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CHAPTER I 
 

INTRODUCTION 

     Within the last century, broiler production in the United States has evolved from small 

“backyard” flocks into a multi-million dollar sector of agriculture.  Overall, U.S. broiler 

meat production for 2005 is projected to be close to 16 million metric tons, which is 

approximately 40% of the total animal protein market (Haley, 2005).  The broiler 

industry’s success in part can be attributed to its vertically integrated corporate structure, 

which to a certain extent provides continuity among broiler flocks. Nonetheless, due to 

differing facilities and equipment, as well as environmental and animal welfare concerns, 

broilers are inevitably reared under varying circumstances, particularly from a global 

perspective. 

     Nonnutritive factors such as stocking density (Cravener et al., 1992; Puron et al., 

1997), lighting program (Buyse et al., 1996; Ingram et al., 2000), ventilation (Lott et al., 

1998; Yahav et al., 2004) and feed form (Acar et al., 1991; Scheideler, 1995; Moritz et 

al., 2001) are well documented throughout the literature to impact bird performance. 

Though the precise mode of action by which such nonnutritive factors impact broiler 

performance may be subject to debate, one could surmise each as having a nutritional 

consequence to the bird.  Given the varying conditions in which broilers are reared 

throughout the world, and that the nutritional positive or negative consequences of those 
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conditions are more or less a guess, the expression “nutrition is more of an art than a 

science” has credence.  

     Broiler management aside, there is an inherent caloric cost associated with accretion 

of lean and lipid tissues, the associated inefficiencies of which contribute to heat 

production.  In an effort to quantify these costs, Kielanowski (1965) subdivided retained 

energy as follows: ME = MEm + (1/kp × ERP) + (1/kf × ERF), where: ME = 

metabolizable energy intake, MEm = metabolizable energy required for maintenance, 

ERP = energy retained as protein, ERF = energy retained as fat, kp = efficiency of energy 

utilization for protein, and kf = efficiency of energy utilization for fat.  And through 

regression analysis obtained values for MEm, kp, and kf.  Proposed values for kp and kf are 

shown in Table 1. This regression approach, however, has received criticism due to the 

autocorrelation among the variables (Emmans, 1994; Noblet et al., 1999), and its inability 

for separating metabolizable energy into contributing dietary substrates (Noblet et al., 

1993). Utilizing mechanistic models based on theoretical biochemical costs and returns 

has been suggested as a solution to these criticisms (van Milgen, 2002). However, as 

Birkett and de Lange (2001) pointed out, solid experimental observations are lacking and 

the metabolic detail required in a mechanistic model is essentially noise when viewed at 

the higher spatial level.   

     Any approach to estimating the efficiency of energy utilization for tissue accretions 

requires a sound understanding of energy required for maintenance.  Errors or 

assumptions made relative to the maintenance energy requirement carries-over resulting 

in an over or under estimation of energy available for gain and ultimately false estimates 

for the metabolic costs of tissue accretion.  Nonetheless, relatively little research as of 
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late that has been directed at understanding maintenance energy need in broilers or 

factors that may alter maintenance energy requirement.     

     Mathematical models have long been utilized to describe broiler growth (Zoons et al. 

1991), evaluate feedstuffs (MacLeod, 2000), compute nutrient requirements (Oviedo-

Rondon and Waldroup, 2002) and understand managerial consequences on broiler 

performance (Cobb Vantress, 2003). Provided that the body of data is such to underpin 

proposed predictive models, these equations serve as an invaluable tool in making 

decisions.  However, application of such models require either that conditions mimic 

those under which the model was developed or the flawed assumption that nutrition and 

management are separate entities of broiler production.  The latter introduces error into 

the predicted values, potentially resulting in spurious interpretations.   

      Historically, comparative slaughter has been the most commonly used method for 

evaluating nutritional and/or managerial effects on broiler body composition. This 

methodology, however, is time consuming, difficult to apply to an entire growth curve, 

and requires bird destruction as well as the assumption that the composition of birds 

initially examined are the same as those incorporated into an experiment (Blaxter, 1967).     

Recently, dual energy x-ray absorptiometry (DEXA) has been proposed as a method for 

measuring bone density and content in poultry (Schreiweis, 2003; and Onyango, 2004).  

Additionally, a large body of evidence exists validating the use of this technology for 

assessing soft tissues in swine (Lukashi et al., 1999; Chauhan et al., 2003; and Koo et al., 

2004).  An experiment conducted by Mitchell et al. (1997), however, is the only known 

evaluation of DEXA for quantifying lean and lipid tissues in poultry.  Though this report 

was largely inconclusive, it did suggest that DEXA could potentially be utilized to 
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rapidly quantify broiler body composition and enable the option of returning that bird 

back to production.  More work is needed, however, to validate this technology.    

     Studies described herein were designed with the intent of addressing areas outlined 

above where current knowledge is lacking.  More specifically, in Chapter 3, DEXA was 

evaluated as a method for rapidly quantifying broiler body composition.  Chapters 4 and 

5 focus on developing mathematical models to describe the caloric costs associated with 

broiler management decisions that impact activity energy expenditure.  Chapter 6 utilizes 

this methodology in evaluating dietary nutrient-calorie ratio under varying broiler 

management conditions. Lastly in Chapter 7, experiments were directed at first, 

quantifying metabolizable energy required for maintenance and tissue accretion, and 

second, to propose methodology for calculating the efficiencies of metabolizable energy 

use for protein and lipid tissue accretion. 
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CHAPTER II 
 

REVIEW OF LITERATURE 

ENERGY EVALUATION 

     Energy value of feedstuffs may be expressed in a variety of ways as illustrated in 

Figure 1.  Gross or combustible energy is certainly the simplest most straight forward 

measure, however from a nutritional perspective, gross energy offers little meaningful 

information relative to a feedstuffs energy value.  Gross energy minus the energy from 

the combustion of the feces yields digestible energy, which with the use of indigestible 

tracers, is also easily quantified in mammals.  In avian species however, digestible energy 

is difficult to attain as feces and urine are excreted together via the cloaca.  Conversely, 

because birds excrete feces and urine simultaneously, quantification of metabolizable 

energy (gross energy minus the energy excreted as feces and urine) is simplified. Overall, 

net energy offers the most accurate assessment of dietary energy available to an animal, 

as calories lost as heat due to maintenance of basal metabolism, activity, and production 

(i.e., tissue and eggs) are accounted.   

    Though net energy fully accounts for energetic inefficiencies, a net energy system is 

difficult to establish.  The difficulty lies not only with the experimental facilities and 

equipment (i.e., calorimetric chambers) required for net energy determination, but also 

with the practical application given the numerous factors that influence heat production 

such as tissue type synthesized (MacLeod, 1997), ambient temperature (Beker, 1996), as 
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well as rearing condition effects on broiler activity (Jensen, 1962; Ohtani and Leeson, 

2000; McKinney and Teeter, 2004).  As a consequence of these obstacles, and the fact 

that metabolizable energy can be rapidly and precisely determined (Sibbald, 1976; 

McNab and Blair, 1988) and adjusted to account for nitrogen excretion (8.22 kcal/g 

nitrogen retained; Hill and Anderson, 1958) and endogenous losses, metabolizable energy 

remains the standard measure for evaluating energy available for maintenance and 

production for poultry.  

 

BROILER MANANGEMENT 

     Flock managers face making broiler husbandry decisions daily.  Decisions that 

ultimately impact growth and the efficiency of feed utilization for maintenance and 

production. For example, feed processing techniques such as pelleting have been touted 

for beneficial effects on poultry performance (Acar et al., 1991; Scheideler, 1995; Moritz 

et al., 2001).  Likewise numerous managerial – husbandry decisions related to stocking 

density (Cravener et al., 1992; Puron et al., 1997), lighting program (Buyse et al., 1996; 

Ingram et al., 2000), and ventilation (Lott et al., 1998) are well known to impact BW and 

feed conversion ratio (FCR).  Though the precise mode of action by which such 

nonnutritive factors impact poultry performance is considered disjoint from nutrition in 

application, their use is critical to successful poultry production.  However, since growth 

rate and FCR are also related to nutrition, the traditional approach of separating 

nonnutritive factors that impact average daily gain and FCR from nutrition must be 

questioned. 
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PELLETING AS A NONNUTRITIVE INFLUENCING BROILER PERFORMANCE 

     A general definition of the pelleting process is “the agglomeration of small particles 

into larger particles by the means of a mechanical process in combination with moisture, 

heat, and pressure” (Falk, 1985).  Pelleting was introduced to the united states in the 

1930’s and today virtually all broiler and turkey feeds undergo this process.  In addition 

to growth performance benefits obtained by feeding pellets, pelleting improves feed 

handling characteristics (i.e. dustiness and flowability) and reduces the incidence of 

pathogenic organisms (Fairfield, 1994).  However, the most commonly touted advantages 

to pelleting is the growth and feed efficiency improvements realized (Acar et al., 1991; 

Scheideler, 1995; Moritz et al., 2001).    

     There has been much debate as to the mode of action by which broilers benefit from 

pelleting.  Initially, it was thought that via steam conditioning and extrusion of the feed 

through the pellet die, the integrity of the starch granules and proteins were disrupted in a 

manner that improved diet digestibility (Behnke, 1996).   This may indeed be an accurate 

conclusion with respect to swine (Hancock and Behnke, 2001).  However with poultry, 

the majority of evidence does not support any pelleting effects on protein or energy 

digestion (Husser and Roblble 1962; Bolton, 1960; Sibbald, 1977). 

     It was work reported by Jensen (1962) that brought forth the notion that pelleting 

enhances bird performance by reducing energy expenditure for prehension thereby 

yielding more energy available for tissue accretion. In this study (Jensen, 1962) birds 

were provided either mash or pellets and then observed for time spent feeding, number of 

times the feeder was visited, and feed disappearance.  It was reported that birds fed mash 
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spent approximately 14.3% of a 12 hour day eating verses 4.7% observed for birds fed 

pellets.    

     In accepting the premise that pelleting enhances bird performance by reducing activity 

energy expenditure, emphasis must be given to pellet quality.  Indeed, obtaining feeds 

where zero pellet breakage occurs is practically unattainable.  However several factors 

determine the amount of pellet breakage that takes place (Figure 2).  Within the feed mill, 

diet formulation, particle size of the mash, conditioning time and temperature, pellet die 

thickness, and cooling and drying time, contribute to pellet quality (Behnke, 1996). The 

proportion of intact pellets presented to the bird further depends on feed delivery systems 

on the trucks and within the broiler house (Scheideler, 1995).   

     Paramount among nutritional goals is the reasonable balance between dietary 

provision of nutrients and energy. However, numerous nonnutritive factors, such as those 

related to feed processing and general husbandry that modify broiler behavior (Skinner-

Noble, 2005), are generally not considered as variables directly influencing the desired 

ration formula.  This failure to account for variations in calories lost or spared due to 

broiler activity modification eventually has the net result of creating an uncertain ratio of 

ingested energy available for tissue accretion to dietary protein and other nutrients.  

 
 
PELLETING AND DIETARY LYSINE REQUIREMENT  

      In practical corn-soybean meal based broiler diets, methionine is considered first 

limiting followed by lysine, arginine, valine, and threonine (Han et al., 1992). However, 

lysine is the amino acid to which all others are proportionally related (Baker and Han, 

1994; Baker, 1997).  This is because lysine has no major precursor role and has been the 



 13 

subject of extensive evaluation under a wide range of dietary and environmental 

circumstances (Han and Baker, 1993; Emmert and Baker, 1997).  Furthermore, lysine is 

generally expressed in ratio with dietary caloric density, as dietary energy largely 

regulates voluntary consumption (Leeson et al., 1996; McKinney and Teeter, 2004).  By 

expressing dietary nutrients on a digestible basis, and in proportion to one another, 

nutritionists are better able to adjust nutrient specification in the face of changing 

nutritional needs (i.e., climate, sex) or feedstuff source, while maintaining an “ideal” 

balance of dietary amino acids and energy.   

     As lysine is viewed as a pivotal amino acid in broiler rations, recent work has focused 

on evaluating whether lysine need is influenced by pelleting (Greenwood et al., 2004a, 

2004b).  The basis for this stems from a report compiled by Jensen (1965), in which diets 

of sub-optimal lysine and protein levels were fed either as mash or pellets to broad 

breasted bronze turkeys.  It was concluded that pelleting exacerbated the lysine 

deficiency because pelleting enhanced the productive energy of the diet (Reddy et al., 

1962), thereby resulting in an energy-lysine imbalance.   

     This was re-evaluated by Greenwood et al. (2004) in an experiment of factorial 

design, where dietary lysine (0.85, 0.95, and 1.05%), caloric density (3,050 and 3,200 

kcal ME/kg diet), and feed form (mash verses pellets) were fed to broilers.  Greenwood et 

al. (2004) reported significantly higher body weight gain in broilers fed pellets and the 

highest level of protein.  It was concluded that pelleting provides more energy for weight 

gain (via reduced activity energy expenditure) thus increasing the need for lysine to 

support tissue accretion.   
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     Interestingly, feeding the low energy (3,050 kcal ME/kg diet) diet as pellets compared 

with the higher energy (3,200 kcal ME/kg diet) diet, fed as mash, resulted in similar 

growth performance.  One could surmise from this that birds do not differentiate between 

energy spared from reduced activity and energy provided in the diet.  If this is the case, 

activity energy expenditure should be considered in establishing nutrient:energy ratios. 

 
DUAL ENERGY X-RAY ABSORPTIOMETRY AS A METHOD FOR RAPIDLY 
DETERMINING BODY COMPOSITION IN POULTRY 
 
          Numerous methods exist for estimating the body composition of animals used in 

nutritional studies (Hendrick, 1983; Topel and Kauffman, 1988). Historically though, 

body composition assessment of poultry has been most often achieved by comparative 

slaughter.   This method is time consuming, difficult to apply to an entire growth curve, 

and requires bird destruction as well as the assumption that the composition of birds 

initially examined is the same as those incorporated into an experiment (Blaxter, 1967).   

     Advancements in dual energy x-ray absorptiometry (DEXA) have resulted in the 

availability of instruments that utilize a slit collimator coupled with multidetector array 

(fan beam x-ray pattern; Koo et al., 2004).   This decreases the time required to complete 

a scan, as compared with the pencil beam type instruments, without yielding accuracy or 

precision (Koo et al., 2004).   

    This has sparked interest in the use of DEXA technology as a non-invasive method for 

assessing body compositional responses to nutritional regimes in animals reared for 

consumption. Dual energy x-ray absorptiometry assesses body composition via 

algorithems that differentiate between the absorption of high (70 keV) and low (38 keV) 

energy x-rays (Mitchell et al., 1997; Kelly, 2004).  By relating this measure with x-ray 
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absorptive characteristics of pure tissues (Mitchell et al., 1997), fat and lean tissue mass 

can be estimated.  An example of information attained from scan analysis is shown in 

Figure 3.                

     A large body of data exists validating DEXA for accurately measuring soft tissues 

(lean and fat tissues) and bone mineral content in swine (Lukashi et al., 1999; Chauhan et 

al., 2003; and Koo et al., 2004), as piglets are use extensively as a model for human 

infant studies (Fiorotto et al., 1986).  However, little evidence is available verifying its 

use for poultry.    

     Chauhan et al. (2003) and Koo et al. (2004) reported DEXA as a method for 

accurately measuring bone mineral content and density in layers. However, an 

experiment conducted by Mitchell et al. (1997) is the only known evaluation of DEXA 

for quantifying lean and lipid tissues in poultry.  They found the technology to fall short 

of accurately assessing bird lean and lipid content, but did suggest that the technique may 

be applicable with software and or hardware modifications.  If DEXA technology is to be 

accepted as a method for estimating body composition in poultry research, more work is 

need proving its accuracy and precision. 
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Table 1. Reported estimates for efficiencies of metabolizable energy use for 
protein (kp) and fat (kf) tissue accretion  

Reference  kp  kf Species 
Kielanowski, 1965  0.70  0.79 Pigs 
Puller and Webster, 1977  0.45  0.74 Rats 
Boekholt et al., 1994  0.66  0.86 Poultry 
van Milgen and Noblet, 1999  0.51  0.92 Swine 
Sakomura, 2004  0.45  0.69 Poultry 
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ABSTRACT 

     Two experiments were conducted to validate and or refine methodologies for 

quantifying body composition in poultry.  In the first experiment, constants classically 

used to derive body composition in C and N balance studies were evaluated for 

application in poultry. In Experiment 2, the efficacy of using dual energy x-ray 

absorptiometry (DEXA) to rapidly assess body composition in poultry was examined.  In 

Experiment 1, broilers ranging in body weight from 1,660 to 2,240 g were sacrificed, and 

used for either measuring whole bird composition or determining the composition of the 

protein and lipid fractions.  In Experiment 2, broilers ranging in body weight from 280 to 

3,075 g were sacrificed, and DEXA measurements of lean, fat, and bone mineral content 

were obtained.  The birds were then chemically assayed to determine protein, lipid, and 

ash for comparison.  Results from Experiment 1 demonstrate that though poultry protein 

and lipid tissue do not greatly differ in composition compared to other species, the 

differences may significantly impact the assessment of body composition, and should 

therefore be considered as a source of error in C and N balance studies using poultry.  

Results from Experiment 2 demonstrate that DEXA measurements failed to accurately 

quantify the body composition of poultry when direct comparisons are made.  Instead, 

DEXA measurements must be applied to regression equations that inter-relate DEXA 

measurements with compositions obtained by chemical analysis.   

(Key words: carbon nitrogen balance, dual energy x-ray absorptometry, body 

composition, poultry) 
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INTRODUCTION 

     The principle goal of poultry producers is to consistently meet consumer demand for 

product taste and nutritional acceptability in a profitable manner.  Accomplishing this 

requires that the end product be defined and that the criteria for success be centered on 

obtaining that defined product, and not entirely on live performance characteristics.  As 

demonstrated by McKinney and Teeter (2004), body weight and FCR improvements 

obtained by increasing dietary caloric density did not in all cases equate into increased 

lean mass but rather greater amounts of carcass fat.  Assuming fat to be at some level a 

waste product undesirable to the consumer, production decisions based solely on body 

weight and FCR are potentially misguided. Therefore, nutritional, environmental, and 

managerial decision consequences on body composition must be quantified.   

     Though numerous methods exist for estimating the body composition of animals used 

in nutritional studies (Hendrick, 1983; Topel and Kauffman, 1988), comparative 

slaughter has historically been the method applied in experiments with poultry.  This 

methodology, however, is time consuming, difficult to apply to an entire growth curve, 

requires bird destruction, and the assumption that the composition of birds initially 

examined is the same as those incorporated into an experiment (Blaxter, 1967).  

However, according to work presented by Wolynetz and Sibbald (1987), the initial 

slaughter group may not be necessary for comparison purposes, which would result in a 

considerable reduction in the required resources.   

     Measures of C, N, and energy content of the feed and excreta, and CO2 production 

have also been used for assessing body composition in poultry (Farrel, 1974).   

Advantages of using C and N balance (CNB) as compared to comparative slaughter are 
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measurements of the same animal can be repeated over time, as animal sacrifice is not 

required, and that the importance of initial body composition uniformity is negated 

(Blaxter, 1967).  As outlined by Farrel (1974), there are assumptions associated with 

CNB: 1) that energy is retained only in the form of fat and protein tissue; 2) the 

composition of fat and protein are constant; and 3) poultry protein and lipid tissue are not 

significantly different in composition compared to other species.   

    Regarding the latter assumption, one would not expect sizable tissue compositional 

differences to exist between species. However, as CNB is already susceptible to 

analytical errors (Blaxter, 1967), examination of this assumption is warranted.  

Additionally, estimates for fat and protein tissue constituents are dated (Armsby, 1903; 

Blaxter and Rook, 1953; and Brouwer, 1965).   

          Advancements in dual energy x-ray absorptiometry (DEXA) have resulted in the 

availability of fan beam technology, which enables faster scan acquisition (Koo et al., 

2004). This has sparked interest in the use of DEXA technology as a non-invasive 

method for assessing body composition in experiments with animals reared for 

consumption.  A large body of data exists validating DEXA for accurately measuring soft 

tissues (lean and fat tissues) and bone mineral content in swine (Lukashi et al., 1999; 

Chauhan et al., 2003; and Koo et al., 2004) as piglets are used extensively as models for 

human infant studies (Fiorotto et al., 1986).  However, little evidence is available 

verifying DEXA use for poultry.    

     An experiment conducted by Mitchell et al. (1997) is the only known evaluation of 

DEXA for quantifying lean and lipid tissues in poultry.  They found the technology to fall 

short of accurately assessing bird lean and lipid content, but did suggest that the 
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technique may be applicable with software and or hardware modifications.  However, this 

conclusion was based on results of simple linear regression analysis.  Perhaps more 

sophisticated statistical models are needed.   

     Therefore, two experiments were conducted with the first directed at validating and/or 

refining estimations of protein and fat constituents with specificity to poultry.  In the 

second experiment, DEXA was evaluated for accuracy and precision in quantifying soft 

tissue (lean and fat tissue) and bone mineral content (BMC) in poultry.   

 

MATERIALS AND METHODS 

Experiment 1 – Validation and or refinement of constants for poultry tissue constituents  

     Twenty-four broilers ranging in body weight from 1,660 to 2,240 g were obtained 

commercially, fasted (24 h), and euthanized by carbon dioxide asphyxiation. After 

autoclaving (20 h; 11 psi; 116 °C), the birds were equilibrated to ambient temperature. 

Each bird was then homogenized (including feathers) with a commercial grade blender 

and samples of each homogenate were obtained and frozen (20°C) until analysis.   

Twelve of the samples were randomly selected and partitioned by ether extraction into 

protein and lipid factions for analysis of DM, N, ash, (AOAC, 1990) and C (Harjo, 1994).  

The remaining homogenates of the whole bird were analyzed for DM, ash, ether extract C 

and N (AOAC, 1990).  These samples were used to evaluate whether whole bird ether 

extract could be accurately estimated using the compositions of the protein and lipid 

fractions determined from the first 12 samples analyzed.  Equations used were as follows:   

(Eq. 1) TP = N x (1 / % N in P) 

(Eq. 2) PC = TP x % C in P  
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(Eq. 3) LC = TC – PC 

(Eq. 4) EE = LC / % C in L 

where: TP = total protein (g), P = pure protein (g), PC = carbon as protein (g), TC = total 

carbon (g), L = pure lipid (g), LC = carbon as lipid (g), and EE = estimated whole bird 

ether extract (%).      

Experiment 2 – Evaluation of DEXA for measuring body composition in poultry 

     All scans were obtained using a fan beam dual energy x-ray absorptiometer operated 

in the infant whole body mode.  Rat-scan software was used for scan analysis.  A total of 

35 broilers ranging in body weight from 280 to 3,075 g were obtained commercially, and 

fasted and euthanized as described in Experiment 1.  Previous work in this laboratory 

(unpublished) and that of Lukaski et al. (1999) demonstrated that animal positioning on 

the scanning surface does not impact scan results.  However, for consistency all birds 

were scanned individually (5 times) in a prostrate position with the long axis of the bird 

perpendicular to the length of the table.  After scanning the birds were immediately 

autoclaved and sampled for chemical analysis as previously described.  

Data Analysis 

     In both experiments, bird served as the experimental unit.  Regression analysis was 

used initially to compare DEXA measurements of body composition with those obtained 

by proximate analysis.  Subsequently the effectiveness of these developed regression 

models in relating DEXA results with measures obtained through proximate analysis 

were evaluated using General Linear Models of SAS (2000).     
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RESULTS AND DISCUSSION 

Experiment 1 – Validation and or refinement of constants for poultry tissue constituents  

     The C and N content of protein and lipid determined herein (Tables 1) were in close 

agreement with those values traditionally accepted (Armsby, 1903, Blaxter and Rook, 

1953 and Brouwer, 1965) and utilized in assessing body composition through CNB 

techniques.  For example, nitrogen as a percent of protein averaged 15.9 ± 0.06%, 

essentially matching that which is generally applied (16.0%) across numerous protein 

sources. Carbon as a proportion of protein and lipid was determined as 52.96 ± 0.14 and 

74.0 ± 1.4%, respectively.  The latter of which exhibited the most variability across 

samples measured and averaged slightly lower than the other constants evaluated (Table 

2).  Nonetheless, values determined herein for the C and N contents of protein and lipid 

resulted in the best overall estimation of whole bird ether extract when applied to 

equations 1 through 4 (Table 2).  In comparison, estimates obtained with protein and lipid 

C and protein N estimates of Armsby (1903) and Blaxter and Rook (1953) resulted in 

roughly an 8% overestimation of whole bird ether extract (Table 2; Figure 1).  Using 

constants proposed by Brower (1965), whole bird ether extract estimates were still 

inflated, but only slightly (approximately 2%).  As it was successfully demonstrated that 

whole bird ether extract could be accurately computed from the composition of protein 

and lipid determined from independent samples, this approach was accepted as a means 

for estimating whole bird ether extract.  Therefore, procedures were modified for 

Experiment 2 in that ether extract was estimated by determined C and N constants rather 

than AOAC (1990) methods.  However, for simplification, ether extract estimated in this 

manner may be referred to as fat determined by proximate analysis.      
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Experiment 2 – Evaluation of DEXA for measuring body composition in poultry 

     An example of a DEXA scan and the information that appears in the scan report is 

shown in Figure 2.  Note that lean tissue is not further subdivided in the report into its 

protein and water constituents.  Thus, in order to directly compare DEXA measurements 

from the report with values obtained from proximate analysis, actual bird water content 

must be determined.  To estimate this, the difference between the body weight of the bird 

and the sum of its protein, lipid, and ash (dry matter basis) were determined.  Bird protein 

and fat were then regressed on the estimated bird water content.  As indicated by the lack 

of a significance coefficient (Table 3), zero bird water content was associated with the 

lipid parameter.  This was expected as the water in adipose tissue is predominantly 

associated with its vasculature and connective tissues (Pitts et al., 1971; Digirolamo and 

Owens, 1976).  As a result, direct comparisons could be made between DEXA measures 

of lean, and the protein determined by chemical analysis plus the estimated bird water 

content (Figure 3).  However, this was done only to illustrate direct relationships.  Bird 

water content and protein were not coupled when developing regression models.   

     On the basis of simple linear regression, DEXA failed to accurately measure lipid and 

ash as determined by proximate analysis (Table 4), which agrees with conclusions 

reached by Mitchell et al. (1997).  Error associated with BMC as it relates to ash are most 

likely a consequence of the hollow bone structure of poultry, as programming software 

was developed for mammals (Kelly, 2004).  Additionally, BMC was not determined per 

se, rather the ash content of the whole body was measured.  This potentially explains the 

consistent under-estimation of DEXA measure of ash.          
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      In an attempt to correct for these errors, forward stepwise regression procedures 

(Neter, 1990) were used to develop more complex predictive models (Table 4), 

incorporating more parameters and their cross-products.  Indeed, with these equations, 

the accuracy in which DEXA measurements could be inter-related with chemically 

determined values increased markedly.  This was demonstrated through comparisons 

between DEXA measurements adjusted using these regression equations (αDEXA) and 

those obtained through chemical analysis (Table 5).  No significant (P > 0.05) differences 

were detected between predicted (αDEXA) and determined values for any of the 

variables monitored.  Additionally, the sum of αDEXA estimates of protein, lipid, water, 

and ash closely matched the body weights of the birds when they were initially scanned.     

     An inherent limitation of the proposed predictive models is the fact that the body 

weights of birds used in the experiment did to completely encompass the entire growth 

curve, depending on the end product desired (i.e., Cornish hen verses birds reared for 

breast meat).  As such, using these equations to estimate the body composition of birds 

weighing more than 3,000 grams requires extrapolating beyond the models inference 

base, which with polynomial equations particularly, leads to erroneous estimations of the 

dependent variable.   

     This limitation of the models was clearly observed in an effort to quantify broiler body 

compositions using DEXA in a study designed to compare broiler rearing conditions 

typically found in different parts of the world.  As part of this study, broilers were 

selected to represent body weights of approximately 500, 1,500, 2,500, and 3,500 grams.  

Application of the predictive equations to DEXA measurements appeared to work well 

(based on body weight accountability: the sum of the predicted body components vs. 
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gravimetric weight) in every case except for birds outside the inference base of the 

models.  For birds weighing more the 3,000 grams, the predicted protein and lipid (as a % 

of body weight) was greatly underestimated.  Concomitantly, predicted water content was 

largely exaggerated.  As drastic changes of this manner were viewed as physiologically 

infeasible, the only logical explanation was that the models were failing in this zone of 

body weights.   

     In pending data to expand the inference base of the models, equations were modified 

by first fitting, for each body composition measure, trend lines to data that fell within the 

scope of the original equations (Figure 5).  In assuming that these trend lines represent 

mid-points or bird population means, αDEXA estimates for protein, lipid, water, and ash 

were assigned to each trend line.  Subsequently, DEXA measures were regressed on these 

mid-points to modify the equations so as to encompass the entire growth curve (Table 6).  

Note, however, that variability among birds is attenuated with these modified equations 

and thus would only be of use when describing a population as was the case here (Figure 

6). 

     In conclusion, research reported herein has demonstrated that though 

poultry protein and lipid tissue may not appear to differ significantly in composition 

compared to other species, these differences significantly impact the assessment of body 

composition and should therefore be considered as a source of error in C and N balance 

studies with poultry.  Furthermore, DEXA technology can be used to rapidly assess body 

composition in poultry, however, not directly.  For this technology to be of value, 

regression equations inter-relating DEXA measurements of BMC, and lean and lipid 

tissue, with PA determined protein, ether extract, ash, and water content are required.   
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Table 1. Carbon and nitrogen concentrations in the whole carcass and protein and lipid factions of broilers 
 Sample number     
Faction1, % 1 2 3 4 5 6 7 8 9 10 11 12  Mean  SEM 
Total                 

Carbon 61.0 58.8 61.1 60.6 61.2 58.5 58.5 59.2 60.1 59.3 57.0 57.5  59.4  0.41 
Nitrogen 10.9 12.4 11.0 10.8 9.6 10.2 10.3 10.0 9.6 9.9 10.0 11.3  10.5  0.24 

Protein                  
Carbon 52.9 53.4 52.9 52.5 53.6 52.6 52.2 53.6 52.5 53.5 52.7 53.3  52.9  0.14 
Nitrogen 15.5 15.9 15.9 15.7 16.0 15.7 15.6 16.3 16.0 15.9 15.9 15.8  15.9  0.06 

Ether Extract2                 
Carbon 80.0 79.9 79.5 78.9 74.3 70.6 71.6 69.9 72.9 71.0 65.3 68.9  74.0  1.4 

1Dried, ash-free basis. 
2Nitrogen averaged 0.2 percent. 
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Table 2. Ether extract predicted from protein and lipid tissue carbon and nitrogen concentrations  
  % 
 
Reference 

  
Tissue 

  
Carbon 

  
Nitrogen 

 Predicted ether 
extract1 

 Predicted ether 
extract error2 

Armbsy, 1903  Protein  52.5  16.7 
  Lipid  76.5  –  

 
24.7  

 
8.62a 

Blaxter and Rook, 1953  Protein  51.2  16.0 
  Lipid  74.8  –  

 
24.5  

 
7.94a 

Brouwer, 1965  Protein  52.0  16.0 
  Lipid  76.7  –  

 
23.3  

 
2.19b 

Present experiment  Protein  52.9  15.9   
  Lipid  74.0  –  

 
22.8  

 
  0.01b 

a,bMeans within a column with different superscripts differ (P < 0.05). 
1Calculated as: total carbon – (protein x protein carbon) / lipid carbon). 
1Ether extract (EE) determined by proximate analysis (AOAC, 1990) was 22.8 percent. 
2Calculated as: ((EE determined by proximate analysis – EE predicted) / EE determined by proximate analysis) x 100. 
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Table 3. Regression equation of water content (W) on protein (P)  
and lipid (L) in whole bird carcasses (W = a + b P + c L) 
Parameter  Coefficient  Standard error  Probability 

a  78.23313  18.45308  0.0002 
b  3.41462  0.20961  < 0.0001 
c  -0.00639  0.21166  0.9761 
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Table 4. Regression equation coefficients relating dual energy x-ray absorptiometry (DEXA) measurements with proximate analysis values  
 DEXA variables 
Dependent variable Intercept Lean Lipid Lean2 Lipid2 Lean x Lipid Lean2 x Lipid2 R2, % 
Protein1, g -8.90481+ 0.21571**      96.91 

 -11.13536** 0.18779** 0.15961**     99.42 
 -15.14152** 0.19686** 0.15655** -2.99e-6    99.43 
 -15.15759** 0.2024** 0.11615** -4.0e-6* 4.494e-5*   99.44 
 -15.14395** 0.20176** 0.12014** 3.5e-6 4.909e-5+ 4.07e-6  99.44 
 -10.9351**4 0.2019** -7.42e-3 7.0e-6* 1.5831e-4** 9.223e-5** -4.4712e-11** 99.49 

Lipid2, g Intercept Lipid Lean Lipid2 Lean2 Lean x Lipid Lean2 x Lipid2  
 102.47233** 0.60302**      58.54 
 -44.29583** 0.21388** 0.17341**     96.27 
 -39.60899** 0.07553 0.18212** 1.5789e-4    96.42 
 -12.03683 0.14717** 0.11281** 1.0157e-4+ 2.184e-5**   96.75 
 -11.97534 0.16515** 0.10993** 1.2025e-4+ 2.409e-5** 1.835e-5  96.76 
 -4.945664 -0.04790 0.11017** 3.0268e-4** 1.825e-5** 1.4249e-4* -7.4679e-11** 96.88 

Ash3, g Intercept BMC Lean Lipid Lean x BMC Lipid x BMC Lean x Lipid  
 7.2132** 1.29866**      82.64 
 -0.46329 0.42645** 0.02246*     99.02 
 -0.24389 0.30121** 0.02344** 7.24-3*    99.05 
 -1.59568** 0.383** 0.02479** 7.61e-3** -5.672e-5**   99.10 
 -2.17225** 0.43985** 0.02713** 8.57e-3 -1.2359e-4** 3.0354e-4**  99.15 
 -1.64751**4 0.16682+ 0.02813** 0.01159 -5.8e-6 5.1384e-4** 1.634e-5** 99.20 

Water3, g Intercept Lean Lipid Lean2 Lipid2 Lean x Lipid Lean2 x Lipid2  
 41.99924** 0.73998**      97.06 
 34.0781** 0.64084** 0.5668**     99.76 
 18.63859* 0.6758** 0.55503** -1.153e-5**    99.76 
 18.65469* 0.67025** 0.5955** -1.052e-5* -4.501e-5   99.76 
 18.66013* 0.66999** 0.5971** -1.032e-5+ -4.3366e-5 -1.62e-6  99.76 
 8.330594 0.66965** 0.91016** -1.76e-6 -3.1142e-4** -2.3796e-4** 1.09734e-11** 99.79 

1Calculated as: nitrogen × 6.29. 
2Calculated as: ((EE determined by proximate analysis – EE predicted) / EE determined by proximate analysis) x 100. 
3Determined using AOAC (1990) procedures. 
2Equation used to adjust DEXA measurements to proximate analysis data. 
+Significant (P < 0.1). 
* Significant (P < 0.05). 
** Significant (P < .01).
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Table 5. Comparison of adjusted dual energy x-ray absorptiometry (αDEXA) and proximate analysis measurements of total broiler protein, fat,  
ash, water, and body weight1,2,3 

  Total body constituents, g 
  Protein  Fat  Ash  Water  Body Weight 

Weight class  PA4  αDEXA  PA5  αDEXA  PA6  αDEXA  PA6  αDEXA  Scale  αDEXA 
A  56  59  30  33  9  9  245  241  341  343 
B  191  195  134  135  29  30  769  767  1,231  1,227 
C  414  411  334  337  60  59  1,468  1,476  2,289  2,283 
D  517  515  453  458  74  74  1,841  1,840  2,902  2,886 

  Probability 
Source of variation  Protein  Fat  Ash  Water  Body Weight 
Weight class  < 0.001  < 0.001   < 0.001  < 0.001  < 0.001 
Method  NS  NS  NS  NS  NS 

   Weight class x method NS  NS  NS  NS  NS 
Pooled SEM7  0.14  0.17  0.14  0.13  0.14 

1 Adjusted using regression equations relating DEXA measurements with proximate analysis results. 
2Log transformations of the data were performed for statistical analysis. 
3Reported values are the anti-log of the resultant least square means. 
4Calculated as: nitrogen × 6.29 based on Experiment 1 results. 
5Calculated as: ((EE determined by proximate analysis – EE predicted) / EE determined by proximate analysis) x 100. 
6Determined using AOAC (1990) procedures. 
7Based on analysis of log transformed data. 
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Table 6. Proposed equation coefficients relating dual energy x-ray absorptiometry (DEXA) measurements with proximate analysis values for broilers weighing 
more than 3000 grams  
 DEXA variables 
Dependent variable1 Intercept BMC Lipid Lean Lipid2 Lean2 Lean x Lipid Fat x BMC Lean x BMC Lean2 x Lipid2 

Protein -6.13349* – 0.1119* 0.18308* 3.567e-5* 3.7e-6* 4.728e-5* – – -1.252e-11* 
Lipid -5.6813* – 0.03129* 0.10041* 6.536e-5* 2.336e-5* 9.6e-5* – – -1.2042e-11* 
Water 5.79504* – 0.76994* 0.68501* -3.797e-5* -1.373e-5* -1.5077e-4* – – 2.43437e-11* 
Ash -1.6675* 0.01579 0.02434* 0.02658* – – 1.44e-6 -2.54e-6 -3.95e-6* – 

1Determined by trend-line analysis of adjusted dual energy x-ray absorptiometry measurements (αDEXA).  
*Significant (P < 0.05). 
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ABSTRACT 

Two experiments were conducted with male broilers to establish a methodology for 

predicting effective caloric value (ECV), defined as dietary caloric density (CD) 

necessary for broilers to achieve specific body weight (BW) and feed conversion ratio 

(FCR) combinations under standardized conditions, and to quantify the ECV attributable 

to pellet quality (PQ), defined as the pellet to pellet fines ratio in the feeder.  In 

Experiment 1, chicks were reared to 56 d on diets varying in CD.  Dietary caloric 

densities examined ranged from 2,650 to 3,250 kcal MEn/kg.  Pen BW, feed intake, and 

FCR were measured at 21, 42, and 56 d.  On 42 and 56 d, carcass traits were measured.  

Increasing CD significantly enhanced BW, energy consumption, and FCR.  Feed intake 

remained similar across the upper three CD treatments to 42 days.  By day 56, feed 

consumption tended to decline as CD increased.  Increasing CD beyond 3,066 kcal 

MEn/kg diet did not increase lean tissue accretion, while fat deposition rose 

disproportionately.  Experiment 1 results enabled creation of equations whereby CD, 

hence ECV, might be predicted using BW and FCR.  In Experiment 2, 38-d old broilers 

were used to evaluate PQ effects on growth, feed intake, FCR, and behavior in a 7-d FCR 

assay.  The BW gain and FCR were significantly enhanced by pelleting and were 

positively correlated with PQ.  Feed intake was not affected by PQ.  The Experiment 1 

model was validated for Experiment 2, as it closely estimated the CD for diets of similar 

PQ used in Experiment 1.  Results suggest pelleting contributes 187 kcal ECV to the diet 

at 100% PQ and that the ECV declines curvilinearly as PQ falls.  Birds were observed 

eating less and resting more as PQ increased, suggesting that ECV of pelleting is 

mediated by energy expenditure for activity.  These studies provide a method for 
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estimating ECV of nonnutritive factors that impact BW and/or FCR.  Further, application 

reveals potential for creation of formulation “dead zones” whereby dietary changes to 

enhance CD may be offset due to reduced ECV. 

(Key words: Pelleting, energy, behavior, effective caloric value, broiler performance) 

 

INTRODUCTION 

 Numerous nonnutritive factors, such as those related to feed processing and 

general husbandry, are well documented throughout the literature to impact bird 

performance.  For example, feed processing techniques such as pelleting have been 

touted for beneficial effects on poultry performance (Acar et al., 1991; Scheideler, 1995; 

Moritz et al., 2001).  Likewise numerous managerial – husbandry decisions related to 

stocking density (Cravener et al., 1992; Puron et al., 1997), lighting program (Buyse et 

al., 1996; Ingram et al., 2000), and ventilation (Lott et al., 1998) are well known to 

impact BW and FCR. Though the precise mode of action by which such nonnutritive 

factors impact poultry performance is considered disjoint from nutrition in application, 

their use is critical to successful poultry production.  However, since growth rate and 

FCR are also related to nutrition, the traditional approach of separating nonnutritive 

factors that impact average daily gain and FCR from nutrition must be questioned.   

 Bird energy retention is the net result of energy inputs minus expenditures as 

excreta and heat.  The importance of excreta energy to retention is reduced when inputs 

are measured as MEn.  Though the basic precept of ration formulation programs is that 

MEn values are generally independent of, for example, bird sex and age, its utilization for 

retention is reduced when heat production is elevated.  Bird heat production is influenced 
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by a myriad of factors including ration composition and tissue type synthesized 

(MacLeod, 1997), intermittent lighting (Ohtani and Leeson, 2000), and activity among 

others.  Indeed, energy expenditure for activity has been suggested to be influenced by 

nonnutritive factors as feed processing (Jensen et al, 1962) and lighting (Ohtani and 

Leeson, 2000).  Failure to account for variations in heat production, regardless of source, 

eventually has the net result of creating an uncertain ratio of ingested MEn calories 

available for tissue accretion to dietary protein and other nutrients.  The amount of 

dietary MEn available to promote BW and FCR is hereby defined as the effective caloric 

value (ECV) of MEn.  Under fixed experimental conditions, where nonnutritive factors 

impacting heat production are held constant, varying the calorie to protein ratio impacts 

BW and FCR (Sizemore and Siegel, 1993; Leeson et al., 1996; MacLeod, 1997).  One 

might conversely anticipate that experimental variation of nonnutritive factors, with 

ration formulation held constant and BW and/or FCR changing, would be better 

expressed as a variant of MEn that more closely represents feeding value as ability to 

achieve a specified BW and FCR.   

The improved BW and FCR performance associated with processed feeds is an 

example of a nonnutritive factor impacting the ECV of the diet fed.  Such results are 

presumably attributable to either enhanced feed value and/or a reduced nutrient need by 

the animal, whereby the net result is more efficient tissue accretion.  Regarding this latter 

point, previous reports examining pelleting effects on energy digestibility indicate that 

either pelleting does not impact nutrient bioavailabililty (Bolton, 1960; Sibbald, 1977) or 

that the positive impact response upon nutrient bioavailabililty (Hussar and Robblee, 

1962) is relatively small compared to bird response.  Processing may also alter nutrient 
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need of the bird by reducing energy expenditure associated with feed consumption 

(Jensen et al., 1962).  Though the true value of processing may be due to a combination 

of variables, methodology is desirable whereby the ECV of such nonnutritive alterations 

may be estimated and taken advantage of in other segments of the production cycle. 

 Nonnutritive factors encountered in the production enterprise, that are well known 

to impact BW and/or FCR, are generally not considered as variables (with exception of 

season and feed cost) directly influencing desired ration formula.  This approach, 

however, is presumably attributable to a lack of methodology enabling value 

quantification.  Nonetheless, the majority of poultry rations utilized today undergo some 

type of post-mixing processing, and production manuals (Cobb Vantress, 2003) contain 

many managerial-husbandry recommendations that impact BW and FCR in a manner that 

“takes away” or “adds to” consumed energy value.  Methodology is needed to place 

caloric values on such relationships so that diets may be appropriately adjusted.  Short of 

a net energy system development, this methodology should enable the general accounting 

of nonnutritive factor influence upon the ECV of MEn under standardized conditions.  

Therefore, studies were conducted to develop a generalized growth and FCR relationship 

with dietary MEn under standardized conditions and, further, to apply the methodology to 

examine the benefits and/or consequence of varying pellet quality as a nonnutritive 

variable. 

MATERIALS AND METHODS 

General 

Two studies were conducted, with the first directed at establishing mathematical 

relationships between dietary caloric density, expressed as MEn, with broiler growth and 
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FCR under fixed managerial conditions.  This enabled the prediction of MEn (expressed 

as ECV), from bird BW and FCR combinations as ECV.  In the second study, the 

approach was used to estimate the ECV of diets with varying feed forms.  Both studies 

utilized Cobb 500 male broilers that were obtained at hatching from a commercial 

hatchery.  Floor pens utilized were equipped with two cylinder-shaped gravity feeders, 

nipple drinkers, and used litter (wood shavings) that was top-dressed with fresh litter.  

Stocking density in the floor pens was 40 birds per pen providing 0.03 m3 of floor space 

per bird.  Cages used for Experiment 2 were elevated (1.2 m) and constructed of plastic-

coated-wire (46 x 60 x 60 cm).  Birds were housed individually, and each cage was 

equipped with a stainless steel feeder and a nipple drinker.  Unless stated, dietary nutrient 

concentrations met or exceeded those levels recommended by the National Research 

Council (1994), and feed and water were provided for ad libitum consumption. 

 

Definition of Energy-Growth Relationships  (Experiment 1) 

Experiment 1 was designed to develop mathematical models describing 

relationships among CD, BW, and FCR of broilers.  Additionally, dietary CD influences 

on carcass weight, dry matter, specific gravity, and composition were examined.  One-

day-old broilers (1,440 total) were allotted to 36 floors pens (40 birds/pen), which were 

sectioned into 9 blocks (based upon location within the floor pen house) of 4 pens per 

block.  Experimental diets (Table 1) were formulated to 4 CD within each of the starter 

(0-21 d), grower (21-42 d), and finisher phases (42-56 d) while protein concentrations 

were adjusted maintaining a constant calorie:protein ratio across diets within feeding 

phases.  Starter diets were fed as mash, while grower and finisher diets were pelleted.  
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The dietary CD (MEn, kcal/kg diet) examined are presented in Table 1. Treatments were 

randomly assigned to pens within block, and pen BW, feed consumption, and FCR (g 

feed/g gain corrected for mortality by adding the BW of dead birds) were measured at 21, 

42, and 56 d of age.  Following 42 and 56 d of age, two and three birds, respectively, 

from each pen were randomly selected to determine dressing percentage, carcass specific 

gravity, abdominal fat weight, and breast weight (Belay and Teeter, 1994).  Carcass 

specific gravity and dry matter results were then applied to predictive equations proposed 

by Wiernusz et al. (1999) to estimated carcass fat, protein, and ash. 

 

Evaluation of pellet quality influences (Experiment 2) 

Experiment 2 was conducted to independently test Experiment 1 methodology for 

ability to predict CD and to quantify PQ (defined as the ratio of pellets to pellet fines in 

the feeder) effects on growth, feed consumption, FCR, ECV, and activity of broilers.  

Broilers were reared to 31 days of age in floor pens on standard starter and grower diets, 

fed as mash (Skinner-Noble et al., 2002).  On day 31, 192 broilers were transferred to 

cages and for 7-d adapted to cages and pellet treatments to be tested (Jensen et al., 1962).  

Subsequently, feeders were emptied and fresh treatments added.  The WG gain, feed 

consumption, and FCR were measured from 38 to 45 days of age.  Treatments were 

derived from a pelleted diet (Table 2) that was screened (0.3 cm sieve).  Ration samples 

were collected for protein (N × 6.25) and carbon analysis. For each feeder, resultant 

pellet fines were re-blended with the pellets to form the designated pellet:fines ratio.  

Treatments were: 100) 100% pellets; 80) 80% pellets:20% pellet fines; 60) 60% 

pellets:40% pellet fines; 40) 40% pellets:60% pellet fines; and 20) 20% pellets:80% 
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pellet fines.  Unprocessed mash (M) was included as a treatment to serve as a negative 

control representing unprocessed feeds.  During the experiment, scan sample behavior 

observations (Skinner-Noble et al., 2001; 2003) were conducted so as to quantify PQ 

effects on ingestive and resting behaviors.  Birds were observed at 1000 and 1400 h on 3 

different days of the 7 d FCR test.  During these observations, the observer passed by 

each cage 10 times within 45 minutes.  At the conclusion of the experiment, all remaining 

feed in each feeder was sieved and the actual consumption of pellets and pellet fines were 

estimated by difference such that any potential preferential consumption of pellets or 

pellet fines could be identified.  The experiment 1 model was used to transform the 

second study BW and FCR responses, attributable to PQ, into ECV.   

Data Analyses 

For the studies, pen (Experiment1) and cage (Experiment 2) served as the 

experimental unit.  Data were analyzed using General Linear Models of SAS (2000), with 

probability values of P < 0.05 considered significant.  Actual P-values are noted and not 

considered significant if 0.05 < P < 0.10. When a significant F-statistic was detected, 

least square means were used for treatment comparisons.  Experiment 1 was designed and 

analyzed as a randomized complete block with pen location within house serving as the 

blocking factor.  Multiple regression coefficients for predicting dietary CD (Experiment 

1) were as follows:  first, BW and feed consumption were regressed upon bird age to 

enable prediction of these values for each day of the study; second, daily weight gain and 

feed consumption were computed as the difference between dayx and dayx+1; third, daily 

FCR was computed; fourth, bird daily performance values (BW, FCR) were regressed 

upon CD.  The resulting regression equations predicted CD from BW and FCR.  Model 
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selection was based on forward stepwise regression (Neter et al., 1990).  Factors were 

added to the regression model until three conditions were met: 1) adding factors to the 

model did not result in a substantial (R2 improvement < 2 %) increase in the model R2; 2) 

all factors in the model were significant at P < 0.10; and 3) the resulting model matched 

known properties of the independent variables (e.g., BW increases cubically, whereas 

FCR increases quadratically).  Experiment 2 was designed and analyzed as a completely 

randomized experimental design.  Experiment 1 equation predicting CD from BW and 

FCR was applied to PQ data in order that the ECV attributable to PQ might be estimated 

for each replicate.  Treatment means were separated as described for Experiment 1. 

 

RESULTS AND DISCUSSION 

Experiment 1. Definition of Energy-Growth Relationships 

The CD effects on body weight, feed and energy consumption, and FCR (total 

feed/BW) are shown in Table 3.  Results of CD effects on carcass traits are presented in 

Table 4.  Each CD increase resulted in greater (P < 0.02) 21 and 42-d BW.  Though 

increasing CD continued to result in greater 56-d BW, only the upper (Treatments C and 

D) and lower (Treatment A and B) pairs of CD treatments differed (P < 0.05).  Increasing 

the CD of the diet also resulted in prominent FCR differences (P < 0.001).  At both 42 

and 56 days of age, FCR was reduced with each CD increase.  Feed consumption 

remained similar across Treatments B, C, and D through 42 days of age.  At that point, 

only birds fed the lowest CD responded by increasing (P < 0.01) feed intake.  By day 56, 

feed consumption for birds fed Treatment B did not differ (P < 0.06) from Treatment A 

birds.  Also, there was a prevalent feed intake decline as diet CD increased.  This 
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response supports the dogma that birds eat to fulfill energy need (Rice and Botsford, 

1956; Moreng and Avens, 1985).  However, such a governing effect was less notable at 

higher CD, as energy consumption increased quadratically (P < 0.001) with CD.  Birds 

fed Treatment C consumed similar total energy (0-56 d) compared to birds fed 

Treatments A (P < 0.07) and B (P < 0.07).  Moreover, birds fed the diet with 3,250 kcal 

MEn / kg diet (Treatment D) had similar (P < 0.09) energy intakes as birds fed Treatment 

C. 

Indeed, increasing CD positively influenced both BW and FCR.  However, 

attention must also be given to the final sellable product.  Assuming that fat is a product 

of minimal value compared to lean tissue, increasing CD would only be of benefit if lean 

mass also increased.  Such was true as CD increased from 2,700 to 3,066 kcal MEn / kg 

diet.  Feeding Treatment C resulted in greater (P < 0.01) carcass weights, dressing 

percentages, breast mass, and carcass protein, compared to the lowest CD treatment, with 

intermediate responses observed for Treatment B.  Though abdominal fat appeared to 

increase with CD, carcass fat was similar for Treatments A, B, and C.  Fate of energy 

consumed shifted, however, when CD exceeded 3,066 kcal MEn/kg, providing additional 

energy failed to result in greater breast percent, breast mass, or carcass protein.  At that 

point, lean tissue accretion plateaued.  Conversely, feeding the diet with 3,250 kcal 

MEn/kg diet resulted in disproportionate increases of abdominal fat and carcass lipid.  

The observed plateau of lean tissue accretion as CD increased suggests that if adequate 

nutrients are available to the bird, maximal lean tissue accretion is genetically 

predetermined.  Nonetheless, increasing CD resulted in heavier more efficient birds even 

though gains for the highest CD were principally fat.  The data indicate that providing 



 60 

energy in excess to that required for lean tissue accretion will improve FCR, but does so 

without elevation in sellable lean mass.  Consequently, the improved FCR presumably 

occurs as a dilution of maintenance energy needs in proportion to energy consumption 

and not water content associated with lean accretion. 

The negative impact of increasing BW on FCR was apparent and presumably the 

result of increasing energy need for maintenance and lipid deposition as BW increases.  

Therefore, the influence of CD on FCR is not disjoint from BW.  Hence, BW and CD 

were collectively used in modeling FCR.  Resulting regression equations are presented in 

Table 5.  Linear, quadratic, and interactive combinations of BW and FCR were regressed 

on CD to create equations enabling CD prediction.  The best equations utilized interactive 

BW and FCR components.  The selected regression equations demonstrating the 

interrelationships among CD, BW, and FCR are illustrated as 3-dimensional plots 

(Figures 1 and 2).  In Figure 1, FCR is expressed cumulatively (CFCR) based on 

predicted cumulative feed consumption and BW relationships throughout the experiment.  

The second approach (Figure 2) created a more dynamic model by expressing BW and 

CD values in relation to FCR utilizing predicted daily feed intake / predicted daily BW 

gain (DFCR).  Though both approaches have acceptable R2 (0.88 to 0.98), it is 

anticipated that equations based upon daily values will more accurately estimate CD 

values in settings where only segments of the growth curve are utilized, as in Experiment 

2.  For that reason, values obtained from DFCR values will be used hereafter.   

Experiment 2. Evaluation of pellet quality influences 

Results will be discussed first as PQ effects on broiler feed consumption, BW 

gain, and FCR (feed intake / weight gain; Table 6).  Secondly, results will be discussed as 
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PQ caloric consequences on ECV (Table 7, Figure 3) as modeled from Experiment 1, and 

PQ effects on broiler behavior (Table 6, Figure 3). 

     Neither pelleting nor PQ significantly impacted feed consumption (Table 6; P = 0.5).  

There was a numerical elevation in feed intake for birds that were fed pelleted treatments, 

compared to M, which agrees with other studies (Choi et al., 1986; Nir and Hillel, 1995).  

Though feed consumption did not appear to be associated with PQ, birds did selectively 

consume pellets over pellet fines in some treatments.  For example, birds offered a 

combination of 80% pellets and 20% pellet fines consumed (on average) 87% pellets and 

13% pellet fines.  This preferential consumption of pellets over pellet fines was 

dependent upon the ratio of pellets to pellet fines in the feeder.  As the proportion of 

pellet fines increased and pellets decreased, either the preference for pellets or the ability 

to select pellets diminished and was not present for birds fed 20 % pellets.  At that point, 

birds consumed the pellet:fines ratio provided. 

When pellet treatments (from 20 to 80% pellets) were pooled and compared with 

M, pelleting increased (P < 0.01) BW gain 6% and improved (P < 0.05) FCR by 5%.  

The birds that received 100% pellets were excluded from the comparison so as to avoid 

inflating pelleting effects with a practically unattainable PQ.  Other comparisons made 

between pellets and M have resulted in similar BW gain and FCR (Choi et al., 1986; Nir 

and Hillel, 1995; Plavnik et al., 1997) improvements. 

The treatments significantly influenced weight gain (P < 0.001) and FCR (P < 

0.01; Table 6).  Responses to PQ appeared to be biphasic with an intermediate plateau in 

the 40 to 60% PQ range (Figure 3).  This finding suggests there is little need to improve 

PQ above 40%, unless it will also be in excess of 60%.  Keep in mind, however, that 
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birds will selectively consume pellets if possible.    As a consequence, the proportion of 

pellets and pellet fines consumed could vary markedly from bird to bird.  At the onset of 

the experiment the question posed was, at what pellet quality (if any) are growth 

performance benefits of pelleting lost?  In other words, if a certain pellet quality is not 

achieved, is there any bird related advantage of pelleting as compared to feeding mash?  

Statistically, these data indicate that at 40% PQ and above, pelleting results in enhanced 

BW gain (P < 0.05) and FCR (P < 0.07), compared to a diet fed as M. 

From Experiment 1, using CFCR in the model resulted in an equation better 

predicting diet CD (Table 5; P < 0.0001; R2 = 0.98) compared to DFCR values (P < 

0.0001; R2 = 0.88).  However, Experiment 2 was conducted for a relatively short interval 

of the latter stages of the growth curve.  As such, using CFCR would dilute PQ effects.  

Therefore, daily values (DFCR) were used to increase the precision of estimating ECV 

for PQ.  Across all Experiment 1 diets, the proportion of pellets to pellet fines in the 

feeder averaged 50 %.  This average value was used to test the CD predictive equation 

derived from Experiment 1 for applicability in Experiment 2.  This test involved 

predicting the CD of the average of the 40 and 60% PQ diets from Experiment 2 to 

simulate the 50 ± 10% PQ of Experiment 1 diets.  The model predicted 3,225 kcal MEn / 

kg diet, which exactly matched the calculated energy concentration of the diet (3,225 kcal 

MEn).  Consequently, the CD predictive equation was accepted as a methodology for 

estimating the ECV associated with PQ in Experiment 2 because of this confirmation 

from independent experiments.  As such, Experiment 2 BW and DFCR were transformed 

into CD and then examined as deviations from the M so as to produce an estimate of the 

kcal MEn /kg added to the M via pelleting. 
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The ECV of pelleting and pellet quality are displayed in Figure 3.  As PQ 

increased, the apparent ECV of the diet became greater.  Energy sparing attributable to 

pelleting peaked at 187 kcal MEn/kg feed consumed for the 100% PQ treatment.  The 

estimated energy sparing values diminish as the proportion of pellets to fines decreases, 

but still appears greater than zero for the 20% pellets (76 kcal MEn / kg diet; Table 7).   

Considering proposed modes of action suggests that as pellet quality increases, either the 

bird expends less energy for consumption or the bioavailabililty of nutrients and/or 

energy increases.  Regarding this latter point, previous reports examining pelleting effects 

on energy digestibility indicate that pelleting does not impact nutrient bioavailabililty 

(Bolton, 1960; Hussar and Robblee, 1962; Sibbald, 1977).  In support of pelleted feeds 

modulating bird energy expenditure, Jensen et al. (1962) observed that birds provided 

pellets as compared to mash visited the feeder less frequently and spent less time at the 

feeder, while consuming similar amounts of feed.  Behavior observations of the current 

study (Table 6, Figure 3) concur.  As the proportion of pellets in the feeder increased, 

birds were observed eating less frequently (P < 0.001) and resting more (P < 0.001) 

frequently.  Interestingly, plotting bird resting frequency and calories attributable to PQ 

on the same graph resulted in curves of very similar shapes.  Given that feed intake did 

not differ across treatments, and that as pellet quality increased birds spent less time 

eating, the concept that BW gain and FCR differences are associated with altered nutrient 

need via decreased energy expenditure for obtaining food is supported.  A consequence 

of reducing energy costs associated with the activity of feed consumption by pelleting or 

increasing PQ would allow the diverting of calories to tissue accretion (Jensen et al., 

1962; Reddy et al., 1962).  Credence for this proposed mechanism is the supporting 
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evidence that the M and pellet rations were similar for carbon (P = 0.50) and nitrogen 

content (P = 0.30) suggesting that treatment differences, attributable to blending, would 

indeed be due to feed form.   

Final quality of the processed feed is the result of numerous factors influencing 

the feed form actually presented to the bird for consumption.  With pelleted feeds, it is 

the percentage of intact pellets at the feeder and not the feed mill that determines 

processing efficacy.  Fundamentally, pellet integrity is affected by diet formulation, plant 

operation, and feed handling during transport and delivery (Behnke, 1996).  Of these, diet 

formulation is paramount.  The ingredients used and their inclusion levels markedly 

influence the overall pellet integrity of the final product (Richardson and Day, 1976; 

Briggs et al., 1999).  As such, interactions between ration composition and pellet quality 

may have counteractive effects with respect to bird performance.  Though increasing 

dietary fat positively impacts feed efficiency (Leeson et al., 1996), when fat is added 

prior to pelleting it also reduces pellet quality (Richardson and Day, 1976, Behnke, 1996, 

Briggs et al., 1999).   

Producers may face the expense of increasing CD by fat supplementation only to 

have it partially negated by feed form deterioration prior to bird consumption.  Under 

circumstances where low quality fats are utilized, fat addition could eliminate the ECV.  

Formulation “dead zones”, whereby the addition of fat does not result in the addition of 

calories due to pellet quality degradation is possible.  To ascertain the net caloric value 

(energy attributable to fat inclusion minus energy lost due to pellet degradation) of fat 

fortified-pelleted diets, both the caloric gain attributable to fat supplementation and the 

ECV (Table 8) of altered pellet quality must be considered. 
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  Ideally, decisions regarding diet formula for broiler production settings would be 

interactive with the numerous managerial decisions impacting the nutrient and energy 

input/output balance.  As noted from the studies reported herein, elevating CD enhances 

energy intake, bird accretion and FCR.  However, the CD response does not necessarily 

improve lean tissue production.  Though FCR improved with CD, it can do so via 

elevated lipid accretion independently of lean tissue.  Consequently, the desired carcass 

composition should be first defined and birds fed to that outcome, rather than FCR.  

Similar to CD changes, nonnutritive factor manipulations such as alteration in PQ, impact 

BW gain and FCR.  The data suggests that the PQ differences on bird performance are 

strongly related to a reduced bird activity with results approaching an ECV of 187 kcal 

MEn/ kg diet.  As a consequence, formula alterations should be coupled with their impact 

on PQ so that the ECV value is optimized.  Indeed, the impact of such factors may occur 

independently of caloric value, measured as MEn, and their “takes away” or “adds to” 

impact on activity energy expenditures divergently impact BW and/or FCR.  Application 

of the ECV equations provided estimates for the nonnutritive variable impact examined 

herein.  In conclusion, ECV offers the opportunity to place quantitative energy value 

upon non-nutritive factors influencing broiler production efficiency.   
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Table 1.  Composition of diets used in Experiment 1 
  Phase1 
  Starter  Grower  Finisher 
Ingredient, %  A  B  C  D  A  B  C  D  A  B  C  D 
Corn  46.03  57.22  62.10  54.23  50.38  61.96  69.82  63.32  51.16  62.73  74.50  68.40 
Soybean meal  18.00  25.10  31.23  34.17  11.20  15.03  24.31  27.17  6.92  13.33  19.72  22.47 
Meat & bone meal  2.64  2.64  2.64  3.40  2.64  2.64  2.64  3.40  2.69  2.69  2.69  3.47 
Wheat middlings  30.68  12.38  −  −  33.42  17.94  −  −  37.26  19.28  1.11  − 
Fat2   −  −  1.35  5.65  −  −  −  4.95  −  −  −  3.90 
Dicalcium phosphate  1.20  1.20  1.20  1.05  0.80  0.90  1.05  0.85  0.50  0.76  0.86  0.70 
Limestone  0.65  0.65  0.65  0.65  0.80  0.80  0.68  0.60  0.90  0.69  0.62  0.55 
NaCl  0.33  0.38  0.38  0.38  0.28  0.30  0.30  0.30  0.20  0.22  0.24  0.24 
Choline chloride  0.05  0.05  0.05  0.05  0.04  0.04  0.04  0.04  0.04  0.04  0.04  0.04 
DL-methionine  0.16  0.16  0.18  0.20  0.14  0.13  0.14  0.16  0.13  0.11  0.11  0.13 
Lysine-HCL  0.04  −  −  −  0.09  0.05  0.01  −  0.10  0.05  0.01  − 
Vitamin premix3  0.05  0.05  0.05  0.05  0.05  0.05  0.05  0.05  0.05  0.05  0.05  0.05 
Trace mineral premix4  0.05  0.05  0.05  0.05  0.05  0.05  0.05  0.05  0.05  0.05  0.05  0.05 
CuSO4  0.03  0.03  0.03  0.03  0.02  0.02  0.03  0.03  −  −  −  − 
Coccidiostat  0.09  0.09  0.09  0.09  0.09  0.09  0.09  0.09  −  −  −  − 
Calculated Analysis                         

MEn (kcal / kg) 2,650 2,833 3,016 3,200 2,700 2,883 3,066 3,250 2,700 2,883 3,066 3,250 
CP, %  18.98  20.24  21.54  22.66  16.61  17.71  18.89  20.00  15.30  16.30  17.30  18.30 
Lys  0.97  1.07  1.19  1.28  0.83  0.83  1.01  1.08  0.74  0.81  0.88  0.96 
Met  0.45  0.47  0.51  0.54  0.40  0.40  0.44  0.47  0.37  0.37  0.39  0.42 
TSAA  0.82  0.85  0.90  0.94  0.74  0.73  0.79  0.83  0.69  0.69  0.72  0.76 
Calorie:CP 140 140 140 141 163 163 162 163 176 177 177 178 
Ca 0.85 0.85 0.85 0.91 0.81 0.82 0.82 0.83 0.78 0.76 0.75 0.78 
P, available 0.39 0.36 0.34 0.31 0.31 0.30 0.30 0.27 0.26 0.28 0.27 0.23 

1Starter phase: 0 to 21 days of age; grower phase: 21 to 42 days of age; finisher phase: 42 to 56 days of age. 
2Animal-vegetable blend 
3Supplied per kilogram of diet: vitamin A, 10,141 IU (retinyl acetate); cholecalciferol, 3,086 IU; vitamin E, 23.92 IU (dl-α-tocopheryl acetate); menadione, 2.87 mg; thiamine, 
2.20 mg; riboflavin, 7.72 mg; niacin, 60.30 mg; d-pantothenic acid, 12.46 mg; pyridoxine, 3.75 mg;  
vitamin B12, 0.017 mg; folic acid, 1.066 mg; d-biotin, 0.127 mg. 
4Supplied per kilogram of diet: Ca,160 mg; Zn, 100 mg; Mn, 120 mg; Fe,75 mg; Cu, 10 mg; I, 2.5 mg.  
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Table 2.  Composition of diet used in Experiment 2 
Ingredient  % 
Corn  62.00 
Soybean meal (48% CP)  22.27 
Wheat  6.10 
Wheat middlings  1.01 
Fat1  4.54 
Dicalcium phosphate   1.63 
Limestone   1.72 
NaCL  0.23 
DL-methionine  0.21 
Lysine-HCL  0.07 
Vitamin premix2   0.05 
Trace mineral premix3   0.05 
Choline chloride  0.04 
CuSO4  0.03 
Selenium premix  0.0025 
Coccidiostat  0.05 
Calculated analysis   

ME, kcal/kg  3,225 
CP,  %  17.6 
Lys  0.93 
Met  0.48 
TSAA  0.80 
Calorie:protein  183 
Ca  1.02 
P, available  0.41 

1Animal-vegetable blend 
2Supplied per  kg diet: vitamin A, 14,109 IU (retinyl acetate);  
cholicalciferol, 5,291 IU; vitamin E, 47.6 IU (dl-α-tocopheryl acetate); 
 vitamin B12, .014 mg; riboflavin, 8.82 mg; niacin 26.5 mg; d-pantothenic acid, 28.2 mg; 
choline, 705.5 mg; menadione, 1.16 mg; folic acid, 1.176 mg; pyridoxine, 3.52 mg; 
thiamin, 3.52 mg; d-biotin, 0.176 mg. 
3Supplied per kilogram of diet: Ca, 160 mg; Zn, 100 mg; Mn, 120 mg; Fe, 75 mg; Cu, 10 
mg; I, 2.5 mg.
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Table 3.  Body weight, feed and energy consumption, and feed conversion ratio by dietary treatment, Experiment 1 
  Treatment1  Pooled 
Variable  A  B  C  D  SE 
Body weight, g           

(Age, days)           
1  40  40  40  40  − 
21  548d  621c  682b  728a  4.52 
42  1,972d  2,122c  2,285b  2,361a  10.28 
56  3,010b  3,061b  3,205a  3,230a  18.30 

Total feed consumption, g           
0-21  980a  883b  873b  905b  7.75 
0-42  4,140a  3,921b  3,877b  3,878b  22.52 
0-56  7,468a  7,002b  6,854b  6,705b  51.92 

Total energy consumption, kcal           
0-21 2596cd 2502d 2634bc 2895a  22.09 
0-42 11,128c 11,259c 11,843b 12,560a  65.27 
0-56 20,116b 20,142b 20,972ab 21,748a  156.28 

Feed conversion ratio2           
0-21  1.79a  1.42b  1.28c  1.24c  0.01 
0-42  2.10a  1.85b  1.67c  1.64d  0.01 
0-56  2.48a  2.29b  2.14c  2.01d  0.01 

a-dMeans within a row with different superscripts differ (P < 0.05). 
1Treatments, MEn, kcal/kg: starter phase: A = 2,650; B = 2,833; C = 3,016; D = 3,200; grower and finisher phases:  
A = 2,700; B = 2,883; C = 3,066; D = 3,250. 
2Calculated as: Total feed consumption / body weight
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Table 4.  Carcass composition by dietary treatment, Experiment 1 
  Treatment1  Pooled 
Variable  A  B  C  D  SE 
Carcass weight, g           

(Age, d)           
42  1,336c  1,443b  1,547a  1,594a  15.50 
56  2,199b  2,250b  2,500a  2,445a  24.71 

Dressing percentage           
42  71.98  71.06  71.62  70.45  0.59 
56  74.30c  75.86bc  78.91a  78.13ab  0.46 

Dry matter, %           
42  35.86b  36.12ab  35.48b  36.65a  0.13 
56  34.91  34.99  34.09  34.93  0.26 

Specific gravity2           
42  1.048  1.047  1.045  1.046  0.001 
56  1.043  1.044  1.043  1.039  0.001 

Breast, g           
42  255.33c  285.5b  326.11a  314.59a  4.07 
56  418.35b  460.57ab  503.69a  482.21a  8.86 

Abdominal fat, g           
42  30.51b  27.35b  30.98b  36.43a  0.80 
56  53.48b  54.50ab  65.59a  61.72ab  2.04 

Carcass protein, g3           
42  236.38c  254.73b  272.41a  278.84a  2.80 
56  394.66b  405.32b  450.29a  433.64a  4.48 

Carcass fat, g3           
42  192.23c  211.16bc  219.95b  244.22a  3.38 
56  297.74b  303.04ab  320.07ab  340.37a  6.68 

Carcass ash, g3           
42  17.79c  19.40bc  19.69b  21.63a  0.30 
56  25.67  26.75  27.52  27.28  0.55 

a-dMeans within a row with different superscripts differ (P < 0.05). 
1Treatments, MEn, kcal/kg: starter phase: A = 2,650; B = 2,833; C = 3,016; D = 3,200; grower and finisher phases:  
A = 2,700; B = 2,883; C = 3,066; D = 3,250. 
2 Specific gravity = carcass wt. in air/(carcass wt. in air - (carcass wt. in water x 0.10)). 
3Calculated based on predictive equations proposed by Wiernusz et al., 1999
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Table 5.  Regression equation coefficients relating body weight (BW) and feed conversion ratio (FCR) and caloric density, expressed both as 
cumulative and daily values 

Cumulative Equations 
Intercept BW BW2 BW3 FCR FCR2 FCR3 BW*FCR BW2*FCR2 R2 (%) 

2,903 0.04+ - - - - - - - 1.82 
3,656 - - - -398.03** - - - - 31.82 
4,040 0.24** - - -865.11** - - - - 82.25 
4,451 0.01 - - -1,112.79** - - 0.13** - 84.09 
5,032 0.02 6.6 x 10-5** - -1,800.17** 248.83** - - - 87.78 
7,085 0.86** 1.8 x 10-4** - -4,985.84** 1,472.84** - -0.69** - 92.79 
7,018 1.38** -9.0 x 10-5+ 5.25 x 10-8** -5,201** 1,566.93** - -0.76 - 93.91 

17,014 1.63** -4.3 x 10-5 4.66 x 10-8** -22,031** 10,689** -1,581.30** -0.96 - 97.72 
15,919 1.43** -6.95 x 10-5* 6.32 x 10-8** -19,848** 9,296** -1,302.72** -0.77** -1.71 x 10-5* 97.82 

          
Daily Equations 

Intercept BW BW2 BW3 FCR FCR2 FCR3 BW*FCR BW2*FCR2 R2 (%) 
2,903 0.04+ - - - - - - - 1.82 
3,014 - - - -21.75 - - - - 0.81 
3,085 0.26** - - -240.88** - - - - 22.74 
4,771 -0.19** - - -1,291.96** - - -0.33** - 77.79 
4,825 0.05 1.6 x 10-4**  -1,523.77** 164.76** - - - 84.14 
4,778 0.17** 2.7 x 10-4**  -1,581.26** 256.59** - -0.22** - 85.19 

4,1801 1.17** -3.0 x 10-4** 1.36 x 10-7** -1,408.90** 272.21** - -0.37** - 88.34 
4,665 1.46** -0.003** 1.43 x 10-7** -2,214.92** 641.57** -29.58+ -0.59** - 88.59 
4,774 1.59** -3.8 x 10-4** 1.82 x 10-7** -2,395.09** 672.28** -20.96 -0.57** 7.06 x 10-6 88.69 

+ P < 0.10  
*P < 0.05  
**P < 0.01 
1 This is the regression model used to predict effective caloric value from BW and FCR.
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Table 6.  Growth performance and behavior traits of 38-day old broilers fed a diet of varying pellet quality1 during a 7 d assessment 
of feed conversion, Experiment 2 
  Treatment2  Pooled 
Performance trait  100  80  60  40  20  M  SE 

Weight gain, g  725a  701ab  687ab  685ab  675bc  643c  6.16 
Feed consumption, g  1,348  1,306  1,312  1,316  1,313  1,280  8.92 
Feed conversion ratio  1.87a  1.88a  1.92a  1.93ab  1.95ab  2.02b  0.01 

Behavior trait               
Pellets consumed3, %  100a  87b  63c  42d  21e  0f  0.18 
Eating frequency4  0.32a  0.52a  0.78b  0.84b  1.18c  1.31c  0.37 
Resting frequency  8.61a  8.48a  8.09b  7.97b  7.48c  7.21c  0.06 

a-cMeans within a row with no common superscript differ (P < 0.05). 
1Defined as the proportion (%) of pellets to post pellet fines. 
2Treatments: 100 = 100 % pellets, 0 % fines; 80 = 80 % pellets, 20 % fines; 60 = 60% pellets, 40 % pellet; 20 = 20 % pellets, 80 % 
pellet; M = unprocessed mash. 
3Pellets consumed = ((initial pellets offered – pellets remaining)/feed consumption) × 100. 
4Eating or Resting frequency = times specific activity was observed / 10 observations.  Other behaviors recorded, but not presented 
include: drinking, standing, walking, pecking, and  preening.
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Table 7. Dietary caloric value of changing pellet quality1 
Pellet quality    Calorie change (MEn/kg) attributable to pellet quality divergence   

  To                 
From  100  90  80  70  60  50  40  30  20 

100  0  -4  -18  -41  -74  -84  -89  -96  -111 
90  4  0  -14  -37  -70  -80  -85  -92  -107 
80  18  14  0  -23  -56  -66  -71  -78  -93 
70  41  37  23  0  -33  -43  -48  -55  -70 
60  74  70  56  33  0  -10  -15  -22  -37 
50  84  80  66  43  10  0  -5  -12  -27 
40  89  85  71  48  15  5  0  -7  -22 
30  96  92  78  55  22  12  7  0  -15 
20  111  107  93  70  37  27  22  15  0 

1The calorific value of pellet quality change is attained by the intersection between initial and final pellet qualities.  Negative values 
represent declining while positive values improving pellet quality change.
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Table 8. Interactive effects of added fat and pellet quality on dietary caloric gain (MEn/kg)   
 
 

Added fat, % 

Anticipated 
diet caloric value 
due to added fat,  

MEn/kg 

 
 

Anticipated pellet 
quality1, % 

 
Additional calories 

due to pelleting, 
MEn/kg 

 
Effective 

caloric value, 
MEn/kg2 

Incremental calorie 
change via added fat 

and pellet quality, 
MEn/kg 

0 2,977 90 183 3,160 − 
1 3,014 82 173 3,187 27 
2 3,049 78 165 3,214 27 
3 3,084 71 149 3,233 19 
4 3,120 68 140 3,260 27 
5 3,157 49 103 3,260 0 

1Based upon data reported by Richardson and Day (1976). 
2Energy attributable to fat inclusion minus energy lost due to pellet degradation. 
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ABSTRACT 

      Two trials of an experiment were conducted to confirm the relationships among 

effective caloric value (ECV) of the diet, net energy for gain (NEg), BW, feed conversion 

ratio (FCR), and broiler behavior.  Further the study sought to examine such factors with 

benefits of pelleting, including feed form history (pellets vs. mash) in females from two 

strains of commercial broilers.  Composition of gain was measured on a sample of birds 

in both trials.  In Trial 1 birds were reared to 23 d on feed in crumble form, at which time 

the birds were fed a feed in either pellet or mash form.  Pelleting the feed increased ECV, 

total NEg, while decreasing eating, and increasing resting behavior.  Significant 

correlations (P < 0.05) between resting, NEg, and ECV occurred.  In Trial 2, birds were 

reared to 23 d on a crumble diet, then fed diet in either mash or pellet form to 36 d.  At 37 

d of age, half of the birds from each strain and feed form history combination were 

switched to the alternative feed form.  Strain by grower feed form interactions were 

present for BW, initial fat, and energy content indicating that pelleted feed was required 

for optimum broiler performance of one strain.  Grower feed form by finisher feed form 

interactions were present that demonstrated that birds switched to the alternate feed form 

consumed more feed in less than half the time of the birds that remained on their previous 

feed form.  Significant correlations were observed in both trials between behaviors and 

FCR and ECV, while NEg reflected these differences in Trial 1 but not Trial 2.  

Regression analysis indicated that FCR (and subsequently ECV) was best predicted by 

lean gain, whereas NEg was best predicted by fat gain.  Further, regression analysis 

established interactive equations where ECV was predicted (R2 > 0.99) by eating and 

resting behavior.  The results of these trials indicate that the effects of feed form are 
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caused by a modification of behavior patterns, that ECV is responsive to such behavior 

changes, and that ECV is an effective estimator of the relative caloric value of genetic, 

management, and husbandry influences.   

(Key words: pelleting, net energy, effective caloric value, behavior, genotype by 

environment interactions) 

 

INTRODUCTION 

 Paramount among nutritional goals is the reasonable balance between dietary 

provision of nutrients and energy.  Consequently, rations are generally formulated to 

specific nutrient:energy ratios.  Such ratios are usually not interactive with the genetics 

and managerial environment (NRC, 1994).  One could surmise this to leave a lesser 

importance being attributable to nutritional and managerial interface.  However, the 

interfacing of nutrition with the ambient and managerial environments has profound 

influence upon the extent and profitability of the poultry enterprise.  For example, 

numerous managerial – husbandry decisions related to stocking density (Cravener et al., 

1992; Puron et al., 1997), lighting program (Buyse et al., 1996; Ingram et al., 2000), 

ventilation (Lott et al., 1998), feed processing techniques as pelleting (Acar et al., 1991; 

Schiedeler, 1995; Moritz et al., 2001), and nutritional consideration (NRC, 1994) are well 

documented to have significant impact upon poultry performance.   Coupling such 

observations with the suggestion that no cessation of selection response has been 

observed for increased BW of turkeys (Nestor et al., 1996), chickens (Dunnington and 

Siegel, 1996), and Japanese quail (Marks, 1996), even up to nearly 100 generations of 
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selection, indicates that mechanistic understanding of interactions for the aforementioned 

variables is needed.   

Traditionally, studies examining genetic × nonnutritional × nutritional interactions 

are limited.  Such is the case presumably due to the complexity of variable type, number 

of variables involved, and difficulty in manipulating the three components at multiple 

levels simultaneously.  Paramount among nutritional influences upon broiler performance 

are factors influencing growth and FCR.  Bird nutrient and energy requirements are 

closely related to performance as growth and FCR.  McKinney and Teeter (2004) 

proposed a methodology that enables predicting dietary caloric density from boiler 

growth and FCR.  Energy values so predicted, termed effective caloric value (ECV) of 

dietary MEn, provide a relative value for combined dietary and non-dietary factors 

influencing broiler performance.  That study went on to confirm the model and used 

pellet quality (PQ; defined as the ratio of pellets:pellet fines presented to the bird), as a 

nonnutritive variable.   The authors concluded that pelleting results in up to an additional 

187 kcal MEn/kg of diet, and that PQ and resting behavior were well correlated.  

Consequently, a component of the aforementioned managerial influence upon broiler 

performance may well relate to energy expenditure associated with activity.   

 The traditional wisdom of poultry producers is that environmental variability, 

attributable to management-husbandry, elicits broiler behavioral responses, though such 

are not well documented in the literature.  If the beneficial effects of feed form as 

reported by McKinney and Teeter (2004) were indeed due to alteration in bird behavior, 

it is thereby logical to assume that feed form inconsistencies would also be important.  

Whether among batches received from the feed mill or within house variation, feed form 
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inconsistencies (i.e., fluctuating PQ or mash vs. pellets) will inevitably exist.  However, 

consequences of varying feed form or feed form history effects have yet to be 

demonstrated and may vary with the ability or inability of the various broiler strains to 

adapt to alternating feed form.          

Selection for increased BW in turkeys has led to an apparent increase in resting 

behavior, and a decrease in walking behavior in terms of time spent walking and number 

of steps taken (Noble et al., 1996).  If similar patterns are present with broiler chickens, it 

may be reasonable to assume that resting behavior in broilers has either increased with 

continued selection for improved BW and FCR, or is potentially influenced by bird 

strain.  Given the relationship observed among PQ, resting behavior, FCR, and ECV 

(McKinney and Teeter, 2004), then improvements in FCR cannot be totally disjoint from 

correlated responses to selection on behaviors.  Likewise, changes in behavior could be 

applied independent of selection to improve FCR and other broiler traits.  The study 

reported herein was conducted: 1) to confirm the relationship among ECV, BW, FCR, 

and behavior of broilers; 2) to further describe benefits of pelleting by assessing pelleting 

effects on NEg; and 3) to determine the effects of strain, feed form history, and current 

pellet treatment on broiler performance, behaviors, ECV, and NEg.   

 

MATERIALS AND METHODS 

General. 

 Female broiler chicks (200 from each of strain A and B; 400 total) were obtained 

from a commercial hatchery following sexing and vaccination for Marek’s disease.  

These strains used the same sire lines reported by Skinner-Noble et al. (2003b).  Upon 
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arrival, all birds were wingbanded and placed into 12 floor pens.  Birds were provided 

feed and water for ad libitum consumption while in floor pens (except as noted), and the 

lighting program used was 23L:1D from 0 to 7 d, 16L:8D thereafter in the floor pens, and 

14L:10D while in FCR cages.  All birds were fed a starter diet in crumble form 

containing 22.67% CP and 3,026 kcal MEn/kg from hatching to 16 d of age.  From 16 to 

22 d, all birds were fed a grower diet containing 20.20% CP and 3,119 kcal MEn/kg, 

again in crumble form.  The grower diet was fed to 32 d of age, at which time birds were 

fed a finisher containing 17.33% CP and 3,199 kcal MEn/kg diet.  The amino acid levels 

of the diets fed matched current recommendations (NRC, 1994).   

At 20 d of age, all birds were randomly assigned to one of four testing weeks, of 

which two are reported herein.  All birds were handled, their wingbands read, and spray 

paint was applied to their wing bows to minimize additional handling as birds were used 

for the subsequent FCR testing.  At 23 d of age, half of the birds from each strain were 

provided their diet in mash form, whereas the remaining birds were fed their diets in 

pellet form.  Though feeds were changed from starter to grower at 16 d, and from grower 

to finisher at 32 d of age, treatments will be described as “grower feed form” to describe 

the feed form offered from 23 to 36 d of age, and “finisher feed form” to describe the 

feed form offered from 37 to 44 d of age.   

When in FCR testing cages, scan sample behavior observations were conducted 

on three days of the 7-d FCR test.  Birds were observed 5 times every 2 h during the light 

phase, and classified as eating, drinking, standing, resting, walking, pecking, preening, or 

any other behavior (as described by Skinner-Noble et al., 2003a).  In addition to the 

aforementioned behavior categories, birds were also classified as dustbathing if their 
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body was in contact with the litter and actively moving it through their feathers.  In each 

trial a sample of the birds (36 of 72 in Trial 1 and 32 of 72 in Trial 2) were assessed for 

initial and final body composition.  In both trials birds were anesthesitized (by 

intramuscular injection of a solution of 75% Rompin and 25% Ace at a dose of 0.26 mL / 

kg of BW) and their body lean, fat, and bone mass measured using an x-ray 

densitometer1.  Total energy content was calculated as the sum of: (fat mass x 9.31) and 

[(lean mass x 0.2477 x 5.65); Dixson, 2003].  The net energy for gain (NEg) was 

calculated as the difference between initial and final energy, and expressed both in total 

and per kg of diet consumed.    

As birds were removed from the floor pens, the number of pens used was reduced 

to maintain constant stocking density.  Differences between the two trials will be 

discussed as follows. 

Trial 1. 

      At 22 d of age, 72 birds (36 per strain) were removed from their pens and fasted 

overnight in preparation for a 7-d assessment of feed conversion.  At 23 d of age, 36 birds 

(18 per strain) were anesthesitized and their body composition measured.  Following 

body composition measurement, all feeders were weighed, and all birds were weighed 

and placed into FCR testing cages (as described by Skinner-Noble et al., 2003a).  In FCR 

cages, birds were provided the aforementioned grower diet in either pellet or mash form.  

At the end of the FCR test all feeders and birds were weighed, and the birds which were 

previously assessed for body composition had their body composition measured, after 

being euthanized by carbon dioxide inhalation.  Treatments were arranged in a 2 strains 

(A vs. B) 2 grower feed forms (pellets vs. mash) factorial arrangement for this trial.   

                                                        
1 Holdel QDR4500.  Hologic Corporation, Waltham, MA 02154 
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Trial 2.   

 At 36 d of age, 72 birds [18 from each strain (A vs. B) and grower feed form 

(pellets vs. mash from 23-36 d) combination] were removed from their floor pens and 

fasted overnight in preparation for a 7-d FCR test.  Half of the birds from each strain and 

grower feed form were switched to the alternate finisher feed form, whereas the 

remaining half remained on their previous feed form.  Body composition was measured 

on 32 birds (8 from each strain and grower feed form combination).  Treatments were 

arranged in a 2 strains, 2 grower feed form, × two finisher feed form (switched to the 

alternate feed form or not from 37-44 d) factorial arrangement for this trial. 

 

Data analysis. 

 In both trials, data were analyzed by analysis of variance as a completely 

randomized design with the aforementioned factorial arrangement of treatments, with 

appropriate interaction terms.  Significance was accepted at P < 0.05.  Actual P values are 

presented where P < 0.10.  Behaviors were averaged across all observation days and time 

of day to provide a summary of activity patterns, and to provide a single unit for each 

behavior trait that could then be used in subsequent correlation analyses.  The ECV was 

calculated by the equation of McKinney and Teeter (2004) using the average of the 

starting and ending BW and the FCR while on test.  Correlations were made between 

broiler traits (starting and ending BW, feed intake, BW gain, FCR, and ECV) and 

behaviors for all birds.  Correlations were also made between behaviors, ECV, and total 

NEg and NEg per kg of diet consumed to determine if activity of broilers affects NEg.  
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Regression analyses were used for both trials to establish quantitative relationships 

among ECV, feed consumption, and behaviors.   

 

RESULTS AND DISCUSSION 

Trial 1.   

 As with McKinney and Teeter (2004), pelleting improved BW gain, feed intake, 

FCR, and subsequent ECV (Table 1) compared to feeding mash.  As expected from 

results of Jensen et al. (1962), birds fed pellets were observed eating less often (4.25% vs. 

18.81%) and resting more (62.48% vs. 47.35%) than those fed mash.  The magnitude of 

difference between pellets and mash for eating behavior agrees well with Jensen et al. 

(1962), who found a three-fold difference in time spent eating between chickens fed 

pellets vs. mash.  Strain differences were significant for BW gain and FCR, in agreement 

with Skinner-Noble et al. (2003b) who used the same sire lines as the current report.   

When the model of McKinney and Teeter (2004) relating caloric density to BW 

and FCR was applied, the resulting ECV (in MEn) of the diet was 3,028 kcal/kg for mash 

and 3,179 kcal/kg for pellets, resulting in an average of 3,103 kcal MEn/kg (Table 1), 

closely matching the calculated MEn of the current grower diet of 3,119 kcal MEn/kg.  

Both strain and feed form impacted ECV (P < 0.05).  Pelleting benefits, calculated as the 

differential ECV between pellets and mash, was 151 Kcal MEn/kg of ration.  Though the 

model of McKinney and Teeter (2004) used males and the current study used females, 

the aforementioned model appears to fit the current data.  This may be due in part to the 

age of birds utilized in Trial 1.  The model would be expected to fit less well as female 

birds aged, and sexual dimorphism would become a greater factor.   
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Birds fed pellets had greater final lean, fat gain, lean gain, and total NEg (Table 

1).  This agrees with the results of McKinney and Teeter (2004) which found pelleting 

could result in up to 187 kcal MEn/kg of ECV over mash.  Though the ECV differed (P < 

0.05) between pellets and mash, the NEg/kg was not significant (2,107 for mash vs. 2,351 

for pellets; P = 0.0679).  However, the directional response of NEg/kg did agree with the 

hypothesis that pelleting increased dietary energy available for gain by increasing resting 

and decreasing eating behavior.  The lack of significance is likely due to inadequate 

replication, as a model without the interaction term resulted in a greater F statistic (P = 

0.0629).  Nonetheless bird performance measured by weight gain, FCR, ECV, and NE 

are all correlated, where no such value is possible for strict MEn.   

Resting behavior was negatively correlated, and eating behavior was positively 

correlated with FCR and ECV, while NEg was correlated with resting but not eating 

behavior (Table 2).  This is in contrast to results of Skinner-Noble et al. (2003a), who 

found a positive correlation between resting and FCR.  A notable difference between 

Skinner-Noble et al. (2003a) and the current report is that a feed form treatment was 

applied in the current study that would be expected to have a major impact on behaviors 

and broiler performance, whereas Skinner-Noble et al. (2003a) used sifted pellets for all 

birds to reduce chance variation in feed form and based conclusions on correlation 

analyses in that “no treatment” experiment.  McKinney and Teeter (2004) also 

demonstrated a relationship between increased resting behavior and increased ECV of the 

diet.  These results also support the hypothesis that pelleting decreases energy expended 

in birds (Jensen et al., 1962).  This energy could, therefore, be dedicated to gain. 
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The correlation between ECV and total NEg was 0.41, whereas the correlation 

between NEg per kg of diet and ECV was 0.34 (Table 2).  Regressing NEg or ECV on 

lean and fat gain indicated that lean gain appears to be a better predictor of both FCR and 

ECV than fat gain, where the opposite is true for NEg.  

The results of Trial 1 clearly confirm that regardless of strain, pelleting of feed 

resulted in increased resting behavior, decreased eating behavior, improved BW, 

improved BW gain, improved FCR, and increased ECV in broilers at this age.  In contrast 

to Jensen et al. (1962), broilers in the present study were not given an adaptation period 

prior to FCR testing.  Both feed form treatments should have been novel to the birds, as 

all birds had previously been fed crumbled feed, and then were switched to either pellets 

or mash.  If pre-testing adaptation were a factor, it would be expected to manifest itself 

either in an initial rejection of feed or hyperphagia.  Data collected within 4 h of feeding 

did not indicate such a rejection of feed occurred (data not shown).  Additionally, the 

overnight fasting period utilized in the current study was designed to stimulate appetite 

and reduce adaptation time (Skinner-Noble et al., 2003a).  The ECV was effectively 

modeled by the interactive model of eating and resting behavior (data not shown).   

Trial 2. 

Given the treatment effects observed in Trial 1 and results from Skinner-Noble et 

al. (2003b), the presence of grower feed form and strain by grower feed form interactions 

were expected and observed for BW and composition at the start of trial 2 (Table 3).  

These interactions were caused by a lack of grower feed form effect for Strain A, whereas 

strain B had greater BW and total energy when fed pellets in the grower phase.  This 

indicates that the pretrial 2 wk of feeding the diet in pellet form resulted in a benefit for 
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strain B, whereas no such benefit was observed for strain A from 23-36 d.  As a result, 

the relative position of birds on the growth curve differed at experiment initiation and 

would be expected to impact the results of Trial 2.  This is reflected in the initial BW and 

composition of birds in Trial 2.  These differences agreed with results of trial 1 and are 

consistent with previous studies (McKinney and Teeter, 2004).   

The results of Trial 2 become clear when the finisher feed form is considered 

from the view of being switched from the grower feed form or left the same.  When 

viewed in that context, birds that were switched to the alternate feed form consumed 50 g 

more feed in less than half the time of those birds that were not switched to the alternate 

feed form, regardless of the grower feed form (Table 3).  This indicates that birds 

adjusted to a switch in feed form with hyperphagia.  Anecdotal evidence from the 

authors’ laboratory indicates that similar hyperphagia often occurs in response to a 

perceived stressor.  This decreased time spent eating was then devoted to resting.  This 

increase in resting and decrease in eating appears to be the driving factor leading to a 10 

point improvement in FCR during the finisher phase.  Again, this was regardless of 

grower feed form.  When used in a regression model, the interactive effects of eating and 

resting effectively model ECV, with an R2 of over 99% (Figure 1).  While it may seem 

contrary to expectations that the coefficients of both eating and resting behavior were 

positive for their effect on ECV, it should be noted that feed intake increased as eating 

time decreased (Figure 2).   

There appears to be a carry-over effect of grower feed form that affected 

subsequent feed intake and weight gain (Table 3).  Birds fed pellets during the grower 
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phase appeared to have the ability to more efficiently eat feed (more feed consumed per 

time observed eating) than those birds fed mash during the grower phase.   

 Additionally, the correlation model relating broiler traits (BW and FCR) to ECV 

did not effectively model NEg/kg of diet in Trial 2 (Table 4).  It appears that different 

factors influence NEg and FCR.  The fact that NEg was not correlated with behavior 

whereas ECV was correlated with behavior suggests that given the unequal starting 

points, performance based ECV provides more useful information than does NEg in this 

trial.  That ECV was affected by grower feed form, finisher feed form switch, and the 

grower feed form × finisher feed form interaction, whereas NEg was affected only by 

finisher feed form adds credence to use of ECV as a performance based response 

variable.  A downside of the use of NEg is that it is biased favoring birds with increased 

fat gain, which may be undesirable in some cases.   

Modeling FCR and NEg by regression analysis indicates that gain of lean is a 

better predictor of FCR than gain of fat, whereas the opposite is true for NEg, where gain 

of fat had a greater impact on NEg than gain of lean.  These results agree with previous 

reports of selection experiments for improved FCR that report improved FCR is 

associated with decreased fatness (Thomas et al., 1958; Chambers and Gavora, 1982; 

Leenstra and Pit, 1988; Buyse et al., 1998).  The decrease in fatness should contribute to 

decreased energetic efficiency through the course of continued selection for improved 

FCR.  Conversely, the continued selection for improved FCR should also result in 

increased lean mass, if FCR is the only selection criterion. 

General. 
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 That diets differing only in feed form resulted in different broiler performance and 

NEg responses of broilers should not be surprising.  MacLeod (2000) stated that while 

ME is a property of the feed, net energy is the response of the bird to its feed.  

Concomitantly, it appears appropriate because ECV represents the interfacing of bird, 

diet, and environment.  Similarly, Skinner-Noble and Teeter (2003) reported that broilers 

differing in FCR expressed greater NE response than measured ME responses.  The lack 

of difference in NEg between pellets and mash (P = 0.0679) in Trial 1 may be due to 

difficulties associated with measuring NEg, or it may be an artifact of the sample size.  

Skinner-Noble and Teeter (2003) reported NEg values obtained by subtracting total heat 

production from measured apparent ME.  The current study obtained NEg by subtracting 

initial energy from final energy as measured by whole bird live body composition.  As 

such, this method would have fewer sources of error than those of Skinner-Noble and 

Teeter (2003).   

 This study also points out how NEg and FCR are influenced by different factors, 

most notably gain of fat having a greater impact on NEg, whereas gain of lean has a 

greater impact on FCR and consequently ECV.  This would be expected, given that each 

g of protein gained yields 3.03 g of lean (and thus BW) gain and 1.695 calories of energy, 

whereas 1 g of lipid gained yields 1 g of fat (and thus BW) gain and 9.31 calories of 

energy (Dixson, 2003).   

 While the ECV of McKinney and Teeter (2004) and NEg was well correlated 

(Trial 1), the correlation was not significant in Trial 2.  The unequal initial BW and 

composition as lean and fat would be expected to influence bird maintenance energy need 

and may have unduly influenced NEg to the point that the current feed form effects were 
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masked by previous actions.   Nonetheless, in both trials ECV provided a useful 

assessment of the relative practical value of a management-husbandry practice, as 

correlations between bird behavior and performance were attained.  Because ECV is 

based on two traits (BW and FCR) that are fairly easy to measure in the field (as opposed 

to NEg, which is difficult to measure in the field), they can be used to place relative merit 

on management and husbandry practices.  Ultimately the goal of animal production is 

efficient production of lean tissue with acceptable fatness.  Whereas NEg is related to fat 

gain, ECV more closely expresses the relationship between the bird and its environment.  

If NEg were the only criterion for efficiency of production, then increased fatness would 

result and indeed appears that it masks husbandry relationships.  Thus, ECV does appear 

to be a practical predictor of the effective and relative values of any management-

husbandry changes that result in changes in BW and FCR.  Subsequent energy utilization 

fate will be determined by the “ration balance”, relative to the birds’ potential for lean 

mass accretion.  Those wishing to produce a specific bird composition must thereby 

integrate both nutrition and management.   

The most striking finding of these trials is the manner in which the interactive 

model of eating and resting behavior effectively predicted ECV.  It indeed appears that 

pelleting benefits broiler performance by modifying behavior patterns, notably by 

reducing times observed eating and increasing times observed resting.  Similar 

relationships among eating, resting, and ECV were observed in both trials.  Similarly, 

voracity of eating occurred in both trials indicating that increased feed intake occurred in 

a reduced time observed eating.  Jensen et al. (1962) determined that broilers reduced 

eating time in response to pelleting feed.  This response occurred after a week of 
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adaptation to the tested feed forms.  The current study did not use an adaptation period, 

and observed more extreme modifications of behavior patterns (hyperphagia in response 

to changing feed form in Trial 2) than those observed by Jensen et al. (1962).   

The results of these trials indicate that feed form impacts broiler performance 

through a reduction in activity, and that response to pelleting of feed depends on the 

strain of broiler utilized and their previous feed form history.  Regression analysis 

indicated that FCR (and subsequently ECV) was best predicted by lean gain, whereas 

NEg was best predicted by fat gain.  Results indicate that Trial 2 data were biased by 

unequal starting composition, where ECV resulted in greater separation of statistical 

effects that were not detected by NEg.  The ECV appears to be an effective estimator of 

the caloric value of management-husbandry practices.   
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Table 1.  Broiler performance, energy, and behavior traits of two strains of broilers fed either pellets or mash from 23 to 30 d of age, Trial 1 
   Broiler performance and energy traits1 

 Strain (S) Treatment (T) BW30 WG2330 FI2330 FCR2330 ECV Fat gain 
(g) 

Lean 
gain (g) 

NE gain 
(kcal) 

NE gain 
(kcal/kg diet) 

Means A Mash 1,207 477 769 1.62 3,013 81.0 334.3 1,222 1,601 
 A Pellets 1,383 596 923 1.56 3,124 108.6 401.8 1,574 1,779 
 B Mash 1,249 523 831 1.59 3,044 120.2 353.7 1,614 1,917 
 B Pellets 1,418 637 922 1.45 3,233 145.2 409.0 1,925 2,159 
            
   probability 
ANOVA Source S NS ** NS * * ** NS ** ** 
  T ** ** ** ** ** * ** * 0.0672 
  S x T NS NS NS NS NS NS NS NS NS 
  Pooled SEM 18.75 10.28 12.81 0.017 18.07 6.77 8.11 66.55 62.94 
            
   Behavior traits2 

 Strain (S) Treatment (T) Eat Drink Stand Rest Walk Peck Preen Dust Other 
Means A Mash 17.37 7.13 15.09 47.13 8.72 0.89 3.04 0.55 0.07 
 A Pellets 5.03 9.87 13.59 59.02 6.08 0.78 4.77 0.98 0.00 
 B Mash 20.26 7.65 12.42 47.58 5.82 1.05 3.46 1.90 0.00 
 B Pellets 3.46 7.25 11.76 65.95 6.54 0.98 2.94 1.18 0.00 
            
   probability 
ANOVA Source S NS NS NS NS NS NS NS * NS 
  T ** NS NS ** NS NS NS NS NS 
  S x T 0.053 0.09 NS NS NS NS 0.09 NS NS 
  Pooled SEM 1.04 0.47 0.77 1.53 0.54 0.14 0.33 0.19 0.02 

 
1BW23=BW at 23 d of age; BW30= BW at 30 d of age; WG2330= BW gained from 23 to 30 d of age; FI2330= feed intake from 23 to 30 d of age; FCR2330= 
feed conversion ratio (g feed/g gain) from 23 to 30 d of age; ECV=effective caloric value, the equivalent value of dietary ME needed to achieve the FCR and BW 
response observed 
2Percent of times each bird was observed performing each behavior 
NS= not significant (P > 0.10); **= P < 0.01; *= P < 0.05 
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Table 2.  Correlations among traits measured1, Trial 1 
 Trait2 

Broiler trait3 Eat Drink Stand Rest Walk Peck Preen Dust Other ECV Lean gain Fat gain 
BW23 -0.41** NS NS 0.24* NS NS NS NS NS 0.34** 0.38* NS 
BW30 -0.58** NS NS 0.43** NS NS NS NS NS 0.65** 0.72** 0.35* 
WG2330 -0.60** NS NS 0.52** NS NS NS NS NS 0.81** 0.85** 0.55** 
FI2330 -0.51** NS NS 0.41** NS NS NS NS NS 0.39** 0.75** 0.52** 
FI/BW23 NS NS NS NS -0.26* NS NS NS NS NS NS 0.31+ 
FCR2330 0.37** NS NS -0.33** NS NS NS NS NS -0.93** -0.47** NS 
ECV -0.52** NS NS 0.44** NS NS NS NS NS -- 0.63** 0.32+ 
NE gain (kcal) NS NS -0.38* 0.40* NS NS NS NS NS 0.41* 0.38** 0.99** 
NE gain (kcal/kg) NS NS -0.42* 0.38* -0.33+ NS NS NS NS 0.34* NS 0.96** 
1Lean gain, fat gain, and NE gain were measured on 36 birds, whereas 72 birds were measured for the remaining traits 
2Eat=percent of times the bird was observed eating; Drink=percent of times the bird was observed drinking; Stand=percent of times the bird was observed 
standing; Rest=percent of times the bird was observed resting; Walk=the percent of times the bird was observed walking; Peck=percent of times the bird was 
observed pecking; Preen=percent of times the bird was observed preening; Dust=percent of times the bird was observed dustbathing; Other=percent of times the 
bird was observed performing any behavior other that the aforementioned eight behaviors; ECV=effective caloric value, the equivalent dietary ME required for 
the specific body weight and feed conversion response 
3BW23=BW at 23 d of age; BW30=BW at 30 d of age; WG2330=BW gained from 23 to 30 d of age; FI2330=feed intake from 23 to 30 d of age; FI/BW23= feed 
consumed per unit initial BW;  FCR2330=feed conversion ration (g feed/g gain) from 23 to 30 d of age; NE gain= the gain of energy (in total kcal and per kg of 
diet consumed) from 23 to 30 d of age 
NS= not significant (P > 0.10); **= P < 0.01; *= P < 0.05 
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Table 3.  Broiler performance, energy, and behavior traits of two strains of broilers fed either pellets or mash from 37 to 44 d of age, Trial 2 
    Broiler and energy trait1 
 Strain (S) Grower feed form 

(G) 
Finisher feed form (F) 
switched? 

Initial 
fat (g) 

Initial 
lean (g) 

Initial energy 
(kcal) 

BW37 (g) FI (g) WG (g) FCR (g) BW44 (g) ECV 

Means A Mash No 341 1,362 5,081 1,679 1,081 561 1.95 2,177 3,192 
 A Mash Yes 305 1,421 4,823 1,764 1,110 589 1.89 2,344 3,383 
 A Pellets Yes 308 1,417 4,849 1,772 1,171 672 1.75 2,362 3,524 
 A Pellets No 265 1,411 4,442 1,775 1,136 597 1.92 2,371 3,378 
 B Mash No 207 1,434 3,930 1,714 937 489 1.93 2,005 3,154 
 B Mash Yes 243 1,319 4,105 1,649 1,015 551 1.85 2,178 3,360 
 B Pellets Yes 383 1,547 5,726 1,966 1,237 726 1.71 2,581 3,803 
 B Pellets No 337 1,496 5,231 1,901 1,056 579 1.84 2,426 3,535 
    probability 
 ANOVA Source S NS NS NS NS * NS NS NS 0.09 
   G 0.06 * * ** ** ** * ** ** 
   F NS NS NS NS ** ** * * ** 
   S x G ** 0.09 ** * 0.06 0.08 NS ** * 
   S x F NS NS NS NS NS NS NS NS NS 
   G x F NS NS NS * NS NS NS NS NS 
   S x G x F NS NS NS NS NS NS NS NS NS 
   Pooled SEM 14.70 19.61 150.18 21.56 17.39 12.80 0.022 29.54 34.55 
    Behavior trait2 
 Strain (S) Grower feed form 

(G) 
Finisher feed form (F) 
switched? 

Eat Drink Stand Rest Walk Peck Preen Dust 

Means A Mash No 20.60 3.67 9.32 57.09 3.41 1.71 3.80 0.39 
 A Mash Yes 10.29 6.39 11.20 62.33 3.25 0.91 5.10 0.52 
 A Pellets Yes 4.59 6.02 10.47 69.88 3.54 1.44 3.27 0.78 
 A Pellets No 8.49 5.67 10.01 67.35 1.89 1.06 5.30 0.24 
 B Mash No 27.12 4.71 17.53 40.96 4.18 1.44 3.40 0.65 
 B Mash Yes 11.38 6.15 11.37 62.08 2.87 1.83 4.19 0.13 
 B Pellets Yes 6.54 6.28 4.58 72.13 1.57 1.05 7.72 0.13 
 B Pellets No 13.26 4.13 8.25 65.36 1.18 1.62 5.46 0.74 
    Probability 
 ANOVA Source S 0.09 NS NS NS NS NS NS NS 
   G ** NS ** ** 0.07 NS 0.09 NS 
   F ** ** NS ** NS NS NS NS 
   S x G NS NS ** NS NS NS 0.06 NS 
   S x F NS NS * 0.08 NS NS NS 0.07 
   G x F 0.07 NS NS NS NS NS NS NS 
   S x G x F NS NS NS NS NS NS NS NS 
   Pooled SEM 1.30 0.31 0.77 1.72 0.37 0.18 0.39 0.12 
1BW37=BW at 37 d of age; BW44= BW at 44 d of age; FI3744= feed intake from 37 to 44 d of age 
2Percent of times each bird was observed performing each behavior 
NS= not significant (P > 0.10); **= P < 0.01; *= P < 0.05 
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 Table 4.  Correlations among traits measured1, Trial 2 
 Trait2 
Trait3 Eat Drink Stand Rest Walk Peck Preen Dust ECV Lean gain Fat gain NE gain 

(kcal/kg) 
BW37 -0.36** NS NS 0.35** -0.33** NS 0.34** NS 0.55** 0.32+ NS NS 
BW44 -0.44** NS 0.44* 0.44** -0.31** NS 0.37** NS 0.79** 0.68** 0.42* NS 
WG3744 -0.46** NS 0.30* 0.44** NS NS 0.34** NS 0.80** 0.83** 0.42* NS 
FI3744 -0.47** NS -0.27* 0.42** NS NS 0.35** NS 0.53** 0.75** 0.34+ NS 
FCR3744 0.21+ NS 0.24* -0.24* NS NS NS NS -0.78** -0.49* NS NS 
FI/BW37 NS NS NS NS NS NS NS NS -- 0.73** NS NS 
ECV -0.41** NS -0.28* 0.43** -0.21+ NS 0.34** NS -- 0.58* 0.38+ NS 
NE gain (kcal) NS NS NS NS NS NS NS NS 0.47* 0.31+ 0.98** 0.90** 
NE gain (kcal/kg) NS NS NS NS NS NS NS NS NS NS 0.94** -- 
1Lean gain, fat gain, and NE gain were measured on 32 birds, whereas 72 birds were measured for the remaining traits  
2Eat= percent of times each bird was observed eating; Drink=percent of times each bird was observed drinking; Stand=percent of times each bird 
was observed standing; Rest=percent of times each bird was observed resting; Walk=percent of times each bird was observed walking; 
Peck=percent of times each bird was observed pecking; Preen=percent of times each bird was observed preening; Dust=percent of times each bird 
was observed dustbathing; ECV=effective caloric value, the equivalent dietary ME required for the specific body weight and feed conversion 
response 
3BW37=BW at 37 d of age; BW44=BW at 44 d of age; WG3744=BW gained from 37 to 44 d of age; FI3744=feed intake from 37 to 44 d of age; 
FCR3744=feed conversion ratio (FI3744/WG3744); FI/BW37= feed consumed per unit starting BW 
NS= not significant (P > 0.10); **= P < 0.01; *= P < 0.05; + = P < 0.10 
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ABSTRACT 

Three experiments of similar design were conducted to first, evaluate dietary lysine in 

ratio with effective caloric value (ECV) altered either through the addition of soybean oil 

or by feed form, and second, to develop mathematical models that describe lysine 

requirement based on body composition. Studies utilized male and female broilers over 

age intervals ranging from 1 to 10 (Experiment 1), 19 to 29 (Experiment 2), and 45 to 55 

(Experiment 3) days.  Treatments evaluated were structured as 4 suboptimal dietary 

lysine levels by 2 (Experiment 1) or 3 (Experiments 2 and 3) ECV treatments.  ECV 

treatments examined were: 1) unprocessed mash (M), 2) M plus 187 kcal MEn/kg of 

soybean oil (M187), and 3) M steam pelleted (P). No significant sex × treatment 

interactions were detected therefore sex effects were combined.  In all experiments, 

increasing dietary lysine level resulted in greater feed intake, weight gain, protein and 

lipid tissue gain, and feed efficiency.  No significant dietary ECV effects were detected in 

Experiments 1 and 2.  However, overall in Experiment 2 results suggest that calories 

provided in the diet can be replaced on a one-to-one basis by calories spared through 

reduced activity.  In Experiment 3, P fed birds had higher feed intake, weight gain, 

protein and lipid gain, and feed efficiency compared to M187.  Responses to P and M187 

were equal when lysine intake was used as a covariate in the model.  Regression models 

were successful in inter-relating body composition with lysine need. Models indicated 

that current recommendations for dietary lysine fail to sufficiently meet lysine 

requirement for the fist 10 d of age.  Afterwards, recommended dietary lysine levels 

exceed requirements particularly towards the end of the growth curve.   

(Key words: broilers, pelleting, lysine, effective caloric value) 
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INTRODUCTION 

     Intrinsic factors determine a broiler’s overall capacity to synthesize and accumulate 

muscle (Lawrence and Fowler, 1997).  However, whether or not the inherent upper limit 

is realized largely depends on the dietary supply of essential amino acids, as well as 

energy, as protein accretion is energetically costly (4 to 7 moles of ATP per peptide bond 

formed; Bequette, 2003).  As maximum meat yield at optimal efficiency is a principle 

goal, nutritionist’s routinely tweak nutrient to calorie ratios in an attempt to provide an 

ideally balanced ration.  

      In practical corn-soybean meal based broiler diets, methionine is considered first 

limiting followed by lysine, arginine, valine, and threonine (Han et al., 1992). However, 

lysine is the amino acid to which all others are proportionally related (i.e. ideal protein 

concept; Baker and Han, 1994; Baker, 1997).  Additionally, lysine is generally expressed 

in ratio to energy, as dietary caloric density largely regulates voluntary feed intake 

(Leeson et al., 1996; McKinney and Teeter, 2004).  Lysine is largely viewed as a pivotal 

nutrient because lysine has no major precursor role, and there has been extensive work to 

quantify digestible lysine need in broilers reared under a wide range of dietary and 

environmental circumstances (Han and Baker, 1993; Emmert and Baker, 1997).   

     In addition to pelleting, numerous other nonnutritive factors encountered in broiler 

production such as stocking density (Cravener et al., 1992; Puron et al., 1997), lighting 

program (Buyse et al., 1996; Ingram et al., 2000), ventilation (Lott et al., 1998), and feed 

processing techniques (i.e., pelleting; Acar et al., 1991; Schiedeler, 1995; Moritz et al., 

2001) are well documented to impact body weight (BW) and feed conversion ratio 

(FCR).  If the paradigm is accepted that these responses are consequences of managerial-
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husbandry decisions that either “take away” or “add to” energy provided by the diet, then 

nonnutritive entities of broiler production need to be considered as variables directly 

influencing the ration formula. 

     Therefore, the following experiments were conducted to evaluate the efficacy of 

expressing lysine in ratio with calories added to the diet in two ways. 1) by increasing 

ME through substrate addition, or  2) through reduced activity energy expenditure by 

differing broiler management circumstances.  Secondly, data will be utilized to develop a 

model that enables lysine requirement to be inter-related with body composition.   

      

MATERIALS AND METHODS 

General Information  

      In a related experiment that was directed at evaluating the ECV of pelleting under 

conditions mimicking those found commercially, male and female broilers (Cobb 500) 

were obtained from a commercial hatchery following sexing and vaccination for Marek’s 

disease.  The chicks were wing-banded and allotted by sex to floor pens (3.5 × 2.0 m) 

with used litter top-dressed with fresh wood shavings. The lighting program followed 

was 23L:1D and the stocking density was 45 birds per pen.  Birds were reared with ad 

libitum access to feed and water on starter (0-18 d), grower (18-35 d), and finisher (35-60 

d) diets (Table 1) formulated to meet or exceed nutrient recommendations of the Cobb 

Broiler Nutrition Guide (2003). Treatments during the starter phase were: 1) unprocessed 

mash (M) and 2) M steam pelleted and crumbled (C).  Treatments for the grower and 

finisher phases were: 1) M; 2) M plus soybean oil (187 kcals MEn / kg diet; M187); and 

3) M steam pelleted and sifted (P).  Pens assigned to C in the starter phase were randomly 
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re-assigned to either M187 or P in the grower and finisher phases.  At the outset of this 

experiment, 25 wing-bands from each pen were randomly selected.  Spray paint was 

applied to the wing bows of the birds with pre-selected wing-bands so that those birds 

could be easily identified for use in the experiments reported herein.  

     The aim of the experiments described herein was also to evaluate dietary ECV, 

namely the efficacy of expressing dietary nutrients in ratio to ECV.  Experiments were of 

similar design and utilized male and female broilers (obtained from the aforementioned 

bird population) over age intervals ranging from 1 to 10 (Experiment 1; EXP1), 19 to 29 

(Experiment 2; EXP2), and 45 to 55 (Experiment 3; EXP3) days.  During the test periods, 

the birds were housed individually in floor pens (46 x 60 x 60 cm) equipped with a 

stainless steel feeder, a nipple drinker, and fresh wood-shavings.  Feed and water were 

provided for ad libitum consumption and the same lighting program stated previously 

was followed.  The general treatment structure for the three experiments was four dietary 

lysine levels and 2 (M and M187; Experiment1) or 3 (M, M187, and P; Experiments 2 

and 3) ECV treatments in a factorial arrangement.  Note, dietary ECV treatments 

formerly assigned were maintained in these experiments.  Body weight gain (BWG), feed 

intake (FI), and whole-body protein (PD) and lipid (LD) deposition were quantified in 

each assay.  Further, digestible lysine (LI) and metabolizable energy (MEI) intake, feed 

conversion ratio (FCR), apparent efficiency of energy retention (retained energy/energy 

intake; kRE), and the efficiency of lysine for whole-body protein deposition (protein 

gain/lysine intake; kLysPD) were calculated. 

     To obtain whole-body PD and LD, initial and final body composition was determined 

using dual-energy x-ray absorptiometry (DXA) as described by McKinney et al. (2005).  
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In brief, birds were fasted (8 h), anesthetized (Skinner-Noble et al., 2005), and scanned 4 

consecutive times in the prone position. Equations developed by McKinney et al. (2005) 

were used to adjust DXA measurements to match what would otherwise have been 

obtained by proximate analysis (AOAC, 1990).  As a check of DXA results, the 

summation of the adjusted bird protein, water, lipid, and ash were compared with the 

gravimetric weight.  Body weight calculated from adjust DXA measurements not within 

± 5% of the respective gravimetric weight were excluded and the accepted scans for each 

bird were combined for analysis.  

Diets 

     The preparation of the experimental diets involved several steps. First, for each 

experiment, a basal diet (Table 2) was formulated to 105% of recommended nutrient 

concentrations (Cobb Broiler Nutrition Guide, 2003), with the exception of lysine.  

Second, four premixes with graded levels of lysine were formulated to be iso-caloric, iso-

nitrogenous and equal in Na+ and Cl- ions, utilizing L-lysine-HCL, NaCL, NaHCO3, 

glutamic acid, corn starch, and Solka-Floc®.  Four additional premixes were formulated 

in the same manner with the exception that the energy level was increased by adding 

soybean oil at the expense of Solka-Floc®.  The experimental diets were then prepared 

by mixing proportions of the basal diet (95%) and the premixes (5%).  In Experiments 2 

and 3, half of the diets of the base energy level were steam conditioned and pelleted.       

 

Experimental design 

     All dietary lysine levels examined were deficient relative to that recommended (Cobb 

Broiler Nutrition Guide, 2003).  Not focusing replication around the zone where 
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responses to lysine plateau allowed a wider range of lysine levels to be evaluated.  In 

addition, this approach ensured response linearity, which enables the lysine requirement 

to be projected based on slope analysis.  Experiment 1 had a 2 × 4 factorial arrangement 

of dietary treatments.  Diets of four lysine levels (3.9, 5.2, 6.5, and 7.8 g/kg) were fed as: 

1) M (3,053 kcal MEn / kg diet) and 2) M187 (3240 kcal MEn / kg diet).  Experiments 2 

and 3 had a 3 × 4 factorial arrangement of dietary treatments.  Dietary lysine levels in 

Experiments 2 and 3 were: 3.5, 4.8, 6.1, and 7.4, and 3.0, 4.3, 5.6, and 6.9 g/kg, 

respectively.  In Experiment 2, each of the lysine levels were fed as: 1) M (3,131 kcal 

MEn / kg diet); 2) M187 (3,318 kcal MEn / kg diet); and 3) P (3,131 kcal MEn / kg diet).  

In Experiment 3, each of the lysine levels were fed as: 1) M (3,174 kcal MEn / kg diet); 2) 

M187 (3,361 kcal MEn / kg diet); and 3) P (3,174 kcal MEn / kg diet).  

 

Data Analysis      

Bird served as the experimental unit and the experiments were analyzed as a completely 

randomized design.  Data were analyzed using General Linear Models of SAS (2000), 

with probability values of P < 0.05 considered significant.  When a significant F-statistic 

was detected, least square means were used for treatment comparisons. Orthogonal 

polynomial contrasts were used to test for linear and curvilinear responses with respect to 

lysine level. 

      Modeling procedures were based on forward stepwise regression (Neter et al., 1990).  

Factors were added to the regression model until three conditions were met: 1) adding 

factors to the model did not result in a substantial (R2 improvement < 2 %) increase in the 
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model R2; 2) all factors in the model were significant at P < 0.10; and 3) the resulting 

model matched known properties of the independent variables.   

 

RESULTS AND DISCUSSION 

     No significant sex × lysine treatment interactions were detected in any of the 

experiments. This was expected as prior research with both swine (Susenbeth, 1995) and 

poultry (Han and Baker, 1993) have shown no sex differences when diets of sub-optimal 

lysine content were fed.  Limited data is available as to differences between male and 

female responses to pelleting.  However, it has been suggested (Nir and Hillel, 1995) that 

females are slightly less responsive to pellets. However, similar observations were 

obtained from two independent studies, one utilizing males (McKinney and Teeter, 

2004), the other females (Skinner-Noble et al., 2005), as to the activity calories spared 

due to pelleting.  In the present study no sex × ECV treatment interactions were detected 

indicating that males and females response similarly to pelleting.  As no significant sex × 

dietary treatment interactions were detected sex effects were combined (Table 3, 4, and 

5).   

     No significant ECV × lysine level interactions were detected for FI, LI, or MEI.  

Overall, there was a tendency for feed consumption to increase in a linear manner (P < 

0.09) as dietary lysine level was increased.  Observations that a bird’s appetite increases 

to a point as dietary lysine is increased are well documented throughout the literature 

(Tesseraud et al. 1992; Edwards et al., 1999; Fatufe et al., 2004). Lysine fed in excess of 

need has the opposite effect.  Dietary ECV did not influence feed consumption in EXP1 

or EX2.  However in EXP3, birds provided pellets consumed more (P < 0.05) feed, 
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lysine, and energy compared to those fed M187, which appeared to have a depressed 

appetite.  It is generally accepted that voluntary intake is largely controlled by energy 

consumption (Leeson et al. 1996; McKinney and Teeter, 2004).  However, birds fed P 

consumed more energy overall compared to the M187 fed group.  This would suggest 

that calories spared by reduced activity are not perceived in a manner that would regulate 

consumption.   

     No ECV × dietary lysine level interactions were detected for BWG, PD, or LD in EXP 

2 and EXP 3.  A significant interaction was observed in EXP1.  Birds fed the lowest 

lysine level and M had significantly higher (P < 0.05) BWG, PD, and LD compared to 

birds fed the same lysine level and M187.  Then as the dietary lysine levels increased, 

M187 fed birds surpassed those receiving M.  It should be noted that birds on the low 

lysine M187 treatment did not consume feed well.  Either birds on this treatment did not 

adapt to the experimental cages or as Jensen (1965) reported, the supplemental dietary 

energy resulted in an energy-lysine imbalance.  Unfortunately, birds of this age are 

unable to consume whole pellets so Jensen’s (1965) hypothesis that pelleting exacerbates 

a deficiency could not be evaluated.  

      In EXP2 and EXP3, BWG, PD and LD increased (EXP2; linearly P < 0.05) as more 

dietary lysine was provided.  Based on the work of Urdaneta-Rincon and Leeson (2004) 

this is a result of increased tissue synthesis rather than a reduction in tissue degradation. 

Similarly, Tesseraud et al. (1992) demonstrated that both fractional synthesis and 

degradation of protein increases with lysine consumption, only fractional synthesis 

occurs at a higher level. In EXP3, P resulted in significantly more PD and LD compared 

to M187 and M birds.  This may be partially attributed to the greater lysine consumption 
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of birds fed P.  However, when lysine consumption was included in the model as a 

covariate, a significant F-statistic for ECV was obtained.  Means separation revealed the 

P still yielded higher PD. Additionally, though not statistically different, it should be 

noted that in EXP2, treatment P and M187 were virtually the same with respect to BWG, 

PD, and LD, and had similar lysine intakes. 

    In general FCR and kRE were improved and kLysPD reduced as dietary lysine was 

increased.  Regarding the latter, several reports have suggested that the efficiency of 

lysine utilization declines with increased LI (Batterham et al., 1990; Gahl et al., 1991; 

Fatufe et al., 2004).  In contrast, Möhn et al. (2000) reported that lysine utilization did not 

decline with increasing LI.  It ultimately may depend on the manner in which lysine 

efficiency is quantified (Lys/Lys verses Lys/Prot).  There is still discussion as to the 

composition of protein under conditions of sub-optimal lysine. For example, Skan and 

Noy (2004, 2005) contend that the lysine content of chicken tissue remains constant when 

dietary lysine is deficient.  Conversely, Edwards et al. (1999) and Fatufe et al. (2004) 

contend that during lysine deficiency the lysine content of the tissue proportionally 

decreases.  Nonetheless, lysine content of tissues was not evaluated in this study and 

kLysPD is expressed as lysine consumed per unit protein gain.  This is an apparent 

estimation and subject to error if the lysine content of the animal actually changes (i.e., 

increase collagen vs. breast tissue).      

     Indeed, the results of this experiment were somewhat variable. This may have resulted 

from 1) birds individually housed; 2) lack of appropriate replication; 3) birds in EXP2 not 

having an adaptation period to pellets; or 4) an inadequate experimental period.  

However, overall the data suggests that calories provided in the diet can be replaced by 
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calories spared through reduced activity.  Additionally, there was a general lack of 

interaction between energy (provided in either form) and lysine.  Moreover, results give 

support to the importance of considering broiler management in establishing nutrient to 

energy ratios.    

    An objective of this study was to develop a mathematical model that inter-relates 

broiler lysine requirement with the body composition for the entire growth curve.  As P 

was not included as a treatment in EXP1, data for the entire growth curve was 

unavailable. Therefore, P was excluded from the data set for modeling purposes.   

Numerous variables expressed both as measured and per unit metabolic body size 

(BW0.67) evaluated in the development of this model.  The parameters which yielded the 

best model for predicting daily total (TL, g) and digestible lysine (DL, g) consumption 

were 1) dietary :MEn:Lysine ratio (EL; g/kcal); 2) mean PD (g) and 3) daily PD (g).  The 

resulting equations were:  

(Eq. 1) TL = 0.46335 – (0.00007321 × EL) + (0.00121× mean PD) + (0.04227× daily PD); (R2 = 91.6%) 

(Eq. 2) DL = 0.41308  –  (0.00005846 × EL)  + (0.00110 × mean PD) +  (0.03878× daily PD);(R2 = 91.0%) 

To evaluate the estimated daily total and digestible lysine requirement, as it compares to 

current recommendations (Cobb Vantress, 2003), data provided from the field (Wiernusz, 

2005) were applied to the equations. 

     Results from these equations are illustrated in Figure 1.  Based on these estimations, 

current recommendations do not sufficiently supply the broiler with the required amount 

of lysine for the first 10 days of age.  After that, lysine is fed in excess particularly 

towards the end of the growth curve.  Indeed, nutritionist’s build buffers into the ration 

formula to protect against, for example, feed mixing mistakes, but is possible with these 

equations to quantify that allowance. 
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    Potentially, information obtained from these equations could be used to modify the 

existing ideal protein model.  Furthermore, it may be possible to integrate these equations 

into a more mechanistic approach whereby producers could specify, for example, desired 

bird composition, total days available for production,  and rearing conditions, and these 

models would provide dietary provisions necessary to achieve that target.  
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Table1.  Composition of diets used to rear broilers to the ages evaluated in Experiments 1, 2, and 3  
  Age interval, d and Treatments1,2 

  0 to 18  18 to 35  35 to 60 
Ingredient, %  M and P  M and P  M187  M and P  M187 
Corn  58.12  64.89  60.73  68.72  64.31 
Soybean meal (48% CP)  32.66  24.59  25.61  22.76  23.63 
Soybean oil  2.90  2.93  6.4  3.32  6.89 
Poultry by-product meal  1.50  3.00  3.00  0.50  0.50 
Monocalcium phosphate  1.36  1.05  0.94  1.20  1.21 
Limestone  1.32  1.04  0.94  1.08  1.07 
NaCl  0.34  0.29  0.32  0.34  0.35 
NaHCO3  0.25  0.32  0.27  0.30  0.28 
Vitamin premix3  0.28  0.24  0.24  0.25  0.25 
Trace mineral premix4  0.09  0.09  0.09  0.09  0.09 
Selenium premix  0.04  0.04  0.04  0.04  0.04 
CuSO4  0.002  0.002  0.002 0.002 0.002 
Choline chloride  0.001  –  –  –  – 
DL-Methionine  0.22  0.22  0.19  0.12  0.12 
Lysine  0.076  0.157  0.10  0.10  0.08 
Arginine  0.03  0.05  0.03  0.05  0.03 
Threonine  0.03  0.05  0.02  0.05  0.04 
AmeriBond 2x  0.75  1.00  1.00  1.00  1.00 
Coccidiostat  0.05  0.05  0.05  0.08  0.08 
Ethoxyquin  0.012  0.012 0.012 0.012 0.012 
Calculated Analysis           
MEn (kcal / kg) 3,053 3,131 3,318 3,174 3,361 

CP, %  22.1  19.8  19.8  17.5  17.5 
Arg  1.49  1.30  1.30  1.16  1.16 
Lys  1.26  1.14  1.14  0.96  0.96 
Met  0.55  0.52  0.52  0.42  0.42 
TSAA  0.94  0.88  0.88  0.76  0.76 
Ca  0.90  0.80  0.80  0.72  0.72 
P, available  0.44  0.40  0.40  0.37  0.37 

1Treatments: M = mash; M187 = M plus soybean oil (187 kcal MEn/kg); P = M steam pelleted and sifted. 
2From 0 to 18 days, P was crumbled. 
3Supplied per kilogram of diet: vitamin A, 10,141 IU (retinyl acetate); cholecalciferol, 3,086 IU; vitamin E, 
23.92 IU (dl-α-tocopheryl acetate); menadione, 2.87 mg; thiamine, 2.20 mg; riboflavin, 7.72 mg; niacin, 
60.30 mg; d-pantothenic acid, 12.46 mg; pyridoxine, 3.75 mg; vitamin B12, 0.017 mg; folic acid, 1.066 mg; 
d-biotin, 0.127 mg. 
4Supplied per kilogram of diet: Ca,160 mg; Zn, 100 mg; Mn, 120 mg; Fe,75 mg; Cu, 10 mg; I, 2.5 mg.   
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Table 2. Basal diets used in Experiments 1, 2, and 3  
  Experiment 

Ingredient  1  2  3 
Corn  62.0  70.2  76.2 
Corn gluten meal  15.0  13.9  11.4 
Wheat bran  5.6  2.1  – 
Soybean oil  3.2  3.0  3.0 
Poultry by-product meal  1.58  1.28  1.22 
Soybean meal  1.58  1.26  0.53 
Mono-calcium phosphate  1.56  1.46  1.34 
Limestone  1.54  1.39  1.22 
Corn Starch  1.26  –  – 
Potassium sulfate  1.26  0.87  0.95 
Arginine  0.99  0.81  0.71 
Pellet binder  0.79  1.05  1.05 
NaHCO3  0.72  0.62  0.54 
Vitamin premix1  0.68  0.27  0.28 
Isoleucine  0.33  0.23  0.18 
Serine  0.33  –  – 
Threonine  0.29  0.23  0.23 
Glycine  0.29  0.13  0.29 
Valine  0.28  0.18  0.18 
Histidine  0.22  0.15  0.07 
Methionine  0.21  0.18  0.09 
Tryptophan  0.13  0.11  0.09 
Trace mineral premix2  0.095  0.095  0.100 
Coccidiostat  0.053  0.079  0.079 
Selenium premix  0.011  0.021  0.028 
Ethoxyquin  0.013  0.013  0.013 
CuSO4  0.002  0.002  0.002 
Choline chloride  –  0.116  0.026 
NaCl  –  0.105  0.175 
Calculated Analysis       

MEn (kcal / kg)  3,214  3,296  3,341 
CP, %  22.01  19.93  17.68 
Arg3  1.44  1.25  1.11 
Lys3  0.39  0.35  0.30 
Met3  0.55  0.50  0.41 
TSAA3  0.84  0.78  0.69 
Ca  0.95  0.84  0.76 
P, available  0.46  0.42  0.39 

1Supplied per kilogram of diet: vitamin A, 10,141 IU (retinyl acetate); cholecalciferol, 3,086 IU; vitamin E, 
23.92 IU (dl-α-tocopheryl acetate); menadione, 2.87 mg; thiamine, 2.20 mg; riboflavin, 7.72 mg; niacin, 
60.30 mg; d-pantothenic acid, 12.46 mg; pyridoxine, 3.75 mg;  
vitamin B12, 0.017 mg; folic acid, 1.066 mg; d-biotin, 0.127 mg. 
2Supplied per kilogram of diet: Ca,160 mg; Zn, 100 mg; Mn, 120 mg; Fe,75 mg; Cu, 10 mg; I, 2.5 mg.   
3True digestible basis according to the listing of Ajinomoto Heartland, Incorporated (2001).
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Table 3. Broiler growth performance and whole body protein and lipid deposition and retention efficiencies as influenced by dietary treatment,  
Experiment 1 

Dietary treatment1  Intake  Deposition3  Efficiency 
ECV  Lys2, %  Diet Lys2 MEn  BWG Protein Lipid  FCR4 kLysPD

5 kER6 

Interactive effect means (g) (kcal)  (g)  (g/g) (%) 
M  0.39  146 0.57 446  50c 4.7c 0.1d  3.00 9.7 7.1 
M  0.52  144 0.75 439  57c 6.0c 0.7cd  2.60 12.7 14.9 
M  0.65  162 1.05 494  83b 9.7bc 2.7bc  1.88 9.7 15.8 
M  0.78  187 1.46 571  88b 10.3b 3.3b  2.17 7.4 15.9 
M187  0.39  86 0.33 278  36d 1.5d -1.8e  2.42 4.4 -4.4 
M187  0.52  155 0.81 503  61c 5.8c 0.7cd  2.58 8.2 8.5 
M187  0.65  211 1.45 685  95b 12.4b 4.4b  2.32 8.2 13.6 
M187  0.78  270 2.11 875  127a 18.4a 7.9a  2.15 9.0 20.4 
Main effect means             
M    160 0.95 487  70 7.7 1.7  2.41 9.9 13.4 
M187    181 1.17 585  80 9.5 2.8  2.37 7.4 9.5 
  0.39  116c 0.45d 362b  43d 3.1c -0.8d  2.71 7.1 1.4b 
  0.52  150bc 0.78c 471b  59c 5.9b 0.7c  2.59 10.4 11.7a 
  0.65  186abc 1.24b 589ab  89c 11.0a 3.6b  2.10 8.9 14.7a 
  0.78  229a 1.78a 723a  108a 14.3a 5.6a  2.16 8.2 18.2a 
Source of variation  Probability 
ECV  0.9702 0.4464 0.6470  0.3624 0.5660 0.5766  0.6577 0.2092 0.1273 
Lys  0.0074 < 0.0001 0.0054  < 0.0001 < 0.0001 < 0.0001  0.6762 0.7577 0.0127 

Linear  0.0809 0.0009 0.0701  < 0.0001 < 0.0001 < 0.0001  0.4186 0.6832 0.0512 
Quadratic  0.9534 0.6284 0.9599  0.2036 0.3029 0.3040  0.7327 0.4593 0.4328 

ECV × Lys  0.1373 0.0708 0.1057  0.0027 0.0018 0.002  0.8854 0.7913 0.4929 
Pooled SEM  10.87 0.55 33.60  2.12 0.43 0.25  0.21 1.28 1.82 

a- eMeans within a column with different superscripts differ (P < 0.05). 
1M = unprocessed mash; M187 = M plus soybean oil (187 kcal MEn/kg diet).  
2Expressed as true digestible lysine based on the listing of Ajinomoto Heartland, Incorporated (2001). 
3Initial body composition determined by whole bird chemical analysis; final body compositions were based on dual energy x-ray absorptiometry measurements 
adjusted as described by Mckinney et al. (2005). 

4Feed conversion ratio (FCR) = feed consumption / body weight gain. 
5Efficiency of dietary lysine for protein deposition (kLysPD) = protein deposition/lysine consumption. 
6Efficiency of energy retention (kER) = ((protein deposition × 5.65 + lipid deposition × 9.31)/Energy (MEn basis) consumption) × 100. 
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Table 4. Broiler growth performance and whole body protein and lipid deposition and retention efficiencies as influenced by dietary treatment,  
Experiment 2 

Dietary treatment1  Intake  Deposition3  Retention 
ECV  Lys2, %  Diet Lys2 MEn  BWG Protein Lipid  FCR4 kLysPD

5 kER6 

Interactive effect means (g) (kcal)  (g)  (g/g) (%) 
M  0.35  490 1.71 1,533  135 22 16  3.64 12.9 17.7 
M  0.48  668 3.21 2,091  244 41 31  2.84 12.7 24.7 
M  0.61  718 4.38 2,248  318 56 43  2.30 12.8 31.8 
M  0.74  819 6.06 2,565  376 65 51  2.21 10.6 32.4 
M187  0.35  648 2.27 2,149  209 34 26  3.23 14.4 19.3 
M187  0.48  574 2.75 1,904  229 38 29  2.53 14.6 26.8 
M187  0.61  735 4.48 2,439  342 59 47  2.17 13.0 31.1 
M187  0.74  815 6.03 2,704  396 70 57  2.07 11.5 34.1 
P  0.35  700 2.45 2,191  273 46 36  2.83 18.7 27.2 
P  0.48  594 2.85 1,860  226 38 30  2.65 13.4 26.2 
P  0.61  712 4.34 2,228  285 49 38  2.53 11.4 28.2 
P  0.74  863 6.13 2,703  398 68 54  2.20 10.9 32.0 
Main effect means             
M    674 3.84 2,109  268 46 35  2.75 12.2 26.7 
M187    693 3.88 2,299  294 50 40  2.50 13.4 27.8 
P    717 3.94 2,246  295 50 39  2.55 13.6 28.4 
  0.35  612c 2.14d 1,958c  205c 34c 26c  3.23a 15.3a 21.4c 
  0.48  612c 2.94c 1,952c  233c 39c 30c  2.67b 13.6ab 25.9b 
  0.61  721b 4.40b 2,305b  315b 55b 42b  2.33c 12.4bc 30.4a 
  0.74  832a 6.07a 2,657a  390a 68a 54a  2.16c 11.0c 32.8a 
Source of variation  Probability 
ECV  0.8513 0.9775 0.7756  0.8037 0.8685 0.767  0.3575 0.5164 0.8149 
Lys  0.0006 < 0.0001 0.0006  < 0.0001 < 0.0001 < 0.0001  < 0.0001 0.0005 < 0.0001 

Linear  0.0856 < 0.0001 0.0875  0.0017 0.001 0.0029  < 0.0001 0.0182 0.0002 
Quadratic  0.2670 0.2748 0.2577  0.2988 0.2787 0.3096  0.4576 0.7612 0.9861 

ECV × Lys  0.655 0.9431 0.6659  0.4284 0.4726 0.4835  0.3927 0.1839 0.2115 
Pooled SEM  19.29 0.12 61.72  10.24 1.87 1.64  0.06 0.37 0.69 

a- dMeans within a column with different superscripts differ (P < 0.05). 
1M = unprocessed mash; M187 = M plus soybean oil (187 kcal MEn/kg diet); P = M steam pelleted and sifted.  
2Expressed as true digestible lysine based on the listing of Ajinomoto Heartland, Incorporated (2001). 
3Based on dual energy x-ray absorptiometry measurements adjusted as described by Mckinney et al. (2005). 
4Feed conversion ratio (FCR) = feed consumption / body weight gain. 
5Efficiency of dietary lysine for protein deposition (kLysPD) = protein deposition/lysine consumption. 
6Efficiency of energy retention (kER) = ((protein deposition × 5.65 + lipid deposition × 9.31)/Energy (MEn basis) consumption) × 100. 
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Table 5. Broiler growth performance and whole body protein and lipid deposition and retention efficiencies as influenced by dietary treatment,  
Experiment 3 

Dietary treatment1  Intake  Deposition3  Retention 
ECV  Lys2, %  Diet Lys2 MEn  BWG Protein Lipid  FCR4 kLysPD

5 kER6 

Interactive effect means (g) (kcal)  (g)  (g/g) (%) 
M  0.30  1,412 4.24 4,482  245 40.5 50.5  5.86 9.6bc 15.6 
M  0.43  1,515 6.51 4,809  306 55.5 75.7  5.21 8.8bc 21.8 
M  0.56  1,520 8.51 4,824  351 60.3 80.0  4.54 7.1bc 22.5 
M  0.69  1,663 11.48 5,279  395 59.5 81.0  4.51 5.1c 20.2  
M187  0.30  1,233 3.70 4,144  222 39.6 52.0  5.55 10.7bc 17.1 
M187  0.43  1,137 4.89 3,820  321 49.2 69.0  4.13 10.3bc 24.5 
M187  0.56  1,445 8.09 4,857  353 58.6 76.3  4.69 7.0bc 20.6 
M187  0.69  1,505 10.39 5,059  524 79.0 111.0  2.96 7.8bc 29.7 
P  0.30  1,079 3.24 3,426  322 69.1 91.4  3.34 22.9a 39.1 
P  0.43  1,557 6.69 4,940  423 74.4 102.7  3.75 11.0b 27.6 
P  0.56  2,230 12.49 7,078  570 102.9 142.7  4.09 8.2bc 26.7 
P  0.69  2,086 14.40 6,622  680 104.6 161.9  3.38 7.1bc 30.8 
Main effect means             
M    1,528b 7.68ab 4,849ab  324b 54.0b 71.8b  5.03a 7.6b 20.0b 
M187    1,330b 6.77b 4,470b  355ab 56.6b 77.1b  4.34ab 8.9b 23.0b 
P    1,738a 9.20a 5,517a  499a 87.8a 124.7a  3.64b 12.3a 31.0a 
  0.30  1,241c 3.72d 4,017c  263b 49.7b 64.7b  4.92 14.4a 23.9 
  0.43  1,403bc 6.03c 4,523bc  350b 59.7ab 82.5ab  4.37 10.0b 24.6 
  0.56  1,732ab 9.70b 5,587ab  425ab 73.9ab 99.6ab  4.44 7.4bc 23.3 
  0.69  1,752a 12.09a 5,653a  533a 81.0a 118.0a  3.62 6.7c 26.9 
Source of variation  Probability 
ECV  0.0072 0.0043 0.0295  0.0226 0.0046 0.0029  0.0358 0.0036 0.0076 
Lys  0.0027 < 0.0001 0.0027  0.0071 0.0691 0.0320  0.2847 < 0.0001 0.8227 

Linear  0.0111 < 0.0001 0.0112  0.0868 0.0992 0.1228  0.4948 0.0002 0.8793 
Quadratic  0.5779 0.4541 0.5636  0.9370 0.8593 0.9862  0.5843 0.5276 0.7763 

ECV × Lys  0.1938 0.3146 0.2039  0.9201 0.9398 0.9004  0.5828 0.0094 0.2783 
Pooled SEM  52.07 0.31 166.73  26.34 4.10 6.36  0.20 0.48 1.28 

a- dMeans within a column with different superscripts differ (P < 0.05). 
1M = unprocessed mash; M187 = M plus soybean oil (187 kcal MEn/kg diet); P = M steam pelleted and sifted.  
2Expressed as true digestible lysine based on the listing of Ajinomoto Heartland, Incorporated (2001). 
3Based on dual energy x-ray absorptiometry measurements adjusted as described by Mckinney et al. (2005). 
4Feed conversion ratio (FCR) = feed consumption / body weight gain. 
5Efficiency of dietary lysine for protein deposition (kLysPD) = protein deposition/lysine consumption. 
6Efficiency of energy retention (kER) = ((protein deposition × 5.65 + lipid deposition × 9.31)/Energy (MEn basis) consumption) × 100. 
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ABSTRACT 

     Data from two 10 d experiments utilizing 15 and 34 d old Cobb 500 male broilers 

were conducted, pooled and used to model metabolizable energy (ME) need for 

maintenance, and tissue accretion. Methodologies used to estimate energetic efficiency of 

energy consumed above maintenance for protein (kp) and lipid (kf) tissue accretion were 

tested and a novel method developed.  The maintenance energy requirement, expressed 

per unit metabolic body size, was independent of bird age and was determined as 114 

kcal/ kg BW0.67.  Values determined using regression analyses were 0.75 and 0.86 for kp 

and kf, respectively.  Regression analysis separating retained energy into energy retained 

as protein and lipid tissue has been criticized due to the colinearity between protein and 

lipid tissue accretion.  To circumvent this, a novel methodology was developed as 

follows: first a matrix of biologically possible kp and kf values is created followed by its 

application to predict ME intake above maintenance.  The kp kf combination enabling ME 

intake computation with zero error was accepted. Between the two methods, values for kf 

were in close agreement (0.86 verses 0.88).  While the regression analysis estimated kp as 

0.75 vs. 0.61 for the novel approach.  Utilizing resulting kp and kf values, coupled with 

protein and lipid accretion to estimate ME intake above maintenance, indicated less error 

for the novel approach. Based upon the regression overestimate it was thereby concluded 

that the method discrepancy was a result of muticollinearity between the predictor 

variables in the regression model.  Further, the proposed methodology for calculating kp 

and kf appears to provide more accurate estimates.      

(Key words: broiler, maintenance energy, energetic efficiency, body composition) 
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 INTRODUCTION 

      Intrinsically, there is a caloric cost associated with the accretion of lean and lipid 

tissue.  These costs are reflected in the overall heat production of an animal and are 

accounted for when a diet’s energy value is expressed as net energy.  Though net energy 

fully accounts for energetic inefficiencies, a net energy system has been difficult to 

establish due to the complexity of its accurate measure and practical application.  

Conversely, metabolizable energy can be rapidly and precisely determined (Sibbald 

1976; McNab and Blair, 1988), and therefore remains the standard measure for 

evaluating dietary energy in poultry diets.   As such, efforts have been directed towards 

quantifying the metabolizable energy required for maintenance and the efficiency of 

metabolizable energy utilization for broiler tissue accretion (Leclercq and Saadoun, 1982; 

Boekholt et al. 1994).  

     The simplest approach for assessing the efficiency of metabolizable energy utilization 

for tissue accretion is by partitioning metabolizable energy intake into energy utilized for 

maintenance and that retained as tissue.  This is accomplished by regressing retained 

energy on metabolizable energy consumption.  In this instance, the slope parameter 

estimate yields the efficiency of metabolizable energy for tissue accretion and the 

residual energy (intercept) indicates the energy needed for maintenance (DeGroote, 

1974).  However, this approach is not descriptive as to the type of tissue accreted and 

thus differences in efficiencies of energy utilization associated with protein and lipid 

tissue are ignored.     

     In an effort to separate the energetic efficiencies associated with the production of 

protein and lipid tissue, Kielanowski (1965) proposed subdividing metabolizable energy 
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intake as follows: MEI = MEm + (1/kp × RPE) + (1/kf × RLE), where: MEI = 

metabolizable energy intake, MEm = metabolizable energy required for maintenance, 

RPE = energy retained as protein, RLE = energy retained as fat, kp = efficiency of energy 

utilization for protein, and kf = efficiency of energy utilization for fat.  Through 

regression analysis values for MEm, kp, and kf can be attained.  This approach however, 

has received criticism due to the autocorrelation among the predictor variables (Emmans, 

1994; Noblet et al., 1999), and its inability for separating metabolizable energy into 

contributing dietary substrates (Noblet et al., 1993).  Further, any approach to estimating 

the efficiency of energy utilization for tissue accretion requires a sound understanding of 

energy required for maintenance.  Errors or assumptions made relative to the 

maintenance energy requirement carries-over resulting in an over or under estimation of 

energy available for gain and ultimately false estimates for the metabolic costs of tissue 

accretion.   

   The objective of the following chapter is first directed at quantifying metabolizable 

energy required for maintenance and production in broilers, and second, to examine 

potential errors associated with the method proposed by Kielanowski (1965) for 

separating the energetic efficiencies associated with the production of protein and lipid 

tissue and its associated criticisms.    

 

MATERIALS AND METHODS 

Data Source 

     Data analyzed in this report were obtained from two experiments of the same design 

that were conducted in an effort to quantify differences in the energetic efficiency of 



 132

dietary protein, starch, and fat (unpublished).  Diets were formulated to represent ranges 

of nutrients typically fed to broilers in the United States. Both studies utilized Cobb 500 

male broilers that were obtained from a commercial hatchery.  Birds were reared in floor 

pens equipped with two cylinder-shaped gravity feeders, nipple drinkers, and used litter 

(wood shavings) that was top-dressed with fresh litter.  Stocking density in the floor pens 

was 40 birds per pen providing 0.03 m3 of floor space per bird and ad libitum access to a 

commercial diet and water was provided.  On 15 (Experiment 1) and 34 (Experiment 2) 

days of age, 90 broilers were randomly selected from the floor pens and individually 

housed in cages. Cages were elevated (1.2 m) and constructed of plastic-coated-wire (46 

x 60 x 60 cm) equipped with a small plastic trough feeder and a nipple drinker. For a 6 

day period, the birds were fed 1 of 15 dietary treatments (Table 3) twice per day (0900 

and 2100 h) so as to provide 50, 100, or 150% of the estimated maintenance energy 

requirement (Leclercq and Saadoun, 1982).    

     Preparation of the experimental diets involved several steps. First, for each 

experiment, three basal diets (Table 1) were formulated to either: 97.5, 100, or 102.5% 

the dietary crude protein recommended by the NRC (1994) and 3,050 kcal ME/kg diet. 

Amino acids were balanced in proportion to lysine in accordance to minimum amino acid 

ratios of the ideal protein concept (Baker and Han, 1994; Baker, 1997). Secondly, either 

corn starch or corn oil was added in place of areaneous flour to increase the dietary 

caloric density to either 0, 3,200, or 3,350 kcal ME/kg diet.  

     Initial and final body composition was determined using dual-energy x-ray 

absorptiometry (DEXA) as described by McKinney et al. (2005).  In brief, birds were 

fasted (8 h), anesthetized (Skinner-Noble et al., 2005), and scanned 4 consecutive times 
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in the prone position. Equations developed by McKinney et al. (2005) were used to adjust 

DEXA measurements to match what would otherwise have been obtained by proximate 

analysis (AOAC, 1990).  As a check of DXA results, the summation of the adjusted bird 

protein, water, lipid, and ash were compared with the gravimetric weight.  Body weight 

calculated from adjust DXA measurements not within ± 5% of the respective gravimetric 

weight were excluded and the accepted scans for each bird were combined for analysis.  

Calculations and Data Analysis 

    Variables used in the analysis were calculated as: mean metabolic body size (MBW) = 

((final body weight + initial body weight)/2) to the exponent of 0.67; energy retained as 

lipid (RLE) = change in body lipid (kg) × 9,310 kcal; energy retained as protein (RPE) 

change in body protein (kg) × 5,650 kcal; and retained energy = RPE + RLE.  All data 

presented herein are expressed per unit MBW.  Maintenance energy requirement and the 

efficiency of metabolizable energy intake (MEI) for protein (kp) and lipid (kf) tissue 

accretion were estimated according to the following regression models:       

   (1)  MEm = a + b × RE 

   (2) MEI = MEm + (1/kp) × RPE + (1/kf) × RLE  

 

RESULTS AND DISCUSSION 

     When the data were expressed on a per MBW basis, no differences were detected 

between Experiments 1 and 2, therefore data of the two experiments were combined and 

are presented in Table 4 and Figure 1.   

Maintenance Energy Requirement 
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     Metabolizable energy required for maintenance was estimated in three ways (Table 5).  

In the first approach, all of the data were used in developing the regression equation 

(Table 5; equation 1).  This approach requires the assumption that RE responses are 

linear as MEI increases.  This was tested using a polynomial regression model (MEI = a 

+ b × RE + c × RE2).  In this instance, the quadratic parameter estimate was not 

significant (P = 0.60), which would indicate that this assumption is true.  However, if a 

slight change in the slope of the line below verses above maintenance does exist, as has 

been proposed (NRC, 1994), then the maintenance energy requirement (intercept) would 

be overestimated.  Therefore, the second and third approaches in estimating maintenance 

energy requirement were to subdivide the data into regions (Figure 1).  Comparison of 

the resultant regression equations (Table 5) indicate that the slope of the line does change 

slightly as MEI increases above the maintenance energy requirement.  All of the 

estimates for maintenance energy requirement were in close agreement with previously 

reported values (Leclercq and Saadoun, 1982; Robbins, and Ballew, 1984; Pinchasov and 

Galili, 1990; Sakomura, 2004).  

Estimates for the Efficiency of Energy Utilization for Protein and Lipid Tissue 

Retention 

     The regression model where RE was subdivided into RPE and RLE (Table 6) resulted 

in kp and kf estimates of 0.75 and 0.86, respectively.  The kf estimate was similar to that 

reported by Leclercq and Saadoun (1982; 0.87), Boekholt et al. (1994; 0.86), Pullar and 

Webster (1977; 0.74), and van Milgen and Noblet (1999; 0.92).   The value determined 

for kp appeared to be overestimated compared to previously reported estimates (Leclercq 

and Saadoun, 1982; kp = 0.4; Boekholt et al., 1994; kp = 0.66; Pullar and Webster, 1977; 
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kp = 0.45). Note however, that considerable variability exists among the proposed values.  

This variation has been attributed to the autocorrelation that exists among the variables in 

the model (Emmans, 1994; Noblet et al., 1999).  It appears however, that the variability is 

not necessarily due to autocorrelation, but rather the collinearity between RPE and RLE 

(Figure 2).   

          Multicollinearity is a term that denotes correlation among variables in the 

regression model (Neter et al., 1990).  Multicollinearity is not necessarily problematic if 

the goal of the model is predicting the independent variable.  However, as the goal is to 

obtain kp and kf through regression analysis, interpreting the parameter coefficients 

becomes difficult if not impossible when multicollinearity exists among the dependent 

variables.  In general correlation coefficients of 0.70 or higher establish that significant 

multicollinearity exists (Leahy, 2000).   

    In order to avoid the variability associated with the interpretation of the parameter 

estimates when multicollinearity exists, a different approach is suggested for obtaining kp 

and kf values (Appendix).  Consider a data set (EnergyforGain) that includes the 

following variables MEI, MEm, RPE, and RLE.  Based on this data set, a new data set 

(Matrix) can be created.  In that data set, a matrix of biologically possible kp and kf values 

can be generated (use caution in generating this kp and kf matrix: if the matrix becomes to 

large then the SAS output will cease).  Using the matrix data set, a new data set (kpkf) 

can be created.  Next, by subtracting MEm from MEI the following equation can be 

derived: MEforgain = RPE/kp + RLE/kf.  The program will examine every combination of 

kp and kf in the equation and thus enable the identification of a kp and kf combination that 

yields the actually MEI value, as illustrated in Figure 3. 
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     This approach was utilized to calculate kp and kf with the same data as used in the 

regression models.  The results of calculating kp and kf in this manner are shown in 

Figure 4. The combination of kp and kf that resulted in predicting MEforgain with zero error 

was 0.61 and 0.88, respectively.  The value obtained for kf using this methodology is in 

close agreement with that obtained from regression analysis.   However, it appears that 

the value for kp obtained by regression was overestimated.  This is presumably due to the 

high level (0.93) of correlation that exists between RPE and RLE.    

     In conclusion, the proposed method for obtaining kp and kf gave values that are in 

close agreement with previously reported constants.  With this approach, however, the 

problems associated with interpreting parameter coefficients when multicollinearity 

exists are avoided.  
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Table 1.  Composition of the basal diets used for Experiments 1 and 2 

  Age interval, d 
  15 – 21    34 – 40 

Ingredient, %   B1   B2   B3   B1   B2   B3 
Corn  40.21  35.36  31.02  51.18  46.33  41.46 
Soybean meal, 48% CP  29.24  31.12  32.02  19.44  21.3  23.14 
Arenaceous flour  10.09  10.09  10.09  10.26  10.26  10.26 
Corn oil  8.57  8.66  8.56  6.55  6.63  6.73 
Wheat  4.50  4.5  4.5  4.49  4.49  4.49 
Corn gluten meal  2.61  5.78  9.42  3.9  7.06  10.11 
Dicalcium phosphorus  1.86  1.83  1.82  1.38  1.36  1.33 
Limestone  1.44  1.45  1.46  1.52  1.53  1.53 
Salt  0.52  0.52  0.52  0.38  0.38  0.38 
Vitamin premix1  0.31  0.31  0.31  0.31  0.31  0.31 
Lysine HCL  0.16  0.07  —  0.24  0.14  0.05 
DL-Methionine  0.12  0.02  —  0.04  —  — 
Choline chloride  0.12  0.11  0.11  0.04  0.04  0.04 
Trace mineral premix2  0.07  0.07  0.07  0.07  0.07  0.07 
Threonine  0.06  —  —  0.06  —  — 
Salinomycin  0.05  0.05  0.05  0.05  0.05  0.05 
Avizyme 1502  0.05  0.05  0.05  0.05  0.05  0.05 
Selenium premix  0.02  0.02  0.01  0.02  0.02  0.01 
Tryptophan  —  —  —  0.01  —  — 

1Supplied per kilogram of diet: vitamin A, 10,141 IU (retinyl acetate); cholecalciferol, 3,086 IU; vitamin E, 23.92 IU (dl-α-tocopheryl 
acetate); menadione, 2.87 mg; thiamine, 2.20 mg; riboflavin, 7.72 mg; niacin, 60.30 mg; d-pantothenic acid, 12.46 mg; pyridoxine, 3.75 mg;  
vitamin B12, 0.017 mg; folic acid, 1.066 mg; d-biotin, 0.127 mg. 
2Supplied per kilogram of diet: Ca,160 mg; Zn, 100 mg; Mn, 120 mg; Fe,75 mg; Cu, 10 mg; I, 2.5 mg.
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Table 2. Chemical composition of the basal diets used for Experiments 1 and 2 

  Age interval, d 
    15 – 21  34 – 40 
 Calculated composition   B1  B2  B3  B1  B2  B3 
ME, kcal/kg 3,050 3,050 3,050 3,050 3,050 3,050 
  % 

Crude protein   20.50   23.00   25.50   17.50   20.00   22.50 
Ether extract   10.48   10.48   10.32   8.83   8.83   8.08 
Crude fiber   2.19   2.20   2.18   2.07   2.07   2.08 
Starch   30.26   27.55   25.17   36.89   34.18   31.46 
Calcium   1.00   1.00   1.00   0.90   0.90   0.90 
NonPhytate Phosphorus   0.45   0.45   0.45   0.35   0.35   0.35 
Sodium   0.20   0.20   0.20   0.15   0.15   0.15 
Potassium  0.73  0.76  0.78  0.57  0.60  0.64 
Chloride   0.38   0.35   0.34   0.30   0.28   0.26 

True digestible amino acids1           
Arginine   1.24   1.36   1.45   0.97   1.09   1.19 
Histidine   0.49   0.54   0.59   0.41   0.46   0.51 
Isoleucine   0.80   0.92   1.02   0.66   0.77   0.87 
Leucine   1.74   2.10   2.49   1.64   2.00   2.35 
Lysine2   1.07   1.07   1.07   0.89   0.89   0.89 
Methionine   0.44   0.40   0.43   0.34   0.35   0.40 
Methionine + Cystine  0.77  0.78  0.84  0.64  0.69  0.78 
Phenylalanine   0.95   1.11   1.27   0.83   0.98   1.12 
Threonine   0.72   0.74   0.82   0.61   0.63   0.71 
Tryptophan   0.17   0.19   0.21   0.15   0.15   0.17 
Valine    0.85   0.97   1.09   0.73   0.84   0.95 

1Based on digestibility coefficients reported by Ajinomoto Heartland, Incorporated (2001). 
1Includes amino acids from intact protein and crystalline sources, which were assumed 100% digestible. 
2Diets were formulated relative to lysine in accordance with the ideal protein concept (Baker and Han, 1994; Baker, 1997). 
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Table 3. General outline of treatment combinations in Experiments 1 and 2 
 

Diet 
  

Basal 
  

Crude protein, %1  
  Supplemental 

energy, kcal ME/kg 
 Supplemental 

energy source2 

A  B1  ( 2.5)  0  AF 
B  B1  ( 2.5)  150  CS 
C  B1  ( 2.5)  150  CO 
D  B1  ( 2.5)  300  CS 
E  B1  ( 2.5)  300  CO  
F  B2  0  0  AF 
G  B2  0  150  CS 
H  B2  0  150  CO 
I  B2  0  300  CS 
J  B2  0  300  CO 
K  B3   2.5  0  AF 
L  B3   2.5  150  CS 
M  B3   2.5  150  CO 
N  B3   2.5  300  CS 
O  B3   2.5  300  CO 

1Deviation from dietary crude protein levels recommended by the National Research Council 
 for Poultry (1994). 
1Parentheses denote a negative value. 
2AF = arenaceous flour; CS = corn starch; CO = corn oil. 
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Table 4. Data utilized for estimating kp and kf values (data from Experiments 1 and 2 were pooled)        
 Dietary treatments1 

B1  B2  B3 

AF  CS  CO  AF  CS  CO  AF  CS  CO 

Variable2, 
kcal/BW0.67 
and feed 
restriction3 0  150 300  150 300  0  150 300  150 300  0  150 300 

 
150 300 

TMEI                        
  50 56.8  59.0 63.2  58.7 61.7  56.4  59.1 62.0  58.6 61.2  56.8  60.0 62.5 58.2 62.6 
  100 108.6  114.8 112.7  112.1 120.7  110.1  112.6 117.0  114.5 117.5  106.8  110.1 118.0 112.6 117.9 
  150 158.8  164.6 162.3  165.3 169.3  158.8  164.7 174.2  163.0 171.8  159.3  161.2 171.5 163.3 176.3 
BMEI                       
  50 56.8  56.3 57.5  55.9 56.2  56.4  56.3 56.4  55.8 55.7  56.8  57.2 56.9 55.4 57.0 
  100 108.6  109.4 102.6  106.9 109.9  110.1  107.4 106.5  109.2 107.0  106.8  104.9 107.4 107.3 107.3 
  150 158.8  156.9 147.7  157.5 154.1  158.8  157.0 158.6  155.4 156.4  159.3  153.6 156.2 155.6 160.5 
SMEI                       
  50 –  2.8 5.7  2.8 5.5  –  2.8 5.6  2.7 5.5  –  2.8 5.6 2.7 5.6 
  100 –  5.4 10.1  5.3 10.8  –  5.3 10.5  5.4 10.5  –  5.2 10.6 5.3 10.6 
  150 –  7.7 14.5  7.7 15.2  –  7.7 15.6  7.6 15.4  –  7.6 15.4 7.7 15.8 
RPE                       
  50 (25.1)  (7.1) (18.1)  (16.8) (20.0)  (23.1)  (18.3) (19.7)  (18.8) (19.1)  (21.1)  (17.6) (21.3) (21.0) (19.7) 
  100 (1.0)  (0.9) (2.2)  3.4  (0.9)  0.9   2.3  2.4   (1.5) (0.1)  (0.4)  2.2  (1.4) 2.6  0.7  
  150 11.7   9.2  13.7   15.1  16.1   14.7   11.8  17.9   17.5  20.1   18.6   21.1  27.2  21.2  20.9  
RLE                       
  50 (32.8)  (16.9) (18.9)  (23.3) (27.3)  (29.3)  (33.8) (26.2)  (26.9) (26.4)  (29.3)  (27.3) (36.7) (24.2) (29.1) 
  100 (4.4)  (12.8) (2.4)  2.8  (7.1)  (5.3)  (0.9) 0.3   (7.7) 2.7   (2.8)  2.3  (5.6) 0.0  (1.3) 
  150 13.4   10.0  14.2   17.1  17.6   17.0   12.5  26.3   18.9  19.9   24.2   22.0  30.1  22.9  30.5  
TRE                       
  50 (57.8)  (24.0) (37.0)  (40.1) (47.3)  (52.4)  (52.0) (45.9)  (45.7) (45.5)  (50.5)  (44.9) (58.0) (45.2) (48.8) 
  100 (5.3)  (13.7) (4.6)  6.2  (8.0)  (4.4)  1.4  2.7   (9.2) 2.7   (3.2)  4.5  (7.0) 2.6  (0.6) 
  150 25.1   19.2  27.9   32.2  33.7   31.7   24.4  44.2   36.4  40.0   42.9   43.1  57.3  44.1  51.4  

1Refer to Table 3 for dietary treatment structure.  
2Variables: TMEI = total metabolizable energy intake; BMEI = metabolizable energy intake supplied by basal diet; SMEI = metabolizable energy intake supplied by 
supplement; RPE = energy retained as protein; RLE = energy retained as lipid; TRE = total retained energy. 
3Percent of proposed maintenance energy requirement (Leclercq and Saadoun, 1982).   
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Table 5. Linear regression equations for determining maintenance  
energy requirement 

    MEI = a + (1/kg) × RE1  
Equation  Region2  a  1/kg R2 

1  1 & 2  118.46151**  1.9787** 0.958 
2  1  114.94056**  1.11644** 0.972 
3  2  119.81672**  1.15217** 0.968 

**P < 0.001. 
1MEI = metabolizable energy intake (kcal/kg BW0.67); RE = retained energy 
(kcal/kg BW0.67); a = intercept; b = parameter coefficient. 
2Denote the data used in regression analysis, refer to Figure 1. 
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Table 6. Results of regression analysis to determine  
the efficiencies of energy utilization for protein and  
lipid retention1  

MEI = intercept + (1/kp) × RPE + (1/kf) × RLE2 
Intercept  1/kp  1/kf 

116.93674**  1.32438  1.16356 
  kp = 0.75  kf = 0.86 

**P < 0.001. 
1All birds used in analysis were in positive energy balance 
2MEI = metabolizable energy intake; REP = energy retained 
as protein; REL = energy retained as lipid; kp = efficiency of  
energy utilization for protein retention; kf = efficiency of energy 
utilization for lipid retention. 
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APPENDIX 

CHAPTER VII  

data Matrix; set EnergyforGain; 

do kp = 0.1 to 1 by 0.01; 

do kf = 0.1 to 1 by 0.01; 

output; 

end; 

end; 

run; 

_________________________________________________ 

data kpkf; set Matrix; 

PredMEforGain = ERP/kp + ERF/kf ; 

Error = ((MEforGain – PredMEforGain)/MEforGain)*100; 

proc sort data=kpkf; by Error; 

run; 

proc print data=kpkf; 

run; 
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