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CHAPTER |

INTRODUCTION

Listeria monocytogenes is a Gram-positive, facultative, intracellular foodborne
pathogenic bacterium known to cause listeriosis in humans. Listeriosis occurdwehen t
bacterium is ingested via contaminated foods and 99% of the listeriosis casesvene
to be foodborne (Mead et al., 1999). Infection vidtlmonocytogenes can also lead to
septicemia, possibly followed by meningitis, meningoencephalitis, and aghtal
nervous system disorders (Armstrong and Fung, 1993). It is a major threat to
immunocompromised patients, pregnant women and newborns, resulting in high
mortality ratesL. monocytogenesis capable of causing substantial problem to the food
industry by contaminating the foods including raw produce, poultry, meat ayd dair
products leading to food recalls. Reportedly, an approximate of 2,500 human illresss cas
and 500 deaths occur annually in the United States (Mead et al., 1999). Because of its
high fatality rates, U.S regulatory agencies have established a "zrant®@" for the
species in ready-to-eat (RTE) foods (FDA, 2008). Therefore, it is impootahetk the
contamination and prevent human iliness. The identification of atypical, virulént cel
formsof L. monocytogenes in clinical or food samples is of paramoimportance due to
the severity of listeriosis in predisposed individuals and the uncertaintytees to t
infectious dose of this pathogebiacterium (McLauchlin, 1997; Rowan and Anderson,

1998). To prevent contamination and track transmission of sourtesnohocytogenes
1



within food-processing plants it is important to differentiate the straihs of
monocytogenes by subtyping. To characterize this foodborne pathogen several methods
have been developed. The current methods to differentiate strains includeausiltil
sequence typing (MLST), pulsed-field gel electrophoresis (PFGE)lzotgtping (RT).
These DNA-based methods differentiatenonocytogenes at the subspecies or strain

level which target nucleotide variations at endonuclease restriction pe dhefcterial
subtypes by using either PCR amplification or by defihingionocytogenes strains by

their unique banding patterns.

Listeria is often present on raw meat ingredients and has been a recurring problem
in meat processing facilities. Some strain&.ahonocytogenes have shown to attach to
abiotic surfaces with different levels of adherence, regardless ofs(dlass, rubber
and stainless steel) encountered in meat processing facilitieinge the formation of
biofilms (Borucki and Call, 2003; Gamble and Muriana, 2007). Based on their ability to
attach to abiotic surfacéssteria can be classified as strong or weak which can be
guantified using microplate fluorescent assay (Gamble and Muriana, 2007). In tbe bioti
systems virulent nature &f monocytogenes is determined by their ability to adhere,
invade and multiply in the nonprofessional phagocytes which depend upon the
production of virulence factors.

The two most important steps in the pathogenedis mbnocytogenes are
adhesion and invasion to host tissues. Adhesion helps in colonizing non-professional
phagocytic cells, whereas invasion allows bacteria to gain entry into ogbsion of
intestinal epithelial is the first step in the establishment of infectidn bynocytogenes

(Racz et al., 1972) and degree of invasiveness in the epithelial cells canctetedr

2



with its virulence potential (Finlay et al., 1988; Moulder, 1985). Since cellular adigere
is the first stage of infection with. monocytogenes we were interested to see whether the
strong adherence observed with abiotic surfaces would also facilitate rcatiblerence

and aid virulence.

However, correlation between abiotic adherence and cellular adherenel as w
invasion is not well studied. Virulence of different strain&.ahonocytogenes can be
compared by using various virulence models which include cell-line based asdays a
various animal models. More recently, several cell lines such as human abkigdi 2,
HelLa and Caco-2 have been considered suitable for the evaluation of adherence, invasion
and virulence of.. monocytogenes (Gaillard et al., 1987; Kathariou et al., 199@)vivo
studies done by infecting mice following intravenous (i.v.) intraperitoneal (i.pgtiops
and oral route of inoculation are considered to be highly sensitive assays fotiegalua
the pathogencity df. monocytogenes (Audurier et al., 1980; Hof and Hefner, 1988;
Lammerding et al., 1992).

The major route of invasion &f monocytogenes following intragastric
inoculation is through the Peyer’s patches and other gut-associated lympbioas ti
(MacDonald and Carter, 198@). monocytogenes will then translocate to the spleen and
liver from there it will disseminate to different organs via lymphaticyatfs (Marco et
al., 1992). Replication df. monocytogenes mainly occurs in hepatocytes and spread cell-
to-cell forming infectious foci. Development of infectious foci in liver andeple
depended on the virulence of the strain, amount of inoculum and sensitivity of the mice
strain (Cheers and McKenzie, 1978). In the hepatocytes >90% of bacteriecaes &y

neutrophils during the first 24 hours of infection (Conlan and North, 1991). The

3



remaining bacteria which are not killed by neutrophilic attack are inizedaby
hepatocytes where they undergo intracellular replication. However, it isnkinatvall
strains ofL. monocytogenes are not equally virulent and their virulence can be
determined by their invasiveness and ability to gnowivo (Barbour et al., 2001; Larsen
et al., 2002; Roche et al., 2003; 2005). Thus, it is essential to stuishwikie virulence
of L. monocytogenes originated from raw meat sources. Informationmwivo studies
indicating the virulence df. monocytogenes isolated from various meats and adhering to
abiotic surfaces is limited. Considering the significancie. ofionocytogenes as a food
borne pathogen, it is important to investigate the effect of high ddsem@hocytogenes
following oral inoculation of mice.

The purpose of this study was to examine straihsstdria isolated for 13
months from three meat processing facilities for adherence and molegiray by
PFGE to assess if the recurrence of isolates correlates to adherencigegrapmg our
microplate adherence assay. In this study we examined the phylogen&tidnests of
strains ofL.. monocytogenes isolated from various sources using DNA sequencing-based
subtyping methods. These DNA-based methods define bacterial subtypes by PCR
amplification, sequence analysis or restriction digestion of bacterial DgArterate
DNA fragment banding patterns. Typing pathogenic bacteria from environmentaes
involved in food processing may help establish strains that are persistent ahdvaay
harborage sites within the processing facility.

Examining the correlation between adherence and virulence for strong adyg wea

adherent strains a&f. monocytogenes will help to assess the real risk posed by this



pathogen found in foods.Thus, it is essential to study the virulerncemohocytogenes

originated from raw, RTE meat and meat processing facilities.



CHAPTER Il

REVIEW OF THE LITERATURE

Listeria monocytogenes. foodborne pathogen

Listeria monocytogenes is a Gram-positive, facultative, intracellular, pathogenic
bacterium capable of causing severe invasive disease known as ‘listeribsimans.
Consumption of foods contaminated witisteria is a dominant cause of listeriosis.
According to the Centers for Disease Control and Prevention (CDC), 28% of the annual
death toll caused by known foodborne pathogens includes nearly 2,500 cases of listeriosis
and about 500 deaths in the United States (Mead et al., 1999). Although the U.S. Food
and Drug Administration (FDA) recently proposed an acceptable ‘defect V)0
cfu/gm for this organism in foods, there still remains a ‘zero-toletdoce.
monocytogenes in ready-to-eat (RTE) foods (FDA, 2008).monocytogenesis one
among the six species of gerusteria that included.. ivanovii, L. innocua, L. seeligeri,
L. welshimeri andL. grayi species (Vazquez-Boland et al., 2001). Out of tHese,
monocytogenes is the major human pathogen dndvanovii is an animal pathogen for
sheep and cattle (Schmid et al., 2005).

This review is to highlight the key research findings about listeriosis, thefrole
Listeria asa food pathogen, the occurrencd.ofmonocytogenes, distribution and

transmission in meat processing plants, attachment on abiotic surfacesingubyyp



different phenotypic and genotypic methods, virulence factors contributing to
pathogenesis, and methods for evaluating virulence of straimsviiyo andin vivo

approaches.

Listeriosis

Sporadic and epidemic listeriosis in humans may show mild symptoms in healthy
individuals, yet show serious infections in immunocompromised people (Roberts and
Wiedmann, 2003). The majority of infections remain asymptomatic, or present as very
mild non-invasive forms of intestinal infections (Roberts and Wiedmann, 2003; Vazquez-
Boland et al., 2001). People at risk include pregnant women, newborns, elderly people,
persons with weakened immune systems, as well as cancer, diabetes, kichssy gibé
patients on immunosuppressive drugs during organ transplantation and those undergoing
chemotherapy. Early symptoms of listeriosis in humans are usuallyassowith flu-
like symptoms, fever, headache, muscle aches, and occasional gastroirggstptams
such as nausea or diarrhea. During later stages of infection the symptomsiagibste
may show as stiff necks, meningitis, meningoencephalitis and septiceulizngein
high mortality rates due to bacteria crossing blood brain barrier @¥illinger,

1966; Macdonald and Carter, 1980; Marco et al., 1991).

Occurrence ofListeria monocytogenes in meat
Various environmental sources can harbanonocytogenes including food and

food processing environments. Within a food processing plant, it usually can be found in



a wide variety of reservoirs potentially contaminating finished products aedddts
(Fenlon, 1999). The occurrencelofmonocytogenes in common RTE foods may vary,
however several studies have indicated that 1 to 5% of commonly consumed RTE foods
may contairl. monocytogenes (Pinner et al., 1992; Soriano et al., 2001; Wilson, 1995).
The prevalence df. monocytogenes contamination in a Danish turkey processing plant
was reported to be 7.3% in RTE and 17.4% in raw products (Ojeniyi et al., 2000). In the
United States, approximately 50% of raw beef and pork was reported to dantain
monocytogenes andListeria spp. (Ryser et al., 1996). A survey showed an overall
prevalence rate df. monocytogenes in various RTE foods to be 1.82% (Gombas et al.,
2003). The bacterium has the ability to survive for long periods of time under adverse
environmental conditions, such as low pH, high salt concentration and will even grow
under refrigeration temperatures in lightly salted and chilled food prodwesid& and
Jones, 1986). This organism can also survive freezing and dry conditions (Dickson,
1990).

Several studies have shown that RTE food products can be cross-contaminated
with L. monocytogenes in a processing plant environment from a variety of sources (air,
drains, raw materials, workers) (Gahan and Collins, 1991; Wendtland, 1994). The
consumption without cooking and the limited shelf life of RTE foods under refrigeration
allow Listeria to grow in high numbers and make such products frequent vehicles of

infection (Rocourt et al., 2003; Vazquez-Boland et al., 2001).



Distribution of L. monocytogenes in the food processing plants

Distribution of this pathogen within a food processing plant is mainly due to the
persistent nature of certain strainslafmonocytogenes leading to cross contamination
within the environment of food processing areas and ultimately to food products. Sites of
contamination within food processing plants include conveyors, coolers, anddreezer
along with machinery used for slicing, packaging, and dicing (Autio et al., 1999;
Miettinen et al., 1999b; Tompkin et al., 1999). Non-food contact surfaces within the
processing environment such as floors, walls, trucks, drains, shoes, doors and door
handles, sanitizing floor mats, and foot baths have also been shown to be poditive for
monocytogenes (Hood and Zottola, 1995). Some complex surfaces of processing
machines are difficult to sanitize and may end up sustaining contaminationdaalse
months or years (Autio et al., 1999; Miettinen et al., 1999a). Thus, strdins of
monocytogenes strains causing persistent contamination that may not be found in raw

materials can be repeatedly recovered in RTE meats (Nesbakken et al., 1996)

Transmission ofL. monocytogenes in meat processing plants

Contamination of finished product with monocytogenes in various RTE
processing plants as well as their dissemination pattern has been repogietah s
studies (Lappi et al., 2004b; Thimothe et al., 2004). The presence of persistentstsains
reported to be the primary reason for finished product contamination (Lappi et al.,
2004a). As demonstrated in several studies, the major contamination sources fat finishe
products include the processing environment, raw materials, and food handling practice

and cross contamination by employees (Autio et al., 1999; Dauphin et al., 2001; Lappi et



al., 2004a; Norton et al., 2001b; Thimothe et al., 2004; Vogel et al., 2001). The
transmission of L. monocytogenes can also occur through water and transgaovting
materials such as raw shrimp in and out of a processing plant (Destro et al., 1996).
Tracing the dissemination of Listeria, Nesbakken et al, (1996) charactd/33 strains
of L. monocytogenes in five meat processing plants using Multilocus Enzyme
Electrophoresis (MEE) method and isolated the bacteria from deboned frashhae
production environment, wastes from slicexdd cuts and cured dried sausages. They
observed that the strains from one of the five plants producing cold cuts wersafé@e
electrophoretic types (ET) found in fresh meat, along the processing chain and the
product stressing the importance of disinfecting the whole processimg chai
DisinfectingL. monocytogenes contaminated surfaces can be a difficult task when
the bacterium is present at every step of processing for over a year degpitegcand
disinfection efforts as seen in a pork processing plant by Giovannacci et al. (1999).
Similarly (Lappi et al., 2004a) reported difficulty in removingmonocytogenes in a
meat-bone separator using routine disinfection procedures. It's occuimaage meats
and prevalence both in slaughter houses and in the processing environment makes it
almost impossible for the total removal of this organism (Doyle, 1988; Johnson et al.,
1990). Thus the prevention bf monocytogenes in products and processing equipment
should be based on avoiding the colonization and further persistemrecessing
equipment. Also, the presence of non-pathogerderia spp. in meat processing plant
environments has been reported by various studies. For example, during 1987, USDA-
FSIS tested 2,300 environmental samples from 40 meat processing $aaildieeported

21% of the samples being positive fosteria spp. (Tompkin et al., 1992). However,

10



their presence in foods can still be of major concern as it may indicate the @ossibl
presence off. monocytogenes (Curiale and Lewus, 1994; Duffy et al., 2001). Frequent
isolation ofListeria spp. including-. monocytogenes from floor drains and floors in food
processing facilities suggest that these areas could serve as redentogteria (Norton

et al., 2001a; Rorvik et al., 1997; Thimothe et al., 2004). Cleaning and disinfecting of
these areas should be done thoroughly but care should be taken to avoid using high-
pressure hoses since such practices readily promote the sptegdrcd to nearby areas
through splashing and the generation of aerosols (Gravani, 1999). In the meat industry, L
monocytogenes is therefore regarded as the most troublesome microorganism to be
controlled during processing. Persistent strains adhere more efficeathyatic surfaces
of stainless steel even after short contact times than the non-persisiest(siunden et

al., 2000).

Attachment of bacteria to abiotic surfaces

The persistence a@f. monocytogenesin a processing plant is often due to their
ability to form biofilms on a variety of surfaces allowing for resistato sanitizing
agents and increased survivability (Aase et al., 2000; Blackman and Frank, 1996j Boruc
and Call, 2003). Several strainsLofmonocytogenes can adhere to almost all food
contact surfaces with the involvement of the polysaccharide and proteingsairhe
ability to adhere to various abiotic surfaces such as glass, polypropylene, eutgber
stainless steel common in food processing plants may also be mediateddpeoidio-
(hydrophobic) interactions (Chae and Schraft, 2000; Frank and Koffi, 1990; Kalmokoff et

al., 2001; Mafu et al., 1990). The level of adherence however, varies regardless of the
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type of surface (glass, plastic, rubber, stainless steel) or temperatudéferent strains

of L. monocytogenes have been shown to attach to abiotic surfaces with different levels
of adherence (Gamble and Muriana, 2007). Within a processing fdcistsr,ia strains
may find harborage sites and adhere to food surfaces such as tables, utehgipgestee
and vessels resulting in biofilm formation that poses a high risk of contaminadichg f

products (Arnold and Bailey, 2000).

Molecular subtyping of L. monocytogenes and methods used

The persistence @f. monocytogenes strains in various sites of a food processing
facility can be established by genotyping methods. Several DNA basecutaole
methods have been used for genotyping.ohonocytogenes and such methods usually
define bacterial subtypes by PCR amplification, sequence analytigtias digestion
of genomic DNA or DNA fragment banding patterns. This molecular subtgppgach
can differentiate bacterial isolates at sub-species or strain fegpidemiological
studies. It also helps to understand the source of transmission during an outbreak or to
identify the relationship between isolates implicated in an outbreak, and mliff¢icn of
strains within a food processing industry (Fenlon, 1999; Revazishvili et al., 2004;
Swaminathan et al., 2001). Many molecular methods have been developed including,
serotyping, multilocus sequence typing (Maiden et al., 1998), pulsed-field gel
electrophoresis (Brosch et al., 1996; Graves and Swaminathan, 2001) and ribotyping

(Bruce et al., 1995a; Wiedmann et al., 1997).
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Serotyping

Serotyping involves differentiating strains based on their antigenic detesiina
and identifying each strain serologically. The antigens produced are lipoteacids,
membrane proteins, and extracellular organelles such as fimbriae arid {|8geliger
and Hohne, 1979). There have been at least 13 serotypeswiocytogenes identified
but three serotypes (1/2a, 1/2b and 4b) are responsible for nearly 95% of all reported

cases of human listeriosis (Gellin and Broome, 1989).

Multilocus sequence typing

Multilocus sequence typing (MLST) is a DNA sequence-based subtyping method,
developed and used by Maiden et al. (1998) to characterize the naturally inatdéor
Gram-negative pathogeNgisserria meningitides. In this subtyping method, DNA
sequencing of multiple housekeeping genes or virulence genes is used tmiikitie
bacterial subtypes and to determine the genetic relatedness of ispates (1999;
Zhang et al., 2004). Ability to detect all genetic variations within an amplifiedigehe
major advantage of MLST and the sequence data obtained is less ambiguous atwl easier
interpret via this approach (Spratt, 1999). Data obtained by MLST is portable through
web-based databases thereby making it easier to compare results entitfeearch
groups for phylogenetic analyses (Salcedo et al., 2003; Zhang et al., 2004). The use of
MLST for subtyping foodborne pathogens, includingnonocytogenes has been reported
in several studies (Cai and Wiedmann, 2001; Meinersmann et al., 2004; Revazishvili et
al., 2004; Salcedo et al., 2003; Zhang et al., 2004). Due to conserved nature of

housekeeping genes lof monocytogenes, the MLST schemes may not provide
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satisfactory discriminatory power to differenti&temonocytogenes strains that are

closely associated with food contamination and human listeriosis (Meinerstralnn e
2004; Salcedo et al., 2003). Therefore, virulence or virulence associated genes can be
used that provide improved discriminatory power of MLST-based subtyping of
monocytogenes (Zhang et al., 2004). Salcedo et al. (2003) showed that analysis of seven
housekeeping genes was required to differentiate fifteen epidemidipgiceelatedL.
monocytogenes strains and Cai et al. (2002) achieved the same resolution by using a

single virulence genactA.

Pulsed-field gel electrophoresis

Pulsed-field gel electrophoresis (PFGE) is a typing method used for aiimpa
typing in molecular epidemiology of bacterial pathogens especially outhirei&ssand
hospital epidemiology (Struelens, 1998; Tenover, 1995). PFGE was developed by
Schwartz and Cantor (1984) based on the lysis of agarose plugs containing genomic
DNA of L. monocytogenes which is digested with selected restriction enzymes
recognizing few sites along the chromosome, generating largednagmf DNA (10-800
Kb) that cannot be separated effectively by conventional electrophoresisugike pl
containing the digested DNA are transferred into an agarose gel and eleasephor
16-18 hr with alternating currents. The orientation of the electric fietukathe gel is
periodically changed (pulsed), allowing DNA fragments on the order of megabase pa
to be effectively separated according to size (Lai, 1989). On the basis of didtiAct
band patterns, PFGE classifiesnonocytogenes into subtypes or pulsotypes, providing

sensitive subtype discrimination (Brosch et al., 1996; 1994; Graves et al., 1994).
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Restriction enzymeascl andApal are often used fdr. monocytogenes (Brosch et al.,

1994) which cut DNA yielding between 8 and 25 large DNA bands respectively ranging
from 40 to 600 kb (Wiedmann, 2002). Fingerprinting by PFGE has been very useful for
the precise characterizationlafmonocytogenes (Brosch et al., 1991a; Brosch et al.,

1994; Buchrieser et al., 1993; Carriere et al., 1991). A national network known as
‘Pulsenet’ has been developed by CDC and health departments in the UnitedbStates t
rapidly exchange standardized PFGE subtype data for isolates of foodborne pathogens
(Swaminathan et al., 2001). It is considered as the current gold standard method for
molecular subtyping of most foodborne bacterial pathogens, includimgnocytogenes
because of its high discriminatory power and reproducibility (GernediSznal., 2006).

The main disadvantages of PFGE are with regard to the technical demands and the long
time (>30 h) required for performing the procedure itself (Tenover,et995). Usually,
PFGE requires two to four days before results are available and also nexal&zede
equipments that are more expensive than those required for PCR or Southern
hybridization. The results produced are suboptimal for inter -laboratory coonpsgrand

can be subjective because it is based on banding patterns (Noller et al., 2003)iAlso, i
difficult to compare PFGE banding patterns among research groups due to usage of

different experimental protocol and analytical tools.

Ribotyping
Of all the subtyping methods available today ribotyping is considered as
standardized subtyping method. Since ribosomal RNA is present and highly conserved i

all bacteria, the method is commonly used for subtyping of different bacieeicies.
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Discrimination of ribotyping depends on species and on choice and number of restriction
endonucleases used. In this subtyping method genomic DNisteffia is extracted and
digested using restriction enzynteoRlI, Pvull or Xhol into many pieces generating
fragments of approximately 1-30kb size. These DNA fragments are tharats by gel
electrophoresis, transferred to a nylon membrane and hybridized with an apelyppria
labeled copy DNA (cDNA) probe derived from thscherichia coli gene that encodes
ribosomal RNA (rRNA) by reverse transcriptase. Thus, the resulting Bawling

patterns are based on only those DNA fragments that contain the rRNA gener(iGrim

and Grimont, 1986). An automated ribotyping system has been developed by DuPont
Qualicod™ (Wilmington, DE, USA) in 1995 that can process eight samples
simultaneously. The automated device creates riboprints that are matcloedpared to
those of known strains stored on computer software (Bruce, 1996). Automated ribotyping
has been used for subtypibgmonocytogenes but it is expensive and not as

discriminatory as PFGE (Inglis T.J., 2002).

Comparison of PFGE, MLST and RT

For subtypind-. monocytogenes, choosing a method of MLST, PFGE or RT
depends on several factors including the ability of the method to give desiresl. fesult
example, PFGE can differentiate straing afnonocytogenes that are indistinguishable
by housekeeping-loci-based MLST (Revazishvili et al., 2004; Salcedo et al., 2208 Z
et al., 2004) as the nucleotide conservation in housekeeping genes limits the
discriminatory power of MLST. The restriction enzymfesl andApal used in PFGE

generate 8-14 fragments and 11-23 fragments respectively (Broschlé84db) whereas
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EcoRI enzyme used in ribotyping generates only 7-9 fragments (Bruce £2@bb).

This indicates that enzymes used in PFGE have more cutting sites in the DNA of
monocytogenes thanEcoRI has in the rRNA genes. It has thus been reported that the
discrimination power of ribotyping has not been adequate in epidemiological cases
especially among serotype 4b isolaté ofmonocytogenes (Louie et al., 1996). Moreover,
ribotyping has lower resolving power than PFGE because ribosomal operontessver
than 0.1% of the chromosomal DNA and tend to cluster in one particular region of the
genome. The resulting DNA banding patterns are thus based on only those DNA
fragments that contain rRNA genes (Tenover et al., 1995). Compared to ribotyping,
PFGE is less automated and labor intensive requiring greater experinkéhntial s

addition, the interpretations of the PFGE banding patterns differ betweerchessa
(Gravesen et al., 2000). Even recently developed protocols take approximately 30 hours
to perform (Graves and Swaminathan, 2001; Graves et al., 1999). However, Graves and
Swaminathan (2001) reported that PFGE is the standard subtype method for
monocytogenes and it provides sensitive subtype discrimination. On the other hand,
compared to PFGE and RT, MLST is less ambiguous and easier to interpret as this
method is sequence based (Ward et al., 2004). The advantage of DNA sequencing-based
methods over DNA fragment size-based typing methods is low cost of sequartting a
hence MLST is being used more for subtyping and phylogenetic studies. Althaigh ea

of the subtyping procedures has its own approach to the trackingnohocytogenes

strains, the combined use of two or more procedures may provide more discrimination

than any single subtyping method.
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Genetics of listeriosis pathogenesis and virulence bf monocytogenes

Factors that are involved in pathogenic mechanisim wbnocytogenes, entry
into the host cell, lysis of phagocytic vacuoles, intracellular movement in tiyelaymic
environment and cell-to cell spread and evade immune system, have been well
documented (Roberts and Wiedmann, 2003). The surface associated proteins amd secrete
proteins ofl.. monocytogenes are involved in interacting with the host and nearly 4.7% of
all its genes encode surface proteins which have been recognized asnmpatiance
factors (Cabanes et al., 2002). All of the virulence determinahtsmonocytogenes are

chromosomally encoded.

Role of PrfA

Positive regulatory factor AP(fA) is the sole regulator of the virulence genes
identified inL. monocytogenes. PrfA is a 27 kD protein encoded by {réA gene. The
prfA gene is situated immediately downstream of, and sometimes co-toaabseiih, the
plcA gene.lt regulates genes within the virulence gene cluster that hprifoitself,
plcA, hly, mpl, actA andplcB. PrfA is also known to regulate cell-wall associated
internalins (nlA andinlIB), secreted internalingn{C) and activates the transcription of
genes involved in hexose phosphate uptake and bile salt hydrdlasesrulence genes
of L. monocytogenes (PrfA, PIcA, hlyA, Mpl, ActA andPIcB) are clustered in a 9-Kbp
fragment of the bacterial chromosome referred to akitheria pathogenicity island
(Fig. 2) (Chakraborty et al., 2000). All of these genes are co-ordinatelated)lly
PrfA, the transcriptional activator encoded by phi& gene (Portnoy et al., 2002;

Vazquez-Boland, 2001).
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All of these virulence factors participate in specific wayshie infection process,
and in addition each may also affect host cell signal transduction in ways thate i

spread of infection (Kuhn and Goebel, 1999).

Role ofinlA

Internalin A is part of the internalinmultigene family consisting of imiénA, B,
C,D, E, F, G, Hand J. ThelA andinIB are located in the same locus while the
remainders are on different loci.Internalin A is 88 kD surface proteins amebised in
the entry ofL. monocytogenes into mammalian cellsEvidence shows thatlA is
involved in entry of the pathogen into epithelial cell line (Caco-2 cells) whaniéa
promotes the entry of noninvasive bacterial gatls mammalian cells and cause
internalization of inert particleBramsi et al. (1995) suggested that inlA mediates entry
into Caco-2 cells by introducing tiil A gene into the non-invasi\e innocua which
was capable of invading Caco-2 cells. Thlé surfaceprotein belongs to a large family
of leucine-rich repeats (LRR) proteins and is covalently anchored to theateMhe
receptor present on cell wall is E-cadherin, which is a transmembrapgitein
normally involved in cell-cell interactions (Schubert et al., 2002). The amino acideorol
in position 16 of E-cadherin of humans, guinea pigs, and rabbits is crucial fortioterac
with the leucine-rich repeat of inlA. In mice, the proline residue in the position 16 i
replaced with Glutamic acid thus, InlA-mediated invasion does not occur in thisspece
Entry ofLListeria into cells involves interaction between the LRR region of internalin and
the first ectodomain of human E-cadherin. E-cadherins interact at adbguactions of

polarized epithelial cells (Cossart and Lecuit, 1998). The terminal 35 aminmééies
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cadherin are required for entrylofteria into cells. The latter portion binds ftecatenin
which recruitsu-catenin that in turn interacts with actin. Actin polymerization during

internalin -mediated entry is Rac- dependent and mediated by Arp2/3.

Role ofinIB:

Internalin B (InIB) is another surface protein that interacts with thethelar
ligands. It possess N-terminal signal sequence and LRR repeats, &itethanal
domain carries three repeats of 80 amino acid long starting with GW (Glyeprpats
(called GW module). The GW module acts as an anchor and remains attached to the
membrane lipoteichoic acid of the cell wall (Portnoy et al., 1988). The 69 kD iatBipr
helpsListeria to invade epithelial cells (Vero, HEp-2, HeLA), endothelial cells and
hepatocytes (Bierne, 2002; Cabanes, 2002; Parida, 1998)hdalBvo mammalian
receptor proteins; gC1g-R which is the binding partner for the globular hetids of
complement and hepatocytes growth factor (HGFR), Met, a family agihe kinase
(Shen et al., 2000). When Met receptor binds to inIB on the host cell surface, it then leads
to a signaling cascade causing activation of several proteins. Among thestdc
proteins, phosphoinositide (PI) 3-kinase is known to cause changes in the actin
cytoskeleton of the host cells and has been shown to be directly responsible for entry of
L. monocytogenes into cells by zipper mechanism (Ireton et al., 1996). Cytochalasin D

inhibits actin recruitment and prevents bacterial entry.
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Listeriolysin O (LLO)

Listeriolysin O (LLO) is a sulfhydryl (SH)-activated pore-formingriaysin
with a molecular mass of 58-60 kD secreted protein which allows the bacteriunape esc
from a phagocytosis vacuole (Berche et al., 1988). LLO is encodel¢ bgne, which is
under direct control gbrfA. LLO is a member of the cholesterol —dependent pore-
forming toxin which is very similar to perfringolysin O (PFO) fr@tostridium
perfringens, ivanolysin O fronL.ivanovii, pneumolysin frongtreptococcus pneumoniae
and streptolysin O (SLO) froi&reptococcus pyogenes (Gilbert, 2002). LLO molecule
oligomerizes in the membrane forming a pore that resulting in theysisll IMutations
within the LLO genelfly) results in mutants that is unable to escape from phagosomes
(Gedde et al., 2000; Michel et al., 1990). Thus, loss of LLO production is correlated with
avirulence (Portnoy et al., 1988). Active at pH 5.5 and having undetectable tiemoly
activity at neutral pH, LLO is a toxin which actsly on cholesterol containing
membranes in which cholester®kconsidered the receptor (Tilney and Portnoy, 1989).
monocytogenes has evolved such that its hemolysin is most active at a pH which would
be encountered within the acidic phagolysosomal vacuoles. Expression of optimal
activity upon acidification of the vacuoles would allowmonocytogenes to disrupt the
phagolysosomal membrane and escape into the cytodlasmnocytogenes disrupts the
phagosomal membrane within 30 min after it has been internalized (Gaillard1&84al),
and within 2 h half of the internalized bacteria can usually access the hestaglasm
(Tilney and Portnoy, 1989). To survive and maintain its intracellular life, dtyle
monocytogenes must escape from the phagosome and evade the adverse effect of the

phagolysosomal environment.
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ActA

Actin polymerization protein (ActA) ia 90 kDsurface protein required for actin
polymerization and allowistracytoplasmic movement &f monocytogenes and is under
direct control fprfA (Cossart, 1995). It is polarly distributed on the bacterial surface and
controls the actin polymerization (Domann et al., 1992). It functions to recruit and
activate host proteins necessary for polymerization of F-actin asserabtings an
“actin tail” which allows movement of bacterial cells within the host ggthsol.
Although actin polymerization is initiated at the bacterial surface, depdbatien at the
distal end of the actin tail limits the length of this structure (Tilney.e18980). The
mutant strains with defectivactA expression are unable to accumulate actin, and thus

fail to infect adjacent cells.

Phospholipases

L. monocytogenes secretes two types of phospholipase C which are
phosphatidylinositol-specific phospholipase C (PI-PLC) and phosphatidylchpkogis
phospholipase C (PC-PLC) which are responsible for membrane disruption. PS-#LC
29 kD enzyme that require zinc as a cofactor and is active at a pH range of 8-T. iBI-P
a 33-36 kD enzyme, encoded by pteA gene which is regulated lpyfA and is present
only in L. monocytogenes arldivanovii. PI-PLC aidd.. monocytogenes in escape from
the primary vacuole by destroying the lipid bilayer membrane of phagosbereas PC-
PLC aids in destruction of the double membrane vacuole during cell-to-asdspi
Liseria (Smith et al., 1995). PI-PLC is synthesized in an active form whereas PGPLC

produced as an inactive precursor. PC-PLC is synthesized as a pro-enzyme and i
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activated by a secretd&d monocytogenes metalloprotease (Mpl) (Vazquez-Boland et al.,
2001). Mpl is a zinc-dependent metalloprotease which is a co-factor for PA-PLC.
monocytogenes cells that are unable to express both PLCs demonstrate a marked defect in

vacuolar escape from human epithelial cells such as HelLa cells.

Role of other molecules involved in adhesion and invasion

One of the new protein Vip is required for the invasion of Caco-2 and L2071 cell
lines (Cabanes et al., 2005). It is LPXTG-anchored cell wall protein and Gp#6 is t
cellular receptor. Several autolysins including amidase Ami and Auto are shidwen t
involved in virulence. Ami exhibits Iytic activity dn.monocytogenes cell walls and
mutants are attenuated in a mouse model of infection, indicating that Ami plays an
important role in virulence (Milohanic et al., 2001). Auto is anothenonocytogenes
GW anchored autolysin that is necessary but not sufficient for invasion (Cabahges et a
2004). Another surface protein known as p104 has been indentified and shown to play a

role in adhesion to intestinal cells (Pandiripally et al., 1999).

Virulence of L. monocytogenes and Cell culture virulence assays

Incidences of listeriosis outbreak due to ingestion of contaminated foods strongly
suggest that the infection is initiated via the intestinal route (Farberederkin, 1991;
Gaillard et al., 1987). As the ability of strainsLoimonocytogenes to invade epithelial
cells correlates with their virulence (Finlay et al., 1988; Moulder, 1985), the

investigations of virulence are mainly studiaditro by their invasion of human colon
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carcinoma cell line Caco-2, and imywivo infection of either immunocompromised or
immunocompetent mice by following the strain’s subsequent growth in spleen or liver
tissues (Gaillard et al., 1987; Roche et al., 2001; Stelma et al., 1987; Van Langertdonck e
al., 1998). When virulent strains bf monocytogenes cultures are inoculated orally or
intragastrically they may either survive in liver and spleen and causefxttissue

damage or death of the mice and these virulent strains have shown to invade is@mmal
cellsin vitro (McLauchlin et al., 2004). However, various straintisferia have been
reported to show variable degrees of virulence (Brosch et al., 1993) and correlation
between invasion of tissue culture and the mouse models has been establishedby sever
studies (Conner et al., 1989; Pine et al., 1991; Roche et al., 2001; Van Langendonck et
al., 1998; Vonkoenig et al., 1983). Mice infected with oral inoculatidn of

monocytogenes suggests that the small intestine is the primary site of invasion and an
inflammatory reaction of phagocytic cells in the underlying lamina prapiiae caecum

and colon can be observed (Vazquez-Boland et al., 2001).

Virulence assay using cell culture was used to measure the abllity of
monocytogenes to adhere, invade and cause cytopathogenic effects in the enterocyte-like
cell line Caco-2 (Pine et al., 1990) and to form plaques in the human adenocarcinoma cell
line HT-29 (Roche et al., 2001). The pathogenic potentilal ofonocytogenes can be
evaluated using different cell lines (e.g., hepatocyte Hep-G2, mageiika J774,
epithelial Henle 407 and L2), the human colonic carcinoma cell line Caco-2, the most
widely used cell line to study analysislofmonocytogenes virulence (Gaillard et al.,

1987). This cell line has been used in various attachment studies due to their ability to

exhibit spontaneous vitro enterocytic differentiation characteristics and appears to be
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most susceptible tb. monocytogenes infection (Conte et al., 2000; Milohanic et al.,

2001; Mounier et al., 1990; Pandiripally et al., 1999; Pinto et al., 1983). Pine at al. (1991)
observed that Caco-2 cells were at least 10-fold more efficient at mgdiat

internalization which is mainly due to enterocyte-like cells being the mosthjeoipdtial

site of entry in patients with foodborne listeriosis. It has been observed thattvirule

strains are more capable of adhering and entering Caco-2 and other celigyaae t

also more efficient in escaping from vacuoles, undergoing intracellulartgrand

spreading to neighboring cells (Liu et al., 2006).

The initial step in pathogenesis is the adhesidn afonocytogenes to intestinal
epithelial cells. Proteins involved in the adhesioh.afionocytogenes to Caco-2 cells are
encoded by thami gene (Milohanic et al., 2001) and thisteria adhesion protein (LAP)
(Pandiripally et al., 1999). Othéersteria spp. has shown adherence capabilities without
invading human epithelial cells (Meyer et al., 1997). The presence of LAPrpirotei
innocua suggested that even non- pathogémgteria spp. have adherence capabilities to
cells (Pandiripally et al., 1999).

Cell culture assay is mainly performed to examine the ability of the pathoen to
attach and invade the cell line. Adhesion assay is performed by growing con#élient
monolayer in the wells of a cell culture plates. Cell monolayers are infedtedifferent
ratios of the pathogen and incubated for different time points’at .3&fter incubation
the loosely adherent cells are removed by wasing the cell monolayer ®tithes using
phosphate-buffer saline (PBS). The monolayer is treated with Triton-X 100 (0.t61%
release surface attached bacteria which are then plated out on agabypkeeal

dilution .For invasion assay monolayer preparation and infection is similar to @ahesi
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assay. After washing the monolayer with buffer to remove loosely attaeliedhe

monolayer is treated with gentamicin antibiotic to kill extracellbkteria. The

monolayer is lysed with Triton-X 100 and serially diluted and plated to deterh@ne t
intracellular bacteria counts (Gaillard et al., 1987; Bhunia and Wampler, 2005).

The main advantages wfvitro cell culture models include their relatively low cost and

ease of use. In addition, these models allow us to study microbial adhesion, invasion, and
cell-to cell movement. However, the drawbacks of cell culture modehard is time
consuming, and are occasionally variable (especially with isolates whakmee lies

between the virulent and avirulent extremes). Animal models are used totherify
pathogenic mechanism that has been establishedimvitno cell culture model (Bhunia

and Wampler, 2005).

Mouse virulence assay

The mouse virulence assay is regarded as the gold standard for any newly
developed test fdr. monocytogenes virulence because it is capable of providingran
vivo measurement of all virulence determinants (Liu et al., 2003; Nishibori et al., 1995;
Pine et al., 1991; Roche et al., 2001). In this method, the virulence assay is conducted by
inoculating groups of mice with various dosed. ofmonocytogenes bacteria via the oral,
nasal, intraperitoneal, intravenous, or subcutaneous routes. Infectivity aityethal
pathogen may vary depending upon the route of administration used i.e., oral, intragastric
(ig), intravenous (iv), intraperitoneal (ip) or subcutaneous (sc). Oral or i.g. aretes
often used for assessing the infective dose for foodborne pathogens. Measurements a

expressed as infectious dose (ID) or as lethal dose (LD). Virulencewsra g
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monocytogenes is determined by the number of bacteria reaching the spleen and liver,
after oral inoculation. These organs are harvested and, homogenized and lcactetsal
are estimated by plating methods. Differences in counts for strains ét taggns and
tissues are indicative of their respective virulence (Liu et al., 2006). ety
experiment provides data on the virulence traits for adhesion, invasion and tramslocat
to distant organs (Bhunia and Wampler, 2005). The main disadvantage of animal
experiments is the high cost of mice and associated maintenance fees dackttiese
virulence assay is not routinely used for determithingionocytogenes virulence.

Variation in the response in the infected animals depends upon the susceptibility
of the animals and route of infection used. Variations in infectivity arhong
monocytogenes strains has been reported when animals are challenged orally or by i.g.
route (Barbour et al., 2001; Jaradat and Bhunia, 2003; Roche et al., 2003). The particular
strain, immune status of the mice, and route of infection of mice affects the outcome of
disease. A/J mice manifest listeriosis upon i.g. inoculation while C57BL6 daicot
(Czuprynski et al., 2003). The oral route is established as a major portal of dntry of
monocytogenes causing disease. This is also supported by various outbreaks of human
listeriosis after consumption of contaminated foods (Dalton et al., 1997; Fleming et a
1985).

In mouse and guinea pig models, it has been showrlthrabnocytogenes
penetrates the intestinal epithelium covering the Peyer’'s patchess itife and then
extends further rapidly to the mesenteric lymph nodes and then reachesrthad
spleen (Macdonald and Carter, 1980) . Within six hours of infection in the liver, 90% of

the bacteria are killed by the resident macrophages (Kupffer cellylez@l., 1985).
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Remaining surviving bacteria then infect adjacent hepatocytes leadirggsgpstemic
infection and internalization df. monocytogenes into a vacuole of the host cell (Conlan
and North, 1992). To promote its further replication in the cytoplasm of the host ell, it i
released from the vacuole via listeriolysin O. In murine models it was shown that
listeriolysin O is expressed in the acidified vacuole but not in the cytosol, thus,
preventing the destruction of the host cell and providing a safe shelter for sundval a
replication of the bacterium (Decatur and Portnoy, 2000). Shortly after escapthé
vacuole L. monocytogenes multiplies intracellularly with a generation time of 40-60
minutes, compared to approximately 40 minutes in rich broth culture (Portnoy et al.,
1988). Once inside the cytoplagmmonocytogenes can move rapidly at a rate of
1.5um/sec (Robbins and Theriot, 2003) by translocating and polymerizing with the help
of host cell actin in combination with the bacteAatA protein. This maotility is

mediated by actin polymerization which provides the propulsive force for intrcell
movement (Sanger et al., 1992). TAaA protein (639 amino acids) is encodeddatA
(Vazquezboland et al., 1992). monocytogenes spreads to the neighboring cells by
forming microvilli-like protrusions. These are then phagocytosed by the atifzalés

and a secondary vacuole with a double membrane is formed (Tilney et al., 199%eRelea
of L. monocytogenes from the secondary vacuole is promoted by LLO and.tlerial

phospholipase PC-PLC, and the cycle repeats (Vazquez-Boland et al., 2001).

Histopathological changes in Liver and Spleen of mice
Racz et al., (1972) suggested thamonocytogenes may pass from one host cell

to another without traversing the intestinal space. The liver is one of the majos orga
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showing characteristic lesions, both on gross and microscopic examinatiamd as?
in the form of focal patches of hepatic cell necrosis. The histopathologica@geshemthe
liver of pregnant mice were described by Siddique et al. (1978) demonstrating the
multiple pale to gray foci of hepatic cell necrosis. Numerous short bactetgahre
generally seen in the necrotic foci and in hepatic cells peripheral to therpiasions.
Schlech et al. (1983) described that animals developed liver and spleen infeetion aft
oral inoculation using an inoculums of*:010° CFU/m. After infection withL_.
monocytogenes, colonization and localized cell damage is determined by collecting
intestinal sections and staining histological sections which are thennedhunder a
microscope. The histopathological changes appear in the form of focal apssshyf
necrosis in organs like spleen and liver which is helpful in the final diagnosisd&aedeli

al., 1978).

Conclusion

Overall, it is imperative to realize that ready-to-eat (RTE) food gsicg plants
can become contaminated withmonocytogenes that can further cross -contaminate
products from a variety of sources such as air, drains, raw maten@isoakers within a

processing plant. RTE foods are generally consumed with no further heatifgeand t

growth ofL. monocytogenes at refrigerated temperatures is important factors contributing

to Listeria outbreaks. Plant contamination can become persistent due to the ability of the

organism to form biofilms attaching either strongly or weakly to abiotiases
commonly encountered in a processing plant. Elucidating the sourceseofa

contamination by comparison of DNA profiles generated via DNA macrarestri
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analysis in pulsed-field gel electrophoresis (PFGE) is a highlyimhis@tory and
reproducible approach. As the cell attachment forms the first stage dfanfec
information fromin vivo studies concerning the virulence of abiotic surface -adhkring
monocytogenes isolated from various meats and plant sources is limited. Examining the
correlation between adherence and virulence for strong and weak adhenmeno$tra
monocytogenes may help to assess the real risk posed by this pathogen found in foods.
Considering the significance bf monocytogenes as a foodborne pathogen, it is
important to obtain quantitative data on the effect of oral inoculation of strong and
weakly adherent strains bf monocytogenes in mice. The following objectives were laid

out in this study to address similar issues.

Objective 1: PFGE typing and adherence characteristicstefia strains
isolated from RTE meat processing plants.

Objective Il: Comparison of virulence of strong and weakly adherent stfains
L. monocytogenes using Caco-2 cells for adhesion and invasion
assays.

Objective Ill: Comparison of virulence for strong and weakly adherent sthins
L. monocytogenes isolatedfrom raw and RTE meats by oral
inoculation of A/J mice.

Objective IV: Subtyping of strains afsteria monocytogenes by multilocus

sequence typing, pulsed-field gel electrophoresis and ribotyping.
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INTRODUCTION

Listeria monocytogenes is a facultative, intracellular, Gram-positive bacterium
that can cause severe foodborne illness (listeriosis) in immunocompromisedspat
pregnant women, and neonates. Listeriosis often occurs as a sporadic disease, but
also occur as large outbreaks with fatality rates of 25-30% (FanoePeterkin, 1991).
Several studies have shown that ready-to-eat (RTE) food products canshe cros
contaminated with.. monocytogenes in a processing plant environment from a variety of
sources (air, drains, raw materials, workers) (Gahan and Collins, 1991; Wendtland,
1994). The presence bf monocytogenes is significant for RTE foods because they are
usually consumed with no further heating/cooking and the organism is capable of
growing at refrigerated temperatures. RTE products have been frequeteyefi
infection because these products have a limited shelf life at refragetamperatures
which may go overlooked and alldvisteria to grow to high numbers (Rocourt et al.,
2003; Vazquez-Boland et al., 2001). Although the U.S. Food and Drug Administration
(FDA) recently proposed an acceptable ‘defect level’ of 100 cfu/gm for théimm in
foods in which it is not expected to survive, there still remains a ‘zero-toéerand..
monocytogenes in RTE foods (FDA, 2008).

L. monocytogenesis able to reside and persist in food processing environments
for long periods of time (Autio et al., 1999; Norton et al., 2001). Some reasons for their

persistence in food processing plants are the complex surfaces of proegssmgent
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that are difficult to sanitize and results in numerous harborage points (Autipl&x94;
Miettinen et al., 1999; Norwood and Gilmour, 1999). In one dairy plant, contamination
lasted several years with one particular clone (Unnerstad et al., 1996; \\alff2606)
also found several molecular subtypes recurring in food processing fathie tested.
Harborages fok. monocytogenes are not only found among environmental surfaces, but
also within numerous crevices on equipment used for slicing, dicing, and packaging
(Autio et al., 1999; Miettinen et al., 1999; Tompkin, 2002). Lunden et al. (2000)
correlated the persistence of strains with their ability to adhere to food tcemtiaces,
even after short contact times. Different straink.afionocytogenes have been shown to
attach to abiotic surfaces with different levels of adherence, regaodlesgace (glass,
plastic, rubber, stainless steel) or temperature (Gamble and Muriana, 200i7). Thei
persistence in a plant may be related to their ability to form biofilrhishacan provide
resistance to sanitizing agents and lead to increased survival of theseabadood
processing facilities (Aase et al., 2000; Blackman and Frank, 1996; Borucki and Cal
2003; Frank and Koffi, 1990).

Molecular typing by pulsed-field gel electrophoresis (PFGE) uSiNg
macrorestriction analysis is a highly discriminatory and reprodumbktod that has
proven to be very useful in elucidating sourcekigeria contamination in food
processing environments by comparison of DNA profiles (Brosch et al., 1996;
Kerouanton et al., 1998). The purpose of this study was to examine straigeoé
isolated for over 1 year from 3 RTE meat processing facilities for adteeren
characteristics using our microplate assay in combination with PFGEtutan typing to

assess if the recurrence of isolates correlates to adherence psoperti
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MATERIALS AND METHODS

Bacterial strains and growth conditions
Bacterial strains were cultured by transferring 106f thawed frozen culture
suspension into 9 ml of brain heart infusion broth (BHI; Difco, Becton-Dickenson,

Franklin Lakes, NJ), incubated overnight (18-24 hrs) &C3@nd subcultured again
before use. Frozen culture stocks were prepared by centrifuging 9 mluwéarid
resuspending the pellet in 2 ml of sterile BHI broth (containing 10% glycerol¥t@ring

at -76C.

Collection of swab samples in three food processing plants

Environmental and non-food contact surfaces were sampled in order to identify
areas where sanitation could be improved. During each sampling, approxisttebf
the sample sites were selected objectively based on a random number gerenator w
numbers correlated to specific sites; the remaining 50% of sample sreesamepled
subjectively based on areas not yet tested, or, the retesting of areasvibasfyre
provided positiveListeria samples. Swab samples were collected from non-food contact
surfaces of food processing equipment, from wheels (garbage bins, hand trucks, dollies,
and racks), floors, tables, pole holders, windows, walls, carts, hoses, drains, motor

housings, standing water, equipment/machines, casing waste, hanging\dimitd
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number of raw meat ingredient samples (pork, chicken) were also taken. Ovaurge c

of 13 months, approximately 1560 swab and raw ingredient samples were tested.

Isolation of Listeria spp. from environmental swabs

Swab samples were collected using either sterile cotton swabs or sponges
moistened with neutralizing broth and placed into 10 ml of Difco UVM Modifiesteria
Enrichment Broth (Becton Dickinson, Sparks, MD, USA) and incubated’at 8fr 24
h. No attempt was made to swab a standardized-size surface area as iba intent
merely for positive/negative detectionlagteria spp. Subsequently 1.0 ml of UVM broth
was inoculated into 9 ml of Difco Fraser broth (Becton Dickson) supplemented with
0.05% ferric ammonium citrate (Sigma-Aldrich, St Louis, MO, USA) and incubated at
35°C for 48 hr. A loopful from black Fraser broth was streaked onto Difco Modified
Oxford Agar (MOX; Becton Dickson) and incubated atG$or up to 48 hr. For each
tentatively-positive Fraser broth sample, four black concave colonies from WD
tested by Gram stain, catalase test (3394 hemolytic reaction on Horse Blood Agar,
and the APlListeria assay. All tentativéisteria-positive isolates were stored at °Zéas

noted earlier

PCR confirmation of Listeria spp. asL. monocytogenes
Aside from the APIl/hemolytic reactionsisteria spp. were confirmed ak.
monocytogenes using primers specific to portions of the hemolysiy4) and internalin

A (inlA) genes unique th. monocytogenes. PCR confirmation was obtained fayA
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(560-bp) using the forward primer 5’-TGAACCTACAAGACCTTCCA-3’ and the
reverse primer (5-CAATTTCGTTACCTTCAGGA-3’) and famlA (575-bp) using the
forward primer 5'-GCTTCAGGCGGATAGATTAG-3' and reverse primer 5'-
AACTCGCCAATGTGCC-3'. PCR amplification was performed with an indiahin
denaturation step at 95, followed by 40 cycles of 96 for 15 sec (denaturation), %1
for 18 sec (annealing), 72 for 40 sec (extension), with a final step holding®at. 4
Amplification was confirmed by visualization of the PCR product of the expectedsiz
agarose geld.. monocytogenes Scott-A served as the positive control anéhnocua
ATCC 33090 andL.. ivanovii ATCC 19119 as the negative controls during PCR

reactions.

Pulsed-field gel electrophoresis

Genomic DNA from individual isolates &f monocytogenes was prepared in
agarose plugs as described by Graves and Swaminathan (2001). Brieftgsiscare
grown on BHI agar plates at %7 overnight to obtain a lawn. The cells were harvested
from the BHI agar plates by adding 1 ml of TE buffer and using a ‘hockey siick’
suspend the cells. The absorbance measured at 610 ry3)(fobthe cell suspension
was adjusted to 1.3 using a Spectronic 20 spectrophotometer (Thermo Electron
Corporation, West Palm Beach, FL). After adjusting the{Q240ul of the cell
suspension was transferred to a microcentrifuge tube and 60 pl of lysozyme solution (10
mg/ml) was added and mixed by gently aspirating the solution. The lysaatme/
suspension was incubated a@7or 10 minutes and then embedded in 1% agarose plugs

(Seakem Gold agarose; Cambrex, Rockland, ME). Plugs were washed twice with 15 ml
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of pre-heated (5WC) sterile water for 10 min with shaking and then twice with 15 ml of
preheated (5C) TE with shaking at S€C and twice with room temperature TE solution.
The plugs could then be used immediately or store@Cauntil needed. Plug slices (2.0-
2.5 mm) containing lysozyme-treated cells lysedtu, were digested witApal at a
concentration of 160 U/plug for 5 hr at°3D. Marker DNA was obtained from
monocytogenes H2446. The DNA restriction fragments in plugs were electrophoresed
through 1% (wt/vol) SeaKem Gold Agarose prepared in 0.5X Tris-borate-EDTA at
6V/cm on a CHEF DR IIl system (Bio-Rad Laboratories, Hercules, CAneai

ramping factor with pulse times from 4.0 to 40.0 sec aahd 120 were applied for 20

hr. After electrophoresis, PFGE gels were stained for 15-20 min in 250 mbafzéel

water containing 25 pl of ethidium bromide (10 mg/ml) and destained by three washes of
20-30 min each using 400 ml of deionized water and photographed with Gel-Doc 2000

using the Quantity One software (Bio-Rad).

Computer analyses of PFGE data

Images generated by Quantity-One software on a Gel-Doc 2000 (BioalResl)
saved in TIFF format and transferred to BioNumerics software (Appletthid/Sint-
Martens-Latem, Belgium) for computer analyses. DNA banding patternsawalgzed
with BioNumerics version 4.5 (Applied Maths) with optimization set at 0.5% and
position tolerance set at 5%. The Dice coefficient of similarity vaé=sutated, and the
unweighted pair group method with arithmetic averages (UPGMA) was used fer clus
analysis. A cut-off at 80% similarity of the Dice coefficient was usaddicate similar

PFGE typesThis corresponds to approximately one band differesnoe this degree of
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similarity also allows for minor technical errors that frequentiguo¢Salamon et al.,

1998).

Microplate adherence assay

Isolated strains were characterized for their adherence as desgriGatnible
and Muriana (2007). Briefly,isteria strains were cultured in BHI broth at 30°C and
diluted 16-fold (i.e., from 18 CFU/mI to 1d CFU/mI) in fresh BHI broth, and 200 pl
was transferred to designated wells of a 96-well black microwell plétteavalear lid
(Nunc, Denmark), wrapped with Parafilm, and incubated for 24 hr at 30°C. After
incubation, the microplate was washed three times with Tris buffer (pH 7.4; 0.05 M) in a
Biotec EIx405 Magna plate washer (Ipswich, Suffolk, United Kingdom) to remove
loosely adhered cells and sanitized with 200 ppm sodium hypochlorite (pH 6.5)pafier e
use. Washing was followed by the addition of 200 pl of fresh (sterile) BHIreotdex
cycle of incubation followed by washing. After the final incubation and washing, 200 u
of 5,6-CFDA (5,6-carboxyfluoresecein diacetate; Molecular Probes/Igeit;aCarlsbad,
CA) fluorescent substrate solution was added to each microplate well, incub28@ at
for 15 min, and then washed three times with Tris buffer (pH 7.4; 0.05 M), ending with
200 pul of the Tris buffer solution. The plate was then read from above in a TebaosGE
fluorescent-plate reader (Phoenix Research Products, Hayward, CA) withiruSingra

fixed signal gain of 75% with excitation at 485 nm and detection at 535 nm.
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Fluorescence microscopy

The fluorescence microplate assay described above was modified forzataali
by fluorescence microscopy (Gamble and Muriana, 2007). Briefly, 8-compdrtme
CultureSlide8" (Falcon, Becton-Dickenson, Bedford, MA) were used for incubation of
representative weak, medium, and strongly-adhering strains. After incubadion a
adherence, the chamber wells were washed and disassembled and the boitonrets$ t
becomes a microscope slide, allowing direct side-by-side comparison dfittecdt
cells. Cultures were incubated under the same conditions as the micropdgtédshrs,
30°C), rinsed by manual pipette aspiration using Tris buffer (pH 7.4, 0.05M), and
incubated with CFDA-based substrate as previously described. Chambers waredem
using the manufacturer’s tool and the bottom slides were examined by fluoeescenc
microscopy using a Nikon Eclipse E400 fluorescent microscope (excitation @ 450-490
nm, detection @ 500nm) using a BA 515 B-2A filter. Pictures were taken withtal dig

camera attachment.
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RESULTS AND DISCUSSION

During the initial year of the implementation of HACCP, we started to sagpl
RTE meat processing plants to help identify the incidentéstdria spp. and typical
harborages in postprocess areas where the emphasis ififgerad-free’ environment.
We examined doors, windows, walls, carts, wheels of carts, brooms, hoses, ladders,
equipment surfaces (non-food contact), floors and drains to help establish points of
emphasis for sanitation crews. This allowed the sanitation managers in the various
facilities to understand typical places whergteria can be found so that they may
increase their vigilance, improve their sanitation regimens, and drastiedlice the
subsequent incidence bifsteria. Food contact surfaces were not tested because that
posed a potential problem with the regulatory authority (USDA-FSIS) in thabdd f
contact surface were found to be contaminated lithonocytogenes, any exposed RTE
food that could have come in contact with that surface would then be considered
contaminated. Early-on, the RTE meat industry was able to abate that rgguilatie
by choosing not to differentiate isolates according to species, simply alléaving
identification as Listeria spp.”. However, USDA-FSIS subsequently evolved away from
this position and started to establish that even the presence of undifferentigi"
spp.” could represent the presencé.ahonocytogenes, since both share the same habitat
and contamination sources. The issue of testing food contact surfaces dirdctly for

monocytogenes has always been a sensitive bottleneck in RTE processing areas, however,
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even the presence bisteria spp. in the vicinity of the RTE processing environment also
has significant implications for plant sanitation and food safety.

During our sampling of 3 processing facilities, we recovered 2&6éria-positive
samples from 1560 samples taken (17% overall incidence rate). A breakdown of the
isolates olListeria spp. obtained from each of the plants demonstrates the specific
sampling areas they were associated with, showing a 9.0%, 8.7%, and 32% incidence rate
in Plants A, B, and C, respectively, for the 520 samples taken at each plant (Table 1). The
incidence oListeria spp. was found to be rather similar in two modern plants (Plants A
and B), yielding a 9% and 8.7% incidence rate, respectively (Table 1). Houvetree
third, and older plant we tested, the incidenckigteria spp. was 32% of samples taken,
significantly higher than that found in the other plants. This could be a combination of
several factors such as the older plant having outdated construction (ahé&)dah#t may
have impacted sanitation efforts and it's design may have presentedadingitat
restricting traffic patterns through postprocess areas whereas theph@wsmore
effectively segregated raw preprocess from cooked postprocess plant Eeéh so,

Listeria contaminants still made their way into the postprocess areas of all plants and our
data brought attention to the areas where they were found (Table 1).

Recently, we developed a convenient microplate fluorescence adhessage a
that proved effective in distinguishing different adherence phenotypes in strains of
monocytogenes isolated from RTE meats, raw ground beef, and meat processing facilities
(Gamble and Muriana, 2007). In that study, we showed that the degree of cellular
attachment of the highly adherent strains was significantly higher thddyweetnerent

strains, i.e., 10cfu/well vs 16 cfu/well, respectively (Gamble and Muriana, 2007). The
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degree of adherence demonstrated by the strongly adherent strains dbultkeas
hypothesized as a possible factor responsible for retention and persistence of
monocytogenes in meat processing environments. We applied this adherence assay to 246
of the 259 strains isolated in Table 1 and arranged the strains in order of fluogescenc
signals (RFU) obtained with the microplate assay in order to standardizedleeofa
adherence of allisteria strains from weakest to strongest (Fig. 1). Using the entire range
of RFU adherence signals, we qualitatively classified the degrethefence as weak,
moderate, or strongly adherent based on how the slope of the RFU ‘curve’ broke in its
entirety to assign the 3 adherence classifications used in this study)(FAg observed
previously (Gamble and Muriana, 2007), when representative isolates wetedséian
each of the 3 phenotypic adherence classifications and examined by #unoeesc
microscopy, the cell distribution of a strongly adherent strain occluded thessiidee,
whereas moderately or weakly adherent strains showed significantlyd&éaehed cells
(Fig. 1 inset). Such strong adherence events could readily initiate thef $tfilm
formation that may lead to foci of contamination and persistence in plant environfents i
not eliminated (Costerton, 1999; Wong, 1998). Differentiation of the strains based on
adherence phenotype and identification of those strains thiat momocytogenes
provides a better picture of the significance of adherence (Table 2).

The presence of geneticsteria spp. is significant as it represents a failure of
sanitation hurdles to eliminate these organisms from the processing envirpanaent
even more so if they ate monocytogenes, as they are human pathogens. The data shows

that Plant C had almost 4x the prevalenckigteria isolates as either Plants A or B (164
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vs. 39 or 43, respectively) and from that perspective, had a greater potential taegenerat
contaminated products (Table 2).

The predominance of moderate and strongly adherent strdinsnohocytogenes
that may have found their way into an older processing facility may havenfae s
impossible situation to eliminate and resulted in persistent retention as eramtahm
contaminants. Similarly, Plant B demonstrated a high proportibnrobnocytogenes
among thed.isteria isolates (41 of 43) of which 32 were moderately adherent (Table 2).
Of the 164Listeria-positive samples recovered from Plant C, 80 (49%) Wwere
monocytogenes of which 76% were moderately or strongly adherent (Table 2). The
predominance of moderate and strongly adherent stralnsv@inocytogenes that may
have found their way into an older processing facility may have presentedtaltdiff
situation to rectify and resulted in persistent retention as environmentamnoosauts.
Eventually, Plant C was involved in a recall due to detectidn wbnocytogenes on
RTE product during routine USDA-FSIS sampling. Although Plant B had approximately
%4 the amount of totalisteria isolates as Plant C (43 vs 164), it demonstrated an
unusually high proportion df. monocytogenes among itd.isteria isolates (41 of 43,
95%) of which 32 (78%) were moderately adherent (Table 2). A situation notickohat P
B during one or more sampling visits was the presence of a large pool of ‘stantBrg wa
noticed in the post process area which may have allowed for widespread distribution of
one or more isolates.

We also examined PFGE for typing strains based on DNA ‘fingerprint’ patter
The restriction enzyme&scl andApal have been commonly used for subtyping

monocytogenes by PFGE (Autio et al., 2000; Bille and Rocourt, 1996; Brosch et al.,
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1996; Destro et al., 1996; Giovannacci et al., 1999). We used RP&E
macrorestriction pattern and dendrogram analysis to examine strairssedf described
in this study which formed 21 clusters at a similarity level of 80% (datehootrg. The
use of PFGE fingerprint analysis was informative in suggesting thdasstriains were
isolated repeatedly within the same facility on the same day or on differentadate
recurring isolates (Fig. 3). Since we used only 1 restriction enzyme prgsdd (
although this is usually confirmed from identical profiles obtained with at 2e@smore
restriction enzymes, and even then there could be room for ambiguity in exact stra
identity. For general sanitation purposes, gross pattern analysis should be swdficient
correlate potentially similar strains with isolation ‘hot spots’, sincénagit.
monocytogenes nor Listeria spp. should be present in an RTE postprocess environment.
Samples were collected mostly from non-food contact sites, however, some
samples were initially taken from raw meat ingredients for possible cmopavith
profiles obtained with isolates from postprocess environmental samples. &dw m
sampling was discontinued early in the study because it was not thought tivattdee |
number of raw meat samples could possibly represent the incoming phastieata in the
large quantities of raw meat ingredients unless a fair amount of samplingwededli
from the environmental samples. However, even with the few raw meat ingredie
samples from whichisteria were isolated, we found a major pattern cluster in Plant B
that was recurrent for 10 months that had the same profile as that obtained frophea sam
of raw chicken (Fig. 3). In hindsight, continued testing of incoming raw ingredmmts f
comparison with plant specimens may have given greater insight into possible

distribution pathways or harborages (Nesbakken et al., 1996). A number of these isolates
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were obtained even before the date that the raw chicken sample was takatinmeic
long term, recurring contamination problem. The isolates within this recurustgcl
pattern turned out to de monocytogenes and demonstrated mostly a ‘moderate’
adherence phenotype (Fig. 2). It was further noted that during the 3/18 sampbig ger
large pool of ‘standing water’ was visible in the postprocess area. This is oa®iss
concern in food processing environments because standing water allows for easy
distribution of microbial flora by virtue of anything crossing through it (foaffitr, cart
wheels, dragged water hoses, etc), and this could be why we found a large cluster of
isolates registering with >90% similarity index on that sampling dage 3l PFGE
pattern similarity and ID match also included an isolate from raw pork irgrieagsed at
another plant, but having a weak adherence phenotype (Fig. 3).

There have been occasions when researchers have noticed a higher incidence of
monocytogenes in raw meat plants compared to on-farm animal levels and have attributed
the high plant levels to the distribution and persistence of flora in raw meatgngces
plants (Giovannacci et al., 1999). Raw meat ingredients are an obvious source of
contamination in further processing plants (Chasseignaux et al., 2002; Lavarehc
Gilmour, 1995).

Although there are no regulatory requirements for presence/absenceaifdvels
monocytogenes on raw meat products, the influx of such contaminated raw meat
ingredients continuously places a tremendous sanitary burden on RTE meat pgocessi
facilities where contamination with monocytogenes poses a serious health risk because

many RTE products are consumed without further heating.
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Other environmental sampling sites that are often tested are processisg dra
The presence df. monocytogenes in drains has often been considered an indicator of
facility contamination, but not the source of contamination (Berrang et al., 2002;
Hoffman et al., 2003) Berrang et al (2002) also found straibsrmbnocytogenes from
drains on the preprocess (pre-cook) side of a poultry processing plant indsstaigdei
from those isolated from drains on the postprocess side, suggesting that cordaminat
from the raw ingredients may have breached into postprocess areas. One @wncern f
drain contamination would be that there may be a blockage and backflow into g facilit
that would carryListeria contamination back into the processing environment. Another
interpretation and concern would be that the organisms in the drain originated in the
processing environment. One of the problems with cleaning drains is that sgriitids
may only occupy the bottom half of a drain tube and never effectively drench the upper,
inside surface. However, new designs for drains have incorporated methodsgallowin
sanitizers to access all inside surfaces (Howard, 2007). Other intervesitiongde
application in a processing plant also include the use of antimicrobial statdeks
impregnated with silver ions (Cowan et al., 2003). Still other interventions caty
the re-design of existing equipment to be ‘sanitation friendly’, including nma
screw holes where bacteria can hide (i.e., equipment footings) or the incanpofati
sloped surfaces so water can run off and not pool (i.e., square-sided equipment frames).
Isolates were also recovered from floors, which would explain their presences dra
but also demonstrates the propensity for dispersal by foot traffic, whenghyhesls,
hoses dragged along the ground, broom bristles used to sweep fallen products, and utility

ladder steps were all found to be positive at different times (Table 1). Tleapeest
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Listeria on walls and windows could be due to splashing of ‘standing water’ (or from
human contact), a concern for postprocess areas that could assist in widespread
distribution of bacteria in a processing environment and was noticed during the 3/18
sampling in Fig. 2. Redistribution of bacterial contamination by high pressure wate
hoses is one argument used against the practice of a mid-shift cleanup.

Strains possessing strong adherence characteristics (and perhaps evatemode
adherence) have a greater likelihood of being more persistent and recurringnt a pl
environment than weakly adherent strains. Even if all of the strains isolateciry of
the plants were simplyisteria spp. other thah. monocytogenes, it would still be highly
significant in that they should not be present at that stage of an RTE procassityg f
The presence of such a prevalence of moderate and strongly adharmestistplant C
suggests that these contaminants may not have been as efficiently elinbiypat
sanitation efforts as the other plants (Fig. 3).

To examine the aspect of strong adherence and plant retention, we examined
information for all 37 of the ‘strong’ adherent isolates from our 3 plant studyoamd f
that 92% were isolated from Plant C (Fig. 4). Nine of 34 (26%) of the strongly athere
Listeria isolates from plant C wete monocytogenes (Fig. 4). This was the older plant
that had a 32% incidence bifsteria-positive samples during our testing.

After review of the sites that tested positive, it is easy to formulatepingn
that all exposed surfaces in a process facility can become contaminatedtiate or
another. An important criterion for preventive maintenance would be to eliminate the
entry of contamination into the processing environment in the first placeyduieh

widespread distribution could easily occur during a production run. Intervention
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strategies for processing environments including sanitizer foot bathsyapeints,
frequent hand washing, negative pressurized room, UV lighting in air ducts, dseamsy
sanitation, no mid-shift cleanup using high pressure water hoses, and brine rinse
decontamination. One or more recalls have been attributed to plant constructioaythat m
have generated dust/bacteria transported via the ventilation system edriodbe RTE
processing area. The potential influx from the raw meat ingredients dudogspimg is
the largest known reservoir bisteria contaminants placing pressure on the sanitation
system of any plant. Linear processing whereby the trespass of péfsormeaw to

post process areas is prohibited, as well as preventive measures to insungnaoitéado
not breach the postprocess area, and incorporating separate drainage aridwentila
systems for raw vs postprocess areas are necessary barriers in pygy@stinocess
contamination.

Improvements and enhancements in regard to facilities, personnel, and sanitation
programs have since resulted in greatly improved conditions in the plants. The
comparative analysis demonstrates the utility of microbial analgdigssessment of
plant sanitation conditions based on recovery of targeted organisms. Although
preservatives and antimicrobials may prevent survival and/or growth of coatasion
food products, they will only work in combination with good plant sanitation as
continuous and constant pressure of contaminating microbial flora may elyentual

overcome even the most promising ingredient interventions.
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Table 1. Environmental and non-food contact sites from
which Listeria were isolated in 3 RTE meat processing plants.

Source Plant A Plant B Plant C
Drains 10 10 44
Floors 4 4 16
Garbage bins 4 2 5
Wheels (cart, bin, equip) 4 2 11
Wall/window surfaces 1 3 3
Raw meat ingredient 1 3 3
Equipment/table surfaces 15 17 64
Brooms/bristles 2 1
Casing waste chute/bin
Ladder 2 2
Vacuum line
Pallet, pallet jack 4
Water hose line, hose handle 3
Scale 2
Listeria spp. = 47 45 167
Total samples = 520 520 520
Prevalence 9.0% 8.7% 32.1%

67



Table 2. Distribution of adherent phenotypes of Listeria isolated from RTE meat

processing plants.
Adherence phenotype Plant A Plant B Plant C Total
Weak*:
Listeria spp. 16 (41%) 9 (21%) 37 (22.6%) 62
L. monocytogenes** 2 (22.2%) 9 (22%) 19 (23.8%) 30
Medium?*:
Listeria spp. 21 (53.9%) 33 (76.7%) 93 (56.7%) 147
L. monocytogenes** 7 (77.8%) 32 (78%) 52 (65%) 91
Strong*:
Listeria spp. 2 (5%) 1 (2%) 34 (21%) 37
L. monocytogenes** 0 0 9 (11.2%) 9
Total ™:
Listeria spp. 39 (8%) 43 (8%) 164 (32%) 246
L. monocytogenes 9(23.1%) 41 (95.3%) 80 (49.8%) 130

*Percentage of each phenotype is based on comparison to the same group (total

Listeria spp. or L. monocytogenes) within a given plant.
** Count for L. monocytogenes is included in the count for Listeria spp.

"For Total Listeria spp., the percentage is relative to total samples taken within a
given plant (i.e., 520); for L. monocytogenes, the percentage is relative to total

Listeria isolates.
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Figure 1. Relative fluorescence of dlisteria strains isolated from meat processing plants using the microplatead@er
assay, from lowest to highest means of fluorescence signals in order toidetentoff values (arrows) for weak, moderate,
and strong adherence. Error bars represent standard deviation obtained froatetnipplications. Inset: fluorescence
microscopy of representative strains considered being weak moderatepagty stdherent based on the microplate
adherence assay.
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for weak and strong adherence was determined from the entireLssteot spp. tested
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INTRODUCTION

Listeria monocytogenes is an intracellular Gram positive bacterium capable of
causing severe invasive illness (listeriosis) in humans at high fatztty (Alberti-Segui
et al., 2007). It mainly affects immunocompromised people, the elderly, pregnaehwom
and neonates (Farber and Peterkin, 1991). The vast majority of hustenra infections
are thought to be foodborne, and the pathogen has been isolated from various raw and
ready-to-eat (RTE) products (Aarnisalo et al., 2003; Gombas et al., 2003)creBeace
of L. monocytogenesin RTE foods is mainly due to contamination during post process
procedures rather than survival during the processing itself (McLauchlin, FOBY).
meat products often have high incidence of contamination because of their Idrideshel
and may allowListeria to grow to high numbers under refrigeration temperatures
(Rocourt et al., 2003; Vazquez-Boland et al., 2001). Although, the U.S. Food and Drug
Administration (FDA) recently proposed an acceptable ‘defect level’ @fcidgm for
this organism in foods in which it is not expected to survive, there still remazesma *
tolerance’ for.. monocytogenes in RTE foods (FDA, 2008).

Several strains df. monocytogenes are able to adhere to various abiotic surfaces
such as glass, polypropylene, rubber and stainless steel (Chae and Zab@afErank
and Koffi, 1990; Gamble and Muriana, 2007; Kalmokoff et al., 2001; Mafu et al., 1990;

Sinde and Carballo, 2000). Such surfaces being common in food processing facilities can
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harbor the pathogenic bacteria and potentially contaminate food products. Sthaires a
to such surfaces and their degrees of adherence can be qualitativeliedlasssgtrong or
weak based on a microplate fluorescent assay (Gamble and Muriana, 2007). Tibeir abil
to adhere, invade and multiply in biotic systems such as phagocytes may identify the
virulent nature of the bacteria, however, correlation between abiotic adharehce
cellular adherence as well as invasion is not well documented. The invasioéhes
monocytogenes is reported to be affected by variation in strain virulence as well as
differences in environmental conditions (Kim et al., 2004; Larsen et al., 2002; \Ahedm
et al., 1997). Attachment and invasion are the first steps in the establishnméectodn.
The ability of bacteria to invade cells, such as epithelial cells ofteelates with

bacterial virulence (Finlay et al., 1988; Moulder, 1985).

Comparing the pathogenic potentialLogteria strains can be done using cell line
based assays or animal models. Since animal model studies are expensive and time
consuming, several cell lines, such as human epithelial HEp-2, HeLa and Ca@-2 hav
been considered suitable for the evaluation of adherence, invasion, and virulence of
monocytogenes (Gaillard et al., 1987; Kathariou et al., 1990). Environmental conditions
such as growth temperature may also determine virulercen@nocytogenes strains
showing decreased adherence when grown at higher temperafi@ttgi the ones
grown at low temperature (20) which was attributed to thermoregulation of virulence
genes as reported by Leimeister Wachter (1992) and Dramsi et al. (1993 Grow
conditions prior to exposure may also influence the level of cell attachmentdoesuas
determined by environmental stress such as pH, temperature, and the hydropbbbicity

the surface (Smoot and Pierson, 1998).
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In this study we compared the virulence potential of strong and weakly adherent
strains ofL. monocytogenes isolated from raw, RTE meats and meat processing facilities
using human intestinal epithelial cell line, Caco-2. Virulence was tastétio by the
adhesion and invasion assay of these strains using human cell line Caco-2. Exdmaining
correlation between adherence and invaion for strong and weakly adherentodtrains

monocytogenes may help to assess the real risk posed by this pathogen found in foods.
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MATERIALS AND METHODS

Bacterial strains and growth media

TheL. monocytogenes strains used in this study were from raw, RTE meat and
meat processing facilities. Several straink.afionocytogenes (CW50, 99-38, CW77,
SM5, CW62, CW34, CW35, CW52, CW72, SM3, J7 and J126) were chosen for further
experiments after screening for their adherence using microplatestteoce assay. All
CW strains were originated from RTE retail frankfurter products vetse98-38, SM3,
and SM5 were isolated from retail ground beef. Strains designatednasélisolated
from RTE meat processing facilities. Bacterial strains werei@dtby transferring 100
pl of thawed frozen culture into 9 ml of brain heart infusion (BHI) (Difco, Becton-
Dickenson, Franklin Lakes, NJ) broth, incubating them overnight (18 to 24 h) at 30°C,
and subculturing the bacteria twice before use. Frozen culture stocks eaesprby
centrifuging 9 ml of culture, resuspending the pellet in 2 ml of sterile Bbthbr

(containing 10% glycerol), and storing it at -76°C.

Fluorescent microplate assay for adherence
These strains were characterized for their adherence as describeddle @ad
Muriana (2007). Brieflystrains were sub cultured in BHI broth held at 30°C and diluted

to 10-fold in fresh BHI broth, and 200 ul was transferred to designated wells of a 96-
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well black microwell plate with a clear lid (Nunc, Denmark). After incidrgtthe

microplate was washed three times with Tris buffer (pH 7.4; 0.05 M) to removeyloosel
adhered cells. The washing was followed by the addition of 200 p of freshe(sBHiil

broth to each experimental well, incubated at 30°C, and washed three times with Tris
buffer (pH 7.4; 0.05 M) after another 24 h. After the final washing, cells are incubated
with the fluorescent substrate solution (5, 6-CFDA) for 15 min. Following incubation
with the 5, 6-CFDA substrate, the plates were washed three times with Tes (plf

7.4; 0.05 M) in the plate washer, and the medium was replaced with 200 pl of the same
medium. The plate was then read from above in a Tecan GENios fluoresce negdisie
(Phenix Research Products, Hayward, CA) using a fixed signal gain of 75% with
excitation at 485 nm and detection at 535 nm. Based on the level of fluorescence signals
obtained with our microplate assay for the strains screened, the stragnsategorized

as weak and strong adherent strains.

PCR confirmation of L. monocytogenes

The conformation of strains &smonocytogenes was done by PCR amplification
of the hemolysin gendllA) using specific primers. The primers used were 5’-
TGAACCTACAAGACCTTCCA-3’ (Fokgg) and 5'-CAATTTCGTTACCTTCAGGA-3'
(Rewg) for generation of a 560 bp amplimer. PCR amplification was performed with an
initial 4 min denaturation step at @5 followed by 40 cycles of & for 15 sec
(denaturation), 5C for 18 sec (annealing), %2 for 40 sec (extension), with a final step
holding at 4C. Amplification was confirmed by visualization of a DNA band of the

expected size on agarose gels.
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Growth curve

A growth curve was developed for select straink. @honocytogenes by
measuring the optical density (OD) at 600 nm every hour for 10 hours growiny@t 37
in brain heart infusion (BHI) broth. From overnight grown culture, 30ul was inoculated
in 3 ml of BHI broth, and incubated at 37Wih shaking until mid-log growth phase was
reached. The opticdkensity of the bacterial suspension was read with a
spectrophotometeand the actualumber of CFU in the inoculums was verified by

plating on tryptic soy agar plates.

Cell culture

Thehuman colon carcinoma cell line Caco-2 (ATCC HTB-37) was obtained from
American Type Culture Collection, Rockville, MBCells were maintained in Eagle’s
minimum essential medium (EMEM) supplemented with 20% fetal bovine serum
(Manassas, Virginia) grown in 75 érftlasks at 37C in a humid atmosphere of 5% €0
in air. Sub culturing was done twice weekly by treating the monolayer with 0.5mM

ethylenediaminetetraacetic acid (EDTA) - trypsin.

Adhesion and invasion assays

For adhesion and invasion assays, Caco-2 cells were trypsinized and sgeded i
24-well tissue culture plates at a cell concentration adjusted t3 @ab®-2 cells/well.
Cells were grown without gentamicin antibiotic to form a monolayer in EagIEM

supplemented with 20% heat inactivated fetal bovine serum in a 24-well tisgure cul
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plate by incubation for 16-18 h at®3Z. The medium was changed every 24 h. Before
infecting cells, the overnight cultureslofmonocytogenes were diluted in fresh BHI
media and incubated until reaching mid-logarithmic growth phase. The monatayer
inoculated with bacterial suspensions adjusted to obtain a multiplicity of origd4Ol)

of 100 bacteria per cell. Following inoculation, the plates were incubated GtiB 5%
CO, for 2 h. Infected monolayers were washed thrice with phosphate-buffered saline
(PBS; Sigma) to remove non-adhering bacteria. Medium containing gem#&t00
ug/ml) was added to wells for killing extracellular bacteria befocabating at 37C in

5% CQincubator for 2 h. After 2 h of incubation, the monolayer was washed twice with
phosphate buffered saline (PBS) and 0.1 ml of Triton X-100 added to lyse cells and
release internalized bacteria.

Quantification of surviving bacteria was done by determining colony forming
units (CFU) obtained from appropriate dilutions. Each strain was measured inw@uplica
on three separate experimeritsinnocua ATCC 33090 and.. innocua F2411KA was
included as a control in the experiments. The number of bacteria adherdditneselas
determined by subtracting the CFU derived from the gentamicin treated noellshiose
of total associated bacteria (invaded plus adhered bacteria). Invasion indesdcuéeted
by dividing the number of bacteria invading the cells (gentamicin treatddjhe total

number of associated bacteria.
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Time of incubation
Adhesion and invasion was examined for two strong and two weakly adherent strains at
different incubation time. Infected Caco-2 monolayers were incubated 80,160, 90

and 120 minutes with a constant MOI of 100:1.

Infection of Caco-2 cells with strains grown at 20C
Adhesion and invasion for strong adherent strains (CW77, and 99-38) and weakly
adherent strains (CW34 and SM3) along wtihnnocua 33090 as a control was tested by

growing strains at 2& with one hour of incubation time and MOI of 100:1.

Statistical analysis

Adhesion data was reported as the average of three independent experiments each
performed in duplicate. Statistical analysis was performed using onasvaiysis of
variance (ANOVA) Tukey's HSD test to determine differences in meatrmigand
weakly adherent strains bf monocytogenes. All statistical significance was reported for

p<0.05 using SAS 9.1 (SAS Institute, Inc, Cary, NC, USA).
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RESULTS

Microplate fluorescence assay

Using a microplate fluorescence adherence assay previously developethim our
(Gamble and Muriana, 2007), different straing afnonocytogenes isolated from raw
ground beef, RTE meats and RTE meat processing facilities were queljtatassified
as weak or strong adherent based on the level of fluorescence obtained with the
microplate assay. Strains CW50, 99-38, CW62, SM5 and CW77 were categorized as
strongly adherent and strains CW34, CW35, CW52, CW72, SM3, J7 and J126 as weakly

adherent (Fig. 1).

Adhesion and invasion of strong and weakly adherent strains in Caco-2 tkhe

with high MOI and long incubation time

Virulence potential of.. monocytogenes can be assessed by its ability to invade
human intestinal epithelial cells. For our study, we evaluated strong and/\adaklrent
strains ofL. monocytogenes using ann vitro model with human enterocyte-like Caco-2
cells as these types of cells are considered to be most likely entry pah fmacteria in
food-borne human listeriosis (Gaillard et al., 1987). As indicated in Fig. 2, the @ulhesi

and invasion profiles df. monocytogenes strains at high MOI (100:1) and long
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incubation time (2 hrs) showed higher adhesion and extensive invasion for both strong
and weakly adherent strains. Though the adhesion was exhibited by all the steains
degree of invasion by strong adherent strains (CW50 and 99-38) was highest. The
adhesion of strongly adherent CW62 and weakly adherent CW34 strains differed
significantly. Control straink. innocua 33091 and.. innocua F2411KA showed

invasion with high level of MOI (100:1) and long incubation time (2 hrs). Invasion index
was calculated for all the strains (Fig.3). Among the weakly adheremnocytogenes
strains, CW34 and CW35 had invasive index of 0.71 and 0.72 respectively whereas
among strong adherent strains CW50 and 99-38 had invasive index of 0.89 and 0.79
respectively. Strongly adherent CW50 strain with highest invasion index differe
significantly from CW77, SM5 and CW62 strains and also from majority of the weakly
adherent (CW34, CW52, SM3, J7 and J126) strains. The invasion index of weakly
adherent strains (CW52, SM3, J7 and J126) was comparable to control strains with no
significant difference. The adhesion profiles of all the strains wer@aead with their

invasion indices and it was found that there was no correlation between thesegrarame

(Fig.4).

Adhesion and Invasion at High MOI and different incubation times

The variation in adhesion and invasion among strong and weakly adherent strains
was examined using two strong and two weakly adherent strains infedtetiO@it
bacterial cells per Caco-2 cells. The incubation time points of 15, 30, 60, 90 and 120

minutes were tested. At this level of infection, the adhesion to the cell isenastly
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similar among strong and weak adherent strains irrespective of incubateon ti

However, at 30 minutes of incubation time, the strong adherent CW77 strains showed
significantly different adhesion when compared with weakly adherent CW¥4. Sthee
invasion of strongly adherent strains was higher and differed significariiywsak
adherent strains only at longer incubation time of 90 and 120 minutes. Evidently, the
weak adherent strains showed comparable degree of invasiveness at differenbimcubat

times indicating that these strains may also be potentially virulent (Fig.5).

Adhesion and Invasion at optimized conditions of low MOI and reduced itubation
time

After initial optimization of MOI and incubation times, the strongly adherent
strains were examined for their invasiveness at lower MOI (10:1) and ceshecdation
time of 15 minute. It was observed that all the strongly adherent strainshete a
invade the Caco-2 cells at a 1:10 MOI and 15 minutes of incubation time with no
significant difference among themselves but differed significantly frontrol strain.
Adhesion of weakly adherent strains showed similar trend not differing sigmifi¢eom
strong adherent strains. One of the weakly adherent strains J7 showed signiGeant
adhesion when compared to control strain. With these minimal conditions, the weakly
adherent strains did not show invasion except CW52 strain and the invasion of most of

the strong adherent strains was similar (Fig.6).
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DISCUSSION

Some studies have used tissue culture assays to determine differences betwe
virulent and non- virulent strains bfsteria monocytogenes (Bhunia et al., 1994; Pine et
al., 1991). In this study, we have compared strairns wibnocytogenes isolated from
raw, RTE meat and RTE meat processing facilities to assess if threciwgof._.
monocytogenes strains influence the invasiveness of human epithelial cell line Caco-2.
We report that.. monocytogenes strains irrespective of their origin or source showing
strong adherence on abiotic surfaces may have greater potentsvémess of epithelial
cell lines. Our results also indicate that the multiplicity of infection (VD incubation
time play key role in adhesion and invasion that may be correlated to virulelnce of
monocytogenes strains. Though the strong adherent and weakly adherent strains both
could adhere to Caco-2 cells irrespective of MOI and incubation times, the tamgact
time (2hrs) and high MOI (100:1) can help even the weakly adherent strains to invade
Caco-2 cells. Whereas, the low MOI (10:1) and shorter incubation time (15 min) are
sufficient enough for the strong adherent strains to invade the epithekal@etlresults
were in agreement with findings of Gaillard et al (1987) and Vesikari et al (1982) who
also reported enhanced invasion efficienciels. ofionocytogenes due to higher MOI and
longer incubations of the bacteria onto the cell monolayers. Francis and T(1&9&}s
reported similar findings that infection at high MOI results in extensivasion. We also

observed invasion by nonpathogenic controls used in our ktudyocua 33091 and
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F2411KA which was similar to the findings of Chiu et al. (2006) whdreinnocua

strain included as a nonpathogenic control had a relatively high level of attachrttent t
Caco-2 cells compared with other strains, but displayed low levels of entry and
multiplication in these cells. Van Langendonck et al. (1998) found &omaocua

strains had a low rate of entry and were able to multiply within Cacds2 Aslwe

report here, the control straininnocua 33091 can adhere and invade at higher MOI
(Fig. 2) but may not invade at low MOI as shownLbynnocua F2411KA (Fig.6). This
further indicates that, MOI play a crucial role in adhesion and invasion of epittediigal ¢
by Listeria strains.

As evidenced in our adhesion assay, the attachment was observed. for all
monocytogenes strains examined and did not seem to correlate with the source of
isolation of these organisms. Del Corral et al. (1990) also reported simdargs of no
difference between the isolation source and virulentgstéria. Variation in the
adhesion and invasion among strong and weakly adherent strains could be attributed to
variation in the expression of different virulence factors and invasion factorssuch a
internalins (Dramsi et al., 1996). The data suggest that adherence by thieseostr
abiotic surface is not correlated to cellular adherence. A study repgrizel ICorral et
al. (1990) on adhesion and invasion properties of various food and clinical isolates with
the HEp-2 cell line showed that both invasion and adherericen@nocytogenes strains
varies, and the degree of invasion and adherence overlaps with those of the non-
pathogenic strains. The capacity to adhere to Caco-2 cells is known to vary greatl
amongListeria species (Jaradat and Bhunia, 2003; Meyer et al., 1992) and our study

confirms this.
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Invasion abilities of these strains varied irrespective of their adhelerede
indicating that adherence and invasion are not dependent upon each other. Low
correlation (R =0.1419) was observed between adhesion data with invasion index for
strains ofL.. monocytogenes andListeria spp. using a high MOI and long incubation time.
Meyer et al. (1992) and Jaradat and Bhunia (2003) reported that there is no correlation
between invasion and adhesion among diffekenmonocytogenes serotypes.

Virulence assays carried out with high MOI and long incubation time indicated
that bothL. monocytogenes adhere and invade but it may not reflect the correlation of
abiotic adherence to virulence potential. Invasiveness by weakly adheaerd str
indicated that these strains were apparently equally virulent. Basedsanfithdings we
investigated the influence of different incubation time on adhesion and invasion for two
strong and two weakly adherent strains at a constant MOI of 100:1. The afiligse
strains to adhere and invade Caco-2 monolayer is shown in Fig 2. The results indicate
that adherence level by both strong and weakly adherent strains is almest sam
irrespective of the incubation time and slight variation is observed in the invasioan of
strains. Under these conditions both strong and weakly adherent strains showed
adherence and invasion after 15, 30, 60 and 90 minutes of infection (Bigot et al., 2005)
reported that strains infected at different time points showed similar adlaegiaentry
efficiencies in human Caco-2 and hepatocyte Hep-G2 cell line. These nedid#de that
factor (s) necessary for bacterial adhesion is already present on botisttbelhand at
least in a fraction of the bacteria. Screening of these bacteria a¢dlifiecubation times

did not show the differences in the adherence characteristics on abioties\Fag 5).
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Furthermore, we monitored the invasion of strong and weakly adherent strains
with different levels of MOI varying from 10:1, 1:1 and 0.1:1 and incubating the infected
cell lines for 15 minutes. There was no bacterial recovery with 1or 0.1 bactdriased
with low incubation time. Whereas, MOI of 10 bacterial cells per 1 Cacce2ted and
15 min of incubation time resulted in invasion by strongly adherent strains akly wea
adherent strains were not capable of invading Caco-2 cell line except for. Ré&&its
indicated that the strains that had shown high adherence on abiotic surfacablevéve
invade the cell line with minimum incubation time and low MOI whereas, weaker
adherent strains were unable to invade with similar conditions provided. Although
adhesion level was almost same for all strains the variation in invasion may be
determined in part by combined invasion and adherence capabilities of the organism
(Meyer et al., 1992). Invasion efficiency for all the four strong adherexibst was
about 0.7 indicating that strong adherence strains are more virulent than weektadhe
strains Among weakly adherent strains invasion by CW52 could indicate that it might be
false virulent strain.

We have shown that dll monocytogenes strains express hemolysin but only
those strains which had weak adherence on abiotic surfaces were non invasatmgndic
that the hemolysin detection gene alone is not reliable criterion for the ickendgifi ofL
.monocytogenes pathogenicity (Hof et al., 1992). Moreover, lallmonocytogenes strains
in this study were positive for the presence of the virulence genes w@stedtino
invasion by weakly adherent strains with minimal conditions indicated that thaises st
were not pathogenic. The results of cell culture assays were consigtetiteviesults of

invivo virulence assay carried out using A/J mice (Kushwaha and Muriana, 2009).
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Invasion of strong adherent strains with low MOI and minimum incubation may show
that these strains may be able to expnagswhich encodes a protein required for
invasion of intestinal epithelial cells (Kazmierczak et al., 2003; Kim.g2@04; Kim et
al., 2005; Sue et al., 2004). Although, Galillard et al. (1987) and Kuhn et al. (1988)
showed thak. innocua was unable to invade enterocytes and hence considered as non
pathogenic species but our study showedlthatnocua were capable of invading and
invasion level was very much similartomonocytogenes strains. Meyer et al. (1992)
suggest that the avirulent nature of the species is determined not by thtgit@ahivade,
but by a combination of factors including their hemolytic nature and adherent
efficiencies, as well as other as yet unidentified determinants.

Though the virulence-associated genels. imonocytogenes are thermoregulated,
they showed reduced expression at low temperature (Dramsi et al., 1993;
Leimeisterwachter et al., 1992) however, in our study virulence assay for atrdng
weakly adherent strains grown af’ ZDshowed no difference with regard to invasion for
strains grown at 2C (data not shown) demonstrating that the invasidn of
monocytogenes is not influenced by growth temperatures which was similarly reported by

Conte et al. (1994).
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CONCLUSION

Our results based on the use ofstrains ofl.. monocytogenes demonstrate the
fact that those strains with strong adherence in the microplate assaywvesige in
Caco-2 cells with modified conditions indicating existence of high virulencgrfains
isolated from raw and RTE meat. Using cell culture models we have dstaliisat both
strong and weakly adherent straind.ofmonocytogenes are equally capable of adhering
and invading Caco-2 cell line and our results suggest that regulating themfecel
and incubation time is a key factor in determining the virulence potential df#ness

Therefore, understanding the adherence and invasion of these strains could help
us to determine their virulence potential since strong adherence not only promote
retention of such strains in food processing facilities, but enhanced virulencd.as wel
This study demonstrates that invasion by strongly adherent strains masfuderus
screening differences in infection potentials between different strains of

monocytogenes when minimal conditions are used for discrimination between strains.
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INTRODUCTION

Listeria monocytogenes is an intracellular Gram-positive bacterium causing
foodborne illness (listeriosis) in humans due to ingestion of contaminated ceadiy-t
(RTE) foods. It is estimated that listeriosis attributes to 20-30%atitgnvith 2,500
illnesses and 500 deaths each year in the United States (Mead et al., 1999). The groups
which are at highest risk include pregnant women and their fetuses, newbonmhg, elde
people, and immunocompromised individuals. The United States has stringent
regulations fol.. monocytogenes in RTE foods which is less than 1 CFU per 25 gm of
product (Notermans et al., 1998). Although the U.S. Food and Drug Administration
(FDA, 2008) recently proposed an acceptable ‘defect level’ of 100cfu/gm for this
organism in foods in which it is not expected to survive, there is currently a ‘zero-
tolerance’ forl.. monocytogenes in RTE foods. Recent epidemiological data showed that
L. monocytogenes may be transmitted as an enteric pathogen by consuming contaminated
foods such as vegetables, milk, meat and dairy products (Fleming et al., 1985; Linnan e
al., 1988; Schlech et al., 1983), suggesting that natural infection can occur by the oral
route (Okamoto et al., 1994).

MacDonald and Carter (1980) have proposed that the major route of invasion of
L. monocytogenes after intragastric inoculation is through the Peyer’s patches and other
gut-associated lymphoid tissués monocytogenes when ingested through contaminated

food can reach the gastrointestinal tract, and translocate through inhtestier to
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infect lymph nodes, the spleen and liver and from there will disseminate t@niffer
organs via lymphatic pathways (Marco et al., 1992). Replicatidnmbnocytogenes
mainly occurs in hepatocytes and spreads cell-to-cell forming infecbous f
Development of infectious foci in liver and spleen is depended on the virulence of the
strain, amount of inoculums, and sensitivity of the strain of mice (Cheers and MeKenzi
1978). In the hepatocytes >90% of bacteria are removed by neutrophils chem®tactant
during the first 24 hrs of infection (Conlan and North, 1991). The remaining bacteria
which are not killed by neutrophilic attack are internalized by hepatocyiesewthey
undergo intracellular replication. However, it is known that all strains of
monocytogenes are not equally virulent and their virulence can be determined by their
invasiveness and ability to grawvivo (Barbour et al., 2001; Larsen et al., 2002; Roche
et al., 2005).

Virulence ofL. monocytogenes has been assessed by the different methods
indicating that virulence varies from one strain to another (Roche et al., 2OG3ID
study done by infecting mice by intravenous (i.v.) intraperitoneal (i.p.) iofecand oral
route of inoculation are considered to be highly sensitive assays for evaluating the
pathogencity of.. monocytogenes (Audurier et al., 1980; Hof and Hefner, 1988;
Lammerding et al., 1992). In mice, virulence is evaluated either by compariag%he
lethal dose (Conner et al., 1989; Del Corral et al., 1990) or by enumerating the viable
bacterial count from spleen and liver (Hof, 1984) as described by Mackaness (1962).
Enumeration of viable bacteria in the spleen and liver has provided the most consistent

results in quantitative evaluation of virulence (Mackaness, 1962). Human epithiidial ce

107



lines, such as Caco-2 and HelLa have often been used to study invasiveness and the
potential virulence of. monocytogenes (Gaillard et al., 1987; Pine et al., 1991).

The A/J mouse strain is among the most susceptible to infectiohisti¢hia
monocytogenes (Cheers and McKenzie, 1978). However, the infective dose of the
organism has not yet been determined because it depends upon the host and strain
variability. It has been reported that higher doses are genezgllired for infection via
oral route than either i.v. or i.p. injections. It has been reported that therel nese
higher dose (inocula of #@FU or greater) to cause systemic infection following oral
inoculation (Barbour et al., 2001; Lammerding et al., 1992) however, low challenge dose
via oral route has also caused lethal infection in mice (Pine et al., 1990). In
immunocompetent individuals, as many a8 tb01¢ CFU may be required to cause
infection whereas low doses may cause illness in immunocompromised persbaes (Far
and Peterkin, 1991). Infections have occurred in tissues with doses as high dst5ux 10
were never fatal even at 6 x*1(0/acDonald and Carter, 1980).

Listeria is often present on raw meat ingredients and has been a recurring problem
in meat processing facilities. It is also capable of strong adhem@ecgippment and/or
surfaces in meat processing facilities, resulting in the formation ofro®{iBorucki and
Call, 2003; Gamble and Muriana, 2007). Thus, it is essential to study\ive
virulence ofL. monocytogenes originated from raw meat sources. Very limited
Information is available om vivo studies concerning the virulencelofmonocytogenes
capable of strongly adhering to abiotic surfaces that are isolated frous/eneats.

Considering the significance bf monocytogenes as a food borne pathogen, it is
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important to obtain quantitative data on effect of high dose of strong and weakly adherent
strainsL. monocytogenes following oral inoculation of mice.

Therefore, the purpose of our study was to determine whether strong or weakly
adherent strains @f. monocytogenes isolatedfrom raw and RTE meats differ in their
virulence abilities when they are inoculated intragastrically (i.g.), lsesktstrains are

likely to be persistently recurring contaminants in meat processing.plants
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MATERIALS AND METHODS

Bacterial strains

L. monocytogenes strains used in this study were isolated from raw and RTE
meat. Strains included in this study are CW50, 99-38, CW77, CW62, CW34, CW35,
CW52 and SM3. Strains designated as “CW” were isolated from retail franmkfurtéch
are RTE product and 99-38 and SM3 were isolated from retail ground beef (Wang and

Muriana, 1994).

Mice

Female A/J mice were obtained from Jackson Laboratory (Bar Harbore Ma
USA) at 5 to 6 weeks of age and housed under microisolator caps (six mice pemgjroup)
the Laboratory Animal Resource Center, Oklahoma State University.vidice
acclimated for at least 1 week in this facility before being used in@eriexent. All
animals used in this study were handled according to the guidelines approkied by t

Oklahoma State University Institutional Animal Care and Use CommI&€3JC).

110



Mouse passage

All isolates were first passaged through mice before use in mouse. A3uaes
days following oral inoculation of approxiamately 1 ¥ GFU, bacteria were isolated
from the liver or spleen. Reisolated straing afnfonocytogenes identity were confirmed
and then cultured for storage. Followihig, the bacteria were harvested by
centrifugation, resuspendedBHI broth containing 20% glycerol, and stored at -785C

1-ml aliquots.

Preparation of inoculum

For intragastric inoculation, passaged isolates from tHeG&Bocks were
subcultured on to BHI broth and grown overnight &C3From overnight grown
cultures 30ul of inoculum was inoculated with 3 ml of BHI broth, and incubated at 37°C
with shaking until mid-log phase growth was reached. The opligcelity of the bacterial
suspension was read with a spectrophotometelrthe numbers of CFU bf
monocytogenes were extrapolateflom a standard growth curve. Exact counts were
obtained subsequently from plating. To prepare the inoculums foritke appropriate
dilutions were made in sterile phosphate-buffesathe (PBS, 0.01 M, pH 7.2) to achieve
the desired bacterial concentration. The actuaiber of CFU in the inoculums was
verified by plating on tryptic soy agdre preparation were kept in ice until administered

to the mice.
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Preliminary experiment for evaluation of dose

The effect of different levels of inoculum (1@® and 16 CFU/mI) on mice was
tested for one strong adherénimonocytogenes strain (CW50). The concentrations of
CWS50 strain was prepared as described above and inoculated in mice (six mice per
concentration) and the control mice were given 0.1 ml of sterile 0.01M PBS. Miee we
euthanized on day 3,4, 5 and 7 day. Tissues harvested included spleen and liver. Based on
the results the subssequent inoculum dose obtained with strain CW50 and days of tissue

harvesting were chosen.

Inoculation of mice

Standard diet was provided and wagéiibitum until 5 h prior to intragastric
inoculation. On the day of inoculation, food and water was removed from the cage to
prevent mechanical blockage of thiateria inoculums by food within the stomach of
mice that might lead to aspiration of the inoculums into the lungs. The cultures were
grown until log phase and then centrifuged, and resuspended in sterile Phosphate
Buffered Saline (PBS) to an approximate concentration of 1.D9&GEQ/ml. Mice were
inoculated with 0.1ml (approximately 1>&I0OFU) by i.g gavages (stainless steel ball-end
feeding needle) attached to a 1ml syringe. Six mice for each conaantretie
inoculated and the control mice were given 0.1ml of sterile 0.01 M PBS in each

experimental run.
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Recovery ofL. monocytogenes from the spleen and liver

Mice were humanely euthanizegt asphyxiation with carbon dioxide after third
day of i.g. inoculation for enumeration of viable bacteria in spleen and liver in the
preliminary experiment. Thesissues were weighed in stefilde that contained cold
sterile salineThe tissues were then homogenized, diluted in sterile safidgylated in
duplicate on tryptic soy agar to determine the bacterial counts in each orgaionSibf
tissue homogenates plated were {1002 and 10°). The plates were allowéd dry and
then incubated at 37°C for 48 h. Respective colonies were checked on MOX agar for

confirmation ad.isteria.

Histopathological examination of infected mice

Histopathology for spleen and liver were done for strong and weak adherent
strains. Mice were inoculated GLGFU with strong adherent strain (CW50) and a weak
adherent strain (CW34)) and euthanized on day four. Necropsy was performed on each
mouse and tissue samples from the spleen and liver were collected and fixed in 10%
neutral buffered formalin. Following 48 hours of fixation, thin sections of the issue
were cut, paraffin-embedded on glass slides, sectionednatad stained with

hemotoxylin and eosin.

Fluorescent microplate assay for adherence
These strains were characterized for their adherence as descrimdbie@nd

Muriana (2007). Brieflystrains were sub cultured in BHI broth held at 30°C and diluted
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to 10P-fold in fresh BHI broth, and 200 pl was transferred to designated wells of a 96-
well black microwell plate with a clear lid (Nunc, Denmark). After incidrgtthe

microplate was washed three times with Tris buffer (pH 7.4; 0.05 M) to removeyloosel
adhered cells. The washing was followed by the addition of 200 pl of fresh jd&étlle

broth to each experimental well, and the plate was again wrapped in Parafilmtedcuba
at 30°C, and washed three times with Tris buffer (pH 7.4; 0.05 M) after another 24 h.
After the final washing, 200ul of 5, 6-CFDA (Molecular Probes/InvitrogenisGad,

CA) fluorescent substrate solution was added. Following incubation with the 5, 6-CFDA
substrate, the plates were washed three times with Tris buffer (pH 7.4; 0.050!) in t
plate washer, and the medium was replaced with 200 pl of the same medium. The plate
was then read from above or below in a Tecan GENios fluorescent-plate readex (Phe
Research Products, Hayward, CA) using a fixed signal gain of 75% withtextat 485

nm and detection at 535 nm. Based on the level of fluorescence signals obtained with our
microplate assay for the strains screened the strains were cagegasiweak, medium

and strong adherent strains. Strains with the high-level of fluorescence (St0@0

RFU) were considered strong adherent strains, 1000-4000 RFU as medium adherent

strains and 0-1000 RFU as weak adherent strains.

Statistical Analysis

Statistical analysis was performed using one-way analysis @fivai(ANOVA)
Tukey’s HSD test to determine differences in mean CFU/gm for imeeand spleen
treated with strong and weakly adherent strairls afonocytogenes. All statistical

significance was reported for p<0.05 using SAS 9.1 (SAS Institute, Inc, KGryJSA).
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RESULTS AND DISCUSSION

We used microplate fluorescence adherence assay developed in our lab to
distinguish different adherence phenotypes in straihs mbnocytogenes isolated from
RTE meats, raw ground beef, and meat processing facilities (Gamb\éuaiatha,

2007). In that study, we showed that the degree of cellular attachment of thé/strong
adherent strains was significantly highery(@FU/well) than the weakly adherent strains
(10* CFU/well).Select strains used in this study, isolated from raw and RTEwegsat
subjected to microplate fluorescence assay. Based on the relativedkroze unit strains
were categorized either weak or strong adherent. Strains CW50, 99-38, CW6e&/@nd C
were classified as strong adherent whereas CW34, CW35, CW52, CW72 and SM3 were
categorized as weakly adherent strain as shown in Fig 1.

Our previous study using human cell line Caco-2 for the samasstravealed
that those strains which had shown strong adherence on micrdplates€ence assay
were more invasive in cell culture assay with low level oftipligity of infection (1:10)
and minimum incubation of time (15min) indicating that these stka@re more virulent
when compared to weakly adherent strains (Kushwaha and Muriana, 200@ford)e
we further investigated then vivo virulence for the same strains using intragastric
inoculation of A/J mice in this study. Virulence of both strong amhkly adherent
strains was tested based on the recovery of the inoculated $tcmm$iver and spleen

tissue samples from mice.

115



In preliminary experiments, six mice were orally inoculated with a gtron
adherent (CW50) strain and another set of six mice with a weakly adheren{GiAt34)
using low doses (feand 18 CFU/mI). Mice were euthanized on day 3, 4, and 5 for each
inoculation dose. There was no bacterial recovery from spleen or liver for thedoses
for both strong and weakly adherent strains indicating that they failed toinéec®n.
Schlech et al (1993) and Conlan (1996) have indicated that there is a lowengffiie
bacterial penetration when low inoculation doses are being used due to the dose
dependency df. monocytogenes to establish an invasive infection.

When mice were inoculated with high doses df@BU/ml for a strong adherent
strain (CW50) and a weak adherent strain (CW34), bacterial recovery from tiss
samples was observed. Higher viable bacterial counts were observed ireémetsph in
the liver for strong adherent strain whereas no bacterial recoveryifemof mice was
seen for the weakly adherent strain. Control mice were inoculated with 0.1 BSof P
Tissues were harvested on d&y 8", 5" and 7" days. Bacterial recovery for strongly
adherent strains was approximately 5.0 log CFU from the liver and 4.0 log CFlthizgom
spleen on days 3, 4 and 5 (Fig 2). In addition to liver and spleen, kidney was also
harvested for these days but no bacterial recovery was observed excepséwetité
day (data not shown). Limits of detection were 1.QJagthe spleen and 2.0 lggn the
liver. In the case of weakly adherent stralngnonocytogenes were recovered from
spleen which was approximately 4 logs CFU whereas no bacterial recoaxgéeyfrom
liver of the mice. There was no significant difference observed in the ntéafy Gf
spleen and liver for CW50 strain as well as spleen of CW34 strain with high dose on

days 3, 4 and 5 (Fig 2). Therefore, for the evaluation of virulence of the remaining
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strains, the highest dose®OFU/mI was chosen because preliminary experiments had
shown maximal counts in spleen and liver. Use of relatively high numbekrs of
monocytogenes bacteria for inoculation by gavage $X0OFU or greater) has been reported
by (Barbour et al., 2001; Czuprynski et al., 1989; Farber and Peterkin, 1991; Marco et al.,
1992a).

Maximum bacterial recovery was seen on days 3 and 4, with lower recoveries
obtained on day 5 followed by day 4 and 5. By day 7 numbédrsnadnocytogenes
declined as the bacterial recovery was low from spleen and liver. Thereotvasich
difference in the bacterial recovery between day 3 and 4 and hence we decidesio harve
the tissue on day 4 for the main experiment.

We did not observe any sign of illness or death of mice following oral
administration. Similar results were reported by Miller and Burns (19h8)ein no
death of white Swiss mice was observed when mice drank water containing
monocytogenes and evidence of infection was detected microscopically as lesions
appearing on the liver and spleen. Similaflydurier et al., (1980) reported that there
was no lethality observed in orally inoculated mice even when'?CU of virulent
bacteria were given and no significant mortality was seen by org. anaculation oL.
monocytogenes in mice with a dose higher than kdiMarco et al., 1992b). However,
Pine et al. (1990) reported mortality of mice which were inoculated oraly wit
approximately 50% lethal dose values that ranged from 50 to 4. 2GFLDfor different
foods using clinical isolates &f monocytogenes. Most studies have reported i.g. or oral

inoculation does not cause mortality but causes subclinical systemicanfattiigh
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infective log doses (Roll and Czuprynski, 1990; Roll et al., 1990; Vonkoenig et al., 1983;
Zachar and Savage, 1979).

The results of bacterial recovery from CW34, CW35, SM3, CW50, 99-38, CW72,
and CW62 on the fourth day of inoculation with high dosds afonocytogenes shows
bacterial recovery from liver for weakly adherent strains CW52 (Figl®.nEmolysin
gene ofL. monocytogenes is important not only for intracellular survivial vitro but also
considered to be associated with virulence after parenteral inoculatiom (Cossart et
al., 1989; Gaillard et al., 1987; Kuhn et al., 1988; Portnoy et al., 1988). Even though, both
weak and strong adherent strains have the known genes for virulence and mag have t
ability for invasion but after reaching the different organs virulent bactexjaexpress
number of genes that are essential for their survival and replication arttbreapeen
able to resist host immune response which allowed their replication in the livareadghe
weakly adherent strains may have been less potential to express geaes ¢isaential to
interact with the host organs. They may be very susceptible for killing by immune
response therefore, no replication was observed in the liver and hence no bacterial
recovery made. This indicates that strong adherent bacteria had the almiligract well
with host tissue through expression of various genes and adherent proteins. Hence the
inability of the weaker adherent strains to infect the liver may be due tali#ity to
attach hence reduced pathogencity due to loss or reduction of virulence factorginvolve
in other aspects of infection which was reported by (Takeuchi et al., 2003).

Only exception was observed in CW52 which had shown weak adherence in
microplate fluorescence assay and was considered as weakly adherenvsméiough

it was a weakly adherent strain it was able to infect the liver of micbactdrial
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recovery was 4log CFU/g from liver which was similar to CW77, a strong adherent
strain. ANOVA analysis for fourth day of post inoculation showed that there is a
significant difference in the mean bacterial viable counts in the spleen anfbtibeth
strong and weakly adherent strains. Within strong adherent strains, meaiabefcigy
of spleen for CW62 and liver of CW50 exhibited significantly higher CFU/gm when
compared with mice inoculated with weakly adherent strains that did not show any
significant difference among themselves.

Evidence of infection can be detected microscopically as lesions appearing on the
liver and spleen (Miller and Burns, 1970). Fixed sections of tissue from controandce
mice inoculated with strains CW50 (strong) and CW34 (weak) were examined by
hematoxylin and eosin staining. Sections of the spleen tissues from mice tedevith
L. monocytogenes showed no histological lesions and appeared normal when compared
with sections from control mice. The liver of mice inoculated with the strongeather
strain (CW50) showed conspicuous inflammatory foci whereas, the weaker adherent
strain exhibited discrete, non-effacing lesions comprised primarily afoplaages with
rare neutrophils with the absence of necrosis (Fig.4). The strongly adhexarg séem
to establish the infection better and induce cell damage in the liver. Similar Srithng
been reported by Czuprynski et al. (1989), Miller and Burns (1970), Portnoy et al.(1992),
and Conlan and North (1992) wherein substantial infection of mice liver and spleen tiss
by hemolytic parental strains have been described. Histopathological respi@péeen
and liver taken from mice infected with strong and weakly adherent stréideg/s after

inoculation was confirmed by the bacteriological data (Fig.3).
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In summary, the results of this study provided evidence that strong adherent
strains may differ in their virulence abilities to cause infectious fodieriver during
infection. Virulence of these strains in mice demonstrated that stratrshthaed strong
adherence are capable of invading and replicating in host tissues togihiéuoha
necessary to cause severe damage whereas, weakly adherent steagisnweated from
the liver with same challenge dose. This indicated that strong adhereppeavide
these strains with some features that make them more virulent than wdhkhgnt
strains Roche et al. (2003) also reported that even though strains may have the main
known genes for virulence, but in frame mutations could decrease their virulence.
Nevertheless, the results of the mouse assays were consistent with tseof@suitro
virulence assay carried out using Caco-2 cells (Kushwaha and Muriana, 2009).

It is important to do further research (microarrays) in identifying gene
differences between strong and weakly adherent which affect tobbhrattat of these
strains to abiotic surfaces, and subsequently functional analysis. This will help us t
better understand the pathogenic potential of these strains and the results wehatain w

inoculated in mice.
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Figure 4. Histopathology of strong (CW50) and akly adherent (CW34) straii3ssue samples we
prepared as described in materials and methods! Rahows conspicuous foci of inflammati
dominated by neutrophils and necrosis (arrows)olmgarison, the inflammatory lesions in wea
adherent strain were discrete, lacked significéir@ny) necrosis, and were comprised primarily «
mononuclear infiltrate (Panel B, arrows). Contratencid not have hepatic lesions (Panel
Haemotoylin & Eosin stain, Ba~ 150um.
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APPENDIX

SUBTYPING OF STRONG AND WEAKLY ADHERENT STRAINS OEISTERIA
MONOCYTOGENESBY MLST, PFGE AND RIBOTYPING

129



INTRODUCTION

Listeria monocytogenes is a Gram positive, intracellular food borne pathogen
causing listeriosis in humans that has a significant impactpewcifc risk groups,
including pregnant women and their fetuses as well as immunoconggrpeople
(Farber and Peterkin, 1991).It is estimated to cause appr@yn2ab00 cases of human
illness and 500 deaths annually in United States (Mead et al., 19@8ud®eof the high
fatality rate U.S regulatory agencies have establishedra tolerance” for the species in
ready-to-eat (RTE) foods (Swaminathan et al., 2001).

Molecular characterization df. monocytogenes is essential for identification of
specific subtypes and understanding the distribution of this pathogeelaitiom to
outbreaks, contaminated foods, and/or environmental sources of contaminatibfy, nota
processing plants These subtypes are usually characterizedlidnys subtyping methods
which needs to be accurate and highly discriminatory to help idetity potential
vehicles of infection, and to discriminate sources of contaminatigmoicessing plants
(Wiedmann, 2002).

Various molecular methods have been used for genotypihg rabnocytogenes
such as multilocus sequence typing (MLST) (Maiden et al., 1998%egbdield gel
electrophoresis (PFGE) (Brosch et al., 1996;1994) and ribotyping (RUr€Bet al.,

1995). These DNA-based methods define bacterial subtypes by RpHiaation,
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sequence analysis or restriction digestion of bacterial DNAetemte DNA fragment
banding patterns.

MLST is sequence based subtyping method which uses six or more hqusgkee
genes and differentiates bacterial isolates by comparindh sequences in these
genes Data generated is unambiguous and portable through web-babaded@ihan et
al., 2001; Enright et al., 2001). PFGE is mainly based on identifyinitr®organisms
by defining unique banding patterns of their digested DNA fragngsrisrated by gel
electrophoresis apparatus (Tenover et al., 1995). PFGE is the nscsimdiatory
subtyping because it shows high level of discriminatioh. @honocytogenes and is often
considered to be gold standard for discriminatory ability (Aarmistlal., 2003; Sauders
et al., 2003). Ribotyping is fully automated system which allows highproducible
subtyping ofL..monocytogenes but is relatively costly and less discriminatory than PFGE
It is based on the comparison of DNA banding pattern generated Hvidikgtion of
labeled ribosomal RNA probes wiltcoRI| digested genomic DNA df.monocytogenes.

In this system all process steps are automated, from call ttyamage analysis, and
provide subtyping results within 8h (Aarnisalo et al., 2003; Sauders et al., 2003).

In this study we examined the phylogenetic relatedness of stnothgveakly adherent
strains ofL. monocytogenes isolated from meat, RTE meat and meat processing fesiliti

using DNA sequencing-based subtyping method (MLST), PFGE and ribotyping.
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MATERIALS AND METHODS

Bacterial strains and growth media

The L. monocytogenes strains used in this study included from raw and ready-to-
eat (RTE) meat and meat processing facilities. The batt&rains were cultured by
transferring 100 pl of thawed frozen culture into 9 ml of brain hedusion (BHI)
(Difco, Becton-Dickenson, Franklin Lakes, NJ) broth, incubating thermmmte (18 to
24 h) at 30°C, and subculturing the bacteria twice before use. Frozeresibcks were
prepared by centrifuging 9 ml of culture, resuspending the peltnm of sterile BHI

broth (containing 10% glycerol), and storing it at -76°C.

PCR for multi locus sequence typing

For MLST target genes included five genetic loci within four eingle genes for
which PCR primers were designed. These were listeriolysfhly®@), a bacterial pore-
forming hemolysin that is essential for lysing the vacuolambrane and allowing.
monocytogenes to escape into the cytoplasm of the cell; a positive reguldemtpr
(prfA), which activates numerous virulence genes; a surface vimll@mtein, internalin
A (inlA), required for the penetration bf monocytogenes into non-phagocytic cells; and
actin A (@ctA), another surface virulence factor that induces polymerizatioactf

molecules to propéel. monocytogenes through the cytoplasm of infected cells.
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Overnight cultures of different isolateslafmonocytogenes were lysed by using 200ul of
lysis buffer with 12.5ul of protease by baxlysis program using comaigrotease and
lysis solutions for bacterial PCR assays (Qualicon, WilnoimgDE). A 5 pl aliquot of
the lysed culture solutions was then separately subjectedRaRQlification of the five
gene targets. Thermo cycling conditions included an initial ldldt min at 95C,
followed by 40 cycles of 9& for 15 sec (denaturation), %1 for 18 sec (annealing),
72°C for 40 sec (extension), with a final extension step 81C7®r 4 min was followed
by a hold at 2C. For primers actAl anactA2, annealing temperatures°60was used.
PCR primers used in this study are summarized in table3. Purification a€B@r@duct
was done using a Millipore PCR purification kit (Millipore, Billea, MA), and
amplification was confirmed by visualization of the PCR produchefexpected size on
agarose gels (1%). DNA sequencing was performed with an ABI 3730 AiNdyzer
((Applied Biosystems, Inc.) at the Department of Biochemiatrgg Molecular Biology
core facility, Oklahoma State University. Both forward and rexd>CR primers were
used as sequencing primers. DNA sequencing chromatograms aveck as ABI files
and SEQ files for analysis. The sequences obtained for the 43es$sodd L.
monocytogenes for the five genetic loci were then artificially joined Kiye neighbor-
joining method of the software program, Vector NTI Suite, to fonm aatificial
composite gene. The various composite genes were then placed intabasdaand
compared by multiple sequence alignment and clustal analysigliffiérent strains were
then grouped to form a phylogenic tree based on the degree of dieerigetween the

strains.
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Subtyping by Pulsed- field gel electrophoresis

PFGE was performed according to the CDC PulseNet standardaeztipre for
typing L. monocytogenes by using the CHEF-DRIIlI apparatus (Bio-Rad Laboratories,
Hercules, Calif.). The DNA in agarose plugs were digestdddupating (at 3@ for 4h)
with Apal, and electrophoresis was performed in a 1% agarose gelsghTris-borate
EDTA buffer). The agarose gel was loaded into the electropkochaimber containing
2000ml of 0.5X buffer. The buffer was precooled toClgrior to beginning gel run. The
following electrophoresis conditions were used: voltage, 180V; irstigtich time, 4.0s;
final switch time 40s; runtime 20h. Lambda ladder (Promega ngrikes loaded on the
gel. L. monocytogenes H2446 was included as a reference which was digestedagth
After electrophoresis, the gel was stained for 30 min in 400ml| af DBE containing
10mg/ml of ethidium bromide and destained by two washes of 20-3@aunmusing 400
ml of deionized water and photographed with GelDoc 1000 using the Quangity on
software (Bio-Rad). The image generated was saved inorifit, and then transferred
to the Bionumerics software version 4.5 (Applied Maths, Sint-dnarLatem, Belgium)
for DNA banding patterns analysis with optimization set at 0.5%pasdion tolerance
set at 1%. The Dice coefficient of similarity was cadtedl, and the unweighted pair
group method with arithmetic averages (UPGMA) was usedlémter analysis. A cut-
off at 80% similarity of the Dice coefficient was usedndicate identical PFGE types.
This corresponds to approximately one band differesuoe this degree of similarity also

allows for minor technical errors that frequently occur (Salamon et al., 1998)
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Ribotying

The strong and weak adherent strains were ribotyped using the restriciroreenz
EcoRI and the RiboPrinter Microbial Characterization System (Du’®@ualicon Inc.,
Wilmington, DE) as described by (Bruce, 1996). The generated/pé®tvere imported
into Bionumerics (Applied Maths, St. Martens-Latem, Belgium), addradrogram was
generated based on Unweighted Pair Group Method with Arithmetn rigPGMA)

and Pearson correlation coefficients.

Discrimination index
The discrimination power of ribotyping method was determined by calculating the
discrimination index (DI) using the formula of (Hunter and Gaston, 1988).
S

| | _
D 'l_‘\'(_\'. 0y Zn_,(n_,.-—l_]

1=1

Where,N is the total number of strains in the sample population,
sis the total number of types described, and

nj is the number of strains belonging to the jth type.
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RESULTS AND DISCUSSION

In order to understand the adherent phenotypés mibnocytogenes we subtyped
45 isolates obtained fromaw meat, RTE meat and meat processing facilities using
MLST approach by sequencing a trimmed 500bp fragment ol theonocytogenes
virulence genediyA, inlA, PrfA and actA. Subtyping using MLST analyzes several
genetic loci simultaneous and differentiate based on their subietig heterogeneity
(Enright and Spratt, 1999).The phylogenetic tree for MLST aizalys the basis of
nucleotide differences in the four gene fragments (Fig.1.) shdiwedmnajor clusters.
Cluster | contained all weakly adherent strains as well as taogsadherent strains (CW
50 and 99-38) while cluster Il consisted of all the strains inclutimgstrong adherent
strains. The dendrogram indicates that strains CW34, CW59, CW73, W2, &d
SM3 were genetically related as they do not show much genggcsily among the
same genetic loci. This ‘CW'’ strains were isolated frataif franks whereas the ‘SM’
strains were isolated from raw ground meat products. All Stk&ns are clustered in one
group which was isolated from a meat processing pldntsnonocytogenes strains
isolated during year 1998 and 1999 from ground beef in a meat packagirigalso
shows very less divergence. Cai et al. (2002) showed that inclusiactfofvirulence
gene allowed discrimination of 15monocytogenes isolates used into 13 sequence types.

Dendrogram based on PFGE of the four weak and four strongly ads&sns

digested withApal (Fig.2) formed two main clusters with a second clusteristing of
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weakly adherent strains. The strong adherent strains CW50 and $9e8gdud to one
cluster. The PFGE dendrogram was constructed by the UPGMA on sie dfathe
banding patterns oApal-digested genomic DNA fragments. Although PFGE has been
the ‘gold standard’ of epidemiological DNA fingerprint analysise difficulty in exact
band matching between different gels lends to placement of sarpattgehs in different
groupings.L.monocytogenes isolates that had shown higher and low adherence were
characterized by automateécoRI ribotyping using the RiboPrinter microbial
characterization system (DuPont Qualicon, Wilmington De) asritbesl previously
(Bruce et al., 1996). Ribotype patterns were analyzed usingilibprinter software,
which normalize fragment pattern data for band intensity andivelatind position
compared to those of the molecular weight marker. Sixteemsstirecluding weak and
strongly adherent ones isolated from RTE meat as well agn@amd beef were divided
into two main groupsEcoRI ribotyping differentiated the isolates into 11 distinct
ribotypes (Fig.3) and the discrimination index was 0.950. Dendrogranmnzagfenerated
from ribotype data produced three clusters. The threshold regattiengneasure of
similarity was fixed at 0.86%. Cluster | consisted of 8 isolagesfrom RTE meat and
two from raw ground beef. Cluster Il had one isolate from raw groueidaoel cluster Il
had five for raw ground beef and two from RTE meat. The resuttseofluster analysis
showed that there is co-typing of strains isolated from rawrgt beef and RTE. The
pattern of ribotype-8 was clearly different from the othanonocytogenes patterns.

Our results showed that use of combined multi-method genotyping apgooach
subtyping ofL.. monocytogenes strains grouped 99-38 (raw beef) and CW 50 (RTE meat)

in one group though these strains were isolated from differentesobycMLST, PFGE
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and ribotyping. Typing of additional strains by both PFGE and MLST demaded
several instances whereby strains from raw sourcespeattyith strains from RTE
sources, suggesting that outbreak strains that are only comp&aradEtderived isolates
(i.,e., USDA-FSIS regulatory samplings) may not identify raw cesr for L.
monocytogenes should they occur because their database contains only RTE-sourced
isolatesEcoRI ribotyping targets conserved genetic characteristics rahdaites similar
banding pattern for the both the strains whereas PFGE doesn’'t shibar simgerprint
pattern but assign both strains in the same group because PFGiBtbayable to detect
less than or equal to 3 bands. All “CW” strains were grouped in oseecloy all three
typing methods indicating less genetic diversity. This is overcbynsequence-based
typing for which sequence analysis and comparison is much morefrigselly’ and is
only limited by the quality of the sequence information. It isljikbat sequence-based
typing will replace DNA fragment/band based typing in theureit The observed
inclusion of virulence gene target sequences in a DNA sequesed-babtyping scheme
for L. monocytogenes helped us to achieve maximum subtype differentiation. MLST can
effectively distinguish strains with high degrees of homologyiwithe compared gene
sequences. MLST detects all genetic variations within thplied gene fragment
whereas PFGE only examines the variations that are in theagkeaites for a particular
restriction enzyme. Since this technique is user friendly and botitas like PFGE, or
expensive like ribotyping, it provides an ideal balance between sequence-bakétbnes

and technical feasibility.
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CONCLUSION

These DNA-based methods define bacterial subtypes by using éHbBr
amplification or sequence analysis or restriction digestion cfebal DNA to generate
DNA fragment banding patterns. This study demonstrated severahaest whereby
strains from raw sources co-typed with strains from RTE c&sursuggesting that
outbreak strains that are only compared to RTE-derived isolages (ISDA-FSIS
regulatory samplings) may not identify raw sourcesLfomonocytogenes should they
occur because their database contains only RTE-sourced isolades.ofUthese
methodologies will help in making decision concerning which methadthe superior
discriminatory ability. Typing pathogenic bacteria from maeatl RTE meat sources
involved in food processing may help establish strains that aristpatsand may have

harborage sites within the processing facility

139



Table 1. Virulence genes and PCR primers used in this study

Primer Target Gene Primer Sequence<{33’) Product
size
(bp)
Primer |  HemolysinlflyA) 560
Forward TGAACCTACAAGACCTTCCA
Reverse CAATTTCGTTACCTTCAGGA
Primer Il Internalin A 575
(inlA)
Forward GCTTCAGGCGGATAGATTAG
Reverse AACTCGCCAATGTGCC
Primer Positive 590

1] regulatory factor
(prfA)

Forward ATTTTTAACCAATGGGATCC
Reverse CATTCATCTAATTTAGGGGC
Primer  Actin mobility 500
\Y (actAl)
Forward AATACGAACAAAGCAGACCTAATAG
Reverse GGTCAATTAACCCTGCACTTTTA
Primer V  Actin mobility 500
(actA2)
Forward GATAGAGGAACAGGAAAACACTCA
Reverse CGTCTTCTGCACTTTTAGCAATT
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Figure.1l.Multilocus sequence typing (MLST) of composite sequences adu&ri
strains of L. monocytogenes. (Strong adherent strains are highlighted in red
whereas weakly adherent strains are highlighted in yellow).
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Figure 2. PFGE —based dendrogram for strong and weakly adherent strains of
monocytogenes strains Similarity analysis was performed using the eDic
coefficient and clustering was performed by UPGMA (position tolerance 1%).
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was testedn vitro using human cell line Caco-2 aimdvivo by oral inoculation into A/J
mice. Further, spleen and liver tissue samples were subjeatedrmpsy to confirm the
virulence. Subtyping was done using MLST, PFGE and RT methods tbreekecular
typing methods could segregate the adherent phenotypes into different groups.

Findings and Conclusions:

Strains of Listeria isolated from three RTE meat processing plants were
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if they areL. monocytogenes, as they are human pathogens. Therefore, elimination of
strongly adherent strains df. monocytogenes from food processing environment
deserves special attention as their strong adherence not onigtps retention but may
show enhanced invasion and replication in host tissues causing greater virulence.
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