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CHAPTER I 
 
 

INTRODUCTION 

 

          The beef industry is an important economic entity in the United States and in 

Oklahoma.  There are 104.8 million cattle in the United States (USDA 2007a) and 

Oklahoma has the third largest beef herd in the United States with just over 2 million 

cows (USDA 2007b).  Because the beef industry is so important to this state and nation, 

producers must become as efficient as possible as all input costs increase due to increased 

transportation and feed costs.  Reproduction is one of the most important factors affecting 

profitability of cow calf producers.  If a cow is to produce a calf every year they must 

rebreed by 85 d after calving.  A major factor that prevents a calf every year is 

postpartum anestrus in beef cows. 

          Reproductive inefficiency due to a long anovulatory interval after calving is a 

major economic loss for beef cattle producers.  Reproductive disease and suboptimum 

reproductive performance costs the beef industry 441 to 502 million annually (Bellows et 

al., 2002).  The greatest portion of this cost is cows that do not rebreed during a set 

breeding season.  One fourth of all cows culled are sold because of reproductive failure 

(NAHMS, 1997). 

          Feed costs are one of the largest inputs for any phase of beef cattle production.  

Nutrition has a profound impact on reproduction in beef cows (reviewed by Wettemann 
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et al., 2003) but can affect other economically important traits.  Level of nutrition during 

gestation may influence the growth and development of the calf. The changes in 

development of the fetus may persist in the offspring into later life.  Therefore an 

understanding of nutritional effects on both postpartum reproduction of cows and on the 

offspring is needed to fully understand the role of nutrition in a beef cow operation.  

          The objectives of the work presented herein were to determine the effects of days 

after calving and BCS at calving on estrous and luteal responses of suckled anestrous 

beef cows after treatment with estradiol, to evaluate the effect of nutrient restriction 

during early gestation on postnatal growth, glucose regulation, and DNA, protein and 

gene expression in tissues of steers.
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CHAPTER II 
 
 

REVIEW OF LITERATURE 

Introduction 

          Cost of purchased supplemental feed is the second largest expense for a cow calf 

operation and accounts for 14% of all expenses (Bevers, 2007).  The largest expense is 

depreciation of cows and equipment and is not usually included in economic analysis of 

cow calf operations.  With feed making up such a large portion of the expenses of a cow 

calf operation, it is only logical to try to minimize the feed used.  This can be done by 

allowing cows to decrease BCS during certain periods of production and then gain it back 

when forage is at its greatest quantity and quality. This is a common practice in fall 

calving herds in Oklahoma. Cows are rebred starting in December and once pregnant are 

allowed to decrease BCS and BW until grasses begin growing in the spring.  With more 

producers wanting to decrease supplement costs and allow cows to decrease BW and 

BCS during certain periods of the production cycle it is important to fully understand all 

effects of nutrition on all aspects of a cow calf operation.  Nutrition of the cow has a 

substantial impact on reproduction and may influence the performance of calves.  
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The effects of nutrition on reproduction in beef cows 

          Numerous studies have examined the affect of nutrition on postpartum 

reproduction in cattle.  Wiltbank et al. (1962) and Dunn et al. (1969) determined the 

effects of nutrient intake during gestation on pregnancy rate after calving.  Several 

reviews have elucidated the effects of nutrition on reproduction of beef cows (Dunn and 

Kaltenbach, 1980; Short and Adams, 1988; Randel 1990; Wettemann et al., 2003; Hess et 

al., 2005).  The effects of nutrition on reproduction are dependent on timing relative to 

calving.  The effects of nutrition can be mediated by body energy reserves indicated by 

BCS. 

 

Postpartum reproduction 

          The average length of gestation for beef cows is 283 days with variation from 281 

to 294 d due to breed of the cow (Cundiff et al., 1993).  In addition there is genetic 

variation for length of gestation within a breed (Cundiff et al., 1993).  For a cow to have a 

calf every 365 d with a average gestation length  leaves 82 d after calving for a cow to 

successfully rebreed.  There are several physiological mechanisms that control duration 

of anestrus and infertility in postpartum beef cows (reviewed by Short et al., 1990).  

Postpartum anestrus can include silent heat in which ovulation preceded the first 

observed estrus (Humphrey et al., 1983, Perry et al., 1991).  However, suckling and 

nutritional factors are the two primary factors causing postpartum anestrus.  Short estrous 

cycles are the second factor that contributes to anestrus and usually occurs during the first 

30 to 40 days after calving.  Short estrous cycles result from either a corpus luteum (CL) 

that is not capable of functioning normality or premature regression signal.  The CL 
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formed during a short estrous cycle is smaller, secretes less progesterone and is less 

responsive to stimulation with LH (Short et al., 1974; Rutter and Rander 1984; Carruthers 

et al., 1986).  Another reason for a short cycle postpartum is due to a premature CL 

regression signal (PGF2α, Garverick et al., 1992).  Then there is uterine involution, 

which often plays a relatively small part; however, it is still a barrier to fertility during the 

first 30 d after calving (Graves et al., 1968).  Finally there is general infertility that is 

associated with any estrus regardless of its time during the lifetime of the cow and 

regardless of physiologic state (Short et al., 1990).  

 

Body condition score 

          Body condition score (BCS) is a numerical 1 to 9 scoring system with 1 being 

severely emaciated and 9 being very obese that estimates the amount of fat  and therefore 

energy reserves in a cow (Wagner et al., 1988).  BCS has a strong relationship with 

carcass fat (R2 = 0.82) and carcass energy (R2 = 0.85, Wagner et al., 1988).  This system 

allows producers to visually access the BCS and thus the energy reserves of cows at any 

point in the production system. 

          Cows with a greater BCS at calving have increased pregnancy rate when compared 

with cows that calve in a thinner body condition (Rakestraw et al., 1986; Richards et al. 

1986; Selk et al., 1988).  Pregnancy rates were improved in primiparous cows that calved 

in greater BCS (56, 80, 96% for BCS 4, 5, and 6 respectively; Spitzer et al. 1995).  First 

service conception rate was not affected by BCS at calving; however, overall pregnancy 

rate was greater for cows that calved with greater BCS (Lake et al., 2005).  Cows that 

calved in a BCS of 5 or greater had a greater pregnancy rate regardless of whether BCS 
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increased or decreased from 6 mo of gestation until parturition (Morrison et al., 1999).  

There is a negative correlation between BCS at calving and duration of postpartum 

anestrus (Richards et al., 1986; Ciccioli et al., 2003). 

          Nonlactating cows with a BCS ≤ 4 had reduced weights of ovaries, corpus lutea 

and follicular fluid compared to cows in moderate to good body condition (Rasby et al., 

1991).  Cows with a lower BCS at calving had reduced numbers of large follicles after 

calving compared with cows in good body condition (Perry et al., 1991) 

 

Prepartum nutrition 

          Prepartum nutrition has a major effect on BCS at calving.  Therefore it is difficult 

to separate the effects of prepartum nutrition from the effects of BCS at calving.  If cows 

are fed greater amounts of protein and energy before calving they have a shorter interval 

from calving to estrus and ovulation (Perry et al., 1991) and a shorter interval from 

calving to pregnancy (Dunn et al., 1969).  Increased nutrient intake during the prepartum 

period increased the percentage of cows exhibiting estrus during the breeding interval 

(Corah et al., 1979; Spitzer et al., 1995) and increased pregnancy rates (Selk et al., 1988; 

Marston et al., 1995).  If nutrient intake is reduced before calving, cows are thinner at 

parturition, have a prolonged period from calving until estrus, and fewer cows express 

estrus during the breeding season (Wiltbank, 1962; Bellows and Short, 1978; Dunn and 

Kaltenbach, 1980). 
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Postpartum nutrition 

          The effects of postpartum nutrition on reproduction are dependent on the BCS of 

cows at calving.  If cows calve with adequate BCS, then postpartum dietary energy intake 

has less effect on the length of the interval from calving to first estrus (Richards et al., 

1986; Marston et al., 1995, Spitzer et al., 1995).  When cows calve with  a lower BCS, 

then the interval from calving to first estrus can be shortened by feeding greater amounts 

of energy after calving (Wiltbank et al., 1964; Spitzer et al., 1995) and increased intake 

decreased the interval from calving to first normal luteal phase (Lalman et al., 2000).  

When cows calved with a BCS of 4 to 5 and were fed to gain 0.9 kg/d for 71 d 

postpartum, they had a shorter interval from calving to estrus and ovulation, a larger 

dominate follicle at first ovulation, and increase pregnancy rates after AI at first estrus 

than cows that were fed to gain 0.45 kg/d (Ciccioli et al., 2003).  Even cows calving in 

good condition are not exempt to the effects of inadequate nutrient intake during the 

postpartum period.  Rakestraw et al. (1986) observed that cows fall calving with good 

BCS, and were subsequently exposed to inadequate nutrient intake after calving due to 

season decrease in forage availability and quality, had fewer cows exhibiting estrus 

during the first 70 d postpartum.  

 

Anestrus 

        Anestrus is a physiological condition where ovulation and estrous behavior are 

absent.  This is normal during the postpartum period in beef cows and is a significant 

factor in decreased postpartum reproduction (Wettemann et al., 1980; Yavas and Walton, 
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2000b; Wiltbank et al., 2002).  Its length can be affected by many factors including pre- 

and post-partum nutrition and also body condition at calving. 

 

Ovarian Characteristics 

         Follicular waves are not detected during the final three weeks of pregnancy (Ginter 

et al., 1996).  A large dominant follicle is present on the ovary 10 d after calving in beef 

cows; however, only 11% of the dominant follicles ovulated at approximately 10 d 

postpartum (Murphy et al., 1990).  Beef cows have 3 to 8 follicular waves after calving 

before ovulation occurs (Murphy et al., 1990; Stagg et al., 1995).  Although dominant 

follicles are present during postpartum anestrus, ovulation does not occur.  Dominant 

follicles on the ovary during the postpartum period may not respond to gonadotropins.  

Not all of the dominant follicles of postpartum anovulatory cows treated with LH (Duffy 

et al., 2000) or GnRH (reviewed by Wettemann et al., 1980; Yavas and Walton, 2000a) 

will ovulate, indicating that not all dominant follicles have the capacity to respond to LH.  

Estrogen production by dominant follicles increases with time after parturition (Spicer et 

al., 1986b).  The dominant follicles present during the postpartum anovulatory period 

produce less estrogen than preovulatory follicles during normal estrous cycles (Braden et 

al., 1986).  Estrous behavior does not occur before the first postpartum ovulation in most 

beef cows (Murphy et al., 1990; Looper et al., 1997, Ciccioli et al., 2003).  

         Luteal function that is shorter than the usual duration is common after the first 

postpartum ovulation.  The life span of a corpus luteum after the first postpartum 

ovulation is normally less than 10 d (Corah et al., 1975; Werth et al., 1996; Looper et al., 
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2003).  This short lived corpus luteum is due to a premature luteotropic signal (Garverick 

et al., 1992). 

 

Endocrine function 

          Concentrations of LH and FSH in plasma are minimal in cows during late gestation 

(Crowe et al., 1998).  On d 1 to3 after parturition, concentrations of FSH increase and 

surges of FSH are associated with recruitment of follicular waves (Crowe et al., 1998).  

Concentrations of GnRH in the hypothalamus remain constant during the postpartum 

anovulatory period (Nett et al 1988).  

       Pulses of LH are not detectable during the early postpartum period (reviewed by 

Wettemann et al., 1980; Yavas and Walton, 2000) and resume some time around d 25 

postpartum and continue to increase during the postpartum period (Rawlins et al., 1980; 

Riley et al., 1981; Lueng et al. 1986).  Pituitary stores of LH are replenished back to that 

of cycling cows by d 30 postpartum (Nett et al., 1988).  Plasma concentrations of LH 

vary and are affected by BCS of cows (Rutter and Randel, 1984; Bishop et al., 1994).     

Exogenous GnRH can increase LH pulses and concentrations in postpartum anestrous 

beef cows (Echternkamp et al., 1978; Spicer et al., 1986a).  A single injection of GnRH 

induced an LH surge and caused 100% of cows to ovulate their first postpartum dominant 

follicle (Crowe et al., 1993).  Two injections of GnRH 10 d apart induced cyclic activity 

in beef cows (Cobb et al., 1977).  A single injection of GnRH ovulated well developed 

follicles (Fonseca et al., 1980; Irvin et al., 1981; Carruthers et al., 1986).  The corpus 

luteum (CL) produced by a single administration of GnRH usually has a shorter life span 

then spontaneously-formed CL (Copelin et al., 1988; Pratt et al., 1982; Wettemann et al., 
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1982) and reduced responsiveness to LH in vitro (Kesler et al., 1981).  Infusion of GnRH 

every 2 hr increased size and number of large follicles (Spicer et al., 1986a) and induced 

preovulatory type surges in LH (Jagger et al., 1987).  Administering GnRH every 2 h for 

either 2 or 4 d resulted in 80 and 73%, respectively of cows ovulating at greater than 20 d 

postpartum (Riley et al. 1981; Walter et al., 1982).  Continuous infusion of GnRH 

beginning on d 9 to 35 after calving induced an LH surge and ovulation in suckled beef 

cows (Lofstedf et al., 1981; Jagger et al., 1987; D’Occhio et al., 1989).  Hourly pulses of 

LH resulted in 50% of treated cows to ovulate their first postpartum dominate follicle 

(Duffy et al., 2000).  This indicated that the major cause for 3 to 8 postpartum follicular 

waves before the first postpartum ovulation is a dysfunction in the hypothalamus and an 

inability to release GnRH to cause ovulation. 

 

Use of estrogens to influence reproduction in cattle 

          Endogenous estrogens have been used to study physiological mechanisms that 

regulate reproduction in domestic animals and also to manipulate the reproductive cycle 

to improve reproduction efficiency.  At this time there is not an estrogen compound 

approved for use in cattle in the United States. 

 

Estrous behavior 

          Estrus in the bovine is a limited period of time in which the female will stand to be 

mounted by the male.  The estrous period is associated with dramatic alterations in 

hormones that control estrus (reviewed by Allrich, 1994).  Estradiol-17β is produced and 

secreted by the dominant follicle (Moor, 1973; Staigmiller et al., 1982). 
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          Treatment of ovariectomized heifers (Ray, 1965; Rajamahendran et al., 1979; Cook 

et al., 1986) or cows (Nessan and King, 1981; Cook et al., 1986) with estradiol benzoate 

induced standing estrus.  Estrogen treatment induces other signs of estrus besides 

standing, including vulva sniffing, head-head contact with herd mates and mounting other 

animals (Katz et al., 1980).  Treatment of dairy cows with estradiol benzoate induced 

estrus in 12 to 16 h (Cook et al., 1986).  Administration of estradiol valerate ( a part of 

Synchro-Mate B) resulted in standing estrus in ovariectomized heifers and cows 

(McGuire et al., 1990) and in anestrus suckled beef cows > 62 d postpartum (Walters et 

al., 1982).  Estradiol benzoate administration to suckled anestrous beef cows resulted in 

estrus at 25 to 50 d postpartum (Fike et al., 1997). 

           Amount of estrogen administered can affect the estrus response in animals of 

similar physiological states.  When large doses of estrogen were administered to 

ovarectomized cows all cows responded with estrus (Short et al., 1973; Nessan and King, 

1981; Cook et al., 1987).  However, when low doses of estrogen were given to 

ovariectomized cows either estrus was not elicited (Nessan and King, 1981) or only a 

small percentage of cows responded with estrus (Cook et al., 1986).  When a moderate 

dose of estrogen was given a greater number of cows responded with estrus (Cook et al., 

1986).  Postpartum cows do not respond to estrogen like ovarectomized cows.  

Nancarrow et al. (1977) observed that cows greater than 21 d postpartum responded with 

estrus after administration of 500 µg of estradiol benzoate.  However, when the same 

dose of estradiol benzoate was administered to suckled cows, estrus was not initiated 

until 6 wk after parturition while their unsuckled counter parts were in estrus as soon as 

two wk postpartum (Radford et al., 1976; 1978).  Administration of 1 mg of estradiol 
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cypionate (ECP) caused 58% of 40 d postpartum anestrous suckled cows to respond with 

estrus (Rubio et al., 2004).  It appears that suckled cows do not respond to estrogen 

administration with estrus as early after calving as unsuckled cows. 

          Estrogens initiate estrous behavior by acting on receptors in the brain.  If electric 

lesions are placed in the ventral hypothalamus above the median eminence estrus is 

abolished in ewes (Clegg at al., 1958).  Implants containing estrogen did not induce 

estrus when placed in the preoptic area but did induce estrus when placed in the 

mediobasal hypothalamus (Blanhe et al., 1991). 

 

Ovarian Function 

         Luteinizing Hormone is a glycoprotein that is responsible for stimulating ovulation 

and initiates formation of the corpus luteum on the ovary. Estrogens elicit the release of 

an LH surge in ovariectomized cows (Short et al., 1973; Forrest et al., 1981) and 

prepubertal Holstein heifers (Swanson and McCarthy, 1978).  However, in postpartum 

suckled beef cows the effect of estrogen on release of LH from the pituitary is not 

established.  Treatment of suckled and unsuckled beef and dairy cows with estrogen at 2 

wk after calving can release LH (Short et al., 1979; Nancarrow et al., 1977; Zaied et al., 

1981).  However, administration of estrogen to suckled beef cows did not induce an LH 

surge for at least 6 wk after calving (Radford et al., 1976; 1978).  Similarly, anestrous 

lactating beef cows at 40 d postpartum did not respond with luteal activity after a 1 mg 

dose of ECP (Rubio et al., 2004).  Suckling appears to have an effect on the ability of 

estrogen to cause a release of LH in postpartum beef cows. 
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Introduction to fetal programming 

          Beef cow in the US are mostly maintained on pastures that are unfit for crop 

production and therefore not irrigated.  The lack of irrigation leaves beef cows 

susceptible to the effects of drought or seasonal low rain fall and also the decline in 

forage quality associated with season and stage of maturity.  If these periods of 

nutritional deficits are during gestation or shortly before breeding then this can lead to 

possible insults to the fetus.  The effect of insults during gestation to the fetus has been 

known to cause effects at all time points in the fetus’s prenatal and postnatal life.  In 

1992, Hales and Barker released the thrifty phenotype hypothesis, which was an 

expansion of the earlier thrifty genotype hypothesis (Neel, 1962).  The thrifty phenotype 

hypothesis stated that when the fetal environment is poor, there is an adaptive response in 

the fetus which optimizes the growth of key body organs and tissues at the expense of 

other less important tissues.  This leads to altered postnatal metabolism, which may give 

offspring a greater chance of survival when nutrients are not available.  However, when 

nutrients are more abundant this altered metabolism can be detrimental (Hales and 

Barker, 1992; Hales and Barker, 2001).  An element of this idea is the concept of a 

critical or sensitive period during which perturbations (nutritional or other) may cause 

long term changes in development (Barraclough and Gorski, 1961; Ferguson and Joanen, 

1982; Maxfield et al., 1998a).  In placental mammals, the prenatal growth trajectory is 

sensitive to direct and indirect effects of maternal nutrition from oocyte maturation to 

birth (Rehfeldt et al., 2004; Ferguson, 2005). 

          Another term that had been coined for this biological process is metabolic 

imprinting (Waterland and Garza, 1999).  Metabolic imprinting states that an insult that 

 13



occurs during a specific window of gestation may produce a specific outcome which may 

differ among individuals and is measurable and persists through adulthood and outcome 

displays a dose response or threshold relationship.  There has been debate as to the 

appropriateness of these two terms, so another term that has been suggested is 

developmental plasticity, the ability of a single genotype to produce more than one 

alternate form of structure, physiological state, or behavior in response to different 

environmental conditions (Barker, 2004).  In animal science and production, intrauterine 

growth retardation (IUGR) is a frequently used term.  It is impaired growth and 

development of embryo/fetus or alterations of organ size and weight during pregnancy 

(Wu et al., 2006).  It is most often measured by weight of the fetus and its organs or birth 

weight and can be absolute weight or weight corrected for gestational length and or fetal 

weight.  

 

Experimental methods used to alter fetal growth 

          There are several ways to experimentally influence the fetus during gestation.  

Maternal undernutrition of ewes during the last 40 to 50 d of gestation decreased fetal 

growth rate by 30 to 70% and in some cases stopped fetal growth (Wallace, 1946; Mellor 

and Matheson, 1979).  Undernutrion can be for either a specific nutrient like protein or a 

vitamin or can be a reduction of the global diet to a point that protein, energy, vitamins, 

and minerals are deficient.  Maternal overnutrition is another nutritional approach utilized 

to produce insults to the fetus (Wallace et al., 1996).  Heat stress has also been used to 

alter fetal growth in animal models (Alexander, 1974; Reynolds et al., 1985).  Hypoxia or 

decreased oxygen in the air or blood has been used to cause reduced fetal growth. 
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Hypoxia is produced in animals by housing animals at high altitude (Xiao et al., 2001) or 

by manipulating the oxygen to CO2 ratio in the air an animal inhales (Gheorghe et al., 

2007).  Surgical removal of caruncles before mating has been used to cause a decreased 

surface area for placental attachment in sheep (Robinson et al., 1979).  The use of either 

artery ligation (Newnham et al., 1986) or embolism of placenta arteria (Clapp et al., 

1982) has been used to fetal programming. 

 

The effects of maternal nutrition on the placenta 

          The placenta is responsible for transporting nutrients and oxygen to the fetus and 

metabolic waste products away from the fetus during pregnancy.  The growth of the 

placenta is crucial for fetal growth (Gootwine, 2004; Reynolds et al., 2005).  The placenta 

also provides an immune interface between mother and fetus.  It’s also a source of protein 

and steroid hormones that influence fetal, placental and maternal metabolism and 

development. 

 

Development and Morphology 

         The major growth of the placenta occurs during the first half of gestation, with the 

majority of fetal growth occurring during late gestation.  In the sheep, polycotyledonary 

epitheliochorial placentation is fully established by 30 days after conception, and the 

number of placentomes attached is fixed at this time.  Rapid hyperplastic growth occurs 

until d 55, and then growth proceeds at a declining rate at approximately 75 d of gestation 

(Ehrhardt and Bell, 1995).  In the cow, placentation and placental growth is similar to that 

of the ewe except for modest placental growth during the third trimester that consists 
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mainly of the maternal (caruncular) component (Bell et al., 1999).  An increase in 

placental growth in sheep is associated with enhanced fetal growth (Gootwine, 2004).  

Uterine and placental blood flow and volume increase during gestation to meet the needs 

of the fetus (Reynolds et al., 2005).  During late gestation, umbilical blood flow increases 

in sows, ewes and cows to meet the metabolic need of the fetus/fetuses (Ford, 1995; Pere 

and Etienne, 2000).  Thus, impaired placental growth is associated with IUGR (Mellor, 

1983; Schoknecht et al., 1994; Wallace et al., 1996; Wallace et al., 2003). 

          Maternal nutrient intake in the ewe may have an effect on the placenta before it is 

even formed.  The trophoblast, a layer of cells of the blastocyst that eventually 

differentiate into the fetal membranes and placenta, can be affected by maternal intake.  

Rhind et al. (1989) observed that ewes receiving 0.5 times maintenance requirements 

from mating had average trophoblast lengths of 500 µm on d 11 of gestation compared to 

1,400 µm from ewes that received 1.5 times maintenance requirements.  Since the 

trophoblast develops into the placenta it would be appropriate to interject that this 

difference in trophoblast development, if maintained under nutritional restriction, could 

account for at least a part of the difference in placenta development later in gestation.  A 

70% reduction in feed intake from 45 d prior to mating until 7 d postmating in the ewe 

results in an inverse relationship between ewe weight gain and uteroplacenta growth in 

twin pregnancy indicating a disruption of placental growth (MacLaughlin et al., 2005). 

          One of the easiest ways to measure placental development is to weigh the placenta.  

In ewes, placental weight was reduced at d 80 of gestation by maternal energy restriction 

from d 28 to 80 of gestation (Dandrea et al., 2001).  If ewes were subjected to severe 

nutrient restriction from d 85 to 90 of gestation, placental weights were decreased on d 
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135 of gestation (McMullen et al., 2005).  Ewes exposed to hyperthermia from d 64 of 

gestation until d 136 to 141 of gestation had a 46% reduction in placenta weight 

compared with ewes maintained in a thermoneutral environment (Early et al., 1991).  

This was associated with a reduction in total placenta content of protein, RNA, and DNA, 

indicating a reduced number of cells in the placenta.  Protein restriction in the sow from 

mating until d 63 of gestation reduced placenta weight at d 63 of gestation (Schoknecht et 

al., 1994).  If nutrient intake was restored to above maintenance requirements after 

nutrient restriction the placenta compensated and became larger than the placenta of 

control ewes (Heasman et al., 1998; Dandrea et al., 2001; Whorwood et al., 2001). 

          When singleton–bearing adolescent ewes were fed approximately twice 

maintenance requirements for energy, the growth of the placenta was impaired (Wallace 

et al., 1996; Wallace et al., 2004).  In late gestation, total placentome mass in the overfed 

ewe compared with control ewes was reduced by 45 to 50% (Wallace et al., 2000; 

Wallace et al., 2002a).  Placental and uterine blood flow was reduced approximately 35% 

and absolute placenta glucose transport capacity was lower due to a smaller placenta size 

in overnourished adolescent sheep (Wallace et al., 2002a; Wallace et al., 2002b).  

Gestation length was shortened by 3 days and birth weight of lambs was reduced by 30% 

(Wallace et al., 2004). 

          In cows decreased nutrient intake from d 145 to 259 of gestation resulted in 

increased chorioallantoic and cotyledonary weight of the placenta and reduced fructose in 

the amniotic fluid at 259 d of gestation (Rasby et al., 1990).  A diet that is inadequate for 

protein during the first trimester of pregnancy in the cow increased dry cotyledon weight 

at term (Perry et al., 1999).  A change from either low or adequate levels of dietary 
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protein in the cow during first trimester to either adequate or low protein level during the 

second trimester increased trophectoderm volume and decreased blood vessel volume and 

volume density in fetal villi compared to animals that were maintained with either an 

adequate or restricted level of dietary protein during both trimesters of gestation (Perry et 

al., 1999).  Global nutrient restriction from d 30 to 125 increased caruncular capillary 

surface density and decreased cotyledonary capillary density, capillary number density, 

and capillary surface density at 250 d of gestation compared with cows with adequate 

nutrition (Vonnahme et al., 2007).  

          Ovine placentomes can be characterized into an A through D morphology (Vatnick 

et al., 1991).  Inverted placentomes are categorized as Type A.  Type D placentomes are 

everted and resemble the morphology of late gestation bovine placentome.  Severe 

nutrition restriction (30% of maintance energy requirements) from d 85 to 90 of gestation 

shifted placentomes towards the everted phenotype (Type D, McMullen et al., 2005).  A 

15% reduction in nutrient intake for the first 70 d of gestation increased the growth of the 

fetal side of the placenta and shifted the type of placentomes from A in the controls to 

Type D in the nutrient restricted ewes at d 130 of gestation (Steyn et al., 2001).  Either 

Low (adrenalectomized and cortisol administered to produce lower then normal plasma 

cortisol concentrations) or high cortisol (cortisol infusion) from d 112 to 130 of gestation 

altered placental morphology, with increased type B placentomes at d 130 of gestation 

(Jensen et al., 2005). 

          Animals may develop mechanisms to compensate for periods of maternal nutrient 

deficit if they have enough time to evolve or adapt to this type of environment.  

Vonnahme et al. (2006) used ewes that had been adapted to a low nutrient environment 
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for 30 yrs (Beggs sheep) and ewes that had a sedentary lifestyle and always consumed a 

diet that met or exceeded NRC recommendations for over 30 yrs (UW sheep).  Ewes 

from both groups were bred to the same male and paired together and exposed to either 

nutrient restriction or adequate nutrition from d 28 to78 of gestation.  At d 78 of gestation 

there was a decrease in the fetal weight and blood glucose concentration in the nutrient 

restricted verses control UW ewes.  However, there was no difference in fetal 

measurements in the Beggs regardless of nutrient intake.  The placenta of the Beggs ewes 

had a reduced number of type A placentones and an increased number of type B, C, and 

D placentomes compared with the UW ewes.  Placenta efficiency was different for the 

nutrient restricted vs control UW ewes but was not different for the Beggs ewes.  This 

indicates that the Beggs ewes were able to convert placentones to more advanced types 

(B, C, and D) at an accelerated rate and this may function to maintain normal nutrient 

delivery by increased placenta surface area to the developing fetus during periods of 

nutrient restriction.  It also appears that Beggs ewes are able to maintain fetal 

concentrations of amino acids that enable normal fetal growth thought augmenting 

placental efficiency for amino acid transport (Jobgen et al., 2007). 

 

Enzymes 

          Enzymes that are affected by maternal nutrition or other insults that affect fetal 

growth fall into three classes: vascular growth factors and enzymes effecting blood flow, 

growth factors, and enzymes that function in steroid metabolism.  

          Nitric oxide synthase (NOS) is an enzyme that converts L-arginine to nitric oxide 

(NO5). Nitric oxide regulates angiogenesis (Ziche et al., 1994) or the formation and 
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development of blood vessels and capillaries.  Protein restriction from d 0 to 40 or 60 of 

gestation in sows resulted in decreased concentrations and activity of both forms of 

inducible NOS (Ca2+ dependent and independent) in the placenta (Wu et al., 1998).  

Endothelial NOS was decreased in the umbilical artery but increased in the fetal 

cotyledon at d 132 of gestation in ewes that had been exposed to hyperthermia from d 35 

to 115 of gestation (Arroyo et al., 2006).  Hyperthermia from d 40 to 90 of gestation in 

the ewe reduced cotyledon NOS protein content by 50% on d 90 of gestation (Galan et 

al., 2001). 

        The vascular endothelial growth factor (VEGF) family of proteins are protein 

signaling molecules that promote capillary growth, increase vascular permeability and 

regulate placenta blood flow (Cheung et al., 1995; Reynolds and Redmer, 2001; Regnault 

et al., 2002).  Vascular endothelial growth factor acts through VEGFR-1 and VEGFR-2 

receptors.  Another family of signaling proteins are the angiopoietins (Ang-1 and Ang-2) 

which act through a common receptor Tunica interna endothelial cell kinase 2 (Tie-2) 

(Maisonpierre et al., 1997).  Angiopoietin -1 acts synergistically with VEGF to stimulate 

angiogenesis (Koblizek et al., 1998) by maturation and stabilization of developing 

vasculature (Suri et al., 1996).  Ang-2 causes destabilization that is required for sprout 

formation and branching angiogeneses (Maisonpierre et al., 1997).  Placental VEGF 

mRNA expression was reduced at d 90 of gestation in ewes exposed to severe nutrient 

restriction from d 85 to 90 of gestation (McMullen et al., 2005).  Hyperthermia from d 40 

to 120 of gestation increased mRNA for Ang-1, Ang-2, and Tie-2 in fetal cotyledons at d 

55 of gestation while Tie-2 mRNA and concentrations of protein were decreased at d 135 

of gestation (Hagen et al., 2005).  Restriction of both energy and protein from d 30 to 125 
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of gestation in cows increased placental growth factor, a member of the VEGF family, 

along with its receptor, fms-like tyrosine kinase, at d 125 of gestation (Vonnahme et al., 

2007). 

         In rodents, peroxisome proliferator-activated receptors (PPARs) are members of the 

nuclear hormone receptor superfamily of ligand-activated transcription factors.  PPARg 

is important for placenta development and acts in vascular development of the placenta 

(Barak et al., 1999).  Treatment of rats from d 13 to 22 of gestation with dexamethasone 

decreased placenta PPARg mRNA by 35% in the labyrinth zone at d 22 of gestation 

(Hewitt et al., 2006b). 

         Severe nutrient restriction of ewes from d 85 to 90 of gestation resulted in 

decreased IGFBP3 and IGFBP2 mRNA at d 90 and 135 of gestation (McMullen et al., 

2005).  IGFBP influences the availability of insulin like growth factor (IGF) (Jones and 

Clemmons, 1995) and IGF plays a functional role in placental development (Wathes et 

al., 1998).  Decreased growth of the placenta, decreased permeability of nutrients and a 

secondary increase of placenta AA transporters are observed in early pregnancy in IGF II 

knock out mice (Constancia et al., 2002). In later pregnancy Placenta AA transporters fail 

to compensate for reduced placenta size and fetal growth rate is severely reduced.  

Another important enzyme in placenta function is ornithine decarboxylase which 

regulates synthesis of polyamines from L-ornithine and is essential for placental growth 

(Hoshiai et al., 1981).  Concentrations of ornithine decarboxylase were reduced in the 

placenta of gilts fed a low protein diet from d 0 to either d 40 or 60 of gestation (Wu et 

al., 1998).  Secreted frizzled related proteins (SFRPs) inhibit the WNT pathway (Name 

derived from the Drosophila Wingless (Wg) and the mouse Int-1 genes) by binding to 
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WNT ligand or frizzled receptors (Guo et al., 1998; Bafico et al., 1999).  WNT pathway 

plays an important role in placental development and is required for fusion of the chorian 

and allantois during placental development (Galceran et al., 1999; Parr et al., 2001).  

Maternal dexamethasone treatment from d 13-22 of gestation in the rat resulted in 

increased expression of SFRP4 mRNA in basal and labyrinth zones of the placenta at d 

22 of gestation (Hewitt et al., 2006a).  This demonstrated that increased expression of 

SFRP4 is associated with reduced growth of the placenta. 

          Molecules that are responsible for or regulate steroid production in the placenta 

may be affected by maternal nutrient intake.  Reduction in nutrient intake to 50% of 

recommended intake from d 28 to 77 of gestation in the ewe results in decreased 

concentrations of 11β-hydroxysteroid dehydrogenase 2 mRNA and protein concentration 

in the placenta at d 77 of gestation (Whorwood et al., 2001).  There are two isoforms of 

11β-hydroxysteroid (1 and 2) and they are responsible for conversion of cortisone to 

biologically active cortisol.  Another molecule that may effect steroid production in the 

placenta is tumor necrosis factor α (TNFα) which is a cytokine with suspected function in 

female reproduction and embryonic development (Hunt et al., 1996).  Tumor necrosis 

factor α may regulate placenta steroid production (Carbo et al., 1995).  Iron deficiency 

from before mating to d 21 of gestation in the rat  increased concentrations of TNFα and 

its receptor, TNFα type 1 receptor (Gambling et al., 2002).  Vitamin A deficiency 

throughout pregnancy in the rat increased infiltration of neutrophils positive for TNFα 

and TNFα type 1 receptor positive trophoblast cells (Antipatis et al., 2002).  This could 

indicate that TNFα is produced by neutrophils and that an immune interaction is playing 

a role in placenta steroid production during pregnancy. 
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The effects of maternal nutrition on the fetus 

          Maternal nutritional status influences nutrient partitioning in the gestating animal 

and therefore influences fetal growth and the development of the fetus (Wallace, 1948; 

Godfrey, 2002).  Growth of the fetus is sensitive to the direct and indirect effects of 

maternal dietary intake at even the earliest stages of embryonic life when conceptus 

nutrient requirements are low (Robinson et al., 1999).  

          An important regulator of fetal growth, The IGF system comprises two ligands 

(IGF-I and IGF-II), two receptors (IGF-IR and IGF-IIR) and six binding proteins 

(IGFBP-1 to IGFBP-6; Jones and Clemmons, 1995). The concentrations of IGF-I and 

IGF-II in the fetus are positively correlated with birth weight in pigs, sheep and humans 

(Lee et al., 1993; Kind et al., 1995; Ong et al., 2000).  The IGF-I and II genes are 

expresses in fetal tissues from pre-implantation to just before birth (Watson et al., 1994; 

Hill et al., 1998; Fowden et al., 1998). Fasting of ewes resulted in a 50% decrease in fetal 

concentration of plasma IGF-I and a 15 to 20% decrease in concentrations of plasma 

IGF-II (Oliver et al., 1996; Lee et al., 1997). Deletion of either IGF-I or IGF-II in mice 

reduced fetal growth by 40% (DeChiara et al., 1990; Baker et al., 1993). Deletions of 

both IGF-I and IGF-II in mice reduced fetal growth by 70% (Efstratiadis, 1998). When 

IGF-IR was deleted fetal growth of mice was reduced by 55% (Baker et al., 1993), this 

suggests that both IGFs act through the IGF-IR to stimulate tissue growth (Efstratiadis, 

1998). Fetal growth was enhanced by IGF-II over expression caused by either deletion of 

the IGF-IIR which controls extracellular concentrations of IGF-II or by biallelic IGF-II 

expression (Lua et al., 1994; Ludwig et al., 1996).  
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Effects of nutrition on ovine fetal growth 

          The effects of maternal nutrient restriction of ewes during early and mid gestation 

are summarized in Table 1 and the effects during mid to late gestation are in Table 2.  

Maternal nutrient restriction during early to mid gestation had no effect on fetal growth at 

both the time of cessation of nutrient restriction and also later in gestation in many of the 

studies.  However other reports indicate an effect of nutrient intake during early and mid 

gestation on fetal growth at the end of the nutrient restriction period (Everitt, 1964; Parr 

and Williams, 1982; Vonnahme et al., 2003), with the exception of Vincent et al (1985) 

who observed differences in birthweight due to maternal nutrient restriction from d 0 to 

60 of gestation in the ewe.  Even when fetal weight is similar for restricted and 

unrestricted ewes during early to mid gestation, crown rump length was reduced for 

fetuses whose dams were exposed to nutrient restriction (Ford et al., 2007).  The effects 

of nutrient restriction during mid to late gestation usually resulted in a reduction in fetal 

weight (Table 2).  The effects of maternal nutrient restriction during late gestation can be 

observed as soon as 3 d after the start of restriction in ewes at 115 d of gestation and the 

nutrient restriction resulted in a 30 to 44% decrease in fetal growth rate as measured by 

crown rump length (Mellor and Matheson, 1979).  Nutrient restriction in the pregnancy 

ewe produced inconsistent fetal growth and this could be due to amount or length of 

nutrient restriction and the timing of nutrient restriction relative to gestation.  Maternal 

live weight and composition at conception and the start of nutrient restriction may play a 

role in the outcome of nutritional restriction in the ewe (Russel et al., 1981). 
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Table 1. Effects of maternal undernutrition of sheep during early to mid gestation on fetal 
growth  

Author Restriction period (d of gestation) Fetal growth (slaughter) 
Wallace (1948) 28-91 No effect (d 91) 
Wallace (1948) 0-90 No effect (d 90) 
Everitt (1964) 0-90 Reduced (d 90) 
Parr and Williams (1982) 1-35 Reduced (d 35) 
McCrabb et al., (1986) 0-96 No effect (d 96) 
McCrabb et al., (1992) 30-96 No effect (d 96) 
Arnold et al., (2001) 50-90 No effect (d 90) 
Vonnahme et al., (2003) 28-78 Reduced (d 78) 
Vincent et al., (1985) 0-60 Reduced (birth) 
Heasman et al., (1998) 28-77 No effect (d 145) 
Hawkins et al., (2000) 0-70 No effect (d 132) 
Rae et al., (2001) 0-30 No effect (d 50, 65 or 110) 
 31-50 No effect (d 50, 65 or 110) 
 0-50 No effect (d 50, 65 or 110) 
 0-65 No effect (d 65 or 110) 
 0-110 No effect (d 110) 
Steyn et al., (2001) 0-70 No effect (d 130) 
Whorwood et al., (2001) 28-77 No effect (d 145) 
MacLaughlin et al., (2005) 0-7 No effect (d 54) 
McMullen et al., (2005) 85-90 No effect (d 90 or 135) 
Ford et al., (2007) 28-78 No effect (birth) 
Gilbert et al., (2007) 28-78 No effect (d 78 or 135) 
Adapted from Redmer at al., (2004)  
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Table 2. Effects of maternal undernutrition of sheep during mid to late gestation on 
fetal growth  

Author Restriction period (d of gestation) Fetal growth (slaughter) 
Wallace (1948) 91-144 Reduced (d 144) 
 28-144 Reduced (d 144) 
Robinson (1977) 0-145 Reduced (d 145) 
Robinson et al., (1979) 0-145 Reduced (d 145) 
Holst et al., (1986) 1-145 Reduced (d 145) 
Meller (1983; 1987)) 90-145 Reduced (d 145) 
Faichney et al., (1987) 50-135 Reduced (d 135) 
McCrabb et al., (1986) 30-142 No effect (d 142) 
Kelly (1992) 90-145 Reduced (d 145) 
Arnold et al., (2001) 50-130 Reduced (d 130) 
Adapted from Redmer at al., (2004)  

 

          The effects of maternal overnutrition are not as well studied as maternal 

undernutrition.  The majority of research in this area has utilized the overnourished 

adolescent pregnant ewe as a model and has resulted in decreased fetal weight at birth 

(Wallace et al., 1996; Wallace et al., 2004).  Maternal overnutrition of cattle throughout 

gestation had no effect on calf birth weight but did increase dystocia and neonatal death 

rate (Arnett et al., 1971). 

 

Effects of nutrition on porcine fetal growth 

          Reduced intake of a complete ration by 50% for 2 estrous cycles before mating or 

from d 14 to 21 of lactation in sows before rebreeding results in decreased fetal weight 

and female fetal survival at 30 d of gestation (Ashworth, 1991; Vinsky et al., 2006).  

Birth weight of piglets decreased as dietary intake of energy decreased throughout 

gestation (Baker et al., 1969).  Reduced nutrient intake after d 80 of gestation reduced 

fetal growth in gilts (Noblet et al., 1985). 
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Effects of nutrition on bovine fetal growth 

          The effects of nutrient restriction in cows during gestation are summarized in Table 

3.  Nutrient restriction that occurs before and during the third trimester of gestation (d 

190 of gestation) reduced birth weight. There are a few studies that are exceptions to this 

statement.  In these studies that reported no effect of nutrient restriction, the differences 

in cow weight at the end of nutritional treatment were not that different indicating that the 

nutrient restriction was not severe enough to cause differences in fetal growth (Bellows 

and Short, 1978; Doornbos et al., 1984; Shell et al., 1990).  Heifers tend to respond to 

nutritional restriction with decreased calf birth weight more consistently then cows 

(Bellow and Short, 1978).  Not only can nutritional restriction reduce calf birth weight it 

can also shorten gestation length (Hafez et al., 1968, Warrington et al., 1988). Protein 

restriction in isocaloric diets fed during the last 4 mo of gestation decreased gestation 

length by 8 days (Waldhalm et al., 1979).  However, inadequate protein fed in an 

isocaloric diet does not reduce calf birth weight.  Cows that calved in a BCS of 6 have 

calves with heaver birth weight then calves from cows that calved in a BCS of 4 (Spitzer 

et al., 1995). If the BCS difference is a 4 vs 5 or 4.6 vs 5.2 BCS, calf birth weights are not 

effected (Ciccioli et al., 2003; Martin et al., 2007), indicating that a BCS difference must 

be in excess of 1.5 BCS with one group having a BCS equal to or less then 4. 

  



Table 3. Effects of maternal undernutrition of cows during gestation on fetal growth  

Author 
restriction period (d 

of gestation) restricted 
BWa or BCS of dams 

precalving calf weight 
Hafez et al., 1968 45 to term intake heifers 441 vs 625 reduced birth weight 

Tudor, 1972 180 to term intake Δ BW during trt + 63.8 or -36.8 
reduced birth weight and 

gestation length 
Corah et al., 1975 180 to term intake heifers ΔBW of + 36.1 vs -5.8 reduced birth weight 
Bellow and Short 1978 190 to term intake heifers 329 vs 378 reduced birth weight 
 190 to term intake heifers 346 vs 361 reduced birth weight 
 190 to term intake cows 422 vs 473 no effect 
Kroker and Cummins, 1979 190 to term intake heifers ΔBW 42.5 vs -12 vs -46 reduced birth weight 

Prior et al 1979 42 to term intake heifers 355 vs 421 vs 469 
no effect at 90, 125, 150, 180, 

210, 240, and 255 d of gestation 
Waldhalm et al., 1979 120 to term protein  cows 371 vs 410 reduced gestation length 
Doornbos et al., 1984 220 to term intake heifers and cows 450 vs 456 no effect 
Anthony et al., 1986 205 to term protein  heifers473 vs 498 no effect 
Boyd et al., 1987 230 to term intake cows 503 vs 527 reduced birth weight 
Carstens et al., 1987 190 to term protein  heifers ΔBW 97 vs 180 no effect 

Warrington et al., 1988 90 to term intake heifers ΔBW of -3.75 vs -92 
reduced birth weight and 

gestation length 
Hough et al., 1990 190 to term intake cows 643 vs 575 no effect 
Miner et al 1990 220 to term intake cows ΔBw 1.9 to 46.4 no effect 
Rasby et al., 1990 145 to 259 intake cows 419 vs 511 no effect 
Shell et al., 1990 100  to term intake cows 514 vs 571 no effect 
Spitzer et al., 1995 190 to term intake  heifers calve at BCS of 4 or 6 reduced birth weight 
Martin et al., 1997 140 to term protein  heifers 475 vs 357 no effects 
Perry et al., 1999 42 to 198 protein heifers (Not reported) no effect at term 
Freetly et al., 2000 90 to term intake cows  549 vs 590 reduced birth weight 
Ciccioli et al., 2003 190 to term supplement  heifers calve at BCS of 4 or 5 no effect 
Martin et al., 2007 190 to term supplement 5.2 vs 4.6 BCS no effect 
akg     
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Fetal organs and tissues affected by maternal nutritional intake 

          More than the weight or morphometric measurements of a fetus can be affected by 

maternal nutrient intake.  When the uterine environment is inadequate for normal fetal 

growth, the fetus adapts and promotes the growth of some organs and tissues at the 

expensed of other tissue and organs (Hales and Barker, 1992). 

          Nutrient intake of the dam influences growth of lungs. Restriction of nutrients of 

ewes from d 28 to 78 of gestation reduced weight of lungs in fetuses at d 78 of gestation 

(Vonnahme et al., 2003).  Similarly, reduced nutrient intake of ewes from d 85 to 90 of 

gestation resulted in lighter fetal lungs at d 90 and 135 of gestation (McMullen et al., 

2005).  When cows were exposed to a protein deficient diet from d 140 of gestation until 

parturition, lungs and trachea of calves were lighter compared with calves from cows that 

received adequate protein (Martin et al., 1997).  

          Nutrient restriction (50% of requirement for energy, protein, vitamins, and 

minerals) of ewes from d 28 to 78 of gestation resulted in fetuses with smaller kidneys at 

d 78 of gestation (Vonnahme et al., 2003).  Similarly when sows were fed protein 

deficient diets from d 0 to 63 of gestation the weights of fetal kidneys were reduced 

(Schoknecht et al., 1994).  Nutrient restriction of ewes from d 28 to 77 of gestation 

followed by adequate nutrient intake, increased weight and width of the kidney but 

decreased kidney length at145 d of gestation (Whorwood et al., 2001).  Male fetuses from 

ewes restricted from d 28 to 78 of gestation may be more sensitive to nutrient restriction 

and therefore have heavier fetal kidneys with decreased angiotensin II type 1 receptors at 

135 d of gestation then their unrestricted male fetuses while female fetuses were 

unaffected by nutritional treatment (Gilbert et al., 2007).  
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          In the fetal heart of sheep, myocyte size, intercapillary distance, and myocyte 

myofibrillar and mitochondrial volume increase, while capillary density, myocyte-to 

capillary ratio, and the myocyte matrix volume density decrease with increasing 

gestational age (Smolich et al., 1989).  The percent of binucleated myocytes increase 

during gestation (Burrell et al., 2003).  Before d 110 of gestation cardiac growth is via 

myocyte hyperplasia, after d 110 of gestation cardiac growth is due to both hyperplasia 

and hypertrophy of myocytes (Burrell et al., 2003).  The growth of the heart between 

parturition and 4 to 6 wk of age is due to hypertrophy of myocytes (Burrell et al., 2003).  

The ratio of mononucleated to binucleated cells in the heart can be altered by 

environmental factors during fetal life (Barbera et al., 2000.).  The fetal circulatory 

system may also be affected by maternal nutrient intake.  Nutrient restriction in the ewe 

from d 28 to 78 of gestation increased both left and right ventricles of the fetal heart 

when expressed as a percentage of fetal weight on d 78 of gestation (Vonnahme et al., 

2003).  It also alters the expression of a range of genes that have been implicated in either 

cardiac hypertrophy or inhibition of cardiac remodeling (Han et al., 2004).  Nutrient 

restriction from d 0 to 7 of gestation in the ewe produced increased femoral arteriol blood 

pressure at two separate periods (115 to 125 and 135 to 147 d of gestation) in the fetus 

(Edwards and McMillen, 2002).  Reduced nutrient intake from mating to 70 d of 

gestation produced fetal lambs with reduced basal fetal heart rate and increased basal 

femoral artery vascular restriction at 128 d of gestation (Hawkins et al., 2000). 

          In sheep nutrient restriction (50% of maintenance requirements) from d 18 before 

to d 6 after ovulation resulted in a 20% reduction in the total number of muscle fiber in 

fetus compared to fetuses from ewes fed greater than maintenance requirements at d 75 of 
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gestation (Quigley et al., 2005).  The ratio of primary to secondary muscle fibers was 

reduced and there was a tendency for a reduction ion the protein to DNA ratio to be less 

in nutrient restricted fetuses.  Maternal nutrient restriction from d 30 to 125 of gestation 

of cows resulted in less myofibers per muscle bundle in fetal skeletal muscle with each 

myofiber having a larger volume (Du et al., 2005b).  The reduction in myofibers per 

muscle bundle was not recovered by nutritional realimentation from d 125 to 250 of 

gestation.  Nutrient restriction from d 30 to 125 of gestation in cows increases 

concentrations of calpastatin in fetal muscle at 125 of gestation (Du et al., 2004).  

Calpastatin is an inhibitor of calpain enzymes that are responsible for degradation of 

myofibrillar proteins in muscle.  The mammalian target of rapamycin signaling controls 

nutrient-stimulated protein synthesis in skeletal muscle. Nutrient restriction of cows from 

d 30 to 125 of gestation and ewes from d 28 to 78 of gestation results in down regulated 

signaling through the mammalian target of rapamycin in fetuses at 125 and 78 d 

(respectively) of gestation (Zhu et al., 2004; Du et al., 2005a) indicating altered nutrient  

stimulated protein synthesis.  Ewes fed at 150% of NRC requirements for 60 d before 

mating to d 70 of gestation produced fetuses at 75 d of gestation with increased 

phosphorlated insulin receptors and decreased activity of down stream signaling 

molecules when compared with fetuses from ewes fed at NRC requirement (Du et al., 

2007). 

          The effects of maternal nutrient intake on the pancreas have been identified in rats.  

Dietary energy restriction either throughout or during late gestation in rats resulted in a 

decrease in cell number, β-cell mass, islet number, insulin content in the fetal pancreas of 

rats and a decrease in fetal insulin concentration (Winick and Noble, 1966; Holemans et 
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al., 1996; Garofano et al., 1997).  Protein deficient diets fed throughout gestation 

decreased the number of β-cells and content of insulin in the fetal pancreatic islets, and 

this was due to a decrease in the proliferation and an increase in apoptosis of islet cells 

(Berney et al., 1997; Petrik et al., 1999; Merezak et al., 2001).  Vascularization of the 

pancreas of fetal rats decreased when dams were fed inadequate protein during gestation 

(Cherif et al., 1998; Cherif et al., 2001).  Fourteen days of maternal hypoglycemia 

produced by insulin infusion by pump during late gestation results in decreased  glucose 

and arginine-stimulated insulin secretion in the fetus (Limesand and Hay Jr, 2003).  

          Other fetal organs and organ systems are sensitive to maternal nutrient intake. The 

weight of livers of lambs was reduced at d 78 of gestation when dams were exposed to 

nutrient restriction from d 28 to 78 of gestation compared with lambs from dams fed 

required amounts of energy, protein, vitamins, and minerals (Vonnahme et al., 2003).  

Protein restriction of sows from d 0 to 63 of gestation resulted in decreased fetal liver 

weight and increased brain weight expressed on a fetal weight basis (Schoknecht et al., 

1994).  Protein restriction of gilts through out gestation resulted in reduced brain and 

liver weights of fetuses at birth (Pond et al., 1969; Atinmo et al., 1974).  Decreased 

nutrient intake of ewes from mating until d 70 of gestation resulted in fetuses at d 130 of 

gestation with increased adrenal weights compared with fetus from ewes that were fed 

adequate diets (Steyn et al., 2001).  Skeletal abnormalities at birth resulted from nutrient 

restriction of ewes from d 0 to 60 of gestation (Vincent et al., 1985).  Fetal ovaries may 

also be affected by maternal nutrient intake with fewer germ cells at the resting diplotene 

stage of initial meioses in fetuses at d 65 of gestation and delayed follicular development 

indicated by development of the granulose cell layer in fetuses at d 110 of gestation (Rae 
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et al., 2001).  When adolescent ewes were overfed during gestation, female offspring at 

131 d of gestation had small, improperly-developed ovaries (De Silva et al., 2002). 

 

Postnatal changes in offspring after nutrient manipulation during gestation 

          It is not unrealistic to believe that if fetal growth and development can be altered 

by maternal nutrient intake during gestation, and then these changes that occurred during 

fetal development may persist and influence postnatal development and physiology of 

tissues. 

 

Growth and composition of growth 

             Decreased fetal growth when dams receive inadequate nutrients during gestation 

can have a permanent stunting effect on postnatal growth and reduce efficiency of 

nutrient utilization.  Lambs of ewes with inadequate maternal nutrient intake during 

gestation had reduced postnatal growth under artificial rearing (Schinckel and Short, 

1961; Villette and Theriez, 1981).  Lambs with lower birth weight grew slower during 

their first 2 wks of life and exhibited reduced rates of efficiency of energy utilization for 

protein and fat deposition (Greenwood et al., 1998) and reduced rates of postnatal 

skeletal muscle growth (Greenwood et al., 2000).  Lambs exposed to nutrient restriction 

from either d 0 to 30 of gestation or d 110 of gestation to parturition had similar growth 

rates up to one year of age (Gardner et al., 2005).  Maternal protein restriction during 

early gestation stunted the postnatal growth and development of swine (Schoknecht et al., 

1993).  Runt pigs are not uncommon and are the lightest piglet of the litter and can be 33 

to 50% of the birth weight of there large littermate (Widdowson, 1971).  The small 

 33



intestine, liver and skeletal muscle of runt piglets are dispropionately smaller then those 

of larger littermates at 3 yr of age (Widdowson, 1971).  Runt piglets had a reduced rate of 

skeletal muscle and whole body growth from birth to market weight with decreased 

utilization of feed for growth compared with larger littermates (Hegartly and Allen, 1978; 

Powell and Aberle, 1980).  Progeny of gilts fed an isocaloric, protein restricted diet 

during gestation had reduced growth rates from farrowing to weaning (5 wk of age) and 

between weaning and 90 kg compared with progeny of gilts fed adequate protein (Pond et 

al., 1969; Atinmo et al., 1974).  Nutrient restriction of cows during the last 100 d of 

gestation can reduce weaning weight at 7 mo of age (Corah et al., 1975; Kroker and 

Cummins, 1979; Boyd et al., 1987). 

          Overnutrition during gestation can influence postnatal growth.  The progeny of 

sows overfed during the first 50 d of gestation had reduced growth rates from birth to 

weaning and from weaning to market weight; feed efficiency was reduced compared with 

progeny of control sows (Bee, 2004).  Feeding of sows in excess of requirements for 

energy and protein from d 25 to 50 of gestation produced offspring with decreased 

postnatal ADG, muscle accretion rate and carcass weight at 104 kg of BW (Nissen et al., 

2003).        

            Not all experiments with maternal nutrient deficiencies find reduced growth 

potential of offspring.  Underwood et al. (2006) found that steers from cows exposed to a 

diet that delivered 68.1 % of NEm requirements from d 30 to 120 of gestation had greater 

ADG and gain to feed ratios during the feedlot finishing period and tended to have 

heavier BW at harvest but hot carcass weight was similar with steers from dams received 

100 % of NRC requirement.  However, wethers, from dams that were exposed to 50 % of 
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nutritional requirements from d 28-78 of gestation, were heavier at 4 and 9 mo of age 

then wethers whose dams were fed to meet requirements (Ford et al., 2007).  

          The composition of growth or the amount of fat verses muscle at a given time point 

may be influence by prenatal nutrient intake.  Underwood et al. (2006) found similar 

yield grade, marbling score and percent KPH fat for steers killed at 12-13 mo of age that 

received 100 or 68 % of requirements from d 30-120 of gestation (Underwood et al., 

2006).  Nutritional restriction at different timepoints in gestation can result in differences 

in fat mass and HCW of lambs.  Reduced nutrient intake from 60 d before mating to 7 d 

postmating in ewes increased perirenal fat mass of lambs at term (Edwards et al., 2005).  

Nutritional restriction from d 28-78 of gestation produced lambs with increased back fat 

at 140 d of age and increased kidney pelvic fat in grams or corrected for HCW along with 

increased HCW at 280 d of age (Ford et al., 2007).  Decreased nutrient intake from d 110 

of gestation to term in ewes resulted in lambs with increased omental and perirenal fat 

depots at 1 yr of age (Gardner et al., 2005).  Progeny of overfed sows from d 0 to 50 of 

gestation have a greater content of adipose tissue at birth and at slaughter compared with 

offspring of underfed sows (Bee, 2004).  Runt piglets at similar weight have larger 

quantities of intramuscular fat (Hegartly and Allen, 1978; Powell and Aberle, 1980) and 

lighter muscled carcasses (Powell and Aberle, 1980). 

 

Glucose regulation 

         Nutrient intake during gestation can result in metabolic changes in the offspring’s 

regulation of blood glucose levels.  Nutrient restriction (50% of requirements for energy, 

protein, vitamins and minerals) from d 28 to 78 of gestation in ewes results in wethers 
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that had a greater area under the curve (AUC) for plasma glucose compared to control 

animals in response to intravenous glucose tolerance test (IVGTT) at 63 and 250 d of age 

(Ford et al., 2007).  The AUC for plasma insulin was greater at 63 d of age than controls 

but was decreased for 250 d of age.  Nutrient restriction from d 1 to 30 of gestation in the 

ewe did not alter metabolic response to feeding or to IVGTT in lambs at 11 mo of age, 

however nutrient restriction from d 110 to term resulted in lambs with increased AUC for 

plasma glucose and insulin (Gardner et al., 2005).  This response to IVGTT in the late 

nutrient restricted lambs was associated with decreased adipose GLUT 4 glucose 

transported in adipose tissue but no difference was noted for GLUT 4 in muscle tissue.  

Calves exposed to an increased plane of nutrition from d 118 to 202 of gestation had 

increased plasma glucose at 7 mo of age and had a greater increase in plasma glucose 

with time after infusion compared with control calves (Kastner et al., 2004). 

          The surgical removal of a majority of the caruncles in ewes before breeding results 

in lambs with no difference in fasting plasma glucose at 35 d of age, however lambs had 

a reduced rate of plasma glucose clearance at 30 to 50 min post IVGTT (De Blasio et al., 

2007b).  There was no difference in total AUC for plasma glucose during the IVGTT.  At 

375 d of age, wethers had an increased initial rise in glucose during IVGTT and an 

overall decrease in glucose tolerance during IVGTT and a decreased fasting plasma 

insulin concentration (Owens et al., 2007).  During a hyperinsulinemic euglycemic clamp 

(HEC) wethers had a decreased ability for insulin to dispose of plasma glucose but an 

increase in the ability of insulin to signal the disposal of circulating free fatty acids.  Ewe 

lambs from either caruncle removed ewes or control ewes at 375 d of age showed no 

difference during the IVGTT, however during the HEC, ewe lambs from caruncle 
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removed dams had increased insulin sensitivity for glucose disposal compared to control 

ewe lambs. 

          Exposure of ewes to cortisol or synthetic cortisteroids during gestation can lead to 

altered glucose and insulin regulation in lambs.  Exposure to dexamethasone for 48 h at 

27 or 64 d of gestation resulted in female offspring at 4.8 yr of age that have no 

difference in AUC for glucose or insulin compared to control offspring following an 

IVGTT (Gatford et al., 2000).  However the female offspring treated at 27 d of gestation 

had an increased response to insulin in adipose tissue during HEC.  Dexamethasone 

exposure from d 26 to 28 of gestation produced lambs that had reduced AUC for glucose 

after IVGTT at 4 yr of age and an increased plasma insulin concentration for the first 30 

min of the IVGTT (De Blasio et al., 2007a).   

 

Hypothalamic-pituitary axis and reproduction 

          The effects of maternal nutrient intake on reproduction of the offspring are just 

now beginning to be evaluated by research.  Maternal nutrient intake of ewes had a 

negative effect on fetal gonadal development (Rae et al., 2001).  Offspring of 

undernourished mothers had reduced ovulation rates or numbers of offspring (mice, 

Meikle and Westberg 2001; sheep, Rae et al., 2002). Undernutrition of ewes during late 

gestation results in a reduction in reproduction rate in adult female offspring (Gunn et al., 

1995; Rhind et al., 1998).  Hypothalamic-pituitary functions as measured by plasma 

gonadotropin profiles or expression of pituitary mRNA for LHβ or FSHβ of female 

offspring was not affected by maternal undernutrition (Borwick et al., 2003) or 

overnutrition (Da Silva et al., 2003).  Undernutrition of ewes from mating until d 90 of 
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gestation produced male offspring with greater FSH concentrations then control rams at 

20 mo of age (Rae et al., 2002). Undernutrition of ewes during the second half of 

gestation produced newborn ram lambs with a reduced number of sertoli cells (Bielli et 

al., 2002).  Overnourished adolescent ewes produced ram lambs with delayed onset of 

puberty when compared with ram lambs from ewes fed required amounts of nutrients (Da 

Silva et al., 2001).  

 

Organ and tissue changes 

          Maternal nutrient intake during gestation can alter the growth and development of 

fetal organs and tissues.  It is becoming clear that these changes that occur during 

gestation in organ and tissue morphology and function can persist after birth and alter the 

physiology of the adult offspring.  

 

Skeletal Muscle 

         Embryonic cells from the epiblast layer of the primitive streak embryos that express 

a muscle specific transcript factor differentiate into skeletal muscle in culture conditions 

(George-Weinstein et al., 1996).  These cells then are controlled by a family of myogenic 

regulatory factors (myoD, myf5, myogenin and MRF4) that function to regulate the 

development of skeletal muscle (Ludolph and Konieczny, 1995).  The final step in 

muscle formation is biphasic. The initial wave of synchronous fusion of the myoblasts 

leads to a population of primary fibers, this occurs around d 14 of gestation in rats and 

between 6 to 8 wk in humans (Wigmore and Dunglison, 1998).  The second wave of 

myogenesis leads to asynchronous formation of secondary fibers on the surface of the 
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primary fibers.  This occurs between d 17 and 21 in rats and wk 8 and 18 in humans 

(Barbet et al., 1991; Wigmore and Dunglison, 1998).  In cattle, primary myotubes appear 

prior to d 47 of gestation (Russel and Oteruelo 1981) and secondary muscle fibers 

differentiate from the population of myotubes at around d 90 of gestation (Gagniere et al., 

1999).  The total fiber number is fixed at d 80 to 90 in pigs (Christensen et al., 2000; 

Staum, 1963; Wigmore and Strickland, 1983), d 80 to 125 in sheep (Greenwood et al., 

2000; McCoard et al., 2000), and d 240 of gestation in cattle (Robelin et al., 1991).  Final 

maturation of skeletal muscle is by fiber type conversion and hypertrophy of the muscle 

fibers during the postnatal period.  This final stage is under the control of neural and 

growth factors (Maltin et al., 2001).  The number of primary fibers is genetically 

determined, whereas the number of secondary fibers is determined by local and 

environmental signals (Dwyer and Stickland, 1992; Dwyer et al., 1993).  

          The effects of prenatal nutrition on skeletal muscle development had been 

evaluated using several different models.  A reduction to 50% of nutrient requirements 

from d 2 -78 of gestation in ewes resulted in offspring at 8 mo of age that had decreased 

numbers of myofibers (Zhu et al., 2006).  Dietary restriction from d 25 to 50 of gestation 

of gilts resulted in decreased total and secondary fibers and a decreased secondary to 

primary fiber ratio in the semitendinosus muscle of 61 d old female progeny (Gatford et 

al., 2003). 

           Greenwood et al. (2000) found no difference in myofiber numbers in three 

different muscles from either low or high birth weight lambs.  However, daily accretion 

of muscle was less in lambs that had a low birth weight.  Lambs with a low birth weight 
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have skeletal muscle that contain less DNA with a greater  protein to DNA ratio at any 

given muscle weight compared with the muscle of lambs with a high birth weigh.  

          Maternal nutrient intake not only affects myofibers, it also affects some of the 

cellular machinery of skeletal muscle.  A reduction to 50% of requirements from d 2-78 

of gestation increased the ratio of myosin IIb to other isoforms of myosin compared with 

control lambs at 8 mo of age (Zhu et al., 2006).  Nutrient restricted lambs also have 

increased intramuscular triglyceride content and a decreased activity of carnitine 

palmitoyl transferase-1, an enzyme that controls fatty acid oxidation.  This indicates that 

protein synthesis is decreased in muscle due to nutrient restriction.  Protein restriction in 

rats throughout gestation results in offspring at 15 mo of age with reduced zeta isoform of 

protein kinase C (Ozanne et al., 2003).  The zeta isoform of protein kinase C is involved 

in the glucose transport via GLUT-4 glucose transporter (Standaert et al., 1997). 

          Both the morphology and size of muscle fibers are affected by prenatal nutritional 

level.  In addition the molecular pathways for insulin signaling, protein degradation and 

glucose transport are affected in animals that are exposed to either inadequate or excess 

nutrient supply in utero. 

  

Kidney 

          Nephrogenesis begins around d 12 of gestation in rats and is completed on d 8 after 

birth (Larsson and Maunsbach, 1980).  Bilateral uterine ligation of the pregnant rat at d 

19 of gestation significantly reduced glomerule number in the full term fetal kidney 

(Pham et al., 2003).  Uteroplacental insufficiency reduced nephron numbers by up to 30 

% in rats, rabbits and pigs and the decrease in nephron numbers was associated with a 
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parallel drop in glomerial filtration rate (Bassan et al., 2000; Bauer et al., 2002; Merlet-

Bénichou et al., 1994).  Maternal protein restriction throughout pregnancy in rats 

produces a significant reduction in nephron number in the offspring (Langley-Evans et 

al., 1999; Vehaskari et al., 2001; Woods et al., 2001), and a decrease in renal function 

(glomerial filtration rate/kidney weight, Nwagwu et al., 2000; Woods et al., 2001) both 

during early postnatal life but also in adulthood. Increased concentration of Na in plasma, 

which is a result of a primary Na retaining state as a consequence of a shift in the 

pressure-natriuresis curve to the right, have resulted from protein restriction in rats 

(Manning and Vehaskari, 2001).  Prenatal exposure of rats to dexamethasone for 2 d 

during late gestation (either d 15 to 16 or d17 to18 of gestation) reduced glomerular 

number, glomerulosclerosis, and hypertension as adults (Ortiz et al., 2001; Ortiz et al., 

2003).  Offspring of rats fed a low protein diet throughout gestation have hypercalciuria 

through a reduction in passive calcium readsorption in the proximal tubule of the kidney 

(Ashton et al., 2007) 

          Nephrogenesis is complete in sheep by d 130 of gestation (Moritz and Wintour, 

1999).  Ewes exposed to dexamethasone from d 26 to 28 of gestation produced lambs 

with significantly fewer nephrons and increased glomerular volume in adult life (Wintour 

et al., 2003).  Fewer nephrons were associated with enlarged and dilated proximal tubules 

and greater accumulation of collagen in the tubular interstitium and periadventitia on the 

renal cortical vessels.  Fetal sheep kidneys at d 26-28 and fetal rat kidneys at d 15-16 are 

similar in terms of stage of fetal kidney development (Dodic et al., 2002) indicating a 

specific developmental point when glucocorticoids can alter development of the kidney.  

Maternal undernutrition of ewes from d 28 to 80 of gestation results in offspring at 6 mo 
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of age with fewer total nephrons compared with offspring of ewes fed adequate nutrition 

(Gopalakrishnan et al., 2005) 

 

Circulatory system  

         Maternal nutrient intake can affect the heart of offspring at birth and in adult life.  

Maternal protein restriction of rats during gestation produced pups with reduced numbers 

of cardiomyocytes at birth (Corstius et al., 2005), and a 15% increase in the amount of 

interstitial fibrosis in the left ventricle of the heart of adult offspring (Lim et al., 2006).  

Maternal protein restriction of rats during pregnancy produced offspring with a decreased 

density of β1-adrenergic receptors and the response to β agonist was altered (Fernandez-

Twinn et al., 2006).  Inadequate protein in the diet during gestation altered the 

composition of the plasma membrane and fatty acid content of the cardiomyocytes of rat 

pups at 21 d of age (Tappia et al., 2005).  

          The endothelium of the vasculature in postnatal offspring was also affected by 

maternal nutrition.  Offspring of rats fed 70% of requirements during the first 18 d of 

gestation has greater blood pressure from 60 d after birth, and the maximum 

vasoconstriction response to phenylephrine or to norepinephrine was reduced in femoral 

arteries of pups at 20 d of age (Ozaki et al., 2001).  Similar responses occur for offspring 

from rats fed a restricted diet (50%) during the second half of gestation (Holemans et al., 

1999) or a low protein diet throughout pregnancy (Brawley et al., 2003).  Undernutrition 

during gestation in rats resulted in decreased gene expression of endothelial NO synthase 

(eNOS) in male aorta and a reduction in eNOS activity in both male and females at 14 wk 

of age (Franco et al., 2002).  In male offspring of rats fed a low protein diet during 
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pregnancy, vascular relaxation induced by acetylcholine or brabykinin (both endothelium 

dependent vasodilators) and sodium nitroprussid and a phosphodiesterase type 3 inhibiter 

(endothelium independent vasodilated) was reduced (Brawley et al., 2003). This indicates 

another possible reason for increased blood pressure in offspring of undernourished 

dams.  

 

Pancreas 

          Bilateral uterine ligation during gestation in rats resulted in no difference in β-cell 

mass, islet size, or pancreas weight at either 1 or 7 wk of age between growth restricted 

and control rat pups, however at 15 wk of age β-cell mass was decreased by 50% 

compared with controls, and at 26 wk of age it was one third that of controls (Simmons et 

al., 2001).  A protein deficient diet during gestation resulted in small irregular shaped 

islets with reduced amounts of β-cell in the rat (Berney et al., 1997).  Basal plasma 

insulin and glucose concentrations are similar between progeny of protein restricted and 

control rats.  But the insulin response to oral glucose challenge was less in protein 

restricted adult female offspring compared with control female offspring (Hoet and 

Hanson, 1999). 

 

 
Conclusion 

          Nutrition of beef cows regulates postpartum reproduction. The greatest factor that 

limits postpartum reproduction is postpartum anestrus. Anestrus is a physiological 

condition when ovulation and estrous behavior are not present and this condition is 

normal in postpartum beef cows. Postpartum anestrus is largely controlled by nutritional 
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factors and suckling. Body condition score has a strong relationship with carcass fat and 

energy (Wagner et al., 1988). Cows that calve in a greater BCS have increased pregnancy 

rates compared with cows that calve in a thinner BCS (Rakestraw et al., 1986; Richards 

et al. 1986; Selk et al., 1988). Body condition at calving is largely effected by prepartum 

nutrition. The effects of postpartum nutrition are dependent on BCS of cows at calving. If 

cows calve with an adequate BCS then postpartum nutrition has less effect on the interval 

from calving to first estrus (Richards et al., 1986; Marston et al., 1995, Spitzer et al., 

1995). However when cows calve with a thin BCS then the interval from calving to first 

estrus is shorted by feeding greater amounts of energy after calving (Wiltbank et al., 

1964,; Spitzer et al., 1995).  

          Maternal nutritional intake can affect the placenta even before it is formed and can 

reduce placental weights compared with placenta from dams fed adequate nutrition 

(Schoknecht et al., 1994; Dandrea et al., 2001; McMullin et al., 2005). Overfeeding 

adolescent ewes impaired the growth of the placenta (Wallace et al., 1996; Wallace et al., 

2004). Not only is the size and morphology of the placenta affected by maternal nutrient 

intake but many enzymes concentrations are influences. Nitric oxide synthase is 

decreased when dams are fed inadequate nutrients (Wu et al., 1998). Many enzymes that 

effect vascular development in the placenta are influenced by maternal nutrient intake. 

The insulin like growth factor system is affected by maternal nutrient intake (McMullen 

et al., 2005) 

          Maternal nutrient status influences nutrient partitioning of gestating animals and 

influences development of the fetus (Dodfrey, 2002; Wallace, 1948). Nutrient restriction 

of ewes during late gestation results in decreased fetal growth. Decreased nutrient intake 
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of sows decreased fetal growth. If nutrient restriction is severe enough to decrease 

maternal BW and BCS of cows during the third trimester of pregnancy, then fetal growth 

will be decreased (Bellows and Short 1978; Kroker and Cummins, 1979; Carstens et al., 

1987). The weights of the lungs, kidneys, and liver are reduced when maternal nutrient 

intake is restricted in ewes. The fetal heart weight is increased when nutrients were 

restricted (Vonnahme et al., 2003). Skeletal muscle is affected by maternal nutrient 

intake. These changes in organ weight indicate an adaptive response by the fetus. 

          The fetal response to restricted maternal nutrient intake may influence postnatal 

physiology. Postnatal growth and the composition of growth may be altered by nutrient 

intake of the dam during gestation. Glucose regulation of the offspring is effected by 

maternal nutrient intake. Reproduction of the offspring as an adult may be influenced by 

maternal intake of nutrients (Gunn et al., 1995; Rhind et al., 1998). Organ function and 

morphology in the adult offspring may be influenced by nutrient restriction of the dam 

during gestation. 

          Nutrition has a major role on the profitability of a cow calf operation. It not only 

has a pivotal role in reproduction, it could also influence calf weights at weaning and 

beyond. Maternal nutrient intake can affect the composition and efficiency of gain during 

the growth of calves.  The effects of maternal nutrient intake on reproduction and on the 

offspring will influence the profitability of a beef operation regardless if calves are 

marketed at weaning or retained through the stocker phase and into the feedlot. 
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CHAPTER III 
 
 

Estrus and luteal activity of postpartum beef cows after treatment with estradiol 

 

ABSTRACT 

Multiparous Hereford x Angus postpartum cows (n = 83) were used to determine the 

effects of days after calving (25 or 50 d) and BCS at calving (M ≥ 5 or T < 5) on estrus 

and luteal activity after treatment with estradiol cypionate (ECP).  Cows were maintained 

on dormant native pasture during the last third of gestation and fed either 0.9 or 1.8 kg/d 

of a 38% CP supplement to achieve a thin (T < 5) or moderate (M ≥ 5) BCS at calving.  

After calving, cows were fed 1.8 kg/d of a 40% CP supplement and ad libitum hay.  An 

estrous detection system (Heatwatch, DDX inc.) was used commencing 10 d before 

treatment.  Cows were treated (i.m.) with 1 mg estradiol cypionate (ECP) or corn oil (C) 

at 25 or 50 d after calving.  Progesterone was quantified in plasma samples obtained from 

cows twice weekly for 1 wk before treatment, daily for 7 d after treatment, and twice 

weekly until 4 wk after treatment, then once weekly until the second estrus or 90 d after 

calving.  Ovaries were examined by ultrasonography at treatment and concentrations of 

progesterone in plasma were used to ascertain the absence of corpora lutea.  Treatment of 

cows with ECP at 25 d after calving increased (P < 0.01) the incidence of estrus within 4 

d after treatment in M (55 vs 11%, respectively) and T (50 vs 0 %) cows compared with
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 C cows.  Treatment of T cows at 50 d after calving increased (P < 0.01) estrus within 4 d 

(50 vs 0 %). Only 10% of M cows were anovulatory at 50 d after calving and response to 

ECP could not be evaluated.  Treatment with ECP did not influence the onset of ovarian 

luteal activity (LA, progesterone >1 ng/ml for 1 d) within 10 d after treatment (P = 0.52).  

Onset of normal LA after calving was 53 ± 4 d for M cows compared with 82 ± 4 d for 

thin cows (P < 0.001) when cows were treated at 25 d postcalving.  Days to LA were 

greater (P = 0.02) for T and M cows treated with ECP at 25 d after calving (74 ± 5 d) 

compared with C cows (61 ± 5 d), and ECP treatment tended to increase (P = 0.07) days 

to LA for T cows treated at 50 d after calving.  Body condition score of cows did not 

influence the incidence of estrus when cows were treated with ECP at 25 d after calving.  

Although ECP induced estrus in beef cows during the first 50 d after calving, normal 

luteal function was not initiated.  

 

Key Words: Estradiol, Estrus, Luteal Activity, Postpartum Beef Cows 
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INTRODUCTION 

          Postpartum anestrus is a major cause of infertility in beef cows (Wettemann, 1980; 

Short et al., 1990; Wettemann et al., 2003).  Cows must be pregnant within 85 d after 

parturition to have a 12-month calving interval.  Body condition score at calving is the 

major factor that controls the duration of postpartum anestrus (Richards et al., 1986; Selk 

et al., 1988; Spitzer et al., 1995).  Treatment of prepubertal Holstein heifers with estradiol 

induced an LH surge without estrus (Swanson and McCarthy, 1978).  Treatment of 

ovariectomized cows with estradiol causes release of LH (Short et al., 1973; Short et al., 

1979; Forrest et al., 1981) and estrous behavior (Short et al., 1973; Nessan and King, 

1981; Cook et al., 1986).  However, when estradiol benzoate was administered to dairy 

cows an LH surge was not detected until 3 wk after calving (Zaied et al., 1981).  

Similarly, estradiol treatment did not cause secretion of LH in suckled beef cows during 

the first 10 d after calving (Nancarrow et al., 1977).  Treatment of anovulatory suckled 

beef cows with estradiol benzoate at 3 to 6 wk after calving induced estrus (Nancarrow et 

al., 1977; Rubio et al., 2004).  In contrast, Radford et al. (1976, 1978) observed that 

treatment of suckled anestrous cows with estradiol benzoate at 6 wk after calving did not 

induce estrus or secretion of LH.  There appears to be differential effects of estrogens in 

the postpartum suckled beef cow. Estrogens can induce estrus without subsequent release 

of LH and ovulation. Therefore, the objective of this study was to determine the effects of 

days after calving and BCS at calving on estrous and luteal responses of suckled 

anestrous beef cows after treatment with estradiol. 
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MATERIAL AND METHODS 

Study Design and Animals 

          Multiparous Hereford x Angus cows (n=83) were used to evaluate the effects of 

BCS at calving and days after calving on estrus and luteal activity after treatment with 

estradiol cypionate.  During the last third of gestation, cows grazed abundant dormant 

native range pasture and were fed either 0.9 or 1.8 kg/d of a 38 % CP (on a DM basis) 

soybean meal-based supplement to result in loss or maintenance of BW. Cows that 

maintained BW had a BCS (1 = emaciated; 9 = obese; Wagner et al., 1988) of 5 or 

greater (moderate; M), and cows that lost BW had a BCS less than 5 (thin; T).  Cows 

calved during a 56-d period in January and February.  After calving, cows were fed 1.8 

kg of the same protein supplement with ad libitum native grass hay.  Cow weight 

(without access to feed and water for 15 h) and BCS were recorded 10 d before the first 

cow calved.  The Heatwatch ® system (DDX, Denver, CO) was used to monitor estrous 

behavior commencing at 14 d before treatment.  Onset of estrus was defined as the first 

of two mounts received in a 4-h period.  The end of estrus was defined as the last mount 

received with a mount 4-h before, and with no mounts during the next 12 h.  Ovaries of 

cows were evaluated just before treatment for the presence of corpora lutea (CL) and size 

of the largest follicle by transrectal ultrasonography (Aloka 500-V ultrasound equipment 

with a 7.5-MHz probe; Corometrics Medical Systems, Wallingford, CT).  If a CL was 

detected by ultrasonography, or luteal activity was detected by plasma concentrations of 

progesterone, the cow was removed from the study.  Cows were stratified by calving date 

and follicle size (< 10 mm or > 10 mm) and allotted to treatment.  At 25 ± 6 or 50 ± 6 d 
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after calving,  M and T cows were given 1 mg of estradiol cypionate (ECP, Sigma, St. 

Louis MO, in 1 ml corn oil; i.m.) and control (C) received 1 ml corn oil (i.m.).  

 

Blood Collection and Lab Analysis 

         Blood samples were obtained via tail vein puncture twice weekly for 1 wk before 

treatment, daily for 1 wk following treatment, twice weekly until 4 wk after treatment, 

and once weekly until 90 d after calving or until two estruses were observed and 

confirmed with plasma progesterone > 1 ng/mL for 2 consequent samples.  Blood 

samples were collected in blood collection tubes (BD, Franklin lakes, NJ) containing 

EDTA, then placed on ice and centrifuged within 4 h at 2600 x g for 15 min.  Plasma was 

stored at – 20°C until progesterone was quantified by RIA (Vizcarra et al., 1997). 

        Luteal activity (LA) was defined as a concentration of progesterone in plasma ≥1 

ng/mL.  The onset of normal luteal activity was defined as progesterone ≥ 1 ng/mL in 

two or more consecutive samples for at least 8 d.  Eleven ECP and 6 Control cows did 

not have normal luteal activity by 90 d after calving so luteal activity was assigned as 1 

wk after the last sample was obtained. 

 

Statistical analyses 

          Body weight and BCS in late gestation and percentage anovulatory were analyzed 

using the GLM procedure of SAS (SAS Inst., Inc, Cary NC) with treatment in the model. 

The experimental design was originally as 2 x 2 x 2 factorial with BCS in late gestation 

(T vs M), days from calving to treatment (25 or 50) and ECP or C treatment as factors. 

However, due to 90% of the M cows with luteal activity at 50 d after calving there was an 
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insufficient numbers of animals to analyze the experiment as the 2 x 2 x 2 factorial. The 

effects of BCS and ECP treatment on estrous response within 4 and 10 d after treatment, 

LA within 10 d, number of mounts, duration of estrus, and days to resumption of normal 

LA were tested for normality, and analyzed using the GLM procedure with two models.  

One model evaluated ECP treatment and BCS effects for cows treated at 25 d after 

calving and contained ECP treatment, BCS, and the interaction, with date of treatment as 

a covariable.  The second model evaluated effects in T cows and included ECP treatment, 

days postpartum and the interaction, with date of treatment as a covariable.  

Concentrations of progesterone on d 3 to 7 after treatment were analyzed as repeated 

measures using the MIXED procedure of SAS with lab assay block in the model as a 

random effect.  One model evaluated cows treated at 25 d after calving and contained 

treatment, BCS, treatment block, day after treatment, treatment x BCS, BCS x day after 

treatment , trt x d after treatment and treatment x days after treatment x BCS.  The second 

model evaluated all T cows and contained treatment, treatment block, days after calving, 

day after calving, treatment x days after calving, days after calving x days after treatment, 

treatment x days after treatment, and days after calving x treatment days after treatment. 

RESULTS 

BW, BCS, and Percentage Anovulatory 

           Body weight and BCS were greater (P < 0.001) for M (597 ± 13 kg, 5.1 ± 0.1 

BCS) than for T (505 ± 10 kg, 4.3 ± 0.2) cows in late gestation.  Fifty-one cows were 

identified as anovulatory at treatment based on both the absence of a CL detected by 

ultrasonography and concentrations of progesterone < 1 ng/mL for 1 wk before treatment.  

At 25-d after calving, 22% of the T and 5% of the M cows (P = 0.14) had luteal activity 
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and were not treated.  At 50-d after calving 35% of the T and 90% of the M cows (P = 

0.01) had luteal activity and were not treated.   

Estrous Response after Estrogen Treatment 

          Percentage of cows in estrus within 4 d after treatment with ECP or oil was 

influenced by treatment but not by BCS of cows treated on d 25 after calving or by days 

after calving for T cows (Table 1).There were not any significant interactions (treatment 

x BCS, P =0.99; treatment x d after calving, P = 0.84).  Fifty percent of T cows treated at 

25 d after calving and none of the control cows were estrus within 4 d of treatment (P < 

0.01).  When T cows were treated at 50 d after calving, 55% were estrus within 4 d and 

none of the controls were estrus (P < 0.01).  More M cows treated at 25 d after calving 

were estrus within 4 d (55%; P < 0.01) compared with control cows (11%).  Percentages 

of cows in estrus within 10 d of treatment were similar to the percentages of cows in 

estrus within 4 d of treatment.  For estrus within 10 d of treatment, 60% of T cows treated 

at 25 d after calving were estrus and 33% of M control cows at 25 d postpartum were 

estrus.  The percentage of cows in estrus at 4 d after treatment in the other treatment 

groups did not change when the period was extended to 10 d after treatment with ECP.  

          Duration of estrus and number of mounts received for cows that were estrus within 

10 d of treatment are in Table 2.  Thin cows treated with ECP at 50 d after calving were 

estrus longer (P = 0.05) than T cows treated at 25 d after calving.  At 25 d after calving M 

control and ECP cows tended (P = 0.09) to be estrus longer than T ECP cows.  Neither 

ECP treatment nor BCS (P = 0.65 and P = 0.35, respectively) influenced the number of 

mounts received at estrus.  None of the T cows on the C treatment exhibited estrus 
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Luteal Activity after Estrogen Administration 

          There were no significant interactions for luteal activity within 10 d of treatment 

with ECP (ECP treatment x BCS, P =0.62; ECP treatment x d after calving, P = 0.88).  

Treatment of T cows at 25 or 50 d after calving, and M cows at 25 d after calving with 

ECP did not influence (P = 0.53) the percentage of cows with concentrations of 

progesterone > 1 ng/mL in plasma within 10 d after treatment (Table 1).  However, more 

(P < 0.01) M C and ECP treated cows at 25 d after calving had increased (≥ 1 ng/mL) 

concentrations of progesterone in plasma within 10 d after treatment compared with T C 

and ECP treated cows at 25 d after calving. 

          Analysis of plasma progesterone concentrations from d 3 to 7 after treatment with 

ECP or C in cows treated at 25 d after calving had a BCS x Days after treatment 

interaction ( P < 0.0001). Moderate cows increased plasma progesterone concentration 

from d 3 (0.09 ± 0.12 ng/ml) to d 7 (0.73 ± 0.12 ng/ml) while T cows Plasma 

progesterone concentration did not change from d 3 to 7 (0.07 ± 0.12) after treatment 

with C or ECP. All other main effects and interactions were non significant (P > 0.35). In 

the T cows all main effects and interactions were nonsignificant (P > 0.13) except for 

days after calving x days after treatment (P =0.02). Cows that were 25 d after calving had 

no change in plasma progesterone concentration from d 3 to 7 after treatment with ECP 

or C (0.6 ± 0.5 ng/ml). While Cows that were treated at 50 d after calving had plasma 

progesterone that increased from d 3 to d 7 after treatment with ECP or C ( 0.8 ± 0.6, 

0.34 ± 0.6 ng,ml; respectively). 

          There were no interactions for days after calving to resumption of normal luteal 

activity (ECP treatment x BCS, P =0.94; ECP treatment x d after calving, P = 0.85).  
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Cows with moderate BCS resumed normal luteal activity sooner after calving (P < 0.001) 

than thin cows (Table 1).  Treatment of anestrous cows with ECP at 25 d after calving 

increased (P = 0.03) the interval until normal luteal activity regardless of BCS.  

Similarly, treatment of thin cows with ECP at 50 d after calving tended (P = 0.07) to 

increase the interval to normal luteal activity compared with controls (Table 1).  

 

DISCUSSION 

        Treatment of postpartum anestrous beef cows with ECP elicited estrus but did not 

result in luteinization of follicles.  Treatment of dairy cows with estradiol benzoate 

induced estrus in 12 to 16 h (Cook et al., 1986).  Amount of estrogen administered can 

effect the estrous response of animals in similar physiological states.  When large doses 

(≥ 2 mg) of estrogen were administered to ovarectomized cows all cows responded with 

estrus (Short et al., 1973; Nessan and King, 1981; Cook et al., 1987).  However, when 

low doses (< 2 mg) of estrogen were given to ovariectomized cows either estrus was not 

elicited (Nessan and King, 1981) or only a small percentage of cows responded with 

estrus (Cook et al., 1986).  When a moderate dose of estrogen was given a greater 

number of cows responded with estrus (Cook et al., 1986).  Postpartum cows do not 

respond to estrogen like ovariectomized cows.  Nancarrow et al. (1977) observed that 

cows greater than 21 d after calving responded with estrus after administration of 500 µg 

of estradiol benzoate.  However, when the same dose of estradiol benzoate was 

administered to suckled cows, estrus was not initiated until 6 wk after parturition while 

their non-suckled counterparts were in estrus as soon as two wk after calving (Radford et 

al., 1976; 1978).  Administration of 1 mg of ECP caused 58% of 40 d postpartum 
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anestrous suckled cows to respond with estrus (Rubio et al., 2004).  It appears that 

suckled cows do not respond to estrogen administration with estrus as early after calving 

as non-suckled cows. 

          The duration of estrus in the present experiment (< 8 h) was similar to the 5.5 h 

reported by Ciccioli et al. (2003) in postpartum primiparous cows from the same spring 

calving herd.  Length of estrus in this experiment was similar to those of Allrich et al. 

(1989) and Nessan and King (1981) who administered small doses of estradiol benzoate 

to ovariectomized dairy heifers and cows.  The duration of estrus after estradiol 

administration may be dependent on the dose of estrogen administered (Reames et al., 

2005).  Similarly, the duration of estrus increased when larger doses of estradiol benzoate 

were given to ovariectomized dairy cows (Allrich et al., 1989; Nessan and King, 1981). 

However, Cook et al. (1986) observed no difference in duration of estrus after small or 

moderate doses (125, 250 or 500 µg) of estradiol benzoate were administered to 

ovariectomized dairy cows.  

          The number of mounts per estrus (< 10) in the current experiment are less than 

those observed in primiparous cows at the first estrus after calving (Ciccioli et al., 2003).  

Nessan and King (1981) and Allrich (1989) reported between13and 16 mounts received 

per estrus when dairy cows were treated with 200 µg of estradiol benzoate.  However, 

when 0.5 mg of estradiol benzoate was administered the number of mounts received per 

estrus was increased (Allrich, 1989).  There are two possible reasons for the reduced 

number of mounts per estrus in this study when compared with other estrogen induced 

estrus or normal postpartum estrus within the same herd as our study.  The first could be 

that only a few cows were in estrus at a time and this limited behavior and the number of 
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mounts received per estrus.  More animals in estrus at a time results in a greater number 

of mounts that are received by estrous cows (Helmer and Britt, 1985; Floyd et al., 2001).  

The behavioral differences observed between our study and the previous reports could be 

due to differences in concentrations of estrogen in plasma.  As dosage of estradiol 

benzoate increases so does concentration of estrogen in plasma (O’Rourke et al., 2000).  

The type of estrogen administered can also affect the concentration of estrogen  in 

plasma.  Estradiol benzoate results in a quicker initial increase in concentration of 

estradiol in plasma when compared with ECP, which results in a slower release of 

estradiol over a longer period of time in dairy cows (Vynckier et al., 1990; Souza et al., 

2006), 

          Body condition score at parturition had a significant effect on luteal activity within 

10 d of treatment, while estrogen treatment had no effect.  Body condition at parturition 

is the major factor effecting postpartum pregnancy rate (Selk et al., 1988; Spitzer et al., 

1995).  Perpartum BCS has a major influence on postpartum luteal activity (Spitzer at al., 

1995).  Estrogens can elicit the release of a LH surge in ovariectomized cows (Short et 

al., 1973; Forrest et al., 1981) and prepubertal Holstein heifers (Swanson and McCarthy, 

1978).  However, in postpartum suckled cows it is not established as to when the 

hypothalamus becomes sensitive to estrogen and results in the release of LH from the 

pituitary.  Estrogen treatment of beef cows at 2 wk after calving results in LH release 

(Short et al., 1979; Nancarrow et al., 1977) and in dairy cows estrogen treatment between 

2 and 4 wk results in LH release (Zaied et al., 1981).  However, administration of 

estrogen did not induce an LH surge for at least 6 wk postpartum in suckled beef cows 

(Radford et al., 1976; 1978).  Similarly, anestrous suckled beef cows at 40 d postpartum 
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did not respond with luteal activity after a 1 mg dose of ECP (Rubio et al., 2004).  It 

appears that estrogen is unable to cause the release of GnRH that preceded a LH surge in 

postpartum anestrous suckled beef cows.  The pituitary glands of 40 to 45 d postpartum 

suckled beef cows are able to release LH when exogenous GnRH is administered and 

respond with ovulation, or luteinization, of a follicle (Troxel et al., 1980; Wettemann et 

al., 1982), indicating the lack of response to estrogen is not a pituitary disorder.  

          The increase in the interval from calving to normal luteal activity associated with 

estrogen administration, compared with C cows, in the present study has been reported 

for dairy cows (Haughian et al., 2002). The postpartum anovulatory period was increased 

when dairy cows were treated with 10 mg of ECP on 7 d postpartum, and this was 

associated with a decrease in plasma concentrations of FSH (Haughian et al., 2002).  

Exogenous estrogen suppressed plasma FSH concentrations in ovariectomized heifers 

(Bolt et al., 1990) and cyclic heifers (Price and Webb, 1988; Barnes et al., 1990). 

Suppression of FSH and LH secretion by exogenous estrogen may be dose dependent 

elevation of plasma estrogen caused by large doses of exogenous estrogens suppressing 

FSH and LH and lower doses having no effect (Wolfe et al., 1992).  However, Day et al. 

(1990) found that a continuous elevation of estradiol in beef cows from growth 

promoting implant during the first 40 d after calving did not influence days from 

parturition to first normal estrous cycle.  The negative effect of estrogen on plasma 

concentration of FSH and LH may have caused the increase in interval from calving to 

normal luteal activity in the present experiment. Another possible cause for the increased 

interval from calving to normal luteal activity is that ECP regressed the dominant follicle 

(Engelhardt et al., 1998; Rajamahendran and Walton, 1990). The difference in the 
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interval from calving to luteal activity for ECP treated and C cows (13 to 10 d) was 

similar to the duration between follicular waves.  

          In two breeds of sheep with a propensity for either single or multiple ovulations, it 

was determined that each breed had different estrogen requirements to induce estrus and 

the GnRH/LH surge within the brain (Ben Said et al., 2007).  The dose of estrogen 

required to elicit estrus was consistently less than the dose of estrogen required to cause a 

GnRH/LH surge in sheep.  This difference in the concentration of estrogen necessary to 

elicit estrus and a GnRH/LH surge may be related to the induction of estrus without 

ovulation when postpartum cows are treated with moderate doses (0.5 to 1 mg) of 

estrogen.  

        Treatment of suckled anestrous beef cows with ECP increased the percentage of 

cows in estrus at 25 or 50 d after calving.  However, the percentage of cows with luteal 

activity by 10 d after treatment was not effected by ECP treatment.  If cows had a greater 

prepartum BCS, a greater percentage had luteal activity within 10 d after treatment.  

 Treatment of anestrous beef cows with ECP resulted in increased days from parturition 

to normal luteal activity. In postpartum anestrous suckled beef cows estrogen can elicit 

estrus behavior but not a GnRH/LH surge indicating a hypothalamic pituitary 

dysfunction. This dysfunction must be resolved for normal reproduction to occur.  

 

 

 

 

 



Table 1. Influence of BCS at calving and days after calving on estrus and luteal responses to treatment of   
anovulatory postpartum cows  with estradiol cypionate (ECP) 
                                                   25 d               50 d  
                       Thin                        Mod              Thin 
  C ECP C ECP  C ECP 
Cows, n 8 10 9 9  7 6 
Estrus within 4 d, % 0  ac 50   bd 11  a 55  b  0  c 50  d

Estrus within 10 d, % 0  ac 60  bd 33  a 55  b  0  c 50  d

Progesterone > 1 ng/ml with 10 d, % 0  a 0 a 33  b 22  b  29  17  
Calving to normal luteal activity, d  75 ± 6 a e  i 88 ± 5 a f  j 47 ± 3 b g 59 ± 6 b h  81 ± 6 i 91 ± 6 j
a, b Means differ within cows treated at 25 d after calving (P < 0.01) 
c,d Means differ within Thin cows (P < 0.01) 
e, f,g,h Means differ within cows treated at 25 d after calving (P < 0.05) 59

i,j Means differ within Thin cows (P < 0.09) 

  



Table 2. Influence of BCS at calving and days after calving on duration of estrus and number of mounts received by 
postpartum anestrous cows that were estrus within 10 d after treatment with estradiol cypionate (ECP) or controls (C)  
Items  25 d     50 d  
 Thin  Mod  Thin 
 C ECP  C ECP  C ECP 
Cows, n 0 6  3 5  0 6 
Duration of estrus ,h -    3.3 ± 0.6 ac     6.0 ± 3.1 d    7.4 ± 1.4 d  -    7.7 ± 1.9 b 

   4.6 ± 1.3 -     9.6 ± 3.6    8.7 ± 2.7     4.7 ± 1.3 Mounts received, no. - 
a, b Means differ within Thin cows (P < 0.05) 

 Means differ within 25 d after calving( P = 0.09) c, d

 

60



 
CHAPTER IV 

 
 

Effects of nutrient restriction during early gestation on postnatal growth, carcass 

and organ weights of beef steers, and regulation of plasma glucose in yearling calves 

 

Abstract 

         Angus x Hereford heifers were used to evaluate the effect of prenatal nutritional 

restriction on postnatal growth and development. Heifers (15 mo of age) were 

inseminated with semen from an Angus bull. At 32.0 ± 0.5 d of gestation heifers were 

stratified by BW and BCS and allotted to low (L, fed 55% of NRC 1996 requirements, n 

= 10 and 7 in yr 1 and 2, respectively,) or moderate nutrition (M, fed 110% NRC 

requirements, n = 10 and 7). After 83 d of feeding, heifers were commingled and received 

a diet in excess of NRC requirements. Bulls were castrated at birth and calves were 

weaned at 230 ± 7 d of age in yr 1 and 227 ± 7d of age in yr 2 and maintained as a group. 

At 16 mo of age, L (n = 5) and M (n = 5) steers in yr 1 had access to a high-concentrate 

diet ad libitum to a BW of 575 ± 12 kg. Steers were harvested and weights of the empty 

body, heart, lungs and trachea, spleen, kidney, liver, pancreas, and the gastrointestinal 

tract were recorded. Samples of heart, kidney, liver, pancreas, muscle (complexus), KPH 

and subcutaneous fat were stored at -80ºC and DNA in tissues was quantified using 

Hoechst H33258 dye. In yr 2, calves (14 mo) were subjected to an intravenous glucose 

tolerance test and intravenous insulin challenge. Growth data were analyzed with the 
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GLM procedure of SAS and amounts of DNA per tissue were analyzed with the PROC 

MIXED procedure of SAS. Plasma concentrations of glucose and insulin were analyzed 

as repeated measurements using the PROC MIXED procedure of SAS and areas under 

the response curves were calculated using Sigma Plot software. Body weight and BCS 

were similar (P < 0.31) for L and M heifers at the beginning of the experiment in both 

years. At the end of restriction, L heifers weighed less (P < 0.001 and P = 0.01 in yr 1 

and 2, respectively) and had a lower BCS (P < 0.001 in yr1 and 2) compared with M 

heifers. Length of gestation was 274 ± 2 d for L heifers and 278 ± 2 d (P = 0.05) for M 

heifers in yr 1 and was not influenced by restriction in yr 2. Nutrient restriction in early 

gestation did not influence birth weight or postnatal growth of calves in either year. 

Lungs and trachea of steers exposed to L weighed less (P = 0.05, 5.30 ± 0.55 kg) 

compared with M steers (6.35 ± 0.78 kg); weights of other tissues were not influenced by 

treatment. Muscle from L steers had a greater (P = 0.04) concentration of DNA than for 

M steers (0.58 ± 0.02 vs 0.52 ± 0.1 mg/g, respectively). Muscle fiber area of the 

complexus muscle was greater (P = 0.04) in L steers compared with M steers. 

Concentrations of glucose and insulin in plasma after administration of intravenous 

glucose or insulin were similar for L and M calves. Expression of genes regulating fat 

metabolism and glucose uptake in subcutaneous fat were not effected by nutritional 

treatment. However, fatty acid binding protein 4, fatty acid translocase and GLUT 4 were 

down regulated in KPH of L steers compared with M steers. Nutritional restriction of 

heifers during early gestation did not alter postnatal growth rate or regulation of plasma 

concentrations glucose in calves. However, concentrations of DNA in muscle tissue of 
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steers at maturity were greater in animals from dams exposed to restricted nutrient intake 

during early gestation.  

Keywords: Carcass, Growth, Organ Composition, Prenatal Nutrition    

 

Introduction 

          The thrifty phenotype hypothesis is that when fetal environment is poor, there is an 

adaptive fetal response which optimizes growth of key body organs and tissues at the 

expense of other less important tissues (Hales and Barker, 1992). This adaptation can 

lead to altered postnatal metabolism, which may give the animal a greater chance of 

survival when nutrients are limited (Hales and Barker, 2001). However, when nutrients 

are abundant in the postnatal period, this altered metabolism can be detrimental in rodents 

(Hales and Barker, 1992; 2001). 

          Inadequate nutrition of beef cows during gestation can be caused by environmental 

conditions, such as drought or a season decline in forage quality and quantity. The effect 

of inadequate nutrition on prenatal livestock can occur at multiple stages in development. 

Restricted nutrient intake during early pregnancy (d 30 to 125 of gestation) decreased 

fetal weight of calves compared with controls at 125 d of gestation (Ford et al., 2005). 

Inadequate nutrient intake during late gestation (d 145 to 259 of gestation) increased 

bovine placenta weight and decreased fructose in amniotic fluid (Rasby et al., 1990). 

Inadequate nutrition of cows from d 30 to 125 of gestation increased caruncular surface 

density at 250 d of gestation and decreased cotyledonary surface density compared with 

cows fed adequate nutrition (Vonnahme at al., 2007). The number of myofibers were 

reduced and diameter of muscle fibers were increased by early prenatal nutrition 
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restriction in cattle and sheep (Du et al., 2005b; Zhu et al., 2006). Exposure of lambs to 

low nutrition from 28 through 78 d of gestation increased growth rate postnatally, 

increased area under the curve for plasma glucose and decreased area under curve for 

plasma insulin during i.v. glucose tolerance test (Ford et al., 2007). Similarly, average 

daily gains and feed efficiency of steers were increased if they were exposed to 

inadequate nutrient intake during 31 to 120 d of gestation (Underwood et al., 2006). 

Nutrient restriction during gestation of women results in offspring with decreased glucose 

tolerance and increased plasma insulin concentrations at 50 yr of age (de Rooij et al., 

2006). 

         Nutrient restriction from d 1 to 30 of gestation in the ewes decreased adipose GLUT 

4 glucose transporter but had no effect on GLUT 4 in muscle tissue (Gardner et al., 

2005). There are other genes that control substrate passage and utilization in adipocytes 

and the effects of prenatal nutrition have not been evaluated on genes controlling fatty 

acid transport in cattle. Fatty acid binding protein 4 binds to and activates hormone 

sensitive lipase (Jenkins-Kruchten et al., 2003) and has been associated with NEFA 

crossing the plasma membrane into the adipocytes and the utilization of glucose by 

adipocytes (Baar et al., 2005). Fatty acid translocase (CD36) is a transported of fatty 

acids into adipocytes and other tissues and has a function in regulating fatty acid 

esterification and oxidation during insulin stimulation (Bonen et al., 2007). The 

objectives of these experiments were to determine the effect of nutrient restriction during 

early gestation on postnatal growth, glucose regulation, expression of genes associated 

with fat synthesis, and concentrations of DNA and protein in tissues of steers. 
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MATERIALS AND METHODS 

Animal model 

          During two spring breeding season, Angus x Hereford heifers at 15 mo of age were 

inseminated with semen from an Angus sire. At 32.0 ± 0.5 d after AI, pregnancy was 

diagnosed by transrectal ultrasonography (Aloka 500-V with a 7.5-MHz probe; 

Corometrics Medical Systems, Wallingford, CT). Pregnant heifers were stratified by BW 

and BCS and allotted to either low nutrition (L, 55% NRC, 1996,fed 3.71 Mcal of 

NEm·heifer-1·d-1 composed of 3.17 kg of prairie hay and 0.45 kg of a 38% CP soybean 

based protein supplement in a drylot; n = 10 and 7in yr 1 and 2, respectively) or moderate 

nutrition [M, excess of 100%NRC, 1996, ad libitum native grass pasture (Bothriocloa 

caucasica and Sorghastrum nutans); n = 10 and 7 in yr 1 and 2, respectively]. After 83 d 

in yr 1 and 84 d in yr 2, heifers were commingled on native grass pasture and 

supplemented with protein (38% CP) and grass hay to exceed NRC (1996) requirements.  

          Heifers calved during a 31-d period beginning on January 31, 2005 (yr 1) and 

during a 26-d period commencing on January 25, 2006 in yr 2. Bull calves were castrated 

at birth and all calves were weaned at 230 ± 7 d of age (yr 1) or 227 ± 7 d of age (yr 2). 

The L and M calves were maintained as a group after weaning. Body weight was 

recorded after 18 h without feed and water at weaning and throughout the postweaning 

period. 
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Experiment 1 

           Calves born in year 1 were maintained on dormant native range with 2.27 kg of a 

20% CP supplement after weaning until April 15, 2006 when supplementation was 

stopped. Calves were maintained on the same pastures until 16 mo of age. Steers at 

approximately 16 mo of age (L, n= 5; M, n= 5; 341 ± 5 kg ) were transported 15 km and 

L and M steers were placed into two adjacent 12 x 30 m open pens for 135 d at the 

Willard Sparks Beef Research Center, Stillwater, OK. Steers were adapted to a finishing 

diet over a 28-d period and implanted upon arrival and at d 58 on feed with Revalor-S 

(120 mg of trenbolone acetate and 24 mg of estradiol, Intervet, Millsboro, DE). The 

finishing ration was corn and corn distiller’s grain based and contained 1.87 Mcal/ kg 

NEm, 1.23 Mcal/kg NEg, 12.13 % CP and was in excess of NRC (1996) requirements. 

Body weight without feed and water was recorded at entry into the feedlot and then once 

monthly. Steers were harvested at 88 ± 1 wk of age and 1.0 ± 0.3 cm of back fat.  

 

Slaughter and sample collection 

          Steers were harvested in 3 groups within a 5 d period with equal numbers of steers 

per treatment each day. Steers were transported to the Oklahoma Food and Agriculture 

Products Research and Technology Center abattoir 12 h before slaughter. All steers were 

stunned with a captive bolt, exsanguinated, and viscera removed. Weights of blood, feet 

and ears, hide, head, hot carcass weight, lungs and trachea, rinsed heart, esophagus, 

kidney, liver, pancreas, and spleen were recorded. The reticulo-rumen was cut at the 

reticulo-omasal orifice and fat was removed from the forestomach. The reticulo-rumen 

was inverted and rinsed with warm water, excess rinse water removed, and weight was 

 66



recorded. The omasum was removed from the abomasum at the omasal-abomasal orifice, 

its contents were rinsed out with warm water, allowed to drip, and weight was recorded. 

The abomasum was removed from the small intestine at the pyloric sphincter. The 

abomasum was rinsed with warm water, excess rinse water removes, and weight was 

recorded. The small intestine and large intestine were separated from the mesentery. The 

small intestine was separated from the large intestine at the ileocecal junction. Contents 

of the small intestine were squeezed out and the small intestine was looped without 

tension across two stationary boards, with pegs 1 m apart to measure small intestine 

length, and weight was recorded. Contents of the large intestine were squeezed out and 

weight was recorded. The mesentery weight was recorded.  

          Four samples were taken from adjacent tissue from the heart (left ventricle), 

kidney, liver, pancreas, muscle (complexus), KPH, and subcutaneous fat. All tissues were 

collected within 2 h after stunning. Cross sections of kidney tissue contained both cortex 

and medulla. Tissue samples were taken from the right lobe of the liver and random 

places in the pancreas. Samples of subcutaneous fat were collected from over the 

pecteralasis muscle and from around the pelvis. Muscle samples were obtained from the 

complexus muscle on the interior of the neck, on the right side of the carcass after the 

carcass was split. All tissue samples were snap frozen in liquid nitrogen and stored at -

80ºC. Two additional 1.0 x 1.0 cm samples of complexus muscle were fixed in 4 % 

paraformaldehyde in phosphate buffer for 24 h then stored in 70 % EtOH at room 

temperature for 4 mo for histological analysis.  

 

 

 67



Histology 

          Tissue was removed from 70 % EtOH and embedded in paraffin. Then two cross 

sections (10 µm) of muscle were taken 5 sections apart and placed on slides. Sections 

were stained with haematoxylin and eosin and evaluated with a microscope (Olympus 

BX 51, Center Valley, PA). Images were recorded at 40 x magnification using a BP 71 

digital camera (Olympus). Fields were chosen so that the field was composed mostly of 

regular shaped muscle fibers with a minimum of other structures. Muscle fiber area was 

determined in 10 fields per animal utilizing the Image J software (National Institute of 

Health, Bethesda, MD).Muscle fiber area was averaged across the 10 fields to give an 

average muscle fiber area per animal. 

 

Chemical analyses and DNA quantification of tissue samples 

          Tissue DM was determined on 0.5 g samples of tissue by AOAC (1990). Protein 

concentration was determined in 0.2 g tissue samples by Leco Nitrogen Determinator 

(model FP-428; Leco Corp., St. Joseph, MI) in accordance with AOAC (1990). 

Concentrations of DNA were determined by Hoechst Dye 33258 (Argos Organics; 

Trenton, NJ) in a flourospectrometer (ND-3300, Nanodrop Technologies, Wilmington, 

DE wavelength excitation 365 nm and emission 450 nm; LaBarca and Paigen, 1980). 

Five milliliters of ice cold 1 x TNE buffer (100 mM Tris (pH 7.4), 150 mM NaCl, and 0.2 

mM EDTA) was added to two 0.5 g samples of tissue and homogenized on ice using a 

tissue homogenizer (PRO 200; Pro Scientific; Monroe, CT). Homogenates were diluted 

using ice cold 1 x TNE buffer. One hundred µL of diluted homogenate were added to an 

amber colored 1.5 mL microcentrifuge tube (Axygen Scientific, Union City, CA.) and 
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100 µL of a 0.2 µg/mL solution of Hoechst 33258 (dissolved in 1 x TEN buffer) was 

added to each tube, vortexed 5 sec, and incubated for 45 min at room temperature. Two 

microliters of diluted homogenate Hoechst 33258 mixture were placed on the pedestal of 

the Nanodrop 3300 and a relative frequency unit was measured. Calf thymic DNA 

(Rockland labs, Gilbertsville, PA) was used to develop a standard curve (0, 100, 200, 

300, 400, 500, and 700 μg/μL). 

 

Gene expression 

          Tissue from both fat depots (0.5 g) were homogenized on ice in TRIzol 

(Invitrogen, Carlsbad, CA) using a tissue homogenizer (PRO 200; Pro Scientific; 

Monroe, CT). Homogenizer was wiped clean using tissue and 95% ETOH and then ran 

for 5 sec each, twice in 95 %ETOH and again for 5 seconds each twice in distiller H2O 

before samples were homogenized and between samples. Then RNA was extracted from 

tissue using the TRIzol procedures. Tissue [0.5 g of muscle and 1 g of adipose tissue] was 

taken from the freezer and 5 ml of TRIzol was added and tissue was homogenized for 30 

sec on ice.  The homogenate was centrifuged at 6750 x g for 10 minutes and then the fat 

layer that formed on top of the trizol was carefully penetrated and trizol was extracted 

and placed equally in three 2 ml microcentrifuge tube (Axygen Scientific, Union City, 

CA.). Chloroform was added at a rate of 0.2 mL per ml of trizol used (0.33 ml per 

microcentrifuge tube), vortex and incubated at room temperature for 3 min. The 

homogenate was centrifuged at 6750 x g for 30 min at 4°C. The upper aqueous phase was 

transferred and divided between three 1.5 ml microcentrifuge tube (Axygen Scientific) 

and 0.835 ml of isopropyl alcohol was added to each tube. The 1.5 mL tubes were 
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centrifuged at 11,200 x G for 10 min at 4°C. Supernatant was discarded and 1 mL of O° 

C 75% ethanol was added to each tube and vortex to break pellet away from tube. Tubes 

were centrifuged at 11, 200 x g for 5 min at 4°C. Ethanol was decanted and the pellet was 

allowed to air-dry and was dissolved in 50 μL of DEPC water. Quality of RNA was 

determined by ND-1000 (Nanodrop Technologies, Wilmington, DE) and also by 

denaturing agrose gel electrophoresis using 1.5% ethidium bromide-stained agarose gel. 

Fluorescent real time quantitative PCR (RT-PCR) was used to determine mRNA 

expression for fatty acid binding protein 4 (AP2), fatty acid translocate (CD36), and 

C/EBP alpha (C/EBP α) in both fat depots and GLUT 4 in both fat depots and muscle 

(complexus). Expression was quantified using SYBR Green (Qiagen Inc, Valencia, CA).  

Primer sequences are given in Table 1.  Primers were validated for optimum performance 

and the single RT- PCR product was sequenced to assure the amplification of the desired 

product.  Quantification of gene expression for the four genes was accomplished using 

the comparative threshold cycle (Ct) method (Hetting et al., 2001; Ross et al., 2003; and 

Santiago et al., 2005) with 18 S ribosomal  RNA (18 S Ribosonal RNA kit, Eurogentec, 

Philadelphia, PA) used as the house keeping gene for normalization.  

 

Experiment 2 

          Calves born in yr 2 (n = 14) were maintained on dormant native grass pasture with 

2.27 kg of a 20 % CP supplement after weaning until May 15, 2007, when calves were 

transported to the Nutrition Physiology Research Center and maintained in pens with  2 

or 3 calves per pen (2.3 x 4.8 m). Calves were fed 2 kg of chopped prairie hay and 5 kg of 

a supplement (37.6% wheat midds, 25% alfalfa pellets, 15% cottonseed hulls, 15% 
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soybean hulls and 3% soybean meal; 1.34 Mcal/kg NEm, 0.73 Mcal/kg NEg and 14.4% 

CP) in the morning and orts measured daily. After 2 wk adaptation, a polyvinyl cannula 

(vinyl tubing size 11(Bolab, Lake Havasu City, AZ; using a 11 gauge needle) was 

inserted into each jugular vein with sodium citrate as an anticoagulant and calves were 

confined in metabolism stalls (1.2 x 2.1 m). On the second morning following 

cannulation, 1 h after feeding at 0800, blood samples were collected at -15 and 0 min 

before calves were given a bolus i.v. infusion of glucose (intravenous glucose tolerance 

test (IVGTT), sterile 50 % glucose solution at 0.3 g of glucose/kg of BW). Blood samples 

were obtained from the contralateral cannula every 15 min for 2 h after infusion. The day 

after IVGTT, calves were given an insulin challenge (IC) beginning 2 h after feeding. 

Bovine insulin (Sigma, St. Louis MO, 18.6 U/mg) was dissolved in phosphate buffered 

saline (0.15 M, 7.0 pH) with 10 ml of 0.1 1 molar NaOH added to dissolve the insulin. 

The insulin solution was infused at a rate of 0.2 U of insulin/kg of BW in a single bolus 

and cannula were flushed with 15 mL of phosphate buffered saline. Blood samples were 

collected at the same times as for the IVGTT. All blood samples were collected in 

sodium fluoride/oxalate tubes, placed on ice for 3 h or less, centrifuged at 2,600 x g for 

15 min and plasma was removed and stored at – 20 ° C.  Plasma insulin and glucose 

concentrations were quantified in laboratory blocks (each lab block with an equal number 

of animals from both treatments) using a RIA (Bossis et al. 1999) and a colorimetric 

procedure (Affinity glucose regent, Thermal Electron Corp.) respectively. Glucose assay 

intraassay CV was 1.8 % and interassay CV was 3.9 %.  Insulin assay intra- and 

interassay CV were, 10% and 15% respectively 

 

 71



Statistical analyses 

          For Exp. 1 and 2, maternal BW changes were analyzed using the GLM procedure 

of SAS (SAS Inst., Inc, Cary, NC) with treatment in the model. Birth weight, weaning 

and postweaning growth, and gestation length in exp. 1 and 2 were analyzed using the 

Mixed procedure of SAS with treatment, sex and the interaction in the model. For exp. 1, 

weight of the organs at slaughter, carcass characteristics, empty body weight, proximate 

analysis of tissues, muscle fiber area and gene expression were analyzed using the GLM 

procedure of SAS with treatment in the model. Concentrations of DNA and total DNA 

per organ were analyzed using the Mixed procedure of SAS with treatment in the model 

and laboratory assay block as a random variable. 

          For exp. 2, concentrations of glucose and insulin in plasma for the period from -15 

min to 120 min relative to infusion for both the IVGTT and IC were analyzed as a 

repeated measure using the Mixed procedure of SAS with lab assay block as a random 

variable and prenatal nutritional treatment and time in the model. Sex effects were 

cofounded with lab block and could not be determined.    Plasma insulin and glucose for 

both IVGTT and IC were plotted and area under the curve (AUC) was determined for 

insulin and glucose using the trapezoidal rule with Sigma Plot software (SPSS Inc., 

Chicago, IL) and analyzed using the Mixed procedure of SAS. For the AUC -15 and 0 

samples were averaged and this was used as a basal concentration called 0 for calculating 

AUC. For the IVGTT the 0 to 90 min relative to infusion of glucose was used to calculate 

AUC for plasma glucose and for plasma insulin 0 to 60 min was used. For the IC 0 to 120 

min was used for plasma glucose and 0 to 60 for plasma insulin.  To evaluate the 

clearance of insulin and glucose following IVGTT and IC exponential decay was 
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determined using linear regression (prog Reg of SAS) for the log of plasma insulin and 

glucose concentration. Plasma glucose concentrations were analyzed from 15 to 120 min 

after IVGTT and from 45 to 120 min after IC. Plasma insulin concentrations were 

analyzed from 15 to 120 min after IVGTT and 15 to 60 min after IC. The regression 

coefficients for each regression were analyzed using GLM procedures of SAS with 

treatment in the model.  

 

 

Results 

           Maternal BW and BCS from initiation of nutritional treatment until precalving for 

yr 1 and 2 are presented in Table 2. Body weight (P = 0.31) and BCS (P = 0.33) were 

similar for L and M heifers at the start of treatment in yr 1. Body weight (P < 0.001 and P 

= 0.05 for yr 1 and 2, respectively) and BCS (P = 0.008 and P = 0.007 for yr 1and 2, 

respectively) were less in L compared with M heifers after 1 mo of nutritional treatment. 

At the end of treatment L heifers in yr 1 had lost 63 ± 2 kg while M heifers had gained 43 

± 2 kg (P < 0.001). Low heifers lost 26 ± 4 kg in yr 2 while M heifers gained 55 ± 5 kg. 

Low heifers at the end of nutritional restriction had a BCS of 4.3 ± 0.1 in yr 1 and 4.6 ± 

0.1 in yr 2 while M heifers had a BCS of 5.5 ± 0.1 in yr 1 and 5.3 ± 0.1 in yr 2 (P < 0.001 

and P < 0.001 for yr 1and 2, respectively). Precalving BW and BCS were less (P = 0.006 

and P < 0.001, respectively) for L heifers compared with M heifers in yr 1.  Precalving 

BW was not affected (P = 0.63) by nutritional treatment in yr 2 but precalving BCS was 

less (P = 0.04) for L heifers compared with M heifers in yr 2. Gestation length was 
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decreased (P = 0.05, Table 2) by 4 d in yr 1 in L compared with M heifers. Gestation 

length was similar (P = 0.52) for L and M heifers in yr 2. 

           Birth weights were not influenced by treatment in yr 1 (P = 0.31, Table 3) or yr 2 

(P = 0.94, Table 4).  In yr 2, there was a treatment x sex effect (P = 0.05) on birth weight. 

Bull calves from L heifers were heavier than L heifer calves and M bull calves (Table 4); 

L and M heifers’ calves had similar birth weight.  Steers were heavier (P =0.05, Table 3) 

than heifers at weaning (10/6/2005) regardless of prenatal nutrition in yr 1. Average daily 

gain from birth to weaning in yr 1 tended (P = 0.08) to be greater for steers than heifers.  

Neither sex nor nutritional treatment influenced (P ≥ 0.26) weaning weight (9/19/2006( 

or ADG from birth to weaning (P ≥ 0.39; Table 4) in yr 1. Postweaning growth in yr 1 

was not influenced by treatment (P = 0.08 to 0.33) except on January 6, 2006 when BW 

for L calves was heavier (P = 0.05) than for M calves (Table 2). Treatment did not 

influence BW during the postweaning period (P = 0.70 to 0.99; Table 4) in yr 2. Prenatal 

nutritional had no effect (P ≥ 0.14) on average daily gain for yr 1 or 2 (Tables 2 and 3). 

 

Experiment 1 

         Low steers were heavier (P = 0.04) than M steers when started in the feedlot on July 

3, 2006 (Table 3), on August 30, 2006 (P= 0.007), and tended to be heaver at harvest (P 

= 0.07, October 19, 2006). Although L steers were heavier upon entry into the feedlot and 

at harvest, prenatal nutrition did not influence (P = 0.40) ADG during the feeding period 

(Table 3). 

          Hot carcass weight, empty body weight, weight of organs, and weight of organs 

expressed as g of organ / kg of empty body weight are in Table 5. Hot carcass weight and 
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empty body weight were not influenced (P ≥ 0.20) by prenatal nutritional treatment.  The 

lungs and trachea were lighter (P = 0.05, Table 5) when expressed as absolute weight or 

corrected for empty body weight (P = 0.05) in steers exposed to low nutrition during d 32 

to 115 of gestation. Prenatal nutritional treatment did not affect (P = 0.16 to 0.96) the 

weight of all other organs measured (either absolute or on an empty body weight basis, 

Table 5).  Twelfth rib fat thickness , dressing percentage, yield and quality grade (Table 

6) for L and M steers were not influenced (P ≥ 0.24) by nutritional treatment. Similarly, 

LM area and percentage KPH were similar (P ≥ 0.18) for L and M steers. 

         Concentrations of DNA and protein, DNA to protein ratio, DM and lipid in tissues 

are summarized in Table 7.  Complexus muscle from L steers had more (P = 0.02) DNA 

per gram of tissue compared with M steers.  The protein to DNA ratio tended to be 

decreased (P = 0.10) in complexus muscle of L steers compared with M steers while the 

concentration of protein and lipid along with DM did not differ between prenatal 

treatment groups.  Amounts of DNA, protein and lipid, and the protein to DNA ratio in 

heart and kidney were not influenced (P ≥ 0.17) by nutritional treatment. Dry matter of 

the kidney was unaffected by prenatal nutrient restriction, while the DM was decreased 

(P = 0.04) in hearts from L steers compared with M steers. Livers from L steers had 

greater (P = 0.01) concentrations of protein compared with M steers, but DNA 

concentration,  protein to DNA ratio, DM, and lipid were unaffected by nutritional 

treatment (P ≥  0.31). Protein and DNA concentrations along with DM in the pancreas 

was not influenced by prenatal nutrition (P ≥ 0.31), but the amount of total DNA in the 

pancreas of L steers was greater (P = 0.05) compared with M steers. The lipid content of 

the pancreas tended to be decreased (P = 0.07) in pancreases from L steers compared 
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with M steers. The content of DNA, DM and lipid of subcutaneous fat was not influenced 

(P ≥ 0.69) by prenatal nutrition.  However, there tended to be a greater concentration (P 

= 0.09) of DNA in KPH from L steers then M steers. Dry matter and lipid of KPH were 

not influenced (P ≥ 0.19) by treatment. 

          Area of individual fibers in the complexus muscle of the neck was greater (P = 

0.04) in steers exposed to low nutrition from d 32-110 of gestation compared with steers 

exposed to adequate nutrition (Figure 1).  

           Gene expression for fatty acid binding protein 4, fatty acid translocase, C/EBP α 

and GLUT 4 are in Table 8. Abundance of target gene mRNA in subcutaneous fat was 

not affected by nutritional treatment. However expression of mRNA  for fatty acid 

binding protein 4, fatty acid translocase and GLUT 4 were decreased (P = 0.0003, 0.006, 

and 0.009, respectively) in KPH of L steers compared with KPH of M steers. Expression 

of GLUT 4 tended to be increased (P = 0.08) in the complexus muscle from L steers 

compared with M steers  

 

Experiment 2 

         Nutritional treatment did not effect BW of calves before IVGTT (P = 0.79, Table 

4). There was a tendency (P = 0.09) for M calves to have greater concentrations of 

glucose in plasma after glucose infusion (Figure 2a). However AUC from 0 to 90 min 

after infusion for plasma glucose was similar (P = 0.31) for L and M calves during 

IVGTT (Figure 2b). Concentrations of insulin in plasma during IVGTT were similar (P= 

0.55) for L and M calves (Figure 2c) and the AUC (0 to 60 min postinfusion) for 

concentrations of insulin in plasma were not influenced by treatment (P = 0.43; Figure 
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2d). The regression of log transformation of plasma glucose concentration during 15 to 

120 min after IVGTT indicated greater (P = 0.05) clearance rate of glucose from plasma 

after glucose infusion of L calves compared with M calves (-0.0035 ± 0.0002, -0.0029 ± 

0.0002; L and M respectively). Regression coefficients of log transformed plasma 

concentrations of insulin during 15 to 120 min after IVGTT were not influenced by 

prenatal restriction (P = 0.30, 0.0075 ± 0.0008, -0.0058 ± 0.0013; L and M respectively) 

          Concentrations of glucose in plasma after i.v. administration of bovine insulin were 

similar (P = 0.68) for L and M calves (Figure 3b). The increase in plasma insulin 

following i.v. administration of insulin was not affected by nutritional treatment (P = 

0.55; Figure 3a). The AUC for plasma glucose and insulin after infusion of insulin were 

similar (P = 0.92 and 0.52 respectively) for L and M calves (Figure 3c and 3d 

respectively). Log transformation of plasma concentrations of glucose during 45 to 120 

min after IC had similar regression coefficients (P = 0.99; 0.0037 ± 0.004 for both L and 

M calves). Regression of log transformed plasma concentrations of insulin 15 to 60 min 

after IC were not influenced by prenatal nutrient restriction (P = 0.66, -0.021 ± 0.002, - 

0.020 ± 0.00; L M respectively).  

 

Discussion 

         In yr 1, heifers had  BCS at the end of nutritional treatment of 4.3 ± 0.1 and 5.5 ± 

0.1 (L and M, respectively). In yr 2 L heifers had a BCS of 4.6 ± 0.1 while M heifers had 

a BCS of 5.3 ± 0.1.In yr 1 L heifers lost 63 ± 2 kg while M heifers gained 43 ± 2 kg. 

While in yr 2 L heifers lost 26 ± 4 kg while M heifers only gained 55 ± 5 kg. Nutritional 

restriction of heifers in yr 1 resulted in a greater loss of BW and BCS than in yr 2 even 
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thought the same diet was fed both years. The differences in BCS and BW changes could 

be due to the availability of grass before the start of nutritional restriction due to 

differences in rainfall in yr 1 and 2. Gestation length was reduced by prenatal nutrient 

intake by 4 d in yr 1 and was not effected in yr 2.  Birth weights were similar for L and M 

calves in both years. A shortened gestation length of 8 d was reported for cows that 

received a protein deficient diet during 5 to 9 mo of gestation (Waldhalm et al., 1979). 

However, no difference in gestation length or calf birth weight were reported for heifers 

fed a protein deficient diet for the last90 or 140 d of gestation (Carstens et al., 1987; 

Martin et al., 1997).  Decreased caloric intake during the last 90 d of gestation or before 

decreased calf birth weight in cows (Wiltbank et al., 1962, Houghton et al., 1990, Spitzer 

et al., 1995) and in beef heifers (Corah et al., 1975; Bellows and Short, 1978; Kroker and 

Cumming 1979) and reduced gestation length (Hafez et al., 1968; Warrington et al., 

1988). In all the above references the dietary manipulation that resulted in either 

decreased gestation length or reduced calf weight occurred before and during the third 

trimester of pregnancy. However, others have observed that restriction of dietary energy 

starting before the last trimester of pregnancy had no effect on birth weight or gestation 

length (Doornbos at al., 1984; Goehring et al., 1989; Hough et al., 1990). 

          Postnatal growth was not affected by prenatal nutrition in the first trimester in yr 1 

or 2. Growth during the period from birth to weaning and postweaning was not 

influenced by prenatal nutrition. The ADG for the feedlot period was not different 

between treatment groups. Even though average daily gains were similar between 

treatment groups, L steers were heavier at the start of feeding and were 34 kg heavier  at 

harvest than M steers. Steers from cows fed 68% of NEm requirements from d 30 to 120 
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of gestation had greater ADG and gain to feed ratios and tended to have heavier BW at 

harvest than steers from cows fed 100% of requirements (Underwood et al., 2006). 

However, hot carcass weights were similar for the restricted and control groups. Lambs 

exposed to restricted nutrition from d 0 to 30 of gestation or d 110 of gestation to term 

had similar growth rates at 1 yr of age (Gardner at al., 2005). However, wethers from 

ewes exposed to 50% of nutritional requirements from d 28 to 78 of gestation were 

heavier at 4 and 9 mo of age compared with wethers from ewes fed at nutrient 

requirements (Ford et al., 2007). 

          Carcass measurements of steers were not influences  by prenatal nutritional 

treatment in this study.  Underwood et al. (2006) reported similar yield grade, marbling 

score and percentage KPH fat for steers harvested at 12 to 13 mo of age whose dams 

received either 100 or 68% of requirements from d 30 to 120 of gestation.  Nutritional 

restriction of lambs from 60 d before mating to 7-d postmating increased perirenal fat 

mass in lambs at term (Edwards et al., 2005). Nutritional restriction from 28 to 78 d of 

gestation produced lambs with increased back fat at 140 d of age and increased perirenal 

fat and HCW at 280 d of age (Ford et al., 2007). Nutrient restriction from d 110 of 

gestation to term resulted in lambs with increased omental and perirenal fat depots at 1 yr 

of age (Gardner et al., 2005). 

        Lungs and trachea were lighter in steers exposed to low prenatal nutrition during the 

first trimester of pregnancy with no differences in weights of the other organs that were 

measured. Martin et al (1997) found lighter lungs and trachea in calves at birth from 

dams exposed to a protein restricted diet from d 140 of gestation until term. Ewes that 

were exposed to energy and protein restriction from d 28 to 78 of gestation had fetuses 
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with smaller livers, lungs and kidneys at d 78 of gestation, however, the weight of left 

and right ventricles of the heart, as a percentage of fetal weight, were increased  

compared with fetuses from dams  fed to meet requirements (Vonnahme et al., 2003).  

The liver, lungs, kidney and heart weight differences were at mid gestation (148 d on the 

ewe), and therefore differences in organ weight may not be observed at parturition or 

later in the postnatal life. 

          The similar weights of the digestive tract and liver in our study are probably due to 

the same diet being fed during the postweaning and feedlot period of the L and M steers.  

Gastrointestinal tract mass in relation to BW is influenced by DMI or energy density of 

the diet (Hersom et al., 2004).  Physical form and fiber content of the diet appears to 

affect the forestomach through both physical and chemical stimulation (Sainz and 

Bentley, 1997).  Liver mass is dependent on nutrient load and responds with increased 

weight as DMI and energy density of the diet increases (Jones et al., 1985; Sainz and 

Bentley, 1997; Hersom et al., 2004).  An increase in liver mass may be due to increases 

in liver cell size (Burrin et al., 1992; Sainz and Bentley, 1997). Small intestine mass is 

dependent on nutrient load and physical form of the diet and increases via increased 

number of cells (Sainz and Bentley, 1997; McLeod and Baldwin, 2000). 

          Concentration of DNA in tissue can be used as an index of hyperplasia (Enesco and 

Labland, 1962). Protein per unit of DNA in tissue can be used as an indication of 

hypertrophy (Allen et al., 1979). DNA concentration was increased in the complexus 

muscle of steers of L cows. Muscle is a multinucleated tissue so concentration of DNA 

does not indicate the number of cells. The protein to DNA ratio tended to be reduced in 

steers exposed to low nutrition during the first trimester of gestation.  Steers from L cows 

 80



had larger muscle fibers with greater numbers of nuclei. Cell size or number of cells in 

heart, liver, and kidney were not effected by prenatal nutrition,  as indicated by DNA 

concentrations and protein to DNA ratio. Pancreas of L steers had greater total DNA in 

the whole organ then the pancreas of M steers. This is related to L steers having a 

tendency for a heavier pancreas, and indicates that the pancreases of L steers had more 

cells then the pancreases of M steers.  Number of cells per g of subcutaneous fat, indicted 

by DNA concentrations, were not influenced by prenatal nutrition. However, the 

concentration of DNA/g of KPH tended to be greater in L steers compared with M steers.  

This indicates a greater number of adipocytes in the KPH of L steers or less filling of 

adipocytes. 

          Abundance of mRNA for genes affecting fat metabolism and glucose uptake were 

decreased in KPH of steers exposed to L nutrition during early gestation.  Fatty acid 

binding protein 4 binds to and activates hormone sensitive lipase (Jenkins-Kruchten et al., 

2003). Fatty acid binding protein 4 has also been associated with NEFA crossing the 

plasma membrane into the adipocytes and in the utilization of glucose by adipocytes 

(Baar et al., 2005). Fatty acid translocase is a transporter of fatty acids into adipocytes 

and other tissues and has a function in regulating fatty acid esterification and oxidation 

during insulin stimulation (Bonen et al., 2007). GLUT 4 is the major insulin dependent 

sodium linked glucose transporter in tissue. Decreased mRNA abundance in KPH of L 

steers for both fatty acid and glucose transporters, and proteins that influence the activity 

of hormone sensitive lipase, indicate a decreased ability to utilize both NEFA and glucose 

as substrates for fatty acid synthesis in L steers compared with M steers. The down 

regulation of nutrient transporters support the hypothesis that less filling of adipocytes is 
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the cause for the increased DNA concentration in KPH from L steers compared with M 

steers.  The trend towards upregulation of GLUT4 in complexus muscle in L steers 

compared with M steers is opposite the down regulation of fat and glucose transports and 

associated molecules in KPH. 

         Prenatal nutrient availability influences the ability of calves to regulate plasma 

concentrations of glucose at 15 mo of age. Calves exposed to L prenatal nutrition, cleared 

glucose from plasma more rapidly after infusion of glucose compared with M steers. 

Kastner et al. (2004) observed that calves from cows exposed to a high plane of nutrition 

from d 78 to 174 of gestation, had greater concentrations of plasma glucose before and 

during IVGTT at weaning and postweaning compared with calves exposed to moderate 

prenatal nutrition. Energy and protein restriction from d 28 to 78 of gestation in ewes 

resulted in wethers that had a greater AUC for plasma glucose compared to control 

animals in response to (IVGTT) at 63 and 250 d of age (Ford et al., 2007), indicating an 

inability to move plasma glucose into body tissue via insulin dependent mechanisms. The 

AUC for plasma insulin was greater at 63 d of age in nutrient restricted wethers than 

controls but was decreased at 250 d of age indicating a lower insulin production after 

stimulation by elevated plasma glucose concentrations. Nutrient restriction of ewes from 

d 1 to 30 of gestation did not alter metabolic response to feeding or to IVGTT in lambs at 

11 mo of age; however, nutrient restriction from d 110 to term resulted in lambs with 

increased AUC for plasma glucose and insulin (Gardner et al., 2005). This response to 

IVGTT in late gestation nutrient restricted lambs was associated with decreased adipose 

GLUT 4 glucose transported but no difference in GLUT 4 in muscle tissue. 

 82



          In summary, Nutritional restriction of beef heifers to 55% of NRC 

recommendations from d 32 to 110 of gestation shortened gestation length in yr 1 but not 

in yr 2 and did not affect birth weight in either year.  Restricted nutrient intake of heifers 

during early gestation did not influence postnatal growth of calves. Carcass traits of steers 

were not affected by prenatal nutritional intake of dams. The lungs and trachea were 

smaller in steers from dams fed 55 % of NRC requirements from d 32 to 115 of gestation. 

Concentrations of DNA were increased and protein: DNA tended to be decreased in 

muscle when dams received 55% of NRC recommendations during early gestation. 

Muscle fiber area was increased in L steers compared to M steers. Gene expression for 

fatty acid binding protein 4, fatty acid translocase, and GLUT 4 were decreased in KPH 

of L steers compared to M steers at 22 mo of age. Glucose regulation at 15 mo of age was 

affected by prenatal nutritional intake of dams. Calves from L cows had a greater rate of 

glucose disappearance from plasma after IVGTT compared with calves from M cows. 

          This experiment clearly links BCS and BW changes of pregnant heifers fed a 

restricted diet to changes in gestation length, organ and tissue composition and gene 

expression of KPH. Nutritional restriction during the first trimester of pregnancy altered 

muscle formation in 22 mo old steers as indicated by muscle fiber area and 

concentrations of DNA and DNA to protein ratio in the adult animal.  Gene expression 

was altered in KPH from L steers compared with M steers indicating possible metabolic 

changes in the KPH fat.  The change in gene expression and DNA concentrations in KPH 

support a lack of filling of adipocytes in KPH from L steers compared with M steers.  

However, growth and carcass composition at 22 mo of age was not influenced by 

prenatal nutrition. Glucose regulation at 15 mo of age was influenced by prenatal 
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nutrition. This indicates that some effects of maternal undernutrition from d 32 to 115 of 

gestation may start to be observed at 15 mo of age but may develop further later in life. 
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Table 1. Sequence of primers1 used for RT PCR gene expression evaluation in tissues 
from steers exposed to Low or Moderate nutrition during early gestation. 

Gene Sequence Temp 
Accession 

# 
C/EBP α FWD primer 5' ATCTGCGAACACGAGACGTCCATC 60°C 281677 
 REV primer 5' GTAGTCAAAGTCGTTGCCGCCT   
CD 36 FWD primer 5' CAATGGAAAGGACGACATAAG 60°C 281052 
 REV primer 5' TGGAAATGAGGCTGCATCTGT   
AP2 FWD primer 5' AAGCTGCACTTCTTTCTCACC 60°C 281759 
 REV primer 5' GACCACACCCCCATTCAAAC     
Glut 4 FWD primer 5' TCACCTTAGTCTCGGTGTTCTTGG 60°C 282359 
  REV primer 5' AGATGGCCACAATGGAGACATAGC     
1 All primers were made by IDT (San Diego, CA  
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Table 2. Body weight (kg), body condition score, and gestation length of 
heifers exposed to Low or Moderate nutrition during d 32 to 115 of gestation 
in yr1 and 2 

 Trt   
Variable Low  Moderate SE P value 
Yr 1 n = 10 n = 10   
   BW at start of treatment (6/9/04) 390 381 12 0.42 
   BW on 7/14/04 347 405 13 < 0.001 
   BW on 8/31/04 328 424 12 < 0.001 
   BW change during treatment -63   43 4 < 0.001 
   BW on 12/3/04 401 445 15 < 0.01 
   BW on 1/27/05 418 459 15 < 0.01 
     
   BCS at start of treatment (6/9/04) 5 5.1 0.1 0.33 
   BCS on 7/14/04 4.7 5.3 0.2 < 0.01 
   BCS on 8/31/04 4.3 5.5 0.2 < 0.001 
   BCS on 12/3/04 4.5 5.1 0.2 < 0.001 
   BCS on 1/27/05 4.4 4.9 0.2 < 0.001 
     
   Gestation, d 274 278 1 0.05 
     
Yr 2 n = 8 n = 8   
   BW at start of treatment (6/7/05) 386 365 22 0.31 
   BW on 7/14/05 363 405 22 0.05 
   BW on 8/17/05 360 420 23 0.012 
   BW change during treatment1 25 57 2 < 0.001 
   BW on 10/4/05 383 442 20 < 0.01 
   BW on 1/23/06 500 511 27 0.63 
     
   BCS on 7/14/05 4.9 5.4 0.1 < 0.01 
   BCS on 8/17/05 4.6 5.3 0.01 < 0.001 
   BCS on 10/4/05 4.7 5.3 0.1 < 0.01 
   BCS on 1/24/06 4.9 5.2 0.1 0.04 
     
   Gestation, d 273 274 1 0.52 
1 BW were measures at d 71 of restriction    



 Table 3. Birth weight, weaning and postweaning weight and ADG of calves from Low or                     
Moderate prenatal nutrition in yr 1 

P value               Treatment        
                    Low               Moderate     
 Steers Heifers Steers Heifers     
Date n = 5 n = 5  n = 5  n = 5   trt Sex trt*sex
Birth weight, kg 31.4 ± 1.1    31.3 ± 1.1 32.1 ± 1.3    33.1 ± 1.3  0.31 0.73 0.64 
   10/6/05 (weaning) 223 ± 12     210 ± 8    218 ± 3     199 ± 6  0.32 0.05 0.70 
   1/6/06    267 ± 8     258 ± 5    256 ± 5     246 ± 3  0.05 0.09 0.89 
   3/9/06    285 ± 6     278 ± 5    277 ± 3     273 ± 9  0.33 0.40 0.77 
   4/13/06 308 ± 6 290 ± 4 300 ± 4 281 ± 4  0.08 0.001 0.93 
         
ADG, kg/d         
   Birth to 10/6/05 0.81 ± 0.04    0.75 ± 0.04 0.84 ± 0.02    0.79 ± 0.02  0.14 0.08   0.9  
   10/6/05-1/6/06 0.46 ± 0.04    0.25 ± 0.05 0.41 ± 0.04    0.51 ± 0.07  0.55 0.18 0.73 
   1/6/06-3/9/06 0.30 ± 0.04    0.32 ± 0.03 0.34 ± 0.03    0.48 ± 0.17  0.28 0.33 0.49 
   3/9/06-4/13/06 0.07 ± 0.01    0.04 ± 0.01 0.07 ± 0.01    0.01 ± 0.03  0.52 0.03 0.53 87

   10/6/05-4/13/06 0.68 ± 0.24    0.43 ± 0.03 0.44 ± 0.03    0.44 ± 0.04  0.33 0.30 0.30 
         
BW of steers in the feedlot, kg         
   7/3/2006    349 ± 5     332 ± 5   0.04   
   7/31/2006    410 ± 5     400 ± 6   0.31   
   8/30/2006    485 ± 6     450 ± 7   0.007   
   10/19/2006    594 ± 12     560 ± 11   0.07   
         
ADG, kg/d         
   7/03-7/31 2.15 ± 0.30  2.44 ± 0.06   0.32   
   7/31-8/30 2.53 ± 0.09  1.69 ± 0.17   0.002   
   7/03-8-30 2.34 ± 0.14  2.04 ± 0.08   0.10   
   8/30-10/19 2.16 ± 0.11  2.19 ± 0.18   0.89   
   7/03-10/19 2.26 ± 0.13  2.11 ± 0.11   0.40   

 



Table 4. Birth, weaning and postweaning BW and ADG of calves from low or moderate prenatal nutrition in yr 
2 

P value               Treatment       
                  Low                Moderate     
 Steers Heifers Steers Heifers     
Date n = 5 n = 2 n = 2 n = 5   trt Sex trt*sex
birth wt, kg 37.5 ± 1.6 34.5 ± 0.9 30.6 ± 0.7   33.9 ± 0.6  0.94 0.03 0.05 
   9/19/2006(weaning) 241 ± 13    228 ± 2    210 ± 7    228 ± 8  0.86 0.26 0.25 
   10/30/2006 282 ± 15    263 ± 5    246 ± 7    270 ± 12  0.89 0.39 0.22 
   12/5/2006 291 ± 14    267 ± 1    251 ± 8    277 ± 9  0.94 0.32 0.11 
   4/4/2007 324 ± 12    301 ± 9    281 ± 2    303 ± 10  0.99 0.15 0.12 
   5/15/2007 355 ± 10 328 ± 13 333 ± 15    329 ± 10  0.7 0.11 0.09 
   5/22/2007    355 ± 9 340 ± 14 311 ± 14    333 ± 9  0.79 0.05 0.13 
         
ADG, kg/d         
   birth to weaning 0.90 ± 0.06 0.85 ± 0.03 0.78 ± 0.03 0.87 ± 0.03  0.39 0.79 0.23 

88

   9/19/06-10/30/06 1.00 ± 0.06 0.86 ± 0.06 0.86 ± 0.01 1.00 ± 0.12  0.98 0.98 0.22 
   10/30/06-12/5/06 0.24 ± 0.07 0.11 ± 0.17 0.14 ± 0.02 0.21 ± 0.10  0.97 0.77 0.38 
   9/19/06-12/5/06 0.62 ± 0.05 0.66 ± 0.08 0.61 ± 0.02 0.60 ± 0.04  0.6 0.77 0.67 
   12/5/06-4/4/07 0.23 ± 0.02 0.29 ± 0.08 0.25 ± 0.05 0.22 ± 0.02  0.95 0.36 0.33 

 



P value 

Table 5. Influence of low or moderate prenatal nutrition from d 32 to 115 of gestation on carcass weight, 
empty body weight and weight of the organs in kg and on a empty body weight basis 

                Treatment a        Treatment b  

Measurement Low Moderate 
P 

value  Low moderate 

       

Animal, no 5 5   5 5  
Hot carcass 346 ± 22 335 ± 23 0.49     
Empty Body 514 ± 27 493 ± 22 0.20     
Hide  44 ± 1 39 ± 1 0.02  86 ± 3 80 ± 3 0.14 
head 16.5 ± 0.3 16.2 ± 0.3 0.57  32 ± 1 33 ± 1 0.46 
blood 19 ± 1 17 ± 1 0.12  37 ± 2 35 ± 2 0.48 
feet and ears 15 ± 1 13 ± 1 0.32  29 ± 3 26 ± 3 0.52 
Lung and trachea 4.3 ± 0.5 6.3 ± 0.8 0.05  10.5 ± 0.6  13.0 ± 0.9 0.05 
Heart 2.5 ± 0.3 2.4 ± 0.2 0.59  4.8 ± 0.4 4.8 ± 0.4 0.89 
Esophagus 0.4 ± 0.1 0.4 ± 0.1 0.44  0.8 ± 0.2 0.8 ± 0.2 0.65 
Reticulo-rumen  13.7 ± 1.9  13.3 ± 2.0 0.74  26.6 ± 2.9  27.1 ± 4.4 0.86 
Omasum 4.2 ± 1.3 4.3 ± 1.1 0.96  8.1 ± 2.2 8.6 ± 2.3 0.74 
Abomasum 2.7 ± 1.4 2.2 ± 0.7 0.49  5.2 ± 2.9 4.4 ± 1.4 0.59 
Small intestine 6.8 ± 0.9 6.2 ± 1.2 0.35  13.3 ± 1.6  12.6 ± 2.3 0.56 
Large intestine 6.6 ± 1.3 5.2 ± 1.7 0.16  12.9 ± 2.2  10.5 ± 3.4 0.22 
Kidney 1.3 ± 0.2 1.2 ± 0.1 0.19  2.5 ± 0.3 2.4 ± 0.3 0.45 
Liver 8.7 ± 1.0 8.6 ± 0.5 0.78  17.0 ± 1.2  17.5 ± 0.5 0.43 
Pancreas 0.6 ± 0.2 0.4 ± 0.1 0.17  1.2 ± 0.5 0.8 ± 0.2 0.19 
Spleen 1.0 ± 0.1 1.5 ± 0.9 0.31  2.1 ± 0.3 3.0 ± 1.8 0.28 
Mesentary  18.9 ± 4.5  19.2 ± 1.4 0.91  36.9 ± 8.5  39.1 ± 3.8 0.6 

0.84  39.3 ± 3.0 Small intestine length, m  39.0 ± 1.5 

 = wt expressed as g of tissue / kg of EBW 

a = wt expresses as kg 
b
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Table 6. Influence of low or moderate prenatal nutrition on carcass characteristics of 
steers at 580 kg 

                   treatment     
 Low Moderate    

P value Carcass measurements n = 5 n = 5   
Dressing percent       60.0 ± 1.7     61.7 ± 2.9 0.28   
Yield grade         2.5 ± 0.4       2.7 ± 0.3 0.28   
Marbling score  11.6 ±0.2 11.2 ± 0.2 0.24   
LM area ,cm2       86.8 ± 3.1     82.3± 6.1 0.18   
Fat thickness at 12th rib, cm         1.0 ± 0.3      1.0 ± 0.2 1.00   
KPH, %         1.3 ± 0.5      1.6 ± 0.2 0.22   
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Table 7. Concentration of DNA, protein, protein to DNA ratio, dry matter, and lipid of 
tissues collected from steers at 88 wk of age exposed to moderate or low  nutrition from   

d 32-110 of gestation  
 Treatment    
 Low  Moderate    
 n = 5  n = 5 P values 
Muscle     
   DNA, mg/g          0.58 ± 0.02         0.52 ± 0.02 0.02 
   Protein, mg/g         189.9 ± 3.24       190.6 ± 4.02 0.89 
   Protein:DNA           331 ± 15          370 ± 15 0.10 
   DM, %          21.7 ± 0.8         21.3 ± 0.7 0.71 
   Lipid, %          3.10 ± 1.02         1.87 ± 0.54 0.32 
Heart       
   DNA, mg/g           0.51 ± 0.03         0.49 ± 0.03 0.34 
   DNA in whole organ, g          1.26 ± 0.91         1.16 ± 0.91 0.33 
   Protein, mg/g        177.7 ± 0.95       177.2 ± 2.09 0.82 
   Protein:DNA           347 ± 27          367 ± 27 0.69 
   DM, %          17.0 ± 0.2         18.3 ± 0.7 0.04 
   Lipid, %          0.53 ± 0.21         0.48 ± 0.15 0.84 
Liver       
   DNA, mg/g          3.07 ± 0.39         3.25 ± 0.39 0.52 
   DNA in whole organ, g        30.44 ± 2.20       27.77 ± 2.20 0.31 
   Protein, mg/g        197.7 ± 1.92       184.0 ± 3.47 0.01 
   Protein:DNA          53.4 ± 7.0        49.3 ± 7.0 0.48 
   DM, %          24.8 ± 0.7        24.4 ± 0.8 0.74 
   Lipid, %          1.87 ± 0.57        1.82 ± 0.44 0.95 
Kidney       
   DNA, mg/g          6.20 ± 0.51        6.39 ± 0.51 0.77 
   DNA in whole organ, g          8.05 ± 0.80        7.41 ± 0.80 0.62 
   Protein, mg/g         156.6 ± 1.21      154.2 ± 4.01 0.59 
   Protein:DNA          32.8 ± 2.6        29.2 ± 2.6 0.39 
   DM, %          17.7 ± 0.6        16.8 ± 1.3 0.55 
   Lipid, %          1.47 ± 0.20        1.04 ± 0.20 0.17 
Pancreas       
   DNA, mg/g         3.79 ± 0.40        4.24 ± 0.40 0.34 
   DNA in whole organ, g         2.41 ± 0.51        1.64 ± 0.51 0.05 
   Protein, mg/g        167.3 ± 4.10      159.3 ± 6.22 0.31 
   Protein:DNA         46.3 ± 5.1        39.1 ± 5.1 0.29 
   DM, %         25.4 ± 5.2        26.1 ± 3.0 0.91 
   Lipid, %         5.72 ± 1.07      12.62 ± 3.04 0.07 
Subcutaneous fat       
   DNA, mg/g         0.56 ± 0.10        0.50 ± 0.10 0.72 
   DM, %         69.3 ± 5.1        72.1 ± 4.5 0.69 
   Lipid, %         92.5 ± 2.1        93.4 ± 1.4 0.72 
KPH fat       
   DNA, mg/g         0.38 ± 0.05        0.32 ± 0.05 0.09 
   DM, %         92.8 ± 1.0        92.3 ± 0.9 0.69 
   Lipid, %         99.1 ± 0.3         99.4 ± 0.01 0.19 



Table 8. Quantitative RT-PCR analysis of gene expression for fatty acid binding protein 4 (AP2), fatty 
acid translocase (CD36), C/EBP α and GLUT 4 in subcutaneous and pelvic fat from steers at 22 mo of 

age exposed to either low or moderate prenatal nutrition  
Tissue Gene Treatment n ΔCt 1 Fold Difference 2 P value  

KPH Low 4 6.67 ± 0.39    -5.48 ± 0.39 0.0003 
 

AP2 
Mod 5 4.21 ± 0.13 1.00 ± 0.13  

 Low 4 11.19 ± 0.43    -3.85 ± 0.43   0.006 
 

CD36 
Mod 5 9.55 ± 0.29 1.00 ± 0.29  

 C/EBP α Low 4 18.59 ± 1.27    -1.88 ± 1.27   0.16 
  Mod 5 16.72 ± 0.38 1.00 ± 0.38  
 GLUT 4 Low 4 20.57 ± 0.33    -2.89 ± 0.33   0.009 
  Mod 5 19.04 ± 0.25 1.00 ± 0.25  
       
Subcutaneous Fat Low 5 6.47 ± 0.75    -1.33 ± 0.75   0.69 
 

AP2 
Mod 4 6.05 ± 0.60 1.00 ± 0.60  

 Low 5 11.65 ± 0.56    -1.12 ± 0.56   0.85 
 

CD36 
Mod 4 11.49 ± 0.65 1.00 ± 0.65  

 C/EBP α Low 4 16.88 ± 0.21    -1.56 ± 0.21   0.60 
  Mod 4 17.10 ± 0.34 1.00 ± 0.34  
 GLUT 4 Low 5 18.94 ± 0.34    -1.18 ± 0.34   0.80 
    Mod 4 18.70 ± 0.98 1.00 ± 0.98   
       

 

 Muscle GLUT 4 Low 4 13.30 ± 0.38 2.56 ± 0.38   0.08 
   Mod 4 14.43 ± 0.38 1.00±0.38 

 
 
 1 ΔCt = Ct for target gene - Ct for normalization control, 18S 

2 Fold difference  = 2 -ΔΔCt    
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CHAPTER V 

CONCLUSION 

          Treatment of suckled postpartum anestrous beef cows with estradiol cypionate at 

either 25 or 50 d postpartum increased the percentage of cows in estrus.  However, the 

percentage of cows with luteal activity by 10 d after treatment with estradiol was not 

affected by treatment.  A greater percentage of cows that calved with a BCS ≥ 5 had 

luteal activity within 10 d of treatment with estrogen and were in estrus longer than cows 

that calved with a lower BCS.  Cows that calved with a greater BCS had a shorter interval 

from calving to resumption of normal luteal activity.  Treatment of anestrous beef cows 

with estradiol cypionate increased the days from parturition to normal luteal activity.  

Treatment of postpartum anestrous cow with estradiol resulted in estrus behavior without 

subsequent luteal activity.  This indicates that within the hypothalamus estrogen is not 

able to stimulate a surge of GnRH that will produce the preovulatory LH surge. This 

malfunction of the hypothalamus may be partially responsible for an extended interval 

from calving to first ovulation. 

          Maternal nutrient restriction (55% of NRC recommendations for energy) from d 32 

to 115 of gestation decreased maternal BW and BCS in heifers.  Birth weight of calves 

was not influenced by nutritional treatment in either yr of a 2-yr experiment.  Gestation 

length was reduced by 4 d in yr 1 but was not effected by nutritional treatment in yr 2.  

Weaning weights, postweaning weight, and ADG from birth to weaning or during the 
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postweaning period were not influenced by prenatal nutritional treatment in both yr 1and 

yr 2.  Low steers were heavier when started in the feedlot and tended to be heavier at 

harvest compared with M steers; however, ADG during the feeding period was not 

affected by prenatal nutrient intake of steers. 

          Hot carcass and empty body weight were similar for L and M steers when 

harvested at 88 wk of age with 1 cm of fat thickness at the 12th rib.  Lungs and trachea of 

L steers were lighter then lungs and trachea of M steers.  All other organs measured were 

similar for L and M steers.  Carcass characteristics were not influenced by prenatal 

nutritional treatment.  The complexus muscle from L steers had a greater concentration of 

DNA and the DNA to protein ratio tended to be less compared with M steers.  Total DNA 

in the pancreas was greater in L steers compared with M steers.  There tended to be more 

DNA in KPH fat from L steers then M steers.  Muscle fiber area of the complexus was 

greater in steers exposed to L nutrition from d 32 to 115 of gestation compared with 

steers exposed to adequate nutrition.  Abundance of mRNA for fatty acid binding protein 

4, fatty acid translocase, C/EBP α and GLUT 4 in subcutaneous fat was not influenced by 

nutritional treatment.  However, abundance of fatty acid binding protein 4, fatty acid 

translocase and GLUT 4 were decreased in KPH of L steers compared with M steers 

          Low and M calves had similar area under the curve for plasma glucose and insulin 

during intravenous glucose tolerance test (IVGTT).  However L calves had a greater 

clearance rate of glucose from plasma compared with M calves. This was supported by 

the tendency for M calves to have greater concentrations of glucose in plasma during 

after IVGTT. Concentrations of insulin in plasma during IVGTT were similar for L and 

M calves and area under the curve for plasma insulin concentration were not influenced 
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by prenatal treatment.  The decrease in plasma glucose after i.v. administration of bovine 

insulin was similar for L and M calves. The increase in plasma insulin following i.v. 

administration of insulin was not affected by prenatal nutritional treatment. The area 

under the curve for plasma glucose and insulin during i.v. insulin administration were 

similar for L and M calves. 

          Nutritional restriction during the first trimester of pregnancy altered muscle 

formation as indicated by increased muscle fiber area, greater concentrations of DNA, 

and reduced DNA to protein ratio in the adult animal.  Kidney, pelvic, and heart fat gene 

expression was altered in L steers compared with M steers indicating possible metabolic 

changes in the KPH fat.  However, growth and carcass composition at 22 mo of age was 

not influenced by prenatal nutrition, indicating the full effects of maternal undernutrition 

from d 32 to 115 of gestation may not be observed until later in life.  This is important for 

producers that calve during the fall.  In Oklahoma fall calving cows are rebreed 

beginning in December.  After breeding cows are allowed to lose BCS and BW until the 

emergence of adequate pasture in the spring.  This reduction in BCS and BW may effect 

the calves growth and final carcass composition depending on postnatal management and 

environment. 
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composition were determined for L and M steers in yr 1. In yr 2 plasma glucose 
regulation was evaluated using intravenous glucose tolerance test and also response to 
intravenous injection of bovine insulin. 
 
Findings and Conclusions:  Treatment of suckled postpartum anestrous beef cows with 
estradiol at either 25 or 50 d postpartum increased the percentage of cows in estrus, 
however, the percentage of cows with luteal activity by 10 d after treatment was not 
influenced.  Cows that calved with a greater BCS have a shorter period from calving to 
resumption of normal luteal activity.  Treatment of anestrous beef cows with estradiol 
cypionate increased the days from parturition to normal luteal activity.  Maternal nutrient 
restriction from d 32 to 115 of gestation decreased maternal BW and BCS of heifers.  
Gestation length was reduced in yr 1 but was not effected by nutritional treatment in yr 2.  
Weaning weights, postweaning weights, and ADG were not influenced by prenatal 
nutritional treatment. Lungs and trachea of L steers were lighter then the lungs and 
trachea of M steers.  The complexus muscle from L steers had increased concentration of 
DNA per gram of muscle, the DNA to protein ratio tended to be reduced and increased 
muscle fiber area was increased compared with muscle from M steers. Abundance of 
fatty acid binding protein 4, fatty acid translocase and GLUT 4 mRNA were decreased in 
kidney pelvic fat of L steers compared with KPH of M steers.  Low and M calves 
responded similar to intravenous glucose tolerance test. Nutrient restriction during early 
gestation changes muscle development and metabolism of KPH in steers at 22 mo of age. 
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