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CHAPTER I 

 

INTRODUCTION 

 

As retained ownership, alliances, and vertically coordinated supply chains 

become an increasingly larger percentage of cattle on feed, it has been estimated that 

more than 50% of the cattle in the U.S. are trading outside of the cash market (Ritchie, 

2002).  As segments become increasingly coordinated, it is more important than ever to 

understand the effects that management and nutrition in each segment have on all 

subsequent phases of production and final carcass value.  Age, weight, physiological 

maturity, breed type, and body composition upon entering the feedlot phase are all factors 

that have been taken into account when predicting potential feedlot performance and 

carcass merit of feeder cattle (Coleman and Evans, 1986; Coleman et al., 1993).  Cow 

nutritional status and subsequent milk production, early or normal weaning, creep-

feeding, physical form of the diet (forage vs. concentrate), diet energy density and 

initiation of concentrate feeding are all interrelated nutritional factors that may influence 

performance in the finishing phase as well as final carcass value.  Numerous 

investigations have also sought to determine the effects of nutrition and management 

throughout the production chain on deposition of marbling and subsequent carcass 

quality (Berger and Faulkner, 2003).   
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 After weaning, calves are generally placed on a growing diet to achieve adequate 

frame size and carcass weight before entering the feedlot phase.  Growing programs in 

the U.S. vary tremendously.  Cool season forages, including wheat pasture, harvested and 

ensiled crops, or high-concentrate diets fed at restricted levels are some examples of 

common growing programs.  Some cattle may go directly to finishing on a high-

concentrate diet immediately following weaning.   Because of the variability in growing 

programs among different regions of the country and in diets that may consist of grazed 

or harvested forage or a grain-based diet, performance and weight gain of cattle before 

and after feedlot entry may be vastly different. 

Although it is well established that management and nutrition during the growing 

phase affects performance of cattle during finishing, the nature and the extent of the 

effect have been questioned.  Due to the number of potential factors that may determine 

performance in the feedlot, and the interdependency of these factors, it is important that 

any investigation into growth, gain, and efficiency of feedlot cattle provide a complete 

picture of nutritional management through current and previous production segments.  It 

is equally important that research comprehensively examines all aspects of growth and 

performance in order to elucidate underlying physiological mechanisms.  The purpose of 

the work published herein was to characterize the effects of different growing phase 

regimes for feeder cattle, with differences in level of DMI, dietary physical form and 

composition, energy density, and nutrient availability, on growth rate and efficiency, 

tissue metabolic activity, and relative rates of tissue accretion. 
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CHAPTER II 

 

REVIEW OF LITERATURE 

 

Production Systems 

In the U.S. steers and heifers are often placed in roughage-based backgrounding 

programs after weaning (Sip and Pritchard, 1991).  These types of forage-based programs 

provide low-energy growing diets that allow calves to achieve adequate frame size and 

body weight before entering into a finishing program for fattening (Byers, 1982).  These 

production programs are particularly important in allowing smaller framed, British breed 

cattle to gain weight as lean tissue instead of fat.  Roughage-based systems include 

grazing programs as well as feeding harvested forages.  In the southeastern and southern 

plains regions of the country where a warmer climate and lower occurrence of snowfall 

allows for winter grazing, cool season forages are utilized in grazing systems for growing 

cattle.  In the northern plains and Midwestern regions of the U.S., roughages are often 

harvested and ensiled to provide for winter feeding. 

 Although high-roughage systems are often required for adequate lean gain during 

the growing phase, high-concentrate diets provide a cheaper source of energy on an equal 

unit basis (Sip and Pritchard, 1991).  Because of this, it may be more economical to 

utilize high-concentrate diets for growing cattle as opposed to forage-based diets (Loerch, 
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1990).  High-concentrate diets can be fed at restricted levels to target specific rates of 

gain similar to that of high-roughage diets fed ad libitum.  This can allow for adequate 

lean growth while using a more economical high-grain diet.  It has been demonstrated 

that high-concentrate diets can be fed at restricted levels to match the rate of gain of 

calves on ad libitum corn silage diets without detrimental effects on finishing 

performance (Loerch, 1990).  It has also been demonstrated that limit-feeding of a high-

concentrate diet as opposed to a roughage-based ration results in more desirable carcass 

characteristics as well as increased palatability of retail beef cuts (Coleman et al., 1995). 

 In a review by Galyean (1999), restricted feeding was defined as any method of 

feed intake management with which intake is restricted relative to actual or anticipated ad 

libitum intake.  Program feeding, however, was defined as a method in which net energy 

equations are used to calculate quantities of feed required to meet the needs for 

maintenance and a specific rate of gain.  Some of the advantages pointed out by Galyean 

(1999) for the use of program feeding of high-concentrate diets versus grazing and 

roughage based systems include cheaper costs at times when pasture costs are high or in 

short supply.  Other advantages for program-fed concentrate diets versus roughage 

systems discussed in this review are easier adaptation to an ad libitum finishing diet and 

improvements in feed efficiency.  

In some instances calves are moved directly onto an ad libitum high-concentrate 

finishing diet immediately following weaning.  Although feeding at higher intakes will 

improve daily gain, it may not result in optimum feed efficiency for cattle (Ferrell and 

Jenkins, 1998).  Due to changes in body composition and increased percentage of gain as 
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fat, the relationship between energy intake and energy gain may be nonlinear (Meissner 

et al., 1995; Ferrell and Jenkins, 1998). 

Management problems arising from programmed intake feeding versus ad libitum 

feeding have been a concern of cattle feeders in the past (Galyean, 1999), however 

Rakestraw and Lusby (1991) demonstrated successful, commercial-scale application of a 

limit-fed growing system versus an ad libitum fed system for weaned calves.  These 

researchers also reported improved feed conversion during finishing, and increased final 

live weight and carcass weight for limit-fed steers versus ad libitum fed steers.  Although 

cattle fed at restricted intake may demonstrate more aggressive behavior at the feed bunk, 

it has been reported that increasing bunk space does not affect gain or feed efficiency, 

and does not increase within pen variation in performance for program feeding compared 

with ad libitum feeding (Gunter et al., 1996).  However, due to increased rates of 

consumption with restricted intake, increased concentrations of ionophore in the diet may 

be necessary to avoid digestive upset (Sip and Pritchard, 1991).  

It may be advantageous for larger-framed cattle that contain a high percentage of 

continental breeding to begin an ad libitum high-concentrate diet earlier in life in order to 

insure that an adequate level of body fat is achieved before live weight becomes 

excessive.  It has been demonstrated that larger-framed, faster growing steers had 

increased feed efficiency on an ad libitum fed high concentrate diet versus a restricted fed 

high concentrate diet (Gunter et al., 1996).  This is also a means of allowing marbling 

deposition to be stimulated earlier so that desired carcass quality is met.  In smaller 

framed cattle, however, ad libitum feeding of a high-concentrate diet immediately after 

weaning may be a detriment to carcass quality by advancing physiological maturity to a 
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point where cattle do not have adequate time on feed to develop intramuscular fat 

(Schoonmaker et al., 2004).  These findings are supported by Coleman et al. (1993) in a 

study comparing Angus and Charolais steers in growing and finishing systems and 

suggest early feeding of a high-concentrate diet for later maturing, Continental breeds, 

but not for smaller British breeds. 

Over the past decade researchers have also begun to look at the possibility of 

starting calves on high-concentrate diets even earlier in life by weaning calves at earlier 

ages.  It has been shown that early-weaned calves are highly efficient at converting feed 

to live weight gain and in some instances has been shown to improve carcass quality 

grades (Myers et al., 1999a, 1999b; Wertz et al., 2001; Meyer et al., 2005).  According to 

Bruns et al. (2004), rate of intramuscular fat accretion is greater in cattle when projected 

hot carcass weight is less than 300 kg.  It has also been demonstrated that intramuscular 

fat is deposited at a faster rate relative to subcutaneous fat in calves as opposed to 

yearlings (Wertz et al., 2001).  This would not only suggest that intramuscular fat 

accretion is nonlinear, but also that management and nutrition early in life may be just as 

important of a determinant of carcass quality as management during the finishing phase. 

Compensatory Gain 

Sainz et al. (1995) defined compensatory gain as the more rapid and efficient 

growth of an animal following a period of nutritional restriction.  Numerous segments of 

the beef cattle industry obtain profit margins primarily by the differences in selling 

weight and purchasing weight for their particular phase of the production cycle.  Because 

of the more rapid and efficient gain experienced during compensatory growth, there is a 
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perceived value for cattle that have experienced previous nutritional restriction over and 

above cattle that have been fed to meet all their nutrient requirements. 

 Experiments conducted in this area have yielded conflicting results as to the 

nature and extent of compensatory gain (Fox et al., 1972; Carstens et al., 1991; Hersom et 

al., 2004a).  There has also been evidence to show that compensatory gain is a complex 

phenomenon that exhibits interactions with age, mature body size, and breed type of the 

animal (Coleman and Evans, 1986; Coleman et al., 1993), as well as length and severity 

of nutrient restriction (Sainz and Paganini, 2004), and composition of the diet fed to the 

restricted cattle (Sainz et al., 1995).  Interactions with mature body type and 

physiological age may play an important role in the extent to which compensatory gain is 

seen.  A study by Coleman and Evans (1986) was designed in an attempt to examine the 

effect of previous weight gain, along with age and size on compensatory gain.  The study 

was designed as a 2 x 2 x 2 factorial that utilized spring-born (older) and fall born 

(younger) calves, control (dehydrated alfalfa pellets) versus restricted (grass-alfalfa hay) 

diet calves, and Charolais and Angus calves.  The design provided groups of similar age 

but different weights (growing regimen within age) and steers of similar weights but 

different age (older-restricted versus younger controls).  It was shown that older restricted 

steers compensated during the finishing phase as compared with older control steers.  

However within age, younger restricted steers did not experience the same compensatory 

gain as compared with younger control steers.  This agrees with the findings of Morgan 

(1972).  Overall feed/gain was lower for restricted steers versus control steers however; 

younger steers were more efficient than older steers in feed/gain ratio.  Overall the study 
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demonstrated that previous nutritional restriction influenced weight gain in the next 

phase, however the weight that animals entered the next phase was just as important.   

Actual live weight gain in cattle following a period of nutrient restriction has been 

seen in numerous experiments; however, the reasons behind this gain are less clear.  

Compensatory live weight gain on a full body basis is partially attributable to differences 

in gut fill due to an increased dry matter intake (DMI) in steers.  Carstens et al. (1991) 

reported that steers that were restricted nutritionally during the growing period had 

heavier empty body weight (EBW) than control steers when expressed on an equal live 

weight basis.  During realimentation to ad libitum feeding, the compensating steers had 

lighter EBW than control steers on an equal live weight basis, showing that gut fill was 

increased.  Sainz et al. (1995) also pointed to an increase in DMI and an increase in gut 

fill for compensating steers compared with control steers.  Because of the differences in 

gut fill and weights of digesta for compensating steers, both of the aforementioned 

studies chose to examine the compensatory gain differences on an EBW basis.  However, 

EBW gain still showed compensatory gain in the previously restricted steers in both 

studies. 

It has also been suggested that increased digestibility of the diet may occur during 

the initial part of the finishing phase in steers that were restricted in energy during the 

growing phase (Choat et al., 2003).  This is, however, in disagreement with Coleman and 

Evans (1986) who asserted that previous nutritional restriction in the growing phase does 

not influence digestibility of the finishing diet, but that compensatory gain arises from 

increased utilization of nutrients post-absorption. 



 9 

It is hypothesized that the more efficient compensatory gain is due to a reduced 

maintenance energy requirement, a reduction in energy requirement for growth, or a 

combination of both.  The increase in DMI and subsequent gut fill for compensating 

versus non-compensating steers points to the possibility that gut size and visceral organ 

mass may be increased during compensatory gain and lead to an increase in maintenance 

energy requirements.  These proposed mechanisms as they relate to not only 

compensatory growth due to previous nutrition, but determination of cattle performance, 

will be discussed in detail in the following sections of this review. 

Composition and Energy Requirements for Gain 

Rate of gain and efficiency in the finishing phase can be affected by plane of 

nutrition and energy density of the diet during the growing phase.  Steers that are fed to 

have high rates of gain during the growing period accrete a larger percentage of their 

body weight gain as adipose tissue than steers that have been nutritionally restricted, and 

are fatter at all measures of carcass composition upon feedlot entry (Baker et al., 1992; 

Sainz et al., 1995; Hersom et al., 2003a).  Whether steers have high or low rates of gain 

during the growing phase, they appear to accrete similar amounts of lean tissue, and thus 

nutritionally restricted steers have higher protein content as a percentage of BW (Fox et 

al., 1972; Sainz et al., 1995).  This has also been demonstrated in lambs (Drouillard et al., 

1991).  Body weight gained as fat tissue requires more energy than lean accretion and 

thus requires a higher dietary energy content.  Thus cattle gaining a larger percentage of 

their BW as fat have a higher net energy requirement for gain (NEg), and growth 

efficiency decreases linearly with increasing subcutaneous fat (Wertz et al., 2001).  

Because of this cattle that have had higher rates of gain during the growing phase and 
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consequently have a higher percentage of body fat upon feedlot entry are generally 

assumed to be less efficient and have reduced gains during the finishing phase.  

Therefore, fleshier feeder cattle have traditionally received a discounted purchase price 

from feedlots (Mies, 1992).   

Carstens et al. (1991) demonstrated a reduction in NEg requirement was a primary 

reason for increased gain in previously restricted steers.  In the experiment, estimates 

were made for the amount of each body component for EBW gain that was realized 

during a period of realimentation.  Estimates of NEg were then calculated by multiplying 

the protein and fat contents of EBW gain by their respective energy coefficients.  From 

this it was calculated that NEg requirements were decreased 18% for previously restricted 

steers and thus concluded that the reduced requirements in NEg for compensating cattle 

as set forth by the NRC (1984) were justified by the results of the experiment.  This type 

of adjustment remains consistent with more current nutritional models and the 1996 Beef 

Cattle NRC Level 1 model also has a negative correlation between predicted ME 

allowable ADG and initial body fat content.  Hersom et al. (2004a) found that fatter 

wheat pasture grazed cattle subjected to higher rates of gain during the growing period 

did not, however, experience reduced growth performance during the finishing period 

compared with steers that were grazed on restricted wheat pasture or on dormant native 

winter range.  Even though cattle that were grazed on unrestricted wheat pasture had a 

significantly higher percentage of body fat upon feedlot entry, average daily gains 

remained similar to nutritionally restricted steers, and reached a common compositional 

endpoint with less days on feed.  Similar results were found in a study by Choat et al. 

(2003) comparing wheat pasture grazed steers with steers grazed on dormant native 
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winter range.  It was thus concluded that wheat pasture grazed cattle entering the 

feedyard with a higher percentage of body fat may not experience reduced feed 

efficiency, and that traditional price discounts for fleshier feeder cattle that have been 

grown on wheat pasture due to decreased predicted gain may not be justified. 

The reduction in NEg to which Carstens et al. (1991) attributed compensatory gain 

was calculated from the differences in composition of gain by the compensating cattle.  

Because cattle exhibiting compensatory gain have been observed to have less fat and 

more lean tissue as a percentage of body weight gain during realimenation, the gain is 

thought to be more energetically efficient.  Unlike Carstens et al. (1991), where 

nutritionally restricted steers remained leaner throughout grazing and realimentation, Fox 

et al. (1972) showed an increase in lean gain for compensating steers during the initial 

part of realimentation to a finishing diet, but showed no differences in body composition 

at final slaughter.  Compensating steers took longer (54 to 75 d) to reach the same 

endpoints in live weight for control steers and required a similar amount of total 

metabolizable energy to reach that weight.  Similar findings were reported by Rompala et 

al. (1985) with other breed types.  Previously restricted steers have been shown to have 

an initial period of increased protein and water gain followed by rapid fat accretion 

(Wright and Russel, 1991).  In the study by Carstens et al. (1991) steers were harvested at 

a constant number of days rather than a common compositional endpoint.  Therefore the 

steers experiencing compensatory gain may not have reached their maximum rate of fat 

accretion before the final harvest date.  If the study were carried out to a greater number 

of days and heavier final weights (>500kg) it is plausible the compensating steers would 
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have required more days on feed to reach a common compositional endpoint as compared 

with continuous-fed steers. 

Because differences in compensatory gain may be attributed to net energy 

requirements for growth and maintenance related to gut fill, gut size, and composition of 

gain, it is reasonable to believe that mature body type and physiological age influence 

composition of gain during growing and finishing.  A study by Coleman et al. (1993) 

examined the effects of similar age steers at different weights and steers of similar 

weights but different ages by using different breed types and growing regimens.  Overall 

the study showed that steers that entered the feedlot at a lighter weight, either due to 

previous restriction or younger age, accumulated fat more rapidly than larger steers. 

This difference in composition of gain has been demonstrated by Sainz et al. 

(1995).  In this study steers were fed in two phases.  Both the growing phase and the 

finishing phase were based on a constant weight.  During the growing phase steers were 

fed either a low energy diet on an ad libitum basis (FA), a high energy diet fed on a 

limited basis to match the gain of FA steers (CL), or a high energy diet ad libitum (CA).  

During the finishing phase steers were fed a high-concentrate diet on either an ad libitum 

basis (CA) or at 70% of the intake of CA steers (CL).  This resulted in five total groups 

(FA-CA, CL-CA, CA-CA, FA-CL, and CL-CL).  Serial slaughter groups were harvested 

at the beginning of the growing and the feeding phase as well as the end of finishing.  

Several measures of fatness were examined in this study including backfat, kidney, 

pelvic, and heart fat (KPH), abdominal fat, and marbling score.  Total fat content of the 

carcass was also estimated based on density.  During the growing phase, steers on both of 

the restricted diets (FA and CL) had less fat for all measures as compared with CA steers 
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and had a greater percentage of EBW as protein.  There were also no differences in 12th-

rib longissimus muscle area and it was thus concluded that the nutrient restriction does 

not effect muscle development but fat accretion only.  In the finishing phase, steers that 

were nutritionally restricted during the growing phase showed reduced backfat as 

compared with full-fed controls.   However, abdominal fat and total carcass fat were only 

affected by nutrient restriction in the finishing phase and not for steers restricted in the 

growing phase.  Marbling scores were not affected significantly by restriction in either 

phase.  Therefore the composition of gain and its subsequent differences were not 

believed to play a major role in the compensatory gain mechanism for this study.  Steers 

fed a restricted amount of the-high concentrate diet had increased growth efficiency 

compared with control steers and did not require more total feed to reach the same 

compositional endpoint.  Estimation of net energy for maintenance requirements (NEm) 

showed that both groups of steers that were limit-fed a high-concentrate diet during the 

growing phase (CL-CL and CL-CA) had lower NEm requirements as compared with CA-

CA steers. 

Maintenance Energy  

Increased dry matter intake during the subsequent finishing period for previously 

restricted steers accounts for some of the compensating increase in live weight gain 

(Carstens et al., 1991; Sainz et al., 1995).  Although live weight gain on a full body basis 

is partially attributable to differences in gut fill due to an increased DMI in steers that are 

compensating, steers that were restricted nutritionally during the growing period still 

exhibited greater gains in the finishing phase than control steers when expressed on an 

EBW basis (Carstens et al., 1991; Sainz et al., 1995).  However, Hersom et al. (2004a) 
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showed an increase in DMI for previously restricted steers but did not show an increase 

in performance for those groups.  It was estimated that the net energy for maintenance 

content of the diet was decreased for both groups of previously restricted steers, 

regardless of whether they were restricted by lower energy density of the diet or by 

reduced dry matter intake.   

The plane of nutrition during the growing phase can determine the maintenance 

requirement of cattle in the subsequent finishing phase, and increased gain in the feedlot 

by previously restricted cattle has been attributed to decreased maintenance energy 

requirement (Fox et al., 1972).  Sainz et al. (1995) estimated NEm requirements in steers 

that were fed a high-concentrate diet ad libitum during the growing phase and steers that 

were limit-fed (70% of control steers) a high-concentrate diet during the growing phase. 

It was determined that the limit-fed steers had 17% lower requirements for NEm during 

the finishing phase compared with ad libitum fed steers during finishing.  Steers fed a 

high-forage diet during the growing phase had 21% higher maintenance requirements as 

compared with steers fed a high-concentrate diet ad libitum.  Variation in maintenance 

requirements due to previous feed or forage intake appears to be attributed not to 

differences in body composition but to size of visceral organs and liver (Ferrell and 

Jenkins, 1985; Burrin et al., 1990). 

Visceral Organ Growth and Development 

Depending on the quality and energy density of the diet, maintenance 

requirements can account for more than half of the metabolizable energy intake of beef 

cattle (Beef Cattle NRC, 1996).  Due to high rates of protein synthesis and energy 

demand, visceral organs and liver comprise 50% of the energy expenditure for 
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maintenance (McBride and Kelly, 1990) even though they represent a small percentage 

of body weight (Ferrell and Jenkins, 1985).  Maintenance requirements increase with 

increases in visceral organ mass (Ferrell and Jenkins, 1998), which is in turn dependent 

on plane of nutrition (Burrin et al., 1989; Sainz and Bentley, 1997).   

In a study by Ferrell et al. (1986), lambs were fed a common diet for 42 d in 

amounts to achieve 16 (H), 5 (M), or -6 (L) kg of BW gain.  Afterwards lambs from the 

H and M groups were fed to achieve 16 (HH, MH), 5 (HM, MM) or -6 (HL, ML) kg of 

BW gain for a second 42-d period.  Lambs in the L group were fed to achieve 27 (LS), 16 

(LH), or 5 (LM) kg of BW gain.  The design of the experiment resulted in lambs of 

different treatments during the first 42-d period having similar live weights after 84-d 

(HM, MH, and LS in one group; HL, MM, and LH in a second group; ML and LM in a 

third group).  Within groups that had similar final live weight, there were no significant 

differences in body composition.  However fasting heat production was increased for 

lambs with higher planes of nutrition during the first 42-d period and higher planes of 

nutrition during the first period resulted in increased mass of the liver and portal-drained 

viscera (PDV).  Organ mass was dependent on rate of gain in the first period and was not 

a constant function of BW.  Thus increased rate of gain in period one resulted directly in 

increased maintenance requirements for period two. 

Differences have been reported in visceral organ mass and in individual mass of 

metabolically important organs due to DMI, physical form of the diet, and energy density 

of the diet (Burrin et al., 1989, 1990; Sainz and Bentley, 1997; Hersom et al., 2004b).  

Previously restricted ruminants that have been fed an energy dense diet with a resulting 

decreased dry matter intake have been shown to have a decreased maintenance 
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requirement; whereas, animals restricted by a low-quality, low-energy (forage) diet with 

a resulting increase in dry matter intake will have increased maintenance requirements 

(McLeod and Baldwin, 2000).  Hersom et al. (2004b) reported that previously restricted 

steers, whether restricted by DMI or energy density of the diet, had greater 

gastrointestinal tract (GIT) mass in relation to BW and specifically, larger rumino-

reticulums.  Increased rumino-reticulum mass due to increased DMI was also 

demonstrated by Jones et al. (1985) and Myers et al. (1999a).  McLeod and Baldwin 

(2000) reported increases in the gastrointestinal tract when metabolizable energy intake 

(MEI) was increased in forage diets but not in concentrate diets.  Forestomachs (rumino-

reticulum, omasum, and abomasums) appear to respond to physical form of the diet and 

fiber content (Sainz and Bentley, 1997).  In heifers fed alfalfa or concentrate diets at 

isoenergetic intakes, heifers fed concentrate diets had lower fasting heat production as 

compared with alfalfa-fed heifers and a smaller percentage of the concentrate-fed heifer’s 

heat increment was due to PDV and liver O2 consumption (Reynolds et al., 1991).  It has 

also been demonstrated that substrate oxidation by rumen epithelial cells in vitro was not 

altered by MEI or forage:concentrate ratio of the diet (Baldwin and McLeod, 2000).  

Thus it appears that these factors do not alter metabolism on a cellular level and changes 

in energy demand of the forestomach follow changes in mass (Burrin et al., 1990; 

McLeod and Baldwin, 2000). 

Liver mass appears to be dependent on nutrient load, and increases with DMI and 

higher energy density of the diet (Jones et al., 1985; Sainz and Bentley, 1997; Hersom et 

al., 2003b), and it has been demonstrated that this is due mostly to increases in liver cell 

size (Burrin et al., 1992; Sainz and Bentley, 1997).  It has also been reported that liver 
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growth increases as the nutrient load increases for previously restricted steers during 

realimentation to ad libitum feeding (Carstens et al., 1991).  Small intestinal mass appears 

to be dependent on both nutrient load and physical form of the diet and increases are due 

to greater cell number (Sainz and Bentley, 1997; McLeod and Baldwin, 2000).  

Drouillard et al (1991) reported that nutrient restriction, from either protein or energy, 

resulted in smaller livers in lambs.  Both liver and small intestinal mass was reduced by 

energy restriction.  These differences persisted after realimentation to feed but there was 

no compensatory growth due to the reduction in organ weight.  These researchers 

concluded that greater total visceral organ mass was due to greater workload, but dietary 

factors (fiber content and nutrient density) determined the workload for individual 

organs. 

Carcass Composition and Value 

One of the greatest challenges facing the beef industry is the lack of sufficient 

marbling in carcasses of beef cattle to meet the demands of the consumer.  Marbling is 

the amount and distribution of visible intramuscular fat in the muscle.  Increased 

marbling has been correlated with increased beef tenderness (Smith and Carpenter, 1974; 

Tatum et al., 1980; Dolezal et al., 1982; Berry, 1993) and beef flavor (Francis et al., 

1977; Neely et al., 1998; Wheeler et al., 1999).  Marbling continues to receive primary 

consideration in the assessment of quality in the U.S. beef grading system (USDA, 1975; 

Tatum et al., 1982), and thus within a carcass maturity classification, marbling is the 

major determinant of USDA Quality Grade.  According to the 2000 National Beef 

Quality Audit (NBQA)(Smith et al., 2000), insufficient marbling/ low USDA Quality 
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Grade caused economic losses to the beef industry of $20.96 for each fed steer and heifer 

slaughtered in 2000.    

Although a minimum amount of external fat aides tenderness by slowing the 

process of carcass chilling and preventing sarcomere shortening (Smith et al., 1976), 

subcutaneous fat has not been shown to be an effective indicator of beef tenderness or 

palatability (Tatum et al., 1982).  It has been demonstrated that beef tenderness is 

improved when carcasses have at least 5.08 mm of external fat thickness; however, there 

is little improvement in tenderness or palatability above this level (Dolezal et al., 1982; 

Tatum et al., 1982; Shackelford et al., 1994).  Because the 2000 NBQA (Smith et al., 

2000) showed that only 4.9% of the 9,396 carcasses evaluated had less than 5.08 mm (0.2 

inches) of subcutaneous fat thickness, the contribution of subcutaneous fat thickness to 

beef palatability may already be close to maximization.  Thus, the negative effect that 

excess external fat accumulation has on carcass yield is of much greater concern.  It was 

estimated that $50.96 for each steer and heifer harvested in 2000 was lost due to excess 

external fat (Smith et al., 2000). 

Because the goals of beef production require a reduction in subcutaneous adipose 

tissue and an increase in the amount of intramuscular adipose tissue, the needs of the 

industry run in opposing directions.  Thus the current beef industry faces a difficult 

challenge in altering the fat content of its product, and it is necessary that the effects of 

each segment of production on the development of different fat depots be understood 

thoroughly in order to maximize value of the final product. 
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Fat Tissue Accretion 

Body composition and fat tissue accretion are directly related to final carcass 

characteristics and consequently the final retail value of the carcass.  Previous studies 

have shown that nutritional plane has a minimal effect on the total amount of protein 

deposition and that periods of nutritional restriction primarily affect body composition 

through differences in fat deposition (Fox et al., 1972; Hersom et al., 2003a).  It has been 

demonstrated in lambs grazing ryegrass pasture that supplementation with barley did not 

alter nutrient utilization in the hindlimb (Majdoub et al., 2003).  These findings suggest 

that the additional energy from the supplementation went almost exclusively to adipose 

tissue lipogenesis.  Sainz et al. (1995) demonstrated that steers on diets restricted for DMI 

or for energy intake had less fat for all measures compared with steers that had been fed 

ad libitum concentrate diets, and had a greater percentage of EBW as protein.  There 

were no differences in 12th-rib longissimus muscle area between groups, and it was thus 

concluded that nutrient restriction does not significantly affect muscle development but 

fat accretion only.  In a study conducted by Smith et al. (1984), steers were fed on a high 

concentrate diet or an alfalfa diet.  Steers fed the alfalfa diet had a slightly higher MEI, 

but steers fed the high concentrate diet had higher rates of gain, primarily in the fat 

depots.  This suggests that diet type (forage versus concentrate) as well as MEI plays an 

important role in determining rate of fat gain. 

It has been demonstrated that adipose tissue deposition is subject to nutrition and 

management through dietary composition and energy density (Smith, 1995).  However, 

the relationship between deposition of adipose tissue in different depots of the body is not 

consistently correlated with nutrition (Zinn et al., 1970).  According to Hood (1983) fat is 
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preferentially deposited in the following tissue sites: perirenal and omental > 

subcutaneous > intermuscular > intramuscular.  However fat deposition that influences 

carcass yield, and fat deposition that influences carcass quality appear to have a 

differential degree of response to nutritional manipulation (Smith and Crouse, 1984).  It 

has been demonstrated that previous nutritional restriction during the growing phase 

decreases total body fat and markedly decreases backfat in steers harvested at a common 

weight (Fox et al., 1972; Carstens et al., 1991; Sainz et al., 1995).  However, reductions 

in marbling due to the same type of previous nutritional restriction have not been seen 

and final carcass marbling scores do not seem to be affected significantly by restriction in 

either the growing or the finishing phase (Sainz et al., 1995; Hersom et al., 2003a).  It 

was also concluded by Klopfenstein et al. (2000) that there were no differences in 

marbling due to type of backgrounding program or growing rate of gain when steers were 

fed to a common depth of 12th-rib backfat.  It has been shown however, that prolonged 

restriction may decrease carcass quality either by permanent impairment of marbling 

deposition or by increasing feedlot entry weight to the point that the finishing phase is too 

short for adequate marbling to develop (Sainz and Paganini, 2004).  Cattle that have been 

fed to slaughter weights, extreme in relation to industry standards, have accumulated 

large amounts of subcutaneous fat, but this has not been accompanied by significant 

increases in marbling (Dubeski et al., 1997).  Cunha (1974) observed that many cattle 

reach the USDA Choice Quality Grade with only 0.2 to 0.3 inches of backfat and the 

2000 NBQA (Smith et al., 2000) determined that cattle grading USDA Choice spanned 

USDA Yield Grades 1 to 5.  Increases in marbling have been shown by starting cattle on 

high-concentrate rations at earlier ages (Myers et al., 1999a; 1999b; Wertz et al., 2001); 
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however, these cases dealt with calves that were early weaned and started on feed at 

extremely early ages (70-100 d). 

In 1984, Smith and Crouse reported that previous studies indicated that marbling 

scores were less subject to manipulation through nutrition compared with 12th-rib fat 

thickness or total carcass fat.  This relationship was consistent with their study, in which 

cattle fed a higher energy corn diet did not display significantly greater marbling scores 

than cattle fed a lower energy corn silage diet when fed to 16 or to 18 months of age.  

Cattle on the higher energy diet did, however, have greater backfat thickness and a 

greater percentage of kidney, pelvic, and heart fat.  It was thus concluded that lipogenesis 

in the two depots was controlled by different means. 

Comparative Biology of Adipose Tissue Depots 

 Evidence has accumulated to indicate that intramuscular adipocytes represent a 

cell population different from the more extensively investigated subcutaneous adipocytes 

(Lin et al., 1992).  A number of studies have shown that intramuscular adipocytes are 

smaller cells on average, with less cell volume and correspondingly less lipid content 

than subcutaneous adipocytes (Hood and Allen, 1973; Smith and Crouse, 1984; Miller et 

al., 1991; May et al., 1994).  The smaller size and volume of adipocytes in the 

intramuscular adipose is associated with decreased lipogenic activity (Hood and Allen, 

1978).  In cattle, as in other ruminant species, the majority of de novo fatty acid synthesis 

takes place in adipose tissue.  Hood and Allen (1978) concluded that lipid was 

synthesized at a slower rate in intramuscular adipose than in subcutaneous adipose and 

that this was directly related to a smaller adipocyte volume.  In addition to cellularity, 

differences exist between subcutaneous and intramuscular adipose tissue depots in their 
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preferential uptake of substrates for fatty acid synthesis.  Subcutaneous adipocytes 

primarily use acetate-derived substrates as precursors for fatty acid synthesis.  However, 

glucose-derived carbon units provide the main source of substrate for fatty acid synthesis 

in intramuscular adipose tissue.  In studies on in vitro lipogenesis it was observed that 

acetate provided 70 to 80% of the acetyl units for lipogenesis in subcutaneous adipose 

tissue but only 10 to 25% for intramuscular tissue.  Glucose provided only 1 to 10% of 

the acetyl units for fatty acid synthesis in subcutaneous adipose but provided 50 to 75% 

of the units for intramuscular fatty acid synthesis (Smith and Crouse, 1984). 

 Many of the enzymes that are required for the use of glucose in fatty acid 

synthesis are limited in ruminants to conserve glucose.  In liver and in adipose the 

enymes ATP-citrate lyase and NADP-malate dehydrogenase (malic enzyme) are involved 

in the utilization of glucose for incorporation of pyruvate into acetyl-CoA and production 

of NADPH, which is necessary for fatty-acid synthesis (Smith, 1995).  Both of the 

enzymes are less abundant and less active in ruminant species (Smith and Crouse, 1984).  

Additionally, pyruvate carboxylase and glucokinase are limited in adipose tissue and in 

liver, respectively, to limit the production of acetyl units from glucose for lipogenesis 

(Smith et al., 1995).    

The location of intramuscular adipose tissue suggests that it is a biologically 

active depot and the most immediate source of energy for muscle tissue.  If this is the 

case it may be assumed that only when an animal is on a high plane of nutrition or a high-

energy status will intramuscular adipose be allowed to accumulate significant lipid 

content.  An elevated level of glucose, particularly in ruminants, would suggest a high 

level of nutrient availability to an animal’s biological system, and thus perhaps allow for 



 23 

significant lipogenesis in the animal’s intramuscular depots.  This may be a biological 

mechanism that shows why the lipogenic precursors for de novo fatty acid synthesis in 

intramuscular adipose tissue are derived primarily from glucose. The earlier this process 

happens in the animal’s life the earlier and more fully the intramuscular depots may be 

allowed to develop as evidenced by studies dealing with early weaning (Myers et al., 

1999a; 1999b; Wertz et al., 2001).  If greater energy density of the diet, higher starch 

content of DMI, and higher availability of glucose are present in cattle fed a high 

concentrate diet, it is possible that the use of glucose derived carbon for de novo fatty 

acid synthesis is increased (Berger and Faulkner, 2003).  Thus introduction of cattle to 

high-concentrate diets prior to the finishing phase may provide positive stimulation of 

marbling earlier in life. 

The previous studies examining the growth and development of feeder cattle 

indicate a variety of mechanisms are responsible for determining subsequent feedlot 

performance and final carcass composition.  Variations in intake, dietary composition, 

and dietary energy density are implicated as primary factors that affect feeding 

performance by altering maintenance energy requirements of cattle.  Maintenance energy 

needs, in turn, are highly dependent on the mass and metabolic activity of visceral 

organs, which can change with nutritional management.  Nutrition and rate of gain during 

the stocker or backgrounding phase also has a direct effect on live weight (and age) at 

feedlot entry, as well as body composition upon entering the finishing phase.  The rate of 

gain during the growing phase and the level of fatness at feedlot entry are associated with 

subsequent gain in the feedlot and it has traditionally been accepted that cattle 
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experiencing high rates of gain during the growing phase and entering the feedlot at 

heavier weights will have lower gains during finishing.   

Each of the factors that have been implicated in feeding performance (reductions 

in energy requirements for maintenance and gain, altered body composition, gut fill, 

DMI, visceral organ mass and activity, age and mature body type) are interrelated and 

also indicate a number of complex interactions.  Additionally, nutritional factors and rates 

of gain during previous production segments ultimately determine total fat accretion and 

carcass composition and may play a role in the differential deposition of adipose tissue 

that affects carcass quality and yield.   

It is our hypothesis that different growing phase diets for feeder cattle will result 

in altered finishing performance and final carcass composition.  It is therefore the 

objective of our experiment to determine the effects of winter growing diet on subsequent 

feedlot performance, body composition, carcass merit, and organ mass and metabolic 

activity in beef steers that are grown in one of four different winter growing programs 

that are commonly used for backgrounding feeder calves in the United States. 
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ABSTRACT:  The purpose of this study was to investigate the effects of winter growing 

program on subsequent finishing performance, carcass merit, and body composition of 

beef steers.  Four steers were slaughtered to determine initial body composition.  

Remaining steers (256 hd) were blocked by weight and randomly allotted to one of four 

treatment groups:  1) ad libitum fed a high-concentrate diet (CF); 2) grazed on wheat 

pasture (WP); 3) fed a sorghum silage-based diet (SF); or 4) program fed a high-

concentrate diet (PF).  Steers in the WP, SF, and PF groups were managed to achieve 

approximately equal rates of BW gain.  After the growing phase (112 d) six steers were 

randomly selected from the WP, SF, and PF treatments for determination of body 

composition.  Remaining steers were adapted to a high-concentrate diet for finishing.  

Steers from all treatments were harvested at 1.27 cm of 12th-rib fat and six steers from 

each treatment group were used to determine body composition.  At each harvest 

composition was determined for carcass, offal, viscera, and empty body.  During the 

growing phase WP, SF, and PF treatments gained 1.15, 1.10, and 1.18 kg/d, respectively, 

but ME intake (MEI) was similar between treatments.  Estimated daily heat production 

was lowest for PF steers (P < 0.05) and accretion of empty body, carcass, and PDV mass 

was greatest for PF steers (P < 0.05).  During the finishing phase (123, 104, 104, 196 d 

for WP, SF, PF, and CF, respectively) DMI was greater (P < 0.01) for SF steers (10.9 
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kg/d) than for PF steers (10.1 kg/d): WP steers were intermediate (10.4 kg/d).  ADG was 

highest for SF steers (2.02 kg/d), intermediate for PF steers (1.85 kg/d), and lowest for 

WP and CF steers (1.64 and 1.63 kg/d, respectively) (P < 0.05) and tissue accretion 

(kg/d) was lower for WP and CF steers as compared with PF and SF steers for carcass 

and noncarcass fractions (P < 0.05).  However, WP steers had similar accretion of 

visceral tissues (kg/d).  At harvest, SF steers had lower yield grades and higher marbling 

scores compared with CF and WP steers; PF steers were intermediate (P < 0.01).  In 

conclusion PF steers had greater gains in empty body mass during the growing period as 

compared to WP and SF steers at equal MEI.  During finishing, PF steers had less 

accretion of visceral organ mass compared with SF and WP steers.  This resulted in lower 

gains for WP steers but was overcome by increased DMI in SF steers. 

 

Key Words: Beef Cattle, Body Composition, Carcass, Feedlot Performance, Growth  

 

INTRODUCTION 

Age, weight, previous diet, breed type, and body composition upon entering the 

feedlot are all factors taken into account when predicting potential finishing performance 

of feeder cattle (Coleman and Evans, 1986; 1993).  After weaning, calves are often 

placed on a growing diet to achieve adequate frame size before entering into a finishing 

program while some cattle may go directly to finishing.  Rate of gain in the finishing 

phase can be influenced by plane of nutrition and energy density of the diet during the 

growing phase.  Steers that are fed to have high rates of gain during the growing period 

are fatter at all measures of carcass composition upon feedlot entry compared with steers 
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that have been nutritionally restricted (Baker et al., 1992; Sainz et al., 1995; Hersom et 

al., 2004a).  Cattle that have a higher percentage of body fat upon feedlot entry are 

generally assumed to be less efficient and to have reduced gains during the finishing 

phase resulting in a negative correlation between predicted ME allowable ADG and 

initial body fat content (NRC, 1996). 

In contrast, it has been reported that cattle grazing wheat pasture at higher rates of 

gain during the growing period did not experience decreased performance during the 

finishing period compared with steers that were grazed on dormant native winter range 

(Choat et al., 2003; Hersom et al., 2004a).  Despite being fatter at feedlot entry, ADG was 

similar to nutritionally restricted steers.  In order to determine if these results were unique 

to cattle grazed on wheat pasture, we designed an experiment to test the hypothesis that 

steers managed for similar rates of gain on different diets during the growing period 

would have different performance during the finishing phase.  The objective was to 

determine the effects of winter growing program on subsequent finishing performance, 

carcass merit, body composition, and maintenance energy requirements.  Additionally 

these growing programs were compared to steers that were placed on a finishing diet 

immediately after weaning. 

 

MATERIALS AND METHODS 

Experimental Animals and Treatments 

A total of 260 British crossbred steers were utilized for the experiment.  Fifty 

steers (average initial BW = 239 ± 33.5 kg) from the Oklahoma State University cow 

herd were weaned in the fall of 2003.  The remaining 210 steers (average initial BW = 
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236 ± 22.0 kg) were purchased by Colorado Beef to be of similar breed, type, and age.  

Four randomly selected steers were transported to the Oklahoma Food and Agricultural 

Products Research and Technology Center (FAPRTC) abattoir in Stillwater, OK for an 

initial serial slaughter group.  Remaining steers were blocked by initial weight and 

randomly allotted to one of four treatment groups for winter feeding.  One group of steers 

were placed in the feedlot (n = 8 pens; 8 steers/pen) immediately on arrival and adapted 

to a high-concentrate finishing diet fed ad libitum (CF).  Steers in this treatment 

underwent a three tier adaptation consisting of a 49, 74, and finally 88% concentrate diet 

(finisher).  Each adaptation diet was fed for 5 d.  The three remaining treatment groups 

were managed on three different growing systems to achieve approximately equal rates of 

BW gain. One group was grazed as a single group on wheat pasture with unrestricted 

forage availability (WP; n = 64), a second group was fed a sorghum silage-based 

growing diet (SF; n = 8 pens; 8 steers/pen), and the third group was program fed a high-

concentrate diet (PF; n = 8 pens; 8 steers/pen).  The composition of each diet is shown in 

Tables 3-1 and 3-2. 

All pen feeding took place at the Southeastern Colorado Research Center, Lamar, 

CO, while wheat pasture grazing took place at the Oklahoma State University Wheat 

Pasture Research Unit.  Steers at OSU allocated to the SF, PF, and CF groups were 

transported from Stillwater, OK to Lamar, CO (688 km), while purchased steers allocated 

to the WP group were transported from Lamar to Stillwater prior to the beginning of the 

trial.  At both locations, steers were treated for parasites with IVOMEC Plus (Merial, 

Duluth, GA), vaccinated for Bovine Rhinotracheitis, Bovine Virus Diarrhea (types 1 & 

2), Bovine Syncytial Virus, and Parainfluenza3 with Titanium 5 and for Clostridium 
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Chauvoei-Septicum-Novyi-Sordellii-Perfringens type C & D with Vision 7 (Intervet, 

Millsboro, DE), and implanted with Component ES (Vetlife, Overland Park, KS).  All 

steers were re-vaccinated for Bovine Rhinotracheitis, Bovine Virus Diarrhea (types 1 & 

2), Bovine Syncytial Virus, and Parainfluenza3 , and Leptospirosis with Titanium 5 L5 

(Intervet, Millsboro, DE) approximately 14 days after the start of the trial.  

Steers from all treatment groups were weighed at 28-d intervals.  During the 

growing phase steers in the SF, PF and CF groups were weighed immediately after 

removal from their feedlot pens.  A 4% pencil shrink was applied to weights from SF and 

CF steers.  Due to the restricted amount of feed received by PF steers, weights from that 

treatment group were pencil shrunk 3% to account for differences in fill.  Steers in the 

WP group were gathered off pasture at approximately 0700 on weigh days, and held in 

pens for two to three hours prior to weighing.  Due to the increased holding time prior to 

weighing, only a 2% pencil shrink was applied to weights of WP steers.  Differences in 

pencil shrinks were determined by weight of contents of the gastrointestinal tract 

measured during the serial slaughter. 

At the end of the growing phase (112 d), six randomly selected steers from each 

of the WP, SF, and PF treatment groups were transported to the FAPRTC abattoir in 

Stillwater, OK for slaughter.  Remaining steers in the WP group were shipped from 

Stillwater, OK to Lamar, CO (688 km).  Final weight off of wheat pasture in Stillwater 

was considered as the final growing phase weight for the WP group.  Remaining steers 

from these three treatment groups were adapted to the same high-concentrate finishing 

diet as CF steers (Table 3-1) and placed in the feedlot (n = 8 pens; 8 steers/pen).  Steers in 

the WP and SF groups were adapted to the finishing diet as described above for the CF 
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treatment group while PF steers immediately received the 74% concentrate diet for 5 d 

followed by the 88% concentrate finisher.  

Steers on the growing diets (WP, SF, and PF) were re-implanted with Revalor-S 

at the start of the finishing program.  Calf-fed steers were re-implanted with Revalor-S at 

d 84 of the finishing period.  During the finishing phase steers in all treatment groups 

were weighed immediately after removal from their feedlot pens and a 4% pencil shrink 

was applied to all weights.  After the finishing phase, steers from all treatment groups 

were slaughtered at a common 12th-rib fat of 1.27 cm as determined by ultrasound.  Six 

randomly selected steers from each treatment group were transported to the FAPRTC 

abattoir for the final serial slaughter group.  Remaining steers in all treatments were 

slaughtered commercially at the Swift plant in Cactus, TX and complete carcass data was 

collected the National Cattleman’s Beef Association’s carcass data collection service. 

Determination of Net Energy Requirements 

A group of similar steers were used for the determination of ME contents of the 

diets for each of the four treatment groups.  Steers in the CF, SF, and PF groups (n = 5 

steers/diet) were fed individually in stalls at the Oklahoma State University Nutrition 

Physiology Research Center, Stillwater, OK.  Steers in the WP group (n = 5 steers) were 

grazed on wheat pasture at the Oklahoma State University Wheat Pasture Research Unit.  

Diet samples were collected daily, composited, and analyzed for DM, NDF, ADF, CP, 

and insoluble ash.  Composition of wheat pasture forage was determined to be 90.9% 

OM, 44.5% NDF, 23.5% ADF, and 21.99% CP on a DM basis.  Total feces and urine 

were collected for determination of fecal and urinary energy and N loss for the CF, SF, 

and PF treatments.  Fecal and urine grab samples were collected for WP steers.  Fecal 
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output was estimated using chromium oxide as an indigestible marker, and total DMI was 

estimated as fecal output divided by the percentage of the indigestible portion of NDF of 

wheat pasture forage.  Indigestible NDF of wheat forage was determined by a 96 h in situ 

digestion (done in triplicate) followed by NDF determination of remaining materials.  

Urine samples from all treatment groups were examined for concentration of creatinine 

by liquid chromatography (Shingfield and Offer, 1999).  Total creatinine excretion per 

day was calculated for CF, SF, and PF groups.  The average creatinine excretion from 

these groups and the creatinine concentration of urine samples from WP steers were used 

to determine total urinary output for WP steers.  Gaseous energy losses associated with 

methane for all groups were estimated using the equations of Moe and Tyrrell (1980) and 

heat of fermentation was estimated as 7% of ME (ARC, 1980).  Retained energy (RE) 

was obtained from the energy content of the whole body composition of slaughtered 

steers and was subtracted from ME intake (MEI) for determination of daily heat 

production (HP).  Fasting heat production (FHP) was estimated as the intercept of the 

regression of MEI on log HP.  Net efficiency was estimated as the slope of the regression 

of MEI on RE. 

Slaughter and Sample Collection 

Slaughter procedures and sample collections were similar for all slaughter groups 

from all treatments as described by Hersom et al. (2004a, 2004b) with modifications.  

Steers were stunned with captive bolt and exsanguinated.  After exsanguination, weights 

were collected on blood, noncarcass tissues (offal), and hot carcass.  Weights of the head, 

internal organs, visceral tissues (reticulo-rumen, omasum, abomasum, small and large 

intestine, cecum, and mesenteric/omental fat), and trim were recorded.  Contents of the 
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gastrointestinal tract were removed before weighing.  Empty body weight was calculated 

as hot carcass weight plus total offal weight. 

After weighing, visceral components were composited and ground to measure 

viscera composition.  Visceral tissues were ground, mixed, and sub-sampled in triplicate.  

After sampling visceral components were composited with blood and remaining offal 

tissues and ground to measure total offal tissue composition.  Tissues were ground twice 

using an Autio grinder (Astoria, OR) through a 10-mm aperture plate, mixed, and sub-

sampled in triplicate.  After a 48-h chill, carcass characteristics, including maturity, 

marbling score, 12th-rib fat, 12th-rib LM area, kidney, pelvic, and heart fat, USDA 

quality grade, and USDA yield grade were determined.  The right side of each carcass 

was then ground, mixed, and sampled in a similar manner as described for offal tissue to 

determine carcass and whole body composition. 

Chemical Analysis 

 Chemical analyses of body composition components were carried out by the 

procedures described by Hersom et al. (2004a).  Triplicate samples of carcass, offal, and 

viscera were analyzed for water by lyophilization to a constant weight.  Lyophilized 

samples were further processed to reduce particle size by submersion in liquid nitrogen 

and grinding using a Waring blender (Waring Products Co., Winsted, CT).  Samples were 

subsequently analyzed for fat (extraction with diethyl ether for 48 h in a Soxhlet 

apparatus) and fat-free organic matter (FFOM; combustion of ether extraction residue, 

500°C for 6 h).  Energy content of tissues was calculated as weight of ether extracted 

material x 9.4 kcal/g plus weight of FFOM x 5.55 kcal/g (Ferrell and Jenkins, 1998).  For 

calculation of accretion of body tissue components during the growing phase, initial body 
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composition of steers slaughtered at the end of the growing phase was estimated as 

average percent composition of the initial harvest group multiplied by initial body 

weight.  For calculation of accretion of body tissue components during finishing, average 

composition of steers in each treatment at the end of the growing phase was multiplied by 

the final growing phase weight of steers from their respective treatment groups to 

estimate body composition of final harvest steers at the end of the growing phase. 

Statistics 

Data for performance and carcass characteristics were analyzed as a randomized 

complete block design using generalized least squares (Proc MIXED, SAS Institute, 

Cary, NC).  Data were analyzed on a pen mean basis and pen was considered the 

experimental unit. The model for all measurements included treatment as a fixed effect 

and block (initial weight) as a random effect.  Data for energy intake and retention were 

analyzed as a completely randomized design using generalized least squares (Proc 

MIXED).  Individual animal was considered the experimental unit and the model 

included treatment as a fixed effect.  Regression of MEI on RE and MEI on log HP was 

carried out using the Proc REG procedure of SAS.  Mean separation for all data was 

accomplished using Least Significant Difference and means were considered to be 

significantly different at the P < 0.05 level when protected by an F-value (P < 0.10).   

 

RESULTS 

Performance and Carcass Merit  

During the growing phase, ADG was greater (P = 0.009) for WP and PF steers 

than for SF steers (Table 3-3).  Treatment means were 1.15, 1.10, and 1.18 kg/d for WP, 
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SF, and PF steers, respectively, and therefore our objective of achieving similar rates of 

gain was generally met. Dry matter intake was greater (P < 0.001) for steers fed silage 

compared with PF steers, whereas G:F was greater (P < 0.001) for PF steers.  At the end 

of growing 12th-rib LM area was smaller for WP steers compared with SF and PF steers 

(P < 0.05).  There were no other significant differences carcass characteristics at the end 

of the growing phase. 

Performance during the finishing phase and carcass characteristics are shown in 

Table 3-4.  Initial (average = 376 vs. 239 kg, respectively) and final (average = 579 vs. 

559 kg, respectively) weights were greater (P < 0.001) for steers that went through a 

growing program than for steers that were fed as calves.  During finishing, DMI was 

7.9% greater (P < 0.001) for SF steers than for PF steers, with WP steers being 

intermediate.  Steers fed as calves had lower (P < 0.001) DMI (8.6 kg/d) compared with 

all other treatment groups; however, days on feed was 70 to 84 d longer than the three 

groups that were fed growing diets.  Steers in the SF group had 9.2% greater (P < 0.05) 

ADG than PF steers, and PF steers had 12.8% greater (P < 0.01) ADG than both WP and 

CF steers.  This resulted in a lower (P < 0.01) G:F for WP steers compared with SF, PF 

and CF steers.   

Hot carcass weight did not differ (P = 0.12) among treatments.  Dressing percent 

was greater (P < 0.05) for WP, PF, and CF steers than for SF steers although numerical 

differences were small.  Calf-fed steers had smaller (P < 0.05) LM area compared with 

SF and PF steers; WP steers were intermediate.  This resulted in less desirable USDA 

yield grades for CF and WP steers compared with SF and PF steers (P < 0.05).  Steers fed 
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silage during the growing period had higher (P < 0.01) marbling scores compared with 

CF and WP steers with PF steers being intermediate. 

Composition of Gain 

Average composition of the initial slaughter group is shown in Table 3-5, and 

chemical composition and rates of accretion during the growing and finishing phases are 

shown in Tables 3-6 and 3-7, respectively.  Following the growing phase, empty body 

mass did not differ (P = 0.16) among treatments (Table 3-6).  However, FFOM (kg) was 

greater (P < 0.05) in the carcass of PF steers than WP and SF steers.  Mass (kg) of fat and 

energy (Mcal) in the offal was greatest (P < 0.05) for PF, intermediate for SF, and lowest 

for WP steers.  When expressed per kg of EBW, fat in offal was greater (P < 0.05) for PF 

and SF steers compared with WP steers.  A similar trend was observed for fat (g/kg 

EBW) and energy (Mcal) in the whole empty body.  Fat-free organic matter (kg) in the 

empty body was greatest (P < 0.05) for PF, intermediate for WP, and lowest for SF 

steers.  However, no differences (P = 0.16) were observed when FFOM was expressed 

per unit of EBW.   

During the growing period PF steers accreted carcass and empty body mass (kg/d) 

at a greater (P < 0.05) than WP and SF steers (Table 3-6), suggesting that a greater 

percentage of live weight gain for WP and SF steers was due to gastrointestinal tract fill.  

Similarly, steers in the PF group accreted FFOM at a greater rate (g/d; P < 0.05) in the 

carcass and empty body compared with SF and WP steers.  Program-fed steers accreted 

fat (g/d) and energy (Mcal/d) in offal and empty body at a greater rate (P < 0.05) than 

WP steers; SF steers were intermediate. 
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Following the finishing phase, mass of carcass, offal, and empty body did not 

differ (P > 0.05) among treatments (Table 3-7).  In addition, chemical composition of the 

carcass and empty body was similar (P > 0.05) among growing programs following the 

finishing phase.  In general, offal FFOM was lower (P < 0.05) and offal fat was greater 

(P < 0.05) as a proportion of EBW for CF steers compared with steers backgrounded 

prior to finishing.  During the finishing period, carcass and empty body gain were greater 

(P < 0.05) for SF and PF steers than for WP and CF steers.  Offal gain was greater (P < 

0.05) for PF steers compared with WP steers during finishing.  Offal gain in CF steers 

was lower (P < 0.05) than PF steers.  Gain of FFOM matter followed a similar trend as 

mass for the carcass, offal, and empty body.  In contrast, gain of fat did not differ (P = 

0.28) among treatments during the finishing period.  Energy gain in the carcass and 

empty body was greatest (P < 0.05) for PF, intermediate for WP and SF, and lowest for 

CF.   

Following the growing phase, mass of the viscera was greater (P < 0.05) for PF 

than for WP steers; SF steers were intermediate (Table 3-8).  In addition, the visceral 

component of noncarcass tissue was significantly lower (P < 0.05) in FFOM (g/kg EBW) 

and higher (P < 0.05) in fat (kg and g/kg EBW) and energy (Mcal) for PF steers 

compared with WP and SF steers.  Gain of visceral mass, fat, and energy followed a 

similar trend as mass, being greater (P < 0.05) in PF compared with WP and SF steers 

during the growing phase.   

Following the finishing phase, mass of visceral components was similar (P = 

0.74) among treatments with the exception of FFOM expressed as g/kg EBW (Table 3-9).  

Fat free organic matter was greatest for SF steers, intermediate for WP and PF steers, and 



 47 

lowest for CF steers.  During finishing, gain of FFOM in viscera was greater (P < 0.05) 

for backgrounded calves compared with calves placed directly on feed.     

Energy Intake and Retention 

Data for MEI and energy retention are shown in Table 3-10.  Consistent with the 

design of the experiment, MEI (Mcal/d) did not differ (P = 0.50) among the WP, SF, and 

PF treatments during the growing phase.  Nevertheless, steers in the PF group had greater 

(P < 0.05) RE (Mcal/d) in the empty body compared with WP steers, with SF steers 

being intermediate.  The same trend in RE observed in the empty body was also observed 

in individual components (carcass, offal, viscera).  Therefore, HP for steers in the PF 

treatment was significantly (P < 0.05) lower than WP and SF steers.  During the finishing 

phase MEI was greater (P < 0.05) for SF steers than for PF steers, and PF steers had 

greater (P < 0.05) MEI compared with CF steers.  The WP treatment was intermediate to 

SF and PF steers and significantly greater (P < 0.05) than the CF treatment.  Consistent 

with the lowest MEI, CF steers also had the lowest RE (Mcal/d).  Steers in the PF 

treatment had the numerically greatest RE in both the empty body and in the carcass, 

despite a lower MEI as compared to WP and SF steers.  The estimated daily heat 

production of both PF and CF steers was lower (P < 0.05) than WP and SF steers.  Steers 

in the PF group had the lowest FHP numerically but there were no statistical differences.  

Compared with WP and SF steers, PF steers did have greater net efficiency (P < 0.05). 

 

DISCUSSION 

Although our goal was to have equal live weight gains during the growing phase 

for the WP, SF, and PF groups, ADG for the SF treatment were slightly lower than WP 
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and PF steers.  However, results from the companion metabolism trial demonstrate that 

ME intake was similar among these three treatment groups.  Data from the slaughter 

groups at the end of the growing period points to greater gains on an empty body weight 

basis for PF steers compared with WP and SF groups, both in mass and retained energy 

in the empty body.  This difference in retained energy was manifested in greater daily 

accretion of both fat and FFOM in the empty body for PF steers compared with WP and 

SF treatments.   

The increased empty body mass for PF steers was realized in both the carcass and 

the noncarcass fractions, but chemical components were different between these 

fractions.  In carcass tissues the greater mass and retained energy was due to increased 

gain of FFOM.  However, in offal tissues this increased mass was through greater 

accretion of fat.  This agrees with the work of Smith et al. (1984) that dealt with steers 

fed either a high-concentrate or alfalfa hay diet.  Steers fed the alfalfa hay diet had a 

slightly higher MEI, but steers fed the high concentrate diet had higher rates of gain, 

primarily in the fat depots.  The visceral tissue alone accounted for a majority of the daily 

accretion of fat (67%) and energy (52%) in offal tissues for the PF steers.  At the end of 

the growing phase, mass of the viscera was greatest for PF steers, intermediate for SF, 

and lowest for WP steers.  The greater visceral mass of PF steers was due to greater fat 

accretion, but FFOM accretion was lower for PF steers in the viscera. 

Similar ME intakes coupled with differences in RE in the empty body resulted in 

lower HP for steers in the PF treatment group.  This is in agreement with the work of 

Reynolds et al. (1991) that showed lower heat production for heifers fed 75% concentrate 

diets compared with heifers fed 75% forage diets.  This suggests the steers program-fed a 



 49 

high-concentrate diet had a lower heat increment and/or maintenance energy requirement 

as compared to the groups fed a forage-based diet, and thus had more energy available for 

tissue accretion.  Tess et al. (1984) demonstrated that fasting heat production in pigs was 

predicted most accurately by lean mass of the animal but that adipose tissue mass 

contributed little.  It was furthermore concluded that protein mass of the visceral organ 

tissue contributed to fasting heat production more than carcass protein mass.  In the 

present study, the greater visceral mass of PF steers was due to greater fat mass as 

proportion of EBW, but FFOM mass on an EBW basis was lower for PF steers in the 

viscera.  It is therefore logical to assume that the lower mass of FFOM per unit of EBW 

in visceral tissue for PF steers lead to a decrease in heat production and consequently 

lower maintenance energy requirements.  Again this is in agreement with the work of 

Reynolds et al. (1991) that showed greater oxygen consumption by the portal-drained 

viscera accounted for 72% of the decrease in energy available for tissue accretion in 

heifers fed a 75% forage diet as opposed to a 75% concentrate diet. 

Of the three groups that were placed on growing diets, SF steers had the highest 

DMI during the finishing phase.  Steers in the PF treatment were lowest with WP steers 

being intermediate.  However, the greatest gains during finishing were also achieved by 

steers in the SF treatment group, resulting in SF and PF steers having greater growth 

efficiency as compared to WP steers.  Steers in the WP group were lowest in both ADG 

and growth efficiency and were fed for an additional 19 d as compared with SF and PF 

steers.  Steers in the CF had the lowest DMI and greatest efficiency during the finishing 

phase, however their efficiency was comparable to both the SF and the PF treatments.  

Gains during finishing were lower for CF steers compared to the SF and PF treatments, 
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but equal to those of WP steers despite the fact that the finishing period for CF steers was 

73 d longer.  The lower performance of WP steers may be partially attributable to the fact 

that they underwent an additional transport from Stillwater, OK to Lamar, CO at the end 

of the growing phase that other treatments did not and thus may have had additional 

stress.  Stress is linked with increases in circulating glucocorticoids in cattle (Weber et 

al., 2001) which is linked with immune suppression and increased incidence of disease 

(Burton et al., 2005).  Increased incidence of bovine respiratory disease, in turn, has been 

associated with decreased feedlot performance (Gardner et al., 1999).  However 

differences in incidence of clinical symptoms of respiratory disease were not noted 

among treatments, and any decrease in performance due to these factors would have been 

at the subclinical level. 

Daily accretion of empty body mass was lowest for WP and CF steers and this 

was mostly attributable to less accretion of water and FFOM as compared to SF and PF 

steers.  Because SF steers had greater live weight gains during finishing compared with 

PF steers, some of this difference may be attributed to gut fill.  These same differences in 

mass due to lower accretion of water and FFOM were evident in the carcass tissue 

fraction suggesting less accretion of muscle mass for WP and CF steers compared with 

SF and PF steers.  Indeed, 12th-rib LM area was found to be smaller in CF steers as 

compared to SF and PF steers with WP steers being intermediate.  Although there were 

no differences in body composition among treatments at final harvest, the faster rate of 

water and FFOM accretion by SF and PF steers disagrees with previous work (Sainz et 

al., 1995) that concluded there was no difference in muscle accretion due to energy 

intake, only in fat accretion.   
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Steers in the WP group also had the lowest daily accretion of offal tissues due to 

less accretion of water and FFOM.  Accretion of visceral mass was similar among 

treatments.  Although WP steers were lowest in daily accretion of empty body mass, 

carcass mass and offal mass, they were not lower in daily accretion of visceral mass. 

Thus, a greater portion of their total gain and RE was invested in that fraction as 

compared to other treatments.  This may also suggest that WP steers had a higher 

maintenance energy requirement during the finishing phase compared with PF and CF 

steers, due to the large energy expenditure of visceral organs (Ferrell and Jenkins, 1985; 

Burrin et al., 1990).   

Previous work has concluded that steers restricted in intake below ad libitum 

levels (at maintenance vs. full-feeding, Fox et al., 1972; restricted to 70% of controls, 

Wright and Russel, 1991) during the growing phase have an initial period of increased 

lean gain when realimented to an ad libitum high-concentrate diet, followed by rapid fat 

accretion.  The initial increased lean gain is thought to be more energetically efficient and 

to partly contribute to the compensatory gain phenomenon.  In the current study there 

were no significant differences in body composition or carcass composition among 

treatments at the end of the growing or finishing phases; however, SF and WP steers 

experienced rapid accretion of visceral tissues during the finishing phase.  It is therefore 

possible that initial lean gain when steers are moved to a high-concentrate diet may be 

due not to muscle gain, but to accretion of water and FFOM in the viscera. 

Among the three treatment groups that were grown, PF steers had the lowest MEI 

and the highest RE in the empty body, giving the lowest estimate for HP among those 

groups.  Steers in the CF group, although lowest in RE among all treatments, were also 
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lowest in MEI.  This resulted in their estimated HP being comparable to that of the PF 

steers.  Both WP and SF steers had greater HP as compared with PF and CF steers.  This 

would suggest that heat increment, maintenance requirements, or both were higher for 

these two groups as compared to PF and CF steers.  This agrees with the work of Sainz et 

al. (1995) that showed a 21% reduction in maintenance requirements during the finishing 

phase for steers limit-fed a high-concentrate diet during the growing phase as compared 

to steers ad libitum-fed a forage diet during the growing phase.  Because MEI was lower 

for PF and CF steers as compared to SF steers and tended to be lower as compared to WP 

steers, this is also in agreement with Reynolds et al. (1991) that showed heat production 

was not only influenced by diet type, but increased with increasing intake.  Steers in the 

SF treatment had similar heat production to that of WP steers but had greater DMI, ADG, 

and growth efficiency. Because steers in the SF treatment also had the highest MEI, it 

appears they were able to overcome this handicap of greater heat production with greater 

DMI during finishing. 

As mentioned above steers in the CF group had smaller 12th-rib LM area as 

compared to SF and PF steers, while WP steers were intermediate.  Combined with 

greater 12th-rib fat for CF steers this resulted in lower yield grades for SF and PF steers 

compared with WP and CF steers.  Despite this the SF treatment resulted in greater 

marbling scores compared with the WP and CF treatments.  Steers in the PF group were 

intermediate.  This may be attributed to SF steers having the highest DMI and thus more 

energy available for intramuscular fat accretion.  It was shown by Wertz et al. (2001) that 

starting calves on high-concentrate diets earlier in life increased marbling scores.  Steers 

in the CF group exhibited the lowest marbling scores despite having the longest period on 
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ad libitum, high-concentrate feed.  However, steers in the current study were weaned and 

placed on a finishing diet at an older age as compared to Wertz et al. (2001).  

Additionally because they were the youngest group to be harvested in this study, 

physiological maturity may have advanced to a point where CF steers did not have 

adequate time on feed to develop intramuscular fat (Coleman et al., 1993; Schoonmaker 

et al., 2004).  Because WP steers were also lower in marbling score, it is possible that 

higher maintenance requirements, as mentioned above, may have resulted in less overall 

energy availability and thus less intramuscular fat accretion.  The current findings are 

also in contrast with Klopfenstein et al. (2000) who concluded that there were no 

differences in marbling due to type of backgrounding program or rate of gain during the 

growing/backgrounding phase when steers were fed to a common depth of 12th-rib 

backfat.   

 

IMPLICATIONS 

Program feeding of a high-concentrate diet during the growing period may result 

in greater gains and increased retained energy in the empty body and carcass as compared 

to forage-based growing programs even at similar calculated ME intake.  Furthermore, 

feeding of high-concentrate diets during the growing phase may result in greater, more 

efficient gains during the subsequent finishing period as compared to forage-based diets 

due to less accretion of visceral organ mass and lower maintenance energy requirements 

during finishing.  These higher maintenance requirements and diminished availability of 

energy for gain may result in less carcass fat and protein accretion per day.    However, if 
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greater visceral mass and increased GIT capacity leads to increased DMI during 

finishing, gains may not be decreased.   
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Table 3-1.  Dry matter composition of diets 
 Diet 
Itema SF PF CF 

Ingredient    
Steam flaked corn 25.94 60.88 76.14 
Sorghum silage 62.56 23.52 11.76 
CCDSb 3.00 3.00 3.00 
Yellow grease - 3.50 3.50 
Soybean meal 7.08 5.80 2.26 
Supplement 1.42 3.30 3.35 

Nutrients    
    DM, % of as-fed 38.50 54.14 63.46 
    CP 12.58 14.90 13.34 
    Non-protein nitrogenc 0.98 3.12 3.13 
    NDF 32.46 20.55 14.66 
    NEm, Mcal per kgd 0.32 0.42 0.45  
    NEg, Mcal per kge 0.20 0.28 0.31 
    Calcium 0.82 0.91 0.78 
    Phosphorus 0.23 0.28 0.28 
    Potassium 1.34 0.97 0.72 
    Magnesium 0.25 0.26 0.26 
aPercentage of dry matter unless stated otherwise. 
bCondensed corn distiller’s solubles. 
cCrude protein equivalent. 
dNet energy for maintenance. Calculated from NRC (1996). 
eNet energy for gain. Calculated from NRC (1996). 
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Table 3-2.  Dry matter composition of diet 
supplements 
 Diet 
 
Ingredienta 

 
SF 

 
PF 

 
CF 

Limestone 55.32 35.16 27.75 
Urea 11.24 32.17 31.82 
Salt 17.59 7.58 7.47 
Min Ad 9.60 20.94 27.87 
Potassium chloride - - 1.04 
Mineral oil 2.01 2.04 2.01 
Colorado Beef TMb,c 1.33 0.86 0.80 
Rumensin 80d 1.24 0.53 0.53 
Tylan 100e 0.33 0.14 0.14 
Vitamin A premixf 0.21 0.09 0.09 
Vitamin E premixg 1.14 0.49 0.48 
aSF = silage fed PF = Program fed  CF = Ad libitum 
concentrate fed 
bPercentage of dry matter. 
cColorado Beef trace mineral premix: Cobalt, 340 
ppm; Copper, 7.7%; Manganese, 6%; Zinc, 22.4%; 
and Selenium, 300 ppm. 
dMonensin, 176.4 g per kg. 
eTylosin, 220.5 g per kg. 
f110,250,000 IU vitamin A per kg. 
g198,450 IU vitamin E per kg. 
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Table 3-3. Effect of treatment on performance during the growing period (d 1 to 112) 
 Treatmenta   
Item WP SF PF SEMb P-value 
Performance      

Initial wt, kg 253c 237 d 234 d 2.87 <0.001 
Final wt, kg 382 369 377 3.76 0.51 
DMI, kg/d - 7.7 c 6.1 d 0.20 <0.001 
ADG, kg 1.15 c 1.10 d 1.18 c 0.02 0.01 
G:F - 0.143 c 0.198 d 0.007 <0.001 

Carcass characteristics      
HCW, kg 220 220 232 8.7 0.55 
Dressing % 59.0 53.8 63.5 3.3 0.16 
12th-rib fat 0.40 c 0.62 d 0.53 cd 0.06 0.08 
LM area 57.5 c 67.3 d 64.1 cd 2.5 0.04 
KPH, % 0.3 0.6 0.5 0.10 0.24 
Marbling Scoree 245 273 305 20.6 0.15 

aWP = Wheat pasture, SF = Silage fed, PF = Program fed, CF = Ad libitum concentrate fed. 
bStandard error of mean, n = 8 for performance, n = 6 for carcass characteristics. 
c,dWithin a row and tissue, means without a common superscript letter differ (P < 0.05). 
e200 = USDA Traces00, 300 = USDA Slight00 
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Table 3-4. Effect of treatment on performance during the finishing phase and carcass 
characteristics at slaughter 
 Treatmenta   
Item WP SF PF CF SEMb P-value 
Performance       

Days on feed 123 104 104 196 - - 
Initial wt, kg 382c 369d 377cd 239e 3.76 <0.001 
Final wt, kg 584 c 581 c 571 cd 559 d 6.22 <0.001 
DMI, kg/d 10.4 cd 10.9 c 10.1 d 8.6 e 0.24 <0.001 
ADG, kg 1.64 c 2.02 d 1.85 e 1.63 c 0.04 <0.001 
G:F 0.156 c 0.186 d 0.186 d 0.190 d 0.005 <0.001 

Carcass characteristics       
HCW, kg 386 379 376 371 4.4 0.12 
Dressing % 65.9 c 65.1 d 65.9 c 66.3 c 0.27 0.01 
12th-rib fat 1.35 c 1.27 c 1.24 c 1.63 d 0.048 <0.001 
LM area 86.5 cd 89.7 c 89.0 c 84.5 d 1.29 0.02 
KPH, % 3.0 3.0 3.0 3.1 0.05 0.41 
Yield grade 3.19 c 2.76 d 2.94 d 3.39 c 0.08 <0.001 
Marbling Scoref 409 c 449 d 423 cd 401 c 9.8 0.01 

aWP = Wheat pasture, SF = Silage fed, PF = Program fed, CF = Ad libitum concentrate fed. 
bStandard error of mean, n = 8 for performance, n = 6 for carcass characteristics. 
c,d,eWithin a row and tissue, means without a common superscript letter differ (P < 0.05). 
f200 = USDA Traces00, 300 = USDA Slight00 
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Table 3-5. Chemical composition of the initial harvest group 
 Tissue component 
 Carcass Offal Viscera Empty body 
Mass, kg 140.2 76.0 18.23 216.3 
Water, kg 72.0 42.0 10.71 114.0 
FFOM, kga 33.4 18.7 2.76 52.1 
FFOM, g/kg 237.2 247.0 153.26 240.6 
Fat, kg 25.6 11.2 4.47 36.9 
Fat, g/kg 181.5 146.1 242.45 168.9 
Energy,  
Mcalb 

425.8 209.6 57.38 635.4 

aFat-free organic matter 
bEther extract material x 9.4 kcal/g + fat-free organic matter x 5.55 kcal/g 
 



  

 

Table 3-6. Effect of winter growing program on chemical composition and composition of gain during the growing phase 
 Carcass Offal Empty body 
 Treatmenta  Treatment  Treatment  
 WP SF PF SEMb  WP SF PF SEM  WP SF PF SEM 
Chemical 
composition 

              

Mass, kg 222.0 212.1 237.2 7.83  114.2 110.5 116.6 3.85  336.2 322.6 353.8 10.77 
Water, kg 128.3cd 118.0c 130.3d 3.72  69.0 64.3 66.5 2.49  197.3 182.4 196.8 5.15 
FFOM, kge 46.6c 45.9c 53.7d 2.45  23.5 21.8 23.3 1.12  70.1cd 67.7c 77.0d 2.76 
FFOM, g/kg 209.4 216.5 225.9 5.62  205.8 196.7 201.3 9.26  208.1 209.5 217.8 3.66 
Fat, kg 33.6 36.2 40.0 3.03  16.8c 19.9cd 22.3d 1.64  50.3 56.1 62.3 3.98 
Fat, g/kg 151.2 169.0 168.3 9.90  146.6c 180.6d 189.6d 10.84  149.8c 172.9d 174.1d 7.66 
Energy, 
Mcalf 

573 595 674 36.7  288c 308cd 339d 14.7  862c 903cd 1013d 48.5 

Energy, 
Mcal/kg 

2.59 2.79 2.84 0.08  2.52c 2.79 d 2.90 d 0.07  2.56 c 2.79 d 2.86 d 0.07 

               
Composition 
of gain 

              

Mass, kg/d 0.81c 0.80c 0.96d 0.044  0.39 0.39 0.42 0.031  1.20c 1.19c 1.38d 0.065 
Water, g/d 542cd 485c 564d 24.9  264 245 250 21.7  806  730 814 37.4 
FFOM, g/d 139c 152c 207d 16.0  53 52 58 9.6  192c 204c 265d 16.7 
Fat, g/d 87 126 149 22.0  57c 89cd 105d 12.8  144c 215cd 255d 28.1 
Energy, 
Mcal/d 

1.59c 2.03cd 2.55d 0.235  0.83c 1.12cd 1.32d 0.104  2.42c 3.15cd 3.87d 0.30 

aWP = Wheat pasture, SF = Silage fed, PF = Program fed, CF = Ad libitum concentrate fed 
bStandard error of mean, n = 4 for initial harvest, n = 6 for intermediate and final harvest 
c,dWithin a row and tissue, means without a common superscript letter differ (P < 0.05) 
eFat-free organic matter 
fEther extract material x 9.4 kcal/g + fat-free organic matter x 5.55 kcal/g 
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Table 3-7. Effect of winter growing program on chemical composition and composition of gain during the finishing phase 
 Carcass  Offal  Empty body 
 Treatmenta   Treatment   Treatment  
 WP SF PF CF SEMb  WP SF PF CF SEM  WP SF PF CF SEM 
Chemical 
composition 

                 

Mass, kg 376.0 357.1 383.4 361.1 14.62  175.0 165.5 175.3 166.6 6.44  551.1 522.5 558.7 527.6 20.56 
Water, kg 182.5 173.5 182.3 170.2 6.07  89.6 87.8 90.0 83.8 3.15  272.1 261.4 272.2 254.0 8.96 
FFOM, kgf 86.8 84.3 89.6 88.1 4.04  35.4c 32.2cd 35.5c 29.7d 1.15  122.2 116.5 125.1 117.8 4.74 
FFOM, g/kg 231.3 236.0 234.3 243.8 7.20  202.3c 194.6cd 204.1c 178.3d 5.79  222.1 223.1 224.9 223.1 5.88 
Fat, kg 84.5 81.7 91.8 84.0 8.03  43.4 39.6 43.1 46.8 3.27  127.9 121.3 134.8 130.9 10.78 
Fat, g/kg 223.0 227.6 236.0 232.6 15.60  247.6cd 239.3c 240.9c 281.8d 13.17  230.9 231.3 237.5 248.4 13.75 
Energy, 
Mcalg 

1276 1235 1360 1279 86.5  605 551 602 605 33.3  1881 1786 1961 1884 115.7 

Energy, 
Mcal/kg 

3.38 3.45 3.52 3.54 0.13  3.45 3.33 3.40 3.64 0.11  3.40 3.41 3.48 3.57 0.11 

                  
Composition 
of gain 

                 

Mass, kg/d 1.18c 1.46d 1.57d 1.23c 0.071  0.45c 0.56de 0.64e 0.52 cd 0.031  1.63c 2.02d 2.21d 1.75c 0.94 
Water, g/d 395c 567d 586d 553 d 38.6  143c 246d 270d 244 d 17.5  537c 813d 856d 796 d 53.5 
FFOM, g/d 312 c 383 d 383 d 304c 23.9  88cd 107de 131e 69 c 8.8  400c 490d 513d 373c 24.7 
Fat, g/d 402 451 525 317 61.6  211 195 216 190 24.8  613 646 742 508 82.2 
Energy, 
Mcal/d 

5.51 cd 6.37 cd 7.06 d 4.67 c 0.610  2.47 2.43 2.76 2.17 0.221  7.98 cd 8.80 cd 9.82 c 6.84 d 0.794 

aWP = Wheat pasture, SF = Silage fed, PF = Program fed, CF = Ad libitum concentrate fed 
bStandard error of mean, n = 4 for initial harvest, n = 6 for intermediate and final harvest 
c,d,eWithin a row and tissue, means without a common superscript letter differ (P < 0.05) 
fFat-free organic matter 
gEther extract material x 9.4 kcal/g + fat-free organic matter x 5.55 kcal/g 
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Table 3-8. Effect of winter growing program on viscera 
chemical composition and composition of gain during the 
growing phase 
 Treatmenta  

 WP SF PF SEMb 
Chemical composition    
Mass, kg 25.51c 26.52cd 30.81d 1.56 
Water, kg 14.51 13.90 15.25 0.72 
FFOM, kgf 2.77 2.75 2.83 0.13 
FFOM, g/kg 108.8c 104.7c 92.6d 3.8 
Fat, kg 7.95c 9.55c 12.30d 0.84 
Fat, g/kg 310.9c 357.9d 396.7e 12.1 
Energy, Mcalg 90.1c 105.1c 131.4d 8.4 

 Energy, Mcal/kg 3.53 c 3.95 d 4.24 d 0.11 
     
Composition of gain    
Mass, kg/d 0.073c 0.095c 0.123d 0.011 
Water, g/d 40.04 41.51 49.35 5.261 
FFOM, g/de 1.47 3.61 3.38 1.054 
Fat, g/d 33.90c 48.97c 70.52d 6.359 
Energy, Mcal/df 0.33c 0.48c 0.68d 0.062 

aTreatments were WP = wheat pasture, SF = silage fed, and PF = 
program fed for a 112 d growing period. 

bStandard error of mean, n = 6. 
c,d,eWithin a row and tissue, means without a common 
superscript letter differ (P < 0.05). 
fFat-free organic matter. 
gEther extract material x 9.4 kcal/g + fat-free organic matter x 
5.55 kcal/g. 
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Table 3-9. Effect of winter growing program on viscera chemical 
composition and composition of gain during the finishing phase 
 Treatmenta  
Item WP SF PF CF SEMb 
Chemical composition     
Mass, kg 49.64 45.44 46.84 44.52 3.47 
Water, kg 17.90 17.56 16.34 16.46 0.87 
FFOM, kg 4.36 4.17 4.09 3.57 0.28 
FFOM, g/kg 87.75cd 92.04c 89.65cd 79.91d 3.42 
Fat, kg 26.90 23.29 26.07 24.08 2.49 
Fat, g/kg 540.2 511.9 539.8 539.2 17.8 
Energy, Mcal 277.1 242.1 267.7 246.1 24.7 

 Energy, Mcal/kg 5.57 5.32 5.57 5.51 0.15 
      
Composition of gain     
Mass, kg/d 0.188 0.188 0.177 0.148 0.024 
Water, g/d 22.62cd 39.71e 20.61c 36.75 de 5.06 
FFOM, g/d 11.93 c 14.35 c 13.87 c 5.96 d 1.83 
Fat, g/d 151.7 135.9 141.7 103.5 19.8 
Energy, Mcal/d 1.49 1.36 1.41 1.01 0.19 

aTreatments were WP = wheat pasture, SF = silage fed, and PF = 
program fed for a 112 d growing period. 

bStandard error of mean, n = 6. 
c,d,eWithin a row and tissue, means without a common superscript letter 
differ (P < 0.05). 
eFat-free organic matter. 
fEther extract material x 9.4 kcal/g + fat-free organic matter x 5.55 
kcal/g. 
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Table 10. Energy intake and retention in the empty body (Mcal/d) by steers during growing and 
finishing phases 
 Treatmenta   
 WP SF PF CF SEMb P-value 
Growing phase    --   
ME intake 12.89 13.25 12.63 -- 0.37 0.497 
Retained energy 2.42c 3.15cd 3.87d -- 0.30 0.015 
  Carcass  1.59c 2.03cd 2.55d -- 0.24 0.040 
  Offal 0.83c 1.12cd 1.32d -- 0.10 0.020 
  Viscera 0.33c 0.48c 0.68d -- 0.06 0.004 
Heat production 10.47c 10.10c 8.76d -- 0.48 0.053 
       
Finishing phase       
ME intake 28.36cd 29.96c 27.07d 23.42e 0.79 <0.001 
Retained energy 7.98cd 8.80cd 9.82c 6.84d 0.79 0.087 
  Carcass  5.51cd 6.37cd 7.06c 4.67d 0.61 0.060 
  Offal 2.47 2.43 2.76 2.17 0.22 0.350 
  Visceral 1.49 1.36 1.41 1.01 0.19 0.330 
Heat production 20.37c 21.16c 17.25d 16.57d 0.93 0.004 
Fasting heat productionf 0.78 0.76 0.75 -- 0.03 0.099 
Net efficiencyg 0.36 c 0.34 c 0.46 d -- 0.06 0.043 
aTreatments were WP = wheat pasture, SF = silage fed, and PF = program fed for a 112 d 
growing period. 
bStandard error of mean, n = 6. 
c,d,eWithin a row, means without a common superscript letter differ (P < 0.05). 
fCalculated as the intercept of the regression of log heat production on ME intake 
gCalculated as the slope of RE on ME intake 
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ABSTRACT:  The purpose of this study was to investigate the effects of winter growing 

program on organ mass, cellularity, and oxygen consumption of beef steers.  A total of 46 

steers were utilized for the experiment.  Four steers were randomly selected as an initial 

harvest group.  Remaining steers were blocked by weight and randomly allotted to one of 

four treatment groups:  1) ad libitum fed high-concentrate diet (CF); 2) grazed on wheat 

pasture (WP); 3) fed a sorghum silage-based growing diet (SF); or 4) program fed a 

high-concentrate diet (PF).  Steers in the WP, SF, and PF groups were managed to 

achieve approximately equal rates of BW gain.  After the growing phase (112 d) steers in 

the WP, SF, and PF treatments were adapted to a high-concentrate diet for finishing.  

Steers from all treatment groups were harvested at a backfat of 1.27 cm as estimated by 

ultrasound.  In addition, six steers from each treatment group were randomly selected for 

harvest at the end of the growing and finishing phases.  At each harvest, weights were 

collected on all individual organs.  During the growing phase, WP, SF, and PF treatments 

gained 1.21, 1.10, and 1.18 kg/d, respectively, with SF steers differing from the WP and 

PF groups (P < 0.05).  At the end of the growing phase, liver and small intestine weights 

(g/kg EBW) were greatest for WP steers (P < 0.01).  Silage-fed steers had the heaviest (P 

< 0.05) reticulo-rumens.  Mesenteric fat mass was greatest for PF, intermediate for SF, 

and lowest for WP steers (P < 0.01).  Mass of the total gastrointestinal tract (GIT) was 
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greater for PF steers as compared to WP steers (P < 0.05); SF steers were intermediate.  

Mass of total splanchnic tissues (TST) did not differ among treatments.  At final harvest, 

liver weights remained greatest (g/kg EBW; P < 0.01) for WP steers.  Mass of the 

reticulo-rumen, mesenteric fat, and GIT was similar among treatments and WP steers had 

less decrease in GIT and TST mass as a portion of BW than PF and CF steers (P < 0.05); 

SF steers were intermediate.  There were no differences in cellularity (protein:DNA) or 

oxygen consumption of small intestine or liver tissue on an equal weight basis (µL.min-

1.g-1) at the end of either period; thus energy expenditure of splanchnic organs was 

dependent on mass.  A lesser proportion of the gain of PF steers was attributed to the 

growth of splanchnic organs during finishing, which may have resulted in decreased 

maintenance energy requirements during finishing. 

 

Key Words: Beef Cattle, Cellularity, Oxygen Consumption, Visceral Organs 

 

INTRODUCTION 

The plane of nutrition during the growing phase can determine the maintenance 

requirement of cattle in the subsequent finishing phase (Ferrell and Jenkins, 1986; 

Hersom et al., 2004a), and increased gain in the feedlot by previously restricted cattle has 

been attributed to decreased maintenance energy requirement (Fox et al., 1972; Sainz et 

al. 1995).  Depending on the quality and energy density of the diet, maintenance 

requirements can account for more than half of the metabolizable energy intake of beef 

cattle (Beef Cattle NRC, 1996).  Due to high rates of protein synthesis, visceral organs 

comprise a large portion of the energy expenditure for maintenance even though they 
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represent a small percentage of body weight (McBride and Kelly, 1990).  Maintenance 

requirements increase with visceral organ mass (Ferrell and Jenkins, 1998), which is in 

turn dependent on plane of nutrition (Sainz and Bentley, 1997).   

Differences have been reported in visceral organ mass and in individual mass of 

metabolically important organs due to DMI, physical form of the diet, and energy density 

of the diet (Sainz and Bentley, 1997; Hersom et al., 2004b).  Forestomach mass appears 

to respond to physical form of the diet and fiber content (Sainz and Bentley, 1997; 

Hersom et al., 2004b), liver mass appears to be dependent on nutrient load, and increases 

with DMI and higher energy density of the diet (Carstens et al., 1991; Sainz and Bentley, 

1997; Hersom et al., 2004b), while small intestinal mass appears to be dependent on both 

(Sainz and Bentley, 1997). 

 The following study was designed to compare steers managed for similar rates of 

gain on different diets during the growing period.  The objective of the experiment was to 

characterize the effect of winter growing diet on mass, cellularity, and oxygen 

consumption of metabolically important visceral organs during the growing and finishing 

phases. 

MATERIALS AND METHODS 

A total of 46 steers were utilized for the experiment.  Steers were randomly 

selected from a larger population of steers used to determine performance, body 

composition, and carcass characteristics (McCurdy et al., 2006).  Four steers were 

transported to the Oklahoma Food and Agricultural Products Research and Technology 

Center (FAPRTC) abattoir in Stillwater, OK for an initial serial slaughter group.  

Remaining steers were blocked by weight and randomly allotted to one of four treatment 
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groups for winter feeding.  One group of steers were placed in the feedlot (n = 6) 

immediately after weaning and fed a high-concentrate finishing diet ad libitum (CF).  

The three remaining treatment groups were managed on three different growing programs 

to achieve approximately equal rates of BW gain.  One group was grazed on wheat 

pasture with unrestricted forage availability (WP; n = 12), a second group was fed a 

sorghum silage-based growing diet (SF; n = 12), and the third group was program fed a 

high-concentrate diet (PF; n = 12).  Steers were housed with the larger population of 

steers described above (McCurdy et al., 2006).   

At the end of the growing phase (112 d), six randomly selected steers from each 

of the WP, SF, and PF treatment groups were transported to the FAPRTC abattoir in 

Stillwater, OK for slaughter.  Remaining steers from these treatment groups were adapted 

to the same high-concentrate finishing diet as CF steers and placed in the feedlot.  After 

the finishing phase, steers from all treatment groups were slaughtered at a common 

backfat of 1.27 cm as estimated by ultrasound.  Steers were transported to the FAPRTC 

abattoir for slaughter. 

Harvest and Sample Collection 

Slaughter procedures and sample collections were similar for all serial slaughter 

groups from all treatments as described by Hersom et al. (2004a, 2004b) with 

modifications.  Steers were stunned with captive bolt and exsanguinated.  After 

exsanguination, weights of blood, noncarcass tissues (offal), and hot carcass were 

measured.  Individual weights of blood, head, hide, internal organs, viscera (reticulo-

rumen, omasum, abomasum, small and large intestine, cecum, and mesenteric/omental 

fat), and trim were recorded.  Contents of the GIT were removed before weighing.  



 74 

Empty body weight was calculated as hot carcass weight plus total offal weight.  Total 

splanchnic tissue was calculated as GIT plus mesenteric/omental fat, liver, spleen, and 

pancreas. 

After collection of weights, additional tissue samples were collected from the 

center lobe of the liver and duodenum (18 cm distal to the pyloric sphincter) to estimate 

in vitro oxygen consumption of the tissues. Samples were collected immediately after 

organ masses were recorded, and as close to time of evisceration as possible 

(approximately 30 min).  Collected tissue samples were placed in ice-cold Krebs-Hensleit 

saline with glucose (KHS; Kelly et al., 1993) and transported to the laboratory.   

Additional samples were obtained from the duodenum and liver for determination 

of DNA, RNA, and protein content.  Samples were dissected into approximately 1 g 

pieces and snap frozen in liquid nitrogen within 30 min of exsanguination.  Frozen 

samples were then placed on dry ice for transport to the lab, where they were placed into 

storage at -80°C for further analysis. 

In Vitro O2  Consumption 

When tissue samples for determination of O2 consumption reached the laboratory 

they were transferred to fresh KHS at 37°C and bubbled with 95% oxygen gas (Kelly et 

al., 1993).  All visible adipose tissue was removed from the small intestine, which was 

cut longitudinally to the lumen.  Small cross-sections were excised to accumulate 50 mg 

for analysis (Burrin et al., 1990).  A 50 mg sample of liver tissue was excised and lightly 

scored with a scalpel (Burrin et al., 1990).  Rates of O2 consumption were measured as 

previously reported by Hersom et al., 2004b, using a Clark-style electrode (YSI model 

5300, Yellow Springs Instruments, Yellow Springs, OH) positioned within a 
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thermostatically controlled cell chamber at 37°C (Yellow Springs Instruments, Yellow 

Springs, OH).  Triplicate tissue samples were placed in unoxygenated KHS solution in 

the O2 electrode chamber and allowed to acclimate to the chamber for 1 min, after which 

O2 consumption was measured over 5 min (Kelly et al., 1993). 

GIT Cellularity 

Frozen tissue samples obtained from the duodenum and liver were used for 

approximation of cell number and activity by determining cell contents of DNA, RNA, 

and protein.  Subsamples of 0.30g of frozen tissue (for both duodenum and liver) were 

sliced from 1.0 g samples.  Samples were incubated at room temperature in TRIzol 

reagent (Invitrogen, Carlsbad, CA) for 10 min.  Samples were homogenized using a 

Virtishear homogenizer (VirTis Co., Gardiner, NY).  Determination of DNA, RNA, and 

protein concentrations were carried out using the TRIzol reagent extraction procedures. 

Statistics 

All data for organ mass, cellularity, and oxygen consumption were analyzed as a 

completely randomized design using generalized least squares (Proc MIXED, SAS 

Institute, Cary, NC).  Individual animal was considered the experimental unit for all data.  

The model for all measurements included treatment as a fixed effect.  Mean separation 

was accomplished using Least Significant Difference and means were considered to be 

significantly different at the P < 0.05 level when protected by an F-value (P < 0.10).   

 

RESULTS 
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 Winter growing performance, subsequent finishing performance, carcass 

characteristics, and body composition data were previously reported by McCurdy et al. 

(2006). 

Growing phase organ mass 

Mass of individual organs and body components for the growing phase is shown 

in Table 4-1.  At the end of the growing phase there were no differences in empty body 

weight (kg, EBW) or in carcass tissue content of the empty body (g/kg EBW; McCurdy 

et al., 2006).  There were no differences (P > 0.10) between treatment groups for weight 

of blood, head, hide, heart, lungs, or esophagus (g/kg EBW).  However, significant 

differences in several components of the viscera and TST were observed.  Reticulo-

rumen mass (g/kg EBW) was greater (P  <  0.05) for SF steers compared with WP steers, 

with PF steers being intermediate.  The remaining parts of the forestomach complex 

(omasum and abomasum) did not differ (P > 0.10) among treatments.  Small intestine 

mass (g/kg EBW) was greater (P < 0.01) for WP steers compared with other treatments, 

whereas large intestine and cecum mass were not affected (P > 0.10) by growing diet. 

 Notable differences were observed in mass of visceral fat (mesenteric and 

omental; g/kg EBW; Table 4-1).  Steers in the PF treatment group had greater visceral fat 

(P < 0.05) compared with SF steers, and SF steers had greater (P < 0.05) visceral fat 

compared with steers in the WP group.  Owing primarily to the visceral fat mass, PF 

steers had greater (P < 0.05) mass (g/kg EBW) of visceral tissues than WP steers; SF 

steers were intermediate. 

 At the end of the growing phase WP steers had the greatest (P < 0.01) liver mass 

(g/kg EBW) compared with the other treatment groups (Table 4-1).  The same differences 
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were observed for kidney mass with WP steers having greater (P < 0.01) mass at the end 

of the growing phase compared with the other treatments.  Other splanchnic tissues 

(pancreas and spleen) did not differ (P > 0.10) among treatment groups.  Mass of TST 

(g/kg EBW) also did not differ significantly due to treatment.   

Finishing phase organ mass 

 Mass of individual organs and body components at the end of finishing is shown 

in Table 4-2.  At the end of finishing there were no differences in EBW (kg) or in carcass 

tissue content of the empty body (g/kg EBW; McCurdy et al., 2006).  There were no 

significant differences between treatments for weight of blood, head, or hide (g/kg 

EBW).  Steers in the SF treatment had heavier (P < 0.05) feet and ears compared with PF 

steers.  Steers in the WP treatment had lesser heart mass (g/kg EBW; P < 0.05) compared 

with SF and PF groups; CF steers were intermediate.  Steers in the CF treatment had the 

lowest (P < 0.01) lung mass among all treatments.  After finishing, mass of kidneys (g/kg 

EBW) was similar (P > 0.10) among WP and other growing treatment groups; however, 

WP steers had greater (P < 0.05) kidney mass than CF steers.  Steers in the SF treatment 

had greater (P < 0.05) kidney mass than the PF and CF groups. 

 Mass of visceral tissues did not differ (P > 0.10) among treatments at the end of 

the finishing phase (Table 4-2).  Across the finishing period, steers in the WP group 

showed less decrease in visceral mass (g.kg EBW-1.d-1) compared with PF steers (P < 

0.05), with SF and CF steers being intermediate.  Mass of reticulo-rumen was not 

different (P > 0.10) due to treatment, signifying that WP steers had the lowest decrease in 

rumen mass (g.kg EBW-1.d-1) of all treatments from the end of the growing phase to the 

end of the finishing phase.  Mass of the omasum (g/kg EBW) was not significantly 
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different among treatments; however, abomasal mass was greater (P < 0.05) for SF steers 

compared with CF and PF steers; WP steers were intermediate. 

 Small intestinal mass (g/kg EBW) was not significantly different among 

treatments at the end of the finishing phase with WP steers experiencing a greater 

decrease (g.kg EBW-1.d-1) in small intestine mass (P < 0.05) from the end of the growing 

phase to the end of the finishing phase compared with SF and PF groups (Table 4-2).  

Large intestinal mass was greater (P < 0.05) for WP steers at the end of the finishing 

phase compared with PF and CF steers, with SF steers being intermediate.  Thus, across 

the finishing period, WP and SF steers had less (P < 0.01) decrease in large intestinal 

mass as a percentage of EBW (g.kg EBW-1.d-1) compared with PF and CF steers.  Mass of 

visceral fat did not differ among treatments at the end of the finishing phase, and WP 

steers had a larger increase (P < 0.05) in visceral fat mass (g.kg EBW-1.d-1) compared 

with PF steers.  Steers in the SF and CF treatments were intermediate. 

At the end of finishing phase, liver mass (g/kg EBW) remained larger (P < 0.05) 

for WP steers compared with all remaining treatments (Table 4-2).  This difference was 

evident despite the fact that WP steers had the greatest (P < 0.05) decrease in liver mass 

(g.kg EBW-1.d-1) over the finishing period compared with other treatments.  Numerically, 

steers in the WP group had the largest TST and had the lowest (P < 0.05) decrease in 

TST (g.kg EBW-1.d-1) over the finishing period compared with PF and CF groups; SF 

steers were intermediate. 

Tissue O2 consumption 

 There were no significant differences in oxygen consumption of tissues among 

treatments at the end of the growing phase (Table 4-3).  Duodenum and liver showed no 
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differences in oxygen consumption on an equal weight basis (µL.min-1.g-1) due to diet (P 

= 0.86 and P = 0.85, respectively).  Therefore oxygen consumption by total organs was 

dependent on mass.  Duodenum and liver oxygen consumption followed trends in mass 

of the liver and small intestine (ml/min); however, differences were not statistically 

significant among treatments (P = 0.38 and P = 0.27, respectively). 

At the end of the finishing phase, there were no differences (P > 0.10) in oxygen 

consumption due to treatment by duodenum (P = 0.50) or liver tissues (P = 0.33) on an 

equal wet weight basis (µL.min-1.g-1; Table 4-3).  Oxygen consumption by total organs 

was related to organ mass, although differences were not different among treatments for 

duodenum (P = 0.74) or liver (P = 0.11). 

Tissue cellularity 

 Data of cellular content of duodenum and liver tissues for both phases is 

presented in Table 4-4.  There were no differences (P > 0.37) among treatment groups in 

RNA, DNA, or protein concentration (mg/g) of the duodenal tissue at the end of the 

growing or finishing phases, despite the fact that WP steers had larger small intestinal 

mass at the end of the growing phase.  There was also no difference in the ratio of 

RNA:protein or protein:DNA at the end of either phase.  Similarly, there were no 

differences (P > 0.45) among treatments in cellular parameters for liver tissue. 

 

DISCUSSION 

At the end of the growing phase, several components of the GIT were shown to be 

responsive to diet type.  Previous work in lambs (Wester et al., 1995; Fluharty and 

McClure, 1997; Noziere et al., 1999) and steers (Sainz and Bentley, 1997; Hersom et al., 
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2004b) has shown that reticulo-rumen mass is responsive to both energy density and 

physical form of the diet.  Hersom et al. (2004b) showed restrictions in both DMI and 

ME intake of growing diets resulted in larger reticulo-rumen mass.  Steers that were 

grazed on dormant native range vs. wheat pasture had larger rumen mass, presumably 

from a lower energy density of the forage and correspondingly higher DMI.  These 

findings are supported by Jones et al. (1985) and Sainz and Bentley (1997) in steers 

which demonstrated greater reticulo-rumen mass due to greater DMI of a low-energy 

forage diet compared with a high-concentrate diet.  Increases in reticulo-rumen mass 

among steers fed high-concentrate diets ad libitum or limit-fed were not observed by 

Sainz and Bentley (1997), but were demonstrated in lambs by Fluharty and McClure 

(1997).  Although not as large of a difference, Hersom et al. (2004b) also showed steers 

that were grazed on wheat pasture with restricted forage availability (high-stocking 

density) had larger reticulo-rumens compared with steers grazed for ad libitum intake on 

wheat pasture (low-stocking density) demonstrating that reticulo-rumen mass increased 

due to lower ME intake even with lower DMI.  This is supported by the work of Wester 

et al. (1995) in lambs that demonstrated increased reticulo-rumen mass in limit-fed vs. ad 

libitum-fed growing diets.  Noziere et al. (1999) showed opposite results with restricted-

fed (40% of maintenance) lambs having smaller reticulo-rumen mass compared with 

lambs fed at maintenance, but the different results in this study may be due to the severe 

nature of the restriction.  In the current study the larger reticulo-rumen mass of the SF 

steers as compared with the PF steers agrees with the aforementioned findings regarding 

lower energy density and consequently larger DMI resulting in increased mass.  However 
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it is not evident as to why WP steers exhibited the smallest reticulo-rumen mass.  A high 

rate of passage for wheat pasture grazed cattle might have contributed to the response. 

It is also not evident why WP steers had the lowest decrease of reticulo-rumen 

mass as a proportion of EBW during the finishing phase resulting in similar mass among 

treatments at the end of the finishing phase.  Drouillard et al. (1991) and Noziere et al. 

(1999) both reported similar mass of forestomachs after realimentation to a high 

concentrate diet in previously restricted lambs.  However, in the present study no 

treatment group was restricted in MEI.  At the end of the growing phase reticulo-rumen 

mass was not significantly different between the WP and the PF steers.  During finishing 

DMI was not significantly different between these groups, however WP steers had 

greater growth of reticulo-rumen tissue. 

Although the rate of oxygen consumption by ruminal epithelium was not reported 

for the present experiment, previous work has shown that there were no differences in 

oxygen consumption of this tissue due to diet in steers (Hersom et al., 2004b) or lambs 

(McLeod and Baldwin, 2000).  In fact it appears that there is little difference in 

metabolism of rumen epithelial tissue on an equal weight basis due to dietary effects 

(Baldwin and McLeod, 2000), and thus energy expenditure of the rumen tissue appear to 

be dependent on mass. 

In the present experiment, greater small intestine mass for WP steers compared 

with both SF and PF steers might provide further evidence of a greater rate of passage 

and nutrient flow to the small intestine for wheat pasture-grazed steers.  Burrin et al. 

(1990) reported decreased small intestinal mass in lambs due to decreased DMI.  

Drouillard et al (1991) reported that small intestinal mass was reduced by energy 
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restriction and these differences persisted after realimentation to feed.  This disagrees 

with the work of both Wester et al. (1995) and Fluharty and McClure (1997) who 

reported no differences in small intestinal mass of lambs due to DMI or MEI restriction.  

However, Wester et al. (1995) and Sainz and Bentley (1997) showed that small intestinal 

mass increased in previously restricted lambs and steers, respectively, when realimented 

to feed.  Additionally it was reported by Jones et al. (1985) that high-concentrate diets 

resulted in greater small intestinal mass in steers compared with steers fed forage diets.  

Thus it appears that small intestinal mass is dependent on both nutrient load and physical 

form of the diet (Sainz and Bentley, 1997; Mcleod and Baldwin, 2000), responding to the 

amount and energy density of digesta that is presented to post-stomach tissues. 

During finishing WP steers had the greatest decrease in small intestine mass as a 

proportion of EBW which resulted in similar small intestine mass among treatments at 

the end of the finishing phase.  Previous work in lambs (Wester et al., 1995; Noziere et 

al., 1999) and steers (Sainz and Bentley, 1997) showed an increase in small intestinal 

mass in previously-restricted animals.  This is most likely due to increased intake 

following restriction and thus more digesta and nutrients presented to the small intestine.  

Although steers in the current study were not restricted during the growing period, total 

nutrients available to the small intestine would most likely have been greater during 

finishing.  This agrees with the work of Drouillard et al. (1991) that showed a decrease in 

small intestinal mass when previously restricted lambs were realimented to a high-

concentrate diet. 

Despite the WP steers having a significantly greater mass of small intestine at the 

end of the growing phase, there were no significant differences in cellularity of the 



 83 

duodenal tissue before or after finishing.  Although Hersom et al. (2004b) reported 

differences in RNA content of duodenal tissue in steers, there were no differences in 

DNA or protein concentration among treatments.  These results are consistent with other 

studies in steers (Sainz and Bentley, 1997) and lambs (Noziere et al., 1999) and suggest 

that changes in small intestinal mass occur through changes in hyperplasia rather than 

hypertrophy.  Additionally there were no differences in oxygen consumption of the 

duodenal tissue at the end of the growing or the finishing phases.  Studies in lambs have 

also demonstrated no differences in oxygen consumption of the small intestinal tissue due 

to diet (Wester et al., 1995; McLeod and Baldwin, 2000) and it appears that energy 

demand of the small intestine varies with mass. 

In the present experiment, differences in visceral fat were large and the most 

visibly evident of all differences in TST components at the end of the growing phase.  

The PF group had greater mass than the SF group and the SF group had greater mass than 

the WP group.  It has been demonstrated in both lambs (Fluharty and McClure, 1997) and 

steers (Jones et al., 1985; Hersom et al., 2004b) that mesenteric fat increases with 

increasing energy intake.  However in the current study ME intake did not differ among 

treatments at the end of the growing phase (McCurdy et al., 2006).  Therefore differences 

occurred due to diet type with the more energy-dense PF diet resulting in greater 

accretion of mesenteric fat.  Because of the large difference in mass of visceral fat, steers 

in the PF group had the greatest visceral mass.  Steers fed silage were intermediate in 

mesenteric fat and had the largest reticulo-rumens, resulting in greater visceral mass than 

WP steers.  Although WP steers had the greatest small intestine mass of the three groups, 
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they had the least mass of reticulo-rumen and visceral fat, and therefore had the lowest 

total visceral mass at the end of the growing phase. 

During the finishing phase all treatment groups experienced an increase in 

visceral fat mass as a percentage of EBW.  As previously mentioned, visceral fat 

increases with increasing energy intake (Jones et al., 1985; Fluharty and McClure, 1997; 

Hersom et al., 2004b).  Visceral fat mass was similar among treatments at the end of the 

finishing phase and therefore WP steers had a greater increase in mass during finishing 

compared with SF and PF steers.  Mass of the total viscera did not differ among 

treatments at the end of the finishing period.  Due to the accretion of reticulo-rumen and 

mesenteric fat tissue by WP steers during finishing, WP steers had the lowest decrease in 

total visceral mass as a proportion of EBW.  Thus a greater portion of the empty body 

weight gain of WP steers during finishing was attributed to gain of the visceral tissues. 

In the present experiment, steers in the WP group had greater liver mass at the end 

of the growing phase compared with the SF and PF groups, and this was likely due to the 

higher protein content of wheat pasture compared with the other growing diets (McCurdy 

et al., 2006).  Previous work also shows that liver mass is responsive to CP content of the 

diet in lambs (Drouillard et al., 1991; Wester et al., 1995; Fluharty and McClure, 1997) 

and in steers (Hersom et al., 2004b).  Liver mass has also been shown to increase in 

response to increasing energy intake (Burrrin et al., 1990; Sainz and Bentley, 1997).  

However, in the present study MEI did not differ among treatments, and presumably 

energy load presented to the liver was not different during the growing phase. 

 During the finishing phase, WP steers had the sharpest decline in liver mass per 

unit of EBW among all treatments.  Nevertheless, at the end of the finishing phase WP 
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steers still had greater liver mass compared with all other treatments.  Hersom et al. 

(2004b) demonstrated that steers grazed on wheat pasture with a low stocking density had 

greater liver mass at the end of the growing phase compared with steers grazed on wheat 

pasture with a high stocking density and steers grazed on dormant native winter range.  It 

was thought this difference resulted from the greater nitrogen intake for those steers.  

Similar results were observed in the current study with the WP steers compared with 

other treatment groups.  However, in contrast to the present study, differences in liver 

mass no longer existed at the end of the finishing phase in the Hersom et al. (2004b) 

experiment.  Similarly, differences in liver mass have been reported in lambs following a 

period of energy or protein restriction (Wester et al., 1995; Noziere et al., 1999), but these 

differences no longer existed following a period of feed repletion on a common high-

concentrate diet.   

 Although liver mass was significantly larger for WP steers at the end of both the 

growing and finishing phases, there were no differences in RNA, DNA, or protein 

concentrations of the liver tissue at either time point.  Most researchers have reported that 

increases in liver mass in ruminants occur through hypertrophy and that dietary effects 

that increase liver size increase the protein:DNA ratio of the tissue (Burrin et al., 1992; 

Sainz and Bentley, 1997; Noziere et al., 1999).  In these studies differences in liver mass 

were due to differences in DMI and MEI.   

In the present experiment, there were no differences in oxygen consumption of 

liver tissue due to treatment and oxygen consumption of the whole liver tended to vary 

with organ mass.  This agrees with the work of Hersom et al. (2004b) in steers and Burrin 

et al. (1990) in lambs who reported no difference in oxygen consumption of liver tissue 



 86 

due to dietary treatment on an equal weight basis.  It was reported by Wester et al. (1995) 

that oxygen consumption of liver was increased 25% in lambs due to protein or energy 

restriction in the diet over controls.  However, because of the decrease in liver mass in 

diet-restricted groups, oxygen consumption on a total organ basis was only 68% of 

controls.  Therefore, it is likely that even if subtle differences exist in energy expenditure 

on an equal weight basis for liver tissue due to dietary differences, organ mass is still the 

primary determinant of liver energy expenditure. 

At the end of the growing phase, PF steers had the greatest visceral fat mass, SF 

steers had the heaviest reticulo-rumens, and WP steers had the largest livers.  Because of 

the differences in these individual components, TST mass was statistically similar.  At 

the end of finishing WP steers had the greatest mass of TST numerically, but statistically 

TST mass was not different among treatments.  However, because of the growth in total 

visceral mass and liver mass remaining larger for WP steers during the finishing period, 

this treatment exhibited less decline in TST mass per unit of EBW compared with PF and 

CF steers; SF steers were intermediate.  Therefore it is likely that the differences in 

finishing phase performance demonstrated in our previous study (McCurdy et al., 2006) 

were due to differences in energy demand and growth dynamics of visceral or total 

splanchnic tissues. 

 

IMPLICATIONS 

 Dietary effects including intake level, physical form of the diet, and caloric 

density play a major role in determining mass of the portal-drained viscera and liver.  

Changes in organ mass due to previous diet during the growing phase may contribute to 
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differences in splanchnic organ mass during finishing.  It does not appear however that 

diet has a major effect on metabolism or oxidative capacity of tissues in the 

gastrointestinal tract or liver on a cellular level.  Therefore differences in energy 

expenditure of visceral organs seem to be driven primarily by differences in organ mass.  

Compared with grazing or forage-based diets, feeding higher concentrate diets during the 

growing phase may lead to decreased growth of splanchnic organs during the finishing 

phase.  Due to the considerable energy expenditure of splanchnic organs, this may result 

in altered maintenance energy requirements and consequently lead to differences in 

performance. 
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Table 4-1. Mass of visceral organs in steers from different winter growing programs during the growing phase 
 Initial  Final  Changeb 
   Treatmenta   Treatment  
Item   WP SF PF SEMc  WP SF PF SEM 
EBW, kg 216  336 323 354 10.7  119 106 137 10.7 
Carcass            
  kg 140  220 212 237 7.8  730 de 642 d 866 e 69.9 
  g/kg EBW 649  660 657 671 6.4  103.6 79.3 197.0 56.93 
Blood            
  kg 8.7  14.9 13.2 14.6 0.80  55.3 40.36 53.0 7.1 
  g/kg EBW 40.1  44.4 40.9 41.3 1.98  38.1 7.2 10.6 17.70 
Feet and Ears            
  kg 7.3  10.2 9.0 9.8 0.32  25.9 d 14.8 e 22.5 de 2.84 
  g/kg EBW 33.9  30.4 27.9 27.9 1.09  -31.7 -53.7 -53.5 9.74 
Hide            
  kg 19.5  28.9 28.8 26.6 2.55  84.5 83.0 96.9 8.09 
  g/kg EBW 89.9  86.6 89.6 75.3 7.86  -29.7 -3.5 -13.2 70.18 
Head            
  kg 9.2  12.5 12.2 13.2 0.50  29.5 27.1 35.9 4.49 
  g/kg EBW 42.6  37.2 37.9 37.4 0.80  -47.8 -42.2 -46.5 7.17 
Trimg            
  kg 3.6  6.2 7.0 6.6 0.89  23.1 30.9 27.0 7.95 
  g/kg EBW 16.2  18.2 21.9 18.7 2.59  17.7 50.9 22.0 23.15 
Heart            
  kg 1.0  1.7 1.7 1.8 0.12  5.6 5.5 6.5 1.03 
  g/kg EBW 4.8  4.9 5.1 5.0 0.26  1.3 2.3 1.7 2.30 
Lungs            
  kg 3.7  5.3 5.0 5.4 0.31  14.6 11.3 15.7 2.74 
  g/kg EBW 16.9  15.8 15.4 15.4 0.80  -10.6 -14.0 -14.0 7.17 
Esophagus            
  kg 0.2  0.3 0.3 0.3 0.02  0.7 0.6 0.8 0.17 
  g/kg EBW 1.0  0.9 0.9 0.9 0.05  -1.1 -1.2 -1.2 0.47 
Kidney            
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  kg 0.7  1.0 d 0.8 e 0.8 e 0.04  3.2 d 0.9 e 1.0 e 0.32 
  g/kg EBW 3.2  3.1d 2.4e 2.3e 0.07  -0.8 d -6.7 e -8.2 e 0.60 
Reticulo-rumen            
  kg 4.9  6.5 7.5 7.7 0.45  14.0 22.5 25.1 4.01 
  g/kg EBW 22.9  19.3d 23.1e 21.7de 0.92  -32.4 d 2.3 e -10.1de 8.17 
Omasum            
  kg 2.1  2.5 2.8 2.9 0.30  2.8 6.2 7.0 2.7 
  g/kg EBW 9.9  7.2 8.8 8.3 0.80  -24.0 -9.8 -14.1 7.16 
Abomasum            
  kg 1.0  1.4 1.3 1.5 0.12  4.0 3.2 4.6 1.10 
  g/kg EBW 4.4  4.2 4.0 4.1 0.31  -2.3 -3.2 -2.4 2.80 
Small Intestine            
  kg 3.5  5.4 d 4.0 e 4.5 e 0.21  16.8 d 4.2 e 8.8 e 1.85 
  g/kg EBW 16.3  16.1d 12.4e 12.8e 0.58  -2.3 d -35.3 e -32.0 e 5.16 
Large Intestine            
  kg 2.0  2.7 2.4 2.9 0.17  6.8 3.8 8.10 1.56 
  g/kg EBW 9.1  8.1 7.4 8.2 0.43  -8.7 -15.5 -8.0 3.87 
Cecum            
  kg 0.5  0.5 0.4 0.4 0.05  -0.2 0.9 0.7 0.43 
  g/kg EBW 2.4  1.4 1.3 1.2 0.12  -8.4 -10.0 -10.4 1.08 
Mesenteric fat            
  kg 4.2  6.5 d 8.1 d 10.9 e 0.81  20.7 d 34.9 d 59.4 e 7.2 
  g/kg EBW 19.5  19.5d 25.0e 30.6f 1.87  -0.6 d 49.0 e 99.0 f 16.65 
Total viscerah            
  kg 18.2  25.5 d 26.5 de 30.8 e 1.56  64.9 d 74.0 de 112.3 e 13.97 
  g/kg EBW 84.5  75.7d 82.0de 87.0e 2.77  -78.7 d -22.4 de 22.1 e 24.76 
Pancreas            
  kg 0.2  0.3 0.3 0.4 0.03  0.9 1.2 1.4 0.25 
  g/kg EBW 0.9  0.9 1.0 1.0 0.09  -0.1 1.0 0.9 0.76 
Spleen            
  kg 0.5  1.0 0.7 0.8 0.18  4.3 1.5 3.0 1.62 
  g/kg EBW 2.3  2.9 2.1 2.3 0.51  5.3 -2.4 0.2 4.54 
Liver            
  kg 3.2  6.4 d 5.1 e 5.5 e 0.33  28.1 d 16.7 e 19.8 e 2.96 
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  g/kg EBW 15.0  19.0d 15.8e 15.4e 0.60  36.0 d 7.3 e 3.9 e 5.40 
TSTi            
  kg 22.2  33.2 32.6 37.5 1.91  98.3 93.3 136.4 17.04 
  g/kg EBW 102.7  98.5 100.8 105.7 3.17  -37.6 -16.5 27.1 28.33 
aWP=Wheat pasture, SF=Silage fed, PF=Program fed. 
bChange expressed as g/d for carcass and organ mass, and mg.kg EBW-1.d-1 for carcass and organ proportional mass. 
cStandard error of mean, n=4 for initial harvest, n=6 for final harvest. 
d,e,fWithin a row and tissue, means without a common superscript letter differ (P < 0.05). 
gTrim = tail, spinal cord, and tissue cut from the carcass in the abattoir. 
hGastro-intestinal tract; includes reticulo-rumen, omasum, abomasums, small intestine, large intestine, cecum, and mesenteric/omental fat. 
iTotal splanchnic tissues; includes GIT, liver, pancreas, and spleen. 
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Table 4-2. Mass of visceral organs in steers from different winter growing programs during the finishing phase 
 Initial  Final  Changeb 
 Treatmenta   Treatment   Treatment  
Item WP SF PF CF SEMc  WP SF PF CF SEM  WP SF PF CF SEM 
EBW, kg 336 323 354 216 10.7  639 602 640 604 25.2  303 d 280 d 286 d 388 e 25.3 
Carcass                  
  kg 220 212 237 140 7.8  376 357 383 361 14.6  1252 d 1393 d 1406 d 1842 e 124.2 
  g/kg EBW 660 657 671 649 6.4  588 593 600 598 4.7  -58.4 d -62.1 d -67.8 d -25.9 e 35.42 
Blood                  
  kg 14.9 13.2 14.6 8.7 0.80  20.2 de 19.1 d 21.7 e 18.5 d 0.79  43.2 d 56.4 de 67.8 e 94.5 f 7.24 
  g/kg EBW 44.4 40.9 41.3 40.1 1.98  31.7 31.9 34.2 30.8 1.45  -104.6 d -87.3 de -68.5 de -48.5 d 13.61 
Feet and Ears                  
  kg 10.2 9.0 9.8 7.3 0.32  14.2 14.6 12.9 13.0 0.68  32.4 d 54.4 e 29.5 d 66.3 e 5.73 
  g/kg EBW 30.4 27.9 27.9 33.9 1.09  22.3 de 24.2 d 20.5 e 21.5 de 1.01  -66.0 d -36.2 e -72.4 d -64.3 d 9.02 
Hide                  
  kg 28.9 28.8 26.6 19.5 2.55  42.0 40.5 43.4 44.2 2.36  106.1 d 112.6 d 161.6 e 225.4 f 17.03 
  g/kg EBW 86.6 89.6 75.3 89.9 7.86  66.0 67.5 68.8 72.7 4.00  -168.4 de -212.4 d -62.7  f -88.1 ef 34.22 
Head                  
  kg 12.5 12.2 13.2 9.2 0.50  16.7 16.8 17.0 17.0 0.90  34.1 d 44.2 d 36.0 d 86.6 e 7.52 
  g/kg EBW 37.2 37.9 37.4 42.6 0.80  26.2 28.6 26.5 28.1 0.97  -90.1 -95.1 -104.2 -74.6 8.25 
Trimg                  
  kg 6.2 7.0 6.6 3.6 0.89  9.2 de 8.5 d 11.8 e 11.0 de 0.98  25.1 d 14.00 d 49.6 e 56.3 e 7.56 
  g/kg EBW 18.2 21.9 18.7 16.2 2.59  14.5 14.0 18.5 18.4 1.62  -31.3 d -76.9 f -2.3 de 11.1 e 11.65 
Heart                  
  kg 1.7 1.7 1.8 1.0 0.12  2.3 d 2.5 de 2.8 e 2.5 de 0.13  5.3 d 8.5 e 10.1 ef 12.6 f 1.00 
  g/kg EBW 4.9 5.1 5.0 4.8 0.26  3.6 d 4.2 e 4.4 e 4.1 de 0.17  -11.6 d -8.8 d -5.4 d -4.3 e 1.42 
Lungs                  
  kg 5.3 5.0 5.4 3.7 0.31  9.0 d 7.8 d 8.5 d 6.3 e 0.44  29.8 27.7 29.2 32.4 3.91 
  g/kg EBW 15.8 15.4 15.4 16.9 0.80  14.1 d 13.0 d 13.2 d 10.5 e 0.47  -14.8 d -23.3 de -21.6 d -33.4 e 4.07 
Esophagus                  
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  kg 0.3 0.3 0.3 0.2 0.02  0.5 d 0.3 e 0.4 e 0.3 e 0.02  1.2 d 0.5 e 0.5 e 1.63 d 0.18 
  g/kg EBW 0.9 0.9 0.9 1.0 0.05  0.7 d 0.6 e 0.6 e 0.5 e 0.03  -1.2 d -3.2 e -3.1 e -2.2 e 0.39 
Kidney                  
  kg 1.0  0.8  0.8  0.7 0.04  1.2 d 1.1 d 1.1 de 1.0 e 0.05  1.0 d 3.4 e 2.6 e 4.9 f 0.38 
  g/kg EBW 3.1 2.4 2.3 3.2 0.07  1.8 de 1.9 d 1.7 ef 1.6 f 0.06  -11.7 d -5.8 e -6.4 e -8.2 f 0.51 
Reticulo-rumen                  
  kg 6.5 7.5 7.7 4.9 0.45  10.7 9.8 9.9 9.4 0.77  33.9 de 23.0 d 20.7 d 48.1 e 6.61 
  g/kg EBW 19.3 23.1 21.7 22.9 0.92  16.7 16.3 15.3 15.5 0.82  -21.2 d -66.6 e -62.2 e -38.7 d 0.74 
Omasum                  
  kg 2.5 2.8 2.9 2.1 0.30  3.6 3.2 3.1 3.4 0.28  9.0 d 3.8 de 1.7 e 17.4 f 2.39 
  g/kg EBW 7.2 8.8 8.3 9.9 0.80  5.6 5.4 4.8 5.7 0.36  -13.2 d -33.7 e -34.9 e -22.1 d 3.00 
Abomasum                  
  kg 1.4 1.3 1.5 1.0 0.12  1.7 1.7 1.6 1.5 0.11  2.7 d 4.1 d 1.4 d 7.6 e 0.99 
  g/kg EBW 4.2 4.0 4.1 4.4 0.31  2.7 de 2.9 d 2.5 e 2.5 e 0.12  -12.2 d -11.1 d -16.3 e -10.7 d 1.02 
Small Intestine                  
  kg 5.4  4.0  4.5  3.5 0.21  6.2 5.4 5.7 4.9 0.39  6.1 d 13.7 d 11.5 d 25.1 e 3.45 
  g/kg EBW 16.1 12.4 12.8 16.3 0.58  9.6 8.9 8.8 8.1 0.41  -52.5 d -33.4 e -38.1 e -42.2 e 3.52 
Large Intestine                  
  kg 2.7 2.4 2.9 2.0 0.17  5.2 d 4.4 de 4.2 e 4.0 e 0.33  20.2 19.0 12.3 20.6 2.85 
  g/kg EBW 8.1 7.4 8.2 9.1 0.43  8.1 d 7.2 de 6.4 e 6.7 e 0.41  0.1 d -0.1 d -17.1 e -12.6 e 3.26 
Cecum                  
  kg 0.5 0.4 0.4 0.5 0.05  0.8 0.9 0.7 0.7 0.07  2.5 d 4.7 e 3.0 de 3.4 de 0.59 
  g/kg EBW 1.4 1.3 1.2 2.4 0.12  1.2 1.5 1.2 1.1 0.11  -2.2 d 2.1 e 0.1 de -7.0 f 1.11 
Mesenteric fat                  
  kg 6.5  8.1  10.9  4.2 0.81  21.6 19.9 21.7 20.6 2.14  122.0 113.5 103.6 105.0 19.02 
  g/kg EBW 19.5 25.0 30.6 19.5 1.87  33.6 33.1 32.9 34.1 2.64  115.5 d 78.5 de 27.0 e 74.8 de 22.82 
Total viscerah                  
  kg 25.5 26.5 30.8 18.2 1.56  49.6 45.4 46.8 44.5 3.47  196.3 181.9 154.1 227.2 30.13 
  g/kg EBW 75.7 82.0 87.0 84.5 2.77  77.6 75.4 71.9 73.6 3.50  15.8 d -64.1 de -145.4 e -56.3 d 28.65 
Pancreas                  
  kg 0.3 0.3 0.4 0.2 0.03  0.6 0.5 0.6 0.5 0.04  2.2 de 1.2 d 1.9 de 2.4 e 0.36 
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  g/kg EBW 0.9 1.0 1.0 0.9 0.09  0.9 0.8 0.9 0.8 0.06  0.2 d -3.2 f -2.1 ef -1.1 de 0.50 
Spleen                  
  kg 1.0 0.7 0.8 0.5 0.18  1.3 d 1.0 e 1.1 de 0.9 e 0.08  2.2 d 2.9 de 2.7 d 4.7 e 0.62 
  g/kg EBW 2.9 2.1 2.3 2.3 0.51  2.0 1.6 1.8 1.5 0.15  -8.4 -4.2 -5.2 -4.0 1.21 
Liver                  
  kg 6.4 d 5.1 e 5.5 e 3.2 0.33  8.3 d 7.3 e 7.5 de 6.9 e 0.36  15.8 d 20.7 d 19.5 d 35.1 e 3.18 
  g/kg EBW 19.0d 15.8e 15.4e 15.0 0.60  13.0 d 12.1 e 11.7 e 11.4 e 0.32  -48.2 d -36.3 e -36.6 e -18.5 f 2.64 
TSTi                  
  kg 33.2 32.6 37.5 22.2 1.91  59.8 54.1 56.0 52.8 3.76  216.5 206.8 178.3 269.3 32.85 
  g/kg EBW 98.5 100.8 105.7 102.7 3.17  93.5 89.8 86.2 87.3 3.52  -41.1 d -106.1 d -188.0 e -79.1 d 28.59 
aWP=Wheat pasture, SF=Silage fed, PF=Program fed. 
bChange expressed as g/d for carcass and organ mass, and mg.kg EBW-1.d-1 for carcass and organ proportional mass. 
cStandard error of mean, n=6. 
d,e,fWithin a row and tissue, means without a common superscript letter differ (P < 0.05). 
gTrim = tail, spinal cord, and tissue cut from the carcass in the abattoir. 
hGastro-intestinal tract; includes reticulo-rumen, omasum, abomasums, small intestine, large intestine, cecum, and mesenteric/omental fat. 
iTotal splanchnic tissues; includes GIT, liver, pancreas, and spleen. 
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Table 4-3.  Oxygen consumption by tissues from steers before and after placement into thefeedlot 
 Treatmenta   
Item WP SF PF CF SEMb P-value 
       
Growing phase       
 Duodenum       
    µL.min-1.g-1 3.43 2.78 2.94 - 0.86 0.87 
    Whole organ, ml/min 19.10 10.58 13.15 - 4.29 0.38 
       
 Liver       
    µL.min-1.g-1 5.29 4.75 4.79 - 0.76 0.85 
    Whole organ, ml/min 33.55 24.76 25.80 - 4.02 0.27 
       
Finishing phase       
 Duodenum       
    µL.min-1.g-1 1.54 1.80 1.26 1.96 0.37 0.50 
    Whole organ, ml/min 8.98 9.74 7.04 9.76 2.11 0.74 
       
 Liver       
    µL.min-1.g-1 3.44 3.25 2.58 2.59 0.41 0.33 
    Whole organ, ml/min 28.88 24.18 18.78 17.68 3.45 0.11 
aWP = Wheat pasture, SF = Silage fed, PF = Program fed 
bStandard error of mean, n = 6. 
c,dWithin a row and tissue, means without a common superscript letter differ (P < 0.05). 
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Table 4-4. Cellularity of organs from steers before placement into the feedlot and at final harvest 
 Treatmenta   
Item WP SF PF CF SEMb P-value 
Duodenum       
  End of growing       
    RNA, mg/g 4.38 3.68 4.06 - 0.70 0.78 
    DNA, mg/g 10.69 8.93 9.26 - 1.18 0.55 
    Protein, mg/g 117.14 130.89 121.33 - 8.12 0.49 
    RNA:Protein 0.038 0.027 0.034 - 0.006 0.37 
    Protein:DNA 11.97 16.15 13.86 - 2.08 0.39 
    Total Organ RNA, g 23.92 14.60 18.17 - 3.50 0.20 
    Total Organ DNA, g 57.60 37.06 42.27 - 6.60 0.11 
    Total Organ Protein, g 631.53 525.88 545.04 - 46.36 0.26 
       
  End of finishing       
    RNA, mg/g 9.15 8.58 7.96 8.11 0.84 0.75 
    DNA, mg/g 9.57 9.96 10.33 10.87 1.28 0.90 
    Protein, mg/g 123.75 134.06 141.03 140.38 9.57 0.56 
    RNA:Protein 0.078 0.067 0.058 0.060 0.009 0.47 
    Protein:DNA 14.94 15.55 15.22 13.79 2.97 0.98 
    Total Organ RNA, g 56.10 45.67 46.41 39.51 5.45 0.22 
    Total Organ DNA, g 59.02 54.58 57.03 52.32 8.15 0.94 
    Total Organ Protein, g 739.85 722.15 796.16 704.75 69.29 0.81 
       
Liver       
  End of growing       
    RNA, mg/g 8.84 8.35 8.49 - 0.83 0.91 
    DNA, mg/g 2.63 2.03 2.49 - 0.45 0.63 
    Protein, mg/g 191.98 191.47 190.59 - 8.79 0.99 
    RNA:Protein 0.046 0.044 0.046 - 0.005 0.96 
    Protein:DNA 85.03 124.92 93.62 - 22.81 0.45 
    Total Organ RNA, g 56.51 45.52 45.64 - 5.57 0.31 
    Total Organ DNA, g 17.11 10.67 13.42 - 2.61 0.25 
    Total Organ Protein, g 1232.11 1033.38 1041.77 - 85.84 0.21 
       
  End of finishing       
    RNA, mg/g 9.97 8.03 8.37 8.53 1.07 0.60 
    DNA, mg/g 2.07 1.81 2.21 2.13 0.32 0.83 
    Protein, mg/g 194.68 186.77 189.33 196.55 9.39 0.87 
    RNA:Protein 0.052 0.043 0.045 0.045 0.006 0.73 
    Protein:DNA 106.80 111.01 100.95 105.58 18.15 0.98 
    Total Organ RNA, g 83.79 58.56 63.34 57.63 8.63 0.15 
    Total Organ DNA, g 17.30 13.15 16.21 14.66 2.44 0.65 
    Total Organ Protein, g 1622.11 1352.22 1444.76 1349.40 108.50 0.27 
aWP = Wheat pasture, SF = Silage fed, PF = Program fed, CF = Ad libitum concentrate fed 
bStandard error of mean, n = 6. 
c,dWithin a row and tissue, means without a common superscript letter differ (P < 0.05). 
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DIETS 
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MATERIALS AND METHODS 
 

A group of 20 steers (average BW = 384 ± 16.6 kg) were used to determine 

digestibility of experimental diets (Table A-1).  Steers in the CF, SF, and PF groups (n = 

5 steers/diet) were adapted to treatment diets in individual pens over a period of 35 d after 

which they were moved into metabolism stalls and acclimated to the stalls for an 

additional 5 d prior to the beginning of sample collections.  Daily diet samples and total 

feces were collected over a 5 d period, composited, and analyzed for DM, OM, NDF, 

ADF, N, and gross energy.  Total urine was collected for a 5 d period and analyzed for 

determination of N, creatinine, and gross energy.   

Steers in the WP group (n = 5 steers) were grazed on wheat pasture from mid-

November to mid-March.  Forage clippings and fecal and urine spot samples were 

collected over a 5 d period in early January and analyzed for the components mentioned 

above.  Total fecal output was estimated using chromium oxide as an indigestible marker, 

and total DMI was estimated as fecal output divided by the percentage of the indigestible 

portion of wheat pasture forage.  The average total creatinine excretion from the other 

treatment groups and the creatinine concentration of spot urine samples from WP steers 

were used to determine total urinary output for WP steers. 
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Table A-1. Composition and digestibility of experimental diets 
 Treatmenta   
Item WP SF PF CF SEMb P-value 
       
Dry Matter       
   Intake, kg 37.19c 31.21 c 38.73 cd 46.01d 2.97 0.023 
   Fecal output, kg 9.27 10.67 9.36 8.17 0.74 0.171 
   %Digestibilityf 74.94 c 65.28 d 75.87 c 82.21e 1.31 <0.0001 
       
Organic Matterg       
   Intake, kg 33.80 c 28.85 c 36.50 cd 43.96 d 2.73 0.010 
   Fecal output, kg 6.96 c 9.36 d 8.13 cd 7.08 c 0.62 0.051 
   %Digestibility 79.28 c 67.13 d 77.78 c 83.89 e 1.21 <0.0001 
   Digestible OM Intake, kg 26.84 c 19.50 d 28.37 c 36.89 e 2.24 0.001 
       
Nitrogen       
   Intake, g 1308.4 c 668.7 d 874.5 d 929.3 d 90.3 0.001 
   Fecal output, g 312.7 c 214.7 d 199.8 d 190.3 d 21.2 0.003 
   Urinary output, g 542.3 c 173.2 d 278.5 e 218.1de 31.3 <0.0001 
   %Digestibility 75.89 c 67.44 d 77.24 c 79.48 c 1.33 <0.0001 
   %Retention 32.49 c 40.82 c 45.26 cd 55.81 d 5.04 0.034 
       
NDF       
   Intake, kg 16.55 c 12.87 d 8.13 e 6.60 e 1.23 <0.0001 
   Fecal output, kg 6.21 c 6.45 c 5.18 cd 4.28 d 0.49 0.022 
   %Digestibility 62.28 c 49.18 d 36.35 e 35.09 e 2.87 <0.0001 
       
ADF       
   Intake, kg 8.74 c 10.40 c 5.57 d 3.87 d 0.75 <0.0001 
   Fecal output, kg 4.56 c 4.83 c 3.51 cd 2.65 d 0.46 d 0.014 
   %Digestibility 47.84 cd 52.77 c 36.82 de 32.54 e 5.04 0.041 
       
aWP = Wheat pasture, SF = Silage fed, PF = Program fed, CF = Ad libitum concentrate fed 
bStandard error of mean, n = 5 
c,d,eWithin a row and tissue, means without a common superscript letter differ (P < 0.05) 
fAll percentages for digestibility and retention of dietary components are calculated on an 
apparent basis 
gOrganic matter, Nitrogen, NDF, and ADF are calculated on a dry matter basis 
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Table B-1. Probability values for data items contained in Tables 3-6 and 3-8 
 Component 
Item Carcass Offal Empty body Viscera 
Chemical composition     
Mass, kg 0.11 0.55 0.16 0.07 
Water, kg 0.07 0.48 0.10 0.43 
FFOM, kga 0.07 0.51 0.08 0.90 
FFOM, g/kg 0.15 0.79 0.16 0.02 
Fat, kg 0.34 0.09 0.14 0.01 
Fat, g/kg 0.38 0.03 0.06 <0.001 
Energy, Mcalb 0.17 0.08 0.11 0.01 

 Energy, Mcal/kg 0.12 0.01 0.02 <0.001 
     
Composition of gain     
Mass, kg/d 0.04 0.69 0.09 0.01 
Water, g/d 0.10 0.81 0.25 0.43 
FFOM, g/d 0.02 0.88 0.02 0.32 
Fat, g/d 0.17 0.05 0.04 0.003 
Energy, Mcal/d 0.04 0.02 0.01 0.004 

aFat-free organic matter. 
bEther extract material x 9.4 kcal/g + fat-free organic matter x 5.55 kcal/g. 
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Table B-2. Probability values for data items contained in Tables 3-7 and 3-9 
 Component 
Item Carcass Offal Empty body Viscera 
Chemical composition     
Mass, kg 0.55 0.57 0.54 0.74 
Water, kg 0.39 0.51 0.42 0.49 
FFOM, kga 0.82 0.005 0.56 0.25 
FFOM, g/kg 0.66 0.02 0.99 0.10 
Fat, kg 0.83 0.50 0.84 0.72 
Fat, g/kg 0.94 0.11 0.79 0.61 
Energy, Mcalb 0.78 0.60 0.77 0.71 

 Energy, Mcal/kg 0.81 0.20 0.69 0.64 
     
Composition of gain     
Mass, kg/d 0.002 0.003 0.001 0.63 
Water, g/d 0.01 <0.001 0.002 0.03 
FFOM, g/d 0.04 <0.001 0.001 0.02 
Fat, g/d 0.14 0.86 0.28 0.37 
Energy, Mcal/d 0.06 0.35 0.09 0.33 

aFat-free organic matter. 
bEther extract material x 9.4 kcal/g + fat-free organic matter x 5.55 kcal/g. 
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Table B-3. Probability values for data items contained in Table 4-1 
 Component 
Item Final Change 
Carcass   
  kg 0.11 0.11 
  g/kg EBW 0.33 0.33 
Blood   
  kg 0.31 0.31 
  g/kg EBW 0.42 0.42 
Feet and Ears   
  kg 0.04 0.04 
  g/kg EBW 0.22 0.21 
Hide   
  kg 0.76 0.43 
  g/kg EBW 0.42 0.42 
Head   
  kg 0.38 0.38 
  g/kg EBW 0.84 0.83 
Trimg   
  kg 0.79 0.79 
  g/kg EBW 0.56 0.56 
Heart   
  kg 0.75 0.75 
  g/kg EBW 0.95 0.96 
Lungs   
  kg 0.52 0.52 
  g/kg EBW 0.93 0.92 
Esophagus   
  kg 0.52 0.59 
  g/kg EBW 0.99 0.96 
Kidney   
  kg <0.001 <0.001 
  g/kg EBW <0.001 <0.001 
Reticulo-rumen   
  kg 0.16 0.16 
  g/kg EBW 0.03 0.03 
Omasum   
  kg 0.52 0.52 
  g/kg EBW 0.38 0.39 
Abomasum   
  kg 0.71 0.70 
  g/kg EBW 0.97 0.96 
Small Intestine   
  kg <0.001 <0.001 
  g/kg EBW <0.001 <0.001 
Large Intestine   
  kg 0.16 0.16 
  g/kg EBW 0.35 0.36 
Cecum   
  kg 0.51 0.54 
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  g/kg EBW 0.42 0.38 
Mesenteric fat   
  kg 0.01 0.01 
  g/kg EBW 0.003 0.003 
Total viscerah   
  kg 0.07 0.07 
  g/kg EBW 0.04 0.04 
Pancreas   
  kg 0.44 0.42 
  g/kg EBW 0.53 0.41 
Spleen   
  kg 0.48 0.48 
  g/kg EBW 0.50 0.48 
Liver   
  kg 0.04 0.04 
  g/kg EBW 0.001 0.001 
TSTi   
  kg 0.18 0.18 
  g/kg EBW 0.29 0.29 
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Table B-4. Probability values for data items contained in Table 4-2 
 Component 
Item Final Change 
Carcass   
  kg 0.55 0.02 
  g/kg EBW 0.31 <0.001 
Blood   
  kg 0.05 <0.001 
  g/kg EBW 0.40 0.05 
Feet and Ears   
  kg 0.22 <0.001 
  g/kg EBW 0.10 0.04 
Hide   
  kg 0.71 <0.001 
  g/kg EBW 0.67 0.02 
Head   
  kg 0.99 <0.001 
  g/kg EBW 0.40 0.11 
Trimg   
  kg 0.10 0.002 
  g/kg EBW 0.12 <0.001 
Heart   
  kg 0.07 <0.001 
  g/kg EBW 0.03 0.01 
Lungs   
  kg 0.002 0.86 
  g/kg EBW <0.001 0.03 
Esophagus   
  kg 0.002 <0.001 
  g/kg EBW 0.01 0.002 
Kidney   
  kg 0.02 <0.001 
  g/kg EBW 0.01 <0.001 
Reticulo-rumen   
  kg 0.73 0.03 
  g/kg EBW 0.60 <0.001 
Omasum   
  kg 0.66 <0.001 
  g/kg EBW 0.34 <0.001 
Abomasum   
  kg 0.38 0.002 
  g/kg EBW 0.06 0.002 
Small Intestine   
  kg 0.19 0.01 
  g/kg EBW 0.11 0.01 
Large Intestine   
  kg 0.08 0.17 
  g/kg EBW 0.04 0.002 
Cecum   
  kg 0.11 0.08 
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  g/kg EBW 0.10 <0.001 
Mesenteric fat   
  kg 0.93 0.89 
  g/kg EBW 0.99 0.06 
Total viscerah   
  kg 0.74 0.41 
  g/kg EBW 0.70 0.01 
Pancreas   
  kg 0.10 0.15 
  g/kg EBW 0.27 0.004 
Spleen   
  kg 0.03 0.05 
  g/kg EBW 0.19 0.20 
Liver   
  kg 0.06 0.002 
  g/kg EBW 0.01 <0.001 
TSTi   
  kg 0.59 0.29 
  g/kg EBW 0.49 0.01 
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