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CHAPTER I 
 
 

INTRODUCTION 

World population is concentrated in areas that offer improvements in life 

quality, basically represented by the availability of food and services.  The 

accelerated growth in world population has increased food demand.  Increased 

requirements for food open the opportunity to develop more intensive agricultural 

production systems.  The intensification of food production has disrupted all 

nutrient cycles, increasing the rate of removal of nutrients from their natural 

accumulation areas, and increasing the rate of loading of those nutrients in areas 

of intensive production. 

This trend includes swine production. On a global scale, pork production is 

growing.  Approximately 107.5 million tons of pork were produced in 2006, and 

around 110.7 millions is the projected production for 2007 (FAO, 2007).  The 

swine industry’s capacity to supply nourishment has grown based on the 

intensification of the production system. The intensification of swine production 

results in concentration of pigs and their waste at the production sites, and has 

been associated with increased rates of nutrients loaded into the environment. 

At the present time, nitrogen (N) and phosphorus (P) are the nutrients of 

greater concern in regards to environmental and public health risk.  Land 

application of N and P in excess of crop requirements can result in P 
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accumulation in soil, N and P leaching into water bodies, in addition to the 

ammonia emitted to the atmosphere during application of manure.  Also, trace 

minerals in swine waste can buildup in cropping areas after long term soil 

application. 

This scenario is real on a global, national, and regional scale.  It has captured 

the attention of scientists, governments, and the general population.  All parties 

recognize the importance of reducing the environmental impact of swine 

production. However, it is also important to recognize that strategies to reduce 

environmental impact can not compromise national and global food safety.   

In the US, as part of a national strategy, the Environmental Protection Agency 

(EPA) has implemented regulations to preserve the integrity of US water and air.  

Currently, the Clean Water Act regulates nutrient discharge from intensive swine 

production systems, based on the protection of water reservoirs. However, in the 

near future, the Clean Air Act (CAA), Comprehensive Environmental Response, 

Compensation and Liability Act (CERCLA), and Emergency Planning and 

Community Right-To-Know Act (EPCRA) will be the most limiting rules for 

production intensification, regulating ammonia and hydrogen sulfide emissions to 

less than 100 lb/day or less than 250 tons/year. 

The swine industry, governmental regulatory agencies, scientific community, 

and the general public are demanding the development of comprehensive 

nutrients management plans.  The comprehensive nutrient management plans 

should take into account all nutrients entering and leaving the production system, 
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and management practices that can be implemented to reduce nutrient loading 

rate into the environment. 

Most of the nutrients that exit the production system as waste were 

introduced as feed.  Traditionally, swine diets have been formulated to guaranty 

an optimal production and profits, regardless of the amount of nutrients 

accumulated in waste.  At the present time, this is changing, and nutritionists are 

working in the development of strategies oriented to reduce the amount of 

nutrients exiting the production systems in waste.  However, the lack of excretion 

data produced with group-fed pigs in production facilities is limited. 

Based on the lack of data, and the need to develop dietary strategies that 

could be included in comprehensive nutrient management plans in swine finisher 

operations, a series of three experiments was designed to determine the effect of 

reducing dietary CP, P, and trace minerals on pig growth performance, slurry 

characteristics, nutrient excretion, carcass characteristics, bone strength, nutrient 

concentration in pork, ammonia, and hydrogen sulfide emissions, in addition, to 

estimate N and P mass balance in a grower-finisher system. 
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CHAPTER II 
 
 

REVIEW OF LITERATURE 

 
Impact of food production on nutrient cycles 

The impact of human activities on global nutrient cycles has rapidly increased 

over the past few decades.  Increased nutrient concentration in soil, water 

bodies, and atmosphere are the result of the accelerated growth in world 

population (Cleveland, 2007; Glibert, 2007; Khalil and Richards, 2007).   

In ideal conditions, nutrient losses in agricultural production sites should not 

be greater that nutrient losses in natural ecosystems.  The hypothetical ideal 

condition includes a stable human population and food production without 

external inputs of nutrients as part of the cycle (IFA, 2007).  However, the real 

scenario includes a growing human population, concentrated in urban areas, with 

increasing demand for food.  The growing demand for food has driven 

intensification of food production and with it the disruption of nutrient cycles all 

over the world (IFA, 2007).  

The intensification of food production includes application of inorganic and 

organic fertilizers in cropping areas and the intensification of the animal 

production systems (Glibert, 2007, Khalil and Richards, 2007, IFA, 2007).  

Accumulation of swine manure may result in the disruption of nutrient cycles, with 
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greater environmental concern associated with the disruption of the N and P 

cycles. 

The disruption of the N cycle in association with intensive animal operations is 

the one better documented.  Currently, 67% of the N that is annually incorporated 

into the terrestrial ecosystem is anthropogenic nitrogen, and only 33% is 

incorporated by natural processes (Cleveland, 2007).  In agricultural areas, 

nitrogen losses are mainly represented by NH3 emissions, NO3 leaking, and N2 

losses from NO3 denitrification (IFA, 2007).  Intensive swine production systems 

are important sources of ammonia emission and nitrate leaching.  In Europe, 

approximately 30% of N excreted in swine operations is lost (19% as ammonia, 

7% as NOx, N2O, and N2, and 4% as NO3 leaching) during storage (Velthof et al., 

2007).   On a global scale, animal waste accounts for approximately 38% of 

ammonia emissions (Galloway, 2005). 

Appropriate documentation of the disruption of nutrient cycles due to swine 

production, including N, P, and minerals, is indispensable in the development of 

appropriate strategies to diminish nutrients overloaded in the production areas.  

Also, baseline information about nutrient inputs in natural conditions is required 

to measure the magnitude of the environmental disturbance that can be 

associated to swine production (Cleveland, 2007).  

 

Intensification of swine production systems in US 

Traditionally, swine production started around crop production areas. This 

was also the starting point of the swine industry in the U.S.  Pigs were introduced 
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and concentrated around the Midwestern Corn Belt as a strategy to add value to 

corn when corn production was high and the prices were down.  At this time, 

swine farms were farrow to finish units (Hollis and Curtis, 2001).   

During the 19th and 20th centuries (1880-1940), lard was in large demand, and 

pigs were raised to produce meat and fat. Around 1950, swine production faced 

two new challenges: 1) an increasing consumer demand for leaner meat, and 2) 

rural labor exodus to urban areas.  The reduction in rural labor was one of the 

factors that forced the reduction in the number of swine farms and intensification 

of the swine industry (Hollis and Curtis, 2001).   

During the 1980s and 1990s, swine production was expanded to other areas 

of the US. The number of swine farms decreased and their size began to 

increase, to a point, which in 2,000, swine production was controlled by farms 

that produced over 2,000 heads per year on segregated production systems 

(Hollis and Curtis, 2001).   

At the present time, the number of pig farms is nearly 2% of the number of 

farms in the 1950s.  However, the size of the operation has increased 

dramatically over the last five decades, with 53% of the farms producing over 

5,000 head per year (National Pork Producers Council, 2007).  Today, China is 

the largest pork producer on a global scale.  The U.S. shares second place with 

Denmark.  The 10 largest swine production states in U.S. ranked in descendent 

order are Iowa, North Carolina, Minnesota, Illinois, Indiana, Nebraska, Missouri, 

Oklahoma, Kansas and Ohio (National Pork Producers Council, 2007).   
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With the aggressive growth of the U.S. swine industry, the general concern 

about environmental pollution in areas where swine operations are located has 

intensified.  Intensification of swine production in specific geographic areas 

results in accumulation of manure, with very limited capacity for its disposal.   As 

a result, the swine industry is dealing with a scenario where two new challenges 

have been introduced. These challenges are the reduction of nutrients excreted 

by pigs, and the development of more efficient nutrient recycling systems 

(Kornegay and Harper, 1997).   

 

Typical diets for growing-finishing pigs 

Pork is an important source of amino acids, energy, vitamins and minerals for 

human nutrition.  These nutrients are supplied to the pig via feed, and used for 

protein and fat accretion, milk production, bones, organs, hair and skin growth.  

Different sources of nutrients are incorporated into swine diets; ingredients are 

mixed (nutrient sources) in specific ratios in order to meet or exceed pig nutrient 

requirements. The traditional ingredients employed are represented in high 

proportions by cereal grains and oilseed meals, with addition of other amino 

acids, vitamin, and mineral sources. 

Cereal grains are the primary ingredient in swine diets.  Cereal grains are 

energy dense.  The main constituent of all cereal grains is starch.  However, in 

corn and oats, fat can have an important contribution to their energy density.  

Cereals are also an important source of essential and non-essential amino acids, 

and their pattern and availability varies among different grains (Sauber and 
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Owens, 2001).  They commonly supply 30 to 60% of the total amino acids 

required by pigs (NRC, 1998).  However, based on the essential amino acid 

pattern of various cereals and the pig requirements, lysine is the first limiting 

amino acid in all cereal grains, followed by tryptophan in corn, and threonine in 

barley and sorghum (NRC, 1998).   

Even though the list of cereals used in swine diets can be very long, the most 

commonly used are corn, barley, wheat, sorghum, and oats (Sauber and Owens, 

2001).  From this list, corn traditionally has been the most used cereal in the US 

for swine diets.  Swine production in the US started in the Midwestern Corn Belt 

as a strategy to add value to corn prices during over production times (Hollis and 

Curtis, 2001).  Later, swine production was expanded to other areas, and corn 

kept it place as the primary ingredient in swine diets.  The inclusion of corn in 

swine diets is based on corn availability, energy density, easy to transport, 

traditionally consumed by swine, and cost effectiveness (Sauber and Owens, 

2001). 

Due to limitations of the cereal grains to offer an adequate supply of amino 

acids, other protein sources are included to ensure adequacy of dietary amino 

acid patterns (NRC, 1998). Oilseeds, such as soybean, rapeseed, sunflower, and 

peanut have been used in swine diets as amino acid sources.  However, most 

oilseeds are low in lysine, with the exception of soybean.  Therefore, soybean 

meal is the most popular source of amino acids incorporated to swine diets, due 

to its greater concentration of lysine in addition to other amino acids (Chiba, 

2001).    
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The mineral content in cereal grains and oilseeds only represents a small 

fraction of the minerals required in swine diets.  For example, calcium 

concentration in all grains is low, and most phosphorus is bound into an inositol 

molecule as inositol phosphate, commonly referred to as phytate.  

Approximately, 85 (in corn) to 50% (in wheat) of the phosphorus in grains is 

unavailable for swine (Sauber and Owens, 2001).  The swine digestive system 

lacks phytase, which is the enzyme able to dissociate phosphate groups from the 

inositol ring.  However, phosporus availability, in addition to the availability of 

other minerals, can be enhanced with addition of exogenous sources of phytase 

to the diet (Cromwell et al., 1995; Harper el al., 1997; Kornegay and Harper, 

1997).   

If minerals, such as calcium and phosphorus, are deficient in cereal grains 

and oilseeds used in diet preparation, supplemental calcium, phosphorus, and 

any other mineral needed, can be added to the diet.  Mineral supplementation 

into the diet can be achieved by incorporation of mineral sources, such as 

dicalcium phosphate, limestone, bone meal, etc (Sauber and Owens, 2001).   

This is also true for vitamins.  Lipo-soluble vitamin concentrations in grains 

are insignificant, and some hydro-soluble vitamin concentrations are marginal in 

reference to pig requirements.  Thus, swine diets are traditionally fortified with 

vitamins (Sauber and Owens, 2001).   

The development of optimum feeding strategies account for multiple factors, 

such as ingredient availability, nutrient concentration and availability in 

ingredients, ingredient prices, and pig nutrient requirements.  Therefore, two 
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concepts that widely contribute to adequate swine diet formulation are nutrient 

availability and amino acid supply on an ideal basis (Chiba, 2001).   

The most common measurements of nutrient bioavailability used in swine diet 

formulation are metabolizable energy (ME), true ileal digestibility for amino acids, 

and bio-availability of minerals and vitamins.  The ME value of an ingredient 

refers to the proportion of the dietary energy absorbed from the gastrointestinal 

tract minus gaseous and urinary energy losses.  True ileal digestibility 

(standardized true digestibility coefficient) of amino acids refers to the proportion 

of the dietary amino acid absorbed from the gastrointestinal tract by the time the 

digesta reaches the terminal ileum, with corrections made for endogenous 

losses.  The bio-availability of minerals and vitamins refers to the proportion of 

dietary mineral and vitamins which are absorbed and available for utilization 

(NRC, 1998). 

The ideal protein concept defines the optimal dietary ratio among amino acids 

that corresponds to the amino acid requirements of the pig (NRC, 1998).  In 

practical swine diets, the ratio has been commonly defined based on lysine 

requirements and available amino acids rather than total (Tuitoek et al., 1997).  

Diet formulation to ensure pig nutrient requirements based only on the mixture of 

cereal grains with soybean meal is not recommended.  The reason is that the 

concentration of limiting amino acids in most of the ingredients is very low.  

Therefore, at the point that the required concentrations of limiting amino acids, 

such as lysine, methionine, and tryptophan, are achieved, the non-essential 

amino acids are in excess.  However, the use of high quality protein sources, and 
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inclusion of crystalline amino acids in diet formulation can alleviate this problem 

(NRC, 1998). 

Traditionally, swine diets have been formulated to maximize pig performance 

without regard for nutrient excretion.  Therefore, several nutrients are included in 

the diet in excess, in order to account for the variability of nutrient content and 

availability.  Nutrient oversupply increases the amount of nutrients excreted in 

urine and feces (Kornegay and Harper, 1997; NRC, 1998; Creech et al., 2004).  

It is also important to take into account that around 80% of the feed consumed by 

a market pig was consumed during the finishing period.  Therefore, the reduction 

of nutrient over-supply during the finishing phase deserves special attention. 

 

Nutrient excretion by growing-finishing pigs  

Estimated values of nutrient excretion based on individually-fed pigs have 

been summarized by Kornegay and Harper (1997).  Their summary suggested 

that 45 to 60% of the N consumed is excreted, 50 and 80% of the calcium (Ca) 

and P, and 70 to 95% of potassium (K), sodium (Na), manganese (Mg), copper 

(Cu), zinc (Zn), manganese (Mn), and iron (Fe) is excreted (Kornegay and 

Harper, 1997).  More recently, it has been suggested that 70% of nitrogen intake 

is excreted (Kornegay and Verstegen, 2001). 

Due to the high level of nutrient content in swine manure, it has been 

recognized as a valuable fertilizer (Kornegay and Harper, 1997; IFA, 2007) and, 

therefore the common fate is land application. However, nutrients applied in 

excess of crop requirements can increase the concentrations in the soil, cause 
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reductions in crop yields, and leach into water bodies (Kornegay and Harper, 

1997; Creech et al., 2004; Velthof et al., 2007).  Of the nutrients present in swine 

waste, N and P have generated great environmental concern, in addition to K, Cu 

and Zn, which are gaining more attention (NRC, 1998; Sutton and Richert, 2004).   

Recently, the ASABE published estimated values for DM, N and P excretion, 

on a per pig basis.  The excretion of DM, N and P was estimated using prediction 

models that take into account diet composition, feed intake, nutrient retention, 

and pig lean growth.  The estimated excretion values for a growing-finishing pig 

managed in average conditions were 380 g of DM, 39.3 g of N, and 6.73 g of P 

(Carter et al., 2003).  However, very little nutrient excretion data are available 

based on group-fed pigs in commercial conditions.   

Manure management in intensive swine production is challenging due to the 

large volume produced and limited crop land in the vicinity for land application. 

The increasing concern about nutrients overloaded into the environment has 

emphasized the need to reduce the amount of nutrients excreted and the 

implementations of nutrient recycle systems that reduce environmental impact 

(Kornegay and Harper, 1997).  The reduction of nutrient overfeeding will reduce 

the amount of nutrients excreted, and the concentration of nutrients in swine 

waste (Kornegay and Harper, 1997; Creech et al., 2004).   

However, accurate measurements of nutrient excretion and gaseous 

emissions from group-fed pigs under commercial conditions are needed to 

establish base lines to identify best management practices and evaluate the 

environmental impact of swine production. 
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Waste disposal through manure land application 

In intensive swine production systems, waste treatment and disposal have 

become a significant environmental issue. Mainly, due to the common practice of 

applying swine waste on to cropping land as an organic fertilizer (Kornegay and 

Harper, 1997; Sauer et al., 2003; Wang et al., 2004).  Application of manure to 

the soil can contribute to enhance soil fertility, structure, and water holding 

capacity (Choudhary et al., 1996). 

Soil fertility is a main factor to sustain agricultural production and food security 

(Aulakh and Sandhu, 2007).  Maintenance of soil productivity is a function of the 

judicious use of organic and inorganic sources of nutrients to balance nutrient 

availability in soil solution, reduce carbon (C) depletion from soil, increase C 

sequestration rates (Aulakh and Sandhu, 2007), and avoid build up of mineral 

concentrations in soil (Fairchild and Malzer, 2007).   

Swine manure and effluent are excellent sources of N to be used in crop 

fertilization programs (Choudhary et al., 1996).  The efficiency of N utilization in 

soil is affected by the adequacy of water in soil.  Soil moisture and temperature 

influence N mineralization, denitrification, and leaching (Fairchild and Malzer, 

2007).  Thus, it is recommended to apply swine manure or effluent close to 

planting dates, and avoid proximity to expected precipitation events (Choudhary 

et al., 1996).  Manure land application during high precipitation periods or with 

high irrigation levels induces N loss through leaching and denitrification (Aulakh 

and Sandhu, 2007; Fairchild and Malzer, 2007).  Also, manure application to 
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frozen soil constitutes a high risk of nitrate and other soluble nutrients leaching 

(Choudhary et al., 1996).   

In addition to N losses through leaching, N is lost as ammonia emissions to 

the atmosphere during land application (Sharpe and Harper, 2002; Velthof et al., 

2007).  In the European Union, approximately 19% of N excreted in swine 

operations is lost as ammonia during manure land application (Velthof et al., 

2007).  In the US, it has been reported that the ammonium N in the effluent that 

is lost as ammonia N during land application before reaching the soil surface 

area can vary from 1 (Wu et al., 2003a) to 12% (Sharpe and Harper, 2002), and 

the total N lost into the atmosphere after land application goes up to 35% of 

effluent total N concentration (Sharpe and Harper, 2002). In the UK, dilute slurry 

(less than 2% DM) is used in crop land irrigation.  Ammonia emission during 

irrigation represents 1 to 2.5% of the ammonium N concentration of the slurry; 

after irrigation is completed, the total ammonia N lost is approximately 10% of 

total ammonium N in the slurry (Misselbrook et al., 2004).  It is important to 

consider that N losses during effluent application can be affected by effluent flow 

rate, temperature, wind speed, and concentration of ammonium N in effluent (Wu 

et al., 2003b). 

It is also true that swine waste products are commonly applied to the soil only 

based on N loading rates, without taking into account the concentration of other 

nutrients in the waste. This practice can increase the risk of over-loading the soil 

with nutrients, and with it, the risk of polluting water (Kornegay and Harper, 

1997).   
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In New Zealand, the application of swine effluent is regulated to 150 to 200 kg 

of N per hectare per year.  The amount of N leaching following this loading rate 

application of swine effluent is insignificant.  However, P and K have 

accumulated, causing an imbalance of nutrients in the soil (Wang et al., 2004).  

It has been reported that natural concentrations of P in US soil commonly 

range from 26 to 57%, in contrast with 49 to 80%, as is basis, of total P 

measured in similar soils after 10 years of manure application (Sharpley et al., 

2004).  In addition to P accumulation in soil, the P reaction products changed 

from approximately 49% of inorganic P in the form of Al and Fe complexes to 

49% in the forms of Ca-P complexes.  These Ca-P complexes are not water 

soluble, thus, this portion of P in soil will not be available for plant uptake 

(Sharpley et al., 2004).  Other reports suggest soil accumulations of Cu and Zn 

after 4 and 10 years of swine effluent application, in association with leaching of 

Cu into lower levels of soil.  However, the accumulation levels were low enough 

to not represent any phytotoxic risk, even to Cu and Zn sensitive crops (Novak et 

al., 2004). Also, a Canadian report suggests accumulation of K, and a reduction 

of removable Ca and Mg, in cereal cropping soil after 5 to 7 years of swine 

manure application (Qian et al., 2005).   

When manure has been applied based on crop P removal rate, runoff losses 

were approximately 2.8% of total P applied, with 50% of P lost as soluble P and 

50% lost as sediment-bound forms (Sauer et al., 2003).  Even though no 

significant P leaching was measured under this management practice, these 

results corresponded to a single application.  Therefore, evaluations of long-term 
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applications are needed to clear up the potentiality of P, as well as other 

minerals, accumulation in soil and leaching over time. 

The best strategy to reduce nutrient losses from land application will be 

splitting manure applications in combination with appropriate irrigation schedules 

(Aulakh and Sandhu, 2007).  To estimate the best rate of manure application two 

major approaches are used: 1) a predictive approach that takes into account 

nutrient availability in soil through soil testing or remote images in conjunction 

with crop potential for nutrient uptake (Lemunyon and Kuenstler, 2002, Fairchild 

and Malzer, 2007) and 2) an ‘in time’ crop need strategy where manure 

application will be a function of using specific sensors to detect crop needs 

(Fairchild and Malzer, 2007).  In addition to these strategies, crop rotation can 

help to preserve soil integrity, and reduce the risk of nutrient leaching to 

underground water reservoirs (Lemunyon and Kuenstler, 2002).  The future of 

manure land application will depend on the ability of the producer to manage 

application rate and frequency based on spatial and temporal availability of 

nutrients in soil with crop needs (Fairchild and Malzer, 2007). 

 

Influence of C:N ratio on N release during organic matter decay 

The practical importance of the C:N ratio in swine waste becomes obvious 

when the changes that takes place in the soil after residual application are taken 

into account.  The C:N ratio in a stabilized soil ranges between 8:1 and 15:1.  

The application of any organic material with a C:N ratio below 20 will provide 

additional free N to the soil solution.  The free N in soil solution will be available 
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for plant uptake (Brady and Weil, 1999) and leaching into underground water.  If 

the rate of land application of swine waste residual is high and the C:N ratio is 

low, it can increase the risk of N leaching into underground water.  

 

Impact of nutrients loaded into the soil on water quality 

Nutrients applied in excess of crop requirements can accumulate in soil.  

Water soluble forms of nutrients are incorporated into soil solution when soil 

moisture is high.  Nutrients accumulated in soluble forms are easily mobilized in 

solution through soil horizons.  The mobilization of nutrients in soil solution from 

superficial horizons to lower soil levels is known as nutrient leaching (Choudhary 

et al., 1996; IFA, 2007).  Thus, high precipitation and manure application to 

frozen soil can increase nutrients leaching into underground water (Choudhary et 

al., 1996).  

Nitrogen incorporated to soil in the form of nitrate is water soluble, and 

therefore, it is mobile in soil solution (IFA, 2007).  If soil moisture is high and N 

leaches away from crop rooting zones, nitrogen value as fertilizer is lost, and it 

can leach into water bodies (Choudhary et al., 1996; IFA, 2007).  As a 

consequence, high N loads into terrestrial and aquatic ecosystems have 

increased N deposition and eutrophication of water reservoirs (De Vries et al., 

2007; IFA 2007).  Also, nitrogen lost as ammonia can contribute to nitrogen 

leaching.  Ammonia can be deposited into soil via acid rain, contributing to soil 

acidification.  Ammonia in soil is nitrified to water soluble nitrates that can leach 

into underground water (Galloway et al., 2003). 
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Eutrophication of water bodies is causing a global concern about loss of 

biodiversity and its impact on human health.  This process has been defined as 

the “accumulation of nutrients in aquatic and terrestrial ecosystems that can lead 

to an undesired increase in biomass production and a shift in species 

composition” (IFA, 2007).   

Increased N and P load into water bodies has been recognized as one of 

several mechanisms linked to eutrophication all over the world (Glibert, 2007; 

IFA, 2007).  Algae blooms are associated with increased levels of a nutrient that 

was limited in the natural ecosystem.  The increase in frequency, magnitude, and 

duration of algae blooms in enriched-water ecosystems suggest that 

eutrophication is a consequence of increased nutrient concentrations in the 

ecosystem (Glibert, 2007).   

Nutrient enrichment of water bodies can drive harmful algae blooms. Harmful 

algae are those that produce toxins that are accumulated in shellfish and fish that 

later are consumed by humans, causing health problems.  Also, some harmful 

algae toxins can directly affect shellfish or fish, or disturb the ecosystem in a 

detrimental way, such as the development of hypoxia or anoxia when the blooms 

decay (Glibert, 2007).  Nutrient enrichment and reduction of oxygen in water 

sources markedly decrease drinking water quality (Khalil and Richards, 2007; 

IFA, 2007).   

Nitrate accumulation in drinking water has been associated with health 

problems such as methemoglobinemia.  Nitrates in water are transformed to 

nitrites by human intestinal bacteria, which are potent oxidants.  Nitrites oxidize 
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ferrous iron of the hemoglobin molecule into ferric iron, decreasing blood oxygen 

and carbon dioxide carrying capacity.   Patients with methemoglobinemia are 

cyanotic and non responsive to oxygen therapy; therefore, in severe conditions 

this disorder can lead to patient death (Hill, 1996; Brunato et al., 2003). 

Stream water samples collected within the Tipton Creek watershed in Iowa, 

from the vicinity of a concentrated swine operation had detectable P 

concentration. Even though P concentration was not high enough to compromise 

water quality, the effects of runoff on P export to the watershed were simulated, 

to estimate the environmental risk that manure P application could have in this 

watershed (Sauer et al., 2003).  Precipitation records from previous years were 

used to estimate the impact of 4 runoff events under similar management 

conditions five years later.  The simulation was conducted assuming a 25% 

increase in swine production in the area. The result of the simulation suggested a 

40% increase in total P exported to the watershed under the assumed conditions 

(Sauer et al., 2003).  Also, a tendency of K (Qian at al., 2005) and Cu (Novak et 

al., 2004) leaching has been reported after long-term manure application in other 

areas.   

The contribution of small amounts of limiting nutrients in specific nutrient 

restricted ecosystems can cause a dramatic shift in biodiversity (Glibert, 2007).  

However, it is not feasible to estimate the magnitude of the environmental 

disturbance attributable to intensive swine production.  However, one of the 

biggest challenges that the swine industry is facing at the present time is 

balancing production with the reduction in environmental impact.   
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Impact of emissions from swine production on air quality 

The concentration of atmospheric reactive N is increasing.  The general 

concern about the contribution of N emitted from human activities (anthropogenic 

N) into the atmosphere is growing (Cleveland, 2007).  The most abundant form of 

reactive N in the atmosphere is ammonia (Aneja et al., 2007) which has been 

associated with dust and ammonium salts formation (IFA, 2007). 

Dust monitoring is based on particulate matter (PM) size.  The nomenclature 

includes PM10 as particle matter which size is smaller that 10µm, and PM2.5 for 

particle matter smaller that 2.5µm (IFA, 2007).   

Ammonium, nitrate, and sulphate concentrations in PM10 have a seasonal 

behavior.  The lowest concentrations of ammonia and nitrate in PM10 are 

measured when temperature is higher, and concentrations increase with low 

temperatures (during winter) (Alebic-Juretic, 2007).   Opposite behavior is 

observed for sulphate concentration in PM10 with concentration increasing by 

10% during summer in comparison with its concentration registered during winter 

(Alebic-Juretic, 2007).   

The association of this seasonal behavior of ammonia and nitrate 

concentrations measured in rural areas with specific agricultural practices is very 

poor (Fagerli et al., 2007).  The temporal variation in emission from agricultural 

practices, such as land manure application, is affected by soil surface 

temperature, moisture, and wind flow (Fagerli et al., 2007). 
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Increased atmospheric dust formation has been associated with an increased 

incidence of respiratory problems in humans.  The respiratory tract is primarily a 

place where dust interacts with the human body.  Dust particles enter carried by 

the air inhaled during breathing. They reach the mucosa and alveoli, inducing 

irritation of the airways (Iversen et al., 2000).  It has been documented as a 

growing health concern of swine operation neighbors. The concern is mainly 

based on the incidence of irritation of the respiratory tract within their population.  

This respiratory problem seems to be consistent with symptoms associated to 

respiratory problems of confined-environment-swine workers (Thu, 2002). 

However, the effects of dust exposure on human health have been better 

documented in confinement environments characterized by the presence of dust, 

endotoxins, and ammonia (Iversen et al., 2000; Thu, 2002; Von Essen and 

Romberger, 2003).  The respiratory problems associated with exposure in swine 

confinement facilities include asthma-like syndrome, exacerbation of underlying 

asthma, chronic bronchitis, and mucous membrane irritation syndrome (Iversen 

et al., 2000; Von Essen and Romberger, 2003).  These problems could result 

from irritation of the airways in combination with other disease mechanisms, 

which in all cases resulted in loss of lung function (Iversen et al., 2000). 

In order to minimize the effects on human health, it is well recognized the 

need to emphasize research in dust particle matter (Predicala and Maghirang, 

2004) and gases emission monitoring (Ni, 1999, Ni et al., 2000; Hebert et al., 

2000; Aneja et al., 2007) in addition to the identification of best management 
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practices to reduce swine dust production and emissions (Ni, 1999; Ni et al., 

2000; Hebert et al., 2000; Thu, 2002).   

 

Regulatory policies to preserve air and water integrity  

The Environmental Protection Agency has identified concentrated animal 

feeding operations (CAFOs) as a priority sector for supervision and regulation.  

Intensive swine production operations are identified as CAFOs within the EPA 

regulation (EPA, 2006).  CAFOs are categorized as pollutant point sources, and 

since 2003, all CAFOs with potential to discharge are required to apply for a 

National Pollutant Discharge Elimination System (NPDES) discharge permit 

(EPA, 2006).  The application for the NPDES discharge permit requires the 

submission of information about the discharge.  This information should include: 

specification of the discharge, and the implemented comprehensive nutrient 

management plan; including specifications of the waste treatment system design 

(EPA, 2006).  

The implementation of comprehensive nutrient management plans in 

intensive operations is not only required to meet Environmental Protection 

Agency regulations (EPA, 2006). It is also required to meet the USDA Natural 

Resource Conservation Service (USDA-NRCS) guidelines for concentrated 

animal feeding operations (Henry et al., 2003).   

The implementation of comprehensive nutrient management plans requires 

the identification of a combination of management practices that can be 

efficiently adopted by each production system.  Thus, production management 
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practices in the swine industry and their effects on nutrients loaded into the 

environment are gaining a lot of attention as subjects of regulation, at the state 

and federal level, to protect natural resources.  

 The selection of the management practices to be adopted in specific 

production conditions can be a complex task.  Therefore, tools have been 

developed to support producers in their selection process.  In all cases, the 

selection tools have been the result from interdisciplinary collaborative work 

combining animal scientists, natural resource scientists, engineers, economists, 

production leaders, and policy advisers.  An example of these tools is the 

Comprehensive Animal Nutrient Management System, developed as a 

collaborative effort of Washington State University and University of Idaho (Chen 

et al., 2003).  Another available resource is the NRCS Customer Service Toolkit, 

developed by University of South Carolina and the NRCS (Henry et al., 2003). 

The environmental regulations that can affect the future of intensive swine 

production are not limited to those that regulate water quality issues.  The Clean 

Water Act regulates waste discharge, including manure land application.  

However, the Clean Water Act does not regulate gases emitted into the air, such 

as ammonia and hydrogen sulfide (EPA, 2006).  Therefore, to preserve air 

integrity, the EPA has three air quality regulatory acts.  These acts are the Clean 

Air Act (CAA), Comprehensive Environmental Response Compensation and 

Liability Act (CERCLA), and Emergency Planning and Community Right-To-

Know Act (EPCRA).  Currently, these acts are being reviewed to address 

gaseous emissions from CAFOs.  The implementation of regulations on 
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ammonia and hydrogen sulfide emission from CAFOs will impact swine 

production.  In the near future, emissions of ammonia and hydrogen sulfide 

above 100 lb/day or 250 tons/year will be subject to penalties established within 

these acts. 

However, more research is required to identify the best management 

practices to reduce ammonia and hydrogen sulfide emissions (Kornegay and 

Harper, 1997; Sutton and Richert, 2004).  It is also required the standardization 

of an appropriate air monitoring system to enhance the decision making process 

in regards to implementation of new regulatory policies (Velthof et al., 2007; 

Aneja et al., 2007).   

 

Dietary manipulation to reduce environmental impact of swine 

production 

Environmental impact of swine production can be minimized with an optimal 

combination of management practices to reduce nutrient excretion from swine 

production, in addition to the implementation of balanced fertilization programs 

(Velthof et al., 2007).   Dietary manipulation has been proposed as a practical 

and feasible approach to reduce nutrient excretion, especially during the finishing 

phase (Kornegay and Harper, 1997; Sutton and Richert, 2004; Velthof et al., 

2007).   

Approximately 80% of the feed consumed by a finished pig is consumed 

during the finishing phase. Therefore, special attention needs to be placed on 

nutrients excreted during finishing.  Dietary manipulation has been proposed to 
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reduce nutrient excretion in finishing pigs.  This approach includes avoiding or 

reducing nutrients over fed, the use of highly digestible sources of nutrients, and 

the inclusion of dietary supplements to enhance nutrient utilization (Kornegay 

and Harper, 1997, Sutton and Richert, 2004).   

 

Dietary manipulations to reduce nitrogen excretion 

In the growing and finishing phases, opportunities exist to reduce nutrient 

excretion through the inclusion of high quality protein sources, the reduction of 

over-feeding non-limiting amino acids by the reduction of dietary protein levels, 

and balancing diets with addition of crystalline amino acids (Sutton and Richert, 

2004). 

 

Use of high quality protein sources 

Traditionally, swine diets have been formulated to supply adequate amounts 

of essential amino acids that met or exceeded pig requirements, in addition to 

amounts of non-essential amino acids, or of amino groups for non-essential 

amino acid synthesis (NRC, 1998).  A basic concept in swine diet formulation is 

the ideal protein.  The ideal protein represents the optimal pattern among 

essential amino acids which supply pig needs.  In the case of grower and finisher 

pigs, the pigs needs refer to the amino acids requirements for protein accretion 

and maintenance (NRC, 1998). 

The inclusion of high quality protein sources in diet formulation will allow pigs 

to meet their requirements at lower dietary protein levels (NRC, 1998; Sutton and 
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Richert, 2004).  High quality protein sources have been defined as a feed 

commodity, feedstuff, or mixture of them which have an amino acid pattern 

similar to the pig requirement (NRC, 1998) and a high biological value (Sutton 

and Richert, 2004).   

Regularly, proteins with high biological value are rich in one or more limiting 

amino acids, such as lysine, methionine, threonine and tryptophan.  It is 

impossible to formulate an amino acid balanced diet using only natural feed 

ingredients.  Therefore, moderate supplementation of diets with crystalline amino 

acids is considered a strategy to formulate balanced diets that meet amino acids 

requirements with reduced protein concentration (NRC, 1998).   

Although the concept of biological value is well understood, diet formulation 

based on this concept is not feasible.  Diet formulation based on biological value 

will require a known biological value of each amino acid in the ingredient to be 

used.  Therefore, to optimize diet formulation on ideal amino acid basis, swine 

diets have been formulated based on true digestible amino acid values rather 

than total amino acid concentrations (Tuitoek et al., 1997). 

 

Reduction of dietary protein levels with addition of crystalline AA and N excretion 

The protein content in swine diets is the result of diet formulation based on 

pig nutrient requirements for a specific weight, physiological condition, and 

expected growth performance.  Typically, grower and finisher diets are 

formulated using corn and soybean meal as basal ingredients and fortified with 

vitamins and minerals.  Diet formulation using the basal ingredients as unique 
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amino acid sources leads to the over-feeding of amino acids, and a high protein 

content diet.  Feeding diets with high protein content results in high N intake and 

excretion. Urinary N is an important portion of the N excreted.  It is the product of 

the breakdown of absorbed amino acids that exceeds metabolic demand of the 

pig.  Therefore, growing-finishing diets should be formulated to meet amino acid 

requirements and to avoid amino acid and protein over-feeding (Sutton and 

Richert, 2004). 

Previous reports of N balance in growing-finishing pigs suggest that 55 

(Kornegay and Harper, 1997) to 70% of nitrogen intake is excreted (Kornegay 

and Verstegen, 2001).  Therefore, the reduction of dietary CP in amino acid 

supplemented diets has been proposed to reduce N excretion and ammonia 

emissions (Kornegay and Harper, 1997; Kornegay and Verstegen, 2001; Otto et 

al., 2003; Sutton and Richert, 2004; Portejoie et al., 2004; Panetta el at., 2006; 

Htoo et al., 2007). 

The magnitude of response in reduction of N excretion obtained from different 

studies is dependent on the protein level used as the reference value in the 

control diet and the amino acid supplementation criteria employed.  Commonly, 

the CP and amino acid concentration in the diets employed as control diets meet 

or exceed the NRC requirements.  However, amino acid supplementation has 

been performed to meet the amino acid profile of the control diet (Canh et al., 

1998; Portejuie et al., 2004; Figueroa-Velazco, 2004) or the ideal amino acid 

pattern (Kephart and Sherritt, 1990; Figueroa 2002, 2003; Kerr et al., 2003a, 

2003b; Panetta et al., 2006; Htoo et al., 2007). 
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In the development of low protein diets, the effects of reducing dietary CP on 

N intake and retention have been studied.  The reduction in protein levels in 

finishing diets from 16.5 to 12.5% linearly decreased N intake from 62 to 47 

g/pig/d, and increased N retention as a percentage of intake from 39 to 48% 

(Canh et al., 1998).  In grower diets, a reduction in CP concentration from 18.2 to 

13.6% resulted in a linear reduction in N intake from 40 to 30 g/pig/d and a linear 

increase in N retained as percentage of the intake from 53 to 60% (Deng et al., 

2007b). 

Further reductions in dietary CP from 15 to 6% linearly decreased N intake 

from 43 to 26 g/pig/day, increased N retention as percentage of the intake from 

56 to 74%, and N retained as percentage of N absorbed from 70 to 86% (Otto et 

al., 2003).  In this study, it was also suggested that a reduction of dietary CP by 

3% units could reduce N excretion by approximately by 20% (Otto et al., 2003).   

Reduction in CP concentration in finisher diets by 4 to 6% units, maintaining 

similar levels of limiting amino acids to the control diet, have demonstrated a 

reduction in N excretion from 21 to 44%, respectively (Portejoie et al., 2004). 

Although N excretion was diminished by approximately 7% per each percentage 

unit reduction in dietary CP, it could be possible to obtain greater reductions in N 

excretion using a similar reduction in dietary CP.  In this study, the protein 

concentration of the control diet was 4% units higher than the requirement 

established by the NRC (1998).  

Other evaluations of reduced protein diets reported that decreasing dietary 

CP from 18.2 to 16.5, 15.5, 14.5 and 13.6% reduced fecal N excretion by 7 to 
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17%, urinary N excretion by 19 to 45%, and total N excretion by 15 to 45%, 

respectively, for 2 to 5% units reduction in CP in the diet. For every one 

percentage unit reduction in dietary CP, N excretion was decreased by 7.6% 

(Deng et al., 2007b), in agreement with previous results (Portejoie et al., 2004).  

Further reductions in dietary protein in grower diets, from 19 to 12%, reduced N 

excretion by 58% without affecting retained N as percentage of intake (Le 

Bellego et al., 2001). 

However, reductions in N digestibility have been reported as a linear effect of 

reducing dietary protein concentration using growing diets with 19, 16, 14 and 

12%.  The apparent digestibility coefficient of N in the 19% CP diet was 91.5% 

and sequentially decreased to 89% in the 12% CP diet (Le Bellego et al., 2001).  

In agreement with this report, the reduction in dietary CP concentration from 18.2 

to 13.6% in finishing diets linearly decreased N digestibility from 84 to 82% (Deng 

et al., 2007b).   

The reduction in N digestibility in reduced CP diets is more evident when diets 

are formulated with the inclusion of ingredients with lower digestibility than corn 

and soybean meal.  As an example, a reduction of 3% units in dietary protein, 

with addition of crystalline amino acids, in a grower diet with 8% inclusion of 

barley reduced N digestibility by 3%.   In spite of the reduction in N digestibility, 

the 3% units reduction in dietary protein decreased N excretion by 29 (normal 

barley) to 32% (low-phytate barley) (Htoo et al., 2007). 

The effects of reduced dietary CP diets on N excretion have also been 

evaluated in diets with addition of fermentable fiber.  The reduction of CP 
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concentration in grower diets by 3% units with addition of crystalline amino acids 

on an ideal basis decreased urinary N excretion by 28% and total N excreted by 

18% (6% per each percentage unit of CP that was reduced; Zervas and Zijlstra, 

2002a).  The inclusion of 15% soy hulls in the diet decreased urinary N excretion 

by 5%, and the inclusion of 20% sugar beet pulp decreased urinary N by 9%.  

These levels of fermentable fiber, 15 and 20% inclusion of soy hulls and sugar 

beet pulp, increased fecal N excretion by 4 and 6.5%, respectively.  However, the 

inclusion of fermentable fiber did not affect total N excretion (Zervas and Zijlstra, 

2002a). 

Another study was conducted with the objective to evaluate the effects of 

reduced CP in the diet and oat-hull fiber on N excretion. Three protein levels 

(19.7, 16.9, and 13.8% CP) and two fiber levels (5 and 3.6% CF) were evaluated 

in grower diets.  Urinary, fecal, and total N excretion linearly decreased with the 

reduction in dietary protein concentration. When N excretion from pigs fed the 

highest protein level was contrasted with N excretion from pigs fed the lowest 

protein level, the 6% units reduction in dietary CP reduced urinary N excretion 

from 18 g/pig/d to 10 g/pig/d (48% reduction).  Also, fecal N excretion reduced 

from 8 to 6 g/pig/d (23% reduction), and total N excretion reduced from 26 to 16 

g/pig/d (40% reduction). When N excretion was expressed as percentage of N 

intake, urinary and total N linearly decreased with the reduction in protein 

concentration in the diet.  However, fecal N excretion as percentage of N intake 

was not affected by dietary CP concentration (Zervas and Zijlstra, 2002b).  The 

inclusion of fiber in the diet affected N intake.  The intake of N was higher in the 
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diet with 5% of CF in relation to the N intake of the diet with 3.6% CF.  Also, N 

excretion was 9% higher in pigs fed the diet with 5% CF in relation with N 

excreted by pigs fed the diet with 3.6% CF (Zervas and Zijlstra, 2002b).   

 

Effect of reduced protein diets on pig growth performance 

Diet formulation on an ideal protein basis represents a practical approach to 

supply the required amino acids in swine diets. It has been suggested that in 

corn-soybean meal diets with addition of crystalline amino acids on an ideal 

basis, dietary protein can be reduced up to 22%, which represents approximately 

a 3% units reduction, without affecting pig growth performance (Tuitoek et al., 

1997).   

The reduction of dietary protein by 1 to 3% units in corn-soybean meal diets 

fed to grower and finisher gilts did not affect average daily gain, average daily 

feed intake, and gain to feed ratio of gilts.  However, a further reduction in CP to 

4% units tended to decrease average daily gain and the feed:gain ratio was 

increased (Tuitoek et al., 1997). 

The negative effects of further reductions in dietary protein concentration on 

pig growth performance have been consistently reported.   The reduction of 

dietary protein by 4 or more percentage units with addition of crystalline essential 

amino acids on an ideal basis decreases daily gain, final weight, and increases 

feed:gain ratio (Tuitoek et al., 1997; Gomez et al., 2002; Figueroa et al., 2002, 

2003; Figueroa-Velasco et al., 2004; Panetta et al., 2006).  It is not clear why 

reductions in dietary protein over 4% units have negative effects on pig growth.  
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On the other hand, a reduction in dietary CP by 4% units, with addition of 

crystalline amino acids, to meet similar concentration of lysine, methionine, 

threonine and tryptophan to the control diet increases feed intake, and no 

detrimental effect is observed in average daily gain and feed conversion 

(Figueroa-Velasco et al., 2004). 

It is possible that the optimum amino acid balance changes over time, 

especially the ratio of threonine and sulfur amino acids to lysine (Tuitoek et al., 

1997).  Another possible explanation could be the reduction in total N supply 

when protein concentration in the diet is reduced over 4% units.  In this case 

diminished pig growth could be the consequence of limited total N supply 

(Tuitoek et al., 1997).  Also, previous reports suggest that N utilization in reduced 

protein diets can be enhanced by the addition of glutamate (Kephart and Sherrit, 

1990, Kerr and Easter, 1995) and glycine (Kerr and Easter, 1995).  However, 

these data leave open the possibility that certain amounts of non-essential amino 

acids, or their metabolic precursors, need to be supplied via feed, to optimize N 

utilization in grower and finisher pigs (Tuitoek et al., 1997). 

Another theory is the preferential absorption of free amino acids which drives 

a reduction in utilization of amino acids from intact proteins when pigs are fed 

once a day.  However, this theory is not valid after it was demonstrated that 

increased feeding frequency and free access to feed to do not enhance amino 

acid utilization.  Therefore, the reduction in N retention observed in pigs fed 

reduced protein diets may be due to the reduction in N intake (Le Bellego et al., 

2001). 
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Effect of reduced protein diets on carcass characteristics 

Carcasses of pigs fed reduced protein diets by more than 4% units with 

amino acid supplementation on an ideal basis and without reduction of ME levels 

have increased fat (Kerr et al., 1995; Tuitoek et al., 1997; Le Bellego et al., 

2001).  However, the reduction in ME levels in reduced protein diets eliminate 

this negative effect on carcass characteristics (Gomez et al., 2002; Figueroa et 

al., 2002, 2003). 

Reductions in dietary protein by 4% units in grower and finisher diets, 

supplemented with lysine, methionine, threonine and tryptophan to have 

equivalent concentrations in relation with traditional corn-soybean meal diets, do 

not affect backfat, longuissimus muscle area, lean meat gain, and percent lean 

meat (Figueroa-Velasco et al., 2004).  When the 4% units reduction in the grower 

and finisher diets was accompanied with a 3% reduction in dietary ME, the 

effects on pig growth and carcass traits were dependent on pig sex.  The 3% 

reduction in dietary ME decreased backfat thickness in gilts, and increased 

longissimus muscle area in barrows (Figueroa-Velasco et al., 2004).   

 

Effect of reduced ME in reduced protein diets 

Diets with reduced protein and addition of crystalline amino acids have higher 

NE values than traditional diets with similar GE.  Reduced protein diets increase 

ME retention by increasing fat deposition (Figueroa-Velasco et al., 2004).  The 

reduction in dietary CP by 6.5% units in grower diets decreased pig heat 
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production.  The reduction in heat production seems to be due to a reduction in 

the thermal effect of feed.  The reduction in heat production is accompanied by 

an increase in total energy gain, mainly due to the increase in fat deposition (Le 

Bellego et al., 2001).  The ME system for diet formulation is not sensitive to this 

change in energy utilization. Therefore, the NE system may be more appropriate 

to formulate diets taking in to account the increase in NE driven by the reduction 

in protein concentration in the diets (Le Bellego., 2001). 

The reduction in crude protein reduces non-essential amino acid supplied by 

traditional corn-soybean meal diets.  The consumption of reduced protein diets 

reduced deamination, urea synthesis, and N excretion (Figueroa-Velasco et al., 

2004).  A previous report estimated that urinary energy lost decreases by 6.8 

kcal per each gram of urinary N that is reduced, and 0.9 kcal per each gram 

reduced in protein intake.  These values were estimated using a diet which CP 

digestibility coefficient was 93%, and therefore, they change depending on the 

digestibility of dietary protein fed (Le Bellego et al., 2001). 

 

Dietary manipulations to reduce phosphorus excretion 

The reduction of P excretion is particularly important in those areas where 

concentrated swine operations are located.  Swine waste disposal is based in 

crop land application. In most areas, swine manure application rate is limited 

based on N concentration. However, evidence of accumulation of P in the soil is 

positioning P as the limiting nutrient for swine manure application.  The 

accumulation of P in soil has been associated with the risk of soil and water 
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pollution by increasing P levels through runoff of water with a high level of P, and 

long term swine manure application on crop land. 

Phosphorus is a key nutrient in skeletal development; it also plays an 

important role in energetic metabolism. Phosphorous deficiency in pigs can 

induce a reduction in growth rate, feed intake, and reproductive performance 

(NRC, 1998). Therefore, swine diets are formulated to guarantee that available P 

levels are high enough to cover or exceed pig requirements.  The availability of 

dietary P is dependent on the amount of available P supplied by each of the 

ingredients used. The major components of swine diets are cereal grains and 

oilseeds meals.  Therefore, it is important to consider the main factors that affect 

the content of available P in grains and oilseeds. These are the content of 

phytate-P, the content of non-phytate-P, and the level of active endogenous 

phytase (Eeckhout and De Paepe, 1994).  Therefore, dietary manipulations to 

reduce P excretion include: reduction of dietary P levels, enhancement of dietary 

P bioavailability with the inclusion of supplemental phytase, and formulation of 

diets balanced on an available P basis with a Ca:tP ratio close to 1.2:1. 

 

Reduction of dietary phosphorus levels 

The inability of the pig to efficiently utilize the P from grains has driven the 

common practice of supplementing the diets with inorganic P sources that can 

guarantee the supply of available P to meet or exceed pig requirements.  As a 

result, over-feeding P is a common practice in commercial operations.  In these 
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conditions, most of the phytate-P is excreted in the feces (Cromwell et al., 1995), 

in addition with the portion of the inorganic P that was not absorbed.  

Phosphorus excretion has been decreased by the reduction of dietary P.  The 

higher reductions in P excretion result from the combination of the reduction of 

dietary P level below pig requirement (Qian et al., 1996).  Several studies support 

that a reduction of dietary P by 0.1 % unit results in a decrease of P excretion 

between 21 and 25 % (Cromwell et al., 1995; Qian et al., 1996; Harper el al., 

1997; Liu et al., 1998). 

 

Inclusion of supplemental phytase 

The P present in grains is in form of phytin, also known as phytic acid and 

commonly referred to as phytate.  Phytate is a mixture of Ca-Mg salts of inositol 

hexaphosphoric acid. The P in this form is bound in an inositol ring forming myo-

inositol hexaphosphate. The concentration of P in phytate is 282 g/kg (Selle et 

al., 2000). However, phytate-P is not available due to the inability of the swine 

gastrointestinal tract to produce the appropriate enzyme (phytase) for phytate 

digestion (Cromwell et al., 1995; Harper el al., 1997; Kornegay and Harper, 

1997).   

This enzyme is myo-inositol hexakisphosphate phosphohydrolase, which is 

commonly refered to as phytase. Phytase is capable of hydrolyzing phytate into 

inorganic P (orthophosphates) and intermediary products starting with penta-

inositol phosphate to mono-inositol phosphate (Vats, 2005).  The phytase activity 

is measured in phytase units (FTU), which are commonly abbreviated as FYT. 



 53

One phytase unit is defined as the amount of enzyme that liberates 1 µmol of 

inorganic P per minute from 5.1 mM of sodium phytate at 37 oC and pH 5.5 

(Engelen et al., 1994). 

The ingredients more commonly used in swine diet formulation in the U.S are 

corn and soybean-meal.  However, in other countries such as Canada, Belgium 

and the Netherlands, ingredients such as wheat and barley are important.  

Additionally, in the near future, distiller dried grains with solubles may be an 

important ingredient in swine diet formulation.  It is also important to consider that 

total P in corn ranges from 0.25 to 0.35%, and 68% of it is in the form of phytate, 

with an endogenous phytase activity that can vary from 0 to 46 FYT.  In soybean 

meal, the total P content can range from 0.59 to 0.73%, with 53% of it as phytate 

P, and an average phytase activity of 0 to 20 FYT.  Ingredients, such as wheat 

and barley, have a total P content that can vary from 0.31 to 0.39%, with 55 to 

78% as phytate-P, and a phytase activity that ranges from 915 to 1,581 FYT for 

barley, and 1,475 to 2,039 FTY for wheat. Corn distiller grains have been 

reported to have 0.9% total-P, with only 21% of it in the form of phytate-P, and a 

phytase activity of approximately 385 FYT.  Even though there is evidence of 

phytase activity in grains, this activity is moderate to low (Eeckhout and De 

Paepe, 1994).  

Also, the pelleting process has a dramatic negative effect on phytase activity.  

A Belgian study reported a reduction of phytase activity in wheat fine bran of 44% 

due to the pelleting process (Eeckhout and De Paepe, 1994).  This is also true 

for microbial phytase that had been added to the diets.  Brady et al. (2002) 
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measured phytase activity in barley-wheat-soybean meal based diets without 

exogenous phytase (produced by Peniophora lycii) inclusion prior to and after 

pelleting.  The phytase activity prior to the pelleting process was estimated at 530 

FYT/kg.  However, when phytase activity was measured after pelleting, the 

activity was reduced to 39 to 45 FYT/kg.  They also measured the phytase 

activity in diets supplemented with 750 FYT/kg of diet and after pelleting the feed, 

the phytase activity was as low as 27% of the expected value (Brady et al., 

2002). 

Exogenous phytase  has been added to swine diets to enhance P availability, 

and reduce inorganic P supplementation and P excretion (Cromwell et al., 1995; 

Harper el al., 1997; Kornegay and Harper, 1997).  The reduction of P levels in 

the diets during the grower and finishing phases by 0.1 and 0.05% units, 

respectively, resulted in an overall reduction of daily gain by 18%, feed intake by 

15%, and feed efficiency by 3%.  However, the addition of phytase (250 to 500 

FYT/kg; Natuphos 5000® BASF Corp. Mount Olive, NJ) to these low P diets 

restored daily gain, feed intake, and feed conversion to levels similar to that 

observed for pigs fed diets with adequate levels of P.  Phytase supplementation 

to low P diets resulted in a linear improvement in P digestibility, with an overall 

enhancement of 33% (Harper et al., 1997).  Based on pig performance, 

phosphorus digestibility, and bone strength data, it has been suggested that the 

addition of 500 FYT/kg into grower and finisher diets results in P release 

equivalent of 0.87 to 0.96 g of P from dicalcium-monocalcium phosphate 

supplements (Harper et al., 1997). 
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The improvement in pig performance due to phytase supplementation is not 

only dependent on the concentration and digestibility of dietary P.  Pig 

performance is also affected by the type of phytase supplemented.  The phytase 

can be derived from different strains of bacteria, yeast, and fungi.  However, the 

most commonly used for commercial production are Aspergillus niger and 

Aspergillus ficuum (Vats, 2005).  Phytase from Aspergillus niger  has a moderate 

effectiveness to increase the utilization of phytase-P in swine diets.  The 

inclusion of Aspergillus niger derived phytase has very little effect when dietary P 

is reduced by more than 0.1% unit.  However, when dietary P reduction has been 

less than 0.1%, the addition of Aspergillus niger derived phytase have not 

enhanced pig growth performance. Therefore, the Aspergillus niger phytase has 

been classified as a low activity phytase (Cromwell et al., 1995).   

The reduction in P excretion has been the result from the inclusion of different 

levels of supplemental phytase in swine diets.  The data from 25 different studies 

with phytase supplementation were used to determine the relationship of the 

level of phytase supplemented and the level of the reduction in total P excreted 

by growth-finishing pigs.  As a result, a decrease of 31% in P excretion can be 

expected from the inclusion of 500 FYT/kg (Natuphos 5000® BASF Corp. Mount 

Olive, NJ) in swine diets (Kornegay and Harper, 1997).  This predicted value is in 

agreement with P excretion values measured in a further study where pigs were 

fed a reduced P diet (0.1% unit reduction) with supplemented phytase (500 

FYT/kg of diet; Natuphos 5000® BASF Corp. Mount Olive, NJ).  In this case, P 

excretion was reduced by 35% (Liu et al., 1998).   
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Effect of the Ca:tP ratio  

Phosphorus is a very active nutrient.  It can interact with other nutrients, such 

as Ca, and form insoluble complexes.  One of the complexes that can be formed 

is calcium phytate. The formation of this complex can negatively affect phytase 

activity and phosphorus utilization.  Therefore, any factors that reduce available 

P need to be taken into account.  

Phosphorus excretion has been decreased by the addition of phytase to 

swine diets and increased by increasing level of dietary P.  Supplementation of 

low P diets with phytase increased P absorption and reduced the amount of P 

excreted in feces (Qian et al., 1996; Liu et al., 1998).  Higher reductions in P 

excretion result from supplementation of phytase above 500 FYT per kg of diet, 

and the reduction of dietary P below 0.1% unit, while the Ca:tP ratio is 1.2:1 

(Qian et al., 1996; Liu et al., 1998).   

When dietary Ca levels in low P diets are maintained at the NRC (1998) 

requirements, the efficacy of phytase to increase available P is reduced, and 

formation of calcium phytate increased (Liu et al., 1998).  Average daily gain, 

feed efficiency, and P utilization were increased by reducing the Ca:tP ratio from 

1.5:1 to 1.2:1 in reduced P finishing diets.  In both diets, P was reduced by 0.1% 

unit below the NRC (1998) requirements and 500 phytase units per kg of feed 

were added.  Also, pig growth performance of pigs fed a diet with a Ca:tP of 1.2:1 

was similar to the growth performance of pigs fed a diet with a 1:1 ratio, when 



 57

phytase was added.  This response could be due to the increase in P digestibility 

by more than 9% when phytase was added (Liu et al., 1998). 

Another experiment performed in Ireland demonstrated that a reduction of 

dietary P by 0.15% units, with addition of 750 phytase units per kg of feed, where 

Ca:tP ratio exceeded the value recommended by the NRC (>1.2:1) resulted in a 

reduction of feed intake, daily gain, and feed efficiency (Brady et al., 2002).   

When diets were formulated to have a similar reduction in dietary P and the Ca:P 

ratio was reduced to 1.15:1, phytase addition resulted in an increase in pig feed 

intake, average daily gain, and P digestibility (Brady et al., 2002).  These results 

are in agreement with previous reports for weanling pigs where the activity of 

supplemental phytase (700 or 1050 FYT/kg of diet) was decreased as the Ca:P 

ratio increase from 1.2:1 to 2:1.  The negative effect of a wide Ca:P ratio was 

more dramatic when dietary P was reduced by 0.1 % unit (Qian et al., 1996).  

Qian et al. (1996) and Lui et al. (1998) summarized three possible 

mechanisms that have been proposed by other researchers that can explain the 

detrimental effect of a wide Ca:P ratio in pigs diets.  The first mechanism is the 

formation of the calcium-phytate complex.  The second is an increase in the 

luminal pH that could result in a decrease in phytase activity, and the third, is 

competitive binding of Ca to the phytase active sites. 

 

Dietary manipulations to reduce mineral excretion 

Scientific evidence associated with mineral build up in the soil has driven a 

particular concern about mineral concentration in swine manure, and the effects 
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of long term manure application on cropping areas.  A summary from digestibility 

experiments suggest that 70 to 95% of the mineral intake is excreted by growing 

and finishing pigs (Kornegay and Harper, 1997). This high level of mineral 

excretion requires immediate attention. The reduction in mineral excretion from 

growing and finishing pigs can also be achieved through dietary manipulations. 

The dietary manipulations include reducing dietary mineral levels and increasing 

mineral availability (Creech et al., 2004). 

 

Reducing mineral levels in the diet 

Over-feeding trace minerals is a regular practice in swine diet formulation.  

High levels of minerals in swine diets results in high levels of minerals excreted.  

It has being reported that 70 to 95% of mineral intake is excreted (Kornegay and 

Harper, 1997).  Therefore, formulation of swine diets with mineral levels close to 

pig requirements would also lead to a reduction in mineral excretion and mineral 

concentration in the waste (Creech et al., 2004).   

On the other hand, high levels of some minerals can negatively affect the 

availability of others. This is the case for Fe and Mn.  If the levels of inclusion of 

these minerals in the diet are reduced to levels closer to pig requirements it will 

also serve to reduce the required levels of inclusion of Zn and Cu (Creech et al., 

2004).  High levels of dietary Zn and Cu result in high levels of these nutrients 

excreted (NRC, 1998) with a reduction in their retention as percentage of the 

intake (Kornegay and Harper, 1997).   
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An experiment was conducted to evaluate the effect of trace mineral 

concentration in the diet, and the mineral source employed on pigs growth 

performance and trace mineral excretion.  Fecal mineral excretion was estimated 

using group fed pigs to collect fecal grab samples.  The results suggested that 

reductions in mineral intake will translate into proportional reductions in their 

excretion. The reduction of dietary Cu level by 66% and dietary Zn, Fe and Mn by 

75% in grower-finisher diets (41 d of age to slaughter) had no effect on pig 

growth performance during this phase.  Trace mineral fecal concentration was 

reduced by approximately 50% when the above reductions in dietary Cu, Zn, Fe, 

and Mn were done.  When 50% of the trace minerals supplemented to the 

reduced mineral diets were included as chelated forms, Cu in feces tended to 

decrease, but Zn, Mn, and Fe fecal concentration remained similar to the pigs fed 

the reduced mineral diets formulated with inorganic mineral sources (Creech et 

al., 2004). 

Also, the removal of the micro-mineral premix from finisher diets has been 

evaluated. The removal of the trace mineral premix from finishing diets 28 d prior 

to slaughter reduced fecal Ca, Cu, Fe, Mn, and Zn by 35 to 74% during the 

withdrawal period.  The removal of trace mineral supplementation 28 d prior to 

slaughter did not have negative effects on pig growth performance, and carcass 

traits.  However, pork mineral concentration was reduced.  It also did not affect 

Cu/Zn superoxide dismutase or glutathione peroxidase activity in muscular tissue 

(Shaw et al., 2002).  The absence of negative effects on growth performance is 
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in agreement with prior studies where the mineral premix was removed from the 

diet 30 days before slaughter (McGlone, 2000). 

In other studies, the trace mineral premix has been totally removed over the 

whole growing-finishing period.  The removal of the trace mineral premix during 

the whole period caused a reduction in pig growth.  However, when phytase was 

added at 500 FYT/kg of the diet the negative effect on growth was not observed 

(Shelton et al., 2004; Shelton et al., 2005).  

 

Increasing mineral availability 

Some studies have indicated that the use of nontraditional organic mineral 

sources improve mineral availability in the diet.  The increase in mineral 

availability can help to reduce mineral supplementation.  The reduction of dietary 

mineral concentration may reduce mineral intake and excretion (Creech et al., 

2004). 

Others have proposed the addition of phytase to increase mineral availability 

in the diets. The hydrolysis of phytate and its phosphorylated derivatives result in 

the loss of the ability of phytate to chelate other minerals (Vats, 2005). 

Commonly, the utilization of microbial phytase in swine diets has been commonly 

evaluated to enhance P availability.  However, phytase addition in swine diets 

can also increase the availability of Ca and Cu, and decrease excretion 

(Kornegay and Harper, 1997).  
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Monitoring emissions from swine production facilities 

Management decisions within the swine industry are mainly driven by 

economic and regulatory factors.  Emission of gases, such as ammonia and 

hydrogen sulfide, odor, and dust are pollutants from animal husbandry that could 

impact air quality (Ni et al., 2000).  The public concern about the impact that 

swine production operations can have on air quality at the facility location and 

vicinity have reinforced the need of developing guidelines and regulations to 

reduce the risk of polluting the air. 

Understanding gas emission as part of the production system is a key factor 

in the development of management strategies oriented to minimize the risk of 

polluting the air and reduction of environmental hazards.  Swine manure is stored 

in the production buildings prior to being loaded into the treatment system.  In 

commercial conditions, swine manure can be stored during short periods of time 

and diluted with water in shallow pit buildings or during longer time and without 

dilution in deep pit buildings.  Manure stored within the building is the main 

source of gas released into the building and emitted into the environment (Ni et 

al., 2000).  

It is also important to establish the difference between gas released and 

emitted.  Gas release refers to the gas mobilization from the immediate surface 

of the liquid manure into the free air stream in the house (Ni et al., 2000).  Gas 

emission refers to the process of mobilization of gas from the house into the 

outdoor atmosphere (Ni et al., 2000).  
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In 2006, the National Air Emission Monitoring Study (NAEMS) was 

established as part of a voluntary Compliance Agreement between the EPA and 

the pork industry.  The objective of the NAEMS is to monitor emissions from 

swine facilities and collect emission data that can be used in the design of 

emission regulations.  Additionally, the NAEMS may promote a national standard 

for emission monitoring methods (NAEMS, 2007).   In agreement with the 

NAEMS objectives, the products of the Conference on Environmental Health 

Impacts of Concentrated Animal Feeding Operations, emphasized the need of 

monitoring emissions from concentrated swine feeding operations (Bunton et al., 

2007).   

Monitoring emissions from the facility require a cost effective selection of 

instruments to obtain an accurate measurement, in addition to a sampling design 

which included passive sampling, spot checking and laboratory testing for air 

quality.  The results produced can be used to develop emission models that take 

into account the components in the air and concentration of the end products of 

their chemical transformation.  Following the development of emission models, 

the models need to be validated through the comparison of the predicted values 

with direct measurements from monitoring systems. The data base generated 

from the monitoring systems, in addition to the prediction models developed, can 

serve as baseline emission used by regulatory agencies (Bunton et al., 2007).  

Due to the limited scientific data available for gas emission from swine 

production systems is important to focus future research to produce data that can 

be used to select the best management practice to reduce the impact of swine 
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production on air quality in specific production conditions.   This can be a time 

consuming complex task, mainly due to the need of controlling air sampling and 

equipment calibration. 

 

Ammonia emission from swine housing 

Ammonia released from swine facilities is produced from microbial and 

enzymatic degradation of nitrogenous compounds in swine waste, such as 

proteins and amino acids.   Ammonia concentration in well-ventilated swine 

buildings normally ranges from 0 to 20 ppm.  Although, ammonia in swine 

buildings usually does not exceed 40 ppm, ammonia in high concentrations is 

considered a noxious gas that can represent an environmental hazard for labor 

and pigs in intensive swine operations (Heber et al., 2000).   

Ammonia volatilization starts with the degradation of urinary urea by fecal 

urease.  Separation of urine and feces reduces ammonia release by 99% 

(Panetta et al., 2005).  During storage, manure is exposed to urease activity.  

Therefore, storage time is an important factor in ammonia release from swine 

manure. In laboratory conditions, the rate of ammonia volatilization during the 

first 24 h of slurry storage represents the rapid conversion of urea to ammonia by 

urease.  As storage time increases, ammonium concentration in the slurry 

increases, suggesting that the rate of ammonium production in the slurry is 

higher than the rate of formation of volatile compounds (Panetta et al., 2005).   

Ammonia production results from a combination of ammonium concentration 

and slurry pH.  Swine slurry pH is neutral to alkaline, with a high buffering 
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capacity (Panetta et al., 2005).  Liquid swine manure has a high buffer capacity 

which is a function of the dynamic dissociation of bicarbonate and ammonium in 

solution (Sommer and Husted, 1995).  Ammonia released at the manure surface 

is influenced by the dynamic changes in pH that take place as a function of 

carbon dioxide and ammonia release (Ni et al., 2000).   In the initial stages of 

manure storage, slurry pH at the surface increases over time (Panetta et al., 

2005) due to higher loss of carbon dioxide than loss of ammonia. The initial 

faster loss of carbon dioxide is explained by a lower solubility in relation with 

ammonia (Ni et al., 2005).  Carbon dioxide losses increase slurry pH and 

ammonia losses decrease pH (Sommer and Husted, 1995).  Therefore, in initial 

stages of liquid manure storage, ammonium concentration in slurry and pH 

increases close to 8 (Panetta et al., 2005).   After this initial storage period, 

ammonia release increases and pH decreases falling back to neutrality (Sommer 

and Husted, 1995).  Based on the relationship between pH and ammonia losses, 

liquid manure pH has been proposed as an indicator of free ammonia and 

ammonium partitioning in liquid manure (Ni et al., 2005).  

In laboratory conditions, a reduction in slurry pH from 8.85 to 6.59 during 96 h 

of incubation (storage time) reduced ammonium concentration in slurry by 9% 

and ammonia release by 11%. The reduction of pH from 8.85 to 5.30 reduced 

slurry ammonium concentration by 21% and ammonia release by 23% (Panetta 

el al., 2005). 

A review of 30 articles about mechanistic models of ammonia release 

suggests that ammonia release from swine manure is based on convective mass 
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transfer across the liquid-gaseous interface at the manure surface level.  

Ammonia convective mass transfer is a function of air velocity at the surface of 

the manure, and air and manure temperature (Ni, 1999).  

Ammonia in the liquid phase of manure can exist in the forms of ammonium 

ions in solution and free ammonia gas.  Ammonia dynamics in manure can be 

driven by the concentration gradient.  Ammonium can be dissociated into 

ammonia and a hydrogen ion, and ammonia can bind with free hydrogen to form 

ammonium again. Through convective mass transfer, ammonia at the liquid 

manure surface is diffused into the air (Figure II.1).  The diffusion of ammonia to 

the surface air is affected by ammonia concentration in the air, air flow rate, and 

air temperature (Ni, 1999).   
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Figure II.1. Mechanism of ammonia formation and release from swine slurry 

(adapted from Ni, 1999).  [NH3]g: free ammonia in gaseous phase at slurry 

surface; [NH3]l: free ammonia in liquid phase; CAg,o : mass concentration of free 

ammonia in gaseous phase at slurry surface; CAg,∞ : mass concentration of 

ammonia in free air stream; Ka: dissociation constant; Kb: dissociation constant; 

Kh: Henry’s constant. 

The free ammonium in gaseous phase at slurry surface is either expressed in 

mole concentration, [NH3]g, or in mass concentration, CAg,o. 

 

In deep pit buildings, ammonia emission rates range from 5 to 130 g/d/AU 

(AU = 500 kg live weight), and 60% of the ammonia released and emitted comes 

from the manure stored in the pit.  This has been tested measuring ammonia 
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release rates in empty buildings and comparing those release rates with those 

produced by the same buildings occupied at full capacity (Ni et al., 2000).   

Temperature is an important factor affecting ammonia release from manure.  

The conversion of organic nitrogenous compounds in manure to ammonium is 

favored by warm temperatures.  In laboratory conditions, ammonium 

concentration in swine slurry increased by 2.7 mg/m3 or 0.06 g/L for every 1˚C 

increase in temperature over 35˚C.  During storage, increased temperatures in 

manure and slurry increases ammonium concentration and ammonia 

volatilization.   Ammonia volatilization decreases when ammonium concentration 

in slurry is reduced (Panetta et al., 2005). 

In deep pit systems, when temperature at the headspace of the pit increases, 

the temperature of the surface manure also raises, accelerating ammonia 

release from manure, and with it, increasing ammonia concentration in the 

building.  The increase in temperature by 6˚C (from 21 to 27˚C) at the headspace 

of the pit from an empty finisher building of 1,000 head capacity raised the 

ammonia release rate by 80% (from 93 to 167 g/h).  This release rate (167 g/h) is 

equivalent to 66% of the release rate of ammonia from the same finisher building 

at full occupancy.  The increase in ammonia concentration in the building 

occurred in less than ten minutes after the temperature was increased (Ni et al., 

2000).  Based on the previous reports, pit temperature control is a potential 

strategy to reduce ammonia release from swine manure and slurry.  
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Although ventilation systems are primarily designed to dissipate heat from 

swine housing, ventilation helps to remove ammonia from the buildings (Heber et 

al., 2000).  For ammonia removal from the building, ventilation rate is an 

important factor.  Ventilation provides an effective reduction in ammonia 

concentration at manure surface level by removing ammonia.  Higher ventilation 

rates result in decreased ammonia concentration inside the buildings and 

increased emission rates from the buildings to the environment (Ni et al., 2000).  

Disturbance of slurry by stirring modifies the slurry liquid-gas interface and 

increases slurry uniformity.  The modifications induced in the slurry liquid-gas 

interface favored ammonium formation and volatilization (approximately by 5%) 

without causing depletion of the ammonium N pool (Panetta et al., 2005). 

 

Management strategies to reduce ammonia emissions from swine 

buildings 

It is well recognize the importance of reduced ammonia emissions from 

confined animal feeding operations as a contribution of a global strategy to 

minimize the negative effects of increased levels of reactive nitrogen in the 

atmosphere (Aneja et al., 2007).   Therefore, different strategies have been 

proposed to reduce ammonia emissions from swine buildings, such as dietary 

manipulation (Canh et al., 1997) and the use of pit additives (Heber et al., 2000, 

Panetta et al., 2005). 
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Dietary manipulation to reduce ammonia emissions from swine buildings 

Dietary manipulation has been proposed as an effective strategy to reduce 

simultaneously nitrogen excretion and ammonia emissions.  The dietary 

manipulations evaluated include reductions in dietary CP with addition of 

crystalline amino acids (Canh et al., 1997; Velthof et al., 2005; Panetta et al., 

2006), increases in dietary fiber (Canh et al., 1997), inclusion of acidifying salts 

(Velthof et al., 2005), and yucca extract (Panetta et al., 2006). 

The reduction of dietary CP by 8% units with addition of crystalline amino 

acids decreased ammonia emission by 63% (Portejoie et al., 2004).  Another 

report suggested a reduction in ammonia emission by 54% when dietary CP was 

reduced by 4% units (Velthof et al., 2005).  These results are in agreement with a 

report that suggests that reductions in dietary CP by 0.4% unit to 3.1% unit 

results in a reduction of ammonia emission from 13 to 58% (Panetta et al., 2006).   

The inclusion of acidifying salt (17% of CaSO4) to an 18% CP grower diet 

reduced ammonia emission from manure by 8%.  However, when the salt was 

added to a diet with a 4% units reduction in CP the ammonia emission from 

manure was not affected (Velthof et al., 2005).  Additionally, in the same 

experiment, a 6% units increase in dietary concentration of dietary non starch 

polysaccharides (NSP) had no effect on ammonia emissions (Velthof et al., 

2005).   

Also, diet supplementation with yucca (Yucca Shidigera Roezl ex Ortgies) 

extract has been evaluated to reduce ammonia emissions from swine production.  

Two levels of yucca extract addition to a 17% CP grower diet were evaluated.  
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The two levels were 62.5 and 125 mg of yucca extract per kilogram of diet.  After 

a four day adaptation period, ammonia emission was measured during 72 hours.  

The addition of yucca extract to grower diets did not affect ammonia and N 

concentration in manure, and ammonia emission (Panetta et al., 2006). 

 

Use of pit additives to reduce ammonia emissions from swine buildings 

Addition of yucca extract to the pit has been evaluated to reduce ammonia 

volatilization from swine waste.  The addition of yucca to swine slurry in 

laboratory vessels decreased ammonia concentration in the headspace.  Yucca 

acts as N binder reducing ammonia release without affecting ammonium 

concentration in the slurry (Panetta et al., 2005).   

Monsanto EnviroChem (St. Louis, Mo.) developed a pit additive marketed as 

Alliance, composed of 24% water, 5% benzaldehyde, 9% neodol, 18% 

surfactants, 34% glyoxal, and 10% copper sulfate, with a pH 3.0.  Alliance was 

developed to be applied into the pit in a dose of 300 to 350 ppm via spraying a 

0.44% v/v solution at the pit headspace.  This pit additive was tested in deep pit 

buildings, addition of alliance to the pit reduced ammonia emission by 24%.  

However, the application of Alliance to the pit added approximately 20% to the 

manure produce.  Therefore, it is not clear if the reduction in ammonia emission 

is due to the additive by itself, or if the dilution of the manure could contribute to 

the reduction in ammonia emission.  Also, Alliance mechanism of action is not 

very clear; it could be a reduction in microbial populations at the manure surface, 
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and/or a reduction in enzymatic activity for ammonia production (Heber et al., 

2000). 

 

Hydrogen sulfide emission from swine housing 

Hydrogen sulfide is one of the gases emitted from swine facilities; it is 

produced during anaerobic fermentation of manure (Ni et al., 1999a; 1999b, 

2002a and 2002b).  It is considered the most dangerous gas among the manure 

fermentation products when it reaches acute concentrations (Ni et al., 2000).  

Therefore, an increment in concentration of hydrogen sulfide within a production 

building can be an environmental hazard for the labor.  Release of hydrogen 

sulfide in swine houses has gained attention due to the potential to harm both 

pigs and human health.  In humans, a concentration of 500 ppm of hydrogen 

sulfide in the air can cause dizziness, irritation of the respiratory tract, nausea 

and headache; and concentrations above 1000 ppm can cause respiratory 

paralysis and death (Field, 1980; cited by Ni et al., 1999a, 1999b, and 2002a).   

Most available reports of hydrogen sulfide concentrations in swine housing 

have been produced from simple spot sampling sites and during a very short 

sampling period (Ni et al., 2002a).  However, hydrogen sulfide concentration is 

often low in swine housing in relation with carbon dioxide and ammonia 

concentrations (Ni et al., 1999a, 1999b, 2002a and 2002b).   

In deep pit systems, approximately 50% of the hydrogen sulfide is released 

from the manure stored in the pit (Ni et al., 2000).  Hydrogen sulfide release and 

emission from swine housing is affected by all factors that can affect the 
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fermentation of manure, such as pig size, manure volume, composition, storage, 

temperature, disturbance, and air exchange (Ni et al., 2002a and 2002b).   

Hydrogen sulfide emission is calculated by multiplying the airflow rate by the 

concentration of hydrogen sulfide in the air. Therefore, any factor that affects air 

flow or concentration will also affect the emission rate.  Seasonal increment in 

temperature increases hydrogen sulfide release from manure, in addition to 

increasing building ventilation rate. The increase in hydrogen sulfide release, in 

addition to the increase in air flow, results in higher hydrogen sulfide emissions 

during the summer (Ni et al., 2000, Ni et al., 2002b). 

An experiment was conducted to characterize hydrogen sulfide 

concentrations in mechanically-ventilated swine finisher buildings with deep pits 

during the summer time.  The hydrogen sulfide concentration was measured 

continuously from March to September using multiple sampling sites in two 

finisher buildings of 1,000 head capacity.  The average occupancy during the 

study was 700 head.  The sampling sites were pit headspace (6 sampling 

points), pit fans (4 sampling points), and wall fans (5 sampling points).  The 

average daily concentration of hydrogen sulfide in the buildings ranged from 180 

to 232 ppb, and the daily mean concentration ranged from 18 to 1107 ppb (Ni et 

al., 2002a).   

The highest hydrogen sulfide concentrations were observed when ventilation 

rates were low and the pigs were small (around 80 kg).  In this case, the building 

ventilation was the main factor affecting the daily mean hydrogen sulfide 

concentration, and was also associated with diurnal changes in hydrogen sulfide 
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concentration.  Also, the sampling location affected the hydrogen sulfide 

concentration measured (Ni et al., 1999a; 2002a). 

Also, at the same time, hydrogen sulfide emission from the two buildings was 

measured during 4,544 sampling cycles.  The building ventilation rate was 

calculated as the summation of air flow rates from pit fans and wall fans.  The 

hydrogen sulfide emission during each sampling cycle was estimated as the 

product of the hydrogen sulfide concentration measured at the air sampling 

location multiplied by the summation of the flow rates at the different sampling 

sites. The mean hydrogen sulfide emission was 0.59 kg/day/building, 0.74 

g/day/m2 of pit surface, or 6.3 g/AU (AU = 500 kg of pig weight).  However, the 

highest hydrogen sulfide emission rate (1.87 kg/day or 20 g/AU) was measured 

in association with the highest temperatures and building ventilation rates (Ni et 

al., 1999b; 2002b).   

Based on the effects of the diurnal pattern, sampling location, temperature, 

and ventilation rate, it has been suggested that hydrogen sulfide concentration 

and emission rate from swine housing should be monitored using long term 

sampling periods and multiple sampling locations (Ni et al., 1999a, 1999b, 2002a 

and 2002b).  In deep pit buildings, pig size has no effect on hydrogen sulfide 

concentration and emission, due to the large volume of manure stored in the pit, 

which minimizes the effect of fresh manure addition (Ni et al., 1999b and 2002b).   

The dynamic of hydrogen sulfide release has not been well established. A 

burst release of hydrogen sulfide has been reported, as a unique behavior, with a 

duration that ranges from 2 to 6 hours (Ni et al., 1999b, 2000, and 2002b).  The 
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burst release of hydrogen sulfide was defined as a sudden increase in hydrogen 

sulfide concentration over 100% of the concentration measured in the previous 

hour under relatively constant ventilation and temperature (Ni et al., 2000a and 

2000b).  The sudden increase in hydrogen sulfide concentration during the burst 

has been associated with the break up of gas bubbles at the surface of manure.  

Also, during manure disturbance, gas bubbles break up and hydrogen sulfide 

concentration increases.  Based on these observations, hydrogen sulfide has 

been recognized to be concentrated in these gas bubbles (Ni et al., 2001).  

During anaerobic fermentation of manure, hydrogen sulfide is produced and 

becomes part of the biogas complex dissolved in the liquid phase of manure.  As 

hydrogen sulfide production increases, the liquid phase of manure becomes 

supersaturated with hydrogen sulfide, and micro-gas bubbles are formed.  As 

hydrogen sulfide production progress the micro-gas bubbles start agglomerating 

and become bigger size bubbles with buoyant capacity to travel to manure 

surface.  When these gas bubbles brake up at manure surface, the hydrogen 

sulfide is released, and the concentration rises suddenly.  This mechanism has 

been proposed as the model of bubble release (Figure II.2, Ni et al., 2001).   
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Figure II.2.  Hydrogen sulfide model of bubble release (adapted from Ni et al., 

2001).  Cg,∞: gas concentration in free air stream; Cg,o: gas concentration at slurry 

surface; Cg,b: gas concentration in bubbles; Vb: volume of bubbles; Sb: speed of 

ascending bubble movement; Sx: speed of bubble movement relative to liquid 

caused by slurry disturbance. 

 

However, the burst in hydrogen sulfide release was initially detected in empty 

buildings with the deep pit only accounting for the hydrogen sulfide released from 

the stored manure (Ni et al., 1999b; 2000; 2002b). Taking into account that 

hydrogen sulfide release in an occupied building is expected to be higher; the 

burst in an occupied building may also be higher (Ni et al., 2000). 
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Dietary manipulation to reduce hydrogen sulfide emissions from swine buildings 

Sulfur (S) concentration in grower diets has been evaluated to reduce 

hydrogen sulfide emission.  Individually penned barrows have been used as 

model to study the effect of feeding grower pigs with diets containing 0.15, 0.24, 

and 0.34% of S on hydrogen sulfide emission.  The reduction in dietary S by 

0.09% unit below the NRC (1998) requirement did not change hydrogen sulfide 

emission.  However, when dietary S increased by 0.1% unit hydrogen sulfide 

emission was increased (Clark et al., 2005).   

 

Management practices to reduce hydrogen sulfide concentrations in swine 

buildings 

Beside the evaluation of dietary manipulation to reduce hydrogen sulfide 

emission, research has been conducted to develop waste treatment strategies to 

reduce the release rate of toxic gases, such as hydrogen sulfide, in an effort to 

reduce environmental hazards for the labor force.  Most of these studies have 

been conducted on a laboratory scale. Therefore, those management practices 

which reduced hydrogen sulfide concentration and/or emission rates at 

laboratory scale need to be tested in commercial conditions to confirm their 

effectiveness. 

One of the management practices proposed to reduce increased 

concentrations of hydrogen sulfide inside the building is the use of low level air 

bubbling in manure storage.  This strategy consisted of bubbling 5 to 10 ml of air 

per minute through stored swine manure slurry.  This low level air bubbling in 
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manure will reduce the incidence of burst events and the amount of hydrogen 

sulfide released during slurry removal (Clark et al., 2005).   

In commercial buildings with deep pits, fresh manure in continuously added to 

aged manure that is stored in the pit.  A laboratory study was conducted to 

evaluate the effects of manure solid contents and initial manure age on the 

release of hydrogen sulfide.  Manure from two different ages (1 and 4 weeks of 

accumulation) was collected from a commercial swine farm in Indiana.  The 

manure collected was tested at two different concentrations, as collected and 

diluted with water to 50% the original concentration.  The test was performed 

using laboratory reactors with at least 4 replications for each treatment.  Manure 

was added 4 times during the test period, and hydrogen sulfide release rates 

were calculated by multiplying the gas concentration by the air flow rates.  

Hydrogen sulfide emission rates were affected by the interaction of initial age and 

manure concentration.  When the initial age of manure was one week, the 

hydrogen sulfide released from undiluted manure was greater than the hydrogen 

sulfide released from the diluted manure (105 vs.98 µ/h).  However, when 

manure was aged (initial age: four weeks), diluted manure released almost two 

times the hydrogen sulfide realized by the initially 4 weeks old concentrated 

manure (146 vs. 75 µ/h).  Also, manure addition resulted in high peaks of 

hydrogen sulfide release (Ni et al., 2000).  

Hydrogen sulfide removal from swine housing facilities is controlled by the 

house ventilation rate.  The ventilation rate within any swine house is controlled 

by a ventilation system which operates based on controlling internal temperature 
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to a specific setting.  Any factors that influence the external temperature, and 

therefore the rate of air flow from the room, will also affect the concentration of 

hydrogen sulfide inside the room (Ni et al., 1999a and 2002a).  Critically high 

concentrations of hydrogen sulfide in swine buildings are associated with low 

ventilation rates (Ni et al., 2000).   

During winter time, cooler slurry temperatures decrease the rate of anaerobic 

fermentation of the slurry; which decreases the rate of production of hydrogen 

sulfide. Also, during winter time, the ventilation of the rooms decreases and with 

it the removal of hydrogen sulfide from the rooms.  The reduction in air flow 

results in the increase of hydrogen sulfide concentration in the room (Ni et al., 

19991 and 2002a). 

 

Effect of manure removal on gas emissions 

Concentration of ammonia and hydrogen sulfide within the production 

buildings can represent hazardous condition for the labor force and pigs, and 

also deteriorate equipment and building infrastructure.  Therefore, in order to 

reduce the negative impact of gas accumulation, especially accumulation of 

hydrogen sulfide and ammonia in buildings with shallow pit systems, an increase 

in the flushing frequency has been proposed (Lim et al., 2004).    

Flushing frequency in shallow pits has been studied in combination with 

recharge using tap water or second lagoon recycle water.   The flushing 

strategies characterized included daily flush and 7, 14 and 42 days of static pit.  

The study was conducted using growing-finishing pigs (80 to 114 kg) fed a 
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conventional corn-soybean meal diet.  Flushing and static pit recharge with 

lagoon effluent resulted in lower ammonia and hydrogen sulfide emissions than 

tap water recharge pits.   Also, higher pit flushing frequency reduced ammonia 

and hydrogen sulfide emissions (Table II.1, Lim et al., 2004). 

Daily flushing of the pit reduced ammonia emission by 45 and 42%, 

respectively, in relation with 7 and 14 day flushing frequencies.  Pit recharge 

reduced ammonia emission by 51 to 62% in relation with 7 and 14 day flushing 

frequencies.  Pit recharge with recycled water every 7 day decreased hydrogen 

sulfide emission up to 40%. However, increased frequency of removal of manure 

increased burst emissions during the flushing time.  Daily flushing of pit 

recharged with secondary lagoon recycle water produced hydrogen sulfide burst 

emissions from 7,171 up to 28,235 µg/m3 (Lim et al., 2004). 

 
 
Table II.1. Ammonia and hydrogen sulfide emission rates from finisher buildings 
with shallow pits with different flushing frequencies and recharge water. 

Flushing frequency, d 1 7 14 7 14 42 
Recharge water none none none Recycle  Recycle Recycle 
Measurement period, d 42 42 82 4 11 36
NH3 emission rate, g/d 59 109 103 43 54 56
NH3 emission rate, g/d/AU 15 27 25 10 12 11
H2S emission rate, g/d 1.8 1.1 1.8 0.7 1.5 7.4
H2S emission rate, g/d/AU 0.40 0.27 0.41 0.16 0.34 1.42
AU = 500 kg of live pig mass 
From: Lim et al., 2004 
 

Mass balance approach 

The mass balance approach has been used to provide a comprehensive 

description of the origin and fate of nutrients in association with a given system.  
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The use of mass balance estimation requires an accurate identification of all 

system components, inputs and outputs (Eigenberg et al., 1998).   

The mass balance approach has been used to track nutrients, such as N and 

P, from feedlot cattle operations and describe those nutrient losses (Eigenberg et 

al., 1998).   Also, mass balance has been implemented in manure handling, 

treatment practice evaluation (Larney et al., 2006), and land application (Maguire 

et al., 2007).  Estimation of nutrient mass balance in a system requires the 

estimation of nutrient mass, in all sources of nutrients entering, and exiting the 

system (Larney et al., 2006, Maguire et al., 2007).  

Also, mass balance has been implemented as the basis of development of 

computer software tools in comprehensive nutrient management planning.  The 

software tools are developed to support the selection of the best management 

practices to be implemented in specific production conditions (Chen et al., 2003, 

Henry et al., 2003).  These software summarized information from regional, 

national or global simulators for nutrient management.   Although, the computer 

software tools can be helpful for decision makers, the selection process can be 

limited to their use.  A selection process based only on the use of a software tool 

can lead to misleading conclusion due to the heterogeneity of the production 

systems (Redding et al., 2007). 

 

Limitations in excretion and emission data  

The evaluation of nutrient excretion, gaseous emissions and nutrient flow in 

the finisher system are indispensables to identify appropriate strategies to reduce 
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nutrient wastage, ammonia, and hydrogen sulfide emissions from commercial 

facilities.  The available excretion data are limited and have been mostly 

produced from balance studies, with individually-fed pigs, housed in metabolism 

crates, using the total fecal and urine collection methods (Kerr and Easter, 1995; 

Cant et al., 1997; Cant et al., 1998a; Zervas and Zijlstra, 2002a; Zervas and 

Zijlstra, 2002b; Otto et al., 2003; Potejoie et al., 2004; Panetta et al., 2005; 

Powers et al., 2006; Deng et al., 2007; Htoo et al., 2007).  Another small portion 

of data have been produced with pigs housed in groups of 2 to 4 pigs per pen, 

using external markers and fecal grab samples to estimate fecal nutrient 

concentration (Qian et al., 1996; Harper et al., 1997; Creech et al., 2004; 

Figueroa-Velasco et al., 2004; Panetta et al., 2006).   

Evaluation of reduced nutrient diets have produced controversial results.  At 

the present time, the extent to which the dietary protein level can be reduced with 

group-fed pigs is still unclear.  Also, the effects of reductions in dietary mineral 

supplementation, with phytase addition, and the inclusion of mineral chelates and 

proteinates on nutrient excretion are important subjects for future research. 

Monitoring ammonia and hydrogen sulphide emission from production 

systems is a key factor in the development of management strategies to reduce 

these emissions.  However, most of the data available have been produced from 

deep pit buildings (Heber et al., 2000; Ni et al., 2000; Ni et al., 2002a, Ni et al., 

2002b).  The shallow pit system is predominant in the High Planes area; 

however, the data available to model ammonia and hydrogen sulfide emission is 

very limited.  Also, most of the data which have evaluated emissions from swine 
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slurry have been conducted on a laboratory scale (Ni et al., 1999a; Ni et al., 

2000; Predicala and Maghirang, 2004; Panetta et al., 2005; Clark et al., 2005).   

The implementation of production strategies which have been tested only on 

a very small scale or in laboratory conditions is not acceptable.  In the actual 

conditions, it is required to concentrate efforts in the production of nutrient 

excretion and emission data from group-fed pigs.  Pigs should be housed in a 

setting that allows the collection of representative waste samples.  In more ideal 

conditions, data should be produced evaluating simultaneously nutrient excretion 

and gaseous emission for long periods of time.  Based on the limitations 

identified in the available literature and the need to produce excretion and 

emission data from group-housed pigs, we initiated a series of three experiments 

which will be described in detail in Chapters III to VII.
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CHAPTER III 
 
 

GENERAL EXPERIMAENTAL PROCEDURES 

 

A series of three experiments was conducted with the objectives of evaluating 

the effects of dietary manipulation on nutrient excretion from growing-finishing 

pigs, to estimate baseline nutrient excretion during the finishing period, and to 

study nutrient flow through the growing-finishing phase.  Experiments 1 and 2 

were conducted with the objectives of determining the effects of reducing dietary 

protein and P on pig growth performance, nutrient excretion, carcass 

characteristics and bone strength and to establish baseline excretion for DM, N 

and P.  Experiment 1 was conducted to evaluate the effects of reducing dietary 

crude protein by 2% units and P by 0.1% in contrast to a traditional fortified corn-

soybean meal diet, and Experiment 2 was conducted similar to Experiment 1 with 

the exception that the diet evaluated had a reduction in dietary protein of 4% 

units.  Experiment 3 was designed to evaluate the effects of reducing dietary CP 

by 3% units, P by 0.1% unit, with addition of phytase, and sequential reduction in 

trace mineral supplementation from 50 to 100%, over 4 dietary phases.  

Additionally in Experiment 3, the mass balance approach was used to evaluate 

nutrient flow through a finisher facility expressed on a finished pig basis.  

Crystalline amino acids were added to all reduced protein diets on a true ileal 
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digestible basis.  A more detailed description of the experimental units, diets, 

and statistical analysis, are found in the Material and Methods section of the 

individual chapter, dedicated to each experiment.   

 

Animal housing 

All procedures were approved by the OSU Institutional Animal Care and Use 

Committee. The pigs were housed in an environmentally-controlled building.  The 

building had four identical rooms.  Each room was equipped with identical 

electronic ventilation and temperature controls (Figure III.1.B), a shallow pit, and 

pull plug system (Figure III.1.C).  Temperature was controlled and humidity was 

monitored to confirm standard conditions in all rooms.  Each room measured 5.5 

m x 4.5 m.  The room was divided in a 0.6 m x 5.5 m corridor and a pen area of 2 

m x 5.5 m on each side of the corridor.  In Experiments 1 and 2, the pen area at 

each side of the corridor was divided in three pens of similar size (2 m x 1.8 m). 

Thus, each room had a total of 6 pens, with 2 pigs per pen, and a pig space of 

1.8 m2.  Each pen was equipped with a two hole feeder and a water nipple.  In 

Experiment 3, the pen area on each side of the corridor was not divided, thus 

each room had two pens of 2 m x 5.5 m.  In the pen on the north side of each 

room 10 barrows were allocated, and 9 gilts in the south pen, with a pig space of 

1.1 m2. 
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Figure III.1.  Pig housing: A) Internal view of one room within the environmentally 
controlled building. B) Individual temperature setting panel of rooms 3 and 4. C) 
Close up of the pull plug system in each room.  
 
 

Pig growth performance 

 Individual pig weights and pen feed consumption were measured weekly.  

Pigs were moved from pens and transferred to a scale, where animals were 

weighed and housed in holding pens until the slurry sampling was completed.   

At the beginning of each week, the feed in each feeder was weighed, and 

returned to the feeder, with additional feed added as needed during the week to 

guarantee ad libitum consumption.  At the end of the week, the remaining feed in 

the feeder was weighed; thus, the weekly feed intake was determined.  Each 

week, at the time that feed was added or removed from the feeder, a feed 

sample was taken in order to collect diet samples representative of the feed 

A 

B 

C 
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consumed each week. The samples were submitted to the laboratory for DM, N, 

P, C, Ca, K, Mg, Na, Fe, Zn, Cu, and Mn analysis.  

Pigs had free access to water and water intake was monitored by room via an 

individual water meter installed in the tap water line.  The water meters measured 

water disappearance from each room per week.  Water samples were collected 

and submitted to the Soil, Water and Forage Analytical Laboratory (SWFAL), at 

Oklahoma State University, for determination of the mineral background.  The 

weekly measurements of water intake in addition to the mineral concentration in 

water were used to estimate the contribution of water to mineral intake. 

Pig weight and feed intake was used to calculate average body weight (BW), 

average daily gain (ADG), average daily feed intake (ADFI), and gain to feed 

ratio (G:F).  Weekly measurements of feed and water intake, analyzed diet 

nutrient concentration, and water mineral concentration were used to estimate 

nutrient intake by week.  

 

Pit content measurements 

At the beginning of each week during the entire finishing period, pits were 

filled with equivalent amounts of water, and the volume of the pit contents was 

measured in each room.  Prior to sampling, all remaining manure on the floor 

was scraped into the pit (Figure III.2A).  At the same time, a submergible pump 

was placed inside the pit drainage channel (Figure III.2B), approximately 70 cm 

from the drain plug.  The pump was connected to a polyethylene hose, long 

enough to reach all the corners of each room.  After the pump was placed into 
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the pit and the end of the hose in the opposite corner, the pump was used to mix 

the slurry for 20 min.  While the slurry was flowing through the hose, the slurry 

was used to rinse the floor slats, to ensure that all remaining material was 

washed into the pit.  In addition, the bottom of the pit was scraped to ensure 

complete mixing.  After 20 min mixing, the drain plug was pulled and a 

continuous sample was collected as the slurry was exiting the building.  The 

slurry sample was collected in a 20 L container, and a mixer was placed inside 

the container to homogenize the slurry (Figure III.2C). At this time, pH was 

measured using a portable pH meter (Accumet AP62, Fisher Scientific), and EC 

and temperature were measured using a portable conductivity meter (YSI 30 

Conductivity/Salinity Meter, YSI Incorporated).   

After these measurements, a suction pump was used to transfer the sample 

to three 500 ml bottles (Figure III.2C).  One slurry bottle was stored as is, and the 

remaining two were acidified to a pH between 2 and 3.  The slurry samples were 

transported to the laboratory for DM, N, P, C, Ca, K, Mg, Na, Fe, Zn, Cu, and Mn 

analysis. 
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Figure III.2. Pit content sampling: A) Scraping manure on the floor and adding 
into the pit, B) Mixing pit content with the aid of a recycling submergible pump, C) 
Homogenizing slurry sample, D) Transferring slurry samples to 500 ml bottles. 
 

Feed and slurry analyses 

 Feed and slurry samples were analyzed weekly for DM, N, and P.  Feed 

samples were ground through a 1 mm screen using a Willey Mill (Standard 

Model 3; Arthur H. Thomas Co., Philadelphia, PA).  Dry matter and P content of 

feed and slurry was determined using a gravimetric method.  Dry matter was 

A B

C D
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determined 2.5g of sample required for the quinolinium molybdophosphate 

method (AOAC, 1998) placed in quartz crucibles, and then dried at 100oC for 24 

h.  After removal from the oven, feed samples were placed into a dissecator and 

allowed to stabilize at room temperature before being weighed (AOAC, 1998).  

Following weighing, P determination was started using the dry samples from the 

DM determination and the quinolinium molybdophosphate method (AOAC, 

1998).   

The non-acidified slurry samples were immediately analyzed for DM and P 

analysis using similar procedures as the feed samples with the following 

modifications.  Slurry sample was agitated and immediately a 5 mL aliquot was 

transferred to a quartz crucible.  The slurry aliquot was weighed (range 5 to 6 g) 

and from this point DM and P procedures were performed without further 

modifications.   

Nitrogen concentration of feed and slurry was determined by the automated 

Kjeldahl procedure (AOAC, 1998) using a FOSS Tecator 2020 Digestor and a 

FOSS Tecator 2400 Kjeltec Analyzer (FOSS Tecator, Hoganas, Sweden).  For N 

concentration determination in the feed, the sample digestion procedure was 

modified by weighing 0.5 g of feed, placed into a Kjeldahl digestion tube, and 

adding only one tablet of digestion catalyzer (3.5 g K2SO4 + 0.35 g Se, Fisher tab 

ST-35, Kjeldahl tablets).  For slurry N concentration determination, the acidified 

slurry samples were used.  The acidified slurry sample was agitated; then a 5 mL 

aliquot was immediately transferred to a Kjeldahl digestion tube, and one tablet 

of digestion catalyzer was added.  From this point, the Kjeldahl procedure was 
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performed without modifications.  All DM, N, and P analysis were performed in 

duplicate for both feed and slurry samples.  

Using the feed samples collected each week, a representative composite 

feed sample was prepared for each feeding phase of the two diets. A total of 6 

composite samples (2 diets x 3 dietary phases) were prepared for Experiments 1 

and 2, and a total of 8 composite samples were prepared (2 diets x 4 dietary 

phases) for Experiment 3.  The composite feed samples and duplicate slurry 

samples were transferred to the Soil, Water and Forage Analytical Laboratory at 

Oklahoma State University, where samples were analyzed for DM, and N by 

LECO, and P, C, Ca, K, Mg, Na, Fe, Zn, Cu, and Mn by digestion with 

concentrated nitric acid and hydrogen peroxide and analyzed by inductively 

coupled plasma (ICP) emission spectroscopy.  Additionally, slurry samples were 

analyzed for NH4-N (AOAC, 1998) and water soluble P (WSP) (AOAC, 1998). 

 

Nutrient excretion 

 The weekly pit volume measurements and the nutrient concentration in slurry 

for each week were used to calculate nutrient excretion.  It is important to note 

that not all nutrients contained in the slurry were from fecal or urinary 

contribution.  Slurry nutrient concentration also accounted for the nutrient 

contribution via feed and water wastage.  The determined nutrient excretion 

values were expressed on a per pig per day basis, as a percentage of intake, 

and on a per finished pig basis.   



 91

Nutrient excretion was produced by the following equation:  Nutrient 

excretion, g = slurry volume, L x slurry [nutrient], g/L.  Weekly values over 16 

weeks were added together and then divided by the numbers of pigs in the room, 

to estimate cumulative excretion on a per finished pig basis.  To express nutrient 

excretion on a per pig per day basis, the cumulative excretion per finished pig 

was divided by the duration of the finishing period in days.  Finally, to express 

nutrient excretion as percentage of the intake, nutrient intake was estimated 

using daily feed intake and the nutrient concentration in feed.  The amount of 

nutrient recovered in the slurry was expressed as a percentage in relation with 

nutrient intake.  

 

Carcass evaluation 

At a target weight (Exp. 1 and 2, 108 kg; Exp.3, 118 kg), pigs were identified 

by tattoo and transported to a commercial processing plant.  Pigs were 

slaughtered, scalded, scraped, eviscerated, and hot carcass weight (HCW) was 

recorded.  Carcasses were allowed to chill for at least 16 h prior to evaluation.  

All measurements were taken using direct measurements on the chilled carcass.  

Carcasses were separated down the midline and backfat depth was measured at 

the 1st, 10th, last rib, and last lumbar vertebra.  On the right side, carcasses were 

ribbed between the 10th and the 11th rib to measure loin muscle area (LMA) and 

fat depth.  The LMA was traced, and the muscle area determined from the 

tracing.  The traced muscle area was measured with the aid of a Kurta XLP 

1212, board and pen (Mutoh America Inc.  Kurta XLP 1212 (oard and pen).  3007 
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East Chamers, Phoenix, Arizona).  The Kurta XLP 1212 was connected to a PC 

where the software (Ribeje-v 2.0, Critical Vision Inc.  Rieje v.  2.0 software.  

Atlanta, Georgia) was installed.  The muscle area was transferred to the PC and 

measured with the Ribeje v 2.0 software.  The fat depth over the loin was 

measured directly over the loin at a point ¾ of the distance from the midline.  The 

standard fat-free lean (SFFL) was estimated using the standard procedure for 

ribbed carcasses described by Burson (2001), using the following equation:  

SFFL, lb = 8.588 + (0.465 x HCW, lb) – (21.896 x 10th rib fat depth, mm) + (3.005 

x 10th rib loin muscle area, sq. inches) (NPPC, 2001). 

 

Bone strength determination 

In the Experiment 1 and 3, the front feet were removed from the carcass. In 

Experiment 2, the front and back feet were removed from the carcass. All feet 

were stored frozen (-20oC).  At a later date, the feet were allowed to thaw.  Each 

pair of front feet were placed in a disposable aluminum pan and placed in an 

autoclave in batches of 6 pairs per run (Figure III.3A and B). The autoclave was 

set to operate at a pressure of 250 psi, and the feet were cooked using the 

gravity cycle set to 1 min conditioning time, followed by 7 min sterilizing time, and 

a 10 min drying time.  The sterilizing temperature was set to 121oC, with a 

maximum temperature of 122oC and a minimum temperature of 120oC.  When 

the cycle was over, the feet were removed.  After autoclave the metacarpals 

(MC) were manually removed cleaned of exogenous tissue (Figure III.3C), and 

stored at -20oC.  A similar procedure was followed with the back feet to remove 
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metatarsals (MT).  The day before breaking the bones, the MC and MT were 

removed from the freezer and allowed to thaw overnight.  Bone breaking strength 

analysis was conducted using an Instron testing instrument (Model 4502, Instron 

Corporation) equipped with a 10 kg load cell (Figure III.3D). For the metacarpals, 

the high extension limit was set to 25 mm and for metatarsals at 45 mm. Bone 

breaking strength was measured in kg of force necessary to fracture the bone. 

 

 

Figure III.3. Bone strength measurement:  A) One batch of front feet, B) Batch of 
feet ready to be placed into the autoclave, C) Metacarpals removed after cooking 
the feet, D) Metacarpals placed in the base of the Instron instrument. 
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Statistical analysis 

 The data were analyzed as a Randomized Complete Block design. The 

model included the effects of block, dietary treatment, and the interaction block 

by dietary treatment served as the experimental error.  The room served as 

experimental unit.  Orthogonal contrasts were performed to compare the 

response to the dietary treatments.  
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CHAPTER IV 
 

EXPERIMENT 1 

EFFECT OF REDUCING DIETARY CRUDE PROTEIN BY 2% UNITS AND 

PHOSPHORUS BY 0.1% UNIT ON NUTRIENT EXCRETION OF PIGS DURING 

THE ENTIRE GROWING-FINISHING PERIOD 

 

Abstracts 

A total of 48 Yorkshire barrows (34.5 kg BW) was used to determine the effect of 

reducing dietary CP and P on DM, N, and P excretion during the finishing period. 

Pigs were blocked by BW and allotted randomly to two dietary treatments.  Pigs 

were housed in 4 identical rooms (12 pigs/room, 2 rooms/trt) in an 

environmentally-controlled building, with a shallow pit, pull-plug system.  The 

control was a fortified corn-soybean meal-based diet (18, 16, and 14% CP; 0.50, 

0.45, and 0.40% P for Phases 1, 2, and 3, respectively).  The experimental diet 

was a low nutrient excretion (LNE) diet similar to the control with the exception 

that CP was reduced by 2% units, P by 0.1% units, and Lys HCl was added.  

Diets were formulated on a true digestible Lys basis (0.84, 0.71, and 0.57%).  Pig 

weight, feed intake, pit volume, and pH were recorded weekly.  Feed and slurry 

samples were collected for DM, N, P, Ca, K, Mg, Na, S, Fe, Zn, Cu, and Mn 

analysis.  Slurry DM, pH, and NH4-N concentration were not affected (P > 0.10) 
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by treatment.  However, slurry N concentration tended to decrease (P < 0.10) 

and P concentration decreased (P< 0.01) when pigs were fed LNE. Final weight, 

F:G, and finishing period duration were similar (P > 0.10) with both diets. Also, 

hot carcass weight, backfat, longissimus muscle area, carcass yield, and fat-free 

lean percentage were similar for both treatments. Daily DM intake was not 

affected (P > 0.10) by diet. However, daily N, P, Ca, k, Fe, and Mn intake tended 

(P < 0.15) to decrease for pigs fed the LNE diet. The daily intake of the other 

minerals measured was similar (P > 0.10) for both diets.  Daily DM excreted was 

similar (P > 0.10) for both treatments. However, N, NH4-N, and P excretion 

decreased (P < 0.05) for pigs fed LNE.  Daily mineral excretion was not affected 

by the dietary treatment (P > 0.01), with the exception of Mg excretion, which 

was reduced (P < 0.01) with LNE.  Daily DM and P excretion, as a percentage of 

intake, were similar (P > 0.10), but N excretion tended to decrease (P < 0.10) for 

pigs fed LNE.  Mineral excretion, as percentage of intake, were not affected (P > 

0.10) by the dietary treatment.  However, cumulative N and P excreted during the 

finishing period was similar (P > 0.10) for both diets.  The LNE diet reduced daily 

N and P excretion by 20% and 24%, respectively.  However, cumulative N and P 

excretion was not affect by feeding LNE, and had very little effect on mineral 

excretion during the finishing period. 

  

Introduction 

In commercial operations, it has become a challenge to develop 

comprehensive nutrient management plans that take into account nutrient 
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excretion and wastage. In the past, swine diets were formulated to maximize pig 

performance without regards for nutrient excretion. In the future, swine diets will 

need to be formulated to reduce nutrient excretion without negative effects on pig 

growth performance.  

Estimated values of nutrient excretion have been summarized by Kornegay 

and Harper (1997) who indicated that growing-finishing pigs fed traditional corn-

soybean meal diets commonly excrete 45 to 60% of the N consumed, 50 and 

80% of the Ca and P, and 70 to 95% of K, Na, Mg, Cu, Zn, Mn, and Fe 

(Kornegay and Harper, 1997).  

Approximately 80% of the feed that a finished pig consumes is consumed 

during the growing and finishing phases. Therefore, special attention needs to be 

placed on nutrients excreted during these phases.  The dietary manipulation 

approach to reduce nutrient excretion in finishing pigs will include avoiding or 

reducing over-feeding of nutrients (Kornegay and Harper, 1997; Sutton and 

Richert, 2004).  Dietary manipulation is a practical and feasible approach to 

reduce nutrient excretion, especially during growing-finishing.   

In growing and finishing phases, opportunities exist to reduce N excretion 

through the reduction of dietary protein levels and balancing diets with addition of 

crystalline AA (Sutton and Richert, 2004).  Also, dietary P concentration can be 

reduced below NRC requirements when supplemental phytase is added to the 

diets (Cromwell et al., 1995; Qian et al., 1996; Harper el al., 1997; Liu et al., 

1998). 
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However, most of the information available regarding nutrient excretion has 

been produced using individually-fed growing and finishing pigs.  Based on the 

limited information available, an experiment was conducted with the objective to 

determine the effect of reducing dietary CP by 2% units and P by 0.1% unit on 

pig growth performance, carcass traits, bone strength, slurry characteristics and 

nutrient excretion during the entire finishing period. 

 

Materials and methods 

 

Pig allotment 

 A group of 48 Yorkshire barrows with an initial average body weight of 34.5 

kg were allotted to one of two dietary treatments in a randomized complete block 

design with initial weight as the blocking criterion (with post-allotment 

assessment to stratify ancestry).  Two blocks were used, with one experimental 

unit per treatment within each block. The experimental unit was a room with 6 

pens and 2 pigs per pen.  The room was previously described in Chapter III. 

 

Dietary treatments  

The two dietary treatments evaluated were a conventional corn and soybean 

meal diet, fortified with vitamins and minerals, used as the control diet (Control), 

and a low nutrient excretion diet (LNE).  The control diet was formulated to be fed 

in 3 dietary phases (18, 16, and 14% CP; 0.50, 0.45, and 0.40% P, Phases 1 to 

3, respectively). The LNE diet was similar to the control, with the exceptions that 
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CP was reduced by 2% units, crystalline amino acids were added on an ideal 

basis, and P was reduced by 0.1%.  The reduction in dietary CP was achieved by 

the reduction in the inclusion of soybean meal.   Both diets were formulated on a 

true digestible Lys (0.84, 0.71, 0.57%, Phases 1 to 3 respectively).  The true 

digestible Thr:Lys ratio was 63:100 in Phase 1, and 65:100 in phases 2 and 3; 

true digestible Met:Lys ratio was 27:100 in all Phases; and true digestible Trp:Lys 

ratio was 18:100 in Phases 1 and 2, and 19:100 in Phase 3.  The reduction in 

dietary P was achieved by reducing the inclusion of dicalcium phosphate. Also, 

limestone inclusion was diminished to maintain a Ca:tP ratio of 1.2:1.   Diet 

formulation and calculated composition are presented in Table IV.1. 

 

Other procedures 

The methodology employed to evaluate pig growth performance, pit content, 

feed and slurry analysis, nutrient excretion, carcass evaluation, bone strength 

and statistical analysis, was previously described as general experimental 

procedures, in Chapter III.   

 

Results  

Analyzed crude protein and phosphorus composition of the diets. 

Dietary CP and P concentration in all diets were analyzed.  Note that in all 

diets the expected and analyzed CP and P values were similar.  It is also 

important to note that the reduction in dietary CP by 2% units in the LNE diet was 
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achieved in all dietary phases (Table IV.1).  This was also true for the reduction 

in dietary P by 0.1% unit in the LNE diet (Table IV.1). 

 

Growth performance and nutrient intake 

All the results are reported on a per pig basis.  The initial weight of all pigs 

was 34.5 kg (P > 0.10) and they were fed to a target weight of 108 kg (P > 0.10, 

Table IV.2).  The reduction in dietary CP by 2% units and P by 0.1% unit did not 

affect (P > 0.10) the duration of the finishing period, ADG, ADFI, and F:G ratio 

when pigs were fed the LNE diet (Table IV.2).  Also, the reduction in CP by 2% 

units and P by 0.1% unit did not affect (P > 0.10) daily intake of DM, C, N, Ca, K, 

Mg, Na, Fe, Zn, Cu and Mn (Table IV.2).  However, the 0.1% unit reduction in 

dietary P tended (P < 0.10) to reduce P intake (Table IV.2). 

 

Carcass characteristics and bone breaking strength  

The hot carcass weight, carcass yield, and backfat depth at the 10th rib were 

similar (P > 0.10) for both diets (Table IV.3).   Also, the longissimus muscle area, 

carcass yield, fat-free lean percentage, and metacarpal breaking strength were 

not affected (P > 0.10) by dietary treatment (Table IV.3).    

 

Slurry characteristics 

Slurry volume, temperature (Figure IV.1), EC (Figure IV.2),  pH (Figure IV.3), 

and nutrient concentrations (Figures IV.4 to 7),  measured on a weekly basis was 

summarized and used to calculate average values for the entire finishing period.  
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Note that nutrient concentrations in slurry increased over time as pigs grew 

(Figures IV.4 to 7).  Slurry volume, temperature, EC, and pH (Table IV.4) was 

similar (P > 0.10) for both dietary treatments.  Also, slurry concentration of DM, 

NH4-N, Ca, K, Mg, Na, Zn, and Mn were not affected (P > 0.10) by dietary 

treatment (Table IV.5).  However, N concentration in the slurry tended to be 

reduced (P < 0.10) by 15% when pigs were fed the LNE diet (Table IV.5).  Also, 

Fe and Cu concentration in slurry tended to be reduced (P < 0.10) by feeding 

LNE (Table IV.5).  Additionally, the C:N ratio (P < 0.11) tended to increase in the 

slurry from pigs fed the LNE diet (Table IV.5).  The reduction in dietary P by 0.1% 

unit tended to reduce (P < 0.10) slurry P concentration by 21% (Table IV.5).   

 

Nutrient excretion 

Excretion results are presented on a per pig basis. Daily DM, C, Ca, K, Fe, 

Zn, and Mn excretion were not affected (P > 0.10) by dietary treatment (Table 

IV.6).  However, when pigs were fed the LNE diet, daily N, NH4-N, P (P < 0.05), 

and Mg (P < 0.01) excretion decreased.  When daily excretion was expressed as 

percentage of the intake, N excretion tended to decrease (P < 0.10).  However, 

the excretion of other nutrients was not affected (P > 0.10) by treatment (Table 

IV.6).  Cumulative N and P excretion were not affected (P > 0.10) by diet (Table 

IV.6).  However, taking into account the importance of reducing cumulative 

excretion, the numerical differences obtained in cumulative N and P excretion 

should be considered. 
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Summary 

In summary, a 2% units reduction in dietary CP, in addition to a 0.1% unit 

reduction in P in grower-finisher diets decreased daily N excretion by 21%, 

ammonium N in waste by 29%, and daily P excretion by 24%; without negative 

effects on pig growth performance and carcass characteristics. 

 

Implications 

The reduction of N and P intake though dietary manipulation in growing-

finishing pigs is a feasible strategy to reduce daily and cumulative N and P 

excretion without detrimental effects on pig growth performance for the entire 

finishing period.  Also, the reduction in N concentration in the manure produced 

during the finishing phase can be an important contribution to reduce the amount 

of N lost as ammonia. 
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Table IV.1. Composition of experimental diets, as-fed basis (Exp. 1). 
Dietary phase 1 

(35-56 kg) 
2 

(56-87 kg) 
 3 

(87-108 kg) 
Ingredient, % Control LNE Control LNE  Control LNE 
Corn 68.98 74.77 74.44 80.28  83.37 89.11
Soybean meal, 48% 25.84 20.24 20.68 15.04  14.91 9.33
L-Lysine  0.17  0.18   0.17
L-Theonine  0.03  0.03   0.01
L-Tryptophan     0.01
Soybean oil 3.00 3.00 3.00 3.00   
Dicalcium phosphate 0.68 0.26 0.52 0.11  0.33 
Limestone 0.95 0.98 0.82 0.81  0.84 0.82
Salt 0.25 0.25 0.25 0.25  0.25 0.25
Vitamin mixa 0.15 0.15 0.15 0.15  0.15 0.15
Trace mineral mixb 0.10 0.10 0.10 0.10  0.10 0.10
Antibioticc 0.05 0.05 0.05 0.05  0.05 0.05
         
Calculated values:        
ME, kcal/kg 3484 3490 3497 3502  3355 3359 
CP, %   18.00 16.00 16.00 14.00  14.00 12.00
Total lysine, % 0.96 0.94 0.82 0.80  0.67 0.65
True dig. lysine, % 0.84 0.84 0.71 0.71  0.57 0.57
True Thr:Lys 63 63 65 65  65 65
True Met:Lys 27 27 27 27  27 27
True Trp:Lys 18 18 18 18  19 19
Ca, % 0.60 0.50 0.50 0.39  0.45 0.35
P, % 0.50 0.40 0.45 0.35  0.40 0.31
Available P, % 0.19 0.11 0.16 0.08  0.12 0.05
K, % 0.78 0.68 0.69 0.59  0.60 0.49
Mg, % 0.19 0.17 0.17 0.16  0.16 0.15
Fe, mg/kg  226  187  207 167   185 152 
Zn, mg/kg  136  134  134 132   133 131 
Cu, mg/kg     18.3   17.3    17.4   16.4     16.5  15.6 
Mn, mg/kg    52.0   44.6    48.0   40.6     44.0  37.7 
         
Analyzed values:        
CP, %    18.15   15.58    15.72  13.32     14.29  12.27
P, % 0.49 0.39 0.43 0.34  0.42   0.32 
Control: corn-soybean meal diet. LNE: 2% units reduced CP and 0.1% unit 
reduced P diet. 
a Provided 6,607.9 IU/kg of vitamin A; 991.2 IU/kg of vitamin D, 26.4 IU/kg of 
vitamin E, 2.6 mg/kg of vitamin K, 33.0 mg/kg of Niacin, 6.0 mg/kg of Riboflavin, 
19.8 mg/kg of Panthothenic Acid, and 25.8 µg/kg of vitamin B12 
b Provided 11.01 mg/kg of Cu, 110.13 mg/kg of Fe, 26.43 mg/kg of Mn, and 
110.13 mg/kg of Zn 
c Provided 40 mg of Tylosin per kilogram of diet. 
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Table IV.2. Effect of reduced dietary crude protein and phosphorus on pig growth 
performance and nutrient intake (Exp. 1)a 

 Dietary treatmentb   
 Control LNE SE P < 

Growth performance     
Initial wt, kg          34.3         34.7 0.21 0.45 
Final wt, kg     108     108 0.67 0.98 
Days to slaughter     104     108 2.48 0.50 
ADG, kg 0.726 0.702 0.03 0.63 
ADFI, kg              2.09              2.00 0.05 0.42 
F:G              2.83              2.86 0.01 0.13 
     
Nutrient intake g/d  
DM 1,846 1,762 42.9 0.40 
C    865    805 20.2 0.28 
N         52.0         42.4 1.32 0.12 
P           9.2           6.8 0.22 0.08 
Ca          11.4           9.0 0.31 0.12 
K          15.0         12.0 0.38 0.12 
Mg              2.70              2.36 0.07 0.18 
Na              2.48             2.37 0.05 0.34 
 mg/d  
Fe     447 350 12.7 0.12 
Zn     296 280 7.42 0.30 
Cu         35.0      30.5 1.06 0.21 
Mn         99.5      79.0 2.47 0.11 
aLeast square means for 2 rooms (12 pigs per room) per treatment. 
bControl: traditional corn-soybean meal diet. LNE: 2% units reduced CP and 
0.1% unit reduced P diet. 
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Table IV.3. Effect of reduced dietary crude protein and phosphorus on carcass 
characteristics and metacarpal breaking strength (Exp.1) a 
 Dietary treatmentb   
 Control  LNE SE P < 
Live wt, kg 112.8 110.3 1.63 0.47 
Hot carcass wt, kg   87.6   85.6 1.11 0.43 
10th rib fat depth, cm     2.08     2.07 0.01 0.50 
LMA, sq cm   39.1   38.3 0.22 0.25 
Carcass yield, %   77.7   77.7 0.10 0.74 
Fat-free lean, %   51.1   51.0 0.15 0.74 
     
Metacarpal strength, kgf  160 141 6.80 0.29 
aLeast square means for 2 rooms (12 pigs per room) per treatment. 
bControl: corn-soybean meal diet. LNE: 2% units reduced CP and 0.1% unit 
reduced P diet. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 106

R2 = 0.39

R2 = 0.42

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Control LNE

Week

Slurry temperature, oC

 
Figure IV.1. Slurry temperature plotted versus week for pigs fed control or LNE 
diet (Exp. 1). aLeast square means for 2 rooms (12 pigs per room) per treatment.  
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Figure IV.2. Slurry EC plotted versus week for pigs fed control or LNE diet (Exp. 
1).  aLeast square means for 2 rooms (12 pigs per room) per treatment. 
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Figure IV.3. Slurry pH plotted versus week for pigs fed control or LNE diet (Exp. 
1).  aLeast square means for 2 rooms (12 pigs per room) per treatment. 
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Table IV.4. Effect of reduced dietary crude protein and phosphorus on slurry 
volume, temperature, EC, and pH (Exp. 1)a 

 Dietary treatmentb   
 Control LNE  SE P < 

Volume, L/pig/d 11.0 12.5 0.67 0.35 
Temperature, oC 22.5 22.2 0.13 0.40 
EC, µS     4,584     3,582 3.14 0.27 
pH     7.04      7.02 0.01 0.63 
aLeast square means for 2 rooms (12 pigs per room) per treatment. 
bControl: corn-soybean meal diet. LNE: 2% units reduced CP and 0.1% unit 
reduced P diet. 
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Figure IV.4. Slurry DM concentration plotted versus week for pigs fed control or 
LNE diet (Exp. 1).  aLeast square means for 2 rooms (12 pigs per room) per 
treatment. 
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Figure IV.5. Slurry N concentration plotted versus week for pigs fed control or 
LNE diet (Exp. 1).  aLeast square means for 2 rooms (12 pigs per room) per 
treatment. 
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Figure IV.6. Slurry NH4-N concentration plotted versus week for pigs fed control 
or LNE diet (Exp. 1).  aLeast square means for 2 rooms (12 pigs per room) per 
treatment. 
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Figure IV.7. Slurry P concentration plotted versus week for pigs fed control or 
LNE diet (Exp. 1).  aLeast square means for 2 rooms (12 pigs per room) per 
treatment. 
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Table IV.5. Effect of reduced dietary crude protein and phosphorus on slurry 
nutrient concentration, DM basis (Exp. 1)a 

 Dietary treatmentb   
Nutrient Control LNE SE P < 
DM, % 1.85 2.06 0.16 0.44 

 %, DM basis  
C  38.8 41.7 0.07 0.31 
N  10.4  8.5 0.53 0.09 
NH4-N     6.03    4.42 0.37 0.20 
P      2.19   1.71 0.03 0.01 
Ca     2.83   2.68 0.06 0.32 
K     4.88   4.04 0.27 0.27 
Mg     0.97   0.92 0.03 0.42 
Na     1.33   1.40 0.03 0.35 
  

ppm, DM basis 
 

Fe 182.5 143.1 3.66 0.08 
Zn 120.7 107.6 1.92 0.13 
Cu 20.5 17.6 0.25 0.08 
Mn 36.7 32.3 0.70 0.14 
     
C:N ratio 4.87 6.27 0.36 0.11 
aLeast square means for 2 rooms (12 pigs per room) per treatment. 
bControl: corn-soybean meal diet. LNE: 2% units reduced CP and 0.1% unit 
reduced P diet. 
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Table IV.6. Effect of reduced dietary crude protein and phosphorus on daily and 
cumulative nutrient excretion (Exp. 1)a 

 Dietary treatmentb   
 Control LNE SE P < 

Daily excretion g/pig  
DM 303 297      14.7 0.79 
C  115 120 2.60 0.32 
N     32.3      25.6 0.90 0.04 
NH4-N     18.8      13.3 0.75 0.04 
P          6.63          5.14 0.19 0.03 
Ca         8.61         7.72 0.14 0.14 
K     15.2     12.1 0.21 0.06 
Mg        2.99         2.73 0.01 0.01 
Na        4.19          4.22 0.21 0.95 

 mg/pig  
Fe  566 421      10.6   0.07 
Zn 377 325 7.20 0.12 
Cu      61.0     50.0 2.36 0.19 
Mn 113 96 0.01 0.11 
     
 as % of intake  
DM     16.5     16.8 0.78 0.79 
C     13.4     14.9 0.75 0.38 
N     62.1     60.3 0.21 0.10 
P     72.6     75.2 3.26 0.67 
Ca      75.8     86.0 4.41 0.28 
K 102 100 0.67 0.43 
Mg 111 116 2.73 0.42 
Na 170 178      11.4 0.69 
Fe 127 120 5.17 0.53 
Zn 128 118 5.47 0.42 
Cu 176 164      11.8 0.61 
Mn 114 122 4.59 0.43 
     
Cumulative excretion kg/pig  
DM 31.7 31.9 3.21 0.96 
C       12.0 12.9 0.82 0.52 
N     3.36     2.76 0.25 0.22 
P     0.71     0.54 0.07 0.22 
aLeast square means for 2 rooms (12 pigs per room) per treatment. 
bControl: corn-soybean meal diet. LNE: 2% units reduced CP and 0.1% unit 
reduced P diet. 
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CHAPTER V 

 

EXPERIMENT 2 

EFFECT OF REDUCING DIETARY CRUDE PROTEIN BY 4% UNITS AND 

PHOSPHORUS BY 0.1% UNIT ON NUTRIENT EXCRETION OF PIGS DURING 

AN ENTIRE GROWING-FINISHING PERIOD 

 

Abstract 

A total of 48 Yorkshire pigs (30.2 kg BW) was used to determine the effects of 

reducing dietary CP and P on DM, N, P, and mineral excretion during a 112-d 

finishing period.  Pigs were stratified by sex, blocked by body weight, and allotted 

randomly to two dietary treatments.  Pigs were housed in an environmentally-

controlled building divided into 4 identical rooms (12 pigs/room, 2 rooms/trt) with 

each having a shallow pit, pull plug system.  A fortified corn-soybean meal-based 

diet served as the control (18, 16, and 14% CP; 0.50, 0.45, and 0.40% P for 

phases 1, 2, and 3, respectively).  The experimental diet (LNE) was similar to the 

control diet with the exception that CP was reduced by 4% units and P by 0.1% 

unit.  Both diets were formulated on true digestible Lys (0.83, 0.71, and 0.58%), 

and Thr, Met, and Trp were added to LNE on an ideal basis.  Pigs and feeders 

were weighed weekly, and pit volume, pH and EC were measured.  Weekly feed 

and pit samples were collected for DM, N, P, Ca, K, Mg, Na, Fe, Zn, Cu, and Mn 
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analysis.  Days on test increased (P < 0.05) for pigs fed LNE, but final weight and 

DMI were not affected (P > 0.10).  The hot carcass weight, backfat depth, and 

carcass yield were not affected (P > 0.10) by diet.  However, the longissimus 

muscle area tended (P < 0.10) to be reduced and fat-free lean percentage 

decreased (P < 0.03) when pigs were fed LNE.  Daily N and P intake were 

reduced (P < 0.01) for pigs fed LNE.  Daily mineral intake was similar (P > 0.10) 

for Na, Cu, and Mn; however, the daily intakes of Ca, K, Mg, Zn, and Fe were 

reduced (P < 0.05) for pigs fed LNE.  The average concentration of DM in the pit 

was similar (P > 0.10), but N and P concentration, were reduced (P < 0.05) when 

pigs were fed LNE.  Pit pH tended to decrease (P < 0.08) with LNE.  Daily DM 

excreted was similar (P > 0.01) for both diets.  However, pigs fed LNE had a 

marked decrease (P < 0.05) in N, NH4-N and P excreted.  Excretion as 

percentage of the intake was similar (P > 0.10) for DM and P, but N intake 

tended to be reduced (P < 0.10) for pigs fed LNE.  When pigs were fed LNE, 

cumulative N and P excreted for the entire 112-d period tended to be reduced (P 

< 0.10) by 1.59 and 0.139 kg/pig. Although mineral intake, in some instances, 

was reduced for pigs fed LNE, daily mineral excretion was not affected (P > 0.10) 

by diet, with the exception of K and Mn, which tended to be reduced (P < 0.10) 

when LNE was fed.  Based on these results, the LNE diet reduced daily and 

cumulative N and P excreted by 40 and 25%, respectively, with little effect on 

mineral excretion over the course of a 112-d period. 
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Introduction 

The growing concern about air and water quality has fueled an increasing 

interest to develop production strategies within the swine industry to reduce 

nutrient excretion.  The nutrients of major concern are N and P, therefore, 

avoiding the tradition of over-feeding of N and P to growing-finishing pigs can be 

an effective strategy to reduce N and P excretion.  It has been suggested that 

around 70% of the N (Kornegay and Verstegen, 2001) and 60% of the P 

(Kornegay and Harper, 1997) consumed by growing-finishing pigs are excreted.   

The reduction in dietary protein levels with addition of crystalline AA is an 

effective mean to decrease N excretion (Kerr and Easter, 1995, Sutton and 

Richert, 2004, Deng et al., 2007a, Deng et al., 2007b).  The available data about 

the extent to which the dietary protein level can be reduced is conflicting and very 

limited with group-fed pigs.  Most reports indicate that reductions beyond 4% 

units have detrimental effects on growth traits and carcass quality (Figueroa et 

al., 2002, Figueroa et al., 2003, Figueroa-Velasco et al., 2004).  However, it has 

been reported that a 4% unit reduction in dietary protein results in a reduction in 

N excretion of 30 to 40%, without negative effects on pig growth performance 

(Kerr et al., 2003a, Kerr et al., 2003, Otto et al., 2003). 

The reduction in dietary P levels has been well recognized to be an effective 

method to reduce P excretion.  Several studies support a reduction in dietary P 

by 0.1% unit results in a decrease in P excretion between 21 and 25% (Cromwell 

et al., 1995; Qian et al., 1996; Harper el al., 1997; Liu et al., 1998).  However, P 

excretion data measured with group-fed pigs is not available.  
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The reduction in dietary protein and P levels in the diets result from the 

reduction of inclusion of ingredients such as soybean meal (0.34% Ca, 2% K, 

and 0.3% Mg), dicalcium phosphate (24% Ca, 2% K, 8% Mg, 0.8% Fe, and 0.1% 

Mn), and limestone (36% Ca, 0.1% K, 0.2% Mg, 0.35% Fe, and 0.02%Mn).  

Therefore, the reduction in inclusion of those ingredients results in reduced 

dietary levels of minerals supplied.  

In Experiment 1, a 2% units reduction in dietary CP, in addition to a 0.1% unit 

reduction in P in grower-finisher diets decreased daily N excretion by 21%, 

ammonium N in waste by 29%, and daily P excretion by 24%, without negative 

effects on pigs growth performance.  However, the LNE diet had little effect on 

mineral excretion.   

Based on the need for accessible data, a second experiment was conducted 

to determine the effect of a further reduction in dietary CP by 4% units and P by 

0.1% units on pig performance, nutrient excretion during an entire finishing 

period, carcass characteristics, and pig bone strength. 

 

Materials and Methods 

 

Pig allotment   

A group of 48 Yorkshire pigs, 36 barrows and 12 gilts with an average initial 

body weight of 30.2 kg were allotted to one of the two dietary treatments in a 

randomized completed block design.  The initial weight and sex were used as 

blocking criterion (with post-allotment assessment to stratify ancestry).  The 
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experimental design included two blocks, with one experimental unit per 

treatment within each block. A room with 12 pigs served as the experimental unit. 

In block one, the experimental unit was a room with 12 barrows. In block two, the 

experimental unit was a room with 6 barrows and 6 gilts.  Room setting was 

previously described in Chapter III. 

 

Dietary treatments 

The two dietary treatments evaluated were a control diet similar to that used 

in Experiment 1, and a LNE diet similar to the control with the exception that part 

of the soybean meal was removed and crystalline lysine, threonine, methionine 

and tryptophan were added to meet pig amino acid requirements with a reduction 

of dietary CP by 4% units, plus a reduction in the addition levels of limestone and 

dicalcium phosphate to achieve a 0.1% unit reduction in P.  Both diets were 

formulated to be fed in 3 dietary phases with similar values for true digestible 

Lysin each phase (0.83, 0.71, and 0.58 %, respectively).  The true digestible 

Thr:Lys ratio was 63:100 in Phase 1, and 65:100 in phases 2 and 3; true 

digestible Met:Lys ratio was 27:100 in all Phases; and true digestible Trp:Lys 

ratio was 18:100 in Phases 1 and 2, and 19:100 in Phase 3.  The reduction in 

dietary P was achieved by reducing the inclusion of dicalcium phosphate. Also, 

limestone inclusion was diminished to maintain a Ca:tP ratio of 1.2:1.   Diet 

formulation and calculated composition are presented in Table V.1. 

 

 



 121

Other procedures 

The methodology employed to evaluate pig growth performance, pit content, 

feed and slurry analysis, nutrient excretion, carcass evaluation, bone strength 

and statistical analysis, was previously described as general experimental 

procedures, in Chapter III.   

 

Results 

 

Analyzed crude protein and phosphorus composition of the diets. 

The target CP and P concentrations for the control and LNE diet were 

achieved in all dietary phases. Note the reduction in dietary CP by 4% units in 

the LNE diet over the three dietary phases (Table V.1).  This was also true for the 

0.1% unit reduction in dietary P in the LNE diet (Table V.1). 

 

Growth performance and nutrient intake 

All pigs started with an average weight of 30.2 kg (P > 0.10) and were 

slaughtered at a target weight of 108 kg (P > 0.10).  Pigs fed the LNE diet had an 

increase (P < 0.05) in the duration of the finishing period (Table V.2). The ADFI 

and DM intake were not affected (P > 0.10) by dietary treatment.  The 4% units 

reduction in dietary CP and 0.1% unit reduction in dietary P decreased (P < 0.02) 

the daily intakes of N, P, Ca, K, Mg, Zn, and Fe.  However, Na, Cu, and Mn daily 

intake were not affected (P > 0.10) by the dietary treatment (Table V.2). 
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Carcass characteristics and bone breaking strength  

The hot carcass weight, carcass yield, and backfat depth at the 10th rib were 

not affected (P > 0.10) by dietary treatment (Table V.3).  However, the 

longissimus muscle area tended (P < 0.10) to be smaller when pigs were fed the 

LNE diet.  Also, the fat-free lean percentage was reduced (P < 0.03) by the LNE 

diet (Table V.3).   The metacarpal breaking strength tended to be reduced (P < 

0.12) when pigs were fed the LNE diet. However, metatarsal and metacarpal-

metatarsal breaking strength was not affected (P > 0.10) by the 0.1% unit 

reduction of dietary P in the LNE diet (Table V.4).    

 

Slurry characteristics 

Slurry volume, temperature (Figure V.1), EC (Figure V.2), pH (Figure V.3), 

and nutrient concentrations (Figures V.4 to 7), measured on a weekly basis was 

summarized and used to calculate average values for the entire finishing period.  

Note that nutrient concentrations in slurry increased over time as pigs grew 

(Figures V.4 to 7).  Slurry volume, measured on a per pig basis, and slurry 

temperature were similar (P > 0.10) for all rooms across the 16-wk period (Table 

V.5).  However, slurry EC was reduced (P < 0.02) and the pH tended to be 

reduced (P < 0.07) for pigs fed the LNE diet.  The DM and C concentration in the 

slurry was similar (P > 0.10) for both dietary treatments (Table V.6). However, the 

4% units reduction in dietary CP and 0.1% reduction in dietary P decreased (P < 

0.02) slurry N, NH4-N, and P concentrations, on a DM basis, by 41, 56, and 23%, 

respectively.  Even though the C:N ratio was statistically similar (P > 0.10), a 
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numeric increase was observed in the slurry from pigs fed the LNE (Table V.6).  

The 4% units reduction in dietary CP and 0.1% unit in dietary P tended to 

decrease (P < 0.10) slurry K, Mg, and Mn concentration. However, the LNE diet 

did not affected slurry (P > 0.10) Ca, Fe, Zn, and Cu concentration, and 

increased (P < 0.05) Na concentration (Table V.6). 

 

Nutrient excretion 

Daily DM was not affected (P > 0.10) by the reduction in dietary CP and P 

(Table V.7).  However, daily C excretion tended to be (P < 0.10) decreased when 

pigs were fed LNE.  Also, the 4% units reduction in dietary CP and 0.1% 

reduction in dietary P markedly decreased (P < 0.03) the amount of N (40% 

reduction), NH4-N (56% reduction) and P (25% reduction) excreted.  When 

excretion was expressed as a percentage of the intake, DM, C, N and P 

excretion were not affected (P > 0.10) by the reduction in dietary CP and P 

(Table V.7).  Although, cumulative N and P excretion were similar (P > 0.10) for 

both diets, the cumulative excretion of N and P was numerically reduced by 1.59 

and 0.139 kg/pig, respectively, when pigs were fed the diet with 4% unit reduced 

CP and 0.1% unit reduced P.   

The reduction in dietary CP and P did not affect (P > 0.10) Ca, Mg, Na, Fe, Zn 

and Cu excretion.  Daily K excretion tended (P < 0.10) to be decreased by 

feeding LNE.  Only, Mn excretion was reduced (P < 0.02) with the experimental 

diet (Table V.7).  When mineral excretion was expressed as percentage of the 

intake, mineral excretion was not affected by the dietary treatment, except for Ca 
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excretion which tended to be increased (P < 0.08) in pigs fed with the LNE diet.  

The reduction in dietary CP and P had very little effect on the total amount of 

minerals excreted over the entire growth-finishing period. Cumulative excretion of 

Ca, Mg, Na, and Fe, Zn and Cu were similar (P > 0.10) in both treatments 

groups.  Only, cumulative excretion of K and Mn were decreased (P < 0.05) with 

the reduction in CP and P in the experimental diet (Table V.7). 

 

Summary 

A reduction of 4% unit of CP with addition of crystalline AA and 0.1% unit of P 

in grower-finisher diets decreased daily N and P excretion by 40 and 25%, and 

cumulative N and P excreted for the entire period by 1.36 and 0.14 kg/finished 

pig, respectively, during a 112-day finishing period.  Reduction of the inclusion 

level of soybean meal, dicalcium phosphate, and limestone had little effect on 

mineral excretion over the growing-finishing period. The LNE diet only decreased 

daily K and Mn excretion, while the level of excretion of the other minerals was 

maintained.  However, reduction of 4% unit of CP with addition of crystalline AA 

and 0.1% unit of P increased the duration of the finishing period by 7 days. 

 

Implications 

Based on these results, the reduction in N and P in grower and finisher diets 

markedly decreases N and P excretion.  However, reduction of dietary CP by 4% 

in addition to with the 0.1% unit in P had adverse effects on pig growth 
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performance.  The increased duration of the finishing period caused a dilution of 

the daily reductions in excretion over time. 
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Table V.I.  Composition of experimental diets, as-fed basis (Exp. 2). 
Dietary phase 1 

(30-51 kg) 
2 

(51-85 kg) 
3 

(85-109 kg) 
Ingredient, % Control LNE Control LNE Control LNE 
Corn 68.98 80.21 74.54 85.39 79.73 90.76
Soybean meal, 48% 25.84 14.51 20.68 9.33 15.54 4.20
L-Lysine 0.35 0.36 0.36
DL-Methionine 0.01 0.01 
L-Theonine 0.10 0.11 0.10
L-Tryptophan 0.03 0.03 0.04
Soybean oil 3.00 3.00 3.00 3.10 3.00 3.10
Dicalcium phosphate 0.68 0.40 0.52 0.24 0.36 0.08
Limestone 0.96 0.95 0.82 0.78 0.82 0.81
Salt 0.25 0.25 0.25 0.25 0.25 0.25
Vitamin mix a 0.15 0.15 0.15 0.15 0.15 0.15
Trace mineral mix b 0.10 0.10 0.10 0.10 0.10 0.10
Antibiotic c 0.05 0.05 0.05 0.05 0.05 0.05
       

Calculated values:   
ME, kcal/kg 3484 3482 3497 3496 3504 3503 
CP, % 18.00 14.00 16.00 12.00 14.00 10.00
Lysine, % 0.96 0.92 0.82 0.79 0.68 0.65
True dig. Lysine, % 0.83 0.83 0.71 0.71 0.58 0.58
True Thr:Lys 63 63 65 65 65 65
True Met:Lys 27 27 27 27 27 27
True Trp:Lys 18 18 18 18 19 19
Ca, % 0.60 0.50 0.50 0.39 0.45 0.35
P, % 0.50 0.40 0.45 0.35 0.40 0.30
Available P, % 0.19 0.13 0.16 0.09 0.12 0.06
K, % 0.78 0.58 0.69 0.48 0.60 0.39
Mg, % 0.19 0.16 0.17 0.15 0.16 0.14
Fe, mg/kg 226 188 207 169 187 150 
Zn, mg/kg 136 132 134 130 133 128 
Cu, mg/kg  18.25 16.32 17.38 15.44 16.51 14.57
Mn, mg/kg 51.96 44.68 48.01 40.70 44.33 37.08
       

Analyzed values:       
CP, % 18.7 14.2 15.9  13.0 13.1 9.5 
P, %    0.50    0.38    0.46    0.38    0.38   0.30 
Control: corn-soybean meal diet. LNE: 4% units reduced CP and 0.1% unit 
reduced P diet  
a Provided 6,607.9 IU/kg of vitamin A; 991.2 IU/kg of vitamin D, 26.4 IU/kg of 
vitamin E, 2.6 mg/kg of vitamin K, 33.0 mg/kg of Niacin, 6.0 mg/kg of Riboflavin, 
19.8 mg/kg of Panthothenic Acid, and 25.8 µg/kg of vitamin B12 
b Provided 11.01 mg/kg of Cu, 110.13 mg/kg of Fe, 26.43 mg/kg of Mn, and 
110.13 mg/kg of Zn 
c Provided 40 mg of Tylosin per kilogram of diet. 
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Table V.2. Effect of reduced dietary crude protein and phosphorus on pig growth 
performance and nutrient intake (Exp. 2)a. 

 Dietary treatmentb   
 Control LNE SE P < 

Growth performance     
Initial wt, kg      30.2     30.2   0.04 0.43 
Final wt, kg    109.9   108.7   1.74 0.72 
Days to slaughter 105 112   0.35 0.04 
ADG, g 1,315.8 1,301.7 20.85 0.71 
ADFI, kg          2.16          2.10   0.02 0.23 
F:G          2.84          2.97   0.03 0.17 

     
Nutrient intake g/d  
DM 1,899.6 1,833.2 16.04 0.21 
N        52.75       38.05 0.06 0.01 
P         9.32         7.11 0.04 0.01 
Ca       11.98         8.97 0.01 0.01 
K       16.50       11.26 0.03 0.01 
Mg        3.02         2.40 0.01 0.02 
Na        2.19         2.24 0.04 0.49 
 mg/d  
Fe 472 347 1.41 0.01 
Zn 316 273 0.35 0.01 
Cu      38.5      33.0 2.47 0.36 
Mn 104  85 3.89 0.18 
aLeast square means for 2 rooms (12 pigs per room) per treatment. 
bControl: corn-soybean meal diet. LNE: 4% units reduced CP and 0.1% unit 
reduced P diet. 
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Table V.3. Effect of reduced dietary crude protein and phosphorus on carcass 
characteristics and bone breaking strength (Exp.2) a 
 Dietary treatmentb   
 Control LNE SE P <
Live wt, kg 109.9 108.7 1.74 0.72
Hot carcass wt, kg 87.5 86.4 1.85 0.74
10th rib fat depth, cm 2.12 2.30 0.04 0.18
LMA, sq cm 44.2 38.7 0.57 0.09
Carcass yield, % 79.7 79.4 0.39 0.75
Fat-free lean, % 52.2 50.2 0.06 0.03
     
Metacarpal strength, kgf 152.1 136.8 2.06 0.12
Metatarsal strength, kgf 130.8 120.7 5.52 0.42
Metacarpal-metatarsal strength, kgf 140.2 130.1 5.44 0.41
aLeast square means for 2 rooms (12 pigs per room) per treatment. 
bControl: corn-soybean meal diet. LNE: 4% units reduced CP and 0.1% unit 
reduced P diet. 
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Figure V.1. Slurry temperature plotted versus week for pigs fed control or LNE 
diet (Exp. 2).  aLeast square means for 2 rooms (12 pigs per room) per treatment.  
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Figure V.2. Slurry EC plotted versus week for pigs fed control or LNE diet (Exp. 
2).  aLeast square means for 2 rooms (12 pigs per room) per treatment. 
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Figure V.3. Slurry pH plotted versus week for pigs fed control or LNE diet (Exp. 
2). aLeast square means for 2 rooms (12 pigs per room) per treatment. 
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Table V.4. Effect of reduced dietary nitrogen and phosphorus on slurry volume, 
temperature, EC, and pH (Exp. 2)a. 

 Dietary treatmentb   
 Control LNE SE PV

Volume, L/pig/d 9.53 11.30 1.25 0.50
Temperature, oC 17.53 17.26 0.11 0.34
EC, µS 4.81 3.01 0.05 0.02
pH 7.02 6.23 0.06 0.07
aLeast square means for 2 rooms (12 pigs per room) per treatment. 
bControl: corn-soybean meal diet. LNE: 4% units reduced CP and 0.1% unit 
reduced P diet. 
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Figure V.4. Slurry DM concentration plotted versus week for pigs fed control or 
LNE diet (Exp. 2).  aLeast square means for 2 rooms (12 pigs per room) per 
treatment. 
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Figure V.5. Slurry N concentration plotted versus week for pigs fed control or 
LNE diet (Exp. 2).  aLeast square means for 2 rooms (12 pigs per room) per 
treatment. 
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Figure V.6. Slurry NH4-N concentration plotted versus week for pigs fed control or 
LNE diet (Exp. 2).  aLeast square means for 2 rooms (12 pigs per room) per 
treatment. 
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Figure V.7. Slurry P concentration plotted versus week for pigs fed control or 
LNE diet (Exp. 2).  aLeast square means for 2 rooms (12 pigs per room) per 
treatment. 
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Table V.5. Effect of reduced dietary crude protein and phosphorus on slurry 
nutrient concentration, DM basis (Exp. 2)a. 

 Dietary treatmentb   
 Control LNE SE P <

DM, % 0.58 0.53 0.02 0.26
 %, DM basis  
C 54.62 52.47 2.05 0.59
N 12.66 7.61 0.14 0.02
NH4-N 8.4 3.7 0.40 0.02
P 2.47 1.90 0.01 0.02
Ca 2.92 2.83 0.02 0.16
K 5.76 3.96 0.20 0.10
Mg 1.28 1.16 0.01 0.07
Na 2.16 2.38 0.01 0.04

 ppm, DM basis  
Fe 162.5 157.5 12.72 0.83
Zn 103.5 93.5 3.53 0.30
Cu 15.5 13.5 0.71 0.30
Mn 37.0 32.5 0.35 0.07
  
C:N ratio 4.32 6.97 0.57 0.19
aLeast square means for 2 rooms (12 pigs per room) per treatment. 
bControl: corn-soybean meal diet. LNE: 4% units reduced CP and 0.1% unit 
reduced P diet. 
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Table V.6. Effect of reduced dietary nitrogen and phosphorus on daily and 
cumulative nutrient excretion, 112 days (Exp. 2)a. 

 Dietary treatmentb   
 Control LNE SE PV

Daily excretion g/pig   
DM            273.8            269.2 6.78 0.72
C            149.1            140.2 2.99 0.09
N       34.74        20.64 0.23 0.02
NH4-N       23.11       10.26 0.40 0.03
P         6.78         5.13 0.03 0.02
Ca        7.97         7.61 0.22 0.45
K      15.77       10.73 0.57 0.10
Mg       3.51         3.13 0.09 0.20
Na      5.89         6.38 0.02 0.36
 mg/pig  
Fe         445.1    419.0 23.87 0.58
Zn       284.8    250.4 4.86 0.12
Cu         43.7     32.2 1.45 0.20
Mn       101.7    87.5 0.23 0.02
 as % of intake   
DM,  14.4 14.7 0.25 0.60
C  17.2 16.5 0.38 0.43
N 65.7 53.9 2.10 0.16
P 72.6 71.9 1.66 0.82
Ca 66.5 84.7 1.79 0.08
K 95.5 94.8 6.15 0.95
     
Cumulative excretion kg/pig   
DM 28.6 29.7 0.97 0.55
N   3.6  2.3 0.16 0.11
P   0.72  0.57 0.02 0.13
 g/pig  
Ca  10.0 10.1 0.53 0.91
K 19.6 14.1 0.94 0.05
Mg   4.4  4.1 0.13 0.31
Na   7.4  8.5 0.56 0.31
 mg/pig  
Fe        556       560 37.11 0.94
Zn        355       333 6.62 0.14
Cu          54         50 1.26 0.11
Mn        126       115 1.36 0.03
aLeast square means for 2 rooms (12 pigs per room) per treatment. 
bControl: corn-soybean meal diet. LNE: 4% units reduced CP and 0.1% unit 
reduced P diet. 
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CHAPTER VI 
 

EXPERIMENT III 

EFFECT OF REDUCING DIETARY PROTEIN, PHOSPHORUS, AND TRACE 

MINERALS ON NUTRIENT EXCRETION, GAS EMISSION, AND NUTRIENT 

MASS BALANCE DURING THE ENTIRE FINISHING PERIOD 

 

Abstracts 

Seventy-six crossbred pigs were used to evaluate the effects of reducing dietary 

CP, P, and trace minerals (TM) on DM, N, P, and mineral excretion, and on the 

mass balance of N and P during a 110-d finishing phase (28 to 118 kg BW). Pigs 

were stratified by sex, blocked by BW, and randomly allotted to two diets. Pigs 

were housed in an environmentally-controlled building with 4 identical rooms (19 

pigs/room, 2 rooms/trt). Each room contained a shallow pit and exhaust air 

monitoring system.  The control diet was a fortified corn-soybean meal diet (19.3, 

17.2, 15.1 and 13.6% CP; 0.50, 0.46, 0.43, and 0.40% P) with 0.1% inclusion of 

TM premix for Phases 1 (28-54 kg), 2 (54-82 kg), 3 (82-100 kg) and 4 (100-118 

kg). Diet 2 (LNE) was similar to the control with the exceptions that CP was 

reduced by 3% units, P by 0.1% units, phytase added (500 FYT/kg), and TM 

premix reduced by 50, 77, 83 and 100% for Phases 1 - 4, respectively. The TM 

premix supplied 11, 110, 26, and 110 ppm of Cu, Fe, Mn, and Zn. Diets were 
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formulated on true digestible lysisne (0.92, 0.79, 0.65, and 0.56%) and Lys, Met, 

Thr and Trp were added to LNE on an ideal basis. Pig weight, feed intake, pit 

volume, and slurry pH were measured weekly. Feed and slurry samples were 

collected weekly for DM, N, P, and mineral analyses. The estimation of mass 

balance, on a per pig basis, assumed that N and P entered the finisher via the 

feed and pigs, and exited via the slurry, exhaust air, and pigs. At day 0 and 110, 

8 pigs and 6 pigs/room, respectively, were used to estimate initial and final body 

composition. Feed intake and composition were used to estimate N and P 

entering via feed. Slurry volume, composition, and NH3-N emission were used to 

estimate N and P exiting via waste. Diet did not affect (P > 0.10) growth 

performance. Daily intakes of N and P decreased (P < 0.05) with LNE. Slurry 

concentrations of N and NH4-N tended to decrease (P < 0.10) with LNE, while P 

and pH were reduced (P < 0.05). Daily DM, N, and P excretion were reduced (P 

< 0.05) for pigs fed LNE. Excretion of macro- and TM was reduced by more than 

11 and 38%, respectively. Cumulative DM, N, and P excretion were reduced (P < 

0.05) by 12, 31 and 34%, respectively with LNE. The amount of N and P initially 

entering via pigs was similar (P > 0.10). However, N and P entering via feed were 

reduced (P < 0.03) with LNE. Thus, LNE reduced (P < 0.03) total N and P 

entering by 18 and 22%, respectively. The amount of N and P exiting via the pigs 

was similar (P > 0.10) for both diets. However, N and P exiting via slurry, and 

NH3-N emitted were reduced (P < 0.05) by feeding LNE.  Thus, LNE reduced (P 

< 0.05) total N and P exiting by 18 and 21%, respectively. These results suggest 

a marked reduction in nutrient excretion for pigs fed LNE during the finishing 



 141

period. The proportion of N and P entering the finisher that exited via the pigs 

increased from 47 to 58% for N and 37 to 48% for P for pigs fed LNE compared 

with those fed the control. 

 

Introduction 

Currently, the increasing concern about the contribution of swine production 

to environmental pollution has enforced the consideration of more environmental 

regulations over waste discharge and gaseous emissions from intensive 

production operations.  Intensive swine production is demanding the 

development of new strategies that can simultaneously reduce nutrient excretion 

and emissions.  Also, it is important to evaluate nutrient flow within the production 

system, and the impact of management strategies on nutrient flow.   

Results from the previous two experiments suggested that reduction of 

dietary N and P in growing-finishing diets is an effective dietary manipulation to 

reduce N and P excretion and ammonium in slurry.  The 2% units reduction in 

dietary CP reduced daily N excretion by 21%, with no effect on pig growth 

performance. A further reduction in dietary CP by 4% units decreased N 

excretion by 40%, but negatively affects pig growth performance. The negative 

effect on pig growth could be due to the reduction in available P in addition with 

limited amino acids. The reduction in dietary P by 0.1% unit reduced P excretion 

by 24% in the two previous experiments.  However, previous reports suggest that 

the reduction in P excretion can be increased by the addition of dietary phytase 
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(Cromwell et al., 1995; Harper el al., 1997; Kornegay and Harper, 1997; Liu et 

al., 1998) to the LNE diet. 

In addition to the well recognized concern about N and P as environmental 

pollutants, mineral excretion as a risk of pollution is gaining attention. It has been 

reported that 70 to 95% of mineral intake is excreted (Kornegay and Harper, 

1997).  The reduction of mineral concentration in swine diets may decrease 

mineral concentration in the waste (Creech et al., 2004).  However, there is no 

information available concerning the effects of combining reductions in dietary 

crude protein, phosphorus, and minerals, with phytase addition in group-fed 

finishing pigs. Also, it is important to evaluate the entire finishing period, and be 

able to describe the effects on nutrient flow through the finisher system. 

Based on the need to evaluate these strategies placed together, an 

experiment was designed with the objective to determine the effects of reducing 

dietary CP by 3% units, P by 0.1% unit, with addition of phytase, and sequential 

reductions in trace mineral inclusion in growing-finishing diet on nutrient 

excretion, and emissions for the entire finishing period. In addition, the 

experiment was designed to estimate the mass balance of N and P for the entire 

finishing period.  

Materials and methods 

 

Pig allotment   

A group of 76 crossbred pigs [Dx(YxL)] (40 barrows and 36 gilts) with an 

average initial body weight of 28 kg were allotted to one of two dietary treatments 
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in a randomized completed block design.  The initial weight was used as blocking 

criterion and sex was stratified within experimental units (with post-allotment 

assessment to stratifyd ancestry).  The experimental design included two blocks, 

with two experimental unit per treatment within each block. On day 0, two pigs 

per room were removed and used to determine initial whole body composition. 

Thus, the experimental unit was a room with 19 pigs.   

 

Dietary treatments 

Two dietary treatments were evaluated, a control diet similar to the one used 

in Experiment 1 and 2, with the exception that it was formulated to be fed in four 

phases (19.3, 17.2, 15.1 and 13.6% CP; 0.50, 0.46, 0.43, and 0.40% P) with 

0.1% inclusion of TM premix for Phases 1 (28-54 kg), 2 (54-82 kg), 3 (82-100 kg) 

and 4 (100-118 kg). The low nutrient excretion (LNE) diet was similar to the 

control with the exceptions that CP was reduced by 3% units, P by 0.1% unit, 

phytase added (500 FYT/kg, as Ronozyme®P, DSM Nutritional Products), and 

TM premix reduced by 50, 77, 83 and 100% for Phases 1 - 4, respectively. The 

TM premix supplied 11, 110, 26, and 110 ppm of Cu, Fe, Mn, and Zn. Diets were 

formulated on true digestible lysisne (0.92, 0.79, 0.65, and 0.56%) with Ca:P ratio 

of 1.2:1, and Lys, Met, Thr and Trp were added to LNE on an ideal basis. Diet 

formulation, calculated composition, and CP and P analyzed values are 

presented in Table VI.1. 
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Other procedures 

The methodology employed to evaluate pig growth performance, pit content, 

feed and slurry analysis, nutrient excretion, carcass evaluation, bone strength 

and statistical analysis, was previously described as general experimental 

procedures, in Chapter III.   

 

Determination of initial and final body composition 

At the start of the experiment (day 0), a stratified sample of 8 pigs (4 gilts and 

4 barrows) was taken to determine initial body composition. As result, 8 pigs, 

representative of the initial groups assigned to the dietary treatments, were 

weighed, and transported to the OSU slaughter facility. The pigs were humanely 

slaughtered, and the viscera removed. The empty body and viscera were 

weighed separately, and store at -20oC.  The frozen empty bodies and viscera 

were ground, using a whole body grinder.  Duplicate representative samples of 

the ground empty body and viscera were collected.  Empty body and viscera 

samples were lyophilized and analyzed for DM, CP, P and ash.   

Using the live weight and body composition of the pigs used for initial body 

composition, prediction equations to estimate initial composition regresed on 

initial weight were developed.  The initial weight of all pigs in the experiment was 

used with the prediction equations to estimate initial body composition.  The 

estimated initial body composition was used to calculate the amount of nutrients 

entering the finisher via the pig. 
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A similar procedure was performed on day 110, at the end of the growing-

finishing period, to estimate final body composition. A sample of 6 pigs per room 

(3 gilts and 3 barrows) was taken and transported to the OSU slaughter facility. 

The pigs were humanely slaughtered, and head and viscera were removed. The 

empty bodies without head, and the head plus viscera were weighed, and stored 

at -20oC.  The frozen empty body and the head plus viscera were ground, and 

duplicate representative samples were collected.  The samples were lyophilized 

and analyzed for DM, N, P, C, Ca, K, Mg, Na, Fe, Zn, Cu, and Mn.  Nutrient 

retention was estimated by subtracting initial nutrient content in the pig from the 

final nutrient content.  Nutrient accretion was estimated by dividing the amount of 

nutrient retained by the duration of the finishing period.  Mass balance of N and P 

was estimated assuming that N and P entered the finisher via pig and feed, and 

exited the finisher via pig, slurry and air. 

 

Ammonia and hydrogen sulfide emissions measurement 

Emissions of ammonia and hydrogen sulfide, in addition to air flow from each 

room, were measured during the entire finishing period (110 days).  Ammonia 

concentration was measured using an ammonia to nitric oxide converter.   Nitric 

oxide was detected with a TEI Model 17C chemiluminescence analyzer (Thermo 

Electron Corporation, Waltham, MA).  Hydrogen sulfide was measured using a 

pulsed fluorescence converter.  Hydrogen sulfide was converted to sulfur oxide, 

followed by sulfur oxide detection with a sulfur oxide analyzer (TEI Model 450C-

TL, Thermo Electron Corporation, Waltham, MA).   
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Each room was equipped with 2 variable speed exhaust fans (Figure VI.1A).  

Air flow from each fan was measured simultaneously with the measurement of 

the current passing through the fan control unit.  Air flow was measured using a 

flowhood (8400 Flowhood kit, Shortridge Instruments, Scottsdale, AZ) at the time 

that pigs were removed from the room to be weighed. Using the current as the 

independent variable, air flow prediction equations for each fan were generated.  

Current at each fan control unit was continuously measured using current 

transducers (Hawkeye 822, Portland, OR), and air flow estimated with the 

prediction equations.  Exhaust air samples were collected from the ducts 

attached to each fan before air entrance into the bio-filters (Figure VI.1C).  At 

these sampling points, suction ports were inserted into the ducts (Figure VII.1D) 

and air samples were pulled from each fan (2 fans/room, 8 fans total), one at a 

time, and delivered into the analyzers (Figure VI.1F).  Emissions from each room 

were measured in 20 min cycles every 80 min.   

The exhaust air flow rate (ventilation air flow rate, m3/s, QV) was estimated 

using the operation voltage of the wall fans at sampling time (Figure VI.1B).  

Each fan operation voltage was entered into the air flow prediction equation, 

which was generated from independent fan test performed during fan calibration, 

prior to the start of each feeding phase.  Exhaust air flow rate of each fan, in 

addition to the mean ammonia and hydrogen sulfide concentration measured in 

inlet (Inlet gas concentration, ppm, Ci), and exhaust air (exhaust air gas 

concentration, ppm, Ce), were used to estimate gases generation (QG) and 
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emission (QE) rates, from each of the four rooms,  using the following equations 

(Hebert et al., 2001):  

 Gas generation rate, mg/s, QG = KQV (Ce - Ci) 

 Gas emission rate, mg/s, QE = KQVCE 

 Where K = factor to convert ppm to mg/m3 

Gas generation and emissions from each room were estimated by the addition of 

the individual contribution of each of the fans located within a room.  

 

 
 
Figure VI.1. Exhaust air monitoring system.  A) View of a wall fan, B) Voltage 
reader, C) Exhaust air ducts, D) Sampling ports at exhaust air ducts, E) Mobil 
instrumentation trailer for air monitoring, F) inside view of the instrumentation 
trailer. 
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Estimation of mass balance for the growing-finishing period 

The mass balance approach was used to describe N and P flow within the 

finisher system.  The mass balance of N and P was estimated on a per pig basis, 

assuming that N and P entered the finisher via the feed and pigs, and exited via 

the slurry, exhaust air, and pigs.  To estimate the amount of N and P entering via 

feed, feed intake and composition were used. To estimate N and P entering via 

the pigs, 8 pigs were removed at starting of the growing phase (day 0), and used 

for determination of initial body composition.  To estimate the amount of N and P 

exiting via the pigs, 6 pigs per room were removed at the end of the finishing 

phase (day 110), and used to estimate final body composition.  The amount of N 

and P exiting the finisher via slurry was estimated using the weekly 

measurements of slurry volume and the analyzed N and P concentration in each 

week slurry sample.  The amount of N exiting the finisher in exhaust air was 

estimated from the measured ammonia emissions. Thus, slurry volume and 

composition, in addition to ammonia emission were used to estimate N and P 

exiting via waste. 

 
 

Results  
 
 

Growth performance and nutrient intake 

All pigs started with an average weight of 28 kg (P > 0.10) and were 

humanely slaughtered at a target weight of 118 kg (P > 0.10) (Table VI.2).  The 

duration of the finishing period was similar (P > 0.10) for both treatment groups.  

The ADG, ADFI, and F:G ratio were not affected (P > 0.10) by diet.  The 3% units 
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reduction in dietary CP, 0.1% unit reduction in dietary P, and the sequential 

reduction in trace mineral inclusion decreased (P < 0.01) daily N, P, Ca, K, Mg, 

Fe, Zn, Cu and Mn intake (Table VI.2).  However, DM and Na intake were not 

affected (P > 0.10) by diet. 

 

Carcass characteristics and bone breaking strength  

The reduction in dietary CP by 3% units, P by 0.1% unit, addition of phytase, 

and sequential reduction of trace mineral inclusion did not affect (P > 0.10) hot 

carcass weight and backfat depth at the 10thrib (Table IV.3).  Also, longissimus 

muscle area, carcass yield, fat-free lean percentage (Table IV.3), and metatarsal 

breaking strength were not affected (P > 0.10) by dietary treatment (Table IV.3).    

 

Body composition and nutrient accretion rate 

Recall that at the beginning of the experiment a total of 8 pigs were used to 

estimate initial body composition. The initial body composition and body weight 

were used to generate prediction equations (Table IV. 4) to estimate initial 

content of water, CP, ash, fat, N and P in the pigs (Table IV. 4).  All pigs started 

with similar (P > 0.10) initial body weight, thus, similar (P > 0.10) initial body 

composition was estimated (Table IV.5).  The final body composition (water, CP, 

ash, fat, N and P) and water, CP, ash, fat, N and P accretion rates were not 

affected by diet (Table IV.5). 
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Slurry characteristics 

Slurry volume, temperature (Figure V.1), EC (Figure V.2), pH (Figure V.3), 

and nutrient concentrations (Figures V.4 to 8),  measured on a weekly basis was 

summarized and used to calculate average values for the entire finishing period.  

Note that nutrient concentrations in slurry increased over time as pigs grow 

(Figures V.4 to 8).  Slurry volume, measured on a per pig basis, and temperature 

were similar (P > 0.10) for all rooms (Table VI.6).  However, slurry EC was 

reduced (P < 0.04) and the pH tended to be reduced (P < 0.10) when pigs were 

fed the LNE diet.  The slurry concentration of all nutrients measured was reduced 

(P < 0.03) when pig were fed the LNE, with exception of Na  which tended (P < 

0.10) to be reduced,  in addition to K and Mg which were not affected (P > 0.10) 

by diet (Table VI.7).  Additionally, water soluble phosphorus was reduced (P < 

0.05) in the slurry from pigs fed LNE.  The C:N ratio was increased (P < 0.01) by 

feeding the LNE diet (Table VI.7).  Slurry N:tP ratio tended to be increased (P < 

0.10) when pigs were fed LNE, and the WSP:tP ratio was not affected (P > 0.10) 

by diet. 

 

Nutrient excretion 

All excretion results are expressed on a per pig basis.  Feeding LNE markedly 

decreased (P < 0.03) the daily excretion of DM, N, NH4-N, P, Ca, K, Mg, Fe, Zn, 

Cu and Mn (Table VI.8).  Daily DM excretion was reduced by 12%, N by 30%, P 

by 34%, macro-minerals by 23% and micro-minerals by 46%. When excretion 

was expressed as a percentage of intake, only N excretion tended (P < 0.10) to 
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be reduced by feeding LNE (Table VI.8).  Also, cumulative DM, N and P 

excretion decreased (P < 0.03) when pigs were fed the LNE diet (Table VI.8).     

 

Air flow, ammonia and hydrogen sulfide emissions 

Air flow was similar (P > 0.10) across the four rooms (Table VI.9).  The 

exhaust air ammonia concentration and ammonia emission rate were reduced (P 

< 0.01) when pigs were fed the LNE diet.  The reduction in ammonia emission 

rate was by 56%. However, dietary treatment had no effect (P > 0.10) on 

hydrogen sulfide concentration and emission rate. 

 

Nitrogen and phosphorus mass balance from the finisher 

In the estimated mass balance for N and P, the total amount of N entering the 

finisher was very close to the total amount of N exiting the finisher, this was also 

true for the amount of P entering and exiting the finisher (Table VI.10). For the N 

mass balance the amount of N exiting the finisher exceeded the amount entering 

by 0.2 kg per finished pig.   For the P mass balance, 0.08 and 0.05 kg of P 

leaving the finisher were not accounted in the control and LNE treated group, 

respectively (Table VI.10).  The amount of N and P initially entering via pigs was 

similar (P > 0.10) for both treatments (Table VI.10). However, the amount of N 

and P entering via feed were reduced (P < 0.03) by feeding LNE diet. Therefore, 

the LNE diet reduced total N and P entering the finisher by 18 and 22%, 

respectively.  The amount of N and P exiting via the pigs was similar (P > 0.10) 

for both diets.  However, the amount of N and P exiting the finisher via slurry, and 
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NH3-N emitted were reduced (P < 0.05) when pigs were fed LNE (Table VI.10).  

Therefore, the reduction in total N by 18% and total P by 21%, exiting the finisher 

was due to the reduction in the amounts of these nutrients entering via feed.  The 

proportion of N and P entering the finisher via the pigs was increased and the 

proportion entering via feed was decreased by feeding LNE in relation to feeding 

the control diet.  Also, the proportional distribution of N and P leaving the finisher 

was affected by dietary treatment.  When pigs were fed LNE, the proportion of N 

and P leaving via the pigs was increased, the proportion leaving in slurry 

decreased, and also, the proportion of N leaving as ammonia N in exhaust air 

(Figures VI.1 and VI.2).  

 

Summary 

The reduction in dietary CP, P, and trace minerals, with addition of phytase to 

the diet markedly decreased daily and cumulative nutrient excretion for pigs fed 

LNE during the finishing period.  Daily and cumulative DM excretion was reduced 

by 12%, N excretion by 31%, P excretion by 34%, macro-mineral excretion by 

more than 13%, and micro-mineral excretion up to 46%. Also, ammonia emission 

was reduced by 56%.  Additionally, the LNE diet did not affect pig growth 

performance and carcass characteristics.  The proportion of N and P entering the 

finisher that exited via the pigs increased from 47 to 58% for N and 37 to 48% for 

P for pigs fed LNE compared with those fed the control during the entire finishing 

period. 
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Implications 

These results suggest that reductions in dietary CP, P and trace minerals in 

growing-finishing diets markedly decreased DM, N, P and other mineral 

excretion, and ammonia emission without affecting pig growth performance or 

fat-free lean gain.  Therefore, dietary manipulation is an effective strategy to 

simultaneously reduce nutrient excretion, ammonia emissions, and the risk of 

exceeding the limits for ammonia emission established by future EPA 

regulations.  
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Table VI.1.  Composition of experimental diets, as-fed basis (Exp. 3). 
Dietary phase 1 

(35-56 kg) 
2 

(56-87 kg) 
3 

(87-108 kg) 
4 

(87-108 kg) 
Ingredient, %  Control LNE Control LNE Control LNE Control LNE 
Corn 65.72 73.75 71.28 79.95 76.71 85.37 80.54 89.16
Soybean meal, 
48% 

29.11 20.57 23.67 15.00 18.30 9.73 14.58 6.12

L-lysine - 0.30 - 0.28 - 0.27 - 0.27
DL-methionine - 0.01 - 0.00 - - - -
L-theonine - 0.09 - 0.09 - 0.07 - 0.04
L-tryptophan - 0.02 - 0.02 - 0.02 - 0.00
Soyean oil 3.00 3.00 3.00 3.10 3.00 3.10 3.00 3.10
Dicalcium 
phosphate 

0.61 0.27 0.54 0.20 0.47 0.12 0.39 0.04

Limestone 0.97 0.97 0.96 0.89 0.93 0.81 0.90 0.85
Salt 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
Vitamin mixa 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
Trace mineral 
mixb 

0.10 0.05 0.10 0.03 0.10 0.02 0.10 -

Phytasec - 0.02 - 0.02 - 0.02 - 0.02
Antibioticd 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
         
Calculated composition 
ME, kcal/kg 3483 3487 3490 3494 3494 3501 3499 3508 
CP, % 19.3 16.3 17.2 14.2 15.1 12.1 13.6 10.6 
Lysine, % 1.05 1.03 0.90 0.88 0.75 0.73 0.65 0.63
True dig. Lys, 
% 

0.92 0.92 0.79 0.79 0.65 0.65 0.56 0.56

True Thr:Lys 68 63 70 65 73 66 76 63
True Met:Lys 30 27 32 27 35 27 38 28
True Trp:Lys 22 18 22 18 22 17 22 15
Ca, % 0.60 0.50 0.56 0.44 0.52 0.40 0.48 0.36
P, % 0.50 0.40 0.46 0.36 0.43 0.33 0.40 0.30
Fe, mg/kg  225 132 213 101 199 69 188 39 
Zn, mg/kg  137   79 136   59 134 39 132 19 
Cu, mg/kg  18.8 11.9 17.9 9.1 16.9 6.3 16.3 3.9 
Mn, mg/kg 51.9 31.4 49.4 24.3 46.8 17.3 44.5 10.6 
Control: corn-soybean meal diet. LNE: 3% units reduced CP and 0.1% unit 
reduced P diet. 
a Provided 6,607.9 IU/kg of vitamin A; 991.2 IU/kg of vitamin D, 26.4 IU/kg of 
vitamin E, 2.6 mg/kg of vitamin K, 33.0 mg/kg of Niacin, 6.0 mg/kg of Riboflavin, 
19.8 mg/kg of Panthothenic Acid, and 25.8 µg/kg of vitamin B12 
b Provided 11.01 mg/kg of Cu, 110.13 mg/kg of Fe, 26.43 mg/kg of Mn, and 
110.13 mg/kg of Zn 
c Provided 40 mg of Tylosin per kilogram of diet. 
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Table VI.2. Effect of reduced dietary crude protein and phosphorus on pig growth 
performance and nutrient intake (Exp. 3)a. 
 Dietary treatmentb   
Growth performance Control LNE SE P < 
Initial wt, kg      28.0     28.0 0.01 0.33 
Final wt, kg    118.3    117.0 1.24 0.60 
Days to slaughter 110 110 0.00  
ADG, kg            0.836            0.844 0.01 0.23 
ADFI, kg            2.253            2.204 0.01 0.14 
F:G          2.70          2.61 0.01 0.18 
     
Nutrient intake g/d  
DM  1,925 1,879 32.8 0.43 
N          53.4         45.0 0.60 0.01 
P              9.78             7.38 0.13 0.01 
Ca         15.0         11.6 0.20 0.01 
K         17.2         13.8 0.28 0.01 
Mg             3.16             2.74 0.05 0.02 
Na             2.85             2.72 0.08 0.34 
 mg/d  
Fe 45.2 27.9 0.58 0.01 
Zn 25.3 12.8 0.78 0.01 
Cu    4.01    2.00 0.11 0.01 
Mn 12.1 5.8 0.37 0.01 
aLeast square means for 2 rooms (19 pigs per room) per treatment. 
bControl: corn-soybean meal diet. LNE: 3% units reduced CP and 0.1% unit 
reduced P diet. 
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Table VI.3. Effect of reduced dietary crude protein and phosphorus on carcass 
characteristics (Exp.3) a 

 Dietary treatmentb   
 Control  LNE SE P < 

Live wt, kg                  116.6 116.0     0.40      0.50 
Hot carcass wt, kg  88.5       87.7 0.38 0.50 
10th rib fat depth, cm      2.10    1.98 0.03 0.20 
LMA, sq cm  46.9       44.8 0.69 0.43 
Carcass yield, % 76.6       77.3 0.51 0.49 
Fat-free lean, % 52.9       52.9 0.22 0.88 
     
Metacarpal     175      165 10.00 0.62 
aLeast square means for 2 rooms (19 pigs per room) per treatment. 
bControl: corn-soybean meal diet. LNE: 3% units reduced CP and 0.1% unit 
reduced P diet. 
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Table VI. 4. Initial body composition prediction equations (Exp 3)  
Nutrient Prediction equation for initial composition R2 
Water Water, lb = 0.5971 (initial Wt, lb) + 1.4681 0.99 
CP CP, lb = 0.212 (initial Wt, lb) - 0.6897 0.98 
Ash Ash, lb = 0.0258 (initial Wt, lb) + 0.1199 0.85 
Fat Fat, lb = 0.1608 (initial Wt, lb) - 0.9327 0.89 
N N, lb = 0.0339 (initial Wt, lb) - 0.1104 0.98 
P P, lb = 4.1863 (initial Wt, lb) + 34.329 0.85 
N = 8 
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Table VI. 5. Initial and final body composition and nutrient accretion rate (Exp 3) a 
 Dietary treatmentb   
 Control LNE         SE           P < 
Estimated initial composition, kg 
Initial wt 27.94 27.89 0.02 0.33
Water 18.19 18.17 0.19 0.96
CP   5.25  5.24 0.07 0.96
Ash   0.84  0.84 0.01 0.95
Fat   5.44   5.43 0.05 0.96
N   0.84   0.84 0.01 0.96
P   0.15   0.15 1.37 0.96
 
Final composition, kg 
Final wt 116.6 116.0 0.40 0.50
Water     58.57     58.45 0.09 0.53
CP     20.01     19.54 0.57 0.66
Ash       2.93       2.77 0.05 0.25
Fat     30.15     30.67 0.16 0.26
N       3.37       3.29 0.12 0.71
P         0.437         0.457 0.01 0.41
  
Accretion rate, g/d 
Water 367.8 366.8 4.11 0.91
CP 134.6 130.5 4.16 0.61
Ash     18.99     17.55 0.31 0.19
Fat 225.4 230.6 2.79 0.41
N     23.08     22.36 0.91 0.68
P       2.60       2.79 0.07 0.33
aLeast square means for 2 rooms (19 pigs per room) per treatment. 
bControl: corn-soybean meal diet. LNE: 3% units reduced CP and 0.1% unit 
reduced P diet. 
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Figure VI.1. Slurry temperature plotted versus week for pigs fed control or LNE 
diet (Exp. 3).  aLeast square means for 2 rooms (19 pigs per room) per treatment.  
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Figure VI.2. Slurry EC plotted versus week for pigs fed control or LNE diet (Exp. 
3).  aLeast square means for 2 rooms (19 pigs per room) per treatment. 
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Figure VI.3. Slurry pH plotted versus week for pigs fed control or LNE diet (Exp. 
3).  aLeast square means for 2 rooms (19 pigs per room) per treatment. 
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Table VI. 6. Effect of reduced dietary crude protein and phosphorus on slurry 
volume, temperature, EC, and pH (Exp. 3)a. 

 Dietary treatmentb   
 Control LNE SE PV < 

Volume, L/pig/d   9.1 12.8 1.88 0.29 
Temperature, oC 19.9 19.9 0.02 0.90 
EC, mS     8.70      6.48 0.49 0.04 
pH     7.07      6.59 0.07 0.09 
aLeast square means for 2 rooms (19 pigs per room) per treatment. 
bControl: corn-soybean meal diet. LNE: 3% units reduced CP and 0.1% unit 
reduced P diet. 
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Figure VI.4. Slurry DM concentration plotted versus week for pigs fed control or 
LNE diet (Exp. 3).  aLeast square means for 2 rooms (19 pigs per room) per 
treatment. 
 
 
 
 
 
 
 



 164

R2 = 0.78

R2 = 0.81

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Control LNE

Week

Slurry N, ppm

 
Figure VI.5. Slurry N concentration plotted versus week for pigs fed control or 
LNE diet (Exp. 3).  aLeast square means for 2 rooms (19 pigs per room) per 
treatment. 
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Figure VI.6. Slurry NH4-N concentration plotted versus week for pigs fed control 
or LNE diet (Exp. 2).  aLeast square means for 2 rooms (19 pigs per room) per 
treatment. 
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Figure VI.7. Slurry P concentration plotted versus week for pigs fed control or 
LNE diet (Exp. 3).  aLeast square means for 2 rooms (19 pigs per room) per 
treatment. 
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Figure VI.8. Slurry Fe, Zn, Cu and Mn concentration plotted versus week for pigs 
fed control or LNE diet (Exp. 3).  aLeast square means for 2 rooms (19 pigs per 
room) per treatment. 
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Table VI.7. Effect of reduced dietary crude protein and phosphorus on slurry 
nutrient concentration, DM basis (Exp. 3)a. 

 Dietary treatmentb   
 Control LNE SE P < 

DM, % 1.21 1.04 0.01 0.05 
 %, DM basis  
C 43.0 44.6 0.04 0.02 
N 11.4  9.0 0.21 0.02 
NH4-N    6.99    5.02 0.16 0.01 
P    2.11    1.57 0.06 0.02 
WSP    1.88    1.44 0.06 0.04 
Ca    2.71    2.32 0.05 0.03 
K    5.37    4.73 0.17 0.12 
Mg    1.05   1.07 0.02 0.63 
Na    1.50   1.73 0.04 0.01 

 ppm, DM basis  
Fe 155.1 94.4 0.41 0.01 
Zn   92.9 47.7 0.31 0.01 
Cu   13.4    9.57 0.04 0.03 
Mn   33.0 21.3 0.08 0.01 
     
C:N ratio     3.76 4.96 0.01 0.01 
N:tP ratio     5.40 5.71 0.07 0.09 
WSP:tP     0.89 0.91 0.04 0.71 
aLeast square means for 2 rooms (19 pigs per room) per treatment. 
bControl: corn-soybean meal diet. LNE: 3% units reduced CP and 0.1% unit 
reduced P diet. 
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Table VI.8. Effect of reduced dietary crude protein and phosphorus on daily and 
cumulative nutrient excretion, 110 days (Exp. 3)a. 

 Dietary treatmentb   
 Control LNE SE P <

Daily excretion  g/pig   
DM 293 259 4.18 0.03
C  126 116 8.97 0.86
N 33.5 23.3 0.64 0.01
NH4-N 20.5 13.0 0.27 0.01
P  6.20 4.09 0.15 0.01
Ca 7.95 5.94 0.12 0.01
K 15.8 12.2 0.47 0.01
Mg 3.08 2.74 0.03 0.01
Na 4.40 4.46 0.17 0.01
 mg/pig  
Fe 455 240 16.9 0.01
Zn 273 122 12.8 0.01
Cu 39.3 24.5 1.87 0.03
Mn 97.0 54.3 3.59 0.01
 as % of intake   
DM 15.2 13.8 0.36 0.11
N 62.7 51.9 1.93 0.06
P 63.4 55.4 2.55 0.16
Ca 53.1 51.2 1.48 0.47
K 91.9 88.7 3.95 0.62
     
Cumulative excretion  kg/pig   
DM, kg/pig 32.2 28.5 0.46 0.03
C, kg/pig 13.8 12.7 0.98 0.50
N, kg/pig 3.67 2.56 0.07 0.01
P, kg/pig 0.68 0.45 0.02 0.01
aLeast square means for 2 rooms (19 pigs per room) per treatment. 
bControl: corn-soybean meal diet. LNE: 3% units reduced CP and 0.1% unit 
reduced P diet. 
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Table VI.9. Air flow, ammonia and hydrogen sulfide emissions from finishing pigs 
fed a traditional corn-soybean meal diet or low nutrient excretion (110 days)  
(Exp. 3)a. 

 Dietary treatmentb   
 Control LNE SE P <

Air flow, m3/min   46.1  45.7 1.22 0.88
    
NH3, mg/m3     0.863    0.418 0.02 0.04
NH3, mg/min   29.8  12.8 0.51 0.03
NH3, g/pig/d     2.32    1.02 0.02 0.02
    
H2S, µg/m3     7.36     8.65 0.66 0.39
H2S, µg/min 240.1 262.7 9.24 0.47
H2S, mg/pig/d   19.0   20.5 0.97 0.33
aLeast square means for 2 rooms (19 pigs per room) per treatment. 
bControl: corn-soybean meal diet. LNE: 3% units reduced CP and 0.1% unit 
reduced P diet. 
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Table VI.10. Estimated mass balance for N and P for the entire finishing period, 
110 days (Exp. 3)a 

 Dietary treatmentb   
 Control LNE SE P < 

Total N entering, kg/pig 7.01 5.73 0.03 0.03 
Pig initial N, kg/pig 0.837 0.835 0.01 0.30 
Feed N, kg/pig 6.17 4.89 0.03 0.01 
     
Total N exiting, kg/pig 7.22 5.93 0.02 0.02 
Pig N, kg/pig 3.34 3.30 0.04 0.60 
Slurry N, kg/pig 3.67 2.53 0.06 0.05 
Ammonia N, kg/pig 0.208 0.089 0.01 0.03 
     
N mass balance, kg/pig -0.21 -0.20 0.01 0.50 
     
Total P entering, kg/pig 1.207 0.945 0.01 0.03 
Pig initial P, kg/pig 0.151 0.151 0.07 0.32 
Feed P, kg/pig 1.056 0.793 0.07 0.03 
     
Total P exiting, kg/pig 1.125 0.894 0.09 0.04 
Pig P, kg/pig 0.445 0.450 0.03 0.40 
Slurry P, kg/pig 0.680 0.444 0.07 0.03 
     
P mass balance, kg/pig 0.083 0.051 0.02 0.05 
aLeast square means for 2 rooms (19 pigs per room) per treatment. 
bControl: corn-soybean meal diet. LNE: 3% units reduced CP and 0.1% unit 
reduced P diet. 
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Figure VI. 9. Total nitrogen mass balance for the entire finishing period (Exp. 3)ab 
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aLeast square means for 2 rooms (19 pigs per room) per treatment. 
bControl: corn-soybean meal diet. LNE: 3% units reduced CP and 0.1% unit 
reduced P diet. 
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Figure VI.10. Total phosphorus mass balance for the entire finishing period (Exp. 
3)ab 
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aLeast square means for 2 rooms (19 pigs per room) per treatment. 
bControl: corn-soybean meal diet. LNE: 3% units reduced CP and 0.1% unit 
reduced P diet. 
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CHAPTER VII 
 
 

DISCUSSION 
 
 

Growth performance and nutrient intake 

Initially all pigs had similar weight, and were fed to a target weight. The days 

to slaughter were not affected when dietary CP was reduced by 2 and 3% units, 

and P was reduced by 0.1% unit.  Further reduction in dietary CP by 4% units, 

with the 0.1% unit reduction in P, increased the duration of the finishing period by 

7 days.  The increase in days to slaughter has been previously observed as a 

linear response as dietary crude protein concentration decreased from 18 to 10% 

CP (gilts with 40 kg initial W); although, there no statistical differences in growth 

traits were detected when the reduction in dietary protein was from 16 to 12% 

(Figueroa et al., 2002).  Other studies support that the reduction in pig growth 

performance of pigs fed diets where CP has been reduced by 4% units or more 

is associated with limited supplies of valine, histidine, and/or non-essential amino 

acids (Figueroa et al., 2002, Figueroa et al., 2003).  Also, it has been suggested 

that the reduction in dietary P by 0.1% unit may decrease ADG by 18% and feed 

efficiency by 3% (Harper et al., 1997).  Therefore, it is possible that the 

differences in growth detected in this study could be associated with the reduced 

level of phosphorus in the diet with a limited supply of non-essential amino acids. 
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The reduction of dietary CP and P, in Experiments 1, 2 and 3, in addition to 

the reduction in dietary trace mineral supplementation, in Experiment 3, did not 

affect DM intake, ADG, ADFI, and F:G.  Although in Experiment 3, when pigs 

were fed the LNE, ADG was numerically increased, in addition to a numeric 

decrease in ADFI and F:G ratio. The similarity in DM intake, ADG, ADFI, and F:G 

of pigs fed diets with reduced protein by less than 3% units has been widely 

supported (Tuitoek et al., 1997; Figueroa et al., 2002; Figueroa et al., 2003; Deng 

et al., 2007b).  When a similar study was performed including sex as factor of 

study, the reduction in dietary CP resulted in increased feed intake of gilts, but 

not of barrows (Figueroa et al, 2004).   However, it has been suggested that 

further reductions in dietary CP by 4% units or more may decrease ADG and 

increase the F:G ratio (Tuitoek et al., 1997; Gomez et al., 2002; Figueroa et al., 

2002; Figueroa et al., 2003; Figueroa-Velazco et al., 2004; Deng et al., 2007a).  

Also, the numerical increased ADG, plus the numeral reduction in ADFI has been 

previously reported in growing gilts fed a diet with approximately 75% reduction 

in trace mineral supplementation (Creech et al., 2004).   

Although, feed and DM intake were not affected by the reduction in dietary 

CP, N and trace minerals, the daily intake of N, P, Ca, K, Mg, Zn, and Fe tended 

to be reduced when the reduction in dietary CP was by 2% units, and the further 

reduction in dietary CP by 3 and 4% units reduced N, P, Ca, K, Mg, Zn, and Fe 

daily intake.  The reduction in intake of the nutrients previously mentioned is 

explained through the reduction in those nutrients in the diet, without any 

increase in feed intake.  As the reduction in dietary CP increases in the LNE diet, 
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the inclusion level of soybean meal in the LNE decrease, and with it the 

concentration of the nutrients provide by the soybean meal.  In Experiments 1 

and 2, daily Na, Cu, and Mn intake was similar for both dietary treatments, 

because the concentration of these nutrients in the LNE diet was similar to their 

concentration in the control diet.  However, in Experiment 3, Fe, Cu, Zn and Mn 

daily intake was reduced when LNE was fed. 

 
 

Carcass characteristics and bone breaking strength 

In all the Experiments pigs were fed to a target weight.  Therefore, live weight 

and hot carcass weight were not affected by diet.  Reductions in dietary CP, P, 

and trace minerals in these Experiments did not affect backfat depth and carcass 

yield.  However, LMA tended to be reduced, and fat-free lean was reduced when 

dietary CP was reduced by 4% units.  Previous experiments have reported 

similar results, when pigs were fed a diet with a 4% units reduction in CP without 

reduction in ME (Kerr et al., 1995; Tuitoek et al., 1997; Le Bellego et al., 2001).   

Our results are in agreement with results from other studies which suggest that 

the reduction in dietary crude protein could have little effect on backfat depth and 

LMA (Kerr et al., 2003b; Figueroa-Velasco el at., 2004).  However, in Experiment 

2, the tendency to reduce LMA and increase backfat by feeding LNE have 

confounded the effects of the 4% unit reduction in dietary CP, with the effects of 

the 0.1% unit reduction in dietary P.  Therefore, an effect of limited P availability, 

or an interaction effect between available P and limited amino acids can not be 

discharge.  The reports concerning the impact of reduced CP diets on carcass 
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characteristics has been very variable, and the reasons are not very clear.  The 

increase in backfat and the reduction of the LMA reported by Kerr et al. (1995) 

could be due to a limited sulfur amino acid supply in the reduced CP diet.  It is 

possible, that the increase in backfat, and reduction in LMA that has been 

reported are associated with a limited amino acid supplementation in reduced CP 

diets (Kerr and Easter, 1995; Kerr et al., 1995; Tuitoek et al., 1997; Figueroa-

Velasco et al., 2004).  The reduction in LMA in addition to the increased fat 

deposition could be attributed to an increase in NE in the reduced CP diets (Kerr 

et al., 1995).  It also has been suggested, that muscle and fat deposition could be 

sensitive to the N concentration in the diet (Kerr et al., 1995).   

Bone strength was not affected by the reduction in dietary P by 0.1% unit 

when dietary CP was reduced by 2 and 3% units.  However, metacarpal strength 

was numerically reduced in Experiment 2, where dietary P was also reduced by 

0.1% unit but CP was further reduce by 4% units.  Again, our results suggest that 

could be an interaction effect between dietary P and CP levels.  Perhaps the 

numerical reduction in metacarpal strength in Experiment 2, a difference was not 

detected.  Also in Experiment 2, metatarsal and the average of metacarpal and 

metatarsal strength were not affected by the reductions in dietary CP and P. 

 

Body composition and nutrient accretion rate 

Initial and final body composition and nutrient accretion rate was estimated 

only in Experiment 3.  The estimated initial water, CP, ash, fat, and N content is 

close to previous reports using pigs with 21 to 37 kg of body weight (Ferrell and 
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Cornelius, 1984; Mahan and Shields, 1998; Lange et al., 2003).  However, the 

previous reports available used pigs of different genotype ((HxY), Ferrell and 

Cornelius, 1984; [D(HxYxD)], Mahan and Shields, 1998).  Our pigs initial body 

weight was 28 kg and were crossbreed [Dx(YxL)].  Additionally, these reports 

corresponded to empty body composition; in contrast our data was generated 

using whole body composition.  Reductions in dietary CP, P and trace minerals 

during the finishing phase did not affect final whole body water, CP, ash, fat, N 

and P content.  Also, accretion rates of water, CP, ash, fat, N and P were similar 

for both diets.   

 

Slurry characteristics 

In the three experiments, the volume of slurry produced per pig, and the slurry 

temperature were similar across all rooms.  The similar slurry volume for both 

treatment groups is in agreement with a previous report (Canh et al., 1998).  

Although, in that study (Canh et al., 1998) the amount of water supply to the pig 

was fixed; therefore, is possible that with free access to water their results could 

be different.  However, the results of the present study are in conflict with result 

from other study that supports that reduction in dietary protein reduces water 

intake, and urine volume, which results in similar reduction in slurry volume 

(Portejoie et al., 2004).  A possible explanation for the difference detected in 

water intake Portejoie et al. (2004) is the reduction of water intake due to a 

reduction in feed intake of pigs fed the reduced protein diet.  However, in our 

case neither feed intake nor water intake were affected by feeding the LNE diet.  
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The EC of slurry from pig fed a LNE with a 3 and 4% units reduction in dietary 

CP was reduced. The reduction in EC indicates decreased concentrations of 

salts in slurry.  The observed reductions in EC in Experiments 2 and 3 can be 

associated with reduced concentration of Ca and Mg in the slurry from pigs fed 

LNE.  Reductions in slurry salinity may also reduce the risk of soil salinization 

due to long term land application of swine slurry or effluent in cropping areas 

(Brady and Weil, 1999).  Also, slurry pH tended to be reduced when dietary CP 

was reduced by 3 and 4% units.  The reduction in slurry pH has been previously 

reported from a balance study where pigs were fed a diet with a reduction in CP 

of 4% units which resulted in a reduction of slurry pH by 1 unit (Canh et al., 

1998).  However, when the same diet was fed to pigs housed in a barn, the 

reduction in slurry pH decreased by 0.3 units (Canh et al., 1998).   

The DM concentration of the slurry was not affected by the reduction in 

dietary CP and P in the LNE from Experiments 1 and 2.  However, in Experiment 

3, where, in addition to the reduction in dietary CP and P, trace mineral 

supplementation was sequentially reduced from phase 1 to phase 4, DM 

concentration in slurry was reduced by 12%.  Additionally, C concentration in 

slurry was not affected by dietary manipulation in Experiments 1 and 2.  

Therefore, the reduction in slurry DM concentration may be mainly associated 

with reduction in slurry mineral concentration.  The reduction in dietary CP by 2 

to 4% units decreased slurry concentration of total N by 18 to 40%.  In addition, 

the reduction in dietary CP by 3 and 4% units reduced ammonium N 

concentration in the slurry from pigs fed LNE by 28 and 56%, respectively.  
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These results are in agreement with previous reports in which the reduction in 

slurry N concentration was explained by the reduction of urinary N (Canh et al., 

1998). It also has been reported that NH4-N concentration in slurry is one of the 

main factors that influence slurry pH (Sommer and Husted, 1995).  Therefore, the 

reduction in NH4-N can be associated with the tendency to reduce slurry pH 

when pigs were fed LNE with 3 or 4% units reduction in CP.  

The 0.1% unit reduction in dietary P in LNE reduced slurry P concentration, 

on a DM basis, by 23% (Experiments 1 and 2) with a further reduction by 26%, 

when phytase was added to the reduced P diet (Experiment 3).  The reduction in 

P concentration in slurry is associated with the 24% reduction in P intake.  Also in 

Experiment 2, slurry Ca concentration tended to be reduced when pigs were fed 

LNE, and in Experiment 3 was reduced by feeding LNE.  However, it could be 

associated with variations in the ratio of soluble Ca to other minerals in luminal 

content.   

In Experiment 2, slurry K concentration was also reduced when pigs were fed 

LNE and Mg concentration tended to be reduced.  The reduction in K slurry 

concentration could be associated with the reduction in soybean meal inclusion 

in the LNE.  Potassium concentration in soybean meal is approximately 2% 

(NRC, 1998).  To reduce dietary CP by 4% unit in the LNE, soybean meal 

inclusion was reduced by 44 to 73%, in phase 1 to phase 3.  Therefore, K 

concentration in LNE could be reduced by 1 to 1.5%.  Also, the reduction in soy 

bean meal inclusion may be associated with the reduction in Mg concentration.  

Slurry Na concentration was increased when pigs were fed LNE diets where CP 
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was reduced by 3 and 4% units.  The trace mineral concentration in slurry, Fe, 

Zn, Cu and Mn, was not affected by reduction of dietary CP and P in the LNE 

diets in Experiments 1 and 2.  However, in Experiment 3, the LNE diet was 

reduced in CP, P and trace mineral concentration.  The reduction in trace mineral 

concentration in the LNE reduced trace mineral concentration in slurry by 

approximately 38%. 

In Experiment 1 and 2, the C:N ratio was numerically increased when pigs 

were fed LNE.  The trend to increase the C:N ratio in slurry is associated with the 

reduction in N concentration in slurry.  In Experiment 3, the slurry C:N ratio was 

reduced, due to a increase in C concentration in addition to a reduction in N in 

slurry.  Any increase in the slurry C:N ratio is desirable from the environmental 

point of view.  Even more important in systems were swine slurry is directly 

applied to cropping land.  The C:N ratio in an stabilized soil ranges between 8:1 

and 15:1 (Brady and Weil, 1999).  The addition of organic mater with C:N ratio 

below 20 to the soil may result in release of N to the soil solution, and soluble N 

may exceed soil microorganism and plant uptake capacity (Brady and Weil, 

1999).   

In Experiment 3, feeding LNE tended to increase the slurry N:tP ratio, but the 

ratio of WSP:tP was not affect.  It is very important that phytase inclusion in the 

LNE diet in Experiment 3 not only seams to improve P availability, reducing P 

concentration in slurry; it also reduced water soluble P concentration in slurry in a 

similar proportion (by 23%).  These results are in agreement with a previous 

report which suggested that phytase addition to diets formulated with low phytate 
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soybean reduced  total P and water soluble P in waste (Powers et al., 2006).  

The increase in water soluble P as fraction of the total P in waste was not 

observed in our experiment.  Therefore, the effect of phytase addition on water 

soluble phosphorus in waste could be a function of total P to available P ratio in 

the feed. 

 

Nutrient excretion 

The nutrient concentration in the slurry was multiplied by the slurry volume 

and divided by the number of pigs to estimate nutrient excretion on a per pig 

basis.  In Experiments 1 and 2, daily DM excretion was not affected by dietary 

manipulation in LNE.  However, in Experiment 3, daily DM excretion was reduced 

by 12%.  Recall that in Experiment 3 dietary trace mineral supplementation was 

reduced in the LNE, in addition to the reductions in CP and P.   Daily carbon 

excretion was not affected by feeding LNE, in all 3 Experiments.  Therefore, we 

can infer that the reduction in DM excretion detected in Experiment 3, when pigs 

were fed LNE, was may be due to a reduction in mineral excretion. 

  Nitrogen excretion was reduced by reduction of dietary CP in LNE (Figure 

VII.1).  In Experiment 1, pigs fed LNE with a 2% units reduction in dietary CP 

excreted 21% less N than pigs fed the control diet.  In Experiment 2, the 

reduction in CP was by 4% units, and decreased N excretion of pigs fed LNE by 

41%.  In Experiment 3, the 3% unit reduction in dietary CP decreased N 

excretion by 30% when pigs were fed LNE.  Also, ammonium N in waste was 

reduced when dietary CP was reduced in LNE.   In Experiment 1, the 2% unit 
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reduction in dietary CP reduced ammonium N concentration in waste by 26%.  In 

Experiment 2, a further reduction in dietary CP by 4% units decreased 

ammonium N in waste by 56%.  In Experiment 3, the 3% units reduction in 

dietary CP decreased ammonium in waste by 37%.  Therefore it can be expected 

a reduction by 10% in daily N excretion and 13% in ammonium N in waste per 

each percentage unit reduction in dietary CP (Figure VII.1).  Previous studies 

have reported a similar response (Kerr et al., 1995, Htoo et al., 2007).  Other 

studies reported lower reductions in N excreted, such as 8% (Zervas and Zijlstra, 

2002, Deng et al., 2007) and 6% for every 1% unit reduction in CP (Zervas and 

Zijlstra, 2002a).  It is also important to note, that daily N excretion from pigs fed 

the control diet in all three experiments ranged from 32.3 to 34.7 g/pig (Figure 

VII.1).   

In Experiments 1 and 2, the 0.1% unit reduction in dietary P reduced daily P 

excretion by 24% when pigs were fed LNE.  The addition of phytase (500 

FYT/kg) to the LNE, in Experiment 3, enhanced the reduction in daily P excretion 

to 35% (Figure VII.2).   The reduction in daily P excretion by 31 to 35% in pigs 

fed a diet with a 0.1% unit reduction in P and addition of 500 FYT was previously 

reported (Kornegay and Harper, 1997; Liu et al., 1998).  Note that comparing 

results from the three experiments, daily P excretion from pigs fed the control 

diets ranged from 6.2 to 6.8 g/pig (Figure VII.2).   

In Experiments 1 and 2, mineral excretion was poorly affected by the diet. 

Daily K excretion was numerically reduced by feeding LNE, additionally in 

Experiment 2, daily Mn excretion was reduced when pigs were fed the 
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experimental diet.  However, in Experiment 3, trace mineral supplementation was 

reduced in LNE.  When pigs were fed LNE in Experiment 3, daily excretion of Ca, 

K, Mg, Fe, Zn, Cu, and Mn was reduced.  Only daily Na excretion was increased 

with LNE.  The overall macro-mineral excretion, with exception of Na, was 

reduced by 20% (Figure VII.3) and micro-mineral excretion by 46% (Figure VII. 

4). 

In all three Experiments, the excretion of all nutrients studied expressed as 

percentage of the intake was similar, with the exception of N excretion, which 

was numerically decreased when pigs were fed LNE.  The reduction in N 

excretion as percent of intake was also observed by Zervas and Zijlstra (2002) 

and Deng et al (2007).  In Experiment 1, cumulative N and P excretion were 

numerically reduced by feeding LNE.  In Experiment 2, cumulative N and P 

excretion were numerically reduced by 1.36 and 0.14 kg/pig, respectively, in pigs 

fed LNE.  Although, in Experiment 2, daily N and P excretion were statistically 

reduced for pigs fed the LNE, the increase of the finishing period by 7 days when 

pigs were fed LNE resulted in the loss of significance for the difference in 

cumulative excretion for N and P.  However, from a practical point of view, the 

reduction of 1.36 kg of N, and 0.14 of P going to waste treatment, per finished 

pig, can be very attractive to swine producers.  In Experiment 3, the reduction in 

daily and cumulative DM, N and P excretion when pigs were fed LNE were 

similar.  Cumulative DM, N and P excretion were decreased by 12, 30, and 34%, 

respectively for the entire finishing period.  In Experiments 1 and 2, the reduction 

in dietary CP and P levels in the diet had very little effect on the total amount of 
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minerals excreted over the entire growth-finishing period. However, in experiment 

3, daily and cumulative mineral excretion was reduced in similar proportion.  In 

Experiment 3, feeding LNE markedly decreased cumulative mineral excretion.    

 

Air flow, ammonia and Hydrogen sulfide emissions 

In Experiment 3, besides measuring nutrient excretion we were able to 

monitor air flow, ammonia and hydrogen sulfide emissions during the entire 

finishing period.  Air flow was similar for all rooms.   However, when pigs were 

fed LNE with a 3% units reduction in dietary CP ammonia emission was reduced 

by 56% (Figure VII.5), thus, each percentage unit reduction in dietary CP 

reduced ammonia emitted by 19%.  Reduction of dietary CP has been previous 

reported as an effective strategy to reduce ammonia emission (Portejoie et al., 

2004; Velthof et al., 2005; Panetta et al., 2006).  Our results are in agreement 

with previous reports from laboratory studies; a 4% units reduction in dietary CP 

reduced ammonia emission by 54% (Velthof et al., 2005).  Other laboratory study 

suggested that a 3% units reduction in dietary CP reduced ammonia emitted by 

58% (Panetta et al., 2006).  However, there was no comparable data from swine 

facilities with group fed pigs.  Although, feeding LNE reduced ammonia emission, 

hydrogen sulfide emission was not affected by diet (Figure VII.5).  This result is in 

agreement with a previous study that report that a reduction in dietary sulfate by 

0.1% unit did not reduced hydrogen sulfide emission (Clark et al., 2005).  

However, when dietary sulfate was increased by 0.1% unit hydrogen sulfide 

emission increased (Clark et al., 2005). 
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Nitrogen and phosphorus mass balance from the finisher 

In experiment 3, N and P mass balance for the entire finishing phase was 

estimated.  The N and P mass balance estimation assumed that N and P entered 

the finisher via the pig and the feed, and exited the finisher via feed and waste.  

In this case waste was composed by slurry and emissions in exhaust air.  The 

contribution of N and P from water and inlet air was insignificant, thus it was 

assumed to be zero.  The partitioning of N and P entering the system via the pig 

and via the feed was modified by diet.  When pigs were fed LNE the proportion of 

N entering the finisher via the feed was reduced by 3% units, and the partitioning 

shifted toward entering via pig.  Therefore, the proportion of N entering via the 

pig was increased by 3% units.  This was also true for P entering the finisher.  

Feeding LNE reduced the proportion of P entering the finisher via the feed by 3% 

units and increased the proportion entering via the pig by 3% units.  Also the 

proportional distribution of N and P leaving the finisher via pig, slurry and air was 

modified by feeding LNE.  Feeding LNE increased the proportion of N exiting the 

finisher as a market pig by 10% units, and reduced the proportion exiting via 

slurry and ammonia emitted by 8 and 1.4% units, respectively.  Again, this was 

also true for P exiting the finisher.  The proportion of P exiting the finisher via a 

finished pig increased by 10% units, at a time that P exiting the finisher via the 

slurry was reduced in similar proportion.  Thus, LNE reduced total N and P  

exiting by 18 and 21%, respectively. The proportion of N and P entering the 

finisher that exited via the pigs increased from 47 to 58% for N and 37 to 48% for 

P for pigs fed LNE compared with those fed the control.  The shift in proportional 
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distribution in the finisher N and P mass balance can be explained.  The shift in N 

and P entering the finisher was due to the reduction in dietary N and P in LNE 

without changes in pig feed intake, pig initial composition and initial body weight.  

The shift in N and P exiting the finisher can be attributed to the reduction of N 

and P excretion, and ammonia emitted, with no change in finisher pig final 

composition and body weight.  Additionally, it is important to note that the 

difference in total N entering the finisher and total N exiting the finisher was 

approximately 200 g, and the difference of total P entering with total P exiting 

approximately 67 g.   

 

Summary 

Bases in our results, the reduction in dietary CP by 2% units and P by 0.1% 

unit reduced daily and cumulative N excretion by 21% and the concentration of 

ammonium in waste by 29%. Additionally, it reduced daily and cumulative P 

excretion by 24%, without negative effects on pig growth performance, carcass 

characteristics, and bone strength.   

The 4% units reduction in dietary CP and 0.1% unit in P numerically reduced 

daily and cumulative N excretion by 40 and 38%, respectively, and reduced 

ammonium concentration in waste by 56%, and daily and cumulative P excretion 

by 25 and 20%, respectively.  However, it increased the duration of the finishing 

period by 7 days, tended to reduce the longissimus muscle area, and reduced 

carcass fat-free lean. 
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The reduction in dietary CP by 3% units, P by 0.1% unit, addition of phytase, 

and reduction in trace mineral supplementation to the diet, reduced daily and 

cumulative N excretion by 31%, ammonium in waste by 37%, ammonia emission 

by 56%, daily and cumulative P excretion by 35%, and daily and cumulative trace 

mineral excretion by 46%. Additionally, pig growth performance, carcass 

characteristics, and bone strength were not affected by the reduced nutrient diet. 

In overall, it can be expected per each percentage unit reduction in dietary CP 

a reduction in daily N excretion by 10%, in ammonium in waste by 13%, and 18% 

in ammonia emission. 

The reduction in dietary CP, P, and trace mineral in grower and finisher diets 

can markedly reduce N, P, and trace mineral excretion, and ammonia emission, 

without affecting pig growth performance, carcass traits, and bone strength. 
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Figure VII.1. Comparison of results from the three Experiments for daily excretion 
of nitrogen 
Control: corn-soybean meal diet. LNE: Low nutrient excretion diet. 
Exp. 1: Experiment 1. Least square means for 2 rooms/treatment (12 pigs/room). 
Exp. 2: Experiment 2. Least square means for 2 rooms/treatment (12 pigs/room). 
Exp. 3: Experiment 3. Least square means for 2 rooms/treatment (19 pigs/room). 
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Figure VII.2. Comparison of results from the three Experiments for daily excretion 
of phosphorus  
Control: corn-soybean meal diet. LNE: Low nutrient excretion diet. 
Exp. 1: Experiment 1. Least square means for 2 rooms/treatment (12 pigs/room). 
Exp. 2: Experiment 2. Least square means for 2 rooms/treatment (12 pigs/room). 
Exp. 3: Experiment 3. Least square means for 2 rooms/treatment (19 pigs/room). 
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Figure VII.3. Macro-mineral daily excretion (Exp. 3)a 
aLeast square means for 2 rooms (19 pigs per room) per treatment. 
Control: corn-soybean meal diet. LNE: 3% units reduced CP and 0.1% unit 
reduced P diet. 
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Figure VII.4. Micro-mineral daily excretion (Exp. 3)a 
aLeast square means for 2 rooms (19 pigs per room) per treatment. 
Control: corn-soybean meal diet. LNE: 3% units reduced CP, 0.1% unit reduced 
P diet, with 500 FYT/kg, and reduced trace mineral supplementation. 
 
 
 

 

 

 

 

 

 

 

 

 

 



 193

 

0

5

10

15

20

25

0

1

2

3 20.5
19.02.32

1.02

NH3, g/pig/d H2S, mg/pig/d

56%

Control LNE

 

Figure VII.5. Daily ammonia and hydrogen sulfide emissions (Exp. 3)a 
aLeast square means for 2 rooms (19 pigs per room) per treatment. 
Control: corn-soybean meal diet. LNE: 3% units reduced CP, 0.1% unit reduced 
P diet, with 500 FYT/kg, and reduced trace mineral supplementation.
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Appendix Table 1 

Pig means for days on test, initial and final weight, average daily gain, average 
daily feed intake, feed:gain ratio. Exp 1. 
Room Diet Block Days IBW, kg FBW, kg ADG, kg ADFI, kg F:G 
1 LNE 1 104 36.8 108.2 0.687 1.99 2.91
2 Control 1   97 36.7 109.1 0.747 2.15 2.88
3 LNE 2 111 32.6 108.0 0.718 2.01 2.80
4 Control 2 111 31.9 107.0 0.705 2.03 2.78
Control: traditional corn-soybean meal diet. 
LNE: 2% units reduced CP and 0.1% unit reduced P diet. 
 
 

Appendix Table 2 

Analysis of variance for days on test, initial and final weight, average daily gain, 
average daily feed intake, feed:gain ratio. Exp 1. 
  Mean square 
Source df Days IBW, kg FBW, kg ADG, kg ADFI, kg F:G 
Total 3   
Diet 1    12.25    0.60 0.01 553.7 0.008 0.001
Block 1  110. 25  96.53 6.66 28.9 0.003 0.011
Error 1    12. 25    0.43 4.33 1293.1 0.005 0.001
    
Control 
vs. LNE 

1   12. 25   0.60 0.01 553.7 0.008 0.001

CV, %  3.31    0.86 0.87 5.04 3.42 0.18
Control: traditional corn-soybean meal diet. 
LNE: 2% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 3 

Pig means for life body weight, hot carcass weight, and backfat depth. Exp 1. 
     Fat depth, cm 
Room Diet Block BWt, 

kg 
HCW, 
kg 

1st 
rib 

10th 
rib 

13th 
rib 

Last 
lumbar 

1 LNE 1 108.2 84.7 2.59 2.08 2.39 1.96 
2 Control 1 113.1 88.2 3.02 2.11 2.29 1.96 
3 LNE 2 112.3 86.6 2.77 2.06 2.16 2.03 
4 Control 2 112.5 86.9 2.72 2.06 2.18 2.03 
Control: traditional corn-soybean meal diet. 
LNE: 2% units reduced CP and 0.1% unit reduced P diet. 
 
 

Appendix Table 4 

Analysis of variance for life body weight, hot carcass weight, and backfat depth. 
Exp 1. 
  Mean square 
Source df LBW HCW 1st rib 10th rib 13th rib Last lumbar
Total 3  
Diet 1 31.58 18.40 0.006 0.0001 0.001 0.00
Block 1 14.82 0.42 0.001 0.0002 0.004 0.01
Error 1 25.71 12.04 0.009 0.0001 0.001 0.00
   
Control vs. LNE 1 31.58 18.40 0.006 0.0001 0.001 0.00
CV, %  2.07 1.82 8.70 0.61 2.82 0
Control: traditional corn-soybean meal diet. 
LNE: 2% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 5 

Pig means for LMA, carcass yield and fat-free lean percentage. Exp 1. 
Room Diet Block LMA, cm Carcass yield, % Fat-free  lean, % 
1 LNE 1 37.35 78.25 50.79 
2 Control 1 37.81 78.05 50.67 
3 LNE 2 39.23 77.17 51.24 
4 Control 2 40.32 77.25 51.54 
Control: traditional corn-soybean meal diet. 
LNE: 2% units reduced CP and 0.1% unit reduced P diet. 

 

Appendix Table 6 

Analysis of variance for LMA, carcass yield and fat-free lean percentage. Exp 1. 
  Mean square 
Source df LMA, cm Carcass yield, % Fat-free  lean, % 
Total 3 
Diet 1 31.58 18.40   0.006 
Block 1 14.82   0.42   0.001 
Error 1 25.71 12.04   0.009 
     
Control vs. LNE 1 31.58 18.40   0.006 
CV, %    2.07   1.82 8.70 
Control: traditional corn-soybean meal diet. 
LNE: 2% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 7 

Pig means for metacarpal breaking strength. Exp 1. 
Room Diet Block Metacarpal breaking strength, kg 
1 LNE 1 130.7 
2 Control 1 159.6 
3 LNE 2 151.0 
4 Control 2 160.7 
Control: traditional corn-soybean meal diet. 
LNE: 2% units reduced CP and 0.1% unit reduced P diet. 

 

Appendix Table 8 

Analysis of variance for metacarpal breaking strength. Exp 1. 
Source df Mean square, kg 
Total 3  
Diet 1 373.7 
Block 1 114.1 
Error 1   92.5 
     
Control vs. LNE 1 373.7 
CV, %        6.39 
Control: traditional corn-soybean meal diet. 
LNE: 2% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 9 

Pig means for DM, C, N and P average daily intake for the entire finishing period. 
Exp 1. 

   Average daily intake, g/pig 
Room Diet Block DM C N P 

1 LNE 1 1,751 799.3 41.98 6.77 
2 Control 1 1,896 888.0 53.43 9.39 
3 LNE 2 1,773 810.4 42.88 6.90 
4 Control 2 1,795 831.9 50.59 8.91 

Control: traditional corn-soybean meal diet. 
LNE: 2% units reduced CP and 0.1% unit reduced P diet. 
 
 

Appendix Table 10 

Analysis of variance for DM, C, N and P average daily intake for the entire 
finishing period. Exp 1. 
  Mean square of intake, g/pig 
Source df       DM           C            N             P 
Total 3     
Diet 1 7039.2 3614.4 91.8 5.34
Block 1 1521.0 307.3 0.9 0.03
Error 1 3682.1 818.0 3.5 0.09
   
Control vs. LNE 1 7039.2 3614.4 91.8 5.34
CV, %  3.36 3.43 3.96 3.82
Control: traditional corn-soybean meal diet. 
LNE: 2% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 11 

Pigs means for Ca, K, Mg, and Na average daily intake for the entire finishing 
period. Exp 1. 
   Average daily intake, g/pig 
Room Diet Block         Ca        K        Mg        Na 
1 LNE 1 8.85 11.85 2.33 2.36
2 Control 1 11.69 15.36 2.78 2.54
3 LNE 2 9.10 12.14 2.38 2.38
4 Control 2 11.05 14.57 2.63 2.43
Control: traditional corn-soybean meal diet. 
LNE: 2% units reduced CP and 0.1% unit reduced P diet. 
 
 
 

Appendix Table 12 

Analysis of variance for Ca, K, Mg, and Na average daily intake for the entire 
finishing period. Exp 1. 
 
  Mean square of average daily intake, g/pig 
Source df           Ca          K         Mg        Na 
Total 3  
Diet 1 5.73 8.80 0.119 0.013
Block 1 0.04 0.07 0.002 0.003
Error 1 0.20 0.29 0.010 0.004
   
Control vs. LNE 1 5.7288 8.8001 0.119 0.013
CV, %  4.36 4.00 3.87 2.72
Control: traditional corn-soybean meal diet. 
LNE: 2% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 13 

Pigs means for Fe, Zn, Cu, and Mn average daily intake for the entire finishing 
period. Exp 1. 
   Average daily intake, mg/pig 
Room Diet Block       Fe        Zn      Cu        Mn 
1 LNE 1 345 273 30 78
2 Control 1 430 304 36 102
3 LNE 2 354 278 31 80
4 Control 2 433 288 34 97
Control: traditional corn-soybean meal diet. 
LNE: 2% units reduced CP and 0.1% unit reduced P diet. 
 
 

Appendix Table 14 

Analysis of variance for Fe, Zn, Cu, and Mn average daily intake for the entire 
finishing period. Exp 1. 
  Mean square of average daily intake, mg/pig 
Source df            Fe           Zn         Cu           Mn 
Total 3     
Diet 1 9.41 0.42 0.020 0.420
Block 1 0.08 0.03 0.001 0.002
Error 1 0.32 0.11 0.002 0.012
   
Control vs. LNE 1 9.41 0.42 0.020 0.420
CV, %  4.52 3.68 4.58 3.92
Control: traditional corn-soybean meal diet. 
LNE: 2% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 15 

Slurry means for average volume, temperature, electrical conductivity, and pH for 
the entire finishing period. Exp 1. 
Room Diet Block Volume, L/pig Temperature, oC EC, µS pH 
1 LNE 1 11.99 22.40 3,506 7.04 
2 Control 1   9.50 22.84 4,951 7.03 
3 LNE 2 13.07 22.06 3,657 6.99 
4 Control 2 12.46 22.13 4,216 7.04 
Control: traditional corn-soybean meal diet. 
LNE: 2% units reduced CP and 0.1% unit reduced P diet. 

 

Appendix Table 16 

Analysis of variance for average slurry volume, temperature, electrical 
conductivity, and pH for the entire finishing period. Exp 1. 
  Mean square 
Source df Volume, L/pig Temperature, oC EC, µS pH 
Total 3     
Diet 1 2.40 0.07 1,003,212 0.0004 
Block 1 4.08 0.28      85,576 0.0004 
Error 1 0.88 0.03    196,519 0.0009 
      
Control vs. LNE 1 2.40 0.07 1,003,212 0.0004 
CV, %  8.00 0.83 10.86 0.43 
Control: traditional corn-soybean meal diet. 
LNE: 2% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 17 

Slurry concentration means for DM, C, N, NH4-N, P and C:N ratio. Exp 1. 
    Slurry concentration %, DM basis 
Room Diet Block DM, % C N NH4-N P C:N 
1 LNE 1 1.84 43.2 8.3 4.1 1.8 6.8 
2 Control 1 1.80 40.3  10.9 6.3 2.2 5.0 
3 LNE 2 2.27 40.1 8.7 4.7 1.7 5.8 
4 Control 2 1.89 37.4 9.8 5.8 2.1 4.8 
Control: traditional corn-soybean meal diet. 
LNE: 2% units reduced CP and 0.1% unit reduced P diet. 

 

Appendix Table 18 

Analysis of variance for slurry DM concentration and C:N ratio. Exp 1. 
  Mean square of Slurry concentration  
Source df DM, % C:N 
Total 3   
Diet 1 0.044 1.95 
Error 2 0.048 0.26 
    
Control vs. LNE 1 0.044 1.95 
CV, %  11.23 2.46 
Control: traditional corn-soybean meal diet. 
LNE: 2% units reduced CP and 0.1% unit reduced P diet. 

 

Appendix Table 19 

Analysis of variance for slurry C, N, NH4-N, and P concentration. Exp 1. 
  Mean square of Slurry concentration, % DM basis 
Source df       C              N           NH4-N           P 
Total 3     
Diet 1 8.21 3.29 2.62 0.173
Block 1 8.93 0.13 0.01 0.007
Error 1 0.01 0.56 0.27 0.002
   
Control vs. LNE 1 8.21 3.29 2.62 0.173
CV, %  0.23 7.93 10.02           2.26 
Control: traditional corn-soybean meal diet. 
LNE: 2% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 20 

Slurry concentration means for Ca, K, Mg, and Na for the entire finishing period. 
Exp 1. 

   Slurry concentration, % DM basis 
Room Diet Block Ca K Mg Na 

1 LNE 1 2.68 3.91 0.92 1.41 
2 Control 1 2.93 5.13 1.02 1.30 
3 LNE 2 2.67 4.18 0.92 1.40 
4 Control 2 2.74 4.63 0.93 1.37 

Control: traditional corn-soybean meal diet. 
LNE: 2% units reduced CP and 0.1% unit reduced P diet. 
 
 

Appendix Table 21 

Analysis of variance for slurry concentration of Ca, K, Mg, and Na for the entire 
finishing period. Exp 1. 
  Mean square of slurry concentration, % DM basis 
Source df Ca K Mg Na 
Total 3     
Diet 1 0.03 0.70   0.003   0.005 
Block 1 0.01 0.01   0.002   0.001 
Error 1 0.01 0.15   0.002   0.002 
      
Control vs. LNE 1 0.03 0.70   0.003   0.005 
CV, %  3.18 8.60 4.55 3.14 
Control: traditional corn-soybean meal diet. 
LNE: 2% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 22 

Slurry concentration means for Fe, Zn, Cu, and Mn for the entire finishing period. 
Exp 1. 
   Slurry concentration, ppm DM basis 

Room Diet Block Fe Zn Cu Mn 
1 LNE 1 14.05 10.92 1.82 3.24 
2 Control 1 18.51 12.50 2.14 3.78 
3 LNE 2 14.57 10.61 1.71 3.22 
4 Control 2 18.00 11.65 1.96 3.56 

Control: traditional corn-soybean meal diet. 
LNE: 2% units reduced CP and 0.1% unit reduced P diet. 
 
 
 

Appendix Table 23 

Analysis of variance for slurry concentration of Fe, Zn, Cu, and Mn for the entire 
finishing period. Exp 1. 
  Mean square of slurry concentration, ppm DM basis 
Source df Fe Zn Cu Mn 
Total 3  
Diet 1 155498.5 17199.3 821.2 1924.3
Block 1 0.1 3385.4 220.6 141.4
Error 1 2673.6 739.4 12.3 344.9
   
Control vs. LNE 1 155498.5 17199.3 821.2 1924.3
CV, %  3.18 2.38 1.84 2.88
Control: traditional corn-soybean meal diet. 
LNE: 2% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 24 

Pig means for DM, C, N, NH4-N, and P average daily excretion for the entire 
finishing period. Exp 1. 
   Average daily excretion, g/pig 
Room Diet Block DM C N NH4-N P 

1 LNE 1 288 122 24.4 12.3 5.08 
2 Control 1 284 112 31.9 18.4 6.37 
3 LNE 2 305 118 26.8 14.3 5.20 
4 Control 2 322 119 32.7 19.2 6.90 

Control: traditional corn-soybean meal diet. 
LNE: 2% units reduced CP and 0.1% unit reduced P diet. 
 
 
 

Appendix Table 25 

Analysis of variance for DM, C, N, NH4-N and P average daily excretion for the 
entire finishing period. Exp 1. 
 
   Mean square of average daily excretion, g/pig 
Source  df DM C N NH4-N P 
Total  3 
Diet  1 41.03 23.28 44.66 29.77 2.22
Error  2 431.27 13.50 1.63 1.12 0.07
   
Control vs. LNE  1 41.03 23.28 44.66 29.77 2.22
CV, %   6.93 3.12 4.42 6.60 4.60
Control: traditional corn-soybean meal diet. 
LNE: 2% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 26 

Pig means for Ca, K, Mg, and Na average daily excretion for the entire finishing 
period. Exp 1. 
   Average daily excretion, g/pig 

Room Diet Block Ca K Mg Na 
1 LNE 1 7.62 11.49 2.67 4.10 
2 Control 1 8.31 14.93 2.93 3.78 
3 LNE 2 7.82 12.61 2.78 4.34 
4 Control 2 8.90 15.45 3.04 4.61 

Control: traditional corn-soybean meal diet. 
LNE: 2% units reduced CP and 0.1% unit reduced P diet. 
 

 

Appendix Table 27 

Analysis of variance for Ca, K, Mg, and Na average daily excretion for the entire 
finishing period. Exp 1. 
  Mean square of average daily excretion, g/pig 
Source df Ca  K  Mg  Na  
Total 3     
Diet 1 0.79 9.82 0.07 0.01 
Block 1 0.16 0.68 0.01 0.29 
Error 1 0.04 0.09 0.01 0.09 
      
Control vs. LNE 1 0.79 9.82 0.07 0.01 
CV, %  2.43 2.20 0.02 6.97 
Control: traditional corn-soybean meal diet. 
LNE: 2% units reduced CP and 0.1% unit reduced P diet. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 224

Appendix Table 28 

Pig means for Fe, Zn, Cu, and Mn average daily excretion for the entire finishing 
period. Exp 1. 
   Average daily excretion, g/pig/d 

Room Diet Block Fe Zn Cu Mn 
1 LNE 1 400 317 51.82   93.64 
2 Control 1 529 360 59.46 107.64 
3 LNE 2 443 332 48.23   99.14 
4 Control 2 602 395 62.56 118.93 

Control: traditional corn-soybean meal diet. 
LNE: 2% units reduced CP and 0.1% unit reduced P diet. 
 

 

Appendix Table 29 

Analysis of variance for Fe, Zn, Cu, and Mn average daily excretion for the entire 
finishing period. Exp 1. 
  Mean square of average daily excretion, mg/pig 
Source df Fe Zn Cu Mn 
Total 3  
Diet 1 20863.6 2772.3 120.58 285.53
Block 1 3376.7 605.4 0.06 70.48
Error 1 225.7 103.5 11.18 8.38
   
Control vs. LNE 1 20863.6 2772.3 120.58 285.53
CV, %  3.04 2.90 6.02 2.76
Control: traditional corn-soybean meal diet. 
LNE: 2% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 30 

Pig means for DM, C, N, and P excretion as percentage of the intake for the 
entire finishing period. Exp 1. 
   Excretion as percentage of intake, % 
Room Diet Block DM C N P 

1 LNE 1 16.46 15.26 58.10 75.08 
2 Control 1 14.99 12.63 59.63 67.84 
3 LNE 2 17.21 14.61 62.51 75.38 
4 Control 2 17.93 14.08 64.64 77.37 

Control: traditional corn-soybean meal diet. 
LNE: 2% units reduced CP and 0.1% unit reduced P diet. 
 
 

Appendix Table 31 

Analysis of variance for DM, C, N, and P excretion as percentage of the intake 
for the entire finishing period. Exp 1. 
   Mean square of excretion as percentage of intake, %
Source  df DM C N P 
Total  3     
Diet  1 0.14 2.49 3.37 6.88 
Block  1 3.41 0.16 22.22 24.23 
Error  1 1.21 1.11 0.09 21.31 
       
Control vs. LNE  1 0.14 2.49 3.37 6.88 
CV, %   6.61 7.45 0.50 6.25 
Control: traditional corn-soybean meal diet. 
LNE: 2% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 32 

Pig means for Ca, K, Mg, and Na excretion as percentage of the intake for the 
entire finishing period. Exp 1. 
   Excretion as percentage of the intake, % 

Room Diet Block Ca K Mg Na 
1 LNE 1 86.09   96.9 114.4 173.5 
2 Control 1 71.09   97.2 105.6 148.8 
3 LNE 2 85.88 103.9 116.7 182.6 
4 Control 2 80.54 106.1 115.6 190.2 

Control: traditional corn-soybean meal diet. 
LNE: 2% units reduced CP and 0.1% unit reduced P diet. 
 
 

Appendix Table 33 

Analysis of variance for Ca, K, Mg, and Na excretion as percentage of the intake 
for the entire finishing period. Exp 1. 
  Mean square of excretion as percentage of the intake, %
Source df Ca K Mg Na
Total 3     
Diet 1 103.6 1.40 24.51 73.16
Block 1 21.4 63.11 38.08 638.41
Error 1 23.3 0.92 14.95 261.11
   
Control vs. LNE 1 103.6 1.40 24.51 73.16
CV, %  5.97 0.95 3.42 9.30
Control: traditional corn-soybean meal diet. 
LNE: 2% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 34 

Pig means for Fe, Zn, Cu, and Mn excretion as percentage of the intake for the 
entire finishing period. Exp 1. 
   Excretion as percentage of the intake, % 
Room Diet Block Fe Zn Cu Mn 

1 LNE 1 115.71 116.03 170.87 120.02 
2 Control 1 115.08 118.41 165.82 105.45 
3 LNE 2 125.04 119.23 157.15 124.43 
4 Control 2 139.04 137.06 185.33 122.83 

Control: traditional corn-soybean meal diet. 
LNE: 2% units reduced CP and 0.1% unit reduced P diet. 
 

 

Appendix Table 35 

Analysis of variance for Fe, Zn, Cu, and Mn excretion as percentage of the intake 
for the entire finishing period. Exp 1. 
  Mean square of excretion as percentage of the intake, %
Source df Fe Zn Cu Mn
Total 3  
Diet 1 44.71 102.13 133.79 65.36
Block 1 277.00 119.26 8.37 118.86
Error 1 53.49 59.76 276.24 42.07
   
Control vs. LNE 1 44.71 102.13 133.79 65.36
CV, %  5.91 6.30 9.79 5.49
Control: traditional corn-soybean meal diet. 
LNE: 2% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 36 

Pig means for DM, C, N and P cumulative excretion for the entire finishing 
period. Exp 1. 
   Cumulative excretion, kg/pig 
Room Diet Block DM  C  N  P  
1 LNE 1 29.98 12.68 2.54 0.53 
2 Control 1 27.55 10.88 3.09 0.62 
3 LNE 2 33.86 13.14 2.98 0.58 
4 Control 2 35.75 13.16 3.63 0.77 
Control: traditional corn-soybean meal diet. 
LNE: 2% units reduced CP and 0.1% unit reduced P diet. 
 
 

Appendix Table 37 

Analysis of variance for DM, C, N and P cumulative excretion for the entire 
finishing period. Exp 1. 
  Mean square of cumulative excretion, kg/pig 
Source df DM C N P 
Total 3     
Diet 1   2.81 0.14 0.51 0.03 
Block 1 41.08 2.52 0.23 0.01 
Error 1   2.81 0.19 0.01 0.01 
      
Control vs. LNE 1   2.81 0.14 0.51 0.03 
CV, %    0.43 3.45 3.51 2.53 
Control: traditional corn-soybean meal diet. 
LNE: 2% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 38 

Pig means for days on test, initial and final weight, average daily gain, average 
daily feed intake, feed:gain ratio. Exp 2. 
Room Diet Block Days IBW, kg FBW, kg ADG, kg ADFI, kg F:G 
1 Control 1 94 33.6 111.3 0.826 2.24 2.72
2 LNE 1 101 33.5 112.6 0.783 2.20 2.81
3 Control 2 116 28.9 108.5 0.704 2.08 2.96
4 LNE 2 122 26.9 104.9 0.639 1.99 3.13
Control: traditional corn-soybean meal diet. 
LNE: 4% units reduced CP and 0.1% unit reduced P diet. 
 
 

Appendix Table 39 

Analysis of variance for days on test, initial and final weight, average daily gain, 
average daily feed intake, feed:gain ratio. Exp 2 
  Mean square 
Source df Days IBW, lb FBW, lb ADG, g ADFI, kg F:G 
Total 3  
Diet 1 0.02 6.68 2896.6 0.004 0.02
Block 1 216.09 135.14 17824.9 0.034 0.08
Error 1 0.01 29.32 110.0 0.001 0.01
   
Control vs. LNE 1 0.02 6.68 2986.6 0.004 0.02
CV, %  0.18 2.25 1.42 1.17 1.21
Control: traditional corn-soybean meal diet. 
LNE: 4% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 40 

Pig means for life body weight, hot carcass weight, and backfat depth. Exp 2. 
     Fat depth, cm 
Room Diet Block LBW, 

kg 
HCW, 
kg 

1st 
rib 

10th 
rib 

13th 
rib 

Last 
lumbar 

1 Control 1 111.3 88.6 3.63 2.69 2.67 2.26 
2 LNE 1 112.6 90.1 2.95 2.82 2.35 2.24 
3 Control 2 108.5 86.5 3.51 1.55 2.24 1.91 
4 LNE 2 104.9 82.7 3.51 1.78 2.31 2.18 
Control: traditional corn-soybean meal diet. 
LNE: 4% units reduced CP and 0.1% unit reduced P diet. 
 

 

Appendix Table 41 

Analysis of variance for life body weight, hot carcass weight, and backfat depth. 
Exp 2. 
  Mean square 
  lb in 
Source df LBW HCW 1st rib 10th rib 13th rib Last lumbar
Total 3  
Diet 1 6.68 6.25 0.02 0.01 0.001 0.003
Block 1 135.14 108.58 0.01 0.19 0.014 0.006
Error 1 29.32 33.06 0.02 0.01 0.003 0.004
   
Control vs. LNE 1 6.68 6.25 0.02 0.01 0.001 0.003
CV, %  2.25 3.00 10.09 2.30 5.24 7.10
Control: traditional corn-soybean meal diet. 
LNE: 4% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 42 

Pig means for LMA, carcass yield and fat-free lean percentage. Exp 2. 
Room Diet Block LMA, sq cm Carcass yield, % Fat-free  lean, % 
1 Control 1 44.97 79.62 49.71 
2 LNE 1 38.65 79.94 47.62 
3 Control 2 43.48 79.68 54.64 
4 LNE 2 38.77 78.89 52.73 
Control: traditional corn-soybean meal diet. 
LNE: 4% units reduced CP and 0.1% unit reduced P diet. 
 
 

Appendix Table 43 

Analysis of variance for LMA, carcass yield and fat-free lean percentage. Exp 2. 
  Mean square 
Source df LMA, sq in Carcass yield, % Fat-free  lean, % 
Total 3 
Diet 1 0.73 0.06   4.00 
Block 1 0.01 0.24 25.20 
Error 1 0.02 0.31 0.01 
     
Control vs. LNE 1 0.73 0.06   4.00 
CV, %  1.95 0.70   0.18 
Control: traditional corn-soybean meal diet. 
LNE: 4% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 44 

Pig means for metacarpal, metatarsal, and metacarpal-metatarsal bone breaking 
strength. Exp 2. 
   Bone breaking strength, kg 
Room Diet Block Metacarpal Metatarsal Metacarpal-metatarsal 
1 Control 1 154.3 136.8 145.4 
2 LNE 1 136.1 118.9 127.6 
3 Control 2 139.9 124.8 135.1 
4 LNE 2 137.4 122.5 132.6 
Control: traditional corn-soybean meal diet. 
LNE: 4% units reduced CP and 0.1% unit reduced P diet. 
 
 

Appendix Table 45 

Analysis of variance for metacarpal, metatarsal, and metacarpal-metatarsal bone 
breaking strength. Exp 2. 
  Mean square, kg 
Source df Metacarpal Metatarsal Metacarpal-metatarsal 
Total 3 
Diet 1 234.4 102.1 102.3 
Block 1     2.4   17.9     7.1 
Error 1     8.5   61.1   59.2 
     
Control vs. LNE 1 234.4 102.1 102.3 
CV, %        2.02      6.22       5.69 
Control: traditional corn-soybean meal diet. 
LNE: 4% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 46 

Pig means for DM, C, N and P average daily intake for the entire finishing period. 
Exp 2. 

   Average daily intake, g/pig 
Room Diet Block DM C N P 

1 Control 1 1,968 901 54.9 9.68 
2 LNE 1 1,924 892 40.1 7.42 
3 Control 2 1,831 807 50.6 8.95 
4 LNE 2 1,742 868 36.0 6.79 

Control: traditional corn-soybean meal diet. 
LNE: 4% units reduced CP and 0.1% unit reduced P diet. 
 
 

Appendix Table 47 

Analysis of variance for DM, C, N and P average daily intake for the entire 
finishing period. Exp 2. 
  Mean square of intake, g/pig 
Source df       DM           C            N             P 
Total 3     
Diet 1 4,413.6 688.8 216.1 4.88
Block 1 25576.0 3446.3 17.1 0.46
Error 1 514.6 1253.5 0.01 0.01
   
Control vs. LNE 1 4,413.6 688.8 216.1 4.88
CV, %  1.22 4.09 0.20 0.61
Control: traditional corn-soybean meal diet. 
LNE: 4% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 48 

Pig means for Ca, K, Mg, and Na average daily intake for the entire finishing 
period. Exp 2. 
   Average daily intake, g/pig 
Room Diet Block         Ca        K        Mg        Na 
1 Control 1 12.4 16.3 2.92 2.67
2 LNE 1 10.0 13.3 2.61 2.59
3 Control 2 11.6 15.1 2.72 2.47
4 LNE 2 8.72 11.9 2.53 2.39
Control: traditional corn-soybean meal diet. 
LNE: 4% units reduced CP and 0.1% unit reduced P diet. 
 
 

Appendix Table 49 

Analysis of variance for Ca, K, Mg, and Na average daily intake for the entire 
finishing period. Exp 2. 
  Mean square of average daily intake, g/pig 
Source df           Ca          K         Mg        Na 
Total 3  
Diet 1 7.02 9.43 0.06 0.01
Block 1 1.10 1.56 0.02 0.04
Error 1 0.06 0.02 0.01 0.00
   
Control vs. LNE 1 7.02 9.43 0.06 0.01
CV, %  2.25 1.00 0.96 0
Control: traditional corn-soybean meal diet. 
LNE: 2% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 50 

Pig means for Fe, Zn, Cu, and Mn average daily intake for the entire finishing 
period. Exp 2. 
   Average daily intake, mg/pig 
Room Diet Block       Fe        Zn      Cu        Mn 
1 Control 1 488 327 40 107
2 LNE 1 361 284 38 94
3 Control 2 456 305 37 100
4 LNE 2 333 261 28 76
Control: traditional corn-soybean meal diet. 
LNE: 4% units reduced CP and 0.1% unit reduced P diet. 
 

 

Appendix Table 51 

Analysis of variance for Fe, Zn, Cu, and Mn average daily intake for the entire 
finishing period. Exp 2. 
  Mean square of average daily intake, g/pig 
Source df            Fe           Zn         Cu           Mn 
Total 3     
Diet 1 0.016 0.002 0.00003 0.0003
Block 1 0.001 0.001 0.00004 0.0001
Error 1 0.000 0.000 0.00001 0.0001
   
Control vs. LNE 1 0.016 0.002 0.00003 0.0003
CV, %  0.49 0.17 9.79 5.83
Control: traditional corn-soybean meal diet. 
LNE: 4% units reduced CP and 0.1% unit reduced P diet. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 236

Appendix Table 52 

Slurry means for average volume, temperature, electrical conductivity, and pH for 
the entire finishing period. Exp 2. 
Room Diet Block Volume, L/pig Temperature, oC EC, mS pH 
1 Control 1 8.9 17.2 5.17 7.13 
2 LNE 1 8.9 17.1 3.43 6.42 
3 Control 2 10.1 17.9 4.45 6.90 
4 LNE 2 13.7 17.5 2.58 6.01 
Control: traditional corn-soybean meal diet. 
LNE: 4% units reduced CP and 0.1% unit reduced P diet. 
 

 

Appendix Table 53 

Analysis of variance for average slurry volume, temperature, electrical 
conductivity, and pH for the entire finishing period. Exp 2. 
  Mean square 
Source df Volume, L/pig Temperature, oC EC, µS pH 
Total 3     
Diet 1 3.13 0.07 3.26 0.64 
Block 1 8.70 0.31 0.62 0.10 
Error 1 3.10 0.03 0.01 0.01 
      
Control vs. LNE 1 3.13 0.07 3.26 0.64 
CV, %  16.91 0.92 1.66 1.36 
Control: traditional corn-soybean meal diet. 
LNE: 4% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 54 

Slurry concentration means for DM, C, N, P and C:N ratio. Exp 2. 
    Slurry concentration %, DM basis 
Room Diet Block DM, % C N P C:N 
1 Control 1 0.62 53.7 13.0 2.54 4.1 
2 LNE 1 0.59 48.7   8.2 1.96 6.0 
3 Control 2 0.54 55.5 12.3 2.40 4.5 
4 LNE 2 0.46 56.3   7.1 1.84 8.0 
Control: traditional corn-soybean meal diet. 
LNE: 4% units reduced CP and 0.1% unit reduced P diet. 
 
 

Appendix Table 55 

Analysis of variance for slurry DM, C, N, P concentration and C:N ratio. Exp 2. 
   Mean square of Slurry concentration 
Source df DM, % C N P C:N 
Total 3      
Diet 1 0.003 4.6 25.54 0.33 7.01 
Block 1 0.011 21.8 0.80 0.02 1.40 
Error 1 0.001 8.4 0.04 0.01 0.65 
       
Control vs. LNE 1 0.003 4.6 25.54 0.33 7.01 
CV, %  4.23 5.41 1.88 0.57 14.25 
Control: traditional corn-soybean meal diet. 
LNE: 4% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 56 

Slurry concentration means for Ca, K, Mg, and Na for the entire finishing period. 
Exp 2. 

   Slurry concentration, % DM basis 
Room Diet Block Ca K Mg Na 

1 Control 1 2.82 5.72 1.29 2.04 
2 LNE 1 2.76 4.19 1.18 2.27 
3 Control 2 3.01 5.81 1.28 2.28 
4 LNE 2 2.91 3.73 1.14 2.49 

Control: traditional corn-soybean meal diet. 
LNE: 4% units reduced CP and 0.1% unit reduced P diet. 
 

 

Appendix Table 57 

Analysis of variance for slurry concentration of Ca, K, Mg, and Na for the entire 
finishing period. Exp 2. 
  Mean square of slurry concentration, % DM basis 
Source df Ca K Mg Na 
Total 3     
Diet 1 0.007 3.25 0.015 0.05 
Block 1 0.029 0.03 0.001 0.05 
Error 1 0.001 0.08 0.001 0.01 
      
Control vs. LNE 1 0.007 3.25 0.015 0.05 
CV, %  0.73 5.75 1.02 0.57 
Control: traditional corn-soybean meal diet. 
LNE: 4% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 58 

Slurry concentration means for Fe, Zn, Cu, and Mn for the entire finishing period. 
Exp 2. 
   Slurry concentration, ppm DM basis 

Room Diet Block Fe Zn Cu Mn 
1 Control 1 165 106 16 38 
2 LNE 1 142 91 13 33 
3 Control 2 160 101 15 36 
4 LNE 2 173 96 14 32 

Control: traditional corn-soybean meal diet. 
LNE: 4% units reduced CP and 0.1% unit reduced P diet. 
 
 

Appendix Table 59 

Analysis of variance for slurry concentration of Fe, Zn, Cu, and Mn for the entire 
finishing period. Exp 2. 
  Mean square of slurry concentration, % DM basis 
Source df Fe Zn Cu Mn 
Total 3  
Diet 1 0.0001 0.0001 0.00 0.001
Block 1 0.0002 0.0000 0.00 0.001
Error 1 0.0003 0.0001 0.00 0.001
   
Control vs. LNE 1 0.0001 0.0001 0.00 0.001
CV, %  11.25 5.08 0.80 1.44
Control: traditional corn-soybean meal diet. 
LNE: 4% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 60 

Pig means for DM, N, NH4-N, and P average daily excretion for the entire 
finishing period. Exp 2. 
   Average daily excretion, g/pig 

Room Diet Block DM N NH4-N P 
1 Control 1 292 38.0 25.4 7.42 
2 LNE 1 297 24.2 13.1 5.81 
3 Control 2 256 31.5 20.9 6.13 
4 LNE 2 242 17.1 7.5 4.44 

Control: traditional corn-soybean meal diet. 
LNE: 4% units reduced CP and 0.1% unit reduced P diet. 
 
 

Appendix Table 61 

Analysis of variance for DM, N, NH4-N and P average daily excretion for the 
entire finishing period. Exp 2. 
   Mean square of average daily excretion, g/pig 
Source  df DM N NH4-N P 
Total  3  
Diet  1 20.9 198.7 165.1 2.72
Block  1 2045.8 45.9 25.4 1.77
Error  1 92.0 0.1 0.3 0.01
    
Control vs. LNE  1 20.9 198.7 165.1 2.72
CV, %   3.53 1.17 3.36 0.67
Control: traditional corn-soybean meal diet. 
LNE: 4% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 62 

Pig means for Ca, K, Mg, and Na average daily excretion for the entire finishing 
period. Exp 2. 
   Average daily excretion, g/pig 

Room Diet Block Ca K Mg Na 
1 Control 1 8.23 16.7 3.8 5.9 
2 LNE 1 8.18 12.4 3.5 6.7 
3 Control 2 7.71 14.9 3.3 5.9 
4 LNE 2 7.03   9.0 2.8 6.0 

Control: traditional corn-soybean meal diet. 
LNE: 4% units reduced CP and 0.1% unit reduced P diet. 
 

 

Appendix Table 63 

Analysis of variance for Ca, K, Mg, and Na average daily excretion for the entire 
finishing period. Exp 2. 
  Mean square of average daily excretion, g/pig 
Source df Ca  K  Mg  Na  
Total 3     
Diet 1 0.13 25.4 0.15 0.24 
Block 1 0.69   6.8 0.38 0.16 
Error 1 0.10   0.7 0.02 0.10 
      
Control vs. LNE 1 0.13 25.4 0.15 0.24 
CV, %  4.06   6.13 3.71 5.04 
Control: traditional corn-soybean meal diet. 
LNE: 4% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 64 

Pig means for Fe, Zn, Cu, and Mn average daily excretion for the entire finishing 
period. Exp 2. 
   Average daily excretion, g/pig 

Room Diet Block Fe Zn Cu Mn 
1 Control 1 480 310 47.9 111 
2 LNE 1 421 269 39.4 97 
3 Control 2 410 260 39.4 92 
4 LNE 2 417 232 35.0 78 

Control: traditional corn-soybean meal diet. 
LNE: 4% units reduced CP and 0.1% unit reduced P diet. 
 
 

Appendix Table 65 

Analysis of variance for Fe, Zn, Cu, and Mn average daily excretion for the entire 
finishing period. Exp 2. 
  Mean square of average daily excretion, mg/pig 
Source df Fe Zn Cu Mn 
Total 3  
Diet 1 683 1,181 41.5 203.6
Block 1 1,377 1,874 41.8 360.7
Error 1 1,140 47 4.2 0.1
   
Control vs. LNE 1 683 1,181 41.5 203.6
CV, %  7.82 2.57 5.08 0.35
Control: traditional corn-soybean meal diet. 
LNE: 4% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 66 

Pig means for DM, C, N and P excretion as percentage of the intake for the 
entire finishing period. Exp 2. 
   Excretion as percentage of intake, % 
Room Diet Block DM C N P 

1 Control 1 14.8 17.4 69.2 76.6 
2 LNE 1 15.4 16.2 60.4 78.3 
3 Control 2 14.0 17.0 62.2 68.5 
4 LNE 2 13.9 16.9 47.4 65.5 

Control: traditional corn-soybean meal diet. 
LNE: 4% units reduced CP and 0.1% unit reduced P diet. 
 
 
 

Appendix Table 67 

Analysis of variance for DM, C, N, and P excretion as percentage of the intake 
for the entire finishing period. Exp 2. 
   Mean square of excretion as percentage of intake, % 
Source  df DM C N P
Total  3     
Diet  1 0.06 0.45 139.8 0.4
Block  1 1.40 0.02 98.9 109.9
Error  1 0.12 0.28 8.9 5.5
    
Control vs. LNE  1 0.06 0.45 139.8 0.4
CV, %   2.40 3.15 4.98 3.24
Control: traditional corn-soybean meal diet. 
LNE: 4% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 68 

Pig means for Ca, K, Mg, and Na excretion as percentage of the intake for the 
entire finishing period. Exp 2. 
   Excretion as percentage of the intake, % 

Room Diet Block Ca K Mg Na 
1 Control 1 66.4 97.8 120 262 
2 LNE 1 87.1 105.8 139 285 
3 Control 2 66.6 93.2 112 276 
4 LNE 2 82.3 82.3 121 284 

Control: traditional corn-soybean meal diet. 
LNE: 4% units reduced CP and 0.1% unit reduced P diet. 
 

 

Appendix Table 69 

Analysis of variance for Ca, K, Mg, and Na excretion as percentage of the intake 
for the entire finishing period. Exp 2. 
  Mean square of excretion as percentage of the intake, %
Source df Ca K Mg Na
Total 3     
Diet 1 330.2 0.5 196.6 234.7
Block 1 5.1 177.6 176.7 43.5
Error 1 6.4 75.7 22.8 51.2
   
Control vs. LNE 1 330.2 0.5 196.6 234.7
CV, %  3.35 9.14 3.88 2.59
Control: traditional corn-soybean meal diet. 
LNE: 4% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 70 

Pig means for Fe, Zn, Cu, and Mn excretion as percentage of the intake for the 
entire finishing period. Exp 2. 
   Excretion as percentage of the intake, % 
Room Diet Block Fe Zn Cu Mn 

1 Control 1 99 95 120 104 
2 LNE 1 117 95 103 103 
3 Control 2 90 85 106 92 
4 LNE 2 125 89 126 102 

Control: traditional corn-soybean meal diet. 
LNE: 4% units reduced CP and 0.1% unit reduced P diet. 
 
 

Appendix Table 71 

Analysis of variance for Fe, Zn, Cu, and Mn excretion as percentage of the intake 
for the entire finishing period. Exp 2. 
  Mean square of excretion as percentage of the intake, %
Source df Fe Zn Cu Mn
Total 3  
Diet 1 713.64 3.49 3.57 22.4
Block 1 0.01 59.26 19.48 37.5
Error 1 76.30 4.37 359.67 33.1
   
Control vs. LNE 1 713.64 3.49 3.57 22.4
CV, %  8.12 2.30 16.67 5.75
Control: traditional corn-soybean meal diet. 
LNE: 4% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 72 

Pig means for DM, C, N and P cumulative excretion for the entire finishing 
period. Exp 2. 
   Cumulative excretion, kg/pig 
Room Diet Block DM  N  P  
1 Control 1 27.4 3.57 0.70 
2 LNE 1 30.0 2.44 0.59 
3 Control 2 29.7 3.66 0.71 
4 LNE 2 29.5 2.08 0.54 
Control: traditional corn-soybean meal diet. 
LNE: 4% units reduced CP and 0.1% unit reduced P diet. 
 
 
 

Appendix Table 73 

Analysis of variance for DM, C, N and P cumulative excretion for the entire 
finishing period. Exp 2. 
  Mean square of cumulative excretion, kg/pig 
Source df DM N P 
Total 3    
Diet 1 1.39 1.84 0.02 
Block 1 0.83 0.02 0.01 
Error 1 1.88 0.05 0.01 
     
Control vs. LNE 1 1.39 1.84 0.02 
CV, %  4.70 7.66 4.72 
Control: traditional corn-soybean meal diet. 
LNE: 4% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 74 

Pig means for days on test, initial and final weight, average daily gain, average 
daily feed intake, feed:gain ratio. Exp 3. 
Room Diet Block Days IBW, lb FBW, lb ADG, g ADFI, g F:G 
1 Control 1 110 65.65 261.84 845 2,235 2.64
2 LNE 1 110 65.69 268.47 834 2,295 2.75
3 Control 2 110 57.35 252.97 843 2,172 2.58
4 LNE 2 110 57.50 251.89 838 2,211 2.64
Control: corn-soybean meal diet. 
LNE: 3% units reduced CP and 0.1% unit reduced P diet. 
 
 

Appendix Table 75 

Analysis of variance for days on test, initial and final weight, average daily gain, 
average daily feed intake, feed:gain ratio. Exp 3 
  Mean square 
Source df Days IBW, lb FBW, lb ADG, g ADFI, g F:G 
Total 3  
Diet 1 0 0.01 7.70 69.81 2,397 0.01
Block 1 0 67.98 161.93 0.39 5,375 0.01
Error 1 0 0.01 14.86 9.46 117 0.01
   
Control vs. LNE 1 0 0.001 7.70 69.81 2,396 0.01
CV, %  0 0.09 1.49 0.37 0.49 0.94
Control: corn-soybean meal diet. 
LNE: 3% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 76 

Pig means for DM, N and P average daily intake for the entire finishing period. 
Exp 3 

   Average daily intake, g/pig 
Room Diet Block DM N P 

1 LNE 1 1,906 45.4 7.46 
2 Control 1 1,964 54.1 9.95 
3 LNE 2 1,853 44.5 7.30 
4 Control 2 1,887 52.7 9.61 

Control: traditional corn-soybean meal diet. 
LNE: 3% units reduced CP and 0.1% unit reduced P diet. 
 
 

Appendix Table 77 

Analysis of variance for DM, N and P average daily intake for the entire finishing 
period. Exp 3 
  Mean square of intake, g/pig 
Source df       DM            N             P 
Total 3    
Diet 1 2,106 71.7 5.76
Error 2 2,157 0.7 8.58
   
Control vs. LNE 1 2,106 71.7 5.76
CV, %  2.44 1.73 2.19
Control: traditional corn-soybean meal diet. 
LNE: 3% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 78 

Pigs means for Ca, K, Mg, and Na average daily intake for the entire finishing 
period. Exp 3 
   Average daily intake, g/pig 
Room Diet Block       Ca        K      Mg        Na 
1 LNE 1 11.5 13.7 2.7 2.7
2 Control 1 15.3 17.5 3.2 2.7
3 LNE 2 11.6 13.9 2.7 2.7
4 Control 2 14.7 16.8 3.1 3.0
Control: traditional corn-soybean meal diet. 
LNE: 3% units reduced CP and 0.1% unit reduced P diet. 
 
 

Appendix Table 79 

Analysis of variance for Ca, K, Mg, and Na average daily intake for the entire 
finishing period. Exp 3. 
  Mean square of average daily intake, g/pig 
Source df       Ca        K      Mg        Na 
Total 3     
Diet 1 11.52 11.27 0.18 0.02
Error 2 0.08 0.15 0.01 0.01
   
Control vs. LNE 1 11.52 11.27 0.18 0.02
CV, %  0.99 0.97 0.96 3.18
Control: traditional corn-soybean meal diet. 
LNE: 3% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 80 

Pigs means for Fe, Zn, Cu, and Mn average daily intake for the entire finishing 
period. Exp 3 
   Average daily intake, mg/pig 
Room Diet Block       Fe        Zn      Cu        Mn 
1 LNE 1 27.47 13.50 1.90 5.61
2 Control 1 45.82 24.50 3.89 11.61
3 LNE 2 28.41 12.01 2.10 5.98
4 Control 2 44.47 26.16 4.13 12.59
Control: traditional corn-soybean meal diet. 
LNE: 3% units reduced CP and 0.1% unit reduced P diet. 
 
 

Appendix Table 81 

Analysis of variance for Fe, Zn, Cu, and Mn average daily intake for the entire 
finishing period. Exp 3. 
  Mean square of average daily intake, mg/pig 
Source df            Fe           Zn         Cu           Mn 
Total 3     
Diet 1 296.1 158.1 4.04 39.8
Error 2 0.7 1.2 0.02 0.3
   
Control vs. LNE 1 296.1 158.1 4.04 39.8
CV, %  2.25 5.82 5.32 5.84
Control: traditional corn-soybean meal diet. 
LNE: 3% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 82 

Pig means for life body weight, hot carcass weight, and backfat depth. Exp 3. 
Room Diet Block LBW, lb HCW, lb Fat depth 10th rib, cm 
1 LNE 1 255 195 0.77 
2 Control 1 259 198 0.80 
3 LNE 2 244 190 0.79 
4 Control 2 250 191 0.85 
Control: corn-soybean meal diet. 
LNE: 3% units reduced CP and 0.1% unit reduced P diet. 
 
 

Appendix Table 83 

Analysis of variance for life body weight, hot carcass weight, and backfat depth. 
Exp 3 
  Mean square 
Source df LBW, lb HCW, lb Fat depth 10th rib, in 
Total 3    
Diet 1 21.8 3.4 0.002 
Block 1 98.3 28.5 0.001 
Error 1 0.6 1.2 0.002 
     
Control vs. LNE 1 21.8 3.4 0.001 
CV, %  0.29 0.56 0.94 
Control: corn-soybean meal diet. 
LNE: 3% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 84 

Pig means for LMA, carcass yield and fat-free lean percentage. Exp 3. 
Room Diet Block LMA, sq in Carcass yield, % Fat-free  lean, % 
1 LNE 1 7.05 76.52 53.16 
2 Control 1 7.12 76.49 52.79 
3 LNE 2 6.83 78.12 52.68 
4 Control 2 7.43 76.65 52.93 
Control: corn-soybean meal diet. 
LNE: 3% units reduced CP and 0.1% unit reduced P diet. 
 
 
 

Appendix Table 85 

Analysis of variance for LMA, carcass yield and fat-free lean percentage. Exp 3. 
  Mean square 
Source df LMA, sq in Carcass yield, % Fat-free  lean, % 
Total 3 
Diet 1 0.11 0.56 0.01 
Block 1 0.01 0.77 0.03 
Error 1 0.07 0.51 0.10 
     
Control vs. LNE 1 0.11 0.56 0.01 
CV, %  3.72 0.94 0.59 
Control: corn-soybean meal diet. 
LNE: 3% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 86 

Pig means for metacarpal breaking strength. Exp 3 
Room Diet Block Metacarpal breaking strength, kg 
1 LNE 1 174.5 
2 Control 1 169.9 
3 LNE 2 156.3 
4 Control 2 180.0 
Control: traditional corn-soybean meal diet. 
LNE:3% units reduced CP and 0.1% unit reduced P diet. 

 

Appendix Table 87 

Analysis of variance for metacarpal breaking strength. Exp 3. 
Source df Mean square 
Total 3  
Diet 1      90.63 
Block 1      16.56 
Error 1 2000.22 
     
Control vs. LNE 1     90.63 
CV, %       8.32 
Control: traditional corn-soybean meal diet. 
LNE: 3% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 88 

Pigs means for initial body composition. Exp 3 
Room Diet Block  Water, kg CP, kg Ash, kg Fat, kg N, kg P, g 
1 LNE 1  19.6 5.75 0.90 5.82 0.92 161.6
2 Control 1  19.3 5.66 0.89 5.75 0.90 159.7
3 LNE 2  16.8 4.73 0.78 5.05 0.76 141.5
4 Control 2  17.1 4.84 0.79 5.13 0.77 143.6
Control: traditional corn-soybean meal diet. 
LNE: 3% units reduced CP and 0.1% unit reduced P diet. 
 
 

Appendix Table 89 

Analysis of variance for initial body composition. Exp 3. 
   Mean square 
Source df  Water CP Ash Fat N P 
Total 3      
Diet 1  0.01 0.01 0.001 0.01 0.01 0.01
Block 1  6.64 083 0.012 0.48 0.02 326.77
Error 1  0.07 0.01 0.001 0.01 0.01 3.76
        
Control vs. LNE 1  0.01 0.01 0.001 0.01 0.01 0.01
CV, % 3  1.52 1.87   1.42 1.37 1.91 1.28
 
Control: traditional corn-soybean meal diet. 
LNE: 3% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 90 

Pigs means for final body composition. Exp 3 
    Average daily intake, mg/pig 
Room Diet Block  Water, kg CP, kg Ash, kg Fat, kg N, kg P, g 
1 LNE 1  59.8 20.9 2.91 32.27 3.57 481.3
2 Control 1  60.1 20.6 3.00 31.96 3.48 445.8
3 LNE 2  57.1 18.2 2.63 29.08 3.01 432.7
4 Control 2  57.1 19.4 2.85 28.33 3.27 427.6
Control: traditional corn-soybean meal diet. 
LNE: 3% units reduced CP and 0.1% unit reduced P diet. 
 
 

Appendix Table 91 

Analysis of variance for final body composition. Exp 3. 
   Mean square 
Source df  Water CP Ash Fat N P 
Total 3        
Diet 1  0.01 0.22 0.03 0.28 0.01 411 
Block 1  8.35 3.88 0.05 11.63 0.15  1117 
Error 1  0.02 0.65 0.01 0.05 0.03 231 
         
Control vs. LNE 1  0.01 0.22 0.03 0.28 0.01 411 
CV, % 3  0.22 4.08 2.28 0.74 0.84 3.40 
Control: traditional corn-soybean meal diet. 
LNE: 3% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 92 

Pigs means for water, CP, ash, fat, N and P accretion rate. Exp 3 
    g/pig/d 
Room Diet Block  Water CP Ash Fat N P 
1 LNE 1  365 138 18.2 241 24.1 2.90
2 Control 1  372 136 19.2 240 23.5 2.62
3 LNE 2  368 122 16.9 220 20.6 2.67
4 Control 2  363 132 18.7 211 22.6 2.59
Control: traditional corn-soybean meal diet. 
LNE: 3% units reduced CP and 0.1% unit reduced P diet. 
 
 

Appendix Table 93 

Analysis of variance for water, CP, ash, fat, N and P accretion rate. Exp 3. 
   Mean square 
Source df  Water CP Ash Fat N P 
Total 3        
Diet 1  0.76 16.75 2.05 27.32 0.51 0.03 
Block 1  7.57 95.57 0.86 617.08 4.70 0.01 
Error 1     33.72 34.54 0.19 15.60 1.67 0.01 
         
Control vs. LNE 1  0.76 16.75 2.05 27.32 0.51 0.01 
CV, % 3  1.58 4.43 2.39 1.73 5.69 3.85 
Control: traditional corn-soybean meal diet. 
LNE: 3% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 94 

Pig means for DM, C, N and P average daily excretion for the entire finishing 
period. Exp 3. 
   Average daily excretion, g/pig 
Room Diet Block DM C N NH4-N P 

1 LNE 1 264 109 23.0 13.2 3.97 
2 Control 1 289 115 32.6 20.9 6.03 
3 LNE 2 255 122 23.6 12.9 4.21 
4 Control 2 297 137 24.3 20.1 6.37 

Control: traditional corn-soybean meal diet. 
LNE: 3% units reduced CP and 0.1% unit reduced P diet. 
 
 

Appendix Table 95 

Analysis of variance for DM, C, N, NH4-N and P average daily excretion for the 
entire finishing period. Exp 3. 
   Mean square of average daily excretion, g/pig 
Source  df DM C N NH4-N P 
Total  3 
Diet  1 1126 105 102.4 55.85 4.45
Error  2 34 160 0.8 0.15 0.04
   
Control vs. LNE  1 1126 105 102.4 55.85 4.45
CV, %   2.13 10.49 3.21 2.30 0.98
Control: traditional corn-soybean meal diet. 
LNE: 3% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 96 

Pig means for Ca, K, Mg, and Na average daily excretion for the entire finishing 
period. Exp 3. 
   Average daily excretion, g/pig 

Room Diet Block Ca K Mg Na 
1 LNE 1 5.97 11.99 2.74 4.70 
2 Control 1 7.79 15.13 3.04 4.42 
3 LNE 2 5.92 12.50 2.75 4.23 
4 Control 2 8.11 16.36 3.11 4.38 

Control: traditional corn-soybean meal diet. 
LNE: 3% units reduced CP and 0.1% unit reduced P diet. 
 

 

Appendix Table 97 

Analysis of variance for Ca, K, Mg, and Na average daily excretion for the entire 
finishing period. Exp 3. 
  Mean square of average daily excretion, g/pig 
Source df Ca      K  Mg  Na  
Total 3     
Diet 1 4.04 12.28 0.11 0.01 
Error 2 0.03   0.44 0.01 0.06 
      
Control vs. LNE 1 4.04 12.28 0.11 0.01 
CV, %  2.33   4.75 1.33 5.37 
Control: traditional corn-soybean meal diet. 
LNE: 3% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 98 

Pig means for Fe, Zn, Cu, and Mn average daily excretion for the entire finishing 
period. Exp 3. 
   Average daily excretion, m/pig 

Room Diet Block Fe Zn Cu Mn 
1 LNE 1 246 131 26.8 56.2 
2 Control 1 432 257 37.9 92.2 
3 LNE 2 234 113 22.2 52.6 
4 Control 2 478 289 40.7    101.7 

Control: traditional corn-soybean meal diet. 
LNE: 3% units reduced CP and 0.1% unit reduced P diet. 
 
 

Appendix Table 99 

Analysis of variance for Fe, Zn, Cu, and Mn average daily excretion for the entire 
finishing period. Exp3. 
  Mean square of average daily excretion, mg/pig 
Source df Fe Zn Cu Mn 
Total 3     
Diet 1 46357 22857 219 1813 
Error 1     348     197     7     25 
      
Control vs. LNE 1 46357 22857 219 1813 
CV, %          6.85         9.19     8.30            6.72 
Control: traditional corn-soybean meal diet. 
LNE: 3% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 100 

Pig means for DM, N, NH4-N, and P average daily excretion for the entire 
finishing period. Exp 3. 
   Average daily excretion, g/pig 

Room Diet Block DM N NH4-N P 
1 LNE 1 264 23.0 13.2 3.97 
2 Control 1 289 32.6 20.9 6.03 
3 LNE 2 255 23.6 12.9 4.21 
4 Control 2 297 34.3 20.1 6.37 

Control: traditional corn-soybean meal diet. 
LNE: 3% units reduced CP and 0.1% unit reduced P diet. 
 
 

Appendix Table 101 

Analysis of variance for DM, N, NH4-N and P average daily excretion for the 
entire finishing period. Exp 3. 
   Mean square of average daily excretion, g/pig 
Source  df DM N NH4-N P
Total  3  
Diet  1 1126.0 102.4 55.85 4.44
Error  2 34.9 0.8 0.15 0.04
     
Control vs. LNE  1 1126.0 102.4 55.85 4.44
CV, %   2.14 3.21 2.29 4.05
Control: traditional corn-soybean meal diet. 
LNE: 3% units reduced CP and 0.1% unit reduced P diet. 
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Appendix Table 102 

Pig means for air flow and ammonia emission for the entire finishing period. Exp 
3. 
   Air flow NH3 Emission 

Room Diet Block m3/min mg/ m3 mg/min g/pig/d 
1 LNE 1 771 0.34 10.17   814 
2 Control 1 748 0.81 27.87 2148 
3 LNE 2 755 0.50 15.43 1223 
4 Control 2 789 0.92 31.70 2489 

Control: traditional corn-soybean meal diet. 
LNE: 3% units reduced CP and 0.1% unit reduced P diet. 
 
 

Appendix Table 103 

Analysis of variance for Pig means for air flow and ammonia emission for the 
entire finishing period. Exp 3. 
  Mean square of 
  Air flow NH3 Emission 
Source df m3/min mg/ m3 mg/min g/pig/d 
Total 3  
Diet 1 29.76 0.20 288.48 1691060
Block 1 130.95 0.02 20.68 140634
Error 1 831.38 0.01 0.52 1126
   
Control vs. LNE 1 29.76 0.20 288.48 1691060
CV, %  3.77 3.82 3.39 2.01
Control: traditional corn-soybean meal diet. 
LNE: 3% units reduced CP and 0.1% unit reduced P diet. 
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Appendix 

Determination of P content in feed and slurry samples using the 

quinolinium molydophosphate method (AOAC, 1998).  Phosphorus 

concentration was determined in all feed and slurry samples.  Acid cleaned, dry, 

quartz, 120 ml beakers were used.  For feed analysis, approximately, 2.5 g of 

feed were weighed into thebeaker.  For slurry analysis, an aliquot of 5 ml was 

transferred to the weighed and tarred clean beaker; and the weight of the 5 ml of 

slurry was recorded (ranged from 5 to 6 g).  After weighing the sample, the 

procedure for determination of P content was similar for feed or slurry samples.  

Samples were ashed during 4 h at 550oC.  Samples were allowed to cool down, 

and 40 ml of a 25% v/v HCl solution were added.  Followed, solution was placed 

over a hot plate set at 500oC and brought to a boil.  After cooling, the digested 

ash solution was transferred to a 250 ml volumetric flask.  The matrix solution 

was diluted to volume with distilled-deionized water and mixed thoroughly.  An 

aliquot of 50 ml of the diluted sample solution was transferred to a clean, 250 ml 

Erlenmeyer flask, and 25 ml of distilled-deionized water were added.  This 

solution was brought to a boil and 50 ml of Quimociac reagent (appendix, table ) 

added very slowly.  Phosphorus contented in the sample was precipitated with 

the addition of the Quimociac reagent, the solution was brought to a boil, 

removed from the hot plate, and allowed to cool down.  After cooling, the solution 

was filtered into a weighed, dry, gooch filter crucible with a glass fiber prefilter 

(Millipore Serie AP40, 0.5 to 0.6 mm of thickness, 247 to 456 sec/ 100 ml of 

flowrate, distributed y Fisher Scientific, Cincinnati, OH).  The Erlenmeyer was 
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carefully rinsed with distilled-deionized water to ensure that no precipitated was 

leaf attached to the flask.  The gooch crucible with prefilter and P precipitate 

were placed in the oven for at least 8 hours at 100 oC.  After cooling down, the 

crucible with precipitate was accurate weighed, and it weight used to calculate 

content of P in the sample expressed as percent.  The following formula was 

used: 

%P = ((Wt of P precipitate, g x 250 ml)/50 ml) x ((0.013997 x 100)/sample Wt, g) 
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Appendix table 104 
 

Preparation of Quimociac reagent and suggested aliquot of sample matrix 
solution, and Quimociac reagent to use based on anticipated P concentration in 
the sample. 
Step y step Quimociac reagent preparation (2 litters): 

1. Place a liter Erlenmeyer flask on a magnetic stirrer and insert a 1” Teflon 
covered bar magnet. 

2. Add 300 ml distilled deionized water. 
3. Add 127.6 g dihydrate citric acid (or 107.8 g of anhydrous citric acid, or 117.9g 

monohydrate citric acid) while stirring. 
4. Add 170 ml concentrated nitric acid to the citric acid solution and allow cooling. 
5. In a 1 liter Erlenmeyer flask, dissolve 140 g sodium molydate in 300 ml distilled 

deionized water with a magnet stirrer and stir bar. 
6. Slowly add the molydate solution to the citric-nitric solution with stirring. 
7. In a 250 ml Erlenmeyer flask, add 10 ml synthetic quinoline to a mixture of 200 

ml of distilled deionized water and 70 ml concentrated nitric acid. 
8. Slowly add the quinoline solution to the molydate- citric-nitric acid mixture, mix 

well, and let stand for 24 hours. 
 

9. Filter y siphon into a 2 liter Erlenmeyer filtering flask. Use a large Büchner-type 
filtering funnel and No. P8 filter paper (Fisher scientific, Cincinnati, Oh). 

10. Transfer filtered solution to a 2-liter volumetric flask. 
11. Add 560 ml C. P. acetone. 
12. Dilute to 2 liters with distilled deionized water and thoroughly mix. 
13. Store in a polyethylene bottle with a lid. 
 

 
based on anticipated P concentration in the sample is suggested the following aliquots of 
sample matrix solution, and Quimociac reagent: 
 
Anticipated sample P 
content, % 

Aliquot of sample matrix 
solution, ml 

Aliquot of Quimociac reagent, ml 

0-4 50 50 
4-6 25 50 
6-15 10 50 

15-30 10 100 
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