimulation, cells were harvested with RNAzol (Molecular Research), and total 

RNA was extracted according to the manufacturer’s instructions. The first-strand cDNA 

was synthesized from 300 ng of total RNA with QuantiTect Reverse Transcription Kit 

(Qiagen), and real time PCR was performed with QuantiTect SYBR Green PCR Kit 

(Qiagen) using 1/40 (for GAPDH) or 1/10 (for HDP genes) of the first-strand cDNA and 

gene-specific primers in a total volume of 10 µl as previously described [20-22]. The 

PCR was set for initial denaturation at 95oC for 10 min, followed by 45 cycles of 94oC 

for 15 sec, 55oC for 20 sec, and 72oC for 30 sec.  A melt curve analysis step was also 

included to ensure the specificity of PCR amplification. Chicken glyceraldehyde-3-
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phosphate dehydrogenase (GAPDH) was used as a house keeping gene for data 

normalization. The forward and reverse primers for chicken GAPDH, HDPs (AvBD9 and 

cathelicidin B1), and proinflammatory cytokines (IL-1β, IL-8, and IL-12p40) were 

previously described [20]. Relative changes in the gene expression level were quantified 

with the ∆∆Ct method as described [20-22].  

2.4. Histone deacetylase (HDAC) assay  

HDAC assay was performed using the Fluor-de-Lys® HDAC Fluorimetric Cellular 

Activity Assay Kit (Enzo Life Sciences, PA) according to the manufacturer’s 

instructions. Chicken HD11 cells (1 × 105) were cultured in phenol red-free RPMI 1640 

containing 10% FBS in a 96-well tissue culture plate overnight. Cells were treated in 

duplicate with or without SCFAs in the presence of 100 µM of Fluor-de-Lys®, a 

fluorogenic, cell-permeable HDAC substrate for 4 h. The deacetylation reaction was then 

stopped by addition of TSA, a strong HDAC inhibitor, in a cell lysis buffer containing 

1% NP-40, The fluorescent signal was generated by addition of a developer solution to a 

final concentration of 1 µM, and the fluorescence was recorded at 360 nm excitation and 

460 nm emission using FLx800 Multi-Detection Microplate Reader (Bio-Tek 

Instruments). The HDAC inhibitory activity (%) was calculated as [1 – (Ftreatment –  

Fbackground)/(Fmax – Fbackground)]  × 100, where Ftreatment is the fluorescence of cells exposed 

to SCFAs, Fmax is the maximum fluorescence of cells without being exposed to SCFAs, 

and Fbackground is the fluorescence of cell culture medium without cells.  

2.5. Oral supplementation of SCFAs and experimental infection of chickens with 

Salmonella enteritidis   
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A total of 20, day-of-hatch male Cornish Rock broiler chickens were purchased from a 

commercial hatchery (Ideal Poultry, Cameron, TX) and were equally divided into four 

groups with 5 birds/group and fed with a standard antibiotic-free ration and deionized 

water ad libitum for 4 days. Water containing 0.5% sodium acetate, 0.2% propionate 

and/or 0.1% butyrate was provided ad libitum for each group for 2 days, prior to an 

intraesophageal infection with 0.5 ml of Lysogeny broth ( LB) containing 1 × 107 CFU of 

S. enteritidis phage type 13a (a kind gift from Dr. Susan Lamont at Iowa State 

University) [23]. After administration of SCFAs in water for another 4 days, the birds 

were euthanized and cecal contents were aseptically collected from each animal, serially 

diluted in PBS, and plated on Brilliant Green agar plates (Becton Dickinson) containing 

20 µg/ml of nalidixic acid for overnight growth and bacterial enumeration. All animal 

procedures were approved by the Institutional Animal Care and Use Committee of 

Oklahoma State University.  

2.6. Statistical analysis 

Unpaired Student’s two-tailed t-test was used to evaluate the statistical significance using 

GraphPad Prism 5 (GraphPad Software, La Jolla, CA).  P < 0.05 was considered 

statistically significant.  

 

3. RESULTS AND DISCUSSION 
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3.1. Inverse correlation between the HDP-modulating ability and aliphatic chain 

length of free fatty acids  

To examine the effect of free fatty acids of various aliphatic carbon chain lengths 

on the expression of a representative chicken β-defensin (AvBD9), we incubated chicken 

macrophage HD11 cells and primary monocytes with different concentrations of fatty 

acids for 24 h and then examined AvBD9 gene expression by real-time RT-PCR. As 

shown in Fig. 1A, we observed a clear dose-dependent induction of AvBD9 in HD11 

cells in response to SCFAs and MCFAs, with LCFAs being largely inactive. A peak 

response occurred with SCFAs, with greater than 1000-fold induction of AvBD9 gene 

expression in HD11 cells when exposed to 80, 64, and 4 mM of acetate, propionate, and 

butyrate, respectively. The magnitude of AvBD9 induction was dramatically reduced 

with MCFAs (Fig. 1A) when compare to SCFAs. A similar trend was also observed in 

primary chicken monocytes, with SCFAs being the most potent inducers (Fig. 1B). 

However, a notable difference is that LCFAs including dodecanoate (C12), 

tetradecanoate (C14), and octadecanoate (C18) maintained a comparable, if not slightly 

better, AvBD9-inducing activity than MCFAs in primary monocytes (Fig. 1B). 

Besides AvBD9, we also examined another representative chicken HDP, namely 

cathelicidin B1, in response to free fatty acids in chicken primary monocytes. Similar to 

AvBD9, cathelicidin B1 was most readily induced by SCFAs including acetate, 

propionate, and butyrate (Fig. 2). The maximum induction of cathelicidin B1 expression 

was 17-fold for acetate, 37-fold for propionate, and 29-fold for butyrate, respectively. 

However, MCFAs and LCFAs had little or no impact on cathelicidin B1 synthesis.  
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To further examine the effect of the saturation status of the aliphatic chain on 

HDP expression, different concentrations of oleate [C18:(n-9)], linoleic acid [C18:2(n-

6)], α-linolenic acid [C18:3(n-3)], and CLA were used to stimulate HD11 cells for 24 h. 

Real-time RT-PCR revealed that, in contrast to saturated LCFAs,  unsaturated long chain 

fatty acids including oleate, linoleic acid, α-linolenic acid, and CLA were incapable of 

inducing AvBD9 gene expression in HD11 cells (Fig. 3A), but clearly showed a 

statistically significant, dose-dependent induction of the AvBD9 expression in primary 

chicken monocytes (Fig. 3B), showing a seemingly more potent HDP-modulating activity 

than saturated, unbranched LCFAs. Over all, these findings surprisingly suggested the 

significance of double bonds in the regulation of HDP expression. It appears that 

presence of double bonds in LCFAs tends to increase their ability to modulate AvBD9 

gene expression, with an opposite effect seen with saturated LCFAs. However, additional 

unsaturated fatty acids need to be tested in order to strengthen the conclusion, and the 

underlying mechanisms warrant further investigations. 

3.2. Impact of free fatty acids on the inflammatory response in HD11 cells  

SCFAs, particularly Butyrate, generally exert anti-inflammatory effects and have 

been used to treat inflammatory bowel diseases [7, 8]. To confirm augmentation of HDP 

gene expression by free fatty acids without triggering a proinflammatory response, we 

treated HD11 cells with or without different fatty acids at optimal HDP-inducing 

concentrations for 3 and 24 h and analyzed the expressions of three representative 

cytokines including IL-1β, IL-8, and IL-12p40. Bacterial lipopolysaccharide (LPS) from 

E. coli O111:B4 at 1 µg/ml was used as a positive control. All representative fatty acids, 

including acetate, propionate, butyrate, hexanoate, and octanoate, had essentially no 
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effect on IL-1β at both time points (Fig. 4). No influence on IL-12p40 expression was 

observed following fatty acid stimulation for 3 h; however, a 3- to 10-fold induction was 

seen with all fatty acids except for butyrate. As compared with LPS that caused >1000-

fold induction, a minimum influence (~10-fold increase) on IL-8 expression was 

observed after 3 h stimulation; however, all fatty acids showed a IL-8-inducing activity 

comparable to LPS after 24 h (Fig. 4). Taken together, these results demonstrated that 

fatty acids generally have no or a mild influence on triggering the inflammatory response 

while promoting the production of HDPs.  

3.3. Synergistic induction of AvBD9 expression and reduction of bacterial 

colonization by SCFAs  

Because acetate, propionate, and butyrate are among the most potent fatty acids in 

inducing AvBD9 gene expression and they also represent the major species of SCFAs 

being produced simultaneously by intestinal microflora, we sought to determine the 

synergistic effect of these three SCFAs on HDP synthesis. Chicken HD11 cells and 

primary monocytes were treated with acetate, propionate, and butyrate individually or in 

combinations for 24 h and followed by real-time RT-PCR analysis of AvBD9 gene 

expression. Individual SCFAs at low concentrations gave a minimum induction of 

AvBD9 gene in both HD11 cells and primary monocytes (Figs. 5A and 5B). However, a 

combination of propionate and acetate showed an obvious synergism (Fig. 5). More 

strikingly, an addition of all three SCFAs resulted in a significant induction of the 

AvBD9 gene in both cell types when compared to individual fatty acids (Fig. 5). A 

combination of all three free fatty acids enhanced AvBD9 gene expression with a 

maximum increase of 4,000-fold in HD11 cells and 25- to 50-fold in primary monocytes. 
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SCFAs and butyrate in particular are well-known histone deacetylase inhibitors 

[16, 17]. To study the impact of histone deacetylation on the AvBD9-inducing activity in 

chickens by SCFAs, we treated HD11 cells with or without acetate, propionate, and 

butyrate individually or in combination for 4 h and then performed HDAC assays using 

Fluor-de-Lys® HDAC Fluorimetric Cellular Activity Assay Kit (Enzo Life Sciences). As 

shown in Fig. 6, low concentrations of butyrate (0.5 mM) and acetate (40 mM) showed a 

similar HDAC inhibitory activity of approximately 50%, while propionate (4mM) 

suppressed the HDAC activity by 67% (Fig. 6). Moreover, a combination of any two 

SCFAs showed comparable or higher HDAC inhibitory activity than any individual 

SCFAs. More importantly, simultaneous treatment of HD11 cells with all three SCFAs 

resulted in the greatest inhibition of the HDAC activity (83%) (Fig. 6). These results are 

precisely correlated with the relative capacity of SCFAs to stimulate AvBD9 gene 

expression, where individual SCFAs gave marginal induction, combination of two caused 

a marked increase in AvBD9 expression, and the most dramatic augmentation occurred 

with three SCFAs (Fig. 5). Our data are also consistent with earlier findings that SCFAs 

induced HDP synthesis mainly through inhibition of HDACs in humans [14]. 

To further confirm whether SCFA-mediated synergistic induction of HDP could 

confer animals an enhanced resistance to bacterial infection, we supplemented 4-day-old 

male broiler chickens with 0.5% acetate, 0.2% propionate, and 0.1% butyrate individually 

or in combination in water for 2 days, followed by an inoculation with 1 x 107 CFU of S. 

enteritidis for another 4 days. The bacterial titer in the cecal content was examined. As 

seen in Fig. 7, a significant reduction of the S. enteritidis load was observed with 

supplementation of acetate, propionate, and butyrate individually. Importantly, the most 
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dramatic reduction in bacterial colonization was seen in the chickens receiving a 

combination of three SCFAs, consistent with their ability to induce AvBD9 gene 

expression in vitro (Fig. 5). It is likely that newly synthesized HDPs are released into 

extracellular compartments, killing microbes on mucosal surfaces [24].  

In the present study, we have shown among all free fatty acids, SCFAs are the 

most potent inducers of HDP gene expression in the chicken without provoking excessive 

proinflammatory response. Furthermore, the HDP-inducing activity of SCFAs is strongly 

correlated with their ability to inhibit the HDAC activity. It is worth noting that, in 

addition to the capacity to promote HDP synthesis, SCFAs and MCFAs were also found 

to possess direct antibacterial activities, albeit at high concentrations [9, 25]. 

Additionally, MCFAs and SCFAs, except for acetic acid, reduce the ability of Salmonella 

to invade intestinal epithelial cells [9, 25]. Given such a plethora of antibacterial 

properties, free fatty acids, particularly SCFAs, have potential for disease control and 

prevention and may represent promising alternatives to antibiotics.  
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FIGURE AND FIGURE LEGENDS  

 

Fig. 1. Regulation of AvBD9 gene expression by free fatty acids. Chicken macrophage 

HD11 cells (A) and primary monocytes (B) were treated in duplicate with or without 

indicated concentrations of fatty acids (mM) for 24h, followed by real-time RT-PCR 

analysis of AvBD9 gene expression. Data was normalized with GAPDH, and relative 

fold change of each treatment versus solvent control was calculated using ∆∆Ct method. 

Each bar indicates mean ± standard error of the data from 2-3 experiments.  
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Fig. 2. Modulation of cathelicidin B1 gene expression by free fatty acids. Primary 

chicken monocytes were treated in duplicate with or without indicated concentrations of 

free fatty acids (mM) for 24h, followed by real-time RT-PCR analysis of cathelicidin B1 

gene expression. Data was normalized with GAPDH, and relative fold change of each 

treatment versus solvent control was calculated using ∆∆Ct method. Each bar indicates 

mean ± standard error of the data from 2-3 experiments. 
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Fig. 3. Differential expression of AvBD9 in response to unsaturated fatty acids. 

Chicken HD11 macrophage cells (A) and primary monocytes (B) were treated in 

duplicate with different concentrations of sodium oleate (0.1 and 0.2 mM) and linoleic, α-

linolenic, and conjugated linolenic acids (0.05, 0.1, 0.2, and 0.4 mM for all three) for 24 

h, followed by real-time RT-PCR analysis of AvBD9 gene expression. Each bar indicates 

mean ± standard error of the data from two independent experiments. *P < 0.05, ** P < 

0.001, and *** P < 0.0001 by unpaired Student’s t-test as compared to the untreated 

control. 
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 Fig. 4. A minimum impact of free fatty acids on the expression of proinflammatory 

cytokines. Chicken HD11 cells were stimulated with different fatty acids at optimal 

HDP-inducing concentrations (80 mM acetate, 32 mM propionate, 4 mM butyrate, 16 

mM hexanoate, and 2 mM octanoate) or LPS (1 µg/µl) as a positive control for 3 and 24 

h, followed by real-time RT-PCR analysis of the expression of IL-1β (A), IL-12p40 (B), 

and IL-8 (C). The bars represent means ± standard errors from 2-3 experiments. 
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Fig. 5. Synergistic induction of AvBD9 with acetate, propionate and butyrate in 

chicken HD11 cells (A) and primary monocytes (B). Cells were incubated with acetate, 

propionate and butyrate alone or in combinations for 24h, followed by real-time RT-PCR 

analysis of AvBD9 expression. Each bar represents mean ± standard error of the data 

from 3 independent experiments.  *P < 0.05, ** P < 0.001, and *** P < 0.0001 by 

unpaired Student’s t-test as compared to the cells treated with butyrate alone. 
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Fig. 6. Inhibition of the HDAC activity by acetate, propionate, and butyrate. 

Chicken HD11 cells were incubated in duplicate with or without three SCFAs in the 

presence of Fluor-de-Lys®, a fluorogenic, cell-permeable HDAC substrate for 4 h. The 

deacetylation reaction was stopped and the fluorescent signal was generated by addition 

of a developer solution containing trichostatin A and NP-40. Fluorescence was monitored 

at 360 nm excitation and 460 nm emission. HDAC inhibition by SCFAs was calculated 

relative to the cells without being exposed to any HDAC inhibitor. Each bar represents 

mean ± standard error of the data. *P < 0.05, ** P < 0.001, and *** P < 0.0001 by 

unpaired Student’s t-test as compared to the cells treated with butyrate alone. 
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Fig. 7. Synergistic reduction of the S. enteritidis load in the cecum of chickens by a 

combination of acetate, propionate and butyrate. Four day-old male broiler chicks 

were supplemented with or without 0.5% acetate, 0.2% propionate, and 0.1% butyrate 

alone or in combinations in water for 2 days with 5 birds per group, followed by an 

inoculation with S. enteritidis phage type 13a (1 x 107).  SCFA supplementation was 

continued for another 4 days before the cecal content was collected and bacterial number 

enumerated. Each dot indicates the bacterial titer in a bird and the solid line represents the 

median value of each treatment. *P < 0.05 and **P < 0.01 (by unpaired Student’s t-test).  
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ABSTRACT 

As an important component of innate immunity, host defense peptides (HDPs) protect the 

host from invading pathogens by acting as direct antimicrobials and immunomodulators. 

Butyrate, a histone deacetylase (HDAC) inhibitor, was shown to induce the HDP 

expression and reduce the Salmonella enteritidis colonization in chickens. However, the 

molecular mechanism by which butyrate induces chicken HDP expression remains 

elusive. Here we studied the involvement of histone acetylation and cAMP and MAP 

kinase signaling pathways in butyrate-mediated regulation of AvBD9, a chicken β-

defensin in chicken HD11 macrophage cells. We showed that, similar to butyrate, most 

HDAC inhibitors are capable of inducing AvBD9 gene expression, although varying in 

the efficacy. On the other hand, histone acetyltransferase (HAT) inhibitors reversed 

butyrate-induced AvBD9 gene expression. Inhibition of p38 MAP kinase or c-Jun N-

terminal kinase (JNK), but not extracellular signal-regulated kinase (ERK) pathway, 

obliterated butyrate-triggered AvBD9 synthesis. In addition, cAMP analogs and 

adenylate cyclase agonists upregulated AvBD9 gene expression. More importantly, 

butyrate and adenylate cyclase agonists acted synergistically in enhancing AvBD9 gene 

expression. Taken together, our studies revealed a critical involvement of histone 

acetylation, cAMP signaling, and p38 and JNK pathways in the regulation of AvBD9 

gene transcription mediated by butyrate. A detailed understanding of the underlying 

mechanisms of the HDP gene regulation will pave the way for development of novel 

antibiotic-free strategies in diseases control and prevention in both animal agriculture and 

public health.  
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1. INTRODUCTION 

 

Host defense peptides (HDPs) are a critical, evolutionarily conserved component 

of the innate immune system. HDPs are represented by a large group of small cationic 

peptides with generally less than 100 amino acid residues [1-4]. HDPs are expressed 

strategically in leukocytes, skin keratinocytes, and mucosal epithelial cells lining the 

digestive, respiratory, and urogenital tracts, providing an important first line of host 

defense. They are either constitutively expressed or differentially regulated in response to 

infection or injury. HDPs kill bacteria, enveloped virus, protozoa, and fungi mainly by 

physically disrupting their membranes [2, 5-8]. In addition to their direct bacterial killing 

activity, HDPs also modulate innate and adaptive immunity [2, 9]. Two major families of 

HDPs, namely cathelicidins and defensins, exist in vertebrates [4, 10, 11]. Most defensins 

are composed of six conserved cysteine residues in the C-terminal region [10-13], 

whereas cathelicidins consists of a conserved cathelin domain in the N-terminal region 

and a highly variable C-terminal sequence [4, 14]. The chicken genome encodes a total of 

14 avian β-defensins also known as AvBDs and 4 cathelicidins known as fowlicidins 1-3 

[15-17] and cathelicidin B1 [18]. 

Butyrate and a group of histone deacetylase (HDAC) inhibitors were recently 

found to specifically augment LL-37 cathelicidin gene expression in human HT29 

colonic epithelial cells [19-21]. As an important epigenetic mechanism for remodeling of 

the chromatin structure and controlling of gene expression, histone acetylation is 

achieved by a balanced act of histone acetyltransferases (HATs) and HDACs. HATs 
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acetylate the lysine residues of nucleosomal core histones leading to a relaxed and 

transcriptionally active chromatin. Conversely, HDACs remove the acetyl groups from 

the lysine residues resulting in a condensed and transcriptionally silenced chromatin. 

HDAC inhibitors block the action of HDACs, leading to hyper-acetylation of histones, 

thereby affecting gene expression [22-25]. It will be important to reveal the significance 

of histone acetylation in regulating HDP expression in a non-mammalian species. Besides 

epigenetic control, binding of cAMP-response element-binding protein (CREB) and 

activator protein 1 (AP-1) to the promoter region were shown to play a major role in 

butyrate-mediated induction of human LL-37 expression in intestinal epithelial cells [26]. 

Consistently, blockage of cAMP and MAP (mitogen-activated protein) kinase signaling 

essentially abrogated the transcriptional activation of the LL-37 gene by butyrate [26]. 

We found previously that butyrate upregulates the expression of several HDPs 

and reduces the Salmonella enteritidis colonization in the chicken [27]. In the present 

study, we extended our work to have further revealed a critical role of histone acetylation 

and cAMP and MAPK signaling pathways in butyrate-mediated regulation of AvBD9, a 

chicken β-defensin. We also discovered a synergistic induction of AvBD9 gene 

expression by a combination of butyrate and adenylate cyclase agonists. These results 

will have important implications in devising novel immune boosting strategies in disease 

control and prevention without the use of antibiotics. 
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2. MATERIALS AND METHODS 

 

2.1. Chemicals and cells 

Sodium valproate, Sodium butyrate, pertussis toxin (PT) and cholera toxin (CT) were 

purchased from Sigma-Aldrich (St. Louis, MO). Forskolin (FSK), 8-Bromo-cAMP, 

dibutyryl-cAMP (DB-cAMP), SB203580 (p38 inhibitor), PD98059 (MEK inhibitor), and 

SP600125 (JNK inhibitor) were from Santa Cruz Biotechnology (Santa Cruz, CA). 

HDAC inhibitors including trichostatin A (TSA), suberoylanilide hydroxamic acid 

(SAHA), CAY10433/BML-210, and CAY10398 were obtained from Cayman Chemicals 

(Ann Arbor, MI). Epigallocatechin gallate (EGCG), garcinol, and anacardic acid (HAT 

inhibitors) were acquired from Cayman Chemicals (Ann Arbor, MI), Enzo Life Sciences 

(Farmingdale, NY), and Santa Cruz, respectively. Sodium valproate, sodium butyrate, 8-

Bromo-cAMP, DB-cAMP, and PD98059 were dissolved in RPMI 1640 medium. TSA, 

SAHA, CAY10433, and CAY10398, FSK, SB203580, and SP600125 were dissolved in 

dimethyl sulfoxide (DMSO), whereas CT and PT were dissolved in sterile water. Chicken 

HD11 macrophage cell line [28] was a generous gift from Dr. Hyun S. Lillehoj at the 

USDA, ARS. 

2.2. Isolation of chicken primary monocytes 

Chicken blood was collected intravenously using EDTA as anticoagulant (Sigma), and 

peripheral blood mononuclear cells (PBMC) were isolated by gradient centrifugation 

with Histopaque 1077 (Sigma). Chicken blood was mixed 1:1 with 1% methyl cellulose 

(Sigma), and centrifuged at 25 × g for 20 min. Cells remaining in suspension were
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collected, mix 1:1 with prewarmed Hanks balanced salt solution (HBSS), and centrifuged 

for 15 min at 600 × g. Cells were resuspended with warm HBSS and overlaid onto 

Histopaque 1077 for centrifugation for 30 min at 400 × g. Interphase containing PBMC 

was collected into a fresh tube and washed with HBSS. Cell pellet was then resuspended 

in RPMI 1640 (Hyclone) supplemented with 10% fetal bovine serum (FBS), 100 µg/ml 

streptomycin, 100 U/ml penicillin, and 20 mM HEPES.  PBMCs (6 ×107/well) were 

dispensed in 60 mm tissue culture dishes and let adhere overnight at 37oC and 5% CO2. 

Non-adherent cells were then removed, and adherent monocytes were washed once with 

prewarmed HBSS. Monocytes were replenished with fresh complete RPMI 1640 medium 

and incubated for another 2 h prior to be exposed to different agents. 

2.3. Culture and stimulation of cells 

Chicken HD11 macrophages (2 ×106/well) were grown in 2 ml RPMI 1640 supplemented 

with 10% FBS and 1% antibiotics in 6-well tissue culture plates. After overnight 

incubation at 37oC and 5% CO2, cells were treated with different agents. To study the 

signaling mechanisms in butyrate-mediated HDP induction, cells were incubated with 

cAMP agonists, MAPK kinase inhibitors for 1h and with HAT inhibitors for 2 h, 

followed by butyrate treatment for up to another 24 h. All experiments were performed 2-

3 times independently, with 2-3 biological replicates for each treatment. 

2.4. Total RNA extraction and cDNA synthesis 

Following treatment with different agents, cells were harvested with RNAzol (Molecular 

Research) for isolation of total RNA. The quantity and quality of RNA were measured by 

Nanodrop (NanoDrop Products, Wilmington, DE), and QuantiTect Reverse Transcription 
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Kit (Qiagen, Valencia, CA) was used to synthesize the first-strand cDNA from total RNA 

following the manufacturer’s recommendations. Briefly, 0.3 µg of total RNA was first 

eliminated of genomic DNA contamination in a genomic DNA wipeout buffer for 5 min 

at 42oC. Reverse transcription was then performed in a total volume of 4 µl using 

Quantiscript reverse transcriptase and a mixture of random hexamers and oligo(dT) 

primers for 30 min at 42oC, followed by 3 min at 95oC to inactivate reverse transcriptase. 

The cDNA was then diluted 10-fold with RNase-free water prior to use in real-time PCR. 

2.5. Real-time PCR analysis of gene expression 

QuantiTect SYBR Green PCR Kit (Qiagen) was used for real-time amplification of the 

first-strand cDNA using MyiQ Real Time PCR Detection System (Bio-Rad, Hercules, 

CA, USA) as previously described [17]. Briefly, each PCR reaction was set up in a 96-

well PCR plate in a total volume of 10 µl using 0.1 µg of the first-strand cDNA and gene-

specific primers (Table 1). Real-time PCR was programmed as follows: initial 

denaturation at 95oC for 10 min, followed by 45 cycles of denaturation at 94oC for 15 s, 

annealing at 55oC for 20 s, and extension and data collection at 72oC for 30 s. The 

forward and reverse primers for chicken GAPDH and AvBD9 and proinflammatory 

cytokines were previously described [29]. Melting curve analysis was conducted to 

confirm the specificity of PCR amplifications. Comparative ∆∆Ct method was used for 

quantification of gene expression using the glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) gene as the reference for data normalization [17].  

2.6. Statistical analysis
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All data were subjected to statistical analysis using Student’s t test and GraphPad Prism 5 

(GraphPad Software, La Jolla, CA). Each data point represented mean ± standard error 

from 2-3 independent experiments. The results were considered statistically, if P < 0.05. 

 

3. RESULTS 

 

3.1. Induction of AvBD9 gene expression by HDAC inhibitors 

We showed recently that butyrate upregulates several chicken HDPs and enhances 

resistance of chicken against S. enteritidis [27]. Since butyrate is a well-known HDAC 

inhibitor, we evaluated the ability of several HDAC inhibitors (Fig. 1A) to stimulate 

AvBD9 synthesis. We treated chicken HD11 macrophages and primary monocytes with 

different concentrations of a few selected HDAC inhibitors for 24 h, followed by RNA 

isolation and real-time RT-PCR analysis of the AvBD9 gene expression.  As expected, 

TSA, SAHA, sodium valproate, CAY10433, and CAY10398, all stimulated AvBD9 gene 

expression significantly in a dose-dependent manner both in HD11 cells (Fig. 1B) and 

primary monocytes (Fig. 1C), albeit at lower magnitudes than butyrate, which peaked 

with an approximately 2,000-fold AvBD9 induction in HD11 cells and greater than 250-

fold induction in primary monocytes. On the other hand, all other HDAC inhibitors 

showed a similar efficacy in inducing AvBD9 expression in HD11 cells with an 

approximately 100-fold maximum induction (Fig. 1B). In primary monocytes, valproate 

and SAHA led to 100-fold increase in AvBD9 expression, but TSA, CAY10433, and 

CAY10398 showed a reduced efficiency, with approximately 10-, 30-, and 6-fold 
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maximum increase, respectively (Fig. 1C). The results collectively are suggestive of a 

beneficial role of histone hyperacetylation in AvBD9 gene induction. The variation in the 

magnitude of AvBD9 gene regulation among different HDAC inhibitors could be due to 

their relative potency in HDAC inhibition in different cell types.  

3.2. Suppression of butyrate-induced AvBD9 gene expression by HAT inhibitors 

Acetylation of nucleosomal core histones is achieved by either activation of HATs or 

inhibition of HDACs [22, 23, 25]. If hyperacetylation of histones through HDAC 

inhibition promotes the AvBD9 gene expression, inhibition of the HAT activity will have 

an opposite effect. To confirm the effect of HAT inhibition on butyrate-induced AvBD9 

expression, we pretreated HD11 cells with different concentrations of HAT inhibitors for 

2 h prior to stimulation with 1 mM butyrate for another 24 h. Cells were then harvested 

and subjected to total RNA extraction and real time RT-PCR. As expected, EGCG dose-

dependently reversed the induction of the AvBD9 gene by butyrate (Fig. 2A). EGCG at 

200 µM suppressed butyrate-induced AvBD9 expression by 15-fold. Anacardic acid (Fig. 

2B) or garcinol (Fig. 2C) also similarly inhibited AvBD9 gene induction caused by 

butyrate, although with a less efficacy. The stronger inhibitory effect of EGCG than that 

of anacardic acid or garcinol on the HAT activity is likely to be attributed to the fact that 

EGCG inhibits a broader spectrum of HATs than other two HAT inhibitors [30-33]. It is 

noted that, due to a low expression level of AvBD9 under the basal condition, a further 

decrease by HAT inhibitors could not be reliably detected in HD11 cells. Nevertheless, 

these studies reinforced a critical role of histone acetylation in regulation of the AvBD9 

gene. 
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3.3. Involvement of p38 MAPK and JNK pathways in AvBD9 gene expression  

MAPK signaling was shown to be involved in butyrate-mediated LL-37 induction in 

human intestinal epithelial cells and lung epithelial cells [19, 34, 35]. To determine the 

effect of three classical MAPK pathways on AvBD9 gene expression, we pretreated 

HD11 cells with or without p38 MAPK, ERK1/2, and JNK inhibitors for 1 h, followed by 

incubation with butyrate for another 24 h. Real-time RT-PCR analysis of AvBD9 

expression revealed that SB203580 and SP600125, p38 MAPK and JNK inhibitors, 

respectively, significantly attenuated butyrate-mediated AvBD9 induction (Fig. 3). On 

the other hand, PD, a specific ERK1/2 inhibitor, failed to suppress AvBD9 expression 

induced by butyrate. These results suggested that p38 MAPK and JNK, but not ERK1/2, 

pathways are involved in butyrate-triggered AvBD9 expression. 

3.4. Impact of cAMP signaling on AvBD9 synthesis 

In addition to histone acetylation and MAPK signaling, cAMP analogs and adenylate 

cyclase agonists were shown to induce LL37 expression in human intestinal epithelial 

cells [26]. To study whether cAMP signaling is also involved in the regulation of HDP 

synthesis in chickens, we first treated HD11 cells with different concentrations of two 

cAMP analogs, 8-bromo-cAMP and DB-cAMP for up to 48 h. As shown in Fig. 4, the 

two analogs triggered both a time- and dose-dependent induction of AvBD9 gene 

expression. Treatment with 0.5 mM 8-bromo-cAMP led to an approximately 5-fold 

increase in AvBD9 expression at 24 h and 15-fold AvBD9 induction at 48 h (Fig. 4A). 

More strikingly, DB-cAMP caused a much more pronounced augmentation of AvBD9 

gene expression, with approximately 200-, 500-, and 1,000-fold induction following
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stimulation with 2 mM of DB-cAMP for 6, 12, and 24 h, respectively (Fig. 4B). The 

results clearly confirmed the role of cAMP in the HDP induction in the chicken. The 

marked difference in AvBD9 regulation between two cAMP analogs are likely due to the 

release of two butyrate molecules from the cAMP motif after DB-cAMP is taken up into 

the cells. Therefore, unlike 8-bromo-cAMP, the effect seen with DB-cAMP is likely due 

to the combined actions of both butyrate and cAMP. In fact, a growing body of evidence 

suggested a consideration of the biological effect of butyrate when DB-cAMP is used as a 

cAMP analog [36-39]. Nevertheless, it is beneficial to use DB-cAMP to enhance host 

immunity and disease resistance by taking advantage of the HDP-inducing activity of 

both butyrate and cAMP motifs existing in DB-cAMP.  

In addition to cAMP analogs, we further examined the AvBD9-inducing efficacy 

of adenylate cyclase agonists, which promote the endogenous synthesis of cAMP. As 

shown in Fig. 5, 10 µM forskolin stimulated AvBD9 gene expression in a time-dependent 

fashion peaking significantly with nearly a 9-fold induction at 24 h, consistent with the 

potency of a cAMP analog, 8-bromo-cAMP. Similarly, CT at 0.5 µg/ml also exerted a 

statistically significant 6-fold increase in AvBD9 gene expression following 24 h 

stimulation, whereas PT caused a marginal 2-fold enhancement at 12 or 24 h (Fig. 5) 

demonstrated negligible induction of AvBD9 at and 24h time period. Overall, these data 

indicated that, in addition to cAMP itself, any agent that stimulates the synthesis of 

cAMP is also capable of promoting AvBD9 gene expression in the chicken. 

3.5. Synergistic induction of AvBD9 gene expression by HDAC inhibitors and 

adenylate cyclase agonists
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Since both HDAC inhibitors and cAMP signaling activators induce AvBD9 gene 

expression, we sought to test whether there is a synergistic interaction between these two 

groups of agents. To our surprise, we observed a clear, statistically significant synergy 

between butyrate and three different adenylate cyclase agonists. Stimulation of HD11 

cells with 1 or 2 mM butyrate for 24 h led to 200- to 800-fold increase in AvBD9 gene 

expression, whereas forskolin gave a maximum, less than 10-fold induction (Fig. 6A). 

However, a nearly 3,000-fold increase in AvBD9 expression was observed in HD11 cells 

in response to a combination of both 2 mM butyrate and 5 µM forskolin, which reflected 

an additional 3-fold increase over butyrate alone (Fig. 6A). Similarly, CT or PT led to a 

marginal increase in AvBD9 gene expression in HD11 cells; however, simultaneous 

treatment with butyrate and CT or PT resulted in an additional 3- to 4-fold increase over 

butyrate alone (Fig. 6B and 6C). The results revealed a clear synergistic interaction 

between histone deacetylation and cAMP signaling.  

It is worth noting that forskolin regulated butyrate-mediated AvBD9 expression in 

a biphasic manner, with higher concentrations from 10 to 200 µM suppressing AvBD9 

induction (Fig. 6A). The same is true with forskolin alone, with low concentrations 

inducing gene expression and high concentrations causing a dose-dependent abrogation 

of AvBD9 induction (Fig. 6A, insert). These results perhaps are not surprising, given the 

existence of negative feedback mechanisms in cAMP signaling. In fact, prolonged 

production of cAMP negatively regulates the expression of LL-37 in human intestinal 

cells, due to the presence of an inducible cAMP early repressor in the LL-37 gene 

promoter [26]. It is likely that such a similar cAMP repressor is also present in the 

AvBD9 gene promoter; however, it needs to be experimentally confirmed.
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4. DISCUSSION 

 

HDAC inhibitors including butyrate, sulforaphane, phenylbutyrate, and TSA were found 

to induce the HDP expression in humans [[19-21, 34, 35]]. We also revealed the role of 

butyrate on regulation of several HDP gene expression in chickens [27]. Here, we 

revealed for the first time that several additional HDAC inhibitors such as sodium 

valproate, SAHA, CAY10433, and CAY10398 are all capable of stimulating AvBD9 

gene expression in chicken HD11 macrophage cells and primary monocytes, albeit with 

different efficacies. Furthermore, we showed that HAT inhibitors suppressed the HDP 

gene expression. The results made it evident that HDP regulation by histone 

deacetylation is conserved in both mammals and aves. However, it is likely that 

differences exist among species and/or cell types. For example, phenylbutyrate was 

shown to be more potent than butyrate in inducing LL-37 expression in human HT29 

intestinal cells [21]. Sulforaphane also exhibited higher efficiency than butyrate in 

triggering human β-defensin 2 (HBD-2) expression in the same cell line [20]. However, 

when compared to butyrate, phenylbutyrate had a less stimulating effect on AvBD9 

expression in chicken HD11 cells while sulforaphane had no effect (data shown). 

Therefore, it is prudent to confirm the HDP-inducing efficacy of individual HDAC 

inhibitors in each species. 

 cAMP activates gene expression through protein kinase A (PKA)-mediated 

phosphorylation of intracellular transcription factors such as cAMP response element-

binding protein (CREB), which in turn promotes recruitment of several HATs including 
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CREB binding protein (CBP) and p300 to the target gene promoter, leading to chromatin 

remodeling and gene transactivation [40]. HDAC inhibitors act to prolong CREB 

phosphorylation, thereby potentiating CBP/p300 recruitment and cAMP-dependent gene 

transcription [41] . Therefore, it is not surprising to see a clear synergy between adenylate 

cyclase agonists and HDAC inhibitors in triggering AvBD9 gene expression. It will be 

important to explore such a synergistic interaction between cAMP signaling and histone 

deacetylation in boosting HDP synthesis, host immunity, and disease resistance.  

 We have also shown JNK and p38 MAPK signaling pathways are critically 

important in regulating butyrate-mediated AvBD9 gene induction, which is consistent 

with an earlier report on the existence on the AvBD9 (also known as gallinacin-6) 

promoter region of several binding sites for activator protein 1 (AP-1) [42], which is a 

common target transcription factor activated by MAP kinases [43].  It is intriguing to 

note that ERK1/2 MAPK pathway appears not to be involved in regulating AvBD9 

expression in HD11 cells. However, both ERK1/2 and JNK, but not p38 MAP kinase 

pathways are implicated in LL-37 induction in human lung and intestinal epithelial cells 

stimulated with butyrate [19, 35] or phenylbutyrate [21]. The reason for such a 

discrepancy between humans and chickens remains unknown. It is plausible that species- 

or gene-specific regulatory pattern of HDP expression may exist.  

 Taken together, our results clearly showed that histone deacetylation, cAMP 

signaling, and MAP kinase pathways are involved in AvBD9 gene regulation. All these 

three events are likely to cooperate with each other in providing a fine tuning of the 

AvBD9 expression. HDAC inhibitors enhance histone acetylation and relax the AvBD9 

gene promoter, achieving two benefits simultaneously. First, it prolongs cAMP signaling 
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resulting in enhanced recruitment of CREB to the AvBD9 promoter. Secondly, it 

facilitates binding of AP-1 activated by MAP kinases to the gene promoter. It is also 

known that cAMP and MAPK signaling pathways cross-talks in that cAMP-dependent 

activation of PKA ultimately activates all three classical MAP kinase pathways [26]. 

 Because of many desirable host defense roles of HDPs, further exploration of the 

regulatory mechanisms of HDPs will facilitate development of strategies for optimal 

production of HDPs, which will have enormous implications in boosting host immunity 

and disease resistance without resorting to conventional antibiotics. 
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Fig. 1. Induction of AvBD9 gene expression by histone deacetylase inhibitors. 

Different concentrations of histone deacetylase inhibitors (A) were incubated in duplicate 

with chicken HD11 macrophages (B) or primary monocytes (C) with for 24 h, followed 

by real-time RT-PCR analysis of AvBD9 expression. Each bar represents mean ± 

standard error of the data from 2-4 independent experiments. *P < 0.05, ** P < 0.001, 

and *** P < 0.0001 by unpaired Student’s t-test as compared to the untreated control. 
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Fig. 2. Suppression of butyrate-mediated AvBD9 gene induction by histone 

acetyltransferase inhibitors. Chicken HD11 cells were treated in duplicate with 

indicated concentrations of epigallocatechin gallate (EGCG) (A), anacardic acid (B) and 

garcinol (C) for 2 h before treatment with 1 mM butyrate for another 24 h. Real-time RT-

PCR analysis was carried out to evaluate AvBD9 gene expression. Each bar shows mean 

± standard error of the data from 3-4 experiments.*P < 0.05, ** P < 0.001, and *** P < 

0.0001 by unpaired Student’s t-test.  
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Fig. 3. Role of p38 and JNK mitogen-activated protein kinase pathways on AvBD9 

gene induction. Chicken HD11 cells were incubated in duplicate with 25 µM p38 

inhibitor (SB203580), 20 µM JNK inhibitor (SP600125) or 50 µM MEK inhibitor 

(PD98059) for 1 h, followed by stimulation with 4 mM butyrate for another 24 h. AvBD9 

expression was evaluated with real-time RT-PCR. Data from 2-4 experiments are 

presented in bars showing means ± standard error. ***P ≤ 0.0001 by unpaired Student’s 

t-test. 
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Fig. 4. Upregulation of AvBD9 gene expression by cAMP analogs. Chicken HD11 

cells were treated in duplicate with different concentrations of 8-bromo-cAMP (A) and 

dibutyryl-cAMP (B) for 6, 12 or 24 h. Real-time RT-PCR analysis was performed to 

evaluate AvBD9 gene expression and the results were normalized against GAPDH. Each 

bar shows mean ± standard error of the data from 2-3 experiments. 
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Fig. 5. Induction of AvBD9 gene expression by adenylate cyclase agonists. Chicken 

HD11 cells were stimulated with 10 µM forskolin, 0.5 µg/ml cholera toxin, or 0.5 µg/ml 

pertussis toxin for 6, 12 or 24 h. AvBD9 gene expression was analyzed by real-time RT-

PCR, and relative fold change was calculated as compared to the negative control. Values 

represent means ± standard error of the data from 2 to 3 experiments. *P < 0.05, and ** P 

< 0.001 by unpaired Student’s t-test.  
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Fig. 6. Synergistic increase in AvBD9 gene expression by butyrate and adenylate 

cyclase agonists. HD11 cells were pretreated in duplicate for 1 h with different 

concentration of forskolin (FSK (µM): (            ) :  0,1, 2, 5, 10, 20, 50, 100, and 200) (A) 

or cholera toxin (CT; µg/ml) (B), followed by 2 mM butyrate for another 24 h. Similarly, 

different concentrations of pertussis toxin (PT; µg/ml) (C) were added to HD 11 cells for 

1 h prior to 1 mM butyrate incubation for another 24 h. Real-time RT-PCR analysis was 

used to evaluate AvBD9 gene expression, and the relative fold change was quantitated 

using 2-∆∆Ct method. Each bar demonstrates means ± standard error of the data from 2 to 3 

experiments. The effect of FSK alone on AvBD9 induction was shown in the insert, panel 

A. *P < 0.05, ** P < 0.001, and *** P < 0.0001 by unpaired Student’s t-test as compared 

to the cells treated with butyrate alone. 
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